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ABSTRACT 



Emergence in Active Networks Abstract 

Abstract 

Any complex system may potentially exhibit unpredicted and undesirable behaviour as a 

result of certain combinations of input stimuli. An Active Network, being a 

communication network in which user requested operations are undertaken in the 

netwOIk nodes themselves, is a candidate to exhibit such behaviour. For example, 

resource utilisation will be influenced by the specific combination of activities triggered 

by the users and may develop undesirable characteristics such as a self-sustaining 

profile. Conventional simulation tools do not detect such characteristics. 

This thesis proposes a solution based on a Petri-Net model in which the resource 

utilisation of the Active Network is abstracted above the link level communication 

element. It is then suggested that a certain type of Emergence in resource utilisation may 

manifest itself as Self-Similarity. The Hurst Parameter (H) of the resource utilisation 

profile for each node in the network can then be used to identify the presence of this 

characteristic. The RlS Statistic is used to estimate sets of H values for a range of 

different Active Application scenarios. It is subsequently seen that a self-sustaining 

resource utilisation profile (termed a "Cascading Effect") occurs when a significant 

subset of the nodes display high values of H. 

This thesis takes the view that Emergence in Active Networks is a problem that has to 

be approached with a global comprehension of the system as opposed to the 

conventional approach of a piecemeal development of solutions. This view is reinforced 

by the hypothesis that an Active Network is a Complex System and Emergence is non­

complex self-organisation within it. It proposes that the high-level abstraction of the 

Active Network forms a view by which global comprehension can be obtained and is 

used for the detection of anomalous behaviour (Le. Emergence). The key enabler for 

self-organisation is proposed to be 'the resources' within the Active Network nodes and 

hence the detection technique was focused on the utilisation characteristics of these. 
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Background 

Multimedia is a collection of text, speech, graphics, audio and video formed into 

nwnerous applications meeting the needs of corporate and domestic clients alike. The 

progress of the Internet is towards the provision of these enriched services over IP. 

which is the defacto stsndard for fixed inftastructure networks. In conjunction, the 

recent rise of wireless data communications has provided significant impetus to the 

research of viable technologies providing guaranteed Quality-of-Service (QoS) and 

efficient resource utilisation [KuI99]. The intrinsic nature of wireless netwoIks mean 

that bandwidth is at a premiwn in heavily congested airways. Cwrently. IP s1ruggles 

with the legacy of having been originally designed for text-based communications and 

with the problem of maintaining backward compatIbility with existing hardware. 

As the size of the Internet expands from millions of nodes to billions of nodes, the 

information richness and capabilities of the current TCPIIP protocol will see its limits. A 

current topic of discussion in improving the Internet is the focus on adding Quality-of­

Service (QoS) controls on Routers (to support real-time communications, reliable 

distributed multicasting and multi-party interactive communications) [Mar99]. 

However, as more services are added and deployed on a large-scale, the cost (the major 

sink for funds would be the extension of inftastructure and network management) and 

complexity of the system will grow rapidly. 
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L Introduction 

This chapter will present: 

• A brief description of Active Networks. 

• A brief explanation of Emergence. 

• The contributions made by this work to further the understanding of Active Network 

behaviour in Emergent situations. 

• The strategy undertaken to develop a detection technique for Emergence in Active 

Networks. 

• The idea that Active Node resource usage is linked with Emergent Behaviour. 

The key concepts in this chapter are: Emergence, Active Networks, original work, Self­

Similarity, resource usage fluctuations, detection technique, high-level abstract model 



Emetgence in Active Networks Chapter I: Introduction 

This research project primarily brings together two fields of study in order to present an 

interesting problem that would pose significant barriers to the implementation of the 

discussed technology. 

The first is a new networking concept called Active Networks; envisaged and promoted 

by the networking community as a radical alternative to IP (Internet Protocol) networks. 

It is an advanced internetworking technology that would provide increased throughput 

of multimedia and the efficient usage of bandwidth. Active Networks, however, do 

nothing to simplity the complexity of the current Internet structure. The addition of 

Active Networking components (as will be shown later in this thesis) would, in fact, 

raise levels of complexity. 

The second is Emergence, which is the term given to the uncontrolled manifestation of 

system-wide structures (good or bad) through the dynamic interactions of individual 

system components. Emergence is a topic of high interest to many research communities 

including the systems, physics and mathematical communities. It is generally understood 

that the term Emergence is the collective definition for system behaviour over and above 

what can be practically understood in a complex system. The discovery of Emergence is 

proposed as a practical methodology to evaluate complex system performance without 

the need to understand every single facet of system behaviour [GoI99J. 

Both fields, even though thoroughly researched, lack a set of coherent principles, 

standards and definitions. The directions of research (in Active Networks and 

Emergence) are varied and changeable. In this environment this research project 

proposes to merge the two fields and find a practical solution to the detection of certain 

types of Emergence in Active Networks. The detection scheme proposed by this 

research is one part of the overall design and modelling process; undertaken as a stage in 

the development process of a stable complex system for the Internet. 

Active Networks promises to be a more radical solution to current Internet woes and 

describes the implementation of a 'user-subscribed customisation of the data 

connection '. In other words, the end-users could be given the capability to modity 

routers to specifically enhance the application throughput along it's connection path; 

2 
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requesting resources based on the type of application, the required Quality-of-Service 

and the network state for the duration of the connection. Active Networks is the tenn 

given to this distributed processing environment that lacks any central management 

control. 

The lack of central management control is not exclusive to Active Networks. The 

current IF protocol owes it popularity to the fact that it provides easy integration to the 

fabric of the Internet without the authorisation of anyone supervisory body. Active 

Networks propose to go one step further and allow users (the clients and servers) the 

ability to customise the core of the Internet. 

The extent to which the 'end-users' are allowed to control the network is a highly 

debated issue. Giving individuals Active Capability would open the network up to a 

whole host of security, integrity and 'political' problems (e.g. possible threats from 

hackers, erroneous software creating system wide crashes and users who will insist on 

priority for their applications). It is possible that Active Capability, in the future, be 

given to accountable organisations (e.g. Internet Service Providers, multi-media 

application servers, etc.) with an attached premium or be integrated to software 

packages designed for the Internet. Several authentication/integrity steps also need to be 

taken to ensure that Active packets are not erroneous or malicious [8roOl]. The 

disadvantage of this would be that it is a step away from the original concept of giving 

end-users total flexibility in the deployment of Active Applications. Requiring approval 

and authentication would also delay the deployment of new multi-media enriched 

services. However, many believe that a compromise is essential if it is to become a 

reality. 

One factor in the success of any new technology is its rapid deployment onto the 

Internet. From it's widespread use in the 1980's the Internet was a place where new 

technologies were expected to be in service in a couple of years from their initial 

inception. That margin of development time is constantly being reduced and designers 

are under pressure to get their products out onto the market before the technology 

becomes obsolete. The Active Network paradigm provides a significant step towards 

reducing this development time, through the use of its open-protocol customisable data 

3 
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connection capability. It further facilitates the development of new services currently not 

envisaged. 

The current process of thought for the development of Active Network applications is 

founded on improving existing Internet solutions (i.e. to provide certain levels of QoS 

and reliability for multimedia services). An example would be the Active Network 

equivalent of the Multicast Backbone (Mbone) - a current implementation of IP 

multicast protocols. IP multi cast schemes, including Mbone, allow a user to 'broadcast' 

packets of information to selected groups of 'listeners' using a reduced set of traffic 

streams as opposed to multiple one-to-one (normal IP unicast) streams that would 

congest the network. Reliable and scalable multi casting would lead to a revolution in the 

publishing of data, audio and video across the Internet. Even today we see governments, 

businesses, television/radio networks, educational establishments, the music industry 

and many other multimedia developers using IP multi cast to reach audiences throughout· 

the world [Sav96a]. The Mbone is a software alternative to what should ideally be a 

hardware-based technology. It provides a scheme of moving multicast packets through 

the network by encapsulating them in unicast IP packets (a process called tunnelling). 

This 'workaround' implementation came about in order to provide backward 

compatibility with existing routers and servers [Sav96b]. A hardware solution is ideal as 

it would increase the speed and reliability of Multicast connections. Even with today's 

production of routers with added hardware-based multicasting, the goal of reliable and 

scalable IP multicasting is not yet reached. The consensus is that Active Networks will 

provide the strongest solution to the problem without sacrificing the flexibility to service 

other applications [Ten97]. 

The introduction of Active networks into the arena of emerging Internet technologies 

has opened up several issues including security and wide-scale integration with legacy 

devices. Few research organisations have concentrated on the little understood topic of 

'Emergent Properties' and 'Emergent Behaviour' in relation to networked systems. 

Whilst there are many hypotheses and partial solutions to customised applications, no 

universally acceptable models and theories have been formed. It is apparent that while 

considerable research work does exist in the fields of Active Networks and Emergent 

4 
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Properties, separately, the idea that both are linked has received little attention. This is 

understandable since the definition of Emergent Behaviour has various meanings under 

vaI)'ing levels of abstraction. The complexity and broad scope of Emergent Behaviour 

(tantamount to the phrases "Emergent Properties", "Emergent Phenomena" and 

"Emergence", for the purpose of this thesis) have been difficult to breakdown and 

analyse in accordance with standard engineering practices. The 'systems' approach, of 

viewing the problem in distinct sets of sub-elements and providing a progressive set of 

solutions, is inadequate [Mar99]. One would require a holistic approach to Emergent 

Properties as opposed to a piecemeal systems analysis in order to gain an accurate result. 

This does not mean that all details of an Active Network have to be included in the 

modelling process. One can selectively include features suspected of contributing to 

Emergence in Active Networks [Yua02]. 

The solution to the problem is by no means a straightforward simulation exercise. The 

detection of Emergent Behaviour in Active Networks is complicated by the fact that 

there is no set model for this type of network; as major research organisations are in the 

process of developing and testing various topologies and distribution mechanisms, all 

under the umbrella of Active Networks. This thesis presents a method to overcome the 

lack of standardisation by forming a generic modelling/simulation scenario. There is 

some agreement as to what is possible through Active Networks and in the type of 

services that users want or seek to have in the near future. This forms the initial point of 

reference for a proposed Active Network modelling/simulation scenario with which to 

investigate the issue of Emergence in Active Networks. 

5 



Emergence in Active Networl<s Chapter 1: InIroduction 

1.1 Research Scope 

There are conceptual differences between existing networks and Active Networks that 

are further highlighted by the amount of Complexity within each. Whilst classic 

networks can be modelled and analysed by equivalent equations or captured data traces, 

a highly complex Active Network requires additional methods in order to understand its 

behaviour, evolution and performance. 

"Complexity is the property of a real world system that is manifest in the inability of 

anyone formalism being adequate to capture all its properties. It requires that we find 

distinctly different w~s of interacting with systems. Distinctly different in the sense that 

when we make successful models, the formal ~ystems needed to describe each distinct 

aspect are NOT derivable from each other. " - D.C. Mikulecky, Professor of Physiology, 

Medical College of Virginia Commonwealth University. 

One objective of this project is to confirm the existence of Emergent Properties in 

Active Networks and devise models that would facilitate the detection of them. Another 

is to describe an approach to detect Emergence and ultimately ascertain the practicality 

and viability of Active Networks in future networking solutions. 

This constitutes a management process with certain complications. Given the fact that 

Internet usage is multi-fractal and Active Networks are programmable (they have no 

restrictions on functionality and therefore state), the number of possible states a large­

scale network can be in is essentially infinite. Thus an information-modelling approach 

or a finite-state-machine (foundations in Control Theory and Systems Analysis) 

approach is not applicable [Mar99). 

As a background to a possible solution, this thesis highlights key concepts of Emergent 

Properties and their identifying characteristics. It follows on to justify Active Networks 

as Complex Systems with the capability of producing Emergence, and draws insights 

from varied fields of study not necessarily network related: 

• Artificial Life 

6 



EmeIgence in Active NetwOlxs Chapter 1: Introduction 

• Complex Systems and Chaos Theory 

• Biological Systems including human neurological and immune response systems 

• Multi-Agent systems 

• Genetic Algorithms and Artificial Intelligence 

• Physical systems 

• Mathematical equations 

Techniques and theories related to Complexity Theory and Complex Systems research 

provide the most credible and complete solutions to the modelling of Active Networks 

and Emergence, and have directed the course of this research (a discussion of which is 

provided in this thesis). 

From a System's perspective an Internet Environment consisting of Active capability 

can be viewed as a collection (or cloud) of nodes in between the server and client (i.e. all 

clients and servers are at the edge of the network and all the routing/transportation 

hardware is in the core). The cloud would provide additional processing of the 

connection between the server and client that is dynamic and locally aware. It is a high­

level abstract view of the Internet with Active Network elements distributed within it. 

The author proposes that this model is sufficient for a functional analysis of Active 

capability and its side effects. It also does not promote any particular configuration of 

Active Nodes in order to further the progress of discovering Emergence. 

Processing & Resources Processing & Resources Processing & Resources 

l l l 
L..-.....Ir; 

Active Server 

Active Client Active Server 

Figure J. J .a: The Cloud model overview of an Active Network 
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EmeIgence in Active NetwoIks Chapter 1: Introduction 

The work contains an investigation of the manifestation of unusual (and possibly 

undesirable) phenomena commonly termed as "Emergent Behaviour" [Bar97] within 

generic models of an Active Network and was successful in identifying one in particular, 

which the author has termed a "Cascading Effect" in node resource utilisation. In 

brief, a "Cascading Effect" is a phenomenon linked to 'replication' (for the purposes of 

this work) that, once formed within the Active Nodes, continues to sustain itself 

(feedback) and grow; the detection of which can only be done post simulation. The 

phenomenon is distinguished through a set of empirical results and highlights the causal 

input conditions of the Active Network. It might be assumed that one can intuitively 

point out potential Active Applications that would always cause such a phenomenon 

(i.e. Active Packets that have a replicating function, built into them). However, as 

described in chapter 7, section 7.3, not all replication scenarios produce a "Cascading 

Effect". A methodology is devised to analyse the potential of replicating packets to 

create "Cascading Effects" in the Active Network model. 

The method, once verified, could then be used in future simulations of Active Networks 

(extraneous to this work) to identify Cascading Effects, even when there are no 

'apparent' Active Applications with replicating elements. This would be tantamount to 

the detection of 'Emergence', or at least one type of Emergence. Detecting "Cascading 

Effects" is important for Active Network designers, as this is an uncontrolled and 

undesirable situation of resource fluctuations that can quite easily manifest itself through 

the code invoked by Active processes. The formal methodology will provide a generic 

test bed for legitimate Active processes and a suitable detection mechanism for 

undesirable culminations of Active Applications. 

The underlying mechanism for the "Cascading Effect" is "Self-Similarity" [Naw95]. A 

trace is said to be self-similar when it roughly looks the same on various time-scales (i.e. 

scale invariant) and is synonymous with long-range dependence. A "Cascading Effect" 

by its very nature would generate feedback loops adding to the existing effect. This 

would result in similar patterns emerging when viewed at various time scales. To verify 

the "Cascading Effect" hypothesis, the author used the RlS technique to calculate the 

Hurst parameter (a well-known estimator value of Self-Similarity) of each data trace 

obtained from the simulation. 
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1.2 The Project Strategy 

The research work strategy was based around the following key sections: 

U.1 Investigate Active networks and produce a suitable generic model 

The generic model, which forms the starting point for the analysis of Emergence, had to 

be sufficiently succinct and complete; taking into account the relevant features that have 

a possible link with anomalous behaviour. Hypothesising about all possible factors of 

Emergence would be an exhaustive process if it were not for the fact that the generic 

model, itself, provides a reduction in information/detail, and thus reducing the number 

of Emergence factors under consideration. Nevertheless, highlighting Emergence factors 

was an ongoing task, thus making the production of the generic model an iterative 

process. 

A review of Active Networks research was performed in order to gain an understanding 

of the concepts and possible applications. These applications provided the functional 

descriptions for the generic model. 

1.2.2 Investigate Emergent Properties and characteristics 

The research delved into areas such as the natural clustering of organisms (e.g. flocking 

birds models, human traffic scenarios), Emergence in Complexity, road traffic 

modelling, cognitive science, aircraft systems, multi-agent systems and the Internet. 

Each field of science described a system with particular Emergent characteristics. The 

investigation was primarily directed to draw analogies from the above-mentioned fields 

that relate to Active Networks. Appropriate results and conclusions were found from 

past research that were used as foundations for the modelling of Active Networks. 

Further to this, the research work undertook a critical breakdown/analysis of Emergence 

and its various characteristics. The classic makeup of Emergence was identified as 

exhibiting several patterns endemic in system-wide behaviour. 

9 



Emergence in Active NetwOlXs Chapter I: Introduction 

LU Inyestigate suitable methodologies for the high-level abstract modelling of 

Active Networks 

The Active Network was modeJled as an abstract view in order to reduce tbe amount of 

detail it contained and to become a generic case for tbe different Active Network 

architectures currently being researched. The modeJling process and simulation process 

were initially grouped as two separate tasks. However, as the research progressed it was 

found that a particular choice of modelling scenario also provided a list of recommended 

simulation solutions as part of the package. Thus, the consideration of any modeJling 

technique had to take into account the availability and ease of use of the recommended 

simulators. Suitable modelling techniques included Petri Nets and CeJlular Automata 

(both being simulation based techniques). It was decided that a direct simulation 

approach of tbe Active Network functionality was more appropriate than attempting to 

build a model comprised of mathematical equivalent equations of system dynamics. The 

latter technique, being more involved, would have required an unacceptable number of 

assumptions to be made and would have been inflexible to an iterative development 

process. Where tbere was more than one simulator for a particular modelling technique, 

an evaluation was performed based on the foJlowing: 

• Availability 

• Ease of use and a suitable level of modelling detail 

• Industry recognition and support 

• The ability to graphically layout the model 

• Modular design capability and hierarchical decomposition 

• Speed of simulations 

• Ability to export results as text files 

LM Deyelopment of suitable test scenarios for simulation 

Once the iterative design process produced a credible example of an Active Network it 

was subjected to various input scenarios whereby it was hoped that at least one defining 

Emergent characteristic would manifest as a pattern witbin the system. Defining 

characteristics were initially identified and classified through a review of Emergence 
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research. The test scenarios contained parameters that threw the generic Active Network 

into unstable situations, from which it was hoped Emergence would be produced. 

1.2.5 Obtaining results and identification of Emergence through established 

mathematical techniques 

The use of a particular mathematical analysis technique is dependant on the type of data 

produced by the network and the selected input simulation conditions. Since Emergence 

manifests itself as patterns in the system and is reflected in the data, the mathematical 

techniques considered were based around pattern recognition. Some of the techniques 

evaluated included Fourier analysis, Wavelet analysis, Image RecognitionlEnhancement 

algorithms and Self-Similarity algorithms. The 'type' of result returned from the 

simulation also merited careful consideration. For this research, the Resource Usage 

Fluctuations in Active Nodes proved to be the most suitable data for analysis, since 

they are part of the evidential link between Emergence and the dynamic 

interactions within the Active system. 
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1.3 Original work 

The decomposition and classification of an Active Network based on higher-level 

functionality is a crucial concept and is believed to be unique to this project. With this 

process it is now possible to abstract-model an Active Network with minimum detail 

and to rapidly provide generic models designed as test-beds for Active Applications. 

Performance evaluation is further simplified with the use of a universal modelling 

theory known as Petri Nets. 

The analysis of a large-scale system must contain a preliminary list of 

parameters/outputs to be observed; being a sub-set of all possible characteristics that can 

be analysed post simulation. Whilst there are methods in Systems Theory to formally 

identify these parameters based on preset evaluation criteria they do not extend to isolate 

the parameters that are of particular importance when considering Emergent Behaviour. 

A systematic approach to identifying parameters of interest is inadequate. A more 

'~ystemic' approach, using techniques imported from non-systems related fields (e.g. 

Complex Theory), is needed. Using this philosophy the author has noted that Emergence 

could manifest itself, in a highly distributed and highly connected network of intelligent 

sub-systems (nodes), through the dynamic interactions of those sub-systems. Any 

dynamic interaction requires a quantity of resources be allocated to that event, and thus 

the key parameter for Emergence Behaviour analysis would be the resource usage 

fluctuations in nodes. From an Active Network perspective these nodes are individual 

Active routers or any piece of hardware with Active capability. The concepts and 

techniques are sufficiently universal to be used in the analysis of other highly distributed 

networked systems such as the current Internet, Adhoc Networks, Intelligent Networks, 

wireless networks and modular avionics systems for aircraft. The technique would 

provide an additional test for critical systems design. 
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1.4 Summary of the thesis 

1.4.1 Background 

1.4.2 Chapter 1 

Introducti on 

1.4.3 Chapter 2 

Chapter 2 of this thesis provides an in depth analysis of Active Networks including a 

brief history and the current stage of development of the area. Particular attention is 

given to the functionality of this new paradigm in networking; giving examples of 

instances where multimedia applications are improved through Active capability. The 

chapter then proceeds to review the current state of Active Network research, giving a 

list of organisations that are pioneering in this field. 

1.4.4 Chapter 3 

Chapter 3 provides a detailed analysis of Emergence including examples of systems 

displaying Emergent Behaviour. The chapter defines the terms Emergence, Emergent 

Behaviour and Emergent Properties in relation to this piece of research and makes the 

distinction between good and bad types (i.e. Emergent engineering and anomalous 

behaviour, respectively). A review of current Emergence research is included in this 

chapter in addition to any convergence of ideas, noted through the varied fields of study. 

The second section of this chapter concentrates on Complex Systems and Complex 

Systems research and provides an introduction - defines what a complex system is and 

its differences with other types such as chaotic systems. It proposes that Active 

Networks be considered as Complex Systems or at the very least as having complex 

elements. The chapter also proposes that (citing previous research) Complex Systems 

are likely to exhibit Emergence under certain conditions. 
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1.4.5 Chapter 4 

Chapter 4 describes the modelling and simulation techniques used in this project. It 

describes in detail the modelling methodology used along with its advantages over other 

methods that were also considered. The chapter then proceeds to describe the 

development process of the Active Network model and includes all assumptions, 

estimations and configurations made during the iterative development process. The 

generic Active Network model is rigorously defined - the development process starts by 

the analysis, breakdown and classification of Active Applications into Primitive 

Functional Components (PFCs). The components form the foundation for a hierarchical, 

modular and 'top-down' design. 

1.4.6 Chapter 5 

Chapter 5 describes in detail the modelling paradigm used in this project - Petri Nets. It 

describes the advantages and provides generic modelling examples of system elements 

(used as templates in the modelling of an Active Network). The chapter also highlights 

the extended capabilities of Coloured Petri Nets; their suitability in describing Active 

Packets, the dynamic interactions within the system and the critical resource usage in 

Active Nodes. A review of Petri Net simulators is undertaken, which describes the 

advantages of Design CPN (the simulator of choice) over others. 

The second section of this chapter provides detailed Petri-Net diagrams and a 

hierarchical layout of the Active Network model. Also included in this description are: 

• A breakdown of the Active Packet header, which includes Active Packet types 

(based on Primitive Functional Components) 

• Sample input and output files 

• A mechanism for logging results 

1.4.7 Chapter 6 

Chapter 6 is dedicated to identifying Emergence within simulated results. It describes 

the strategy undertaken and the method ultimately used to detect Emergent Behaviour, 

which was preceded by a review of possible pattern detection techniques. Each 
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technique was tested for suitability for the Active Network modelling scenario. The 

advantages and shortcomings of the RlS technique ("ReScaled-range statistic"), for the 

purposes of detecting Self-Similarity in the simulation data, are discussed in detail. This 

is in relation to the applicability of the technique to Emergence and Active Networks. 

The straightforward procedure in applying this mathematical technique, through 

MATLAB software package, is also described. This chapter also establishes a link 

between the identification of an Emergent Behaviour and Self-Similarity. 

1.4.8 Chapter 7 

Chapter 7 provides the main body of results indicating the presence of Emergence. It 

describes all input test scenarios/cases and provides graphical representation of results 

(derived through the RlS statistic). These results are linked with the initial input 

conditions for the simulations, which then can be used in the discussion process. An 

analysis and discussion of the results are provided, which include a credible theory on 

the causal link between a particular Emergent output and its input conditions. 

1.4.9 Chapter 8 

Chapter 8 provides summative conclusions of the results achieved by this work. It 

contains the direction undertaken by the research work and provides a discussion of 

possible improvements to the detection of Emergence (e.g. additional techniques to 

detect other types of Emergence). The chapter also describes an alternative approach to 

the modelling methodology used by this project. 

1.4.10 References 

1.4.11 Appendices 

The appendices contain the MATLAB algorithm code for the detection technique (i.e. 

RlS statistic calculation) and the detailed diagrams of the Petri-Net Active Network 

model. 
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1- Active Networks 

This chapter will present: 

• A detailed description of Active Networks, their capabilities and potential problems. 

• A review of developments in Active Network research. 

The key concepts in this chapter are: Active Networks, DARPA definition of Active 

Networks, Active Network research 
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During 1995, The Defence Advanced Research Projects Agency (DARPA) sponsored an 

Information Science and Technology (ISAT) study, entitled "Virtual Infrastructure", 

from which a new research initiative, called Active Networks was born [Mau02]. Its 

mission was to develop "networks that turn on a dime" [DAR]. 

The specific goals of the DARPA programme were to achieve the following (as quoted 

in their information resources): 

• Quantifiable improvements in Network Services-

o Audio/video synchronisation and full-rate video over multicast a reality 

o Fewer re transmitted packets, 100% increase in useful data rate 10 end 

applications 

o Architecture based solutions to Future Department of Defence (DoD) needs 

• Fault-Tolerance Mechanisms based inside the network 

• Multi-Tiered Mobile Security -

o Authentication forms used for dynamic access control 

o Separate traffic and administrative functions based on types and policy 

Through the above-mentioned specifications it was hoped general wide-ranging 

improvements to networks would be made. For example: 

• The ability to quickly and safely deploy new services. 

• Achieve widespread use without needfor standardisation process. 

• Be able to upgrade crucial network services to keep pace with network complexity. 

• 1'0 develop new strategies for routing and service provisioning in large networks 

that have uverlapping topologies and mobility requirements [DAR]. 

Active networks are a multi-service Internet architecture, designed for the rapid 

deployment of new services and technologies over the Internet (this being the ultimate 

goal). An Active Network will consist of routers and switches that can be programmed 

to perform certain functions on packets flowing through them. In contrast, traditional 

networks simply provide a transport mechanism for data transferred between clients and 

server.; with minimum computation (e.g. header processing). As a part of Active 
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functionality it is possible for users to inject programmes into Active hardware along a 

particular data traffic path in order to modify, store and redirect packets. 

'Nodes' are the definition given to routers, switches and other network layer devices that 

carry Active capability (i.e. the nodes can perform computations on, and modify the 

packet contents on a per-user or per-application basis) [Ten97]. This results in a 

customisable network that could readily be incorporated into the current Internet 

infrastructure, thereby ensuring interoperability with legacy routers and switches 

[Ten97]. 

The fundamentals of customisation of Active Networks are to allow the users to inject 

programs into the Active Nodes of the network. There are many variations to this 

concept and programmability, which in its purest form is defined to augment the 

standard JP packet datagram with Active 'capsules' (programme fragments that are 

executed at each node that it traverses and have the capability to affect further packets). 

These capsules will be loaded onto Active Nodes based on the availability of the correct 

resources to open and run the programme, the amount and type of resources requested to 

service subsequent packets in an Active Application stream, signature/security 

verification, outward-link status and congestion. The Active capsule approach (also 

known as the 'integrated approach') has advantages of being able the rapidly deploy 

services, use generic Active hardware, be easily customised and have increased 

information throughput. The flexibility is such that Active Nodes can be programmed to 

perform multiple actions/computations on multiple packet streams flowing through them 

at any given time. The nodes would also be able to factor the local network 

state/environment in its decision process, thus making the actions dynamic. 

The less flexible 'discrete approach' involves the use of Packet Header Options to 

invoke a pre-Ioaded set of service components (i.e. primitives) from an Active Node 

within its Execution Environment (EE). The development of an API styled structure is 

necessary to facilitate this execution process. The discrete approach allows system 

administrators to maintain control over the programmes that are run on their hardware, 

thus improving security (lacking in the integrated approach). Customisation, however, is 

limited to a pre-defined set of services that can be built through the primitive 

components; present at a particular node at a'. given time. This can be augmented, 
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however, using a "Downloading on Demand" strategy whereby an Active router can 

request any primitive programme component that it lacks from its neighbours. 

Current Internet technologies will benefit from the new networking paradigm, as it 

replaces several ad-hoc techniques, already implemented to various degrees of success, 

with a common networking substrate with benefits of added flexibility and performance 

[Wet98a]. Historically, the array of services being offered on the Internet has been met 

with limited enthusiasm because the available infrastructure was not efficient. For 

example, the current TCPIIP protocol is inefficient for 'real-time' communication and in 

particular with video. Successful services provide features to enhance the applications at 

end-systems [Mar99]. This is in keeping with the "end-ta-end argument" of a 

communication network - a rationale used in layered system design to place high-level 

functionality nearer to the application that uses it (i.e. further up the layered structure). A 

system design following the principles of the "end-ta-end argument" will not place high­

level functionality in lower layers of the system, especially if such functionality is only 

used by a select group of applications [SaI84]. 

Active Networks re-interprets the "end-to-end argument" to allow high-level 

functionality in lower-layered communication devices. This benefits services that can 

only be supported or enhanced inside the network [Bha97]. 
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2.1 Applications of Active Networks 

The 1995 DARPA objectives provided the foundation for the development of Active 

Applications. Some of the popular services, which will greatly benefit from an Active 

network layer within routers/switches (i.e. being researched as Active Applications), are 

mentioned below: 

2.1.1 Yideo-conferencing and Internet telephony 

These are two types of multimedia streaming applications that will use real-time and 

multi cast services. The applications will be able to reserve resources and bandwidth 

through routers, so that streaming is contiguous. lP/Active multicasting will reduce the 

bandwidth needed to communicate (from one sender to multiple users) by having the 

routers/switches cache the data as well as process acknowledgement feedback [Wet98a). 

Internet telephony has the means to be unimpeded by isolated packet losses within a 

communication session (e.g. Internet voice applications use sample based coding of the 

analogue signal and Adaptive Packetisation and Concealment schemes employed at end­

stations are very good at maintaining a perceived quality for users). However, they are 

not capable of concealing 'burst type' losses of packets, which result in the significant 

degradation of speech quality. In such circumstances Active Nodes can be used to 

regenerate lost packets and inject them into the stream [LeOO). 

2.1.2 Mobile Internet 

Notebooks and other mobile 1P devices will benefit greatly by services deployed through 

Active routers; optimised for wireless transmission. For example, Audio and Video 

transcoding and compression routines running on Active base-stations will compensate 

for limited bandwidth of RF communications. Including Forward Error Correction 

(FEC) can compensate for lossy transmissions. Mobile 1P devices can access the Internet 

at different sites without the need to reconfigure address information [Wet98a). 
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2.1.3 Caching and Load Distribution 

Web servers would be the main beneficiaries of these services. They would reduce the 

amount of wide-area traffic by allowing the Routers to intercept and process repeated 

requests from multiple users. By distributing the requests over a number of cache 

servers, the network is capable of reducing the web traffic concentration of particular 

sections. The services, transparent to end-users, would minimise latency and bandwidth 

usage, compared with proxy agents. Today, specialised products such as Cisco's 

CacheDirector and LocalDirector perform these same functions as vendor promoted 

systems [Wet98a]. With Active networks, the caching can be taken a step further by 

having a significant proportion of the web pages dynamically generated within the 

caching nodes themselves. This would suggest a scheme of Active nodes that support 

the storing and execution of web generation programmes. Whilst in normal caching 

hierarchies the servers are fixed, an Active network can dynamically re-position the 

caches when necessary [Ten97]. 

~ Network management functions 

A decentralised scheme of network management will come into being with user end­

stations being the initiators of most of the management operations along with other 

applications (the operations themselves being executed on the nodes), thus reducing the 

overall network management costs [Mar99]. 

2.1.5 Distributed sensors 

Effective viewing of a 'composite image' of a large distributed network of 'sensors' 

requires the fusion and storage of multi-type data within the network (the merging of 

data offers significant bandwidth reductions). Active Networks provide this capability 

along with the ability to provide multiple user access to each sensor. The viewed data 

can also be differentiated based on the customisable requirements of the user [Ten97]. 
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2.1.6 .Security 

Active Networks can apply 'dynamic' security to the network, which would involve 

users and applications being able to apply highly customisable and situational security 

policies for each or groups of information transfer streams. Active Routers within the 

network can provide authentication, encryption and access control (e.g. of node 

resources) for Active Applications at optimal points along the transfer path, which also 

benefits the entire Active routing/processing system by ensuring the integrity of the 

Active programmes being run in it. Active packets can also be specifically 

designed/installed in order to route out and neutralise unwanted/malicious traffic, thus 

creating a dynamic response to security threats (i.e. dynamic firewall formation) 

[CamOO]. 

Security devices, such as firewalls, apply filters based on various fields in IP packets 

such as source/destination address, requested service, etc. Active Networks allow the 

dynamic programming/updating of Firewalls with filter modules that set permissions, 

thus new Active Applications from approved vendors can automatically authenticate 

themselves without the need for 'system administrator intervention' (i.e. a static security 

policy becomes a dynamic security policy) [Ten97]. The security policy can spread 

through the network on a 'need to know' basis and can 'actively' react to any invalid 

attempts to access data by changing its policy level [LiuOO]. 

With current Internet schemes many of the innovative network services mentioned 

above are possible by using Agents at end-stations (e.g. allowing web servers and clients 

to exchange Java applets) and overlays (e.g. the MBone) [Wet98a] [Ten97]. However, 

deploying them as a network layer element within routers and switches offers 

considerable improvement in functionality and performance. 

In general, some of the current requirements of multimedia-enriched applications are 

that they be adaptive (i.e. have the capability to change their functional behaviour based 

on environmental conditions such as network congestion). Active Networks would 

support and enhance these types of applications by allowing the optimal use of network 

resources; through the execution of Active code at strategic points within the network 

[YamOO]. 
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2.2 Active Network Research 

Various organisations have been spearheading the research into Active Networks; 

specifically defining the enabling technologies and dealing with issues such as node 

security, capsule and programmable switch architecture, and compatible applications. 

The following is a list of mechanisms, execution environments, operating systems and 

test platforms developed, or currently being developed, to facilitate the transportation 

and execution of Active Packets through a network: 

• ANTS (Active Node Transfer System) was originally devised by researchers at MIT 

(Massachusetts Institute of Technology). The MIT team was prototyping an 

architecture based on 'capsules' and studying the effects of such a system. The 

software platform for the architecture is Linux whereas the capsules are encoded 

using Java. The capsules use 'programme language constructs' to create a 

programme, which will invoke built-in primitives within the node. Some of the 

distinguishing characteristics of the programme/capsule method are 'demand 

loading' and 'component caching'. The MIT system uses 'demand loading' to 

reference components built into the node, rather than issuing them as capsules. 

'Caching' allows the use of recently accessed components without the need for re­

loading and verification. All of this is designed to reduce the amount of overhead 

within a packet. Furthermore, the capsules have the capability to create a pre-defined 

state within the nodes ('soft state'), which the subsequent packets of a particular 

stream can use [Ten97]. The Active Networks Project at MIT was funded through 

DARPA and ran from September 1996 to August 2000. 

The second version of ANTS is under development at the University of Washington 

The ANTS project (ver. 2) aims to design and construct a system in which clients, 

servers and capabilities (that are embedded in the network infrastructure) can 

rendezvous to provide Internet middle-ware services. The objective is achieved in 

three key stages: 

o Investigation and development of software for self-configuring overlay networks 
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o Investigation and development of a network service model that accommodates a 

heterogeneous network in which nodes have different capabilities 

o Investigation and development of a network service model that allows different 

parties to combine their services [Wet98b]. 

• AIPv6 (Active JPv6) - a mechanism to merge Active Network capability with 

Internet Protocol version 6 (Jpv6) [Mur97]. The scheme combines the concept of 

Active Capsules with JP packets to provide interoperability in a network with Active 

and non-Active elements [Yue03]. 

• The SwitchWare project is research aimed at developing a programmable switch 

that would allow digitally signed type-checked modules to be loaded into the node. 

The focus of the research group is the improvement of security on Active networks 

by using formal methodologies, identification of the underlying infrastructure and 

developing theorems. Security is supported at the programming language level 

(SML/NJ) without the need for high overheads, as would normally be encountered 

when protection is built into the operating systems of nodes [Smi97]. The 

SwitchWare project is a collaboration between the University of Pennsylvannia and 

Bellcore Research Labs. The Bellcore group have defined and developed a prototype 

Active router that uses a small-scale multiprocessor and interconnections to an ATM 

network, using 10 and 100 Mbps Ethernets [Ten97]. Under the SwitchWare project 

several sub-projects were initiated: 

o PLAN (programming Language for Active Networks) - devised by researchers 

at the University of Pennsylvania and is a development of software language 

constructs used to write executable Active code [Hic98]. 

o ANEP (Active Network Encapsulation Protocol) - devised by researchers at the 

University ofPennsylvannia, University of Kansas and MIT lANE]. 

o SNAP - Safe and Nimble Active Packets [HicOI]. 

o SANE OIS - Secure Active Network Environment [SAN]. 
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• ANON (Active Network Overlay Network) - In 1998 an Active Packet was sent 

around the world in 500 milliseconds [Tsc97]. 

• CANES (Components for Active Network Elements) - Georgia Tech. At the 

Georgia Institute of Technology researchers are applying Active network concepts to 

improve network congestion. The strategy is to give the applications the ability to 

request useful algorithms from Active nodes (e.g. lossless compression, selective 

discard and transcoding) during periods of congestion [Ten97] [Bha98]. 

• SPROCKET - Smart Packet development language [Sch99]. 

• MAUDE: A Wide-Spectrum Formal Language for Secure Active Networks -

Stanford University [Mes99]. 

• JANOS: Java Based Active Network OS - University of Utah [TulOl]. 

• NetScript - a language designed to develop mobile agent programmes for Active 

Networks that can be dispatched as and when required. The software was developed 

at Columbia University and can be considered as the 'third direction' in Active 

Network research. The NetScript project, apart from developing a programming 

language, would provide the structure for Active Execution Environments (EE). The 

language would provide the means to script the processing of packet streams, 

routing, packet analysis, management functions and signalling [Ten97] [Yem96]. 

Netscript can be considered as another flavour to Active Networks (i.e. an Agent 

based approach as opposed to an Integrated approach or a Discrete approach). 

• Liquid Software - the development of a suit of mobile code technologies by 

researchers at the University of Arizona [Har96]. 
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• ACTIVATE - ACTIVe nets Test Environment by researchers at the University of 

Southern California, SRI International and Metanetworks Inc. [ACT]. 

• ANCORS (Adaptable Network COntrol and Reporting System) - a collaboration 

between SRI International, University of Southern California and Metanetworks Inc. 

[ANC]. 

• ABONE (Active Network Backbone) - a collaboration between SRI International, 

University of Southern California and Metanetworks Inc. [BerOO]. 

• ASP (Active Signaling Protocol) Execution Environment - collaboration between 

SRI International, University of Southern California and Metanetworks Inc. [Bra02]. 

• Smart Packets - a development of the BBN group who is investigating issues of 

programmability, data dictionaries and authentication mechanisms related to IP. 

Furthermore, they are seeking to improve management and diagnostic capabilities of 

IP systems [Ten97] [SchOO]. 

• Adaptive Web Caching - University of California, Los Angeles (VCLA) [AWC]. 

• Building dynamic interoperable security architecture of Active networks - University 

of Illinois [CamOO]. 

• Design and demonstration of a scalable high-performance Active Network Node 

(ANN) - Washington University in St. Louis [Dec99]. 

• RCANE: A Resource Controlled Framework for Active Network Services -

University of Cambridge [Men99]. 

• Tamanoir Execution Environment - Claude Bernard University, Lyon [GeIOO]. 
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2.3 Summary of chapter 

In this chapter we have discussed the objectives and research directions of Active 

Networks beginning with an initial set of targets being defined through DARPA. What 

is apparent is that the research has taken 3 distinct directions (i.e. integrated, discrete 

and agent-based) from which several sub-groups/competencies have been created to 

tackle problems-areas in Active Networks (e.g. the development of 'safe' programming 

languages, defining compatible transfer mechanisms, defining code execution 

environment, security and network management). The solutions proposed by research 

organisations may extend over several of these sub-groups and may rely on the work of 

others. What is also apparent is that there is not, as yet, a convergence of techniques by 

research establishments. Therefore any modelling and analysis techniques proposed by 

this thesis must be generic to be compatible with a majority of research strategies whilst 

satisfying Active Network objectives. The development of a generic model requires 

insight into Active Networks and their requirements. It does not, however, require a 

detailed critique of all Active Network research; hence the inclusion of only a brief 

review of prominent ones in this chapter. The examples given for Active Network 

applications are based on what is currently 'out there' as working technologies or what 

is proposed in the near future (the goals are set by user expectations for more cost­

effective multimedia over the Internet). It can be seen that Active Networks provide a 

generic solution to a vast majority of proposed technologies, which can be installed and 

used immediately. 

HI like the idea of taking network intelligence from the hardware and putting it in the 

packet. JP is rather passive, but it will take a lot to figure out how you bring order to 

something that is so democratic. " - Virginia Brooks, an analyst with the Aberdeen 

Group, in Boston [Le097]. 

From what has been discussed in this chapter, one can identify 4 possible drivers for 

Active Networks: 

• The ability for application developers to rapidly deploy new services without the 

required process of standardisation between end-systems. 

27 



Emergence in Active Networks Chapter 2: Active Networks 

• The addition of services that can't be achieved without significant and fundamental 

changes to protocols and hardware. 

• The enhancement of existing services through user customisation or with next 

generation Active Applications. 

• The ability for network operators to replace existing 'intelligence' within the 

network with a flexible common technology. 

The biggest issue in the deployment of Active Networks is security. Whilst there are 

many Active Network solutions to achieve superior network integrity and security, the 

inherent ability of users (and network administrators) to customise the network will 

generate several problems including the 'Emergence' of unusual phenomena. The large­

scale deployment of such a system, which changes behaviour based on a large set of 

variables (pre-determined and unexpected), has management issues that require 

sophisticated solutions. These are difficult to solve until there is a consensus amongst 

the Active Network community. 
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J.... Emergent Properties and Complex Systems 

This chapter will present: 

• A detailed description of Emergence and its characteristics. 

• An introduction to the concept of Complex Systems. 

• A link between Emergence and Complex Systems. 

• The justification that Active Networks are complex systems and therefore are likely 

to exhibit Emergence. 

The key concepts in this chapter are: Emergence, characteristics of Emergence, 

characteristics of Complex Systems, Active Networks as Complex Systems 
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3.1 Characteristics of Emergent Properties 

Emergence is a set of individual interactions that results in a coherent whole, 

which cannot be deduced from examining the properties ofthe individual [Bos99]. 

Emergent Properties are unexpected characteristics that might manifest themselves in 

distributed intelligent systems. Emergent Phenomena and Emergent Behaviour are 

essentially the same definition given to a system's behavioural anomalies that result 

from the above-mentioned characteristics. 

The 'system' in this body of research is an Active Network. In an Active Network, for 

each application/task, the processing is distributed among several nodes. The nodes 

themselves have decision-making capabilities and are locally 'aware' of their 

surroundings. Thus we can define them as intelligent. Unexpected characteristics may 

show up as self-organised patterns, either within a small-scale (locally isolated) 

boundary or globally (i.e. system-wide). They may have the potential of increasing 

congestion, fluctuate resource usage within the nodes, fluctuate the smooth flow of 

packets and even lock-up the network (i.e. generally reduce the Quality of Service 

expected by the user). 

Emergence is a theory, which describes the self-organisation of systems that form global 

order. This order appears to be well defined and different when compared with 

individual component definitions. It is also the mechanism to explain the 'survivability' 

of the system 'structure' in the midst of component replacement (i.e. a global behaviour 

is sustained even when the underlying components change throughout its lifetime). 

Emergence is global behaviour of systems that is 'non-deducible' from the underlying 

components as weH as being 'irreducible' to those components [EME]. It is also 

dynamic and is a product of the evolution of a system (not a predetermined phenomena 

identified through the system characteristics). 

Some of the foHowing are generalised characteristics and examples of Emergent 

Properties. They are evident in a wide range of research fields and can be discovered 

through empirical analysis of systems. These characteristics are: 

• Feedback -the circular effect 
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• Domino Effect 

• Meta-Balance 

• Survival and Sameness 

• Vortex 

• Resonance 

3.1.1 Feedback 

Feedback is a structure that flows in a loop in a system (i.e. a combination of cause­

effect events that forms a re-iterative cycle). There are two types of simple feedback 

structures: 

• Positive feedback - feedback that is self-reinforcinglself-amplitying; also known as 

the Snowball Effect [DauOO]. 

,Cost ofUving \ Intere\Rate.. Birth\~ 

Prices + Wages lnte~+ Capital Nun:*'er + Population 
~ J ~~s 

~S::~on .-/ "-./ "-./ 
Figure 3.1.1.a: Examples of Positive Feedback 

response 

time 

Figure 3.1.1.b: Dynamics of Positive Feedback 
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• Negative feedback - feedback that is self-regulating/compensating, leading to stable 

system behaviour [DauOO]. 

Feedback 

~ -.. ~ 
System • 

I Input + Outout 
r r 

Figure 3.1.1.c: System representation of Negative Feedback 

response 

target 

time 

Figure 3.1.1.d: Dynamics a/Negative Feedback 

A system that forms feedback loops gives rise to new structures and emergent 

properties. Feedback is synonymous with the term 'adaptation', whereby the 

components have the ability to adapt to perturbations in the system, using the 

mechanisms of feedback. 

Feedback can be viewed in two distinct ways. The first is a linear progression of the 

feedback cycle (i.e. we see the progress of the cycle in time - past, present and future). 

We can also see the cyclic movement of the outputs feeding into the inputs (not 

necessarily the same inputs that caused the outputs in the first place). In the linear view 

the 'causes' are always responsible for the 'effects'. The cyclic view has no such 

property. What is apparent is that both views are valid in any given phenomena and are 
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interrelated. "A feedback structure is a cyclic structure rolling through linear time." 

[Am94]. 

pas t 

tbe circular view 
~ 

CJ 
present 

tbe linear view . --~ •• 
f u tu r e 

Figure 3.1.1.e: Two distinct views o/Feedback 

The linear view focuses on the 'pattern' that can be observed in the system while the 

circular view focuses on the 'structure' of the Emergent Property. The 'structure' is a 

concept. It is viewed at a higher level of abstraction using, as a guide, the interactions of 

the parameters in the system. Conversely, the 'pattern' is more concrete and is readily 

observable depending on the scale of the system. 'Patterns' are observable at lower 

levels of abstraction [Am94]. 

"Situations with observable 'structures' are indicative of Emergent Properties" 

Systems theory states that both views of 'structure' and 'pattern' are valid for the 

analysis of a system, albeit being fundamentally different. The system's structure is only 

apparent when (as mentioned above) viewed at a higher level of abstraction, which 

translates, in practical terms, to a model depicting the system with coarse detail. The 

same system must be modelled in fine detail at a lower level of abstraction in order to 

view the patterns [Am94]. 

u.z Domino Effect (positiye feedback) 

Also known as a wave pattern, the Domino Effect originated from the way that 

dominoes fall creating a wave formation. In this scheme, there exists a circular 

'structure' as well as the wave-like 'pattern'. Whilst the underlying mechanism for the 
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self-sustained behaviour is positive feedback, the defining characteristic of the Domino 

Effect is the advancing wave front [Am94]. 

domino hits 
new domino 

wave front 

Ngure 3.1.2.a: The Domino Effocl 

3.1.3 Meta-Balance 

Complex Systems exhibit Emergent Phenomena as ordered structure from disorganised 

behaviour. In order for Emergence (i.e. a stable structure) to appear at higher levels of 

abstraction (as mentioned-above), the lower-level abstract model must be 'out-of­

balance'. Thus Meta-Balance is the term given to the seemingly 'stable' structure at 

higher levels. Emergent Behaviour (or global order) only occurs in a system when it is 

pushed out of balance. Both the Snowball Effect and the Domino Effect are examples of 

systems in Meta-Balance [Am94]. 

3.1.4 Smyival and Sameness 

Survival and Sameness refers to the 'structure' of phenomena within a system. A 

feedback loop, for example, stays the same throughout its existence (structurally) even 

though new system components continuously replace the old ones (e.g. in order for the 
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wave front to continue, in the Domino system, it must be continuously fed with new 

dominoes). The replacement process keeps the structure ' alive' [Am94]. 

3.1.5 Vortex 

A Vortex is generated from within the system. It is an active force that binds the system 

or a section of the system to an organised existence (an existence not recognised in the 

ordinary sense). The 'hyper-existence' of a Vortex has the following basic 

characteristics: 

• The Vortex must be EMBODIED 

• The components of the system need to be out of balance 

• There must be feedback in the system 

• A Vortex cannot be analysed by 'reductionism' (i .e. the analysis of individual 

components) [Am94]. 

Figure 3.1.5.a: Computer representation of a Vortex 

The difference between a Vortex and any other circular structure is that an active force 

is present at the centre of it holding the system in that structure (e.g. a tornado is a 

naturally occurring vortex. It appears to have a force at the centre sucking great masses 

towards it. This, however, is an illusion created by the circulating masses). Where there 

is the possibility of several Vortices, the system will be sucked into the strongest/closest 

one, and will remain there until perturbed by some force taking it to the next Vortex 

[Am94]. 
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3.1.6 Resonance 

Resonance is a repeating process, much like feedback, but with the added characteristic 

of 'information reduction'. The difference between Resonance and a Vortex is that a 

Vortex is an active force that a system will be sucked into, whilst Resonance is a 

simplified structure in which the system will be trapped. 

frequency 
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Figure 3.1.6.a: Example ala Resonant system 
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The emergence of a resonance frequency 

Figure 3.1.6.b: Resonance 

fi·eqlleucy 

Information reduction allows the Resonance to behave as an Emergent filter (i .e. limit 

the behavioural characteristics of the system to the boundaries of the resonant 

behaviour). With a Complex System, there may be millions of individual components 

behaving independently of each other to satisfy their individual objectives. Every single 

component is an undetermined variable or group of variables. This does not mean, 
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however, that any Emergent Property contains millions of parameters and detail. Most 

often, a Complex System will produce simple patterns in which it will be trapped. This 

would imply that an Emergent structure, which functions as a resonant behaviour, is also 

well defi ned [Am94]. 
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3.2 Emergence Research 

What is perhaps surprising is that known circular patterns in nature, physics, etc. exist 

that can be readily extended to other fields. For example, the characteristics of waves are 

near identical in the perspective of Radio waves and Ocean waves. The same food-chain 

structures emerge in widely different Eco-systems [Am94]. 

Emergent phenomena may appear differently in different systems, however, they share 

commonality through the above-mentioned characteristics. 

Not all Emergent Properties are detrimental to the system. 'Emergent Computing' is one 

area where designed Emergent Behaviour adds value to the services offered by a 

Network [BusOI]. 

The following diagram depicts, succinctly, the broad range of research topics associated 

with Emergence. 

~_ ... SYSTeM 0VJWf1CS -_!!oo. 
CATASTBOPHE S!LF.()R~ 
THEORY CRmCAUTY -_. 

"" ..... ,CAt. , 
BElIE"" sYlITEY8 SYSTEMS .... NONLlNEAR DYNAMICAL 

SOLID STATE! GEOYEfIlY CHAOS THEORY ~
EDRY 'RACTAL ...... SYSTEMS (NDS) 

EMERGENCE IN 
CONDENSED MATIER COMPLEX ADAPTIVE ...,..~~~,.. SELF.ORGANIZING 
PHYSICS EVOLUTIONARY S~!AS) SYSTEMS 

CYBERNETICS BIOLOGY fIIEIlI!EN1 

~ 
~UTlalW!'l Cf1W'<lT'''''' 

\. SY8T EMS IIOOL.eAM MlTWORD 
., AlfTOPOIESIS 0EMEnC MOORIT"'-

INFORMATION ARTIFICIAL 
TIIEDRV .......... 'IITELL'GOc~COMPUTAllONAL ---J--:: 

~ ALG0Rm4I1C ~EORY 
COIIPLEIlTY / NEURAL NETS ~--

GAME THEORY SYNERGETICS 

___ FAR.fROII-EQUILIBRIUM 
THERMODYNAMICS 

Figure 3. 2.a: Mathematical and scientific roots of emergence (Jeffiry Goldstein) 

As can be seen from Figure 3.2.a the most focused field of study that links through to 

Emergence is Complex Adaptive Systems. The theory of 'Complexity' plays host to a 

large number of scientific and mathematical fields, each striving to identify the 
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characteristics of Emergence, thus acknowledging a link between Complexity Theory 

and Emergence Theory [GoI99]. 
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3.3 Characteristics of Complex Systems 

The definitions of 'Complex Theory', 'Systems Theory' (a relatively established field) 

and 'Chaos Theory' (less established in the way of applicable results) are closely 

interrelated, thus making any distinction between them difficult and only valid when 

considering a particular system (as is the case in this work). In a general sense, Systems 

Theory covers simple-systems exhibiting simple behaviour. Chaos Theory studies the 

ability of systems (simple or complex) to produce complex/chaotic (i.e. unpredictable) 

behaviour over long periods [Cru90]. It forms one part of Complex Theory 

('Complexity'). In contrast, the section crucial to Emergence is the study of Complex 

Systems with overall 'simple' behaviour. Complexity of this form is the 'middle 

ground' between ordered systems and Chaos [Cru02]. 

It is easy to understand why the author and others consider Complexity to form the 

obvious choice for the analysis of Active Networks. Active Networks (and any other 

large-scale network such as the Internet) have, or propose to have, millions of 

heterogeneous nodes, which would be impossible to analyse in terms of simple feedback 

cycles (a key sign of Emergence in systems modelled under Systems Theory). 

The global structure of the system compnses of many local interactions between 

individual components. The global Emergent Behaviour resulting from the interactions 

exerts influence over the behaviour of the individual component in a circular manner. 

This keeps the system in that particular Emergent structure, whether it be a Vortex or 

Resonance [Am94]. 
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<:> <:> <:> (1) 

Locally interacting components <:> 

The global structure serves 
as inital condibon for the 
components 

The local interactions 
of components create 
the new global· structure 
(which becomes the new 
inital condition) 

Figure 3.3.a: The Global Emergence in Complex Systems 

A Complex System has: 

• Numerous independent components 

• Components that interact locally and numerously 

• Overall global behaviour that is independent of the internal configuration of 

components 

• Overall system behaviour that is well defined 

• Evolutionary Behaviour 

3.3.1 A Complex System consists of numerous independent components 

An important feature of individual components is that they exist independently of each 

other and their behaviour is due to independent decision-making. The components are 

'wholes' capable of existing on their own. Thus a Complex System is a whole built up 

ofwholes. 
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This is partly true in the case of an Active Node, which can exist by itself but is 

functionless without the rest of the network [Am94]. However, the 'Active' element (i.e. 

the intelligence) of such a node may meet this criterion. 

3.3.2 Components interact locally and the interactions are numerous 

In order for Emergent Properties to exist in amounts that can be observable, there should 

be numerous local interactions. In complex communication networks this is 

accomplished by having a varied number of packet types, simultaneous packet flows, 

multiple routes to destinations and a general high interconnectedness. 

In networks such as the Internet, direct node-node interactions are confined to 'local 

space'. Any other connection (e.g. source-destination connection) is achieved through 

the global structure and not by a direct link (i.e. a virtual connection is made using 

several nodes, traversing several sections of 'local space' within the network and with 

several possible routes). 

High connectivity is also likely to exist in Active Networks. Emergent Behaviour would 

result if an event (anomalous or otherwise), created in local space, propagates to others 

as a ripple (a Domino effect). The ripple is facilitated and amplified through the high 

interconnectedness of the network and 'piggybacks' on the normal source-destination 

communication process [Am94]. 

3.3.3 Overall global behaviour is independent of the internal structure of the 

components 

Similar Emergent Behaviours can be observed in a system that is independent of the 

processes that would be involved in achieving them. It is also possible that completely 

different systems will exhibit the same Emergent Property (e.g. waves) [Am94]. 

3.3.4 Overall behaviour of the system is well defined 

Viewing the Emergent Phenomena by itself, disregarding the individual components and 

much of the low-level detail, it is possible to note that the global structure conforms to 

simple rules (possibly mathematical rules) and behaves in an exact manner [Am94]. 
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3.3.5 Evolution in Complex SJrstems 

Evolution in Complex Systems is based around Darwinian concepts. Complex Systems 

have the ability to apply 'Natural Selection' to processes (i.e. "survival of the fittest"). 

Darwin viewed organisms as perpetual machines (i.e. staying alive long enough to make 

a copy of themselves and die). Complex Systems, however, are more involved but 

components within the system do possess the Darwinian characteristics of surviving for 

the completion of their objectives. Any processes that fail to complete will be weeded 

out of the system (a simple filtering process), and an evolutionary landscape will 

develop as the system progresses. Complex Systems also have an interesting feature of 

competition among components for limited resources. This makes the evolutionary 

landscape dynamic and adds another dimension to the fitness criteria and objectives of 

components. This breeds new 'intelligence' and 'creativity' and exposes the system to 

Emergent Phenomena [Am94]. 
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3.4 Active Networks as Complex Systems 

In order to analyse Active Networks it is helpful to classify the system in broad terms so 

as to focus further research. The following text will seek to show that Active Networks 

fall into the category of Complex Systems with which Emergent Properties are 

commonly associated. 

The criteria mentioned in the previous section apply to large-scale computer networks 

(Active or otherwise). Networks of an Active nature will add another dimension to the 

complexity because of their inherent programming capabilities. 

The idea that Active Networks will exhibit Emergent Behaviour is further strengthened 

by the following factors (classified by the author using available research on Active 

Networks): 

• Distributed processing architecture 

• In-built intelligence and self-awareness 

• Local network awareness/feedback loops 

• Lack of central management control 

• Application level organisation 

• Adaptation and evolution 

• Memory 

• Limited resources and competition 

M.l Distributed PrQcessing Architedure 

Each Active Node would have the capability to process a unique/distinct task or a 

particular portion of an entire application - Active Applications may acquire several 

nodes on the source-destination path to process a particular task (e.g. for a reliable video 

stream). Thus the application acts as task manager; splitting, replicating and distributing 

programme components to various Active Nodes. Since a single node might be unaware 

of the full application programme/functionality, it will not have a sense of the final 
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outcome. Thus any Emergent Behaviour that can result, globally, cannot be foreseen or 

prevented by anyone node. 

3.4.2 In-built Intelligence and Self Awareness 

All Active Nodes will have a processing core along with memory to store and run 

programmes. Furthermore, they have the capability to identify the processing required 

on a packet, based on the current local network conditions (e.g. network congestion), 

requirements of the packet and it's own resource status. Intelligence and autonomy are 

strong contributors to Emergent Behaviour. In addition, each node would be likely to 

have self-diagnostic capabilities. 

3.4.3 Local Network Awareness 

It is proposed that an Active Node has the means to gather information about its 

surrounding nodes and links (e.g. resource usage, size of input/output queues, link 

congestion). Local network 'awareness' will manifest itself as information feeding back 

to Active Nodes through Active Packets (as a primary or secondary objective of an 

Active Packet). Active Nodes would then act on that information according to pre-set 

rules and procedures. As opposed to 'Intelligent Networks', Active Networks do not 

possess nodes that are capable of initiating intelligent processes. In practical terms, 

Active Packets/Applications form the creative force behind node 'awareness', which is 

highly dependent on the requirements of the application. Irrespective of the underlying 

mechanism, an Active Node will have the capability to store information and become 

'aware' of its surroundings. It can take actions, based on this perception of the network, 

in the servicing of applications. A feature of this would be the formation of local 

feedback loops (affected by local network conditions), which would contribute to 

Emergent Behaviour [Am94]. 

3.4.4 Lack of Central Management Control 

Control of Active Nodes is dependent on their internal instructions and on the code 

carried within Active Packets. The autonomous behaviour of individual nodes and the 
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lack of knowledge of the final outcomes will result in nodes behaving normally, in local 

space, whilst contributing to global Emergence. 

3.4.5 Application Level Ol'lanisation 

Even with the presence of autonomous behaviour within the nodes, groups of them 

could essentially co-operate on a level that corresponds to a specific application (i.e. 

Active Nodes may organise along the packet source-destination path to provide better 

Quality-of-Service). This type of co-operation is not visible to the individual nodes, but 

is visible to the end-users as improved service. The ability of nodes to organise, without 

being 'aware' of the fact, is an Emergent Property, irrespective of the existence of a 

controlling element (i.e. the application). The focus of this thesis is the unexpected 

collective self-organisation of nodes. In such a situation applications would still form as 

expected, however, the influencing factors are such that the combination is potentially 

detrimental and may not have co-operative behaviour. 

3.4.6 AdllPtation and Eyolution 

Active Networks can be defined as adaptable and evolutionary networks. This can be 

perceived in several ways. For example, the network space is dynamic and changing in 

terms of the addition and removal of nodes; a failure in sections of the system results in 

redundant components taking over. Active Nodes, with their local 'awareness', can 

easily adapt to the changes in the structure of the network. Further to thi s, an Active 

Node would have the capability to adapt the processing of packets depending on the 

network state (e.g. network congestion, node resources, etc.). 

'The (Active network) programming abstraction provides a powerful platform for user­

driven customisation of the infrastructure, aI/owing new services to be deployed at a 

. faster pace than can be sustained by vendor-driven standardisation processes." 

[Ten96]. 
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The discrete approach of Active Networks achieve customisation through 'plug-in 

extensibility', which is a technique for the loading of code that is pre-defined and is an 

abstract prediction of future needs. This may not be sufficient in establishing a true 

evolutionary network, and in the future we may see the extension of Active Nodes 

through the dynamic loading of code, which is customised and updated on demand 

[Hi cOO]. Evolution would add a further element of unpredictability to the behaviour of 

nodes and would contribute to Emergent structures not envisaged originally. 

3.4.7 Memory 

As an Active Node is aware of its surroundings, itself and the application passing 

through it, it has the potential to retain details within node memory (e.g. previous packet 

type, packet number processed in a stream, congestion states, queue lengths, etc.). Any 

details retained from previous actions and events constitute 'memory', and will 

contribute to Emergence within the network. Furthermore, an Active Packet may be able 

to reserve node resources in order to service further packets (from a single application) 

traversing the node. 

~ Limited Resources and Competition 

The Internet has limits to the size and capabilities of resources (i.e. link bandwidth, node 

processing power, memory, etc.). It is possible that an Active Application will contain 

resource-usage maximisation algorithms. Applications using Active technology will 

compete for resources within the network based on a scheme of apportionment and 

priority. This competition will lead to a dynamic, evolutionary landscape (as mentioned 

previously), thereby affecting the 'fitness' of one application over another. Emergent 

Properties are likely to form as a result of this additional complexity. 
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3.5 Summary o/Chapter 

This chapter attempts to highlight the natural link between Emergent Phenomena and 

Complexity Theory by citing several exemplary points and references. It is proposed that 

the key features that would naturally manifest in Complex Systems are, in fact, Patterns 

and Behaviours of Emergence. This reduces further research work to the conceptual 

understanding of Complex Systems and key results. The chapter goes forward to explain 

why Active Networks should be considered as Complex Systems and therefore be a 

perfect candidate for modelling (for the purpose of observing Emergent Behaviour). 

As can be seen from Figure 3.2.a, Emergence research is varied and highly topical. 

Different research institutions delve into Emergence analysis through different area of 

expertise and different modelling paradigms. It is not the intention of this chapter to 

provide a detailed description of individual Emergence research projects. However, this 

chapter attempts to extract some commonality by focusing on generic Emergent 

characteristics that might be encountered in research work. 

Instances that can be identified as Emergence are varied (possibly infinite in number) 

and this chapter may not have included all forms. The examples given are distinct 

pattern manifestations within a particular system. These patterns are useful for global 

system analysis because they are observable and provide symptomatic evidence of 

system anomalies. Much of the focus for the Emergence detection process, introduced 

by this research (and by other research projects), is based on observing patterns in 

various system dimensions (i.e. various observable criteria) [KulOl]. 

The discovery of a system and its capabilities is possible through a broad range of 

analytical techniques and competencies. At one end, systems can be understood through 

the analysis of contributing components and localised interactions. At the other extreme, 

localised components, properties and interactions are insufficient to explain global 

behaviour. Most systems lie between these two extremes and require a balanced 

approach to the modelling process in order to comprehend system dynamics. 

Emergence is sometimes seen as an important transition device for the heuristic 

explanation of system behaviour, until the knowledge of such a system is complete and 

the laws/principles governing anomalous behaviour are fully extracted. This view is 

questioned by several researchers who believe that Emergence is a unique facet of 
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complex system behaviour. System non-linearity would result in an unending 

'Emergence of Emergents' [GoI99]. Therefore, a full comprehension of a system that 

includes all anomalous behaviour may not be possible. 

It is worth noting that irrespective of the arguments, the importance of identifYing 

Emergence is not diminished. 
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!... Modelling and Simulation 

This chapter will present: 

• A description of the strategy employed for the modelling and simulation of an 

Active Network. 

• A detailed description of the high-level abstract Active Network model, including all 

assumptions made during the development process. 

• A description of the Active Applications used to develop the model and the process 

by which they were incorporated - the development of core functional processes 

also known as Primitive Functional Components (PFCs). 

The key concepts in this chapter are: high-level abstract model, Active Applications, 

modelling assumptions and features, PFCs 
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4.1 Simulation/Modelling Strategy 

The current trend in research into Active Networks has been to define and implement 

several different topologies and communication protocols, independently or 

collaboratively, by various institutions. While this explores, in detail, all possible 

scenarios and manifestations of Active Networks, there exists little in the way of 

consensus and standardisation. Thus, the variation in Active Networks currently being 

considered (and to be considered in the future) presents itself as a problem when 

choosing a suitable network with established standards. In contrast, the current Internet 

uses TCPIIP, which is the established protocol, and hence the research work into various 

aspects of performance analysis is numerous and developed. To circumvent this problem 

it was decided that a suitable bigb-Ievellow-detail model/simulation be created, in the 

hopes that it can be used in an efficient manner to discover Emergent Behaviour (albeit a 

unique example of Emergent Behaviour). 

The basis of the high-level simulation is the development of a generic model. This 

model would contain little detail of the manner by which the communication process 

occurs (i.e. Active Packet transport mechanism) and of the specific network 

configuration. The lack of detail is advantageous since the resultant simulations serve as 

'indicators' of network behaviour. 

Developing a generic model serves several needs: 

• Provides a template for future detailed modelling of Active Networks 

• Summarily proves the existence of Emergence and Emergent Properties 

• Locates possible trouble spots and gives direction to the future detailed investigation 

of an Emergent Property 

• Avoids analysing results obtained from large complicated models of Active 

Networks, without an idea of the Emergent Behaviour present within it 

• Provides a systematic approach to the problem 

• Provides a framework for the incorporation of future Active Applications and 

viewing of their consequences on the network 

51 



Emergence in Active NetwOlks Chapter 4: Modelling and Simnlation 

• Acquire adequate generic behaviour to universally represent various Active Network 

research paradigms 

The modelling strategy, created by the author, involves the discovery of a range of 

Active Applications that encompass the entire capability of an Active Network. Once 

these applications are noted, they are broken-down into 'Primitive Functional 

Components' (PFCs). An Active Node can be modelled using these primitive 

components (and not much more), whilst retaining node functionality allied to the 

servicing of applications. What are important are the functional qualities of these 

components and not their detailed execution processes within each node (which can be 

disregarded). 

The advantages of this approach are: 

• Top-down approach - can be started from simple user requirements of Active 

Applications 

• All applications are a combination of one or more primitive operations/components 

• Can incorporate future applications 

• Independent of any specific technologies or protocols 

• Suitable simulators are assessed and implemented quickly 
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4.2 Static-Node simulation 

The static node simulation scenario used in this project comprises Active Nodes being 

placed in a pre-configured pattern to form a network. This method offers a 

straightforward approach and closely adheres to the application of Primitive Functional 

Components in generic modelling. An Active Node is depicted as an element pre­

programmed with all the functional components, which are individually activated 

depending on the type of packet that passes through it. Note that in a high-level abstract 

simulation the details pertaining to the method of distribution and execution of the 

primitive programme components (i .e. as a part of the Active Packet stream or pre­

loaded into Active Nodes) is inconsequential. 

The overall network topology is based on the Ohira-Sawatari deterministic model, 

[Ohi98] which was used to describe Emergent Network Traffic dynamics [SolO1]. 

An Active Node 

An End-station with 
transmit and receive 

capability 

A bi-<lirectionallink 

Figure 4.2.a: Ohira-Sawatari model adapted to Active Networks 

The network topology is a simple, scalable representation of the Internet. It provides 

multiple connections from end-station to end-station (i .e. multiple paths for packets to 

take when travelling from source to destination). Whilst not technically an accurate 
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representation, it provides a comparable structure to the Internet (with Active Nodes) 

when viewed at a high-level abstraction. It is expected that the high degree of 

connectivity would give rise to Emergence; in particular as structures formed by 

feedback. 
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4.3 Defining Characteristics of the Active Networks model 

General observations on Active Networks were made as a pre-cursor to the high-level 

model-building task. The following list details these observations, which function as 

bounds for the modelling paradigm. The list consists of known truths about Active 

Networks, assumptions made of the model and the justifications for these assumptions. 

The list also mentions the modelling considerations made with respect to there being 

Emergent Behaviour within the system. 

4.3.1 There are two fundamental types of Active Networks which are being 

considered by this thesis: 

• Capsules - networks with Active packets that carry programme code 

('capsules') to be executed in Active nodes. 

• Programmable Switches - networks with Active packets that carry 'trigger 

bits', which call and execute pre-loaded code within Active nodes. 

The generic high-level model will inherently cater for both schemes. The 

features of the generic design will consider only the type of code being executed 

in a node, at a given time and location, irrespective of how this code-block came 

into use. 

4.3.2 All possible Active services and functions can be broken-down into Primitive 

Functional Components. The generic high-level model will seek to model Active 

Applications as these components or as combinations of these components - a 

substitute to modelling Active Applications with formal definitions. This gives 

independence from end-user requirements, applications and services. 

4.3.3 All Active Packets will be typed based on the primitive functional components 

they invoke. 

4.3.4 Packets have a limited lifetime. Hence, a sustained pattern within the network 

has an abstract view, and involves several Active Packets/streams during its 
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lifetime (i.e. the abstract nature allows it to maintain structure and travel 

throughout the network, however the underlying Active Packets may not remain 

the same). 

4.3.5 All 'intelligence' and decision-making activities will be focused within Active 

Nodes. 

4.3.6 Packets are responsible for the dynamic progression of the network and the 

development of Emergent Phenomena. 

4.3.7 Packets do not interact with each other directly. Indirect interaction IS only 

possible though an Active Node. 

4.3.8 The movements of the single packet are deterministic. Several factors influence 

the path of an Active Packet. These are: 

• Source and Destination end-stations; as applicable with standard routing of 

packets within a network. 

• Congestion on the outward link. 

• Lack of proper resources at current node - the node would re-route to 

another containing the proper code modules and/or adequate resources to 

process the Active Packet. 

• Packets dropped due to the expiry of a 'Time-to-live' counter. 

• Last node's address - not allowing the packets to reverse course without 

being modified by an Active process. 

4.3.9 The simulation process would initially consider a network made solely of Active 

Nodes, as it would ease the development of the simulation environment. 

Emergent Behaviour would be in its purest form. It is assumed that Emergent 

Behaviour is just as likely to occur in hybrid systems containing Active Nodes 

and normal routers. Emergent Phenomena are independent of the underlying 

nodes (i.e. the same 'structures' can emerge from different network 
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configurations), are capable of traversing the network and can encompass small 

or large sections of the network without the loss of their characteristic 

'structure'. It is therefore feasible to assume that hybrid systems are equally 

capable of developing the same Emergent Behaviour. However, the Emergent 

Phenomena indigenous to hybrid systems are not considered for this research. 

4.3.10 For large-scale simulations of a particular network:, the packet flows can be 

considered as random. It is assumed that for a high-level abstract simulation the 

routing information of individual packets is less important when trying to view 

large networks globally. Thus, only the functional capabilities need be included 

in the packets. The random path of packets is based on the analogy drawn 

between Active Networks and Complexity (simple patterns and structures occur, 

as Emergence, in complex and highly random systems). 

4.3.11 An Active Node has limited resources (i.e. limited input/output queues, memory, 

processing capacity and the maximum number of concurrent processes). 

Furthermore, the node may limit the amount of resources allocated to each 

process depending on the dynamic conditions at the time of allocation. 

4.3.12 Active Packets, depending on the application, can retain resources in the current 

node as it passes through (the concept being referred to as 'history', 'imprint', 

'memory' and 'trace'). This process is characteristic of lead-packets reserving 

and conditioning part of the node to process follower-packets (all part of a 

homogeneous stream). An Active Packet can have an 'imprint' on a node 

depending on: 

• The resources it calls for 

• The time limit for the resource allocation 

4.3.13 For the purpose of modelling Active functionality with ease, an Active Packet is 

considered as an entire Active Application session, consisting of a combination 

of Primitive Functional Components. One can think of an Active Packet as an 
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application stream (e.g. an Active video/audio stream). For the purpose of this 

project, the high level model combines all actual packets of an application 

session into a high-level abstract' Active Packet' without loss of functionality. 

4.3.14 Each End-station injects one Active packet into the network for each simulation 

run (i.e. the analysis is of the simulation of a 'single shot' of Active Packets 

interacting to form global patterns and effects). Note that an Active Packet is a 

complete application. Thus the model simulation considers the interaction of 

only one set of applications simultaneously injected into the network. This 

simplifies the simulation and reduces the number of possible factors influencing 

a possible Emergent effect. The data analysis would therefore be able to offer a 

clearer understanding of the· underlying permutations that caused such an effect. 

4.3.15 In order to accurately depict resource usage fluctuations the Active Network 

model contains 3 resource types: "MEMORY", "PROCESSOR" and 

"BUFFER". An Active Packet requires all 3 types of resources. MEMORY and 

PROCESSOR resources are fairly obvious needs of an Active Packet. BUFFER 

resource is the term given for the Active Packet's input queue resource 

requirement. 
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4.4 Defining Generic Model Applications and Primitive Functional 

Components 

4.4.1 Possible Actiye Applications 

As part of the modelling strategy mentioned above, this work attempts to define a set of 

primitives as the foundations for the development of Active Network model. The initial 

step in this process is the collection and analysis of a representative sample of Active 

Network Applications (both predicted and/or implemented). These applications are 

listed below: 

• Reliable Scalable Multicast - a group of Active switches and routers maintain a set 

of TCP connections for reliable data replication. Also involved in the process is a 

data caching element within each Active node. 

• Video and Audio Transcoding [Mar99] - a digital signal of one standard is converted 

into another by an Active device. 

• Merging of multiple remote sensor data - used in telemetry applications where a 

single Active Node manages multiple data sources [Ten97]. 

• Storage of status information - for applications such as distributed network games. 

• Dynamic generation of web pages [Ten97] - an Active node capable of storing and 

executing programmes that generate web pages dynamically and on demand. 

• Dynamic distributed caching [Ten97]- web cache servers in an Active Network that 

can be dynamically repositioned. 

• Distributed network control [Mar99] [RazOO] [ps099] - e.g. supporting optimised 

routing algorithms. 

• Quality of Service (QoS) filtering for multimedia streams - e.g. consider a source 

feeding a single stream of multimedia to multiple heterogeneous receivers. The 

streams run through several routers and switches in a hop-by-hop manner. The QoS 

feedback commands generated at each node, at each hop, can burden the source with 

considerable processing. Using Active Nodes along the return feedback path to 
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merge multiple QoS feedback can reduce bandwidth usage. It may also be possible 

for Active Nodes to process the feedback and take decisions autonomously. 

• Support for application aware Anycast - a source needs only to contact the nearest 

Anycast group [KatOO]. 

• Application aware local link FEC (Forward Error Correcting Code) implementations 

[StoOO] - Active Nodes sensing communication links with poor performance can 

provide additional error correction bits for packets traversing those links. This is 

more efficient than end-to-end error correction since the packets have additional 

overhead only on the required links. 

4.4.2 Primitive Functional Components 

The representative sample of Active Applications was systematically decomposed into a 

set of core functions. As it happens, it was possible to identify these core functions 

independent of any user data, source/destination values and the type of service provided. 

These Primitive Functional Components (PFCs) extracted from the above-mentioned 

applications are: 

• Data Replication 

• Data Fusion 

• Data Generation 

• Data Transformation 

• Global State Maintenance 

• Network Control Processing 
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4.5 Mathematical Solutions verses Simulation 

Some research suggests that it may be possible to characterise the Internet or any other 

large-scale communication network using mathematical techniques. In fact, there exists 

a significant body of research where mathematical techniques have been used to model 

network dynamics. For example, an approach is adapted from fluid flow models and use 

Stochastic Differential Equations to describe the behaviour of packet flows and node 

input/output queues. Ordinary Differential Equations are obtained from the Stochastic 

set, which then can be solved numerically [Yua02]. 

As an alternative, there exists research effort to model large-scale networks with 

discrete-event simulations. The advantages of simulation over mathematical approaches 

are: 

• They are capable of capturing significant detail and behavioural effects of a network 

(in finer granularity when compared with mathematical models) [Yua02]. 

• It is likely that a simulation model will exist for a particular network (with specific 

protocols and mechanisms), rather than a mathematical one [Yua02]. 

• Ability to capture complex behaviours and to view global behaviours with relative 

ease. 

• A large quantity of parameters can be accepted. 

The disadvantages are: 

• The execution of discrete-event simulations is CPU intensive and may be limited by 

the hardware and software requirements of the simulator [Yua02]. 

• In computer-based simulations parallel and distributed flows of information are 

handled concurrently, which is a pseudo-parallel technique. Although this works 

well, it is not parallelism in the truest sense. 

• The simulator is capable of processing a number of concurrent tasks. This is 

achieved by means of discrete time steps. True continuous simulation is not 

possible. All tasks, which are intended to be run on the simulated network, are 

broken into events. The progression of the simulation is broken into discrete time 
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steps, and all events pending at each time step are executed together. The order of 

execution, within a single step, is irrelevant since it is considered as an instance in 

real time. Time progression (from which the progression of the simulation is 

achieved) is equivalent to the progression of time steps. The event and time step 

method is commonly used in many pseudo real-time simulators to achieve 

parallelism and multiple task execution. 

• In order to get the truest possible picture, the modeller would incorporate as many 

parameters as possible. However, there is a risk that unnecessary detail would have 

to be included even when the modeller is only interested in a few (an over complex 

model would demand more hardware resources and more time to complete). 

Mathematical models, if found, would only contain the key parameters for an 

accurate analysis. 

• There is a significant problem in obtaining, analysing and comprehending the results 

of discrete-event simulations. In order to gather results, probes may be inserted into 

the simulation, and the insertion points are selected based on the modeller's intuitive 

grasp of the system under simulation. A large collection of probes could have an 

impact on an accurate simulation (e.g. hardware and software limitations). Discrete­

event simulations also tend to generate large data sets. 

• In order to understand the cause behind an 'observed' Emergent Phenomenon, one 

might need to speculate and re-animate the events in the exact manner in which they 

occurred. Since it is possible to arrive at the same defined Emergent Phenomena 

through several different processes and interactions, the re-animation process must 

be carefully executed, if at all possible. In contrast, mathematical models themselves 

offer explanations to various observed phenomena. 

There are considerable advantages in employing mathematical models, but the initial 

steps are often difficult and the result produced maybe intractable. Discrete-event 

simulations are easier to handle, but obtaining comprehensible results often proves to be 

difficult. As can be seen, the direction taken by this research was to apply a discrete­

event simulation technique that follows on from the development of the specifications of 
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the generic model. This was applicable in this situation as it provided the best possible 

means to detect an unforeseen anomaly. 
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4.6 Summary 

This chapter has outlined the modelling strategy implemented in this work along with 

the considerations and assumptions made in the development process to facilitate the 

manifestation and detection of Emergence. The model is a high level abstract depiction 

of the Internet, which exclusively displays Active Nodes and their functionality. It is 

proposed that for the purposes of Emergence detection this model is adequate and would 

cater for most Active Network schemes currently being researched. The generic low­

detail visualisation of an Active Network within the Internet is a concept believed to be 

unique to this work and forms the primary analysis of the system. 

The chapter goes on to describe Active functionality/applications being reduced to 

primitives in order to simplify the modelling process. It is proposed that these primitives 

form the core building blocks of any Active Application to a satisfactory level thereby 

preserving universal compatibility. 

The abstract view of the Active Network model based on the lattice structure devised by 

Ohira-Sawatari [Ohi98] is conceptually similar to the visualisation of the Internet (i.e. 

servers/clients at the edge of the system with routers/switches localised in the core). 

The chapter also describes the approach to the detection of Emergence as the detection 

of anomalous patterns within the Active Network core. To this end a single set of Active 

Applications are fed into the core by the end-stations. The set is allowed to propagate, 

interact with each other and affect the Active Nodes. Through these interactions 

valuable information is gained with the aim of detecting Emergence within the system. 

Creation of a simulation environment (i.e. a simulator) or modification of an existing 

network simulation environment is a time consuming task. It involves the design of 

tailor-made Active Nodes (programmed with Primitive Functional Components), 

custom Active Packets, distribution mechanisms, simulation dynamics, displays, results 

loggers and other components. 

The task is made easier if the simulation dynamics followed a universal methodology 

(not necessarily network related), and simulators existed that would provide the 

functionality to cater for these universal properties. 'Petri-Nets' are a universal theory 

that is capable of modelling distributed systems and parallel event-driven networks. It is 
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an established theory with defined mathematical formulae to aid the analysis of a 

network. 
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.5..- Petri-Net Simulation 

This chapter will present: 

• A detailed description of Petri-Net segments specifically used for the simulation of 

the Active Network Model. 

• The suitability of Petri-Nets in simulating Active Network functionality. 

• Petri-Net flow diagrams of the Active Network model including descriptions of 

packet flows, data processes, resource usage, peripheral control mechanisms and 

data logging. 

• A description of what constitutes an Active Packet/Application in this model. 

The key concepts in this chapter are: Petri-Nets, Petri-Net extensions, simulation of an 

Active Network, Design/CPN Petri-Net simulator, Resource Usage data, Ohira-Sawatari 

lattice structure, Active Network model hierarchy and components - Merge Packet 

component, Replicate Packet component, Direction Solver component, Local Storage 

component 
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A Petri-Net is an abstract, formal model of information flow [Cha]. The concept was 

introduced by Carl Adam Petri in 1962 for the computational analysis of concurrent 

systems. The properties, concepts and techniques of Petri-Nets are designed for the 

simple yet powerful modelling of systems with parallel asynchronous information flows 

and activities. 

Petri-Net graphs contain four types of elements: circles (called Places), rectangles 

(called Transitions), markings (called Tokens) and Directed arcs. Directed arcs make 

connections from Places to Transitions and from Transitions to Places. A Petri-Net is a 

multi-graph since it can allow multiple arcs from one Place to several Transitions, and 

vice versa [patS I ]. 

Place 
Transition 

Token 

Figure 5.a: Petri-Net terminology 

The net execution process consists of moving/placing Tokens from input Places, 

through Transitions, to output Places. The Places represent passive system components. 

They act as storage for the Tokens, take particular states and generally make things 

observable. Transitions represent active system components and function as process 

blocks to produce, transport and change Tokens [Rei85]. The distribution of Tokens in a 

'marked' Petri-Net, at any given moment, defines the state of the net. 

In order for a specific Token to move from one Place to another it requires the 

intermediary Transition to be 'enabled'; and then the Token only moves when the said 

Transition 'fires' (i.e. the execution of the Transition). 

There are two rules, which govern this particular movement of Tokens within the net: 
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• Enabling Rule - a Transition is enabled if every input Place, attached to the 

transition, contains at least one Token. 

Figure 5.b: The Transition with the red border is 'enabled' 

• Firing Rule - firing an enabled Transition removes one Token from each input Place 

of the Transition, and adds one Token to each output Place of the Transition (i.e. 

generates new Tokens) [Her97]. 

Figure 5.c: The Transition with the double red border has 'fired' 

This simple mechanism of 'enabling' and 'firing' in Petri-Nets can be used to model 

complex interactions based around a set of fundamental structures (detailed in the 

proceeding section), which form the building blocks of any system. 
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5.1 Modelling set scenarios with Petri-Nets 

S.U Sequential Actions 

Figure 5.l.l.a: Sequential action 

Each sequential flow is described through the transportation of a single token from start 

to finish; travelling through a single set of alternating transitions and places. 

~ Cycles 

Figure 5.l.2.a: Cycles 

Cycles are fonned when the arcs direct back to the beginning of the sequence, thereby 

initiating a continuous loop of the token. 

5.1.3 Dependency 

This can occur when a Transition has several input Places - it can only be enabled when 

all of the input Place receives, at least, one Token [Her97]. 
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Figure 5.1.3.a: Dependency 

.s.M Concurrent processes 

This can occur when a Transition has several output Places - each Place will obtain a 

Token when the said Transition fires. This forms the start of a concurrent process 

[Her97]. 

Figure 5.1.4.a: Concurrent processes 

5,1.5 Synchronisation 

This can occur when a Transition has several input Places - it can only be enabled when 

each Place receives a Token. 

The Transition acts a 'stop and wait' element to synchronise the concurrent flows of 

Tokens [Her97]. 
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/</gure 5.1.5.a: Synchronisation of cono"Urrent flows 

Synchronisation can also be used to pace-out the flow of Tokens through a process (e.g. 

buffers) [Her97]. 

Figure 5.1.5.b: Two-level deep buffir 

Synchronisation can also be used to design common resource stores [Her97]. 

Common resourell 

/</gure 5.l.5.c: Common resource store 

5.1.6 Decision-making !conflict 

This can occur when a Place has several output Transitions - the Transitions will 

contend for the limited Tokens at that Place (i.e. Transitions are said to be in conflict). 
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This can be used to model asynchronous decision-making processes, which dictate the 

separate fl ows of Tokens [Cha97]. 

Figure 5.1.6.a: Decision-makinglconjlict 

Note that the above set scenarios can be present within a system model as a static 

placement of Transitions and Places. They can also be present as dynamic structures. 

For example a feedback cycle, not necessarily evident through the examination of the 

physical layout of modelling components, can manifest itself at run time in an 

undetermined fashion. The ambiguity of feedback cycles would be caused by the 

inclusion of decision-making/conflict scenarios within the system that would redirect 

token flow based on the run-time input conditions. 
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5.2 Extensions of Petri-Nets 

Extended Petri-Nets have important additional features, which make the modelling of 

Complex Systems (specifically communications networks) possible. These features add 

programming concepts to the model, thereby allowing the modeller to adjust the flow of 

Tokens within the net and to vary the Tokens themselves. These features are: 

• The addition of timed delays to Transitions - to model points of delay within the 

network. 

• Input Arc Inscriptions - specifies the type of data that must exist in order for an 

activity to occur (i.e. a Transition to fire). 

• Guards - Boolean expressions, which define additional conditions for the enabling 

and firing of Transitions. 

• Output Arc Inscriptions - specifications of the data that will be produced when an 

activity occurs (i.e. a Transition firing). 

• Data-types, data-objects and variables - Tokens can be constructed as data-objects 

that carry complex/custom data structures. Data-types (also known as Colour-Sets) 

define the type attributes assigned to these data-objects (i.e. every Token in a Petri­

Net is typed on some Colour-Set, just as every piece of data in an ordinary computer 

programme is of some data-type). Variables hold Tokens of a defined type and can 

be used in evaluating Boolean expressions at Transitions, at run time. Variables 

form part of the Arc Inscription and act as filters on the types of Tokens being 

transferred across [Her97]. 

Petri-Nets and Petri-Net extensions fall into several categories (e.g. Time Petri-Nets, 

Stochastic Petri-Nets, Object-oriented Petri-Nets). This work has opted to use 'Coloured 

Petri-Nets' and in particular 'Hierarchical Coloured Petri-Net' to form the foundations 

for the modelling process. Coloured Petri-Nets, as mentioned before, introduce a typed 

token in order to differentiate between and control process flows. Hierarchical Coloured 

Petri-Nets provide the facility to build complex models as a multi-tiered structure of 

interconnected hierarchical subnets and reusable components. 
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5.3 Petri-Net Simulation of Active Networks 

It is believed that the application of Petri-Net theory to the modelling of Active 

Networks remains a concept unique to this work. Petri-Nets are suitable for the 

modelling of Active Networks because the TokenIPlace elements can be matched with 

Active Packets, Active process execution blocks and Active Nodes. 

For this work an Active Packet/Application corresponds to a single Token. An Active 

process will correspond to a single Place or a group of Places intermixed with 

Transitions that provide the required Active functionality. The Colour Petri-Net feature 

can differentiate Active Applications types - each Token can have varying properties, a 

unique identification and the ability to invoke different processes within a cluster of 

PlacesfTransitions. This would be equivalent to an Active Packet invoking a specific 

process within an Active Node. 

The third party simulator used in this project attempts to model a significant number of 

Active Network features deemed relevant to the Emergence of anomalous behaviour. 

Within the Active Network simulation, Petri-Nets are capable of displaying the 

following (as identified by the author): 

• Specific actions taken by Active Packets - as a Token (an Active packet) enters a 

cluster of Places and Transitions (an Active Node) it is identified and coupled to a 

specific process flow. The specific process is then executed. 

• Active Packets travelling through various stages of a process. 

• Parallel process execution. 

• Resource allocation to processes - resources (as denoted by special Tokens) are 

moved out of the common resource store when a process is initiated. They are 

returned when the process has finished execution. In some cases, a process will 

retain resource Tokens in an attempt to maintain a state (imprint) in memory. 

• Packet interaction through the dynamic competition for resources. 

• Packet transformation. 

• Packet loss and delay. 

• Packet replication. 
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• Packet types - the colour Petri-Net scheme has the capability to assign attributes to 

Tokens, thereby differentiating them according to the Active Packet types. The 

attributes are used to control and channel the flow of packets to various processing 

elements. 
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5.4 Design/CPN 

The author has investigated a number of Petri Net simulation tools (reviewed in 

Appendix iii). Of these Design/CPN was found to be a viable package offering an 

elaborate and comprehensive set of features. It supports Colour Petri-Net models with 

complex data-types (Colour-Sets) and complex data manipulations (Arc Expressions 

and Guards); both specified by the "Standard ML" programming language. In addition 

the package allows the use of Standard ML code to customise the behaviour of 

simulations (i.e. additional code segments in transitions and the use of global reference 

variables). 

The package also supports hierarchical and modular nets (i.e. complex models can be 

decomposed into manageable modules. Separate modules are reusable and can be 

constructed with well-defined interfaces). Design/CPN has the capability to model a 

typical scenario of SO to 200 modules; each with 10 to SO different Places and 

Transitions [Des]. Design/CPN's user-extensibility allows for the accurate modelling of 

Active Networks in accordance to the specifications set by the high-level modelling 

scheme. It is well suited for progressive and intensive simulation of an Active Network. 

The package provides comprehensive documentation, samples modelling scenarios and 

performance analysis capabilities. 

The software was originally devised by the Meta Software Corporation, Cambridge MA, 

USA with the help of the CPN group at the University of Aarhus, Denmark. Subsequent 

decisions by Meta to transfer development and support of the tool to the CPN Group at 

Aarhus resulted in it becoming freely available to model developers. However, as of 

January 2004 it has been superseded by 'CPN Tools', which provides an enhanced GUI 

(working under Windows 2000/XP with openGL support) with a faster simulation 

engine. Nevertheless, much of the modelling/simulation technology used in the new tool 

is based around Design/CPN. From a historical perspective, Design/CPN provided a 

complete modelling/simulation package from the initial stages of this research right 

through to completion. The version of Design/CPN used for this work runs under Linux 

(RedHat 8.0). 
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The overall suitability of a particular simulator was assessed on the following criteria: 

• Ability to simulate large networks 

• Capability of building hierarchical nets and high-level simulations 

• Inclusion of Token differentiation (e.g. Colour Petri-Net schemes) 

• Inclusion of performance analysis measures 

• Adequate documentation and support 

• Inclusion of a graphical display and animation of networks 

• Availability and cost 
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5.5 Model flow diagrams/layouts 

5.5.1 Model hierarchy 

The Active Network model was constructed using a hierarchical and modular approach. 

This approach groups common functionality into 'components'. The components are 

sub-sections of the Active Node 'object' and collectively provide the primary functions. 

The design/CPN object hierarchy for the Active Network model is structured as follows: 

Active Network 
(Ohira-5awatari lattice 

structure) 

local storage 
component 

merge packet 
component 

replicate 
packet 

component 

direction 
solver 

com onent 

Instances: 

Active Node 

Figure 5.5.1.a: Model Layout: Active Network Model Hierarchy 
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The top-level object in the hierarchy is the Active network lattice structure (Figure 4.2.a 

and Figure S.S.2.a). A sub-component of this network arrangement is the Active Node 

object (Figure 5.5.3.a), which forms the second level in the hierarchy. There are 25 

instances of the Active Node object within the model representing the 25 Active Nodes 

(A I to E5). Sub-components of the Active Node object include the following: "Local 

Storage Component" (Figure 5.5.4.a), "Merge Packet Component" (Figure ), "Replicate 

Packet Component" (Figure 5.5.6.a) and "Direction Solver Component" (Figure 

5.5.7.a). The sectioning of components was primarily based on the logical apportion of 

functionality (e.g. Active Merge functionality and Active Replication functionality) 

and/or level of diagrammatic detail required to implement specific features (e.g. 

Direction Solving for the next hop). 

It must be noted that the following flow diagrams are not the actual Petri Net diagrams 

used in modelling process, but are an approximation. These approximations are used as 

a process by which the modelling details can be easily explained. It was believed that the 

use of the actual diagrams, at this stage of the report, would only complicate the 

documentation and thus are included in Appendix ii. The author proposes that the use of 

flow diagrams, along with the appended notes, will provide sufficient detail for the 

reader to comprehend and analyse the Active Network model. 

Also note that the control flows of tokens (represented by the green coloured arcs that 

transfer tokens from Place to Place via Transitions), in the following diagrams, are 

separate from the Active Packet Token flows. The controls flows are a mechanism (in 

addition to the Active Packet Token flows) necessary for progression of the Petri-Net 

model within a simulation run. Furthermore, they do not influence the resource 

utilisation data; gathered as output from the simulations. 

5.5.2 Active Network (Obira-Sawatari lattice structure) 

The following diagram provides a detailed and concise view of the Active Network 

model as abstracted in Figure 4.2.a. 
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Legend: 
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AcUve Packel (token) now 

• 
Control (token) flow 

Chapter 5: Petri-Net Simulation 

SRC_Ai Traffic Source 

O-~ 
Traffic 

GeneralOf' 
TralRcSi,* 

AA En6-6latlon 

Figure 5.5.2.a: Model Layout: Active Network 

Each Petri Net Transition labelled from Ai to E5 represents an ' instance' of an Active 

Node. Surrounding the lattice structured Active Node 'core' are 20 end-stations that 

form the 'end-user edge' of the model (Appendix ii; section ii.3). 
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Active Packets! Applications are generated and collected vIa end-stations. Within an 

end-station there exists a ' traffic generator' that reads an input file ("src.txt") in order to 

obtain the specific Active Packet/Application information corresponding to the 

particular end-station, which is then forwarded to the ' traffic source', 

6,5,5,O,F,30,30,30,O,O 0 ~ 
6,5,5,O,F,30,30,30,O,O 0 
10,5,5,50,F,30,30,30,20t 15)D 
7,5,5,50,R,10,10,10,O,O)D 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5 , 5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,O,F,30,30,30,O,O 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
9,8,1,4,F,100,100,100,100, 50)0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0, F', 30, 30, 30, 0, 0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 
6,5,5,0,F,30,30,30,O,0 0 
6,5,5,0, F, 30, 30, 30, 0, 0 0 

Figure 5.5.2.b: Sample Source File ("src.Ixt '') 

Each line of the input file ("src.txt") contains a data section (within the brackets) that 

describes an entire Active Packet/application with the value sequence corresponding to 

the pseudo header/data structure described below: 
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Application Direction Direction TUJle.to- Route Mechanism •••••• 
Number Indicator 1 Indicator 2 live 
1 15 1 8 1 8 Integer • forward 

Integer value Integer value Inleger value • replicate 
value • consume 

• merge 

~ 

•••••• Memory Processing Buffer Global State GSM Timer 

Requirement Requirement Requirement Maintenance Count 

IGSMI 
0 100% 0 100% 0 100% 0 100% 0 50 

Integer value Integer value Integer value Integer value Integer value 

1 1 

8~ i /2 i 7 ___ 3 7 ___ 3 

6/~~4 ~ 
5 5 

Direction indicator 1 Direction indicator 2 

Figure 5.5.2.c: Active Packet/Application Structure and Direction Indicator values 

Note that the Active packet/application does not, in reality, contain a data portion. The 

author proposes that the sole use of the Active header is sufficient to provide an accurate 

analysis of resource usage in Active Networks, since the requirement is explicitly 

specified within it. Furthermore, it was not the intention of this research project to assess 

the quality of service (QoS) aspect of data transfer in Active Networks. 
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5.5.3 Active Node Model 
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Figure 5.5.3.a: Model Layout: Active Node 
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The Active Node functionality (Appendix ii; section ii.4, section ii.5, section ii.6, 

section ii.7 & section ii.8) can best be explained through the description of processes it 

invokes, when an Active Packet! Application arrives and is passed through, in addition to 

description of interactions made with the packet: 

• An Active Packet arrives at the Active Node through one of 4 possible input ports 

and is immediately evaluated for processing by the node. 

• The decision to process the particular Active packet will depend on the "time-to­

live" field and whether the node will have, at that particular time, adequate 

"MEMORY", "PROCESSING" and "BUFFER" resources (Figure S.S.2.c). 

• Unprocessed packets will be forwarded to the 'next hop' Active Node through one 

of 4 possible output ports. 

• The choice of output port will depend on the evaluation of the Active Packet's 2 

"Direction Indicator" field values by the "Direction Solver Component" (Figure 

S.5.2.c and Figure S.S.7.a). 

• Active Packets that can be processed will initially consume the required , 
"MEMORY", "PROCESSING" and "BUFFER" resources from the Global Store. 

• There exists a mechanism to release the consumed resources after a specified time 

period, which coincides with the point of exit for the corresponding packet 

("MEMORY" resources have additional criteria). The specific time period for 

release is based on the "Route Mechanism" field of the Active packet (Figure 

S.5.2.c). 

• The initial consumption "MEMORY" resources may include a quantity used to 

provide the 'Resource Reservation Feature' in Active Networks. The amount and 

time limit for these "MEMORY" resources will depend upon the "Global State 

Maintenance" value and the "GSM Timer Count" value of Active Packets, 

respectively (Figure S.S.2.c). There exists a mechanism to release these resources 

once the Timer Count expires, which is held within the "Local Storage Component" 

(Figure S.S.4.a). 

• Active packets are then differentiated (and processed) based on the "Route 

Mechanism" field. 
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• The packets are subsequently passed into the ''Direction Solver Component" (Figure 

5.5.7.a) for evaluation and passed out through the output ports. 

5,5.4 Local Storage Component 

MEMORY 
(Global Store) 

l+ ___ Modlfred resource 
value written 

Gate controlled 
FIFO queue 

Input port 

Resource VB!ue 
read Into process Release resources 

rram global store & 
Generate trigger 

Resources 
released 

Resources 
delayed 

bigger 

Extract Time 
Count value 

(delay) & adds 
timer check 

flag 

OUtput port 

Oolay _ok loop: 
Uses (Umestamp • delay value) 
85 condition for loop. 

Modmes Urner check nag for 
decisicn process, 

Legend: 

ActIve Packet (token) flow 

• 
Control (token) flow 

• 
Resource (token) flow 

• 
Figure 5.5.4.a: Model Layout: Local Storage Component 
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The objective of the "Local Storage Component" (Appendix ii; section ii.9 & section 

ii.IO) is to provide a timed release of "MEMORY" resources that were previously 

consumed when the packet was initially processed. 

The timed release of "MEMORY" resources is distinctly separate from normal 

'consume and release', which is applicable to all Active Packets processed within the 

node. The 'consume and release' of additional "MEMORY" resources is an integral 

part of the resource reservation feature of Active Networks. 

The "Local Storage Component" is invoked only when the higher layer "Active Node" 

object requests it. The request is generated based on the "Global State Maintenance" 

value and the "GSM Timer Count" value of Active Packets that pass through the Active 

Node (Figure 5.5.2.c). 

An Active packet enters the "Local Storage Component" through the input port and 

immediately exits through the output port via a process designed to extract the "Global 

State Maintenance" value (reserved resource amount) and the "GSM Timer Count" 

value (timer for reservation). The extracted data can be thought of as a 'reduced 

information Active Packet' . 

Much of the information flow within this component is control flow that is used to add a 

timestamp and check flag to the extracted data. 

The reservation of resources is formed by a delay loop that is controlled by the "GSM 

Timer Count" value and the timestamp. 

The check flag is used to trigger the release of "MEMORY" resources once the delay 

loop criteria has been satisfied. 
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Figure 5.5.5.a: Model Layout: Merge Packet Component 
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The objective of this component (Appendix ii; section ii.11 & section ii.12) is to merge 

identical Active Packets that have been designed for the purpose into one Active Packet. 

The process of merging in terms of this project involves the delay of the I" packet that 

entered the Active Node processing stream, which has a 'merge' value in the "Route 

Mechanism" field, for a limited period of time (i.e. a fixed period of 5 simulation time 

steps). 

Subsequent 'merge' packets that match the I" packet's "Application Number" and 

arrive at this component within the fixed time period will be consumed/merged. 

The component identifies and tags the 1" packet of the merge process with a check flag. 

This flag is reset when the I" merge packet is released after the expiry of the fixed delay 

period. 

The delay of the I" packet is achieved through a loop that is controlled by a timestamp, 

which was attached to the packet as it entered this component. 
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5.5.6 Replicate Packet Component 

Input port '-""'_~ 

1 Token 
(Active Packet) 
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indicator = 4 

Indicator = 8 

Chapter 5: Petri-Net Simulation 
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Actlve packet header field 
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dlrecUon Indicator 1 and direcUon 
indicator 2 in Active packet 

E 
3 Tokens 

(Active Packets) 
out 

Legend: 

Output port 

Active Packet (token) flow 

~ 

Figure 5.5. 6.a: Model Layout: Replicate Packet Component 

The "Replicate Packet Component" (Appendix ii; section ii.13) implements a simple 

mechanism to replicate all packets taken from the input port (according to a specified 

scheme) and output them into the main/parent "Active Node" object. 

The replication scheme (Figure 5.5.6.b) uses a I to 3 replication of Active Packets with 

modified "Direction Indicator" values (i.e. the original direction and 45 degrees either 

side of the original). 
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Input 
Active replicating 

packet --.. 

An Active Node 

Chapter 5: Petri-Net Simulation 

Further replications 

Figure 5.5.6.b: Active Packet Replication Scheme 

The scheme is designed to emulate a spanning replication of data that has an unlimited 

replication objective and a primary direction (i.e. the direction of initial data packet). 

This is one of many possible spanning schemes that could have been incorporated into 

the model. It was primarily designed to achieve a significant 'presence' of a replication, 

which affected other application streams, whilst not allowing to have the capability to 

completely saturate the network. 

The main section of the "Replicate Packet Component" consists of a decision process 

(based on the original direction of the input packet, the value of which is held in the 

"Direction Indicator I" field of the Active Packet header) that replicates the input packet 

and modifies both Direction Indicator values of each output packet according to the 

scheme in Figure S.S.6.b. 
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5.5.7 Direction Solver Component 

Input port 

Chapter 5: Petri-Net Simulation 

Decision based on: value of 
original direction indicator 1 and 
direction indicator 2 in Active packet 
header field 

Modifies direction indicator 2 in 
Active packet 

output port 

Legend: 

Active Packet (token) flow , 

Figure 5.5.7.0: Model Layout: Direction Solver Component 

The objective of this component (Appendix ii; section ii.14) is to take all Active Packets 

destined for the node exit and modify their "Direction Indicator 2" values. 

The component only modifies the secondary direction indicator value of diagonally 

traversing packets in order that they map correctly to one of the 4 output ports. Any 

horizontally traversing and vertically traversing packets are left unmodified. 

The diagonally traversing Active packets, in reality, travel through the network in a step­

wise pattern. The alternating horizontal and vertical direction values required for this 
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type of travel are contained in the ''Direction Indicator 2" field of the Active Packet and 

are adjusted accordingly by the ''Direction Solver Component". (Figure S.5.2.c and 

Figure S.S.7.a) 

The combination of changes made to the "Direction Indicators" is described in the 

following table: 

Combination Input Output 
''Direction Indicator I" ''Direction Indicator I" 

and and 

''Direction Indicator 2" ''Direction Indicator 2" 

values values 
I 2 and I 2 and 3 
2 4 and 3 4andS 
3 6andS 6and7 
4 Sand7 S and I 
S 2 and 3 2 and I 
6 4andS 4and3 
7 6and7 6andS 
S Sandl SandS 

All other combinations of "Direction Indicator" values remain unaffected 

~ Otber components; Data Loggin& 

Legend: 

Reads values from: 
reglocO to regl0c24 (registry 
locations) 
Writes to ·out.txt" as one line 

Control flow 

• 
Figure 5. 5.8. a: Model Layout: Data Logging Component 
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The input for the Emergence detection process, described in the proceeding chapter, 

consists of a data log of "MEMORY" resource activity, which was recorded throughout 

a simulation run of the Active Network. 

The data logging process (Appendix ii; section ii.15) consists of a simple Petri Net flow 

loop that polls and records (i.e. writes to an output log file "out.txt") 25 Register 

Locations, at every simulation time step . 

... 100,100,100.100,100,100,100,100,100,100,100,100,100.100.100,100.100.100.100.100.100,100,100,100.1000 
3 .•• 100,100,100,100,100,100.100.100,100.100.100.100,100,100,100,100,100,100,100,100.100.100.100.100.1000 
.•• 100.100,100.100.100,0.100.100.100.100.100,100,100.100,90.100,100,100,100,70,100.100.100.100.1000 

5 .•• 100,100,100,100,100,0,100,100,100,100,100,100,100,100,90,100,100,100,100,70,100,100,100,100,1000 
6 .•• 100,100.100,100,100,0,100,100,100,100,100.100,100,100.90.100.100.100,100.70,100.100,100,100,1000 
7 .•• 100,100,100,100,100,0,100,100,100,100,100,100,100,100.90,100,100,100,100,70,100,100.100,100,1000 
8 ..• 100,100,100,100,100,0,100,100,100,100,100,100,100,100,90,100,100,100,100,70,100,100.100,100,1000 
9 ... 100,100,100,100,100,0,100,100,100,100,100,100,100,100,90,100,100,100,100,70,100,100,100,100,1000 

0 .•. 100.100,100,100,100.0,100,100.100,100,100,100,100,100,90,100,100.100,100,80,100,100,100,100,1000 
••• 100,100,100,100,100,0,100,100,100,100,100,100,100,100,100,100,1oo,100,1oo,80,100,1oo,1oo,100,100D 

2 ..• 100,100,100,100,100,0,100,100,100,100,100.100,100,100,100,100,100,100,100.80,100,100.100.100,1000 
3 ... 100,100,100,100,100,0,100,100,100,90,0,100,100,90,100,100,100,100,70,70,100,100,100.100,1000 
4 ••. 100,100,100,100,100,0,100,100,100,90,0,100,100,90,100,100,100.100,70,70,100,100,100.100,1000 
5 ••• 100,100,100,100,100,0,100,100,100,90,0,100,100,90.100,100,100.100,70.70,100,100,100,100,100U 
6 ••• 100,100,100.100,100,0,100,100,100,90,0,100,100,90,100,100,100,100,70,70,100,100,100,100,1000 
7 .•. 100,100,100.100,100.0,100,100,100,90,0,100,100,90,100,100,100.100,70,70,100,100,100,100,1000 
8 ••• 100,100,100,100,100,0,100,100.100,90,0,100,100,90,100,100,100,100,70,70,100,100,100.100,1000 
9 ... 100,100,100,100,100.0,100,100.100,90,0,100,100.90,100,100,100,100,80,70,100,100,100.100,1000 

20 ••• 100,100,100,100,100,0,100,100,100,100,0,100,100,100.1oo,100,100,100,80,80.1oo.100,100,100,100D 
21 ••• 100.100,100,100.100.0,100,100.100,100,0,100,100,100,100,100,100,100,80,80.100,100,100,100,1000 
22 ••• 100.100,100,100.90,0,100,100,90.100,0,0,90,100,100,100,100,70.70,80,100,100,100,100.900 
23 .•. 100,100,100,100,90,0,100,100,80.100.0,0,90,100,100,100,100,70.60,80,100.100,100.100.900 
24 ... 100,100,100,100,90,0,100,100,70,100,0,0,90,100,100,100,100,70.50,100,100,100,100,100,900 
25 ••• 100,100,100,100,90,0.100,100,70,100,0,0,90,100,100,100,100,70.50,100,100.100,100,100,900 
26 .•• 100,100,100,100,90,0,100,100,70.100,0,0,90,100,100,100,100,70,50,100,100,100,100,100.900 
27 ... 100,100,100.100.90,0.100,100,70.100,0,0,90,100,100,100,100,70.50,100.100.100,100.100,900 
28 ... 100,100,100,100,90,0,100,100,70,100,0,0,90,100,100,100,100,80,50,100,100,100,100,100,900 
29 •.• 100,100,100,100,100,0,100,100,80,100,0,0.100,100,100.100,100,80,60,100,100,100,100.100,1000 
30 ••• 100,100,100,100,100.0,100,100,90,100,0,0.100,100,100.100,100.80,70,100,100,100,100.100,1000 
31 •.• 100,100,100.90,100.0.100,90.100.100,0,0,100,100,10O,100,O,70,80.100,100.1oo,100,90,100D 
32 ..• 100,100.100.80,100.0.100,80,100.100,0,0,100.90,100,100,0,60,80,100.100,100,100,80,1000 

Figure 5.5.8.b: Sample Output logjile "out.txt" 

A specific Register Location contains, at any given simulation time step, the current 

value of "MEMORY" resources contained within a specific instances of the Active 

Node object. 

A Register Location is updated whenever the "MEMORY" Place (Global Store) value, 

of the corresponding Active Node instance, changes during a simulation run (Figure 

5.5.3.a). This update is achieved through the inclusion of Standard ML code in 

Transitions in the Active Node object and its components. 

Each line within the output log file ("out.txt") contains the simulation time step number 

followed by 25 Register Location values ("reglocO" to "regloc24"). The following table 
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maps the Register Location names with the Active Node names who's "MEMORY" 

resource values are held within the registers: 

Register location Active Node Names 

number/name 
"reg)ocO" ES 
"regloc 1 " E4 
"regloc2" E3 
"rell. oc3" E2 
"reg oc4" El 
"reg ocS" DS 
"rell.l oc6" D4 
"rell. acT' D3 
"reg ocS" D2 
"reg oc9" DJ 
"reg oclO" CS 
"reil ocll" C4 
"reg oc12" C3 
"reg oc13" C2 
"regloc14" Cl 
"Tell. oclS" BS 
"reg oc16" B4 
"reg oclT' B3 
"reg oc18" B2 
"reil oc19" Bl 
"reg oc20" AS 
"reg oc21" A4 
"reg oc22" A3 
"regloc23" A2 
"!egloc24" Al 
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5.6 Summary 

This chapter has discussed, in considerable detail, how the Active Network model was 

constructed, simulated and prepared for analysis. 

The first section of this chapter describes the general diagrammatic concepts of Petri 

Nets and their use with communication network type structures. 

The sole use of the diagrammatic semantics of Petri Nets (in order to provide solutions 

for system design) is not uncommon. Most Petri Net modelling packages also provide 

powerful mathematical analysis tools to develop "Occurrence Graphs" that can be used 

to gain a detailed understanding of systems. For the purposes of this project these 

mathematical tools provided no useful contribution. This is because the basic premise of 

the research was to establish a global view of system functionality in Active Networks 

and then proceed to detect Emergence as patterns within this view. 

The project does, however, consider the use of Petri Net extensions such as "Color Petri 

Nets", Boolean Transition Guards, Arc Inscriptions and Hierarchical decomposition 

invaluable in the accurate modelling of Active Networks. 

This chapter follows on to explain the process by which the Petri Net concepts are 

paired with the High-level Active Network model features (previously identified in 

chapter 4). 

The chapter also provides, as reference, a significant list of Petri Net modelling tools 

and their specific attributes. The list formed the basis of an evaluation process to find 

the most suitable Petri Net modelling/simulation tool. As a result, Design/CPN was 

highlighted as being the best suited for this particular modelling and simulation task. 

Some of the key 'selling points' were its ability to create hierarchical models using well­

defined components and its ability to construct and execute "Standard ML" code 

segments within "Transitions". This provided a high degree of flexibility in the 

implementation of features (e.g. data-logging) that would not have been possible 

through a solely graphical simulation environment. 

The last section of this chapter contains detailed flow diagrams of the Active Network 

model. Included in the diagrams are the breakdown of components (object hierarchy), 

the specific detail pertaining to resource usage and the flow of Active 

Packets! Applications. 
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~ Detection of Emergence 

This chapter will present: 

• An analysis of possible detection techniques for Emergence in systems. 

• A description of the strategy used to test the suitability of a likely technique. 

• A description of Self-Similarity and its link to an Emergent Behaviour in the Active 

Network model; termed a "Cascading Effect". 

• A detailed mathematical derivation of the RlS statistic used to measure and quantifY 

Self-Similarity . 

• Approximations and limitations of the RlS statistic. 

• A detailed mathematical derivation of a confidence value employed to support the 

RlS statistic. 

• The application of the RlS statistic, to the Active Network simulation results, in 

order to produce Hurst values (i.e. Self-Similarity measure) for Active Node 

resource usage fluctuations. 

• The link between the Emergence of a "Cascading Effect" and Self-Similarity. 

The key concepts in this chapter are: detection of Emergence, Self-Similarity of Active 

Node resource usage fluctuations, the RJS statistic, approximations, the Hurst value, the 

r "goodness-of-fit" confidence value, MATLAB algorithm to produce a Hurst value via 

regression analysis, mathematical derivations 
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6.1 Overview 

The detection of Emergent Behaviour in any complex system requires a significant 

amount of empirical study as discovered during the course of the research work. Any 

potential technique must be customisable to suit the results generated by system 

modelling and simulation. As a precursor to the evaluation of a detection technique, it is 

proposed that Emergence is formalised as a dramatic change in the functioning of a 

complex system, which is recognised as the manifestation of characteristics mentioned 

in chapter 3; section 3.1. This would in turn transform a system from a normal to an 

anomalous state or from a stable to an unstable state. 

During the course of this investigation into potential detection techniques it was 

discovered that, whilst researchers agree upon the importance of discovering Emergence 

in systems, there exists little in the way of development of detection tools to suit all 

systems. This chapter describes 3 examples of probable methodologies that are sourced 

from research work, which proposes radical steps forward in the detection of Emergence 

in general systems. These are: 

• Emergence as the loss of complexity in a system 

• Emergence through the measure of self organisation 

• Emergence as patterns in a system 

The concepts fundamental to each of the J broad methodologies are described, in brief, 

in the following sections along with the reasons for choosing one particular detection 

method for this research. 
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6.1.1 Emergence as the loss of complexity in a system 

This detection method was proposed by a single piece of research work established to 

measure Active Network health and to provide some form of management for such 

systems. The proposed method includes the use of Kolmogorov Complexity and general 

Complexity Theory to: 

• "Build self-managed networks" 

• Provide "vulnerability analysis techniques that draw on fundamental properties of 

information to identify, analyse and correct faults as well as security vulnerabilities 

in an information system". 

This research visualises the Active Network not as a topology, but through 'Complexity 

Measurements'. In other words the paradigm investigates the variables of the system 

(e.g. resource usage) and their relationships in order to compute complexities of the 

network in different dimensions (e.g. dimensions could be availability of services, health 

of devices, application performance, etc.). A high Complexity Measure is a result of 

high randomness in the system dynamics and translates to a healthy system. Dimensions 

of low complexity indicate potential problems in the system and possible Emergent 

Behaviour [KuIOI]. 

Whilst this research provides a good technique in the detection of Emergence in Active 

Networks, it proved difficult to implement on top of an already developed high-level 

model. The complexity measurement process requires specific Management Information 

Base (MI8) components for the system, which relate to system variables. The 

visualisation of the Kolmogorov model is as a "space filled with entities that represent 

the values of various monitored objects from the managed system". This is significantly 

different from the topology-based approach taken by the authors in developing high­

level abstract views of Active Networks. 

6.1.2 Emergence throueh the measure of self onanisation 

The detection of Emergence by this method relies on analogies taken from natural 

systems, in particular the structures of swarming and fully coordinated ("crystal") 
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behaviours in simple flocking systems. The method is based on a single piece of 

research that makes use of natural system analogies to provide a measure for self­

organisation in general systems. This in turn is used to indicate the presence or absence 

of Emergence. The research work proposes that the dynamics of a general complex 

system be modelled as being produced by an attractor/generator. The behavioural type 

exhibited by the system, whether it is a swarming or crystalline structure, is directly 

related to the dimensions of the attractor/generator. The research goes on to extract the 

measure of dimensionality (0) for the generator of a sample system. Furthennore, it 

proposes that the system has the ability to exhibit Emergent Behaviour based on the 

sudden transition of the 0 measure given smooth changes in system parameters [WriOO]. 

Even though the research provides a clear definition and methodology of Emergence, 

the system used in the analysis relies on non-discrete models of systems components 

that have defined mathematical functions. Thus the measure of dimensionality (0) is 

derived through the solution of a set of custom mathematical equations. This detection 

method is difficult to implement in models developed as discrete event-driven systems 

such as Active Networks. 

u..J Emergence as patterns in a system 

This method relies on the belief that a dramatic change in system behaviour can be 

'obselVed' and 'comprehended' through some visual technique designed for the 

recognition of Emergence. This concept is fundamental to many Emergence research 

projects [Bon97] [See]. Certainly in the above two sections (6.1.1 and 6.1.2) the' 

structures, which are subject to the measurements described, are clearly patterns in a 

system. However the methods of pattern identification and the establishment of 

measures for Emergence vary. Similarly this section describes a range of practical 

pattern detection and measurement techniques that are used in research fields, other than 

Emergence detection, to a high degree of success, 

For this work, the detection of Emergence as patterns in the system proved to be a viable 

option with respect to the following factors: 

• Applicability - the results generated from the system modelling and simulation 

process consists of a 2-dimensional matrix of integers representing the resource 
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usage of all Active Nodes (as a percentage) at each simulation time step. All of the 

pattern detection techniques investigated within this project provided mathematical 

sequences that readily dealt with 2-dimensional number arrays. These sequences 

were easily programmed into scripts (executed in MATLAB) that provided 

algorithms for enhancement and detection. 

• Adaptability - the techniques could be modified to suit the data type and sample 

size. 

• Ease of use - from an engmeenng viewpoint; the development of pattern 

enhancing/recognition programmes, under MATLAB, was made relatively 

uncomplicated through the existence of sample code sequences and comprehensive 

reference material. 

Described below are several types of pattern recognition techniques that were 

experimented with as the project progressed: 

6.1.3.1 image Enhancement algorithms - Edge-detection & Histogram Equalisation 

The 2-dimensional matrix of logged simulation data is similar to the mathematical 

representation of a pixelated image prepared for image manipulation/enhancement (e.g. 

a grey-scale image can be represented in MATLAB as a matrix with the same 

dimensions as the image. Each pixel of the image is allocated a 'coordinate', which 

corresponds to the row and column number within the matrix. The grey scale intensity 

of each pixel is held as a value in the corresponding matrix element). Given this 

similarity it is possible to represent the raw data from the Active Network simulation as 

an Image and prepare it for feature detection. Of the possible Image 

detection/enhancement techniques available two were selected based on their strong 

analogous relationship with resource usage in an Active Network. 

• With an Edge-Detection macro it is possible to identifY a continuous high-contrast 

'edge' within the 'image'. This translates to a continuous high or low resource usage 

within the system at specific Active Nodes, at specific time steps or a combination 

of both. 
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• The Histogram EqualisationfIbreshold method is used to increase image contrast 

thereby clearly differentiating clusters of high and low resource usages within the 

data. 

6.1.3.2 Fourieranalysis 

Fourier Analysis (I-dimensional and 2-dimensional) provides useful visualisation of 

matrix data in the frequency domain. Whilst it is a well-established technique in the 

enhancement and feature detection of images, the onus here was to use the method to 

identify unique frequency components with high amplitudes or clusters of components 

with particularly high frequency ranges. The identification of these frequency 

components would thus indicate the presence of a dominant fluctuation or a general high 

fluctuation of resource usage; both indicative of Emergence within the system [Gon02]. 

6.1.3.3 Wavelet analysis 

Wavelet analysis is similar to Fourier analysis except that the frequency decomposition 

of data is conducted through a pre-defined non-periodic waveform ("wavelet") as 

opposed to a sine wave [Gra9S]. In addition to the identification of strong frequency 

components, Wavelets have been used to identify Self-Similarity in data [MATa] 

[MA Tb]. As proposed by this research the idea that Self-Similarity is key to the 

detection of Emergence gives significant value to Wavelet analysis. 

6.1.3.4 Cross- correlation analysis 

Cross-correlation is used in discrete signal analysis to obtain levels of similarity between 

signal data sets. An investigation was undertaken to determine if this method could be 

used to correlate resource usage (over time) of individual Active Nodes with each other 

to find patterns that are similar (i.e. correlation of resource usage across the nodes at 

various data segment sizes) [Gon02]. A high degree of correlation would translate to a 

discrete pattern in resource usage traversing the network. 
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6.1.3.5 Self-Similarity analysis 

The general idea of Self-Similarity has a strong relationship with Emergence in that it 

can be thought of as a pattern in the data that finds itself replicated at various 

resolutions. Self-Similarity provided credible results in the resolution of Emergence in 

Active Networks and is described in detail in section 6.3. 
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6.2 Detection technique suitability testing 

In order to evaluate the effectiveness of anyone technique, a suitability testing 

procedure was developed by using a group of test cases simulated through the Active 

Network model. The test cases were designed to contain an 'Emergence Inducing 

Factor' (EIF) in various hypothetical configurations. Emergence Inducing Factors are 

elements built into the inputs of a system or components of the system itself that are 

'believed' to push it into Emergent Behaviour. The factors are chosen on various criteria 

and relate to the system model under scrutiny. In the case of this work the factor was 

perceived to be of value based on the effect it has on system instability. 

After much consideration, the inducing factor was chosen to be a self-replicating Active 

ApplicationlPacket that would replicate Active streams and span the network. Initial 

assessments of the replicating scheme indicated that it would push the system into an 

unstable state. However, subsequent experiments have shown that there are several 

factors present within the system that would control the replication and thereby indicate 

the presence of Emergence. Details of this are described in chapter 7, section 7.3. 

In a simulation run the replication scenario was left to dominate resource usage at each 

node and analysed for potential effects on itself and other network traffic. The 

replication test cases were each modified to contain variations in the number of 

replication packets injected into the network, the direction taken across the lattice node 

structure and the amount of resources utilised at each encountered Active Node. These 

results were compared with simulations that did not possess the Emergence Inducing 

Factor. The entire process of suitability testing was iterative and was repeated for each 

of the probable detection techniques mentioned in section 6.l.3 in order to visually 

detect any interesting features. 

The data analysed, in order to determine the presence of any anomalous characteristic, is 

the resource utilisation of all the Active Nodes under simulation. The resource 

utilisation statistic is a key component of this research for two reasons: 

• Node resources invariably function as the enabler for all Active processes 
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• Resource utilisation statistics provide an abstract view of network perfonnance and 

Active Network functionality. 
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6.3 Self-Similarity 

Of the pattern recognition techniques reviewed/tested only the discovery of Self­

Similarity within the data proved to be of significance in isolating Emergent 

Behavioural patterns. The Self-Similarity macro, developed through MATLAB 

(Appendix i), was able to isolate an Emergent characteristic within the replicating 

packet scheme that would otherwise have been hidden. The author has termed this 

Emergent Behaviour as a "Cascading Effect" in resource utilisation - a replicating 

phenomenon that, once formed within the Active nodes, continues to sustain itself 

through feedback. The phenomenon is detected empirically and is used as a starting 

point for the comprehension of the causes of this particular Emergent Property. 

The Self-Similarity measurements of the data were established by calculating the Hurst 

parameter (a well-known estimator of Self-Similarity). There are several techniques 

present in mathematical literature designed to estimate the Hurst value of a data set. This 

research project used the classical RlS statistic [LeI94] to calculate the Hurst values of 

the resource usage fluctuations for each of the Active Nodes - each Petri Net simulation 

of the Active Network (Figure 4.2.a) produces an output matrix with 25 columns (one 

for each Active node) each containing resource usage values for 500 time steps. The 

columns were individually analysed for Self-Similarity using the RlS statistic (i.e. Hurst 

values calculated). 

6.3.1 Calculation of the Hurst parameter - Rescaled Ranee statistic (RfS statistic) 

"The RlS statistic is the range of partial sums of deviations of a time series from its 

mean, rescaled by its Standard Deviation" [Naw95]. This statement is best explained 

through the following derivation and through the MATLAB algorithm in Appendix i. 

For a given set of observations taken from the original trace; X,, X 2' X 3' ..... X n for n 

periods with a sample Mean of Xn and a sample Standard Deviation of S(n), the 

classic Rescaled Range Statistic will be: 

R(n)/ =-I-fmax ±(X-X) 
/S(n) S(n) I<k<n j;1 J n 

mID 
l<k<n 
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Hurst found the following simple relationship represented the 'expectation' of the RlS 

stati sti c val ue well: 

8·[R(nl/ J=anH as n~oo ---[2] 
/S(n) 

Where a is a constant and H is the Hurst parameter/value [LeI94]. 

By sequentially varying the n sample number (also referred to as the sample size), one 

can calculate a corresponding RlS statistic. The following transformation is performed, 

on the above equation, prior to the estimation of the Hurst parameter: 

By plotting the log of the RlS value against the log of n, and estimating the slope of the 

relationship via regression analysis, one can obtain the H value for a particular trace. 

Self-similar or persistent behaviour is generally characterised by a Hurst value in the 

range of 0.5 < H <= 1. Non-persistent behaviour is characterised by a Hurst value in the 

range of 0 < H <= 0.5 [Naw95]. 

A confidence level for the regression estimate was also generated through a measure of 

"goodness-of-fit of linear regression" (which is denoted by r'). The value of r' ranges 

between 0.0 and 1.0, and is a fraction-measure of the goodness-of-fit. It has no units. An 

r' value of 0.0 equates to a random variation of the y values in relation to the x values 

(i.e. the scatter plot values do not fit the regression line at all and there is no confidence 

in the prediction ofy values based on x values and the regression line). In this case the 

'best-fit' regression line is a horizontal line drawn through the mean of the y values. An 

r' value of 1.0 equates to a scatter plot where all the point lie precisely on a straight line 

with zero residual error (i.e. there is 100% confidence in the prediction of y values based 

on x values and the regression line) (Figure 6.3.1.a) [Mot03]. 
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Figure 6.3.1.a: Examples of varying goodness-of-fitvalues (r2)for regression lines 

r2=1_ SS,.. ---[4] 
SSIoI 

where 

N • 2 

Ss,..=L (Yi-Y i) ---[5] 
i=1 

and 
N 

SStot= L (Yi- y)2 ---[6] 
;=1 

i = 1,2,3, ..... N represents the x-axis points (i.e. log of sample size n), of the range of 

coordinates taken to calculate the regression line. 

Yi is the actual log value RlS statistic calculated value for the x-axis point i. 

y'i is the regression line estimate of the x-axis point i. 

y is the mean of actual log values of the RlS statistic ( Yi ) of the range of coordinates 

taken to calculate the regression line. The MA TLAB algorithm for the r analysis is 

presented in Appendix i. 

The RS statistic is benchmarked by calculating Hurst parameters for traces where the 

Self-Similarity is evident. The Vonkoch curve [MATb] is a prime candidate for a high 

Hurst value. In contrast, a randomly generated trace will generate a low Hurst value 

(Figure 6.3.l.b. Figure 6.3.l.c. Figure 6.3.l.d, Figure 6.3.l.e). 
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Figure 6.3.1.b: The Vonlwch self-similar curve 
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Figure 6.3.1.c: RlS statistic plotfor the Vonkoch curve. Hurst value = 1.0519 
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Figure 6.3.1.d: Random trace 
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Figure 6.3.1.e: RlS statistic plotfor the random trace. HUTst value = 0.5154 
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~ Approximation and Stability of the RlS statistic 

The RlS calculations do not produce traces that are linear in an ideal sense and can be 

segmented into two distinct sections (Figure 6.3.1.c and Figure 6.3.1.e). The left most 

section (containing low and negative RlS values) reflects the peculiarity of the RlS 

calculation whereby the initial samples of the original trace are too few (i.e. a small n 

value) to make an accurate estimation (equation [1]) [LeI94].Coupled with this the fact 

that there is an initial 'transient'/startup phase within the Active network where the node 

resources are under-utilised; it leads to a situation where the RlS statistic values 

contribute little to the overall Hurst value calculation. The length of this 'low-RlS value' 

section (i.e. number of data points) will vary from node to node. In particular, the 

'transient' phase is evident in scenarios that have been scrutinised and classified as 

Emergent by this work (i.e. during a 'transient' phase Active Replication Packets are in 

the process of stabilising resource usage to patterns that are self-similar - see 

proceeding section. It is possible that the initial samples of the RlS calculation, per 

Active Node, will reflect this factor by taking low values. It is also possible that the 

length of the 'low-RlS value' section, per Active Node, will also reflect the number of 

simulation time steps taken to stabilise and dominate resource utilisation). However 

whilst notable, the author has deliberately discounted the 'low-RlS value' section from 

further analysis. 

The Hurst parameter may be subject to errors when calculated through regressIOn 

analysis, as there is a possibility of the coefficients being biased by autocorrelation 

[Naw95]. Furthermore, graphical RlS analysis (regression analysis) is not accurate 

enough to calculate the Hurst value to 4 decimal places. Equation [2] notes that the 

relationship holds when n -Hrc) . Therefore any sample size (n) with a finite upper bound 

would result in an approximation of the Hurst value. 

As a result of autocorrelation, errors in graphical regression analysis and a finite sample 

number, the Hurst value is sometimes seen to rise above 1 (its theoretical limit). 

However, the author believes that these factors do not affect the validity of the results. 

The RlS calculation with regression analysis is a robust method used to determine 

whether Self-Similarity is supported by the data; subsequently used to calculate an 

empirical 'estimate' of the Hurst value. The analysis is formed on this premise and 
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focuses on nodes displaying a Hurst value above 0.9, which in turn, has proved to be an 

'indicator' for the presence of Cascading Effects. 

In Self-Similarity and Long-Range Dependence calculations the stability of the Hurst 

parameter can be subject to 'transient effects'. The calculation of the Hurst value is in 

effect the regression analysis estimation of the 'rate of change' of the RlS statistic. This 

rate of change estimation will inherently average out any transient changes (i.e. breaks 

and discontinuities in the RlS plot), the 'significant' of which will give rise to alternative 

Hurst values for the duration of the discontinuity. This may represent important 

phenomena within the system processes. To neglect these phenomena is to exclude a 

section of information that might point to further Emergence within the system. 

The discontinuities in the plot can also be represented as errors above and below the 

linear regression line. It was noted however that the RlS calculations and regression 

analysis, for the results generated by this Active Network model, showed remarkably 

little error around the linear line of best fit (note: the analysis excludes the initial 'Iow­

R/S value' section as mentioned above). The r values for the linear regression lines 

calculated throughout this work (chapter 6; section 6.3.1) showed high values, of which 

a majority are above 0.9. This proves that the simulation scenarios developed by this 

project do not give rise to transitory R/S value variations and ensures the stability of 

Hurst values for Active Node resource usage fluctuations. 

The lack of transitory effects can be linked to the particular simulation configuration 

used in this project. As mentioned in chapter 4; section 4.3.14, the inputs to the network 

simulation consisted of a 'single shot' of Active Packets! Applications that were allowed 

to traverse the network and interact with each other through the competition for 

resources. Any persistent structure that manifested within the simulation is solely caused 

by the 'single shot' of input packets. Similarly the lack of persistent data patterns within 

node resources was also unaffected due to the non-continuous nature of the input 

scenario. This has a positive effect on the accuracy of the linear regression analysis by 

eliminating any potential transitory changes in the RlS values, thereby giving an 

accurate and stable Hurst value for each Active Node. 

As a result of this analysis the author has concluded the following: 

113 



Emergence in Active Networl<s Chapter 6: Detection of Emergence 

• The contribution of the 'single shot' input scenario to Self-Similarity in resource 

usage is unique and interdependent. 

• A clear 'cause and effect' relationship can be identified between the simulation 

inputs and Self-Similarity. 

• The estimation of the Hurst parameter is made accurate by the input conditions. 

~ Cascading Effects and Self-Similarity 

The detection process for Cascading Effects is linked to the network exhibiting high 

levels of Self-Similarity (i.e. with Hurst values above 0.9). This result was discovered 

when the network was forced into a potentially 'uncontrolled' state whereby an Active 

Packet was injected (along with a representative sample of non-replicating Active 

packets), which replicated itself at every Active Node it encountered that had adequate 

resources (Figure S.S.6.b). If it could not find adequate resources (due to other packets 

streams taking up resources or other replicating packets of the original taking up 

resources), it would progress onto the 'next hop' node (and so on until it encountered a 

node with adequate resources to process or an end-station). Because of replication the 

original direction may 'span' into multiple directions as the simulation progresses. 

The result of this type of replication is the specific fluctuations, of resource usage, 

cascading throughout the network. The post simulation analysis of one type of resource 

(MEMORY usage), per Active node, indicated a high degree of Self-Similarity (i.e. a 

Hurst value of above 0.9) in a number of nodes. 

The threshold value of 0.9 was based on the empirical evaluations of several 

predetermined simulation scenarios. The iterative process used in section 6.2 was reused 

in order to arrive at this value. This process is diagrammatically represented in Figure 

6.3.3.a. 
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Figure 6. 3. 3.a: Process ojexperimentation and the definition ojthe 

"Cascading Effect" threshold ojO.9 

As a consequence of the investigation into Self-Similarity, it was possible to link the 

two phenomena; levels of fluctuation of resource usage to levels of Self-Similarity 

within the nodes. A positive relationship was also formed from the number of nodes 

displaying Self-Similarity (above 0.9) and the effects of the cascade within the network. 
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6.4 Summary 

This chapter describes the process by which the techniques for the detection of 

Emergence were discovered, selected and developed for the existing Petri Net model of 

an Active Network. 

As can be seen from this chapter much of the thought process for the selection of a 

suitable technique was based on its ability to handle simple, discrete event-driven 

systems and their results. Thus some of the reviewed techniques were discounted as 

being useful (individually), even though they provided elegant solutions to the detection 

of anomalous behaviour and Emergence. The 3 broad methodologies mentioned in this 

chapter (Emergence as the loss of complexity in a system, Emergence through the 

measure of self organisation and Emergence as patterns in a system) have, however, 

similar cross-technological concepts such as: 

• Resource usage is an indicator of anomalous behaviour 

• Self-organisation is a loss of complexity 

• Loss of complexity can be visualised as the formation of patterns 

• Emergence is a particular subset of patterns (i.e. anomalous and unexpected 

patterns) 

Therefore these concepts were useful in strengthening the case for the selected detection 

technique. 

It was concluded that Emergent Behaviour could be isolated simply through the 

detection of patterns in the data produced by the Active Network model. The subsequent 

research effort was then focused on pattern detection algorithms (e.g. cross-correlation) 

and techniques to re-structure and visualise data (e.g. Image enhancement, Fourier and 

Wavelet analysis). 

This chapter has described the development of a suitability test that was used in the 

assessment of the reviewed methods. The strategy was based on the premise that the 

inclusion of an Emergence Inducing Factor in Petri-Net simulations and the use of the 

generated results, as an input to a potential detection process, provides a means of 

assessing suitability. Therefore the experimentation of all pattern detection techniques 

was conducted concurrently using the same input data in accordance with the pre-

\16 



EmeIgeDCe in Active Networks Chapter 6: Detection of Emergence 

developed strategy. Each experiment was analysed for effectiveness based on the clarity 

of results and the ability to identity anomalous behaviour (Emergent or otherwise). 

The development of algorithms for the experiments was achieved entirely through 

MATLAB, which contained many of the required mathematical functions and tools as 

single pre-built commands. 

The Fourier and Wavelet analyses for these experiments did not provide readily 

distinguishable Emergence metrics for examination (i.e. detected no 

significant/distinctive changes in the simulation output results when presented with 2 

significantly varied input data sets - one input set was perceived to have high probability 

of causing Emergence whilst the other was perceived to be relatively safe and 

'Emergence free'). Image enhancement and edge-detection techniques provided no 

visual improvements to the output data from the Petri Net simulations. Cross-correlation 

results lacked clarity and provided no indication of having 'picked up' any patterns in 

the output data sets. However, it is worth noting that the model may well hold a 

collection of Emergence Inducing Factors, which results in a varied set of Emergent 

Behaviour within the system. As a result one cannot totally discount the above­

mentioned techniques in detecting new phenomena. 

This chapter describes in detail the development process of the Self-Similarity 

algorithm. It also highlights the potential of obtaining definitive results, in the detection 

of an Emergent Behaviour, through this method (a behaviour that could not have been 

foreseen or detected by any of the other techniques reviewed). 

Self-Similarity is measured through the Hurst parameter and whilst there are many 

mathematical algorithms developed to calculate the Hurst value, including Wavelets, 

only the RlS technique was suitable for the data produced by the Active Network model. 

This chapter also gives definition to the detected Emergent Behaviour (i.e. a Cascading 

Effect) including its identitying characteristics. 

The proceeding chapter follows on to provide a more results-oriented case analysis of 

the Cascading Effect It is worth noting that the results analysis and Emergence 

definition are part of a collective body of experimentation performed using the Petri-Net 

modellsimulations and the RlS statistic algorithm (according to the process flow 

described in Figure 6.3.3.a). 
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L Results 

This chapter will present: 

• Simulation results presented in terms of Case Studies. 

• Simulation scenarios developed using Controlled and Random Inputs. 

• The identification of the "Cascading Effect" within the results. 

• The identification of a secondary Emergent Behaviour 

• The identification ofroot causes of the "Cascading Effect". 

• The proposal that the presence of a "Cascading Effect" is Emergence within the 

network. 

The key concepts in this chapter are: the "Cascading Effect", secondary Emergence, case 

studies, 0.9 Hurst value threshold, i' "goodness-of-fit" value for regression analysis 
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7.1 Overview 

The basic modelling concepts developed throughout this work have provided a high­

level abstract definition of an Active Network. The Petri Net simulation process 

developed these models as workable diagrams that produced time-step data of resource 

usage in all Active Nodes within the network (a 2S-node network with lattice type 

interconnections). This time-step data was used as an input to the Emergence analysis 

process. The intermediate results produced by the simulations are themselves abstract 

and suit the high-level Emergence analysis. 

As a part of the simple derivation of Active Networks several modelling and simulation 

considerations were made. These modelling considerations are mentioned in chapter 4; 

section 4.3. In addition to these considerations several key points are highlighted as 

being relevant, during the simulation process, in order to arrive at a specific output 

resource usage map: 

• As inputs, each end-station produces one Active Packet per simulation run. This 

Active Packet was redefined, for the purpose of this project, to represent an entire 

Active Application stream, its functionality and payload. Thus, with reference to the 

lattice structure model of an Active Network, the Petri Net simulator would inject 20 

Active Packets/Applications into the core network per simulation run (Figure 4.2.a 

and Figure S.S.2.a). This resulted in a 'single shot' simulation of Active 

Applications and their interactions. The 'single shot' simulation scenario was 

deemed prudent and in keeping with the abstract nature of the Active Network 

model. It provided a sufficiently simplified view of Active Packet interactions and 

network state at any given time step. This followed on to the use of a simplified 

Emergence detection process using Self-Similarity. 

• The input into the simulator was a text file that contains 20 entries specifying Active 

Packet! Applications that would be injected into the core of the network (Figure 

S.S.2.b). This file can be generated randomly or manually; specifying, in particular, 

the directions taken across the network by the packets, amount of resources 

consumed and the forwarding mechanisms (linked to packet type). Manual 

generation of the input text file was tightly controlled to incorporate an Emergence 
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Inducing Factor. This was, in part, previously used for the experimentation and 

suitability testing of potential Emergence detection techniques as described in 

chapter 6; section 6.2. 

• The automated random generation of the input text file was used to add levels of 

uncertainty and unpredictability into simulation runs and thereby produce results that 

were credible under abstract modelling conditions. 

• The simulation output results that were analysed for Emergence were the node 

MEMORY resource usage statistics in percentage terms. 

• Each simulation run was 500 time-steps and the resulting output log consists of a 

25-column by 500-row matrix of integers (of MEMORY resource usage). 

• The Self-Similarity calculation (RIS statistic) was for each Active Node per 

simulation run and therefore used a column wise calculation/decomposition of the 

above matrix. 
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7.2 Results: Case Study Analysis 

This work presents the observation and analysis of results as case studies that primarily 

include the Hurst parameter values of' Active Node resource usage fluctuations' within 

an Active Network simulation. Case study I, case study 2, case study 3 and case study 4 

were obtained from simulation runs made using manually specified input source files. 

Subsequent case studies were obtained using randomly generated input source files. 

The first 4 case studies were designed to specifically highlight the "Cascading Effect" 

with tightly controlled input variables. The case studies showed the changes in the 

"Cascading Effect" (i.e. the presence or absence of it) when subject to changes in 

specific input variables in one source input of a simulation - From the analysis in 

chapter 6, this work had initially identified an "Emergence Inducing Factor" in the form 

of a self-replicating Active Packet/Application. This packet was included in the source 

input file (Figure S.S.2.b), as one source input, for the simulation runs that produced the 

graphs shown in the first 3 case studies below. Case study 4 was a control experiment 

where the Active Replication scheme was not included. Thus, the self-replication Active 

Packet/Application was subject to input variable changes in the first 3 experiments. This 

allowed the simulations to adjust the effects of the replication on the network and 

thereby vary the effects of the "Cascading Effect". 

The first 4 case studies provided a foundation for the analysis of subsequent simulation 

produced with randomly generated input sources. This foundation provided a 

behavioural template for the Hurst parameter and the "Cascading Effect" with a reduced 

set of variations in input criteria. The use of randomly generated sources will increase 

the levels of variation and unpredictability. However, a template of expected behaviour 

will provide focus for the analysis in order to detect "Cascading Effects". 
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7.2.1 Case Study 1 

With reference to Figure 4.2.a and Figure S.5.2.a, the input source file (table below) for 

this case study was constructed in order to inject a self-replicating Active Packet into 

Active Node AS (SRC_AS) that took an initial direction from Node AS to El (Figure 

S.5.2.c). This replication was directed into the core of network and spanned based on the 

scheme described in chapter S (Figure S.S.6.b). The replicating packets consumed, for 

the duration of the process, 20"10 of MEMORY resources, 20"10 of PROCESSOR 

resources and 20"10 of BUFFER resources from each Active Node it encountered and 

had adequate resources. 

Other inputs within the source file were designed not to contain any form of replication. 

Therefore the Emergence of the "Cascading Effect" was singularly linked to the self­

replication scenario (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) 

values and the r confidence values for this case study are shown in the following graph: 
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Figure 7.2.1.a: Case Study 1: Hurst analysis of Active Network 
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Input soun:e me for the Case Study 1 simulation 

End-station no End-Station name Input packet 
0 SRC AI 1'(243 50,M,20 10 10 10 15) 
I SRC AIAI 1'(243 50,M,20 10 10 10 15) 
2 SRC BI 1'(255 50M20 10,10 IG,15t 
3 SRC Cl '(6,5 5 1 F 30 30 300 0) 
4 SRC D1 1'(655 1.F,30 30 3000) 
5 SRC El 1'(267 50,M,20 10 10 10 15) 
6 SRC EIEI 1'(655 I F 30 30 3000) 
7 SRC E2 1'(677 I F 30 30 300 OL 
8 SRC E3 1'(677 IF 30 30 300 0) 
9 SRC E4 1'(677 I F 30 30 3000) 
10 SRC E5 1'(687 50.F,6O 60 60 30 5) 
11 SRC ESES 1'(611IF30303000) 
12 SRC D5 1'(6111F30303000t 
13 SRC C5 1'(6 I I I F 30 30 300 OL 
14 SRC B5 I '(10 I I 50.F,6O 60 60 00) 
15 SRC A5 1'(821 I,R20 20 2000) 
16 SRC ASA5 1'(63 3 IF 30 30 3000) 
17 SRC A4 1'(63 3 I F 30 30 30 0 0) 
18 SRC A3 1'(633 1.F,30 30 300 0), 
19 SRC A2 1'(6 3 3 I,F 30 30,3000) 

With reference to Figure 7.2.1.a 40% of the Active Nodes showed significantly high 

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the 

0.9 threshold). The main observation of this work is that a "Cascading Effect" was 

present within this simulation instance of the network. 

The r "goodness-of-fit" data for the simulation showed significantly high values for all 

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence 

in the accuracy of the Hurst value calculations for this simulation. 
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7.2.2 Case Study 2 

With reference to Figure 4.2.a and Figure S.5.2.a, the input source file (table below) for 

this case study was constructed in order to inject a self-replicating Active Packet into 

Active Node AS (SRC_AS) that took an initial direction from Node AS to El (Figure 

S.S.2.c). This replication was directed into the core of network and spanned based on the 

scheme described in chapter 5 (Figure S.S.6.b). The replicating packets consumed, for 

the duration of the process, 60"10 of MEMORY resources, 60"10 of PROCESSOR 

resources and 60"10 of BUFFER resources from each Active Node it encountered that 

had adequate resources. 

Compared with Case Study I the only variables changed were the MEMORY, 

PROCESSING and BUFFER resource values for the Active Replication Packet. 

Other inputs within the source file were designed not to contain any form of replication. 

Therefore the Emergence of the "Cascading Effecf' (or the lack of it) was singularly 

linked to the self-replication scenario (Le. the Emergence Inducing Factor). The Hurst 

(self-similarity) values and the r confidence values for this case study are shown in the 

following graph: 
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Figure 7.2.2.a: Case Study 2: Hurst analysis of Active Network 
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Input source file for the Case Study 2 simulation 

End-station no End-Station name Input packet 

0 SRC AI 1'(243 SO.M20 10 10 10 IS) 
I SRC AIAI 1"(243 SO.M20 10 10 10 IS) 
2 SRC BI 1'(2 S S SO.M20 10 10 10 IS) 
3 SRC Cl 1'(6 S 5 1,F,30 30 30 0 0) 
4 SRC Dl 1'(65 S 1,F,30 30 3000) 
5 SRC El 1'(267 SO,~20 10 10 10 IS) 
6 SRC EIEI 1'(6 S 5 I,F 30 30 3000) 
7 SRC E2 1'(677 1,F,30 30 3000) 
8 SRC E3 1'(677 1,F,30 30 3000) 
9 SRC E4 1'(677 1,F,30 30 3000) 
10 SRC E5 1'(687 SOF6O 60 60 30 5) 
11 SRC E5ES 1'(611 LF.30303000) 
12 SRC D5 1'(6 I 1 1.F,30 30 3000) 
13 SRC CS 1'(61 I IF30303000) 
14 SRC BS 1'(10 II 50 F 60 60 6000) 
15 SRC AS 1'(8 I I 1,R,6O 60 60 0 0) 
16 SRC ASA5 1'(633 1,F,30 30 3000) 
17 SRC A4 1'(63 3 1.F,30 30 3000) 
18 SRC A3 1'(633 1.F,30 30 3000) 
19 SRC A2 1'(633 1.F,30 303000) 

With reference to Figure 7.2.2.a none of the Active Nodes showed significantly high 

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the 

0.9 threshold). The main observation of this work is that there wasn't a "Cascading 

Effect" present within this simulation instance ofthe network. 

The r2 "goodness-of-fit" data for the simulation showed significantly high values for all 

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence 

in the accuracy of the Hurst value calculations for this simulation. 
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7.2.3 Case Study 3 

With reference to Figure 4.2.a and Figure 5.5.2.3, the input source file (table below) for 

this case study was constructed in order to inject a self-replicating Active Packet into 

Active Node A4 (SRC -.A4) that took an initial direction from Node A4 to B5 (Figure 

5.5.2.c). This replication was directed away from the centre of the netwOIk and 

spanned based on the scheme described in chapter 5 (Figure 5.5.6.b). The replicating 

packets consumed, for the duration of the process, 20"10 of MEMORY resources, 20% of 

PROCESSOR resources and 20"10 of BUFFER resources from each Active Node it 

encountered that had adequate resources. 

Compared with Case Study I the only element changed in the simulation was the initial 

input point (Node) and the direction of the Replication Packet. 

Other inputs within the source file were designed not to contain any form of replication. 

Therefore the Emergence of the "Cascading Effect" was singularly linked to the self­

replication scenario (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) 

values and the r confidence values for this case study are shown in the following graph: 

1.20 ,--_________________ -j ...... Hurst\/BIUe 

R2 \/Blue 

1.10 +-----------------------1- 0.9Threshold 

1.00 

!0.90 .. 
:: 0.80 

~ 
% 0.70 

0.60 

0.50 

OAO 

. _-...... i / \ ~ 
~ 

...- \ 1 ? , ...... 

V 
., 

I 

V 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Trace no. 

Figure 7.2.3.a: Case Study 3: Hurst analysis of Active Network 
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Input source file for the Case Study 3 simulation 

End-station no End-Station name Input packet 
0 SRC AI 1'(243 50,M,20 10 10 10 15) 
I SRC AIAI 1'(243 50,M,20 10 10 10 15) 
2 SRC BI 1'(255 50 M 20 10 10 10 15) 
3 SRC Cl 1'(65 5 LF.30 30 3000) 
4 SRC 01 1'(655 LF,30 30 3000) 
5 SRC El 1'(267 50,M,20 10 10 10 15) 
6 SRC EIEI 1'(6 5 5 1,F,30 30 300 0) 
7 SRC E2 1'(677 1,F,30 30 3000) 
8 SRC E3 1'(677 1,F,30 30 30 0 0) 
9 SRC E4 1'(677 1..F,30 30 30 0 0) 
10 SRC E5 1'(687 50F 6060 60 30 5t 
11 SRC E5E5 I '(6 I I 1,F,30 30 3000) 
12 SRC 05 I '(6 I I 1..F,30 30 3000) 
13 SRC C5 1'(6 I I 1,F,30 30 3000) 
14 SRC 85 1'(101150 F60606000) 
15 SRC AS 1'(633 1,1',30303000) 
16 SRC ASAS 1'(633 1,F,30 30 3000) 
17 SRC A4 1'(843 1,R,20 20 20 0 0) 
18 SRC A3 1'(6 3 3 1,F,30 30 300 0) 
19 SRC A2 1'(63 3 1,F,30 30 30 0 0) 

With reference to Figure 7.2.3.a 40% of the Active Nodes showed significantly high 

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the 

0.9 threshold). The main observation of this work is that a "Cascading Effect" was 

present within this simulation instance of the network. 

The r "goodness-of-fit" data for the simulation showed significantly high values for all 

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence 

in the accuracy of the HUTst value calculations for this simulation. 
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7.2.4 Case Study 4 

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (table below) for 

this case study was constructed as a control experiment that did not contained any self­

replicating Active Packets. 

Compared with Case Study 1 the only element changed in the simnlation is the lack of 

Active Replication packet. The Hurst (self-similarity) values and the r confidence 

values for this case study are shown in the following graph: 
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Figure 7.2.4.a: Case Study 4: Hurst (lJI(llysis of Active Network 
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Input source me for tbe Case Study 4 simulation 

End-station no End-Station name Input packet 
0 SRC AI 1'(243 50,M20 10 10 10 I~ 
I SRC AIAI 1'(243 50,M20 10 10 10 15) 
2 SRC BI 1'(255 50,M,20 10 10 10 15) 
3 SRC Cl 1'(6 5 5 50 F 30 30 30 0 0) 
4 SRC DI 1'(655 50F 60 6060 00) 
5 SRC El 1'(267 50,M,20 10 10 10 15) 
6 SRC ElEl )'(6 5 5 50 F 30 30 30 0 0) 
7 SRC E2 1'(677 SOF 3030 3000) 
8 SRC E3 1'(67750 C 30 30 30 0 0) 
9 SRC E4 1'(677 50F 30 30 3000) 
10 SRC E5 1'(687 SO F 60 60 60 30 5) 
11 SRC E5E5 1'(61150F30303000) 
12 SRC D5 )'(61150F30303000) 
13 SRC C5 1'(61ISOF30303000) 
14 SRC B5 1'(I01ISOF60606000) 
15 SRC AS 1'(6 1150F 30 30 30 00) 
16 SRC ASA5 1'(6 3 3 50 F 30 30 30 0 0) 
17 SRC A4 1'(63350 C 30 30 30 0 0) 
18 SRC A3 1'(63350 F 30 30 30 0 0) 
19 SRC A2 1'(6 3 3 SO F 30 30,30 0,0) 

With reference Figure 7.2.4.a to only 12% of the Active Nodes showed significantly 

high levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values 

above the 0.9 threshold). The main observation of this work is that there wasn't a 

"Cascading Effect" present witbin this simulation instance of the network. 

The r "goodness-of-fit" data for the simulation showed significantly high values for al\ 

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence 

in the accuracy of the Hurst value calculations for this simulation. 
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7.2.5 Case Study 5 

With reference to Figure 4.2.a and Figure S.S.2.a, the input source file (second table 

below) for this case study was randomly generated with several self-replicating Active 

Packets that were injected into Active Nodes Bl (SRC_Bl), E4 (SRC_E4), ES 

(SRC_ES) and DS (SRC_DS) (Figure S.S.2.c). 

The details of the initial directions, the resource usage requirement and the MEMORY 

reservation requirement for the Active Replication Packets! Applications are as follows: 

Source Injected Initial Memory Processor Buffer Memory 

Node Spanning Resource Resource Resource Reservation and 

Direction requirement requirement requirement TIme limit 
SRC_BI BI BI to A2 85% 66% 61% 47% for 18 time 

steps 
SRC_E4 E4 E4toA4 79"10 24% 55% 0% 

SRC_E5 E5 E5 to Al 60% 55% 36% 49"/0 for 13 time 

steos 
SRC_D5 D5 D5 to CS 27% 58% 3% 13% for 40 time 

steps 

Not all of the replications were directed into the core of the network. However, all 

replications spanned based on the scheme described in chapter S (Figure S.S.6.b). The 

replicating packets consumed, for the duration of the process, the above-mentioned 

MEMORY, PROCESSOR and BUFFER resource values from each Active Node it 

encountered that had adequate resources. 

Other inputs within the source file did not contain any fonn of replication. Therefore the 

Emergence of the "Cascading Effect" (or the lack of it) was linked to the self-replication 

scenarios (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) values and 

the r confidence values for this case study are shown in the following graph: 
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Figure 7.2.5.a: Case Study 5: Hurst analysis of Active Network 

Input source file for the Case Study 5 simulation 

End-station no End-8tatioa n._ Input pacl<et 

0 SRC AI 1'(48 71,M,30 10 10,20 IS) 
I SRC AIAI t'(2.2.3 I M.20,IO 10 10 IS) 
2 SRC BI t'(13 6.5.4.R.85 66 61 47 18) 
3 SRC Cl 1'(10 4.5.45.F.51.97 41.378) 
4 SRC 01 ' (243 1.M.20 10 10 10 15) 
5 SRC El ' (146.5,21 C 67 1293,25,16) 
6 SRC EIEI 1' (1267 48.F,72,2,6 0,23) 
7 SRC E2 1' (97 7.26.C.79 40 85 63 ~ . 

8 SRC E3 1' (14.2.3.8 C 94 89 19 1430) 
9 SRC E4 1' (1277 1.R.79.24 55 0,23) 
10 SRC E5 1'(98 717.R.60 55 3649 13) 
11 SRC E5E5 1' (15776 C 88.33,29 8.2) 
12 SRC 05 1'(12 6.5.0.R.27 58,3 13 40) 
13 SRC C5 1'(7.3,3,28 C31 777216,24) 
14 SRC B5 1' (4 I I 1..M,30 10 10,20 15) 
15 SRC AS 1' (7.3.3.28 C 45.25 71.23 49) 
16 SRC ASA5 1' (127 7.26.F.28 73,41448) 
17 SRC A4 1' (3.5.5 1.M,20,20,20 0 0) 
18 SRC A3 1'(465 1.M.30 10 10,20 15) 
19 SRC A2 l'(2,8,7 1.M,20 10 10 10 15) 
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With reference to Figure 7.2.5.a none of the Active Nodes showed significantly high 

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the 

0.9 threshold). The main observation of this work is that there wasn't a "Cascading 

Effect" present within this simulation instance of the network. 

The i' "goodness-of-fit" data for the simulation showed significantly high values for all 

of the Active Nodes (chapter 6; section 6.3.2). This provides a high degree of confidence 

in the accuracy of the Hurst value calculations for this simulation. 
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7.2.6 Case Study 6 

With reference to Figure 4.2.a and Figure 5.5.2.a, the input source file (second table 

below) for this case study was randomly generated with several self-replicating Active 

Packets that were injected into Active Nodes E4 (SRC_E4), AS (SRC_AS) and A3 

(SRC_A3) (Figure 5.5.2.c). 

The details of the initial directions, the resource usage requirement and the Memory 

reservation requirement for the Active Replication Packets! Applications are as follows: 

Source Injeeted InitIal Memory Processor Buffer Memory 

Node Spanning Resource Resource Resource Reservation and 

DIreetIon requirement requirement ' requirement ThneLlmlt 
SRC_E4 E4 E4toDS 26% 71% 2% 26% for 21 time 

steos 
SRC_A AS AS to AS 43% 37"10 69"10 27% for 29 time 

5 steps 
SRC_A A3 A3toAS 7% 52% 98% 6% for 12 time 

3 steps 

None of the replications were directed into the core of the network.. However, all 

replications spanned based on the scheme described in chapter 5 (Figure 5.5.6.b). The 

replicating packet conswned, for the duration of the process, the above-mentioned 

MEMORY, PROCESSOR and BUFFER resource values from each Active Node it 

encountered that had adequate resources. 

Other inputs within the source file did not contain any fonn of replication. Therefore the 

Emergence of the "Cascading Effect" (or the lack of it) was linked to the self-replication 

scenarios (i.e. the Emergence Inducing Factor). The Hurst (self-similarity) values and 

the r confidence values for this case study are shown in the following graph: 
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Figure 7.2.6.a: Case Study 6: Hurst (lIIQ/ysis of Active Network 

Iaput lOurce file for the Cue Study 6.lmulation 

End-ctadon no Ead-Statioe name Iaput packet 

0 SRC AI 1'(7 I 18 C.93.38 1960 4) 
I SRC AIAI I ' (I I I I.MIO 10 10 0 0) 
2 SRC BI I '(I5.3.3's.C 86.31,2505.0) -
3 SRC Cl 1' (4,2.1 1.M.30.10 10,20 15) 
4 SRC 01 1'(7,3,3.11 C48.94,24,9,32) 
5 SRC El 1'(5,2,3.1.M.4O 40 40,25.10) 
6 SRC EIEI \'(11 I I 17.F.24's,0 11 13) 

7 SRC E2 1' (74 5 1I.F,49 44,25,10,7) 
8 SRC E3 1'(6.2,3,S.C 88 83637,2) 
9 SRC E4 1'(116 7,25.R.26 71,2,26,21) 
10 SRC ES 1'(243 1.M,20 10 10 10 IS) _ 
11 SRC ESE5 1'(6,2.16 C,38 84 14,23,2) 
12 SRC OS 1'(I4770,F,27,22,17,27,22) 
13 SRC C5 '(IO 8 7 12.F,66.97.42.24,9) 
14 SRC B5 1' (8876.F.3,8529,l.2) 
15 SRC AS 1'(677 8,R43,37 69,27,29) 
16 SRC ASAS 1' (5,3,3 1.M.4O 40 40,2510) 
17 SRC A4 1'(565 1.M.40404O,25 10) 
18 SRC A3 1' (II,S,S.41,R, 7052,98612) 
19 SRC A2 1' (2 4.3.1.M.20. 10 10 10 IS) . 
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With reference to Figure 7.2.6.a 16% of the Active Nodes showed significantly high 

levels of Self-Similarity in their resource usage fluctuations (i.e. Hurst values above the 

0.9 threshold). The main observation of this work is that there wasn't a "Cascading 

Effect" present within this simulation instance of the network. 

The r" "goodness-of-fit" data for the simulation showed moderately high values for all of 

the Active Nodes (chapter 6; section 6.3.2). 
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7.3 Results Discussion 

The graphical and tabulated (Appendix iv) results in the above case studies show that in 

some situations the network would consist of certain Active Nodes displaying Hurst 

values of above 0.9 (in resource usage fluctuations). Where this is evident in a 

significant number of nodes, it has been found to indicate that Replicating Packets 

were producing a "Cascading Effect". 

The graphs show the Hurst values of the Active Network simulated under a variety of 

input conditions. 

The results show that nearly all nodes possess Hurst values that are significantly higher 

than that of randomly generated traces. This may be explained by the fact that Active 

Packets create deterministic resource usage in nodes as opposed to random patterns (for 

which Hurst values are about 0.5). Where these high values reach above the critical 

threshold of 0.9, the significance of which can be attributed to high resource fluctuations 

in nodes, there are grounds for further investigations regarding the types of Active 

ApplicationslPackets processed and the input scenario for the simulation. 

Upon analysis of the simulation results (in the case studies), factors have been identified 

that significantly affect the Replicating Active ApplicationlPacket's ability to exhibit 

Self-Similarity and thus create a "Cascading Effect". These factors are: 

• The amount of resources an Active Replication Packet consumes within the node 

• The number of Active Replication Packets initially injected into the network 

• The amount of time for which the replication packets reserve resources (as part of 

the resource reservation feature of Active Networks). 

If an Active Replication Packet requires a large percentage of node resources, we can 

expect a situation where the initial replicating packets very quickly consume the 

majority of the node resources. It is likely that replicated packets further down the 

process line (requiring the same amount of resources, from each node they encounter, as 

the original), will not have adequate resources to complete the Active process and pass 

through the network unaffected. The "Cascading Effect" would, in this situation, be self­

limiting or fail to manifest itself. Furthermore, the Network would reach a point of 
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quasi-saturation in tenns Active capability and perfonnance. Case study 2 and case 

study 5 contain examples of this effect (Figure 7.2.2.a and Figure 7.2.5.a). The 

simulation in case study 2 was based on 1 Active Replication Packet being injected into 

the core of the network. The replications that followed required substantial amounts of 

node resources (i.e. 60% of each resource type) from each Active Node capable of 

processing them. The high resource requirements led to the network reaching the above­

mentioned 'self-limiting' state. Similarly, the simulation in case study 5 held four initial 

replicating packets each requiring a combination of resources with a minimum of 58%. 

As a result of the high resource requirement and the number of individual Active 

replications present within the systems, the "Cascading Effect" failed to manifest. This 

was further compounded by the reservation of resources, for specific periods of time, by 

the replication packets. Case study 6 (Figure 7.2.6.a) showed a similar result to case 

study 5 (also with a randomly selected set of Active Packets/Applications as simulation 

inputs). 

In comparison, the simulation in case study 1 had one Active Replication 

Packet/Application injected into the core that required a small amount of resources from 

each Active Node in the path of replication (i.e. 20% of each resource type). As a result, 

there was a significant number of Active Nodes displaying 'above 0.9' Hurst values in 

resource usage. A "Cascading Effect" was present within that instance of the system. 

The 'general' path of the original Active Replication Packet, injected into the network, 

has no effect on the networks potential to exhibit a "Cascading Effect". It could be 

assumed that when the path is directed towards the centre and/or is directed along an 

edge dimension of the grid network, the number of nodes with 'above 0.9' Hurst values 

will be proportionally great. Case study 1 (Figure 7.2. La) presents this case where the 

initial path of the Active Replication Packet was directed towards the centre of the 

network. However, it is apparent from case study 3 (Figure 7.2.3.a) that, even when the 

path was directed away from the 'core', the number of affected nodes remains relatively 

stable. 
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It is worth noting that in some instances, without the presence of any Active Replication 

Packets in the network, a small number of Active Nodes will exhibit Hurst values of 

above 0.9. Case study 4 shows examples of this effect (Figure 7.2.4.a). Investigations 

revealed that these nodes were located in positions where they process an increased 

number of Active Packet/Applications (i.e. Active Application stream concentration 

points), thereby giving rise to high resource fluctuations and high Self-Similarity. For 

example, in case study 4, Active Nodes C3 (trace no. 13), B3 (trace no. 18) and B2 

(trace no. 19) had a high concentration of Active Applications, which increased the 

amount of processing/memory handling tasks being performed (throughout the 

simulation at these nodes). The nodes processed in total 7, 6 and 7 Active Applications, 

respectively. This was reflected by above-O. 9 Hurst values for these nodes. In 

comparison the Active Node A3 (trace no. 23) processed only 3 Active Applications for 

the entire duration of the simulation run. This resulted in a relatively low Hurst value of 

0.7060. This phenomenon, on its own, was interesting and can be thought of as 

secondary Emergence (i.e. an additional facet of the discovered Emergence for this 

model). 
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7.4 Summary 

In this chapter the author has re-emphasised the modelling considerations made with 

respect to the inputs/outputs of the system and the simulation. It proposes that the 

simplified inputs are integral to the high-level examination of an Active Network and in 

turn simplifies the process for the detection of Emergence. 

The chapter also describes the structure of the input text file and the resulting output log 

file for a simulation run. 

The second half of this chapter describes in detail various simulation 'case studies' that 

indicate the presence or absence of Emergence. The case studies are summarised as 

plots, which are also the results of the Self-Similarity calculation process - each 

simulation run produced one Emergence case study that consisted of 25 Hurst parameter 

values derived from the time-based Self-Similarity calculations of the 25 Active Nodes 

present within the system. Each case study included in the chapter provided indications 

of Emergence (if present) whilst the Results Discussion section (section 7.3) described 

the causal factors. 

The chapter also describes the empirical process by which Emergence is identified -

defining a key detection criterion (i.e. a Hurst value above 0.9 in a significant number of 

nodes). The detection criterion was established through the experimental case study 

analysis process, each of which reinforced the detection to a position where the potential 

Emergent outcome of the system could be 'estimated' prior to any simulation. The 

process of simulating random input scenarios, which contained (and didn't contain) the 

Emergence Inducing Factor of self-replication, could have been continued indefinitely. 

However, it was apparent that case studies, after a certain number, added no exceptions 

to the Self-Similarity process or the Emergence criterion (for "Cascading Effects"). It 

was at this point that further simulations were deemed unnecessary. 
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.8.... Conclusions and Future Work 

Thi s chapter wi 11 present: 

• A review of the Emergence definition and the Emergence detection criterion for the 

results produced by this work. 

• The identification of the generic characteristics within the detected Emergent 

Behaviour. 

• Further work in terms of enhancing the Active Network model. 

• Further work in terms of developing alternative detection techniques 

• Further work in terms of migrating the model to an entirely new methodology. 

The key concepts in this chapter are: Emergence, Cellular Automata, cluster analysis, 

model enhancements 
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This work has attempted to identify Emergence as a measurable quantity in a highly 

connected network of 'intelligent' nodes. It has also succeeded in highlighting one 

particular instance of Emergence from a technique devised for the detection of patterns 

in data. 

The conclusion of this work is that the Self-Similarity of resource usage 

fluctuations in Active Nodes (above a certain threshold) is an Emergence, by 

definition, and is a property that would not manifest/explain itself by the simple 

analysis of system dynamics - Emergence detection required a specific layer of 

abstraction of the network along with a specific detection algorithm. 

Furthennore, it is apparent that even when self-replicating input scenarios were allowed 

to affect the network in an uncontrolled manner (a situation that could be perceived as 

detrimental to the network) they did not necessarily satisfy the Self-Similarity condition 

for Emergence. As a result, more attention was applied to the analysis of the dynamics 

of Active Replication Packets and other Active Packets. One can think of the lack of 

Self-Similarity condition, in these situations, is part of the overall Emergence within the 

system. This is because the phenomenon was not expected and required further 

investigation. 

The root causes of the self-similar Emergent Behaviour were identified as the resource 

usage requirement of Active Replication Packets/Applications, the amount of time the 

resources are reserved as part of Global State Maintenance and the number of Active 

Replication Packets traversing across the network. 

On reflection the root causes for the self-similar Emergent Behaviour seem obvious. 

However, the fonnal definitions of Emergence cater for the notion of 'hindsight' - the 

fact that Emergence is a behaviour that persists until a valid explanation is found, at 

which point it ceases to be Emergence. 

The concern of this research work is the comprehension of the underlying dynamics of 

Active Networks, which would probably give rise to Emergence. Whilst this work was 

successful in proving Emergence exists in the Active Network model, it has highlighted 

only one particular example of Emergent Behaviour. It may be possible that the system 

holds many Emergent characteristics that could be discovered through other pattern 

detection techniques and algorithms. In general, there exists many types of Emergent 
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Behaviour; some closely coupled with system under investigation (not necessarily 

Active Networks related). The prime contribution of this work was to direct research 

towards the analysis of resources and resource usage within the system. The author 

proposes that there exists a strong link between resource usage in a distributed system 

and Emergent Behaviour. A 'clue' regarding Emergent Behaviour can be obtained by 

the analysis of fluctuations in resource usage - as they function as 'enablers' for the 

system's processes. The resource stores also function as 'points/places of contention' for 

system services thereby acting as reflectors of 'interesting' behaviour. 

The modelling process accounts for the system being complex and being governed by 

theories of Complexity. Thus a systematic and piecemeal approach to the model 

construction had to be combined with a collective understanding of network behaviour. 

The author views the resultant 'collective behaviour' as patterns in the system. The 

algorithm developed to detect one type of Emergence is a step towards the 

understanding of all collective behaviours in the system. 

Of the Emergent characteristics described in chapter 3 it is clear that the Self-Similarity 

Emergent Property is due to the creation of Positive Feedback structures (chapter 3; 

section 3.1.1). It is also apparent that the Emergent Property detected by this work is 

clearly linked with characteristics of Meta-balance (chapter 3; section 3.1.3) and 

Resonance (chapter 3; section 3.1.6). 

Further work to this research could come in the form of extending the Active Network 

model in terms of additional elements, which would increase the accuracy of the model 

but would also add another layer of complexity (e.g. addition of variable time delays). 

An extension to the model should be able to parameterise and simulate the concept of 

time (in a single step) as: 

• Time taken for a packet to flow from one node to the next-hop node 

• Time taken for a packet to move through the input/output queues of the current node 

• Time taken for an Active Packet to be processed (code retrieval, verification, 

resource allocation and execution) 

Time delays will provide an extra dimension to focus onto in order to highlight potential 

anomalous behaviour (i.e. Emergent Behaviour). It was decided that this research, in an 
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attempt to seek a balance between the development of a manageable system model and 

the analysis of an accurate/complex model, would disregard this element. 

Additional techniques for the detection of Emergence, through the visualisation of 

resource usage fluctuations, can also be developed. The author proposes the use of 

Cluster Analysis Techniques to determine additional patterns in data that are indicative 

of Emergence. 

Investigations of the "Cascading Effect" Emergence can be extended by incorporating 

alternate configurations of replicating schemes, increasing the number of Active Nodes 

being simulated and varying the topology of the network. 

It may also be possible to migrate the modelling concepts to another methodology. For 

example, the author proposes the use of 'Cellular Automata', which would change the 

model from a static-node to a dynamic/virtual-node structure. Initial investigations on 

this concept have been positive and are described in section 8.1 . 

The work done by this research can be considered as a precursor and a template for 

future detailed modelling of Active Networks (i.e. the detailed modelling process would 

be able to use the points highlighted by this research to build a better Active Network). 

The results and findings of this project were presented at the "Multi-Service Networks 

Conference" (COSENERS, 2004), held on the 8th of July in Abingdon, Oxford, UK. 
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8.1 Virtual Node Simulation 

Observing Emergent Properties and self-organised structure is a complex task, 

considering that the 'structure' of Emergent Behaviour may not stay fixed to a set of 

nodes. It is possible that the structure may move within the boundaries of the modelled 

network. With this in mind and for the purposes of exposing Emergent Behaviour, one 

can remove the restriction of having Active Nodes in specific network topologies (even 

though, in practical terms, the Active nodes are in a fixed network). 

Virtual Node Simulation (VNS) is a concept envisaged by the author, and may prove to 

be a viable addition to this work in terms of detecting Emergent Behaviour in Active 

Networlcs - VNS could be used to visually detect static or moving structures within the 

Active Network simulation environment. It can also facilitate the interpretation of these 

structures and the stages of structure formation. 

VNS begins with the design of a cellular grid environment that depicts the scalable 

Active Networlc. End-stations are located at the periphery of the grid and each end­

station has the capability to transmit and receive Active Packets/Applications (which are 

designated as moving blocks). The foundations for this type of simulation are taken 

from Cellular Automata (CA), which have been used in other research projects to 

successfully analyse various anomalous network behaviours. 

At the heart of Cellular Automata, we consider the uniform lattice of cells to have local 

states, which are subject to a uniform set of rules. These rules drive the behaviour of the 

system, and in turn, set the particular state of a cell (i.e. the rules compute the next state 

of a cell as a function of its previous state and the states of surrounding cells). A moving 

block positioned within a cell is an abstraction of the state of that cell (i.e. the simulator 

displays the changing states of cells as moving blocks within the grid environment). An 

extension to this would be to allow the cells to preserve the history of state changes and 

calculate their next state based on it. 

Cellular Automata describes the simulation environment in terms of a lattice and cells. 

The abstract view of changing states depicts the movement of packets within the lattice. 
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However, CA alone will not suffice in describing the complex behaviour of Active 

Networks because the Active Packets themselves are defined entities with specific 

objectives. The model must be in a position to describe the characteristics of packets 

along with the rule-set for each cell. 

The full simulation framework will incorporate 'Multi-Agent' theory, which will allow 

the complete definition of an Active Packet (along with its behavioural dynamics). Each 

Active Packet will be represented by an autonomous 'Agent', which will be produced 

and consumed within the simulated space (i.e. within end-stations and the cellular 

lattice). Agents will carry complex rule-sets and objectives (they may also incorporate 

the static rule-set defined for the individual cells), and have sensors to perceive their 

local neighbourhood [DijOO). A further ability would be for Agents to leave 'traces' of 

themselves at specific cells they visit, thereby affecting the local environment. 

-:-
• 

• 

End sta~on With 
transmit and recieve 
capability 

• 
.. ::.. • 

I . trace element 

JJ 

Ac~ve Packet/Agent Cellular grid environment 

Figure 8.l.a: YirtuaJ Node Simulation 01 an Active Network with a uniform lattice 

olcells 

The Agent mobility and behavioural characteristics (anticipated or unplanned) are 

dependent on several factors: 
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• The static and dynamic goals of the Agent. 

• The 'beliefs' of the Agent - a 'belief is the internal, imperfect representation of the 

environment, held by the Agent, which includes the perceived states of other Agents. 

• The rule-set 

• The number of interactions between Agents 

• The types of interactions between Agents (i.e. co-operative, competitive) 

• The type of Agent 

The concepts of Multi-Agents encompasses a large research area. Some of the concepts 

are either not relevant to Active Networks or are too strict in definition to be useful. It is 

therefore appropriate to reduce the Agent description to a minimum set of parameters. 

One can define an Active Network Agent through U = < R, A, F >, where: 

• 'R' is a finite set of 'role identifiers'. It represents all possible roles (and 

combinations of which) an Agent can have. The 'role' of an Agent highlights the 

objectives and goals held within it. 

• 'A' represents the activity agenda of an Agent i to achieve its goals {A}. 

• 'F' represents the knowledge and information (Facets), held by an Agent, of its 

environment (F;). These facets include beliefs, awareness, experience, preference 

and choice. All of the facets are dynamic and are liable to change throughout a 

simulation [DijOO). 

Agents (Active Packets) are programmed with certain capabilities, analogous to the 

Primitive Functional Components (PFCs) of the high-level modelling scenario. These 

capabilities are: 

• Replicate themselves 

• Merge into a single unit 

• Transform themselves into new types 

• Generate as new 

• Leave trace elements at certain locations 
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• Harvest information from a local area and feedback to a calling application 

The author proposes that Emergent Behaviour will not occur without the 

interaction of two or more Active packets and/or their trace elements. 

An 'interaction' can be viewed, within the grid, as a collision between two or more 

packets andlor trace elements. At the point of impact, each Active Packet will execute 

certain rules and make decisions based on the local conditions (e.g. decisions based on 

collided packet type, trace element type, direction of movement, conflict in objectives, 

interest in co-operation, etc.). 

In reality, Active Packets can only interact through a node; thus the point of impact is 

indicative of an Active Node being present at that location. In essence, all grid locations 

have the potential to be collision points and hence Active Nodes. However, the specific 

locations of Active Nodes are of little importance for a high-level simulation (i.e. the 

simulation should be independent of topology). The simulation should be capable of 

displaying Emergent Behaviour, some of which, will manifest themselves as stable, 

static/moving 'structures' (of Agents and their respective traces). Furthermore, through 

the rules governing the local state changes, a model can depict a global structure 

influencing local components (Figure 3.3.a). 

The idea to use such an approach stems from the successes of 'Multi-Agents' in the 

detection and analysis of global phenomena in a wide variety of systems (e.g. traffic 

flow simulations, pedestrian behavioural analysis [DijOO]). However, currently this 

simulation method is in its initial investigation stages. Further work in this area may 

reveal the requirement of an application-specific simulator (which would have to be 

developed in-house through Object-Oriented programmes such as Java or C++). 
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1..- MATLAB Algorithm 

% MA TLAB algorithm for the generation of the Hurst value (using the R _ S statistic) 

% and R2 confidence value 

% for one series of data (i.e. one Active Node) 

% notes: this progranune must be run for each of the 25 traces in order to calculate 

% the complete set of Hurst values for a particular simulation run 

Appendixi 

0/0------------------------------------------------------------

clear; 

al =0; % declare and initialise dummy variable for fscanf 

% user input for datalog filename for reading 

file_run = input('Enter file name >','s'); 

% user input for specific Active Node Trace no. 

Trace_no = input('Enter the trace no (I to 25) >'); 

% open datalog file 

file_id = fopen(fIle_mn,'t'); 

% scan datalog file line-by-line (row-by-row) and enter into 2-d array 

forn= 1:499 

[array(o,:),al] = fscanf(filejd, '%i ',[125]); 

end 

% close datalog file 

fclose(file_id); 

sig = (arrdy(:,Trace_no».'; 

L = length(sig); 

R_S = zeros(I,L); 

% extract from 2-d array the correct trace linked to the 

% Active Node 

% length of data trace 

% R_S value declared and initialised 

% main calculation for-loop to calculte a series of RlS values for 

% different sample lengths 

forn= I:L 
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silL n = sig(l :n); 

meaD_sig_D = mean(sig_n); 

S(D) = sqrt(var(silL D» + eps; 

% obtain a sample series from original 

0/0 trace 

% mean of sample series 

% square-root of the variance of sample 

% series. eps value is used to prevent 

% divide-by-zero errors 

% nested for-loop to calculate partial sum 

fork=l:n 

W(k) = sum(SilLn(1 :k» - k*mean_silLn; 

end 

% calculation of R/S slatistic for the sample series 

R_S(n) = (max([O W]) - min([O W)))/S(n); 

end 

% generating a log-log plot 

X = 10g\O(I:L); 

Y = 10g\O(R_S + eps); 

figure; 

scattelO{, V); % draw a scatter plot 

0/0 regression analysis 

% e>."tract the positive R/S values for Ule regression analysis 

% the negative section represents the disregarded 'startup' slage 

a2=Y(Y>O); 

ana_range = (L -length(a2) + 1):L; % calculate the regression analysis 

0/0 range 

p = poiyfit(X(anaJange),Y(ana_raoge),I); % calculate the linear regression line 

% refresh the scatter plot "ith added regression line 

Y _ reg = polyval{p,x); 

plot(X,Y,'o',x, Y _reg,':'); 

% print Hurst value for the trace linked to the Active Node, which it the 

% gradient of the linear regression line 

H = p(l) 

% R2 "goodness of fit" calculation 

% used to oblain a confidence level for the regression analysis 

% error calculation for the 

% specific 
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% regression analysis range 

ss_reg = snm(error.A2); % sum of the errors squared 

nnlUesidnal = Y(ana_range) - mean(Y(ana_rnnge»; % null residual 

% sum of the null residual squared 

% print R2 "goodness of fit" value for the trace linked to the Active Node 

r_squared = I - (ss_reg/ss_tot) 
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ii.. Design/erN Petri Net Diagrams 

ii.l. Declarations 

II GLOBAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE PETRI NET MODEL 

II COLORSETS (variable type defmitions) for Active Packets 

color AppID = int with 1..15; II Active packet IDs 

color Dirl = int with 1..8; 

color Dir2 = int with 1 .. 8; 

color TTL = int; 

color Route = with M I R I CIF; 

color Memory = int with 0 .. 100; 

color Processor = int with 0 .. 100; 

color Buffer = int with 0 .. 100; 

color Release = int with 0 .. 50; 

II Direction Indicator I 

II Direction Indicator 2 

II Time-to-Live field 

I I Routing Mechanism 

II Active Packet MEMORY requirement 

/I Active Packet PROCESSOR requirement 

II Active Packet BUFFER requirement 

/I reserved MEMORY resource release time 

161 

Appendix ii 



Emergence in Active Networks 

// other COLORSETS (variable Iype definitions) 

color Queue = with <L unit; !I for a queue control variable 

color Timer_Control = with Time_unit; 

color Timestamp = im; 

!I for a timer control variable 

!I for a timestamp variable 

calor Timeflag = bool; !I for a check flag variable 

!I compound COLORSETS (variable Iype definitions) 

color Time_holder = product Timestamp * Timestamp * Timestamp * Timestamp * Timestamp declare all; !I timestamp holder 

color Packet = product AppID * Dirl * Dir2 * TIL * Route * Memory * Processor * Buffer * Memory * Release declare all; !I Active Packet 

/ 
Appendixii 

color Xpacket = product AppID * Route * Memory * Processor * Buffer * Memory * Timestamp * Timeflag declare all; !I Active Packet with timestamp and check flag 

!I VARIABLE declarations 

var pkt, pkt2 : Packet; !I Active Packet variables 

var source : Packet ms; !I Input Source variable 

var app, app2 : AppID; !I Active Packet application ID. 

var dkl : Dirl; !I Active Packet Direction Indicator 1 

var dk2 : Dir2; !I Active Packet Direction Indicator 2 

var vttl: TIL; !I Active Packet Time-to-live counter 

var vroute, vroute2 : Route; 

var vmem, vmem2, vmem3, vmem4, vmem5, vmem6, vmem7 : Memo!)'; 

!I Active Packet Routing Mechanism 

!I MEMORY resource variables 
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var vprocess, vprocess2, vprocess3, vprocess4, vprocess5, vprocess6 : Processor; 

var vbuff, vbuff2, vbufT3, vbuff4, vbuff5, vbuff6 : Buffer; 

var !store, Istore2 : Memo!),; 

var lCOunt : Release; 

var ql, q2, q3 : Queue; 

var tl, 12, t3, t4, t5 : Timer_Control; 

var tstarup : Timestamp; 

var tflag : Timeflag; 

var compound: Xpacket; 

var as,b5,c5,d5,e5 : Timestarnp; 

var a6,b6,c6,d6,e6 : Timestarnp; 

// queue control variables 

// timer control variables 

// timestamp variable 

// check flag variable 

// Active Packet variable 

// timestamp variables 

// timestamp variables 

Appendix ii 

// PROCESSOR resource variables 

11 BUFFER resonrce variables 

// reserved MEMORY resource variables 

// reserved MEMORY resource release time 
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1/ LOCAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE MERGE PACKET COMPONENT 

1/ COLORSETS (variable type definitions) 

color Mtirnestamp = int; 1/ for a timestamp variable 

color Firststate = bool; 1/ for a check flag variable 

calor Flag = bool; /I for a check flag variable 

1/ compound COLORSETS 

calor Flag_holder = product Flag • Flag • Flag • Flag • Flag; 1/ check flag holder 

color Mpacket = product AppID • Dirl 0 Dir2 0 MtimestaJnp • Firststate; /I reduced information Control Packet 

1/ VARIABLE declarations 

1/ Active Packet application ID. var mapp, mapp2, mapp3 : AppID; 

var mdkl, mdkl_2, mdkl_3 : Dirl; 

var mdk2, mdk2_2, mdk2_3 : Dir2; 

1/ Active Packet Direction Indicator 1 

1/ Active Packet Direction Indicator 2 

var mtstamp, mtstamp2, mtstamp3, mtstamp4 : MtirnestaJnp; 1/ timestamp variables 

var fstatus, fstatus2, fstatus3, fstatus4 : Firststate; 1/ check flag variables 

var ai, bl, cl, dl, el : Flag; /I check flag variables 
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var a2, b2, c2, d2, e2 : Flag; 

var a3, b3, c3, d3, e3 : Flag; 

var 34, b4, c4, d4, e4 : Flag; 

var mcompound : Mpacket; 

11 check flag variables 

// check flag variables 

11 check flag variables 

11 reduced infonnation Control Packet variable 

11 LOCAL DECLARA nONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE LOCAL STORAGE COMPONENT 

11 COLORSETS (variable type defmitions) 

color Ltimestarnp = int; 

color St = bool; 

11 compound COLORSETS 

11 for a timestamp variable 

11 for a check flag variable 

calor Lpacket = product Ltimestamp * Memory * Release * St; 11 reduced infonnation Control Packet 

11 VARIABLE declarations 

var ltstarnp : Ltimestarnp; 

var lcompound : Lpaeket; 

var a, b : Memory; 

var GO, G02 : St; 

11 timestarnp variables 

11 reduced infonnation Control Packet variable 

11 reserved MEMORY resource variables 

11 check flag variables 
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II LOCAL DECLARATIONS AND DEFINITIONS (COLOSETS) OF VARIABLES USED IN THE DATA LOGGING COMPONENT 

II includes GLOBAL REFERENCE variables used in code sections 

II COLORSETS (variable type definitions) 

color relLname = int; II for page instance value (ACfIVE NODE IDENTIFIER) 

II VARIABLE declarations 

var reg,reg2,reg3,reg4,regS : relLname; II variables holding the ACTIVE NODE IDENTIFIER value 

II GLOBAL REFERENCE VARIABLE declarations 

globrefmk_O = "null"; 

globrefmk_1 = "null"; 

globreftpage_id = 0; 

globref tplaceUd = 0; 

globref tplace2_id = 0; 

globreftplace3_id = 0; 

globref tplace4 Jd = 0; 

II not used 

II variable to hold all datalog register location values as one string; written to output file "outtxt" 

II variable to hold user selected page handle (i.e. Active Node page handle) 

II variable to hold user selected place handle (i.e. Mregister place handle) 

II variable to hold user selected place handle (i.e. Global_Memory _Store place bandle) 

II variable to bold user selected place handle (i.e. Global_Processor_Store place handle) 

1/ variable to bold user selected place handle (i.e. Global_Buffer_Store place handle) 

II file handles for the reading in of custom initial MEMORY, PROCESSOR and BUFFER values. 

globref!hl = TextIO.openIn "lhome/elmsd2/design_cpn/activenetworklsrc.txt"; 
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globref fh2 = TextIO.openIn "lhome/elmsd2/design_cpnlactivenetworkisrc.txt"; 

globref fb3 = TextIO.openIn "lbome/elmsd2/design_cpnlactivenetworkisrc.txt"; 

globrefN = 0; II while-loop counter 

globref mem_val = "null"; II variable to hold the custom initial MEMORY value read in from file 

globref pro_val = "null"; II variable to hold the custom initial PROCESSOR value read in from file 

globrefbuf_val = "null"; II variable to hold the custom initial BUFFER value read in from file 

/I datalog register locations which house the MEMORY resonrce values (linked to changes in place: Global_Memory _Store) 

g10bref reglocO = 100; 

globrefreglocl = 100; 

globref regloc2 = 100; 

globref regloc3 = 100; 

globref regloc4 = 100; 

g10bref regloc5 = 100; 

globref regloc6 = 100; 

globref regloc7 = 100; 

globref regloc8 = 100; 

globref regloc9 = 100; 

globref regloclO = 100; 
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globrefreglocll = lOO; 

globref regloc 12 = lOO; 

globref regloc 13 = lOO; 

globref reglocl4 = lOO; 

globrefreg1oc15 = lOO; 

globref regloc 16 = lOO; 

globref reglocl7 = lOO; 

globrefreglocl8 = lOO; 

globrefreglocl9 = lOO; 

globref regloc20 = lOO; 

globref regloc21 = lOO; 

globref regloc22 = 100; 

globref regloc23 = lOO; 

globref regloc24 = lOO; 

Appendix ii 
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ii.2. Model Hierarchy 
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DO 
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"' . •• c. 
oo 
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id. Top-level Active Network 
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II Purpose: code for traffic generation at source SRC_AI 

II Location: Petri Net tr.msition: SRC_AI 

1/ Description: the code reads the input source me "src.tx!" to extract the correct line as input Active Packet 

output source; 

action 

let 

11 function definition to extmct the entire input me as a list 

fun !ileToList flleNarne = 

let 

11 function definition 

fun f fit = if TextIO.endOfStrearn fit 

then 

let 

val_ = TextIO.closeln fit 

in 

nil 

end 

else 

/1 formation of the list of input lines extracted from iuput source file 

11 extract one line in sequence and append to list of other extracted lines 
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in 

end; 

in 

end; 

(inpuuns'Packetfh):: (ffh) 

1/ function call to open text file 

f (TextlO.openIn fileName) 

1/ function call 

11 specifies correct input source file and line no. 

11 the line no. is used to select the correct input line specific to the particular source 

1/ line no. 0 is the input for SRC_AS 

List.nth( (fileToList "ihome/elmsd2/design _ cpnlactivenetworklsrc. txt"),O) 
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ii.4. Active Node (section 1) 

• The first section in the Active Packet process flow. 

• Holds the 4 input ports and the decision to process, destroy or forward a particular Active Packet. 
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I! Purpose: code to reduce the MEMORY, PROCESSOR and BUFFER resource values once the decision to process an Active 

II Packet has been made 

II Location: Petri Net transition: PROCESS 

Appendix ii 

II Description: the code uses the reSource requirement values held within the Active Packet to reduce the resource values in places: Global_Memory _Store, Global_Processor_Store 

and Global_Buffer_Store. It also updates the regloc register location for the specific instance of Active Node 

input (app,dkl,dk2, vttl,vroute, vmem, vprocess, vbuff,lstore,rcount, vmem3, vprocess3, vbuID ,reg); 

output (pkt,vmem4,vprocess4,vbuff4,reg2); 

action 

II updates regloc location (linked to changes in place: Global_Memol)'_Store) 

usestring["regloc"Amakestring(reg)A":="Amakestring(vmem3-vmem)]; 

«app,dk I ,dk2,(vttl-1 ),vroute,vmem, vprocess, vbuff,lstore,rcount),(vmem3-vmem),(vprocess3-vprocess),(vbuID -vbuff),reg); 
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id. Active Node (section 2) 

• Positioned right of section l. 

• Holds decision-and-release mechanism for Global State Maintenance (Local Storage component) and the Direction Solver component. 
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ii.6. Active Node (section 3) 

• Positioned below section 2 

• Holds the Resource Release Mechanism for all Active Packets that are processed. 
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II PUlPOse: code to adjust the resource release time for MERGE Active Packets 

II Location: Petri Net transition: USE_RESOURCE 

Appendix ii 

II Description: adjustment of the resource release time for MERGE Active packet is necessary since the initial packets MERGE stream is delayed by 5 time steps. The initial Merge 

Active Packet follows normal resource release timings. Subsequent merge packets of a stream (that fall within the 5 time step period) will have their resources released immediately 

since they are merged with tlle initial packet. 

input (app,dkl,dk2, vtt1,vroute,vmem, vprocess, vbuff,lstore,rcount,aS,bS,cS,dS,eS); 

output (app2,vroute2,vmem2,vprocess2,vbuff2,lstore2,tstarnp,tflag,a6,b6,c6,d6,e6); 

action 

let 

II function definition: the same procedure for each MERGE Active packet based on application id: I to 5 

fun select_merge(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,AS,BS,CS,DS,ES) = 

caseAPP 

II check if witlun tlle 5 time step period and not the initial Active Packet of tlle MERGE stream 

of 1 => if «stepO < (AS + S)) andalso (0 < AS)) 

then 

/I release resource immediately: subsequent packet 

(APP, VROUTE, VMEM, VPROCESS, VBUFF,LSTORE,(0-9),false,AS,BS,C5,D5,ES) 

else 

II release resource normally: iIutial packet 
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// the MERGE Active Packet is time stamped with the simulation step nnmber 

(APP,VROUTE,VMEM, VPROCESS,VBUFF,LSTORE,stepO,false,step(),B5,C5,05,E5) 

12 => if «stepO < (B5 + 5» andalso (0 < B5)) 

then 

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,A5,BS,C5,05,ES) 

else 

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,stepO,false,A5,stepO,C5,05,E5) 

13 => if «stepO < (C5 + 5» andalso (0 < C5» 

then 

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,AS,B5,CS,05,ES) 

else 

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,stepO,false,AS,B5,step(),D5,E5) 

14 => if «stepO < (05 + 5» andalso (0 < 05» 

then 

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,A5,B5,C5,05,E5) 

else 

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,stepO,false,A5,B5,C5,stepO,E5) 

15 => if «stepO < (E5 + 5» andalso (0 < E5)) 

then 

(APP,VROUTE,VMEM,VPROCESS,VBUFF,LSTORE,(0-9),false,AS,B5,C5,D5,E5) 
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in 

end; 

else 

(APP, VROUTE, VMEM, VPROCESS,VBUFF,LSTORE,stepO,false,AS,BS,CS,D5,stepOl 

I! all other Actiye Packets are time-stamped with the simulation step number 

II resources released normally 

1_ => (APP, VROUTE, VMEM, VPROCESS, VBUFF,LSTORE,s1epO,false,A5,BS,C5,D5,E5) 

select _merge (app, vroute,vrnem, vprocess,vbuff,lstore,a5,b5 ,c5,d5,e5) 
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II Purpose: code to delay the releasing of resources for all Active Packets 

II Location: Petri Net transition: DELAY 

Appendix ii 

/I Description: the delay is adjusted so that the resource release is timed to coincide with the exit of the Active Packet from the node. Each packet type (based on routing mechanism) 

has different resource delay tiroings based on the time it spends within the Active Node and its sub components. 

input (app2,vroute2,vmem2,vprocess2,vbufT2,lstore2,tstamp,tflag); 

output (compound); 

action 

let 

in 

/I function deflnition to specny different delay values tor different routing mechanisms 

fun delayvalue(VR) = 

case VR 

ofF => I 

IC=>O 

IM=>9 

IR=>2 

II FORWARD Active Packet delay in time steps 

II CONSUME Active Packet delay in time steps 

/I MERGE Active Packet delay in time steps (may be adjusted with previous code) 

II REPLICATE Active Packet delay in time steps 

II check if release tiroe is reached based on routing mechanism 

if (step 0 < (tstamp + delayvalue(vroute2))) 

then 

(app2,vroute2,vmem2,vprocess2,vbufT2,1store2,tstamp,false) II delay not reached, set flag to false, loop back 
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else 

(app2,vroute2,vmem2,vprocess2,vbuff2,lstore2,tstamp,true) // delay reached, set flag to true, proceed to next stage 

end; 
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// Purpose: code to increase the MEMORY, PROCESSOR and BUFFER resource values once the release time value has been reached (checks flag). 

/I Location: Petri Net trdnsition: RELEASE 

Appendixii 

/I Description: the code uses the resource requirement values held within the Active Packet to increase the resource values in places Global_Memory _Store, Global_Processor _Store 

and Global_Buffer _Store. It also updates the regloc register location for the specific instance of Active Node. 

input (app2,vroute2,vmem2,vprocess2,vbufl2,lstore2,tstamp,tflag,vmem5,vprocess5,vbuff5,reg); 

output (vmem6,vprocess6,vbuff6,reg2); 

action 

/I updates regloc location (linked to cbanges in place: Global_Memory _Store) 

usestring["regloc""rnakestring(reg)A":="Amakestring(vrnem5+(vmem2-lstore2»]; 

/I note: MEMORY resources may not be fully restored due to the Global State Maintenance mechanism (Local Stomge Component) reserving resources for additional periods of time 

«vmem5+{vmem2.istore2»,(vprocess5+vprocess2),(vbuff5+vbufl2),reg); 
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n.7. Active Node (section 4) 

• Positioned right of section 2. 

• Differentiates Active Packets based on the 4 routing mechanisms. 

• Holds the Merge Packet component and the Replicate Packet component. 
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ii.B. Active Node (section 5) 

• Positioned above section 4. 

• Outputs Active Packets from one of 4 ports. 

• The decision to output from a particular port is based on Direction Indicator 2 value, which is held with the Active Packet. 

• As a pre-process, the Direction Solver Component modifies the Direction Indicator 2 value based on preset criteria. 
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ii.9. Local Storage Component in detail (section 1) 

• The first section in the Active Packet process flow. 

• The component describes the Global State Maintenance feature of the node (i.e Active Application resource reservation feature). 
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/I Purpose: code to add a timestamp to packet in order to calculate the MEMORY resource storage delay 

// Location: Petri Net transition: Generator 

Appendix ii 

/I Description: the code uses the current simulation step nwnber as a timestamp, which is added to the rcount MEMORY storage time limit in order to calculate the MEMORY release 

time in simulation time steps. 

input (Itstamp,lstore,rcount,GO); 

output (icompound); 

action 

«step 0 + rcount),lstore,rcount,false); 
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ii.10. Local Storage Component in detail (section 2) 

• Positioned above section 1. 

• The section describes the delay-and-release mechanism for the reserved MEMORY resources. 
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// Purpose: code to delay the release of MEMORY resources. 

11 Location: Petri Net transition: Delaying 

11 Description: the code uses a check to see if the current simulation time step is less than the times tamp and rcount combination. 

input (Itstamp,lstore,reount,GO); 

output (lcompound); 

action 

let 

in 

end; 

11 function definition 

fun f (lts,ls,re) = if (step 0 < Its) 

then 

(lt5ols, rc,false) 

else 

(lts,ls,re,true) 

11 function call 

f(ltstamp,lstore,rcount) 

11 release time liInit not reached. Set check flag to false (to loop back) 

11 release time limit reached. Set check flag to true (to proceed to next stage) 
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// Purpose: code to increase the MEMORY resource values once the release time value has been reached (checks flag). 

// Location: Petri Net transition: RELEASE 

// Description: the code uses the resource reserved value Istore, held within the Active Packet, to increase the resource values in place Global_Memory _ Store (same as 

Global_Memory_Store in Active Node). It also updates the regloc register location for the specific instance of Active Node. 

input (a,ltstamp,lstore,rcount,GO,reg); 

output (b,G02,reg2); 

action 

// updates regloc location (linked to changes in place: Global_Memory _Store in Active Node) 

usestring["regloc""makestring(reg)"" :=""mai<estring(a+lstore) 1; 
«a+lstore),true,reg); 
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ii.11. Merge Packet Component in detail (section 1) 

• The first section in the Active Packet process flow. 

• The component describes the Active Packet Merge feature. 

• This section extracts the initial Merge Active Packet from subsequent packets. 
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// Purpose: check to see if the MERGE Active Packet is the I' of the stream. It also adds a timestamp to each Merge Active Packet 

11 Location: Petri Net transition: TIME _ ST AMP 

Appendix ii 

11 Description: A check flag is set when the process identifies the initial Merge Active Packet. This flag is used to identify subsequent Merge Active Packets, of a particular 

application number, as being suitable for merging with initial Active Packet. 

input (app,dkl,dk2, vttI, vroute, vrnem, vprocess, vbuff,lstore,rcount,a I,b I,c I,dl,e I); 

output (mapp,mdkl,mdk2,mtstarnp,fstatus,a2,b2,c2,d2,e2); 

action 

let 

11 function definition: the same procedure lor each MERGE Active packet based on application id: I to 5 

fun checkflags (APP,DKI,DK2,AI,BI,CI,DI,EI) = 

caseAPP 

of I => if (AI = false) 

then 

else 

12 => if(BI = false) 

then 

else 

11 for application id: I 

(APP,DKI,DK2,stepO,true,troe,BI,CI,DI,EI) 

(APP,DKI,DK2,stepO,false,AI,BI,CI,DI,EI) 

11 for application id: 2 

(APP,DKI,DK2,stepO,troe,AI,true,CI,DI,EI) 
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in 

end; 

II function call 

13 => if (Cl = false) 

tben 

else 

14 => if(D1 = false) 

tben 

else 

15 => if(EI = false) 

then 

else 

checkflags(app,dk I ,dk2,al ,b I ,c I ,d I ,e I) 

(APP,DKI,DK2,stepQ,false,AI,BI,CI,DI,EI) 

II for application id: 3 

(APP,DKI ,DK2,stepQ,true,AI,B l,true,DI,EI) 

(APP,DKI,DK2,stepQ,false,AI,B I,Cl,D I ,El) 

II for application id: 4 

(APP ,oKI ,DK2,stepQ,true,AI ,B I,CI,true,El) 

(APP ,oKI ,DK2,stepQ,false,AI,B I,CI,D I ,El) 

II for application id: 5 

(APP,DKI,DK2,stepQ,true,AI,BI,CI,DI,true) 

(APP,DKI,DK2,stepQ,false,AI,BI,Cl,DI,EI) 
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ii.12. Merge Packet Component in detail (section 2) 

• Positioned right of section 1. 

• The section describes the delay-and-release mechanism for the Merge Active Packet and the reset of the check flag. 
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II Purpose: code to delay the release of the initial Merge Actiye Packet. 

/I Location: Petri Net transition: DELAYING 

/I Description: the code uses a check to See if the current simulation time step is less than the times tamp + 5 simulation time steps. 

input (mapp,mdk 1,mdk2,mtstamp,fstatus); 

output (mcompound); 

action 

let 

in 

end; 

/I function definition 

funf(APP,DKl,DK2,TST,FSn = 

if (step 0 < (TST + 5» 
then 

(APP,DKl,DK2,TST,true) 

else 

(APP,DKl,DK2,TST,fa1se) 

/I function call 

f(mapp,mdkl,mdk2,mtstamp,fstatus) 

/I release time limit not reached. Set check flag to true (to loop back) 

/I release time limit reached. Set check flag to false (to proceed to next stage) 
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I! Purpose: code to reset the specific check flag used in the selection of the initial Merge Active Packet, which has at tins stage been released 

II Location: Petri Net tmnsition: E 

II Description: a function is used to differentiate and reset the check flags of initial Merge Active Packets based on application id. 

input (mapp,mdk l,mdk2,mtstamp,fstatus,a3,b3 ,c3,d3 ,e3); 

output (app,dkl,dk2,vttl,vroute,vmem, vprocess, vbufT,lstore,rcount,a4 ,b4,c4,d4,e4); 

action 

let 

in 

end; 

I! function defnrition: the same procedure for each MERGE Active packet based Oil application id: 1 to ; 

fun checkflags2 (APP2,DKl_2,DK2_2,A3,B3,C3,D3,E3) = 

case APP2 

of 1 => (l,DKl_2,DK2_2,l.M,lO,lO,IO,O,O,false,B3,C3,D3,E3) 

12 => (2,DKl_2,DK2_2,I,M,20,lO,lO,lO,15,A3,false,C3,D3,E3) 

13 => (3,DKl_2,DK2_2,I,M,20,20,20,O,O,A3,B3,false,D3,E3) 

14 => (4,DKl_2,DK2_2,l,M,30,lO,lO,20,lO,A3,B3,C3,false,E3) 

15 => (5,DKl_2,DK2_2,l,M,40,40,40,25,lO,A3,B3,C3,D3,false) 

II function call 

checkflags2(mapp,mdkl,mdk2,a3,b3,c3,d3,e3) 
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ii.13. Replicate Packet Component in detail 

• The component describes the Replicate Packet feature, which replicates Active packets according to the prescribed scheme. 

• Modifies the replicated Active Packets' Direction Indication 1 and Direction Indicator 2 values. 
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ii.14. Direction Solver Component in detail 

• The component describes the Direction Solver feature used to modify the Direction Indicator 2 value so that an Active Packet exits the Active Node 

from the correct output port. 
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ii.15. Data logging component 
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// Purpose: code forthe setup of the data logging process 

// Location: Petri Net trnnsition: perf_tJ 

// Description: the code requests inputs from the user to select which Petri Net places to trnck and sets up initial place values 

input (tJ); 

output (12); 

action 

// asks user to select the page (i.e. the Active Node component) which returns a page handle 

tpage_id:= DSUJ_AskUserToSelectPage(); 

DSStr_SetCurPage(ltpage_id); 

// asks user to select page-instance-holder place which returns a place handle (user selects: Mregister) 

tplace 1_ id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false}; 

// asks user to select MEMORY place which returns a place handle (user selects: Global_Memory _Store) 

tplace2 _ id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false}; 

// asks user to select PROCESSOR place which returns a place handle (user selects: Global_Processor_Store) 

tplace3 _id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false}; 

// asks user to select BUFFER place which returns a place handle (user selects: Global_ButTer _Store) 

tplace4 _ id:= DSUJ _ SelectObject {objtype=NODE _ TYPE,override=false}; 

// marl<.s each page-instance-holder with the correct page instance (ACflVE NODE IDENTIFIER) 

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(ltpage _id),O)),placeid=( ltplace 1 jd),marl<.=" 1 '0 "} 1; 
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usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts( !tpage _id), I »,placeid=(! tplace I Jd),IlUlIk=" I ' I"}]; 

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(ltpage _id),2) ),placeid=(ltplace I Jd),IlUlIk=" I' 2 "}]; 

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts( Itpage_ id),3 »,placeid=(ltplace l_id),IlUlIk=" I' 3"}]; 

usestring[GetChangeMarlcingCode{ instid=(List,nth(GetPageInsts(ltpage )d), 4) ),placeid=( Itplace I Jd),IlUlIk=" I' 4"}]; 

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts( !tpage _id), 5»,placeid=( !tplace I Jd),IlUlIk=" I' 5 "}]; 

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts( Itpage _id), 6) ),placeid=( Itplace 1_ id),IlUlIk=" I' 6"}]; 

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts( Itpage _id), 7»,placeid=(!tplace I Jd),IlUlIk=" I' 7 "}]; 

usestring[ GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts( Itpage _ id),S»,placeid=(ltplace l_id),IlUlIk=" I 'S"}]; 

usestring[GetChangeMarldngCode{instid=(List.nth(GetPageInsts(!tpage_id),9»,placeid=(Itplacel_id),IlUlIk="I'9"}]; 

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts( !tpage _id), I O»,placeid=( I tplace l_id),IIl8lk=" I' la"} ]; 

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(!tpage_id), 11»,placeid=(ltplace Ud),IIl8lk=" I'll "}]; 

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts( Itpage _id), 12»,placeid=( !tplace l_id),IIl8lk=" l'12"} ]; 

usestring[GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts( !tpage _id), 13 »,placeid=(ltplace I Jd),IlUlIk=" I' 13"}]; 

usestring[GetChangeMarldngCode{ instid=(List.nth(GetPageInsts(ltpage _id), 14 »,placeid=( Itplace I Jd),IIl8lk=" 1'14" J]; 

usestring[ GetChangeMarldngCode{ instid=(List.nth(GetPageInsts( Itpage _id), 15»,placeid=(ltplace I Jd),IIl8lk=" 1'15" J ]; 
usestring[ GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(ltpage _id), 16»,placeid=(!tplace I Jd),rnarl<:=" I' 16"} ]; 

usestring[GetChangeMarldngCode{instid=(List.nth(GetPagelnsts(ltpage_id),17»,placeid=(ItplaceUd),IlUlIk=" l'17"}]; 

usestring[ GetChangeMarlcingCode{ instid=(List.nth(GetPagelnsts(ltpage _id), IS»,placeid=( !tplace I Jd),IlUlIk=" I' IS" J]; 

usestring[ GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(ltpage _id), 19»,placeid=( Itplace l_id),IlUlIk=" l'19"} ]; 

usestring[ GetChangeMarlcingCode{ instid=(List.nth(GetPageInsts(!tpage Jd),20»,placeid=(!tplace I Jd),IlUlIk=" 1'20 "}]; 
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usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts( Itpage _ id),21 »,placeid=(!tplace I_id),marlr-" I '21"} }; 

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(ltpage _ id),22»,placeid=( !tplace 1_ id),marlr-" I' 22"} }; 

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts( Itpage_ id),23»,placeid=( !tplace I_id),marlr-" I '23"}}; 

usestring[GetChangeMarkingCode{ instid=(List.nth(GetPageInsts(ltpage _ id),24 »,placeid=( !tplace 1 )d),mark=" I' 24"}}; 

II intialises datalog register locations which honse the MEMORY resource values (linked to changes in place: GlobaI_MemoIY_Store) 

reglocO:= lOO; 

reglocl:= lOO; 

regloc2:= 100; 

regloe3:= lOO; 

regloc4:= lOO; 

regloc5:= lOO; 

regloc6:= lOO; 

regloe7:= lOO; 

regloc8:= lOO; 

regloe9:= lOO; 

regloclO:= lOO; 

reglocll:= 100; 

reglocI2:= lOO; 

regloc 13:= lOO; 
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regloc 14:= 100; 

regloc 15:= 100; 

reglocI6:= lOO; 

reglocI7:= lOO; 

regloc 18:= lOO; 

reglocI9:= lOO; 

regloc20:= lOO; 

regloc21:= 100; 

regloc22:= lOO; 

regloc23:= lOO; 

regloc24:= lOO; 

11 initialises text file handles for the reading in of custom initial MEMORY, PROCESSOR and BUFFER values. 

fhl:= TextIO.openln "lhomelelmsd2/design_cpnlactivenetworklinitmemval.tx!"; 

fh2:= TextIO.openln "lhomelelmsd2/design_cpnlactivenetworklinitproval.tx!"; 

fh3:= TextIO.openln "lhome/elmsd2/design _ cpnlactivenetworklinitbufval.tx!"; 

N:=O; 

mem_val:="nu11"~ 

pro_val:="null"~ 
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II mll/ks MEMORY, PROCESSOR and BUFFER values for each instance of Active Node with custom initial values taken from text files. 

II initialises places: Global_Memo!), _Store, Global_Processor _Store, Global_Buffer _Store 

II this is an optional process not used in simulations. All MEMORY, PROCESSOR and BUFFER initial values are set to 100 

while (IN < 25) do ( 

); 

mem_val:= TextIO.inputLine (Ifhl); 

pro_val:= TextIO.inputLine (lOO); 

buf_val:= TextIO.inputLine (!OO); 

usestring[ GetChangeMarldngCode{ instid=(List.nth(GetPageinsts(ltpage _id), IN»,placeid=(ltplace2 _id),rnark=" 1 ""'( I mem _ val)} I; 
usestring[GetCbangeMarldngCode{ instid=(Listnth(GetPageinsts( Itpage _id), IN», placeid=(ltplace3 _ id),rnark=" 1 '''''{ !pro _ val)} I; 
usestring[GetChangeMarldngCode{ instid=(List.nth(GetPagelnsts(1tpage _id), IN) ),placeid=(ltplace4 _id),rnark=" 1 ' ""{ Ibuf _ val)} I; 

N:=(1N+l) 

214 

Appendix ii 



Emergence in Active Networks 

II Purpose: continuous loop for the logging of MEMORY resource values ofall Active Nodes. 

II Location: Petri Net transition: peIf_t2 

II Description: at each pass of the loop the code writes (as one string) the regloc values for all instances of Active Node. 

input (t3); 

output(t4); 

action 

II make the string with all the regloc values 

Appendix ii 

mk _1 := makestring(step()A"." "Amakestring( IreglocO)A", "Arnakestring( I regloc I )A", "Amakestring( !regloc2)A", "Amakestring(lregloc3 )A" ,"Amakestring(lregloc4 )A", "Arnakestring 

(Iregloc5)A", "Arnakestring(! regloc6)A", "Amakestring(1 regloc7)A", ""rnakestring( Iregloc8)A", ""makestring( Iregloc9)"", ""makestring(1 regloc I 0)"", ""makestring(1 regloc 11) 

A", ""makestring(1 regloc 12)""," "makestring( I regloc 13)"", ""rnakestring(lregloc 14 )"", ""rnakestring( I regloc 15)"", ""makestring( lregloc 16)"", ""makestring( I regloc 17)"", "Arnakestring 

(Iregloc 18)"", ""makestring(!regloc 19)"", "Amakestring(lregloc20)"", ""makestring(lregloc21 )A", ""makestring(! regloc22)"", ""makestring( I regloc23 )"", ""rnakestring(!regloc24); 

let 

in 

end; 

/I open file and write one line 

val outstr = TextlO.openAppend ("/horne/elmsd2/design_cpnlactivenetwork!log!out.txI") 

val a = TextlO.output (outstr,(!mk_I)""In") 

val_ = TextlO.closeOut outstr 

215 





EmeIgence in Active Networl<s Appendix iii 

iii. Petri-Net Simulators Reviewed 

Name Features Environment 
Petri-Net types Components 

suooorted 
ALPBAlSim High-level Petri- Graphical Editor SunOS 

Commercial Nets Token Game Animation Solaris 

(academic Petri-Nets with Fast Simulation MS Windows 

discount) Time Simple Performance NT 

Analvsis 
ATtife:. High-level Petri- Graphical Editor Sun 

Commercial Nets Token Game Animation HP 
(academic Petri-Nets with Fast Simulation Silicon Graphics 
discount) Time Simple Performance Linux 

Analysis MS Windows 

Report generator 

C code generator 
CPN-AMI High-level Petri- Graphical Editor Sun 

Freeo! Nets Fast Simulation Linux 

charge PlacelTransition State Spaces Macintosh 

Nets Place Invariants 

Transition Invariants 

Structural Analysis 

Services for modular 

modelIing 
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DaNAMlCS High-level Petri- Graphical Editor Java 

Commercial Nets Token Game Animation 

Stochastic Petri- Fast Simulation 

Nets State Spaces 

Place Invariants 

Transition Invariants 

Structural Analysis 

Simple Perfonnance 

Analysis 

Advanced Perfonnance 

Anal~sis 
Design/CPN High-level Petri- Graphical Editor Sun 

Free of Nets Token Game Animation HP 

charge Petri-Nets with Fast Simulation Silicon Graphics 

Time State Spaces Linux 

Simple Perfonnance 

Analysis 

Interchange File Fonnat 
GreatSPN High-level Petri- Graphical Editor Sun 

Commercial Nets Token Game Animation Linux 

(freefor Stochastic Petri- Fast Simulation 

academic Nets State Spaces 

purposes) Petri-Nets with Condensed State Spaces 

Time Place Invariants 

Transition Invariants 

Structural Analysi s 

Advanced Perfonnance 

Analysis 
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INCOME High-level Petri- Graphical Editor Sun 

Process Nets Token Game Animation HP 
Designer Stochastic Petri- Fast Simulation Silicon Graphics 
Commercial Nets Transition Invariants Linux 
(freefor Petri-Nets with Net Reductions MS Windows 
academic Time Structural Analysis Java 
purposes) Simple Performance 

Analysis 

Advanced Performance 

Analysis 

Interchange File Format 

Interfaces to workflow 

engines, CASE tools, 

integrated document 

management, process 

monitoring 
Moses Tool High-level Petri- Graphical Editor Sun 

Suit Nets Token Game Animation Linux 

Free of Stochastic Petri- Fast Simulation MS Windows 

charge Nets Java 

Petri-Nets with User-extendable 

Time 
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PACE Object-oriented Graphical Editor Sun 

Commercial PNs Token Game Animation MS Windows 

(academic High-level Petri- Fast Simulation 

discount) Nets Net Reductions 

Placerrransition 

Nets Fuzzy Modelling 

Stochastic Petri-

Nets 

Petri-Nets with 

Time 

PetriSim High-level Petri- Graphical Editor MS DOS 

Freeo! Nets Fast Simulation 

charge Placerrransition 

Nets 

Petri-Nets with 

Time 
RENEW Object-oriented Graphical Editor Java 

Freeo! PNs Token Game Animation 

charge High-level Petri- Fast Simulation 

Nets Interchange File Format 

Placerrransition 

Nets 

Petri-Nets with 

Time 
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TimeNET High-level Petri- Graphical Editor Sun 

Commercial Nets Token Game Animation Linux 

(free/or Placerrransition Fast Simulation 

academic Nets State Spaces 

purposes) Stochastic Petri- Place Invariants 

Nets Structural Analysis 

Petri-Nets with Simple Performance 

Time Analysis 

Advanced Performance 

Analysis 

Interchange File Format 
Visual Object Placerrransition Graphical Editor MS Windows 

Net++ Nets Token Game Animation 

Free 0/ Petri-Nets with Fast Simulation 

charge Time Structural Analysis 

Simple Performance 

Analysis 

Supports object hierarchies 
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iv. Case Study Tabulated Results 

iv.I. Case Study I 

Trace no Active Node HurstvaIue r'value 
I e5 0.8189 0.9701 

2 e4 0.7984 0.9520 

3 e3 0.8648 0.9628 

4 e2 0.8936 0.9657 

5 el 0.9146 0.9818 

6 d5 0.9006 0.9938 

7 d4 0.8822 0.9760 

8 d3 0.7201 0.9261 

9 d2 0.7248 0.9211 

10 dl 0.9062 0.9723 
11 c5 1.0451 0.9489 

12 c4 0.9780 0.9663 

13 c3 0.6299 0.8575 

14 c2 0.6509 0.8998 

15 cl 0.8624 0.9627 

16 b5 0.9680 0.9899 
17 b4 1.0112 0.9863 

18 b3 0.9633 0.9615 
19 b2 0.7425 0.9846 

20 bl 0.8473 0.9669 

21 as 0.9794 0.9828 

22 a4 1.0288 0.9801 

23 a3 0.9962 0.9743 

24 a2 0.8165 0.9732 

25 al 0.8398 0.9687 
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iv.2. Case Study 2 

Trace DO Active Node Hunt value r'value 
I e5 0.7358 0.9261 
2 e4 0.6898 0.9619 
3 e3 0.6845 0.9532 
4 e2 0.7365 0.9800 
5 el 0.8036 0.9813 
6 d5 0.6742 0.9700 
7 d4 0.6913 0.9146 
8 d3 0.4947 0.8364 
9 d2 0.5873 0.9284 
10 dl 0.7939 0.9877 
11 c5 0.6876 0.9738 
12 c4 0.5522 0.8096 
13 c3 0.7783 0.9012 
14 c2 0.5768 0.8273 
15 cl 0.7434 0.9626 
16 b5 0.6799 0.9449 
17 b4 0.5126 0.9045 
18 b3 0.5381 0.8842 
19 b2 0.5163 0.8537 
20 bl 0.5482 0.8183 
21 a5 0.6942 0.9479 
22 34 0.6596 0.9411 
23 a3 0.6765 0.9468 
24 a2 0.6511 0.9033 
25 31 0.6337 0.9128 
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iv.3. Case Study 3 

Trace no Active Node Burst value r value 
I e5 0.7700 0.9736 
2 e4 0.8383 0.9580 
3 e3 0.8926 0.9789 
4 e2 0.8708 0.%70 
5 el 0.8834 0.9783 
6 d5 0.9176 0.9914 
7 d4 0.9126 0.9796 
8 d3 0.8025 0.9841 
9 d2 0.7125 0.9264 
10 dl 0.8656 0.%93 
11 c5 1.0063 0.%19 
12 c4 1.0057 0.9643 
\3 c3 0.6187 0.9406 
14 c2 0.8176 0.9720 
15 cl 0.8779 0.9787 
16 b5 0.9878 0.9751 
17 b4 1.0160 0.9701 
18 b3 1.0561 0.9508 
19 b2 0.7821 0.9568 
20 bl 0.8756 0.9779 
21 a5 0.9735 0.9893 
22 a4 0.9615 0.9835 
23 a3 0.9482 0.9898 
24 a2 0.8948 0.%92 
25 al 0.8629 0.9721 
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iv.4. Case Study 4 

Trace no Active Node Hnrstvalne r'value 
I e5 0.7030 0.9888 
2 e4 0.7672 0.9889 
3 e3 0.7740 0.9894 
4 e2 0.8969 0.9673 
5 el 0.7898 0.9920 
6 d5 0.7358 0.9811 
7 d4 0.7188 0.9786 
8 d3 0.7908 0.9921 
9 d2 0.8372 0.9838 
10 dl 0.6771 0.9908 
11 c5 0.8021 0.9771 
12 c4 0.7969 0.9790 
13 c3 0.9329 0.9760 
14 c2 0.8605 0.9809 
15 cl 0.7009 0.9824 
16 b5 0.7526 0.9820 
17 b4 0.8570 0.9786 
18 b3 0.9356 0.9783 
19 b2 0.9381 0.9780 
20 bl 0.8579 0.9799 
21 as 0.5945 0.9795 
22 a4 0.7822 0.9901 
23 a3 0.7060 0.9860 
24 a2 0.7748 0.9921 
25 al 0.8389 0.9797 
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iv.5. Case Study 5 

Tnu:e DO Active Node Burstvaloe r'value 
I e5 0.7038 0.9353 
2 e4 0.7193 0.9473 
3 e3 0.8329 0.9760 
4 e2 0.8209 0.9698 
5 el 0.8711 0.9739 
6 d5 0.7020 0.9326 
7 d4 0.7323 0.9704 
8 d3 0.7966 0.8765 
9 d2 0.7976 0.8676 
10 dl 0.7286 0.9387 
11 c5 0.8281 0.9863 
12 c4 0.7044 0.9631 
13 c3 0.7205 0.9299 
14 c2 0.8717 0.9255 
15 cl 0.7494 0.9601 
16 b5 0.7747 0.9806 
17 b4 0.6585 0.9304 
18 b3 0.4985 0.8770 
19 b2 0.8684 0.9719 
20 bl 0.8611 0.9758 
21 a5 0.8517 0.9712 
22 a4 0.7092 0.9634 
23 a3 0.7766 0.9634 
24 a2 0.8216 0.9724 
25 al 0.8927 0.9733 

225 



Emergence in Active Networks Appendix iv 

iv.6. Case Study 6 

Tra£e DO Active Node Burst value r'value 
I e5 0.9316 0.9828 
2 e4 0.9349 0.9824 
3 e3 0.8694 0.9802 
4 e2 0.7924 0.9840 
5 el 0.7884 0.9576 
6 d5 0.8214 0.9671 
7 d4 0.7627 0.9550 
8 d3 0.8567 0.8652 
9 d2 0.7512 0.9048 
10 dl 0.7855 0.9615 
11 c5 0.8389 0.9654 
12 c4 0.7789 0.8956 
13 c3 0.6083 0.8504 
14 c2 0.6131 0.7901 
15 cl 0.7967 0.9600 
16 b5 0.9171 0.9727 
17 b4 0.8758 0.9865 
18 b3 0.6292 0.8659 
19 b2 0.5154 0.7209 
20 bl 0.7033 0.9259 
21 as 0.7858 0.9450 
22 a4 0.9213 0.9802 
23 a3 0.8162 0.9534 
24 a2 0.7060 0.8714 
25 al 0.7269 0.9105 
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