
Loughborough University
Institutional Repository

Emergence in active
networks

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�llment of the requirements
for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/14704

Publisher: c© Marcelline Shirantha de Silva

Please cite the published version.

https://dspace.lboro.ac.uk/2134/14704

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

J
ii University Library

•• Loughborough
• University

i'

I:
~ Author/Filing Title Y..r; ;?.' .. ,:v.~ .. ,IyL.?...: ... ,.. '

1
..

Class Mark :T... I

Please note that fines are charged on ALL
overdue items.

fgB REFERENCE ONLY
. t

0403116252

11

Emergence in Active Networks

by

Marcelline Shirantha de Silva

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of PhiiosQphY;'Q£,L0H&loorough University
I "I1~-!'JI;lIiJ Wi",-1;:. I' f • ~'''j..
I {wadi I qOI~.lIli;,'iill ~.,. r--:--- -----------1
j '111)0 J

r----- "'---·----1

1-- S~.!e~ber ~?r~4
'i •.• V.:
....... -..-.. ----_. ---

© by Marcelline Shirantha de Silva 2004

U Loughborougb
University
Pilkinglon Libra,ry

Dale S~p-f. 2005,
.-

aass"l

~ OLr031\€>252

Dedicated to my wife Stephanie

ABSTRACT

Emergence in Active Networks Abstract

Abstract

Any complex system may potentially exhibit unpredicted and undesirable behaviour as a

result of certain combinations of input stimuli. An Active Network, being a

communication network in which user requested operations are undertaken in the

netwOIk nodes themselves, is a candidate to exhibit such behaviour. For example,

resource utilisation will be influenced by the specific combination of activities triggered

by the users and may develop undesirable characteristics such as a self-sustaining

profile. Conventional simulation tools do not detect such characteristics.

This thesis proposes a solution based on a Petri-Net model in which the resource

utilisation of the Active Network is abstracted above the link level communication

element. It is then suggested that a certain type of Emergence in resource utilisation may

manifest itself as Self-Similarity. The Hurst Parameter (H) of the resource utilisation

profile for each node in the network can then be used to identify the presence of this

characteristic. The RlS Statistic is used to estimate sets of H values for a range of

different Active Application scenarios. It is subsequently seen that a self-sustaining

resource utilisation profile (termed a "Cascading Effect") occurs when a significant

subset of the nodes display high values of H.

This thesis takes the view that Emergence in Active Networks is a problem that has to

be approached with a global comprehension of the system as opposed to the

conventional approach of a piecemeal development of solutions. This view is reinforced

by the hypothesis that an Active Network is a Complex System and Emergence is non­

complex self-organisation within it. It proposes that the high-level abstraction of the

Active Network forms a view by which global comprehension can be obtained and is

used for the detection of anomalous behaviour (Le. Emergence). The key enabler for

self-organisation is proposed to be 'the resources' within the Active Network nodes and

hence the detection technique was focused on the utilisation characteristics of these.

I

ACKNOWLEDGMENTS

Emergence in Active Networlcs Acknowledgments

Acknowledgements

I would like to thank Pro! David Parish for his continued support. His contribution of

knowledge and advice, especially in the key initial stages of the project, has helped me

focus on my objectives. Without his encouragement and support this work would not

have been possible.

I would also like to thank, Mark Sandford, Pete Sandford, Andy Larkum and Les

Do"ell (a former Active Networks expert) for their practical advice, support and

prayers.

Many thanks go out to the rest of the HSN group for being potient with me in a noisy

working environment.

I
Finally, I would like to thank my wife for her support, especially during the write-up

stage. She contributed to this work by proof reading this entire document and made

sure my 'i's were dotted and my 't's were crossed. She also restrained my obsession

with commas, semi-colons and long sentences.

ii

TABLE OF CONTENTS

Emergence in Active Networks Table of Contents

Table of Contents

Arnromct, __ ___

Acknowledgements ii

Table of Contents iii

List of Figures ix

Background xi

I Introduction I

1.1 Research Scope 6

1.2 The Project Strategy 9

1.2.1 Investigate Active networks and produce a suitable generic model 9

1.2.2 Investigate Emergent Properties and characteristics 9

1.2.3 Investigate suitable methodologies for the high-level abstract modelling of

Active Networks 10

1.2.4 Development of suitable test scenarios for simulation 10

1.2.5 Obtaining results and identification of Emergence through established

mathematical techniques 11

1.3 Original work 12

1.4 Summary of the thesis 13

1.4.1 Background 13

1.4.2 Chapter I 13

1.4.3 Chapter 2 13

1.4.4 Chapter 3 13

1.4.5 Chapter 4 14

1.4.6 Chapter 5 14

1.4.7 Chapter 6 14

1.4.8 Chapter 7 15

1.4.9 Chapter 8 15

iii

Emergence in Active Networks Table of Contents

1.4.10 References ___________________ 15

1.4.11 Appendices IS

2 Active Networks. ______________________ 16

2.1 Applications of Active Networks, ______________ --:20

2.1.1 Video-conferencing and Internet telephony 20

2.1.2 Mobile Internet 20

2.1.3 Caching and Load Distribution 21

2.1.4 Network management functions 21

2.1.5 Distnbuted sensors 21

2.1.6 Security 22

2.2 Active Network Research 23

2.3 Summaryofchapter _________________ 27

3 Emergent Properties and Complex Systems, ____________ ~29

3.1 Characteristics of Emergent Properties, _____________ 30

3.1.1 Feedback 31

3.1.2 Domino Effect (positive feedback) 33

3.1.3 Meta-Balance 34

3.1.4 Survival and Sameness 34

3.1.5 Vortex 35

3.1.6 Resonance 36

32 Emergence Research. __________________ 38

3.3 Characteristics of Complex Systems, _____________ 40

3.3.1 A Complex System consists of numerous independent components 41

3.3.2 Components interact locally and the interactions are numerous 42

3.3.3 Overall global behaviour is independent of the internal stmcture of the

components 42

3.3.4 Overall behaviour of the system is well defined 42

3.3.5 Evolution in Complex Systems 43

3.4 Active Networks as Complex Systems 44

IV

Emergence in Active Networks Table of Contents

3.4.1 Distnbuted Processing Architecture'--__________:44

3.4.2 In-built Intelligence and Self Awareness 45

3.4.3 Local Network Awareness 45

3.4.4 Lack of Central Management Control 45

3.4.5 Application Level Organisation 46

3.4.6 Adaptation and Evolution 46

3.4.7 Memory 47

3.4.8 Limited Resources and Competition 47

3.5 SummaryofChapter, _________________ 48

4 Modelling and Simulation 50

4.1 Simulation/Modelling Strategy ______________ 51

4.2 Static-Node simulation, __________________ 53

4.3 Defining Characteristics of the Active Networks model _______ 55

4.4 Defining Generic Model Applications and Primitive Functional Components_59

4.4.1 Possible Active Applications 59

4.4.2 Primitive Functional Components 60

4.5 Mathematical Solutions verses Simulation, ____________ 61

4.6 Summary ___________ .,.---______ -:64

5 Petri-Net Simulation, ___________________ 66

5.1 Modelling set scenarios with Petri-Nets, ___________ --.:69

5.U Sequential Actions 69

5.1.2 Cycles 69

5.1.3 Dependency 69

5.1.4 Concurrent processes 70

5.1.5 Synchronisation 70

5.1.6 Decision-making lconflict 71

5.2 Extensions ofPetri-Nets, _________________ 73

5.3 Petri-Net Simulation of Active Networks, ____________ 74

v

Emergence in Active Networks Table of Contents

5.4 DesignlCPN, ___________________ 76

5.5 Model flow diagrams/layouts 78

5.5.1 Model hierarchy 78

5.5.2 Active Network (Ohira-Sawatari lattice structure) 79

5.5.3 Active Node Model 83

5.5.4 Local Storage Component 85

5.5.5 Merge Packet Component 87

5.5.6 Replicate Packet Component 89

5.5.7 Direction Solver Component 91

5.5.8 Other components: Data Logging 92

5.6 Summary ____________________ 95

6 Detection of Emergenre, _________________________ 96

6.1 Overview __________________________ 97

6.1.1 Emergenre as the loss of complexity in a system 98

6.1.2 Emergenre through the measure of self organisation 98

6.1.3 Emergenre as patterns in a system 99

6.2 Detection technique suitability testing 103

6.3 Self-Similarity ____________________ 105

6.3.1 Calculation of the Hurst parameter - Rescaled Range statistic (RIS statistic)
________________________ 105

6.3.2 Approximation and Stability of the RlS statistic'---__________ 112

6.3.3 Cascading Effects and Self-Similarity 114

6.4 Summary 116

7 Results 118

7.1 Overview __________________________ 119

7.2 Results: Case Study Analysis ______________ 121

7.2.1 Case Study I 122

7.2.2 Case Study 2 124

VI

Emergence in Active Networks Table of Contenls

7.2.3 Case Study 3 _________________ l26

7.2.4 Case Study 4 128

7.2.S Case Study S 130 .

7.2.6 Case Study 6 133

7.3 Results Discussion~ _________________ 136

7.4 Summary ___________________ 139

8 Conclusions and Future Work _________________ 140

8.1 Virtual Node Simulation. _________________ l44

References, _______________________ 148

Appendices

i. MATLAB Algorithm. ___________________ 1S8

ii. Design/CPN Petri Net Diagrams 161

ii.l. Declarations. ____________________ 161

ii.2. Model HierarchY· __________________ 169

ii.3. Top-level Active Network. ________________ 170

ii.4. Active Node (section 1), ________________ 173

ii.S. Active Node (section 2) ________________ 176

ii.6. Active Node (section 3), ________________ 178

ii.7. Active Node (section 4) 186

ii.8. Active Node (section S) 188

ii.9. Local Storage Component in detail (section 1), __________ 190

ii.IO. Local Storage Component in detail (section 2) 193

ii.ll. Merge Packet Component in detail (section 1), _________ 197

ii.12. Merge Packet Component in detail (section 2) 201

ii.13. Replicate Packet Component in detail 20S

vii

Emergence in Active Networks Table of Contents

ii.14. Direction Solver Component in detail, ___________ ----'207

ii.15. Data logging component 209

iii. Petri-Net Simulators Reviewed 216

iv. Case Study Tabulated Results 221

iv.l. Case Study 1 221

iv.2. Case Study 2 222

iv.3. Case Study 3 223

iv.4. Case Study 4 224

iv.5. Case Study 5 225

iv.6. Case Study 6 226

viii

LIST OF FIGURES

Emergence in Active Networks List of Figures

List of Figures

Figure 1.1.a: The Cloud model overview of an Active Network ________ 7

Figure 3.1.l.a: Examples of Positive Feedback 31

Figure 3.l.l.b: Dynamics of Positive Feedback 31

Figure 3.l.l.c: System representation of Negative Feedback 32

Figure 3.l.l.d: Dynamics of Negative Feedback 32

Figure 3. I. I.e: Two distinct views of Feedback 33

Figure 3.1.2.a: The Domino Effect 34

Figure 3.1.5.a: Computer representation ofa Vortex 35

Figure 3.1.6.a: Example of a Resonant system 36

Figure 3.1.6.b: Resonance 36

Figure 3.2.a: Mathematical and scientific roots of emergence (leffetyGoldstein) __ 38

Figure 3.3.a: The Global Emergence in Complex Systems 41

Figure 4.2.a: Ohira-Sawatari model adapted to Active Networks 53

Figure 5.a: Petri-Net terminology 67

Figure 5.b: The Transition with the red border is 'enabled' ________ --'68

Figure 5.c: The Transition with the double red border has 'fired' 68

Figure 5.l.l.a: Sequential action 69

Figure 5.1.2.a: Cycles 69

Figure 5.1.3.a: Dependency 70

Figure 5.1.4.a: Concurrent processes 70

Figure 5.1.5.a: Synchronisation of concurrent flows 71

Figure 5.1.5.b: Two-level deep buffer 71

Figure 5.1.5.c: Common resource store 71

Figure 5.1.6.a: Decision-makingfconflict 72

Figure 5.5.I.a: Model Layout: Active Network Model Hierarchy 78

Figure 5.5.2.a: Model Layout: Active Network 80

Figure 5.5.2.b: Sample Source File ("src.txt") 81

Figure 5.5.2.c: Active Packet/Application Structure and Direction Indicator values _82

Figure 5.5.3.a: Model Layout: Active Node 83

ix

Emergence in Active Networks List of Figures

Figure 5.5.4.a: Model Layout: Local Storage Component _________ ,85

Figure 5.5.5.a: Model Layout: Merge Packet Component 87

Figure 5.5.6.a: Model Layout: Replicate Packet Component 89

Figure 5.5.6.b: Active Packet Replication Scheme 90

Figure 5.5.7.a: Model Layout: Direction Solver Component 91

Figure 5.5.8.a: Model Layout: Data Logging Component 92

Figure 5.5.8.b: Sample Output log file "out.txt" 93

Figure 6.3.I.a: Examples of varying goodness-of-fit values (r2) for regression lines _107

Figure 6.3.l.b: The Vonkoch self-similar curve 108

Figure 6.3.l.c: RlS statistic plot for the Vonkoch curve. Hurst value = 1.0519 109

Figure 6.3.l.d: Random trace 110

Figure 6.3.l.e: RlS statistic plot for the random trace. Hurst value = 0.5154 III

Figure 6.3.3.a: Process of experimentation and the definition of the "Cascading Effect"

threshold of 0.9 115

Figure 7.2.I.a: Case Study I: Hurst analysis of Active Network 122

Figure 7.2.2.a: Case Study 2: Hurst analysis of Active Network _______ 124

Figure 7.2.3.a: Case Study 3: Hurst analysis of Active Network 126

Figure 7.2.4.a: Case Study 4: Hurst analysis of Active Network 128

Figure 7.2.5.a: Case Study 5: Hurst analysis of Active Network 131

Figure 7.2.6.a: Case Study 6: Hurst analysis of Active Network 134

Figure 8.1.a: Virtual Node Simulation of an Active Network with a uniform lattice of

cells 145

x

BACKGROUND

Emergence in Active Networks Background

Background

Multimedia is a collection of text, speech, graphics, audio and video formed into

nwnerous applications meeting the needs of corporate and domestic clients alike. The

progress of the Internet is towards the provision of these enriched services over IP.

which is the defacto stsndard for fixed inftastructure networks. In conjunction, the

recent rise of wireless data communications has provided significant impetus to the

research of viable technologies providing guaranteed Quality-of-Service (QoS) and

efficient resource utilisation [KuI99]. The intrinsic nature of wireless netwoIks mean

that bandwidth is at a premiwn in heavily congested airways. Cwrently. IP s1ruggles

with the legacy of having been originally designed for text-based communications and

with the problem of maintaining backward compatIbility with existing hardware.

As the size of the Internet expands from millions of nodes to billions of nodes, the

information richness and capabilities of the current TCPIIP protocol will see its limits. A

current topic of discussion in improving the Internet is the focus on adding Quality-of­

Service (QoS) controls on Routers (to support real-time communications, reliable

distributed multicasting and multi-party interactive communications) [Mar99].

However, as more services are added and deployed on a large-scale, the cost (the major

sink for funds would be the extension of inftastructure and network management) and

complexity of the system will grow rapidly.

xi

CHAPTER 1
INTRODUCTION

EmeIgence in Active Networks Chapter 1: Introduction

L Introduction

This chapter will present:

• A brief description of Active Networks.

• A brief explanation of Emergence.

• The contributions made by this work to further the understanding of Active Network

behaviour in Emergent situations.

• The strategy undertaken to develop a detection technique for Emergence in Active

Networks.

• The idea that Active Node resource usage is linked with Emergent Behaviour.

The key concepts in this chapter are: Emergence, Active Networks, original work, Self­

Similarity, resource usage fluctuations, detection technique, high-level abstract model

Emetgence in Active Networks Chapter I: Introduction

This research project primarily brings together two fields of study in order to present an

interesting problem that would pose significant barriers to the implementation of the

discussed technology.

The first is a new networking concept called Active Networks; envisaged and promoted

by the networking community as a radical alternative to IP (Internet Protocol) networks.

It is an advanced internetworking technology that would provide increased throughput

of multimedia and the efficient usage of bandwidth. Active Networks, however, do

nothing to simplity the complexity of the current Internet structure. The addition of

Active Networking components (as will be shown later in this thesis) would, in fact,

raise levels of complexity.

The second is Emergence, which is the term given to the uncontrolled manifestation of

system-wide structures (good or bad) through the dynamic interactions of individual

system components. Emergence is a topic of high interest to many research communities

including the systems, physics and mathematical communities. It is generally understood

that the term Emergence is the collective definition for system behaviour over and above

what can be practically understood in a complex system. The discovery of Emergence is

proposed as a practical methodology to evaluate complex system performance without

the need to understand every single facet of system behaviour [GoI99J.

Both fields, even though thoroughly researched, lack a set of coherent principles,

standards and definitions. The directions of research (in Active Networks and

Emergence) are varied and changeable. In this environment this research project

proposes to merge the two fields and find a practical solution to the detection of certain

types of Emergence in Active Networks. The detection scheme proposed by this

research is one part of the overall design and modelling process; undertaken as a stage in

the development process of a stable complex system for the Internet.

Active Networks promises to be a more radical solution to current Internet woes and

describes the implementation of a 'user-subscribed customisation of the data

connection '. In other words, the end-users could be given the capability to modity

routers to specifically enhance the application throughput along it's connection path;

2

EmeIgence in Active NetwoIks Chapter I: Introduction

requesting resources based on the type of application, the required Quality-of-Service

and the network state for the duration of the connection. Active Networks is the tenn

given to this distributed processing environment that lacks any central management

control.

The lack of central management control is not exclusive to Active Networks. The

current IF protocol owes it popularity to the fact that it provides easy integration to the

fabric of the Internet without the authorisation of anyone supervisory body. Active

Networks propose to go one step further and allow users (the clients and servers) the

ability to customise the core of the Internet.

The extent to which the 'end-users' are allowed to control the network is a highly

debated issue. Giving individuals Active Capability would open the network up to a

whole host of security, integrity and 'political' problems (e.g. possible threats from

hackers, erroneous software creating system wide crashes and users who will insist on

priority for their applications). It is possible that Active Capability, in the future, be

given to accountable organisations (e.g. Internet Service Providers, multi-media

application servers, etc.) with an attached premium or be integrated to software

packages designed for the Internet. Several authentication/integrity steps also need to be

taken to ensure that Active packets are not erroneous or malicious [8roOl]. The

disadvantage of this would be that it is a step away from the original concept of giving

end-users total flexibility in the deployment of Active Applications. Requiring approval

and authentication would also delay the deployment of new multi-media enriched

services. However, many believe that a compromise is essential if it is to become a

reality.

One factor in the success of any new technology is its rapid deployment onto the

Internet. From it's widespread use in the 1980's the Internet was a place where new

technologies were expected to be in service in a couple of years from their initial

inception. That margin of development time is constantly being reduced and designers

are under pressure to get their products out onto the market before the technology

becomes obsolete. The Active Network paradigm provides a significant step towards

reducing this development time, through the use of its open-protocol customisable data

3

Emelgence in Active Networks Chapter 1: Introduction

connection capability. It further facilitates the development of new services currently not

envisaged.

The current process of thought for the development of Active Network applications is

founded on improving existing Internet solutions (i.e. to provide certain levels of QoS

and reliability for multimedia services). An example would be the Active Network

equivalent of the Multicast Backbone (Mbone) - a current implementation of IP

multicast protocols. IP multi cast schemes, including Mbone, allow a user to 'broadcast'

packets of information to selected groups of 'listeners' using a reduced set of traffic

streams as opposed to multiple one-to-one (normal IP unicast) streams that would

congest the network. Reliable and scalable multi casting would lead to a revolution in the

publishing of data, audio and video across the Internet. Even today we see governments,

businesses, television/radio networks, educational establishments, the music industry

and many other multimedia developers using IP multi cast to reach audiences throughout·

the world [Sav96a]. The Mbone is a software alternative to what should ideally be a

hardware-based technology. It provides a scheme of moving multicast packets through

the network by encapsulating them in unicast IP packets (a process called tunnelling).

This 'workaround' implementation came about in order to provide backward

compatibility with existing routers and servers [Sav96b]. A hardware solution is ideal as

it would increase the speed and reliability of Multicast connections. Even with today's

production of routers with added hardware-based multicasting, the goal of reliable and

scalable IP multicasting is not yet reached. The consensus is that Active Networks will

provide the strongest solution to the problem without sacrificing the flexibility to service

other applications [Ten97].

The introduction of Active networks into the arena of emerging Internet technologies

has opened up several issues including security and wide-scale integration with legacy

devices. Few research organisations have concentrated on the little understood topic of

'Emergent Properties' and 'Emergent Behaviour' in relation to networked systems.

Whilst there are many hypotheses and partial solutions to customised applications, no

universally acceptable models and theories have been formed. It is apparent that while

considerable research work does exist in the fields of Active Networks and Emergent

4

EmeIgence in Active NetwOlXS Chapter 1: Introduction

Properties, separately, the idea that both are linked has received little attention. This is

understandable since the definition of Emergent Behaviour has various meanings under

vaI)'ing levels of abstraction. The complexity and broad scope of Emergent Behaviour

(tantamount to the phrases "Emergent Properties", "Emergent Phenomena" and

"Emergence", for the purpose of this thesis) have been difficult to breakdown and

analyse in accordance with standard engineering practices. The 'systems' approach, of

viewing the problem in distinct sets of sub-elements and providing a progressive set of

solutions, is inadequate [Mar99]. One would require a holistic approach to Emergent

Properties as opposed to a piecemeal systems analysis in order to gain an accurate result.

This does not mean that all details of an Active Network have to be included in the

modelling process. One can selectively include features suspected of contributing to

Emergence in Active Networks [Yua02].

The solution to the problem is by no means a straightforward simulation exercise. The

detection of Emergent Behaviour in Active Networks is complicated by the fact that

there is no set model for this type of network; as major research organisations are in the

process of developing and testing various topologies and distribution mechanisms, all

under the umbrella of Active Networks. This thesis presents a method to overcome the

lack of standardisation by forming a generic modelling/simulation scenario. There is

some agreement as to what is possible through Active Networks and in the type of

services that users want or seek to have in the near future. This forms the initial point of

reference for a proposed Active Network modelling/simulation scenario with which to

investigate the issue of Emergence in Active Networks.

5

Emergence in Active Networl<s Chapter 1: InIroduction

1.1 Research Scope

There are conceptual differences between existing networks and Active Networks that

are further highlighted by the amount of Complexity within each. Whilst classic

networks can be modelled and analysed by equivalent equations or captured data traces,

a highly complex Active Network requires additional methods in order to understand its

behaviour, evolution and performance.

"Complexity is the property of a real world system that is manifest in the inability of

anyone formalism being adequate to capture all its properties. It requires that we find

distinctly different w~s of interacting with systems. Distinctly different in the sense that

when we make successful models, the formal ~ystems needed to describe each distinct

aspect are NOT derivable from each other. " - D.C. Mikulecky, Professor of Physiology,

Medical College of Virginia Commonwealth University.

One objective of this project is to confirm the existence of Emergent Properties in

Active Networks and devise models that would facilitate the detection of them. Another

is to describe an approach to detect Emergence and ultimately ascertain the practicality

and viability of Active Networks in future networking solutions.

This constitutes a management process with certain complications. Given the fact that

Internet usage is multi-fractal and Active Networks are programmable (they have no

restrictions on functionality and therefore state), the number of possible states a large­

scale network can be in is essentially infinite. Thus an information-modelling approach

or a finite-state-machine (foundations in Control Theory and Systems Analysis)

approach is not applicable [Mar99).

As a background to a possible solution, this thesis highlights key concepts of Emergent

Properties and their identifying characteristics. It follows on to justify Active Networks

as Complex Systems with the capability of producing Emergence, and draws insights

from varied fields of study not necessarily network related:

• Artificial Life

6

EmeIgence in Active NetwOlxs Chapter 1: Introduction

• Complex Systems and Chaos Theory

• Biological Systems including human neurological and immune response systems

• Multi-Agent systems

• Genetic Algorithms and Artificial Intelligence

• Physical systems

• Mathematical equations

Techniques and theories related to Complexity Theory and Complex Systems research

provide the most credible and complete solutions to the modelling of Active Networks

and Emergence, and have directed the course of this research (a discussion of which is

provided in this thesis).

From a System's perspective an Internet Environment consisting of Active capability

can be viewed as a collection (or cloud) of nodes in between the server and client (i.e. all

clients and servers are at the edge of the network and all the routing/transportation

hardware is in the core). The cloud would provide additional processing of the

connection between the server and client that is dynamic and locally aware. It is a high­

level abstract view of the Internet with Active Network elements distributed within it.

The author proposes that this model is sufficient for a functional analysis of Active

capability and its side effects. It also does not promote any particular configuration of

Active Nodes in order to further the progress of discovering Emergence.

Processing & Resources Processing & Resources Processing & Resources

l l l
L..-.....Ir;

Active Server

Active Client Active Server

Figure J. J .a: The Cloud model overview of an Active Network

7

EmeIgence in Active NetwoIks Chapter 1: Introduction

The work contains an investigation of the manifestation of unusual (and possibly

undesirable) phenomena commonly termed as "Emergent Behaviour" [Bar97] within

generic models of an Active Network and was successful in identifying one in particular,

which the author has termed a "Cascading Effect" in node resource utilisation. In

brief, a "Cascading Effect" is a phenomenon linked to 'replication' (for the purposes of

this work) that, once formed within the Active Nodes, continues to sustain itself

(feedback) and grow; the detection of which can only be done post simulation. The

phenomenon is distinguished through a set of empirical results and highlights the causal

input conditions of the Active Network. It might be assumed that one can intuitively

point out potential Active Applications that would always cause such a phenomenon

(i.e. Active Packets that have a replicating function, built into them). However, as

described in chapter 7, section 7.3, not all replication scenarios produce a "Cascading

Effect". A methodology is devised to analyse the potential of replicating packets to

create "Cascading Effects" in the Active Network model.

The method, once verified, could then be used in future simulations of Active Networks

(extraneous to this work) to identify Cascading Effects, even when there are no

'apparent' Active Applications with replicating elements. This would be tantamount to

the detection of 'Emergence', or at least one type of Emergence. Detecting "Cascading

Effects" is important for Active Network designers, as this is an uncontrolled and

undesirable situation of resource fluctuations that can quite easily manifest itself through

the code invoked by Active processes. The formal methodology will provide a generic

test bed for legitimate Active processes and a suitable detection mechanism for

undesirable culminations of Active Applications.

The underlying mechanism for the "Cascading Effect" is "Self-Similarity" [Naw95]. A

trace is said to be self-similar when it roughly looks the same on various time-scales (i.e.

scale invariant) and is synonymous with long-range dependence. A "Cascading Effect"

by its very nature would generate feedback loops adding to the existing effect. This

would result in similar patterns emerging when viewed at various time scales. To verify

the "Cascading Effect" hypothesis, the author used the RlS technique to calculate the

Hurst parameter (a well-known estimator value of Self-Similarity) of each data trace

obtained from the simulation.

8

EmeIgence in Active NetwOlXs empter 1: Introduction

1.2 The Project Strategy

The research work strategy was based around the following key sections:

U.1 Investigate Active networks and produce a suitable generic model

The generic model, which forms the starting point for the analysis of Emergence, had to

be sufficiently succinct and complete; taking into account the relevant features that have

a possible link with anomalous behaviour. Hypothesising about all possible factors of

Emergence would be an exhaustive process if it were not for the fact that the generic

model, itself, provides a reduction in information/detail, and thus reducing the number

of Emergence factors under consideration. Nevertheless, highlighting Emergence factors

was an ongoing task, thus making the production of the generic model an iterative

process.

A review of Active Networks research was performed in order to gain an understanding

of the concepts and possible applications. These applications provided the functional

descriptions for the generic model.

1.2.2 Investigate Emergent Properties and characteristics

The research delved into areas such as the natural clustering of organisms (e.g. flocking

birds models, human traffic scenarios), Emergence in Complexity, road traffic

modelling, cognitive science, aircraft systems, multi-agent systems and the Internet.

Each field of science described a system with particular Emergent characteristics. The

investigation was primarily directed to draw analogies from the above-mentioned fields

that relate to Active Networks. Appropriate results and conclusions were found from

past research that were used as foundations for the modelling of Active Networks.

Further to this, the research work undertook a critical breakdown/analysis of Emergence

and its various characteristics. The classic makeup of Emergence was identified as

exhibiting several patterns endemic in system-wide behaviour.

9

Emergence in Active NetwOlXs Chapter I: Introduction

LU Inyestigate suitable methodologies for the high-level abstract modelling of

Active Networks

The Active Network was modeJled as an abstract view in order to reduce tbe amount of

detail it contained and to become a generic case for tbe different Active Network

architectures currently being researched. The modeJling process and simulation process

were initially grouped as two separate tasks. However, as the research progressed it was

found that a particular choice of modelling scenario also provided a list of recommended

simulation solutions as part of the package. Thus, the consideration of any modeJling

technique had to take into account the availability and ease of use of the recommended

simulators. Suitable modelling techniques included Petri Nets and CeJlular Automata

(both being simulation based techniques). It was decided that a direct simulation

approach of tbe Active Network functionality was more appropriate than attempting to

build a model comprised of mathematical equivalent equations of system dynamics. The

latter technique, being more involved, would have required an unacceptable number of

assumptions to be made and would have been inflexible to an iterative development

process. Where tbere was more than one simulator for a particular modelling technique,

an evaluation was performed based on the foJlowing:

• Availability

• Ease of use and a suitable level of modelling detail

• Industry recognition and support

• The ability to graphically layout the model

• Modular design capability and hierarchical decomposition

• Speed of simulations

• Ability to export results as text files

LM Deyelopment of suitable test scenarios for simulation

Once the iterative design process produced a credible example of an Active Network it

was subjected to various input scenarios whereby it was hoped that at least one defining

Emergent characteristic would manifest as a pattern witbin the system. Defining

characteristics were initially identified and classified through a review of Emergence

10

Emergence in Active NetwOlks Chapter I: Introduction

research. The test scenarios contained parameters that threw the generic Active Network

into unstable situations, from which it was hoped Emergence would be produced.

1.2.5 Obtaining results and identification of Emergence through established

mathematical techniques

The use of a particular mathematical analysis technique is dependant on the type of data

produced by the network and the selected input simulation conditions. Since Emergence

manifests itself as patterns in the system and is reflected in the data, the mathematical

techniques considered were based around pattern recognition. Some of the techniques

evaluated included Fourier analysis, Wavelet analysis, Image RecognitionlEnhancement

algorithms and Self-Similarity algorithms. The 'type' of result returned from the

simulation also merited careful consideration. For this research, the Resource Usage

Fluctuations in Active Nodes proved to be the most suitable data for analysis, since

they are part of the evidential link between Emergence and the dynamic

interactions within the Active system.

11

EmeIgence in Active Networl<s Chapter 1: Introduction

1.3 Original work

The decomposition and classification of an Active Network based on higher-level

functionality is a crucial concept and is believed to be unique to this project. With this

process it is now possible to abstract-model an Active Network with minimum detail

and to rapidly provide generic models designed as test-beds for Active Applications.

Performance evaluation is further simplified with the use of a universal modelling

theory known as Petri Nets.

The analysis of a large-scale system must contain a preliminary list of

parameters/outputs to be observed; being a sub-set of all possible characteristics that can

be analysed post simulation. Whilst there are methods in Systems Theory to formally

identify these parameters based on preset evaluation criteria they do not extend to isolate

the parameters that are of particular importance when considering Emergent Behaviour.

A systematic approach to identifying parameters of interest is inadequate. A more

'~ystemic' approach, using techniques imported from non-systems related fields (e.g.

Complex Theory), is needed. Using this philosophy the author has noted that Emergence

could manifest itself, in a highly distributed and highly connected network of intelligent

sub-systems (nodes), through the dynamic interactions of those sub-systems. Any

dynamic interaction requires a quantity of resources be allocated to that event, and thus

the key parameter for Emergence Behaviour analysis would be the resource usage

fluctuations in nodes. From an Active Network perspective these nodes are individual

Active routers or any piece of hardware with Active capability. The concepts and

techniques are sufficiently universal to be used in the analysis of other highly distributed

networked systems such as the current Internet, Adhoc Networks, Intelligent Networks,

wireless networks and modular avionics systems for aircraft. The technique would

provide an additional test for critical systems design.

12

Emergence in Active NetwOIks Chapter 1: Introduction

1.4 Summary of the thesis

1.4.1 Background

1.4.2 Chapter 1

Introducti on

1.4.3 Chapter 2

Chapter 2 of this thesis provides an in depth analysis of Active Networks including a

brief history and the current stage of development of the area. Particular attention is

given to the functionality of this new paradigm in networking; giving examples of

instances where multimedia applications are improved through Active capability. The

chapter then proceeds to review the current state of Active Network research, giving a

list of organisations that are pioneering in this field.

1.4.4 Chapter 3

Chapter 3 provides a detailed analysis of Emergence including examples of systems

displaying Emergent Behaviour. The chapter defines the terms Emergence, Emergent

Behaviour and Emergent Properties in relation to this piece of research and makes the

distinction between good and bad types (i.e. Emergent engineering and anomalous

behaviour, respectively). A review of current Emergence research is included in this

chapter in addition to any convergence of ideas, noted through the varied fields of study.

The second section of this chapter concentrates on Complex Systems and Complex

Systems research and provides an introduction - defines what a complex system is and

its differences with other types such as chaotic systems. It proposes that Active

Networks be considered as Complex Systems or at the very least as having complex

elements. The chapter also proposes that (citing previous research) Complex Systems

are likely to exhibit Emergence under certain conditions.

\3

Emergence in Active NetwOlks Crnpter 1: Introduction

1.4.5 Chapter 4

Chapter 4 describes the modelling and simulation techniques used in this project. It

describes in detail the modelling methodology used along with its advantages over other

methods that were also considered. The chapter then proceeds to describe the

development process of the Active Network model and includes all assumptions,

estimations and configurations made during the iterative development process. The

generic Active Network model is rigorously defined - the development process starts by

the analysis, breakdown and classification of Active Applications into Primitive

Functional Components (PFCs). The components form the foundation for a hierarchical,

modular and 'top-down' design.

1.4.6 Chapter 5

Chapter 5 describes in detail the modelling paradigm used in this project - Petri Nets. It

describes the advantages and provides generic modelling examples of system elements

(used as templates in the modelling of an Active Network). The chapter also highlights

the extended capabilities of Coloured Petri Nets; their suitability in describing Active

Packets, the dynamic interactions within the system and the critical resource usage in

Active Nodes. A review of Petri Net simulators is undertaken, which describes the

advantages of Design CPN (the simulator of choice) over others.

The second section of this chapter provides detailed Petri-Net diagrams and a

hierarchical layout of the Active Network model. Also included in this description are:

• A breakdown of the Active Packet header, which includes Active Packet types

(based on Primitive Functional Components)

• Sample input and output files

• A mechanism for logging results

1.4.7 Chapter 6

Chapter 6 is dedicated to identifying Emergence within simulated results. It describes

the strategy undertaken and the method ultimately used to detect Emergent Behaviour,

which was preceded by a review of possible pattern detection techniques. Each

14

Emergence in Active Networks Chapter 1: Introduction

technique was tested for suitability for the Active Network modelling scenario. The

advantages and shortcomings of the RlS technique ("ReScaled-range statistic"), for the

purposes of detecting Self-Similarity in the simulation data, are discussed in detail. This

is in relation to the applicability of the technique to Emergence and Active Networks.

The straightforward procedure in applying this mathematical technique, through

MATLAB software package, is also described. This chapter also establishes a link

between the identification of an Emergent Behaviour and Self-Similarity.

1.4.8 Chapter 7

Chapter 7 provides the main body of results indicating the presence of Emergence. It

describes all input test scenarios/cases and provides graphical representation of results

(derived through the RlS statistic). These results are linked with the initial input

conditions for the simulations, which then can be used in the discussion process. An

analysis and discussion of the results are provided, which include a credible theory on

the causal link between a particular Emergent output and its input conditions.

1.4.9 Chapter 8

Chapter 8 provides summative conclusions of the results achieved by this work. It

contains the direction undertaken by the research work and provides a discussion of

possible improvements to the detection of Emergence (e.g. additional techniques to

detect other types of Emergence). The chapter also describes an alternative approach to

the modelling methodology used by this project.

1.4.10 References

1.4.11 Appendices

The appendices contain the MATLAB algorithm code for the detection technique (i.e.

RlS statistic calculation) and the detailed diagrams of the Petri-Net Active Network

model.

15

CHAPTER 2
ACTIVE NETWORKS

Emergence in Active NetwOlks Chapter 2: Active Networks

1- Active Networks

This chapter will present:

• A detailed description of Active Networks, their capabilities and potential problems.

• A review of developments in Active Network research.

The key concepts in this chapter are: Active Networks, DARPA definition of Active

Networks, Active Network research

16

EmelJlence in Active Networks Chapter 2: Active Networks

During 1995, The Defence Advanced Research Projects Agency (DARPA) sponsored an

Information Science and Technology (ISAT) study, entitled "Virtual Infrastructure",

from which a new research initiative, called Active Networks was born [Mau02]. Its

mission was to develop "networks that turn on a dime" [DAR].

The specific goals of the DARPA programme were to achieve the following (as quoted

in their information resources):

• Quantifiable improvements in Network Services-

o Audio/video synchronisation and full-rate video over multicast a reality

o Fewer re transmitted packets, 100% increase in useful data rate 10 end

applications

o Architecture based solutions to Future Department of Defence (DoD) needs

• Fault-Tolerance Mechanisms based inside the network

• Multi-Tiered Mobile Security -

o Authentication forms used for dynamic access control

o Separate traffic and administrative functions based on types and policy

Through the above-mentioned specifications it was hoped general wide-ranging

improvements to networks would be made. For example:

• The ability to quickly and safely deploy new services.

• Achieve widespread use without needfor standardisation process.

• Be able to upgrade crucial network services to keep pace with network complexity.

• 1'0 develop new strategies for routing and service provisioning in large networks

that have uverlapping topologies and mobility requirements [DAR].

Active networks are a multi-service Internet architecture, designed for the rapid

deployment of new services and technologies over the Internet (this being the ultimate

goal). An Active Network will consist of routers and switches that can be programmed

to perform certain functions on packets flowing through them. In contrast, traditional

networks simply provide a transport mechanism for data transferred between clients and

server.; with minimum computation (e.g. header processing). As a part of Active

17

Emergence in Active NetwOlks Chapter 2: Active NetwOlks

functionality it is possible for users to inject programmes into Active hardware along a

particular data traffic path in order to modify, store and redirect packets.

'Nodes' are the definition given to routers, switches and other network layer devices that

carry Active capability (i.e. the nodes can perform computations on, and modify the

packet contents on a per-user or per-application basis) [Ten97]. This results in a

customisable network that could readily be incorporated into the current Internet

infrastructure, thereby ensuring interoperability with legacy routers and switches

[Ten97].

The fundamentals of customisation of Active Networks are to allow the users to inject

programs into the Active Nodes of the network. There are many variations to this

concept and programmability, which in its purest form is defined to augment the

standard JP packet datagram with Active 'capsules' (programme fragments that are

executed at each node that it traverses and have the capability to affect further packets).

These capsules will be loaded onto Active Nodes based on the availability of the correct

resources to open and run the programme, the amount and type of resources requested to

service subsequent packets in an Active Application stream, signature/security

verification, outward-link status and congestion. The Active capsule approach (also

known as the 'integrated approach') has advantages of being able the rapidly deploy

services, use generic Active hardware, be easily customised and have increased

information throughput. The flexibility is such that Active Nodes can be programmed to

perform multiple actions/computations on multiple packet streams flowing through them

at any given time. The nodes would also be able to factor the local network

state/environment in its decision process, thus making the actions dynamic.

The less flexible 'discrete approach' involves the use of Packet Header Options to

invoke a pre-Ioaded set of service components (i.e. primitives) from an Active Node

within its Execution Environment (EE). The development of an API styled structure is

necessary to facilitate this execution process. The discrete approach allows system

administrators to maintain control over the programmes that are run on their hardware,

thus improving security (lacking in the integrated approach). Customisation, however, is

limited to a pre-defined set of services that can be built through the primitive

components; present at a particular node at a'. given time. This can be augmented,

18

EmeIgence in Active NetwOlXs Chapter 2: Active NetwOlXs

however, using a "Downloading on Demand" strategy whereby an Active router can

request any primitive programme component that it lacks from its neighbours.

Current Internet technologies will benefit from the new networking paradigm, as it

replaces several ad-hoc techniques, already implemented to various degrees of success,

with a common networking substrate with benefits of added flexibility and performance

[Wet98a]. Historically, the array of services being offered on the Internet has been met

with limited enthusiasm because the available infrastructure was not efficient. For

example, the current TCPIIP protocol is inefficient for 'real-time' communication and in

particular with video. Successful services provide features to enhance the applications at

end-systems [Mar99]. This is in keeping with the "end-ta-end argument" of a

communication network - a rationale used in layered system design to place high-level

functionality nearer to the application that uses it (i.e. further up the layered structure). A

system design following the principles of the "end-ta-end argument" will not place high­

level functionality in lower layers of the system, especially if such functionality is only

used by a select group of applications [SaI84].

Active Networks re-interprets the "end-to-end argument" to allow high-level

functionality in lower-layered communication devices. This benefits services that can

only be supported or enhanced inside the network [Bha97].

19

Emergence in Active NetwOlks Chapter 2: Active Networks

2.1 Applications of Active Networks

The 1995 DARPA objectives provided the foundation for the development of Active

Applications. Some of the popular services, which will greatly benefit from an Active

network layer within routers/switches (i.e. being researched as Active Applications), are

mentioned below:

2.1.1 Yideo-conferencing and Internet telephony

These are two types of multimedia streaming applications that will use real-time and

multi cast services. The applications will be able to reserve resources and bandwidth

through routers, so that streaming is contiguous. lP/Active multicasting will reduce the

bandwidth needed to communicate (from one sender to multiple users) by having the

routers/switches cache the data as well as process acknowledgement feedback [Wet98a).

Internet telephony has the means to be unimpeded by isolated packet losses within a

communication session (e.g. Internet voice applications use sample based coding of the

analogue signal and Adaptive Packetisation and Concealment schemes employed at end­

stations are very good at maintaining a perceived quality for users). However, they are

not capable of concealing 'burst type' losses of packets, which result in the significant

degradation of speech quality. In such circumstances Active Nodes can be used to

regenerate lost packets and inject them into the stream [LeOO).

2.1.2 Mobile Internet

Notebooks and other mobile 1P devices will benefit greatly by services deployed through

Active routers; optimised for wireless transmission. For example, Audio and Video

transcoding and compression routines running on Active base-stations will compensate

for limited bandwidth of RF communications. Including Forward Error Correction

(FEC) can compensate for lossy transmissions. Mobile 1P devices can access the Internet

at different sites without the need to reconfigure address information [Wet98a).

20

Emergence in Active NetwoIks Chapter 2: Active NetwoIks

2.1.3 Caching and Load Distribution

Web servers would be the main beneficiaries of these services. They would reduce the

amount of wide-area traffic by allowing the Routers to intercept and process repeated

requests from multiple users. By distributing the requests over a number of cache

servers, the network is capable of reducing the web traffic concentration of particular

sections. The services, transparent to end-users, would minimise latency and bandwidth

usage, compared with proxy agents. Today, specialised products such as Cisco's

CacheDirector and LocalDirector perform these same functions as vendor promoted

systems [Wet98a]. With Active networks, the caching can be taken a step further by

having a significant proportion of the web pages dynamically generated within the

caching nodes themselves. This would suggest a scheme of Active nodes that support

the storing and execution of web generation programmes. Whilst in normal caching

hierarchies the servers are fixed, an Active network can dynamically re-position the

caches when necessary [Ten97].

~ Network management functions

A decentralised scheme of network management will come into being with user end­

stations being the initiators of most of the management operations along with other

applications (the operations themselves being executed on the nodes), thus reducing the

overall network management costs [Mar99].

2.1.5 Distributed sensors

Effective viewing of a 'composite image' of a large distributed network of 'sensors'

requires the fusion and storage of multi-type data within the network (the merging of

data offers significant bandwidth reductions). Active Networks provide this capability

along with the ability to provide multiple user access to each sensor. The viewed data

can also be differentiated based on the customisable requirements of the user [Ten97].

21

Emergence in Active Networks Chapter 2: Active Networks

2.1.6 .Security

Active Networks can apply 'dynamic' security to the network, which would involve

users and applications being able to apply highly customisable and situational security

policies for each or groups of information transfer streams. Active Routers within the

network can provide authentication, encryption and access control (e.g. of node

resources) for Active Applications at optimal points along the transfer path, which also

benefits the entire Active routing/processing system by ensuring the integrity of the

Active programmes being run in it. Active packets can also be specifically

designed/installed in order to route out and neutralise unwanted/malicious traffic, thus

creating a dynamic response to security threats (i.e. dynamic firewall formation)

[CamOO].

Security devices, such as firewalls, apply filters based on various fields in IP packets

such as source/destination address, requested service, etc. Active Networks allow the

dynamic programming/updating of Firewalls with filter modules that set permissions,

thus new Active Applications from approved vendors can automatically authenticate

themselves without the need for 'system administrator intervention' (i.e. a static security

policy becomes a dynamic security policy) [Ten97]. The security policy can spread

through the network on a 'need to know' basis and can 'actively' react to any invalid

attempts to access data by changing its policy level [LiuOO].

With current Internet schemes many of the innovative network services mentioned

above are possible by using Agents at end-stations (e.g. allowing web servers and clients

to exchange Java applets) and overlays (e.g. the MBone) [Wet98a] [Ten97]. However,

deploying them as a network layer element within routers and switches offers

considerable improvement in functionality and performance.

In general, some of the current requirements of multimedia-enriched applications are

that they be adaptive (i.e. have the capability to change their functional behaviour based

on environmental conditions such as network congestion). Active Networks would

support and enhance these types of applications by allowing the optimal use of network

resources; through the execution of Active code at strategic points within the network

[YamOO].

22

Emergence in Active NetwOIks Chapter 2: Active Networks

2.2 Active Network Research

Various organisations have been spearheading the research into Active Networks;

specifically defining the enabling technologies and dealing with issues such as node

security, capsule and programmable switch architecture, and compatible applications.

The following is a list of mechanisms, execution environments, operating systems and

test platforms developed, or currently being developed, to facilitate the transportation

and execution of Active Packets through a network:

• ANTS (Active Node Transfer System) was originally devised by researchers at MIT

(Massachusetts Institute of Technology). The MIT team was prototyping an

architecture based on 'capsules' and studying the effects of such a system. The

software platform for the architecture is Linux whereas the capsules are encoded

using Java. The capsules use 'programme language constructs' to create a

programme, which will invoke built-in primitives within the node. Some of the

distinguishing characteristics of the programme/capsule method are 'demand

loading' and 'component caching'. The MIT system uses 'demand loading' to

reference components built into the node, rather than issuing them as capsules.

'Caching' allows the use of recently accessed components without the need for re­

loading and verification. All of this is designed to reduce the amount of overhead

within a packet. Furthermore, the capsules have the capability to create a pre-defined

state within the nodes ('soft state'), which the subsequent packets of a particular

stream can use [Ten97]. The Active Networks Project at MIT was funded through

DARPA and ran from September 1996 to August 2000.

The second version of ANTS is under development at the University of Washington

The ANTS project (ver. 2) aims to design and construct a system in which clients,

servers and capabilities (that are embedded in the network infrastructure) can

rendezvous to provide Internet middle-ware services. The objective is achieved in

three key stages:

o Investigation and development of software for self-configuring overlay networks

23

Emergence in Active Networks Chapter 2: Active Networks

o Investigation and development of a network service model that accommodates a

heterogeneous network in which nodes have different capabilities

o Investigation and development of a network service model that allows different

parties to combine their services [Wet98b].

• AIPv6 (Active JPv6) - a mechanism to merge Active Network capability with

Internet Protocol version 6 (Jpv6) [Mur97]. The scheme combines the concept of

Active Capsules with JP packets to provide interoperability in a network with Active

and non-Active elements [Yue03].

• The SwitchWare project is research aimed at developing a programmable switch

that would allow digitally signed type-checked modules to be loaded into the node.

The focus of the research group is the improvement of security on Active networks

by using formal methodologies, identification of the underlying infrastructure and

developing theorems. Security is supported at the programming language level

(SML/NJ) without the need for high overheads, as would normally be encountered

when protection is built into the operating systems of nodes [Smi97]. The

SwitchWare project is a collaboration between the University of Pennsylvannia and

Bellcore Research Labs. The Bellcore group have defined and developed a prototype

Active router that uses a small-scale multiprocessor and interconnections to an ATM

network, using 10 and 100 Mbps Ethernets [Ten97]. Under the SwitchWare project

several sub-projects were initiated:

o PLAN (programming Language for Active Networks) - devised by researchers

at the University of Pennsylvania and is a development of software language

constructs used to write executable Active code [Hic98].

o ANEP (Active Network Encapsulation Protocol) - devised by researchers at the

University ofPennsylvannia, University of Kansas and MIT lANE].

o SNAP - Safe and Nimble Active Packets [HicOI].

o SANE OIS - Secure Active Network Environment [SAN].

24

Emergence in Active Networks Chapter 2: Active NetwOlks

• ANON (Active Network Overlay Network) - In 1998 an Active Packet was sent

around the world in 500 milliseconds [Tsc97].

• CANES (Components for Active Network Elements) - Georgia Tech. At the

Georgia Institute of Technology researchers are applying Active network concepts to

improve network congestion. The strategy is to give the applications the ability to

request useful algorithms from Active nodes (e.g. lossless compression, selective

discard and transcoding) during periods of congestion [Ten97] [Bha98].

• SPROCKET - Smart Packet development language [Sch99].

• MAUDE: A Wide-Spectrum Formal Language for Secure Active Networks -

Stanford University [Mes99].

• JANOS: Java Based Active Network OS - University of Utah [TulOl].

• NetScript - a language designed to develop mobile agent programmes for Active

Networks that can be dispatched as and when required. The software was developed

at Columbia University and can be considered as the 'third direction' in Active

Network research. The NetScript project, apart from developing a programming

language, would provide the structure for Active Execution Environments (EE). The

language would provide the means to script the processing of packet streams,

routing, packet analysis, management functions and signalling [Ten97] [Yem96].

Netscript can be considered as another flavour to Active Networks (i.e. an Agent

based approach as opposed to an Integrated approach or a Discrete approach).

• Liquid Software - the development of a suit of mobile code technologies by

researchers at the University of Arizona [Har96].

25

Emergence in Active Networks Chapter 2: Active Networks

• ACTIVATE - ACTIVe nets Test Environment by researchers at the University of

Southern California, SRI International and Metanetworks Inc. [ACT].

• ANCORS (Adaptable Network COntrol and Reporting System) - a collaboration

between SRI International, University of Southern California and Metanetworks Inc.

[ANC].

• ABONE (Active Network Backbone) - a collaboration between SRI International,

University of Southern California and Metanetworks Inc. [BerOO].

• ASP (Active Signaling Protocol) Execution Environment - collaboration between

SRI International, University of Southern California and Metanetworks Inc. [Bra02].

• Smart Packets - a development of the BBN group who is investigating issues of

programmability, data dictionaries and authentication mechanisms related to IP.

Furthermore, they are seeking to improve management and diagnostic capabilities of

IP systems [Ten97] [SchOO].

• Adaptive Web Caching - University of California, Los Angeles (VCLA) [AWC].

• Building dynamic interoperable security architecture of Active networks - University

of Illinois [CamOO].

• Design and demonstration of a scalable high-performance Active Network Node

(ANN) - Washington University in St. Louis [Dec99].

• RCANE: A Resource Controlled Framework for Active Network Services -

University of Cambridge [Men99].

• Tamanoir Execution Environment - Claude Bernard University, Lyon [GeIOO].

26

Emergence in Active Networks Chapter 2: Active Networks

2.3 Summary of chapter

In this chapter we have discussed the objectives and research directions of Active

Networks beginning with an initial set of targets being defined through DARPA. What

is apparent is that the research has taken 3 distinct directions (i.e. integrated, discrete

and agent-based) from which several sub-groups/competencies have been created to

tackle problems-areas in Active Networks (e.g. the development of 'safe' programming

languages, defining compatible transfer mechanisms, defining code execution

environment, security and network management). The solutions proposed by research

organisations may extend over several of these sub-groups and may rely on the work of

others. What is also apparent is that there is not, as yet, a convergence of techniques by

research establishments. Therefore any modelling and analysis techniques proposed by

this thesis must be generic to be compatible with a majority of research strategies whilst

satisfying Active Network objectives. The development of a generic model requires

insight into Active Networks and their requirements. It does not, however, require a

detailed critique of all Active Network research; hence the inclusion of only a brief

review of prominent ones in this chapter. The examples given for Active Network

applications are based on what is currently 'out there' as working technologies or what

is proposed in the near future (the goals are set by user expectations for more cost­

effective multimedia over the Internet). It can be seen that Active Networks provide a

generic solution to a vast majority of proposed technologies, which can be installed and

used immediately.

HI like the idea of taking network intelligence from the hardware and putting it in the

packet. JP is rather passive, but it will take a lot to figure out how you bring order to

something that is so democratic. " - Virginia Brooks, an analyst with the Aberdeen

Group, in Boston [Le097].

From what has been discussed in this chapter, one can identify 4 possible drivers for

Active Networks:

• The ability for application developers to rapidly deploy new services without the

required process of standardisation between end-systems.

27

Emergence in Active Networks Chapter 2: Active Networks

• The addition of services that can't be achieved without significant and fundamental

changes to protocols and hardware.

• The enhancement of existing services through user customisation or with next

generation Active Applications.

• The ability for network operators to replace existing 'intelligence' within the

network with a flexible common technology.

The biggest issue in the deployment of Active Networks is security. Whilst there are

many Active Network solutions to achieve superior network integrity and security, the

inherent ability of users (and network administrators) to customise the network will

generate several problems including the 'Emergence' of unusual phenomena. The large­

scale deployment of such a system, which changes behaviour based on a large set of

variables (pre-determined and unexpected), has management issues that require

sophisticated solutions. These are difficult to solve until there is a consensus amongst

the Active Network community.

28

CHAPTER 3
EMERGENT

PROPERTIES AND
COMPLEX SYSTEMS

Emergence in Active NetwOlXs Cbapter 3: Emergent Properties and Complex Systems

J.... Emergent Properties and Complex Systems

This chapter will present:

• A detailed description of Emergence and its characteristics.

• An introduction to the concept of Complex Systems.

• A link between Emergence and Complex Systems.

• The justification that Active Networks are complex systems and therefore are likely

to exhibit Emergence.

The key concepts in this chapter are: Emergence, characteristics of Emergence,

characteristics of Complex Systems, Active Networks as Complex Systems

29

Emergence in Active Networks Chapter 3: Emergent Propenies and Complex Systems

3.1 Characteristics of Emergent Properties

Emergence is a set of individual interactions that results in a coherent whole,

which cannot be deduced from examining the properties ofthe individual [Bos99].

Emergent Properties are unexpected characteristics that might manifest themselves in

distributed intelligent systems. Emergent Phenomena and Emergent Behaviour are

essentially the same definition given to a system's behavioural anomalies that result

from the above-mentioned characteristics.

The 'system' in this body of research is an Active Network. In an Active Network, for

each application/task, the processing is distributed among several nodes. The nodes

themselves have decision-making capabilities and are locally 'aware' of their

surroundings. Thus we can define them as intelligent. Unexpected characteristics may

show up as self-organised patterns, either within a small-scale (locally isolated)

boundary or globally (i.e. system-wide). They may have the potential of increasing

congestion, fluctuate resource usage within the nodes, fluctuate the smooth flow of

packets and even lock-up the network (i.e. generally reduce the Quality of Service

expected by the user).

Emergence is a theory, which describes the self-organisation of systems that form global

order. This order appears to be well defined and different when compared with

individual component definitions. It is also the mechanism to explain the 'survivability'

of the system 'structure' in the midst of component replacement (i.e. a global behaviour

is sustained even when the underlying components change throughout its lifetime).

Emergence is global behaviour of systems that is 'non-deducible' from the underlying

components as weH as being 'irreducible' to those components [EME]. It is also

dynamic and is a product of the evolution of a system (not a predetermined phenomena

identified through the system characteristics).

Some of the foHowing are generalised characteristics and examples of Emergent

Properties. They are evident in a wide range of research fields and can be discovered

through empirical analysis of systems. These characteristics are:

• Feedback -the circular effect

30

Emergence in Active Networks Chapter 3: Emergent Properties and Complex Systems

• Domino Effect

• Meta-Balance

• Survival and Sameness

• Vortex

• Resonance

3.1.1 Feedback

Feedback is a structure that flows in a loop in a system (i.e. a combination of cause­

effect events that forms a re-iterative cycle). There are two types of simple feedback

structures:

• Positive feedback - feedback that is self-reinforcinglself-amplitying; also known as

the Snowball Effect [DauOO].

,Cost ofUving \ Intere\Rate.. Birth\~

Prices + Wages lnte~+ Capital Nun:*'er + Population
~ J ~~s

~S::~on .-/ "-./ "-./
Figure 3.1.1.a: Examples of Positive Feedback

response

time

Figure 3.1.1.b: Dynamics of Positive Feedback

31

EmeIgence in Active NetwOlks Chapter 3: EmeIgent Properties and Complex System;

• Negative feedback - feedback that is self-regulating/compensating, leading to stable

system behaviour [DauOO].

Feedback

~ -.. ~
System •

I Input + Outout
r r

Figure 3.1.1.c: System representation of Negative Feedback

response

target

time

Figure 3.1.1.d: Dynamics a/Negative Feedback

A system that forms feedback loops gives rise to new structures and emergent

properties. Feedback is synonymous with the term 'adaptation', whereby the

components have the ability to adapt to perturbations in the system, using the

mechanisms of feedback.

Feedback can be viewed in two distinct ways. The first is a linear progression of the

feedback cycle (i.e. we see the progress of the cycle in time - past, present and future).

We can also see the cyclic movement of the outputs feeding into the inputs (not

necessarily the same inputs that caused the outputs in the first place). In the linear view

the 'causes' are always responsible for the 'effects'. The cyclic view has no such

property. What is apparent is that both views are valid in any given phenomena and are

32

Emergence in Active Networks Chapter 3: Emergent Properties and Complex Systems

interrelated. "A feedback structure is a cyclic structure rolling through linear time."

[Am94].

pas t

tbe circular view
~

CJ
present

tbe linear view . --~ ••
f u tu r e

Figure 3.1.1.e: Two distinct views o/Feedback

The linear view focuses on the 'pattern' that can be observed in the system while the

circular view focuses on the 'structure' of the Emergent Property. The 'structure' is a

concept. It is viewed at a higher level of abstraction using, as a guide, the interactions of

the parameters in the system. Conversely, the 'pattern' is more concrete and is readily

observable depending on the scale of the system. 'Patterns' are observable at lower

levels of abstraction [Am94].

"Situations with observable 'structures' are indicative of Emergent Properties"

Systems theory states that both views of 'structure' and 'pattern' are valid for the

analysis of a system, albeit being fundamentally different. The system's structure is only

apparent when (as mentioned above) viewed at a higher level of abstraction, which

translates, in practical terms, to a model depicting the system with coarse detail. The

same system must be modelled in fine detail at a lower level of abstraction in order to

view the patterns [Am94].

u.z Domino Effect (positiye feedback)

Also known as a wave pattern, the Domino Effect originated from the way that

dominoes fall creating a wave formation. In this scheme, there exists a circular

'structure' as well as the wave-like 'pattern'. Whilst the underlying mechanism for the

33

EmeIgence in Active Networks Chapter 3: EmeIgent Properties and Complex Systems

self-sustained behaviour is positive feedback, the defining characteristic of the Domino

Effect is the advancing wave front [Am94].

domino hits
new domino

wave front

Ngure 3.1.2.a: The Domino Effocl

3.1.3 Meta-Balance

Complex Systems exhibit Emergent Phenomena as ordered structure from disorganised

behaviour. In order for Emergence (i.e. a stable structure) to appear at higher levels of

abstraction (as mentioned-above), the lower-level abstract model must be 'out-of­

balance'. Thus Meta-Balance is the term given to the seemingly 'stable' structure at

higher levels. Emergent Behaviour (or global order) only occurs in a system when it is

pushed out of balance. Both the Snowball Effect and the Domino Effect are examples of

systems in Meta-Balance [Am94].

3.1.4 Smyival and Sameness

Survival and Sameness refers to the 'structure' of phenomena within a system. A

feedback loop, for example, stays the same throughout its existence (structurally) even

though new system components continuously replace the old ones (e.g. in order for the

34

Emergence in Active Networks Chapter 3: Emergent Properties and Complex Systems

wave front to continue, in the Domino system, it must be continuously fed with new

dominoes). The replacement process keeps the structure ' alive' [Am94].

3.1.5 Vortex

A Vortex is generated from within the system. It is an active force that binds the system

or a section of the system to an organised existence (an existence not recognised in the

ordinary sense). The 'hyper-existence' of a Vortex has the following basic

characteristics:

• The Vortex must be EMBODIED

• The components of the system need to be out of balance

• There must be feedback in the system

• A Vortex cannot be analysed by 'reductionism' (i .e. the analysis of individual

components) [Am94].

Figure 3.1.5.a: Computer representation of a Vortex

The difference between a Vortex and any other circular structure is that an active force

is present at the centre of it holding the system in that structure (e.g. a tornado is a

naturally occurring vortex. It appears to have a force at the centre sucking great masses

towards it. This, however, is an illusion created by the circulating masses). Where there

is the possibility of several Vortices, the system will be sucked into the strongest/closest

one, and will remain there until perturbed by some force taking it to the next Vortex

[Am94].

35

Emergence in Active Networks Chapter 3: Emergent Properties and Complex Systems

3.1.6 Resonance

Resonance is a repeating process, much like feedback, but with the added characteristic

of 'information reduction'. The difference between Resonance and a Vortex is that a

Vortex is an active force that a system will be sucked into, whilst Resonance is a

simplified structure in which the system will be trapped.

frequency

sOlUul

~ ~
micropholle + ;,veaker

\..~-~
Figure 3.1.6.a: Example ala Resonant system

": ' J

~
"E. S-
E c::

'"

fi·eqnency

The emergence of a resonance frequency

Figure 3.1.6.b: Resonance

fi·eqlleucy

Information reduction allows the Resonance to behave as an Emergent filter (i .e. limit

the behavioural characteristics of the system to the boundaries of the resonant

behaviour). With a Complex System, there may be millions of individual components

behaving independently of each other to satisfy their individual objectives. Every single

component is an undetermined variable or group of variables. This does not mean,

36

Emergence in Active Networks Chapter 3: Emergent Properties and Complex Systems

however, that any Emergent Property contains millions of parameters and detail. Most

often, a Complex System will produce simple patterns in which it will be trapped. This

would imply that an Emergent structure, which functions as a resonant behaviour, is also

well defi ned [Am94].

37

Emergence in Active NetwOlks Chapter 3: Emergent Properties and Complex Systems

3.2 Emergence Research

What is perhaps surprising is that known circular patterns in nature, physics, etc. exist

that can be readily extended to other fields. For example, the characteristics of waves are

near identical in the perspective of Radio waves and Ocean waves. The same food-chain

structures emerge in widely different Eco-systems [Am94].

Emergent phenomena may appear differently in different systems, however, they share

commonality through the above-mentioned characteristics.

Not all Emergent Properties are detrimental to the system. 'Emergent Computing' is one

area where designed Emergent Behaviour adds value to the services offered by a

Network [BusOI].

The following diagram depicts, succinctly, the broad range of research topics associated

with Emergence.

~_ ... SYSTeM 0VJWf1CS -_!!oo.
CATASTBOPHE S!LF.()R~
THEORY CRmCAUTY -_.

"" ,CAt. ,
BElIE"" sYlITEY8 SYSTEMS NONLlNEAR DYNAMICAL

SOLID STATE! GEOYEfIlY CHAOS THEORY ~
EDRY 'RACTAL SYSTEMS (NDS)

EMERGENCE IN
CONDENSED MATIER COMPLEX ADAPTIVE ...,..~~~,.. SELF.ORGANIZING
PHYSICS EVOLUTIONARY S~!AS) SYSTEMS

CYBERNETICS BIOLOGY fIIEIlI!EN1

~
~UTlalW!'l Cf1W'<lT''''''

\. SY8T EMS IIOOL.eAM MlTWORD
., AlfTOPOIESIS 0EMEnC MOORIT"'-

INFORMATION ARTIFICIAL
TIIEDRV 'IITELL'GOc~COMPUTAllONAL ---J--::

~ ALG0Rm4I1C ~EORY
COIIPLEIlTY / NEURAL NETS ~--

GAME THEORY SYNERGETICS

___ FAR.fROII-EQUILIBRIUM
THERMODYNAMICS

Figure 3. 2.a: Mathematical and scientific roots of emergence (Jeffiry Goldstein)

As can be seen from Figure 3.2.a the most focused field of study that links through to

Emergence is Complex Adaptive Systems. The theory of 'Complexity' plays host to a

large number of scientific and mathematical fields, each striving to identify the

38

Emergence in Active NetwOl:i<s Chapter 3: Emergent Properties and Complex Systems

characteristics of Emergence, thus acknowledging a link between Complexity Theory

and Emergence Theory [GoI99].

39

Emergence in Active NetwOlKs Chapter 3: Emergent Properties and Complex Systems

3.3 Characteristics of Complex Systems

The definitions of 'Complex Theory', 'Systems Theory' (a relatively established field)

and 'Chaos Theory' (less established in the way of applicable results) are closely

interrelated, thus making any distinction between them difficult and only valid when

considering a particular system (as is the case in this work). In a general sense, Systems

Theory covers simple-systems exhibiting simple behaviour. Chaos Theory studies the

ability of systems (simple or complex) to produce complex/chaotic (i.e. unpredictable)

behaviour over long periods [Cru90]. It forms one part of Complex Theory

('Complexity'). In contrast, the section crucial to Emergence is the study of Complex

Systems with overall 'simple' behaviour. Complexity of this form is the 'middle

ground' between ordered systems and Chaos [Cru02].

It is easy to understand why the author and others consider Complexity to form the

obvious choice for the analysis of Active Networks. Active Networks (and any other

large-scale network such as the Internet) have, or propose to have, millions of

heterogeneous nodes, which would be impossible to analyse in terms of simple feedback

cycles (a key sign of Emergence in systems modelled under Systems Theory).

The global structure of the system compnses of many local interactions between

individual components. The global Emergent Behaviour resulting from the interactions

exerts influence over the behaviour of the individual component in a circular manner.

This keeps the system in that particular Emergent structure, whether it be a Vortex or

Resonance [Am94].

40

Emergence in Active NetwOlxs Chapter 3: Emergent Properties and Complex Systems

<:> <:> <:> (1)

Locally interacting components <:>

The global structure serves
as inital condibon for the
components

The local interactions
of components create
the new global· structure
(which becomes the new
inital condition)

Figure 3.3.a: The Global Emergence in Complex Systems

A Complex System has:

• Numerous independent components

• Components that interact locally and numerously

• Overall global behaviour that is independent of the internal configuration of

components

• Overall system behaviour that is well defined

• Evolutionary Behaviour

3.3.1 A Complex System consists of numerous independent components

An important feature of individual components is that they exist independently of each

other and their behaviour is due to independent decision-making. The components are

'wholes' capable of existing on their own. Thus a Complex System is a whole built up

ofwholes.

41

EmeIgence in Active NetwOlks Chapter 3: EmeIgent Properties and Complex SysteIILS

This is partly true in the case of an Active Node, which can exist by itself but is

functionless without the rest of the network [Am94]. However, the 'Active' element (i.e.

the intelligence) of such a node may meet this criterion.

3.3.2 Components interact locally and the interactions are numerous

In order for Emergent Properties to exist in amounts that can be observable, there should

be numerous local interactions. In complex communication networks this is

accomplished by having a varied number of packet types, simultaneous packet flows,

multiple routes to destinations and a general high interconnectedness.

In networks such as the Internet, direct node-node interactions are confined to 'local

space'. Any other connection (e.g. source-destination connection) is achieved through

the global structure and not by a direct link (i.e. a virtual connection is made using

several nodes, traversing several sections of 'local space' within the network and with

several possible routes).

High connectivity is also likely to exist in Active Networks. Emergent Behaviour would

result if an event (anomalous or otherwise), created in local space, propagates to others

as a ripple (a Domino effect). The ripple is facilitated and amplified through the high

interconnectedness of the network and 'piggybacks' on the normal source-destination

communication process [Am94].

3.3.3 Overall global behaviour is independent of the internal structure of the

components

Similar Emergent Behaviours can be observed in a system that is independent of the

processes that would be involved in achieving them. It is also possible that completely

different systems will exhibit the same Emergent Property (e.g. waves) [Am94].

3.3.4 Overall behaviour of the system is well defined

Viewing the Emergent Phenomena by itself, disregarding the individual components and

much of the low-level detail, it is possible to note that the global structure conforms to

simple rules (possibly mathematical rules) and behaves in an exact manner [Am94].

42

Emergence in Active Networks Chapter 3: Emergent Properties and Complex System;

3.3.5 Evolution in Complex SJrstems

Evolution in Complex Systems is based around Darwinian concepts. Complex Systems

have the ability to apply 'Natural Selection' to processes (i.e. "survival of the fittest").

Darwin viewed organisms as perpetual machines (i.e. staying alive long enough to make

a copy of themselves and die). Complex Systems, however, are more involved but

components within the system do possess the Darwinian characteristics of surviving for

the completion of their objectives. Any processes that fail to complete will be weeded

out of the system (a simple filtering process), and an evolutionary landscape will

develop as the system progresses. Complex Systems also have an interesting feature of

competition among components for limited resources. This makes the evolutionary

landscape dynamic and adds another dimension to the fitness criteria and objectives of

components. This breeds new 'intelligence' and 'creativity' and exposes the system to

Emergent Phenomena [Am94].

43

Emergence in Active Networks Chapter 3: Emergent Properties and Complex SystelIl5

3.4 Active Networks as Complex Systems

In order to analyse Active Networks it is helpful to classify the system in broad terms so

as to focus further research. The following text will seek to show that Active Networks

fall into the category of Complex Systems with which Emergent Properties are

commonly associated.

The criteria mentioned in the previous section apply to large-scale computer networks

(Active or otherwise). Networks of an Active nature will add another dimension to the

complexity because of their inherent programming capabilities.

The idea that Active Networks will exhibit Emergent Behaviour is further strengthened

by the following factors (classified by the author using available research on Active

Networks):

• Distributed processing architecture

• In-built intelligence and self-awareness

• Local network awareness/feedback loops

• Lack of central management control

• Application level organisation

• Adaptation and evolution

• Memory

• Limited resources and competition

M.l Distributed PrQcessing Architedure

Each Active Node would have the capability to process a unique/distinct task or a

particular portion of an entire application - Active Applications may acquire several

nodes on the source-destination path to process a particular task (e.g. for a reliable video

stream). Thus the application acts as task manager; splitting, replicating and distributing

programme components to various Active Nodes. Since a single node might be unaware

of the full application programme/functionality, it will not have a sense of the final

44

Emergence in Active Netwotks Chapter 3: Emergent Properties and Complex Systems

outcome. Thus any Emergent Behaviour that can result, globally, cannot be foreseen or

prevented by anyone node.

3.4.2 In-built Intelligence and Self Awareness

All Active Nodes will have a processing core along with memory to store and run

programmes. Furthermore, they have the capability to identify the processing required

on a packet, based on the current local network conditions (e.g. network congestion),

requirements of the packet and it's own resource status. Intelligence and autonomy are

strong contributors to Emergent Behaviour. In addition, each node would be likely to

have self-diagnostic capabilities.

3.4.3 Local Network Awareness

It is proposed that an Active Node has the means to gather information about its

surrounding nodes and links (e.g. resource usage, size of input/output queues, link

congestion). Local network 'awareness' will manifest itself as information feeding back

to Active Nodes through Active Packets (as a primary or secondary objective of an

Active Packet). Active Nodes would then act on that information according to pre-set

rules and procedures. As opposed to 'Intelligent Networks', Active Networks do not

possess nodes that are capable of initiating intelligent processes. In practical terms,

Active Packets/Applications form the creative force behind node 'awareness', which is

highly dependent on the requirements of the application. Irrespective of the underlying

mechanism, an Active Node will have the capability to store information and become

'aware' of its surroundings. It can take actions, based on this perception of the network,

in the servicing of applications. A feature of this would be the formation of local

feedback loops (affected by local network conditions), which would contribute to

Emergent Behaviour [Am94].

3.4.4 Lack of Central Management Control

Control of Active Nodes is dependent on their internal instructions and on the code

carried within Active Packets. The autonomous behaviour of individual nodes and the

45

Emergence in Active NetwOIks Chapter 3: EmeIgent Properties and Complex Systems

lack of knowledge of the final outcomes will result in nodes behaving normally, in local

space, whilst contributing to global Emergence.

3.4.5 Application Level Ol'lanisation

Even with the presence of autonomous behaviour within the nodes, groups of them

could essentially co-operate on a level that corresponds to a specific application (i.e.

Active Nodes may organise along the packet source-destination path to provide better

Quality-of-Service). This type of co-operation is not visible to the individual nodes, but

is visible to the end-users as improved service. The ability of nodes to organise, without

being 'aware' of the fact, is an Emergent Property, irrespective of the existence of a

controlling element (i.e. the application). The focus of this thesis is the unexpected

collective self-organisation of nodes. In such a situation applications would still form as

expected, however, the influencing factors are such that the combination is potentially

detrimental and may not have co-operative behaviour.

3.4.6 AdllPtation and Eyolution

Active Networks can be defined as adaptable and evolutionary networks. This can be

perceived in several ways. For example, the network space is dynamic and changing in

terms of the addition and removal of nodes; a failure in sections of the system results in

redundant components taking over. Active Nodes, with their local 'awareness', can

easily adapt to the changes in the structure of the network. Further to thi s, an Active

Node would have the capability to adapt the processing of packets depending on the

network state (e.g. network congestion, node resources, etc.).

'The (Active network) programming abstraction provides a powerful platform for user­

driven customisation of the infrastructure, aI/owing new services to be deployed at a

. faster pace than can be sustained by vendor-driven standardisation processes."

[Ten96].

46

Emergence in Active Networks Chapter 3: Emergent Properties and Complex Systems

The discrete approach of Active Networks achieve customisation through 'plug-in

extensibility', which is a technique for the loading of code that is pre-defined and is an

abstract prediction of future needs. This may not be sufficient in establishing a true

evolutionary network, and in the future we may see the extension of Active Nodes

through the dynamic loading of code, which is customised and updated on demand

[Hi cOO]. Evolution would add a further element of unpredictability to the behaviour of

nodes and would contribute to Emergent structures not envisaged originally.

3.4.7 Memory

As an Active Node is aware of its surroundings, itself and the application passing

through it, it has the potential to retain details within node memory (e.g. previous packet

type, packet number processed in a stream, congestion states, queue lengths, etc.). Any

details retained from previous actions and events constitute 'memory', and will

contribute to Emergence within the network. Furthermore, an Active Packet may be able

to reserve node resources in order to service further packets (from a single application)

traversing the node.

~ Limited Resources and Competition

The Internet has limits to the size and capabilities of resources (i.e. link bandwidth, node

processing power, memory, etc.). It is possible that an Active Application will contain

resource-usage maximisation algorithms. Applications using Active technology will

compete for resources within the network based on a scheme of apportionment and

priority. This competition will lead to a dynamic, evolutionary landscape (as mentioned

previously), thereby affecting the 'fitness' of one application over another. Emergent

Properties are likely to form as a result of this additional complexity.

47

Emergence in Active NetwOlks Chapter 3: Emergent Properties and Complex Systems

3.5 Summary o/Chapter

This chapter attempts to highlight the natural link between Emergent Phenomena and

Complexity Theory by citing several exemplary points and references. It is proposed that

the key features that would naturally manifest in Complex Systems are, in fact, Patterns

and Behaviours of Emergence. This reduces further research work to the conceptual

understanding of Complex Systems and key results. The chapter goes forward to explain

why Active Networks should be considered as Complex Systems and therefore be a

perfect candidate for modelling (for the purpose of observing Emergent Behaviour).

As can be seen from Figure 3.2.a, Emergence research is varied and highly topical.

Different research institutions delve into Emergence analysis through different area of

expertise and different modelling paradigms. It is not the intention of this chapter to

provide a detailed description of individual Emergence research projects. However, this

chapter attempts to extract some commonality by focusing on generic Emergent

characteristics that might be encountered in research work.

Instances that can be identified as Emergence are varied (possibly infinite in number)

and this chapter may not have included all forms. The examples given are distinct

pattern manifestations within a particular system. These patterns are useful for global

system analysis because they are observable and provide symptomatic evidence of

system anomalies. Much of the focus for the Emergence detection process, introduced

by this research (and by other research projects), is based on observing patterns in

various system dimensions (i.e. various observable criteria) [KulOl].

The discovery of a system and its capabilities is possible through a broad range of

analytical techniques and competencies. At one end, systems can be understood through

the analysis of contributing components and localised interactions. At the other extreme,

localised components, properties and interactions are insufficient to explain global

behaviour. Most systems lie between these two extremes and require a balanced

approach to the modelling process in order to comprehend system dynamics.

Emergence is sometimes seen as an important transition device for the heuristic

explanation of system behaviour, until the knowledge of such a system is complete and

the laws/principles governing anomalous behaviour are fully extracted. This view is

questioned by several researchers who believe that Emergence is a unique facet of

48

Emergence in Active Networks Chapter 3: Emergent Properties and Complex Systems

complex system behaviour. System non-linearity would result in an unending

'Emergence of Emergents' [GoI99]. Therefore, a full comprehension of a system that

includes all anomalous behaviour may not be possible.

It is worth noting that irrespective of the arguments, the importance of identifYing

Emergence is not diminished.

49

CHAPTER 4
MODELLING AND

SIMULATION

EmeIgence in Active Networks Chapter 4: Modelling and Simulation

!... Modelling and Simulation

This chapter will present:

• A description of the strategy employed for the modelling and simulation of an

Active Network.

• A detailed description of the high-level abstract Active Network model, including all

assumptions made during the development process.

• A description of the Active Applications used to develop the model and the process

by which they were incorporated - the development of core functional processes

also known as Primitive Functional Components (PFCs).

The key concepts in this chapter are: high-level abstract model, Active Applications,

modelling assumptions and features, PFCs

50

Emergence in Active NetwOlks Chapter 4: Modelling and Simulation

4.1 Simulation/Modelling Strategy

The current trend in research into Active Networks has been to define and implement

several different topologies and communication protocols, independently or

collaboratively, by various institutions. While this explores, in detail, all possible

scenarios and manifestations of Active Networks, there exists little in the way of

consensus and standardisation. Thus, the variation in Active Networks currently being

considered (and to be considered in the future) presents itself as a problem when

choosing a suitable network with established standards. In contrast, the current Internet

uses TCPIIP, which is the established protocol, and hence the research work into various

aspects of performance analysis is numerous and developed. To circumvent this problem

it was decided that a suitable bigb-Ievellow-detail model/simulation be created, in the

hopes that it can be used in an efficient manner to discover Emergent Behaviour (albeit a

unique example of Emergent Behaviour).

The basis of the high-level simulation is the development of a generic model. This

model would contain little detail of the manner by which the communication process

occurs (i.e. Active Packet transport mechanism) and of the specific network

configuration. The lack of detail is advantageous since the resultant simulations serve as

'indicators' of network behaviour.

Developing a generic model serves several needs:

• Provides a template for future detailed modelling of Active Networks

• Summarily proves the existence of Emergence and Emergent Properties

• Locates possible trouble spots and gives direction to the future detailed investigation

of an Emergent Property

• Avoids analysing results obtained from large complicated models of Active

Networks, without an idea of the Emergent Behaviour present within it

• Provides a systematic approach to the problem

• Provides a framework for the incorporation of future Active Applications and

viewing of their consequences on the network

51

Emergence in Active NetwOlks Chapter 4: Modelling and Simnlation

• Acquire adequate generic behaviour to universally represent various Active Network

research paradigms

The modelling strategy, created by the author, involves the discovery of a range of

Active Applications that encompass the entire capability of an Active Network. Once

these applications are noted, they are broken-down into 'Primitive Functional

Components' (PFCs). An Active Node can be modelled using these primitive

components (and not much more), whilst retaining node functionality allied to the

servicing of applications. What are important are the functional qualities of these

components and not their detailed execution processes within each node (which can be

disregarded).

The advantages of this approach are:

• Top-down approach - can be started from simple user requirements of Active

Applications

• All applications are a combination of one or more primitive operations/components

• Can incorporate future applications

• Independent of any specific technologies or protocols

• Suitable simulators are assessed and implemented quickly

52

Emergence in Active Networks Chapler4: ModeUing and Simulation

4.2 Static-Node simulation

The static node simulation scenario used in this project comprises Active Nodes being

placed in a pre-configured pattern to form a network. This method offers a

straightforward approach and closely adheres to the application of Primitive Functional

Components in generic modelling. An Active Node is depicted as an element pre­

programmed with all the functional components, which are individually activated

depending on the type of packet that passes through it. Note that in a high-level abstract

simulation the details pertaining to the method of distribution and execution of the

primitive programme components (i .e. as a part of the Active Packet stream or pre­

loaded into Active Nodes) is inconsequential.

The overall network topology is based on the Ohira-Sawatari deterministic model,

[Ohi98] which was used to describe Emergent Network Traffic dynamics [SolO1].

An Active Node

An End-station with
transmit and receive

capability

A bi-<lirectionallink

Figure 4.2.a: Ohira-Sawatari model adapted to Active Networks

The network topology is a simple, scalable representation of the Internet. It provides

multiple connections from end-station to end-station (i .e. multiple paths for packets to

take when travelling from source to destination). Whilst not technically an accurate

53

Emergence in Active Networks Chapter 4: Modelling and Simulation

representation, it provides a comparable structure to the Internet (with Active Nodes)

when viewed at a high-level abstraction. It is expected that the high degree of

connectivity would give rise to Emergence; in particular as structures formed by

feedback.

54

Emergence in Active NetwOlks Chapter 4: Modelling and Simulation

4.3 Defining Characteristics of the Active Networks model

General observations on Active Networks were made as a pre-cursor to the high-level

model-building task. The following list details these observations, which function as

bounds for the modelling paradigm. The list consists of known truths about Active

Networks, assumptions made of the model and the justifications for these assumptions.

The list also mentions the modelling considerations made with respect to there being

Emergent Behaviour within the system.

4.3.1 There are two fundamental types of Active Networks which are being

considered by this thesis:

• Capsules - networks with Active packets that carry programme code

('capsules') to be executed in Active nodes.

• Programmable Switches - networks with Active packets that carry 'trigger

bits', which call and execute pre-loaded code within Active nodes.

The generic high-level model will inherently cater for both schemes. The

features of the generic design will consider only the type of code being executed

in a node, at a given time and location, irrespective of how this code-block came

into use.

4.3.2 All possible Active services and functions can be broken-down into Primitive

Functional Components. The generic high-level model will seek to model Active

Applications as these components or as combinations of these components - a

substitute to modelling Active Applications with formal definitions. This gives

independence from end-user requirements, applications and services.

4.3.3 All Active Packets will be typed based on the primitive functional components

they invoke.

4.3.4 Packets have a limited lifetime. Hence, a sustained pattern within the network

has an abstract view, and involves several Active Packets/streams during its

55

Emergence in Active Networks Chapter 4: Modelling and Simulation

lifetime (i.e. the abstract nature allows it to maintain structure and travel

throughout the network, however the underlying Active Packets may not remain

the same).

4.3.5 All 'intelligence' and decision-making activities will be focused within Active

Nodes.

4.3.6 Packets are responsible for the dynamic progression of the network and the

development of Emergent Phenomena.

4.3.7 Packets do not interact with each other directly. Indirect interaction IS only

possible though an Active Node.

4.3.8 The movements of the single packet are deterministic. Several factors influence

the path of an Active Packet. These are:

• Source and Destination end-stations; as applicable with standard routing of

packets within a network.

• Congestion on the outward link.

• Lack of proper resources at current node - the node would re-route to

another containing the proper code modules and/or adequate resources to

process the Active Packet.

• Packets dropped due to the expiry of a 'Time-to-live' counter.

• Last node's address - not allowing the packets to reverse course without

being modified by an Active process.

4.3.9 The simulation process would initially consider a network made solely of Active

Nodes, as it would ease the development of the simulation environment.

Emergent Behaviour would be in its purest form. It is assumed that Emergent

Behaviour is just as likely to occur in hybrid systems containing Active Nodes

and normal routers. Emergent Phenomena are independent of the underlying

nodes (i.e. the same 'structures' can emerge from different network

56

Emergence in Active NetwOIks Chapter 4: ModeUing and Simulation

configurations), are capable of traversing the network and can encompass small

or large sections of the network without the loss of their characteristic

'structure'. It is therefore feasible to assume that hybrid systems are equally

capable of developing the same Emergent Behaviour. However, the Emergent

Phenomena indigenous to hybrid systems are not considered for this research.

4.3.10 For large-scale simulations of a particular network:, the packet flows can be

considered as random. It is assumed that for a high-level abstract simulation the

routing information of individual packets is less important when trying to view

large networks globally. Thus, only the functional capabilities need be included

in the packets. The random path of packets is based on the analogy drawn

between Active Networks and Complexity (simple patterns and structures occur,

as Emergence, in complex and highly random systems).

4.3.11 An Active Node has limited resources (i.e. limited input/output queues, memory,

processing capacity and the maximum number of concurrent processes).

Furthermore, the node may limit the amount of resources allocated to each

process depending on the dynamic conditions at the time of allocation.

4.3.12 Active Packets, depending on the application, can retain resources in the current

node as it passes through (the concept being referred to as 'history', 'imprint',

'memory' and 'trace'). This process is characteristic of lead-packets reserving

and conditioning part of the node to process follower-packets (all part of a

homogeneous stream). An Active Packet can have an 'imprint' on a node

depending on:

• The resources it calls for

• The time limit for the resource allocation

4.3.13 For the purpose of modelling Active functionality with ease, an Active Packet is

considered as an entire Active Application session, consisting of a combination

of Primitive Functional Components. One can think of an Active Packet as an

57

EmeIgence in Active Networks Chapter 4: Modelling and Simulation

application stream (e.g. an Active video/audio stream). For the purpose of this

project, the high level model combines all actual packets of an application

session into a high-level abstract' Active Packet' without loss of functionality.

4.3.14 Each End-station injects one Active packet into the network for each simulation

run (i.e. the analysis is of the simulation of a 'single shot' of Active Packets

interacting to form global patterns and effects). Note that an Active Packet is a

complete application. Thus the model simulation considers the interaction of

only one set of applications simultaneously injected into the network. This

simplifies the simulation and reduces the number of possible factors influencing

a possible Emergent effect. The data analysis would therefore be able to offer a

clearer understanding of the· underlying permutations that caused such an effect.

4.3.15 In order to accurately depict resource usage fluctuations the Active Network

model contains 3 resource types: "MEMORY", "PROCESSOR" and

"BUFFER". An Active Packet requires all 3 types of resources. MEMORY and

PROCESSOR resources are fairly obvious needs of an Active Packet. BUFFER

resource is the term given for the Active Packet's input queue resource

requirement.

58

Emergence in Active Netwotks Chapter 4: Modelling and Simulation

4.4 Defining Generic Model Applications and Primitive Functional

Components

4.4.1 Possible Actiye Applications

As part of the modelling strategy mentioned above, this work attempts to define a set of

primitives as the foundations for the development of Active Network model. The initial

step in this process is the collection and analysis of a representative sample of Active

Network Applications (both predicted and/or implemented). These applications are

listed below:

• Reliable Scalable Multicast - a group of Active switches and routers maintain a set

of TCP connections for reliable data replication. Also involved in the process is a

data caching element within each Active node.

• Video and Audio Transcoding [Mar99] - a digital signal of one standard is converted

into another by an Active device.

• Merging of multiple remote sensor data - used in telemetry applications where a

single Active Node manages multiple data sources [Ten97].

• Storage of status information - for applications such as distributed network games.

• Dynamic generation of web pages [Ten97] - an Active node capable of storing and

executing programmes that generate web pages dynamically and on demand.

• Dynamic distributed caching [Ten97]- web cache servers in an Active Network that

can be dynamically repositioned.

• Distributed network control [Mar99] [RazOO] [ps099] - e.g. supporting optimised

routing algorithms.

• Quality of Service (QoS) filtering for multimedia streams - e.g. consider a source

feeding a single stream of multimedia to multiple heterogeneous receivers. The

streams run through several routers and switches in a hop-by-hop manner. The QoS

feedback commands generated at each node, at each hop, can burden the source with

considerable processing. Using Active Nodes along the return feedback path to

59

Emergence in Active Networks Chapter 4: Modelling and Simulation

merge multiple QoS feedback can reduce bandwidth usage. It may also be possible

for Active Nodes to process the feedback and take decisions autonomously.

• Support for application aware Anycast - a source needs only to contact the nearest

Anycast group [KatOO].

• Application aware local link FEC (Forward Error Correcting Code) implementations

[StoOO] - Active Nodes sensing communication links with poor performance can

provide additional error correction bits for packets traversing those links. This is

more efficient than end-to-end error correction since the packets have additional

overhead only on the required links.

4.4.2 Primitive Functional Components

The representative sample of Active Applications was systematically decomposed into a

set of core functions. As it happens, it was possible to identify these core functions

independent of any user data, source/destination values and the type of service provided.

These Primitive Functional Components (PFCs) extracted from the above-mentioned

applications are:

• Data Replication

• Data Fusion

• Data Generation

• Data Transformation

• Global State Maintenance

• Network Control Processing

60

--- ------

Emergence in Active Networks Chapter 4: Modelling and Simulation

4.5 Mathematical Solutions verses Simulation

Some research suggests that it may be possible to characterise the Internet or any other

large-scale communication network using mathematical techniques. In fact, there exists

a significant body of research where mathematical techniques have been used to model

network dynamics. For example, an approach is adapted from fluid flow models and use

Stochastic Differential Equations to describe the behaviour of packet flows and node

input/output queues. Ordinary Differential Equations are obtained from the Stochastic

set, which then can be solved numerically [Yua02].

As an alternative, there exists research effort to model large-scale networks with

discrete-event simulations. The advantages of simulation over mathematical approaches

are:

• They are capable of capturing significant detail and behavioural effects of a network

(in finer granularity when compared with mathematical models) [Yua02].

• It is likely that a simulation model will exist for a particular network (with specific

protocols and mechanisms), rather than a mathematical one [Yua02].

• Ability to capture complex behaviours and to view global behaviours with relative

ease.

• A large quantity of parameters can be accepted.

The disadvantages are:

• The execution of discrete-event simulations is CPU intensive and may be limited by

the hardware and software requirements of the simulator [Yua02].

• In computer-based simulations parallel and distributed flows of information are

handled concurrently, which is a pseudo-parallel technique. Although this works

well, it is not parallelism in the truest sense.

• The simulator is capable of processing a number of concurrent tasks. This is

achieved by means of discrete time steps. True continuous simulation is not

possible. All tasks, which are intended to be run on the simulated network, are

broken into events. The progression of the simulation is broken into discrete time

61

Emergence in Active Netwotks Chapter 4: Modelling and Simulation

steps, and all events pending at each time step are executed together. The order of

execution, within a single step, is irrelevant since it is considered as an instance in

real time. Time progression (from which the progression of the simulation is

achieved) is equivalent to the progression of time steps. The event and time step

method is commonly used in many pseudo real-time simulators to achieve

parallelism and multiple task execution.

• In order to get the truest possible picture, the modeller would incorporate as many

parameters as possible. However, there is a risk that unnecessary detail would have

to be included even when the modeller is only interested in a few (an over complex

model would demand more hardware resources and more time to complete).

Mathematical models, if found, would only contain the key parameters for an

accurate analysis.

• There is a significant problem in obtaining, analysing and comprehending the results

of discrete-event simulations. In order to gather results, probes may be inserted into

the simulation, and the insertion points are selected based on the modeller's intuitive

grasp of the system under simulation. A large collection of probes could have an

impact on an accurate simulation (e.g. hardware and software limitations). Discrete­

event simulations also tend to generate large data sets.

• In order to understand the cause behind an 'observed' Emergent Phenomenon, one

might need to speculate and re-animate the events in the exact manner in which they

occurred. Since it is possible to arrive at the same defined Emergent Phenomena

through several different processes and interactions, the re-animation process must

be carefully executed, if at all possible. In contrast, mathematical models themselves

offer explanations to various observed phenomena.

There are considerable advantages in employing mathematical models, but the initial

steps are often difficult and the result produced maybe intractable. Discrete-event

simulations are easier to handle, but obtaining comprehensible results often proves to be

difficult. As can be seen, the direction taken by this research was to apply a discrete­

event simulation technique that follows on from the development of the specifications of

62

Emergence in Active Networks Chapter 4: Modelling and Simulation

the generic model. This was applicable in this situation as it provided the best possible

means to detect an unforeseen anomaly.

63

Emergence in Active Networks Chapter 4: Modelling and Simulation

4.6 Summary

This chapter has outlined the modelling strategy implemented in this work along with

the considerations and assumptions made in the development process to facilitate the

manifestation and detection of Emergence. The model is a high level abstract depiction

of the Internet, which exclusively displays Active Nodes and their functionality. It is

proposed that for the purposes of Emergence detection this model is adequate and would

cater for most Active Network schemes currently being researched. The generic low­

detail visualisation of an Active Network within the Internet is a concept believed to be

unique to this work and forms the primary analysis of the system.

The chapter goes on to describe Active functionality/applications being reduced to

primitives in order to simplify the modelling process. It is proposed that these primitives

form the core building blocks of any Active Application to a satisfactory level thereby

preserving universal compatibility.

The abstract view of the Active Network model based on the lattice structure devised by

Ohira-Sawatari [Ohi98] is conceptually similar to the visualisation of the Internet (i.e.

servers/clients at the edge of the system with routers/switches localised in the core).

The chapter also describes the approach to the detection of Emergence as the detection

of anomalous patterns within the Active Network core. To this end a single set of Active

Applications are fed into the core by the end-stations. The set is allowed to propagate,

interact with each other and affect the Active Nodes. Through these interactions

valuable information is gained with the aim of detecting Emergence within the system.

Creation of a simulation environment (i.e. a simulator) or modification of an existing

network simulation environment is a time consuming task. It involves the design of

tailor-made Active Nodes (programmed with Primitive Functional Components),

custom Active Packets, distribution mechanisms, simulation dynamics, displays, results

loggers and other components.

The task is made easier if the simulation dynamics followed a universal methodology

(not necessarily network related), and simulators existed that would provide the

functionality to cater for these universal properties. 'Petri-Nets' are a universal theory

that is capable of modelling distributed systems and parallel event-driven networks. It is

64

Emergence in Active Networks Chapter 4: ModeUing and Simulation

an established theory with defined mathematical formulae to aid the analysis of a

network.

65

CHAPTER 5
PETRI-NET

SIMULATION

Emelgence in Active Networl<s Chapter 5: Petri-Net Simulation

.5..- Petri-Net Simulation

This chapter will present:

• A detailed description of Petri-Net segments specifically used for the simulation of

the Active Network Model.

• The suitability of Petri-Nets in simulating Active Network functionality.

• Petri-Net flow diagrams of the Active Network model including descriptions of

packet flows, data processes, resource usage, peripheral control mechanisms and

data logging.

• A description of what constitutes an Active Packet/Application in this model.

The key concepts in this chapter are: Petri-Nets, Petri-Net extensions, simulation of an

Active Network, Design/CPN Petri-Net simulator, Resource Usage data, Ohira-Sawatari

lattice structure, Active Network model hierarchy and components - Merge Packet

component, Replicate Packet component, Direction Solver component, Local Storage

component

66

Emergence in Active NetwOlXs Chapter 5: Petri-Net Simulation

A Petri-Net is an abstract, formal model of information flow [Cha]. The concept was

introduced by Carl Adam Petri in 1962 for the computational analysis of concurrent

systems. The properties, concepts and techniques of Petri-Nets are designed for the

simple yet powerful modelling of systems with parallel asynchronous information flows

and activities.

Petri-Net graphs contain four types of elements: circles (called Places), rectangles

(called Transitions), markings (called Tokens) and Directed arcs. Directed arcs make

connections from Places to Transitions and from Transitions to Places. A Petri-Net is a

multi-graph since it can allow multiple arcs from one Place to several Transitions, and

vice versa [patS I].

Place
Transition

Token

Figure 5.a: Petri-Net terminology

The net execution process consists of moving/placing Tokens from input Places,

through Transitions, to output Places. The Places represent passive system components.

They act as storage for the Tokens, take particular states and generally make things

observable. Transitions represent active system components and function as process

blocks to produce, transport and change Tokens [Rei85]. The distribution of Tokens in a

'marked' Petri-Net, at any given moment, defines the state of the net.

In order for a specific Token to move from one Place to another it requires the

intermediary Transition to be 'enabled'; and then the Token only moves when the said

Transition 'fires' (i.e. the execution of the Transition).

There are two rules, which govern this particular movement of Tokens within the net:

67

Emergence in Active NetwOIks Chapter 5: Petri-Net Simulation

• Enabling Rule - a Transition is enabled if every input Place, attached to the

transition, contains at least one Token.

Figure 5.b: The Transition with the red border is 'enabled'

• Firing Rule - firing an enabled Transition removes one Token from each input Place

of the Transition, and adds one Token to each output Place of the Transition (i.e.

generates new Tokens) [Her97].

Figure 5.c: The Transition with the double red border has 'fired'

This simple mechanism of 'enabling' and 'firing' in Petri-Nets can be used to model

complex interactions based around a set of fundamental structures (detailed in the

proceeding section), which form the building blocks of any system.

68

Emergence in Active Networks Chapter 5: Petri-Net Simulation

5.1 Modelling set scenarios with Petri-Nets

S.U Sequential Actions

Figure 5.l.l.a: Sequential action

Each sequential flow is described through the transportation of a single token from start

to finish; travelling through a single set of alternating transitions and places.

~ Cycles

Figure 5.l.2.a: Cycles

Cycles are fonned when the arcs direct back to the beginning of the sequence, thereby

initiating a continuous loop of the token.

5.1.3 Dependency

This can occur when a Transition has several input Places - it can only be enabled when

all of the input Place receives, at least, one Token [Her97].

69

Emergence in Active Networks Chapter 5: Petri-Net Simulation

Figure 5.1.3.a: Dependency

.s.M Concurrent processes

This can occur when a Transition has several output Places - each Place will obtain a

Token when the said Transition fires. This forms the start of a concurrent process

[Her97].

Figure 5.1.4.a: Concurrent processes

5,1.5 Synchronisation

This can occur when a Transition has several input Places - it can only be enabled when

each Place receives a Token.

The Transition acts a 'stop and wait' element to synchronise the concurrent flows of

Tokens [Her97].

70

Emelgence in Active Networks Chapter 5: Petri-Net Simulation

/</gure 5.1.5.a: Synchronisation of cono"Urrent flows

Synchronisation can also be used to pace-out the flow of Tokens through a process (e.g.

buffers) [Her97].

Figure 5.1.5.b: Two-level deep buffir

Synchronisation can also be used to design common resource stores [Her97].

Common resourell

/</gure 5.l.5.c: Common resource store

5.1.6 Decision-making !conflict

This can occur when a Place has several output Transitions - the Transitions will

contend for the limited Tokens at that Place (i.e. Transitions are said to be in conflict).

71

Emergence in Active Networks Chapter 5: Petri-Net Sinwlation

This can be used to model asynchronous decision-making processes, which dictate the

separate fl ows of Tokens [Cha97].

Figure 5.1.6.a: Decision-makinglconjlict

Note that the above set scenarios can be present within a system model as a static

placement of Transitions and Places. They can also be present as dynamic structures.

For example a feedback cycle, not necessarily evident through the examination of the

physical layout of modelling components, can manifest itself at run time in an

undetermined fashion. The ambiguity of feedback cycles would be caused by the

inclusion of decision-making/conflict scenarios within the system that would redirect

token flow based on the run-time input conditions.

72

Emergence in Active Networks Chapter 5: Petri-Net Simulation

5.2 Extensions of Petri-Nets

Extended Petri-Nets have important additional features, which make the modelling of

Complex Systems (specifically communications networks) possible. These features add

programming concepts to the model, thereby allowing the modeller to adjust the flow of

Tokens within the net and to vary the Tokens themselves. These features are:

• The addition of timed delays to Transitions - to model points of delay within the

network.

• Input Arc Inscriptions - specifies the type of data that must exist in order for an

activity to occur (i.e. a Transition to fire).

• Guards - Boolean expressions, which define additional conditions for the enabling

and firing of Transitions.

• Output Arc Inscriptions - specifications of the data that will be produced when an

activity occurs (i.e. a Transition firing).

• Data-types, data-objects and variables - Tokens can be constructed as data-objects

that carry complex/custom data structures. Data-types (also known as Colour-Sets)

define the type attributes assigned to these data-objects (i.e. every Token in a Petri­

Net is typed on some Colour-Set, just as every piece of data in an ordinary computer

programme is of some data-type). Variables hold Tokens of a defined type and can

be used in evaluating Boolean expressions at Transitions, at run time. Variables

form part of the Arc Inscription and act as filters on the types of Tokens being

transferred across [Her97].

Petri-Nets and Petri-Net extensions fall into several categories (e.g. Time Petri-Nets,

Stochastic Petri-Nets, Object-oriented Petri-Nets). This work has opted to use 'Coloured

Petri-Nets' and in particular 'Hierarchical Coloured Petri-Net' to form the foundations

for the modelling process. Coloured Petri-Nets, as mentioned before, introduce a typed

token in order to differentiate between and control process flows. Hierarchical Coloured

Petri-Nets provide the facility to build complex models as a multi-tiered structure of

interconnected hierarchical subnets and reusable components.

73

Emergence in Active NetwOlks Chapter 5: Petri-Net Simulation

5.3 Petri-Net Simulation of Active Networks

It is believed that the application of Petri-Net theory to the modelling of Active

Networks remains a concept unique to this work. Petri-Nets are suitable for the

modelling of Active Networks because the TokenIPlace elements can be matched with

Active Packets, Active process execution blocks and Active Nodes.

For this work an Active Packet/Application corresponds to a single Token. An Active

process will correspond to a single Place or a group of Places intermixed with

Transitions that provide the required Active functionality. The Colour Petri-Net feature

can differentiate Active Applications types - each Token can have varying properties, a

unique identification and the ability to invoke different processes within a cluster of

PlacesfTransitions. This would be equivalent to an Active Packet invoking a specific

process within an Active Node.

The third party simulator used in this project attempts to model a significant number of

Active Network features deemed relevant to the Emergence of anomalous behaviour.

Within the Active Network simulation, Petri-Nets are capable of displaying the

following (as identified by the author):

• Specific actions taken by Active Packets - as a Token (an Active packet) enters a

cluster of Places and Transitions (an Active Node) it is identified and coupled to a

specific process flow. The specific process is then executed.

• Active Packets travelling through various stages of a process.

• Parallel process execution.

• Resource allocation to processes - resources (as denoted by special Tokens) are

moved out of the common resource store when a process is initiated. They are

returned when the process has finished execution. In some cases, a process will

retain resource Tokens in an attempt to maintain a state (imprint) in memory.

• Packet interaction through the dynamic competition for resources.

• Packet transformation.

• Packet loss and delay.

• Packet replication.

74

Emergence in Active Networks Chapter 5: Petri-Net Simulation

• Packet types - the colour Petri-Net scheme has the capability to assign attributes to

Tokens, thereby differentiating them according to the Active Packet types. The

attributes are used to control and channel the flow of packets to various processing

elements.

75

Emergence in Active Networks Chapter 5: Petri-Net SimoJation

5.4 Design/CPN

The author has investigated a number of Petri Net simulation tools (reviewed in

Appendix iii). Of these Design/CPN was found to be a viable package offering an

elaborate and comprehensive set of features. It supports Colour Petri-Net models with

complex data-types (Colour-Sets) and complex data manipulations (Arc Expressions

and Guards); both specified by the "Standard ML" programming language. In addition

the package allows the use of Standard ML code to customise the behaviour of

simulations (i.e. additional code segments in transitions and the use of global reference

variables).

The package also supports hierarchical and modular nets (i.e. complex models can be

decomposed into manageable modules. Separate modules are reusable and can be

constructed with well-defined interfaces). Design/CPN has the capability to model a

typical scenario of SO to 200 modules; each with 10 to SO different Places and

Transitions [Des]. Design/CPN's user-extensibility allows for the accurate modelling of

Active Networks in accordance to the specifications set by the high-level modelling

scheme. It is well suited for progressive and intensive simulation of an Active Network.

The package provides comprehensive documentation, samples modelling scenarios and

performance analysis capabilities.

The software was originally devised by the Meta Software Corporation, Cambridge MA,

USA with the help of the CPN group at the University of Aarhus, Denmark. Subsequent

decisions by Meta to transfer development and support of the tool to the CPN Group at

Aarhus resulted in it becoming freely available to model developers. However, as of

January 2004 it has been superseded by 'CPN Tools', which provides an enhanced GUI

(working under Windows 2000/XP with openGL support) with a faster simulation

engine. Nevertheless, much of the modelling/simulation technology used in the new tool

is based around Design/CPN. From a historical perspective, Design/CPN provided a

complete modelling/simulation package from the initial stages of this research right

through to completion. The version of Design/CPN used for this work runs under Linux

(RedHat 8.0).

76

Emergence in Active Networks Chapter 5: Petri-Net Simulation

The overall suitability of a particular simulator was assessed on the following criteria:

• Ability to simulate large networks

• Capability of building hierarchical nets and high-level simulations

• Inclusion of Token differentiation (e.g. Colour Petri-Net schemes)

• Inclusion of performance analysis measures

• Adequate documentation and support

• Inclusion of a graphical display and animation of networks

• Availability and cost

77

Emergence in Active Networks Chapter 5: Petri-Net Simulation

5.5 Model flow diagrams/layouts

5.5.1 Model hierarchy

The Active Network model was constructed using a hierarchical and modular approach.

This approach groups common functionality into 'components'. The components are

sub-sections of the Active Node 'object' and collectively provide the primary functions.

The design/CPN object hierarchy for the Active Network model is structured as follows:

Active Network
(Ohira-5awatari lattice

structure)

local storage
component

merge packet
component

replicate
packet

component

direction
solver

com onent

Instances:

Active Node

Figure 5.5.1.a: Model Layout: Active Network Model Hierarchy

78

A1
61
C1
01
E1

A2
62
C2
02
E2

A3
63
C3
03
E3

M
64
C4
04
E4

AS
65
C5
05
E5

Emergence in Active Networl<s Chapter 5: Petri-Net Simulation

The top-level object in the hierarchy is the Active network lattice structure (Figure 4.2.a

and Figure S.S.2.a). A sub-component of this network arrangement is the Active Node

object (Figure 5.5.3.a), which forms the second level in the hierarchy. There are 25

instances of the Active Node object within the model representing the 25 Active Nodes

(A I to E5). Sub-components of the Active Node object include the following: "Local

Storage Component" (Figure 5.5.4.a), "Merge Packet Component" (Figure), "Replicate

Packet Component" (Figure 5.5.6.a) and "Direction Solver Component" (Figure

5.5.7.a). The sectioning of components was primarily based on the logical apportion of

functionality (e.g. Active Merge functionality and Active Replication functionality)

and/or level of diagrammatic detail required to implement specific features (e.g.

Direction Solving for the next hop).

It must be noted that the following flow diagrams are not the actual Petri Net diagrams

used in modelling process, but are an approximation. These approximations are used as

a process by which the modelling details can be easily explained. It was believed that the

use of the actual diagrams, at this stage of the report, would only complicate the

documentation and thus are included in Appendix ii. The author proposes that the use of

flow diagrams, along with the appended notes, will provide sufficient detail for the

reader to comprehend and analyse the Active Network model.

Also note that the control flows of tokens (represented by the green coloured arcs that

transfer tokens from Place to Place via Transitions), in the following diagrams, are

separate from the Active Packet Token flows. The controls flows are a mechanism (in

addition to the Active Packet Token flows) necessary for progression of the Petri-Net

model within a simulation run. Furthermore, they do not influence the resource

utilisation data; gathered as output from the simulations.

5.5.2 Active Network (Obira-Sawatari lattice structure)

The following diagram provides a detailed and concise view of the Active Network

model as abstracted in Figure 4.2.a.

79

Emergence in Active Networks

Legend:

~
AcUve Packel (token) now

•
Control (token) flow

Chapter 5: Petri-Net Simulation

SRC_Ai Traffic Source

O-~
Traffic

GeneralOf'
TralRcSi,*

AA En6-6latlon

Figure 5.5.2.a: Model Layout: Active Network

Each Petri Net Transition labelled from Ai to E5 represents an ' instance' of an Active

Node. Surrounding the lattice structured Active Node 'core' are 20 end-stations that

form the 'end-user edge' of the model (Appendix ii; section ii.3).

80

Emergence in Active Networ1<s Chapter 5: Petri-Net SimuMion

Active Packets! Applications are generated and collected vIa end-stations. Within an

end-station there exists a ' traffic generator' that reads an input file ("src.txt") in order to

obtain the specific Active Packet/Application information corresponding to the

particular end-station, which is then forwarded to the ' traffic source',

6,5,5,O,F,30,30,30,O,O 0 ~
6,5,5,O,F,30,30,30,O,O 0
10,5,5,50,F,30,30,30,20t 15)D
7,5,5,50,R,10,10,10,O,O)D
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5 , 5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,O,F,30,30,30,O,O 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
9,8,1,4,F,100,100,100,100, 50)0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0, F', 30, 30, 30, 0, 0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0
6,5,5,0,F,30,30,30,O,0 0
6,5,5,0, F, 30, 30, 30, 0, 0 0

Figure 5.5.2.b: Sample Source File ("src.Ixt '')

Each line of the input file ("src.txt") contains a data section (within the brackets) that

describes an entire Active Packet/application with the value sequence corresponding to

the pseudo header/data structure described below:

8(

EmeIgence in Active NetwoIks Chapter 5: Petri-Net Simulation

Application Direction Direction TUJle.to- Route Mechanism ••••••
Number Indicator 1 Indicator 2 live
1 15 1 8 1 8 Integer • forward

Integer value Integer value Inleger value • replicate
value • consume

• merge

~

•••••• Memory Processing Buffer Global State GSM Timer

Requirement Requirement Requirement Maintenance Count

IGSMI
0 100% 0 100% 0 100% 0 100% 0 50

Integer value Integer value Integer value Integer value Integer value

1 1

8~ i /2 i 7 ___ 3 7 ___ 3

6/~~4 ~
5 5

Direction indicator 1 Direction indicator 2

Figure 5.5.2.c: Active Packet/Application Structure and Direction Indicator values

Note that the Active packet/application does not, in reality, contain a data portion. The

author proposes that the sole use of the Active header is sufficient to provide an accurate

analysis of resource usage in Active Networks, since the requirement is explicitly

specified within it. Furthermore, it was not the intention of this research project to assess

the quality of service (QoS) aspect of data transfer in Active Networks.

82

Emergence in Active Networks ChapterS: Petri-Net Simulation

5.5.3 Active Node Model
DrIc:I.Ion IWISOd 00:

O-~
AYWilabI. ~IQR,

1 ~ ~
AcIl" PzMI Otnljl-bM IkIId

O- -..rl ""- /Sl- ...0

~ ~"
"'eJtI/'rq:l

-0' -- -~- .~ (modIn_

0- ,----. -. r-.
""'"' Dec:i!IIon bDtd Qn:

fto-.wllltatlon 5ealur. ~6""~

(GIotMI StM~) --
Mud.fIId ~ vallJH NO.1DnI

I (~~oto ~ packel..quiremenb)
_.

,i,. _" wrttllll'! no gIcllW 6!rIr&
~""

,,=:~ L R~N:8va1\j" ~ ~

flfedWO 0 ~rL'9 rereWtl rre,;:hIJOiam, I --C I
__ MEMORY

rNOIJl"I»I wtt9!1 UIflIjlr ~"
~kaeP8Ck8t

o~ io--' MllqlePIoCI\IiIt """"'---MEMORY retOUtca

'""P·''·'''

o SUFFER "- DeciIIan bued on:
ModIIIu UEMORY r..wn::e WIII.i4IS

<>
AdMIIliIIOwI \VI»

i~·flwlhelltNlrllllj)Wy) (fi,mclonal"y) --(GIobfII SIOI'II) •
Leg

RMOIKCDYllIUII. .. """"'" _N
end: ,.lnlOpn:x::MII' -"'" tlillw_ l..ouron 10

~I"MOI.Ir1»VlhIN
sjobel Slont once pa6:ets

A$oe P.ut(IiQken) low hevellll'l{tll'MClj
(..... sod~ --

Figure 5.5.3.a: Model Layout: Active Node

83

Emergence in Active NetwOlks Chapter 5: Petri-Net Simulation

The Active Node functionality (Appendix ii; section ii.4, section ii.5, section ii.6,

section ii.7 & section ii.8) can best be explained through the description of processes it

invokes, when an Active Packet! Application arrives and is passed through, in addition to

description of interactions made with the packet:

• An Active Packet arrives at the Active Node through one of 4 possible input ports

and is immediately evaluated for processing by the node.

• The decision to process the particular Active packet will depend on the "time-to­

live" field and whether the node will have, at that particular time, adequate

"MEMORY", "PROCESSING" and "BUFFER" resources (Figure S.S.2.c).

• Unprocessed packets will be forwarded to the 'next hop' Active Node through one

of 4 possible output ports.

• The choice of output port will depend on the evaluation of the Active Packet's 2

"Direction Indicator" field values by the "Direction Solver Component" (Figure

S.5.2.c and Figure S.S.7.a).

• Active Packets that can be processed will initially consume the required ,
"MEMORY", "PROCESSING" and "BUFFER" resources from the Global Store.

• There exists a mechanism to release the consumed resources after a specified time

period, which coincides with the point of exit for the corresponding packet

("MEMORY" resources have additional criteria). The specific time period for

release is based on the "Route Mechanism" field of the Active packet (Figure

S.5.2.c).

• The initial consumption "MEMORY" resources may include a quantity used to

provide the 'Resource Reservation Feature' in Active Networks. The amount and

time limit for these "MEMORY" resources will depend upon the "Global State

Maintenance" value and the "GSM Timer Count" value of Active Packets,

respectively (Figure S.S.2.c). There exists a mechanism to release these resources

once the Timer Count expires, which is held within the "Local Storage Component"

(Figure S.S.4.a).

• Active packets are then differentiated (and processed) based on the "Route

Mechanism" field.

84

Emergence in Active Networks Chapter 5: Pm-Net Simulation

• The packets are subsequently passed into the ''Direction Solver Component" (Figure

5.5.7.a) for evaluation and passed out through the output ports.

5,5.4 Local Storage Component

MEMORY
(Global Store)

l+ ___ Modlfred resource
value written

Gate controlled
FIFO queue

Input port

Resource VB!ue
read Into process Release resources

rram global store &
Generate trigger

Resources
released

Resources
delayed

bigger

Extract Time
Count value

(delay) & adds
timer check

flag

OUtput port

Oolay _ok loop:
Uses (Umestamp • delay value)
85 condition for loop.

Modmes Urner check nag for
decisicn process,

Legend:

ActIve Packet (token) flow

•
Control (token) flow

•
Resource (token) flow

•
Figure 5.5.4.a: Model Layout: Local Storage Component

85

Emergence in Active NetwOIks Chapter 5: Petri-Net Simulation

The objective of the "Local Storage Component" (Appendix ii; section ii.9 & section

ii.IO) is to provide a timed release of "MEMORY" resources that were previously

consumed when the packet was initially processed.

The timed release of "MEMORY" resources is distinctly separate from normal

'consume and release', which is applicable to all Active Packets processed within the

node. The 'consume and release' of additional "MEMORY" resources is an integral

part of the resource reservation feature of Active Networks.

The "Local Storage Component" is invoked only when the higher layer "Active Node"

object requests it. The request is generated based on the "Global State Maintenance"

value and the "GSM Timer Count" value of Active Packets that pass through the Active

Node (Figure 5.5.2.c).

An Active packet enters the "Local Storage Component" through the input port and

immediately exits through the output port via a process designed to extract the "Global

State Maintenance" value (reserved resource amount) and the "GSM Timer Count"

value (timer for reservation). The extracted data can be thought of as a 'reduced

information Active Packet' .

Much of the information flow within this component is control flow that is used to add a

timestamp and check flag to the extracted data.

The reservation of resources is formed by a delay loop that is controlled by the "GSM

Timer Count" value and the timestamp.

The check flag is used to trigger the release of "MEMORY" resources once the delay

loop criteria has been satisfied.

86

Emergence in Active Networks

~ Merge Packet Component

Inpulpor1

, SI packet of • type
Process and wall for
subsequent pactelS

,---c)--f-<U Merge with 1st pack.lof
particular type

Timestamp &
1-'. packol d1ec:k
(modifies packet)

Flags fOt 1 si paCket cneck

Legend:

~Ion based on:
tho packet being the 1st d a
partlcu!ar merge type.
Uses ·1st paCket nag-

Active Packet (tok.en) flow' -
Control (token) now -

Delay f09dback loop:
Uses (Umeatamp .. delay value)
as condition for loop

P""'ot -.....

Figure 5.5.5.a: Model Layout: Merge Packet Component

87

ChapterS: Petri-Net Simulation

Output port

I

Emergence in Active Networks Chapter 5: Petri-Net Simulation

The objective of this component (Appendix ii; section ii.11 & section ii.12) is to merge

identical Active Packets that have been designed for the purpose into one Active Packet.

The process of merging in terms of this project involves the delay of the I" packet that

entered the Active Node processing stream, which has a 'merge' value in the "Route

Mechanism" field, for a limited period of time (i.e. a fixed period of 5 simulation time

steps).

Subsequent 'merge' packets that match the I" packet's "Application Number" and

arrive at this component within the fixed time period will be consumed/merged.

The component identifies and tags the 1" packet of the merge process with a check flag.

This flag is reset when the I" merge packet is released after the expiry of the fixed delay

period.

The delay of the I" packet is achieved through a loop that is controlled by a timestamp,

which was attached to the packet as it entered this component.

88

Emergence in Active Networks

5.5.6 Replicate Packet Component

Input port '-""'_~

1 Token
(Active Packet)

in

indicator = 4

Indicator = 8

Chapter 5: Petri-Net Simulation

Dedslon based on: value of
original direction indicator 1 in
Actlve packet header field

RepOcates packets and modifies
dlrecUon Indicator 1 and direcUon
indicator 2 in Active packet

E
3 Tokens

(Active Packets)
out

Legend:

Output port

Active Packet (token) flow

~

Figure 5.5. 6.a: Model Layout: Replicate Packet Component

The "Replicate Packet Component" (Appendix ii; section ii.13) implements a simple

mechanism to replicate all packets taken from the input port (according to a specified

scheme) and output them into the main/parent "Active Node" object.

The replication scheme (Figure 5.5.6.b) uses a I to 3 replication of Active Packets with

modified "Direction Indicator" values (i.e. the original direction and 45 degrees either

side of the original).

89

Emergence in Active Networks

Input
Active replicating

packet --..

An Active Node

Chapter 5: Petri-Net Simulation

Further replications

Figure 5.5.6.b: Active Packet Replication Scheme

The scheme is designed to emulate a spanning replication of data that has an unlimited

replication objective and a primary direction (i.e. the direction of initial data packet).

This is one of many possible spanning schemes that could have been incorporated into

the model. It was primarily designed to achieve a significant 'presence' of a replication,

which affected other application streams, whilst not allowing to have the capability to

completely saturate the network.

The main section of the "Replicate Packet Component" consists of a decision process

(based on the original direction of the input packet, the value of which is held in the

"Direction Indicator I" field of the Active Packet header) that replicates the input packet

and modifies both Direction Indicator values of each output packet according to the

scheme in Figure S.S.6.b.

90

Emergence in Active NetwOIks

5.5.7 Direction Solver Component

Input port

Chapter 5: Petri-Net Simulation

Decision based on: value of
original direction indicator 1 and
direction indicator 2 in Active packet
header field

Modifies direction indicator 2 in
Active packet

output port

Legend:

Active Packet (token) flow ,

Figure 5.5.7.0: Model Layout: Direction Solver Component

The objective of this component (Appendix ii; section ii.14) is to take all Active Packets

destined for the node exit and modify their "Direction Indicator 2" values.

The component only modifies the secondary direction indicator value of diagonally

traversing packets in order that they map correctly to one of the 4 output ports. Any

horizontally traversing and vertically traversing packets are left unmodified.

The diagonally traversing Active packets, in reality, travel through the network in a step­

wise pattern. The alternating horizontal and vertical direction values required for this

91

Emergence in Active Networks Chapter S: Petri-Net Simulation

type of travel are contained in the ''Direction Indicator 2" field of the Active Packet and

are adjusted accordingly by the ''Direction Solver Component". (Figure S.5.2.c and

Figure S.S.7.a)

The combination of changes made to the "Direction Indicators" is described in the

following table:

Combination Input Output
''Direction Indicator I" ''Direction Indicator I"

and and

''Direction Indicator 2" ''Direction Indicator 2"

values values
I 2 and I 2 and 3
2 4 and 3 4andS
3 6andS 6and7
4 Sand7 S and I
S 2 and 3 2 and I
6 4andS 4and3
7 6and7 6andS
S Sandl SandS

All other combinations of "Direction Indicator" values remain unaffected

~ Otber components; Data Loggin&

Legend:

Reads values from:
reglocO to regl0c24 (registry
locations)
Writes to ·out.txt" as one line

Control flow

•
Figure 5. 5.8. a: Model Layout: Data Logging Component

92

Emergence in Active Networks Chapter 5: Petri-Net SimnIation

The input for the Emergence detection process, described in the proceeding chapter,

consists of a data log of "MEMORY" resource activity, which was recorded throughout

a simulation run of the Active Network.

The data logging process (Appendix ii; section ii.15) consists of a simple Petri Net flow

loop that polls and records (i.e. writes to an output log file "out.txt") 25 Register

Locations, at every simulation time step .

... 100,100,100.100,100,100,100,100,100,100,100,100,100.100.100,100.100.100.100.100.100,100,100,100.1000
3 .•• 100,100,100,100,100,100.100.100,100.100.100.100,100,100,100,100,100,100,100,100.100.100.100.100.1000
.•• 100.100,100.100.100,0.100.100.100.100.100,100,100.100,90.100,100,100,100,70,100.100.100.100.1000

5 .•• 100,100,100,100,100,0,100,100,100,100,100,100,100,100,90,100,100,100,100,70,100,100,100,100,1000
6 .•• 100,100.100,100,100,0,100,100,100,100,100.100,100,100.90.100.100.100,100.70,100.100,100,100,1000
7 .•• 100,100,100,100,100,0,100,100,100,100,100,100,100,100.90,100,100,100,100,70,100,100.100,100,1000
8 ..• 100,100,100,100,100,0,100,100,100,100,100,100,100,100,90,100,100,100,100,70,100,100.100,100,1000
9 ... 100,100,100,100,100,0,100,100,100,100,100,100,100,100,90,100,100,100,100,70,100,100,100,100,1000

0 .•. 100.100,100,100,100.0,100,100.100,100,100,100,100,100,90,100,100.100,100,80,100,100,100,100,1000
••• 100,100,100,100,100,0,100,100,100,100,100,100,100,100,100,100,1oo,100,1oo,80,100,1oo,1oo,100,100D

2 ..• 100,100,100,100,100,0,100,100,100,100,100.100,100,100,100,100,100,100,100.80,100,100.100.100,1000
3 ... 100,100,100,100,100,0,100,100,100,90,0,100,100,90,100,100,100,100,70,70,100,100,100.100,1000
4 ••. 100,100,100,100,100,0,100,100,100,90,0,100,100,90,100,100,100.100,70,70,100,100,100.100,1000
5 ••• 100,100,100,100,100,0,100,100,100,90,0,100,100,90.100,100,100.100,70.70,100,100,100,100,100U
6 ••• 100,100,100.100,100,0,100,100,100,90,0,100,100,90,100,100,100,100,70,70,100,100,100,100,1000
7 .•. 100,100,100.100,100.0,100,100,100,90,0,100,100,90,100,100,100.100,70,70,100,100,100,100,1000
8 ••• 100,100,100,100,100,0,100,100.100,90,0,100,100,90,100,100,100,100,70,70,100,100,100.100,1000
9 ... 100,100,100,100,100.0,100,100.100,90,0,100,100.90,100,100,100,100,80,70,100,100,100.100,1000

20 ••• 100,100,100,100,100,0,100,100,100,100,0,100,100,100.1oo,100,100,100,80,80.1oo.100,100,100,100D
21 ••• 100.100,100,100.100.0,100,100.100,100,0,100,100,100,100,100,100,100,80,80.100,100,100,100,1000
22 ••• 100.100,100,100.90,0,100,100,90.100,0,0,90,100,100,100,100,70.70,80,100,100,100,100.900
23 .•. 100,100,100,100,90,0,100,100,80.100.0,0,90,100,100,100,100,70.60,80,100.100,100.100.900
24 ... 100,100,100,100,90,0,100,100,70,100,0,0,90,100,100,100,100,70.50,100,100,100,100,100,900
25 ••• 100,100,100,100,90,0.100,100,70,100,0,0,90,100,100,100,100,70.50,100,100.100,100,100,900
26 .•• 100,100,100,100,90,0,100,100,70.100,0,0,90,100,100,100,100,70,50,100,100,100,100,100.900
27 ... 100,100,100.100.90,0.100,100,70.100,0,0,90,100,100,100,100,70.50,100.100.100,100.100,900
28 ... 100,100,100,100,90,0,100,100,70,100,0,0,90,100,100,100,100,80,50,100,100,100,100,100,900
29 •.• 100,100,100,100,100,0,100,100,80,100,0,0.100,100,100.100,100,80,60,100,100,100,100.100,1000
30 ••• 100,100,100,100,100.0,100,100,90,100,0,0.100,100,100.100,100.80,70,100,100,100,100.100,1000
31 •.• 100,100,100.90,100.0.100,90.100.100,0,0,100,100,10O,100,O,70,80.100,100.1oo,100,90,100D
32 ..• 100,100.100.80,100.0.100,80,100.100,0,0,100.90,100,100,0,60,80,100.100,100,100,80,1000

Figure 5.5.8.b: Sample Output logjile "out.txt"

A specific Register Location contains, at any given simulation time step, the current

value of "MEMORY" resources contained within a specific instances of the Active

Node object.

A Register Location is updated whenever the "MEMORY" Place (Global Store) value,

of the corresponding Active Node instance, changes during a simulation run (Figure

5.5.3.a). This update is achieved through the inclusion of Standard ML code in

Transitions in the Active Node object and its components.

Each line within the output log file ("out.txt") contains the simulation time step number

followed by 25 Register Location values ("reglocO" to "regloc24"). The following table

93

Emergence in Active NetwOlks Chapter 5: Petri-Net Simulation

maps the Register Location names with the Active Node names who's "MEMORY"

resource values are held within the registers:

Register location Active Node Names

number/name
"reg)ocO" ES
"regloc 1 " E4
"regloc2" E3
"rell. oc3" E2
"reg oc4" El
"reg ocS" DS
"rell.l oc6" D4
"rell. acT' D3
"reg ocS" D2
"reg oc9" DJ
"reg oclO" CS
"reil ocll" C4
"reg oc12" C3
"reg oc13" C2
"regloc14" Cl
"Tell. oclS" BS
"reg oc16" B4
"reg oclT' B3
"reg oc18" B2
"reil oc19" Bl
"reg oc20" AS
"reg oc21" A4
"reg oc22" A3
"regloc23" A2
"!egloc24" Al

94

EmeIgence in Active NetwOlks Chapter 5: Petri·Net Simulation

5.6 Summary

This chapter has discussed, in considerable detail, how the Active Network model was

constructed, simulated and prepared for analysis.

The first section of this chapter describes the general diagrammatic concepts of Petri

Nets and their use with communication network type structures.

The sole use of the diagrammatic semantics of Petri Nets (in order to provide solutions

for system design) is not uncommon. Most Petri Net modelling packages also provide

powerful mathematical analysis tools to develop "Occurrence Graphs" that can be used

to gain a detailed understanding of systems. For the purposes of this project these

mathematical tools provided no useful contribution. This is because the basic premise of

the research was to establish a global view of system functionality in Active Networks

and then proceed to detect Emergence as patterns within this view.

The project does, however, consider the use of Petri Net extensions such as "Color Petri

Nets", Boolean Transition Guards, Arc Inscriptions and Hierarchical decomposition

invaluable in the accurate modelling of Active Networks.

This chapter follows on to explain the process by which the Petri Net concepts are

paired with the High-level Active Network model features (previously identified in

chapter 4).

The chapter also provides, as reference, a significant list of Petri Net modelling tools

and their specific attributes. The list formed the basis of an evaluation process to find

the most suitable Petri Net modelling/simulation tool. As a result, Design/CPN was

highlighted as being the best suited for this particular modelling and simulation task.

Some of the key 'selling points' were its ability to create hierarchical models using well­

defined components and its ability to construct and execute "Standard ML" code

segments within "Transitions". This provided a high degree of flexibility in the

implementation of features (e.g. data-logging) that would not have been possible

through a solely graphical simulation environment.

The last section of this chapter contains detailed flow diagrams of the Active Network

model. Included in the diagrams are the breakdown of components (object hierarchy),

the specific detail pertaining to resource usage and the flow of Active

Packets! Applications.

95

CHAPTER 6
DETECTION OF

EMERGENCE

Emergence in Active NetwOIks Chapter 6: Detection of Emergence

~ Detection of Emergence

This chapter will present:

• An analysis of possible detection techniques for Emergence in systems.

• A description of the strategy used to test the suitability of a likely technique.

• A description of Self-Similarity and its link to an Emergent Behaviour in the Active

Network model; termed a "Cascading Effect".

• A detailed mathematical derivation of the RlS statistic used to measure and quantifY

Self-Similarity .

• Approximations and limitations of the RlS statistic.

• A detailed mathematical derivation of a confidence value employed to support the

RlS statistic.

• The application of the RlS statistic, to the Active Network simulation results, in

order to produce Hurst values (i.e. Self-Similarity measure) for Active Node

resource usage fluctuations.

• The link between the Emergence of a "Cascading Effect" and Self-Similarity.

The key concepts in this chapter are: detection of Emergence, Self-Similarity of Active

Node resource usage fluctuations, the RJS statistic, approximations, the Hurst value, the

r "goodness-of-fit" confidence value, MATLAB algorithm to produce a Hurst value via

regression analysis, mathematical derivations

96

Emergence in Active NetwOIks Chapter 6: Detection of Emergence

6.1 Overview

The detection of Emergent Behaviour in any complex system requires a significant

amount of empirical study as discovered during the course of the research work. Any

potential technique must be customisable to suit the results generated by system

modelling and simulation. As a precursor to the evaluation of a detection technique, it is

proposed that Emergence is formalised as a dramatic change in the functioning of a

complex system, which is recognised as the manifestation of characteristics mentioned

in chapter 3; section 3.1. This would in turn transform a system from a normal to an

anomalous state or from a stable to an unstable state.

During the course of this investigation into potential detection techniques it was

discovered that, whilst researchers agree upon the importance of discovering Emergence

in systems, there exists little in the way of development of detection tools to suit all

systems. This chapter describes 3 examples of probable methodologies that are sourced

from research work, which proposes radical steps forward in the detection of Emergence

in general systems. These are:

• Emergence as the loss of complexity in a system

• Emergence through the measure of self organisation

• Emergence as patterns in a system

The concepts fundamental to each of the J broad methodologies are described, in brief,

in the following sections along with the reasons for choosing one particular detection

method for this research.

97

Emergence in Active NetwoIks Chapter 6: Detection of Emergence

6.1.1 Emergence as the loss of complexity in a system

This detection method was proposed by a single piece of research work established to

measure Active Network health and to provide some form of management for such

systems. The proposed method includes the use of Kolmogorov Complexity and general

Complexity Theory to:

• "Build self-managed networks"

• Provide "vulnerability analysis techniques that draw on fundamental properties of

information to identify, analyse and correct faults as well as security vulnerabilities

in an information system".

This research visualises the Active Network not as a topology, but through 'Complexity

Measurements'. In other words the paradigm investigates the variables of the system

(e.g. resource usage) and their relationships in order to compute complexities of the

network in different dimensions (e.g. dimensions could be availability of services, health

of devices, application performance, etc.). A high Complexity Measure is a result of

high randomness in the system dynamics and translates to a healthy system. Dimensions

of low complexity indicate potential problems in the system and possible Emergent

Behaviour [KuIOI].

Whilst this research provides a good technique in the detection of Emergence in Active

Networks, it proved difficult to implement on top of an already developed high-level

model. The complexity measurement process requires specific Management Information

Base (MI8) components for the system, which relate to system variables. The

visualisation of the Kolmogorov model is as a "space filled with entities that represent

the values of various monitored objects from the managed system". This is significantly

different from the topology-based approach taken by the authors in developing high­

level abstract views of Active Networks.

6.1.2 Emergence throueh the measure of self onanisation

The detection of Emergence by this method relies on analogies taken from natural

systems, in particular the structures of swarming and fully coordinated ("crystal")

98

· ------- ---

EmeIgence in Active Networks Chapter 6: Detection of EmeIgence

behaviours in simple flocking systems. The method is based on a single piece of

research that makes use of natural system analogies to provide a measure for self­

organisation in general systems. This in turn is used to indicate the presence or absence

of Emergence. The research work proposes that the dynamics of a general complex

system be modelled as being produced by an attractor/generator. The behavioural type

exhibited by the system, whether it is a swarming or crystalline structure, is directly

related to the dimensions of the attractor/generator. The research goes on to extract the

measure of dimensionality (0) for the generator of a sample system. Furthennore, it

proposes that the system has the ability to exhibit Emergent Behaviour based on the

sudden transition of the 0 measure given smooth changes in system parameters [WriOO].

Even though the research provides a clear definition and methodology of Emergence,

the system used in the analysis relies on non-discrete models of systems components

that have defined mathematical functions. Thus the measure of dimensionality (0) is

derived through the solution of a set of custom mathematical equations. This detection

method is difficult to implement in models developed as discrete event-driven systems

such as Active Networks.

u..J Emergence as patterns in a system

This method relies on the belief that a dramatic change in system behaviour can be

'obselVed' and 'comprehended' through some visual technique designed for the

recognition of Emergence. This concept is fundamental to many Emergence research

projects [Bon97] [See]. Certainly in the above two sections (6.1.1 and 6.1.2) the'

structures, which are subject to the measurements described, are clearly patterns in a

system. However the methods of pattern identification and the establishment of

measures for Emergence vary. Similarly this section describes a range of practical

pattern detection and measurement techniques that are used in research fields, other than

Emergence detection, to a high degree of success,

For this work, the detection of Emergence as patterns in the system proved to be a viable

option with respect to the following factors:

• Applicability - the results generated from the system modelling and simulation

process consists of a 2-dimensional matrix of integers representing the resource

99

Emergence in Active NetwOlks Chapter 6: Detection of Emergence

usage of all Active Nodes (as a percentage) at each simulation time step. All of the

pattern detection techniques investigated within this project provided mathematical

sequences that readily dealt with 2-dimensional number arrays. These sequences

were easily programmed into scripts (executed in MATLAB) that provided

algorithms for enhancement and detection.

• Adaptability - the techniques could be modified to suit the data type and sample

size.

• Ease of use - from an engmeenng viewpoint; the development of pattern

enhancing/recognition programmes, under MATLAB, was made relatively

uncomplicated through the existence of sample code sequences and comprehensive

reference material.

Described below are several types of pattern recognition techniques that were

experimented with as the project progressed:

6.1.3.1 image Enhancement algorithms - Edge-detection & Histogram Equalisation

The 2-dimensional matrix of logged simulation data is similar to the mathematical

representation of a pixelated image prepared for image manipulation/enhancement (e.g.

a grey-scale image can be represented in MATLAB as a matrix with the same

dimensions as the image. Each pixel of the image is allocated a 'coordinate', which

corresponds to the row and column number within the matrix. The grey scale intensity

of each pixel is held as a value in the corresponding matrix element). Given this

similarity it is possible to represent the raw data from the Active Network simulation as

an Image and prepare it for feature detection. Of the possible Image

detection/enhancement techniques available two were selected based on their strong

analogous relationship with resource usage in an Active Network.

• With an Edge-Detection macro it is possible to identifY a continuous high-contrast

'edge' within the 'image'. This translates to a continuous high or low resource usage

within the system at specific Active Nodes, at specific time steps or a combination

of both.

100

Emergence in Active NetwoIks Chapter 6: Detection of Emergence

• The Histogram EqualisationfIbreshold method is used to increase image contrast

thereby clearly differentiating clusters of high and low resource usages within the

data.

6.1.3.2 Fourieranalysis

Fourier Analysis (I-dimensional and 2-dimensional) provides useful visualisation of

matrix data in the frequency domain. Whilst it is a well-established technique in the

enhancement and feature detection of images, the onus here was to use the method to

identify unique frequency components with high amplitudes or clusters of components

with particularly high frequency ranges. The identification of these frequency

components would thus indicate the presence of a dominant fluctuation or a general high

fluctuation of resource usage; both indicative of Emergence within the system [Gon02].

6.1.3.3 Wavelet analysis

Wavelet analysis is similar to Fourier analysis except that the frequency decomposition

of data is conducted through a pre-defined non-periodic waveform ("wavelet") as

opposed to a sine wave [Gra9S]. In addition to the identification of strong frequency

components, Wavelets have been used to identify Self-Similarity in data [MATa]

[MA Tb]. As proposed by this research the idea that Self-Similarity is key to the

detection of Emergence gives significant value to Wavelet analysis.

6.1.3.4 Cross- correlation analysis

Cross-correlation is used in discrete signal analysis to obtain levels of similarity between

signal data sets. An investigation was undertaken to determine if this method could be

used to correlate resource usage (over time) of individual Active Nodes with each other

to find patterns that are similar (i.e. correlation of resource usage across the nodes at

various data segment sizes) [Gon02]. A high degree of correlation would translate to a

discrete pattern in resource usage traversing the network.

101

Emergence in Active Networks Chapter 6: Detection of Emergence

6.1.3.5 Self-Similarity analysis

The general idea of Self-Similarity has a strong relationship with Emergence in that it

can be thought of as a pattern in the data that finds itself replicated at various

resolutions. Self-Similarity provided credible results in the resolution of Emergence in

Active Networks and is described in detail in section 6.3.

102

Emergence in Active Networks Chapter 6: Detection of Emergence

6.2 Detection technique suitability testing

In order to evaluate the effectiveness of anyone technique, a suitability testing

procedure was developed by using a group of test cases simulated through the Active

Network model. The test cases were designed to contain an 'Emergence Inducing

Factor' (EIF) in various hypothetical configurations. Emergence Inducing Factors are

elements built into the inputs of a system or components of the system itself that are

'believed' to push it into Emergent Behaviour. The factors are chosen on various criteria

and relate to the system model under scrutiny. In the case of this work the factor was

perceived to be of value based on the effect it has on system instability.

After much consideration, the inducing factor was chosen to be a self-replicating Active

ApplicationlPacket that would replicate Active streams and span the network. Initial

assessments of the replicating scheme indicated that it would push the system into an

unstable state. However, subsequent experiments have shown that there are several

factors present within the system that would control the replication and thereby indicate

the presence of Emergence. Details of this are described in chapter 7, section 7.3.

In a simulation run the replication scenario was left to dominate resource usage at each

node and analysed for potential effects on itself and other network traffic. The

replication test cases were each modified to contain variations in the number of

replication packets injected into the network, the direction taken across the lattice node

structure and the amount of resources utilised at each encountered Active Node. These

results were compared with simulations that did not possess the Emergence Inducing

Factor. The entire process of suitability testing was iterative and was repeated for each

of the probable detection techniques mentioned in section 6.l.3 in order to visually

detect any interesting features.

The data analysed, in order to determine the presence of any anomalous characteristic, is

the resource utilisation of all the Active Nodes under simulation. The resource

utilisation statistic is a key component of this research for two reasons:

• Node resources invariably function as the enabler for all Active processes

103

Emergence in Active Networks Chapter 6: Detection of Emergence

• Resource utilisation statistics provide an abstract view of network perfonnance and

Active Network functionality.

104

EmeIgence in Active Networks Chapter 6: Detection of EmeIgence

6.3 Self-Similarity

Of the pattern recognition techniques reviewed/tested only the discovery of Self­

Similarity within the data proved to be of significance in isolating Emergent

Behavioural patterns. The Self-Similarity macro, developed through MATLAB

(Appendix i), was able to isolate an Emergent characteristic within the replicating

packet scheme that would otherwise have been hidden. The author has termed this

Emergent Behaviour as a "Cascading Effect" in resource utilisation - a replicating

phenomenon that, once formed within the Active nodes, continues to sustain itself

through feedback. The phenomenon is detected empirically and is used as a starting

point for the comprehension of the causes of this particular Emergent Property.

The Self-Similarity measurements of the data were established by calculating the Hurst

parameter (a well-known estimator of Self-Similarity). There are several techniques

present in mathematical literature designed to estimate the Hurst value of a data set. This

research project used the classical RlS statistic [LeI94] to calculate the Hurst values of

the resource usage fluctuations for each of the Active Nodes - each Petri Net simulation

of the Active Network (Figure 4.2.a) produces an output matrix with 25 columns (one

for each Active node) each containing resource usage values for 500 time steps. The

columns were individually analysed for Self-Similarity using the RlS statistic (i.e. Hurst

values calculated).

6.3.1 Calculation of the Hurst parameter - Rescaled Ranee statistic (RfS statistic)

"The RlS statistic is the range of partial sums of deviations of a time series from its

mean, rescaled by its Standard Deviation" [Naw95]. This statement is best explained

through the following derivation and through the MATLAB algorithm in Appendix i.

For a given set of observations taken from the original trace; X,, X 2' X 3' X n for n

periods with a sample Mean of Xn and a sample Standard Deviation of S(n), the

classic Rescaled Range Statistic will be:

R(n)/ =-I-fmax ±(X-X)
/S(n) S(n) I<k<n j;1 J n

mID
l<k<n

105

Emergence in Active NetwoIks Chapter 6: Detection of Emergence

Hurst found the following simple relationship represented the 'expectation' of the RlS

stati sti c val ue well:

8·[R(nl/ J=anH as n~oo ---[2]
/S(n)

Where a is a constant and H is the Hurst parameter/value [LeI94].

By sequentially varying the n sample number (also referred to as the sample size), one

can calculate a corresponding RlS statistic. The following transformation is performed,

on the above equation, prior to the estimation of the Hurst parameter:

By plotting the log of the RlS value against the log of n, and estimating the slope of the

relationship via regression analysis, one can obtain the H value for a particular trace.

Self-similar or persistent behaviour is generally characterised by a Hurst value in the

range of 0.5 < H <= 1. Non-persistent behaviour is characterised by a Hurst value in the

range of 0 < H <= 0.5 [Naw95].

A confidence level for the regression estimate was also generated through a measure of

"goodness-of-fit of linear regression" (which is denoted by r'). The value of r' ranges

between 0.0 and 1.0, and is a fraction-measure of the goodness-of-fit. It has no units. An

r' value of 0.0 equates to a random variation of the y values in relation to the x values

(i.e. the scatter plot values do not fit the regression line at all and there is no confidence

in the prediction ofy values based on x values and the regression line). In this case the

'best-fit' regression line is a horizontal line drawn through the mean of the y values. An

r' value of 1.0 equates to a scatter plot where all the point lie precisely on a straight line

with zero residual error (i.e. there is 100% confidence in the prediction of y values based

on x values and the regression line) (Figure 6.3.1.a) [Mot03].

106

Emergence in Active Networks

r=o.o
•

. -.. -.--. ·"IA •
•

r2= 0.5

~::-.
• • • -.
•

Chapter 6: Detection of Emergence

Figure 6.3.1.a: Examples of varying goodness-of-fitvalues (r2)for regression lines

r2=1_ SS,.. ---[4]
SSIoI

where

N • 2

Ss,..=L (Yi-Y i) ---[5]
i=1

and
N

SStot= L (Yi- y)2 ---[6]
;=1

i = 1,2,3, N represents the x-axis points (i.e. log of sample size n), of the range of

coordinates taken to calculate the regression line.

Yi is the actual log value RlS statistic calculated value for the x-axis point i.

y'i is the regression line estimate of the x-axis point i.

y is the mean of actual log values of the RlS statistic (Yi) of the range of coordinates

taken to calculate the regression line. The MA TLAB algorithm for the r analysis is

presented in Appendix i.

The RS statistic is benchmarked by calculating Hurst parameters for traces where the

Self-Similarity is evident. The Vonkoch curve [MATb] is a prime candidate for a high

Hurst value. In contrast, a randomly generated trace will generate a low Hurst value

(Figure 6.3.l.b. Figure 6.3.l.c. Figure 6.3.l.d, Figure 6.3.l.e).

\07

Emergence in Active Networks 0Iapter 6: Detection of Emergence

0.018

0.016

0.014

0.012

0.Q1

Y
0.008

0.006

0.004

0.002

50 100 150 200 250 300 350 400 450 500
X

Figure 6.3.1.b: The Vonlwch self-similar curve

108

Emergence in Active Networks

4

2

0

-2

-4

" U; - -e
.E-
a:
C; -e
.S!

-10

-12

-14

-16
0

linear regression line with gradient of 1.0519

o CL.
0.5 1.5

log(n)

,
2

Chapter 6: Detection of Emergence

2.5 3

Figure 6.3.1.c: RlS statistic plotfor the Vonkoch curve. Hurst value = 1.0519

109

Emergence in Active Networks Chapter 6: Detection of Emergence

3

2

y

o

-,

-2

-3 0 50 '00 150 200 250 300 350 400 450 500

X

Figure 6.3.1.d: Random trace

110

Emergence in Active Networks Chapter 6: Detection of Emergence

" Ui -'2
if
Ci
.2

2

0

-2

-4

~

~

-10

-12

-14

~",,,
1 __ C:--rlOc-OO~O"'0O1e~ o

linear regression line with gradient of 0.5154

IQ

-160~----~~----~------~~----~~----~~----~3
0.5 1.5 2 2.5

I09(n)

Figure 6.3.1.e: RlS statistic plotfor the random trace. HUTst value = 0.5154

III

Emetgence in Active Networks Chapter 6: Detection of Emetgence

~ Approximation and Stability of the RlS statistic

The RlS calculations do not produce traces that are linear in an ideal sense and can be

segmented into two distinct sections (Figure 6.3.1.c and Figure 6.3.1.e). The left most

section (containing low and negative RlS values) reflects the peculiarity of the RlS

calculation whereby the initial samples of the original trace are too few (i.e. a small n

value) to make an accurate estimation (equation [1]) [LeI94].Coupled with this the fact

that there is an initial 'transient'/startup phase within the Active network where the node

resources are under-utilised; it leads to a situation where the RlS statistic values

contribute little to the overall Hurst value calculation. The length of this 'low-RlS value'

section (i.e. number of data points) will vary from node to node. In particular, the

'transient' phase is evident in scenarios that have been scrutinised and classified as

Emergent by this work (i.e. during a 'transient' phase Active Replication Packets are in

the process of stabilising resource usage to patterns that are self-similar - see

proceeding section. It is possible that the initial samples of the RlS calculation, per

Active Node, will reflect this factor by taking low values. It is also possible that the

length of the 'low-RlS value' section, per Active Node, will also reflect the number of

simulation time steps taken to stabilise and dominate resource utilisation). However

whilst notable, the author has deliberately discounted the 'low-RlS value' section from

further analysis.

The Hurst parameter may be subject to errors when calculated through regressIOn

analysis, as there is a possibility of the coefficients being biased by autocorrelation

[Naw95]. Furthermore, graphical RlS analysis (regression analysis) is not accurate

enough to calculate the Hurst value to 4 decimal places. Equation [2] notes that the

relationship holds when n -Hrc) . Therefore any sample size (n) with a finite upper bound

would result in an approximation of the Hurst value.

As a result of autocorrelation, errors in graphical regression analysis and a finite sample

number, the Hurst value is sometimes seen to rise above 1 (its theoretical limit).

However, the author believes that these factors do not affect the validity of the results.

The RlS calculation with regression analysis is a robust method used to determine

whether Self-Similarity is supported by the data; subsequently used to calculate an

empirical 'estimate' of the Hurst value. The analysis is formed on this premise and

112

Emergence in Active Networks Chapter 6: Detection of Emergence

focuses on nodes displaying a Hurst value above 0.9, which in turn, has proved to be an

'indicator' for the presence of Cascading Effects.

In Self-Similarity and Long-Range Dependence calculations the stability of the Hurst

parameter can be subject to 'transient effects'. The calculation of the Hurst value is in

effect the regression analysis estimation of the 'rate of change' of the RlS statistic. This

rate of change estimation will inherently average out any transient changes (i.e. breaks

and discontinuities in the RlS plot), the 'significant' of which will give rise to alternative

Hurst values for the duration of the discontinuity. This may represent important

phenomena within the system processes. To neglect these phenomena is to exclude a

section of information that might point to further Emergence within the system.

The discontinuities in the plot can also be represented as errors above and below the

linear regression line. It was noted however that the RlS calculations and regression

analysis, for the results generated by this Active Network model, showed remarkably

little error around the linear line of best fit (note: the analysis excludes the initial 'Iow­

R/S value' section as mentioned above). The r values for the linear regression lines

calculated throughout this work (chapter 6; section 6.3.1) showed high values, of which

a majority are above 0.9. This proves that the simulation scenarios developed by this

project do not give rise to transitory R/S value variations and ensures the stability of

Hurst values for Active Node resource usage fluctuations.

The lack of transitory effects can be linked to the particular simulation configuration

used in this project. As mentioned in chapter 4; section 4.3.14, the inputs to the network

simulation consisted of a 'single shot' of Active Packets! Applications that were allowed

to traverse the network and interact with each other through the competition for

resources. Any persistent structure that manifested within the simulation is solely caused

by the 'single shot' of input packets. Similarly the lack of persistent data patterns within

node resources was also unaffected due to the non-continuous nature of the input

scenario. This has a positive effect on the accuracy of the linear regression analysis by

eliminating any potential transitory changes in the RlS values, thereby giving an

accurate and stable Hurst value for each Active Node.

As a result of this analysis the author has concluded the following:

113

Emergence in Active Networl<s Chapter 6: Detection of Emergence

• The contribution of the 'single shot' input scenario to Self-Similarity in resource

usage is unique and interdependent.

• A clear 'cause and effect' relationship can be identified between the simulation

inputs and Self-Similarity.

• The estimation of the Hurst parameter is made accurate by the input conditions.

~ Cascading Effects and Self-Similarity

The detection process for Cascading Effects is linked to the network exhibiting high

levels of Self-Similarity (i.e. with Hurst values above 0.9). This result was discovered

when the network was forced into a potentially 'uncontrolled' state whereby an Active

Packet was injected (along with a representative sample of non-replicating Active

packets), which replicated itself at every Active Node it encountered that had adequate

resources (Figure S.S.6.b). If it could not find adequate resources (due to other packets

streams taking up resources or other replicating packets of the original taking up

resources), it would progress onto the 'next hop' node (and so on until it encountered a

node with adequate resources to process or an end-station). Because of replication the

original direction may 'span' into multiple directions as the simulation progresses.

The result of this type of replication is the specific fluctuations, of resource usage,

cascading throughout the network. The post simulation analysis of one type of resource

(MEMORY usage), per Active node, indicated a high degree of Self-Similarity (i.e. a

Hurst value of above 0.9) in a number of nodes.

The threshold value of 0.9 was based on the empirical evaluations of several

predetermined simulation scenarios. The iterative process used in section 6.2 was reused

in order to arrive at this value. This process is diagrammatically represented in Figure

6.3.3.a.

114

EmeIgence in Active NetwOIks

Inputs with an
Emergence Inducing

Factor (ElF)

Chapter 6: Detection of EmeIgence

Inputs without an
Emergence Inducing

Factor (ElF)

Sirrulations

Compare r~-j~ Vary inputs
results with ElF

Threshold value
defined

Iterative
process

Figure 6. 3. 3.a: Process ojexperimentation and the definition ojthe

"Cascading Effect" threshold ojO.9

As a consequence of the investigation into Self-Similarity, it was possible to link the

two phenomena; levels of fluctuation of resource usage to levels of Self-Similarity

within the nodes. A positive relationship was also formed from the number of nodes

displaying Self-Similarity (above 0.9) and the effects of the cascade within the network.

115

Emergence in Active Networks Chapter 6: Detection of Emergence

6.4 Summary

This chapter describes the process by which the techniques for the detection of

Emergence were discovered, selected and developed for the existing Petri Net model of

an Active Network.

As can be seen from this chapter much of the thought process for the selection of a

suitable technique was based on its ability to handle simple, discrete event-driven

systems and their results. Thus some of the reviewed techniques were discounted as

being useful (individually), even though they provided elegant solutions to the detection

of anomalous behaviour and Emergence. The 3 broad methodologies mentioned in this

chapter (Emergence as the loss of complexity in a system, Emergence through the

measure of self organisation and Emergence as patterns in a system) have, however,

similar cross-technological concepts such as:

• Resource usage is an indicator of anomalous behaviour

• Self-organisation is a loss of complexity

• Loss of complexity can be visualised as the formation of patterns

• Emergence is a particular subset of patterns (i.e. anomalous and unexpected

patterns)

Therefore these concepts were useful in strengthening the case for the selected detection

technique.

It was concluded that Emergent Behaviour could be isolated simply through the

detection of patterns in the data produced by the Active Network model. The subsequent

research effort was then focused on pattern detection algorithms (e.g. cross-correlation)

and techniques to re-structure and visualise data (e.g. Image enhancement, Fourier and

Wavelet analysis).

This chapter has described the development of a suitability test that was used in the

assessment of the reviewed methods. The strategy was based on the premise that the

inclusion of an Emergence Inducing Factor in Petri-Net simulations and the use of the

generated results, as an input to a potential detection process, provides a means of

assessing suitability. Therefore the experimentation of all pattern detection techniques

was conducted concurrently using the same input data in accordance with the pre-

\16

EmeIgeDCe in Active Networks Chapter 6: Detection of Emergence

developed strategy. Each experiment was analysed for effectiveness based on the clarity

of results and the ability to identity anomalous behaviour (Emergent or otherwise).

The development of algorithms for the experiments was achieved entirely through

MATLAB, which contained many of the required mathematical functions and tools as

single pre-built commands.

The Fourier and Wavelet analyses for these experiments did not provide readily

distinguishable Emergence metrics for examination (i.e. detected no

significant/distinctive changes in the simulation output results when presented with 2

significantly varied input data sets - one input set was perceived to have high probability

of causing Emergence whilst the other was perceived to be relatively safe and

'Emergence free'). Image enhancement and edge-detection techniques provided no

visual improvements to the output data from the Petri Net simulations. Cross-correlation

results lacked clarity and provided no indication of having 'picked up' any patterns in

the output data sets. However, it is worth noting that the model may well hold a

collection of Emergence Inducing Factors, which results in a varied set of Emergent

Behaviour within the system. As a result one cannot totally discount the above­

mentioned techniques in detecting new phenomena.

This chapter describes in detail the development process of the Self-Similarity

algorithm. It also highlights the potential of obtaining definitive results, in the detection

of an Emergent Behaviour, through this method (a behaviour that could not have been

foreseen or detected by any of the other techniques reviewed).

Self-Similarity is measured through the Hurst parameter and whilst there are many

mathematical algorithms developed to calculate the Hurst value, including Wavelets,

only the RlS technique was suitable for the data produced by the Active Network model.

This chapter also gives definition to the detected Emergent Behaviour (i.e. a Cascading

Effect) including its identitying characteristics.

The proceeding chapter follows on to provide a more results-oriented case analysis of

the Cascading Effect It is worth noting that the results analysis and Emergence

definition are part of a collective body of experimentation performed using the Petri-Net

modellsimulations and the RlS statistic algorithm (according to the process flow

described in Figure 6.3.3.a).

117

CHAPTER 7
RESULTS

EmeIgence in Active Networks Chapter 7: Results

L Results

This chapter will present:

• Simulation results presented in terms of Case Studies.

• Simulation scenarios developed using Controlled and Random Inputs.

• The identification of the "Cascading Effect" within the results.

• The identification of a secondary Emergent Behaviour

• The identification ofroot causes of the "Cascading Effect".

• The proposal that the presence of a "Cascading Effect" is Emergence within the

network.

The key concepts in this chapter are: the "Cascading Effect", secondary Emergence, case

studies, 0.9 Hurst value threshold, i' "goodness-of-fit" value for regression analysis

118

EmeIgence in Active NetwOlks Chapter 7: Results

7.1 Overview

The basic modelling concepts developed throughout this work have provided a high­

level abstract definition of an Active Network. The Petri Net simulation process

developed these models as workable diagrams that produced time-step data of resource

usage in all Active Nodes within the network (a 2S-node network with lattice type

interconnections). This time-step data was used as an input to the Emergence analysis

process. The intermediate results produced by the simulations are themselves abstract

and suit the high-level Emergence analysis.

As a part of the simple derivation of Active Networks several modelling and simulation

considerations were made. These modelling considerations are mentioned in chapter 4;

section 4.3. In addition to these considerations several key points are highlighted as

being relevant, during the simulation process, in order to arrive at a specific output

resource usage map:

• As inputs, each end-station produces one Active Packet per simulation run. This

Active Packet was redefined, for the purpose of this project, to represent an entire

Active Application stream, its functionality and payload. Thus, with reference to the

lattice structure model of an Active Network, the Petri Net simulator would inject 20

Active Packets/Applications into the core network per simulation run (Figure 4.2.a

and Figure S.S.2.a). This resulted in a 'single shot' simulation of Active

Applications and their interactions. The 'single shot' simulation scenario was

deemed prudent and in keeping with the abstract nature of the Active Network

model. It provided a sufficiently simplified view of Active Packet interactions and

network state at any given time step. This followed on to the use of a simplified

Emergence detection process using Self-Similarity.

• The input into the simulator was a text file that contains 20 entries specifying Active

Packet! Applications that would be injected into the core of the network (Figure

S.S.2.b). This file can be generated randomly or manually; specifying, in particular,

the directions taken across the network by the packets, amount of resources

consumed and the forwarding mechanisms (linked to packet type). Manual

generation of the input text file was tightly controlled to incorporate an Emergence

Jl9

EmeJgCIlCe in Active Networks Chapter 7: Results

Inducing Factor. This was, in part, previously used for the experimentation and

suitability testing of potential Emergence detection techniques as described in

chapter 6; section 6.2.

• The automated random generation of the input text file was used to add levels of

uncertainty and unpredictability into simulation runs and thereby produce results that

were credible under abstract modelling conditions.

• The simulation output results that were analysed for Emergence were the node

MEMORY resource usage statistics in percentage terms.

• Each simulation run was 500 time-steps and the resulting output log consists of a

25-column by 500-row matrix of integers (of MEMORY resource usage).

• The Self-Similarity calculation (RIS statistic) was for each Active Node per

simulation run and therefore used a column wise calculation/decomposition of the

above matrix.

120

Emergence in Active Networks Chapter 7: Results

7.2 Results: Case Study Analysis

This work presents the observation and analysis of results as case studies that primarily

include the Hurst parameter values of' Active Node resource usage fluctuations' within

an Active Network simulation. Case study I, case study 2, case study 3 and case study 4

were obtained from simulation runs made using manually specified input source files.

Subsequent case studies were obtained using randomly generated input source files.

The first 4 case studies were designed to specifically highlight the "Cascading Effect"

with tightly controlled input variables. The case studies showed the changes in the

"Cascading Effect" (i.e. the presence or absence of it) when subject to changes in

specific input variables in one source input of a simulation - From the analysis in

chapter 6, this work had initially identified an "Emergence Inducing Factor" in the form

of a self-replicating Active Packet/Application. This packet was included in the source

input file (Figure S.S.2.b), as one source input, for the simulation runs that produced the

graphs shown in the first 3 case studies below. Case study 4 was a control experiment

where the Active Replication scheme was not included. Thus, the self-replication Active

Packet/Application was subject to input variable changes in the first 3 experiments. This

allowed the simulations to adjust the effects of the replication on the network and

thereby vary the effects of the "Cascading Effect".

The first 4 case studies provided a foundation for the analysis of subsequent simulation

produced with randomly generated input sources. This foundation provided a

behavioural template for the Hurst parameter and the "Cascading Effect" with a reduced

set of variations in input criteria. The use of randomly generated sources will increase

the levels of variation and unpredictability. However, a template of expected behaviour

will provide focus for the analysis in order to detect "Cascading Effects".

121

Emergence in Active Networks Chapter 7: Results

7.2.1 Case Study 1

With reference to Figure 4.2.a and Figure S.5.2.a, the input source file (table below) for

this case study was constructed in order to inject a self-replicating Active Packet into

Active Node AS (SRC_AS) that took an initial direction from Node AS to El (Figure

S.5.2.c). This replication was directed into the core of network and spanned based on the

scheme described in chapter S (Figure S.S.6.b). The replicating packets consumed, for

the duration of the process, 20"10 of MEMORY resources, 20"10 of PROCESSOR

resources and 20"10 of BUFFER resources from each Active Node it encountered and

had adequate resources.

Other inputs within the source file were designed not to contain any form of replication.

Therefore the Emergence of the "Cascading Effect" was singularly linked to the self­

replication scenario (i.e. the Emergence Inducing Factor). The Hurst (self-similarity)

values and the r confidence values for this case study are shown in the following graph:

120
........ Hurs!wlue

R2 wlue

1.10 - 0.9lhreshold

1.00

! 0.90

~ 0.80 -;
0.70 :z:

0.60

0.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25

Trace 110.

Figure 7.2.1.a: Case Study 1: Hurst analysis of Active Network

122

EmeIgence in Active NetwOIks Chapter 7: Resnlts

Input soun:e me for the Case Study 1 simulation

End-station no End-Station name Input packet
0 SRC AI 1'(243 50,M,20 10 10 10 15)
I SRC AIAI 1'(243 50,M,20 10 10 10 15)
2 SRC BI 1'(255 50M20 10,10 IG,15t
3 SRC Cl '(6,5 5 1 F 30 30 300 0)
4 SRC D1 1'(655 1.F,30 30 3000)
5 SRC El 1'(267 50,M,20 10 10 10 15)
6 SRC EIEI 1'(655 I F 30 30 3000)
7 SRC E2 1'(677 I F 30 30 300 OL
8 SRC E3 1'(677 IF 30 30 300 0)
9 SRC E4 1'(677 I F 30 30 3000)
10 SRC E5 1'(687 50.F,6O 60 60 30 5)
11 SRC ESES 1'(611IF30303000)
12 SRC D5 1'(6111F30303000t
13 SRC C5 1'(6 I I I F 30 30 300 OL
14 SRC B5 I '(10 I I 50.F,6O 60 60 00)
15 SRC A5 1'(821 I,R20 20 2000)
16 SRC ASA5 1'(63 3 IF 30 30 3000)
17 SRC A4 1'(63 3 I F 30 30 30 0 0)
18 SRC A3 1'(633 1.F,30 30 300 0),
19 SRC A2 1'(6 3 3 I,F 30 30,3000)

With reference to Figure 7.2.1.a 40% of the Active Nodes showed significantly high

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the

0.9 threshold). The main observation of this work is that a "Cascading Effect" was

present within this simulation instance of the network.

The r "goodness-of-fit" data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.

123

Emergence in Active Networks Chapter 7: Results

7.2.2 Case Study 2

With reference to Figure 4.2.a and Figure S.5.2.a, the input source file (table below) for

this case study was constructed in order to inject a self-replicating Active Packet into

Active Node AS (SRC_AS) that took an initial direction from Node AS to El (Figure

S.S.2.c). This replication was directed into the core of network and spanned based on the

scheme described in chapter 5 (Figure S.S.6.b). The replicating packets consumed, for

the duration of the process, 60"10 of MEMORY resources, 60"10 of PROCESSOR

resources and 60"10 of BUFFER resources from each Active Node it encountered that

had adequate resources.

Compared with Case Study I the only variables changed were the MEMORY,

PROCESSING and BUFFER resource values for the Active Replication Packet.

Other inputs within the source file were designed not to contain any form of replication.

Therefore the Emergence of the "Cascading Effecf' (or the lack of it) was singularly

linked to the self-replication scenario (Le. the Emergence Inducing Factor). The Hurst

(self-similarity) values and the r confidence values for this case study are shown in the

following graph:

1.20
~Hurstwlue

R2value

1.10 - 0.9 Threshold

1.00

J o.9o 1----------- ----. -------
:: _ 0.80 +---~~------1 .. - ----...---------------1
;
:z: 0.70 'f1--.r--~~-___jL-~_t\7--i1r---_,..;;;:::&:;;~

0.60 -j--------'l--__a--T-,/----lo#-- -\-----+------i

O~O +_-----~~--------~~~---~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25

Trace no.

Figure 7.2.2.a: Case Study 2: Hurst analysis of Active Network

124

Emergence in Active Networks Chapter 7: Results

Input source file for the Case Study 2 simulation

End-station no End-Station name Input packet

0 SRC AI 1'(243 SO.M20 10 10 10 IS)
I SRC AIAI 1"(243 SO.M20 10 10 10 IS)
2 SRC BI 1'(2 S S SO.M20 10 10 10 IS)
3 SRC Cl 1'(6 S 5 1,F,30 30 30 0 0)
4 SRC Dl 1'(65 S 1,F,30 30 3000)
5 SRC El 1'(267 SO,~20 10 10 10 IS)
6 SRC EIEI 1'(6 S 5 I,F 30 30 3000)
7 SRC E2 1'(677 1,F,30 30 3000)
8 SRC E3 1'(677 1,F,30 30 3000)
9 SRC E4 1'(677 1,F,30 30 3000)
10 SRC E5 1'(687 SOF6O 60 60 30 5)
11 SRC E5ES 1'(611 LF.30303000)
12 SRC D5 1'(6 I 1 1.F,30 30 3000)
13 SRC CS 1'(61 I IF30303000)
14 SRC BS 1'(10 II 50 F 60 60 6000)
15 SRC AS 1'(8 I I 1,R,6O 60 60 0 0)
16 SRC ASA5 1'(633 1,F,30 30 3000)
17 SRC A4 1'(63 3 1.F,30 30 3000)
18 SRC A3 1'(633 1.F,30 30 3000)
19 SRC A2 1'(633 1.F,30 303000)

With reference to Figure 7.2.2.a none of the Active Nodes showed significantly high

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the

0.9 threshold). The main observation of this work is that there wasn't a "Cascading

Effect" present within this simulation instance ofthe network.

The r2 "goodness-of-fit" data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.

125

Emergence in Active Netwod<s Chapter 7: Results

7.2.3 Case Study 3

With reference to Figure 4.2.a and Figure 5.5.2.3, the input source file (table below) for

this case study was constructed in order to inject a self-replicating Active Packet into

Active Node A4 (SRC -.A4) that took an initial direction from Node A4 to B5 (Figure

5.5.2.c). This replication was directed away from the centre of the netwOIk and

spanned based on the scheme described in chapter 5 (Figure 5.5.6.b). The replicating

packets consumed, for the duration of the process, 20"10 of MEMORY resources, 20% of

PROCESSOR resources and 20"10 of BUFFER resources from each Active Node it

encountered that had adequate resources.

Compared with Case Study I the only element changed in the simulation was the initial

input point (Node) and the direction of the Replication Packet.

Other inputs within the source file were designed not to contain any form of replication.

Therefore the Emergence of the "Cascading Effect" was singularly linked to the self­

replication scenario (i.e. the Emergence Inducing Factor). The Hurst (self-similarity)

values and the r confidence values for this case study are shown in the following graph:

1.20 ,--_________________ -j Hurst\/BIUe

R2 \/Blue

1.10 +-----------------------1- 0.9Threshold

1.00

!0.90 ..
:: 0.80

~
% 0.70

0.60

0.50

OAO

. _-...... i / \ ~
~

...- \ 1 ? ,

V
.,

I

V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Trace no.

Figure 7.2.3.a: Case Study 3: Hurst analysis of Active Network

126

EmeIgence in Active NetwOlks Cbapter 7: Results

Input source file for the Case Study 3 simulation

End-station no End-Station name Input packet
0 SRC AI 1'(243 50,M,20 10 10 10 15)
I SRC AIAI 1'(243 50,M,20 10 10 10 15)
2 SRC BI 1'(255 50 M 20 10 10 10 15)
3 SRC Cl 1'(65 5 LF.30 30 3000)
4 SRC 01 1'(655 LF,30 30 3000)
5 SRC El 1'(267 50,M,20 10 10 10 15)
6 SRC EIEI 1'(6 5 5 1,F,30 30 300 0)
7 SRC E2 1'(677 1,F,30 30 3000)
8 SRC E3 1'(677 1,F,30 30 30 0 0)
9 SRC E4 1'(677 1..F,30 30 30 0 0)
10 SRC E5 1'(687 50F 6060 60 30 5t
11 SRC E5E5 I '(6 I I 1,F,30 30 3000)
12 SRC 05 I '(6 I I 1..F,30 30 3000)
13 SRC C5 1'(6 I I 1,F,30 30 3000)
14 SRC 85 1'(101150 F60606000)
15 SRC AS 1'(633 1,1',30303000)
16 SRC ASAS 1'(633 1,F,30 30 3000)
17 SRC A4 1'(843 1,R,20 20 20 0 0)
18 SRC A3 1'(6 3 3 1,F,30 30 300 0)
19 SRC A2 1'(63 3 1,F,30 30 30 0 0)

With reference to Figure 7.2.3.a 40% of the Active Nodes showed significantly high

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the

0.9 threshold). The main observation of this work is that a "Cascading Effect" was

present within this simulation instance of the network.

The r "goodness-of-fit" data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the HUTst value calculations for this simulation.

127

Emergence in Active Networks Chapter 7: Results

7.2.4 Case Study 4

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (table below) for

this case study was constructed as a control experiment that did not contained any self­

replicating Active Packets.

Compared with Case Study 1 the only element changed in the simnlation is the lack of

Active Replication packet. The Hurst (self-similarity) values and the r confidence

values for this case study are shown in the following graph:

1.20 I HulSh8lue I
1.10 +--------------------l-~::ShOI~

______ :J
1.00 - - -- --- -_. ----

J 0.90 +--..... I:----------I~~-~_F_----'T_---__f ..
> O~O +-~~-~--~_\-~~-~~-iL---+__.~_.~ ;
% 0.70 1J--------'~--...... '-----__4II~----_+__+---' ___l

0.60 -j-----------------------4IJ------j

0~0 +_-----------------------__4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22 23 24 25

Trace no.

Figure 7.2.4.a: Case Study 4: Hurst (lJI(llysis of Active Network

128

Emergence in Active Networks Chapter 7: Results

Input source me for tbe Case Study 4 simulation

End-station no End-Station name Input packet
0 SRC AI 1'(243 50,M20 10 10 10 I~
I SRC AIAI 1'(243 50,M20 10 10 10 15)
2 SRC BI 1'(255 50,M,20 10 10 10 15)
3 SRC Cl 1'(6 5 5 50 F 30 30 30 0 0)
4 SRC DI 1'(655 50F 60 6060 00)
5 SRC El 1'(267 50,M,20 10 10 10 15)
6 SRC ElEl)'(6 5 5 50 F 30 30 30 0 0)
7 SRC E2 1'(677 SOF 3030 3000)
8 SRC E3 1'(67750 C 30 30 30 0 0)
9 SRC E4 1'(677 50F 30 30 3000)
10 SRC E5 1'(687 SO F 60 60 60 30 5)
11 SRC E5E5 1'(61150F30303000)
12 SRC D5)'(61150F30303000)
13 SRC C5 1'(61ISOF30303000)
14 SRC B5 1'(I01ISOF60606000)
15 SRC AS 1'(6 1150F 30 30 30 00)
16 SRC ASA5 1'(6 3 3 50 F 30 30 30 0 0)
17 SRC A4 1'(63350 C 30 30 30 0 0)
18 SRC A3 1'(63350 F 30 30 30 0 0)
19 SRC A2 1'(6 3 3 SO F 30 30,30 0,0)

With reference Figure 7.2.4.a to only 12% of the Active Nodes showed significantly

high levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values

above the 0.9 threshold). The main observation of this work is that there wasn't a

"Cascading Effect" present witbin this simulation instance of the network.

The r "goodness-of-fit" data for the simulation showed significantly high values for al\

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.

129

EmeJgence in Active NetwOIks Chapter 7: Results

7.2.5 Case Study 5

With reference to Figure 4.2.a and Figure S.S.2.a, the input source file (second table

below) for this case study was randomly generated with several self-replicating Active

Packets that were injected into Active Nodes Bl (SRC_Bl), E4 (SRC_E4), ES

(SRC_ES) and DS (SRC_DS) (Figure S.S.2.c).

The details of the initial directions, the resource usage requirement and the MEMORY

reservation requirement for the Active Replication Packets! Applications are as follows:

Source Injected Initial Memory Processor Buffer Memory

Node Spanning Resource Resource Resource Reservation and

Direction requirement requirement requirement TIme limit
SRC_BI BI BI to A2 85% 66% 61% 47% for 18 time

steps
SRC_E4 E4 E4toA4 79"10 24% 55% 0%

SRC_E5 E5 E5 to Al 60% 55% 36% 49"/0 for 13 time

steos
SRC_D5 D5 D5 to CS 27% 58% 3% 13% for 40 time

steps

Not all of the replications were directed into the core of the network. However, all

replications spanned based on the scheme described in chapter S (Figure S.S.6.b). The

replicating packets consumed, for the duration of the process, the above-mentioned

MEMORY, PROCESSOR and BUFFER resource values from each Active Node it

encountered that had adequate resources.

Other inputs within the source file did not contain any fonn of replication. Therefore the

Emergence of the "Cascading Effect" (or the lack of it) was linked to the self-replication

scenarios (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) values and

the r confidence values for this case study are shown in the following graph:

130

Emergence in Active Networks Chapter 7: Resul13

...... Hurst IIIIlue 12o ,--------------------------------------1
R2 lllllue

1.10 .j--------------------------------------1 - 0.9 Threshold

1.00 .j------------------ --------------------------'

.5 0.90 t---A------.:---I;::;;:::---~
• > OBO +_~~~_t--~~-.F\-~~\-.. ---~--~~ __ ~_1

i :z: 0.70 '"-------.... "-------=---..... ~-------\--+_------'---___1

0.60 .j--------------------------lrlf--------___1

O~O +_---------------------------~------------~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Trace no.

Figure 7.2.5.a: Case Study 5: Hurst analysis of Active Network

Input source file for the Case Study 5 simulation

End-station no End-8tatioa n._ Input pacl<et

0 SRC AI 1'(48 71,M,30 10 10,20 IS)
I SRC AIAI t'(2.2.3 I M.20,IO 10 10 IS)
2 SRC BI t'(13 6.5.4.R.85 66 61 47 18)
3 SRC Cl 1'(10 4.5.45.F.51.97 41.378)
4 SRC 01 ' (243 1.M.20 10 10 10 15)
5 SRC El ' (146.5,21 C 67 1293,25,16)
6 SRC EIEI 1' (1267 48.F,72,2,6 0,23)
7 SRC E2 1' (97 7.26.C.79 40 85 63 ~ .

8 SRC E3 1' (14.2.3.8 C 94 89 19 1430)
9 SRC E4 1' (1277 1.R.79.24 55 0,23)
10 SRC E5 1'(98 717.R.60 55 3649 13)
11 SRC E5E5 1' (15776 C 88.33,29 8.2)
12 SRC 05 1'(12 6.5.0.R.27 58,3 13 40)
13 SRC C5 1'(7.3,3,28 C31 777216,24)
14 SRC B5 1' (4 I I 1..M,30 10 10,20 15)
15 SRC AS 1' (7.3.3.28 C 45.25 71.23 49)
16 SRC ASA5 1' (127 7.26.F.28 73,41448)
17 SRC A4 1' (3.5.5 1.M,20,20,20 0 0)
18 SRC A3 1'(465 1.M.30 10 10,20 15)
19 SRC A2 l'(2,8,7 1.M,20 10 10 10 15)

131

EmeIgence in Active Networks Chapter 7: Results

With reference to Figure 7.2.5.a none of the Active Nodes showed significantly high

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the

0.9 threshold). The main observation of this work is that there wasn't a "Cascading

Effect" present within this simulation instance of the network.

The i' "goodness-of-fit" data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.

132

Emergence in Active Networks Chapter 7: Results

7.2.6 Case Study 6

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (second table

below) for this case study was randomly generated with several self-replicating Active

Packets that were injected into Active Nodes E4 (SRC_E4), AS (SRC_AS) and A3

(SRC_A3) (Figure 5.5.2.c).

The details of the initial directions, the resource usage requirement and the Memory

reservation requirement for the Active Replication Packets! Applications are as follows:

Source Injeeted InitIal Memory Processor Buffer Memory

Node Spanning Resource Resource Resource Reservation and

DIreetIon requirement requirement ' requirement ThneLlmlt
SRC_E4 E4 E4toDS 26% 71% 2% 26% for 21 time

steos
SRC_A AS AS to AS 43% 37"10 69"10 27% for 29 time

5 steps
SRC_A A3 A3toAS 7% 52% 98% 6% for 12 time

3 steps

None of the replications were directed into the core of the network.. However, all

replications spanned based on the scheme described in chapter 5 (Figure 5.5.6.b). The

replicating packet conswned, for the duration of the process, the above-mentioned

MEMORY, PROCESSOR and BUFFER resource values from each Active Node it

encountered that had adequate resources.

Other inputs within the source file did not contain any fonn of replication. Therefore the

Emergence of the "Cascading Effect" (or the lack of it) was linked to the self-replication

scenarios (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) values and

the r confidence values for this case study are shown in the following graph:

133

Emelgeuce in Active Networks Chapter 7: Results

I ~Hurahalu. I
120 ~ I

::: +1-~=~---------------___1 ~::T'
! 0.90 -1-...3000:
ii
> 0~0 +--_4~~~~~-~~~--;
:z: 0.70 +------------\-_1----I~-.... ---.....,::r

0£0 +------------.. ~---~_1~---___1

050 +------------------~----~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25

Trace no.

Figure 7.2.6.a: Case Study 6: Hurst (lIIQ/ysis of Active Network

Iaput lOurce file for the Cue Study 6.lmulation

End-ctadon no Ead-Statioe name Iaput packet

0 SRC AI 1'(7 I 18 C.93.38 1960 4)
I SRC AIAI I ' (I I I I.MIO 10 10 0 0)
2 SRC BI I '(I5.3.3's.C 86.31,2505.0) -
3 SRC Cl 1' (4,2.1 1.M.30.10 10,20 15)
4 SRC 01 1'(7,3,3.11 C48.94,24,9,32)
5 SRC El 1'(5,2,3.1.M.4O 40 40,25.10)
6 SRC EIEI \'(11 I I 17.F.24's,0 11 13)

7 SRC E2 1' (74 5 1I.F,49 44,25,10,7)
8 SRC E3 1'(6.2,3,S.C 88 83637,2)
9 SRC E4 1'(116 7,25.R.26 71,2,26,21)
10 SRC ES 1'(243 1.M,20 10 10 10 IS) _
11 SRC ESE5 1'(6,2.16 C,38 84 14,23,2)
12 SRC OS 1'(I4770,F,27,22,17,27,22)
13 SRC C5 '(IO 8 7 12.F,66.97.42.24,9)
14 SRC B5 1' (8876.F.3,8529,l.2)
15 SRC AS 1'(677 8,R43,37 69,27,29)
16 SRC ASAS 1' (5,3,3 1.M.4O 40 40,2510)
17 SRC A4 1'(565 1.M.40404O,25 10)
18 SRC A3 1' (II,S,S.41,R, 7052,98612)
19 SRC A2 1' (2 4.3.1.M.20. 10 10 10 IS) .

134

Emergence in Active Networks Chapter 7: Results

With reference to Figure 7.2.6.a 16% of the Active Nodes showed significantly high

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the

0.9 threshold). The main observation of this work is that there wasn't a "Cascading

Effect" present within this simulation instance of the network.

The r" "goodness-of-fit" data for the simulation showed moderately high values for all of

the Active Nodes (chapter 6; section 6.3.2).

135

Emergence in Active Networks Chapter 7: Results

7.3 Results Discussion

The graphical and tabulated (Appendix iv) results in the above case studies show that in

some situations the network would consist of certain Active Nodes displaying Hurst

values of above 0.9 (in resource usage fluctuations). Where this is evident in a

significant number of nodes, it has been found to indicate that Replicating Packets

were producing a "Cascading Effect".

The graphs show the Hurst values of the Active Network simulated under a variety of

input conditions.

The results show that nearly all nodes possess Hurst values that are significantly higher

than that of randomly generated traces. This may be explained by the fact that Active

Packets create deterministic resource usage in nodes as opposed to random patterns (for

which Hurst values are about 0.5). Where these high values reach above the critical

threshold of 0.9, the significance of which can be attributed to high resource fluctuations

in nodes, there are grounds for further investigations regarding the types of Active

ApplicationslPackets processed and the input scenario for the simulation.

Upon analysis of the simulation results (in the case studies), factors have been identified

that significantly affect the Replicating Active ApplicationlPacket's ability to exhibit

Self-Similarity and thus create a "Cascading Effect". These factors are:

• The amount of resources an Active Replication Packet consumes within the node

• The number of Active Replication Packets initially injected into the network

• The amount of time for which the replication packets reserve resources (as part of

the resource reservation feature of Active Networks).

If an Active Replication Packet requires a large percentage of node resources, we can

expect a situation where the initial replicating packets very quickly consume the

majority of the node resources. It is likely that replicated packets further down the

process line (requiring the same amount of resources, from each node they encounter, as

the original), will not have adequate resources to complete the Active process and pass

through the network unaffected. The "Cascading Effect" would, in this situation, be self­

limiting or fail to manifest itself. Furthermore, the Network would reach a point of

136

Emergence in Active Networks Chapter 7: Results

quasi-saturation in tenns Active capability and perfonnance. Case study 2 and case

study 5 contain examples of this effect (Figure 7.2.2.a and Figure 7.2.5.a). The

simulation in case study 2 was based on 1 Active Replication Packet being injected into

the core of the network. The replications that followed required substantial amounts of

node resources (i.e. 60% of each resource type) from each Active Node capable of

processing them. The high resource requirements led to the network reaching the above­

mentioned 'self-limiting' state. Similarly, the simulation in case study 5 held four initial

replicating packets each requiring a combination of resources with a minimum of 58%.

As a result of the high resource requirement and the number of individual Active

replications present within the systems, the "Cascading Effect" failed to manifest. This

was further compounded by the reservation of resources, for specific periods of time, by

the replication packets. Case study 6 (Figure 7.2.6.a) showed a similar result to case

study 5 (also with a randomly selected set of Active Packets/Applications as simulation

inputs).

In comparison, the simulation in case study 1 had one Active Replication

Packet/Application injected into the core that required a small amount of resources from

each Active Node in the path of replication (i.e. 20% of each resource type). As a result,

there was a significant number of Active Nodes displaying 'above 0.9' Hurst values in

resource usage. A "Cascading Effect" was present within that instance of the system.

The 'general' path of the original Active Replication Packet, injected into the network,

has no effect on the networks potential to exhibit a "Cascading Effect". It could be

assumed that when the path is directed towards the centre and/or is directed along an

edge dimension of the grid network, the number of nodes with 'above 0.9' Hurst values

will be proportionally great. Case study 1 (Figure 7.2. La) presents this case where the

initial path of the Active Replication Packet was directed towards the centre of the

network. However, it is apparent from case study 3 (Figure 7.2.3.a) that, even when the

path was directed away from the 'core', the number of affected nodes remains relatively

stable.

137

Emergence in Active Networl<s Chapter 7: Results

It is worth noting that in some instances, without the presence of any Active Replication

Packets in the network, a small number of Active Nodes will exhibit Hurst values of

above 0.9. Case study 4 shows examples of this effect (Figure 7.2.4.a). Investigations

revealed that these nodes were located in positions where they process an increased

number of Active Packet/Applications (i.e. Active Application stream concentration

points), thereby giving rise to high resource fluctuations and high Self-Similarity. For

example, in case study 4, Active Nodes C3 (trace no. 13), B3 (trace no. 18) and B2

(trace no. 19) had a high concentration of Active Applications, which increased the

amount of processing/memory handling tasks being performed (throughout the

simulation at these nodes). The nodes processed in total 7, 6 and 7 Active Applications,

respectively. This was reflected by above-O. 9 Hurst values for these nodes. In

comparison the Active Node A3 (trace no. 23) processed only 3 Active Applications for

the entire duration of the simulation run. This resulted in a relatively low Hurst value of

0.7060. This phenomenon, on its own, was interesting and can be thought of as

secondary Emergence (i.e. an additional facet of the discovered Emergence for this

model).

138

Emergence in Active Networks Chapter 7: Results

7.4 Summary

In this chapter the author has re-emphasised the modelling considerations made with

respect to the inputs/outputs of the system and the simulation. It proposes that the

simplified inputs are integral to the high-level examination of an Active Network and in

turn simplifies the process for the detection of Emergence.

The chapter also describes the structure of the input text file and the resulting output log

file for a simulation run.

The second half of this chapter describes in detail various simulation 'case studies' that

indicate the presence or absence of Emergence. The case studies are summarised as

plots, which are also the results of the Self-Similarity calculation process - each

simulation run produced one Emergence case study that consisted of 25 Hurst parameter

values derived from the time-based Self-Similarity calculations of the 25 Active Nodes

present within the system. Each case study included in the chapter provided indications

of Emergence (if present) whilst the Results Discussion section (section 7.3) described

the causal factors.

The chapter also describes the empirical process by which Emergence is identified -

defining a key detection criterion (i.e. a Hurst value above 0.9 in a significant number of

nodes). The detection criterion was established through the experimental case study

analysis process, each of which reinforced the detection to a position where the potential

Emergent outcome of the system could be 'estimated' prior to any simulation. The

process of simulating random input scenarios, which contained (and didn't contain) the

Emergence Inducing Factor of self-replication, could have been continued indefinitely.

However, it was apparent that case studies, after a certain number, added no exceptions

to the Self-Similarity process or the Emergence criterion (for "Cascading Effects"). It

was at this point that further simulations were deemed unnecessary.

139

CHAPTER 8
CONCLUSIONS AND

FUTURE WORK

Emergence in Active NetwOlks Chapter 8: Conclusions and Future Work

.8.... Conclusions and Future Work

Thi s chapter wi 11 present:

• A review of the Emergence definition and the Emergence detection criterion for the

results produced by this work.

• The identification of the generic characteristics within the detected Emergent

Behaviour.

• Further work in terms of enhancing the Active Network model.

• Further work in terms of developing alternative detection techniques

• Further work in terms of migrating the model to an entirely new methodology.

The key concepts in this chapter are: Emergence, Cellular Automata, cluster analysis,

model enhancements

140

Emergence in Active NetwOlXs Chapter 8: Conclusions and Future Work

This work has attempted to identify Emergence as a measurable quantity in a highly

connected network of 'intelligent' nodes. It has also succeeded in highlighting one

particular instance of Emergence from a technique devised for the detection of patterns

in data.

The conclusion of this work is that the Self-Similarity of resource usage

fluctuations in Active Nodes (above a certain threshold) is an Emergence, by

definition, and is a property that would not manifest/explain itself by the simple

analysis of system dynamics - Emergence detection required a specific layer of

abstraction of the network along with a specific detection algorithm.

Furthennore, it is apparent that even when self-replicating input scenarios were allowed

to affect the network in an uncontrolled manner (a situation that could be perceived as

detrimental to the network) they did not necessarily satisfy the Self-Similarity condition

for Emergence. As a result, more attention was applied to the analysis of the dynamics

of Active Replication Packets and other Active Packets. One can think of the lack of

Self-Similarity condition, in these situations, is part of the overall Emergence within the

system. This is because the phenomenon was not expected and required further

investigation.

The root causes of the self-similar Emergent Behaviour were identified as the resource

usage requirement of Active Replication Packets/Applications, the amount of time the

resources are reserved as part of Global State Maintenance and the number of Active

Replication Packets traversing across the network.

On reflection the root causes for the self-similar Emergent Behaviour seem obvious.

However, the fonnal definitions of Emergence cater for the notion of 'hindsight' - the

fact that Emergence is a behaviour that persists until a valid explanation is found, at

which point it ceases to be Emergence.

The concern of this research work is the comprehension of the underlying dynamics of

Active Networks, which would probably give rise to Emergence. Whilst this work was

successful in proving Emergence exists in the Active Network model, it has highlighted

only one particular example of Emergent Behaviour. It may be possible that the system

holds many Emergent characteristics that could be discovered through other pattern

detection techniques and algorithms. In general, there exists many types of Emergent

141

Emergence in Active NetwoIks Chapter 8: Cooclusioos and Future Work

Behaviour; some closely coupled with system under investigation (not necessarily

Active Networks related). The prime contribution of this work was to direct research

towards the analysis of resources and resource usage within the system. The author

proposes that there exists a strong link between resource usage in a distributed system

and Emergent Behaviour. A 'clue' regarding Emergent Behaviour can be obtained by

the analysis of fluctuations in resource usage - as they function as 'enablers' for the

system's processes. The resource stores also function as 'points/places of contention' for

system services thereby acting as reflectors of 'interesting' behaviour.

The modelling process accounts for the system being complex and being governed by

theories of Complexity. Thus a systematic and piecemeal approach to the model

construction had to be combined with a collective understanding of network behaviour.

The author views the resultant 'collective behaviour' as patterns in the system. The

algorithm developed to detect one type of Emergence is a step towards the

understanding of all collective behaviours in the system.

Of the Emergent characteristics described in chapter 3 it is clear that the Self-Similarity

Emergent Property is due to the creation of Positive Feedback structures (chapter 3;

section 3.1.1). It is also apparent that the Emergent Property detected by this work is

clearly linked with characteristics of Meta-balance (chapter 3; section 3.1.3) and

Resonance (chapter 3; section 3.1.6).

Further work to this research could come in the form of extending the Active Network

model in terms of additional elements, which would increase the accuracy of the model

but would also add another layer of complexity (e.g. addition of variable time delays).

An extension to the model should be able to parameterise and simulate the concept of

time (in a single step) as:

• Time taken for a packet to flow from one node to the next-hop node

• Time taken for a packet to move through the input/output queues of the current node

• Time taken for an Active Packet to be processed (code retrieval, verification,

resource allocation and execution)

Time delays will provide an extra dimension to focus onto in order to highlight potential

anomalous behaviour (i.e. Emergent Behaviour). It was decided that this research, in an

142

Emergence in Active NetwOIks Chapter 8: Conclusions and Future Work

attempt to seek a balance between the development of a manageable system model and

the analysis of an accurate/complex model, would disregard this element.

Additional techniques for the detection of Emergence, through the visualisation of

resource usage fluctuations, can also be developed. The author proposes the use of

Cluster Analysis Techniques to determine additional patterns in data that are indicative

of Emergence.

Investigations of the "Cascading Effect" Emergence can be extended by incorporating

alternate configurations of replicating schemes, increasing the number of Active Nodes

being simulated and varying the topology of the network.

It may also be possible to migrate the modelling concepts to another methodology. For

example, the author proposes the use of 'Cellular Automata', which would change the

model from a static-node to a dynamic/virtual-node structure. Initial investigations on

this concept have been positive and are described in section 8.1 .

The work done by this research can be considered as a precursor and a template for

future detailed modelling of Active Networks (i.e. the detailed modelling process would

be able to use the points highlighted by this research to build a better Active Network).

The results and findings of this project were presented at the "Multi-Service Networks

Conference" (COSENERS, 2004), held on the 8th of July in Abingdon, Oxford, UK.

143

EmeIgence in Active NetwOlks Chapter 8: Conclusions and Future Work

8.1 Virtual Node Simulation

Observing Emergent Properties and self-organised structure is a complex task,

considering that the 'structure' of Emergent Behaviour may not stay fixed to a set of

nodes. It is possible that the structure may move within the boundaries of the modelled

network. With this in mind and for the purposes of exposing Emergent Behaviour, one

can remove the restriction of having Active Nodes in specific network topologies (even

though, in practical terms, the Active nodes are in a fixed network).

Virtual Node Simulation (VNS) is a concept envisaged by the author, and may prove to

be a viable addition to this work in terms of detecting Emergent Behaviour in Active

Networlcs - VNS could be used to visually detect static or moving structures within the

Active Network simulation environment. It can also facilitate the interpretation of these

structures and the stages of structure formation.

VNS begins with the design of a cellular grid environment that depicts the scalable

Active Networlc. End-stations are located at the periphery of the grid and each end­

station has the capability to transmit and receive Active Packets/Applications (which are

designated as moving blocks). The foundations for this type of simulation are taken

from Cellular Automata (CA), which have been used in other research projects to

successfully analyse various anomalous network behaviours.

At the heart of Cellular Automata, we consider the uniform lattice of cells to have local

states, which are subject to a uniform set of rules. These rules drive the behaviour of the

system, and in turn, set the particular state of a cell (i.e. the rules compute the next state

of a cell as a function of its previous state and the states of surrounding cells). A moving

block positioned within a cell is an abstraction of the state of that cell (i.e. the simulator

displays the changing states of cells as moving blocks within the grid environment). An

extension to this would be to allow the cells to preserve the history of state changes and

calculate their next state based on it.

Cellular Automata describes the simulation environment in terms of a lattice and cells.

The abstract view of changing states depicts the movement of packets within the lattice.

144

Emergence in Active Networks Chapter 8: Conclusions and Future Work

However, CA alone will not suffice in describing the complex behaviour of Active

Networks because the Active Packets themselves are defined entities with specific

objectives. The model must be in a position to describe the characteristics of packets

along with the rule-set for each cell.

The full simulation framework will incorporate 'Multi-Agent' theory, which will allow

the complete definition of an Active Packet (along with its behavioural dynamics). Each

Active Packet will be represented by an autonomous 'Agent', which will be produced

and consumed within the simulated space (i.e. within end-stations and the cellular

lattice). Agents will carry complex rule-sets and objectives (they may also incorporate

the static rule-set defined for the individual cells), and have sensors to perceive their

local neighbourhood [DijOO). A further ability would be for Agents to leave 'traces' of

themselves at specific cells they visit, thereby affecting the local environment.

-:-
•

•

End sta~on With
transmit and recieve
capability

•
.. ::.. •

I . trace element

JJ

Ac~ve Packet/Agent Cellular grid environment

Figure 8.l.a: YirtuaJ Node Simulation 01 an Active Network with a uniform lattice

olcells

The Agent mobility and behavioural characteristics (anticipated or unplanned) are

dependent on several factors:

145

Emergence in Active Networks Chapter 8: Conclusions and Future Work

• The static and dynamic goals of the Agent.

• The 'beliefs' of the Agent - a 'belief is the internal, imperfect representation of the

environment, held by the Agent, which includes the perceived states of other Agents.

• The rule-set

• The number of interactions between Agents

• The types of interactions between Agents (i.e. co-operative, competitive)

• The type of Agent

The concepts of Multi-Agents encompasses a large research area. Some of the concepts

are either not relevant to Active Networks or are too strict in definition to be useful. It is

therefore appropriate to reduce the Agent description to a minimum set of parameters.

One can define an Active Network Agent through U = < R, A, F >, where:

• 'R' is a finite set of 'role identifiers'. It represents all possible roles (and

combinations of which) an Agent can have. The 'role' of an Agent highlights the

objectives and goals held within it.

• 'A' represents the activity agenda of an Agent i to achieve its goals {A}.

• 'F' represents the knowledge and information (Facets), held by an Agent, of its

environment (F;). These facets include beliefs, awareness, experience, preference

and choice. All of the facets are dynamic and are liable to change throughout a

simulation [DijOO).

Agents (Active Packets) are programmed with certain capabilities, analogous to the

Primitive Functional Components (PFCs) of the high-level modelling scenario. These

capabilities are:

• Replicate themselves

• Merge into a single unit

• Transform themselves into new types

• Generate as new

• Leave trace elements at certain locations

146

EmeIgence in Active NetwOlks Chapter 8: Conclusions and Future Work

• Harvest information from a local area and feedback to a calling application

The author proposes that Emergent Behaviour will not occur without the

interaction of two or more Active packets and/or their trace elements.

An 'interaction' can be viewed, within the grid, as a collision between two or more

packets andlor trace elements. At the point of impact, each Active Packet will execute

certain rules and make decisions based on the local conditions (e.g. decisions based on

collided packet type, trace element type, direction of movement, conflict in objectives,

interest in co-operation, etc.).

In reality, Active Packets can only interact through a node; thus the point of impact is

indicative of an Active Node being present at that location. In essence, all grid locations

have the potential to be collision points and hence Active Nodes. However, the specific

locations of Active Nodes are of little importance for a high-level simulation (i.e. the

simulation should be independent of topology). The simulation should be capable of

displaying Emergent Behaviour, some of which, will manifest themselves as stable,

static/moving 'structures' (of Agents and their respective traces). Furthermore, through

the rules governing the local state changes, a model can depict a global structure

influencing local components (Figure 3.3.a).

The idea to use such an approach stems from the successes of 'Multi-Agents' in the

detection and analysis of global phenomena in a wide variety of systems (e.g. traffic

flow simulations, pedestrian behavioural analysis [DijOO]). However, currently this

simulation method is in its initial investigation stages. Further work in this area may

reveal the requirement of an application-specific simulator (which would have to be

developed in-house through Object-Oriented programmes such as Java or C++).

147

- ----

REFERENCES

Emergence in Active Networks References

References

[ACT]

[Am94]

[ANC]

[ANE]

[AWC]

[Bar97]

[BerOO]

[Bha97]

ACTIVATE Homepage, System Design Laboratory - Infonnation and

Computing Sciences (ICS) Division - SRI International,

http://www.sdl.sri.com/projects/activate/

Am, 0., "Back to Basics: Introduction to Systems Theory and

Complexity", Introductory web article, 1994,

http://www.calresco.orgltextslbackto.htrn

http://www.cuthb.plus.comlonarlback_to_basics.html

ANCORS Homepage, System Design Laboratory - Infonnation and

Computing Sciences (ICS) Division - SRI International,

http://www.sdl.sri.com/projects/ancors/

ANEP Homepage, Department of Computer and Information Science,

University of Pennsylvania,

http://www.cis.upenn.edul-switchware/ANEP

Adaptive Web Caching (A WC) Homepage, Computer Science

Department - University of California, Los Angeles,

http://irI.cs.ucla.edulAWC/

Bar-Yam Y., "The Dynamics of Complex Systems (the advanced book:

Studies in NonIinearity series)", Addison Wesley Longman, August 1997,

Chapter 0, Section 0.2 - 0.5, ISBN: 0-201-55748-7.

Berson S., Braden B., Riciulli L., "Introduction to the Abone", Technical

report, University of Southern California, Information Science Institute,

June 2000, http://www.isi.edulaboneIDOCUMENTS/ ABoneIntro. pdf

Bhattachrujee S., Calvert K., Zegura E., "Active Networking and the End­

to-End Argument", ICNP' 1997: Proceedings of International Conference

on Networking Protocols, Atlanta, Georgia, 28 - 31 October, 1997.

148

Emergence in Active NelWooo References

[Bha98]

[Bon97]

[Bos99]

[Bra02]

[BroOl]

[BusOI]

BhattachaIjee S., Calvert K., Zegura E., "Congestion Control and Caching

in CANES", ICC' 1998: Proceedings of IEEE International Conference on

Communications, Atlanta, Georgia, 7-11 June, 1998.

Bonabeau E., Dessalles 1. L., "Detection and Emergence", lntellectica,

1997/2,25, pp. 85-94.

Bossomaier T., Green D., "Patterns in the Sand: Computers, Complexity,

and Everyday Life", Perseus Books, November I, 1999, ISBN: 0-7382-

0172-3.

Braden B., Lindell B., Berson S., Faber T., "The ASP EE: An Active

Network Execution Environment", DANCE'2002: DARPA Active

Networks Conference and Exposition, San Francisco, CA., June 2002.

Brown I., "End-to-end security in active networks", PhD thesis, London

University, September 2001.

Bush S. F., Kulkami A., "Thought Communication", GE Global

Research, Technical report no. 2001CRD062, 04 September 2001,

http://www.crd.ge.com/cooitechnologies/pdfJ200Icrd062.pdf

[CamOO] Campbell R. H., Liu Z., Mickunas M. D., Naldurg P., Yi S., "Seraphim:

Dynamic Interoperable Security Architecture for Active Networks",

OPENARCH'2000: Proceedings of IEEE Third Conference on Open

Architectures and Network Programming, Tel Aviv, Israel, March 2000.

[Cha] Chang S. K., Petri-Net and Augmented-Petri-Net, Course notes on

Distribute Multimedia Systems, Department of Computer Science, Centre

for Parallel, Distributed and Intelligent Systems (CPDIS), University of

Pittsburgh, http://www.cs.pitt.edu/-chang/365/2petri/p I.htrn

149

Emergence in Active Networks References

[Cha97]

[Cru90]

[Cru02]

[DAR]

[DauOO]

[Dec99]

[Des]

[DijOO]

[EME]

Chapman N., "Petri Net Models", SURPRISE' 1997: Surveys and

Presentations in Information Systems Engineering, Department of

Computing, Imperial College London, May-June 1997, Stochastic Models

of Manufacturing Systems - article 2.

http://www.doc.ic.ac. uk/-nd/surpri se _97/j ournal/voI2/nj c 1 /

Crutchfield 1. P., "Chaos and Complexity", Handbook of Metaphysics and

Ontology, Philosophia Verlag, Munchen, 1990.

Crutchfield J. P., "What Lies Between Order and Chaos?", Art and

Complexity by 1. Casti (editor), Oxford University Press, 2002.

Defence Advanced Research Projects Agency (DARPA) - Advanced

Technology Office (ATO) official website on Active Networks,

http://www.darpa.mil/ato/programs/activenetworks/actnet.htm

Dautenhahn K., "Reverse Engineering of Societies - a biological

perspective", AJSB'2000: Proceedings of the sympoisum on Starting from

Society - the Application of Social Analogies to Computational Systems,

Birmingham, UK, 2000, pp. 15-20, ISBN: 1-902956-13-8.

Decasper D., Parulkar G., Choi S., DeHart 1., Wolf T., Plattner B., "A

Scalable, High Performance Active Network Node", IEEE Network

Magazine, January/February 1999.

Design/CPN homepage, Department of Computer Science - DAJMI,

University of Aarhus, Denmark, http://www.daimi.au.dklCPnetslintro/

Dijkstra 1., Timmermans H. J. P., Jessurun A. 1., "A Multi-Agent Cellular

Automata System for Visualising Simulated Pedestrian Activity",

Proceedings on the 4th International Conference on Cellular Automata for

research and Industry, Karlsruhe, Germany, 4-6 October, 2000, pp. 29-36.

EMERGENCE Homepage, "Emergence: A journal of Complexity issues

in Organisations and Management",

http://emergence.org/oldIWhyemergence.html

150

Emergence in Active Networks References

[GeIOO] Gelas J. P., Lefevre L., "TAMANOIR: A High Performance Active

Network Framework, Active Middleware Services (AMS)", K1uwer

Academic Publishers, ISBN 0-7923-7973-X, August 2000.

[GoI99] Goldstein J., "Emergence as a Construct: History and Issues", Emergence:

A journal of Complexity issues in Organisations and Management, 1999,

vol. I, issue I, pp. 49-72.

[Gon02] Gonzalez R. C., Woods R. E., "Digital image processing", Prentice Hall

publications, 2002, ISBN: 0201180758

[Gra95] Graps A., "An Introduction to Wavelets", IEEE Computational Science

and Engineering, Summer 1995, vol. 2, number 2, published by the IEEE

Computer Society.

[Har96]

[Her97]

[HicOO]

[HicOI]

Hartman J., Manber u., Peterson L., Proebsting T., "Liquid Software: A

New Paradigm for Networked Systems", Technical Report 96-11,

Department of Computer Science, University of Arizona, June 1996,

ftp://fip.cs.arizona.edulxkernellPapers/tr96-II.ps

Herrmann J. W., Lin E., "Petri Nets: Tutorial and Applications",

Presentation slides presented at the 32th Annual Symposium of the

Washington Operations Research - Management Science Council,

Washington, D. C., November 5, 1997,

http://www.isr.umd.edulLabS/CIMImiscs/wmsor97.pdf.

Hicks M., Nettles S., "Active Networking Means Evolution (or Enhanced

Extensibility Required)", IW AN'2000: Proceedings of Active Networks:

Second International Working Conference, Tokyo, Japan, October 16-18,

2000, pp. 16 - 32.

Hicks M., Moore J. T., Nettles S., "Compiling PLAN to SNAP",

IW AN' 200 I: Proceedings of the IFIP-TC6 Third International Working

Conference, September/October 2001.

151

Emergence in Active Networks References

[Hic98]

[KatOO]

[KuIOl]

[KuI99]

[LeOO]

[Lel94]

[Loo97]

Hicks M., Kakkar P., Moore J. T., Gunter C. A., Nettles S., "PLAN: A

Packet Language for Active Networks", International Conference On

Functional Programming, Baltimore, September 27 - 29, 1998.

Katabi D., Wroclawski J., "A framework for Scalable Global lP-Any cast

(GIA)", ACM SIGCOMM'2000: Proceedings of the conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communication, Stockholm, Sweden, 28 August - 01 September 2000,

pp. 3 - 15, ISSN:0146-4833.

Kulkarni A. B., Bush S. F., "Active Network Management and

Kolmogorov Complexity", OPENARCH'2001: Proceedings of IEEE

Open Architectures and Network Programming, Anchorage Alaska, April

27-28,2001.

Kulkarni A., Minden G., "Active Networking Services for WiredlWireless

Networks", IEEE INFOCOM' 1999: Proceedings of the Conference on

Computer Communications, New York, USA, March 1999.

Le L., Sanneck H., Carle G., Hoshi T., "Active Concealment for Internet

Speech Transmission", The Second International Working Conference on

Active Networks, Tokyo, Japan, October 2000.

Leland W. E., Taqqu M. S., Willinger W., Wilson D. V., "On the Self­

Similar Nature of Ethernet Traffic (Extended Version)", IEEE/ACM

Transactions on Networking, February 1994, vo\. 2, no. 1, pp. 1 - 15,

ISSN: 1063-6692.

Loon M., "Research funded for 'active JP networks"', Article written for

InfoWorld Electric, InfoWorld Publishing Company, April 28, 1997, vo\.

19, issue 17.

152

Emergence in Active NetwoIks References

[LiuOO]

[L09!]

[Mar99]

Liu Z., Naldurg P., Yi S., Carnpbell R. H., Mickunas M. D., "Pluggable

Active Security for Active Networks", PDCS'2000: 12th IASTED

International Conference on Parallel and Distributed Computing and

Systems, Las Vegas, Nevada, November 6-9,2000.

Lo, A. W., (1991). "Long-Term Memory in Stock Market Prices",

Econometrica, 1991, vol. 59, issue 5, pp. 1279-313.

Marshall I. W., Roadknight C., "A new Approach to Active Network

Management", Policy Workshop 1999, Hewlett-Packard's European

research centre, Bristol, UK., 15 -17 November 1999.

[Mau02] Maughan D., Forward of conference proceedings, DANCE'2002:

[MATa]

DARPA Active Networks Conference and Exposition, San Francisco,

CA., May 29 - 30 2002, ISBN: 0-7695-1564-9.

MATLAB documentation on Wavelets and the Wavelet Toolbox

http://www.mathworks.com/access/helpdesk/help/toolbox/waveletl

[MATb] MATLAB documentation on Wavelets and Detecting Self-Similarity

http://www.mathworks.com/access/helpdesk/hel p/toolbox

/waveletlch03 _ ap6.html#996832

[Men99] Menage P., "RCANE: A Resource Controlled Framework for Active

Network Services", 1W AN' 1999: Proceedings of the First International

Working Conference on Active Networks, 1999, Springer-Verlag,

vo1.1653, pp. 25-36.

[Mes99] Meseguer J., Talcott C., "MAUDE: A Wide-Spectrum Formal Language

for Secure Active Networks", Slides presented at DARPA Active Nets

Briefing, March 18, 1999.

[Mot03] Motulsky H., Christopoulos A., "Fitting Models to Biological Data using

Linear and Nonlinear Regression: A practical guide to curve fitting",

2003, Oxford University Press, ISBN: 0195171802

153

Emergence in Active Networks References

[Mur97] Murphy D., "Building an Active Node on the Internet", M.Eng

Thesis, Massachusetts Institute of Technology, June 1997.

[Naw95] Nawrocki D. N., "RlS Analysis and Long Tenn Dependence in Stock

Market Indices", Managerial Finance, 1995, vo!. 21, no. 7, pp. 78-91.

[Ohi98] Ohira T., Sawatari R, "Phase transition in computer network traffic

model", Physical Review E, vo!.58 (1998), pp.193 -195, SCSL-TR-98-

009.

[pat81]

[pso99]

[RazOO]

[Rei85]

[SAN]

[Sal84]

Peterson J. L., "Petri Net Theory and the Modelling of Systems" Prentice­

Hall Inc, 1981, ISBN: 0-13-661983-5

Psounis K, et al., "Active Networks: Applications, Security, Safety and

Architectures", IEEE Communications Surveys, First Quarter, vo!. 2, no.

1, 1999.

Raz D., Shavitt Y., "Active networks for Efficient Distributed Network

Management", IEEE Communications Magazine, vo!. 38, March 2000,

pp. 138 - 143.

Reisig, W., "Petri Nets - An introduction", Springer-Verlag, Berlin, 1985,

pp. 1 - 14, ISBN: 0-387-13723-8 & 3-540-13723-8

SANE/OS Homepage, Department of Computer and Infonnation Science,

University of Pennsylvania,

http://www.cis.upenn.edul-switchwarelsane_os!

Saltzer H., Reed D. P., Clark D., "End-to-end arguments in system

design", ACM Transactions on Computing Systems, 1984, vo!. 2, no. 4.

[Sav96a] Savetz K, Randall N., Lepage Y, "MBONE: Multicasting Tomorrow's

Internet", IDG publishing 1996, Chapter 1, ISBN: 1-56884-723-8.

[Sav96b] Savetz K, Randall N., Lepage Y, "MBONE: Multicasting Tomorrow's

Internet", IDG publishing 1996, Chapter 3, ISBN: 1-56884-723-8.

154

Emergence in Active Networks References

[SchOOl

[Sch99]

Schwartz B., Jackson A., Strayer T., Zhou W., Rockwell D., Partridge C.,

"Smart Packets: Applying Active Networks to Network Management",

ACM Transactions on Computer Systems, February 2000, vo!. 18, issue

1, pp. 67 - 88.

Schwartz B. I., "Sprocket Language Description for the Smart Packets

Project", BBN Technical Memorandum No. 1221, September 27, 1999,

http://www.ir.bbn.comldocuments/techmemosfIMI221.pdf

[See] Seel R., "Emergence in Organisations", Online article, New Paradigm

Consulting homepage, http://www.new-paradigm.co.uklemergence­

human.htm.

[Smi97]

[SolOl]

[StoOO]

[Ten96]

[Ten97]

Smith J. M., Farber D. J., Gunter C. A., Nettles S. M., Segal M. E.,

Sincoskie W. D., Feldmeier D. C., Scott Alexander D., "SwitchWare:

Towards a 21st Century Network Infrastructure", a White Paper, 1997,

www.cis.upenn.edul-switchwareipapers/sware.ps

Sole R. v., Valverde S., "Information Transfer and Phase Transition in a

Model of Internet Traffic", Physica A: Statistical Mechanics and its

Applications, 2001, 289 (3-4), pp. 595-605, ISSN: 0378-4371.

Stone J., Partridge C., "When the CRC and TCP Checksum Disagree",

ACM SIGCOMM'2000: Proceedings of the conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communication, Stockholm, Sweden, 28 August - 01 September 2000,

pp. 309 - 319, ISSN:0146-4833.

Tennenhouse D. L., Wetherall D. J., "Towards an active network

architecture", Computer Communication Review, April 1996, vo!. 26, no.

2.

Tennenhouse D., Smith J., Sincoskie D., Wetherall D., Minden G., "A

survey of Active Network Research", IEEE Communications Magazine,

vo!. 35(1), January 1997, pp.80 - 86.

155

Emergence in Active NetwOlks References

[Tsc97]

[TulOl]

Tschudin C. F., "Active Network Overlay Network (ANON)", RFC Draft,

December 1997, http://abone.ifi.unizh.chl-anonlanon-rfc.html

Tullmann P., Hibler M., Lepreau J., "Janos: A Java-oriented OS for

Active Networks", IEEE Journal on Selected Areas of Communication,

March 2001, vol. 19, no. 3.

[Wet98a] Wetherall D. J., Legedza U., Guttag J., "Introducing New Internet

Services: Why and How", IEEE Network Magazine, July/August 1998.

[Wet98b] Wetherall D., Guttag J., Tennehouse D., "ANTS, A toolkit for building

and dynamically deploying network protocols", OPENARCH'1998:

[WriOO]

Proceedings of IEEE Open Architectures and Network Programming, San

Francisco CA., 3 - 4 April, 1998.

Wright W. A., Smith R. E., Danek M., Greenway P., "A Measure of

Emergence in an Adapting, Multi-Agent Context", ISAB'2000:

Proceedings Supplement, Massachusets, 2000, pp. 20-27, ISBN: 0-

9704673-0-3.

[YamOO] Yamamoto L., Leduc G., "An Agent-inspired Active Network Resource

Trading Model Applied to Congestion Control", MATA'2000:

Proceeding of the second International Workshop on Mobile Agents for

Telecommunication Applications, Paris, France, September 18-20, 2000.

[Yem96] Yemini Y., da Silva S., "Towards Programmable Networks". IFIPIIEEE

International Workshop on Distributed Systems: Operations and

Management, L'Aquila, Italy, October 1996.

[Yua02] Yuan J., Mills K., "Exploring Collective Dynamics in Communication

Networks", The Journal ofNIST Research, March - April 2002, vol. 107,

no. 2, pp. 179-191.

156

EmeIgence in Active NetwOlXs References

[Yue03] Yuen E., Lo S., Jha S., "Clack: An active network platform", ICT'2003:

10th International Conference on Telecommunications, 23 February - I

March, 2003, pages 77- 84, vol.l.

157

APPENDIX I

Emergence in Active Networks

1..- MATLAB Algorithm

% MA TLAB algorithm for the generation of the Hurst value (using the R _ S statistic)

% and R2 confidence value

% for one series of data (i.e. one Active Node)

% notes: this progranune must be run for each of the 25 traces in order to calculate

% the complete set of Hurst values for a particular simulation run

Appendixi

0/0--

clear;

al =0; % declare and initialise dummy variable for fscanf

% user input for datalog filename for reading

file_run = input('Enter file name >','s');

% user input for specific Active Node Trace no.

Trace_no = input('Enter the trace no (I to 25) >');

% open datalog file

file_id = fopen(fIle_mn,'t');

% scan datalog file line-by-line (row-by-row) and enter into 2-d array

forn= 1:499

[array(o,:),al] = fscanf(filejd, '%i ',[125]);

end

% close datalog file

fclose(file_id);

sig = (arrdy(:,Trace_no».';

L = length(sig);

R_S = zeros(I,L);

% extract from 2-d array the correct trace linked to the

% Active Node

% length of data trace

% R_S value declared and initialised

% main calculation for-loop to calculte a series of RlS values for

% different sample lengths

forn= I:L

158

EmeIgence in Active Networks

silL n = sig(l :n);

meaD_sig_D = mean(sig_n);

S(D) = sqrt(var(silL D» + eps;

% obtain a sample series from original

0/0 trace

% mean of sample series

% square-root of the variance of sample

% series. eps value is used to prevent

% divide-by-zero errors

% nested for-loop to calculate partial sum

fork=l:n

W(k) = sum(SilLn(1 :k» - k*mean_silLn;

end

% calculation of R/S slatistic for the sample series

R_S(n) = (max([O W]) - min([O W)))/S(n);

end

% generating a log-log plot

X = 10g\O(I:L);

Y = 10g\O(R_S + eps);

figure;

scattelO{, V); % draw a scatter plot

0/0 regression analysis

% e>."tract the positive R/S values for Ule regression analysis

% the negative section represents the disregarded 'startup' slage

a2=Y(Y>O);

ana_range = (L -length(a2) + 1):L; % calculate the regression analysis

0/0 range

p = poiyfit(X(anaJange),Y(ana_raoge),I); % calculate the linear regression line

% refresh the scatter plot "ith added regression line

Y _ reg = polyval{p,x);

plot(X,Y,'o',x, Y _reg,':');

% print Hurst value for the trace linked to the Active Node, which it the

% gradient of the linear regression line

H = p(l)

% R2 "goodness of fit" calculation

% used to oblain a confidence level for the regression analysis

% error calculation for the

% specific

159

Appendix i

Emergence in Active NetwOlks

% regression analysis range

ss_reg = snm(error.A2); % sum of the errors squared

nnlUesidnal = Y(ana_range) - mean(Y(ana_rnnge»; % null residual

% sum of the null residual squared

% print R2 "goodness of fit" value for the trace linked to the Active Node

r_squared = I - (ss_reg/ss_tot)

160

Appendix i

APPENDIX 11

Emergence in Active Networl<s

ii.. Design/erN Petri Net Diagrams

ii.l. Declarations

II GLOBAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE PETRI NET MODEL

II COLORSETS (variable type defmitions) for Active Packets

color AppID = int with 1..15; II Active packet IDs

color Dirl = int with 1..8;

color Dir2 = int with 1 .. 8;

color TTL = int;

color Route = with M I R I CIF;

color Memory = int with 0 .. 100;

color Processor = int with 0 .. 100;

color Buffer = int with 0 .. 100;

color Release = int with 0 .. 50;

II Direction Indicator I

II Direction Indicator 2

II Time-to-Live field

I I Routing Mechanism

II Active Packet MEMORY requirement

/I Active Packet PROCESSOR requirement

II Active Packet BUFFER requirement

/I reserved MEMORY resource release time

161

Appendix ii

Emergence in Active Networks

// other COLORSETS (variable Iype definitions)

color Queue = with <L unit; !I for a queue control variable

color Timer_Control = with Time_unit;

color Timestamp = im;

!I for a timer control variable

!I for a timestamp variable

calor Timeflag = bool; !I for a check flag variable

!I compound COLORSETS (variable Iype definitions)

color Time_holder = product Timestamp * Timestamp * Timestamp * Timestamp * Timestamp declare all; !I timestamp holder

color Packet = product AppID * Dirl * Dir2 * TIL * Route * Memory * Processor * Buffer * Memory * Release declare all; !I Active Packet

/
Appendixii

color Xpacket = product AppID * Route * Memory * Processor * Buffer * Memory * Timestamp * Timeflag declare all; !I Active Packet with timestamp and check flag

!I VARIABLE declarations

var pkt, pkt2 : Packet; !I Active Packet variables

var source : Packet ms; !I Input Source variable

var app, app2 : AppID; !I Active Packet application ID.

var dkl : Dirl; !I Active Packet Direction Indicator 1

var dk2 : Dir2; !I Active Packet Direction Indicator 2

var vttl: TIL; !I Active Packet Time-to-live counter

var vroute, vroute2 : Route;

var vmem, vmem2, vmem3, vmem4, vmem5, vmem6, vmem7 : Memo!)';

!I Active Packet Routing Mechanism

!I MEMORY resource variables

162

Emergence in Active NetwOlks

var vprocess, vprocess2, vprocess3, vprocess4, vprocess5, vprocess6 : Processor;

var vbuff, vbuff2, vbufT3, vbuff4, vbuff5, vbuff6 : Buffer;

var !store, Istore2 : Memo!),;

var lCOunt : Release;

var ql, q2, q3 : Queue;

var tl, 12, t3, t4, t5 : Timer_Control;

var tstarup : Timestamp;

var tflag : Timeflag;

var compound: Xpacket;

var as,b5,c5,d5,e5 : Timestarnp;

var a6,b6,c6,d6,e6 : Timestarnp;

// queue control variables

// timer control variables

// timestamp variable

// check flag variable

// Active Packet variable

// timestamp variables

// timestamp variables

Appendix ii

// PROCESSOR resource variables

11 BUFFER resonrce variables

// reserved MEMORY resource variables

// reserved MEMORY resource release time

163

Emergence in Active NetwOlks

1/ LOCAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE MERGE PACKET COMPONENT

1/ COLORSETS (variable type definitions)

color Mtirnestamp = int; 1/ for a timestamp variable

color Firststate = bool; 1/ for a check flag variable

calor Flag = bool; /I for a check flag variable

1/ compound COLORSETS

calor Flag_holder = product Flag • Flag • Flag • Flag • Flag; 1/ check flag holder

color Mpacket = product AppID • Dirl 0 Dir2 0 MtimestaJnp • Firststate; /I reduced information Control Packet

1/ VARIABLE declarations

1/ Active Packet application ID. var mapp, mapp2, mapp3 : AppID;

var mdkl, mdkl_2, mdkl_3 : Dirl;

var mdk2, mdk2_2, mdk2_3 : Dir2;

1/ Active Packet Direction Indicator 1

1/ Active Packet Direction Indicator 2

var mtstamp, mtstamp2, mtstamp3, mtstamp4 : MtirnestaJnp; 1/ timestamp variables

var fstatus, fstatus2, fstatus3, fstatus4 : Firststate; 1/ check flag variables

var ai, bl, cl, dl, el : Flag; /I check flag variables

164

Appendix ii

Emergence in Active NetwOlxs

var a2, b2, c2, d2, e2 : Flag;

var a3, b3, c3, d3, e3 : Flag;

var 34, b4, c4, d4, e4 : Flag;

var mcompound : Mpacket;

11 check flag variables

// check flag variables

11 check flag variables

11 reduced infonnation Control Packet variable

11 LOCAL DECLARA nONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE LOCAL STORAGE COMPONENT

11 COLORSETS (variable type defmitions)

color Ltimestarnp = int;

color St = bool;

11 compound COLORSETS

11 for a timestamp variable

11 for a check flag variable

calor Lpacket = product Ltimestamp * Memory * Release * St; 11 reduced infonnation Control Packet

11 VARIABLE declarations

var ltstarnp : Ltimestarnp;

var lcompound : Lpaeket;

var a, b : Memory;

var GO, G02 : St;

11 timestarnp variables

11 reduced infonnation Control Packet variable

11 reserved MEMORY resource variables

11 check flag variables

165

Appendix ii

EmeIgence in Active Networks

II LOCAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE DATA LOGGING COMPONENT

II includes GLOBAL REFERENCE variables used in code sections

II COLORSETS (variable type definitions)

color relLname = int; II for page instance value (ACfIVE NODE IDENTIFIER)

II VARIABLE declarations

var reg,reg2,reg3,reg4,regS : relLname; II variables holding the ACTIVE NODE IDENTIFIER value

II GLOBAL REFERENCE VARIABLE declarations

globrefmk_O = "null";

globrefmk_1 = "null";

globreftpage_id = 0;

globref tplaceUd = 0;

globref tplace2_id = 0;

globreftplace3_id = 0;

globref tplace4 Jd = 0;

II not used

II variable to hold all datalog register location values as one string; written to output file "outtxt"

II variable to hold user selected page handle (i.e. Active Node page handle)

II variable to hold user selected place handle (i.e. Mregister place handle)

II variable to hold user selected place handle (i.e. Global_Memory _Store place bandle)

II variable to bold user selected place handle (i.e. Global_Processor_Store place handle)

1/ variable to bold user selected place handle (i.e. Global_Buffer_Store place handle)

II file handles for the reading in of custom initial MEMORY, PROCESSOR and BUFFER values.

globref!hl = TextIO.openIn "lhome/elmsd2/design_cpn/activenetworklsrc.txt";

166

Appendix ii

Emergence in Active Networks

globref fh2 = TextIO.openIn "lhome/elmsd2/design_cpnlactivenetworkisrc.txt";

globref fb3 = TextIO.openIn "lbome/elmsd2/design_cpnlactivenetworkisrc.txt";

globrefN = 0; II while-loop counter

globref mem_val = "null"; II variable to hold the custom initial MEMORY value read in from file

globref pro_val = "null"; II variable to hold the custom initial PROCESSOR value read in from file

globrefbuf_val = "null"; II variable to hold the custom initial BUFFER value read in from file

/I datalog register locations which house the MEMORY resonrce values (linked to changes in place: Global_Memory _Store)

g10bref reglocO = 100;

globrefreglocl = 100;

globref regloc2 = 100;

globref regloc3 = 100;

globref regloc4 = 100;

g10bref regloc5 = 100;

globref regloc6 = 100;

globref regloc7 = 100;

globref regloc8 = 100;

globref regloc9 = 100;

globref regloclO = 100;

167

Appendixii

Emergence in Active Networlls

globrefreglocll = lOO;

globref regloc 12 = lOO;

globref regloc 13 = lOO;

globref reglocl4 = lOO;

globrefreg1oc15 = lOO;

globref regloc 16 = lOO;

globref reglocl7 = lOO;

globrefreglocl8 = lOO;

globrefreglocl9 = lOO;

globref regloc20 = lOO;

globref regloc21 = lOO;

globref regloc22 = 100;

globref regloc23 = lOO;

globref regloc24 = lOO;

Appendix ii

168

Emergence in Active Netwotks

ii.2. Model Hierarchy

"' .
• 0.
C.
DO

'"
"' . •• c.
oo
~ ..
"' . ••
e< .,. ,,.

"' . •• c.
'" ~.

Appendixii

169

Emergence in Active Netwom Appendix ii

id. Top-level Active Network

170

Emergence in Active Networks

II Purpose: code for traffic generation at source SRC_AI

II Location: Petri Net tr.msition: SRC_AI

1/ Description: the code reads the input source me "src.tx!" to extract the correct line as input Active Packet

output source;

action

let

11 function definition to extmct the entire input me as a list

fun !ileToList flleNarne =

let

11 function definition

fun f fit = if TextIO.endOfStrearn fit

then

let

val_ = TextIO.closeln fit

in

nil

end

else

/1 formation of the list of input lines extracted from iuput source file

11 extract one line in sequence and append to list of other extracted lines

171

Appendixii

Emergence in Active Networks

in

end;

in

end;

(inpuuns'Packetfh):: (ffh)

1/ function call to open text file

f (TextlO.openIn fileName)

1/ function call

11 specifies correct input source file and line no.

11 the line no. is used to select the correct input line specific to the particular source

1/ line no. 0 is the input for SRC_AS

List.nth((fileToList "ihome/elmsd2/design _ cpnlactivenetworklsrc. txt"),O)

172

Appendix ii

Emergence in Active Networks Appendix ii

ii.4. Active Node (section 1)

• The first section in the Active Packet process flow.

• Holds the 4 input ports and the decision to process, destroy or forward a particular Active Packet.

173

Emergence in Active Networl<s

Pl.cht

[lIt. ...
.....

...
',clltt

1!J,1o ...
11, ••

Pacht

[l. ...
.p.te

",cht

[l • ...
.....

~ GI.hl
GI •• III I I.ItIuu

[]] Glo'lJ..rntl"
Cl ".,..... 'roctuor

I!D GU"'I.b8fI'
GI •• a1..., .. __

f 100 n'.rAD'
[!J _.1",

GI(6, n

[!] al,hl..,m ••

-. ... us •

[C~)OJ aI .. CCt ••• >',.K1') (,'''h ... th)
....... C"'''Uft ~ ,,.M"")I

[(981) .) jjj.c ••• c"III.Id)
..... &1 •• (9"'" (to , ••)

IfIdll •• C"PfIl:.tl' ~''''''IW'''lJ

,.CCdO
c

......

...... c. ••• r"",

."

GI.h' , •• '*- ...
~Gl ... Jd

aellll _ ... ",., ••

[li] Clohl ... "

174

Appendix ii

..... ~

Emergence in Active Networl<s

I! Purpose: code to reduce the MEMORY, PROCESSOR and BUFFER resource values once the decision to process an Active

II Packet has been made

II Location: Petri Net transition: PROCESS

Appendix ii

II Description: the code uses the reSource requirement values held within the Active Packet to reduce the resource values in places: Global_Memory _Store, Global_Processor_Store

and Global_Buffer_Store. It also updates the regloc register location for the specific instance of Active Node

input (app,dkl,dk2, vttl,vroute, vmem, vprocess, vbuff,lstore,rcount, vmem3, vprocess3, vbuID ,reg);

output (pkt,vmem4,vprocess4,vbuff4,reg2);

action

II updates regloc location (linked to changes in place: Global_Memol)'_Store)

usestring["regloc"Amakestring(reg)A":="Amakestring(vmem3-vmem)];

«app,dk I ,dk2,(vttl-1),vroute,vmem, vprocess, vbuff,lstore,rcount),(vmem3-vmem),(vprocess3-vprocess),(vbuID -vbuff),reg);

175

Emergence in Active Networks Appendix ii

id. Active Node (section 2)

• Positioned right of section l.

• Holds decision-and-release mechanism for Global State Maintenance (Local Storage component) and the Direction Solver component.

176

Emergence in Active Networks Appendix ii

."
(

O$RlCTION_PlNDU ... I lilt

I ..]

pa.ckd puht

OutQu",,4

..)-----------~1--~·~T~O~.~.--~!J~~~~~~=_~~=====_--~ ... uml __ tnO.",
outQ._ 0 1111J"'J. et al-storai •
..->I1I ' .. L51.r ...

.....
GI~ lIIIer"_st.
)OID •• LMftIlCl",_Aor • ---......

GlClb llller'_ ••••

177

Emergence in Active Networks Appendix ii

ii.6. Active Node (section 3)

• Positioned below section 2

• Holds the Resource Release Mechanism for all Active Packets that are processed.

178

Emergence in Active Networks

PlCket

M~
I"t'il_n .. m.

[!IJ It lilt. •

Gldal..,hl.no'\I_ste
>Glotoal_N.1n1O _.tc.rt

179

".mtrnS

Appendix ii

proc,."or

Gloh.l..,PlIOc ••• O._S ,

~io(fSS6
RnE~.E· @]'

i-.--r---"...

Emergence in Active Networlcs

II PUlPOse: code to adjust the resource release time for MERGE Active Packets

II Location: Petri Net transition: USE_RESOURCE

Appendix ii

II Description: adjustment of the resource release time for MERGE Active packet is necessary since the initial packets MERGE stream is delayed by 5 time steps. The initial Merge

Active Packet follows normal resource release timings. Subsequent merge packets of a stream (that fall within the 5 time step period) will have their resources released immediately

since they are merged with tlle initial packet.

input (app,dkl,dk2, vtt1,vroute,vmem, vprocess, vbuff,lstore,rcount,aS,bS,cS,dS,eS);

output (app2,vroute2,vmem2,vprocess2,vbuff2,lstore2,tstarnp,tflag,a6,b6,c6,d6,e6);

action

let

II function definition: the same procedure for each MERGE Active packet based on application id: I to 5

fun select_merge(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,AS,BS,CS,DS,ES) =

caseAPP

II check if witlun tlle 5 time step period and not the initial Active Packet of tlle MERGE stream

of 1 => if «stepO < (AS + S)) andalso (0 < AS))

then

/I release resource immediately: subsequent packet

(APP, VROUTE, VMEM, VPROCESS, VBUFF,LSTORE,(0-9),false,AS,BS,C5,D5,ES)

else

II release resource normally: iIutial packet

180

Emergence in Active Networks

// the MERGE Active Packet is time stamped with the simulation step nnmber

(APP,VROUTE,VMEM, VPROCESS,VBUFF,LSTORE,stepO,false,step(),B5,C5,05,E5)

12 => if «stepO < (B5 + 5» andalso (0 < B5))

then

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,A5,BS,C5,05,ES)

else

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,stepO,false,A5,stepO,C5,05,E5)

13 => if «stepO < (C5 + 5» andalso (0 < C5»

then

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,AS,B5,CS,05,ES)

else

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,stepO,false,AS,B5,step(),D5,E5)

14 => if «stepO < (05 + 5» andalso (0 < 05»

then

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,A5,B5,C5,05,E5)

else

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,stepO,false,A5,B5,C5,stepO,E5)

15 => if «stepO < (E5 + 5» andalso (0 < E5))

then

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,AS,B5,C5,D5,E5)

181

Appendix ii

Emergence in Active NetwoIks

in

end;

else

(APP, VROUTE, VMEM, VPROCESS,VBUFF,LSTORE,stepO,false,AS,BS,CS,D5,stepOl

I! all other Actiye Packets are time-stamped with the simulation step number

II resources released normally

1_ => (APP, VROUTE, VMEM, VPROCESS, VBUFF,LSTORE,s1epO,false,A5,BS,C5,D5,E5)

select _merge (app, vroute,vrnem, vprocess,vbuff,lstore,a5,b5 ,c5,d5,e5)

182

Appendix ii

Emergence in Active Networks

II Purpose: code to delay the releasing of resources for all Active Packets

II Location: Petri Net transition: DELAY

Appendix ii

/I Description: the delay is adjusted so that the resource release is timed to coincide with the exit of the Active Packet from the node. Each packet type (based on routing mechanism)

has different resource delay tiroings based on the time it spends within the Active Node and its sub components.

input (app2,vroute2,vmem2,vprocess2,vbufT2,lstore2,tstamp,tflag);

output (compound);

action

let

in

/I function deflnition to specny different delay values tor different routing mechanisms

fun delayvalue(VR) =

case VR

ofF => I

IC=>O

IM=>9

IR=>2

II FORWARD Active Packet delay in time steps

II CONSUME Active Packet delay in time steps

/I MERGE Active Packet delay in time steps (may be adjusted with previous code)

II REPLICATE Active Packet delay in time steps

II check if release tiroe is reached based on routing mechanism

if (step 0 < (tstamp + delayvalue(vroute2)))

then

(app2,vroute2,vmem2,vprocess2,vbufT2,1store2,tstamp,false) II delay not reached, set flag to false, loop back

183

Emergence in Active Networl<s Appendix ii

else

(app2,vroute2,vmem2,vprocess2,vbuff2,lstore2,tstamp,true) // delay reached, set flag to true, proceed to next stage

end;

184

Emergence in Active Networks

// Purpose: code to increase the MEMORY, PROCESSOR and BUFFER resource values once the release time value has been reached (checks flag).

/I Location: Petri Net trdnsition: RELEASE

Appendixii

/I Description: the code uses the resource requirement values held within the Active Packet to increase the resource values in places Global_Memory _Store, Global_Processor _Store

and Global_Buffer _Store. It also updates the regloc register location for the specific instance of Active Node.

input (app2,vroute2,vmem2,vprocess2,vbufl2,lstore2,tstamp,tflag,vmem5,vprocess5,vbuff5,reg);

output (vmem6,vprocess6,vbuff6,reg2);

action

/I updates regloc location (linked to cbanges in place: Global_Memory _Store)

usestring["regloc""rnakestring(reg)A":="Amakestring(vrnem5+(vmem2-lstore2»];

/I note: MEMORY resources may not be fully restored due to the Global State Maintenance mechanism (Local Stomge Component) reserving resources for additional periods of time

«vmem5+{vmem2.istore2»,(vprocess5+vprocess2),(vbuff5+vbufl2),reg);

185

Emergence in Active NetwoIks Appendix ii

n.7. Active Node (section 4)

• Positioned right of section 2.

• Differentiates Active Packets based on the 4 routing mechanisms.

• Holds the Merge Packet component and the Replicate Packet component.

186

Emergence in Active Networl<s

•

...

"BUilt! [!!]
I~M~"'===.~'C------------'

0..)D" at.JII, .. ,r
..... ~II'uLN.lIJ.,

Nt,d" ... oa. " ... t •• ""'m.,,, ... , ••. .. '" u1I1)

.,. .. cht

a,pucan

[!!J • .,Mcd

l
odO.a ... ".)o..-ut..JI.,.,a'bl
.••. ,1a,aLI.lficdor

187

Appendix ii

Emergence in Active Networks Appendix ii

ii.B. Active Node (section 5)

• Positioned above section 4.

• Outputs Active Packets from one of 4 ports.

• The decision to output from a particular port is based on Direction Indicator 2 value, which is held with the Active Packet.

• As a pre-process, the Direction Solver Component modifies the Direction Indicator 2 value based on preset criteria.

188

Emergence in Active Networks Appendix ii

... dut

!!Jeut
Du

Puktf (dill:. SI)

!!J
Paciit [.ski_ f)

!!J ...
0 ... 11:

pacht [diet .. 1]

!!J ... ~------------~w
0

pt.Cht ...

189

Emergence in Active Networks Appendix ii

ii.9. Local Storage Component in detail (section 1)

• The first section in the Active Packet process flow.

• The component describes the Global State Maintenance feature of the node (i.e Active Application resource reservation feature).

190

Emergence in Active Networks

GOI

IGOI .. t ... ·1

Icompound

~I.

Pkcht

Icom,.und

191

Appendixii

OV9ut..LV'.I_

[!] out

Plod

Emergence in Active Networks

/I Purpose: code to add a timestamp to packet in order to calculate the MEMORY resource storage delay

// Location: Petri Net transition: Generator

Appendix ii

/I Description: the code uses the current simulation step nwnber as a timestamp, which is added to the rcount MEMORY storage time limit in order to calculate the MEMORY release

time in simulation time steps.

input (Itstamp,lstore,rcount,GO);

output (icompound);

action

«step 0 + rcount),lstore,rcount,false);

192

Emergence in Active Networks Appendix ii

ii.10. Local Storage Component in detail (section 2)

• Positioned above section 1.

• The section describes the delay-and-release mechanism for the reserved MEMORY resources.

193

Emergence in Active Networks Appendix ii

M.glstlr

•
r.-_ft_OZ _____ ... :,a I!J tIC

nQ.:.nklU ... h1e m cry

Gloi:lal..,hltmorv_&ton

I!J tIC

b
.fURII

[GO IItlut] ~

(ttstmll,l5t11 rt,. 011111\10 0)

GOI

c LDacket

IClOmpou" .

• t
B

CO2

... 'tompoulI4
op.tstDn2

[G02 =b"t]

194

Emergence in Active Networks

// Purpose: code to delay the release of MEMORY resources.

11 Location: Petri Net transition: Delaying

11 Description: the code uses a check to see if the current simulation time step is less than the times tamp and rcount combination.

input (Itstamp,lstore,reount,GO);

output (lcompound);

action

let

in

end;

11 function definition

fun f (lts,ls,re) = if (step 0 < Its)

then

(lt5ols, rc,false)

else

(lts,ls,re,true)

11 function call

f(ltstamp,lstore,rcount)

11 release time liInit not reached. Set check flag to false (to loop back)

11 release time limit reached. Set check flag to true (to proceed to next stage)

195

Appendix ii

Emergence in Active Networl<s

// Purpose: code to increase the MEMORY resource values once the release time value has been reached (checks flag).

// Location: Petri Net transition: RELEASE

// Description: the code uses the resource reserved value Istore, held within the Active Packet, to increase the resource values in place Global_Memory _ Store (same as

Global_Memory_Store in Active Node). It also updates the regloc register location for the specific instance of Active Node.

input (a,ltstamp,lstore,rcount,GO,reg);

output (b,G02,reg2);

action

// updates regloc location (linked to changes in place: Global_Memory _Store in Active Node)

usestring["regloc""makestring(reg)"" :=""mai<estring(a+lstore) 1;
«a+lstore),true,reg);

196

Appendix ii

Emergence in Active Netwotks Appendixii

ii.11. Merge Packet Component in detail (section 1)

• The first section in the Active Packet process flow.

• The component describes the Active Packet Merge feature.

• This section extracts the initial Merge Active Packet from subsequent packets.

197

Emergence in Active Networks

Puk.t

!!Jlh
IrtD .. t.,MtrUtr

l!D Flag_

l' (ftJuJ11b., flI:11,,}1I.Iu .. 1I!:IIti)

Appendix ii

,IA&T

A

trtplcht

198

Emergence in Active Networks

// Purpose: check to see if the MERGE Active Packet is the I' of the stream. It also adds a timestamp to each Merge Active Packet

11 Location: Petri Net transition: TIME _ ST AMP

Appendix ii

11 Description: A check flag is set when the process identifies the initial Merge Active Packet. This flag is used to identify subsequent Merge Active Packets, of a particular

application number, as being suitable for merging with initial Active Packet.

input (app,dkl,dk2, vttI, vroute, vrnem, vprocess, vbuff,lstore,rcount,a I,b I,c I,dl,e I);

output (mapp,mdkl,mdk2,mtstarnp,fstatus,a2,b2,c2,d2,e2);

action

let

11 function definition: the same procedure lor each MERGE Active packet based on application id: I to 5

fun checkflags (APP,DKI,DK2,AI,BI,CI,DI,EI) =

caseAPP

of I => if (AI = false)

then

else

12 => if(BI = false)

then

else

11 for application id: I

(APP,DKI,DK2,stepO,true,troe,BI,CI,DI,EI)

(APP,DKI,DK2,stepO,false,AI,BI,CI,DI,EI)

11 for application id: 2

(APP,DKI,DK2,stepO,troe,AI,true,CI,DI,EI)

199

11 initial packet detected. Check flag set to troe

11 initial packet not detected. Check flag remains false

Emergence in Active Networl<s

in

end;

II function call

13 => if (Cl = false)

tben

else

14 => if(D1 = false)

tben

else

15 => if(EI = false)

then

else

checkflags(app,dk I ,dk2,al ,b I ,c I ,d I ,e I)

(APP,DKI,DK2,stepQ,false,AI,BI,CI,DI,EI)

II for application id: 3

(APP,DKI ,DK2,stepQ,true,AI,B l,true,DI,EI)

(APP,DKI,DK2,stepQ,false,AI,B I,Cl,D I ,El)

II for application id: 4

(APP ,oKI ,DK2,stepQ,true,AI ,B I,CI,true,El)

(APP ,oKI ,DK2,stepQ,false,AI,B I,CI,D I ,El)

II for application id: 5

(APP,DKI,DK2,stepQ,true,AI,BI,CI,DI,true)

(APP,DKI,DK2,stepQ,false,AI,BI,Cl,DI,EI)

200

Appendix ii

Emergence in Active Networks Appendixii

ii.12. Merge Packet Component in detail (section 2)

• Positioned right of section 1.

• The section describes the delay-and-release mechanism for the Merge Active Packet and the reset of the check flag.

201

Emergence in Active Networl<s Appendix ii

[fOo.lII ••)
cm III P 1,. rnd 111_:3.m flk 2 _',mtltarn PS,f.hta. SI) (m., D s.. md k 1_s,rn fill 2 _S,mtliam ,S.f Itldlll. S)

'00.111.)
DIHAVING • c

hlDlCkd

[] ""t

ou~ut..".r •• r

202

Emergence in Active Networks

II Purpose: code to delay the release of the initial Merge Actiye Packet.

/I Location: Petri Net transition: DELAYING

/I Description: the code uses a check to See if the current simulation time step is less than the times tamp + 5 simulation time steps.

input (mapp,mdk 1,mdk2,mtstamp,fstatus);

output (mcompound);

action

let

in

end;

/I function definition

funf(APP,DKl,DK2,TST,FSn =

if (step 0 < (TST + 5»
then

(APP,DKl,DK2,TST,true)

else

(APP,DKl,DK2,TST,fa1se)

/I function call

f(mapp,mdkl,mdk2,mtstamp,fstatus)

/I release time limit not reached. Set check flag to true (to loop back)

/I release time limit reached. Set check flag to false (to proceed to next stage)

203

Appendix ii

Emergence in Active Networks

I! Purpose: code to reset the specific check flag used in the selection of the initial Merge Active Packet, which has at tins stage been released

II Location: Petri Net tmnsition: E

II Description: a function is used to differentiate and reset the check flags of initial Merge Active Packets based on application id.

input (mapp,mdk l,mdk2,mtstamp,fstatus,a3,b3 ,c3,d3 ,e3);

output (app,dkl,dk2,vttl,vroute,vmem, vprocess, vbufT,lstore,rcount,a4 ,b4,c4,d4,e4);

action

let

in

end;

I! function defnrition: the same procedure for each MERGE Active packet based Oil application id: 1 to ;

fun checkflags2 (APP2,DKl_2,DK2_2,A3,B3,C3,D3,E3) =

case APP2

of 1 => (l,DKl_2,DK2_2,l.M,lO,lO,IO,O,O,false,B3,C3,D3,E3)

12 => (2,DKl_2,DK2_2,I,M,20,lO,lO,lO,15,A3,false,C3,D3,E3)

13 => (3,DKl_2,DK2_2,I,M,20,20,20,O,O,A3,B3,false,D3,E3)

14 => (4,DKl_2,DK2_2,l,M,30,lO,lO,20,lO,A3,B3,C3,false,E3)

15 => (5,DKl_2,DK2_2,l,M,40,40,40,25,lO,A3,B3,C3,D3,false)

II function call

checkflags2(mapp,mdkl,mdk2,a3,b3,c3,d3,e3)

204

Appendix ii

Emergence in Active Networl<s Appendixii

ii.13. Replicate Packet Component in detail

• The component describes the Replicate Packet feature, which replicates Active packets according to the prescribed scheme.

• Modifies the replicated Active Packets' Direction Indication 1 and Direction Indicator 2 values.

205

Emergence in Active Networl<s

" .. ut .. m.m.v DC a., _.~

Co,

(a ••• , .. IIII ~ m rec ••• ,"'lIftl Ilf1i)

[01- 11

•

[4k1 • ')

•

t4k1 • SJ

•

[.111 .. I)

•

[0'.11

•

1'(a.t •• ~III •• III.I ut ... "..""",nc" •. "bv1t""'IJIt,r.:oufl1) of.
" '.I,'.' ... ut III f I:lIlf(I .. or 1II0UM ++

P, • \It ."r II' ... , •••• ,.

l' tatP.,d 111,111111,1 ,." 'l'1li • til," ,ne HI uft, n: ou " • 1 .. ut. 11'1' .. ' """I .. o .. , nt) ++
1 tat.,',t,t,w _""",u,ro,. "COIII'I't

"(a",,d •• ,dll', •• ,, .. ,,",,, , ..
.. • ... mu,.. 11 u,tf,Idoi ... "OIIIIl)
• (a",.7.:II,I • ."o .'I'mlll.,1' " II ... UI.II1)

':tat' .•• , .• kZ" WI.m".'ncH Illft,Iif UIlIlt)
1 (aI', 1.1.'J III.cn. ... c. hH ... or .. "olllllt' .. +

206

Appendix ii

"

Emergence in Active Networks Appendix ii

ii.14. Direction Solver Component in detail

• The component describes the Direction Solver feature used to modify the Direction Indicator 2 value so that an Active Packet exits the Active Node

from the correct output port.

207

Emergence in Active Networl<s

(.. ",.k'lAka,,,.~,,,,Ittt..WI'ItllVl"rt(H •• "bdlls n:o .. (I

(.pt,I,1 ,rifI, ,,u".,I m ""."P 1'11(' .,.." af\11iD no "'lInt)

(......... ,"" "l'Mtt,,, m tIII,,,~ .. ,, n •• hf'f,lsto .. ,,(o IIn~

(• .,.,1,,1""""".11 m_.II plOet •• ,' ""1..-..... 'Gllnt)

(1.",8,1,,", ,l'MItt.II m till,'" It" 1,.,lfto " 1I11~

(aDl).15.1,9ttL "I'Mtt, .. mtlll, .. '"'' 1f'&Isto co lint

(ll.PII, •• l."""ftMtt,'Imtlll.II' .. c,.,lftD COIlfl't

[din. d1l2]

CU,.dlll •• IIt.vtt~" .. lIf:t.'mtm rH"'.'bII.I!I""M .• III'11)

(U,.2,1,,,",II""'." m nn... 11'0 et .. ,11 11 Iftl '" Int)

(U,,4.',un. ",oub ... mttn lOct 11 "'I,.. .. ,reo In1)

(u •••• JI'.""""row.llmf'Cl'l.o9 ... c II.IftlnIo .. ,rcolnt)

C I.1It1I. II'OI/1t.¥ m _, ,.et ".11 11 111'&1,. ,Htlllt)

I---__ ~~!!J ...
OI1»ut..Diwctl'lI

(a.Dt.2.1 att.IIIII.ra.II.l'Oct IIIff,I.tD n_t)

(.. pp ,,,."M n.III."' .. C ".utr.Is.rt.KO~

208

Appendixii

Emergence in Active Netwotks Appendixii

ii.15. Data logging component

209

Emergence in Active Networks

// Purpose: code forthe setup of the data logging process

// Location: Petri Net trnnsition: perf_tJ

// Description: the code requests inputs from the user to select which Petri Net places to trnck and sets up initial place values

input (tJ);

output (12);

action

// asks user to select the page (i.e. the Active Node component) which returns a page handle

tpage_id:= DSUJ_AskUserToSelectPage();

DSStr_SetCurPage(ltpage_id);

// asks user to select page-instance-holder place which returns a place handle (user selects: Mregister)

tplace 1_ id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false};

// asks user to select MEMORY place which returns a place handle (user selects: Global_Memory _Store)

tplace2 _ id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false};

// asks user to select PROCESSOR place which returns a place handle (user selects: Global_Processor_Store)

tplace3 _id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false};

// asks user to select BUFFER place which returns a place handle (user selects: Global_ButTer _Store)

tplace4 _ id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false};

// marl<.s each page-instance-holder with the correct page instance (ACflVE NODE IDENTIFIER)

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(ltpage _id),O)),placeid=(ltplace 1 jd),marl<.=" 1 '0 "} 1;

210

Appendixii

Emergence in Active NetwotXs

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(!tpage _id), I »,placeid=(! tplace I Jd),IlUlIk=" I ' I"}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(ltpage _id),2)),placeid=(ltplace I Jd),IlUlIk=" I' 2 "}];

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(Itpage_ id),3 »,placeid=(ltplace l_id),IlUlIk=" I' 3"}];

usestring[GetChangeMarlcingCode{ instid=(List,nth(GetPageInsts(ltpage)d), 4)),placeid=(Itplace I Jd),IlUlIk=" I' 4"}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(!tpage _id), 5»,placeid=(!tplace I Jd),IlUlIk=" I' 5 "}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(Itpage _id), 6)),placeid=(Itplace 1_ id),IlUlIk=" I' 6"}];

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(Itpage _id), 7»,placeid=(!tplace I Jd),IlUlIk=" I' 7 "}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(Itpage _ id),S»,placeid=(ltplace l_id),IlUlIk=" I 'S"}];

usestring[GetChangeMarldngCode{instid=(List.nth(GetPageInsts(!tpage_id),9»,placeid=(Itplacel_id),IlUlIk="I'9"}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(!tpage _id), I O»,placeid=(I tplace l_id),IIl8lk=" I' la"}];

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(!tpage_id), 11»,placeid=(ltplace Ud),IIl8lk=" I'll "}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(Itpage _id), 12»,placeid=(!tplace l_id),IIl8lk=" l'12"}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(!tpage _id), 13 »,placeid=(ltplace I Jd),IlUlIk=" I' 13"}];

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(ltpage _id), 14 »,placeid=(Itplace I Jd),IIl8lk=" 1'14" J];

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(Itpage _id), 15»,placeid=(ltplace I Jd),IIl8lk=" 1'15" J];
usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(ltpage _id), 16»,placeid=(!tplace I Jd),rnarl<:=" I' 16"}];

usestring[GetChangeMarldngCode{instid=(List.nth(GetPagelnsts(ltpage_id),17»,placeid=(ItplaceUd),IlUlIk=" l'17"}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPagelnsts(ltpage _id), IS»,placeid=(!tplace I Jd),IlUlIk=" I' IS" J];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(ltpage _id), 19»,placeid=(Itplace l_id),IlUlIk=" l'19"}];

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(!tpage Jd),20»,placeid=(!tplace I Jd),IlUlIk=" 1'20 "}];

211

Appendixii

I

Emergence in Active Networks

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(Itpage _ id),21 »,placeid=(!tplace I_id),marlr-" I '21"} };

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(ltpage _ id),22»,placeid=(!tplace 1_ id),marlr-" I' 22"} };

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(Itpage_ id),23»,placeid=(!tplace I_id),marlr-" I '23"}};

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(ltpage _ id),24 »,placeid=(!tplace 1)d),mark=" I' 24"}};

II intialises datalog register locations which honse the MEMORY resource values (linked to changes in place: GlobaI_MemoIY_Store)

reglocO:= lOO;

reglocl:= lOO;

regloc2:= 100;

regloe3:= lOO;

regloc4:= lOO;

regloc5:= lOO;

regloc6:= lOO;

regloe7:= lOO;

regloc8:= lOO;

regloe9:= lOO;

regloclO:= lOO;

reglocll:= 100;

reglocI2:= lOO;

regloc 13:= lOO;

212

Appendix ii

Emergence in Active Networks

regloc 14:= 100;

regloc 15:= 100;

reglocI6:= lOO;

reglocI7:= lOO;

regloc 18:= lOO;

reglocI9:= lOO;

regloc20:= lOO;

regloc21:= 100;

regloc22:= lOO;

regloc23:= lOO;

regloc24:= lOO;

11 initialises text file handles for the reading in of custom initial MEMORY, PROCESSOR and BUFFER values.

fhl:= TextIO.openln "lhomelelmsd2/design_cpnlactivenetworklinitmemval.tx!";

fh2:= TextIO.openln "lhomelelmsd2/design_cpnlactivenetworklinitproval.tx!";

fh3:= TextIO.openln "lhome/elmsd2/design _ cpnlactivenetworklinitbufval.tx!";

N:=O;

mem_val:="nu11"~

pro_val:="null"~

213

Appendix ii

Emergence in Active Networks

II mll/ks MEMORY, PROCESSOR and BUFFER values for each instance of Active Node with custom initial values taken from text files.

II initialises places: Global_Memo!), _Store, Global_Processor _Store, Global_Buffer _Store

II this is an optional process not used in simulations. All MEMORY, PROCESSOR and BUFFER initial values are set to 100

while (IN < 25) do (

);

mem_val:= TextIO.inputLine (Ifhl);

pro_val:= TextIO.inputLine (lOO);

buf_val:= TextIO.inputLine (!OO);

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageinsts(ltpage _id), IN»,placeid=(ltplace2 _id),rnark=" 1 ""'(I mem _ val)} I;
usestring[GetCbangeMarldngCode{ instid=(Listnth(GetPageinsts(Itpage _id), IN», placeid=(ltplace3 _ id),rnark=" 1 '''''{ !pro _ val)} I;
usestring[GetChangeMarldngCode{ instid=(List.nth(GetPagelnsts(1tpage _id), IN)),placeid=(ltplace4 _id),rnark=" 1 ' ""{ Ibuf _ val)} I;

N:=(1N+l)

214

Appendix ii

Emergence in Active Networks

II Purpose: continuous loop for the logging of MEMORY resource values ofall Active Nodes.

II Location: Petri Net transition: peIf_t2

II Description: at each pass of the loop the code writes (as one string) the regloc values for all instances of Active Node.

input (t3);

output(t4);

action

II make the string with all the regloc values

Appendix ii

mk _1 := makestring(step()A"." "Amakestring(IreglocO)A", "Arnakestring(I regloc I)A", "Amakestring(!regloc2)A", "Amakestring(lregloc3)A" ,"Amakestring(lregloc4)A", "Arnakestring

(Iregloc5)A", "Arnakestring(! regloc6)A", "Amakestring(1 regloc7)A", ""rnakestring(Iregloc8)A", ""makestring(Iregloc9)"", ""makestring(1 regloc I 0)"", ""makestring(1 regloc 11)

A", ""makestring(1 regloc 12)""," "makestring(I regloc 13)"", ""rnakestring(lregloc 14)"", ""rnakestring(I regloc 15)"", ""makestring(lregloc 16)"", ""makestring(I regloc 17)"", "Arnakestring

(Iregloc 18)"", ""makestring(!regloc 19)"", "Amakestring(lregloc20)"", ""makestring(lregloc21)A", ""makestring(! regloc22)"", ""makestring(I regloc23)"", ""rnakestring(!regloc24);

let

in

end;

/I open file and write one line

val outstr = TextlO.openAppend ("/horne/elmsd2/design_cpnlactivenetwork!log!out.txI")

val a = TextlO.output (outstr,(!mk_I)""In")

val_ = TextlO.closeOut outstr

215

EmeIgence in Active Networl<s Appendix iii

iii. Petri-Net Simulators Reviewed

Name Features Environment
Petri-Net types Components

suooorted
ALPBAlSim High-level Petri- Graphical Editor SunOS

Commercial Nets Token Game Animation Solaris

(academic Petri-Nets with Fast Simulation MS Windows

discount) Time Simple Performance NT

Analvsis
ATtife:. High-level Petri- Graphical Editor Sun

Commercial Nets Token Game Animation HP
(academic Petri-Nets with Fast Simulation Silicon Graphics
discount) Time Simple Performance Linux

Analysis MS Windows

Report generator

C code generator
CPN-AMI High-level Petri- Graphical Editor Sun

Freeo! Nets Fast Simulation Linux

charge PlacelTransition State Spaces Macintosh

Nets Place Invariants

Transition Invariants

Structural Analysis

Services for modular

modelIing

216

EmeIgence in Active Networks Appendix iii

DaNAMlCS High-level Petri- Graphical Editor Java

Commercial Nets Token Game Animation

Stochastic Petri- Fast Simulation

Nets State Spaces

Place Invariants

Transition Invariants

Structural Analysis

Simple Perfonnance

Analysis

Advanced Perfonnance

Anal~sis
Design/CPN High-level Petri- Graphical Editor Sun

Free of Nets Token Game Animation HP

charge Petri-Nets with Fast Simulation Silicon Graphics

Time State Spaces Linux

Simple Perfonnance

Analysis

Interchange File Fonnat
GreatSPN High-level Petri- Graphical Editor Sun

Commercial Nets Token Game Animation Linux

(freefor Stochastic Petri- Fast Simulation

academic Nets State Spaces

purposes) Petri-Nets with Condensed State Spaces

Time Place Invariants

Transition Invariants

Structural Analysi s

Advanced Perfonnance

Analysis

217

EmeIgence in Active Networks Appendix iii

INCOME High-level Petri- Graphical Editor Sun

Process Nets Token Game Animation HP
Designer Stochastic Petri- Fast Simulation Silicon Graphics
Commercial Nets Transition Invariants Linux
(freefor Petri-Nets with Net Reductions MS Windows
academic Time Structural Analysis Java
purposes) Simple Performance

Analysis

Advanced Performance

Analysis

Interchange File Format

Interfaces to workflow

engines, CASE tools,

integrated document

management, process

monitoring
Moses Tool High-level Petri- Graphical Editor Sun

Suit Nets Token Game Animation Linux

Free of Stochastic Petri- Fast Simulation MS Windows

charge Nets Java

Petri-Nets with User-extendable

Time

218

Emergence in Active NetwOlks Appendix iii

PACE Object-oriented Graphical Editor Sun

Commercial PNs Token Game Animation MS Windows

(academic High-level Petri- Fast Simulation

discount) Nets Net Reductions

Placerrransition

Nets Fuzzy Modelling

Stochastic Petri-

Nets

Petri-Nets with

Time

PetriSim High-level Petri- Graphical Editor MS DOS

Freeo! Nets Fast Simulation

charge Placerrransition

Nets

Petri-Nets with

Time
RENEW Object-oriented Graphical Editor Java

Freeo! PNs Token Game Animation

charge High-level Petri- Fast Simulation

Nets Interchange File Format

Placerrransition

Nets

Petri-Nets with

Time

219

EmeIgence in Active NetwOlks Appendix iii

TimeNET High-level Petri- Graphical Editor Sun

Commercial Nets Token Game Animation Linux

(free/or Placerrransition Fast Simulation

academic Nets State Spaces

purposes) Stochastic Petri- Place Invariants

Nets Structural Analysis

Petri-Nets with Simple Performance

Time Analysis

Advanced Performance

Analysis

Interchange File Format
Visual Object Placerrransition Graphical Editor MS Windows

Net++ Nets Token Game Animation

Free 0/ Petri-Nets with Fast Simulation

charge Time Structural Analysis

Simple Performance

Analysis

Supports object hierarchies

220

APPENDIX IV

Emergence in Active NetwOlXs Appendixiv

iv. Case Study Tabulated Results

iv.I. Case Study I

Trace no Active Node HurstvaIue r'value
I e5 0.8189 0.9701

2 e4 0.7984 0.9520

3 e3 0.8648 0.9628

4 e2 0.8936 0.9657

5 el 0.9146 0.9818

6 d5 0.9006 0.9938

7 d4 0.8822 0.9760

8 d3 0.7201 0.9261

9 d2 0.7248 0.9211

10 dl 0.9062 0.9723
11 c5 1.0451 0.9489

12 c4 0.9780 0.9663

13 c3 0.6299 0.8575

14 c2 0.6509 0.8998

15 cl 0.8624 0.9627

16 b5 0.9680 0.9899
17 b4 1.0112 0.9863

18 b3 0.9633 0.9615
19 b2 0.7425 0.9846

20 bl 0.8473 0.9669

21 as 0.9794 0.9828

22 a4 1.0288 0.9801

23 a3 0.9962 0.9743

24 a2 0.8165 0.9732

25 al 0.8398 0.9687

221

EmeIgence in Active NetwOIks Appendix iv

iv.2. Case Study 2

Trace DO Active Node Hunt value r'value
I e5 0.7358 0.9261
2 e4 0.6898 0.9619
3 e3 0.6845 0.9532
4 e2 0.7365 0.9800
5 el 0.8036 0.9813
6 d5 0.6742 0.9700
7 d4 0.6913 0.9146
8 d3 0.4947 0.8364
9 d2 0.5873 0.9284
10 dl 0.7939 0.9877
11 c5 0.6876 0.9738
12 c4 0.5522 0.8096
13 c3 0.7783 0.9012
14 c2 0.5768 0.8273
15 cl 0.7434 0.9626
16 b5 0.6799 0.9449
17 b4 0.5126 0.9045
18 b3 0.5381 0.8842
19 b2 0.5163 0.8537
20 bl 0.5482 0.8183
21 a5 0.6942 0.9479
22 34 0.6596 0.9411
23 a3 0.6765 0.9468
24 a2 0.6511 0.9033
25 31 0.6337 0.9128

222

EmeJgeDCe in Active NetwOIks Appendix iv

iv.3. Case Study 3

Trace no Active Node Burst value r value
I e5 0.7700 0.9736
2 e4 0.8383 0.9580
3 e3 0.8926 0.9789
4 e2 0.8708 0.%70
5 el 0.8834 0.9783
6 d5 0.9176 0.9914
7 d4 0.9126 0.9796
8 d3 0.8025 0.9841
9 d2 0.7125 0.9264
10 dl 0.8656 0.%93
11 c5 1.0063 0.%19
12 c4 1.0057 0.9643
\3 c3 0.6187 0.9406
14 c2 0.8176 0.9720
15 cl 0.8779 0.9787
16 b5 0.9878 0.9751
17 b4 1.0160 0.9701
18 b3 1.0561 0.9508
19 b2 0.7821 0.9568
20 bl 0.8756 0.9779
21 a5 0.9735 0.9893
22 a4 0.9615 0.9835
23 a3 0.9482 0.9898
24 a2 0.8948 0.%92
25 al 0.8629 0.9721

223

EmeIgence in Active NetwOIks Appendix iv

iv.4. Case Study 4

Trace no Active Node Hnrstvalne r'value
I e5 0.7030 0.9888
2 e4 0.7672 0.9889
3 e3 0.7740 0.9894
4 e2 0.8969 0.9673
5 el 0.7898 0.9920
6 d5 0.7358 0.9811
7 d4 0.7188 0.9786
8 d3 0.7908 0.9921
9 d2 0.8372 0.9838
10 dl 0.6771 0.9908
11 c5 0.8021 0.9771
12 c4 0.7969 0.9790
13 c3 0.9329 0.9760
14 c2 0.8605 0.9809
15 cl 0.7009 0.9824
16 b5 0.7526 0.9820
17 b4 0.8570 0.9786
18 b3 0.9356 0.9783
19 b2 0.9381 0.9780
20 bl 0.8579 0.9799
21 as 0.5945 0.9795
22 a4 0.7822 0.9901
23 a3 0.7060 0.9860
24 a2 0.7748 0.9921
25 al 0.8389 0.9797

224

Emergence in Active Networks Appendix iv

iv.5. Case Study 5

Tnu:e DO Active Node Burstvaloe r'value
I e5 0.7038 0.9353
2 e4 0.7193 0.9473
3 e3 0.8329 0.9760
4 e2 0.8209 0.9698
5 el 0.8711 0.9739
6 d5 0.7020 0.9326
7 d4 0.7323 0.9704
8 d3 0.7966 0.8765
9 d2 0.7976 0.8676
10 dl 0.7286 0.9387
11 c5 0.8281 0.9863
12 c4 0.7044 0.9631
13 c3 0.7205 0.9299
14 c2 0.8717 0.9255
15 cl 0.7494 0.9601
16 b5 0.7747 0.9806
17 b4 0.6585 0.9304
18 b3 0.4985 0.8770
19 b2 0.8684 0.9719
20 bl 0.8611 0.9758
21 a5 0.8517 0.9712
22 a4 0.7092 0.9634
23 a3 0.7766 0.9634
24 a2 0.8216 0.9724
25 al 0.8927 0.9733

225

Emergence in Active Networks Appendix iv

iv.6. Case Study 6

Tra£e DO Active Node Burst value r'value
I e5 0.9316 0.9828
2 e4 0.9349 0.9824
3 e3 0.8694 0.9802
4 e2 0.7924 0.9840
5 el 0.7884 0.9576
6 d5 0.8214 0.9671
7 d4 0.7627 0.9550
8 d3 0.8567 0.8652
9 d2 0.7512 0.9048
10 dl 0.7855 0.9615
11 c5 0.8389 0.9654
12 c4 0.7789 0.8956
13 c3 0.6083 0.8504
14 c2 0.6131 0.7901
15 cl 0.7967 0.9600
16 b5 0.9171 0.9727
17 b4 0.8758 0.9865
18 b3 0.6292 0.8659
19 b2 0.5154 0.7209
20 bl 0.7033 0.9259
21 as 0.7858 0.9450
22 a4 0.9213 0.9802
23 a3 0.8162 0.9534
24 a2 0.7060 0.8714
25 al 0.7269 0.9105

226

--

