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Abstract

Any complex system may potentially exhibit unpredicted and undesirable behaviour as a
result of certain combinations of input stimuli. An Active Network, being a
communication network in which user requested operations are undertaken in the
network nodes themselves, is a candidate to exhibit such behaviour. For example,
resource utilisation will be influenced by the specific combination of activities triggered
by the users and may develop undesirable characteristics such as a self-sustaining
profile. Conventional simulation tools do not detect such characteristics.

This thesis proposes a solution based on a Petri-Net model in which the resource
utilisation of the Active Network is abstracted above the link level communication
element. It is then suggested that a certain type of Emergence in resource utilisation may
manifest itself as Self-Similarity. The Hurst Parameter (H) of the resource utilisation
profile for each node in the network can then be used to identify the presence of this
characteristic. The R/S Statistic is used to estimate sets of H values for a range of
different Active Application scenarios. It is subsequently seen that a self-sustaining
resource utilisation profile (termed a “Cascading Effect”) occurs when a significant
subset of the nodes display high values of H.

This thesis takes the view that Emergence in Active Networks is a problem that has to
be approached with a global comprehension of the system as opposed to the
conventional approach of a piecemeal development of solutions. This view is reinforced
by the hypothesis that an Active Network is a Complex System and Emergence is non-
complex self-organisation within it. It proposes that the high-level abstraction of the
Active Network forms a view by which global comprehension can be obtained and is
used for the detection of anomalous behaviour (i.e. Emergence). The key enabler for
self-organisation is proposed to be ‘the resources’ within the Active Network nodes and
hence the detection technique was focused on the utilisation characteristics of these.
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Background

Multimedia is a collection of text, speech, graphics, audio and video formed into
numerous applications meeting the needs of corporate and domestic clients alike. The
progress of the Internet is towards the provision of these enriched services over IP,
which is the defacto standard for fixed infrastructure networks. In conjunction, the
recent rise of wireless data communications has provided significant impetus to the
research of viable technologies providing guaranteed Quality-of-Service (QoS) and
efficient resource utilisation [Kul99]. The intrinsic nature of wireless networks mean
that bandwidth is at a premium in heavily congested airways. Currently, IP struggles
with the legacy of having been originally designed for text-based communications and
with the problem of maintaining backward compatibility with existing hardware.

As the size of the Internet expands from millions of nodes to billions of nodes, the
information richness and capabilities of the current TCP/IP protocol will see its limits. A
current topic of discussion in improving the Internet is the focus on adding Quality-of-
Service (QoS) controls on Routers (to support real-time communications, reliable
distributed multicasting and multi-party interactive communications) [Mar99].
However, as more services are added and deployed on a large-scale, the cost (the major
sink for funds would be the extension of infrastructure and network management) and

complexity of the system will grow rapidly.
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1 Introduction

This chapter will present:

A brief description of Active Networks.

A brief explanation of Emergence.

The contributions made by this work to further the understanding of Active Network
behaviour in Emergent situations.

The strategy undertaken to develop a detection technique for Emergence in Active
Networks.

The idea that Active Node resource usage is linked with Emergent Behaviour.

The key concepts in this chapter are: Emergence, Active Networks, original work, Self-

Similarity, resource usage fluctuations, detection technique, high-level abstract model
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This research project primarily brings together two fields of study in order to present an
interesting problem that would pose significant barriers to the implementation of the
discussed technology.

The first is a new networking concept called Active Networks; envisaged and promoted
by the networking community as a radical alternative to IP (Internet Protocol) networks.
It is an advanced internetworking technology that would provide increased throughput
of multimedia and the efficient usage of bandwidth. Active Networks, however, do
nothing to simplify the complexity of the current Internet structure. The addition of
Active Networking components (as will be shown later in this thesis) would, in fact,
raise levels of complexity.

The second is Emergence, which is the term given to the uncontrolled manifestation of
system-wide structures (good or bad) through the dynamic interactions of individual
system components. Emergence is a topic of high interest to many research communities
including the systems, physics and mathematical communities. It is generally understood
that the term Emergence is the collective definition for system behaviour over and above
what can be practically understood in a complex system. The discovery of Emergence is
proposed as a practical methodology to evaluate complex system performance without

the need to understand every single facet of system behaviour [Gol99].

Both fields, even though thoroughly researched, lack a set of coherent principles,
standards and definitions. The directions of research (in Active Networks and
Emergence) are varied and changeable. In this environment this research project
proposes to merge the two fields and find a practical solution to the detection of certain
types of Emergence in Active Networks. The detection scheme proposed by this
research is one part of the overall design and modelling process; undertaken as a stage in

the development process of a stable complex system for the Internet.

Active Networks promises to be a more radical solution to current Internet woes and
describes the implementation of a ‘user-subscribed customisation of the data
connection’. In other words, the end-users could be given the capability to modify

routers to specifically enhance the application throughput along it’s connection path;
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requesting resources based on the type of application, the required Quality-of-Service
and the network state for the duration of the connection. Active Networks is the term
given to this distributed processing environment that lacks any central management
control.

The lack of central management control is not exclusive to Active Networks. The
current IP protocol owes it popularity to the fact that it provides easy integration to the
fabric of the Internet without the authorisation of any one supervisory body. Active
Networks propose to go one step further and allow users (the clients and servers) the
ability to customise the core of the Internet.

The extent to which the ‘end-users’ are allowed to control the network is a highly
debated issue. Giving individuals Active Capability would open the network up to a
whole host of security, integrity and ‘political’ problems (e.g. possible threats from
hackers, erroneous software creating system wide crashes and users who will insist on
priority for their applications). It is possible that Active Capability, in the future, be
given to accountable organisations (e.g. Internet Service Providers, multi-media
application servers, etc.) with an attached premium or be integrated to software
packages designed for the Internet. Several authentication/integrity steps also need to be
taken to ensure that Active packets are not erroneous or malicious [BroO1]. The
disadvantage of this would be that it is a step away from the original concept of giving
end-users total flexibility in the deployment of Active Applications. Requiring approval
and authentication would also delay the deployment of new multi-media enriched
services. However, many believe that a compromise is essential if it is to become a
reality.

One factor in the success of any new technology is its rapid deployment onto the
Internet. From it’s widespread use in the 1980’s the Internet was a place where new
technologies were expected to be in service in a couple of years from their initial
inception. That margin of development time is constantly being reduced and designers
are under pressure to get their products out onto the market before the technology
becomes obsolete. The Active Network paradigm provides a significant step towards

reducing this development time, through the use of its open-protocol customisable data
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connection capability. It further facilitates the development of new services currently not
envisaged.

The current process of thought for the development of Active Network applications is
founded on improving existing Internet solutions (i.e. to provide certain levels of QoS
and reliability for multimedia services). An example would be the Active Network
equivalent of the Multicast Backbone (Mbone) - a current implementation of IP
multicast protocols. TP multicast schemes, including Mbone, allow a user to ‘broadcast’
packets of information to selected groups of ‘listeners’ using a reduced set of traffic
streams as opposed to multiple one-to-one (normal IP unicast) streams that would
congest the network. Reliable and scalable multicasting would lead to a revolution in the
publishing of data, audio and video across the Internet. Even today we see governments,
businesses, television/radio networks, educational establishments, the music industry
and many other multimedia developers using [P multicast to reach audiences throughout -
the world [Sav96a]. The Mbone is a software alternative to what should ideally be a
hardware-based technology. It provides a scheme of moving multicast packets through
the network by encapsulating them in unicast IP packets (a process called tunnelling).
This ‘workaround’ implementation came about in order to provide backward
compatibility with existing routers and servers [Sav96b]. A hardware solution is ideal as
it would increase the speed and reliability of Multicast connections. Even with today’s
production of routers with added hardware-based multicasting, the goal of reliable and
scalable IP multicasting is not yet reached. The consensus is that Active Networks will
provide the strongest solution to the problem without sacrificing the flexibility to service

other applications [Ten97].

The introduction of Active networks into the arena of emerging Internet technologies
has opened up several issues including security and wide-scale integration with legacy
devices. Few research organisations have concentrated on the little understood topic of
‘Emergent Properties’ and ‘Emergent Behaviour’ in relation to networked systems.
Whilst there are many hypotheses and partial solutions to customised applications, no
universally acceptable models and theories have been formed. It is apparent that while

considerable research work does exist in the fields of Active Networks and Emergent
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Properties, separately, the idea that both are linked has received little attention. This is
understandable since the definition of Emergent Behaviour has various meanings under
varying levels of abstraction. The complexity and broad scope of Emergent Behaviour
(tantamount to the phrases “Emergent Properties”, “Emergent Phenomena” and
“Emergence”, for the purpose of this thesis) have been difficult to breakdown and
analyse in accordance with standard engineering practices. The ‘systems’ approach, of
viewing the problem in distinct sets of sub-elements and providing a progressive set of
solutions, is inadequate [Mar99]. One would require a holistic approach to Emergent
Properties as opposed to a piecemeal systems analysis in order to gain an accurate result.
This does not mean that all details of an Active Network have to be included in the
modelling process. One can selectively include features suspected of contributing to
Emergence in Active Networks [Yua02].

The solution to the problem is by no means a straightforward simulation exercise. The
detection of Emergent Behaviour in Active Networks is complicated by the fact that
there is no set model for this type of network; as major research organisations are in the
process of developing and testing various topologies and distribution mechanisms, all
under the umbrella of Active Networks. This thesis presents a method to overcome the
lack of standardisation by forming a generic modelling/simulation scenario. There is
some agreement as to what is possible through Active Networks and in the type of
services that users want or seek to have in the near future. This forms the initial point of
reference for a proposed Active Network modelling/simulation scenario with which to

investigate the issue of Emergence in Active Networks.
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1.1 Research Scope

There are conceptual differences between existing networks and Active Networks that
are further highlighted by the amount of Complexity within each. Whilst classic
networks can be modelled and analysed by equivalent equations or captured data traces,
a highly complex Active Network requires additional methods in order to understand its

behaviour, evolution and performance.

“Complexity is the property of a real world system that is manifest in the inability of
any one formalism being adequate to capture all its properties. It requires that we find
distinctly different ways of interucting with systems. Distinctly different in the sense that
when we make successful models, the formal systems needed to describe each distinct
aspect are NOT derivable from each other.” - D.C. Mikulecky, Professor of Physiology,
Medical College of Virginia Commonwealth Umiversity.

One objective of this project is to confirm the existence of Emergent Properties in
Active Networks and devise models that would facilitate the detection of them. Another
1s to describe an approach to detect Emergence and ultimately ascertain the practicality
and viability of Active Networks in future networking solutions.

This constitutes a management process with certain complications. Given the fact that
Internet usage is multi-fractal and Active Networks are programmable (they have no
restrictions on functionality and therefore state), the number of possible states a large-
scale network can be in is essentially infinite. Thus an information-modelling approach
or a finite-state-machine (foundations in Control Theory and Systems Analysis)
approach is not applicable [Mar99].

As a background to a possible solution, this thesis highlights key concepts of Emergent
Properties and their identifying characteristics. It follows on to justify Active Networks
as Complex Systems with the capability of producing Emergence, and draws insights
from varied fields of study not necessanly network related:

s Artificial Life
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e Complex Systems and Chaos Theory

s Biological Systems including human neurological and immune response systems
» Multi-Agent systems

o Genetic Algorithms and Artificial Intelligence

e Physical systems

¢ Mathematical equations

Techniques and theories related to Complexity Theory and Complex Systems research
provide the most credible and complete solutions to the modelling of Active Networks
and Emergence, and have directed the course of this research (a discussion of which is
provided in this thesis).

From a System’s perspective an Internet Environment consisting of Active capability
can be viewed as a collection (or cloud) of nodes in between the server and client (i.e. all
clients and servers are at the edge of the network and all the routing/transportation
hardware is in the core). The cloud would provide additional processing of the
connection between the server and client that is dynamic and locally aware. It is a high-
level abstract view of the Internet with Active Network elements distributed within it.
The author proposes that this mode! is sufficient for a functional analysis of Active
capability and its side effects. It also does not promote any particular configuration of

Active Nodes in order to further the progress of discovering Emergence.

Processing & Resources Processing & Rosources Processing & Resources
¥
2
N
Active Crient Y INTERNET AdheSorver

. p
Active Client Activa Server

Figure 1.1.a: The Cloud model overview of an Active Network
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The work contains an investigation of the manifestation of unusual (and possibly
undesirable) phenomena commonly termed as “Emergent Behaviour” [Bar$7] within
generic models of an Active Network and was successful in identifying one in particular,
which the author has termed a “Cascading Effect” in node resource utilisation. In
brief, a “Cascading Effect” is a phenomenon linked to ‘replication’ (for the purposes of
this work) that, once formed within the Active Nodes, continues to sustain itself
(feedback) and grow; the detection of which can only be done post simulation. The
phenomenon is distinguished through a set of empirical results and highlights the causal
input conditions of the Active Network. It might be assumed that one can intuitively
point out potential Active Applications that would always cause such a phenomenon
(i.e. Active Packets that have a replicating function, built into them). However, as
described in chapter 7, section 7.3, not all replication scenarios produce a “Cascading
Effect”. A methodology is devised to analyse the potential of replicating packets to
create “Cascading Effects” in the Active Network model.

The method, once verified, could then be used in future simulations of Active Networks
(extraneous to this work) to identify Cascading Effects, even when there are no
‘apparent’ Active Applications with replicating elements. This would be tantamount to
the detection of ‘Emergence’, or at least one type of Emergence. Detecting “Cascading
Effects” is important for Active Network designers, as this is an uncontrolled and
undesirable situation of resource fluctuations that can quite easily manifest itself through
the code invoked by Active processes. The formal methodology will provide a generic
test bed for legitimate Active processes and a suitable detection mechanism for
undesirable culminations of Active Applications.

The underlying mechanism for the “Cascading Effect” is “Self-Similarity” [Naw95]. A
trace is said to be self-similar when it roughly looks the same on various time-scales (i.e.
scale invartant) and is synonymous with long-range dependence. A “Cascading Effect”
by its very nature would generate feedback loops adding to the existing effect. This
would result in similar patterns emerging when viewed at various time scales. To verify
the “Cascading Effect” hypothesis, the author used the R/S technique to calculate the
Hurst parameter (a well-known estimator value of Self-Similarity) of each data trace
obtained from the simulation.
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1.2 The Project Strategy

The research work strategy was based around the following key sections:

The generic model, which forms the starting point for the analysis of Emergence, had to
be sufficiently succinct and complete; taking into account the relevant features that have
a possible link with anomalous behaviour. Hypothesising about all possible factors of
Emergence would be an exhaustive process if it were not for the fact that the generic
model, itself, provides a reduction in information/detail, and thus reducing the number
of Emergence factors under consideration. Nevertheless, highlighting Emergence factors
was an ongoing task, thus making the production of the generic model an iterative
process.

A review of Active Networks research was performed in order to gain an understanding
of the concepts and possible applications. These applications provided the functional
descriptions for the generic model.

1,22 In i Em nt Pr i nd char, risti

The research delved into areas such as the natural clustering of organisms (e.g. flocking
birds models, human traffic scenarios), Emergence in Complexity, road traffic
modelling, cogntive science, aircraft systems, multi-agent systems and the Internet.
Each field of science described a system with particular Emergent characteristics. The
investigation was primarily directed to draw analogies from the above-mentioned fields
that relate to Active Networks. Appropriate results and conclusions were found from
past research that were used as foundations for the modelling of Active Networks.
Further to this, the research work undertook a critical breakdown/analysis of Emergence
and its various characteristics. The classic makeup of Emergence was identified as

exhibiting several patterns endemic in system-wide behaviour.
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1.23 1 i i meth logies for the high- | lling of
Active Networks

The Active Network was modelled as an abstract view in order to reduce the amount of
detail it contained and to become a generic case for the different Active Network
architectures currently being researched. The modelling process and simulation process
were initially grouped as two separate tasks. However, as the research progressed it was
found that a particular choice of modelling scenario also provided a list of recommended
simulation solutions as part of the package. Thus, the consideration of any modelling
technique had to take into account the availability and ease of use of the recommended
simulators. Suitable modelling techniques included Petri Nets and Cellular Automata
(both being simulation based techniques). It was decided that a direct simulation
approach of the Active Network functionality was more appropriate than attempting to
build a model comprised of mathematical equivalent equations of system dynamics. The
latter technique, being more involved, would have required an unacceptable number of
assumptions to be made and would have been inflexible to an iterative development
process. Where there was more than one simulator for a particular modelling technique,
an evaluation was performed based on the following:

e Availability

e Ease of use and a suitable level of modelling detail

¢ Industry recognition and support

o The ability to graphically layout the model

s Modular design capability and hierarchical decomposition

e Speed of simulations

e Ability to export results as text files

1.2.4 Development of suitable test scenarios for simulation

Once the iterative design process produced a credible example of an Active Network it
was subjected to various input scenarios whereby it was hoped that at least one defining
Emergent charactenstic would manifest as a pattern within the system. Defining

characteristics were initially identified and classified through a review of Emergence
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research. The test scenarios contained parameters that threw the generic Active Network

into unstable situations, from which it was hoped Emergence would be produced.

1.2.5 Obtaining results and identification of Emergence through established
mathematical techniques

The use of a particular mathematical analysis technique is dependant on the type of data
produced by the network and the selected input simulation conditions. Since Emergence
manifests itself as patterns in the system and is reflected in the data, the mathematical
techniques considered were based around pattern recognition. Some of the techniques
evaluated included Fourier analysis, Wavelet analysis, Image Recognition/Enhancement
algorithms and Self-Similarity algorithms. The ‘type’ of result returned from the
simulation also merited careful consideration. For this research, the Resource Usage
Fluctuations in Active Nodes proved to be the most suitable data for analysis, since
they are part of the evidential link between Emergence and the dynamic

interactions within the Active system.
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1.3 Original work

The decomposition and classification of an Active Network based on higher-level
functionality is a crucial concept and is believed to be unique to this project. With this
process it is now possible to abstract-model an Active Network with minimum detail
and to rapidly provide generic models designed as test-beds for Active Applications.
Performance evaluation is further simplified with the use of a universal modelling
theory known as Petri Nets.

The analysis of a large-scale system must contain a preliminary list of
parameters/outputs to be observed; being a sub-set of all possible characteristics that can
be analysed post simulation. Whilst there are methods in Systems Theory to formally
identify these parameters based on preset evaluation criteria they do not extend to isolate
the parameters that are of particular importance when considering Emergent Behaviour.
A systematic approach to identifying parameters of interest is inadequate. A more
‘systemic’ approach, using techniques imported from non-systems related fields (e.g.
Complex Theory), is needed. Using this philosophy the author has noted that Emergence
could manifest itself, in a highly distributed and highly connected network of intelligent
sub-systems (nodes), through the dynamic interactions of those sub-systems. Any
dynamic interaction requires a quantity of resources be allocated to that event, and thus
the key parameter for Emergence Behaviour analysis would be the resource usage
fluctuations in nodes. From an Active Network perspective these nodes are individual
Active routers or any piece of hardware with Active capability. The concepts and
techniques are sufficiently universal to be used in the analysis of other highly distributed
networked systems such as the current Internet, Adhoc Networks, Intelligent Networks,
wireless networks and modular avionics systems for aircraft. The technique would

provide an additional test for critical systems design.
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1.4 Summary of the thesis

L4.1 kgroun

1.4.2 Chapter 1

Introduction

143 Chapter2

Chapter 2 of this thesis provides an in depth analysis of Active Networks including a
brief history and the current stage of development of the area. Particular attention is
given to the functionality of this new paradigm in networking; giving examples of
instances where multimedia applications are improved through Active capability. The
chapter then proceeds to review the current state of Active Network research, giving a

list of organisations that are pioneering in this field.

1.44 Ch r3

Chapter 3 provides a detailed analysis of Emergence including examples of systems
displaying Emergent Behaviour. The chapter defines the terms Emergence, Emergent
Behaviour and Emergent Properties in relation to this piece of research and makes the
distinction between good and bad types (i.e. Emergent engineering and anomalous
behaviour, respectively). A review of current Emergence research is included in this
chapter in addition to any convergence of ideas, noted through the varied fields of study.
The second section of this chapter concentrates on Complex Systems and Complex
Systems research and provides an introduction - defines what a complex system is and
its differences with other types such as chaotic systems. It proposes that Active
Networks be considered as Complex Systems or at the very least as having complex
elements. The chapter also proposes that (ciing previous research) Complex Systems

are likely to exhibit Emergence under certain conditions.
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1.4.5 Chapterd

Chapter 4 describes the modelling and simulation techniques used in this project. It
describes in detail the modelling methodology used along with its advantages over other
methods that were also considered. The chapter then proceeds to describe the
development process of the Active Network model and includes all assumptions,
estimations and configurations made during the iterative development process. The
generic Active Network model is rigorously defined — the development process starts by
the analysis, breakdown and classification of Active Applications into Primitive
Functional Components (PFCs). The components form the foundation for a hierarchical,
modular and ‘top-down’ design.

1,46 Ch rS

Chapter 5 describes in detail the modelling paradigm used in this project - Petri Nets. It
describes the advantages and provides generic modelling examples of system elements
(used as templates in the modelling of an Active Network). The chapter also highlights
the extended capabilities of Coloured Petri Nets; their suitability in describing Active
Packets, the dynamic interactions within the system and the critical resource usage in
Active Nodes. A review of Petri Net simulators is undertaken, which describes the
advantages of Design CPN (the simulator of choice) over others.

The second section of this chapter provides detailed Petri-Net diagrams and a
hierarchical layout of the Active Network model. Also included in this description are;

e A breakdown of the Active Packet header, which includes Active Packet types

(based on Primitive Functional Components)

e Sample input and output files

¢ A mechanism for logging results

1.4.7 Chapter 6

Chapter 6 is dedicated to identifying Emergence within simulated results. It describes
the strategy undertaken and the method ultimately used to detect Emergent Behaviour,

which was preceded by a review of possible pattern detection techniques. Each
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technique was tested for suitability for the Active Network modelling scenario. The
advantages and shortcomings of the R/S technique (“ReScaled-range statistic”), for the
purposes of detecting Self-Similarity in the simulation data, are discussed in detail. This
is in relation to the applicability of the technique to Emergence and Active Networks.
The straightforward procedure in applying this mathematical technique, through
MATLAB software package, is also described. This chapter also establishes a link
between the identification of an Emergent Behaviour and Self-Similarity.

1,4.8 Chapter 7

Chapter 7 provides the main body of results indicating the presence of Emergence. It
describes all input test scenanos/cases and provides graphical representation of results
(derived through the R/S statistic). These results are linked with the initial input
conditions for the simulations, which then can be used in the discussion process. An
analysis and discussion of the results are provided, which include a credible theory on
the causal link between a particular Emergent output and its input conditions.

14,9 Chapter 8

Chapter 8 provides summative conclusions of the results achieved by this work. It
contains the direction undertaken by the research work and provides a discussion of
possible improvements to the detection of Emergence (e.g. additional techniques to
detect other types of Emergence). The chapter also describes an alternative approach to
the modelling methodology used by this project.

1.4.10 References

14,11 Appendices

The appendices contain the MATLAB algorithm code for the detection technique (i.e.
R/S statistic calculation) and the detailed diagrams of the Petri-Net Active Network
model.
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2 Active Networks

This chapter will present:
e A detailed description of Active Networks, their capabilities and potential problems.

o A review of developments in Active Network research.

The key concepts in this chapter are: Active Networks, DARPA definition of Active
Networks, Active Network research

16
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During 1995, The Defence Advanced Research Projects Agency (DARPA) sponsored an
Information Science and Technology (ISAT) study, entitled "Virtual Infrastructure”,
from which a new research initiative, called Active Networks was born [Mau02]. Its
mission was to develop “networks that turn on a dime" [DAR],
The specific goals of the DARPA programme were to achieve the following (as quoted
in their information resources):
o  Quantifiable improvements in Network Services —

o Audio/video synchronisation and full-rate video over multicast a reality

o Fewer retransmitted packets, 100% increase in useful data rate to end

applications

o Architecture based solutions to Future Department of Defence (DoD) needs
o Fault-Tolerance Mechanisms based inside the network
o Multi-Tiered Mobile Security -

o Authentication forms used for dynamic access control

o Separate traffic and administrative functions based on types and policy
Through the above-mentioned specifications it was hoped general wide-ranging
improvements to networks would be made. For example:
o The ability to quickly and safely deploy new services.
e Achieve widespread use without need for standardisation process.
* Be able to upgrade crucial network services to keep pace with network complexity.
o 1o develop new strategies for routing and service provisioning in large networks

that have vverlapping topologies and mobility requirements [DAR].

Active networks are a multi-service Internet architecture, designed for the rapid
deployment of new services and technologies over the Internet (this being the ultimate
goal). An Active Network will consist of routers and switches that can be programmed -
to perform certain functions on packets flowing through them. In contrast, traditional
networks simply provide a transport mechanism for data transferred between clients and

servers with minimum computation (e.g. header processing). As a part of Active
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functionality it is possible for users to inject programmes into Active hardware along a
particular data traffic path in order to modify, store and redirect packets.

‘Nodes’ are the definition given to routers, switches and other network layer devices that
carry Active capability (1.e. the nodes can perform computations on, and modify the
packet contents on a per-user or per-application basis) [Ten97]. This results in a
customisable network that could readily be incorporated into the current Internet
infrastructure, thereby ensuring interoperability with legacy routers and switches
[Ten97].

The fundamentals of customisation of Active Networks are to allow the users to inject
programs into the Active Nodes of the network. There are many varations to this
concept and programmability, which in its purest form is defined to augment the
standard [P packet datagram with Active ‘capsules’ (programme fragments that are
executed at each node that it traverses and have the capability to affect further packets).
These capsules will be loaded onto Active Nodes based on the availability of the correct
resources to open and run the programme, the amount and type of resources requested to
service subsequent packets in an Active Application stream, signature/security
verification, outward-link status and congestion. The Active capsule approach (also
known as the ‘integrated approach’) has advantages of being able the rapidly deploy
services, use generic Active hardware, be easily customised and have increased
information throughput. The flexibility 1s such that Active Nodes can be programmed to
perform muitiple actions/computations on multiple packet streams flowing through them
at any given time. The nodes would also be able to factor the local network
state/environment in its decision process, thus making the actions dynamic.

The less flexible ‘discrete approach’ involves the use of Packet Header Options to
invoke a pre-loaded set of service components (i.e. primitives) from an Active Node
within its Execution Environment (EE). The development of an API styled structure is
necessary to facilitate this execution process. The discrete approach allows system
administrators to maintain control over the programmes that are run on their hardware,
thus improving security (lacking in the integrated approach). Customisation, however, is
limited to a pre-defined set of services that can be built through the primitive
components; present at a particular node at a' given time. This can be augmented,
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however, using a “Downloading on Demand” strategy whereby an Active router can

request any primitive programme component that it lacks from its neighbours.

Current Internet technologies will benefit from the new networking paradigm, as it
replaces several ad-hoc techniques, already implemented to various degrees of success,
with a common networking substrate with benefits of added flexibility and performance
[Wet98a]. Historically, the array of services being offered on the Internet has been met
with limited enthusiasm because the available infrastructure was not efficient. For
example, the current TCP/IP protocol is inefficient for ‘real-time’ communication and in
particular with video. Successful services provide features to enhance the applications at
end-systems [Mar99]. This is in keeping with the “end-to-end argument” of a
communication network — a rationale used in layered system design to place high-level
functionality nearer to the application that uses it (i.e. further up the layered structure). A
system design following the principles of the “end-to-end argument” will not place high-
level functionality in lower layers of the system, especially if such functionality is only
used by a select group of applications [Sal84].

Active Networks re-interprets the “end-to-end argument” to allow high-level
functionality in lower-layered communication devices. This benefits services that can

only be supported or enhanced inside the network [Bha97].
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2.1 Applications of Active Networks

The 1995 DARPA objectives provided the foundation for the development of Active
Applications. Some of the popular services, which will greatly benefit from an Active
network layer within routers/switches (i.e. being researched as Active Applications), are

mentioned below:

2.1,1 Yideo-conferencing and Internet telephony

These are two types of multimedia streaming applications that will use real-time and
multicast services. The applications will be able to reserve resources and bandwidth
through routers, so that streaming is contiguous. IP/Active multicasting will reduce the
bandwidth needed to communicate (from one sender to multiple users) by having the
routers/switches cache the data as well as process acknowledgement feedback [Wet98a].
Internet telephony has the means to be unimpeded by isolated packet losses within a
communication session (e.g. Internet voice applications use sample based coding of the
analogue signal and Adaptive Packetisation and Concealment schemes employed at end-
stations are very good at maintaining a perceived quality for users). However, they are
not capable of concealing ‘burst type’ losses of packets, which result in the significant
degradation of speech quality. In such circumstances Active Nodes can be used to
regenerate lost packets and inject them into the stream [Le00].

2.1.2 Mobile Internet

Notebooks and other mobile IP devices will benefit greatly by services deployed through
Active routers; optimised for wireless transmission. For example, Audio and Video
transcoding and compression routines running on Active base-stations will compensate
for limited bandwidth of RF communications. Including Forward Ermror Correction
(FEC) can compensate for lossy transmissions. Mobile IP devices can access the Internet
at different sites without the need to reconfigure address information [Wet98a].
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2,1.3 Caching and Load Distribution

Web servers would be the main beneficiaries of these services. They would reduce the
amount of wide-area traffic by allowing the Routers to intercept and process repeated
requests from multiple users. By distributing the requests over a number of cache
servers, the network is capable of reducing the web traffic concentration of particular
sections. The services, transparent to end-users, would minimise latency and bandwidth
usage, compared with proxy agents. Today, specialised products such as Cisco's
CacheDirector and LocalDirector perform these same functions as vendor promoted
systems [Wet98a]. With Active networks, the caching can be taken a step further by
having a significant proportion of the web pages dynamically generated within the
caching nodes themselves. This would suggest a scheme of Active nodes that support
the storing and execution of web generation programmes. Whilst in normal caching
hierarchies the servers are fixed, an Active network can dynamically re-position the

caches when necessary [Ten97].

2,1.4 Network management functions

A decentralised scheme of network management will come into being with user end-
stations being the initiators of most of the management operations along with other
applications (the operations themselves being executed on the nodes), thus reducing the

overall network management costs [Mar99].

2.1.5 Distributed sensors

Effective viewing of a ‘composite image’ of a large distributed network of ‘sensors’
requires the fusion and storage of multi-type data within the network (the merging of
data offers significant bandwidth reductions). Active Networks provide this capability
along with the ability to provide multiple user access to each sensor. The viewed data

can also be differentiated based on the customisable requirements of the user [Ten97].
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2.1.6 Security

Active Networks can apply ‘dynamic’ security to the network, which would involve
users and applications being able to apply highly customisable and situational security
policies for each or groups of information transfer streams. Active Routers within the
network can provide authentication, encryption and access control (e.g. of node
resources) for Active Applications at optimal points along the transfer path, which also
benefits the entire Active routing/processing system by ensuring the integrity of the
Active programmes being run in it. Active packets can also be specifically
designed/installed in order to route out and neutralise unwanted/malicious traffic, thus
creating a dynamic response to security threats (i.e. dynamic firewall formation)
[Cam00}.

Security devices, such as firewalls, apply filters based on various fields in IP packets
such as source/destination address, requested service, etc. Active Networks allow the
dynamic programming/updating of Firewalls with filter modules that set permissions,
thus new Active Applications from approved vendors can automatically authenticate
themselves without the need for ‘system administrator intervention’ (i.e. a static security
policy becomes a dynamic security policy) [Ten97]. The security policy can spread
through the network on a ‘need to know’ basis and can ‘actively’ react to any invalid

attempts to access data by changing its policy level [Liu00].

With current Internet schemes many of the innovative network services mentioned
above are possible by using Agents at end-stations (e.g. allowing web servers and clients
to exchange Java applets) and overlays (e.g. the MBone) [Wet98a] [Ten97]. However,
deploying them as a network layer element within routers and switches offers
considerable improvement in functionality and performance.

In general, some of the current requirements of multimedia-enriched applications are
that they be adaptive (i.e. have the capability to change their functional behaviour based
on environmental conditions such as network congestion). Active Networks would
support and enhance these types of applications by allowing the optimal use of network
resources; through the execution of Active code at strategic points within the network
[Yamo00].
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2.2 Active Network Research

Various organisations have been spearheading the research into Active Networks;
specifically defining the enabling technologies and dealing with issues such as node
security, capsule and programmable switch architecture, and compatible applications.

The following is a list of mechanisms, execution environments, operating systems and
test platforms developed, or currently being developed, to facilitate the transportation

and execution of Active Packets through a network:

e ANTS (Active Node Transfer System) was originally devised by researchers at MIT
(Massachusetts Institute of Technology). The MIT team was prototyping an
architecture based on ‘capsules’ and studying the effects of such a system. The
software platform for the architecture is Linux whereas the capsules are encoded
using Java. The capsules use ‘programme language constructs’ to create a
programme, which will invoke built-in primitives within the node. Some of the
distinguishing characteristics of the programme/capsule method are ‘demand
loading’ and ‘component caching’. The MIT system uses ‘demand loading’ to
reference components built into the node, rather than issuing them as capsules.
‘Caching’ allows the use of recently accessed components without the need for re-
loading and verification. All of this is designed to reduce the amount of overhead
within a packet. Furthermore, the capsules have the capability to create a pre-defined
state within the nodes (‘soft state’), which the subsequent packets of a particular
stream can use [Ten97]. The Active Networks Project at MIT was funded through
DARPA and ran from September 1996 to August 2000.

The second version of ANTS is under development at the University of Washington
The ANTS project (ver. 2) aims to design and construct a system in which clients,
servers and capabilities (that are embedded in the network infrastructure) can
rendezvous to provide Internet middle-ware services. The objective is achieved in
three key stages:

0 Investigation and development of software for self-configuring overlay networks
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o Investigation and development of a network service model that accommodates a
heterogeneous network in which nodes have different capabilities
0 Investigation and development of a network service model that allows different

parties to combine their services [Wet98b].

e AIPv6 (Active IPv6) — a mechanism to merge Active Network capability with
Internet Protocol version 6 (Ipv6) [Mur97]. The scheme combines the concept of
Active Capsules with IP packets to provide interoperability in a network with Active
and non-Active elements [Yue03].

¢ The SwitchWare project is research aimed at developing a programmable switch
that would allow digitally signed type-checked modules to be lcaded into the node.

The focus of the research group is the improvement of security on Active networks

by using formal methodologies, identification of the underlying infrastructure and

developing theorems. Security is supported at the programming language level

(SML/NJ) without the need for high overheads, as would normally be encountered

when protection is built into the operating systems of nodes [Smi97]. The

SwitchWare project is a collaboration between the University of Pennsylvannia and

Bellcore Research Labs. The Bellcore group have defined and developed a prototype

Active router that uses a small-scale multiprocessor and interconnections to an ATM

network, using 10 and 100 Mbps Ethernets [Ten97]. Under the SwitchWare project

several sub-projects were initiated:

0 PLAN (Programming Language for Active Networks) — devised by researchers
at the University of Pennsylvania and is a development of software language
constructs used to write executable Active code [Hic98].

0 ANEP (Active Network Encapsulation Protocol) — devised by researchers at the
University of Pennsylvannia, University of Kansas and MIT [ANE].

SNAP - Safe and Nimble Active Packets [HicO1].
SANE 0/S - Secure Active Network Environment [SAN].

24



Emergence in Active Networks Chapter 2: Active Networks

ANON (Active Network Overlay Network) - In 1998 an Active Packet was sent

around the world in 500 milliseconds [Tsc97].

CANES (Components for Active Network Elements) — Georgia Tech. At the
Georgia Institute of Technology researchers are applying Active network concepts to
improve network congestion. The strategy is to give the applfcations the ability to
request useful algorithms from Active nodes (e.g. lossless compression, selective
discard and transcoding) during periods of congestion [Ten97] [Bha98].

SPROCKET - Smart Packet development language {Sch99].

MAUDE: A Wide-Spectrum Formal Language for Secure Active Networks —
Stanford University [Mes99].

JANOS: Java Based Active Network OS - University of Utah [Tul0O1].

NetScript — a language designed to develop mobile agent programmes for Active
Networks that can be dispatched as and when required. The software was developed
at Columbia University and can be considered as the ‘third direction’ in Active
Network research. The NetScript project, apart from developing a programming
language, would provide the structure for Active Execution Environments (EE). The
language would provide the means to script the processing of packet streams,
routing, packet analysis, management functions and signalling [Ten97] [Yem96].
Netscript can be considered as another flavour to Active Networks (i.e. an Agent

based approach as opposed to an Integrated approach or a Discrete approach).

Liquid Software - the development of a suit of mobile code technologies by
researchers at the University of Arizona [Har96].
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e ACTIVATE - ACTIVe nets Test Environment by researchers at the University of
Southern California, SRI International and Metanetworks Inc. [ACT].

e ANCORS (Adaptable Network COntrol and Reporting System) — a collaboration
between SRI International, University of Southern Califomia and Metanetworks Inc.

[ANC].

e ABONE (Active Network Backbone) - a collaboration between SRI International,
University of Southern California and Metanetworks Inc. {Ber00].

e ASP (Active Signaling Protocol) Execution Environment - collaboration between

SRI International, University of Southern California and Metanetworks Inc. [Bra02].
e Smart Packets — a development of the BBN group who is investigating issues of
programmability, data dictionaries and authentication mechanisms related to IP.

Furthermore, they are seeking to improve management and diagnostic capabilities of
IP systems [Ten97] [Sch00].

e Adaptive Web Caching - University of California, Los Angeles (UCLA) [AWC].

* Building dynamic interoperable security architecture of Active networks - University
of Tllinois [Cam0Q].

e Design and demonstration of a scalable high-performance Active Network Node
(ANN) - Washington University in St. Louis [Dec99].

e RCANE: A Resource Controlled Framework for Active Network Services -
University of Cambridge [Men99].

e Tamanoir Execution Environment - Claude Bernard University, Lyon [Gel00].
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2.3 Summary of chapter

In this chapter we have discussed the objectives and research directions of Active
Networks beginning with an initial set of targets being defined through DARPA. What
is apparent is that the research has taken 3 distinct directions (i.e. integrated, discrete
and agent-based) from which several sub-groups/competencies have been created to
tackle problems-areas in Active Networks (e.g. the development of ‘safe’ programming
languages, defining compatible transfer mechanisms, defining code execution
environment, security and network management). The solutions proposed by research
organisations may extend over several of these sub-groups and may rely on the work of
others. What is also apparent is that there is not, as yet, a convergence of techniques by
research establishments. Therefore any modelling and analysis techniques proposed by
this thesis must be generic to be compatible with a majority of research strategies whilst
satisfying Active Network objectives. The development of a generic model requires
insight into Active Networks and their requirements. It does not, however, require a
detailed critique of all Active Network research; hence the inclusion of only a brief
review of prominent ones in this chapter. The examples given for Active Network
applications are based on what is currently ‘out there’ as working technologies or what
is proposed in the near future (the goals are set by user expectations for more cost-
effective multimedia over the Internet). It can be seen that Active Networks provide a
generic solution to a vast majority of proposed technologies, which can be installed and

used immediately.

“I like the idea of taking network intelligence from the hardware and putting it in the
packet. IP is rather passive, but it will take a lot to figure out how you bring order to
something that is so democratic.” - Virginia Brooks, an analyst with the Aberdeen

Group, in Boston {Leo97].

From what has been discussed in this chapter, one can identify 4 possible drivers for
Active Networks:

e The ability for application developers to rapidly deploy new services without the

required process of standardisation between end-systems.
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e The addition of services that can’t be achieved without significant and fundamental
changes to protocols and hardware.

e The enhancement of existing services through user customisation or with next
generation Active Applications.

e The ability for network operators to replace existing ‘intelligence’ within the

network with a flexible common technology.

The biggest issue in the deployment of Active Networks is security. Whilst there are
many Active Network solutions to achieve superior network integrity and security, the
inherent ability of users (and network administrators) to customise the network will
generate several problems including the ‘Emergence’ of unusual phenomena. The large-
scale deployment of such a system, which changes behaviour based on a large set of
variables (pre-determined and unexpected), has management issues that require
sophisticated solutions. These are difficult to solve until there is a consensus amongst

the Active Network community.
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3 Emergent Properties and Complex Systems

This chapter will present:

e A detailed description of Emergence and its characteristics.
¢ An introduction to the concept of Complex Systems.

o A link between Emergence and Complex Systems.

e The justification that Active Networks are complex systems and therefore are likely

to exhibit Emergence.

The key concepts in this chapter are: Emergence, characteristics of Emergence,

characteristics of Complex Systems, Active Networks as Complex Systems
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3.1 Characteristics of Emergent Properties

Emergence is a set of individual interactions that results in a coherent whole,

which cannot be deduced from examining the properties of the individual [Bos99].

Emergent Properties are unexpected characteristics that might manifest themselves in
distributed intelligent systems. Emergent Phenomena and Emergent Behaviour are
essentially the same definition given to a system’s behavioural anomalies that result
from the above-mentioned characteristics.

The ‘system’ in this body of research is an Active Network. In an Active Network, for
each application/task, the processing is distributed among several nodes. The nodes
themselves have decision-making capabilities and are locally ‘aware’ of their
surroundings. Thus we can define them as intelligent. Unexpected characteristics may
show up as self-organised patterns, either within a small-scale (locally isolated)
boundary or globally (i.e. system-wide). They may have the potential of increasing
congestion, fluctuate resource usage within the nodes, fluctuate the smooth flow of
packets and even lock-up the network (i.e. generally reduce the Quality of Service
expected by the user).

Emergence is a theory, which describes the self-organisation of systems that form global
order. This order appears to be well defined and different when compared with
individual component definitions. It is also the mechanism to explain the ‘survivability’
of the system ‘structure’ in the midst of component replacement (i.e. a global behaviour
is sustained even when the underlying components change throughout its lifetime).
Emergence is global behaviour of systems that is ‘non-deducible’ from the underlying
components as well as being ‘irreducible’ to those components [EME} It is also
dynamic and is a product of the evolution of a system (not a predetermined phenomena
identified through the system characteristics).

Some of the following are generalised characteristics and examples of Emergent
Properties. They are evident in a wide range of research fields and can be discovered

through empirical analysis of systems. These characteristics are:

¢ Feedback —the circular effect
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¢ Domino Effect

e Meta-Balance

» Survival and Sameness
o Vortex

s Resonance

3.1.1 Feedback

Feedback is a structure that flows in a loop in a system (i.e. a combination of cause-

effect events that forms a re-iterative cycle). There are two types of simple feedback

structures:

e Positive feedback — feedback that is self-reinforcing/self-amplifying; also known as
the Snowball Effect [Dau00].
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Figure 3.1.1.a: Examples of Positive Feedback
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Figure 3.1.1.b: Dynamics of Positive Feedback
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e Negative feedback - feedback that is self-regulating/compensating, leading to stable
system behaviour [Dau00].

Feedback

-
¢ Sysem I Gupdi )

Figure 3.1.1.c: System representation of Negative Feedback

response
A
target
asymptotic growth
.
time

Figure 3.1.1.d: Dynamics of Negative Feedback

A system that forms feedback loops gives rise to new structures and emergent
properties. Feedback is synonymous with the term ‘adaptation’, whereby the
components have the ability to adapt to perturbations in the system, using the
mechanisms of feedback.

Feedback can be viewed in two distinct ways. The first is a linear progression of the
feedback cycle (i.e. we see the progress of the cycle in time - past, present and future).
We can also see the cyclic movement of the outputs feeding into the inputs (not
necessarily the same inputs that caused the outputs in the first place). In the linear view
the ‘causes’ are always responsible for the ‘effects’. The cyclic view has no such

property. What is apparent is that both views are valid in any given phenomena and are
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interrelated. “A feedback structure is a cyclic structure rolling through linear time.”
[Am94].

the circalar view

/-'_‘R\
4

the linear view
—» 5 > >

past present future

Figure 3.1.1.e: Two distinct views of Feedback

The linear view focuses on the ‘pattern’ that can be observed in the system while the
circular view focuses on the ‘structure’ of the Emergent Property. The ‘structure’ is a
concept. It is viewed at a higher level of abstraction using, as a guide, the interactions of
the parameters in the system. Conversely, the ‘pattern’ is more concrete and is readily
observable depending on the scale of the system. ‘Patterns’ are observable at lower
levels of abstraction [Am94].

“Situations with observable ‘structures’ are indicative of Emergent Properties”

Systems theory states that both views of ‘structure’ and ‘pattern’ are valid for the
analysis of a system, albeit being fundamentally different. The system’s structure is only
apparent when (as mentioned above) viewed at a higher level of abstraction, which
translates, in practical terms, to a model depicting the system with coarse detail. The
same system must be modelled in fine detail at a lower level of abstraction in order to
view the patterns [Am94].

3.1,2 Domino Effi itive f
Also known as a wave pattern, the Domino Effect originated from the way that

dominoes fall creating a wave formation. In this scheme, there exists a circular

‘structure’ as well as the wave-like ‘pattern’. Whilst the underlying mechanism for the
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self-sustained behaviour is positive feedback, the defining characteristic of the Domino

Effect is the advancing wave front [Am94].

domino hits

new domino
new domino
T

—— falls

eeseeeeeeeILLNNRNNNRN0N0

wave front -
Figure 3.1.2.a: The Domino Effect

3.1.3 -Balan

Complex Systems exhibit Emergent Phenomena as ordered structure from disorganised
behaviour. In order for Emergence (i.e. a stable structure) to appear at higher levels of
abstraction (as mentioned-above), the tower-level abstract model must be ‘out-of-
balance’. Thus Meta-Balance is the term given to the seemingly ‘stable’ structure at
higher levels. Emergent Behaviour (or global order) only occurs in a system when it is
pushed out of balance. Both the Snowball Effect and the Domino Effect are examples of
systems in Meta-Balance [Am94].

3.1.4 iv n men

Survival and Sameness refers to the ‘structure’ of phenomena within a system. A
feedback loop, for example, stays the same throughout its existence (structurally) even

though new system components continuously replace the old ones (e.g. in order for the
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wave front to continue, in the Domino system, it must be continuously fed with new

dominoes). The replacement process keeps the structure ‘alive’ [Am94].

3.1.5 Vortex

A Vortex is generated from within the system. It is an active force that binds the system
or a section of the system to an organised existence (an existence not recognised in the
ordinary sense). The ‘hyper-existence’ of a Vortex has the following basic

characteristics:

e The Vortex must be EMBODIED

e The components of the system need to be out of balance

e There must be feedback in the system

e A Vortex cannot be analysed by ‘reductionism’ (i.e. the analysis of individual
components) [Am94].

Figure 3.1.5.a: Computer representation of a Vortex

The difference between a Vortex and any other circular structure is that an active force
is present at the centre of it holding the system in that structure (e.g. a tornado is a
naturally occurring vortex. It appears to have a force at the centre sucking great masses
towards it. This, however, is an illusion created by the circulating masses). Where there
is the possibility of several Vortices, the system will be sucked into the strongest/closest
one, and will remain there until perturbed by some force taking it to the next Vortex
[Am94].
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3.1.6 Resonance

Resonance is a repeating process, much like feedback, but with the added characteristic
of ‘information reduction’. The difference between Resonance and a Vortex is that a
Vortex is an active force that a system will be sucked into, whilst Resonance is a
simplified structure in which the system will be trapped.

sound \ /\

nucrophone I speaker

amplifier
Figure 3.1.6.a: Example of a Resonant system
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The emergence of a resonance frequency

Figure 3.1.6.b: Resonance

Information reduction allows the Resonance to behave as an Emergent filter (i.e. limit
the behavioural characteristics of the system to the boundaries of the resonant
behaviour). With a Complex System, there may be millions of individual components
behaving independently of each other to satisfy their individual objectives. Every single

component is an undetermined variable or group of variabies. This does not mean,
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however, that any Emergent Property contains millions of parameters and detail. Most
often, a Complex System will produce simple patterns in which it will be trapped. This
would imply that an Emergent structure, which functions as a resonant behaviour, is also
well defined [Am94).
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3.2 Emergence Research

What is perhaps surprising is that known circular patterns in nature, physics, etc. exist
that can be readily extended to other fields. For example, the characteristics of waves are
near identical in the perspective of Radio waves and Ocean waves. The same food-chain
structures emerge in widely different Eco-systems [Am94].

Emergent phenomena may appear differently in different systems, however, they share
commonality through the above-mentioned characteristics.

Not all Emergent Properties are detrimental to the system. ‘Emergent Computing’ is one

area where designed Emergent Behaviour adds value to the services offered by a
Network [BusO1].

The following diagram depicts, succinctly, the broad range of research topics associated

with Emergence.

SYSTEM DVMAMICS

CATASTROPNE  SELF.ORGAMIZED 3
THEORY CRIMCALTY
DYMAMICAL

sener svsrens TS e NONLINEAR DYNAMICAL
EoRY sacray SYSTEMS (NDS)
GEOMETRY CHAQS THEORY
ggHgEngEMMTER COMPLEX ADAPTIVE §:f,5 g:ﬁiﬁ::ms
PHYSICS SYSTENS (CAS) ;
EVOLUTIONARY STENS (C. SYSTEMS
BIOLOGY
CYBERNETICS LU OHARY Pt
\ SYBTENS BOGLEAN NETWORKS
AUTOPOIESS GENETI: ALGORITHMS
INFORBATION
THEDRY NTELGENCE > COMPUTATIONAL
aucorTviac # THEORY
COMPLEXTY NEURAL NETS

GAME THEORY  SYKERGETICS

FAR-FROM-EQUILIBRIUM
THERMODYNAMICS

Figure 3.2.a: Mathematical and scientific roots of emergence (Jeffery Goldstein)

As can be seen from Figure 3.2.a the most focused field of study that links through to
Emergence is Complex Adaptive Systems. The theory of ‘Complexity’ plays host to a
large number of scientific and mathematical fields, each striving to identify the
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characteristics of Emergence, thus acknowledging a link between Complexity Theory

and Emergence Theory [Gol99].
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3.3 Characteristics of Complex Systems

The definitions of ‘Complex Theory’, ‘Systems Theory’ (a relatively established field)
and ‘Chaos Theory’ (less established in the way of applicable resuits) are closely
interrelated, thus making any distinction between them difficult and only valid when
considering a particular system (as is the case in this work). In a general sense, Systems
Theory covers simple-systems exhibiting simple behaviour. Chaos Theory studies the
ability of systems (simple or complex) to produce complex/chaotic (i.e. unpredictable)
behaviour over long periods [Cru90]. It forms one part of Complex Theory
(‘Complexity’). In contrast, the section crucial to Emergence is the study of Complex
Systems with overall ‘simple’ behaviour. Complexity of this form is the ‘middle
ground’ between ordered systems and Chaos [Cru02].

It is easy to understand why the author and others consider Complexity to form the
obvious choice for the analysis of Active Networks. Active Networks (and any other
large-scale network such as the Internet) have, or propose to have, millions of
heterogeneous nodes, which would be impossible to analyse in terms of simple feedback

cycles (a key sign of Emergence in systems modelled under Systems Theory).

The global structure of the system comprises of many local interactions between
individual components. The global Emergent Behaviour resulting from the interactions
exerts influence over the behaviour of the individual component in a circular manner.
This keeps the system in that particular Emergent structure, whether it be a Vortex or
Resonance [Am94].
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Figure 3.3.a: The Global Emergence in Complex Systems

A Complex System has:

¢ Numerous independent components

¢ Components that interact locally and numerously

e Overall giobal behaviour that is independent of the internal configuration of
components

¢ Overall system behaviour that is well defined

¢ Evolutionary Behaviour

3.3.1 A Complex System consists of numerous independent components

An important feature of individual components is that they exist independently of each
other and their behaviour is due to independent decision-making. The components are
‘wholes’ capable of existing on their own. Thus a Complex System is a whole built up

of wholes.
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This is partly true in the case of an Active Node, which can exist by itself but is
functionless without the rest of the network [Am94]. However, the ‘Active’ element (i.e.

the intelligence) of such a node may meet this criterion.

3.3.2 nents interact locall he interaction mer

In order for Emergent Properties to exist in amounts that can be observable, there should
be numerous local interactions. In complex communication networks this is
accomplished by having a varied number of packet types, simultaneous packet flows,
multiple routes to destinations and a general high interconnectedness.

In networks such as the Internet, direct node-node interactions are confined to ‘local
space’. Any other connection (e.g. source-destination connection) is achieved through
the global structure and not by a direct link (i.e. a virtual connection is made using
several nodes, traversing several sections of ‘local space’ within the network and with
several possible routes).

High connectivity is also likely to exist in Active Networks. Emergent Behaviour would
result if an event (anomalous or otherwise), created in local space, propagates to others
as a ripple (a Domino effect). The ripple is facilitated and amplified through the high
interconnectedness of the network and ‘piggybacks’ on the normal source-destination

communication process [Am94].

333 ral al behavi is in ndent he internal str f th

Similar Emergent Behaviours can be observed in a system that is independent of the
processes that would be involved in achieving them. It is also possible that completely

different systems will exhibit the same Emergent Property (e.g. waves) [Am94].

3.3.4 Oversall behaviour of the system is well defined

Viewing the Emergent Phenomena by itself, disregarding the individual components and
much of the low-level detail, it is possible to note that the global structure conforms to

simple rules (possibly mathematical rules) and behaves in an exact manner [Am94].
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3.3.5 volution in Complex m

Evolution in Complex Systems is based around Darwinian concepts. Complex Systems
have the ability to apply ‘Natural Selection’ to processes (i.e. “survival of the fittest”).
Darwin viewed organisms as perpetual machines (i.e. staying alive long enough to make
a copy of themselves and die). Complex Systems, however, are more involved but
components within the system do possess the Darwinian characteristics of surviving for
the completion of their objectives. Any processes that fail to complete will be weeded
out of the system (a simple filtering process), and an evolutionary landscape will
develop as the system progresses. Complex Systems also have an interesting feature of
competiion among components for limited resources. This makes the evolutionary
landscape dynamic and adds another dimension to the fitness criteria and objectives of
components. This breeds new ‘intelligence’ and ‘creativity’ and exposes the system to

Emergent Phenomena [Am94].
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3.4 Active Networks as Complex Systems

In order to analyse Active Networks it is helpful to classify the system in broad terms so
as to focus further research. The following text will seek to show that Active Networks
fall into the category of Complex Systems with which Emergent Properties are
commonly associated.

The criteria mentioned in the previous section apply to large-scale computer networks
(Active or otherwise). Networks of an Active nature will add another dimension to the

complexity because of their inherent programming capabilites.

The idea that Active Networks will exhibit Emergent Behaviour is further strengthened
by the following factors (classified by the author using available research on Active
Networks):

e Distnbuted processing architecture

+ In-built intelligence and self-awareness

¢ Local network awareness/feedback loops
e Lack of central management control

e Application level organisation

o Adaptation and evolution

e Memory

¢ Limited resources and competition

Each Active Node would have the capability to process a unique/distinct task or a
particular portion of an entire application - Active Applications may acquire several
nodes on the source-destination path to process a particular task (e.g. for a reliable video
stream). Thus the application acts as task manager; splitting, replicating and distributing
programme components to various Active Nodes. Since a single node might be unaware

of the full application programme/functionality, it will not have a sense of the final
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outcome. Thus any Emergent Behaviour that can result, globally, cannot be foreseen or

prevented by any one node.

3.4.2 In-built Intelligence and Self Awareness

All Active Nodes will have a processing core along with memory to store and run
programmes, Furthermore, they have the capability to identify the processing required
on a packet, based on the current local network conditions (e.g. network congestion),
requirements of the packet and it’s own resource status. Intelligence and autonomy are
strong contributors to Emergent Behaviour. In addition, each node would be likely to

have self-diagnostic capabilities.

3.4.3 IN rk n

It is proposed that an Active Node has the means to gather information about its
surrounding nodes and links (e.g. resource usage, size of input/output queues, link
congestion). Local network ‘awareness’ will manifest itself as information feeding back
to Active Nodes through Active Packets (as a primary or secondary objective of an
Active Packet). Active Nodes would then act on that information according to pre-set
rules and procedures. As opposed to ‘Intelligent Networks’, Active Networks do not
possess nodes that are capable of initiating intelligent processes. In practical terms,
Active Packets/Applications form the creative force behind node ‘awareness’, which is
highly dependent on the requirements of the application. Irrespective of the underlying
mechanism, an Active Node will have the capability to store information and become
‘aware’ of its surroundings. It can take actions, based on this perception of the network,
in the servicing of applications. A feature of this would be the formation of local
feedback loops (affected by local network conditions), which would contribute to
Emergent Behaviour {Am9%4].

3.4.4 Lack of Central Management Control

Control of Active Nodes is dependent on their internal instructions and on the code

carried within Active Packets. The autonomous behaviour of individual nodes and the
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lack of knowledge of the final outcomes will result in nodes behaving normally, in local

space, whilst contributing to global Emergence.

3.4.5 Application Level Organisation

Even with the presence of autonomous behaviour within the nodes, groups of them

could essentially co-operate on a level that corresponds to a specific application (i.e.
Active Nodes may organise along the packet source-destination path to provide better
Quality-of-Service). This type of co-operation is not visible to the individuat nodes, but
is visible to the end-users as improved service. The ability of nodes to organise, without
being ‘aware’ of the fact, is an Emergent Property, irrespective of the existence of a
controlling element (i.e. the application). The focus of this thesis is the unexpected
collective self-organisation of nodes. In such a situation applications would still form as
expected, however, the influencing factors are such that the combination is potentially

detrimental and may not have co-operative behaviour.

3.4.6 Adaptation and Evolution

Active Networks can be defined as adaptable and evolutionary networks. This can be
perceived in several ways. For example, the network space is dynamic and changing in
terms of the addition and removal of nodes; a failure in sections of the system results in
redundant components taking over. Active Nodes, with their local ‘awareness’, can
easily adapt to the changes in the structure of the network. Further to this, an Active
Node would have the capability to adapt the processing of packets depending on the
network state (e.g. network congestion, node resources, etc.).

“The (Active network) programming abstraction provides a powerful platform for user-
driven customisation of the infrastructure, allowing new services to be deployed at a

- faster pace than can be sustained by vendor-driven standardisation processes.”
[Ten96].
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The discrete approach of Active Networks achieve customisation through ‘plug-in
extensibility’, which is a technique for the loading of code that is pre-defined and is an
abstract prediction of future needs. This may not be sufficient in establishing a true
evolutionary network, and in the future we may see the extension of Active Nodes
through the dynamic loading of code, which is customised and updated on demand
[Hic00]. Evolution would add a further element of unpredictability to the behaviour of
nodes and would contribute to Emergent structures not envisaged originally.

347 Memory

As an Active Node is aware of its surroundings, itself and the application passing
through it, it has the potential to retain details within node memory (e.g. previous packet
type, packet number processed in a stream, congestion states, queue lengths, etc.). Any
details retained from previous actions and events constitute ‘memory’, and will
contribute to Emergence within the network. Furthermore, an Active Packet may be able
to reserve node resources in order to service further packets (from a single application)

traversing the node.

34,8 Limited Resources and Competition

The Internet has limits to the size and capabilities of resources (i.e. link bandwidth, node
processing power, memory, etc.). It is possible that an Active Application will contain
resource-usage maximisation algorithms. Applications using Active technology will
compete for resources within the network based on a scheme of apportionment and
priority. This competition will lead to a dynamic, evolutionary landscape (as mentioned
previously), thereby affecting the ‘fitness’ of one application over another. Emergent

Properties are likely to form as a result of this additional complexity.
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3.5 Summary of Chapter

This chapter attempts to highlight the natural link between Emergent Phenomena and
Complexity Theory by citing several exemplary points and references. It is proposed that
the key features that would naturally manifest in Complex Systems are, in fact, Patterns
and Behaviours of Emergence. This reduces further research work to the conceptual
understanding of Complex Systems and key results. The chapter goes forward to explain
why Active Networks should be considered as Complex Systems and therefore be a
perfect candidate for modelling (for the purpose of observing Emergent Behaviour).

As can be seen from Figure 3.2.a, Emergence research is varied and highly topical.
Different research institutions delve into Emergence analysis through different area of
expertise and different modelling paradigms. It is not the intention of this chapter to
provide a detailed description of individual Emergence research projects. However, this
chapter attempts to extract some commonality by focusing on generic Emergent
characteristics that might be encountered in research work.

Instances that can be identified as Emergence are varied (possibly infinite in number)
and this chapter may not have included all forms. The examples given are distinct
pattemn manifestations within a particular system. These patterns are useful for global
system analysis because they are observable and provide symptomatic evidence of
system anomalies. Much of the focus for the Emergence detection process, introduced
by this research (and by other research projects), is based on observing patterns in
various system dimensions (i.e. various observable criteria) [KulO1].

The discovery of a system and its capabilities is possible through a broad range of
analytical techniques and competencies. At one end, systems can be understood through
the analysis of contributing components and localised interactions. At the other extreme,
localised components, properties and interactions are insufficient to explain global
behaviour. Most systems lie between these two extremes and require a balanced
approach to the modelling process in order to comprehend system dynamics.

Emergence is sometimes seen as an important transition device for the heuristic
explanation of system behaviour, until the knowledge of such a system is complete and
the laws/principles governing anomalous behaviour are fully extracted. This view is

questioned by several researchers who believe that Emergence is a unique facet of
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complex system behaviour, System non-linearity would result in an unending
‘Emergence of Emergents’ [Gol99]. Therefore, a full comprehension of a system that
includes all anomalous behaviour may not be possible.

It is worth noting that irrespective of the arguments, the importance of identifying

Emergence is not diminished.
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4 Modelling and Simulation

This chapter will present:

e A description of the strategy employed for the modelling and simulation of an
Active Network.

e A detailed description of the high-level abstract Active Network model, including all
assumptions made during the development process.

e A description of the Active Applications used to develop the model and the process
by which they were incorporated — the development of core functional processes

also known as Primitive Functional Components (PFCs).

The key concepts in this chapter are: high-level abstract model, Active Applications,
modelling assumptions and features, PFCs
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4.1 Simulation/Modelling Strategy

The current trend in research into Active Networks has been to define and implement
several different topologies and communication protocols, independently or
collaboratively, by various institutions. While this explores, in detail, all possible
scenarios and manifestations of Active Networks, there exists little in the way of
consensus and standardisation. Thus, the variation in Active Networks currently being
considered (and to be considered in the future) presents itself as a problem when
choosing a suitable network with established standards. In contrast, the current Internet
uses TCP/IP, which is the established protocol, and hence the research work into various
aspects of performance analysis is numerous and developed. To circumvent this problem
it was decided that a suitable high-level low-detail model/simulation be created, in the
hopes that it can be used in an efficient manner to discover Emergent Behaviour (albeit a

unique example of Emergent Behaviour).

The basis of the high-level simulation is the development of a generic model. This
model would contain little detail of the manner by which the communication process
occurs (i.e. Active Packet transport mechanism) and of the specific network
configuration. The lack of detail is advantageous since the resultant simulations serve as

‘indicators’ of network behaviour.

Developing a generic model serves several needs:

e Provides a template for future detailed modelling of Active Networks

¢ Summarily proves the existence of Emergence and Emergent Properties

¢ Locates possible trouble spots and gives direction to the future detailed investigation
of an Emergent Property

e Avoids analysing results obtained from large complicated models of Active
Networks, without an idea of the Emergent Behaviour present within it

* Provides a systematic approach to the problem

* Provides a framework for the incorporation of future Active Applications and

viewing of their consequences on the network
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Acquire adequate generic behaviour to universally represent various Active Network

research paradigms

The modelling strategy, created by the author, involves the discovery of a range of

Active Applications that encompass the entire capability of an Active Network. Once

these applications are noted, they are broken-down into ‘Primitive Functional

Components’ (PFCs). An Active Node can be modelled using these primitive

components (and not much more), whilst retaining node functionality allied to the

servicing of applications. What are important are the functional qualities of these

components and not their detailed execution processes within each node (which can be

disregarded).

The advantages of this approach are:

Top-down approach — can be started from simple user requirements of Active
Applications

Ali applications are a combination of one or more primitive operations/components
Can incorporate future applications

Independent of any specific technologies or protocols

Suitable simulators are assessed and implemented quickly
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4.2 Static-Node simulation

The static node simulation scenario used in this project comprises Active Nodes being
placed in a pre-configured pattern to form a network. This method offers a
straightforward approach and closely adheres to the application of Primitive Functional
Components in generic modelling. An Active Node is depicted as an element pre-
programmed with all the functional components, which are individually activated
depending on the type of packet that passes through it. Note that in a high-level abstract
simulation the details pertaining to the method of distribution and execution of the
primitive programme components (i.e. as a part of the Active Packet stream or pre-
loaded into Active Nodes) is inconsequential.

The overall network topology is based on the Ohira-Sawatari deterministic model,
[Ohi98] which was used to describe Emergent Network Traffic dynamics [Sol01].

A bi-directional link

An Active Node

An End-station with
transmit and receive
capability

Figure 4.2.a: Ohira-Sawatari model adapted to Active Networks

The network topology is a simple, scalable representation of the Internet. It provides
multiple connections from end-station to end-station (i.e. multiple paths for packets to

take when travelling from source to destination). Whilst not technically an accurate
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representation, it provides a comparable structure to the Internet (with Active Nodes)
when viewed at a high-level abstraction. It is expected that the high degree of
connectivity would give nise to Emergence; in particular as structures formed by

feedback.
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4.3 Defining Characteristics of the Active Networks model

General observations on Active Networks were made as a pre-cursor to the high-level

model-building task. The following list details these observations, which function as

bounds for the modelling paradigm. The list consists of known truths about Active

Networks, assumptions made of the model and the justifications for these assumptions.

The list also mentions the modelling considerations made with respect to there being

Emergent Behaviour within the system.

431

43.2

433

434

There are two fundamental types of Active Networks which are being

considered by this thesis:

e Capsules - networks with Active packets that carry programme code
(‘capsules’) to be executed in Active nodes.

e Programmable Switches - networks with Active packets that carry ‘trigger
bits’, which call and execute pre-loaded code within Active nodes.

The generic high-level model will inherently cater for both schemes. The

features of the generic design will consider only the type of code being executed

in a node, at a given time and location, irrespective of how this code-block came

1nto use.

All possible Active services and functions can be broken-down into Primitive
Functional Components. The generic high-level model will seek to model Active
Applications as these components or as combinations of these components - a
substitute to modelling Active Applications with formal definitions. This gives

independence from end-user requirements, applications and services.

All Active Packets will be typed based on the primitive functional components

they invoke.

Packets have a limited lifetime. Hence, a sustained pattern within the network

has an abstract view, and involves several Active Packets/streams during its
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43.5

43.6

43.7

438

439

lifetime (i.e. the abstract nature allows it to maintain structure and travel
throughout the network, however the underlying Active Packets may not remain

the same).

All “intelligence’ and decision-making activities will be focused within Active
Nodes.

Packets are responsible for the dynamic progression of the network and the

development of Emergent Phenomena.

Packets do not interact with each other directly. Indirect interaction is only
possible though an Active Node.

The movements of the single packet are deterministic. Several factors influence

the path of an Active Packet. These are:

o Source and Destination end-stations; as applicable with standard routing of
packets within a network.

¢ Congestion on the outward link.

e Lack of proper resources at current node — the node would re-route to
another containing the proper code modules and/or adequate resources to
process the Active Packet.

o Packets dropped due to the expiry of a ‘“Time-to-live’ counter.

e Last node’s address — not allowing the packets to reverse course without

being modified by an Active process.

The simulation process would initially consider a network made solely of Active
Nodes, as it would ease the development of the simulation environment.
Emergent Behaviour would be in its purest form. It is assumed that Emergent
Behaviour is just as likely to occur in hybrid systems containing Active Nodes
and normal routers. Emergent Phenomena are independent of the underlying

nodes (i.e. the same ‘structures’ can emerge from different network
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43.10

43.11

43.12

43.13

configurations), are capable of traversing the network and can encompass small
or large sections of the network without the loss of their characteristic
‘structure’. It is therefore feasible to assume that hybrid systems are equally
capable of developing the same Emergent Behaviour. However, the Emergent

Phenomena indigenous to hybrid systems are not considered for this research.

For large-scale simulations of a particular network, the packet flows can be
considered as random. 1t is assumed that for a high-level abstract simulation the
routing information of individual packets is less important when trying to view
large networks globally. Thus, only the functional capabilities need be included
in the packets. The random path of packets is based on the analogy drawn
between Active Networks and Complexity (simple patterns and structures occur,

as Emergence, in complex and highly random systems).

An Active Node has limited resources (i.e. limited input/output queues, memory,
processing capacity and the maximum number of concurrent processes).
Furthermore, the node may limit the amount of resources allocated to each

process depending on the dynamic conditions at the time of allocation.

Active Packets, depending on the application, can retain resources in the current
node as it passes through (the concept being referred to as ‘history’, ‘imprint’,
‘memory’ and ‘trace’). This process is characteristic of lead-packets reserving
and conditioning part of the node to process follower-packets (all part of a
homogeneous stream). An Active Packet can have an ‘imprint’ on a node
depending on:

e The resources it calls for

e The time limit for the resource allocation

For the purpose of modelling Active functionality with ease, an Active Packet is
considered as an entire Active Application session, consisting of a combination

of Primitive Functional Components. One can think of an Active Packet as an
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43.14

43.15

application stream (e.g. an Active video/audio stream). For the purpose of this
project, the high level model combines all actual packets of an application
session into a high-level abstract ‘ Active Packet’ without loss of functionality.

Each End-station injects one Active packet into the network for each simulation
run (i.e. the analysis is of the simulation of a ‘single shot’ of Active Packets
interacting to form global patterns and effects). Note that an Active Packet is a
complete application. Thus the model simulation considers the interaction of
only one set of applications simultaneously injected into the network. This
simplifies the simulation and reduces the number of possible factors influencing
a possible Emergent effect. The data analysis would therefore be able to offer a

clearer understanding of the underlying permutations that caused such an effect.

In order to accurately depict resource usage fluctuations the Active Network
model contains 3 resource types: “MEMORY”, “PROCESSOR” and
“BUFFER”. An Active Packet requires all 3 types of resources. MEMORY and
PROCESSOR resources are fairly obvious needs of an Active Packet. BUFFER
resource is the term given for the Active Packet’s input queue resource

requirement.
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4.4 Defining Generic Model Applications and Primitive Functional

Components

441 ibl i lication

As part of the modelling strategy mentioned above, this work attempts to define a set of

primitives as the foundations for the development of Active Network model. The initial

step in this process is the collection and analysis of a representative sample of Active

Network Applications (both predicted and/or implemented). These applications are

listed below:

Reliable Scalable Multicast - a group of Active switches and routers maintain a set
of TCP connections for reliable data replication. Also involved in the process is a
data caching element within each Active node.

Video and Audio Transcoding [Mar99] - a digital signal of one standard is converted
into another by an Active device.

Merging of multiple remote sensor data — used in telemetry applications where a
single Active Node manages multiple data sources [Ten97].

Storage of status information — for applications such as distributed network games.
Dynamic generation of web pages [Ten97] — an Active node capable of storing and
executing programmes that generate web pages dynamically and on demand.
Dynamic distributed caching [Ten97] — web cache servers in an Active Network that
can be dynamically repositioned.

Distributed network control [Mar99] [Raz00] [Ps099] - e.g. supporting optimised
routing E;lgorithms.

Quality of Service (QoS) filtering for multimedia streams — e.g. consider a source
feeding a single stream of multimedia to multiple heterogeneous receivers. The
streams run through several routers and switches in a hop-by-hop manner. The QoS
feedback commands generated at each node, at each hop, can burden the source with

considerable processing. Using Active Nodes along the return feedback path to
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merge multiple QoS feedback can reduce bandwidth usage. It may also be possible
for Active Nodes to process the feedback and take decisions autonomously.

Support for application aware Anycast — a source needs only to contact the nearest
Anycast group [Kat00].

Application aware local link FEC (Forward Error Correcting Code) implementations
[Sto00] — Active Nodes sensing communication links with poor performance can
provide additional error correction bits for packets traversing those links. This is
more efficient than end-to-end error correction since the packets have additional

overhead only on the required links.

4.4.2 Primitive Functional Components

The representative sample of Active Applications was systematically decomposed into a

set of core functions. As it happens, it was possible to identify these core functions

independent of any user data, source/destination values and the type of service provided.

These Primitive Functional Components (PFCs) extracted from the above-mentioned

applications are:

Data Replication

Data Fusion

Data Generation

Data Transformation
Global State Maintenance

Network Control Processing
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4.5 Mathematical Solutions verses Simulation

Some research suggests that it may be possible to characterise the Internet or any other
large-scale communication network using mathematical techniques. In fact, there exists
a significant body of research where mathematical techniques have been used to model
network dynamics. For example, an approach is adapted from fluid flow models and use
Stochastic Differential Equations to describe the behaviour of packet flows and node
input/output queues. Ordinary Differential Equations are obtained from the Stochastic

set, which then can be solved numerically [Yua02].

As an alternative, there exists research effort to model large-scale networks with

discrete-event simulations. The advantages of simulation over mathematical approaches

are:

o They are capable of capturing significant detail and behavioural effects of a network
(in finer granularity when compared with mathematical models) [Yua02].

e [t is likely that a simulation model will exist for a particular network (with specific
protocols and mechanisms), rather than a mathematical one [Yua02].

e Ability to capture complex behaviours and to view global behaviours with relative
ease.

o A large quantity of parameters can be accepted.

The disadvantages are:

s The execution of discrete-event simulations is CPU intensive and may be limited by
the hardware and software requirements of the simulator [Yua02).

e In computer-based simulations parallel and distributed flows of information are
handled concurrently, which is a pseudo-parallel techmique. Although this works
well, it is not parallelism in the truest sense.

e The simulator is capable of processing a number of concurrent tasks. This is

achieved by means of discrete time steps. True continuous simulation is not
possible. All tasks, which are intended to be run on the simulated network, are

broken into events. The progression of the simulation is broken into discrete time
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steps, and all events pending at each time step are executed together. The order of
execution, within a single step, is irrelevant since it is considered as an instance in
real time. Time progression (from which the progression of the simulation is
achieved) is equivalent to the progression of time steps. The event and time step
method is commonly used in many pseudo real-time simulators to achieve
parallelism and multiple task execution.

¢ In order to get the truest possible picture, the modeller would incorporate as many
parameters as possible. However, there is a risk that unnecessary detail would have
to be included even when the modeller is only interested in a few (an over complex
model would demand more hardware resources and more time to complete).
Mathematical models, if found, would only contain the key parameters for an
accurate analysis.

e There is a significant problem in obtaining, analysing and comprehending the results
of discrete-event simulations. In order to gather results, probes may be inserted into
the simulation, and the insertion points are selected based on the modeller’s intuitive
grasp of the system under simulation. A large collection of probes could have an
impact on an accurate simulation (e.g. hardware and software limitations). Discrete-
event simulations also tend to generate large data sets.

¢ In order to understand the cause behind an ‘observed’ Emergent Phenomenon, one
might need to speculate and re-animate the events in the exact manner in which they
occurred. Since it is possible to arrive at the same defined Emergent Phenomena
through several different processes and interactions, the re-animation process must
be carefully executed, if at all possible. In contrast, mathematical models themselves

offer explanations to various observed phenomena.

There are considerable advantages in employing mathematical models, but the initial
steps are often difficult and the result produced maybe intractable. Discrete-event
simulations are easier to handle, but obtaining comprehensible results often proves to be
difficult. As can be seen, the direction taken by this research was to apply a discrete-

event simulation technique that follows on from the development of the specifications of
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the generic model. This was applicable in this situation as it provided the best possible

means to detect an unforeseen anomaly.
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4.6 Summary

This chapter has outlined the modelling strategy implemented in this work along with
the considerations and assumptions made in the development process to facilitate the
manifestation and detection of Emergence. The model 1s a high level abstract depiction
of the Internet, which exclusively displays Active Nodes and their functionality. It is
proposed that for the purposes of Emergence detection this model is adequate and would
cater for most Active Network schemes currently being researched. The genenc low-
detail visualisation of an Active Network within the Internet is a concept believed to be
unique to this work and forms the primary analysis of the system.

The chapter goes on to describe Active functionality/applications being reduced to
primitives in order to simplify the modelling process. It is proposed that these primitives
form the core building blocks of any Active Application to a satisfactory level thereby
preserving universal compatibility.

The abstract view of the Active Network model based on the lattice structure devised by
Ohira-Sawatari {Ohi98] is conceptually similar to the visualisation of the Internet (i.e.
servers/clients at the edge of the system with routers/switches localised in the core).

The chapter also describes the approach to the detection of Emergence as the detection
of anomalous patterns within the Active Network core. To this end a single set of Active
Applications are fed into the core by the end-stations. The set is allowed to propagate,
interact with each other and affect the Active Nodes. Through these interactions
valuable information is gained with the aim of detecting Emergence within the system.
Creation of a simulation environment (i.e. a simulator) or modification of an existing
network simulation environment is a time consuming task. It involves the design of
tailor-made Active Nodes (programmed with Primitive Functional Components),
custom Active Packets, distribution mechanisms, simulation dynamics, displays, results
loggers and other components.

The task is made easier if the simulation dynamics followed a universal methodology
(not necessarily network related), and simulators existed that would provide the
functionality to cater for these universal properties. ‘Petri-Nets’ are a universal theory

that is capable of modelling distributed systems and parallel event-driven networks. It is
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an established theory with defined mathematical formulae to aid the analysis of a
network.
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5 Petri-Net Simulation

This chapter will present:

o A detailed description of Petri-Net segments specifically used for the simulation of
the Active Network Model.

o The suitability of Petri-Nets in simulating Active Network functionality.

e DPetri-Net flow diagrams of the Active Network model including descriptions of
packet flows, data processes, resource usage, peripheral control mechanisms and
data logging.

e A description of what constitutes an Active Packet/Application in this model.

The key concepts in this chapter are: Petri-Nets, Petri-Net extensions, simulation of an
Active Network, Design/CPN Petri-Net simulator, Resource Usage data, Ohira-Sawatari
lattice structure, Active Network model hierarchy and components — Merge Packet
component, Replicate Packet component, Direction Solver component, Local Storage

component
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A Petri-Net is an abstract, formal model of information flow [Cha]. The concept was
introduced by Carl Adam Petri in 1962 for the computational analysis of concurrent
systems. The properties, concepts and techniques of Petri-Nets are designed for the
simple yet powerful modelling of systems with parallel asynchronous information flows

and activities.

Petri-Net graphs contain four types of elements: circles (called Places), rectangles
(called Transitions), markings (called Tokens) and Directed arcs. Directed arcs make
connections from Places to Transitions and from Transitions to Places. A Petri-Net is a
multi-graph since it can allow multiple arcs from one Place to several Transitions, and

vice versa {Pat81].

Place Transition

Token Arc

Figure 5.a: Petri-Net terminology

The net execution process consists of moving/placing Tokens from input Places,
through Transitions, to output Places. The Places represent passive system components.
They act as storage for the Tokens, take particular states and generally make things
observable. Transitions represent active system components and function as process
blocks to produce, transport and change Tokens [Rei85]. The distribution of Tokens in a

‘marked’ Petri-Net, at any given moment, defines the state of the net.

In order for a specific Token to move from one Place to another it requires the
intermediary Transition to be ‘enabled’; and then the Token only moves when the said
Transttion ‘fires’ (i.e. the execution of the Transition).

There are two rules, which govern this particular movement of Tokens within the net:
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¢ Enabling Rule - a Transition is enabled if every input Place, attached to the

transition, contains at least one Token.

T

Figure 5.b: The Transition with the red border is ‘enabled’

N

o Firing Rule - firing an enabled Transition removes one Token from each input Place
of the Transition, and adds one Token to each output Place of the Transition (i.e.

generates new Tokens) [Her97].

I

O

Figure 5.c. The Transition with the double red border has ‘fired’

This simple mechanism of ‘enabling’ and ‘firing’ in Petri-Nets can be used to model
complex interactions based around a set of fundamental structures (detailed in the

proceeding section), which form the building blocks of any system.
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3.1 Modelling set scenarios with Petri-Nets

S.1.1 ial Action

Figure 5.1.1.a: Sequential action

Each sequential flow is described through the transportation of a single token from start
to finish; travelling through a single set of alternating transitions and places.

31,2 Cycles

Figure 5.1.2.a: Cycles

Cycles are formed when the arcs direct back to the beginning of the sequence, thereby

initiating a continuous toop of the token.

S.1.3 Dependency
This can occur when a Transition has several input Places ~ it can only be enabled when

all of the input Place receives, at least, one Token [Her97].
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Figure 5.1.3.a: Dependency

5.1,4 Concurrent processes

This can occur when a Transition has several output Places — each Place will obtain a

Token when the said Transition fires. This forms the start of a concurrent process

{Her97].

Figure 5.1.4.a: Concurrent processes

5,1.5 Synchronisation
This can occur when a Transition has several input Places - it can only be enabled when

each Place receives a Token.

The Transition acts a ‘stop and wait’ element to synchronise the concurrent flows of
Tokens [Her97].
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Figure 5.1.5.a: Synchronisation of concurrent flows

Synchronisation can also be used to pace-out the flow of Tokens through a process (e.g.
buffers) [Her97].

@ @

Figure 5.1.5.b: Two-level deep buffer

Synchronisation can also be used to design common resource stores [Her97).

Figure 5.1.5.c: Common resource store

5,1,6 Decision-maki nfli

This can occur when a Place has several output Transitions — the Transitions will

contend for the limited Tokens at that Place (i.e. Transitions are said to be in conflict).
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This can be used to model asynchronous decision-making processes, which dictate the

separate flows of Tokens [Cha97].

Figure 5.1.6.a: Decision-making/conflict

Note that the above set scenarios can be present within a system model as a static
placement of Transitions and Places. They can also be present as dynamic structures.
For example a feedback cycle, not necessarily evident through the examination of the
physical layout of modelling components, can manifest itself at run time in an
undetermined fashion. The ambiguity of feedback cycles would be caused by the
inclusion of decision-making/conflict scenarios within the system that would redirect

token flow based on the run-time input conditions.
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5.2 Extensions of Petri-Nets

Extended Petri-Nets have important additional features, which make the modelling of

Complex Systems (specifically communications networks) possible. These features add

programming concepts to the model, thereby allowing the modeller to adjust the flow of

Tokens within the net and to vary the Tokens themselves. These features are:

The addition of timed delays to Transitions - to model points of delay within the
network.

Input Arc Inscriptions — specifies the type of data that must exist in order for an
activity to occur (i.e. a Transition to fire).

Guards - Boolean expressions, which define additional conditions for the enabling
and firing of Transitions.

Output Arc Inscriptions — specifications of the data that will be produced when an
activity occurs (i.e. a Transition firing).

Data-types, data-objects and variables — Tokens can be constructed as data-objects

that carry complex/custom data structures. Data-types (also known as Colour-Sets)
define the type attributes assigned to these data-objects (i.e. every Token in a Petri-
Net is typed on some Colour-Set, just as every piece of data in an ordinary computer
programme is of some data-type). Variables hold Tokens of a defined type and can
be used in evaluating Boolean expressions at Transitions, at run time. Variables
form part of the Arc Inscription and act as filters on the types of Tokens being
transferred across [Her97].

Petri-Nets and Petri-Net extensions fall into several categories (e.g. Time Petri-Nets,

Stochastic Petri-Nets, Object-oriented Petri-Nets). This work has opted to use ‘Coloured

Petri-Nets’ and in particular ‘Hierarchical Coloured Petri-Net’ to form the foundations

for the modelling process. Coloured Petri-Nets, as mentioned before, introduce a typed

token in order to differentiate between and control process flows. Hierarchical Coloured

Petri-Nets provide the facility to build complex models as a multi-tiered structure of

interconnected hierarchical subnets and reusable components.
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5.3 Petri-Net Simulation of Active Networks

It is believed that the application of Petri-Net theory to the modelling of Active

Networks remains a concept unique to this work. Petri-Nets are suitable for the

modelling of Active Networks because the Token/Place elements can be matched with

Active Packets, Active process execution blocks and Active Nodes.

For this work an Active Packet/Application corresponds to a single Token. An Active

process will correspond to a single Place or a group of Places intermixed with

Transitions that provide the required Active functionality. The Colour Petri-Net feature

can differentiate Active Applications types - each Token can have varying properties, a

unique identification and the ability to invoke different processes within a cluster of

Places/Transitions. This would be equivalent to an Active Packet invoking a specific

process within an Active Node.

The third party simulator used in this project attempts to model a significant number of

Active Network features deemed relevant to the Emergence of anomalous behaviour.

Within the Active Network simulation, Petri-Nets are capable of displaying the

following (as identified by the author):

e Specific actions taken by Active Packets — as a Token (an Active packet) enters a
cluster of Places and Transitions {(an Active Node) it is identified and coupled to a
specific process flow. The specific process is then executed.

o Active Packets travelling through various stages of a process.

o Parallel process execution.

* Resource allocation to processes — resources (as denoted by special Tokens) are
moved out of the common resource store when a process is initiated. They are
returned when the process has finished execution. In some cases, a process will
retain resource Tokens in an attempt to maintain a state (imprint) in memory.

¢ Packet interaction through the dynamic competition for resources.

¢ Packet transformation.

e Packet loss and delay.

o Packet replication.
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s Packet types — the colour Petri-Net scheme has the capability to assign attributes to
Tokens, thereby differentiating them according to the Active Packet types. The
attributes are used to control and channel the flow of packets to various processing

elements.
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5.4 Design/CPN

The author has investigated a number of Petri Net simulation tools (reviewed in
Appendix iii). Of these Design/CPN was found to be a viable package offering an
elaborate and comprehensive set of features. It supports Colour Petri-Net models with
complex data-types (Colour-Sets) and complex data manipulations (Arc Expressions
and Guards); both specified by the “Standard ML” programming language. In addition
the package allows the use of Standard ML code to customise the behaviour of
simulations (i.e. additional code segments in transitions and the use of global reference
vanables).

The package also supports hierarchical and modular nets (i.e. complex models can be
decomposed into manageable modules. Separate modules are reusable and can be
constructed with well-defined interfaces). Design/CPN has the capability to model a
typical scenario of 50 to 200 modules; each with 10 to 50 different Places and
Transitions [Des]. Design/CPN’s user-extensibility allows for the accurate modelling of
Active Networks in accordance to the specifications set by the high-level modelling
scheme. It is well suited for progressive and intensive simulation of an Active Network.
The package provides comprehensive documentation, samples modelling scenarios and
performance analysis capabilities.

The software was originally devised by the Meta Software Corporation, Cambridge MA,
USA with the help of the CPN group at the University of Aarhus, Denmark. Subsequent
decisions by Meta to transfer development and support of the tool to the CPN Group at
Aarhus resulted in it becoming freely available to model developers. However, as of
January 2004 it has been superseded by ‘CPN Tools’, which provides an enhanced GUI
(working under Windows 2000/XP with openGL support) with a faster simulation
engine. Nevertheless, much of the modelling/simulation technology used in the new tool
is based around Design/CPN. From a historical perspective, Design/CPN provided a
complete modelling/simulation package from the initial stages of this research right
through to completion. The version of Design/CPN used for this work runs under Linux
(RedHat 8.0).
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The overall suitability of a particular simulator was assessed on the following criteria:

Ability to simulate large networks

Capability of building hterarchical nets and high-level simulations
Inclusion of Token differentiation (e.g. Colour Petri-Net schemes)
Inclusion of performance analysis measures

Adequate documentation and support

Inclusion of a graphical display and animation of networks

Availability and cost
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3.5 Model flow diagrams/layouts

5,5.1 Model hier

The Active Network model was constructed using a hierarchical and modular approach.
This approach groups common functionality into ‘components’. The components are
sub-sections of the Active Node ‘object’ and collectively provide the primary functions.

The design/CPN object hierarchy for the Active Network model is structured as follows:

Active Network
(Ohira-Sawatari lattice
structure)

Instances: Al
Active Node 21
D1
E1

local storage A2

B2
component s

D2
E2

A3
merge packet B3

component c3
D3
E3

- A4
replicate B4

packet cs

component D4
E4

A5
direction B5

(o]
solver DS

component E5

Figure 5.5.1.a: Model Layout: Active Network Model Hierarchy
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The top-level object in the hierarchy is the Active network lattice structure (Figure 4.2.a
and Figure 5.5.2.a). A sub-component of this network arrangement is the Active Node
object (Figure 5.5.3.a), which forms the second level in the hierarchy. There are 25
instances of the Active Node object within the model representing the 25 Active Nodes
(A1 to E5). Sub-components of the Active Node object include the following: “Local
Storage Component” (Figure 5.5.4.a), “Merge Packet Component” (Figure ), “Replicate
Packet Component” (Figure 5.5.6.a) and “Direction Solver Component” (Figure
5.5.7.a). The sectioning of components was primarily based on the logical apportion of
functionality (e.g Active Merge functionality and Active Replication functionality)
and/or level of diagrammatic detail required to implement specific features (e.g.
Direction Solving for the next hop).

It must be noted that the following flow diagrams are not the actual Petri Net diagrams
used in modelling process, but are an approximation. These approximations are used as
a process by which the modelling details can be easily explained. It was believed that the
use of the actual diagrams, at this stage of the report, would only complicate the
documentation and thus are included in Appendix ii. The author proposes that the use of
flow diagrams, along with the appended notes, will provide sufficient detail for the
reader to comprehend and analyse the Active Network model.

Also note that the control flows of tokens (represented by the green coloured arcs that
transfer tokens from Place to Place via Transitions), in the following diagrams, are
separate from the Active Packet Token flows. The controls flows are a mechanism (in
addition to the Active Packet Token flows) necessary for progression of the Petri-Net
model within a simulation run. Furthermore, they do not influence the resource

utilisation data; gathered as output from the simulations.

5.5.2 Active Network {Ohira-Sawatari lattice structure)

The following diagram provides a detailed and concise view of the Active Network
model as abstracted in Figure 4.2.a.
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Figure 5.5.2.a: Model Layout: Active Network
Each Petri Net Transition labelled from Al to ES represents an ‘instance’ of an Active
Node. Surrounding the lattice structured Active Node ‘core’ are 20 end-stations that
form the ‘end-user edge’ of the model (Appendix ii; section ii.3).
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Emergence in Active Networks

Active Packets/Applications are generated and collected via end-stations. Within an

end-station there exists a “traffic generator’ that reads an input file (“src.txt”) in order to

obtain the specific Active Packet/Application information corresponding to the

particular end-station, which is then forwarded to the ‘traffic source’.
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Figure 5.5.2.b: Sample Source File (“src.txt”)

Each line of the input file (“src.txt”) contains a data section (within the brackets) that

describes an entire Active Packet/application with the value sequence corresponding to

the pseudo header/data structure described below:
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Application Direction Direction Time-to- Route Mechanism | seseve
Number Indicator 1 Indicator 2 | live
1-15 1-8 1-8 Integer + forward
Integer value | Integer value | Integer value + replicate
value e  consume
s  merge
sssses Memory Processing [ Buffer Global State GSM Timer
Requirement Requirement Requirement Mazintenance Count
{GSM)
0-100% 0 - 100% 0-100% 0-100% 0-50
Integer value Integer value Integer value integer value Integer value

N
—p =

7 «— —> 3

YN

8
*

7 «—
e

O —p =
F -
o A—

Direction indicator 1 Direction indicator 2

Figure 5.5.2.c: Active Packet/Application Structure and Direction Indicator values

Note that the Active packet/application does not, in reality, contain a data portion. The
author proposes that the sole use of the Active header is sufficient to provide an accurate
analysis of resource usage in Active Networks, since the requirement is explicitly
specified within it. Furthermore, it was not the intention of this research project to assess

the quality of service (QoS) aspect of data transfer in Active Networks.
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5.5.3 Active Node Model

Decision based on:
direction linder

ot Outpul ports

56,060

Node Resources
(Global Store)

Active Packet (token) fow

Contral (foken) flow
—

Resource (token) flow
—_—

Figure 5.5.3.a: Model Layout: Active Node
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The Active Node functionality (Appendix ii; section ii.4, section ii.5, section ii.6,

section 1i.7 & section i1.8) can best be explained through the description of processes it

invokes, when an Active Packet/Application arrives and is passed through, in addition to

description of interactions made with the packet:

An Active Packet arrives at the Active Node through one of 4 possible input ports
and is immediately evaluated for processing by the node.

The decision to process the particular Active packet will depend on the “time-to-
live” field and whether the node will have, at that particular time, adequate
“MEMORY”, “PROCESSING” and “BUFFER” resources (Figure 5.5.2.¢).
Unprocessed packets will be forwarded to the ‘next hop’ Active Node through one
of 4 possible output ports.

The choice of output port will depend on the evaluation of the Active Packet’s 2
“Direction Indicator” field values by the “Direction Solver Component” (Figure
5.5.2.¢c and Figure 5.5.7.a).

Active Packets that can be processed will initially consume the required
“MEMORY”, “PROCESSING” and “BUFFER” resources from the; Global Store.
There exists a mechanism to release the consumed resources after a specified time
period, which coincides with the point of exit for the corresponding packet
(“MEMORY” resources have additional criteria). The specific time period for
release is based on the “Route Mechanism” field of the Active packet (Figure
55.2c¢).

The initial consumption “MEMORY” resources may include a quantity used to
provide the ‘Resource Reservation Feature’ in Active Networks. The amount and
time limit for these “MEMORY™ resources will depend upon the “Global State
Maintenance” value and the “GSM Timer Count” value of Active Packets,
respectively (Figure 5.5.2.c). There exists a mechanism to release these resources
once the Timer Count expires, which is held within the “Local Storage Component”
(Figure 5.5.4.a).

Active packets are then differentiated (and processed) based on the “Route

Mechanism” field.
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* The packets are subsequently passed into the “Direction Solver Component” (Figure
5.5.7.a) for evaluation and passed out through the output ports.

5.54 Local Storage Component

MEMORY Modified resource
(Globa! Store) vatua written

Resourca valus L
read Into process —-p{ Release resources
from global store &

Generate trigger

trigger Delay faedback loop:
Resources . Uses (timestamp + delay value)
as condition for loop.
Modifies timer check fag for
? decision process.
trigger
]
Gata controligd (}_.é
FIFO gueue
F 3 ga‘e
Add
imestamp

O" —¥ Ecm'ct Ti;::e —’O Legend:
i 1 ount value
nput port (defay) & adds Output port
timer check Actlve Packet (token) flow
flag —

Control (token) flow
——

Rasource (token) flow
—_—

Figure 5.5.4.a: Model Layout: Local Storage Component
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The objective of the “Local Storage Component” (Appendix ii; section 11.9 & section
i1.10) is to provide a timed release of “MEMORY” resources that were previously
consumed when the packet was imtially processed.

The timed release of “MEMORY” resources is distinctly separate from normal
‘consume and release’, which is applicable to ail Active Packets processed within the
node. The ‘consume and release’ of additional “MEMORY™ resources is an integral
part of the resource reservation feature of Active Networks.

The “Local Storage Component” is invoked only when the higher layer “Active Node”
object requests it. The request is generated based on the “Global State Maintenance”
value and the “GSM Timer Count” value of Active Packets that pass through the Active
Node (Figure 5.5.2.¢).

An Active packet enters the “Local Storage Component” through the input port and
immediately exits through the output port via a process designed to extract the “Global
State Maintenance” value (reserved resource amount) and the “GSM Timer Count”
value (timer for reservation). The extracted data can be thought of as a ‘reduced
information Active Packet’.

Much of the information flow within this component is control flow that is used to add a
timestamp and check flag to the extracted data.

The reservation of resources is formed by a delay loop that is controlled by the “GSM
Timer Count” value and the timestamp.

The check flag is used to trigger the release of “MEMORY™ resources once the delay

loop criteria has been satisfied.
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55,5 Merge Packet Component
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Figure 5.5.5.a: Model Layout: Merge Packet Component
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The objective of this component (Appendix ii; section 11.11 & section 1i.12) is to merge
identical Active Packets that have been designed for the purpose into one Active Packet.
The process of merging in terms of this project involves the delay of the 1% packet that
entered the Active Node processing stream, which has a ‘merge’ value in the “Route
Mechanism” field, for a limited period of time (i.e. a fixed period of 5 simulation time
steps).

Subsequent ‘merge’ packets that match the 1% packet’s “Application Number” and
amrive at this component within the fixed time period will be consumed/merged.

The component identifies and tags the 1* packet of the merge process with a check flag.
This flag is reset when the 1* merge packet is released after the expiry of the fixed delay
period.

The delay of the 1* packet is achieved through a loop that is controlled by a timestamp,

which was attached to the packet as it entered this component.
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5.5,6 Replicate Pack mponen
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Figure 5.5.6.a: Model Layout: Replicate Packet Component

The “Replicate Packet Component” (Appendix ii; section ii.13) implements a simple
mechanism to replicate atl packets taken from the input port (according to a specified
scheme) and output them into the main/parent “Active Node” object.

The replication scheme (Figure 5.5.6.b) uses a 1 to 3 replication of Active Packets with
modified “Direction Indicator” values (i.e. the original direction and 45 degrees either

side of the original).
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Input
Active replicating
packet » Further replications
Pl
—>

AnActive Node ©~ a4
Figure 5.5.6.b: Active Packet Replication Scheme

The scheme is designed to emulate a spanning replication of data that has an unlimited
replication objective and a primary direction (i.e. the direction of initial data packet).
This is one of many possible spanning schemes that could have been incorporated into
the model. It was primarily designed to achieve a significant ‘presence’ of a replication,
which affected other application streams, whilst not allowing to have the capability to

completely saturate the network.

The main section of the “Replicate Packet Component” consists of a decision process
(based on the original direction of the input packet, the value of which is held in the
“Direction Indicator 1” field of the Active Packet header) that replicates the input packet
and modifies both Direction Indicator values of each output packet according to the

scheme in Figure 5.5.6.b.
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Figure 5.5.7.a: Model Layout: Direction Solver Component

The objective of this component (Appendix ii; section ii.14) is to take all Active Packets

destined for the node exit and modify their “Direction Indicator 2” values.

The component only modifies the secondary direction indicator value of diagonally

traversing packets in order that they map correctly to one of the 4 output ports. Any

horizontally traversing and vertically traversing packets are left unmodified.

The diagonally traversing Active packets, in reality, travel through the network in a step-

wise pattern. The alternating horizontal and vertical direction values required for this
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type of travel are contained in the “Direction Indicator 2” field of the Active Packet and
are adjusted accordingly by the ‘“Direction Solver Component”. (Figure 5.5.2.c and
Figure 5.5.7.a)

The combination of changes made to the “Direction Indicators” is described in the
following table:

Combination Input Qutput
“Direction Indicator 17 “Direction Indicator 17
and and
“Direction Indicator 2” “Direction Indicator 2”
values values

1 2and 1 2and 3

2 4and3 4and 5

3 6 and 5 6 and 7

4 S8and7 8and 1

5 2 and 3 2and ]

6 4 and 5 4and3

7 6 and 7 6and 5

8 8 andl 8and 5

All other combinations of “Direction Indicator” values remain unaffected

5.58 Other components; Data Logging

Reads values from;

reglocO to regloc24 {registry
locations)

Writes to "ouL.tx{” as one line

Legend:

Control flow
——p

Figure 5.5.8.a: Model Layout: Data Logging Component
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The input for the Emergence detection process, described in the proceeding chapter,
consists of a data log of “MEMORY” resource activity, which was recorded throughout
a simulation run of the Active Network.

The data logging process (Appendix ii; section ii.15) consists of a simple Petri Net flow
loop that polls and records (i.e. writes to an output log file “out.txt”) 25 Register

Locations, at every simulation time step.

Fle Edt Format Help !

.- -100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,10C,100,100,100,100,100C,100,100,100,1000
3...100,100,100,100,200,100,100,100,10¢,100,100, 100,100,100, 100,100,100,100,100,100,100,100,100,100,1002
4...100,100,100,100,100,90,100,100,100,100,100,100,100,100,90,100,100,100,100, 70,100,100,100,100,1000
3...100,100,100,100,100,0,100,100,100,160,100,100,100,100,90,100,100,100,100,70,100,100,1200,100,1000
6...100,100,100,100,100,0,100,100,100,100,100,100,100,100, 50,100,100, 100 100 70 100, 100 100,100, 1000
7...100,100,100,100,100,0,100,100,100,160,160,100,100,100, 50,1006,100,100,100, 70,100, 100 100,100,1000
8...100,100,100,100,100,90,100,100,100,100, 100 100,100,100, 90 100,100,100,100,70,100,100,100,100,1000
9...100,100,100,100,100,¢,100,100,100,100,100,100,100,100, 90 100 100 100,100, 70,100,100,100,100,1000
[10... 100.100,100,1&0,100,0,100,100,100, 100,100, 100,100,100, 90.100, 100.1.00. 100.80, 100.100,100, 100. 1000
p1...100,100,100,100,100, 0,100,100,100,100,100,100,160,100, 100, 100,100, 100,100, 80,100,100,100,100,1008
2. ..100,100,100,100,100,0,100,100,100,100,100,100, 100,100, 100, 100, 100,100,160, 80,100,100,100,100,1000
-100,100,100,100,100, 0,100,100,100, 90, 0,100, 100, 90,100, 100, 100,100, 70, 70,100, 100,100,100, 1000
.100,100,100,100,100, ¢, 100,100,100, 80, 0,100, 100, 90,100, 100, 100,100, 70, 70,100, 100,100,100, 1000

[15... 100 100, 100 100, 100 0 100,100,100, 90, 0,100,100, 90,100,100,100,100, 70, 70,100,100,100,100,1003
16...100,100 100,100,100,0, 100,100 1090, 90, 0,100, 100, 90,100, 100, 100,100, 70, 70,100,100,100,100, 1001
r7...100,100,100,100,100,0,100,100,100, 90, 0,100,100, $0,100,100,100,100,70, 70,100, 100 100 100 1008
18. . .100,100,100, 100,100, ¢, 100,100,100, 90, 0,100, 100, 90,100, 100,100, 100, 70, 70,100,100,100,100, 1000
119, . .100,100,100,100,100,0,100.100,100, 90, 0.100. 100, 90.100. 100. 100.100, 80, 70,100,100,100,100. 1000
20...100,100,100, 100,100, 0,100,100, 100, 100, 0,100,100,1090,100,100,100,100, 80, 80,100,100,100,100,1000
21...100,100,100,100,100,0,100,100,100,100, 0,100,100,100,100,109,200,100, 80, 80,100,100,100,100,1000
22...100,100,200,100,50,0,100,100, 30,100, 0, 0,590,100, 100,100,100, 70, 70, 80,100,100,100, 100,900
23_..100,100,100,100, 90,0,100, 100, 80,100, 0, 0,90, 100,100,100, 100, 70, 60, 80,100,100,100,100, 902
24...100,200,100,1090,90,0,100,100, 70,100, 0, 0, 30,100,100,100,100, 70, 50, 100 100 100, 100 100 900
25...100,100, 100 100, 90 0 100 100 70 100,0,0 90 1o0,100,100,100,70, 50 100 100 104, 100,100, 900

26...100,100, 100 100 90,0,100, 100 70,100, 0,0,90,100,10¢,100, 100, 70, 50,100,100,100,100,100, 500
27...1060,100,100, 100, 90,0,100,100,70,100,0, 0,90, 100 100,100,109,70, 50,160,100,100,100,100, 900
28. . .100,100,3100,100, 9¢,0,100,100, 70,100, 0,0.90.100.100.100,100,80, 50,100,100,100,100,100,900
29.. .100.100,100, 100,100. 0.100.100. 80,100. 0,9,100,100,100,100,160, 80, 60,100,100,100,100,100,1000
30. ..100,100,100,100,100,0,100,100, 90,100, 0. 0.100, 100,100, 100,100, 80, 70,100,100,100, 100,100, 1000
31...100,100,100, 90,100,0,100, 90,100,109, 0, 0,100,100,100,100, 0, 70, 80,100,100,100,100, 90,1000
32...100,100,100, 80,100,0,100, 80,100,100, 0, 0,100, 90,100,100, 0, 60, 80,100, 100,100,100, 80,1000

Figure 5.5.8.b: Sample Output log file “out.txt”

A specific Register Location contains, at any given simulation time step, the current
value of “MEMORY™ resources contained within a specific instances of the Active
Node object.

A Register Location is updated whenever the “MEMORY” Place (Global Store) value,
of the corresponding Active Node instance, changes during a simulation run (Figure
5.5.3.a). This update is achieved through the inclusion of Standard ML code in
Transitions in the Active Node object and its components.

Each line within the output log file (“out.txt”) contains the simulation time step number
followed by 25 Register Location values (“regloc0” to “regloc24”). The following table
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maps the Register Location names with the Active Node names who’s “MEMORY™

resource values are held within the registers:

Register location Active Node Names
number/name

“regloc0” E5
“reglocl” E4
“regloc2” E3
“regloc3” E2
“regloc4” El
“regloc5” D5
“reglocé” D4
“regloc?” D3
“regloc8” D2
“regloc9” D1
“reglocl0” C5
“reglocll” C4
“regloc]2” C3
“regloci3” C2
“regloc14” Cl
“reglocl5” B5
“regloc16” B4
“regloc17” B3
“regloc18” B2
“regloc19” Bl
“regloc20” A5
“regloc21” A4
“regloc22” A3
“regloc23” A2
“regloc24” Al
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5.6 Summary

This chapter has discussed, in considerable detail, how the Active Network model was
constructed, simulated and prepared for analysis.

The first section of this chapter describes the general diagrammatic concepts of Petri
Nets and their use with communication network type structures.

The sole use of the diagrammatic semantics of Petri Nets (in order to provide solutions
for system design) is not uncommon. Most Petri Net modelling packages also provide
powerful mathematical analysis tools to develop “Occurrence Graphs” that can be used
to gain a detailed understanding of systems. For the purposes of this project these
mathematical tools provided no useful contribution. This is because the basic premise of
the research was to establish a global view of system functionality in Active Networks
and then proceed to detect Emergence as patterns within this view.

The project does, however, consider the use of Petri Net extensions such as “Color Petri
Nets”, Boolean Transition Guards, Arc Inscriptions and Hierarchical decomposition
invatuable in the accurate modetling of Active Networks.

This chapter follows on to explain the process by which the Petri Net concepts are
paired with the High-level Active Network model features (previously identified in
chapter 4).

The chapter also provides, as reference, a significant list of Petri Net modelling tools
and their specific attributes. The list formed the basis of an evaluation process to find
the most suitable Peti Net modelling/simulation tool. As a result, Design/CPN was
highlighted as being the best suited for this particular modelling and simulation task.
Some of the key ‘selling points’ were its ability to create hierarchical models using well-
defined components and its ability to construct and execute “Standard ML” code
segments within “Transitions”. This provided a high degree of flexibility in the
implementation of features (e.g. data-logging) that would not have been possible
through a solely graphical simulation environment.

The last section of this chapter contains detailed flow diagrams of the Active Network
model. Included in the diagrams are the breakdown of components (object hierarchy),
the specific detaill pertaining to resource usage and the flow of Active

Packets/Applications.
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6 Detection of Emergence

This chapter will present:

An analysis of possible detection techniques for Emergence in systems.

A description of the strategy used to test the suitability of a likely technique.

A description of Self-Similarity and its link to an Emergent Behaviour in the Active
Network model; termed a “Cascading Effect”.

A detailed mathematical derivation of the R/S statistic used to measure and quantify
Self-Similarity.

Approximations and limitations of the R/S statistic.

A detailed mathematical derivation of a confidence value employed to support the
R/S statistic. '

The application of the R/S statistic, to the Active Network simulation results, in

order to produce Hurst values (i.e. Self-Similarity measure) for Active Node

resource usage fluctuations.

The link between the Emergence of a “Cascading Effect” and Self-Similarity.

The key concepts in this chapter are: detection of Emergence, Self-Similarity of Active

Node resource usage fluctuations, the R/S statistic, approximations, the Hurst value, the
r* “goodness-of-fit” confidence value, MATLAB algorithm to produce a Hurst value via

regression analysis, mathematical derivations
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6.1 Overview

The detection of Emergent Behaviour in any complex system requires a significant
amount of empirical study as discovered during the course of the research work. Any
potential technique must be customisable to suit the results generated by system
modelling and simulation. As a precursor to the evaluation of a detection technique, it is
proposed that Emergence is formalised as a dramatic change in the functioning of a
complex system, which is recognised as the manifestation of characteristics mentioned
in chapter 3; section 3.1. This would in tum transform a system from a normal to an
anomalous state or from a stable to an unstable state.

During the course of this investigation into potential detection techniques it was
discovered that, whilst researchers agree upon the importance of discovering Emergence
in systems, there exists little in the way of development of detection tools to suit all
systems. This chapter describes 3 examples of probable methodologies that are sourced
from research work, which proposes radical steps forward in the detection of Emergence
in general systems. These are:

¢ Emergence as the loss of complexity in a system

¢ Emergence through the measure of self organisation

e Emergence as patterns in a system

The concepts fundamental to each of the 3 broad methodologies are described, in brief,

in the following sections along with the reasons for choosing one particular detection

method for this research.
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6,1.1 Emergen he | f complexity in m

This detection method was proposed by a single piece of research work established to
measure Active Network health and to provide some form of management for such
systems. The proposed method includes the use of Kolmogorov Complexity and general
Complexity Theory to:

o “Build self-managed networks”

e Provide “vulnerability analysis techniques that draw on fundamental properties of
information to identify, analyse and correct faults as well as security vulnerabilities

in an information system”.

This research visualises the Active Network not as a topology, but through ‘Complexity
Measurements’. In other words the paradigm investigates the vanables of the system
(e.g. resource usage) and their relationships in order to compute complexities of the
network in different dimensions (e.g. dimensions could be availability of services, health
of devices, application performance, etc.). A high Complexity Measure is a result of
high randomness in the system dynamics and translates to a healthy system. Dimensions
of low complexity indicate potential problems in the system and possible Emergent
Behaviour {Kul01].

Whilst this research provides a good technique in the detection of Emergence in Active
Networks, it proved difficult to implement on top of an already developed high-level
model. The complexity measurement process requires specific Management Information
Base (MIB) components for the system, which relate to system variables. The
visualisation of the Kolmogorov model is as a “space filled with entities that represent
the values of various monitored objects from the managed system”. This is significantly
different from the topology-based approach taken by the authors in developing high-
level abstract views of Active Networks.

6.1.2 Emergence through the measure of self organisation

The detection of Emergence by this method relies on analogies taken from natural
_ systems, in particular the structures of swarming and fully coordinated (“crystal™)
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behaviours in simple flocking systems. The method is based on a single piece of
research that makes use of natural system analogies to provide a measure for self-
organisation in general systems. This in turn is used to indicate the presence or absence
of Emergence. The research work proposes that the dynamics of a general complex
system be modelied as being produced by an attractor/generator. The behavioural type
exhibited by the system, whether it is a swarming or crystalline structure, is directly
related to the dimensions of the attractor/generator. The research goes on to extract the
measure of dimensionality (Q) for the generator of a sample system. Furthermore, it
proposes that the system has the ability to exhibit Emergent Behaviour based on the
sudden transition of the 2 measure given smooth changes in system parameters [Wri00].
Even though the research provides a clear definition and methodology of Emergence,
the system used in the analysis relies on non-discrete models of systems components
that have defined mathematical functions. Thus the measure of dimensionality (Q) is
derived through the solution of a set of custom mathematical equations. This detection
method is difficult to implement in models developed as discrete event-driven systems
such as Active Networks.

6.1.3 Emergence as patterns in a system

This method relies on the belief that a dramatic change in system behaviour can be

‘observed’ and ‘comprehended’ through some visual technique designed for the

recognition of Emergence. This concept is fundamental to many Emergence research

projects [Bon97] {See]. Certainly in the above two sections (6.1.1 and 6.1.2) the '
structures, which are subject to the measurements described, are clearly patterns in a

system. However the methods of pattern identification and the establishment of
measures for Emergence vary. Similarly this section describes a range of practical

pattern detection and measurement techniques that are used in research fields, other than

Emergence detection, to a high degree of success.

For this work, the detection of Emergence as patterns in the system proved to be a viable

option with respect to the following factors:

e Applicability — the results generated from the system modelling and simulation

process consists of a 2-dimensional matrix of integers representing the resource
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usage of all Active Nodes (as a percentage) at each simulation time step. All of the
pattern detection techniques investigated within this project provided mathematical
sequences that readily dealt with 2-dimensional number arrays. These sequences
were easily programmed into scripts (executed in MATLAB) that provided
algorithms for enhancement and detection.

» Adaptability - the techniques could be modified to suit the data type and sample
size.

o Ease of use — from an engineering viewpoint, the development of pattern
enhancing/recognition programmes, under MATLAB, was made relatively
uncomplicated through the existence of sample code sequences and comprehensive

reference matenal.

Described below are several types of pattem recognition techniques that were

experimented with as the project progressed:

6.1.3.1 Image Enhancement algorithms — Edge-detection & Histogram Fqualisation

The 2-dimensional matrix of logged simulation data is similar to the mathematical
representation of a pixelated image prepared for image manipulation/enhancement (e.g.
a grey-scale image can be represented in MATLAB as a matrix with the same
dimensions as the image. Each pixel of the image is allocated a ‘coordinate’, which
corresponds to the row and column number within the matrix. The grey scale intensity
of each pixel is held as a value in the corresponding matrix element). Given this
similarity it is possible to represent the raw data from the Active Network simulation as
an image and prepare it for feature detection. Of the possible image
detection/enhancement techniques available two were selected based on their strong
analogous relationship with resource usage in an Active Network.

e With an Edge-Detection macro it is possible to identify a continuous high-contrast
‘edge’ within the ‘image’. This transiates to a continuous high or low resource usage
within the system at specific Active Nodes, at specific time steps or a combination
of both.
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e The Histogram Equalisation/Threshold method is used to increase image contrast
thereby clearly differentiating clusters of high and low resource usages within the

data.

6.1.3.2 Fourier analysis

Fourier Analysis (1-dimensional and 2-dimensional) provides useful visualisation of
matrix data in the frequency domain. Whilst it is a well-established technique in the
enhancement and feature detection of images, the onus here was to use the method to
identify unique frequency components with high amplitudes or clusters of components
with particularly high frequency ranges. The identification of these frequency
components would thus indicate the presence of 2 dominant fluctuation or a general high

fluctuation of resource usage; both indicative of Emergence within the system [Gon02].

6.1.3.3 Wavelet analysis

Wavelet analysis is similar to Fourier analysis except that the frequency decomposition
of data is conducted through a pre-defined non-periodic waveform (“wavelet”) as
opposed to a sine wave [Gra95]. In addition to the identification of strong frequency
components, Wavelets have been used to identify Self-Similarity in data [MATa]
[MATb]. As proposed by this research the idea that Self-Similarity is key to the

detection of Emergence gives significant value to Wavelet analysis.

6.1.3.4 Cross- correlation analysis

Cross-correlation is used in discrete signal analysis to obtain levels of similarity between
signal data sets. An investigation was undertaken to determine if this method could be
used to correlate resource usage (over time) of individual Active Nodes with each other
to find patterns that are similar (i.e. correlation of resource usage across the nodes at
various data segment sizes) [Gon02]. A high degree of correlation would translate to a

discrete pattern in resource usage traversing the network.
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6.1.3.5 Self-Similarity analysis

The general idea of Self-Similarity has a strong relationship with Emergence in that it
can be thought of as a pattern in the data that finds itself replicated at various
resolutions. Self-Similarity provided credible results in the resolution of Emergence in

Active Networks and is described in detail in section 6.3.
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6.2 Detection technique suitability testing

In order to evaluate the effectiveness of any one technique, a suitability testing
procedure was developed by using a group of test cases simulated through the Active
Network model. The test cases were designed to contain an ‘Emergence Inducing
Factor’ (EIF) in various hypothetical configurations. Emergence Inducing Factors are
elements built into the inputs of a system or components of the system itself that are
‘believed’ to push it into Emergent Behaviour. The factors are chosen on various criteria
and relate to the system model under scrutiny. In the case of this work the factor was

perceived to be of value based on the effect it has on system instability.

After much consideration, the inducing factor was chosen to be a self-replicating Active
Application/Packet that would replicate Active streams and span the network. Initial
assessments of the replicating scheme indicated that it would push the system into an
unstable state. However, subsequent experiments have shown that there are several
factors present within the system that would control the replication and thereby indicate

the presence of Emergence. Details of this are descnbed in chapter 7, section 7.3.

In a simulation run the replication scenario was left to dominate resource usage at each
node and analysed for potential effects on itself and other network traffic. The
replication test cases were each modified to contain variations in the number of
replication packets injected into the network, the direction taken across the lattice node
structure and the amount of resources utilised at each encountered Active Node. These
results were compared with simulations that did not possess the Emergence Inducing
Factor. The entire process of suitability testing was iterative and was repeated for each
of the probable detection techniques mentioned in section 6.1.3 in order to visually
detect any interesting features.

The data analysed, in order to determine the presence of any anomalous characteristic, is
the resource utilisation of all the Active Nodes under simulation. The resource
uttlisation statistic is a key component of this research for two reasons:

¢ Node resources invariably function as the enabler for all Active processes
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e Resource utilisation statistics provide an abstract view of network performance and

Active Network functionality.
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6.3 Self-Similarity

Of the pattern recognition techniques reviewed/tested only the discovery of Self-
Similarity within the data proved to be of significance in isolating Emergent
Behavioural patterns. The Self-Similarity macro, developed through MATLAB
{Appendix i), was able to isolate an Emergent characteristic within the replicating
packet scheme that would otherwise have been hidden. The author has termed this
Emergent Behaviour as a “Cascading Effect” in resource utilisation - a replicating
phenomenon that, once formed within the Active nodes, continues to sustain itself
through feedback. The phenomenon is detected empirically and is used as a starting
point for the comprehension of the causes of this particular Emergent Property.

The Self-Similarity measurements of the data were established by calculating the Hurst
parameter (a well-known estimator of Self-Similanty). There are several techniques
present in mathematical literature designed to estimate the Hurst value of a data set. This
research project used the classical R/S statistic [Lel94] to calculate the Hurst values of
the resource usage fluctuations for each of the Active Nodes - each Petni Net simulation
of the Active Network (Figure 4.2.a) produces an output matrix with 25 columns (one
for each Active node) each containing resource usage values for 500 time steps. The
columns were individually analysed for Self-Similarity using the R/S statistic (i.e. Hurst
values calculated).

6.3.1 Calculation of the Hurst parameter — Rescaled Range statistic (R/S statistic)

“The R/S statistic is the range of partial sums of deviations of a time series from its
mean, rescaled by its Standard Deviation” [Naw95]. This statement is best explained
through the following derivation and through the MATL AB algorithm in Appendix i.

For a given set of observations taken from the original trace; X,,X,, X;,.... X, forn

periods with a sample Mean of X, and a sample Standard Deviation of S(n), the
classic Rescaled Range Statistic will be:

R(n) 1 k o k . L
A(n)—s(n)(max Xx~%) — min Y (x,-x)| ——1]

l<k<n ;=i I<k<n  j=
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Hurst found the following simple relationship represented the ‘expectation’ of the R/S

statistic value well:

"’[R('%(n)

Where a is a constant and / is the Hurst parameter/value [Lel94].

=an” as n—so ———[2]

By sequentially varying the » sample number (also referred to as the sample size), one
can calculate a corresponding R/S statistic. The following transformation i1s performed,

on the above equation, prior to the estimation of the Hurst parameter:

log(E[R(nyS(n)l)=log(a)+Hlog(n) ———[3]

By plotting the log of the R/S value against the log of n, and estimating the slope of the
relationship via regression analysis, one can obtain the H value for a particular trace.
Self-similar or persistent behaviour is generally characterised by a Hurst value in the
range of 0.5 < H <= 1. Non-persistent behaviour is characterised by a Hurst value in the
range of 0 <H <= 0.5 [Naw95].

A confidence level for the regression estimate was also generated through a measure of
“goodness-of-fit of linear regression” (which is denoted by r*). The value of r* ranges
between 0.0 and 1.0, and is a fraction-measure of the goodness-of-fit. It has no units. An
r? value of 0.0 equates to a random variation of the y values in relation to the x values
(i.e. the scatter plot values do not fit the regression line at all and there is no confidence
in the prediction of y values based on x values and the regression line). In this case the
‘best-fit’ regression line is a horizontal line drawn through the mean of the y values. An
r* value of 1.0 equates to a scatter plot where all the point lie precisely on a straight line
with zero residual error (i.e. there is 100% confidence in the prediction of y values based

on x values and the regression line) (Figure 6.3.1.a) {Mot03].
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Figure 6.3.1.a: Examples of varying goodness-of-fit values (r2) for regression lines

24 S8
re=1 55, [4]
where

N PRV
SSm=;(y.-—y.-} -——{5]
and

Y 2
SSM=Z(_}’;—5’) ""_"[6]

i =123,....N represents the x-axis points (i.e. log of sample size n), of the range of
coordinates taken to calculate the regression line.

¥, is the actual log value R/S statistic calculated value for the x-axis point i.

y, is the regression line estimate of the x-axis point 7.

y is the mean of actual log values of the R/S statistic ( ;) of the range of coordinates
taken to calculate the regression line. The MATLAB algorithm for the r* analysis 1s
presented in Appendix i.

The RS statistic is benchmarked by calculating Hurst parameters for traces where the
Self-Similarity is evident. The Vonkoch curve [MATb] is a prime candidate for a high

Hurst value. In contrast, a randomly generated trace will generate a low Hurst value

(Figure 6.3.1.b, Figure 6.3.1.c, Figure 6.3.1.4, Figure 6.3.1.¢).
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Figure 6.3.1.b: The Vonkoch self-similar curve
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Figure 6.3.1.c: R/S statistic plot for the Vonkoch curve, Hurst value = 1.0519
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Figure 6.3.1.d: Random trace
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linear regression line with gradient of 0.5154
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Figure 6.3.1.e: R/S statistic plot for the random trace. Hurst value = 0.5154
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6.3.2 Approximation and Stability of the R/S statistic

The R/S calculations do not produce traces that are linear in an ideal sense and can be
segmented into two distinct sections (Figure 6.3.1.c and Figure 6.3.1.¢). The left most
section (containing low and negative R/S values) reflects the peculiarity of the R/S
calculation whereby the initial samples of the original trace are too few (i.e. a small n
value) to make an accurate estimation (equation [1]) [Lel94].Coupled with this the fact
that there is an initial ‘transient’/startup phase within the Active network where the node
resources are under-utilised; it leads to a situation where the R/S statistic values
contribute little to the overall Hurst value calculation. The length of this ‘low-R/S value’
section (i.e. number of data points) will vary from node to node. In particular, the
‘transient’ phase is evident in scenarios that have been scrutinised and classified as
Emergent by this work (i.e. during a ‘transient’ phase Active Replication Packets are in
the process of stabilising resource usage to patterns that are self-similar — see
proceeding section. It is possible that the initial samples of the R/S calculation, per
Active Node, will reflect this factor by taking low values. It is also possible that the
length of the ‘low-R/S value’ section, per Active Node, will also reflect the number of
simulation time steps taken to stabilise and dominate resource utilisation). However
whilst notable, the author has deliberately discounted the ‘low-R/S value’ section from
further analysis.

The Hurst parameter may be subject to errors when calculated through regression
analysis, as there is a possibility of the coefficients being biased by autocorrelation
[Naw95]. Furthermore, graphical R/S analysis (regression analysis) is not accurate
enough to calculate the Hurst value to 4 decimal places. Equation [2] notes; that the
relationship holds when »—oo . Therefore any sample size (1) with a finite upper bound
would result in an approximation of the Hurst value.

As a result of autocorrelation, errors in graphical regression analysis and a finite sample
number, the Hurst value is sometimes seen to nse above 1 (its theoretical limit).
However, the author believes that these factors do not affect the validity of the results.
The R/S calculation with regression analysis is a robust method used to determine
whether Self-Similarity is supported by the data; subsequently used to calculate an

empirical ‘estimate’ of the Hurst value. The analysis is formed on this premise and
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focuses on nodes displaying a Hurst value above 0.9, which in turn, has proved to be an

‘indicator’ for the presence of Cascading Effects.

In Self-Similarity and Long-Range Dependence calculations the stability of the Hurst
parameter can be subject to ‘transient effects’. The calculation of the Hurst value is in
effect the regression analysis estimation of the ‘rate of change’ of the R/S statistic. This
rate of change estimation will inherently average out any transient changes (i.e. breaks
and discontinuities in the R/S plot), the ‘significant’ of which will give rise to alternative
Hurst values for the duration of the discontinuity. This may represent important
phenomena within the system processes. To neglect these phenomena is to exclude a
section of information that might point to further Emergence within the system.

The discontinuities in the plot can also be represented as errors above and below the
linear regression line. It was noted however that the R/S calculations and regression
analysis, for the results generated by this Active Network model, showed remarkably
little error around the linear line of best fit (note: the analysis excludes the initial ‘low-
R/S value’ section as mentioned above). The r* values for the linear regression lines
calculated throughout this work (chapter 6; section 6.3.1) showed high values, of which
a majority are above 0.9. This proves that the simulation scenanios developed by this
project do not give rise to transitory R/S value variations and ensures the stability of
Hurst values for Active Node resource usage fluctuations.

The lack of transitory effects can be linked to the particular simulation configuration
used in this project. As mentioned in chapter 4; section 4.3.14, the inputs to the network
simulation consisted of a ‘single shot’ of Active Packets/Applications that were allowed
to traverse the network and interact with each other through the competition for
resources. Any persistent structure that manifested within the simulation is solely caused
by the ‘single shot’ of input packets. Similarly the lack of persistent data patterns within
node resources was also unaffected due to the non-continuous nature of the input
scenario. This has a positive effect on the accuracy of the linear regression analysis by
eliminating any potential transitory changes in the R/S values, thereby giving an
accurate and stable Hurst value for each Active Node.

As a result of this analysis the author has concluded the following:
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¢ The contribution of the ‘single shot’ input scenario to Self-Similarity in resource
usage is unique and interdependent.

e A clear ‘cause and effect’ relationship can be identified between the simulation
inputs and Self-Similarity.

¢ The estimation of the Hurst parameter is made accurate by the input conditions.

The detection process for Cascading Effects is linked to the network exhibiting high
levels of Self-Similarity (i.e. with Hurst values above 0.9). This result was discovered
when the network was forced into a potentially ‘uncontroiled’ state whereby an Active
Packet was injected (along with a representative sample of non-replicating Active
packets), which replicated itself at every Active Node it encountered that had adequate
resources (Figure 5.5.6.b). If it could not find adequate resources (due to other packets
streams taking up resources or other replicating packets of the original taking up
resources), it would progress onto the ‘next hop’ node (and so on untit it encountered a
node with adequate resources to process or an end-station). Because of replication the
original direction may ‘span’ into multiple directions as the simulation progresses.

The result of this type of replication is the specific fluctuations, of resource usage,
cascading throughout the network. The post simulation analysis of one type of resource
(MEMORY usage), per Active node, indicated a high degree of Self-Similanty (i.e. a
Hurst value of above 0.9) in a number of nodes.

The threshold value of 0.9 was based on the empirical evaluations of several
predetermined simulation scenarios. The iterative process used in section 6.2 was reused
in order to arrive at this value. This process is diagrammatically represented in Figure
6.3.3.a.
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Inputs with an
Emergence Inducing
Factor (EIF)

Inputs without an
Emergence Inducing
Factor (EfF)

Figure 6.3.3.a: Process of experimentation and the definition of the
“Cascading Effect” threshold of 0.9

As a consequence of the investigation into Self-Similarity, it was possible to link the
two phenomena; levels of fluctuation of resource usage to levels of Self-Similarity
within the nodes. A positive relationship was also formed from the number of nodes

displaying Self-Similarity (above 0.9) and the effects of the cascade within the network.
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6.4 Summary

This chapter describes the process by which the techniques for the detection of

Emergence were discovered, selected and developed for the existing Petri Net model of

an Active Network.

As can be seen from this chapter much of the thought process for the selection of a

suitable technique was based on its ability to handle simple, discrete event-driven

systems and their results. Thus some of the reviewed techniques were discounted as

being useful (individually), even though they provided elegant solutions to the detection

of anomalous behaviour and Emergence. The 3 broad methodologies mentioned in this

chapter (Emergence as the loss of complexity in a system, Emergence through the

measure of self organisation and Emergence as patterns in a system) have, however,

similar cross-technological concepts such as:

¢ Resource usage is an indicator of anomalous behaviour

e Self-organisation is a loss of complexity

e Loss of complexity can be visualised as the formation of patterns

e Emergence is a particular subset of pattemns (i.e. anomalous and unexpected
patterns)

Therefore these concepts were useful in strengthening the case for the selected detection

technique.

It was concluded that Emergent Behaviour could be isolated simply through the

detection of patterns in the data produced by the Active Network model. The subsequent

research effort was then focused on pattern detection algorithms (e.g. cross-correlation)

and techniques to re-structure and visualise data (e.g. Image enhancement, Fourier and

Wavelet analysis).

This chapter has described the development of a suitability test that was used in the

assessment of the reviewed methods. The strategy was based on the premise that the

inclusion of an Emergence Inducing Factor in Petri-Net simulations and the use of the

generated results, as an input to a potential detection process, provides a means of

assessing suitability. Therefore the experimentation of all pattern detection techniques

was conducted concurrently using the same input data in accordance with the pre-
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developed strategy. Each experiment was analysed for effectiveness based on the clarity
of results and the ability to identify anomalous behaviour (Emergent or otherwise).

The development of algorithms for the expeniments was achieved entirely through
MATLAB, which contained many of the required mathematical functions and tools as
single pre-built commands.

The Fourier and Wavelet analyses for these experiments did not provide readily
distinguishable Emergence metrics for examination (i.e. detected no
significant/distinctive changes in the simulation output results when presented with 2
significantly varied input data sets - one input set was perceived to have high probability
of causing Emergence whilst the other was perceived to be relatively safe and
‘Emergence free’). Image enhancement and edge-detection techniques provided no
visual improvements to the output data from the Petri Net simulations. Cross-correlation
results lacked clarity and provided no indication of having ‘picked up’ any patterns in
the output data sets, However, it is worth noting that the model may well hold a
collection of Emergence Inducing Factors, which results in a varied set of Emergent
Behaviour within the system. As a result one cannot totally discount the above-
mentioned techniques in detecting new phenomena.

This chapter describes in detail the development process of the Self-Similarity
algorithm. It also highlights the potential of obtaining definitive results, in the detection
of an Emergent Behaviour, through this method (a behaviour that could not have been
foreseen or detected by any of the other techniques reviewed).

Self-Similarity is measured through the Hurst parameter and whilst there are many
mathematical algorithms developed to calculate the Hurst value, including Wavelets,
only the R/S technique was suitable for the data produced by the Active Network model.
This chapter also gives definition to the detected Emergent Behaviour (i.e. a Cascading
Effect) including its identifying characteristics.

The proceeding chapter follows on to provide a more results-oriented case analysis of
the Cascading Effect. It is worth noting that the results analysis and Emergence
definition are part of a collective body of experimentation performed using the Petri-Net
model/simulations and the R/S statistic algorithm (according to the process flow
described in Figure 6.3.3.a).
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7_ Results

This chapter will present:

Simulation results presented in terms of Case Studies.

Simulation scenarios developed using Controlled and Random Inputs.

The identification of the “Cascading Effect” within the results.

The identification of a secondary Emergent Behaviour

The identification of root causes of the “Cascading Effect”.

The proposal that the presence of a “Cascading Effect” is Emergence within the

network.

The key concepts in this chapter are: the “Cascading Effect”, secondary Emergence, case

studies, 0.9 Hurst value threshold, r* “goodness-of-fit” value for regression analysis
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7.1 Overview

The basic modelling concepts developed throughout this work have provided a high-
leve! abstract definition of an Active Network. The Petri Net simulation process
developed these models as workable diagrams that produced time-step data of resource
usage in all Active Nodes within the network (a 25-node network with lattice type
interconnections). This time-step data was used as an input to the Emergence analysis
process. The intermediate results produced by the simulations are themselves abstract
and suit the high-level Emergence analysis.

As a part of the simple derivation of Active Networks several modelling and simulation

considerations were made. These modeliing considerations are mentioned in chapter 4,

section 4.3. In addition to these considerations several key points are highlighted as

being relevant, during the simulation process, in order to arrive at a specific output
resource usage map:

e As inputs, each end-station produces one Active Packet per simulation run. This
Active Packet was redefined, for the purpose of this project, to represent an entire
Active Application stream, its functionality and payload. Thus, with reference to the
lattice structure model of an Active Network, the Petri Net simulator would inject 20
Active Packets/Applications into the core network per simulation run (Figure 4.2.a
and Figure 5.5.2.a). This resulted in a °‘single shot’ simulation of Active
Applications and their interactions. The ‘single shot’ simulation scenario was
deemed prudent and in keeping with the abstract nature of the Active Network
model. It provided a sufficiently simplified view of Active Packet interactions and
network state at any given time step. This followed on to the use of a simplified
Emergence detection process using Self-Similarity.

e The input into the simulator was a text file that contains 20 entries specifying Active
Packet/Applications that would be injected into the core of the network (Figure
5.5.2b). This file can be generated randomly or manually; specifying, in particular,
the directions taken across the network by the packets, amount of resources
consumed and the forwarding mechanisms (linked to packet type). Manual

generation of the input text file was tightly controlled to incorporate an Emergence
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Inducing Factor. This was, in part, previously used for the experimentation and
suitability testing of potential Emergence detection techmiques as described in
chapter 6; section 6.2.

¢ The automated random generation of the input text file was used to add levels of
uncertainty and unpredictability into simulation runs and thereby produce results that
were credible under abstract modelling conditions.

e The simulation output results that were analysed for Emergence were the node
MEMORY resource usage statistics in percentage terms.

¢ Each simulation run was 500 time-steps and the resulting output log consists of a
25-column by 500-row matrix of integers (of MEMORY resource usage).

o The Self-Similarity calculation (R/S statistic) was for each Active Node per
simutation run and therefore used a column wise calculation/decomposition of the

above matrix.
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7.2 Results: Case Study Analysis

This work presents the observation and analysis of results as case studies that primarily
include the Hurst parameter values of “Active Node resource usage fluctuations’ within
an Active Network simulation. Case study 1, case study 2, case study 3 and case study 4
were obtained from simulation runs made using manually specified input source files.

Subsequent case studies were obtained using randomly generated input source files.

The first 4 case studies were designed to specifically highlight the “Cascading Effect”
with tightly controlled input variables. The case studies showed the changes in the
“Cascading Effect” (i.e. the presence or absence of it) when subject to changes in
specific input variables in one source input of a simulation - From the analysis in
chapter 6, this work had initially identified an “Emergence Inducing Factor” in the form
of a self-replicating Active Packet/Application. This packet was included in the source
input file (Figure 5.5.2.b), as one source input, for the simulation runs that produced the
graphs shown in the first 3 case studies below. Case study 4 was a control experiment
where the Active Replication scheme was not included. Thus, the self-replication Active
Packet/Application was subject to input variable changes in the first 3 experiments. This
allowed the simulations to adjust the effects of the replication on the network and
thereby vary the effects of the “Cascading Effect”.

The first 4 case studies provided a foundation for the analysis of subsequent simulation
produced with randomly generated input sources. This foundation provided a
behavioural template for the Hurst parameter and the “Cascading Effect” with a reduced
set of variations in input criteria. The use of randomly generated sources will increase
the levels of vanation and unpredictability. However, a template of expected behaviour

will provide focus for the analysis in order to detect “Cascading Effects”.
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7.2.1 CaseStudy1

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (table below) for
this case study was constructed in order to inject a self-replicating Active Packet into
Active Node A5 (SRC_AS) that took an initial direction from Node AS to El (Figure
5.5.2.c). This replication was directed into the core of network and spanned based on the
scheme described in chapter 5 (Figure 5.5.6.b). The replicating packets consumed, for
the duration of the process, 20% of MEMORY resources, 20% of PROCESSOR
resources and 20% of BUFFER resources from each Active Node it encountered and
had adequate resources.

Other inputs within the source file were designed not to contain any form of replication.
Therefore the Emergence of the “Cascading Effect” was singularly linked to the self-
replication scenario (i.e. the Emergence Inducing Factor). The Hurst (self-similarity)
values and the r* confidence values for this case study are shown in the following graph:
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Figure 7.2.1.a: Case Study 1: Hurst analysis of Active Network
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Input source file for the Case Study 1 simulation
End-station no | End-Station name Input packet

0 SRC Al 1°(2,4,3,50,M,20,10,10,16,15)
1 SRC AlAl 1°(2,4,3,50M,20,10,10,10,15)
2 SRC Bl 1'(2,5,5,50,M.,20,10,10,10,15)
3 SRC Ci 1°(6,5,5,1,F,30,30,30,0,0)

4 SRC D1 1°(6,5,5,1,F,30,30,30,0,0)

5 SRC El 1°(2,6,7,50,M,20,10,10,10,15)
6 SRC EIEl 1'(6,5,5,1 F,30,30,30,0,0)

7 SRC E2 1°(6,7,7,1,F,30,30,30,0,00

3 SRC E3 1°(6,7,7,1,F,30,30,30,0,0)

9 SRC E4 1'(6,7,7,1,F,30,30,30,0,0)

10 SRC E5 1'(6,8,7,50,F,60.60,60,30,5)
11 SRC _ESES5 1'(6,1,1,1,¥,30,30,30,0,0)

12 SRC D5 1'(6,1,1,1 F,30,30,30,0.0)

13 SRC C5 1'(6,1,1,1.F,30,30,30.0,0)
14 SRC B5 1'(10,1,1,50,F,60,60.60,0,0)
15 SRC A5 1'(8,2,1,1,R 20,20,20,0,0)

16 SRC A5A5  1'(6,3,3,1.F,30,30,30.0.0)

17 SRC A4 1'(6,3,3,1,F,30,30.30,0,0)
18 SRC A3 1'(6,3.3,1,F.30,30,30,0,0)

19 SRC A2 1°(6,3,3,1.F,30,30,30,0.0)

With reference to Figure 7.2.1.a 40% of the Active Nodes showed significantly high
levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the
0.9 threshold). The main observation of this work is that a “Cascading Effect” was

present within this simulation instance of the network.
The r* “goodness-of-fit” data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.
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7.2.2 Case Study 2

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (table below) for
this case study was constructed in order to inject a self-replicating Active Packet into
Active Node A5 (SRC_AS5) that took an initial direction from Node AS to E1 (Figure
5.5.2.c). This replication was directed into the core of network and spanned based on the
scheme described in chapter 5 (Figure 5.5.6.b). The replicating packets consumed, for
the duration of the process, 60% of MEMORY resources, 60% of PROCESSOR
resources and 60% of BUFFER resources from each Active Node it encountered that
had adequate resources.

Compared with Case Study 1 the only variables changed were the MEMORY,
PROCESSING and BUFFER resource values for the Active Replication Packet.

Other inputs within the source file were designed not to contain any form of replication.
Therefore the Emergence of the “Cascading Effect” (or the lack of it) was singularly
linked to the self-replication scenario (i.e. the Emergence Inducing Factor). The Hurst
(self-similarity) values and the r* confidence values for this case study are shown in the
following graph:
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Figure 7.2.2.a: Case Study 2: Hurst analysis of Active Network
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Input source file for the Case Study 2 simulation
End-station no | End-Station name Input packet

0 SRC Al 1'(2,4,3,50,M.20,10,10,10,15)
1 SRC AlAl 1'(2,4,3,50,M,20,10,10,10,15)
2 SRC Bl 1°(2,5.5,50,M,20,10,10,10,15)
3 SRC Cl1 1'(6,5,5,1.F.30.30,30,0,0)

4 SRC D1 1'(6,5,5, 1 F,30,30,30,0,0)

5 SRC El 1'(2,6,7,50,M,20.10,10,10,15)
6 SRC EIEl _ [1'(6,5,5,1F,30,30,30,0,0)

7 SRC E2 1'{6,7,7,1,F,30,30,30,0.0)

8 SRC E3 1'(6,7,7,1,F,30,30,30,0,0)

9 SRC EA 1'(6,7,7,1,F,30,30,30,0,0)

10 SRC E5 1'(6,8,7,50,F.60.60,60,30,5)
11 SRC ESE5 1°(6,1,1.1.F,30,30,30,0,0)

12 SRC D5 1'(6,1,1,1F,30,30,30,0,0)

13 SRC C5 1'(6,1,1,1.F.30,30,30,0.0)

14 SRC BS 1'(10,1,1,50,F,60,60,60,0,0)
15 SRC_AS 1'(8,1,1, LR 60,60,60,0,0)

16 SRC A5A5  [1'(6,3,3,1F,30,30,30,0,0)

17 SRC A4 1'(6,3,3,1,F,30,30,30.0,0)

18 SRC_A3 1'(6.,3,3,1F,30,30,30,0,0)

19 SRC A2 1'(6,3,3,1.F,30,30,30,0,0)

With reference to Figure 7.2.2.a none of the Active Nodes showed significantly high

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the

0.9 threshold). The main observation of this work is that there wasn’t a “Cascading

Effect” present within this simulation instance of the network.

The r* “goodness-of-fit” data for the simulation showed significantly high values for all
of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.
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7.23 Case Study3

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (table below) for
this case study was constructed in order to inject a self-replicating Active Packet into
Active Node A4 (SRC_AA4) that took an initial direction from Node A4 to B5 (Figure
5.5.2.c). This replication was directed away from the cemntre of the network and
spanned based on the scheme described in chapter 5 (Figure 5.5.6.b). The replicating
packets consumed, for the duration of the process, 20% of MEMORY resources, 20% of
PROCESSOR resources and 20% of BUFFER resources from each Active Node it
encountered that had adequate resources.

Compared with Case Study 1 the only element changed in the simulation was the initial
input point (Node) and the direction of the Replication Packet.

Other inputs within the source file were designed not to contain any form of replication.
Therefore the Emergence of the “Cascading Effect” was singularly linked to the self-
replication scenario (i.e. the Emergence Inducing Factor). The Hurst (self-similarity)
values and the * confidence values for this case study are shown in the following graph:
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Figure 7.2.3.a: Case Study 3: Hurst analysis of Active Network
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Input source file for the Case Study 3 simulation

End-station no | End-Station name Input packet
0 SRC_Al 1'(2,4,3,50,M,20,10,10,10,15)
1 SRC AlA1l 1'(2,4,3,50,M,20,10,10.10,15)
2 SRC Bl 1'(2,5,5,50,M,20.10,10,10,15)
3 SRC CI1 1'(6,5,5,1.F,30,30,30,0,0)
4 SRC D1 i°(6.5.5.1,F,30,30,30,0,0)
5 SRC El 1'(2,6,7,50,M,20,10,10,10,15)
6 SRC E1F1 1'(6,5,5,1,F,30,30,30,0,0)
7 SRC E2 1'(6,7,7,1,F,30,30,30.0,0)
8 SRC E3 1'(6,7,7,1,F,30,30,30,0,0)

9 SRC_E4 1'(6,7,7,1,F,30,30,30,0,0)
10 SRC E5 1'(6,8,7,50,F,60,60,60,30,5)
1 SRC ESES___ [1'(6,1,1,1,F,30,30,30,0,0)
12 SRC D5 1'(6,1,1,1F,30,30,30,0,0)
13 SRC_C5 1'(6,1,1,1 F,30.30,30,0,0)
14 SRC B5 1°(10,1.1.50,F,60,60,60.,0.0)
15 SRC A5 1'(6,3,3,1,F,30,30,30,0,0)
16 SRC_ASA5  [1'(6,3,3,1,F,30,30,30,0,0)
17 SRC_A4 1'(8,4,3,1,R,20,20,20,0,0)
18 SRC_A3 1'(6,3,3,1,F,30,30,30,0,0)
19 SRC A2 1'(6,3,3,1,F,30,30,30,0,0)

With reference to Figure 7.2.3.a 40% of the Active Nodes showed significantly high
levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the
0.9 threshold). The main observation of this work is that a “Cascading Effect” was

present within this simulation instance of the network.
The r* “goodness-of-fit” data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.
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124 Case Study 4

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (table below) for
this case study was constructed as a control experiment that did not contained any self-

replicating Active Packets.

Compared with Case Study 1 the only element changed in the simulation is the lack of
Active Replication packet. The Hurst (self-similarity) values and the r* confidence

values for this case study are shown in the following graph:
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Figure 7.2.4.a: Case Study 4: Hurst analysis of Active Network
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Input source file for the Case Study 4 simulation
End-station no | End-Station name Input packet
0 SRC Al 1'(2,4,3,50,M,20,10,10,10,15)
1 SRC AlAl 1'(2,4,3,50,M,20,10,10,10,15)
2 SRC Bl 1°(2,5,5,50,M,20,10,10,10,15)
3 SRC C1 1'(6,5,5,50,F,30.,30,30,0,0)
4 SRC D1 1°(6,5,5,50,F,60.60,60,0,0)
5 SRC El 1°(2,6,7,50,M,20,10,10,10.15)
6 SRC EILEI 1'(6,5,5,50,F,30,30,30,0,0)
7 SRC E2 1'(6,7,7,50,F,30,30,30,0,0)
8 SRC E3 1'(6,7,7,50,C,30,30,30,0,0)
9 SRC E4 1'(6,7,7,50,F.30,30,30,0,0)
10 SRC E5 1°(6,8,7,50,F,60,60,60,30,5)
11 SRC ESE3 1'(6,1,1,50,F,30,30,30,0,0)
12 SRC D5 1'(6,1,1,50,F.30,30,30,0,0)
13 SRC C5 1'(6,1,1,50,F,30,30.30,0,0)
14 SRC B5 1°(10,1,1,50,F.60,60,60,0.0)
15 SRC AS 1'(6,1,1,50,F,30,30,30,0,0)
16 SRC ASAS 1'(6,3,3,50,F,30,30.30,0,0)
17 SRC A4 1'(6,3,3,50,C,30,30,30,0.0)
18 SRC A3 1'(6,3,3,50,F,30,30,30,0,0)
19 SRC A2 1'(6,3,3,50,F,30,30,30,0.0)

With reference Figure 7.2.4.a to only 12% of the Active Nodes showed significantly
high levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values
above the 0.9 threshold). The main observation of this work is that there wasn’t a

“Cascading Effect” present within this simulation instance of the network.
The r* “goodness-of-fit” data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6, section 6.3.2). This provides a high degree of confidence
in the accuracy of the Hurst value calculations for this simulation.
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7.25 Case Study 5

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (second table
below) for this case study was randomly generated with several self-replicating Active
Packets that were injected into Active Nodes B1 (SRC_B1), E4 (SRC_E4), ES
(SRC_ES5) and D5 (SRC_DS5) (Figure 5.5.2.c).

The details of the initial directions, the resource usage requirement and the MEMORY

reservation requirement for the Active Replication Packets/Applications are as follows:

.|Source  |Injected |Imitial Memory Processor Buffer Memory
Node Spanning |Resource Resource Resource Reservation and
Direction |requirement [requirement |requirement |Time Limit

SRC Bl {Bl Blw A2 |85% 66% 61% 47% for 18 time
steps

SRC E4 |FE4 Edwo A4 | 7% 24% 55% 0%

SRC E5 | ES E5t0 Al | 60% 55% 36% 49% for 13 time
steps

SRC D5 | D5 D510C5 |[27% 58% 3% 13% for 40 time
sleps

Not all of the replications were directed into the core of the network. However, all
replications spanned based on the scheme described in chapter 5 (Figure 5.5.6.b). The
replicating packets consumed, for the duration of the process, the above-mentioned
MEMORY, PROCESSOR and BUFFER resource values from each Active Node it

encountered that had adequate resources.

Other inputs within the source file did not contain any form of replication. Therefore the
Emergence of the “Cascading Effect” (or the lack of it) was linked to the self-replication
scenarios (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) values and

the r* confidence values for this case study are shown in the following graph:

130



Emergence in Active Networks Chapter 7: Results
120 —@—Hurstvalue
R2 value
1.10 0.9 Threshold
1.00

040

M\ NAU/’\V\ If"\

/

\

12 3 4

T

5678

T

T

9 1011 121314 1516 17 18 19 20 21 2223 24 25

Trace no.

Figure 7.2.5.a: Case Study 5: Hurst analysis of Active Network

Input source file for the Case Study 5 simulation
End-station no | End-Station name Input packet
0 SRC Al 1°(4,8,7,1,M,30,10,10,20,15)
1 SRC AlAl 1'(2,2,3,1,M,20,10,10,10,15)
2 SRC B1 1°(13,6,5,4,R,85,66,61,47,18)
J SRC Ci1 1'(104,5,45,F,51,97,41,37,8)
+ SRC D1 1'(2,4,3,1,M,20,10,10,10,15)
5 SRC El 1°(14,6,5,21,C,67,12,93,25,16) |
6 SRC EIE1 1°(12,6,7,48,F,72,2,6,0,23)
7 SRC E2 '(9,7,7,26,C,79,40,85,63,5)
8 SRC E3 1°(14,2,3,8,C,94,89,19,14,30)
9 SRC_E4 1'(12,7,7,1,R,79,24,55,0,23)
10 SRC _ES5 1'(9,8,7,17,R,60,55,36,49,13)
11 SRC ESES5 1'(15,7,7 3,29
12 SRC D5 1°(12,6,5,0,R,27,58,3,13,40)
13 SRC C5 1'(7,3,3,28,C,31,77,72,16,24)
14 SRC BS 1°(4,1,1,1,M,30,10,10,20,15) |
15 SRC A5 1°(7,3,3,28,C,45,25,71,23,49)
16 SRC_AS5A5 1°(12,7,7,26,F,28,73,4,14 48)
17 SRC_A4 1°(3,5,5,1,M,20,20,20,0,0)
18 SRC A3 1'(4,6,5,1,M,30,10,10,20,15)
19 SRC A2 1'(2,8,7,1,M,20,10,10,10,15)
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With reference to Figure 7.2.5.a none of the Active Nodes showed significantly high
levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the
0.9 thresho!d). The main observation of this work is that there wasn’t a “Cascading

Effect” present within this simulation instance of the network.
The 1 “goodness-of-fit” data for the simulation showed significantly high values for all

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence

in the accuracy of the Hurst value calculations for this simulation.
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7.2.6 CaseStudy 6

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (second table
below) for this case study was randomly generated with several self-replicating Active
Packets that were injected into Active Nodes E4 (SRC_E4), A5 (SRC_AS) and A3
(SRC_A3) (Figure 5.5.2.c).

The details of the initial directions, the resource usage requirement and the Memory
reservation requirement for the Active Replication Packets/Applications are as follows:

Source | Injected | Imitial Memory Processor Buffer Memory
Node Spanning | Resource Resource Resource Reservation and
Direction | requirement | requirement | requirement | Time Limit
SRC_E4 | E4 E4toD5 | 26% 1% 2% 26% for 21 time
steps
SRC A | A5 ASto A5 | 43% 3% 69% 27% for 29 time
5 steps
SRC A | A3 A3to A5 | 7% 52% 98% 6% for 12 time
3 steps

None of the replications were directed into the core of the network. However, all
replications spanned based on the scheme described in chapter 5 (Figure 5.5.6.b). The
replicating packet consumed, for the duration of the process, the above-mentioned
MEMORY, PROCESSOR and BUFFER resource values from each Active Node it
encountered that had adequate resources.

Other inputs within the source file did not contain any form of replication. Therefore the
Emergence of the “Cascading Effect” (or the lack of it) was linked to the self-replication
scenarios (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) values and
the r* confidence values for this case study are shown in the following graph:
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Figure 7.2.6.a: Case Study 6: Hurst analysis of Active Network

Input source file for the Case Study 6 simulation

End-station no | End-Station name | Input packet

0 SRC Al 11°(7,1,1,8,C,93,38,19,60,4)

1 SRC AlAl  [1(1,1,1,1,M,10,10,10,0,0)

2 SRC Bl [1'(1533,5,C,86,31,25,5,0)

3 SRC C1 1°(4,2,1,1,M,30,10,10,20,15)

4 SRC D1 i 11,C,48 2

5 SRC El1 1°(5,2,3,1,M,40,40,40,25,10)

6 SRC EIE1 _ 1°(11,1,1,17,F,24,5,0,11,13)

7 SRC E2 1'(7,4,5,11,F,49,44,25.10,7)

8 SRC E3 1'(6,2,3,5,C,88,83,63,7,2)

9 SRC E4 1°(11,6,7,25,R,26,71,2,26,21)

10 SRC E5 1°(2,4,3,1,M,20,10,10,10,15)

11 SRC ESES 1'(6,2,1,6,C,38,84,14,23 2)

12 SRC D5 1'(14,7,7,0,F,27,22.17,27.22)

13 SRC C5 11'(10,8,7,12,F,66 97,42 24.9)

14 SRC BS 1'(8,8,7,6,F,3,85,29,1,2)

15 SRC A5 1°(6,7,7,8,R.43,37,69,27,29)

16 SRC ASA5  11'(5,3,3,1,M,40,40,40,25,10)

17 SRC A4 1'(5,6,5,1,M,40,40,40,25,10)

18 SRC A3 1'(11,5,5,41,R,7,52,98.6,12)

19 SRC A2 1°(2,4,3,1,M,20,10,10,10,15)
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With reference to Figure 7.2.6.a 16% of the Active Nodes showed significantly high
levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the
0.9 threshold). The main observation of this work is that there wasn’t a “Cascading

Effect” present within this simulation instance of the network.

The r* “goodness-of-fit” data for the simulation showed moderately high values for all of
the Active Nodes (chapter 6; section 6.3.2).
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7.3 Results Discussion

The graphical and tabulated (Appendix iv) results in the above case studies show that in
some situations the network would consist of certain Active Nodes displaying Hurst
values of above 0.9 (in resource usage fluctuations). Where this is evident in a
significant number of nodes, it has been found to indicate that Replicating Packets
were producing a “Cascading Effect™.

The graphs show the Hurst values of the Active Network simulated under a variety of
input conditions. ‘

The results show that nearly all nodes possess Hurst values that are significantly higher
than that of randomly generated traces. This may be explained by the fact that Active
Packets create deterministic resource usage in nodes as opposed to random patterns (for
which Hurst values are about 0.5). Where these high values reach above the critical
threshold of 0.9, the significance of which can be attributed to high resource fluctuations
in nodes, there are grounds for further investigations regarding the types of Active

Applications/Packets processed and the input scenario for the simulation.

Upon analysis of the simulation results (in the case studies), factors have been identified
that significantly affect the Replicating Active Application/Packet’s ability to exhibit
Self-Similarity and thus create a “Cascading Effect”. These factors are:

o The amount of resources an Active Replication Packet consumes within the node

e The number of Active Replication Packets initially injected into the network

o The amount of time for which the replication packets reserve resources (as part of
the resource reservation feature of Active Networks).
If an Active Replication Packet requires a large percentage of node resources, we can
expect a situation where the initial replicating packets very quickly consume the
majority of the node resources. It is likely that replicated packets further down the
process line (requiring the same amount of resources, from each node they encounter, as
the original), will not have adequate resources to complete the Active process and pass
through the network unaffected. The “Cascading Effect” would, in this situation, be self-

limiting or fail to manifest itself. Furthermore, the Network would reach a point of
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quasi-saturation in terms Active capability and performance. Case study 2 and case
study 5 contain examples of this effect (Figure 7.2.2.a and Figure 7.2.5.a). The
simulation in case study 2 was based on 1 Active Replication Packet being injected into
the core of the network. The replications that followed required substantial amounts of
node resources (i.e. 60% of each resource type) from each Active Node capable of
processing them. The high resource requirements led to the network reaching the above-
mentioned ‘self-limiting’ state. Similarly, the simulation in case study 5 held four initial
replicating packets each requiring a combination of resources with a minimum of 58%.
As a resuit of the high resource requirement and the number of individual Active
replications present within the systems, the “Cascading Effect” failed to manifest. This
was further compounded by the reservation of resources, for specific periods of time, by
the replication packets. Case study 6 (Figure 7.2.6.a) showed a similar result to case
study 5 (atso with a randomly selected set of Active Packets/Applications as simulation
inputs).

In comparison, the simulation in case study 1 had one Active Replication
Packet/Application injected into the core that required a small amount of resources from
each Active Node in the path of replication (i.e. 20% of each resource type). As a result,
there was a significant number of Active Nodes displaying ‘above 0.9° Hurst values in

resource usage. A “Cascading Effect” was present within that instance of the system.

The ‘general’ path of the original Active Replication Packet, injected into the network,
has no effect on the networks potential to exhibit a “Cascading Effect”. It could be
assumed that when the path is directed towards the centre and/or is directed along an
edge dimension of the grid network, the number of nodes with ‘above 0.9’ Hurst values
will be proportionally great. Case study 1 (Figure 7.2.1.a) presents this case where the
initial path of the Active Replication Packet was directed towards the centre of the
network. However, it is apparent from case study 3 (Figure 7.2.3 a} that, even when the
path was directed away from the ‘core’, the number of affected nodes remains relatively
stable.

137



Emergence in Active Networks Chapter 7: Results

It is worth noting that in some instances, without the presence of any Active Replication
Packets in the network, a small number of Active Nodes will exhibit Hurst values of
above 0.9. Case study 4 shows examples of this effect (Figure 7.2.4.a). Investigations
revealed that these nodes were located in positions where they process an increased
number of Active Packet/Applications (i.e. Active Application stream concentration
points), thereby giving rise to high resource fluctuations and high Self-Similarity. For
example, in case study 4, Active Nodes C3 (trace no. 13), B3 (trace no. 18) and B2
(trace no. 19) had a high concentration of Active Applications, which increased the
amount of processing/memory handling tasks being performed (throughout the
simulation at these nodes). The nodes processed in total 7, 6 and 7 Active Applications,
respectively. This was reflected by above-0.9 Hurst values for these nodes. In
comparison the Active Node A3 (trace no. 23) processed only 3 Active Applications for
the entire duration of the simulation run. This resulted in a relatively low Hurst value of
0.7060. This phenomenon, on its own, was interesting and can be thought of as
secondary Emergence (i.e. an additional facet of the discovered Emergence for this
modetl).
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7.4 Summary

In this chapter the author has re-emphasised the modelling considerations made with
respect to the inputs/outputs of the system and the simulation. It proposes that the
simplified inputs are integral to the high-level examination of an Active Network and in
turn simplifies the process for the detection of Emergence.

The chapter also describes the structure of the input text file and the resulting output log
file for a simulation run.

The second half of this chapter describes in detail various simulation ‘case studies’ that
indicate the presence or absence of Emergence. The case studies are summarised as
plots, which are also the results of the Self-Similarity calculation process — each
simulation run produced one Emergence case study that consisted of 25 Hurst parameter
values derived from the time-based Self-Similarity calculations of the 25 Active Nodes
present within the system. Each case study included in the chapter provided indications
of Emergence (if present) whilst the Results Discussion section (section 7.3) described
the causal factors.

The chapter also describes the empirical process by which Emergence is identified -
defining a key detection criterion (i.e. a Hurst value above 0.9 in a significant number of
nodes). The detection criterion was established through the experimental case study
analysis process, each of which reinforced the detection to a position where the potential
Emergent outcome of the system could be ‘estimated’ prior to any simulation. The
process of simulating random input scenarios, which contained (and didn’t contain) the
Emergence Inducing Factor of self-replication, could have been continued indefinitely.
However, it was apparent that case studies, after a certain number, added no exceptions
to the Self-Similarity process or the Emergence criterion (for “Cascading Effects”). It

was at this point that further simulations were deemed unnecessary.
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8 Conclusions and Future Work

This chapter will present:

¢ A review of the Emergence definition and the Emergence detection criterion for the
results produced by this work.

e The identification of the generic characteristics within the detected Emergent
Behaviour.

* Further work in terms of enhancing the Active Network model.

¢ Further work in terms of developing alternative detection techniques

¢ Further work in terms of migrating the model to an entirely new methodology.

The key concepts in this chapter are: Emergence, Cellular Automata, cluster analysis,

model enhancements
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This work has attempted to identify Emergence as a measurable quantity in a highly
connected network of ‘intelligent’ nodes. It has also succeeded in highlighting one
particular instance of Emergence from a technique devised for the detection of patterns
in data.
The conclusion of this work is that the Self-Similarity of resource usage
fluctuations in Active Nodes (above a certain threshold) is an Emergence, by
definition, and is a property that would not manifest/explain itself by the simple
analysis of system dynamics - Emergence detection required a specific layer of
abstraction of the network along with a specific detection algorithm,
Furthermore, it is apparent that even when self-replicating input scenarios were allowed
to affect the network in an uncontrolled manner (a situation that could be perceived as
| detrimental to the network) they did not necessarily satisfy the Self-Similarity condition
for Emergence. As a result, more attention was applied to the analysis of the dynamics
of Active Replication Packets and other Active Packets. One can think of the Jack of
Self-Similarity condition, in these situations, is part of the overall Emergence within the
system. This is because the phenomenon was not expected and required further
investigation.
The root causes of the self-similar Emergent Behaviour were identified as the resource
usage requirement of Active Replication Packets/Applications, the amount of time the
resources are reserved as part of Giobal State Maintenance and the number of Active
Replication Packets traversing across the network.
On reflection the root causes for the self-similar Emergent Behaviour seem obvious.
However, the formal definitions of Emergence cater for the notion of ‘hindsight” — the
fact that Emergence is a behaviour that persists until a valid explanation is found, at
which point it ceases to be Emergence.
The concern of this research work is the comprehension of the underlying dynamics of
Active Networks, which would probably give rise to Emergence. Whilst this work was
successful in proving Emergence exists in the Active Network model, it has highlighted
only one particular example of Emergent Behaviour. It may be possible that the system
holds many Emergent characteristics that could be discovered through other pattern
detection techniques and algorithms. In general, there exists many types of Emergent
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Behaviour, some closely coupled with system under investigation (not necessanly
Active Networks related). The prime contribution of this work was to direct research
towards the analysis of resources and resource usage within the system. The author
proposes that there exists a strong link between resource usage in a distributed system
and Emergent Behaviour. A ‘clue’ regarding Emergent Behaviour can be obtained by
the analysis of fluctuations in resource usage - as they function as ‘enablers’ for the
system’s processes. The resource stores also function as ‘points/places of contention’ for
system services thereby acting as reflectors of ‘interesting’ behaviour.

The modelling process accounts for the system being complex and being governed by
theories of Complexity. Thus a systematic and piecemeal approach to the model
construction had to be combined with a collective understanding of network behaviour.
The author views the resultant ‘collective behaviour’ as patterns in the system. The
algorithm developed to detect one type of Emergence is a step towards the
understanding of all collective behaviours in the system.

Of the Emergent characteristics described in chapter 3 it is clear that the Self-Similarity
Emergent Property is due to the creation of Positive Feedback structures (chapter 3;
section 3.1.1). It is also apparent that the Emergent Property detected by this work is
clearly linked with characteristics of Meta-balance (chapter 3; section 3.1.3) and
Resonance (chapter 3; section 3.1.6).

Further work to this research could come in the form of extending the Active Network

model in terms of additional elements, which would increase the accuracy of the model

but would also add another layer of complexity (e.g. addition of vanable time delays).

An extension to the model should be able to parameterise and simulate the concept of

time (in a single step) as:

e Time taken for a packet to flow from one node to the next-hop node

» Time taken for a packet to move through the input/output queues of the current node

* Time taken for an Active Packet to be processed (code retrieval, verification,
resource allocation and execution)

Time delays will provide an extra dimension to focus onto in order to highlight potential

anomalous behaviour (i.e. Emergent Behaviour). It was decided that this research, in an
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attempt to seek a balance between the development of a manageable system model and
the analysis of an accurate/complex model, would disregard this element.

Additional techniques for the detection of Emergence, through the visualisation of
resource usage fluctuations, can also be developed. The author proposes the use of
Cluster Analysis Techniques to determine additional patterns in data that are indicative
of Emergence.

Investigations of the “Cascading Effect” Emergence can be extended by incorporating
alternate configurations of replicating schemes, increasing the number of Active Nodes
being simulated and varying the topology of the network.

It may also be possible to migrate the modelling concepts to another methodology. For
example, the author proposes the use of ‘Cellular Automata’, which would change the
model from a static-node to a dynamic/virtual-node structure. Initial investigations on

this concept have been positive and are described in section 8.1 .
The work done by this research can be considered as a precursor and a template for
future detailed modelling of Active Networks (i.e. the detailed modelling process would

be able to use the points highlighted by this research to build a better Active Network).

The results and findings of this project were presented at the “Multi-Service Networks
Conference” (COSENERS, 2004), held on the 8th of July in Abingdon, Oxford, UK.
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8.1 Virtual Node Simulation

Observing Emergent Properties and self-organised structure is a complex task,
considering that the ‘structure’ of Emergent Behaviour may not stay fixed to a set of
nodes. It is possible that the structure may move within the boundanes of the modelled
network. With this in mind and for the purposes of exposing Emergent Behaviour, one
can remove the restriction of having Active Nodes in specific network topologies (even
though, in practical terms, the Active nodes are in a fixed network).

Virtual Node Simulation (VNS) is a concept envisaged by the author, and may prove to
be a viable addition to this work in terms of detecting Emergent Behaviour in Active
Networks - VNS could be used to visually detect static or moving structures within the
Active Network simulation environment. It can also facilitate the interpretation of these

structures and the stages of structure formation.

VNS begins with the design of a cellular grid environment that depicts the scalable
Active Network. End-stations are located at the periphery of the grid and each end-
station has the capability to transmit and receive Active Packets/Applications (which are
designated as moving blocks). The foundations for this type of simulation are taken
from Cellular Automata (CA), which have been used in other research projects to

successfully analyse various anomalous network behaviours,

At the heart of Cellular Automata, we consider the uniform lattice of cells to have local
states, which are subject to a uniform set of rules. These rules drive the behaviour of the
system, and in turn, set the particular state of a cell (i.e. the rules compute the next state
of a cell as a function of its previous state and the states of surrounding cells). A moving
block positioned within a cell is an abstraction of the state of that cell (i.e. the simulator
displays the changing states of cells as moving blocks within the grid environment). An
extension to this would be to allow the cells to preserve the history of state changes and

calculate their next state based on it.

Cellular Automata describes the simulation environment in terms of a lattice and cells.

The abstract view of changing states depicts the movement of packets within the lattice.
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However, CA alone will not suffice in describing the complex behaviour of Active
Networks because the Active Packets themselves are defined entities with specific
objectives. The model must be in a position to describe the characteristics of packets
along with the rule-set for each cell.

The full simulation framework will incorporate ‘Multi-Agent’ theory, which will allow
the complete definition of an Active Packet (along with its behavioural dynamics). Each
Active Packet will be represented by an autonomous ‘Agent’, which will be produced
and consumed within the simulated space (i.e. within end-stations and the cellular
lattice). Agents will carry complex rule-sets and objectives (they may also incorporate
the static rule-set defined for the individual cells), and have sensors to perceive their
local neighbourhood [Dij00]. A further ability would be for Agents to leave ‘traces’ of
themselves at specific cells they visit, thereby affecting the local environment.

trace element

Active Packet/Agent Cellular grid environment
End station with
transmit and recieve
capability
Figure 8.1.a: Virtual Node Simulation of an Active Network with a uniform lattice
of cells

The Agent mobility and behavioural characteristics (anticipated or unplanned) are
dependent on several factors:
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e The static and dynamic goals of the Agent.

e The ‘beliefs’ of the Agent — a ‘belief’ is the internal, imperfect representation of the
environment, held by the Agent, which includes the perceived states of other Agents.

o The rule-set

¢ The number of interactions between Agents

o The types of interactions between Agents (i.e. co-operative, competitive)

¢ The type of Agent

The concepts of Multi-Agents encompasses a large research area. Some of the concepts
are either not relevant to Active Networks or are too strict in definition to be useful. It is

therefore appropriate to reduce the Agent description to a minimum set of parameters.

One can define an Active Network Agent through U =<R, A, F >, where:

e ‘R’ is a finite set of ‘role identifiers’. It represents all possible roles (and
combinations of which) an Agent can have. The ‘role’ of an Agent highlights the
objectives and goals held within it.

e ‘A’ represents the activity agenda of an Agent i to achieve its goals {A;}.

o ‘F’ represents the knowledge and information (Facets), held by an Agent, of its
environment {F;}. These facets include beliefs, awareness, experience, preference
and choice. All of the facets are dynamic and are liable to change throughout a
stmulation [Dij00].

Agents (Active Packets) are programmed with certain capabilities, analogous to the
Primitive Functional Components (PFCs) of the high-level modelling scenario. These
capabilities are:

¢ Replicate themselves

e Merge into a single unit

¢ Transform themselves into new types

* Generate as new

e Leave trace elements at certain locations
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¢ Harvest information from a local area and feedback to a calling application

The author proposes that Emergent Behaviour will not occur without the

interaction of two or more Active packets and/or their trace elements.

An ‘interaction’ can be viewed, within the grid, as a collision between two or more
packets and/or trace elements. At the point of impact, each Active Packet will execute
certain rules and make decisions based on the local conditions (e.g. decisions based on
collided packet type, trace element type, direction of movement, conflict in objectives,

interest in co-operation, etc.).

In reality, Active Packets can only interact through a node; thus the point of impact is
indicative of an Active Node being present at that location. In essence, all grid locations
have the potential to be collision points and hence Active Nodes. However, the specific
locations of Active Nodes are of little importance for a high-level simulation (i.e. the
simulation should be independent of topology). The simulation should be capable of
displaying Emergent Behaviour, some of which, will manifest themselves as stable,
static/moving ‘structures’ (of Agents and their respective traces). Furthermore, through
the rules governing the local state changes, a model can depict a global structure
influencing local components (Figure 3.3.a).

The idea to use such an approach stems from the successes of ‘Multi-Agents’ in the
detection and analysis of global phenomena in a wide variety of systems (e.g. traffic
flow simulations, pedestrian behavioural analysis [Dij00]). However, currently this
simulation method is in its initial investigation stages. Further work in this area may
reveal the requirement of an application-specific simulator (which would have to be

developed in-house through Object-Oriented programmes such as Java or C++).
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i. MATLAB Algorithm

% MATLAB algorithm for the generation of the Hurst value (using the R_S statistic)
% and R2 confidence value

o4 for one series of data (i.e. one Active Node)

% notes: this programme must be run for each of the 25 traces in order to calculate
% the complete set of Hurst values for a particular simulation run

Yo

clear;

al=0; 9% declare and initialise dammy variable for fscanf

o5 user input for datatog filename for reading
file nm = input('Enter file name >''s");

% user input for specific Active Node Trace no.
Trace_no = input('Enter the trace no (1 to 25) >";

% open datalog file
file_id = fopen(file_nm,'r"),

% scan datalog file line-by-line (row-by-row) and enter into 2-d array
forn=1:499

[array(n,:),al] = fscanf(file_id,"%i ',[1 25]);
end

% close datalog file
fclose(file_id);

sig = (armay(:, Trace_no))."; o/, extract from 2-d array the correct trace linked to the
% Active Node

L = length(sig), % length of data trace

R_S = zeros(1.L), % R_S value declared and initialised

9/, main calculation for-loop to calculte a series of R/S valucs for
% different sample lengths
forn=1L
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sig_n = sig(l:n}; % obtain a sample series from original
% trace

mean_sig_n = mean(sig_n); % mean of sample series

S(n) = sqrt(var(sig_n)) +eps; % square-root of the variance of sample

% seties. eps value is used to prevent
% divide-by-zero errors

% nested for-loop to calculate partial sum

fork=1m

W(k) = sum(sig_n(1:k)) - k*mean _sig_n;

end

% calculation of R/S statistic for the sample series

R_S(n) = (max([0 W]) - min([0 W]))/S(n);

end

% generating a log-log plot

X =1loglO(1:L);

Y =loglO(R_S + eps),

figure;

scatter(X,Y); % draw a scatter plot

% regression analysis

% extract the positive R/S values for the regression analysis

% the negative section represents the disregarded ‘startup’ stage

a2z = Y(Y>0),

ana_range = (L - length(a2} + I)L; % calculate the regression analysis
% range

p = polyfiX(ana_range),Y(ana_range),1); % calculate the linear regression line

% refresh the scatter plot with added regression ling

Y_reg = polyval(p,X);

plot(X.Y,'0", X,Y _reg,"");

% print Hurst value for the trace linked to the Active Node, which it the

% gradient of the lincar regression line

H=p(1)

% R2 "goodness of fit" calculation

% used to obtain a confidence level for the regression analysis

error = Y(ana_range) - Y_rcg(ana_range); % error calculation for the

% specific
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% regression analysis range
ss_reg = sum{error.”2); % sum of the crrors squared
mull_residual = Y(ana_range) - mean(Y(ana_range)); % mull residual
ss_tot = sum(mull residual.~2), % sum of the mll residual squared

% print R2 "goodness of fit" value for the trace linked to the Active Node
r_squared = 1 - (ss_reg/ss_tot)
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ii. Design/CPN Petri Net Diagrams

ii.1. Declarations

/f GLOBAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE PETRI NET MODEL

{/ COLORSETS (variable type definitions) for Active Packets

color AppID = int with 1..15;
color Dirl = int with 1. 8;
color Dir2 = int with 1..8;
color TTL = int;

color Route =with M |R | C | F;
color Memory = imt with 0..100;
color Processor = int with 0..100,
color Buffer = int with 0..100;

color Release = int with 0..50;

/ Active packet IDs
/f Direction Indicator 1
/{ Direction Indicator 2
/f Time-to-Live field

// Routing Mechanism

/! Active Packet MEMORY requirement

# Active Packet PROCESSOR requirement
{/ Active Packet BUFFER requirement

/f reserved MEMORY rescurce release time
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// other COLORSETS (variable type definitions)

color Queue = with Q_unit; H for a queue control variable
color Timer_Control = with Time_unit; {/ for a timer control variable

color Timestamp = int; /f for a timestamp variable

color Timeflag = bool; // for a check fag variable

// compound COLORSETS (variable type definitions)

color Time_holder = product Timestamp * Timestamp * Timestamp * Timestamp * Timestamp declare all; // timestamp holder

color Packet = product AppID * Dirl * Dir2 * TTL *Route * Memory * Processor * Buffer * Memory * Release declare all; /I Active Packet

color Xpacket = product AppID * Route * Memory * Processor * Buffer * Memory * Timestamp * Timeflag declare all; #f Active Packet with timestamp and check flag

/I VARIABLE declarations

var pkt, pkt2 : Packet; /I Active Packet variables

var source ; Packet ms;  // Input Source variable

var app, app2 : AppID;  // Active Packet application ID.

var dkl : Dirl; / Active Packet Direction Indicator 1

var dk2 : Dir2; /1 Active Packet Direction Indicator 2

var vitl: TTL; /! Active Packet Time-to-live counter

var vroute, vroute2 : Route; /f Active Packet Routing Mechanism
var vimem, vmem2, vimem3, vimend, vimem5, vmemo, vinem?7 : Memory; / MEMORY resource variables
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var vprocess, vprocess2, vprocess3, vprocessd, vprocesss, vprocessé : Processor, /{ PROCESSOR resource variables

var vbuff, vbuff2, vbuff3, vbuffd, vbuffs, vbufté : Buffer, // BUFFER resource variables

var Istore, Istore2 : Memory, /f reserved MEMORY resource variables
var rcount : Release; / reserved MEMORY resource release time
var ql, g2, q3 : Queue; /f quene control variables

vartl, 12, 83, t4, t5 ; Timer_Control; /f timer control variables

var tstamp : Timestamp; /f timestamp variable

var tflag : Timeflag; /1 check flag variable

var compound ; Xpacket; /f Active Packet variable

var a5,b5,c5,45,e5 : Timestamp, / timestamp variables

var 46,b6,c6,d6,e6 : Timestamp; /f timestamp variables
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// LOCAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE MERGE PACKET COMPONENT

/{ COLORSETS (variable type definitions)
color Mtimestamp = int; // for a timestamp variable
color Firststate =bool,  // for a check flag variable

color Flag = bool; // for a check flag variable

// compound COLORSETS

color Flag_holder = product Flag * Flag * Flag * Flag * Flag; /f check flag holder

color Mpacket = product AppID * Dirl * Dir2 * Mtimestainp * Firststate;, / reduced information Control Packet
// VARIABLE declarations

var mapp, mapp2, mapp3 : ApplD, /I Active Packet application ID,

var mdk]1, mdkl 2, mdkl_3 : Dirl,; /! Active Packet Direction Indicator 1

var mdk2, mdk2_2, mdk2 3 : Dir2; #/ Active Packet Direction Indicator 2

var mistamp, mtstamp?2, mtstamp3, mtstamp4 : Mtimestamp; // timestamp variables
var fstatus, fstatus2, fstatus3, fstatus4 : Firststate; // check flag variables
var al, bl, c1,dl, el : Flag; // check flag variables
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var a2, b2, ¢2, d2, e2 : Flag,
var a3, b3, ¢3, d3, e3 : Flag;
var a4, b4, c4, d4, e4 : Flag;
var meompound : Mpacket;

# check flag variables
/f check flag variables
/f check flag variables
 reduced information Control Packet variable

# LOCAL DECL ARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE LOCAL STORAGE COMPONENT

#/ COLORSETS (variable type definitions)

color Ltimestamp = int;
color St =bool;

/# compound COLORSETS

color Lpacket = product Ltimestamp * Memory * Release * St;

/{ VARTABLE declarations
var itstamp ; Ltimestamp;
var lcormpound : Lpacket;
var a, b : Memory;

var GO, GO2 : St;

// timestamp variables

// for a timestamp variable
Jf for a check flag varigble

/f reduced information Control Packet

/! reduced information Control Packet variable
/ reserved MEMORY resource varables
/1 check flag variables
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// LOCAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE DATA LOGGING COMPONENT
/ includes GLOBAL REFERENCE variables used in code sections

// COLORSETS (variable type definitions)
color reg_name = ing; // for page instance value (ACTIVE NODE IDENTIFIER)

/f VARIABLE declarations
var reg,reg2 reg3 regd reg5 : reg_name; // variables holding the ACTIVE NODE IDENTIFIER value

// GLOBAL REFERENCE VARIABLE declarations

globref mk_0 = "mull", // not used

globref mk_1 = "mull"; /{ variable to hold all datalog register location values as ong string; wrilten to output file “out.txt”
globref tpage_id = 0; // variable to hold user selected page handle (i.e. Active Node page handle)

globref tplacel _id = 0; /f variable to hold user selected place handle (i.e. Mregisier place handle)

globref tplace2_id = 0; // variable to hold user selected place handle (i.c. Global Memaory Store place handle)

globref tplace3_id=0; // variable to hold user selected place handle (i.c. Global_Processor_Store place handle)

globref tplaced_id =0, /l variable to hold user selected place handle (i.e. Global Buffer Store place handle)

/ file handles for the reading in of custom iritial MEMORY, PROCESSOR and BUFFER values.
globref fhl = TextlO.openin "/home/elmsd2/design_cpn/activenetwork/sre.txt";
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globref fh2 = Text1O.openln "/home/elmsd2/design_cpn/activenetwork/sre.txt";
globref fh3 = TextiO.openln "/home/elmsd2/design_cpn/activenetwork/src.txt";

globref N =0, // while-loop counter

globref mem_val = "null"; // variable to hold the custom initial MEMORY value read in from file
globref pro_val = "null";  / variable to hold the custom initial PROCESSOR value read in from file
globref buf_val = "null"; // variable to hold the custom initial BUFFER value read in from file

// datalog register locations which house the MEMORY resource values (linked to changes in place: Global_Memory Store)
globref regloc0 = 100;
globref reglocl = 100,
globref regloc2 = 100;
globref regloc3 = 100,
globref reglocd = 100;
globref regloc5 = 100;
globref regloc6 = 100,
globref regloc? = 100,
globref regloc8 = 100;
globref regloc9 = 100,
globref regloc10 = 100,
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globref reglocl1 = 100;
globref regloc12 = 100;
globref regloc13 = 100;
globref regloc14 = 100,
globref regloc15 = 100;
globref regloc16 = 100;
globref reglocl7 = 100,
globref regloci8 = 100;
globref regloc19 = 100,
globref regloc20 = 100;
globref regloc21 = 100,
globref regloc22 = 100;
globref regloc23 = 100;
globref regloc24 = 100;
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ii.2. Model Hierarchy (Y Giobei_Beciareiionsa")
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ii. 3.

Top-level Active Network
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/{ Purpose: cede for traffic gencration at source SRC_A1
// Location: Petni Net transition: SRC_AlI

{/ Description: the code reads the input source file “src.txt” to extract the correct line as input Active Packet

output source;
action
let
/f function definition to extract the entire input file as a list
fun fileToList fileName =
let
// function definition
fun f fh = if TextIQ.endOfStream fh
then
let
val _ = TextlO.closeln fh
in
nil
end
else

// formation of the list of input lines extracted from input source file

// extract one line in sequence and append to list of other extracted lines
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(input_ms'Packet fh) :: (f fh)

# function call to open text file
f (TextIO.openin fileName)
end;

// function ¢all

// specifies correct input source file and line no.

// the line no. is used to select the correct input line specific to the particular source
# line no. 0 1s the input for SRC_AS

List.nth((fileToList "/home/elmsd2/design_cpn/activenetwork/src.txt™),0)

end;
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ii.4. Active Node (section 1)

¢ The first section in the Active Packet process flow.

e Holds the 4 input ports and the decision to process, destroy or forward a particular Active Packet.
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// Purpose: code to reduce the MEMORY, PROCESSOR and BUFFER resource values once the decision to process an Active
/{ Packet has been made

/{ Location: Petri Net transition: PROCESS

// Description: the code uscs the resource requirement values held within the Active Packet to reduce the resource values in places: Global Memory_Store, Global Processor Store
and Global_Buffer_Store. It also updates the regloc register location for the specific instance of Active Node

imput (app,dk]1,dk2, vitl,vroute,vmem, vprocess, vbuff, Istore, reount,ymems3, vprocess3,vbufi3,reg);

output (pkt,vmemd vprocessd,vbuffd, reg);

action

// updates regloc location (linked to changes in place: Global Memory Store)

usestring| "regloc"*makestring(reg )" :=""mukestring(vmem3-vmem)];
((app,dk1,dk2,(vttl-1),vroute,vimem,vprocess,vbuff,Istore,rcount), (vinem3-vmem), (vprocess3-vprocess),(vbuff3-vbuff), reg);
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ii.5. Active Node (section 2)

* Positioned right of section 1.

* Holds decision-and-release mechanism for Global State Maintenance (L.ocal Storage component) and the Direction Solver component.
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ii.6. Active Node (section 3)

¢ Positioned below section 2

s Holds the Resource Release Mechanism for all Active Packets that are processed.
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// Purpose: code to adjust the resource release time for MERGE Active Packets
/f Location; Petri Net transition: GSE_RESOURCE
// Description: adjustment of the resopurce release time for MERGE Active packet is necessary since the initial packets MERGE stream is delayed by 5 time steps. The initial Merge

Active Packet follows normal resource release timings. Subsequent merge packets of a stream (that fall within the 5 time step period) will have their resources released immediately

singe they are merged with the initial packet.

input (app,dk1,dk2, vitl,vroute, vmem, vprocess, vbuff, Istore, rcount,a5,b5,c5,d5,e5);
output (app2,vroute2,vmem2,vprocess2,vbuff2, Istore2,tstamp, flag,a6,b6,c6,d6,e6),

action
let

// function definition: the same procedure for each MERGE Active packet based on application id: 1 to 5
fun select_merge(APP,VROUTE,VMEM,VPROCESS, VBUFF LSTORE,A5.B5,C5 D5 ,ES) =
case APP
// check if within the 5 time step period and not the initial Active Packet of the MERGE stream
of 1 == if ((step() < (A5 + 5)) andalso (0 < AS5))
then
I release resource immediately: subseguent packet
(APP,VROUTE, VMEM, VPROCESS, VBUFF LSTORE, (0-9),false,A5,B5,C5,D5,ES)
else

#/ release resource normally: initial packet
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/ the MERGE Active Packel is lime stamiped with the simulation step number
(APP,VROUTE,VMEM, VPROCESS, VBUFF,LSTORE step(),false step(),B5,C5,D5,E5)
|2 => if ((step() < (BS + 5)) andalso (0 <BS))
then
(APP,VROUTE,VMEM, VPROCESS,VBUFF,LSTORE,(0-9),false,A5,B5,C5,D5,E5)
else
(APP,VROUTE,VMEM,VPROCESS, VBUFF,LSTORE step(), false, A5,step(),C5,D5,E5)
| 3 =>if ((step() < (C5 + 5)) andalso (0 < C5))
then
(APP,VROUTE,VMEM, VPROCESS, VBUFF,LSTORE (0-9),false,A5B5,C5,D5,ES)
else
(APP,VROUTE, VMEM,VPROCESS,VBUFF LSTORE step(),false,A5,B5,step(),D5,ES)
| 4 =>if ((step() < (D5 + 5)) andalso (0 <D35))
then
(APP,VROUTE,VMEM, VPROCESS, VBUFF,LSTORE,(0-9),false,A5,B5,C5,D5,E5)
else
{APP,VROUTE,VMEM, VPROCESS,VBUFF,LSTORE step(),false,A5,B5,C5,step(),E5)
| 5=>if ((step( < (E5 + 3)) andalso (0 <E5))
then
(APP,VROUTE, VMEM,VFPROCESS,VBUFF,LSTORE,(0-9),false,A5,B5,C5,D5,ES)
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clse
(APP,VROUTE, VMEM,VPROCESS, VBUFF,LSTORE step(),false, A5,B5,C5,D5,step())
/1 all other Active Packets are time-stamped with the simulation step number
/I resources released normally
| _=> (APP,VROUTE,VMEM, VPROCESS, VBUFF,LSTORE,step(),false, A5,B5,C5,D5,E5)

select_merge (app,vroute,vmem,vprocess,vbuff,lstore,a5,b5,c5,d5,e5)
end;
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{// Purpose: code to delay the releasing of resources for all Active Packets

// Location: Petri Net transition; DELAY

// Description: the delay is adjusted so that the resource release is timed to coincide with the exit of the Active Packet from the node. Each packet type (based on routing mechanism)
has different resource delay timings based on the time it spends within the Active Node and its sub components.

input (app2,vroute2,vmem?2,vprocess2,vbuff2, Istore2, tstamp, tflag);

output (compound),
action
let
/I function definition to specify different delay values tor different routing mechanisms
fun delayvalue(VR) =
case VR
of F=>1 // FORWARD Active Packet delay in time steps
[C=>0 / CONSUME Active Packet delay in time steps
|M=>9 // MERGE Active Packet delay in time steps {may be adjusted with previous code)
|[R=>2 /f REPLICATE Active Packet delay in time steps -

in
#/ check if release time is reached based on routing mechanism
if (step () < (tstamp + delayvalue(vroute2)))
then
(app2,vroute2,vmem?2,vprocess2,vbuff2, Istore2, tstamp, false)  // delay not reached, set flag to false, loop back
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else
(app2,vroute2, vmem2 vprocess2,vbuff2 Istore2, tstamp,true)
end;

{/ delay reached, set flag to true, proceed to next stage
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{/ Purpose: code to increase the MEMORY, PROCESSOR and BUFFER resource values once the release time value has been reached (checks flag).

// Location: Petri Net transition: RELEASE

// Description: the code uses the resource requirement values held within the Active Packet to increase the resource values in places Global Memory Store, Global_Processor_Store
and Global_Buffer_Store. It also updates the regloc register location for the specific instance of Active Node.

input {(app2,vroute2,vmem?2,vprocess2, vbufi2 Istore2, tstamp,iflag, vmems3, vprocessS,vbufts, reg);

output (vmemo6,vprocess6,vbuffé,reg?);

action

/ updates regloc location (linked to changes in place: Global Memory_Store)

usestring{"regloc" makestring(reg)*" ="~makestring(vmem5+(vmem?2-Istore2))};

// note: MEMORY resources may not be fully restored due to the Global State Maintenance mechanisin (Local Storage Component) reserving resources for additional periods of time

((vinem5-+vmem?2-Istore2)),(vprocessS+vprocess2),(vbuff5+vbuff2),reg),
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ii.7. Active Node (section 4)

* Positioned right of section 2.
» Differentiates Active Packets based on the 4 routing mechanisms.

e Holds the Merge Packet component and the Replicate Packet component.
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ii.8. Active Node (section 5)

¢ Positioned above section 4.
¢ Outputs Active Packets from one of 4 ports.
¢ The decision to output from a particular port is based on Direction Indicator 2 value, which is held with the Active Packet.

* As a pre-process, the Direction Solver Component modifies the Direction Indicator 2 value based on preset criteria.
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i1.9. Local Storage Component in detail (section 1)

¢ The first section in the Active Packet process flow.

¢ The component describes the Global State Maintenance feature of the node (i.e Active Application resource reservation feature).
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/f Purpose: code to add a timestamp to packet in order to calculate the MEMORY resource storage delay

// Location: Petri Net transition: Generator

{// Description: the code uses the current simulation step number as a timestamp, which is added to the rcount MEMORY storage time limit in order to calculate the MEMORY release
time in simulation time steps.

input (ltstamp,Istore,rcount, GO,

output (lcompound);

action

((step ) + rcount),Istore,rcount,false);
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ii.10. Local Storage Component in detail (section 2)

e Positioned above section 1.

o The section describes the delay-and-release mechanism for the reserved MEMORY resources.

193



Emergence in Active Networks

Appendix ii

Glebl_Memory_store

[F]wo

temory

(hstamp,isto w.x ount 0 O)

[GO = false]

lcompound

;.!z I;nllst.l o
T —R 1
’ ; g hame
] ﬂEl!n_C!
[E0 mtme] @
(ltstanp;lstore wountc o)

Loacket

o}

Delaying

(€]

1 e

(Mstamp lstore,MountGO)

Go2
D kemponnd - leompound
tpacket [602 = truie]

194

Opktstore2

f

(itstamp istore,wountGo)

Lpacket



Emergence in Active Networks Appendix ii

/I Purpose: code to delay the release of MEMORY resources.

// Location: Petri Net transition: Delaying

/1 Description: the code uses a check to see if the current simulation time step is less than the timestamp and rcount combination.
imput (Itstamp, Istore, reount,GO);

output (lcompound);
action
let
/f function definition
fun £ (Its,1s,rc) = if (step () < Its)
then
(Its,Is,rc, false) /f release time limit not reached. Set check flag to false (to loop back)
else
(lts,Is,rc true) // release ime limit reached. Set check flag to true (to proceed to next stage)
in
/f function call
f(ltstamnp, lstore,rcount)
end;
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/f Purpose: code to increase the MEMORY resource values once the release time value has been reached (checks flag).

// Location: Petri Net transition: RELEASE

{/ Description; the code uses the resource reserved value Istore, held within the Active Packet, to increase the resource values in place Global Memory Store (same as
Global Memory_Store in Active Node). It also updates the regloc register location for the specific instance of Active Node.

input (a,ltstamp, Istore rcount, GO, reg),

output (b,GO2,reg);

action

// updates regloc location (linked to changes in place: Global_Memory_Store in Active Node)

usestring{"regloc" makestring(reg)™" :=""makestring(a-+lstore)];

((a+lstore),true,reg);

196



Emergence in Active Networks Appendix ii

ii.11. Merge Packet Component in detail (section 1)

o The first section in the Active Packet process flow.
» The component describes the Active Packet Merge feature.

¢ This section extracts the initial Merge Active Packet from subsequent packets.
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(fstatus]
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mib1,01.41,01) (nub2,42,43,02)

Fng_holder’ 1FLRGS

Flaps

T (fadse,fals g, ilse,fals g false)
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/f Purpose: check to see if the MERGE Active Packet is the 1* of the stream. It also adds a timestamp to each Merge Active Packet
/ Location: Petri Net transition: TIME_STAMP
// Description: A check flag is set when the process identifies the initial Merge Active Packet. This flag is used to identify subsequent Merge Active Packets, of a particular
application number, as being suitable for merging with initial Active Packet.
input (app,dk1,dk2,vitl,vroute, vimem, vprocess, vbuft, Istore, rcount,al,bl,cl,dl,el);
output (mapp,mdk], mdk2,mtstamp, fstatus,a2,b2,c2,d2,e2),
action
let
/f function definition: the same procedure tor each MERGE Active packet based on application id: | to 5
fun checkflags (APP,DK1,DK2,A1,B1,C1,D1El)=

case APP
of 1 =>if (Al = false) // for application id: 1
then
(APP,DK1,DK2 step(),true,true, B1,C1,DLEL) // imitial packet detected. Check flag set to true
else
(APP,DK1,DK2 step(),false,A1,B1,C1,D1,El) // initial packet not detected. Check flag remains false
|2 =>if (Bl = false) // for application id: 2
then
(APP,DK1,DK2 step(),true, Al true,C1,D1,E1)
clse
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|3 =>if (C1 =false)
then

else

| 4 => if (DI = false)
then

else

| 5=>if(El = false)
then

else

/f function call
checkflags{app,dkl,dk2,al ,bl,cl dlel)

end,

(APP,DK1,DK2,step(,false,A1,B1,C1,D1,E1)
#/ for application id; 3

(APP,DK1,DK2 step{),true, A1,B1,true,D1,E1)

{APP,.DK1,DK2 step(),false A1,B1,C1,.D1,El)
// for application id: 4

(APP,DK1,DK2 step(),true,A1,B1,Cl,true E1)

(APP,DK1,DK2 step(},fulse,A1,B1,C1,D1LE])
/I for application id: 5

(APP,DK1,DK2 step(),ttue, A1,B1,C1,D1,true)

(APP,DK1,DK2,step(),false,A1,B1,C1,D1,E1)
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it.12. Merge Packet Component in detail (section 2)

¢ Positioned right of section 1.

¢ The section describes the delay-and-release mechanism for the Merge Active Packet and the reset of the check flag,
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{/ Purpose: code 1o delay the release of the initial Merge Active Packet.

/f Location: Petri Net transition: DELAYING

/ Description: the code uses a check o see if the current simulation time step is less than the timestamp + 5 simulation time steps.
input (mapp,mdk1,mdk2, mtstamp, fstatus),

output {(mcompound);
action
let
/f function definition
fun f (APP,DK1,DK2,TST,FST) =
if (step O < (TST + 5))
then
(APP,DK1,DK2, TST,true) // release time limit not reached. Set check flag to true (to loop back)
else
(APP,DK1,DK2,TST false) // release time limit reached. Set check flag (o false (to proceed {0 next stage)
in
// function call

f(mapp,mdk1,mdk2, mtstamp, fstatus)
end;
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/{ Purpose: code to reset the specific check flag used in the selection of the initial Merge Active Packet, which has at this stage been released
!/ Location: Petri Net transition: E

// Desceription: a function is used to differentiate and reset the check flags of initial Merge Active Packets based on application id.

input (mapp,mdk 1 mdk2 mtstamp, fstatus,a3,b3,¢3,d3,e3),

output (app,dk1,dk2,vttl vroule,vmem,vprocess,vbuf lstore,reount,ad,b4,c4,d4,e4),

action
let
/f function definition: the same procedure for each MERGE Active packet based on applicationid: 1 to 5
fun checkflags2 (APP2,DK1_2,DK2 2,A3,B3,C3,D3,E3)=
case APP2
of 1 == (1,DK1_2,DK2_2,1,M,10,10,10,0,0,false,B3,C3,D3,E3)
12=>(2,DK1_2DK2_2,1,M,20,10,10,10,15,A3 false,C3,D3,E3)
| 3=>(3,DK1_2,DK2_2,1,M,20,20,20,0,0,A3,B3 false,D3 E3)
| 4 =>(4,DK1_2,DK2 2,1,M,30,10,10,20,10,A3,B3,C3 false,E3)
|5=>(5DK1_2,DK2 2,1, M,40,40,40,25,10,A3,B3,C3,D3 false)
in
// function call
checkflags?(mapp,mdk1,mdk2,a3,b3,¢3,d3,e3)
end;
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ii.13. Replicate Packet Component in detail

o The component describes the Replicate Packet feature, which replicates Active packets according to the prescribed scheme.

o Modifies the replicated Active Packets’ Direction Indication 1 and Direction Indicator 2 values.

205



Emergence in Active Networks

(npp Akt AR2 il ymute, vrne ra,vproress,vhufl istew nounty

{4k - 1) I:(nn.!lIl,dll,l,unul-.\gn-m,vuuoslwbuﬂ.lphnxounﬁ +4

bo.dkv ARz vitlewute. vmen.y processobuftistereounty

1 Rpp.2, L1, vrouts, e menvp e ce s s buftistom reeunt

W = 2] 35, dH1,058,5 #route, v ey pracens, vhutlistere mount) 45
U, 1,1,0, v ute v Ene i vpmies & vh uffl stous, motdt) + 4

JAkastilvrovte,vnem.vpveses ,vbutlisto mnount)

TR ERNT B e ¥ C6 WD

[kt = 3] 1 mep AR1Ld k21,0 v0 ute, Vi o P praces o, vhufl s to W, rT o ntfye+
c 1'mep, 2,31 e etevme oy vp v co 88, 9h i itore, mount) +4

1 (RBP4, 1, O VI éth o P ROCE uffiste re.xcoting)

packet ,dh,dlz,uﬁl.vu:hvmom.vuunl.nuﬂ.lﬂou,uﬂlh[‘h 291 1'uen. k142100 ute.cmem s preces £.uDUML ISt B 2ORY) 44
f 1" asp. 38,1 ¥w ks smet,vp e ss,vb uhlictone, mount) + 4
E' n e L L vioite, v nem,vproce S5 ¥R uTListore roo bl 3
mput_Replcxtor
[k 2 S) 4 pp din ARz, vwete vne mvprocepsnbuttisto R sunt) ++

Lysa nte, yinen,vprocess,vhufl isteresou nﬁ_n

1'(AD, 4.5,1,4 seute, v m e ¥p ro e s bhuflistore, préwnt) + 4

vioute, ¥ e mproces s, sbutlistore ount)

g Wl

T(RER,.5,), vreate ymem,vpwce ss.vbuftistaprivounty

M6 = 8] o o pp, de,AR2,1,vronte, Vi # 1,0 g6 e a,vbuffistom s ountf +4
r 1" tapy, § 86,1, 510 vte.v e o, vpag ok & & vVl store,mount) + 4

(mpf ARy 4 stiivrouts, smemeproces Lol Ul latomacsunl

T (aoe,7,7,1, vrowte,y e,y pvo cese.vbufliato me.ree L1

(0K 2 2] o inppdis di20 s ote, ymen,vorocesn.vhufliste v efin) +
1'tazp, $.2,1,0rectev m e mvp w co s s, vhutll sterve, rremptys +

(l?.dlﬂ.dh.vﬁbvulh,mon.nrunl.vbuﬂ.!lbmluunﬂ

FE ..V RIWVE » VTG R RO UEY

[dkt = 8] 1 ompp,dk1,dk2,1,vr00te, ome rod 0 0, vb Ut Btere,rcount 44

D" 1 (ask, L1V ymutermen vamcess,vhwifistorn mourt) +4 .

206

packet

. [P out

catput_Replicator

Appendix ii



Emergence in Active Networks Appendix i

ii.14. Direction Solver Component in detail

¢ The component describes the Direction Solver feature used to modify the Direction Indicator 2 value so that an Active Packet exits the Active Node

from the correct output port.
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ii.15. Data logging component

perf_p1 pert_t1

O—»

t

Timer_Control

1 Time_unit

timer.Control pert_t2
ped _p2

-3
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// Purpose: code for the setup of the data logging process

// Location: Petri Net transition: perf_1l

// Description: the code requests inputs from the user to select which Petri Net places to track and sets up initial place values
input (t1);

output (12);

action

// asks user to select the page (i.e. the Active Node component) which returns a page handle

tpage_id:= DSUI_AskUserToSelectPage();

DSStr_SetCurPage(ltpage_id);

// asks user to select page-instance-holder place which returns a place handle (user selects: Mregister)
tplacel_id:= DSUI_SelectObject{objtype=NODE_TYPE, ovemide=false};

{/ asks user to select MEMORY place which returns a place hiandle (user selects: Global Memory_Store)
tplace2_id:= DSUI_SelectObject{objtype=NODE_TYPE, override=false};

// agks user to select PROCESSOR place which returns a place handle (user selects; Global_Processor_Store)
tplace3_id:= DSUIL_SelectObject{objtype=NODE_TYPE, ovemride=false};

// asks user to select BUFFER place which returns a place handle (user selects: Global Buffer_Store)
tplaced_id:= DSUIL_SelectObject {objtype=NODE_TYPE, override=false};

// marks cach page-instance-holder with the correct page instance (ACTIVE NODE IDENTIFIER)
usestring[GetChangeMarkingCode{instid=(List.nth(GetPageInsts(!tpage_id),0)),placeid=(!tplacel_id},mark="1'0"}];
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usestring| GetChangeMarkingCode{ instid=(List. nth(GetPageInsts(!tpage id),1)),placeid=(!tplacel_id),mark="1"1"}],
usestring[ GetChangeMarkingCode{instid=(List. nth(GetPagelInsts(!tpage_id),2)),placeid=(tplacel _id),mark="1"2"}];
usestring[ GetChangeMarkingCode{instid=(List.nth(GetPageInsts(!tpage_id),3)),placeid=(!tplacel_id),mark="1'3"}];
usestring[GetChangeMarkingCode{instid=(List.nth(GetPageInsts(Itpage_id),4)),placeid=({tplacel_id),mark="1"4"}],
usestring[ GetChangeMarkingCode{instid=(List.nth(GetPageInsts(! tpage_id), 5)),placeid=(tplace1_id),mark="1"5"}};
usestring[GetChangeMarkingCode{instid=(List. nth(GetPage Insts(tpage_id),6)),placeid=(ltplace]_id), mark="1"6"}};
usestring[GetChangeMarkingCode{ instid=(List. nth(GetPagelnsts(/tpage_id),7)),placeid=(!tplace]l_id),mark="1'7"}],
usestring[GetChangeMarkingCode{ instid=(List. nth(GetPageInsts(!tpage _id),8)),placeid=(!tplace]_id},mark="1"8"}};
usestring{ GetChangeMarkingCode{instid={List.nth(GetPageInsts(!tpage_id),9)),placeid=(!tplacel_id),mark="1"9"}],
usestring[GetChangeMarkingCode{instid=(List.nth(GetPageInsts(!tpage_id),10)),placeid=(!tplacel_id),mark="1"10"}];
usestring|{ GetChangeMarkingCode{ instid=(List. mth(GetPageInsts(1tpage_id),11)),placeid={!tplacel_id),mark="1'11"}];
usestring[GetChangeMarkingCode{instid=(List.nth(GetPageInsts(!tpage_id),12)),placeid=(!tplacel_id),mark="1"12"}];
usestring[GetChangeMarkingCode {instid=(List. nth(GetPageInsts(ttpage_id),13)),placeid=(!tplace]_id),mark="1"13"}];
usestring[GetChangeMarkingCode{ instid=(List.nth(GetPagelnsts(!tpage_id), 14)),placeid=(ltplace1_id),mark="1"14"}];
usestring[ GetChangeMarkingCode{instid={List.nth(GetPageInsts(!tpage_id),15)), placeid=('tplacel_id),mark="1"15"}];
usestring[ GetChangeMarkingCode{instid=(List.nth(GetPageInsts(!tpage_id), 16)), placeid=(!tplace1_id),mark="1"16"}],
usestring[ GetChangeMarkingCode {instid=(List. nth(GetPagelInsts(!tpage_id), 17)), placeid=(Itplace1_id), mark="1"17"}];
usestring{ GetChangeMarkingCode(instid=(List.nth(GetPageInsts(!tpage_id), 18)),placeid=(!tplace]_id),mark="1"18"}];
usestringfGetChangeMarkingCode{instid=(List.nth(GetPageInsts{!tpage_id),19)), placeid=(!tplacel_id),mark="1"19"}];
usestringGetChangeMarkingCode{instid=(List.nth(GetPagelnsts(!tpage _id),20)), placeid=('tplacel_id),mark="1"20"}];
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usestring[ GetChangeMarkingCode{instid=(List.nth(GetPageInsts(!tpage_id),21)),placeid=(!tplacel_id),mark="1'21"}};
usestring{GetChangeMarkingCode{instid=(List.nth(GetPagelInsts(itpage_id),22)),placeid=(!tplace1_id),mark="1'22"}],
usestring[GetChangeMarkingCode{instid=(List. nth(GetPageInsts(!tpage_id),23)),placeid=(ltplace1_id),mark="1'23"}],
usestring[GetChangeMarkingCode{instid=(List. nth(GetPageInsts(!tpage_id),24)),placeid=(!tplacel_id),mark="1'24"}];

# intialises datalog register locations which house the MEMORY resource values (linked to changes in place: Global_Memory_Siore)
regloc0:= 100,
reglocl:= 100;
regloc2:= 100;
regloc3:= 100;
reglocd:= 100;
regloc3:= 100;
regloc6:= 100;
regloc?:= 100;
regloc8:= 100,
regloc9:= 100;
regloc10:= 100;
reglocll:= 100;
regloc12:= 100,
regloc13:= 100,
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reglocl4:= 100,
regloc15:= 100;
regloc16:= 100;
reglocl?:= 100;
reglocl8:= 100,
regloc1%:= 100;
regloc20:= 100,
regloc21:= 100;
regloc22:= 100,
regloc23:= 100,
regloc24:= 100;

#/ initialises text file handles for the reading in of custom initial MEMORY, PROCESSOR and BUFFER values.
fhl:= TextIQ.openln "/home/elmsd2/design_cpn/activenetwork/initmemval txt";

fh2:= TextIO.openln "/home/elmsd2/design cpn/activenetwork/initproval xt";

fhi:= TextlO.openln "/home/elmsd2/design_cpn/activenstwork/initbufval txt";

N:=0;
mem_val:="null",
pro_val:="null",
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buf_val:="null";

/ marks MEMORY, PROCESSOR and BUFFER values for each instance of Active Node with custom initial values taken from text files.
// initialises places: Global_Memory _Store, Global_Processor_Store, Global_Buffer Store
{/ this is an optional process not used in simulations. All MEMORY, PROCESSOR and BUFFER initial values are setto 160
while (IN<25)do (
mem_val;= TextIQ.inputLine (!fh1);
pro_val:= TextlO inputLine (1fh2),
buf_val:= TextIO.inputLine (!fh3);

usestring{ GetChangeMarkingCode{instid=(List.nth{GetPagelInsts(!tpage_id),!N)),placeid=(Itplace2_id),mark="1""~(Imem_val)}];
usestring{ GetChangeMarking Code{ instid=(List. nth(GetPageInsts(Itpage id),'N)),placeid=(!tplace3_id),mark="1""*(lpro_val)}];
usestring]GetChangeMarkingCode{instid=(List. nth(GetPagelnsts(ltpage_id),!N)),placeid=(Itplace4_id),mark="1""~(buf_val)}];

N:=(IN+1)
)

Time_unit;
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// Purpose: continuous loop for the logging of MEMORY resource values of all Active Nodes.

f/ Location; Petri Net transition: perf_t2

// Description: at each pass of the loop the code writes (as one string) the regloc values for all instances of Active Node.

input (13);

output(t4);

action

H/ make the string with all the regloc values

mk_1:= makestring(stepO)*"..." *makestring({regloc0)*", " makestring(!regloc1 ™", "*makestring(!regloc2)*", " makestring(! regloc3)™","*makestring(!regloc4)*","makestring
(Iregloc5)*", " *makestring(lregloc6)™"," *makestring(!regloc7Y\","*makestring(Iregloc8)™","~makestring(! regloc9)™"," *makestring(1regloc 10)*", "Amakestring(!regloc11)

A "makestring(!reglocl 2)*"," *makestring{|regloc13)*"," makestring(tregloc14)*", "~makestring(lregloc15)*", "~mukestring(lregloc 16)* ", "*makestring (| regloc1 7)™, " *makestring
(Iregloc18)™, " makestring(1regloc19)™"," “makestring(lregloc20)*","~makestring(lregloc2 1)*","*makestring(1regloc22)","*makestring(! regloc23)*","*makestring (! regloc24);

let
// open file and write one line
val outstr = Text]Q.openAppend ("/home/elmsd2/design_cpn/activenetwork/log/out.txt")
val a = TextIO.output (outstr,(!mk_1)*"\n")
val _ = TextlO.closeOut outstr
in
Time_unit
end,
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e

i. Petri-Net Simulators Reviewed

Nets

Place Invariants
Transition Invariants

Structural Analysis

Services for modular

modelling

Name Features Environment
Petri-Net types Components
supported
ALPHA/Sim | High-level Petri- | Graphical Editor SunOS
Commercial | Nets Token Game Animation Solaris
(academic Petri-Nets with Fast Simulation MS Windows
discount) Time Simple Performance NT
Analysis
Artifex High-level Petri- | Graphical Editor Sun
Commercial Nets Token Game Animation HP
(academic Petri-Nets with Fast Simulation Silicon Graphics
discount) Time Simple Performance Linux
Analysis MS Windows
Report generator
C code generator
CPN-AMI High-level Petri- | Graphical Editor Sun
Free of Nets Fast Simulation Linux
charge Place/Transition State Spaces Macintosh
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DaNAMICS | High-level Petri- Graphical Editor Java
Commercial | Nets Token Game Animation
Stochastic Petri- Fast Simulation
Nets State Spaces
Place Invariants
Transition Invariants
Structural Analysis
Simple Performance
Analysis
Advanced Performance
Analysis
Design/CPN | High-level Petri- Graphical Editor Sun
Free of Nets Token Game Animation HP
charge Petri-Nets with Fast Simulation Silicon Graphics
Time State Spaces Linux
Simple Performance
Analysis
Interchange File Format
GreatSPN High-level Petri- | Graphical Editor Sun
Commercial | Nets Token Game Animation Linux
(free for Stochastic Petri- Fast Simulation
academic Nets State Spaces
purposes) Petri-Nets with Condensed State Spaces
Time Place Invariants

Transition Invariants
Structural Analysis
Advanced Performance
Analysis
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INCOME High-level Petri- | Graphical Editor Sun
Process Nets Token Game Animation HP
Designer Stochastic Petri- Fast Simulation Silicon Graphics
Commercial | Ngys Transition Invariants Linux
(free for Petri-Nets with Net Reductions MS Windows
academic Time Structural Analysis Java
purposes) Simple Performance

Analysis

Advanced Performance

Analysis

Interchange File Format

Interfaces to workflow

engines, CASE tools,

integrated document

management, process

monitoring
Moses Tool High-ievel Petri- Graphical Editor Sun
Suit Nets Token Game Animation Linux
Free of Stochastic Petri- | Fast Simulation MS Windows
charge Nets Java

Petri-Nets with User-extendable
Time
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PACE Object-oriented Graphical Editor Sun
Commercial | PNs Token Game Animation MS Windows
(academic High-level Petri- | Fast Simulation
discount) Nets Net Reductions

Place/Transition

Nets Fuzzy Modelling

Stochastic Petn-

Nets

Petri-Nets with

Time
PetriSim High-level Petri- | Graphical Editor MS DOS
Freeof Nets Fast Simulation
charge Place/Transition

Nets

Petri-Nets with

Time
RENEW Object-oriented Graphical Editor Java
Free of PNs Token Game Animation
charge High-level Petri- | Fast Simulation

Nets
Place/Transition
Nets

Petri-Nets with

Time

Interchange File Format
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TimeNET High-level Petri- | Graphical Editor Sun
Commercial | Nets Token Game Animation Linux
(free for Place/Transition Fast Simulation
academic Nets State Spaces
purposes) Stochastic Petri- Place Invanants
Nets Structural Analysis
Petri-Nets with Simple Performance
Time Analysis
Advanced Performance
Analysis
Interchange File Format
Visual Object | Place/Transition Graphical Editor MS Windows
Net ++ Nets Token Game Animation
Free of Petri-Nets with Fast Simulation
charge Time Structural Analysis

Simple Performance
Analysis

Supports object hierarchies
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iv. Case Study Tabulated Results

iv.l.

Case Study 1
Trace no | Active Node | Hurst value | r* value

1 e5 0.8189 0.9701
2 ed 0.7984 0.9520
3 €3 0.8648 0.9628
4 ¢2 0.8936 0.9657,
5 el 0.9146 0.9818
6 d5 0.9006 0.9938
7 d4 0.8822 0.9760
8 d3 0.7201 09261
9 d2 0.7248 0.9211
10 dl 0.9062 0.9723
11 cS 1.0451 09489
12 c4 0.9780 0.9663
13 c3 0.6299 0.8575
14 c2 0.6509 0.8998
15 cl 0.8624 0.9627
16 b5 0.9680 0.9899
i7 b4 10112 0.9863
18 b3 (0.9633 0.9615
19 b2 0.7425 0.9846
20 bl 0.8473 0.9669
21 a5 0.9794 0.9828!
22 a4 1.0288 0.9801
23 a3 0.9962 0.9743
24 a2 0.8165 0.9732
25 al 0.8398 0.9687,
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iv.2. Case Study 2

Trace no | Active Node | Hurst value | r* value
] ¢S5 0.7358 0.9261
2 ¢d 0.6898 0.9619
3 €3 0.6845 0.9532
4 e2 0.7365 0.9800
5 ¢l 0.8036 0.9813
6 ds 0.6742 0.9700
7 d4 0.6913 09146
8 d3 0.4947 0.8364
9 d2 0.5873 0.9284
10 dl 0.7939 0.9877
11 c5 0.6876 0.9738
12 cd 0.5522 0.8096
13 c3 0.7783 0.9012
14 c2 0.5768 08273
15 cl 0.7434 0.9626,
16 b5 0.6799 0.9449,
17 b4 0.5126 0.9045
18 b3 0.5381 0.8842
19 b2 0.5163 08537
20 bl 0.5482 0.8183
21 as 0.6942 0.9479
22 ad 0.6596 0.9411
23 a3 0.6765 0.9468
24 a2 0.6511 (.9033
25 al 0.6337 0.9128
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iv.3. Case Study 3

Trace no | Active Node | Hurst value | r valoe
1 e5 Q.7700 09736
2 e4 0.8383 0.9580
3 e3 0.8926 0.9789
4 e2 0.8708 09670
5 el 0.8834 09783
6 ds 0.9176 09914
7 d4 09126 0.9796
8 d3 0.8025 0.9841
9 d2 0.7125 0.9264
10 dil 0.8656 0.9693
11 c5 10063 0.9619
12 cd 1.0057 0.9643
13 c3 0.6187 0.9406
14 c2 0.8176 0.9720
15 cl 0.8779 0.9787
16 b5 0.9878 09751
17 b4 1.0160 0.9701
18 b3 1.0561 0.9508
19 b2 0.7821 0.9568
20 bl 0.8756 09779
21 as 09735 0.9893
22 ad 0.9615 0.9835
23 a3 0.9482 0.9898
24 a2 0.8948 0.9692
25 al 0.8629 0.9721
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iv.4. Case Study 4

Trace no | Active Node | Hurst value | «* value

1 es 0.7030 0.9888
2 ed 0.7672 0.9889
3 el 0.7740 0.9894
4 ¢2 0.8969 0.9673
5 el 0.7898 0.9920
0 ds 0.7358 0.98‘1_1‘
7 d4 0.7188 0.9786
8 d3 0.7908 0.9921
9 d2 0.8372 0.9838
10 dl 0.6771 0.9908
11 cS 0.8021 0.9771
12 cd 0.7969 0.9'}’&|
13 c3 0.9329 0.9760
14 c2 0.8605 0.9809
15 cl 0.7009 0.9824
16 b5 0.7526 0.9820
17 b4 0.8570 0.9786
18 b3 0.9356 0.9’2@4
19 b2 0.9381 0.9780
20 bl 0.8579 0.9799
21 a5 0.5945 0.9795
22 ad 0.7822 0.9901
23 a3 0.7060] _ 0.9860
24 a2 0.7748 0.9921
25 al 0.8389, 09797
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iv.5. Case Study 5

Trace no | Active Node | Hurst value | r* value

1 es 0.7038 0.9353,
2 ed 0.7193 0.9473
3 e3 0.8329 0.9760
4 e2 0.8209 0.9698
5 el 08711 0.9739
6 ds 0.7020 09326
7 d4 0.7323 0.9704
8 d3 0.7966, 0.83765
9 a2 0.7976 0.8676
10 dl 0.7286 0.9387
11 c5 0.8281 0.9863
12 cd 0.7044 09631
13 c3 0.7205 0.9299
14 c2 08717 0.9255
15 cl 0.7494 0.9601
16 b3 0.7747 0.9806
7 b4 0.6585 0.9304
18 b3 0.4985 0.8770
19 b2 0.8684 0.9719
20 bi 0.8611 0.9758
21 a5 08517 09712
22 ad 0.7092 0.9634,
23 a3 0.7766 0.9634
24 a2 0.8216 09724
25 al 0.8927 0.9733
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iv.6. Case Study 6

Trace no | Active Node | Hurst value | r value
1 e5 09316 0.9828
2 ed 0.9349 0.9824
3 e3 0.8694 (.9802
4 e2 0.7924 0.9840
5 el 0.7884 0.9576
6 ds 08214 0.9671
7 d4 Q0.7627 0.9550
8 d3 0.8567 0.8652
9 d2 0.7512 0.9048
10 dl (.7855 0.9615
11 ¢S 0.8389 0.9654
12 c4 0.7789 0.8956
13 c3 0.6083 0.8504
14 c? 06131 0.7901
15 cl 0.7967 0.9600
16 b5 09171 09727
17 b4 0.8758 0.9865
18 b3 0.6292 0.8659
19 b2 0.5154 0.7209
20 bl 0.7033 0.9259
21 as 0.7858 0.9450
22 a4 0.9213 0.9802
23 a3 0.8162 0.9534
24 a2 0.7060 0.8714
25 al 0.7269 0.9105
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