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ABSTRACT 

A selection of cleaning procedures are discussed which may be used to remove 

epoxide resin flash contamination bonded on metal and carbon fibre reinforced 

composite mould tooling that is used in the aerospace industry. 

Laser ablation, dry ice blasting and chemical cleaning using sodium hydride are 

three cleaning procedures studied in depth and have been used to treat a range 

of industrially sourced and model substrates, and contaminants. The 

effectiveness of the different cleaning regimes have been evaluated using 

Scanning Electron Microscopy, Atomic Force Microscopy, Auger Electron 

Spectroscopy, X-ray Photoelectron Spectroscopy and other analytical 

characterisation techniques. 

The necessity to clean aerospace tooling arises when moulded parts cannot be 

easily released from mould tooling and this is associated with mould release 

residues that have built up over a number of moulding cycles and eventually 

cause the moulding to stick. A comprehensive literature review of non-stick 

coatings is given and alternative mould non-silicone based release coatings are 

evaluated using the above analytical techniques. Coatings investigated include; 

fluoroalkylsilane, fluoropolymers and metal-fluoropolymer composites and the 

problems and merits associated with each are discussed. 
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Chapter 1. Introduction 

1.1. Aims and outline of work 

There are two broad aims of this thesis. Firstly, it seeks to investigate and evaluate 

mould-cleaning technologies that can quickly and completely remove fully bonded 

epoxide resin from both metal and composite tooling used in the aerospace industry. 

The second aim is to investigate and evaluate alternative external mould release 

agents applicable to such tooling, using a current, widely used release agent as a 

benchmark standard, and to determine what properties a mould release agent should 

possess for optimum performance. These two goals are intimately linked since the 

successful application and subsequent performance of a mould release agent requires 

that it be applied to a clean moulding surface. 

These objectives are also linked by the need to develop solutions that are 

environmentally benign and so satisfy international legislation that now restricts the 

use of solvents that are both toxic and harmful to the environment. 

Cleaning methods evaluated include: laser cleaning, dry ice blasting and chemical 

reduction cleaning using sodium hydride in a bath of molten sodium hydroxide. 

Alternative fluorinated polymer mould releases and non-stick coatings have been 

evaluated as replacements for the current silicone based mould release that is used in 

the aerospace industry. Chronologically, research on mould cleaning technologies was 

undertaken first and followed by an investigation of mould release agents and it is 

easier to present the work using this broad division. This research is focussed on the 

aerospace industry where the practical problems associated with moulding hinder 

production. Bombardier Aerospace in Belfast have supported this work and supplied 

many of the materials required. 

Bombardier Aerospace is the third largest civil airframe manufacturer in the world 

with a multi-billion pound annual turnover. Business aircraft and regional airliners 

make up the majority of this income. At present Bombardier's site in Belfast has 

facilities for the design, manufacture and support of aircraft fuselages, wing 
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components, and engine nacelles, for both Bombardier aircraft programs and other 

aircraft manufacturers. It also specialises in composites, metal bonding, and 

computer-aided design/manufacture. Composite materials are usually made up from 

two or more phases that are combined to provide properties that the individual 

constituents themselves cannot provide. The continuous phase in a composite is 

referred to as the matrix, while the other phase or phases provide reinforcement. 

Metal moulds used to fabricate airframe components have a range of sizes from small 

tooling perhaps one square metre in total area for an intricate and complex shaped 

component such as an aircraft door to tooling that may be tens of square metres in 

surface area, weighing many metric tonnes, for part of an aeroplane fuselage. Mould 

tooling c'an be made from a variety of materials such as steel, nickel, or carbon-fibre 

composite, whose coefficient of thermal expansion is chosen to be compatible with 

the part to be moulded over the curing cycle to avoid stresses associated with 

differential expansion. Such tools are very expensive to manufacture. Despite the use 

of semi-permanent mould release agents, the drive for ever shorter moulding cycle 

times to reduce production costs can cause moulding residues to accumulate after 

many production cycles to a level where mould sticking or fouling can occur. 

Manually intensive rotary abrasive methods are currently used to clean contaminated 

metal tooling but damage it in the process and incur a significant cost in downtime 

when the moulding tool cannot be used. 

Industrial cleaning processes, in general, concentrate on substrate degreasing and 

removal of oxide scale or strongly absorbed contaminant layers. Environmental, 

health and safety legislation are acting as driving forces to develop new cleaning 

methods. Solvent-based industrial scale cleaning solutions may involve hazardous 

methylene chloride or methyl ethyl ketone (MEK) and inevitably produce large 

vo lumes oftoxic waste with requisite disposal problems. 

The research undertaken here is differentiated from these cleaning methods because 

the requirement is to remove fully crosslinked and bonded epoxide resin from metal 

mould tooling by such means that the substrate tooling is undamaged. To completely 

remove such contamination quickly implies that an energetic cleaning process is 

required. The application is particularly challenging because any cleaning method has 

2 



to be cost effective and capable of cleaning both small and very large mould tooling. 

Some acceptable cleaning solutions developed for the metal finishing industry could 

be applied to small mould tooling examples such as that used to mould the aircraft 

door already mentioned but would be impractical and uneconomic for much larger 

aircraft fuselage tooling. 

Mould cleaning for rubber tyre moulds dominates the relevant literature with dry ice 

pellet blasting or laser cleaning being preferred solutions and the latter can be fully 

automated but can this technology translate to aerospace tooling and would it be 

viable for composite tooling ? Both techniques are superior cleaning solutions in 

comparison to mechanical cleaning using abrasive grits. 

The capital and running costs associated with fully automated cleaning systems are 

significant when large surfaces have to be cleaned. Safety in the workplace now 

places stringent requirements on employers and powerful laser cleaning solutions 

using invisible beams of infrared radiation such as C02 lasers require isolation cells 

with multiple safety measures to protect staff. Safe enclosures do not add substantial 

cost to laser systems used for cleaning small parts but escalate dramatically when 

large surface areas have to be cleaned. Difficulties are encountered in cleaning 

process automation if the contamination is worse in some areas than others and if the 

geometry of the tool varies. The ability of a human operative to judge how much 

effort is required to clean a given area and apply a hand held cleaning tool to that area 

offers a very substantial cost saving over a computer controlled robotic system. A 

robot is a poor substitute for an intelligent human operative. A laser less powerful 

than that of a CO2 laser, however, would be safer to use and more flexible but this 

would compromise cleaning speed. In evaluating cleaning options, pragmatism has to 

be married to the rigour required for an academic research dissertation and this is 

particularly challenging. Some very diverse topics are discussed and the scope and 

breadth of the research means that only some topics such as laser cleaning can be 

explored in detail in the time available. Also it is significant that the existing 

published literature covering some aspects of the research is very limited. 

A systematic research approach might appraise a potential cleaning solution against a 

range of real aerospace tooling samples, examining areas where mould sticking was 
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severe, characterising the contamination present and then optimising the cleaning 

process variables. For a variety of commercial reasons it was only possible to obtain a 

few examples of contaminated tooling from Bombardier and it was agreed that a 

"worse case" sample should be prepared and used as a benchmark against which to 

assess a cleaning technology. For this reason it was decided to use a fully cured 

epoxide resin as representative of the contamination. This was bonded on steel, nickel 

and composite substrates. On mould tooling other contaminants such as degraded 

silicone release agents would also be present but the scenario is not unrealistic since 

tool cleaning invariably includes the scraping of the tool surface to remove resin flash. 

The need to clean a mould in the first place arises because of mould fouling or 

sticking in which difficulty is experienced in removing a moulded part from the tool 

after a number of successful moulding cycles. Production imperatives again drive the 

need to maximise the number of moulding cycles that can be achieved before the 

moulding tool surface has to be reconditioned and fresh mould release agent applied 

to the cleaned surface. As with cleaning solvents, enviromnental legislation now 

impedes the use of chlorofluorocarbon (CFC) propellants traditionally used for the 

application of mould release by aerosol spray and the aerospace industry is reviewing 

the potential for water-based semi-permanent mould releases. Economic and 

legislative influences thus make it prudent to evaluate different chemistries that show 

promise of producing surface coatings possessing low surface energy and low 

coefficients of friction. Research into these and determining the optimum properties 

required by a mould release constitutes the second part of this research. 
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Chapter 2. Surface Cleaning Technologies 

2.1 Introduction to Cleaning Methods 

The cleaning of epoxide resin bonded onto metal and composite surfaces presents a 

challenging problem for any particular cleaning technique. The cleaning requirements 

for aerospace mould tooling were introduced earlier and it was identified that a 

chosen cleaning solution needs to satisfy the following criteria: 

(i) capable of removing cured epoxide resin chemically and mechanically 

bonded to a surface 

(ii) produce little or no damage to the substrate 

(iii) no volatile and toxic organic solvents used 

(iv) rapid cleaning of both small and large surface areas possible 

(v) competitive and cost effective solution 

Many different cleaning technologies are used in the metal finishing industry and 

some are appropriate in this application. Since aggressive chemicals would either 

damage the tooling or pose environmental pollution threats, a review of the literature 

has identified the following appropriate cleaning technologies: 

(i) Laser ablation 

(ii) Dry ice pellet blasting 

(iii) Dry ice blasting and ultra-violet light 

(iv) Cleaning using a fused alkali bath 

(v) Ultrasonic cleaning 

(vi) Plasma cleaning 

(vii) High pressure water jet cleaning 

The blasting techniques listed use dry ice and water but other media can be used 

depending on the application. Plastic media particles can be used dry and accelerated 

using compressed gas to impact with the surface and remove contamination. 

Alternatively the plastic media can be dispersed in water to form slurry and this used 

in a high pressure blasting system. 

The first technology, laser ablation, has been studied in detail and its main 

commercial rival is dry ice blasting. Both have advantages and disadvantages as will 
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be discussed but one of the disadvantages they both share is that they are line-of-sight 

cleaning procedures unsuitable for complex shapes with re-entrant angles. The third 

cleaning solution combines the merits of cryogenic blasting to remove gross 

contamination with a photonic process, which removes any residual contamination to 

produce a very clean surface. The fourth cleaning technique uses a molten salt bath 

and is used for metal finishing of castings. Very few references to this technique 

occur in the literature. It can also be used to clean complex shaped products such as 

engine blocks but for practical reasons it would be limited to comparatively small 

examples of metal mould tooling since these have to be lowered into a treatment bath. 

The same size restriction is true of ultrasonic cleaning in which parts are inunersed in 

baths containing either aqueous detergent solutions or organic degreasing chemicals. 

Radio frequency plasma cleaning using oxygen at Iow pressure can be an effective 

cleaning technology but traditionally has been extremely slow in comparison to the 

other cleaning techniques listed. High pressure water jets are often used industrially to 

decontaminate surfaces such as ships hulls but the large volumes of water used would 

probably be incompatible with aerospace mould tooling and that production 

environment. 

2.2 Introduction to Laser Cleaning 

Lasers were developed in the 1960's, the He-Ne laser being the first laser to emit a 

continuous beam and the lasing action could be initiated by an electric discharge 

rather than the intense discharge of photons from a flash lamp. 

The light emitted by a laser is remarkable for being coherent. It is composed of 

regular and continuous waves, like those emitted at much lower frequencies by radio 

transmitters, and in this respect it differs from the incoherent light emitted by other 

sources of light such as stars, candle or electric lamps. The development of laser 

technology has been phenomenal and this growth has accelerated in the last decade 

spurred by great advances in telecommunication technology. Even for those scientists 

working in the laser industry, it is almost impossible to keep pace with the technology 

since its applications permeate into most aspects of everyday life. 
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----------------------------------------------------------------- -

High power gas and solid-state lasers are widely used in industry for materials 

processing applications [I) such as cutting, drilling, welding and marking. The 

requirements for these applications are very different to those for laser cleaning as 

discussed in section 2.2.2. Laser cleaning is a specialised laser application, but, in 

common with all laser interactions with materials, it is a complex process to describe 

and the present study has to restrict itself to the basic pr inciples involved since laser 

cleaning is only one of several mould cleaning methods that are discussed. 

The greatest growth area for laser technology has been in semiconductor lasers whose 

output power is generally considerably lower than lasers that have been used for 

cleaning purposes. Semiconductor based lasers find most frequent application in 

telecommunications. Only relatively recently are more powerful lasers being 

constructed using semiconductor materials. At one time lasers were only ava ilable 

that operated at certain output wavelengths but the situation today is sllch that the user 

can specifY the output wavelength (or frequency) required and be almost certain that a 

laser type can be found which will operate at the required frequency or can be 

modified to operate at it by frequency doubling or tripling techniques. 

Figure I . Laser cleaning of stone 

gargoyle (After Agapaki [7J) 

The use of lasers for cleaning applications in conservation and art restoration was 

pioneered by John Asmus in 1972 [2 - 5) and over the last thirty years has become a 

mature technology and many publications cover the subject in depth [6] Aspects of 

laser cleaning for art conservation are also relevant in this work since the removal of 

lacquers and resins has been studied using different types of laser although the 
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substrates are invariably non-metallic. Cleaning of stonework by sandblasting on 

ancient buildings is undesirable as it is destructive and this makes laser cleaning 

attractive. 

Laser cleaning offers the advantage that it is both non-abrasive and dispenses with the 

need to use aggressive chemicals that damage artefacts. Pulsed lasers are almost 

exclusively used in this application as the energy supplied to a surface by a very short 

intense laser pulse cannot dissipate and so blasts off any contaminant layer. Part of the 

irradiated surface may vaporize and induced stress waves may pulverize the 

remainder such that it can be suctioned away as a particulate dust and collected in a 

filtration system. Figure I shows the removal of black encrustation from a stone 

grotesque at Lincoln Cathedral using a Neodynium Yttrium Aluminium Garnet 

(Nd:YAG) laser. 

Laser cleaning has also made an impact in the semiconductor industry and within the 

last decade has emerged as a viable solution to problems encountered in the 

manufacture of integrated circuits, where removal of very fine particulate material is 

required from semiconductor materials and where other cleaning methods are 

unsuitable [81, [91, A huge amount of research has been published and continues to be 

published in these areas [101. 

In laser cleaning, size scales up the capital and infrastructure costs disproportionately 

and in a cost driven production environment, such as the aerospace industry, the 

economics do not favour a high cost technology over a lower cost solution. In 

contrast, the market for small portable or robotically controlled laser cleaning 

systems, particularly in rubber mould manufacture and medium scale industrial 

cleaning applications is already satisfied by laser manufacturers, and the technology 

competes with other physical cleaning methods such as dry-ice blasting. The research 

undertaken in this thesis presents evidence to suggest that laser cleaning can be a 

viable and competitive solution for large area industrial cleaning also. 

The specific requirement to clean large surface areas quickly using a laser simplifies 

the types of laser that need to be considered. Lasers can be classified according to the 

type of material used for the active medium and the temporal characteristics of the 

8 



output. It was envisaged at the commencement of the present study that carbon 

dioxide lasers offered the best potential for laser cleaning of aerospace moulds but it 

was quickly realised that other types of lasers are used for cleaning applications. In 

total we are concerned with three laser types: 

(i) the Excimer laser whose output radiation is in the ultraviolet region of the 

electromagnetic spectrum, typically 248nm; 

(ii) the Nd:YAG laser whose output is in the near infra-red, typically at 1064nm, 

and; 

(iii) the Carbon dioxide laser with output in the far infra-red between 9000nm and 

11000nm, typically 10600nm. 

When the output of these lasers is pulsed rather than continuous, all three can be used 

for laser cleaning. The selection of laser type for a particular laser cleaning 

application depends on the properties of the materials being cleaned. Each of the laser 

types will be discussed separately in section 2.2.2. 

2.2.1 Laser Paint Stripping 

The use of lasers for large scale cleaning applications is almost exclusively 

concerned with the stripping of paint from Airbus and similar size aircraft fuselages 

and several manufacturing companies have developed laser-cleaning systems. 

Stripping of paint from aircraft is periodically necessary to allow metallurgical 

inspection for metal fatigue and is a mandatory safety procedure for passenger 

carrying aircraft. The literature contains many references to aircraft paint stripping. 

Three technologies are used: -

(i) Tranverse Excited Atmospheric (TEA) C02 pulsed lasers 

(ii) Nd:Y AG lasers 

(iii) High intensity ultra-violet flashlamps 

Manz [l1J discusses laser ablation using a 2KW TEA CO2 Pulsed laser that was 

developed for cleaning the Airbus A320 and states that the system is most efficient at 

removing layers of paint up to 500 micrometres thickness at rates of up to 8 square 
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metres per hour (22 square centimetres per second). Capital and infrastructure costs 

dominate the process. Schulz [12J, working with Lufthansa also describes a similar 

application. At present these systems are bespoke and capital costs upwards of one 

million pounds are not unrealistic. Tsunemi [13) and, separately, Schweizer [l4J 

describe different 2kW TEA C02 pulsed laser systems deVeloped for such paint 

stripping applications. Powerful multi-kilowatt carbon dioxide laser systems have 

been built by the United States military and have been applied to the paint stripping of 

aircraft, achieving reported stripping rates as high as 30 to 60 square metres per hour 

(83 to 166 square centimetres per second). Walters [lSJ comprehensively reviews the 

different laser cleaning technologies and shows how Nd: Y AG lasers are also effective 

for laser cleaning. Patel [l6) has also evaluated the use of Nd:YAG laser technology 

for paint stripping and it has been shown to be effective for removing paint from 

metal substrates but reported that paint removal from composite structures poses 

greater difficulties. 

Successful paint stripping applications are also claimed for high intensity ultra-violet 

flash lamps and capital costs for these systems are considerably less than for the laser­

based cleaning technologies. Slife [17J describes the successful stripping of Radomes 

and composites using a combination of xenon flash lamps and dry-ice pellet cleaning. 

A similar patented ultra-violet flash lamp technology is more fully described by 

Engelsberg [l8J. Removal of paint or other contamination from composites presents 

special problems particularly for laser cleaning as discussed by Zafiropulos [19J. 

It is useful to briefly consider how the requirements of this application are satisfied 

using lasers and then contrast this against the requirements for large scale cleaning of 

contaminants from mould tooling. 

Aircraft bodies are painted to provide protection from corrosion and to add decorative 

appeal. The paint is applied in layers with the total thickness of the coatings being, 

typically, several hundred micrometres. The substrate is often metal, though could be 

a polymer composite material. The paint layers are applied so that the final thickness 

is uniform over the area painted. The presence of pigmentation in the paint greatly 

enhances the absorptive properties of the paint for incident laser radiation. 
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Generally, there will exist a particular threshold radiant energy density (fluence) for 

any given material below which no laser ablation will occur (figure 2). The threshold 

fluence is a function of the laser absorption ofthe material. 

Laser stripping requires precise control over thickness of paint that is removed during 

one or more passes of the laser over the area to be stripped. Lasers with output 

wavelengths in the ultra-violet region of the electromagnetic spectrum are able to 

offer ten times the precision at removing distinct paint layers than is possible with 

laser output wavelengths in the infra-red or far infra-red. Lasers with ultra-violet 

output wavelengths do not, however, possess high enough fluences to strip hundreds 

of micrometres of paint covering large areas in a reasonable length of time. These 

lasers are more suited to medical and electronic laser ablation applications than heavy 

industrial use though they can be very effectively used in cutting plastics. The power 

density requirements for large area paint stripping are only satisfied with lasers that 

operate at infrared wavelengths and precision at removing defined layers of paint is 

achieved by using very short nanosecond laser pulses of high intensity. In the case of 

cleaning paint from carbon fibre or Kevlar composite substrates, these materials react 

to the laser in a similar way to the paint and so process control is difficult though not 

impossible. Pantelakis et al [20] have shown that paint stripping from graphite-epoxide 

and kevlar-epoxide aerospace composites using excimer lasers also results in 

significant degradation of flexural strength as measured by four-point bending tests. It 
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must be remembered though, that the composites concerned in paint stripping are 

those parts that have been moulded using a tool with the consequence that any 

degradation of flexural strength becomes serious. The same consideration does not 

necessarily apply to a composite tool that is used to mould a composite part because 

the former is not subjected to appreciable loading in a situation where failure would 

have catastrophic consequences. Some degree of surface damage may be acceptable 

to the aerospace manufacturer provided it is less than would be obtained using other 

cleaning technologies and commensurate with that level of damage that occurs as the 

tool is used and becomes worn. 

It is apparent that in such paint stripping applications, the laser ablation process must 

be carefully controlled and this will significantly reduce cleaning rates to the extent 

that the laser cleaning technology may not be the most cost effective solution. 

The contamination to be removed from large areas of metal mould tooling is 

invariably non-uniform in thickness and patchy so that some areas are relatively clean 

whilst others are contaminated. The texture of the contamination may also be variable 

and it is unlikely to possess any strong pigmentation. Removal of the contamination 

does not, however, have to be precisely controlled except perhaps where it is present 

on composite tooling substrates. Because very short duration pulsed lasers are used 

for cleaning, there is no opportunity for heat to be conducted to a metal substrate and 

thus the high reflectivity of metals at room temperature tooling substrates means that 

the process is self-limiting with ablation ceasing once the organic contamination had 

been removed. 

The ablation of epoxide resin coatings bonded to metal substrates is of primary 

interest in the present study and requires that the optical absorption of epoxide resin 

be considered as well as that of the metal substrate. The requirement exists that 

substrate damage must be avoided and so it is necessary to also consider what surface 

temperatures are likely to be generated during laser ablation. Finally laser ablation 

generates very high surface pressures which assist in the removal of bonded 

contamination and it is also necessary to consider these kinetic effects. 
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2.2.2 Laser ablation processes 

Laser ablation is the ejection of material from a surface as a result of intense 

irradiation. Interactions between lasers and materials are complex, often with several 

processes occurring together or within a very short period of time. Explanations of 

these interactions are inevitably simplifications and it is necessary to use assumptions 

to separate out the multiple dependent variables. 

Generally, laser ablation is due to photochemical or thermal processes or a 

combination of the two. Photochemical processes are dominant where ultra-violet 

wavelength lasers impinge on materials since these are energetic enough to induce 

molecular dissociation. Because the products of such dissociation possess a larger 

specific volume, detonation of the material occurs with a micro-explosion at the point 

of impact. Where the laser output is in the near or far infrared, a thermal process 

dominates the ablation since the incident energy is only sufficient to excite molecular 

vibrational modes, which cause localised heating. Since the laser pulse is very intense 

and very short, the material can instantaneously vaporise which also gives rise to a 

micro-explosion. These localised volume explosions generate an acoustic pulse 

audible as a "snapping sound". These acoustic pulses can be used to monitor the laser 

ablation process since the amplitude of the pulses decreases as a highly reflecting 

substrate is approached. Ultrasound can be produced by focussed high power pulsed 

lasers due to the recoil force exerted by the ejected matter and the high pressure from 

the rapidly expanding vaporised material. At the very high power densities occurring 

when a focussed beam is used, the vapour cloud is ionised and forms a plasma. 

Stratoudaki [21J discusses how this forms the basis of a new non-destructive technique, 

laser based ultrasound (LBU), for the rapid detection of flaws and defects in carbon 

fibre reinforced composite components used in the aerospace industry. The technique 

combines the advantage of a non-contact optical technique with the ability of 

ultrasonics to detect flaws deep inside thick structures by virtue of the shock waves 

associated with pulsed lasers [22J. 

Excimer lasers operating at ultra-violet wavelengths are successful at processing 

many organic polymers [23J and are effective in laser cleaning but the relatively high 

absorptivity of metals at ultra-violet wavelengths is a problem where effects on a 
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metal substrate have to be considered. Excimer gas lasers are also popular in laser eye 

surgery for correcting myopia (near sightedness). The short ultra-violet wavelengtb 

output from these lasers can reshape the cornea by ablating its surface and the ablation 

rate is an almost linear function ofthe number of pulses applied for biological tissue. 

This allows the ablation process to be precisely applied. The term excimer is a 

contraction of "excited dimmer" and refers to a molecule composed of two identical 

atoms that exists only in its excited state. A nitrogen laser would be an example of 

this. Excimer lasers in contrast use exciplexes that are the same as excimers but 

where the atoms can be different. Examples of excimer lasers are KrF and XeCI. 

Atoms with high electro-affinity such as fluorine and chlorine readily strip the outer 

orbital electrons from noble gas atoms (Kr, Xe) to form the excited dimmer. 

The excimer laser also finds wide application in plastics processing. In plastics the 

molecular structures possess absorption bands that match the ultra-violet output of 

excimer lasers so that coupling is efficient and the materials strongly absorb the 

incident radiation causing dissociation. The predominant laser interaction mode is 

thus photochemical in nature. Strong absorption gives rise to heating in a material for 

long duration laser pulses or pulses that are applied more or less continuously and 

because the radiation is so readily absorbed, very little penetrates deeper into the 

surface. The penetration depth of excimer lasers for plastics are typically 1-10 

micrometres per pulse and therefore a high pulse repetition frequency is used for 

plastics processing. In such applications the laser beam is highly focussed and shaped 

so that the beam profile is optimised for drilling and cutting. Lasers with only 

moderate power outputs have sufficient energy to drill and cut through plastic 

materials when used in this way. The requirement for laser cleaning, however, is that 

the laser beam is greatly defocused to facilitate the cleaning of large surface areas 

quickly and this means that much higher laser power outputs are required. The output 

powers of excimer laser are insufficient to satisfy this requirement and this restricts 

their application to less demanding material processing applications. 

The situation would be different if organic material needed to be removed from a 

composite tooling surface. Cleaning composite tools in the aerospace industry is 

particularly difficult and much slower cleaning rates are accepted to avoid substrate 

damage. Given that the requirement for rapid cleaning of large areas is relaxed, more 
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focussed beams can be used and the ability of excimer lasers to control the amount of 

material removed quite precisely means that, although absorption coefficients would 

be similar for both contaminant and composite tooling, the process could be stopped 

at the resin rich gel coat layer and the laser would have insufficient power per pulse to 

expose the carbon fibres below. This could be effective in applications where the 

contaminant layer was uniformly thin and homogeneous, such that the process could 

be automated and stopped after a fixed number of laser pulses. However, if 

contamination were patchy and less uniform, then automation would be more 

difficult. On-line techniques to spectroscopically analyse the ablated material provide 

a means of controlling the cleaning process. These will be discussed in section 5.3 .1. 

Laser cleaning of vulcanising residues from rubber tyre moulds is the most commonly 

encountered commercial application of laser cleaning and it has proved to be 

successful and competitive and utilizes Nd:YAG laser technology. Robotically 

controlled solid-state lasers can clean approximately one square metre surface area 

within an hour (2.8 square centimetres per second) [241. This is approximately one 

order of magnitude slower at best than the cleaning rates associated with TEA CO2 

lasers developed for paint stripping (section 2.2.1). However, the capital cost of 

Nd:Y AG lasers is much less than TEA C02 lasers. 

A recent novel and successful application of laser cleaning utilizing a Nd:YAG laser 

has been to clean leaves from railway tracks [251. Although lasers can be used to 

harden metals by introducing compressive surface stresses, this does not occur under 

the typical operating conmtions used for laser cleaning. 

Reflection of wavelengths for Nd:YAG lasers from metal surfaces is greater and their 

ability to ablate greater depths per pulse is increased compared to the excimer laser. 

Both types of laser energy can be transmitted using glass fibre optics and this has 

significant cost advantages in system design since the laser output can be coupled to 

the cleaning head or gun using a flexible hose which allows a trained operative to 

scan a tool surface with the laser cleaning head, and recognize where contamination 

is especially bad, making several passes over that area. Alternatively the laser output 

is fixed and the work piece is robotically moved but this system could not be used for 

very large areas and heavy mould tooling. 
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Standard glass fibres have a damage threshold for high power laser pulses and this 

limits the pulse width that they can transmit. Typically this is about 60ns for a 

Nd:YAG laser operating at 1064nm (1.06 x 1O·6m) wavelength whereas the optimnm 

pulse duration for a cleaning application is around IOns. The introduction of new fibre 

optic materials is reducing the gap between these two values but it is still significant 

at the present time. Transmission of the laser energy using fibres degrades the output 

intensity profile, which is modulated by strong interference between modes excited in 

the carrying fibres. This has implications in materials processing where precise 

cutting requires a Gaussian shaped beam profile. For laser cleaning, however, the 

output intensity requires a "top-hat" shaped profile since uniform intensity over the 

output beam diameter is required. This can be achieved with Nd:YAG lasers. 

The third laser type mentioned was carbon dioxide, which is the workhorse of 

materials processing and is used to cut and drill metals. Its key properties are that it 

can produce a very high radiant flux density and operate at high power output levels 

continuously. Once again the requirements for optimum laser cleaning are very 

different than those required for metal processing. The output wavelength range is 

strongly absorbed by glass fibres and so these cannot be used as a wave-guide to 

couple the laser source to the work piece. For large area surface cleaning, there are 

significant cost implications not least because gas lasers suitable for cleaning are 

physically large. Such a laser would have to be accommodated on an overhead gantry 

and complex optics used to scan a tool surface. Automation would be required and 

stringent safety protocols implemented. 

2.2.3 Interactions of lasers with materials 

It is necessary to consider the principal types of interaction that occur when a pulse of 

laser energy impinges on a target material. Six interaction mechanisms have been 

identified to date [26J. These are: 

(i) photon pressure 

(ii) selective vaporisation 

(iii) plasma detonation (spallation) evaporation pressure 

(iv) shock waves produced by rapid heating and cooling 
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(v) evaporation pressure 

(vi) photochemical (bond breaking) 

Photon pressure 

This effect is easily demonstrated by holding a thin steel foil at the focus point of a 

TEA CO2 laser. When the laser is fired, the recoil of the foil can be felt and the energy 

is sufficient to deform the metal foil. The effect occurs because such lasers produce a 

very high flux of photons and although the momentum carried by each photon is tiny, 

the cumulative effect is noticeable. Stein [Z7] used the equation 

p=h1A. .................... (1) 

(where p is the photon pressure, h is Planck's constant and A. is the laser wavelength) 

to calculate the photon pressure exerted by a 1 KW COzlaser focussed to a spot of 0.1 

mm diameter and found the photo pressure was 760 N.m-2
• This is a relatively small 

pressure though significant in laser cleaning application where sub-micrometre 

particles need to be removed from semiconductor materials. 

Selective vaporisation 

According to Asmus [5], the laser cleaning of dark encrusted contaminants from stone 

or marble artefacts is largely due to selective absorption in which the colour of the 

contaminant results in stronger absorption relative to the white underlying stone that 

does not absorb. This selective absorption leads to high, localised temperatures 

favouring vaporization and the process occurs using laser pulses in the range 1 x 10-6s 

to I X 1O-3s and relatively low intensity (103 
- 105 W.cm-2

). Cleaning that makes use 

of selective vaporization is very slow, however. 

Spallation 

It has been found that shorter pulses delivered by Q-switched Nd:Y AG lasers (section 

2.3.6.) induce less substrate heating than that generated by longer laser pulses and 

offered faster rates of contaminant removal. Here, the pulse duration is between 5 and 

20 ns with typical flux densities between 107 
- 1010 W.cm-z. At these high flux levels 

surfaces readily absorb sufficient energy to vaporise and high temperatures (104 
- 105 

K) are created in the vapour that becomes partially ionised (forming a plasma) and 
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then absorbs the laser energy strongly. The initial surface vaporisation ceases as the 

target area is now shielded from the laser by the plasma. As the laser pulse continues, 

the plasma absorbs more energy and high pressures are generated in the range 1-

lOOKbar (I01.3MPa - 10.13GPa). This results in a shock wave that compresses the 

surface. When the laser pulse ceases, the plasma dissipates and the surface relaxes 

ejecting a thin surface layer and this process is referred to as spallation. When 

spallation occurs using short laser pulses the effect is described as plasma detonation. 

Shock waves produced by rapid heating and cooling 

Spallation is associated with the creation of a plasma but shock waves can be 

produced that manifest themselves in a cleaning action in the absence of a plasma and 

this is explained as resulting from very rapid heating and cooling of a surface 

irradiated by a short laser pulse that is of insufficient fluence to create a plasma. 

Evaporation pressure 

Where absorption oflaser energy at a surface causes vaporisation but is insufficient to 

generate a plasma the high momentum of the evaporating material will compress air 

between the vapour and the uncompressed ambient air. This will give rise to a shock 

'front at the air/ambient air interface [28], [29] and an associated recoil wave that will 

propagate into the surface [30]. Very high pressures can be generated by such a 

mechanism, which are sufficient to remove organic contaminants. 

Photochemical (bond-breaking) 

In the photochemical mechanism the laser energy couples directly to the molecular 

absorption of surface species causing bond scission and in which little or no heating 

effect occurs. Excimer lasers, already discussed possess this capability by virtue of 

operating at ultra-violet wavelengths. 

Schematically the events occurring when short laser pulses are applied to a target 

surface is depicted in Figure 3. 

Although the synopsis of the principal mechanisms given above describes the current 

understanding of the processes by which material is removed during laser cleaning, 

the laser interactions with surfaces are considerably more complex. One or more of 
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the processes can occur in a very short space of time (nanoseconds) making analysis 

difficult. Absorption and reflection at surfaces, thermal diffusivity and thermal , 
conductivity are all material properties that influence the type of interaction and rate 

of removal. Many of these properties are temperature dependent and this adds further 

complexity. These factors, together with a more detailed explanation of 

thermomechanical effects, are now presented. 

Incident 13.~ beam 

Air 

Generati<m of ultrasound 
Reooil pressure from ablated mllterial 

Figure 3. Laser ablation processes. (After Cooper [6J). 

2.2.3.1 Refraction, Reflection and Absorption 

The refraction of light waves at the surface separating two media of different 

refractive indices (nl and nz where nz> nl) is expressed by Snell's law for refraction: 

nl sin i = nz sin r ................................ (2) 

where "i" and "r" are the angles of incidence and refraction for a beam of light. 

In order to obtain the amplitudes of the reflected and refracted beams it is necessary to 

consider the amplitudes of the tangential components of the electric and magnetic 

fields on the two sides of the boundary. The state of polarization of the beams is thus 

addressed and any phases changes that occur. Such an analysis results in expressions 

of the form: 
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A'/A =( n2 cos i - nl cos r)/ (n2 cos i + nJ cos r) .... (3) [32J 

where A is the amplitude of the incident beam and A' the amplitude of the reflected 

beam. And for the refracted beam of amplitude A", 

A"/A= (2 n2 cos i)/ (n2 cos i + nl cos r) .............. (4) [32J 

In the present analysis it is the reflectance of surfaces which is of most interest and for 

normal incidence equation (3) reduces to 

A' / A = (n2 - nl)/( nz + nl)........................ (5) 

and the reflective power R (proportional to the square of the amplitude) is 

R = [(nz - nJ)/( n2 + nl)f ...................................... (6i53J 

In many cases nJ is the refractive index of air (approximately equal to unity) so 

R = [(nz - 1)/( nz + 1)]2 ........................... (7) 

The equations are only valid really for normal incidence, which simplifies the algebra 

by removing the angle dependent terms. This would be very limiting for ordinary light 

but the nature of laser light and the fact that it is highly directional renders the 

assumption of normal incidence more plausible. 

The above equations apply to media that transmit light energy and these are usually 

insulators such as glass or dielectric coatings. Metals are conductive however, and 

since radiation is electromagnetic in nature, the conductivity leads to a power loss 

since energy is absorbed through Joule heating. Because metals have low emissivity, 

the absorbed heat is not re-radiated which is why shiny metal surfaces such as 

wrenches can get hot when they are left out in the sun. However, metal surfaces 

reflect most radiation at optical and infrared wavelengths that are incident on them. 

Absorption and reflection in such cases occur within a surface layer or skin and which 

is typically between 5 - 10nm in thickness. In metals, conduction band electrons are 

present in this skin and free electrons, which oscillate and reradiate energy without 

disturbing the solid atomic structure, absorb electromagnetic energy. The skin thus 
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shields the interior of the metal and the skin depth depends on the wavelength of the 

incident radiation and the electrical conductivity and permeability of the metal. The 

skin depth 0 for a wavelength of 1064nm (Nd:YAG laser output) is approximately 

5nm. 

The reflectivity of a metal surface is defined not only by refractive index n but also by 

an extinction coefficient k that takes account of the skin effect. This impedance to the 

propagation of radiation is defined in terms of a complex refractive index equal to 

n(1 +ik) . Substituting n(1 +ik) for n2 in equation (7) gives: 

R = [{(n(l+ik) -1}/ {n(n+ik) + l} f 

Jenkins and White [197J describe how techniques of ellipsometry (see section 3.8.4) 

enable values of n and k for a metal to be measured from the phase of reflected 

radiation. 

Metal Refractive Extinction Reflective 
index n coefficient power % 

k 
(for 589nm 
wavelength) 

Steel 2.485 1.381 61.6 
Copper 2.120 1.900 67.3 
Aluminium 1.44 5.230 90.0 
Gold 0.37 7.62 94.1 
Silver 0.177 20.554 99.3 

Table 1. Reflective power of metals calculated using equation (8) using data 

published by Jenkins and White [197J(ignoring imaginary number i). 

It is seen from Table 1, above, that strong absorbance (high values ofk) accompanies 

high reflectance. Steen [27J gives values of n and k for radiation of wavelength 

1064nm (the main lasing wavelength for Nd:YAG lasers). For copper n = 0.15 and k 

= 6.93 giving R = 99% and this trend ofreflectance being higher for infra-red and far 

infrared wavelengths is common to many other metals which has obvious 

implications when laser cleaning employs such wavelengths. Kaye and Laby [34J have 
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published experimental values of reflectance for different wavelengths and this allows 

plots of reflectance against wavelength to be constructed, as shown in figure 4. 

! , 

'.2 0.4 10 20 

Figure 4. Reflectance of metals as a function of 

laser wavelength. (After Wilson [33J) 

Maxwell's equations describing the propagation of electromagnetic radiation can be 

used to derive an expression for the skin depth 1) in nanometres [32]: 

1) = (rcO'flr /lo v)'1I2 ................................ (9) 

where 0' and /lr are the respective conductivity and relative permeability of the metal, 

/lo is the permeability offree space and v the frequency of the incident radiation. 

The skin effect contributes greatly to the absorption of electromagnetic radiation 

incident on metals, as discussed, and since v = cl').. it can be seen that the absorption is 

inversely proportional to the square root of the wavelength of the incident radiation. 

Thus the absorption is less for longer wavelengths than shorter ones. 

The effect of surface roughness is to increase the effective surface area over which the 

incident flux can be absorbed. Surface roughness is usually expressed in terms of the 

international parameter of roughness, Ra. This is the arithmetic mean of the absolute 

departures of the roughness profile from the mean line of the profile measured over an 

assessment length. Another useful parameter is Rt, which is the maximum peak to 

valley height of the profile in the assessment length. 

If the wavelength of the incident radiation (')..) is such that').. » Ra then the effect of 

the surface roughness will be slight and absorption due to multiple reflections or 
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interference will not occur [27], and this is generally satisfied for infrared and far 

infrared wavelengths. 

Another important factor is the fact that the reflectivity of metals decreases as an 

approximately linear function of increasing temperature, as determined by the Drude 

model [35]. For example, the absorptivity (l-R) may as much as double from a 

temperature increase of a few hundred degrees or with a change of state from solid to 

liquid. It is this fact that makes it possible to use lasers for the cutting and drilling of 

metals. As the temperature of a metal surface rises there will be an increase in the 

phonon population causing more phonon-electron energy exchanges. Electron 

interaction with the structure thus increases and the efficiency with which free 

electrons oscillate and re-radiate incident energy is reduced. If the duration of an 

applied and focussed laser pulse is great enough or the repetition frequency high 

enough, a cycle is entered whereby absorption leads to more heating which leads to 

further absorption and eventually a melt zone is formed which is referred to a 

"keyhole". When lasers are used for cutting metals, a coaxial assist gas is used to 

blowout this molten material and allow the laser to cut deeper into the material. Only 

in the case of copper, silver or gold is the reflectivity sufficiently high enough to 

cause difficulties for laser cutting. These metals also possess high thermal 

conductivities and the combination of these properties prevents the establishment of a 

melt zone. 

The skin effect is absent in non-metallic materials and so radiation penetrates deeper 

into the sample, to a depth of the order of micro metres. 

A practical measure of attenuation in insulators and transparent materials is the optical 

penetration depth (L) which can be defined as the reciprocal of the absorption, 

i.e. L= a"!. The absorption coefficient for a material that absorbs strongly has values 

in the order of 106 cm"! and so the penetration depth is very small (a few nanometres). 

Conversely a weak absorber has a-I 0 cm"! and so the penetration depth is five 

orders of magnitude greater than for a strong absorber. 

Unlike metals where radiation is absorbed in the skin depth at the surface, absorption 

in insulators and most semiconductors occurs over the attenuation length, L, which 
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can be much larger than typical skin depths. In the infrared L > 10.4 cm and thus, in 

many instances, heating must be considered to be a volume effect. This is particularly 

valid for heating of thin films where L may exceed the film thickness. 

Stratoudaki [21] has measured the optical absorption depths for Araldite LY 5052 

epoxide resin irradiated using laser pulses from TEA CO2 and Nd:YAG lasers and 

found that a·1 
- 100 micrometres at 10600nm but is 4mm at 1064nm. Comparable 

values were also obtained by Roberts [36] so there is good evidence that the removal of 

epoxide resin coatings on metals using Nd:YAG lasers cannot be due to heating and 

photothermal vaporization. 

2.2.3.2 Heat flow theory 

The literature shows [25] that thermal damage to metal surfaces as a consequence of 

laser cleaning is slight or negligible since.by using high energy laser pulses of very 

short duration the penetration depth of the laser is very small and confined only to the , 
surface layer of the substrate. It is pertinent to discuss some of the underlying heat 

flow theory. 

Considering a block of material of cross-sectional area A, length L and specific heat 

capacity C that is subj ected to a heat flux at one end. The heat is conducted through 

the material to emerge at the other end of the block. In equilibrium, the heat input is 

equal to the heat output but the temperature within the block has risen in response to 

the transfer of heat. IfdQ/dt is the power input then from Fourier's first law 

dQ/dt = KA (To- Tl)/L ................................. (10) 

The thermal conductivity, K, determines the temperature rise (To - T 1) in equilibrium 

in response to dQ/dt. Since (To - Tl) is proportional to K-1, a material with a low 

thermal conductivity exhibits a higher temperature rise than one possessing a larger 

thermal conductivity, in response to the same dQ/dt. 
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The energy ~E stored by a material of mass m that has undergone a temperature rise 

~Tis 

~E = C m ~T .......................................... (11) 

If this incremental expression is integrated over the entire sample, then the excess heat 

stored in the material can be calculated. The magnitudes of C and K detennine the 

rate at which thennal equilibrium is achieved in response to the application of the heat 

source. For transient thennal effects in particular it is useful to introduce another 

parameter called the thermal diffusivity, K, defined as 

K = KI pC ................................................ (12) 

K has the units cm· l 
S·l and p is the sample density (g.cm·\ For most metals thennal 

conductivity and diffusivity decrease as an approximately linear function of 

temperature increase (brass and bronze alloys are exceptions). Specific heat and 

density are also temperature dependent. 

Ready [200J discusses the concept of a thennal time constant representing the time at 

which the rear surface of a metal plate of thickness D and thennal diffusivity K 

reaches a temperature of the same order of magnitude as the front surface where heat 

is absorbed from an applied laser pulse. The thennal time constant"t is expressed as: 

1: = D 2/4K ..........................•..... (13) 

Using this equation Ready calculated the thennal time constants (msec) for plates of 

different thickness and some values are given in Table 2 below. 

Metal ThicknessD ThicknessD Thickness D 

O.l25mm 0.625mm 2.5mm 

Stainless steel 1.0 msec 25 msec 400msec 

Nickel 0.26 msec 6.5 msec 104 msec 

Table 2 .Thennal tIme constants for selected metals. 
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The significance of this data is that if the laser pulse length is shorter than the thermal 

time constant then the laser will not melt through the given sheet thickness. It has to 

be remembered that the majority of applications for high power lasers are for welding 

and cutting where it is desirable to form a melt pool on the surface by laser 

irradiation. To melt thick plates it is necessary to stretch the laser pulse length so that 

it is as long as possible or to repeat the pulses with a very short time delay between 

each pulse so that the laser is applied almost continuously. This is easily achieved 

with CO2 lasers. In contrast the optimum time duration of Q-switched lasers used for 

laser cleaning is about l5nsec and it can thus be readily appreciated that the resultant 

depth of heating is very small. 

These simple heat flow equations are limited in their application and a greater degree 

of mathematical rigour is required to analyse the complex thermodynamics associated 

with the heat flow arising from laser irradiation of a surface. In the present work it is 

important to be able to demonstrate that the temperature rise at the surface of a 

substrate, irradiated under laser cleaning conditions, is not great enough to cause 

significant thermal damage. In applications where lasers are used for cleaning, the 

irradiated area is much greater than the depth (z) to which heat is conducted for the 

duration of the pulse. This simplifies the analysis required so that it is only necessary 

to consider a one-dimensional linear heat flow for a semi-infinite solid. 

This can be expressed by the following differential equation [22J: 

&T(z,t)/8z2 
- OTIK at = -A(z,t)/K ......... (14) 

where T(z,t) is the temperature distribution for a boundary plane z (initially z=O), 

A(z,t) is the heat production per unit volume per unit time, K is the thermal diffusivity 

and K the thermal conductivity. Here the power density of the laser pulse is assumed 

to be sufficient to raise the surface temperature of the irradiated material to its 

vaporisation point in a time shorter than the pulse duration but the latter is great 

enough to allow the vaporised material to move away from the surface creating a 

retreating surface boundary. 
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The solution of this differential equation is discussed by Carslaw and Jaeger [37] in 

their mathematical treatise on the conduction of heat in solids and also by Stein[27]. 

In general analytical solutions to these and similar heat flow equations for different 

models depend on choice of boundary conditions and assumptions made. For the 

above equation an analytical solution can be fDund if it is assumed that the thermal 

properties of the material are independent of temperature, and that the absorbed laser 

flux is uniformly distributed over the irradiated surface with negligible losses. The 

solution to the temperature distribution equation then reduces tD the following fDrm in 

which the temperature rise at the surface of the sample (z=O) is defined as 

T(O,t) = 2Fo(Kt)1I2 

-/n. K ........................ (15) 

where Fo = a 10 is the absorbed power density arising from the incident laser intensity 

10 and a is the absorptivity of the surface. 

4 
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Figure 5. Theoretical surface temperature rise against time 

for aluminium (After WiIson [33J). 

When the heat source is removed (at the end of a laser pulse where t>to) a second term 

has to be added to the equation to allow for the fact that the surface temperature will 

fall as heat is conducted into the bulk. The temperature rise at different depths from 

the surface (z=O) as a function of time after cessation Df the laser pulse can be 

calculated from the previDus equatiDn and are shown in figure 5. Using the solutiDn to 
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the given equation Scruby [22J similarly plotted the theoretical surface temperature rise 

on aluminium against time for different depths below the surface. For a 20ns pulse 

with Fo = 1.9 x 1010 W.m·2 the temperature rise at the surface is approximately 140°C 

and reduces to 40°C at a depth of 2 micrometres. In non-metals the surface 

temperature was found to decay exponentially with depth. The importance of these 

calculations is that the heating even at the surface is not great and insufficient to cause 

any microstructural changes, a fact inferred from the concept of the thermal time 

constant discussed previously. 

Power densities close to 1010 W.m-2 are typical with laser sources, which possess 

phenomenal brightness. Unfortunately, the temporal beam profiles of real lasers 

(Nd:YAG and CO2 ) comprise spikes and tails rather than being constant flux sources 

and taking account of these factors in the theory adds another layer of complexity. 

A recent paper by Zhou et at [38J compares the computer simulation of laser ablation 

with experiment and takes into account the further complication that in laser cleaning, 

the source heat energy is moving. 

Of equal practical importance to pulse duration is the time between pulses. The 

ablation process creates a cloud of ablated material. This has to be removed from the 

work piece using a vacuum line mounted adjacent to the beam delivery head. This is 

essential for health and safety considerations as the contamination may well be toxic. 

More importantly, from the perspective of process efficiency, the next laser pulse 

must not occur before this cloud of ablated material is removed as it will defocus the 

incoming pulse and dissipate its energy. Again optimum pulse duration has to be 

found such that the cleaning process is not too slow. The area irradiated by the laser 

must also be large enough to give reasonable cleaning rates when it is scanned across 

the target. 

2.2.3.3 Thermomechanical effects 

Very short, intense bursts of laser energy impinging on materials can also create 

shock waves [39J. The magnitude of shock waves generated by laser cleaning depends 

strongly on the energy density of the radiation, duration of the laser pulse, and 
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substrate properties. Two effects can be separated depending on whether the shock 

wave originates from either rapid expansion of vaporised material or due to rapid 

expansion of a substrate layer. Both effects can occur together but the latter effect 

appears to dominate in circumstances when the radiation impinges first on a surface 

coating surface that is a weak absorber. 

Considering the first case, when a layer of surface contamination strongly absorbs a 

high intensity laser pulse of a few nanoseconds duration, it is vaporised and this 

occurs so quickly that a high pressure wave is generated which lowers the boiling 

point of the surface which becomes superheated. The temperature can rise high 

enough for the heat of vaporisation to be reduced to zero and the effect is that of an 

explosive detonation over the area irradiated. Under these conditions the vaporised 

material is easily ionised to form an opaque plasma. Although high temperatures can 

be generated, these are confined to the surface and heat is not conducted to the 

substrate when energetic short pulses are used. High compressive stresses can also be 

generated in this operating regime and in certain applications, such as laser peening 

[40], are used to permanently harden the surface. 

When the laser pulse is less energetic and its duration is longer, in the order of 

microseconds, material is still vaporised but the rate of vaporisation is less and the 

vaporised material retreats from the surface. Under these conditions the vaporised 

material is transparent and does not ionise or form a visible plume. 

For laser cleaning laser pulse lengths are chosen to minimise thermal damage to the 

substrate whereby the heat energy imparted to the surface cannot be transferred to the 

substrate through conduction. This requires nanosecond pulses but the operating 

parameters have to be chosen to avoid the vaporised material forming an unstable 

plasma. Generally, this requires the radiation to be defocused thereby spreading its 

high energy over a larger area. 

The thermoelastic wave generated through laser interaction with a metal substrate, 

assumed to possess isotropic properties, can be considered as equivalent to the 

insertion of a small extra volume of material dV at the irradiated region [22] where: 

dV = 3 a/pC .dE ............................ (16) 
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where a is the coefficient oflinear thermal expansion, p is the density, C is the 

specific heat capacity of the metal and dE the energy absorbed from the laser pulse. 

Substituting material constants for aluminium and assuming the metal absorbs 1mJ of 

energy uniformly over an area of lOmm2
, it is found that dV = 3 x 1O·14m3. In 

aluminium most of the temperature rise occurs within a thickness of 2 micrometres 

and this generates thermoelastic stresses - 108 Pa per mJ of absorbed energy. The 

yield stress of aluminium is highly variable, depending on heat treatment, but for AI 

2024, used for aerospace applications, values can be several hundred MPa and such 

values are comparable to the thermoelastic stresses calculated above. This 

demonstrates the magnitude of the effects that are possible if high laser cleaning 

fluences are used without due care. The same magnitude of stress occurs in steel but 

is less serious since the yield stress in steel is an order of magnitude higher. The 

reflectivity of steel is also higher so that less energy is absorbed in the first instance. 

Current cleaning applications where Nd:YAG lasers are used to clean steel railway 

tracks have found no metallurgical evidence of damage even after millions of cleaning 

pulses (25). At the cessation of the laser pulse, the surface relaxes and this can assist in 

the ejection of material. 

Considering the second case where the incident radiant flux does not encounter a 

strong absorber, let us assume the poorly absorbing coating covers a metal substrate 

and speculate on some possible interactions that are pertinent to the case of an 

epoxide resin coating bonded to a metal substrate. The metal will possess an oxide 

layer and absorption at this interface may well be much stronger. It is assumed that 

the incident radiation is Q-switched Nd:YAG at 1064mn but defocused to treat a 

larger area. The pulse is very short (- nanoseconds) and possesses high energy but is 

not as intense as would occur when the beam were focussed. The forces created could 

be more than sufficient to break any adhesive bonding over the area irradiated and this 

could cause failure at the oxide/resin interface. 

In the case of an oxide layer several micrometres thick the laser might induce rapid 

thermal expansion that would generate a compressive shock wave. Reflected back 

from the much harder and denser metal substrate, the shockwave could further 

weaken and disrupt the oxide interface (figure 6). 
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The cohesive strength within the epoxide coating and its strong adhesion to the oxide 

outside the irradiated area would prevent it being "blown off" but in treated areas the 

epoxide could easily be detached by mechanical means without offering any 

significant resistance. 
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Figure 6. Shockwave propagation 

(After Lukyanchuk[9l). 

This process has similarities to laser peening 

since in this process a substrate is coated with 

two overlays, one opaque and one transparent 

to the laser wavelength used. In laser peening 

the opaque layer might be black paint chosen 

to absorb the laser pulse and the transparent 

layer might be water. In this case, the laser 

pulse vaporizes a thin layer of the black paint 

and this is trapped momentarily between the 

underlying metal substrate and the water layer 

which causes the pressure to rise to much 

higher levels than if the water layer were not 

present. This creates a shock wave, which 

propagates into the metal, and providing the 

peak stress of the shock wave exceeds the 

dynamic yield strength of the metal, the metal 

will yield and plastically deform. This gives rise to strain hardening and compressive 

residual stresses at the surface of the metal, which are desirable effects in laser 

peening. 

There is a mechanistic analogy between the metal oxide (in the laser cleaning 

example referred to above) and the black paint layer in the laser peening process. 

Similarly an analogy can be drawn between the non-absorbing epoxide resin and the 

water overlay used in laser peening. The difference between the processes is one of 

magnitude. In the laser cleaning case, defocused laser pulses are used and shock 

waves generated are not believed to be sufficiently powerful enough to result in any 

strain hardening. Clearly it would be undesirable to alter the metallurgy of a substrate 
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subjected to laser cleaning. X-ray diffraction is commonly used to measure minute 

changes in lattice spacings resulting from residual surface stresses and to determine 

phase transitions (notably austenite to martensite in steel). No such measurements 

were undertaken in this study but evidence exists from published literature [25] that no 

metallurgical changes accompany the laser cleaning operations on steel when 

Nd:YAG lasers are used. 

2.2.3.4 Laser shock waves 

The generation of concussive shockwaves has been developed into a technique to 

measure the interfacial strength of coatings on substrates. Gupta et at [41] has 

developed this technique and use Doppler interferometry to determine the interfacial 

strength of the coating and relates this to the interfacial fracture energy through a 

Griffith-type relationship. These experiments have similarities to the laser ultrasonics 

research of Stratoudaki [21] reported earlier since this also uses interferometry to 

determine transient displacements. Gupta's research uses the phenomenon of laser 

shock wave generation as the basis of an experimental technique in the same way that 

laser ultrasonics uses laser interactions with materials to determine structural 

information. It is worthwhile briefly describing Gupta's experiments since they have a 

bearing on the present research. 

In this technique, illustrated schematically in Figure 7, a compressive stress pulse is 

generated by absorption of a Nd:YAG pulsed laser which irradiates a thin gold film 

sandwiched between a constraining block and the substrate. The substrate possesses a 

surface coating of thickness between 1 and 3 micrometres. On reflection of the 

transmitted compressive pulse from this coating's free surface, a tension pulse is 

created which detaches the coating at its interface with the substrate. Laser Doppler 

Interferometry (LDI) is used to measure the transient displacement and velocity of the 

coating as it separates and the interfacial strength can be determined from these 

measurements. 
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Figure 7. Experimental arrangement for using concussive shockwaves 

to measure interfacial strength of coatings (After Gupta [41]). 

2.2.4 Laser cleaning of particnlate surface contamination 

The previous discussion has concentrated on the removal of continuous layers of 

contamination by laser irradiation. However, the contamination texture can take 

different forms and laser cleaning solutions are very popular in the semiconductor 

industry where the need arises to remove micrometre and sub-micrometre size 

particles from silicon wafers that would otherwise interfere with microchip production 

[42 - 44]. Such particles adhere extremely tenaciously to silicon surfaces and laser 

methods have been developed over the last fifteen years to cope with these intractable 

cleaning problems. 

2.2.4.1 Interaction Forces in Interfacial Systems 

Electrostatic forces are strong, long-range forces that are encountered in everyday life. 

At the molecular level other forces are encountered. The strong forces are associated 

with the covalent and ionic bonds between molecules and in addition much shorter­

range of secondary forces exist that arise from molecular interactions. A total 

intermolecular potential energy defines the summation of all the possible interactions 

that can occur. These separate interactions depend on the type of charged bodies 

involved and these could be between two ions, two dipolar molecules or between a 

dipole and an ion. The interactions lead to molecules possessing dipole moments 

arising from uneven charge distributions. The interactions can be attractive or 
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repulsive depending on the system and involve induction of charge on one body by 

another. 

For simple molecules a total intermolecular potential energy can be defined 

comprising the sum of five contributions: 

(i) the charge transfer interaction 

(ii) the interaction between two electrical multipole species 

(iii) the interaction between two species where one is an electrical multipole 

and induces a charge on another species 

(iv) the dispersion interaction 

(v) the overlap interaction 

The first contribution is the charge transfer interaction is associated with electron 

donation or sharing between two molecules and is more important in the interfaces 

between crystalline solids than in fluid systems. 

The second contribution can be redefined as the Keesom potential that is always 

attractive and is obtained by averaging all the possible Coulomb interactions for all 

angles and orientational permutations between two dipolar molecules. This 

contribution has strong temperature dependence. 

Similarly the third contribution, also attractive, is known as the Debye potential and 

occurs where one molecule possessing a permanent multipole induces a dipole in 

another molecular. This will depend on the polarizability of that molecule. 

The fourth contribution, also attractive, is known as the London potential and can 

only be fully described using quantum mechanics but is associated with frequency 

dependent vibrations which perturb the electron distribution in one molecule causing 

an induced dipole and this in turn induces a dipole in another molecule. The attraction 

in fact acts between all atoms and molecules and the London potential gives rise to 

London Dispersion forces where the term dispersion relates to the dispersion of 

refractive index since this material property is used to determine the frequency 

dependent vibration which causes the interaction. 
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The fifth contribution, which is repulsive, arises directly from the Pauli exclusion 

principle and occurs when the electron clouds of two closed shell molecules overlap. 

Hydrogen bonding is a special type of interaction that is sometimes included as a sixth 

term for the total intermolecular potential. 

Forces arising from Keesom, Debye and London potentials all vary with the sixth 

power of the distance between molecules and are attractive forces. Collectively these 

are known as the van der Waals forces and apply to atoms as well as molecules. 

Stokes and Evans [45] have derived mathematical expression for the potentials 

discussed and show how combining expressions for interaction potentials comprising 

the van der Waals forces arrives at the Lennard-Jones potential. 

In the same way that the total interaction between molecules can be described by the 

summation of separate interactions, so can the interaction forces existing between two 

particles or macroscopic bodies, each comprising many atoms. The same microscopic 

forces are involved but the power law they obey is modified by translation to the 

macro scale and the interaction potentials are those associated with the geometries of 

the respective particles. There are two major interaction forces that operate in all 

particle systems. These are the London dispersion forces and that associated with 

repulsive overlap potential arises from the Pauli principle. Stokes and Evans [45] 

derive expressions for these forces acting in the macro size domain and introduce a 

material constant that measures the attraction between two particles in a vacuum. This 

constant is known as the Hamaker constant [46] and depends on the chemical and 

physical nature of the bodies involved [47]. This constant is encountered frequently in 

analytical descriptions of interaction forces occurring on the macro scale. The 

constant can be measured from the bulk properties of materials such as dielectric 

constant and refractive index and is expressed in units of 10-20 J or sometimes as 

electron volts. 

The forces between particles are of concern when problems of adhesion of particles to 

surfaces are addressed. When capillary forces are present, it can be shown that 

adhesive forces are linearly proportional to particle radius whereas a cleaning force 

required to expel the particle from a surface is proportional to the weight of the 

35 



particle and hence to its volume and the cube of its radius. This means that it becomes 

harder to clean surfaces as the particle size reduces. The discussion now returns to 

how effective laser cleaning can be in removing very small particulate contamination 

adhering to smooth surfaces. 

In the case of dry adhesion, van der Waals forces dominate the adhesion of sub 

micrometre particles whereas electrostatic force more important for particles larger 

than 50 micrometres. Conventional cleaning methods such as ultrasonic cleaning, 

wiping or etching all affect the substrate and so removal of the particles by lasers is an 

alternative solution. It is useful to quantify the magnitude ofthis force of attraction. 

Considering the particle as a deformed sphere, Hamaker [46J states that the attractive 

force is given by 

F=Aa/6h2[1 + r//ah] ......................... (17) 

where 'a' is the radius of the particle; h - O.4nm and is the equilibrium separation 

between the sphere and surface arising from the opposing attractive and repulsive 

molecular forces that act on the particle, and re is the radius of contact. The constant A 

is the Hamaker constant. The equation approximates to 

F=Aa/6h2 ................................. (18) 

since r//ah» 1. 

Assuming a particle diameter of 1 micrometre, substituting these values the attractive 

force is -0.01 dyne (0.1 x 10·6N) using an appropriate value for the Hamaker 

constant. However, condensation of liquid from ambient air can occur and create a 

liquid bridge at the particle surface interface. This results in an additional capilliary 

adhesion force that can increase particle bonding greatly. It has been found that if 

vapour from a liquid (water-isopropanol often used) is allowed to condense and form 

a micrometre thin film on a contaminated surface prior to laser cleaning, the liquid 

will completely cover sub-micrometre particles eliminating any capillary adhesion 

force. When irradiated by a sufficiently energetic laser pulse, the liquid can absorb so 

much energy that it explosively evaporates imparting enough momentum to particles 

to completely overcome particulate-substrate adhesion and eject them. 
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KrF excimer lasers, operating at ultra-violet wavelengths (248nm), have been found 

to be effective at removing fine particulate contamination [48J. Near infrared 

wavelengths provided by Nd:Y AG lasers are also effective and incidence of the laser 

beam at angles lower than normal to the surface are found to enhance the cleaning 

effect. 

In dry laser cleaning effective particle removal occurs when the incident radiation has 

sufficiently high fluence and acts for a very short time. Under these circumstances 

large inertial forces are applied to contaminant particles present on the irradiated 

surface. 

To quantify the magnitude of these forces it is necessary to consider the thermal 

expansion of a surface due to laser heating. 

The heat affected zone can be defined as ~. dth.~T , where ~ the volume expansion 

coefficient of the material, dth the thermal penetration depth and ~ T the temperature 

increase. To a first approximation the thermal depth of penetration dth can be 

expressed as 

dth = (kt-yJ/2 .......................................... (19) [48J 

where k is thermal diffusivity and 't is laser pulse duration. 

Assuming a particle sitting on the surface is spherical of radius r and density p, then it 

follows from Newton's law that the inertial force (equal to the product of mass and 

acceleration) experienced by the particle is 

FJ - (4/37tr3. p).[(~. dth.~T/r)/rl ................... (20) 

or FJ - 413m3 p~. dth.~T/r2 ...................... (21) 

Using this equation it can be calculated that thermoelastic force values -10 60r 10 7 N 

act on a 1 micrometre particle using aNd: Y AG laser with ~T values between 100 and 
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SOOK. In other words the acceleration experienced by such small particles can exceed 

one million times the force of gravity. This tremendous acceleration makes it easy to 

appreciate the utili ty of laser cleaning in such circumstances. 

2.2.5 Operation and characteristics of Transverse Excited Atmospheric (TEA) 
CO2 lasers 

A study of the effects of TEA CO2 lasers on res in coated nickel too ling was performed 

using a Laserbrand L4S0 TEA CO2 laser, emitting 10.6 x 10.6 m radiation in a I DOns 

pulse of 2J total output energy. The design of this laser was optimised for laser 

marking rather than laser cleaning applications. The un focussed beam has an area of 

approximately IOcm2 and can be focus sed down to I cm2 using a piano convex ZnSe 

lens offocallength 30cm (figure 8). 

Other materials such as NaCI could be used to focus the beam but these materials are 

a ll hygroscopic. The ZnSe glass used is stable but expensive. TEA C02 lasers req uire 

separate gas supplies to operate. The Laserbrand laser uses a typical gas mixture of 

82% He, 8% N2, 8%C02 and also conta ins 2% CO formed by dissociation of the C02. 

The gas pressure was approx imately 40 ps i (27S .8kPa). Although this is more than 

twice atmospheric pressure, the laser is still referred to as "Atmospheric". The bas ic 

des ign of the laser is a gas fi lled cavity with electrodes placed between a pair of gold 

or copper coated mirrors. The gas mixture is pumped us ing a thyratron switch to 

discharge a potentia l of 40KY stored in a capacitor, across electrodes in the resonant 

cavity, thereby creating an electrical discharge, which partially ionises the gas 

exciting the carbon dioxide and nitrogen gas molecules. 

Figure 8. lrradiation of metal sample with 

TEA CO2 laser. 
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Lasing of the C02 is assisted by the other gases present in the mixtnre with nitrogen 

transferring its vibrational energy to excite the carbon dioxide to the upper lasing 

level. Collisions of the carbon dioxide molecules with the helium molecules aids de­

excitation once lasing has begun and contributes to the stability of the electrical 

discharge. As in any laser, a population inversion is created allowing many electron 

transitions to occnr between a metastable and ground state energy level for the active 

lasing medium (figure 9).This gives rise to two principal emission lines for a CO2 

laser, these being at 10600 and 9600 nm respectively. 
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Figure 9. Energy level diagram for a laser (After 

Hecht[195l) 

There are many other weaker emission lines so it is possible to obtain an output 

between 9000 and 11000 nm depending on design. Carbon monoxide is present in the 

gas mixture to neutralise any 'free oxygen' produced by the breakdown of the C02 by 

the electrical discharge. A constant supply of fresh gas is required to replenish gas lost 

through breakdown. 

The gas needs to flow through the lasing cavity since the power output falls off when 

the mixtnre gets too hot and a water cooled heat exchanger is used to stabilise 

temperatures within the resonant cavity to below 420K. Gas flow rates of 2 litres per 

minute ensure that the gas between the electrodes is effectively changed after each 
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discharge. Rather than flowing along the axis of the resonant cavity, higher power 

outputs are obtained by transverse gas flow. The temporal profile of the output beam 

typically comprises a 100 ns pulse or spike, this is followed by a 1 microsecond tail 

that contains approximately two thirds of the total output energy. By reducing the 

nitrogen concentration in the gas mixture, the tail can be shortened or made to 

disappear but the total energy of the pulse is reduced. Also the duration of the high 

intensity spike is a function of the resonant cavity length and with shorter cavities, 50 

ns pulses can be obtained. 

The arrangement of the electrodes and shape of the cavity mean that the output beam 

possesses a rectangular cross section that exhibits an intensity variation across the 

spatial profile of the beam. This beam inhomogeniety produces variations in the rate 

of ablation across an irradiated target area and "hot-spots" which may favour the 

fonnation of a plasma, which is undesirable and cannot be corrected using beam 

homogenisers available for most other low and medium power lasers. 

Leakage of helium is another problem in TEA C02 lasers and the need for a flowing 

gas mixture creates practical difficulties for industrial applications. For this reason, 

sealed radio frequency excited C02 lasers were developed as an alternative since these 

do not require gas supplies and their reduced physical size makes them more suitable 

for robotic mounting. These systems though are not, however, as powerful as TEA 

CO2 lasers and the intended market for them is biased towards materials processing 

rather than cleaning applications. 

When the output beam of the Laserbrand model is focussed down to an area of lcm2 

the fluence is great enough to readily vaporise organic coatings. Coated metal samples 

can then be positioned at various distances from the focus to receive differing 

fluences. The samples studied in the present research undertaken were all mounted 

such that the laser beam was incident nonnal to the surface of the coated samples. 

This was done to eliminate angle of incidence as a variable and simplify evaluation. 

The number of pulses required to produce a visible effect on the coating for a given 

fluence was noted. With smaller, much lighter samples a sensitive mass balance could 

be used to monitor weight loss as the coating was removed but this was considered to 

be impractical in this study. 
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Cottam [49J reported that cleaning fluences for this laser range from I to 4J.cm ·2 

depending on the absorption characteristics of the coating and studied the absorption 

of opaque inorganic pigments and compounds associated with metal corrosion 

products, reporting that strong absorption occurred in many instances. Higher fluences 

may be required for weakly absorbing materials although air breakdown occurs at 

fluences of 10 J.cm·2 or more, and this situation is avoided to prevent the formation of 

a plasma which produces many undesirable secondary effects. Sometimes these 

plasmas are triggered by the non-removal or ineffective removal of ablated material. 

Since very high temperatures are a characteristic of plasmas these can radiate 

sufficient energy to the substrate and induce thermal damage. 

In common with other TEA CO2 lasers the Laserbrand laser has very few operational 

parameters that can be altered easily without incurring considerable expense or loss of 

power output. Effectively only the fluence and angle of incidence of the radiation can 

be altered. The output wavelength and pulse duration are fixed and repetition rates 

exceeding a few Hertz cause unstable operation. Taken in combination, this makes it 

difficult to optimise lasing cleaning effects for a specific coating. 

Most applications of continuous wave CO2 lasers designed for cutting and welding 

utilize computer controlled platforms to move the work piece requiring cleaning with 

the laser being static or else mount the laser on a robot arm and control this to scan the 

laser over an area to be cleaned. Where the cleaning of very large moulding tools is 

contemplated, the workpiece cannot be moved and some form of automation is 

required to scan the laser over the area to be cleaned. The physical size of a TEA C02 

laser and the gas, water and electrical requirements would suggest that this option 

would be costly to implement and not very flexible. Aside from the cost issues 

involved in realising an industrial scale laser cleaning solution with TEA C02 lasers, 

the technology has some other drawbacks. At present there exist few stable materials 

that will transmit this wavelength without significant absorption. Exceptions are zinc 

selenide, as mentioned, or germanium and focussing optics have to be produced from 

these rather exotic materials. Highly polished mirrors made from gold or copper also 

have to be used because of the very high reflectivity of the metals at 10600 mu. All 

these optics have to be kept clean and mounted components must be free from 

vibration in use that will degrade alignment. Unlike carbon dioxide lasers used for 
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cutting and welding processes, where optics focus the laser light down to very small 

spot sizes, laser c leaning requires defocused beams covering an area of a few square 

centimetres. Ideally, the energy distribution across such beams should be uniform but 

thi s is difficult to achieve because of the way high power C02 lasers are designed and 

the output consists of a series of lines over which the intensity varies. 

Measurements of laser fluences are required to optimise cleaning conditions but for 

intense pulsed lasers this poses experimental problems. High-energy pulses very 

easi ly damage conventional power mete rs, used for most other laser lower power 

measurements. Other critica l factors are the pulse duration and repetition rate. 

2.2.6 Operation and characteristics of Nd-YAG lasers 

The laser cleaning effects obtainable from 1060 nm wavelength radiation from 

Nd :Y AG lasers were investigated experimentally using a Spectron SL456 pu lsed 

Nd:Y AG laser (figure 10). This laser utiljzes a temperature stabilised Pockels ce ll to 

effect Q-switching, enabling the laser to produce a short, intense pulse of energy 

(duration I3ns) . Output power level and repetition rate were adjustable to give a 

maximum output of 850mJ up to 10Hz. Repetition rates up to 5Hz were used giving 

pulse energies - 600mJ, this va lue being interpolated from the laser' s power output 

cal ibration measurement. 

Fi re 10 .The S ectron Nd:Y AG Laser 
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The Nd:Y AG laser can be operated in two modes where the output consists either of 

fi xed Q pulses or the output power can be boosted to produce short intense pulses by a 

process call ed Q-switching. Q-switched laser pulses deliver energy so quickl y to a 

surface that there is little energy conducted away during the duration of very short 

pulse. The Q factor of a laser resonator is basica ll y a measure of how good the 

resonant cavity is at keeping li ght in it. With a nonnal pulsed laser, a pumping source 

of intense light (fl ash lamp) raises the electrons of the acti ve atoms of the lasing 

medium to an upper energy state. In thi s laser the ions fro m the rare earth metal 

Neodymium (NdJ+) are used to dope a Yttrium Aluminium Gamet (YJAI 5012) 

crystal. The NdJ
+ ions, present at about 1 % concentration, usuall y di spl ace Yttrium 

atoms in the crystal latti ce and prov ide suitab le energy levels for the lasing transitions. 

Lasing materi als must have at least three energy levels comprising a ground state 

(lowest energy), an excited state and an intemlediate or metastab le state. Occupancy 

times for electrons in the metastahle state are much longer than fo r excited states and 

to achieve stimulated emiss ion of light, electrons have to be excited in such a way that 

they decay to the metastable state before de-exc iting finall y to the ground state. In 

nature the equilibrium state of systems coincides with minimal energy content so most 

electrons ini tiall y excited to high energy states in a materi al wo uld randoml y decay to 

the lowest energy state. By coax ing e lectrons to occupy an intermedi ate state, the 

occupancy of that state is described as a "population inversion". During the pumping 

cycle high [Tequency radiant energy is suppli ed to the lasing materi al to create such a 

popul ati on inversion. Spontaneous emission occurs fro m the highest energy level and 

is a random process. An electron decaying to a lower energy by thi s means emits a 

photon and if thi s is emitted in a direction such that it can be refl ected back and fo rth 

between mirrors at each end of the resonant cavity, the energy of the photon can tben 

trigger other electron transitions from the metastable state. Its energy must exactly 

match the transition energy from that state. The photons emitted by these electTons 

fa lling to the ground state energy will be emitted in the same direction as the parent 

photon. They will also possess the same freq uency (hv = l'lE where L'.E is the energy 

di fference between the upper excited state and the ground state, h is Planck's constant 

and v the photon frequency). 
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This stimulated emIssIon is thus coherent and monochromatic and is amplified by 

travel along the length of the lasing crystal. The photons are confined within thi s 

resonant cav ity, their ex it being prevented by mirrors at each end of the cavity, and 

the amplitude of the stimulated emiss ion increases during the pumping cycle. The 

mirrors constitute a feedback mechanism that amplifies the gain per unit length for the 

resonant cavity. Standing waves are thus created within the opti cal cavity and when 

their amplitude reaches a saturation value, the output end mirror (which is onl y 

parti a ll y refl ecti ve) allows some of the li ght to escape. Since millions of such bursts 

of light are emi tted during the pumping cyc le a laser beam is created. 

Las ing materials can possess more than three energy levels and the Nd:Y AG laser is a 

fo ur leve l laser. In practical tenns thi s makes it easier to obtain a popUlati on inversion 

although the physics describing the radiati ve and non-radiati ve transistions is more 

compl ex. 

The effi ciency of the cavity defines its Q factor. If the li ght energy could be confined 

between the milTOrs until very near the end of the pumping cycle, when the 

population inversion was as complete as possible, the output intensity wo uld be 

great ly boosted. Thi s can be achieved by spoiling the Q-factor of the cavity through 

the use of a high-speed electri ca ll y contro lled optical shutter call ed a Pockel's cell. 

Thi s effecti vely disab les one of the mirrors so that the cavity cannot resonate 

properl y. Very close to the end of the pumping cyc le, the optical shutter is closed and 

the laser acti on commences but because there ex ists a very near total population 

inversion, a very intense short pulse of laser li ght is passed. The average power output 

fo r the Nd: YAG laser may be low compared to a COz laser but the peak power when 

Q-switched can be in the kilowatt range which is desirable when the beam is 

defocused to cover a larger area for a cleaning application. 

Di fferent laser interacti ons occur depending on whether the Nd:Y AG laser is operated 

in fi xed Q mode or is Q-switched to boost its peak power. For the studies reported 

here Q-switching was used. This affects the thermodynamics of the surface interaction 

because the Q-switched pulse is very short (nanoseconds) and can be optimised for 

laser cleaning applications. 
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Without Q-switching the laser output pulses are in the order of milli second duration 

and when sharply focussed , it was observed that the laser beam was powerfu l enough 

to bore tiny deep holes into ni cke l-plate, Noting the focus posi tion at which thi s 

damage occu1Ted, samples requiring cleaning were agaill positioned at varying 

di stances back from this point and the coating removal effects noted until an optimum 

distance was found, This proved to be approx imately 50mm (Tom laser focus, The 

laser-operating mode was then changed to activate Q-switching since short pulses 

with high peak power are optimum for laser cleaning, With the same degree of 

defocus (diameter was about 10mm) a single pulse was suffic ient to detach cured 

res in from the metal substrate to which it was bonded, Ideally, the laser beam used for 

a cleaning app lication should be spatially homogeneous with a "top-hat" shaped 

intensity distribution, Laborato ry lasers generall y do not meet this requirement and in 

the case of the Nd:YAG laser used, the beam output is multi-mode where the energy 

profil e resembles a random co llection of dots in a circular pattern , With excessive 

de focus the output was noted to become very "spotty" and unsuitable for cleaning, 

This energy distribution factor is particularl y severe with TEA C02 lasers where the 

beam is never homogeneous and there ex ists a distribution of fluence over its area, 

Th is problem makes it diffi cu lt to c01Telate microstructure observed on treated 

samples with an accurately known fluence, In the case of Nd :Y AG lasers, the 

manufacturers of a commercial Nd:Y AG laser des igned for cleaning applicati ons (and 

possess ing a homogenised beam) were approached and some res in coated samples 

submitted for laser cleaning, These samples were cleaned at a rate of lOcnl per 

second using a flu ence of 1 ] ,cm-2 with normal illcidence of the beam, The 

microstructural topography was found to be comparable to those obtained with the 

Spectron laser. 

The effects observed durillg the interaction of a laser pulse from a Q-switched 

Nd:Y AG laser with a coated metal wi ll depend on whether the coating or substrate or 

both absorb energy at the lasing wavelength of I 064nm, In all real samples the metal 

wi ll possess an oxide layer and so it is the absorption of this oxide layer will also 

influence the results , In the present study nickel and steel substrates were examined 

and these posses good refl ection properties at 1064nm, In contrast, aluminium can 

strongly absorb at this wavelength and would thus not be a suitable substrate for a 

laser cleaning application, Waiters and Campbell discuss the applicati on of such 
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Nd:YAG lasers to clean oi l and grease contamination from stainless steel, a luminium 

and titanium 1501. 

Despite a greater propensity to cause thermal damage on metal substrates due to the 

reduced re fl ecti vity, the use of Nd:Y AG lasers, operating at an output wavelength of 

1060 nm, offers some real practical advantages . Glass fibre optic beam deli very from 

the laser source to the work pi ece is poss ible because there is very little absorption by 

the glass at thi s wavelength . This greatl y enhances the fl ex ibility of the cleaning 

process since a skilled operator can now manoeuvre a hand held laser cleaning head 

over the area to be cleaned and, if necessary, simply increase the fluence to remove 

stubbom contamination . Removal of patchy contamination frol11 large areas would be 

difficult to control by an automated process . The use of a solid-state laser also makes 

the laser inherentl y more reliable and free from operating fa ults. The technology of 

these lasers is well developed and several European companies now market 

competiti vely priced laser-cleaning systems for industrial applications. Unlike TEA 

C02 lasers, which are phys ica ll y bulky systems requiring gas and three phase 

electri cal power supplies, the size of Nd:YAG systems has been steadil y reduced and 

current small footprint units are marketed. These advantages are made at the sacrifi ce 

of cleaning rates which are slower than using CO2 lasers but still competiti ve with 

other non-laser cleaning methods. [n most other respects d:Y AG lasers offer the 

most cost effective laser cleaning so lution. 

2.3 Mould Cleaning by Dry-ice pellet blast cleaning 

Contaminated compos ite too ling, in parti cular, poses signifi cant problems when laser 

cleaning methods are applied because of chemical similariti es between the substrate 

and the contaminant. The use of solid CO2 pellet blasting was considered as a viable 

technology for the removal of resin contamination from both metal and composite 

too ls and the potential of thi s cleaning technology was therefore evaluated. There are 

many small companies trading today that speciali se in dry ice cleaning and these have 

appeared onl y withjn the last twenty years or so. 
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Figure II .Dry ice blasting 

Prior to the 1970s the use of dry ice for blast cleaning application was pioneered by 

relative ly few researchers and the first commercial companies developed from this 

early work. The aircraft manu fac turers Lockheed developed the technology for paint 

stripping applications but did not pursue commercial applications. 

Dry ice blasting is one of the most effective means for removing loosely bound 

organic contaminants [5\ - 5l] and the blasting process is illustrated in figure I t. The 

cleaning process can be gentle enough to clean delicate electrical components or 

aggressive enough to remove bonded coat ings. A popular application is the cleaning 

of printing presses. Dry ice does not erode or wear away the targeted surface upon 

impact as traditional grit media and even wire brushes do. This means that surface 

integri ty and critical tolerances are preserved and equipment will not have to be 

replaced because of the surface erosion. 

Paint, oil, grease, asphalt, tar, soot, dirt, ink, resins, and adhesives are some of the 

materials removed by this procedure. Since dry ice evaporates completely to a gas at 

atmospheric pressure without go ing through a liquid phase it di sperses in the 

atmosphere and is environmentally benign since it is not an ozone-depleting 

compound. Carbon dioxide gas is also virtually inert and non-flammable. Only the 

material being removed must be disposed of. When dry ice cleaning replaces 

hazardous chemical cleaners the disposal cost of that chemical is thus eliminated. 

Another advantage is that carbon dioxide is not electrically conductive and it is 

possible to clean equipment that is running. 
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The shelf life of dry ice is reasonable if suitable storage facilities are used. Under 

these conditions blocks can last for up to two weeks. Uti lisation of these blocks 

depends on equipment design but generally involves shaving the block into sugar 

gra in-sized granules by rotating blades inside the unit. Shaved ice machines deliver a 

particle blast with a high flux density due to the small size of the particles and are 

more effective on thin coatings. Other dry ice blasting machines only accept carbon 

dioxide pellets and the storage life of this form is typica lly three days because of the 

larger surface area . Hydraulic rams squeeze these pellets through die plates to produce 

a much greater density pellet for maximum impact energy. 

2.3.1 Principles of Carbon Dioxide Cleaning Processes 

The process is similar to sandblasting whereby the media IS accelerated in a 

compressed air stream and impacts on the contaminated surface that requires cleaning. 

Figure 12. Dry ice blasted sample 

One unique aspect of using dry-ice particles as a blast media is that the particles 

sublimate upon impact with the surface. The size of the particles of dry ice can be 

varied though are often a few cubic millimetres in vo lume (about the size of a grain of 

rice). Solid carbon dioxide pellets are relatively soft and when they impact on a 

surface they are compressed and mushroom out. The combined impact energy 

dissipation and rapid heat transfer between the pellet and the surface cause an almost 

instantaneous change of phase from the solid to carbon dioxide vapour and this 

creates a flushing action which first weakens and embrittles contamination as it is 
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rapidly cooled and then the vapour assists in lifting off fragments from the adherend. 

The ice formation on a cleaned sample is shown in figure 12. The vo lume change 

occulTing due to sublimation of the carbon diox ide pellet is large with the vapour 

occupying a volume approximately eight hundred times that o f the so lid pellet. The 

sublimation occurs within a few milli seconds so that each pellet e ffecti vely detonates 

when it impacts with the surface creating a micro-explosion . Abrasive additi ves such 

as sodium bicarbonate are sometimes added to increase the scouring action of the 

cleaning process. 

As with other blas ti11 g methods, the cleaning acti on is dri ven by the kinetic energy of 

the accelerated media. Thi s is a function of the impacting partic le'S mass and hence 

density and the impact velocity. Carbon dioxide pellets possess a relatively low 

density so that blast cleaning reli es on accelerating the pellets to subsonic or even 

supersonic velocities using compressed a ir jets to achieve the required impact energy. 

Therefore three dist inct mechanisms are associated with such a cleaning procedure: 

en Kinetic Energy 

The principle cleaning effect is produced by those solid parti cles of dry ice co lliding 

with the sur face to be cleaned. Kinetic energy is transfelTed to the sur face thereby 

"chipping" away the contaminant fro m the substrate. The effect can be described by 

the equati on 

K.E =1/2 mvz . ......... . .... .. .... . .. .. ...... .. ...... (22) 

where KE = Kineti c Energy (Joules) 

m = the mass of the COz particle (kg) 

v = the velocity of the partic le(m.s'l) 

The density of so lid carbon diox ide is low (1 565 kgm,J) so that its mass per unit 

vo lume is also low and hence it can therefore be assumed that changes in the velocity 

produce large changes to the degree of kinetic energy transferred to the object to be 

cleaned. Since velocity is related to air pressure, it follows that changes in air pressure 

affect the degree of kinetic energy that is transferred to the obj ect to be cleaned in 

proportion to the square of veloc ity, wJlereas a change in the particle's mass has 

proportionall y less effect. Parti cle ve locities are typica lly 100 to 300 m.s' l 154J 
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Compressed air supp lies up to 150 psi (1034kPa) are typically required and these 

must be grease and water free. Kinetic energy is then largely converted to heat, wh ich 

rai ses the temperature of the solid CO2 forcing it to vaporize, on impact. 

Although compressed air pressure is the most effective processing parameter that can 

be varied , enhanced removal rates can be ach ieved by mixing the dry ice with 

abrasive powder. An example of such is sodium bicarbonate, used in the present 

study. Thi s can be used as a blast media in its own right [551 but can lead to increased 

rates of chemical corros ion with some metal substrates. Cleaning rates for dry ice 

systems are very var'iab le and depend on the application and equipment but can be as 

high as 120 square metres per hour (3.3 x 10-2 m2 s- r) r;; J 

(ii) Thermal Differentials 

The second effect is the production of a thermal shock and is associated with the low 

temperature of the solid CO2 particles (-78.5°C), which endothellllically removes heat 

from the surface to be cleaned producing a pronounced cooling effect of 628kJ.kg- r. 

In cases where significant thellllodynamic differences exist between the contaminant 

and the substrate, this can have the effect of contracting and or so lidifying the 

contaminant. As the temperature of the contaminant decreases, it becomes embrittled 

and cracks are formed, enabling the pariicle impact to break up or dislodge and 

fracture the coating sti ll further and possibly to sever the chemical bonds already 

weakened by the lower temperature. This is, however, most like ly to cause cohes ive 

fai lure of the coating. This themlal shock is most evident when blasting a non­

metallic contaminant bonded to a metal substrate and consequently was considered 

potentiall y effective at removing cured epoxide resin when this is stuck to a metal 

moulding tool. A liquid contaminant such as oil or grease can become more viscous 

or may partially solidi fy in this process and this can assist in its removal. 

(iii) Reverse Fracturing 

This effect is a direct result of the so lid particles of CO2 subliming to a vapour. In 

ambient air pressures, C02 cannot exist as a liquid, only as a so lid or vapour. One 

kilogram of solid CO2 becomes 540 litres(0.54m3
) of CO2 vapour upon sublimation. 
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CO2 vapour is also more "fluid" than the blasting air, which has transported the 

pell ets to the surface. Sublimation therefore assists in the removal process through 

gaseous CO2 expansion at the surface, which has been observed to penetrate and 

lubricate the surface. This can have the effect of forcing away the contaminant from 

behind and is tenned flushing. 

The dry ice cleaning process employs a mechanical means to prepare the dry ice and 

as a delivery system to accelerate dry ice parti cles which are accelerated at subso ni c 

or supersoni c speeds under compressed air and ex iting to atmosphere via a operator 

hand held nozz le. 

Operating variables are the jet pressure, dry-ice particle size, j et angle of incidence 

and wo rking distance and it is necessary to optimise these parameters for a given 

application. Spur et al [56J discuss process optimi sation for the removal of paint from 

meta l sheets and sili cone seals from aluminium. 

2.3.2 Advantages and Disadvantages of the process 

Using the cryogenic system operated in the present study, the following advantages 

and di sadvantages of the process can be identified: 

Advantages 

(i) The cleaning process does not use any chemical so lvents and the only 

waste that needs consideration is that removed from the tool by the 

blasting process. The cleaning technique is thus environmentally benign. 

(ii) Carbon dioxide is a so lvent itself for some materials (see section 2.4.4.2). 

(iii) The cleaning apparatus is portable and thi s facilitates in-situ cleaning and 

can be done when the too ling is hot to minimise downtime. 

(iv) The cleaning process is non-abrasive for metal tooling and can offer a very 

gentl e cleaning action on more easily damaged materials such as 

composites . 
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Disadvantages 

Ci) Solid 27 kgm standard blocks of carbon diox ide are required as a 

consumable. Typicall y block ice is consumed at a rate of about 1 kilogram 

a minute and pell ets at about twice that rate. Consumables have to be 

facto red into an analysis of li kely running costs. 

(ii) The loud noise produced by impact of the particles on a substrate requires 

that operators protective earphones and may cause irritation to other 

people nearb y. Noise levels typ icall y > 100 decibels. 

(iii) E ffecti ve cleaning can onl y occur in a straight line-of-sight fro m an 

automated dry ice jet nozzle. Manual appli cati on allows the nozzle to be 

angled relati ve to the work piece. 

(iv) Large amounts of carbon dioxide are released which are hannful if one is 

in a closed space witho ut ventil ation since oxygen levels are depleted. The 

surfaces of metal moulding can get very co ld and cause bums as can 

contact with dry ice pe ll ets. The co ld metal surfaces also attract moisture 

fro m the surrounding air and thi s can pose a corrosion problem fo r steel 

too ling unless post drying is carri ed out. 

(v) In some applications an electrostatic charge can build up on an insul ating 

substrate as a result of the process and a means o f safely discharging thi s 

has to be considered. 

2.3.3 Mould Metallurgv and Temperature Effects 

Dry ice c leaning is frequently used in the rubber industry to clean moulds and very 

often the moulds are hot after use. Initial concerns over use of the technology were 

principally that the temperature differential created by dry ice blas ting might induce 

changes in the metallurgy of the heat-treated and hardened metal moulds or promote 

micro-crackin g. Manufacturers of dry ice blasting equipment subsequentl y funded 

research to investi gate these concems. The repol1s were unpubli shed and, in general, 

it is very difficult to track down any non-trade publications relating to dry ice cleaning 

using academi c databases. The findings of the aforementioned metallurgical studies 

have been reported in trade literature. These claim that no metallurgical changes were 

evident on too l steel moulds or in precipitation hardened aluminium alloys. The 
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widespread use of the c leaning technology within the industry appears to validate 

these claims [5
41 

2.3.4 Other carbon dioxide and related blasting technologies 

2.3.4.1 Carbon dioxide "Snow" cleaning 

For completeness it is appropriate to mention thi s technique that also uses dry ice to 

clean surfaces. [n this case high purity (99.999%) carbon dioxide gas is expanded 

through a small orifice in a cleaning nozzle and is cooled by the Joule-Kelvin effect to 

produce a snow of tiny dry ice particles and gaseous carbon dioxide. Using 

compressed gas the dry ice paliicles can be used to clean surfaces in much the same 

way as with the cleaning techniques already discussed, the difference here being that 

the dry ice particles are much smaller and consequently the cleaning action is much 

gentler. Typically, C02 snow cleaning is used for friab le materials that are eas ily 

damaged and an obvious example would be the cleaning of semi conductor wafers 

where it is effective for removing very small particles. [t will not, however, remove 

substances that are chemically bonded to surfaces such as paints and resins and its 

application to industrial large sca le cleaning is limited as a result. Kimura and Kim 

evaluated both laser and using CO2 snow cleaning applied to astronomical mirror 

sampl es[57] In thi s application the presence of paJiiculate material degrades the 

perfomlance of aluminium coated min'ors but these are too fragile and expensive to 

ri sk more aggressive cleaning methods. It was found that excimer laser c leaning and 

C0 2 snow cleaning gave comparable results in terms of c leaning quality. 

2.3.4.2 Solvent Properties of Supercritical Carbon dioxide 

The most commonly known application for supercritical carbon dioxide is for the 

extracti on of caffine from coffee and tea but it is an effective so lvent for many non­

polar materials including oil s, organic contaminants and some polymers. It can thus 

be used as a rep lacement for hydrocarbon so lvents. In carbon dioxide the supercriticai 

state is most accurately described as that of a dense gas rather than a liquid though it 

possesses many properties similar to those of a liquid phase. A comprehensive review 

of the fundaments, app lications and technology of supercritical carbon dioxide is 

provided by McHardy and Swan [581 .The pressure/temperature phase diagranl for 

53 



,-~~~-~~~~- - - - -

carbon dioxide (figure 13) defines the range of pressures and temperatures that allow 

carbon dioxide to exist as a supercritical fluid . 
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Figure 13 Carbon dioxide phase diagram (After 

Mcf~lard y and Swan [581). 

The critical pressure is 1070 psi (7377kPa) and the critical temperature is about 

31.l oC. Supercritical applications typically operate at temperatures between 32°C and 

49°C and pressures between 1070 and 3500 psi. (7377 and 241 34kPa). The 

supercriticai fluid has a lower surface tension than many ordinary liquids and this 

gives it the property of being very searching. Combined with its so lvent abilities this 

means that the process is suited to the cleaning of intricate geometries that cannot be 

cleaned by more conventional cleaning technologies. 

In practical applications, the object requiring cleaning has to be placed in a reaction in 

a pressurized chamber and this obviously limits the size. Closed loop recycling is 

engineered so that only a small proportion of the cleaning solution is lost over time. A 

separation process is used to remove dissolved contaminants. When the cleaned object 

is removed from the chamber no drying or rinsing is required and this is ideally suited 

to the cleaning of precision components where exacting standards of surface 
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cleanliness are desired. It is not suggested that thi s technique would be viable for 

industri al sca le mould cleaning but its inclusion is pertinent to a full appraisal of the 

cleaning potenti al afforded by carbon diox ide. 

2.3.4.3 Blast cleaning using ordinarv ice 

A vari ation of dry ice blasting has been developed which uses ordinary water in the 

fom1 of tin y ice crystals as a blast media. Most of the technology has been developed 

from snow making machines and the small ice partic les (a few micrometres in 

d iameter) are actually created in the blasting nozzle. An aerosol of atomised water 

droplets is created and a stream of compressed gas, chilled us ing liquid nitrogen, 

which rapidly freezes the droplets into roughl y spherical shaped ice and propels them 

towards a contaminated surface. The parti cles created can be easil y accelerated to 

speeds in excess of Mach I (approx imately 224 m.s·1
). Significant adVllJ1CeS over the 

use of hi gh pressure water j ets in c leaning operations are that in most blasting 

applicati ons the small size of the ice parti cles means that the heat generated at the 

surface of a contaminant layer by kineti c energy conversion is sufficient to cause 

evaporation. At wo rse onl y a small amo unt of water may be present in dislodged 

contaminati on. Successful applications claimed include paint stripping fro m 

aluminium surfaces. It is claimed the process is best suited to soft metals and 

composites [541 Obviously, the process might not be sui tab le fo r cleaning where rust 

corrosion is an issue bu t the techno logy brings together some of the advantages from 

dry ice blasting with the negligible consumable cost. 

2.4 Drv ice and ultra-violet light cleaning method 

A recent publication by Deffeyes et at (59) di scusses the removal of surface 

contaminati on fro m substrates using a combination of dry ice and ultra-violet li ght. In 

the contex t of cleaning procedures for the aerospace industry, fi nding a single 

cleaning method to replace CFC so lvents is dif fi cult. A combined approach might be 

suitable in some circumstances. In thi s method gross contamination is removed by dry 

ice blasting. Any small amounts of residual organic contaminati on are then oxidized 

at low temperature using ultra-vio let light. This li ght source is not a laser but rather a 

quartz-mercury vapour lamp. Thi s emits strong ultTa-violet li ght at wavelengths of 
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254lUll and 185n111. The lower wavelength light stimulates ozone creation through the 

photo-dissociation of oxygen in the air above the target surface and it is postulated 

that the ozone reacts with surface hydrocarbons to enhance cleaning. The higher 

wavelength causes photochemical breakdown of the bonds of many organic 

compounds evo lving carbon dioxide and water as molecular fragments. The pre­

cleaning step using dry ice is necessary because ultra-violet li ght can only remove 

thin layers of contamination. Thick layers of organic contam ination tend to crosslink 

under ultra-violet irradiation rather than oxidise. The generation of toxic ozone poses 

safety issues for workers that would need to be addressed . Alternatively the light 

source could be modified to minimise ozone production though this would reduce 

cleaning efficiency. 

Another publ ication by Rich el at [601 discusses the use of ultra-violet light alone to 

remove external mould release compounds from metals and non-metallic sur faces. 

This app li cation proved successfu l in removing mould releases from the surfaces of 

aluminium, steel and glass fibre/vinyl ester composite samples as measured using 

water contac t ang les before and after irradiation of a few minutes duration. Whi lst 

successful for the removal of standard micrometre thicknesses of these re lease agents, 

the process wou ld not remove thi ck layers of contamination. 

2.5 Mould Cleaning by immersion in fused alkali bath 

As discussed, one drawback of laser c lean ing is that it is largely a line-of-sight 

technique and therefore has difficu lty in cleaning very complex shaped tooling. Other 

physical c lean ing technologies such as dry-ice pellet blasting, high-pressure water j et 

cleaning and possibly plasma cleaning all share this difficulty to a greater or lesser 

extent. in such cases there is little alternative but to resort to a wet chemical cleaning 

method, which would invo lve lowering the mould into a bath of the cleaning agent. In 

these applications it is also desirable that the cleaning chemistry employed removes 

sili cones arising from degraded 1110uld release agents as well as crosslinked resin. The 

chemical inertness of si licones requires aggressive and very searching cleaning 

solu tions that wi ll not, however, damage the metal substrate. Solvents for fully 

crosslinked resin are either acid ic and wo uld damage metal tooling, possibly causing 

pitting which might aggravate mould release, or e lse are strong and volatile organic 
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solvents which are envirOIUnentally unfriendly. Therefore, the use of these in 

conjunction with a large ultrasonic bath would be inappropriate. One technology that 

will fulfil these requirements is the use of a fused alkali bath that will chemically 

reduce all sllch contamination and has found application in the destruction of 

hazardous chemical waste (6q No other so lvents are involved and so the waste is kept 

to a minimum. A cleaning solution based upon a high temperature bath of molten 

alkali is obvious ly hazardous to operate but does not damage the environment. 

lmmersion orthe tool into a bath of this material imposes a practical size limitati on on 

what can be cleaned. For reasons that wi 11 be discussed the process is also best suited 

to nickel or non-ferrous metals that are not susceptib le to rapid corrosion once a clean 

surface has been obtained. 

DuPont developed the sodium hydride treatment in 1942 [621 as a method for removing 

oxide sca le and casting sand residues from metal castings using a fused alkali bath, 

which would not cause any damage to the casting. The process has been described in 

detail by Lightfoot [6
11 where it was applied to the destruction of toxic chlorinated 

organic compounds. The use of fl{sed alkali baths is not a common cleaning teclmique 

and is used predominantly in the metal fillishing industry to clean complex shaped 

parts such as engine blocks. This process has not, however, been used for mould 

cleaning applications. Literature searches have failed to find any academic studies of 

its use for mould cleaning and very few trade descriptions appear to have been 

published. The two references given are the only ones found relating to the cleaning 

process generally. 

The process itself requires the part to be immersed in a molten bath of anhydrous 

sodium hydroxide maintained at 360°C. Hydrogen is passed through the melt to create 

a relatively dilute 2% solution of sodium hydride. This hydride is a very powerful 

reducing agent that is capable of reducing many metal oxides to the bare metal. 

Refractory oxides such as those of alumillium, titanium or si licon are not reduced 

directly but are removed by convers ion to the corresponding hydroxides by the highly 

basic hydrous component in the melt. The hydroxide is then so luble in the sodium 

hydroxide and is therefore removed. Unlike conventional acid pickling solutions the 

substrate metal is not attacked by this highly basic medium provided the metal is 

immediately quenched in a large excess of clean water upon removal from the melt. 
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Lightfoot 161] states that stain less steel corrodes rapidly, however, under these 

circumstances unless the drying can be carried out very quickly following washing. 

Because of the susceptib ility of steel to rust it is thought that the process shows 

greater promise for cleaning of nickel tooling. 

The very low surface tension of the melt renders the treatment extremely searching 

penetrating into any hairline cracks or the interfacial regions between any coating and 

the metal. Combined with the high temperature of the melt, the net action on any 

organic coat ings such as resins wou ld be to "carbonise" them and pressure washing is 

necessary to remove carbonised organic residues from the metal surface. 

Sodium hydride clean ing has the advantage of being one of very few methods that 

wi ll remove any si li cone contamination from a metal surface. Cleaning time is 

relatively qu ick, typicall y an hour. 

2.6 Ultrasonic Cleaning of mould tooling 

This method requires inmlersion of the contaminated part into a treatment bath and 

uses high frequency vibration (between 40kHz and 400 kHz) to improve the cleaning 

efficiency of aqueous and semi-aqueous cleaners that often incorporate a surfactant to 

reduce surface tension of the so lvent. There is no restTiction on the so lvent used 

provided it does not chemicall y attack the bath containing it. Ultrasonic transducers 

are externall y bonded to the bath, usually underneath the base of the bath. When 

activated these transducers create intense waves of compression and rarefaction in the 

cleaning so lution. The resulting alternating zones of high and low pressure impose 

powerful shearing forces on the molecules of the solution and literally tear them apart 

creating microscopic vacuum bubbles that implode when the sound waves move and 

the zone changes from negative to positive pressure. The phenomenon is known as 

cavitation and the millions of tiny bubbles break against the surface of any object 

immersed in the bath. The interaction of cavitation with a layer of surface 

contamination is analogous to abrasion with molecular sized grit. This allows the 

so lvent to penetrate the contaminant layer and the reduced surface tension allows it to 

work its way between the substrate and the contamination enhancing the cleaning 

process. A similar teclm.ique called Megasonics uses yet higher frequencies in the 
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range 700 kHz to 1.2 MHz. The hi gher frequencies resul t in smaller cav itation 

bubbles and produce a gentler cleaning action. This technology is favo ured fo r 

cleaning deli cate precision parts such as semiconductor wafers [63 J. 

2.7 Plasma Cleaning 

Plasma cleaning is really an application of plasma etching and thi s technique has been 

used fo r many years to chemicall y modify the surfaces of materi als, particul arl y 

fluoropo lymers, to make them chemi cally reacti ve, enhance their wetting abil ity to 

wet or improve adhes ion. It is thus a surface chemi stry too l but the same physical 

process can be used to etch away surface contaminati on, eventually producing an 

exceptionally c lean sur face . Typica ll y, fo r a c leaning application, the object requiring 

cleaning is placed in a reactor chamber that is evacuated usi ng a rotary pum p to a low 

pressure. Oxygen is then bled into the chamber and the gas exc ited using radio 

freq uency energy (typ ically 13.5MHz at 1 kW power) and thi s is ioni sed to form a 

plasma. The obj ect is surrounded by thi s plasma, which reacts with organic 

con tam inati on produc ing onl y water and carbon diox ide as the reaction by-products 

so that the cleaning process is environm enta ll y fri endl y. The plasma is characterised 

by an equili brium or near equil ibri um d ischarge which ex ists, once stable operati on 

has been estab lished, wherein electro ns, ions and neutral species in the plasma are in 

thermal equilibrium. The electrons present have negli gible heat capacity since their 

masses are tiny and so most of the heat generated in thi s c leaning process is that 

transferred by bombardment with ions o f much greater mass. The object cleaned is 

usuall y quite hot when removed from the reactor. 

Used in this way etchi ng rates are very slow and typically - 0.5 micrometres per hour 

and the technique described is essenti all y that which would be used for a surface 

chemistry application. The cleaning effect is strongly dependent on surface roughness 

and smooth surfaces tend to clean faster than ro ugh surfaces . Paciej et of [641 

conducted an evaluation of plasrna cleaning fo r the removal of lubricants from 

metalli c surfaces and compared cleaning efficiencies against identical samples treated 

with CO2 snow cleaning and cleaning using detergents. They found that plasma 

cleaning reduced contamination to the lowest levels but was relatively slow in 
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comparISon to the other techniques. The detergent cleaning methods were more 

effecti ve in reducing gross contaminatio n. Thi s research was published in 1993 and 

since then new developments in plasma cleaning teclmology have dramati call y 

increased cleani ng rates. 

Until relati ve ly recentl y the use of plasmas for surface engineering in industry have 

not been adopted because of the constraints imposed by the need for low pressure 

environments, the slow c leaning rates and the initial set up costs fo r the technology. 

What has now changed is that non-equilib rium plasma processes have been developed 

that can operate at atmospheric pressure [65J. Also by adding reacti ve gases such as 

sulphur hexafl ouride to oxygen, plasma etch rates can be increased by several orders 

of magnitude to levels in excess of 250 micrometres per hour for the etching of 

polymethl ymethacrylate (PMMA) [66[ . 

The same technology can be applied to metals that are diffi cult to clean such as 

aluminium and can produce exceptionally clean surfaces as measured by X-ray 

Photoelectron Spectroscopy (XPS) and water contact angles [67 [. In a stud y by Hicks 

[OS[ on the c leaning of rad ioacti vely contaminated surfaces where tantalum was used as 

a sun·ogate materi al for plutonium, it was c laimed that etch rates of 360 micrometres 

per hOllr can be achieved by introducing a low concentration of carbon tetratluoride 

into the oxygen whereby the plasma generates a large flux of reacti ve fluorine atoms. 

In the new technology avail able the atmospheric plasma is produced using a torch 

electrode design call ed a plasma jet (figure 14). This can be used to scan over an area 

requiring cleaning. Th is non-equil ibrium plasma is characteri sed by a much lower 

temperature typically between 50° and 300°C so potenti al themlal damage is reduced. 

The design can be modifi ed so that, instead of being cylindricall y shaped, tlat paralle l 

and planar electrodes can be used and these have the potenti al to clean larger surface 

areas. Thi s emerging teclmology merits a feasibility study for a mould cleaning 

application provided it can be shown that high etching rates are achievable without 

introducing adverse substrate reactions which compromise tooling chemistry or 

metallurgy. However, at the moment it suffers from the di sadvantage that helium gas 

is required to stabilise the non-themlal plasma and to effi cientl y cool the electrodes on 

account of its high thell11 al conductivity. 
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Figure 14 Plasma jet electrode design. 

2.8 High Pressure Water Jet Cleaning 

Of all the cleaning techno logies discussed, the use high-pressure water jets are the one 

most commonly encountered in everyday li fe. They have been used in industry for 

many years and can operate at pressures as high as 55 000 psi (379MPa) and can be 

used in fu lly automated cleaning operations. App lications are found in almost every 

industry from stripping of paints, rust and epoxide resins from meta l parts to cleaning 

marine fouling on ships hulls. Abrasive materials can be added allowing water jets to 

be used for cutting or for simply more aggressive cleaning. The major drawbacks of 

the method are that very large vo lumes of water waste are produced and legislation 

requires industrial users filter the solid waste before discharge into sewers is allowed. 

Also in many industrial processes involving unprotected iron and steel, rusting would 

result from use of water jet cleaning unless paIlS were very quickly dried and drying 

is thus an added complicati on. 

2.9 Summarv of Surface Cleaning Technologies 

The need to clean the large surface areas of aerospace too ling is a fundamenta l 

requirement in the present research and influences the choice of appropriate cleaning 
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technology. The most appropriate technologies considered worthy of study were 

identified as follows: 

2.9.1 Laser Cleaning 

o The literature shows there are many successful aerospace app li cations of laser 

cleaning and that the technology is a viab le cleaning so lution that does not 

damage metal substrates. 

o The optical absorption characteristics of the contaminant coating and the 

underlying substrate detennine the laser interactions that occur. 

o For a contaminant modelled on epoxide resin bonded to metal tooling, the 

literature states that absorption is strong using high power pulsed carbon 

dioxide lasers and coating removal is largely photothennal. For Nd:Y AG 

lasers, absorption by the resin appears to be weak but concussive shockwaves 

generated by treatment result in a themlOmecbanical effect that constitutes an 

equally effective cleaning mechanism and which recommends the teclmology 

over the more expensive pulsed carbon dioxide lasers. 

o The literature suggests that there are many difficulties associated with the laser 

c leaning of composite tooling. These may not be insu1lJ]ountable but they 

wou ld significantly compromise the rate at which large surface areas cou Id be 

cleaned. 

2.9.2 Dry ice blasting 

o The literature suggests this is the main competitor for laser cleaning. Dry ice 

blasting is already used for mould cleaning in the rubber industry. The 

essentiall y physical nature of the cleaning means it can be applied to both 

contam inated metal and composite substrates. Some disadvantages are higher 

consumable and running costs. 
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2.9.3 Sodium hydride cleaning 

• This cleaning procedure is efficient at removmg orgamc contamination 

quickly and could be applied to contoured moulding geometries that would be 

difficult to clean by line-of-sight techniques. Its limitations arise from the 

hazardous nature o f the c leaning chemi ca ls and practica l size of the moulds 

that could be treated. 

2.9.4 Other Cleaning Procedures 

These were identified in secti ons 2.7 - 2.9 but were not considered worthy of further 

study. The cleaning technologies that do not produce large vo lumes of waste are 

limited to cleaning of relatively small moulds that can be lowered into a treatment 

bath or placed wi thin a reacti on chamber. It is not thought that these are capable of 

removing large areas of cross linked epoxide res in in reasonable time sca les from 

meta l or compos ite surfaces. 
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Chapter 3 Mould Release Agents and Non-Stick Polymers 

3.1 Introductiou 

The discovery of polytetrafluoroethylene (PT FE) some 60 years ago marked the start 

of an era when the term "non-stick" entered into the common vocab ulary. Stickiness 

(adhes ion) and non-sti ckiness (abhesion) are related surface properti es in the sense 

that the properties of a surface that make it non-sti ck are for the most part the opposi te 

of those needed to allow other materi als to sti ck to it or ad here. Scientists first became 

interested in adhesion in the nineteenth century and many theori es explaining the 

mechani sms of adhes ion have been proposed in the twentieth century, so that today 

adhesion can be referred to as a mature science. 

Abhesion, a tenn first used by Zisman [691, is a teml used increasi ngly in research 

publications. It is used as a surrogate fo r the opposite of adhesion and conveying the 

idea of non-st ick iness. Briscoe has desc ribed abhesion as a "Cindere ll a subj ect" 1
7

01 

because most of the knowledge and experti se in the subject resides in thousands of 

patents held by large and small companies trad ing in non-sti ck products around the 

world. Academic research has been errati c and has been pioneered by on ly a few 

researchers, so in comparison to infomla ti on on adhesion, relati vely few systematic 

studies have been published. Mould release agents comprise another speciali sed type 

of non-stick material. 

3.2 Mould Release Agents 

Mo uld release agents are used in many di fferent industri es and problems of mould 

fouling are rife. Rapra [711 has recentl y produced a compilation of abstracts relating to 

mould fouling and the majori ty of research publications li sted therein are associated 

with proprietary trade fonnu lations claiming superior releas ing performance, though 

invariably wi th sparse factua l detail. Patent abstracts are also included in the Rapra 

publicati on. 

Relatively few systematic and scientifi c investi gations relating to mould release, 

functional chemistry and perfomlance ex ist in the literature, a fact commented upon 
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in a recent comprehensive review "Mould Fouling and Cleaning" by Packham [72 1, 

and so it is di ffi cult to give a histori cal perspective in any literature review. 

Legis lat ion designed to reduce environmental pollutants and in particul ar, the 

Montrea l Protocol of 1987, required the makers of mould release agents to develop 

products that could be applied using hamlless so lvents. In response there was renewed 

effort to develop semi-pennanent mould releases and water-based releases. 

The semi -pemlanent releases comprised, in large part, either cured resin systems that 

coat the mould or fluoropolymer fil ms applied to the mould . These were developed 

for the mould ing of rubber, thermoplastics elastomers (TPEs), urethanes, epoxies, and 

polyesters. Some releases cure at room temperature whil st others requ ire moulds to be 

heated to complete cross li nking. T hey are best sui ted to moulding very large parts 

where relat ively low numbers of moulding cycles are required rather than in high 

output mOU ldings where a part is made every few minutes. 

Water based releases represent a later product development and now offer equal or in 

some cases better perfonnance than semi-permanent releases. Industry has been 

reluctant to accept these because of the need to fully evaporate all the water solvent 

once the release agen t is applied to the mo uld. The products have been reported to 

work best on hot moulds such as those fo r cast urethanes that are pre-heated 1731. There 

are still problems in some applications ari sing fro m poor wett ing, s low evaporation, 

chemical reactions and wetting agents used in the fonnul ation. In a separate 

teclulology [731, a mould release agent was deve loped that was so lvent free being 

appli ed as an atomised c loud of the so lid re lease agent. 

Compan ies in the U.S.A. largely do minate manufacture of mould release agents. 

There are literall y hundreds of di fferent types of mould releases made and th is 

testi fies to the fact that the market for good mould release agents is very profi table as 

demand is high. Product selecti on is diffi cul t because o f the number of different types. 

Applicati ons in the rubber and polymer processing industri es predominate. Despite 

the high incidence of mould fouling problems in these industries, the science of mould 

release agents is poorly understood. Proprietary formulations are developed by tri al 

and error and contact with a lead ing manu facturer of mould release agents in the 
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U.S.A. suggests that forn1al test methods are rarel y used to evaluate release 

perfomlance in practice. This is because every customer has a different set of 

fabrication requirements and mould too ling geometry and moulding chemistries are 

such that no single laboratory tes t is deemed relevant [74) 

It is important in the contex t of the present research to emphasise the fact that fibre 

reinforced composite moulding processes in the aerospace industry almost exclusive ly 

uses ex ternal mould release agents and these tend to be semi-permanent formulations 

which a llow multiple moulding cycles to be performed before the release agent has to 

be re-applied. This di stinction is necessary because much of the literature that is 

published concel1ling mould releases is bi ased towards their use either as internal 

release agen ts, where they are mixed wi th polymers that are injection moulded, or for 

rubber moulding applications 17
5

[. Although many ex ternal release agents are used to 

prevent mould sti cking in the rubber industry, additi ves in the rubber formu lati ons can 

lead to very specific chemical reactions with the mould substrate during vulcani sati on 

of moulded rubber products. Examples are reacti ons between sulphur additives used 

in rubber compounds with nickel mould too ling and, in the case of halogen-based 

rubbers, reactions between chlorine and steel mould tooling, paliicul arly where the 

steel has a hi gh chromium content [75[.17
6

1. ill such cases adhesion lead ing to mou ld 

st.icking is enhanced by interfacia l chemica l reactions, which are infl uenced by the 

surface structure and ac id resistant properti es of the metal moulds [771· 1781 . In contrast, 

the chemistry occurring between thennosetting epoxide resins, which may be 

monocomponent systems, and metal too ling is marked ly different with the 

conseq uence that a sign ificant proportion of the limited infol1l1ation published on 

mould fouling research is of limited va lue to the present research . It is, however, 

useful to broadly catego ri se the different types of mould release products that are 

ava ilable. 

3.2.1 Interna l Mould Releases 

These are added to a polymer forn1ulation that is intended to be inj ection or 

compression moulded. Proprietary fOmlldations are used which may be fatty acid 

esters, metal stearates (often zinc or ca lcium) and waxes and which are believed to 

migrate to the surface during the moulding process presenting a weak boundary layer 
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between the moulding and the tool which allows ejection of the part wi th minimal 

force 1791 . According to Comyn 1801, one intemal mould re lease agent based on 

oleamide operates not by forming a thin, unifoml weak boundary layer on the surface, 

but by fomlin g microcrystal s, which increase interfacial stresses. 

3.2.2 External Mould Releases 

Injection and compression moulding are relat ively new processes and historicall y the 

first mould release agents used were applied extemally to moulds. These agents were 

mineral or ester oils and waxes such as paraffi n and provided a cohesively weak 

boundary layer between the moulded part and the moulding tool. Multip le coat ings of 

waxes had to be used and these were buffed to a high gloss, which was very time 

consuming and there were severa l other disadvantages [a ll. Once a mou lding was 

removed, the mould release had to be reapp li ed. These were thus termed sacrificia l 

release agents. These release agents were generall y on ly economic for small -scale 

production runs because their use was labou r intensive. Since rubbers have a mllch 

longer hi story than plasti cs the association of mould releases with that industry is 

intimate. It was found that moulded rubber paJ1S could absorb the oi ls and waxes 

during curing processes and this was undesirab le. Also it was difficult to obtain a 

unifollll thickness of mould release agent and this lead to the use of release agents 

dissolved in organic solvents that allowed con formal coatings to be applied. 

in the middle of the last century when silicones became available, these were 

attractive because of their unique properties and themlal stability and the dominance 

ofwaxes as other lubricants as mould release agents was eroded. Silicones, especially 

poly(dimethyl siloxane), are amongst the most inert and chemically stab le material s 

known. Because silicones will !lot react with most things they are prone to migration 

and this leads to serious prob lems where adhesion to a moulded part is req uired or 

where the part has to be painted. Silicones generall y can be classified as fluids, 

rubbers or res ins. The abi lity to make silicones is based on the fact that carbon atoms 

can be replaced with silicon atoms that are also tetravalent and can foml up to four 

bonds with neighbouring atoms. Oxygen is usually bound to at least one of the atoms. 

An organic group can be attached to one or more bonds, which differentiates silicones 

in temlS of the functionality of the organic radicals attached to the silicon. These are 
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methyl groups, methylvinyl groups, phenyldimethyl groups and fluorodimethyl 

groups. 

Release agents and lubricants can be fonnulated from silicone emulsions whi lst 

sea lants are the best-known example o f silicone rubbers. Semi-pennanent mould 

releases and a wide range of sili cone masonry water repellents can be formulated 

using sili cone res ins. Semi-permanent releases can themselves be sub-di vided into 

products where the resin is present in low concentration, typically 2-5%, in an organic 

so lvent such as an aliphatic hydroca rbon, and products where high-pressure 

homogenisation in the presence of a surfactant allows a micro-emulsion o f the resin in 

water to occur. Environmental legislation was the driving force for the development 

of these water-based release agents. Organic so lvent-based semi-pemlanent releases 

are prefelTed in industry because drying ti mes are shorter. Water-based releases work 

well 0 11 composite too ling (that is itse lf used to mould other composite structures) but 

cleaning procedures on metal tooli ng render them prone to rapid rusting when water 

based releases are used, though thi s fact is rarely mentioned by the manufacturers. On 

a separate theme, Boeing is developing organicall y modifi ed ceramic coatings call ed 

"omlocers" for the high temperature process ing o f advanced composite materials 

where conventional release agents are theffil all y unstable. These combine the 

thermochemical stability of a glass wi th the surface chemistry of a fluoropolymer 182 1. 

Other commerciall y ava il able coa tings comprise dry films (usuall y based on 

fluoropolymers) that are applied to the mould tooling to effect good rel ease. 

The key to success of a mould release is a marri age of its properties to the intended 

application, thus ensuring that the release agent is compatible with the chemistry of 

the moulded materi al and envirolullent in which it will be used. These qualities are 

usually arrived at empirical ly by trial and error and through close liaisons between a 

release agent manu facturer and a customer. 

A very successful commercia l mould re lease agent used in the aerospace industry is 

ca ll ed Frekote™ (hereafter referred to as Frekote) and was formally marketed by the 

Dex ter Corporation in the U.S.A. The Loctite Group today markets thi s product. A 

logical starting point for this research is to cons ider what is known about Frekote. 
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As has been mentioned, tbe chemistry of mould release fonnulations is only ever 

discussed in general temlS in the literature. One noteworthy exception is a publication 

by Clarke eL 0/ 1831 , which provides some insight into the functional mechani sms of 

the re lease polymers. Vtz, Hense l and Sprenger 1841, employed by the same company, 

separately published another article on the subject though the content is very similar. 

In common with many other semi -permanent mould release agents, it is believed that 

the Frekote product comprises two resin-based react ive polymers. The man ufac turers 

suggest a thoroughly cleaned moulding is first primed wi th two light coats of a sea ling 

formulation . The first coating is allowed to dry for 30 minutes at ambient temperature 

and then the second sealing coat is appl ied allowing another 30 minutes drying period 

but this time at 125°C. This is followed by an application of "at least" two further 

coats of the mould-releasing agent. Agai n, the first coat is a llowed to dry at ambien t 

temperature and then another coat added. 

It is beli eved that the first sealing compo nent polymerises on contact with air, when 

app lied to a clean meta l mould surface, and sea ls surface pits and porosities in the 

mould . Heating can accelerate the crossl inking reaction and an open sponge-like 

structure is created. The second chemicall y compatib le mould release polymer is now 

appli ed and it is thi s polymer that reduces friction between the moulding and the 

mould. Catalysts can be added to the component fomlUlations to change the cu ring 

condi tions though as a genera l rule the durability of the release coating is improved by 

a higher temperature cure. The one requirement shared by all re lease agents is that 

they must be app lied to a clean substrate and the manufactllrers include proprietary 

cleaning products with their release agents. Other key properties for re lease agents 

used in high vo lume indust ri es are that the number of moulding cyc les per applicati on 

is max imised and that the release coating is durable and can withstand abrasive 

scratch ing or be easil y reapplied to to uch up damaged areas. 

69 



------ ------ - - - --- - - - - - ---- - - - - -

.0 

Figure 15 . Mould 

(After Clarke 183 1). 

.0 

materia 
build-u 

cleaning decision tree 

Mould users use a decision tree such as that shown in fi gure 15 to determine the 

frequency of reappl ication o f a release agent and of mould c1eanjng. This in tUIll 

relates to the number of moulding cyc les that can be carri ed out w ithout problems of 

mould sticking. 

Clarke 1831 used Atomic Force Microscopy to show that appl ication of a semI­

permanent release fill s grooves and holes in a metal mould sur face and levels the 

surface topography but does not create a perfec tl y smooth surface. The single coating 

thi ckness is estimated to be approx imately 300r1l11 . The point is made that if the 

release coating is too thi ck and the sllrface too smooth, it becomes unstable due to the 

high shear forces encountered in moulding and demoulding operations. An optimum 

thickness works best, which reduces fri ctional contact with the mould substrate and 

provides a lubricating effect. Which o f these effects is more important is not known 

but Clarke bel ieves that both effects contribute to the perfonnance of a good re lease 

coating by some fom1 of synergistic mechanism. C larke contrasts a coated and 

uncoated substrate us ing fri ctional mode Atomic Force Microscopy (AFM) and this 

clearl y illustrates the effectiveness of the release coating. Substrate surface roughness 

is an important factor in achiev ing a good release and will be di scussed more full y 
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later. Briscoe and Panesar [85] have studied the effect of surface roughness on the 

adhesion of polyurethane to metal substrates . 

Some years ago Blanchard 186] did some valuable research on mould releases 

associated with inj ection moulding ofthemlosets and in particular studied the bui ld up 

of Frekote 700 Ne on electroformed nickel tooling. Blanchard' s work is the only 

research the author has found that has any relevance to the Frekote system. Using 

Secondary Ion Mass Spectroscopy (S IMS), Blanchard was ab le to identi fy PDMS 

from the SlMS spectra of residues huilt Lip on nickel tooling and concluded that this 

material must be a major constituent in the fonnu lation of the Frekote. Further 

evidence in support of thi s was found in the present research and it is probable that 

other competi tive products are also based on a similar chemistry. 

Both the sea ling component and (he release component in the Frekote system 

comprise resins di sso lved in an a liphatic hydrocarbon such as dibutylether. The 

so lvent is present in concentrations up to 98% and readily evaporates at room 

temperature to leave a rubbery residue. This res idue is sugges tive of a material with a 

low, sub-ambient glass transition temperature consistent with what might be expected 

for PDMS. With the Frekote system two resin based polymers are used together, one 

to seal mou ld porosities and the second to provide a slippery non-stick surface with 

low surface energy. 

The trade literature published by most of the manufacturers of semi-pennanent 

releases now shares the consensus that thin coatings often outperfoml thick coatings 

although, with the exception of Clarke 1831, quantitative measurements of coating 

thickness are never quoted. There is ambiguity as to whether these manufacturers are 

referring to the thickness of one coat or that of the total coats applied, since most of 

them suggest a minimum of four coatings per application of rel ease onto a cleaned 

mould; these coatings comprising mould sealing agent and release agent collectively. 

This vagueness may not be intentional since the total thickness of four or more 

coatings may only be a few micrometres at most and this is very thin by the standards 

involved in industrial applications, as opposed to surface science investigations that 

look at the effects of nanometre thicknesses at surfaces. 

7 1 

--- - - - -



One or two manufacturers suggest monolayer thicknesses of their coatings are 

effective implying a thickJ1ess in the order of a few nanometres and it is li kely that 

these few products utilise different chemistries to silicone resins, possibly 

fluoropolymers or fluorosi lanes. UnfortuJ1ately, it is not always easy to obtain samples 

to test and detemline composition by independent analysis. The author has 

encouJ1tered reluctance on the part of some manufacturers to supply small quantities 

for study. There can be many reasons for thi s. Usually their customers order large 

vo lumes and there is no demand for small quantiti es and the so lvents involved wo uld 

pose shipping difficu lties since many of the companies makiJ1g release agents are 

based in th e U.S .A. It is conjectured though, that the degree of secrecy surrounding 

many proprietary formu lations implies they broadly possess very similar chemistries 

although each natural ly claim superior performance, and the absence of published 

literature, in part, supp0l1s this view. 

Wemer 1871 proposed the use of perfluorinated po lyethers as mould rel ease agen ts for­

high temperature theml0setting resins ' These sati sfy the properties that good release 

agents should possess but are only so luble in highly Ouorinated so lvents and as such 

are inappropriate for a pollution conscious industry. 

3.3 Mould Fouling 

WitJlin the rubber industry thi s is also referred to as mould sticking or 'scumming' 

and col lectivel y these terms refer to moulds where residues, from chemically or 

thermally degraded release agents and contaminants arsing from the mou lded parts, 

have accumulated on the mou ld surface to such an extent that the release performance 

has been impaired. 

As has been mentioned previously, the causes of mould fouling are very complex and 

specific to a particular moulding process and reactions occurring between the 

moulded part and the mould substrate. The mould release is not usually considered 

since release agents are by their nature usuall y chemically inert. Excessive over use of 

a release agent can, however, aggravate mould sticking particularly if it has been 
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applied as uneven coatings. In practice app lying an even coating on a large area 

mould is no easy matter because, irrespecti ve of the re lease agent used, the coating is 

transparent so that when cured and dry it is largely invisible unless it is applied so 

thickl y that interference colours arise when li ght reflects off the coated substrate. 

From the customers' point of view, applying an even coating wo uld be eas ier if the 

release agent incorporated a dye so that an operative might easi ly assess coating 

thickness. Equall y, the customer wou ld not want thi s dye to transfer to the moulding 

which may be one reason rel ease agents with dyes in them are not offered. Spraying 

or wiping are preferred methods of mould release app lication since brushing can 

produce a streaky coating. 

3.4 Theories of Adhesion 

Anyo ne pursuing research in abhesion seeks an answer to the fundam ental question: 

What makes a surface non-sti ck? An attempt to answer thi s question might 

reasonabl y take as its starting point an examination of the theori es that have been 

proposed to explain why surfaces do stick together and then invert the arguments for 

the case of abhes ion. 

The theories propounded to explain the mechanisms involved in adhesion have been 

developed over many years and occur frequentl y in the literature [88J. [891. FOllr main 

theori es have evo lved: 

(i) the absorpt ion theory (attributing adhesion to intimate molecular contact 

between an adherend and adhesive with interfacial van der Waals forces, 

hydrogen bonding and poss ible chemical primary bonding occuning). 

(ii) the diffusion theory, advanced and developed by Voyutski i and Vasenin 

[901.[911, whereby molecules from adherend and adhesive are assumed to 

migrate across an interface. This assumes molecular mobility and chemical 

compatibi lity between the surfaces in contact as occurs in some rubbers . 

(iii) the mechanical interlocking theory where adhesion is said to arise from the 

interlocking of the adhesive into pores or cavities in the substrate, whereupon 

it hardens and anchors itself into the surface. There is evidence from many 
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workers such as Venables 19211hat mechanical interlocking plays a signifi cant 

role in adhesion. 

(iv) the electrostatic theory, proposed and supported Deryaguin [931, which is based 

on phenomena that occur on the close contact of two di electric materi als or 

between a metal and a dielectTic. It considers the adhesion of a pressure 

sensiti ve tape to a smooth surface and treats the two components as equivalent 

to the two plates of an electrostatic condenser and relates the energy o f thi s 

condenser to the wo rk of ad hesion. When such a pressure sensiti ve adhes ive 

tape is peeled rapidly from a substrate, a weak glow discharge has been 

observed and thi s implies there is some va lidity in the theory. 

Ad hes ives can have three principal components: 

(i) A surface conditioner that etches or otherwise roughens and cleans the 

surface providing morc points for mechani ca l retention , 

(ii ) A wetting agent or carrier so lvent that causes the adhesive to sp read well 

over the surface, 

(iii) A thermosetting or cross linkable reSII1 , which conforms the surface 

intimately and cures to provide mechallical retention and a cohesively rigid 

materi al. 

The reactivity of the surfaces bei ng bonded is a critical factor in detemlining whether 

an adhesive will be able to spread over the surface and wet it completely. The 

chemica l reactivity of a surface is related to its surface energy measured in units of 

energy (millijoules) per unit area . Contact angle measurements, using a polar liquid 

such as water and a non-polar liquid such as diiodomethane (DIM), are frequently 

used to assess the surface energy of a material. Many meta ls, especiall y after vigorous 

cleaning, possess relatively high-energy surfaces and will wet wi th water very easil y. 

The teml 'water-break' is used to describe the wetting achieved with water on 

cleaned substrates. Surface energy is also the driving force for polymer surface 

kineti cs such that a system will always try to minimise its interfacial energy and move 

towards a thermodynamic state of equilibrium . Non-stick material s such as 

polytetrafluoroethylene (PTFE) have exceptionally low surface energies - 16 m1 .m-2, 
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are very unreactive, and water will not spread over their surfaces. Some materi als are 

not reactive w ith water but may be reacti ve with other fluids so some caution must be 

exercised in the interpretati on o f high water contact angles when used in iso lation as 

an ind icator of low surface energy. 

The mechani sms of adhesion outli ned can be in verted to develop ind icators of good 

re lease behav iour. From the discuss ion of contact angle theory in section 3.8.8, an 

idea l non-stick surface requires a zero wo rk of adhesion and a very low surface 

energy such that its water contact angle would be very high but these properti es alone 

are not suffic ient to guarantee that nothing will stick to it as will be discussed. 

3.5 Non-stick Polvmers 

The best known non-stick po lymers are PT FE and PDMS and it is pert inent to di scuss 

the properti es of these materia ls. One o f the aims of thi s research was to evaluate 

some nove l coati ngs that might o ffer promise as better perfoml ing mould re lease 

agents. Some insights in to potentiall y use fu l chemistri es are fo und fTom research into 

non-sti ck surfaces and th is bridges many di verse industri es. Applicati on examples 

include non-stick bakeware which predominant ly use fluoropolymers, pressure 

sensit ive adhesive tapes where a sil icone backing paper allows easy use of the tape, 

anti fo uling paints for immersed marine structures, ice-repellent surfaces for aircraft 

wings, biomedical implants and robot part fabrication on the nanosca le level. 

In many appli cations the non-stick coat ing can be app lied fi'o m solvents by brushing 

onto a sur face or fro m an aerosol spray onto a substrate and thi s is the most 

convenient method of surface preparation for a moulding too l application. Selection 

o f the type of mo ulding tool for the aerospace industry is made with regard to 

matching the coeffi cient of thennal expansion of the tool to the product being 

moulded. Any polymer coating should have a minimal effect on thi s and so needs to 

be effecti ve when applied as a thin coating [Tom a solvent. 
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3.5.1 Polvtetrafluoroethvlene 

Polytetrafluoroeth ylene was di scovered in 1938 by Roy Plunkett [94[ and firs t became 

commercially available as Te flon™ marketed by DuPont. Thesis dissertations 

conceming fluorpolymers often start with the description of the discovery of PT FE as 

a "serendipitous event" wi thou t explaining the circumstances that may be un fa miliar 

to non-chemists. 

Reputed ly the di scovery of PTFE occurred when P lunkett opened up a brand new 

cylinder of tetrafluoroeth ylene gas one day in hi s laboratory onl y to find that nothing 
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Figure 16 Conversion ofTFE to PTFE. 

came out! He subsequently found a so lid white powder where the gas should have 

been which was PTFE, polymerised from the gas [95J (fi gure 16). PTFE was the fi rst 

commercial perfluoropolymer and is a so lid semi -crystall ine polymer with a high 

melting point (327°C) that consists of long chains of carbon atoms full y saturated by 

fluorine atoms. When all the hydrogen atoms attached to carbon atoms in an organic 

po lymer are replaced by fluorine atoms, the resulting polymer is known as a 

perfluoropolymer. Many different perfluoropolymers have been synthesized to date. 

Fluorine is the most e lectronegati ve of the elements and in fluorine-carbon bonds the 

electrons are closely held around the nucleus as compared to those in a hydrogen­

carbon bond where the electron di stribution allows for interactions with 

contaminating materi als. The carbon-fluorine bonds are extremely strong and the 

shielding of the carbon bonds by the fluorine atoms is responsible for the chemical 
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resistance of the material. The PTFE chain forms a s lightly twisted helix as shown in 

figure 17 due to mutual repulsion of adjacent fluorine atoms. The helical 

confonnation of PTFE molecules thus comprise of carbon atoms in the core shielded 

by a sheath of large fluorine atoms and the molecules pack together like para ll el rods 

in the crystall ine domai ns. 

Figure 17. Structural model of PTFE 

depicti ng a sheath of fluorine atoms 

(light co loured spheres) shielding a core 

of carbon atoms (dark coloured 

backbone) (After Herber & Reucke~IIII). 

The properties of the closely packed fluorine atoms (figure 17) on the outside 

contribute to exceptional physical properties of PTFE, which include a very low 

surface energy, and one of the lowest coefficients of fricti on of any known materi al 

(0.04 - 0.09) [961, UnfOltunately, PTFE is inso luble in almost all so lvents and is 

di fficult to mould or ex trude since it has a very high melt viscos ity ( 10"_ 1013 

Pascal. sec) . It is most frequen tly encoun tered in non-stick coating fonn ulation as a 

dispersed solid phase or emulsion or can be processed in granu lar fonn by sintering. 

Melt processing is possible by modifying PTFE with the introduction of 

hexafluoropropylene and perfluoroalkylvinyl ether into the polymer chain to give 

Tellon FEP and Teflon PFA respectively, both possessing lower crysta ll inity and 

molecular weight [97J 

There are some materials that have a lower surface tension than PTFE and these are 

frequently characteri sed by possession of CF3 functional groups rather than the CF2 
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groups of PTFE. Zisman (69) found that the surface tension depends on the constituent 

groups in polymers which decrease in the order of: 

The surface interface in a coating dominates its interaction with other materi a ls and 

thi s interaction occurs at a molecular level so that the propel1i es of coatings depend 

not onl y on the complete chemical coverage of a substrate by a pol ymer coating 

mo lec ule but also on how the polymer is packed or oriented on the surface. An 

optimum coniiguration of po lymers w ith CF3 gro ups can lower the surface tension to 

as littl e as 6 mN. n,- 1 (69). The surfaces of such materia ls strongJy repel most liquids. 

Examples of fluorinated polymers possessing low-surface-energy have been reported 

in the literature and include perfluoroacryJates [98 1•1991, which are used to increase stai n 

and so il resistance o f textil es, perfluoromethacrylates 1100),1
1
011 and polysiloxanes 

11021.(103) 

Perfluorosiloxanes are used as mould release agents for casting 

polymethylmethacrylate (PMMA) and flu orochemical elastomer additi ves are used as 

release agents for ethylene-propylene, nitril e and fluoroelastomers. They also prevent 

melt fracturing in fi lm blowing of linear low density polyethylene [801. Fluorinated 

groups in such coatings preferentially migrate to the upper surface since this is 

favoured thennodynamica ll y because it minim ises the rree energy at the interface 

between the surface and air. 

3.5.1.1 Tenon AF 

DuPont have recently introduced a range of completely amorphous flu oropolymers 

based on copolymers of 2,2-bistrifluoromethyl-4,5-difluoro- J ,3-dioxole (POD) and 

market the products under the trade name Teflon AF 197) (figure 18). These materi als 

possess all the des irable propel1ies of PTFE and additionally can be melt processed 

and are so luble in fluorinated solvents. Processing can be performed from so lution, 

casting, spraying, painting, vacuum pyro lysis and even laser ab lati on 11
04) and this 

versatility makes them potentia lly attracti ve for release applications and it is being 

used as a low energy non-stick coating for photomasks in contact lithography in the 

semiconductor industry [1 05J. [1061 This application requ ires a release coating that is 
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opti cally transparent and Teflon AF satisfies this since it is completely amorphous. At 

present Teflon AF is quite expensive and this limits appl ications. Scheirs (l 07J give full 

detai ls of the properties of these unusual fluoropolymers . 

L... 

Figure 18. Molecular structure ofTeflon AF 

3.5.2 Polvdimethvlsiloxan e (PDM S) 

PO MS was di scovered in 19 12 by Frederick S. Kipping (l 08J but was onl y 

manufactured by Oow Coming in 1943. It is more commonly known as silicone oi l 

but comprises materi als possessing different viscosi ti es depending on the degree o f 

polymeriszation (dp). 

At a dp of 1000 or less, PDMS is a fluid but at dp 's of several thousand , PDMS 

CH3 0 CH3 0 C H3 0 CH" 0 
, / \.1 / '\.' /\1 / 

-Si Si Si Si 
t , , , 

CH 3 CH3 CH3 C H3 
~ 

Figure 19.Repeating units of dimethylsiloxane (After Bey[53)) . 

can be a gum . It consists of an inorganic si li ca backbone as shown in fi gure 19. 

Silicon is tetravalent like carbon and in PDMS it fomls two bonds w ith methyl 

groups. 
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Figure 20 Structure ofPDMS (After Arkles [1091) 

This structure defines the repeat unit and the po lymer thus comprises a long, very 

fl exible inorganic backbone terminated by methyl groups. As a consequence of the 

long silicon-oxygen bond and flatter bond angles of the backbone, there is no barrier 

to the rotation of the meth yl groups about the backbone. Thus the backbone is very 

efficient in presenting the methyl groups to an air interface and adopts this molecular 

confonnation since it minimises its surface energy. PDMS can be modified depending 

on the tenninal end groups. Figure 20 shows termination by a trimethylsiloxy 

(Me]SiO) group. These pendant groups effect ively shield the strongly polar backbone 

and s ince the carbon atoms are fully saturated by hydrogen atoms, inteml0 lecular 

forces between adjacent polymer chai ns are very low. This means that they s lide over 

one another easily without any steric hindrance. Measurements of surface free 

energies are in the range 20 - 23mJ .111-
2 [n so lu tion the polymer readil y migrates to an 

air/Jiquid interface and if used in a coati ng formulation, thus confers lubrication 

properties. 

As a su rface layer PDMS presents a weak boundary layer that has poor wetting 

properties and low compatib ility with non-silicone materials. If a linear polysiloxane 

is used as a release coating it wi ll probably divide OD debonding and would 

contaminate the moulded part. This is avoided by crosslinking the polymer using a 

condensation reaction that may invo lve silicon hydroxide groups. Alternatively an 

80 



addition reaction might be used involving vinyl sil anes 1801. Silicones foml the basis of 

who le fam il ies o f so lid polymers such as silicone elastomers much used in DIY and 

bu ild ing appl ications and si licon resins that make excellent water repellent coatings 

for maso nry protection. The thermal stability as well as structure related propeliies of 

polysiloxanes in general are dependent on the nature o f the pendant groups bonded to 

the silicon atoms. Although PDM S is inert other groups or atoms can replace the 

meth yl pendant groups. For exampl e, if hydrogen atoms are substituted for one of the 

methyl gro ups, the resulting polymer is po lymethylsiloxane and thi s can be react ive in 

certain conditions. Figures 2 1 and Table I below, suggest how di ffe rent functi onali ty 

can he conferred to PDMS by substituting diffe rent groups at branch po ints on the 

mo lecular backbone. 

Functi ona l Groups 

A· (Si· O)m . (Si· 0)0 . Si . A 
I I I 

B 

Figure 2 1 Functi onality added to PDM S by group substItution (A fter Dow Coming 

(199)) . 

Group Position Function Added 
Phenyl B TheIlll al stability 
Alkyl B Lubrication 
Fluoroalkyl B Hydrophobicity 
Amino A or B Softening 
Methoxy A Durability 
Polyether A or B S urfactant/l ubricant 
Acetoxy/H ydroxy A Crosslinking RTV 
Vinyl A Cross linking LSR 
Hyd rogen B Cross linking 

Table 3 FunctIOnality added to PDMS by group substitutIOn (A fter Dow Coming 

[1991) . 
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3.5.3 Non-Stick Coatings for Cooking and Baking 

One of the earliest app lications for PTFE in the 1950's was as a non-sti ck coating for 

fryin g pans and non-sti ck coatings are uni versally associated with cookware by 

members of the public. The problem encountered with PTFE for thi s application has 

always been to find ways to bond the polymer to the meta l base of a cooking utensil. 

Thomas [1 101 and Herber 1111] describe how thi s seemingly intractable problem was 

overcome and how subsequent modi fications to the chemistry of PTFE and 

introduction of copolymers have aided its future processing and use. The means by 

which bonding is achieved is worthy of brief mention. 

One of the theo ri es of adhesion emphasises the importance of achiev ing mechanical 

interlocking between adhes ive and adherend and this effect is very important in 

getting PTFE to stick to a metal. The metal surface, first degreased using so lvents, is 

grit-blasted to create a rough surface. It is then etched in a mix ture of chromic and 

phosphoric acids and an aqueous di spersion of PTFE granules mixed with a binding 

agent is applied to the surface and hea ted at 430°C. At thi s temperature all the 

so lvents evaporate and the PTFE melts although it does not flow very well because of 

its very high melt viscos ity. This binder component (often polyamideimide) promotes 

adhesion to the metal substrate and helps anchor particles of PTFE to the roughened 

metal surface; the s lippery molecules of the PTFE effectively bracing themselves 

against pits and cavities in the surface. The heating process sinters the PTFE and 

helps it to fl ow. This first PTFE coating acts as a primer (a term borrowed from 

painting teclmology). The primer contains thennall y stable pigments and other 

additives . Other fluoropolymers such as PFA and FEP may be present in the 

fomlll lation. 

Once the primer is applied and has been cured, successive coats of PT FE rich polymer 

are added , building up the total coating thickness as stratified layers. During the 

sintering tile fluoropolymer tends to migrate towards tile surface and ilie stratification 

occurs to minimise the surface energy of the system since PTFE has a lower surface 

energy than the binder. Once a small amount of PTFE has been anchored to the metal 

substrate in the primer application, fUliher PTFE added in subsequent coatings will 
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stick well to itself The quality of the end product is related to the total thickness of 

the coatings. 

TEFAL frying pans, a tradename belong to a French cookware company founded in 

the mid 1950's, were one of the first non-stick range of pans to be marketed in 

Europe. TEFAL is a contraction of TEFlon and Aluminium since thi s was the 

substrate metal used. Anyone that has used non-stick pans knows that one should not 

stir the heated contents with a meta l spoon but instead use only wooden utensil s. This 

is because PTFE is very so ft, especiall y when heated and the coating can easily be 

damaged especially if the pan was inexpensive since the coating may then be very 

thin. Another problem arises from the crystallinity of PTFE because after sintering 

and cooling to room temperature a pan coating will re-crystallize and fom1 a film with 

a high microporosity. The main advancements in the technology of making non-stick 

cooking and bakeware have been in the range of fluoropolymers that can be used and 

finding more efficient ways to make them sti ck to metal s. 

3.5.4 Non-stick coatings to prevent marine fouling 

Marine fouling has long been a problem for immersed marine structures and ships 

hulls and paint manufacturers have struggled to find suitable protecti ve coating. The 

Paint Research Association and the paint industry in general have been active in 

pUblicising new technological improvements, particularly those that utili se the 

properties of fluorinated polymers. In shipping, barnacles, tube worn1S, algae and 

other marine organisms attach themselves to exposed surfaces causing large area 

encrustations and this can slow down a ship by approximately 5% in serious cases and 

increase fuel consumption by 40% and necessi tates increased frequency of clealling in 

dry docks. The worldwide economic consequences are not trivial and runs into 

billions of pounds each year. Conventional so lutions used comprised antifouling 

paints containing tributyl tin (TBT), copper, arsenic or mercury which act as biocides. 

These toxic metals leach out from the paint and cause marine pollution that is 

especiall y severe in harbour and coasta l waters where the ships move slowly and 

where the water temperatures Illay be higher which aggravates the problem. 

Unchecked, these biocides can harm other salt-water shellfish such as oysters together 

with fi sh stocks. A new generation of environmentally friendlier coatings use other 
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biodegradable biocide paint add itives or other paints containjng Tefl on dispersions 

that inhib it fouling by a presenting a low energy surface to which adhesion is more 

difficult. These coatings resist adhesion by molluscs but are at their most effective as 

anti-foulants when under hydrodynamic shear, and exceptionally so on high-speed 

craft. Fouling can still occur when a ship is laid up for any period . The ship getting 

underway usuall y washes off this fouling. Earl y research on the anti -fouling potenti al 

of Tefl on found that, despi te its excepti onall y low surface energy (18I11J .m'\ the 

biopolynleric adhesive secretions from marine organisms were somehow able to sti ck 

tenaciously to pure Tenon sheeting in static flow tests even though such adhes ion 

occurred underwater. These sticky secretions comprise amino acid proteins and 

rapidly bond to surfaces on contact. Understanding this bioadhesion is important in 

many other areas such as medical implants where moving surfaces of artificial joints 

must resist protein adsorption and cell adhesion. The ability of marine organi sms to 

sti ck to PTFE and other low energy surfaces is still not full y understood but it is 

apparent that no s imple relationship ex ists between surface free energy and adhesion, 

In the case of PTFE, it is known that thi s is quite porous and it is thought that marine 

organisms inject their adhesive into porosities and achieve a mechanical interlock. 

This might explain the adhesion for PTFE but generall y the adhesion mechan ism is 

thought to be chemically complex and only recent publications provide insights into 

its nature [11 21 though it does appears to be chemical in origin rather than associated 

with intermolecular forces , Unlike the sticky feet of gecko li zards, that can walk 

upside down on polished glass surfaces due to the fact that the soles of their feet are 

covered by bill ions of sub-micro keratin hairs 1I DJ. fl14J, van der Waals forces are not 

responsible for the stickiness ofbamacles. Even geckos can' t stick to Teflon! 

Many antifouling marine paints are based on po lyurethane coatings. Research has 

shown [lISJ that, for fluorinated urethanes, the adhesion of marine organisms is a 

minimum for coatings with surface energies - 25mJ.m'2 and actuall y increases 

grad ual ly for surfaces with lower energies, The smoothness of a coating is also known 

to inJluence its abi li ty to resist fouling. Bona fede and Brady [1 16J suggest that the 

adhesive from marine organisms initially penetrates surface cavities and surface 

porosities in PTFE and then after chemical bonding has occurred, mechanical 

interlocking of the cross linked adhesive contributes to the tenaciolls attachment of the 

organi sm to the surface, 
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Andrade [11 7] I'eports a correlation between surface molecular mobility and ability to 

form pemlanent adhes ive bonds whereby increased polymer surface mobility of the 

molecules comprising the coating reduces the poss ibility for adhesive bonding. Brady 

[11 8[ describes such a molecularly mobile surface as providing "a moving target", 

making it diffi cult for a compatible adsorbate functional group to latch onto and bind 

to a spec ific site on the mobile molec ule bound to the surface . Bonafede and Brady 

[ 11 61 in stud ying fluorinated urethanes with di fferent levels of PT FE fill ers conclude 

that supple, soft polymers with low glass transition temperatures may be more 

effecti ve as antifouling material s. The suggesti on is that surface roughness and 

molecular mobility play an important part in the success of a non-stick coating. 

According to Comyn[801, the viscoelasti c properti es of a non-sti ck coating are more 

important than the surface chemistry . 

Silicone po lymers are another ecologica l so lution, which uti lise the low sUl-face 

energy of silicone binders in formulated paints. However, the natural salt-water 

environment in harbours comprises a combination of chemicals that can swell and 

chemicall y degrade the perf0l111 anCe of these materi als over time making them less 

effective than their tox ic predecessors. 

Perfluoropolyether based coatings have also been shown to be effect ive as anti­

fouling agents fo r marine applications, although since the ban on the use of CFC's by 

the Montreal Protocol, finding convenient and effective so lvents has proved di ffi cult 

rendering these polynlers rather intTactable mateli als to process although one effecti ve 

solvent that could be used is compressed carbon dioxide. Perfluoropol yether 

possesses high thermal and chemical stability, low surface energy and a very low 

glass transition temperature. Different functional groups (alcohols, isocyanates, 

epoxies and methacrylates) can be added to produce a wide range of material s. 

3.5.5 Silicone Release Coatings 

These types of coatings are frequently used to make release liners to carry and protect 

pressure-sensitive adhesives (PS As) until they are appli ed to a surface when the liner 

is peeled away and good release properti es are required to effect this remova l. The 
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liner is usually some fonn of paper substrate impregnated or coated with a release 

fonnulation. The coating is very thin - 1 micrometre or less and typical surface free 

energies can range from 10 - 20mJ .m-2 depending on fonnulation. The development 

of faster curing and more aggressive adhesives for ever more demanding applications 

has spulTed the development of release liners that will be effective for all product 

ranges. A combination of bulk and su rface properties are required including inertness 

to at least one of the separating sur faces at the temperature of the release process and 

low surface energy. Release in this appl ication is a complex interaction of the bulk 

and su rface effects including adhesive and release coating thickness, viscoelastici ty, 

delaminating speed, angle of peel, humidity and temperature. Only the sur face 

properti es of these types of coating are of relevance to the present research on mould 

release agents. Release perfonnance for mould release agents is most often assessed 

qualitatively by perfol1l1ing an automated peel test using a strip of adhesive tape and 

measuring the force req uired to detach it. Similar tests are perfoll11ed manually in 

mould release applications where the ease of re lease of adhes ive tape to a treated 

mould surface indicates the effectiveness of the release coating. Essentially PSA 

release f0ll11ulations must ensure a weak interface ex ists between the adhesive and 

liner itself and addi tionally should possess a low coefficient of friction. These 

requirements are most often satisfied with polydimethyl siloxanes though some 

fluorosilicones such as polymethylnonafluorohexylsiloxane (pMNFHS) [l 07J are 

useful when exceptionally low sur face energies are required. Surface energies lower 

than PDMS are engi neered by lengthening the pendent fluorocarbon sidechains, 

which has an enhanced shielding effect in fluorosiloxanes . 

Some authors such as Owen [1191 believe a definite correlation ex ists between 

polymers possessing a low glass transition temperature (Tg) and those making good 

PSA release agents since low Tg is associated wi th good molecular chai n mobility and 

by implication low surface energy. Ho 11 201 in hi s study of minimally adhesive 

surfaces stated that a low Tg was desirable to minimise mechanical interlocking of 

adherents. It is interesting that other authors such as Andrade [11 7J engaged in marine 

antifouling research make similar assertions. It is perhaps not surpri sing then that 

many good release coatings essenti all y comprise a cured rubbery silicone. 
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Bey (121) states that si licones that are potentially useful for release applications should 

possess: 

(i) low polarity to min imise intenTIolecular attractive forces 

(ii) low surface energy to prevent wetting by adhesives 

(iii) high po lymer chain flexibi lity to allow surface mobility 

(iv) molecular incompatibi lity with other organic polymers and adhesives 

The abi lity to fOIl11 a weak boundary layer can be added to this li st. 

Bey (12 1( describes how such compounds can be synthesized by taking a silicone with 

reactive end groups and combining it, using a meta l catalyst, with another siloxane 

that can function as a crosslinker (figure 22). Curing of the polymer occurs by a 

condensation reaction. 

Contact angle measurements have been the principal method of calculating surface 

free energies for many years and their use in comparing different PSAs was pioneered 

by GOI·don and Colquhoun [122 (, amongst others. Packham (1 23 ( discusses how a 

different analysis independent o f contact angles and based on the work by 10hnson, 

Kendall and Robel1s (1 24( can be used to calcul ate surface energies. 

The peel force of the adhesive from the paper however, often does not correlate with 

contact angle measurements or with surface analysis by X-ray photoelectron 

spectroscopy but instead correlates with rheo logical properties (80). 

An important relationship that was first used in 1926 to understanding adhesion and 

release behaviour is expressed by Harkins ' equation (1 25): 

S = W, - Wc ....... . ..... . . . .. . . . . ... .. .. (23) 
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where S is the spreading coeffi cient o f the adhes ive on the release coating, W" the 

wo rk of adhesion, i.e. the change in energy per unit surface area when two surfaces 

come into contact, and Wc is the wo rk of cohes ion of the adhes ive. This is twice the 

surface energy of the adhesive, as two surfaces would be produced by cohes ive 

cleavage. 

For a good adhesive we wo uld want the bond between two surfaces to be strong such 

that failure does not occur at the bonding interface between the surfaces but thro ugh 

cohesive fai lure in the bondi ng material itself (o r through cohesive fa ilure in one of 

the parts being joined). A positi ve spreading coeffi cient is thus required with the work 

of adhesion being higher than the work of cohesion. 

For a good release agent we require the exact opposite. In thi s case the release agent is 

analogous to a very poo rl y perfo mling adhesive bonding two surfaces . We want the 

adhesive to separate at the interface (interfac ial failure). Thus we want the sp reading 

coeffi cient to be negati ve (i.e. the "adhesive" will not wet either surface) and this 

requires the wo rk of cohesion (the energy necessary to cause fa ilure within the bulk of 

the "adhesive") to be greater than the work of adhesion. 

The Harki ns relationship is obeyed for a wide range of PS As and release coatings. 

Packham [123] makes the point that it is necessary to di stingui sh the work of adhesion 

from the fracture energy G whjch is a measurable parameter independent of surface 

energies calcul ated by contact angles measurement. Andrews and Kjnloch [126] have 

shown that in the case of a simple adhesive 
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G = Wo x <p . . " ... " . . .. .. .... " ••... ... (24) 

where <p is a temperature and rate dependent viscoelastic term which acts as a 

mUltip lying factor. Measured fracture energies are several orders of magnitude higher 

than works of adhesion and the above equation is one attempt at formulating a 

quanti ta ti ve rela tionship between wo rk of ad hesion and practica l bond strengths 

mani fest in the measured fracture energy. 

3.5.6 Hvd,.ophobic Coatin gs 

Hydrophobic materi als find very wide applications from waterproof clothing and 

masonry protection to high technology examples such as ice-phobic surfaces for 

shipp ing and aviati on. Hydrophob ic sur faces have ma inly nonpolar gro ups, like 

hydrocarbon cha ins. Whil e there is relati vely strong hydrogen bond ing and dipole­

dipole interacti ons in hydrophilic liquids, weaker van der Waals interactions are 

present in hydrophobic materi als. As a consequence, hydrophobic materi als typicall y 

have very low surface energies . Meyer tI27). )128) describes the applicati on of 

hydrophobic coatings in masonry protecti on and typical coating fo rmulations 

compri se si lanes, siloxanes and sili cone resins. A requirement in masonry protecti on 

is that ingress of water from outside a b uilding is prevented whi lst ensuring that pores 

in the building materials are not obstructed so that they remain pemleable to water 

vapour. Coatings must possess the ab ility to wet the pores and capillaries without 

clogging them. Pocius [129J di scusses the kineti cs of pore penetration and refers to 

research published by Packham [1301. which is reproduced below. Packham argues that 

the penetration of a liquid into a capillary (considered here as a pore) is given by 

Poiseulle's Law: 

x. dxldt = r 2 P I 811 . . .. " .. " ." ." . .. (25) 

Where x is the pore penetration d istance; 11 the viscos ity of the adhesive; P is the 

capillary pressure; t is the time an r is the radius of the pore. The capi llary pressure is 

given by: 

P = 2 YLV cos e I r ........... .. .... " .. (26) 
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where 8 is the contact angle and YLV is the surface free energy of the adhes ive. 

Schonhom, Frisch and Kwei [131 ) studied the wett ing of a surface by a po lymer and 

Newman [ 132) derived the foll owing expression that describes the change in contact 

angle with time as a surface is wetted: 

cos 8(t) = cos 8.,, (1 - a exp(-ct)) ..... .. (27) 

where 8", is the contact angle at infinite times, 8(t) is the time dependent contact 

angle and ' a' and ' c ' are adj ustable parameters. Combining the above three equati ons 

gives: 

x2 (t) = r YLV cos 8",/2 11 [ (t - alc) + aexp( -ct)/c 1 .. .. ...... (28) 

and thi s describes the di stance a pore is penetrated by an adhesive. Packham [110] 

used thi s equation to consider the welting o f d iffe rent pore sizes by polyeth ylene in ai r 

at 200°C for whi ch YLV =23.5 mJ .m-2 and over a timesca le o f 20 minutes. The 

foll owing results were obtained (Table 4): 

Pore radius Distance 

(micrometres) penetrated 

(micrometres) 

1000 220 

10 22 

I 7 

0. 1 2.2 

0.0 1 0.7 

Table 4.Penetratlon depth fo r different pore radii [129 1. 

These calculati ons show that onl y very small pores are completely fi ll ed by an 

adhesive with the consequence that to eng ineer good adhesion between two surfaces 

we should ensure that a fi ne morpho logy is present and that the ad hesive has a 

suffi cientl y low viscosity. Conversely a fine morphology will be detrimental for 

abhesion and we would need to ensure that any fine morpho logy present on a surface 

should be fill ed by a mould release compo und. Good adhesion is required , however, 

between the release agent and the metal to which it is applied. Clearly the substrate 
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must be clean but its ability to wet the surface is a function of its microstructural 

roughness. 

In building materials, coatings have been fom1lllated that are able to wet the small 

pores in building materials without blocking them and these fomlltlations often 

contain molecules that act like the bristles of a molecular brush where one end of the 

bristle is bound onto the surface that is coated and the other end is free to push away a 

water molecule. Silicone resins are used in these coat ings and bind to the masonry by 

a crosslinking condensation reaction to form a three-dimensional stable structure 

resembl ing quartz. Un like quartz though where each s ilicon atom is bonded to four 

oxygen atoms, in these resins one of the oxygen atoms is rep laced by an organic 

group such as a methyl which impal1s a water repellent property. Applied to a glass 

subslrate such coatings wou ld yield a transparent, tack-free water repe ll ent surface. 

The interest of these coatings in relation to release agents is two fold. Firstly, to 

reiterate the point already made that a low energy sur face is onl y one desirable 

property of a release agent. Clearly a masonry coating is not optimised fo r application 

as a release agent. Secondly, the modified quat1Z structure has the property of binding 

to many different types of substrate and if a different organic group was substituted 

that would confer different properties, then the basic advantages of a s ilicone resin 

might be used to engineer a good non-stick coating or release. In fact silicone resins 

are used in many commercial release agents. 

3.5.7 F'luoroalkylsilanes 

The properties that make water repellents successful on a molecular scale have been 

identified in the case of hydrophobic masonry coatings di scussed above. What is 

required is a molecu le that possesses a duality of behaviour where one end reacts in 

with a surface and the other end possesses non-wetting functionality. 

Fluoroalkylsiianes are one group of compounds that possess such characteri stics . The 

fluoroa lkylsilane molecule is thus bifunctional with a si lane termination which wi ll 

bond to many different types of substrates whilst a highl y fluorinated chain is 

telTIlinated with a eF) gro up at the other end. After molecular bonding with the 

substrate, the fluorinated chain, with its tendency to ori ent itself away from the 
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surface, forms a ti ghtl y packed comb-like structure and provides a low-energy release 

surface. Such molec ules foml self assembled mono layers (SAMs) on substrates [1JJ), 

II J4J 

Fluoroalkylsilanes are relati vely new materi als that have been used for hydrophobic 

textil e coatings [ll5J but are finding new applications in ni che areas such as ice phobic 

coating applications 11361 and in pal1icul ar, the sem iconductor industry and there is 

great interest in their applicati on in Japan in particular. Several recent publicati ons 

suggested the potenti al of fluoroa lky lsilanes. Mayer et af II l 71 di scuss their use for 

adbesion control in micro-electromechanical systems (MEMS) and thi s appears to be 

a key application area with many papers appearing in the literature, Bums et af [ll8J 

di scuss their applicati on as model lubricants in studies o f nano-scale fri ction 

investi gated using the latest scanning probe technologies. Tadanaga [1l91 has described 

a lithographic maski ng appli cation whereby the hydrophobicity of fluoroalkylsil ane 

coatings can be destroyed by depos iting the coating over a thin layer of ti tanium 

diox ide. Irradiation of the mask by ultra-violet li ght then causes a catalytic reacti on 

between the titania and the fluoroalkyls il ane which breaks the bonds between the 

molecule and the surface. 

Fluoroalkysil anes have many interesti ng tri bo logical properti es as non-stick coatings 

and have been investigated and reported by several authors such as Shanahan et af 

[l40J, [l4 iJ. It was envisaged that these compounds might be used singly or in 

combinati on with similar bisfuJlctional chemistri es to engineer a suitable barri er 

between a metal moulding too l substrate and a res in ri ch moulded part but it is noted 

that their perfomlance could be impaired in the relati vely aggressive environment 

encountered in industrial compos ite moulding where contact with thermosetting 

epoxide res ins at high temperatures and under elevated pressures occurs. 

One particular commerciall y avail able fluoroalkylsil ane is tridecafluoro-l , l ,2,2-

tetrahydrooctyl) tri ethoxys ilane C I4H I9F IlOJSi. (fi gure 23). This is marketed by 

ABCR-Gelest (UK) under the trade name Dynasylan F826 1. It is used at 

concentrations of approx 1% by weigbt in a solvent such as hexane and is a 

fluoroalkyl functional si lane that can be applied to a wide vari ety of substrates. 

Samples are dip or spray coated and the coatings cured in an over at 11 DOC for 
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30mins. Gelest produce several types of Dynasylan . That specified above is used in 

waterproofing and oil-proofing appli cations. Other products are intended as 

hydrophobic and oleophobic coatings for porous and non-porous ceramic substrates . 

Use of Dynasylan F826 1 as part of a mould release fonnulati on applied to a metal is a 

potenti al new appli cation. 

The properties of fluoroalkylsil anes can be summari sed as: -

• Coated surfaces are hydrophobic 

• Coatings possess low adhesion energy 

• Coating thicknesses are typ ically onl y a few mOl1olayers 

• Coatings will bond to clean metal substrates 

• Coatings are eas il y appli ed and thermall y stable 

• Use non-toxic so lvents 

FluoroalkyIsilane 
Dynasylan F8261 

(OCH,CH, ) "-

(OCJ-I 1CHj ) - Si - CH2C!-!.CF2CF2CF2CF2C FzCFj 

(OCH,CH,) /' 

Applied frtHn solution CFl "tail s" will migrole 10 

air interface to assume lowest energy configuration. 
Other ends will face metal substrate and !orm 

hydrogen bonds to substrate on curing. 

Figure 23. Dynasylan molecular structure. 

Dynasylan bonds to the substrate via a hydrol ysis and condensati on reaction. 

Covalent bonding then occurs at the substrate surface. The application of heat cures 

the coatlng allowing crosslinking to occur with the elimination of water ( fi gure 24). 
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Figure 24. Reaction and cure of Dynasylan (After Shanahan [141) ) 

Materials were coated wi th thi s Ouoroalkylsil ane and their perfonnances as a mould 

rel ease agent were evaluated. 

3.6 Electroless Nickel/PTFE Composite Non-stick Coatings 

Nickel/PTFE compos ite alloys hav ing excell ent tribological properties and durability 

were developed in the 1990 's and a number of publications in the literature have 

evaluated their application as a mould coating material [1 42[, [1 43[. 

The process of incorporating non-metallic species into a metallic coating developed 

fro m the electroplating industry. Electroless composite coati ng teclUlology was 

patented by Metzger [144J, gain ing popularity from the earl y 1970's, and was based on 

a nickel-phosphorus matrix [145[. 

These coatings are produced by the chem ical reaction of metal salts and a reducing 

agen t. Electro less coatings can be applied to many substrate types, such as metals, 

alloys, or non-conductors with excellent thickness uniformity, typically ranging from 

10 to 25 micrometres, and are suitab le for coating complex moulding tools provided 

they could be lowered into a treatm ent bath. Different types of particles can be added 

to the matrix phase depending on what fina l properties are required for the coating 

and careful process control is required to deposit these particles unifonnl y witllin the 

matrix. For the mould release applications of thi s study, the inclusion of very fine 

particles of PTFE is of interest. These particles can be in the range of 0.4 to 1.0 

micrometres and the low frict ional properti es of thi s fluoropolymer are transferred to 
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the coating. The nickel-phosphorus matrix provides hardness and durability in the 

coating and this is influenced by the vo lume percentage of phosphorus in the alloy, 

typically between 4% and 12%. The particle loading also affects the hardness and 

vo lume percentages in the range 15% to 25% are typical. A compromise in final 

propelties of the coating has to be established between lubricity, hardness and wear 

resistance. Once deposited the coating can be heat-treated to promote the development 

of hard nickel phosphorus phases and sillter the PTFE to enhance its adhesion to the 

substrate. The perfomlance of the material at e levated temperatures is limited by the 

thermal stability of PTFE and this limits its use in practice to 400°C. For applications 

requiring higher temperatures, molybdenum disulphide might be used to provide 

lubricity though the beneficial propelties of PT FE would be lost. 

The first commercial electroless nickel/PTFE composite coati ng system was 

developed by Ebdon [1 461 in conjuction with Fothergi ll Engineering Surfaces. 

Apticote® electro less nickellPTFE coatings have been developed by Poeton 

Engineering (amongst other compani es) and the company claims that these coatings 

outperfonn hard chrome coatings in dry running conditions. Poeton claim that their 

Apticote 450 coating has low wear properties at low loading and a bulk hardness of 

about 250VPN although this can be increased after heat treatment at 300°C to 

400VPN . The exceptional properties of tbe Apticote coating are believed to originate 

from the high concentration of the PTFE dispersed phase compris ing very tiny beads 

of PTFE with approximate diameter - 200 nanometres. Stevens [147] discusses the 

app li cation of Apticote coatings in the moulding of thermoplastic trays and exto ls 

their properties as replacements for conventional mould release agents. 

3.7 Mechanical Tests for Non-stick polvmers 

The close relationship between mould fouling and adhesion has been establi shed in 

the previous discussions and, in the development of release agents in particular, it is 

desirable to have some means of testing how good a coating is in preventing adhesion 

and hence in reducing mould fouling. 

Estab lished and well-documented testing methods used for adhesive bonding cannot 

be used to test mould releases. The problem of devising test methods for releases is 

95 



not trivial becallse if the release agent is any good at all, the release forces wi ll be 

very small, particulal"iy in the case of a laboratory test where samples usually possess 

small or modest surface areas. I'n industry, release perfonnance is most frequently 

assessed qualitatively by perforn1ing a peel test using a layer of adhesive tape. The 

absence of a standard quantitative method of release agent evaluation bas stunted 

progress in the characterisation of mould releases and prompted research to redress 

this issue' Many of the methods pl'Oposed are associated with internal release agents 

and on the measurement of ejection forces for a thermoplastic moulding operation. 

Percell [148) measured ejection force by mounting a piezo-electric device to the ejector 

rod . Such methods are, however, specific to the moulding equipment used and carmot 

be generally applied to external releasants. Another approach tirst adopted by 

Wi lkol11l11 1149 ) was to use a moditi ed rheometer (0 measure the shear force required (0 

separate a moulded part from a substrate coated with a release agent. 

Reeves and Packham )75 ) used a similar test appamtus to examine the adhesion of 

rubber to steel substrates. The use of a tapered double canti lever beam by Clayfield 

and Berry [1 50) was one of the earliest methods proposed (0 measure the adhesion of 

external semi-pennanent mOllid releases. 

3.7.1 The "blister" test method 

Dannenburg [15 1] first developed the blister test in 1961 and used it (0 measure 

adhesive fracture energies. Parry & Wronski [152) and Kinloch [15]) further developed 

this method and a body of literature and results accumulated over the last twenty years 

testify to its usefulness in quantifying adhesive fracture energies. The principles of the 

test are described in section 4.6.2. The following gives an account of the theory. 
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Figure 25. Schematic diagram of blister tester (After 

de Laat [1 54J) 

Figure 25 shows a schematic diagram of the blister test geometry . It is assumed that 

the blister is circular and that the circumference at the start of the measurement is 

equal to the circumference of the drilled hole (21t r). The total vertical force depends 

on the surface area of the hole (1t r2) and the pressure (P). Before delamination takes 

place, the stresses induced by the liquid or gas pressure should not exceed the 

maximum tensile stress of the coating (0 m.x). Therefore the coating thickness (d) is 

significant. Besides the adhesion energy, the detachment pressure (Pd) and the angle 

(a) of the coating layer, are also dependent on the viscoelastic behaviour of the 

coating, which is neglected in this model. 

The forces acting on the system can be reso lved into their vertical and horizontal 

components Fv and Fh. Delamination only takes place when s imultaneously the 

following conditions are fulftlled : 

I. F v> Adhesive strength 

2. 0 < 0 max 

As soon as the induced stress (0) exceeds the maximum tensile stress of the coating (0 

m,x) the coating will fail. If the area of the hole is too large, then 0 exceeds 0 max 

before Fv exceeds the adhes ive strength, which implies that there wi ll be no 
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delamination, but just failure of the coating. So it should be clear that, when using this 

method, tbe dimensions of the "hole" must be chosen very carefull y 

Following the analysis given by Parry & Wronski [[ 52J the adhesive fracture energy 

Gc=P2aJE f(h/a) . . .... . ....... . ...... (29) 

where E is the modulus of the ad herent plate and f(h/a) is a dimensionless geometric 

factor dependent upon the adherent plate thickness, h, and crack radius, a. Finite 

analysis by Beill1et [ [ 55J showed that for a thick plate, 

f(b/a) - 2 and so Gc=P2a/2E ...... . . . . ........ (30) 

Since E is a constant Gc can be found by detennining the rad ius of the blister 

delamination for a given pressure P. 

Briscoe and Panesar [ [ 56J proposed a method of measuring the release force using the 

' bl ister test' originally developed for measuring low ad hesion interfaces. An 

apparatus based on this test was constructed for thi s research and further detail s are 

given in section 4.6.2. Although this method proved very sllccessfu l for Briscoe it was 

used to study the effects of external releasan ts on the adhesion of elastomeric 

materi als such as polyurethane [[571, whereas this research is concerned with 

thennosetting composites possessing a much higher elastic modulus when cured. 

Blanchard [861 appraised the blister test and concluded that it was unsuitable for 

thennosetting compounds. Even in relatively recent publications [82 1, quantitative 

measurements of release force seem to be avoided because of the experimental 

difficulti es and qualitative assessments of perfornlance are given instead. New 

methods of evaluating mould releases con tinue to be developed 1[ 581 which testify to 

the fact that no single method has yet been accepted as being uni versally applicable 

Adhesion is one of the most complex and important parameters that deternline the 

quality of coating systems. The theoretical adhesion strength is a result of all 

interfacial and intennolecular forces. However, the practical adhesion strength, which 

is the force or energy needed for detachment of the coat ing, never reaches this 
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theoretica l value. The difference is caused by the hollow spaces and defects at the 

interface of substrate and coating. lt is assumed that the delamination process 

develops from the weakest point. 

Due to tbe fact that the applied force or energy is not only used for delamination but 

also for plastic deformation of the coating, the concept is even more complicated. 

Environmental parameters (temperature, diffusion of water, oxygen, etc.) contribute 

substantiall y to the adhes ive strength of a system. 

3.8 Analvtical Techniques 

A wide vari ety of analytical techniques can generate useful information in satisfying 

goals of the present research. Contact angle analysis gives information pe11aining to 

surface cleanliness and surface energres and both are importan t aspects of this 

research . 

Microstructural studies of c leaned substrates give data about smface roughness and 

the scanning electron microscope (SEM) is the technique of choice in providing thi s 

infomlation si nce it can image over a wide range of magnification and provide bulk 

analysis in combination with the energy dispersive X-ray microanalysis (EDX) 

faciLity built into modem microscopes. 

Development of a good release agent requires a means of studying interfacial surface 

chemistry and X-ray photoelectron spectroscopy (XPS) and Auger electron 

spectroscopy (AES) are ideal techniques to provide this info mlation. Chemica l 

infonnation is also complirnented lIsing infrared (IR) spectroscopy. 

Other important measurements relate to the thickness detemlinations whether these 

are associated with residual contamination following cleaning or the thickness of an 

app lied low energy coating. AES, eUipsometry and interference microscopy can all 

provide thi s infomlation. 
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Finally Atomic Force Microscopy (AFM) has the ability to provide qualitative 

comparative infOlmation on frictional forces present on treated surfaces, cOlTelating 

these with surface relief and this is useful in the study of low energy surfaces, Some 

of these techniques wi ll now be discussed in detaiL 

3.8.1 Scanning Electron Microscopy & X-ray Microanalysis 

Scanning electron microscopy is such a widespread analytical technique that a 

detailed explanation of its operation is unnecessary. Where topographic images are 

required, a primary electron beam is focussed onto a sample (mounted in the vacuum 

chamber of the microscope) and scanned using deflection coi ls that raster tIle electron 

beam over a small area on the sample surface (figure 26 overside), The samp le 

surface, frequently sputter coated with a few nanometres of go ld to render it 

electrically conducting, emits secondary, inelastically scattered, lower energy 

electrons that are detected by a positively biased co llector. 
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Figure 26, Schematic diagram showing the operating principles of an SEM. An 

electron beam is focussed on to the specimen (S) using condenser lenses (Ll and L2 ) 

and it scanned across the specimen surface by deflector coils (D). Secondary electrons 

are then emitted from the specimen surface and these are converted into a current by 

the detector; this current is amplified and used to modulate the brightness of a cathode 

ray tube (c,r.t.) which is scanned in synchronism with the area scarmed on the 

specimen surface.(After GoodJlew [205 I). 
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The electrons strike a sc intill ator that emi ts photons o f ligbt. A photomultip li er tube 

ampl ifies these and the resulting electrica l signal is used to modulate the bri ghtness of 

a cathode ray tube (CRT). The raster on the CRT is synchronized with that traced on 

the sample surface by the primary electron beam. An image magnification is o btained 

which is s imply the ratio o f the area scanned on the CRT to that scanned on the 

sample. Di fferent contrast mechani sms can be invoked depending on the type o f 

electron detectors used. High-energy electrons from the primary beam penetrate a few 

micrometres into the sample sur face and can exci te X-ray photons characteri stic of the 

atoms comprising the sample. T hi s is the basis of EDX analysis. These can a lso be 

detected and used to provide elemental infonnation, which compliments topographic 

data. 

3.8.2 Atomic FOI'cc Microscopv (AFM) 

AFM is one of many SC31lnl11g probe techniques that share a common general 

ope rating principle (figure 27) . An atomica ll y fine tip often made from si li con or 

sili con ni tride is mounted on the end of a cant ilever, wh ich is mechanicall y scanned in 

a raster pattern over a surface of interest usi ng piezo-electric transducers. 

Figure 27. Schemati c diagram of an AFM 

(After Feast, Mumo & Richards(1591) 
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These pecmi t very prec ise and accurate control of its movement. As the tip is brought 

c lose to the surface to be scanned it is influenced by interaction between atoms in the 

tip and those in the surface. Theoreti cally thi s is described by the Lennard-Iones 

potential [C60 ] (fi gure 28) : 

• • 
• • 

•• 

Figure 28. The Leonard-Jones Potential 

VCr) = - Alr6 + B/r I2 ................ .. .... (3 1) 

where VCr) is the potential and A and B are interaction constants for a separation 

value o f r. The interaction force is 

F= -dV(r)ldr = -6A1r1 + 12Blrl J 
. ..... . .. (32) 

At separations of about 0.4 run a net attracti ve force ex ists but as the separation IS 

reduced and the outermost atoms of the tip begin to touch those of the surface, strong 

electro n-e lectron repulsive forces become dominant. Figure 29 shows the typical tip 

pull off fo rce-distance curves for NiP, Ge and Si semiconductor subslrates . The 

di fferent pull offforces refl ects different Hamaker constants of these substrates [9J. 
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Figure 29 AFM pull-off force di stance curves (After Luk 'yanchuk (101) 

The cantilever to which the tip is attached has a low spring constant and is de fl ected 

as the tip tracks the surface contours. A d iode laser is focussed onto the back of the 

cantilever close to the tip and refl ected light detected by a two or four quadrant 

photodetector which converts the minute perturbat ions o f the cantil ever into an 

electrical signal. Using feedback cont ro ls either the separati on between the tip and 

sur face can be kept constant and the vary ing force measured or converse ly the force 

can be kept constant and the separation vari ed. By assigning an arbitrary co lour scale 

to the parameter measured three-dimensional maps of the scalUled surfaces can be 

displayed. The technique possesses atomic reso lut ion provided the tip is not damaged 

and areas scalUled can be as small a few micrometres square up to abo ut 100 

micrometres square. Lateral reso lution can be less than 5nm with height reso lution of 

0.0 I nm. The force-distance curve is crit ical to the operation of the microscope. 

The contact mode of operation in which the tip is mechanicall y contacted with the 

surface and then retracted is the mode most likely to result in damage to the tips since 

water or other contaminants absorbed onto the surface can cause the probe to sti ck to 

the surface. Increased retracti on force amplitude then has to be applied to the 

cantilever to remove the ti p and during the time taken for thi s acti on, the ti p can be 

dragged along the surface as scanning continues. 

AFM was unable to provide much useful topographical infonnation relating to the 

cleaning of tooling samples studied in thi s thesis because the surface roughness o f the 
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samples was largely incompatible with the sensitivity and resolution of the teclmique. 

Scanning electron microscopy was more useful in thi s context. 

AFM did, however, prove itself to be very useful in providing qualitative comparisons 

of the "stickiness" of surfaces treated with different mould release agents . This 

infollnation was obtained by operating the AFM in such a way that the cantilever was 

exc ited into resonance oscillation (at about 300kHz with an amplitude of about 60nn1) 

with a piezoelectTic dri ver. Thi s is called the "tapping mode" since the tip is made to 

strike the sample surface during the downward cycle of each oscillation. Once the tip 

is attracted to the surface it is tracking, the oscillating cantilever experiences a 

damping force if the surface is adhesive which tri es to keep the tip in contact with the 

surface. The amplitude of oscillation is such that it will be sufficient to overcome this 

and then carries information about the pull-off force required. Effectively the 

sinusoidal response of the cantilever will lag behind that of the oscillation impressed 

upon it and this phase lag can be extracted by operating software and the resulting 

signal used to modulate an image contrast. 

Such phase images can provide infollnation concerning the viscoelastic properties of 

the sample and adhesion forces. Since the resonant frequency of the cantilever is very 

high several thousand pUll-off force meas urements may be made for a very small area 

scanned. To use thi s technique effectiveLy to qualitatively compare the sti ckiness of 

different surfaces (resulting from application of different mould rel ease agents) it is 

necessary to largely eliminate large differences in surface height on a microscopic 

scale and hence substrates need to be polished to a mirror fini sh. Quantitative data by 

this means is very difficult to obtain, rel ying on precise knowledge of the spring 

constant of the cantilever used, a means of calibrating a microscope and a thorough 

understanding of the complex interactions between tip and surface within the size 

domain of the teclmique. Adhesive force measurements can be related to the AFM 

pull-off force via the Johnson, Kendall and Roberts (JKR) theory of adhesion 

mechanics [161J This theory provides a means of calculating the surface energy of a 

solid directly in terms of the interactions between solid surfaces rather than through 

the use of contact angle measurements (129) . The theory can be used to derive the 

following equation: 

104 



F,d = 3/2rr RWSMT . ............ . ...... . .. . ....... . . (33) 

where WSMT ~ YSM + YTM - YST (after Dupre) .... .. ....... (34) 

WSMT is the thennodynamic work of adhesion for separating the sample and tip with 

associated surface free energies o f the sample (S) and lip (T) in contact with the 

medium (M) and where y is the in terfac ial surface free energy of the two in teracting 

so lid surfaces; F,d is the pull -off fo rce required to separate an MM lip of rad ius R 

fro m a planar sw-face . If the two materi als in contact are the same then the work o f 

adhesion is equal to the work of cohes ion. This is rather limited since it is onl y 

possible to directl y measure the surface free energy for a materi al which is the same 

composition as that which the M M tip is made fro m but the principle is valid . 

3.8.3 Interference Microscopv 

A number of publications di scuss the techniques and app li cations of interference 

microscopy 11
62 - I64J. ln thi s particular application a Mi rau interference objecti ve was 

used wi th a Zeiss Polarizing Microscope to determi ne the thickness of organic films 

coated onto glass microscope slides. This spec ial object ive functi ons as a two-beam 

interferometer. This di vides originall y coherent light into two beams of equal 

in tensity, directing one beam onto a reference mirror and the other onto the spec imen, 

and measuring the opti ca l path di fference (the difference in optical distances) between 

the resulting two reflected li ght waves. 

The principle of the M irau objecti ve ( fi gure 30) reli es on p lacing a retl ection 

reference mirror in the centre of the obj ect ive lens, and interposing a half mirror 

between the objecti ve lens and the specimen. These components are so an'anged that 

an interference pattern will appear if the system is foc used upon the specimen. 

If the specimen is inclined, localized interference fringes will appear. Fringes will also 

appear if there is a step change in veltical height and this can be used to measure the 

thi ckness of a coating by carefull y removing part of the coating from the glass­

supporting slide using a very sharp razor blade (fi gure 31). 
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Figure 30. Mirau objective schematic and in use on a Zeiss microscope 

In use, adjustments are made to bring the interference pattern to the centre of the field 

of view, which aligns it with the optical axis, since the centre of the reference mirror 

coincides with the optical axis . A monochromatic filter passing a wavelength of 

546nm may be used to view the fringe pattern. 

Figure 31. Interference fringes 

The distance between the fringes is given NI. = 2nt.cos9 .. . .. ......... (35) 

where N is an integer, I. the wavelength of light used (546nrn if a mercury green filter 

used), n is the refractive index of the medium (in this case air so that n= I), t is 
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thickness and e the angle of incidence of the light (perpendicular to the sample in thi s 

case so that cose = I). Hence t=N. 1..12 where N= I ,2,3, ... etc. Consequentl y each time 

the thickness changes by Al2 , another interference fringe is seen. Referring to figure 

40, the distance between the fri nges is thus equal to 546/2 = 273 nm. Fractions of thi s 

thi ckness can then be determined by the disp lacement of adjacent fringes at a 

di scontinuity such as that shown in fi gure 3 1. 

3.8.4 Ellipsometry 

Ellipsometry is an optica l tecimique that uses polarised light to probe the di electric 

properties of a sample. The most common app lication of ellipsometry is the ana lys is 

o f very th in film s. Through the analysis of the state of polarisation of the li ght that is 

refl ected from the sample, ellipsometry can yield infol111ation about layers that are 

thinner than the wavelength of the li ght itself, down to a single ato mic layer or less. 

Elli psometTY measures the change in polarisation state of li ght after reflection from 

the surface of the sample. This is characterised by two angles: il'>, a phase change 

term, and IV, the tangent of which describes the amplitude change. These experimental 

values are measured and are related to the optical constants of the reflective surface, 

expressed by the Fresnel reflection coefficients Rp and Rs, by the equation: 

.. .......... ....... (36) 

These two coefficients contain infol111ation related to material optical properti es and 

physica l dimensions. Spectroscopic ellipsometry measures thi s complex ratio as a 

function of wavelength. 
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Figure 32. Schematic diagram of a simple ellipsometer (After Van Zeghbroeck (2021). 

The basic experimenta l configuration is shown in fi gure 32 above and the 

fundamentals of the technique are described in standard texts such as Riedling 1165J 

and Tompkins 11 661. 

The polari zation state of the incident li ght is known whilst that of the refl ected light is 

detennined, often using a nulling technique whereby the polari zing elements are 

rotated until the measured signal is ex tingui shed. Earl y ellipsometers req uired that the 

user knew either the refractive index of the re fl ecti ve coating or its thickness. One or 

the other could be determined. However, modem computers allow model s to be used 

for which both quanti ties can be detennined. In other words the technique is now 

model dependent such that yo u CaJUlOt access directly to the physical quantities yo u 

wish to determine (d ielectric functions, refractive indices, materi al compos itions, film 

thicknesses etc). A mathematica l model that described the sample structure is required 

to detemline them. Data fittin g is then used to match the experimentally measured 

data to the theoreti cal model. The data fitting is usuall y perfOlmed using the 

Levenberg-Marquardt non linear regression algorithm 11 67 1 to find the minimum in the 

mean square error between the experimental data and the best fit to the data. The 

process is complex and the user largely reli es on developed computer software to 

obtain the best fit of a model to the ex perimental data. 

Ellipsometry is mainly used in semiconductor research and fabrication to detenlline 

properties of layer stacks of thin films and the interfaces between the layers. The 

technique works well in such materi als because they are usually well defined and 

homogeneous. In the present research, ellipsometry was required principally to suppl y 

film thickness measurements of coatings deposited onto glass slides from solution, 

which were expected to be smaller than the wavelength of visible light. Unfortunately, 
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these were not entirely homogeneolls and it proved difficult to fit the measured data 

although measurements were obtained which agreed reasonably we ll with 

measurements made using light interference microscopy. 

3.8.5 Auger Electron Spectroscopy (AES) 

This analytical technique is based on the Auger electron emiss ion process discovered 

by Pierre Auger in the last century. !J1 this process the sample to be studied is 

irradiated by primary beam high-energy e lectrons typically between I KeY and 

10KeY. 

The sample atoms contain e lectrons occupying both inner and outer electron orbitals. 

If a suffi cientl y energetic electron strikes an atom in the sample, there is a probability 

that it will eject an electron from the inner or core leve l in that atom. The ejected 

secondary electron can be co ll ected and used to fom1 an image of the sample in 

exactly the same manner as occurs in SEM. [n fact AES operates in a similar fashion 

to an SEM except that the vacuum is much higher and instrumentation exists to detect 

the Auger signal. 

When the atom has this electron ejected, it is left in an excited state and one method 

by which it can relax is to allow another of its electrons from a nearby orbital to fall 

into the core vacancy with the remaining energy imbalance being used a eject a third 

electron, possessing a relatively low kinetic energy (typically 40 to 2S00ev). This is 

called an Auger electron and its energy is characteristic of its parent atom and also the 

chemical envirolll11ent in which that atom occurs in the sample. 

Unless the parent atom is very close to the surface of the sample, intense inelastic or 

elastic scattering will fll rther reduce the kinetic energy of the Auger electron by 

collisions as it finds its way to the surface and effectively it will be detected only as 

pazt of the general background signal as opposed to part of a discrete AES peak. In 

AES, the kinetic energy spectrum of emitted Auger electrons is collected and then 

amplified and the signal differentiated to enhance the peaks giving a characteristic 

spectrum similar to that illustrated in figure 33 overside. 
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Figure 33. The top diagram shows the energy spectrum of 

electrons emitted from a sample being irradiated with e lectrons of 

primary energy Ep. The bottom diagram shows Auger spectra 

from a sample containing titanium (a) as received with surface 

contamination and (b) after Ion etch cleaning. The energy 

distribution is differentiated to enhance the small Auger peaks 

seen in the top diagram. This gives the Auger peaks in the bottom 

diagram a characteristic maxi ma and minima as shown (After 

South worth (2031). 
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Since these can only be detected if originating from atoms very close to the surface, 

within a few monolayers, the technique is very surface spec ific with a sampling depth 

between 5 and 10nl11. 

It is possible to plot attenuation lengths against Auger electron energies for different 

elements as shown in Figure 34, after Briggs [l6S[ • 

A curve can be fitted to thi s data and a numerica l express ion found for a!len uation 

lengths within a defined range of energies. [n general thi s equation takes the fDlm: 

A. = 0.4 1. a 0. 5 E 1.5 ..... . ... . ...... . .......... (37) 

where A. is the attenuation length for Auger electrons, a is the lattice spacing for the 

material in'adi ated and E is the energy of the Auger electron (eV). 

As the sampl e is iiTadiated with hi gh-energy electrons, man y of these will not 

contribute to Auger emission and unl ess a conduction path to earth ex ists, these will 

create a net charge at the surface and this will repel ejected Auger electrons. 

Thus AES encounters severe diffi culti es for insulating samples. Unli ke SEM, sputter 

coatings of gold or carbon calUlOt be used to render samples electrically conducting 

since the thi ckness of such coating would greatly exceed the attenuation length for 

Auger electrons. With conducting sampl es thi s problem does not ari se unless there is 

excessive hydrocarbon surface contamination or an insulating oxide layer. 
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Figure 34. Attenuation lengths (After Briggs & Seah 

(1 681). 
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As with most spectrosco pic techn iques, quantifi cation requires the use of reference 

standards and calcul ation of sensiti vity fac tors that take into account di fferent 

e lemental properti es such as density, w hi ch affect the Auger electron yield. Peak 

shi fts in the A uger spectrum can give im portant inform ati on of the oxidati ve state of 

atoms. E lements can be detected to concentTations between 0. 1 and 1 %. In conmlon 

with o ther hi gh vacuum surface sc ience teclllliques such as X-ray Photoelectron 

Spectroscopy (XP S), argon ion sputterin g enables surface layers to be etched away in­

situ enabling depth profi ling up to a couple of micrometres into the sample surface. 

Theoreticall y, an etching rate can be defined by the fo llowing equation ,168, ; 

Za = (Ma . Sa . i a ) I ( Da . Na, e ) ..... . ....... (38) 

Where Za is the etch rate (nu-I), Ma is the mole mass of ta rget materi al (kg .mor '), Sa 

is the sputter yie ld (a tom.ion-I - how man y surface atoms rem oved for each incident 

ion ), ja is the primary ion current dens ity (A. m-2 ) , D, is the surface density (kg. m-l ) , 

Na is Avogadro 's number and e is the charge on the electron . 

Many metalli c samples are studi ed using AES and ox ide layers are genera ll y present 

at the surfaces . Thus although the bulk densit ies for the metals are kn own, the larges t 

unknown in the above equati on is the density of such surface layers Du since oxides 

are present on most metals and these are not homogeneolls and the density is very 

vari able locall y. The term ia has been ca lculated for the A uger spectrometer used 

(JEOL 7100) used in thi s research and was found to be 75 x W-6 A.m-2, measured 

using a Faraday cup . The sputter yie ld is a func tion of angle of incidence of the ions 

and their kineti c energy so both are thi s usuall y kept constan t. Argon or Xenon is 

most usuall y lIsed for ion e tching and the sputter yields for most solid elements have 

been measured ex perimenta ll y with the data usually suppli ed by manufacturers of 

surface sc ience instruments. In practice a combination of instrument specifi c data and 

ex perimenta ll y deri ved rates are used to determine empiri cal etch rates. Fo r the 

instrument used in the present study the etch rate for steel is know n to be 

12nrn/minute assuming Argon ions are accelerated using a potentia l of 3kY and this 

can be used as an empiri cal guide to likely etching rates for an unknown e tched under 

the same experimental condi tions. T he value of (Il is knowledge is that it enables the 
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thickness of surface coatings to be detemlined by measuring the intensity of an Auger 

peak as a function of etching time. By thi s means one is ab le to quanti fy the 

c lean liness of a surface by etching through a hydrocarbon contamination layer and if 

this is thin the underl ying metal substrate wi ll be detected . AES was thus used 111 

combination with contact angle analysis to determine surface cleanliness. 

3.8.6. Seconda/'Y Ion Mass Spectroscopy (SJMS) 

This is another surface analysis technique in which a sample is bombarded w ith an 

energet ic ion beam. Fragments of the surface are thus sputtered and these fragments 

comprise single atoms to large molecules. A small percentage of these fragments are 

secondary ions, which can be either pos itively or negati vely charged, and these ions 

can be co llected and thei r masses ana lysed using a spectrometer /168'. As with 

conventional mass spectroscopy, a secondary ion mass spectrum provides a chemica l 

fingerprint of the sample being bombarded. When the ion dose used to acq uire the 

spectrum is kept very low the technique is termed stati c SIMS and the entire analysis 

can consume less than a tenth of an atomic monolayer with the consequence that the 

technique can be very sensiti ve. Identification of an unknown compound relies on the 

availability of very large search able databases and accurate interpretation of the 

spectra is often a sk ill ed process. 

3.8.7 X-Ray Photoelectron SpeclroScopy 

Thi s is an ultra high vacuum surface sens itive technique in which the electron energy 

di stribution of ejected electrons is measured but in th is case ejection results from the 

photoelectric effect whereby atoms in the sample to be analysed absorb so ft X-ray 

photons which are focussed on the sampl e by the instrumentation. These excited 

ato ms then relax by the emission of a photoelect ron from a core level according to the 

Ei nstein photoelectric equation: 

B.E = hv - K.E. - <p ..... ..... .. .. .. ..... (39) 

where hv is the energy of the incident X-ray photon, <p the samp le work function, 

K.E. the kineti c energy of the photoelectron and B.E. its binding energy. 
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The photoelectrons are charac teri stic o f the parent atoms and are co ll ected by an ion 

lens system and focussed into an energy analyser as depicted in fi gure 35. 

Elrclrun AnaJ,.M'r 
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~ 
Lens Array Derector 
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F igure 35. Essent ia l elements of an XPS (After Mathieson [2041). 

Thi s effecti ve ly counts the number of electrons within a given kineti c energy. Since 

pho toe lectrons have similar kineti c energies to AES electrons they too can onl y be 

detected if they ari se from atoms very c lose to the surface. XPS is, like AES, a very 

surface sensitive technique with a similar depth reso lution o f a few monolayers. 

Lne lastic scattering processes influence the sampling depth and a mean free path 

length can be determi ned for different samples. Generall y it is accepted (1691 that 95% 

of the photoelectron signal originates fro m 3 times the inelasti c mean free path (A) so 

that the sampling depth is given by: 

Sampling depth = 3A cos e ........ ...... . (40) 

where e is the angle between the energy detector and the sample surface nOnllal 11681 

(fi gure 36). 

d - U .cus8 

Figure 36. XPS sampling depth (After Briggs & Seah (1681) . 
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By setting e to increasing angles the sampling depth is reduced and this angular 

sensit ivi ty foml s the basis of angle-resolved XPS wbereby it is possible to determine 

the orientation of some organic polymers present on the surface. Such polymers are 

easily damaged by X-ray irradi ati on and , in particul ar, defluorination can occur with 

fluoropolymers such that data acquisiti on times must be minimised to prevent 

po I ymer degradation. 

By allowing the analyser to sweep across a wide energy scale, a survey spectrum 

(usuall y binding energy plotted against counts per second) is obtai ned which gives 

data about the elements present on the surface of the sample. Figure 37 shows an 

example of a typical spectrum obtai ned from a fluoropol ymer. The relative intensity 

ratios of the detected elements are proportional to the concentrations of the surface 

atoms. 
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Figure 37. Typica l XPS survey spectrum for a fluoropolymer (After 

Mathieson [204)). 

The malll strength of the technique is its ability for elucidating surface chemical 

bond ing. The presence of adjacent atoms in a mo lecule causes atoms to exh ib it a 

small shift in their binding energies (chemical shifts) due to perturbations induced by 

chemical bonding within the valence electrons of an atom. These chemical shi fts are 

we ll documented in the literature f1 70J. [nstrumental sensiti vity factors allow co llected 

spectra to be quantified to yield an atomic percentage concentration of each type of 

atom present (detection limit typi ca lly 0.1 - I atomic%). In practice, after a survey 
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spectrum has been collected the instrument is set up to perfoml high-resolution scans 

of narrower ranges of binding energies for all or some of the elements present. 

In combination with the chemical shift data, this makes XPS extremely useful III 

understanding the chemical state of any surface and functional groups present. 

Because X-rays calUlot be focussed easi ly the spati al reso lution of the teclUlique is 

inferior to AES, which uses an electron beam as the source of primary exci tation. 

AES has the additional advantage that the higher Clm-ent densities obtainable using 

focllssed electron exc itation results in greater signal to noise ratios . However, 

problems associated with charging of insul ators are easier to compensate for in XPS 

than in AES. The two techniques are largely complimentary. 

As with AES, argon ion etching is poss ible to prepare depth profile information but 

the area etched must be coincident with the area from which the XPS spectrum was 

obtained and since this area can be 1000 times larger than that analysed on a similar 

sample using AES, the overall etching !"ates are cons iderably s lower. Because of this 

there is a much greater probability that surface information will be degraded by 

absorption of contaminants from within the vacuum chamber during the course of an 

etching experiment and results need to be interpreted with care. 

3.8.8 Contact Angle Analvsis 

When a single drop of water is gently dispensed from a syringe onto a surface, it will 

either spread over the surface or sit passively on top of the surface as a bead 

depending on which process is energeticall y most favoured (figure 38). All natural 

systems move towards a themlodynam ic state that minimises their total energy 

content. They are then in equilibrium with their surroundings. 

Pure water has one of the highest surface tensions of any liqu id, measured as 72.8 

mN.m- 1 
[I] , and its polar molecules have a high affinity for each other. This means that 

water molecules at the surface of a drop have a surplus of attractive energy and so 

nature wants to keep that surface area to a minimum . The smallest surface area to 

vo lume ratio in nature is that for a sphere and so in the absence of other forces, a 

water droplet would assume a spherical shape. 
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Before such a drop is placed on the surface, the atoms of the substrate at the surface 

may also possess a higher energy than those in the bulk, particularly if the substrate is 

a metal and if it has just been cleaned. Pure clean metals have exceptiona ll y high 

surface energies, typically, 400 - 1000 mJ.m-2 
[171 ] When the drop rests on such a 

surface, the affinity of the water molecules for the surface atoms of the metal wi ll 

exceed the attraction of the water molecules for each other and the drop will spread 

completely over the surface exhibiting a very low contact angle potentially down to 

zero degrees. 

Y s\' Liquid 
Ysl 

Solid 

YS\' ' Ylv cos e 
~~---~ 

Saturj,t ed V"pour 

Figure 38. This diagram illustrates the balance of 

interfacial surface tension forces that exist at equi librium 

for a liquid droplet on a so lid surface. The liquid surface 

tension in the presence of its own saturated vapour Yl v is 

resolved into its hori zontal component Yl v cos 8 which 

combines with the interfacial tension between the solid 

surface and the liquid YsI. These surface tension forces 

are counterbalanced by that between the so lid in the 

presence of the saturated vapour of the liquid. 

The attractiveness of a c lean metal surface is such that many other molecules would 

like to cover it and the surface rapidly becomes contaminated and is particularly 

attractive to hydrocarbons present in the atmosphere. If these molecules fonn a thin 
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layer on the metal surface before a water contact angle measurement is made, the 

attraction of the water Illolecules in the dro p for those on the new surface Ill ay not be 

so great and the drop may not wet the surface completely. The drop will then defin e a 

di fferent higher contact angle. The degree o f spreading can be measured by the 

contact angle and is defined as the angle included between the tangent plane to the 

surface of the liquid and the tangent plane to the surface o f the so lid, at any point of 

contact ( fi gures 3S and 39). 

The spreading or lack of spreading results from a balance of interfac ial surface 

tension forces that are defined by defined fi"om Young's equati on 11721, first proposed 

in IS05 , according to whi ch 

Ylvcos6+Ysl= Ysv .. , ...• . .. . .. .. .. .• .. . .•...••... .. .. (41 ) 

where Ylv. YsI. and Ysv are the surface tensions at the boundaries between li quid (I),so lid 

(s) and vapour(v). Onl y e, the contact angle, and Ylv are directl y measurable. 

Figure 39. Photograph of a water droplet on a non-wetting surface (left) and 

photograph of a water droplet on a surface it wets (ri ght). 

As with many natural phenomena that are seemingly simple at first sight, explanations 

of contact angle behaviour can be exceedjngly complex and subject to many vari ables 
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such as surface rouglmess, chemical heterogeneity of the surface and surface sorption 

layers to mention but a few. The thennodynamics of surfaces are a functi on of their 

chemistry and so polymer surfaces are very different from metals. The bOllding in 

polymers is such that there are few free electrons at a surface and thi s makes them 

unreactive chemically and they are said to possess a low surface free energy. 

Wettability is commonl y used to predict in trinsic adhes ion since the spreading of an 

adhes ive onto a substrate is intimately related to surface energeti cs that favo ur thi s. 

When describing adhesive spreading, the teml "work of adhesion" is used and since 

all fo mls of work are associated with energy, surface free energies are used 

synonymously with surface tensions in much published literature though 

thermodynamicall y they are different. As its name implies, surface tension is a 

tangenti al stress in a sur face layer. A mathematical description fo llows which 

describes how surface energy can be calcul ated fro m contact angle measurements. 

3.8.8.1 Quantitative Contact Angle Analvsis 

Surface tensions di ctate whether an applied liquid will wet and spread over or retract 

from a solid surface [69] Di fferent theori es have been proposed over the last fi fty years 

to enable the surface energy of so li ds to be measured from contact angle data fo r two 

or lllore liqui ds that are appli ed to the so lid . Successive researchers have refin ed and 

modifi ed previous theori es over thi s time period but there does not ex ist one 

uni versa lly accepted theory at present. These theories are expounded in numerous 

publicati ons [173 . 1751 of whi ch that by Rance[ 174] is parti cul arly in fo rmative. The 

development of these theori es will be brie fl y outlined. 

Imagine a liquid adhesive wets the surface of a substrate. Let the substrate have a 

surface energy YSv , the liquid adhesive have a surface energy Y lv and that of the 

interface be YSI, then the work of adhesion W A, first proposed by Dupre in 1869 [1 761, 

represents the energy that would be needed to separate a unit area of the liquid 

adhesive from the substrate completely, and thi s is given by the following equatio n: 

From Young's equation 

and combining gives 

WA = YS v + Ylv - YSI .... .... ......................... (42) 

YSI = YSv - Ylv easEl .... .. .... .. .. .... .. ...... .. .... .. ( 43) 

WA = Ylv (l + cosEl ........ .. ...... . ........ .. .. .. .. (44) 
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Equati on (44) known as the Young-Dupn\ equation. 

Thus for good adhesion, a high work o f adhesion is required and thi s can only occur if 

the contact angle e is low ( for e = 0°, cos e = I and decreases to 0 when e = 90°). 

Conversely mould releases must coat the substrate such that the work of adhes ion is 

very low and hence a high contact angle is requ ired. Since contact angles as high as 

180° have never been measured ( when co se = - 1 and W A=O ), then every liquid must 

wet every solid to some extent. 

By plotting cos e against Ylv for a homologous seri es o f liquids on a so lid, Fox and 

Zisman 11 771 found that a straight Line could be drawn where: 

cos e = I + b(y,v - Bc) . . .... .. . . . . ... . . .. .. . ... ... . . ... .. (45) 

where ee is defined as the criti ca l surface tens ion for wetting and b is a constant. In 

thi s equation ee is the value of Ylv at which the liquid just wets a surface with zero 

contact angle. 

Fowkes 1' ''1 then suggested that the surface energy of a solid Ys or of a liquid could be 

described as the sum of components that arise from different inteI1l1o lecular forces 

,principally di spersion and polar forces. The surface energy of a so lid is thus: 

Ys =Ys d + Ys p .. .... . .. .. .. .. . . .. ......... .. ...... (46) 

where ¥s d and Ys P are the di spersion and polar contributions (similarl y ¥, =y, d + ¥I P for 

a liquid). 

Fowkes then proposed that the interfacial interaction was due to the interaction of like 

forces. Unlike forces were assumed to not interact. Using a geometric mean 

approximation to describe the interaction, he proposed the interfacial tension between 

a saturated hydrocarbon, where only di spersive fo rces may operate (i.e. y,P = 0 so y, = 

y,\ and a so lid surface can be expressed as: 
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Owens,Wendt, Kaelble & Uy 117'1 extended thi s concept by considering both 

dispersive and polar forces and, also using a geometric mean approx imation, 

proposed: 

Owens, Wendt, Kaelb le & Uy then combined thi s with Young's equation and after 

algebraic manipulation showed that 

(I +cos 9) YI / (2 --1 (Yld)= --I( y,P) .--1 (Yt/ Yid) + -./( ysd ) 

Setting X = -./ (YIP/ Yid) , Y = ( I + Cos 9) YI / (2-./ (Yid ) 

Y = -./( YsP) .X + -./( y/ ) ... ......... ... ................ (49) 

YI ,Yid and yt have been measured for many liquids and can all be found in the 

literature [69[ whi le 8 can be measured by experiment. Thus, X and Y can be ca lcu lated 

for each liquid . A straight line can be drawn using a series of liquids. y,P is then the 

square of the gradient, and ysd is the square of the intercept of the line with the Y axis 

and then the surface energy of the solid is just the sum of these values in accordance 

with equation 46. 

The approach used by Owen, Wendt, Kaelble & Uy 11791 has been used ex tens ively in 

the present study to calculate the surface energies of treated samples by measuring 

contact angles using two liquids. A polar liquid such as water and a non-polar liquid 

such as diiodomethane are often used. 

The popularity of equation (49) bel ies the fact that there is much controversy about 

whether the geometric mean approximation, used by Owen, Wendt, Kaelble & Uy 

and by Fowkes earlier, is the best approach for finding the polar interactions at an 

interface. 

Zettelmoyer [206] and Wu [207 [ separately di scuss thi s approximation in detail. Wu 

states that it gives reasonable results in only a few cases where the interface is 

between high and low energy phases such as mercury on a polymer surface. In 

genera l though Wu ascerts that the geometric approximation gives rather poor results 
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for many orgal1l c liquids on orgal1lc polymers and that a harmonic mean 

approximation is preferable . 

Despite these quite senous objections, equation (49) allows simple and quick 

measurements of surface free energy to be made on many surfaces using only a polar 

and non-polar liquid and this explains its popularity. Acknowledging the reservations 

of Wu and other authors, it is poss ibly prudent to consider the values obtained as 

be ing useful on ly for comparative studies where the differences between surfaces 

energIes are of practica l imp0l1ance rather than when absolute va lues of surface 

energy are required. 

Such is the importance of surface energy values for so lids that numerous approximate 

models lIS' . 181} have been developed and different approaches used to enable their 

calculation. 

The theory di scussed is based on the equilibrium contact angle of a sessile drop on a 

nat, hori zontal, smooth, homogeneous, isotropic, and rigid so lid . However, thi s is 

clearl y an idea li sed situat ion and in practi ce it is found that a range of contact angles 

are measured on real surfaces that agree with each other wi thin two degrees or so. 

Surface roughness, in pal1icu lar, has a profound effect on contact angle 

measurements. As a consequence, practica l experiments usuall y compri se at least 

twenty angles per sample measured over an area of a few square centimetres and a 

mean value calculated. The measurements should be taken in orthogonal directions if 

the sur face possesses directionality. Hysteres is effects resulting in advanc ing or 

receding angles can occur on some polymer surfaces, which is an added compli cation. 

On metals, disso lved salts absorbed onto the surface can result in dynamic contact 

angles where the angle decreases rapidly with time as the drop is absorbed by the 

surface and spreads. 

3.8.9. Infrared Spectroscopv 

When exposed to infrared radiation (wavelengths between 2.5 and 25 x 10-6 m) , 

molecules in so lids, liquids and gases can selecti vely absorb radiation at frequencies 

that match those of their allowed vibrational modes. By convention absorption is 
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referred to in terms of wavenumber rather than wavelength (wavenumber is the 

inverse of the wavelength expressed in centimetres). The chemical bond between 

molecules can be thought of as springs osc illating at different freq uencies depending 

on the molecules and type of bond (figure 40) 11 83 1, [184 J . An ana lysis using Hooke' s 

law can be used to estimate the waven umber of li ght that will be absorbed by different 

types of chemical bonds. 

Wavenull1ber = 4.12 * (K / >l) 1I2 . . ....... . .......... (50) 

where K = force constant (in dynes / cm) 

• for single bond: K = 5 x 105 dynes/cm 

• for doub le bond: K = 10 x 105 dynes/cm 

• for triple bond: K = 15 X 105 dynes/cm 

f.l = M,M2 / (M , + M2) ................ .... .. . ............ . ................. (5 1) 

where M I and Ml are molar masses of atoms involved in bond. 

10 
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Figure 40 Diagram relating absorption to molecular bond stretching 

Vibrations that do not yie ld a change in dipole moment do not absorb IR radiatioIl. 

For example, O2 and Nl do not absorb IR radiation. Measurement of the absorption of 

IR radiation by the sample as a function of frequency produces a uniq ue spectrum that 

can be used to identify functional groups and consequently structure. The spectrwn 

can be shown as either absorption or as a transmittance. Figure 41 shows the 

transmission spectrum for a fluoroalkylsilane. 
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Figure 41 Transmission infrared spectra for Dynasylan F862 1 fluoroalkylsil ane 

(ordinate is transmittance; abscissae is the wavenumber(cm-I
). 

Different chemical functional groups possess different ranges of absorption in 

wavenumbers depending on the type of molec ul ar motion that is exc ited (bend or 

stretch). Experimentall y, Fouri er Transfo rm IR instruments are almost exc lusively 

used because all frequencies are observed by the detector simultaneously allowing for 

sho rt data acq uisi tion times and signa l averaging of repeated scans. 

3.8.1 O. Differential Scanning Calorimetrv and Thermogravimetric Analvsis 

Di ffe renti al scanning calorimetry (DSC) detects the di fference in temperature 

between a sample and a reference (an empty sample holder) by means of 

thennocoupl es placed in contact with the sample and reference, as both are SUbj ected 

to a controlled temperature program in a special furnace (figure 42) 11
851, 

The electrical signal fro m the thermocouple is converted to a power difference using 

the ca lorimetr ic sensi ti vity of the cell, whi ch is detennined by calibration aga inst a 

standard metal such as indium, which has an acc urately known enthalpy of fusion. 

Exothermic (heat liberating) and endotheml ic (heat absorbing) events occurring in the 

sample as it is heated, and the enthalpy changes associated with such physical 

transitions can be calculated. Many factors can affect the results obtained such as 

beating rate, sample size, sample preparation, sample holder, thermal hi story of the 

sample and the gas used to purge the DSC cell . 
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Figure 42. Schemati c diagram of DSC fumace. A fter 

Hatakeyama [20 1l. 

The principl e of the DSC can be expressed by the fo llowing heat flow equat ion: 

dH/dt = Cp. dT/dt + f (T, t) .......... . ....... . .......... (52) 

where dH/dt is the total heat fl ow measured by the calorimeter, Cp is the specific heat 

capacity, dT /dt is the heating rate and f(T, t) is the kineti c response of the sample. 

The heat capacity term is associated wi th reversible thermal events sllch as glass 

transitions and mel ting whereas the time dependent teml , associated with the kinetic 

response is in tum associated with irreversible thennal events such as cure, 

decomposi tion, crystalli zati on and evaporation. In modem instruments it is poss ible to 

choose operating conditions to enhance data for either reversible or irreversible 

transitions. 

Glass transitions are associated with time dependent relaxations in parti ally crystalline 

polymers that are subjected to controlled heating. The glass transi ti on temperature 

(Tg) is assoc iated wi th a change of phys ical state from a hard , g lassy solid to a 

rubbery, fl ex ible soLi d. Glass transition temperatures are associated with molecular 

mobility of po lymers and hence to their molecular structure and are thus characteri stic 

of the polymer. Different transit ions are associated with the mobility o f segments of a 

polymer molecule and these can shift to higher temperatures depending on the 

frequency o f any applied defonn ation. 
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Thermogravimetri c analysis (TGA) is a complimentary thermal analysis technique to 

DSC and measures changes in sample mass as a functi on of temperatu re and time. A 

TGA is in essence a very sensitive microbalance enclosed in a high temperature 

furnace where the atmosphere can be controlled . TGA is most often used to deternline 

the thermal stability of polymers and other materi als. 

3.9 Summary 

It is useful to summari se the li terature reviewed in sections 3. 1 to 3.7. 

The detail ed chemistry of ex ternal semi -pennanent mould releases of primary interest 

in thi s work is large ly based on propri etary fOJ11lUl ati ons covered by patents but they 

are thought to compri se silicone resins in a hydrocarbon so lvent. One of the most 

widely used commercial product is Frekote and compri ses a surface sea lant and a 

mould release agent. 

The surface sealing agent has an important ro le and seals any micro-poros ities in the 

surface to which it is applied prior to a coating of the release agent itself. The two 

chemi stries are compatible. Using Frekote as a benchmark, a discuss ion o f the 

fu nctionality of thi s product was addressed . Simil arly the fu nctionali ty o f other non­

stick si lane and fluoropolymer-based coati ngs were di scussed w ith examples being 

fo und in a wide variety of appl ications fro m cooking and bakeware to marine 

bi ofouling and pressure sensitive ad hes ives. The experimenta l work detail ed in 

Chapter 6 examines a number o f di fferent non-stick coatings and seeks to appraise the 

properti es that make them successful in a given environment. 

In seeking to find alternati ve mould release coatings that are not based on 

polydi meth ylsi loxane, the properti es that make thi s materi al successful as the basis of 

ex ternal semi-pernlanent release agents have been identified from the literatu re. From 

the avai lable literature on the topic of non-stick coatings it is possible to identi fy some 

properties that make each successful in a parti cular environment. These include: 

• a low surface energy 

• di ssimilar solubility parameter to that of the surface applied to (to prevent 

interd i [fusion) 
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• them1al stability (required for some applications) 

• durability 

• molecular mobility associated with low glass transition temperature 

• ability to cover and fill in major surface asperities resulting from roughness 

but leave a degree of roughness to allow fractllre stresses to concentrate at air 

pockets remai ning on the surface 

• ability to fonn a cohesively weak boundary layer with many flaws to 

concentrate interfacial stresses and reduce the release force 

Fluoropolymer and fluorosilicone material s offer combinations of these properti es 

and are thought to o ffer potential as mould re lease agents. 

Tbe PDMS-based mould releases, currentl y used in the aerospace industry are 

associated with the high temperature moulding of thermosetting res ins. Resin 

impregnated carbon fibre and Kevlar laminates are laid up on moulding tools treated 

with release agent. Sheets of resin are interspersed with the prepregs. A copper mesh 

lightning conductor may also be added. The who le assemb ly is vacuum bagged and 

heated to 180°C in an autoclave pressuri sed with nitrogen at up to 10 atmospheres 

pressure (l.OI3MPa). This constitutes a complex multi-vari able system that is 

di ffi cult to model in a laboratory and it is likely that the chemistry of the resin systems 

themselves and unknown proprietary additives influences mould fouling. The wide 

scope of the present research allows insufiicient time to study mould fouling in 

signifi cant detail and instead concentrates on developing an understanding of the 

optimum properties of mould releases. 

A review of techniques that have been used to measure the mechanical perfom13nce 

of mould releases in the laboratory has shown that no single method is widely 

accepted and that there are many real difficulties encountered in measuring the low 

forces involved. This chapter has also identified and provided detai ls of the main 

analytical techniques used in the present study. 
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Chapter 4 Experimental 

4.1 . Introduction 

Thi s chapter detail s the materi als sourced, the processes used and analytica l 

procedu res per formed in the presen t study. A di chotomy ex ists between the principal 

areas investigated with the consequence that it is helpful to consider firstl y, the 

substrates and contaminants assoc iated with the cleaning procedures, and secondly, 

the investi gation o f mould release coatings. 

4.2.Materials 

4.2.1. Industrially sou reed substrates 

Bombardier suppli ed two contaminated ni ckel too ling plates (30cm x 20 cm) which 

had been obtained from a moulding tool that had reached the end of its serv ice life. 

The contamination present on the used nicke l tooling was very sli ght, compri s ing a 

residue of resinous materi al giving it a light brown discolouration ( fi gure 43). 

The nicke l plates were subdi vided and some o f the ori ginal parts were retained whilst 

the contaminati on was removed from one part using the same type and grade of 

abrasive as used by Bombardier. Small er coupons (5cm x 6cl11 x O.5cm) for testing 

were cut from thi s abrasively cleaned materi al. 

One side of the ni ckel tooling plate as received was covered with exceptionally hard 

nodules from the electrolyt ic manufacturing process making it uneven. Attemp ts to 

grind down this face in laboratory workshops proved diffi cult and blunted tools. Also 

the plate as received had a slight overall curvature resulting fi'om the mould geometry 

in which it was originall y used. This was a serious problem because it meant that 

pressure applied during laboratory curing of resin samples could not be applied 

evenl y, using laborato ry hydraulic heated presses, even when small samples were 

used . 
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At Bombardi ers curing is achieved using a combination of vacuum bagging of the 

moulding against the tool surface and autoclaving in a nitrogen atmosphere 

pressurised up to 10 atmospheres (1.013MPa). These conditions could not be easi ly 

reproduced in the laboratory. 

Cytec Fiberite Ltd. , of Wrexham, supplied FM300 epox ide resin sheets and a small , 

virgin carbon composite tool (Cyfonn 777 of dimension 50 cm x 50 cm x 8mm 

thickness) and a sample of the virgin composite material is shown in figure 44. The 

FM 300 resin is a high shear strength adhesive formulated for composite structure 

mouldings and is believed to be a diglycidyl ether ofbisphenol A (DGEBA). 

Bombardier also supp li ed some examples of used composite tooling (figure 45) and 

althougb some preliminary characterisation was performed on these, there proved to 

be insufficient time in the project to treat and further test the samples. 

4.2.2 . Model su bstrates 

Tt was agreed with Bombardier that steel plate could be used as a substitute for an 

example of stee l mould too ling, which Bombardier cou ld not supp ly. Mi ld stee l plate, 

suppli ed by Adey Steel Ltd. , of Loughborough, was used, and this was cut into sma ll 

coupons (figure 46). 

With hindsight the choice of industrial grade mild steel was unsuitable for the project 

because of the presence of a relatively thick oxide layer (approximately 10 

micrometres thickness measured from cross sections). This gave rise to artefacts in 

subsequent treatments that might not be present, or else present to a much lesser 

degree, on the stain less steel tooling used by Bombardier. No particular difficulties 

were otherwise encountered in material preparation. 

It was decided that the aforementioned materials (nickel plate, mild steel, composite 

tooling) wou ld be used to evaluate the effectiveness of different cleaning techniques 

and that scatUling electron microscopy wou ld be the main ana lytical technique used 

since this imposed no sample size restriction. 
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The situation for the proposed work on mould rel eases relied more heavily on 

analytical instrumentation and it was decided to supplement tbe materi als used with a 

stainless steel foil of 150 micro metres thickness, type SS304 suppli ed by College 

Metals, Salford. This was chosen because it was readily available whereas the 

quantity of samples supplied by Bombardier was limited. The foil was also easy to cut 

and use for coating experiments and sample cleanliness could be easily controlled. 

Possessing a lower roughness value than the Bombardier samples, the stai nl ess steel 

foil was also more suitab le for microscopic studies. It is acknowledged that the 

surface chemistry and composition of the foil will be different to that of Bombardi er 

tooling but at thi s stage it was considered necessary to conduct a preliminary stud y 

with idea li sed samples and then progress to treating Bombardier tooling once the 

viability of a coating system had been proven. 

A sun·ogate materi al for ni ckel-tooling plate was used comprising ni cke l sputtered 

onto standard glass slides to a thickness of I. I micrometres. These sputtered slides 

were suppli ed by Teer Coatings, Hal1lebury, Worcestershire. Unfortunately, the cost 

of preparing such samples limited availability to ten slides so it was decided to use 

these sparingly and only for an angle reso lved XPS experiment. Due to the delicate 

nature of these samples no surface roughness measurements were made. The surfaces 

of these sputtered ni ckel film s were very smooth and no SEM or AFM 

characterisation of topography was made. 

Again for the wo rk on mould releases, it was decided to mill down a single coupon of 

nickel plate (sourced from Bombardier) to 3mm thickness and sub-di vide this into 

IOmm2 squares, several of which were subsequentl y hand polished using a selies of 

diamond pastes, finishing with a 1 microll1etre particle size diamond paste. 
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Figure 45. Example of used composite Figure 46. Example of mild steel plate 

tooling 

4.2.3. Model contaminants 

It was also agreed with Bombardier that an epoxide resin, RTM6, supplied by Hexcel 

Composites, Duxford, would be used to treat nickel, steel and composite coupons and 

that different cleaning methods would be eva luated using these samples. RTM6 is a 

premixed, monocomponent transfer moulding epoxide resin containing tetraglycidyl 

methylene dianiline, 4,4' -methylenebis(2,6' -diethylaniline) and 4,4 ' -methylenebis(2-

isopropyl-6-methylaniline).The advantage of this resin was that it could be easily 

applied to test coupons and contained no additives or pigments unlike the FM300 

resin sheets supplied by Cytec Fiberite. Because the latter product was proprietary, no 

details concerning the additives were known or could be obtained and this introduced 

additional unknown variables into the cleaning evaluations. Particularly with laser 

cleaning, pigmentation and other additives have a very significant effect on absorption 
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characteristics, Detail s of application and cure conditions for both RTM6 and FM300 

are given in section 4,2 ,3.2, 

4.2.3.1 Pre-treatment cleaning 

Cleaning is an essential part of the surface preparation and although ri gorous clealling 

regimes can be used on laboratory samples, the same degree of ri gour is often not 

practica l in the aerospace industry where very large too ling moulds have to be cleaned 

quick ly, In assessing cleanliness levels for substrates it is necessary to remain 

focus sed on thi s fact and be dissuaded from repeated c leaning procedures to obtain 

ever-cleaner surfaces since the same ri gour could not be app lied industriall y, 

The nickel and steel plate samp les to be coated with RTM6 res in were cleaned 

according to the following regime, This same regime was also used subseq uently to 

treat the steel foi l used for mould release experiments, 

Coupons were degreased ultrasonically in two changes of fresh acetone and then 

treated in a proprietary aqueous alka line cleaner, Isoprep 44, suppli ed by Lea 

Manufacturing of Buxton, which was mixed with tap water and brought to the boil , 

and the samples were mechanicall y agitated in this hot solu tion for 30 minutes, Each 

sample was then rinse washed in running hot tap water and transferred to a fresh 

solution of the alkaline cleaner at room temperature. Each sample was then subjected 

to ultrasonic agitation for a further 30 minutes before being again rinse washed in hot 

tap water and thoroughly dri ed in an oven set at 120°C for 60 minutes, This drying 

time was doubled for the mild steel samples since rusting was a problem, 

4.2.3.2 Application of resin 

RTM6 resin was wanned to approximately 80°C for 15 minutes to reduce its viscosity 

and then a quantity thoroughly mixed with an equal vo lume of acetone, which was 

used as a thilming so lvent. This was tben brushed onto cleaned metal and composite 

coupons. This single application was cured for 4 hours in an oven at 180°C and 

ambient pressure, Thickness measurements of plates before application of the resin 

and after removal and cooling of the cured resin showed the resin thickness to be 
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within the range 100 - 150 micrometres, the greater thickness occlllTing towards the 

edge of the samples . Parti cul arl y diffi culties were encountered with the ni ckel 

coupons because they were uneven as prev iously described. 

Resin was onl y applied to the gloss face o f virgin compos ite tooling coupons and 

these were first cleaned by ultrasonic agitation for 30 minu tes in di still ed water. After 

thi s cleaning, excess water was drained off and the coupons dri ed with clean paper 

towels and left overni ght at room temperature before being treated. 

The FM300 epoxide resin was supplied in sheet form impregnated into a polyeth ylene 

terepthalate (PET) membrane and comprises part of a typica l mOUlding. A silicone 

release paper protected the res in. This was unfo rtunate because the res in was thus 

contaminated with silicon on receipt before it was brought into contact with any 

mould release agent. Consequentl y the transfer of release coating could not be easil y 

investigated. The res in sheeting is appli ed to the metal mould too ling at Bombardier 

interl eaved with altem ating layers of carbon fibre or Kevlar resin impregnated cloth. 

The assembly is then vacuum bagged on the mould surface and cured in a large 

autoclave in a pressuri sed ni trogen atmosphere. 

It was fo und through experimentatio n that the absorption properti es of FM300 res in 

sheet, fo r incident laser energy, were considerably greater than those of an equ ivalent 

thi ckness o f RTM6 resin. This was considered to be due to the fact that the former 

resin product is pigmented and contains inorganic fill ers that absorb laser energy with 

greater effi ciency than the resin matri x, as di scussed in section 5.2. 1. In terms of its 

absorption properties the FM300 resin sheet has similarities to a thi ck layer of paint 

and it is well known that TEA CO2 lasers are particularl y e fficient at removing these 

by laser ablation. No pigmentati on is, however, present in typical mould 

contamination. As a consequence, the use of FM300 resin was deemed inappropriate 

as a contaminant materi al and RTM6 was considered to be a more suitable model 

contaminant. The FM300 resin sheet was only used mould release studies discussed in 

section 6.3. 1. 

It is useful to bri efly summan se both the industrially sourced substrates and 

contaminant samples that are characteri sed in thi s proj ect. 

133 



Substrates 

• Contaminated Ni tooling plate (ex-Bombardier) 

• Mild steel plate 

• Stainless steel 304 foil (150 micrometres thi ckness) 

• Ni sputter coated glass slides 

• Virgin composite tooling 

• 
Contaminants 

• Particulate resinous materi al of unknown composition on Ni tooling plate (ex-

Bom bard i er) 

• Hexce l RTM6 res in bonded onto pre-c leaned Ni too ling plate (ex-Bombardi er) 

• Hexcel RTM6 res in bonded onto pre-cleaned mild stee l plate 

• Hexce l RTM6 resin bonded onto virgin Cytec compos ite too ling 

• Used composite tooling (ex-Bombardier) 

• Cytec FM 300 epoxide adhesive film appli ed to various substrates 

4.3 Surface Cleaning P,·ocedures 

4.3.1. TEA CO 2 Laser cleaning 

Detail s of the TEA CO2 laser used in the present study and the operating parameters 

were given in secti on 2.2.5. The optimum fluence conditions were detemlined 

experimentall y and the only vari able was the number of pulses incident per unit area 

during the cleaning procedure, as deta il ed in section 5.2 I. 

4.3.2 Nd:YAG Lase,· cleaning 

Details of the operation of the Nd:Y AG laser used in the present study are given in 

section 2.2.6. The Spectron Nd:Y AG laser previously detailed was used 

independentl y to evaluate the effi cacy of laser cleaning for removal of resin from the 
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prepared sample set. A lens in the fmal segment of the arm contains a focussing lens 

(figure 47). 

Figure 47. Nd:YAG experimental arrangement. 

Although the pulse duration of this laser is fi xed, the duration is within the range that 

is required fo r a laser cleaning application (10 - SOns) and other laser parameters such 

as power output and frequency of applied pulses were more easily contro lled. It was 

decided to use Q-switching (section 2.2.6) to boost the power output and conduct a 

series of experiments to determine the optimum distance of the sample from the foca l 

point of the laser fo r normal incidence. At this optimum distance the beam is 

defocused fo r laser cleaning which spreads the energy over a larger area. The 

operating conditions were such that an effective cleaning mechanism occurred for 

samples placed at 25cm from the foca l point of the laser. No substrate damage 

occurred at this distance and the beam diameter was approx in1ate ly Smm. It is not 

suggested that these conditions are suitable for large scale cleaning and were used 

merely to eva luate laser effects in the laboratory using this particular Nd:YAG laser. 

These results were then compared with those rece ived from external laboratories. 

4.3.3 Liaison with External Laser Laboratories 

As discussed by Cottam [491, experimental work using the Laserbrand TEA C02 laser 

is largely limited to varying the laser fluence used and number of pulses applied to a 

target, and then assessing its effect. The instrumentation and expert instruction 

required to measure the laser fluence and temporal profi le of this laser was no longer 
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avail abl e in the Department of Physics at Loughborough University at the time the 

present study was undertaken and assistance from ex ternal laborato l'ies was sought. 

There are relati vely few laboratori es which possess experti se on the laser cleaning of 

resinous materials but fortunately the National Laser Centre in Pretoria, South Africa, 

very kindl y agreed to treat submitted samples using both a TEA CO2 laser and a 

Nd:Y AG laser and a useful di alogue was establi shed which was of great value. 

Co ll aboration was also establ ished with the European laser manufacturer Quantel and 

the faciliti es of their laboratori es in Pari s, France were made avail able. This contact 

provided some useful data on the rate of cleaning that was possible for contaminated 

ni ckel tooling received from Bombardi er. The commerci al system marketed by 

Quantel for laser cleaning combines the outputs from four standard 250W Nd:YAG 

lasers into a single cleaning head in which the spatial energy di stribution o f the output 

and area coverage are both optil11ised fo r quick automated cleaning. On the treated 

samples, the sur faces were characteri sed and the effects interpreted, as di scussed in 

section 5.2.3 .2 . in w hich the experimenta l conditions used are given. 

4.3.4.Drv ice Cleaning 

The fac iliti es and co-operation of CryoGenesis Ltd ., Littlehampton, were enli sted for 

these evaluations and samples prepared as descri bed were taken to thei r premises for 

treatment using a variety o f operating conditions. The primary interest was to 

detem1ine if the technique could e ffecti vely remove resin bonded to compos ite 

material without damaging the substrate. The parameters which were vari ed were 

time, pressure, particle size and the presence or otherwise of abras ive medi a. 

The operating parameters used for manual cleaning were : 

(i) Sample size 60 mm x 60 mm x 8 mm thickness 

(ii) Stand O fr Distance (nozzle tip to surface): 10 cm. 

(iii) Nozzle inlet pressure varied in the range 3 - l Obar (304kPa - J .013MPa) 

(iv) Nozzle angle with respect to surface was either up to about 30° or else 

norn1al to the surface 

(v) Duration of blasting was vari ed between 3 and 30 seconds. 
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Resin was also cleaned from metal substrates a lthough these results were largely 

predictable. No detailed analytica l analysis of the treated samples was conducted 

because the intervening time from treatment to retllm of the samples to the laboratory 

would have resu lted in contamination invalidating any su rface cleanliness 

measurements. Analysis was restricted to a visual assessment and photographic 

recording of results, which are presented in section 5.4. 1. 

4.3.5 Sodium bydride chemical cleaning 

This high temperature chemical clean ing process, as previously described in section 

2.5. , can only be applied to the resin coated metal substrates . The facilities at 

Leicester Treatments Lld were used to eva luate the cleaning potential of this 

technique. Samples were treated for approximately one hour at a bath operat ing 

temperature of 360°C. On the first occasion subsequently analysis of the samples 

showed that they had become contam inated after being treated. The treatment 

environment, typical of an industrial metal finishing enterprise, is very far removed 

from the levels of c lean liness required by surface analysis techniques. On the second 

occasion the samples were rinsed thoroughly, immediately after treatment using tap 

water, and then stored under absolute ethano l to minimise contamination. The results 

from this second analysis will be presented and discussed in section 5.5.1. 

4.4 Application conditions for mould release coatings 

4.4.1 Frekote 

Frekote comprises a series of semi-pelmanent external mould release products that are 

widely used in the aerospace industry, as discussed in section 3.2.2. The release agent 

is dissolved in an al iphatic hydrocarbon so lvent. It was agreed with Bombardier that 

this release agent wou ld be used as a benchmark against which to assess the 

perfonnance of alternative release coatings. Samples were treated according to the 

treatment regime specified in Bombardier documentation. 

Starting from a clean surface prepared as detailed in section 4.3.2.1, the substrate 

surface was first treated with an application of Frekote B15 surface sealer. The B15 

sealer is used to fill micro-porosities on the tooLing substrate surface. It is important 
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that thi s product has not been contaminated with water, which renders it cloudy in 

appearance and unsuitable fo r use. The coating is nornlally applied to an industrial 

mould using a clean cotton cloth moistened with the chemical and an area of 

approx imately one square metre is wiped over with the moistened cloth to produce a 

thin , uniform film . The small s ize of laboratory samples makes th is procedure 

impracti ca l and consequently samples were dipped into the chemical contained in a 

glass beaker and excess sea ling agent removed by verti cal drainage for a few 

moments. The samples were then placed hori zontall y onto a clean sur face to dry. This 

procedure coats both sides of the sample but onl y one face is required fo r testing. Care 

is requ ired to make sure the required face is uppellllost as it dries. When samples had 

been coated the contents of the beaker were decanted into a separate screw top bottle 

and not returned to the can of 8 15 sealer. Thi s fi rst coat was left to dry for 30 minutes 

at room temperature. A second coat ing was then applied in the same manner. It is 

important that the drying time fo r the fi rs t coat is not reduced below 30 minutes, 

which will result in the second coat disso lvi ng the first coat. Converse ly poor bonding 

between th e two coats may result if the drying time for the first coat is signi fica ntl y 

increased {i'om 30 minutes. The second coat was then dri ed for 30 minutes in an oven 

at 125°C. Altematively the second coat can be dried at roo m temperature fo r 24 

ho urs. 

The samples are next coated with Frekote 710 NC mould release agent. Si milar 

precautions are required to ensure that thi s chemical is not contaminated by water. 

The aim is applying the release agent is to obtain a thin, unifol111 film and thi s is more 

eas il y achieved when preparing large sur face areas. However, the same dip coating 

procedure described above was also used to coat the sealed substrate surfaces with 

mould release agent. The first coat is applied and allowed to dry for 15 minutes at 

room temperature. Similar considerati ons, as di scussed above, apply if the drying time 

is shortened or increased substantiall y. The time between successive coats should 

never exceed 30 minutes as the manu facturers state that thi s will degrade the 

performance and durability of the treated surface. A second coat is applied which is 

also left to dry for 15 minutes at room temperature. Finall y a third coat is appli ed and 

le ft to dry at room temperature for 20 minutes. 
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4.4.2.Zvvax 

Zyvax Inc., in U.s.A. (www.zyvax.com). manu facture a range of water soluble 

crossLinking polymer res ins which are marketed as a environmentall y beni gn extemal 

release agents fo r aerospace appl icat ions. The products trading under the name 

Watelworks comprise a mould-cleaning agent (called "Fresh Start"), a mould sea ler 

(ca ll ed "PI'eFli ght") and the mo uld release product (call ed "Departure") and the 

manu facturer specify how these components are used. 

The cleaning agent comprises an alkaline paste that it applied in small amounts on a 

paper towel and used to rub the surface repeatedl y unti I it is clean enough to "water 

break". This occurs when water applied to the cleaned surface fOlm s a continuous 

sheet rather than coalescing into discrete droplets on the sur face . 

The specific chemistry of thi s proprietary cleaning agent was unknown and it was 

considered inappropri ate to use it instead of the pre-treatment cleaning detailed in 

section 4.2.3. I. since comparison data was sought. The "PreFlight" component fulfil s 

the same role as Frekote B 15 sealer and is applied as fo ur coats. The same coating 

conditions were used as fo r Frekote, with the in terva l between coats being 15 minutes. 

Zyvax recommend that second and subsequent coats are buffed off from the sur face 

before they have dri ed . The final coat is then cured in an oven at 83°C fo r 15 minutes. 

The di fference between the Frekote B 15 and "PreF light" coatings appears to be that 

the latter fonns a thinner, uni form fi lm . Zyvax reconunend that their "Departure" 

mould release agent is either applied by wiping over the surface to be treated or by 

spraying using an appropriate spray applicator. The fi rst coating is allowed to dry for 

2 minutes and is then buffed off. Two subsequent coats are then applied allowing a 

drying time of 15 minutes between coats and neither coat is buff fini shed. This 

treatment regime was used onl y on poli shed nickel substrate (section 6.2.3) but 

because of the small sample size, the buffing treatment was replaced by rubbing the 

treated surface for approx imately 5 seconds on the piece of clean paper towel. 

Zyvax claim that better mould release performance is obtained by usmg thinner 

applications of their products and it is clear that thi s is the aim from the application 

regime detailed. Another facto r maybe that the aqueous so lvent has a very nigh latent 
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heat of vapouri sation and buffing between coats may assist in its evaporation since it 

mi ght otherwise promote rapid rusting on clean ferrous substrates. The perf0lll1ance 

of the Zyvax product appeared to be inferi or to Frekote for reasons that will be 

discussed in section 6.2.3 and its use was subsequently di scontinued. 

4.4.3.Fluoroalkvlsilane 

Shanahan et al 1140 1· [141] describe how a commercial Ouoroalkylsilane was used to 

prov ide a non-sti ck coating on enamelled steel. On thi s particular smooth substrate it 

was found to form an effective non-s ti ck coating. The Iluoroa lkylsilane used, 

Dynasylan F862 1, as described in secti on 3.5.7, is sold for laboratory use in 100ml 

quantities and thi s chemical polymeri ses very quickl y on exposure to laboratory air 

when the bottled is opened so it is necessary to use the whole volume at once and coat 

as many samples as possible. It is a relati ve ly expensive chemical but is used in low 

concentrations in an ethanol/water so lvent and consequently can coat large surface 

areas. 

Different concentrations of Dynasylan solutions were prepared and used to coat 

samples of pre-c1eaned stainless steel fo il and also the set of samples o f ni ckel 

sputtered onto glass s lides. The manufac turers recommend preparing a working 

so lution by first mixing absolute ethanol and water in the rati o 95:5. Then by adding I 

pat1 of Dynasylan to 11 9 parts of the wo rking solution, a final concentration o f 0.5% 

Dynasylan is obtained. StilTing then produces a dispersion that has a shelf life o f up to 

24 hours. Acidification was reconmlended to accelerate polymeri sation and it was 

recommended that acetic acid be used to adjust the so lution to a pH between 4.5 and 

5.5 . Dipping of samples in thi s solution for peri ods of at least 1 minute allows 

suffi cient material to react with a high surface energy substrate and produce a uniform 

coating. Heating in an oven at 11 00 e for 10 minutes can subsequentl y cure thi s 

hydrophobic coating. 

Varying these mixing propOltions and acidifying each to a pH of 5.0 produced metal 

samples coated with 0.1 %, 0.5%, 1.0%, 2,0% and 5.0% Dynasylan. Although 

di fferent immersion times were tri ed ranging from 1 to 60 minutes it was 

subsequently found reacti on times in excess of 10 minutes did not result in higher 
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water contact angles implying that once the substrate surface had full y reacted with 

the nuoroalkylsil ane, further treatment time did not produce a thicker coating or 

increase the hydrophob ici ty of the coating. 

4.4.4 Oxsilan 

Stainless stee l foi l samples were first treated w ith a silane primer before being dipped 

into the Dynasylan so lution. It was thought that a weak boundary layer wou ld be 

created at the interface between the two cured coatings that wou ld enhance the ease of 

mould release. Chemetall of Bletchley, Milton Keynes supplied a proprietary 

organofunctional si lane (Oxsi lan AL-050 1) for thi s purpose that was developed for 

use a pre-treatment for aluminium surfaces. 

The theory associated with such coatings has been described by van Ooij Jl 861 who 

describes thei r app li cat ion as replacements for chromate pre- tTeatment of metals. The 

acti ve si lane component in Oxsi lan AL-050 1 is unknown but is beli eved to possess a 

similar chemistry to bis-[tri(m)ethoxysil yl]methane (BTSM) as described by van Ooij 

and is dispersed in a water\ethano l so lu tion at a few percent concentration. Samp les 

were dip coated in the so lut ion, blow-dri ed and the coating cured at 80°C for 30 

minutes. 

4.4.5 Oxsilan and Fluoroalkvlsilane coating 

Stainless steel foil samples were dip coated with undiluted Oxsilan AL-0501 as 

received from the manufactlU'ers and the coatings cured. Some of these coated 

samples were then immersed in a so lution of 1% Dynasylan F8261 fluoroalkylsilane 

and left to react fo r 15 minutes. These samples were then removed and cured 

according to the conditions already mentioned. 

141 



Figure 48 Interference colours from 

Oxsi lan coating on stainless steel foil. 

The Oxsilan treated samples displayed pronounced interference colours in reflected 

light (figure 48) implying the thickness of the coating was less than the average 

wave length for visib le light. 

4.4.6 Fluoropolymers - Xylan 8080 & Xylar 2020 

The use of fluoropolymers as non-stick coatings in the food processing industry was 

discussed in section 3.5.3. Whitford Plastics Ltd., Runcorn supplied two 

fluoropolymer coating formulations for experinlental evaluation - Xylan 8080 and 

Xylar 2020. The principle difference between these coatings was that the latter 

contains a dispersion of PTFE in an aqueous solvent and could be cured at the lower 

temperature of 205°C compared to 400°C required for Xylan formulations. In terms 

of composition the Xylar formulation contains inorganic binding agents rather than 

organic resins which are present in Xylan coatings. Spray coating was the preferred 

method of app lication with typical coating thickness between 12 and 20 microns for a 

single coat of either formulation . Both coatings could be applied to most metals and 

althougb primers could be used, the coatings were reported to adhere well to cleaned 

substrates without using any primer. Standard cleaning procedures could be used. In 

the majority of evaluations, the coatings were sintered onto pre-cleaned stainless steel 
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foil. Grit blasting, a standard method of producing a grease free surface, was not used 

because experience showed that it strain hardened the foil. 

Although spray coating was recommended the particle size in the coating was too 

large for the spray coater available and it was decided to app ly coatings using a brush. 

The Xylan coatings were Oash evaporated for 10 minutes in an oven set at 150°C and 

then removed. The oven was reset to 400°C and the coated samples replaced when the 

oven had reached thi s temperature and were left in the oven for a further 5 minutes. 

The water based Xylar 2020 was heated in an oven set at 200°C fo r 15 minutes to 

effect full cure. The results of these preparations were quite variab le. Sometimes 

boiling of the so lvent during flashing or cure generated a rough surface and these 

samples were discarded. Only samples where the cured coating was smooth and 

blemish free were retained for testing and analysis. Two substrates comprising 

stainless steel plates for the bli ster tester (see section 4.6.2) were grit blasted and 

treated with the Xylar and Xylan coatings. 

4.4.7 Ni/PTFE composite coating 

It was decided to eva luate the potential of these type of low-fri ction coatings. Samples 

of Bombardier nickel too ling plate were treated with a proprietary coating, Apticote 

450 applied by Poeton Industries Ltd., Gloucester. This is a se lf- lubricating nickel 

alloy composite coating comprising a mic ro dispersion of PT FE particles. The coating 

was deposited onto selected nickel substrates with an estimated thi ckness of 20 

m icrometres. 

Mould Release Coatings 

Industrial sourced Model 

Frekote Dynasylan fluoroa lkylsi lane 

Zyvax Oxsilan 

Xylar 2020 and Xylan 8080 

Apticote 450 

Table 5 Release coatings. 
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4.5 Surface Analytical Procedures 

The theory assoc iated with these techniques was di scussed in section 3.8. 

4.5.1. SEM 

The majority of images and spectra presented were obtained using a Leo Gemini 1530 

SEM (figure 49) with field emission electron source was used in the present study. 

This was operated most frequent ly at 20 kY accelerating potential to obtain high 

quality X-ray spectra. Images were recorded using either 10 kY or 20 kY. 

Figure 49. Leo Gemini FEGSEM. 

Since most samples were conducting metals it was not necessary to sputter coat the 

samples to render them electrically conducting. When required gold sputter coated 

samples were examined. 

A Cambridge Instruments Stereoscan 360 SEM operating at 20 kY accelerating 

vo ltage was also used and several images from this instrument are included. 

4.5.2. AFM 

Two MM instruments were used in this study. Initial work was performed using a 

Burleigh Personal SPM instrument operated in contact mode using a silicon probe. 

This instrument provided only topographic information. To provide data on pull-off 

forces to quantity differences in adhesion between coatings it was necessary to use 
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another AFM instrument. This was a TA instruments 2990 Micro-Thennal Analyser 

shown below in figure 50. Thi s instrument combines the surface imaging capabilities 

of AFM with the characterisation potential of a thennal analyser. This is achieved by 

using a probe that functions both as a programmable heat source and as a temperature 

sensor. Different probes can be used when non-thennal AFM infomlation is sought 

and the instrument can be used in the tapping mode of operation. 

Figure 50. TA Instruments 2990 AFM 

4.5.3. Interference Microscopv 

In this particular application a Mirau interference objective was used with a Zeiss 

Polari zing Microscope. 

4.5.4. Ellipsometrv 

A Uvisel Ellipsometer was used to collect data pertaining to the thickness of mould 

release coatings. Facilities at Jobin Yvon Ltd, London were used to collect thi s data 

since no ellipsometers were available on campus at Loughborough University. 

4.5.5. AES 

A JEOL 71 OOAuger Spectrometer was used in this research for which the prinlary ion 

CUlTent density is 75 x 10,6 A.m'2 Samples, approximately 10mm were de-magnetised 

prior to examination but received no other preparation, These were placed in the 

analysis chamber of the spectrometer that was pumped down to a residual pressure of 

approximately 10'6 Pa. The sample was then imaged using a beam accelerating 

voltage of20kV and an area selected for Auger analysis. 
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After adjustment of the beam intensity to an appropriate analysis value, the analysis 

conditions were defined. These generall y comprised survey scans from 20 eV to 1000 

eV (sometimes to 1650 eV depending on elements to be detected) with step of 1.0 eV, 

dwell time of l OOms and pass energy set to low. Typically 3 to 5 scans were averaged. 

After collection of a survey spectrum, ion etching, in-situ , was usually perfonned to 

detel1l1ine a coating thickness using a series of fixed etch durations. Auger spectra 

were collected after each ion etch and a selected peak height monitored until its 

intensity had fallen to within the background noise level or to a level where its 

intensity remained constant. Through a knowledge of the sputter yield for ion etching, 

the peak intensities for a series of Auger spectra co llected for di fferent etching times, 

can be used to calcul ate a concentntion profile using appropliate elemental sensitivity 

factors. A coating thickness can then be estimated and this used as a measure of 

surface cleanliness. 

4.5.6. XPS 

XPS spectra were recorded on a VG Scientific Escalab Mk I vacuum generator with 

unmonochromatised AI Ka X-ray source (1486.6 eV) and operated in the constant 

analyser energy (CAE) mode. 

Figure 5 \. Escalab Mk I XPS 
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A potential of9 kV was used at 20mA current. For later experiments thi s was reduced 

to 8.5kV at 20mA.The survey spectra were obtained at a pass energy of lOO eV and 

scan width of 1000 eV and the high resolution spectra using a 25 eV pass energy with 

summation of multiple scans to reduce noise. XPS spectra were calibrated by 

assuming a 285 eV binding energy for aromatic and aliphatic carbons. Quantification 

was achieved by measurement of peak area fo llowing subtraction of a Shirley type 

background. 

4.5.7. SIMS 

A Cameca 3F SIMS instrument was used to analyse the chemistry ofFrekote mould 

release and prepare positive ion spectra for comparison with data obtained by 

Blanchard 1861. 

4.5.8. Contact angles 

A Data Physics SCA20 Contact Angle Analyser was used to obtain experimental 

measurements of contact angles using the sessile drop method. Each droplet was 

imaged using a digital camera and interacti ve drop shape analysis software then 

allowed the user to set a baseline to the drop displayed on a moni to r. The software 

then automaticall y fits a profile to the drop shape and draws a tangent fi·om which a 

contact angle is computed. By this means it is relatively easy to make many 

measurements on a single sample and average the results. Us ing known dispersion 

values, contact angle measurements using two liquids allows the user to calculate 

surface energies using the same software. 
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Triply distilled water and diiodomethane (DIM) were polar and non-polar liquids of 

known surface tensions [1871 used to determine surface energies according to the 

method of Owens-Wendt-Rabel and Kaelble. DIM decomposes with prolonged 

exposure to daylight and must be stored in an amber coloured glass bottle. Fresh DIM 

was used to fill the micro syringe before any measurements were taken. A dosing 

volume of 3 micro litres was used in the majority of experiments and at least twenty 

contact angles were measured for each liquid and every sample analysed. The mean 

contact angle was then quoted. The water contact angles were always measured first 

to minimise substrate contamination. 

On metals, di sso lved salts absorbed onto the surface can result in dynamic contact 

angles where the angle decreases rapidly with time. Using the image capture facilities 

on the Data Physics Contact Angle Analyser, acquisition can be controlled whereby a 

fixed number of frames is collected in a set time period (typically 10 seconds) and a 

series of several hundred image frames stored . On playback the baseline for the frame 

when the drop first touches the surface is manually set and the software uses this 

reference to calculate the varying contact angles for the subsequent frames. This 

measures means dynamic contact angles and a plot of the contact angle variation with 

time is stored. 

4.5.9. FTIR 

Spectra were collected using a Mattson 3000 FTlR spectrometer. The majority of 

samples examined were liquids and these were prepared by preparing a film of the 

liquid onto a KEr disc and allowing to dry in air at ambient temperature. This disc 

was then placed in the spectrometer and spectra collected over the range 300 to 4000 

wavenumbers using 64 scans. The same numbers of scans were used to record the 

background. 

4.5.10. DSC and TGA 

These teclmiques were used to determine the thermal properties of Frekote mould 

release. Frekote 710 NC mould release agent is a resin di sso lved in dibutyl ether. A 

volume of 250ml of this liquid in a glass beaker was placed in an empty fume 
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cupboard and the solvent allowed to evaporate completely over a 48 hour peri od witb 

the fume cupboard extraction left on for thi s peri od. After thi s peri od a rubbery so lid 

remained at the botto m of the beaker. This materi al was used for subsequent thermal 

analysis experiments. 

4.5.10.I.DSC 

A mass of 1l.05mg of so lid Frekote was placed in an aluminium DSC sample pan, 

which was helllletica ll y sealed, and then the lid of the pan was pricked to allow 

vo latil es to escape. This was then subjected to a three stage contro ll ed heating ramp in 

the fumace of a TA Instruments 2920 modulated DSe . A heating rate of 200e per 

minute was used which is a standard heating rate for the detemlination of glass 

transition temperatures. The heating cycle consisted of a ramp /Tom 300e to I200e 

using ni trogen purge gas to dri ve off excess so lvent and the sample was held 

isothermall y at the latter temperature fo r 5 minutes. The second segment of the 

heating program caused the sample to be cooled to - lOooe using liquid nitrogen 

cooling. In tbe fin al segment the sample was heated /Tom -sooe to 300°C. 

To achieve the stated degree of cooling required the use of a whole dewar of liquid 

nitrogen and it was impractical to try to reduce the statiing temperature further. At 

such low temperatures the heat fl ow signal in the DSe takes some time before it 

settl es down and becomes steady, after about 200e into the run. Thus the recorded 

data shows heat flow from - sooe to allow for thi s settling peri od. 

4.5.10.2. TGA 

The then11al stability of Frekote was deten11ined uSlllg a TA Instruments TGA 

2950HR. A mass of 10.Ollmg of solid Frekote was weighed into a platinum crucible, 

which was then positioned inside the TGA fumace. The fumace was purged with dry 

air at a suitable fl ow rate (typ ica ll y 10ml per second) . The sample was heated from 

300e to 3000e at a heating rate of approx imately 3.Soe per minute. A slow heating 

rate was chosen to allow excess solvent to be released fro m the sample. Thjs 

parti cul ar TGA allowed high reso lution data to be obtained whereby the heating rate 

is reduced automatically when a signifi cant mass change occurs. 
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4.6 Mechanical Tests 

4.6.1 Axial butt test 

Early in the research it was decided to fabricate a testing geometry made from 

stainless stee l comprising two 60 mm diameter discs whose surfaces could be treated 

with Frekote products (applied as speci fied by the manufacturer). A water contact 

angle of 122° was measured following application of the Frekote. Cytec Fiberite 

supplied some carbon fibre fabric impregnated with FM300 resin. This material is 

known as "prepreg" and some of this was used in initial experiments. Three layers of 

carbon fibre prepreg cut to 57 mm diameter were then sandwiched centrally between 

the Frekote coated discs and the assembly weighted under 10 kgm load and placed in 

an over. The prepreg was then cured at 180°C for three hours. As shown in figure 53 

below, the steel discs were constructed so that one end of each could be secured into a 

mounting ann and the assembly then mounted between the jaws of a tensile testing 

machine. The intention was to quantify the tensile force required to separate the discs 

thereby detennining the quality of the release obtained. 

With hindsight it was perhaps naive to suppose this means would be successful to 

measure the force involved because it was found that the cured prepreg separated so 

easily from the treated metal discs that it was never poss ible to mount the assembly in 

a tensometer without separation occurring first. 

Figure 53. Axial butt test components. Figure 54. Used axial butt test disc.This 

This figure shows two steel discs which disc was coated with Frekote and 

each screw into the adjacent achieved 20 releases of prepreg cured 

150 



--------- --- - - - - - - - - - - - - - - -----

(Legend Figure 53 conlimled) lensometer (Legend Figure 54 continued) aga inst it 

bolts. It was envisaged thi s assembl y without any sti cking. 

could be used to test the effecti veness of 

mould release coatings but in the event 

the forces were too small to measure 

USiJlg a standard tensometer. 

This was because the release force was so small. Tes ting methods that can be ll sed to 

quantify adhesion are generall y inadequate to obtain meaningful data fo r very small 

release forces and a new testing methodo logy is required . 

It was fo und that a single full application of Frekote to the steel di scs allowed easy 

release fo r twenty separate cure cycles for the prepreg laminate. The onl y slight 

sti cking that was noti ceable after 20 cyc les occurred at the periphery o f the di scs due 

to bleed o ut of tbe resin onto uncoated edges. As the number of moulding cycles 

increases an imprint of the prepreg weave appears on the too ling and a gradual brown 

staining becomes apparent (fi gure 54). T his exactly mimics what is observed on rea l 

too ling used by Bombardier. It is possib le that even more releases could have been 

obtained from the single application o f the release agent but the experiments were 

di scontinued after the twentieth cure cycle. A pal1icular difficulty was encountered 

when mould release agents were applied to laboratory scale sample is achieving an 

even coating over such a small area. As sbown in figure 54, puddling can occur 

during drying resulting in features known as " fi sh-eyes" where the coating is locally 

thicker than elsewhere. From these simple experiments, it was immediately apparent 

that finding an altemative coating as effective as the Frekote mould release product 

was not go ing to be an easy task. The cure conditions described were those that could 

be convenientl y applied using standard laboratory equipment but it is acknowledged 

that they are very di fferent from the industri al curing conditions previously described 

as used by Bombardier, particularl y in terms of the much greater moulding pressures 

used industrially. The use of compression springs is one means of applying greater 

pressure during laboratory curing but even thi s means fall s short of the real moulding 

pressures used. 
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4.6.2.Blister test 

Most adhes ion stud ies are directed at achieving better adhesion between two surfaces 

and measuring high fracture energ ies. In developing effective mould releases, very 

low fracture energies are desirable and it has proved an intractable problem to find a 

means of measuring mould release performance in any quantitative way. A des ign of 

the blister test was implemented (figures 55, 56 & 57) with the a im of using gas 

pressure to create a blister between a res in which had been cured onto a metal support 

treated with a release agent. The gas pressure could be measured in itially using a 

regulator or if greater sensitivity was required, a pressure transducer could be insta lled 

in line. The adherent plate is 65mm diameter. 

Figure 55 . Bl ister test plate and cell Figure 56.Blister test cell components 

Figure 57 Assembled blister tester 

The theory of the method was discussed in section 3.7.1 , and in the method, a gas is 

forced between substrate and coating in such a way that the coating delaminates and 
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forms a blister. The gas pressure is supplied through a hole in the substrate. [n this 

research a cylinder o f compressed air was used in which the pressure could be varied 

up to approximately 6 atmospheres pressure (608KPa). 

The adhesive bonding strength is prop0l1ional to the pressure at which delamination 

occurs. Mechanical properti es of the coating, adhesion energy and layer thi ckness 

detemline and restri ct the size o rthe formed blister. Thicker and stronger coatings and 

low adhesion energies will give larger bli sters before fa ilure. The application of the 

bli ster test in thi s research will be di scussed separately. 

4.6.3. Friction coefficient and wear test comparisons 

Friction coeffi c ient and wear test measurements were made on the Apticote 450 and 

460 coatings applied to Bombardier ni ckel tooling substrate. Both Apticote coatings 

were compared aga inst cleaned but untreated ni ckel too ling and the same too ling that 

had been treated with Frekote mould release. 

The four samples were tested fo r fri cti on and wear using a bi-directional wear test. 

Each sample was tested at a load o f 5N and ION for 200 cycles against a 5mm 

tungsten carbide-cobalt (WC-Co) ball. The following conditions were used for each 

bi-directional wear test: 150mm min.-1 table speed, 2mm di splacement, 200 cyc les. 

4.6.4 Surface Roughness Measurements 

Profilometry measurements of Ra and RI were made using a Talysurfinstrument. 

Ra is defined as the arithmeti c mean of the absolute departures of the roughness 

profile from the mean line. RI is the maximum peak to va llaey height o f the profile in 

a given assessment length. 

4.7 Summary 

The number and type of substrates used in thi s research generated a considerable 

amount of characteri sation data relating to the cleanliness, rou ghness, chemistry and 
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topography of the surfaces. This chapter has detail ed the preparation procedures, 

experimenta l configurations and testing techniques and these, which require no 

additional comments. 

It is inevitab le that th e laboratory preparation of the substrates di verges from the 

condi tions used industri a ll y and thi s has obv ious implications for the direct transfer of 

the research to that environment. The emphasis of thi s research is in eva luati ng the 

potential of c leani ng techno logies and mou ld release coat ings. 

Tab le 6 below li sts the material s specified in thi s chapter and the principal 

characterisati on teclmiques that have been appli ed (s ignifi ed by a ti ck symbol ~). 

Sample Principal Characterisation Technique 

SEM AFW AES XPS '" 
SIMS DSC-TGA FTIR Aa/At Friction [ntMic Ellipse 

Indus t riall ~ Saureed Subslr atl' 

Abraded Ni tooling '" '" '" '" '" '" 
Contaminated Ni tooling '" '" '" '" '" 
Virgin Composite looling '" '" '" '" 
USl'd Composite tooling '" '" '" '" 
ModE'l Substrall's 
SS 304 metal fo il v v v v v 
Ni sputtl'red onto glass slidl:'s '" '" '" Polish(>d nickpl looling '" '" '" '" '" 
Mild stel'l plate '" '" '" '" 
Model Contaminants cleaned 

AlM6 on nick.,1 pl.att' '" '" '" 
AlMS on mild slE'el pl .. te '" '" '" " 
RlMS on virgin composite " '" v 
Relpilsl" Co .. !ings 
Frekote " v " " " " " " " v " 
2yvilw '" '" v 
Fluoroalkylsilane " " " '" '" 
OHs-iran " " '" " '" 
5intE'led fluolopolymer '" '" 
Elect/oless NilPTFE coating '" " " " '" " " 

Table 6 Experimental tecJmiques used to characterise materials used in the present study. 
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Chapter 5 Results and Discussion of Mould Cleaning 
Technologies 

Thjs chapter details the surface characterisation calTied out on both as-received and 

processed sllbstrates along with the effectiveness of the various cleaning procedures 

identifi ed. 

In view of the number of material s invo lved and the differing nature of the c leaning 

procedures, it is helpful to divide this chapter into three separate sections: 

Secti on 5.1 di scusses the characteri sation of the substrates and contamination, 

Section 5.2 gives an account of the eva luation of laser c leaning procedures applied to 

contaminated metal substrates, 

Section 5.3 presents an evaluati on of laser clean ing applied to composite tooling, and, 

Section 5.4 presents an eva luation of dry ice blasting, and, 

Section 5.5 presents an eva luation of sod ill m hydride cleaning. 

5.1 Characterisation of industrial and model substrates and contamination 

5.1.1 Techniques 

Samples as rece ived were recorded photograp hically using a digital camera before 

any work was caJTied out. Microscopic characteri sation of the industri all y sourced and 

model substrates was mainly restricted to examination by SEM and AFM, where 

appropriate. Contact angle measurements were made to assess surface cleanliness and 

surface energy together with a limjted amount of AES. The chemical composition of 

the surface contamination on the nickel too Ling was characterised by XPS. 

As di scussed in section 2.2.3.1 clear, unpi gmented epoxide reS11lS are surpri singly 

weak absorbers of infra red laser energy such that the optical absorption depths range 

from 100 micrometres for laser wavelengths of 10600nm to several millimetres for a 

laser wavelength of 10641U11. The presence of inorganjc pigments such as occurs in 

paint formulations greatl y increases the absorption characteri stics but these were only 

present in the Cytec Fiberite FM300 resin sheets, which were excluded from the 

model contaminants. As will be discussed more fully in section 5.2.4.2, an important 

conclusion of the present study is that one means for the efficient removal of bonded 
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resin [Tom metal substrates is not wholly dependent on its absorption characteri sti cs. 

For thi s reason it is not necessary to try to match absorption bands detected in infrared 

spectra to the optical output of a given laser. 

5.1.1.1. Contact Angles 

Water contac t angle measurements were used as the principal technique in 

establishing the cleanliness of a surface fo llowing a preparation regime. Auger 

Electron Spectroscopy can be used to prov ide data on cleanliness but thi s requires a 

seri es of ion etching experiments to be made and cleanliness data is more eas il y 

obtained by water contact angle measurements. The use of AES was restri cted to 

detemlining cleanliness after application of spec ific cleaning procedures to remove 

polymeri sed res in fro m samples. 

Clean surfaces attract a thin layer of contamination very quickl y and measured angles 

increase to fro m 0° to 50° or more, such is the sensitivity of the contact angle 

technique. Surface roughness is a factor affecting contact angles and may give ri se to 

large angular differences on surfaces that possess the same chemis try but di ffe rent 

degrees of roughness. Unfortunately, there is no simple relationshi p ex isting between 

sur face roughness and contact angle. One of the main uses of the teclmique is in 

prov iding a relati vely quick measurement of the degree of cleanliness 0 f a metal since 

a water droplet will readil y spread over a clean metal surface giving a low contact 

angle. Conversely a high contact angle wo uld be expected for a surface coating that 

res ists wetting. Beyond these simple trends, numerical differences in contact angles 

are diffi cult to interpret, especiall y when both surface chemi stry and roughness vary 

for di fferent materials. 

In the experimental measurements of contact angles, tripl y di still ed, deioni sed water 

was used together with diiodomethane to detennine surface energies. Data on these 

two liquids from Fawkes [1 87) was used in the computer software calculations. Table 8 

gives contact angle measurements (rounded to nearest degree) using two liquids for 

most of the samples studied. 
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An average water contact angle of 32° was measured for the nickel samples (ex 

Bombardier) following ultraso nic clean ing. This suggested the nickel samples were 

reasonably clean since contact angles for uncleaned metals can be higher than 50°. 

The cleaning process was repeated for one sample of the nickel plate to see if a lower 

contact angle could be obtained but no significant improvement occurred. These 

values could onl y be obtained if measurements were made immediately after cleaning. 

Th e same cleaning regime applied to a smoother stainless stee l foil resulted in average 

ang les ranging between 20-30° measured in two 0I1hogonal directions to take account 

of differences in roughness from the steel rolling process. The measuring software on 

the Data Physics SCA20 Contact Angle Analyser, used in the present study, does not 

perfOl1l1 well when attempting to fit drop profiles to very low contact angles and the 

measurements increase in difficulty as the angle decreases. Consequently some of the 

data tabulated is incomplete because it was not possib le to obtain reproducib le 

measurements. A summary of mean contact angle data from both as-received, 

cleaned and coated substrates is given in Table 7. The raw contact angle data showed 

variations of about two degrees either side of the mean va lue. 

Sample Water DIM Surface Energy 

mJ.m-2 

Nicke l tooling (contaminated) 107° 53 ° 32.5 

Nickel too ling (abraded) 71 ° 41 ° 46.2 

Nickel tooling (abraded & c leaned) 32° - -

Frekote 7 10 on ni ckel tooling 120° 95° 10.7 

Stainless steel foil (SSF), cleaned. 21 ° - -

Clean SSF dipped in Frekote 710 105° 76° 20.4 

Mild steel 96° 48° 358 

Virgin composite 79° 40° 43.5 

Frekote 710 on virgin composite 105° 76° 20.5 

Used composite 60° 47° 49.7 

1 % Fluoralkylosilane on SSF 117° 99° 9.6 

1% Fluoralkylosilane on nickel 1190 104° 7.9 

Xylan 8080 Fluoropolymer on SSF 1260 99° 9.0 

Xylar 2020 Fluoropolymer on SSF 11 80 96° 10.8 
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Apticote 4S 0 coating on nickel 11 6° 82° 16.S 

PTFE sheet (standard contro l) 1 16° 82° 16.7 

Table 7. Surface energies of substrates. 

Hi gh water contact angles and very low surface energies were obtained fo r both the 

fluoroalkylsil ane and fluoropolymer coatings on different substrates. 

5.1.1.2. Surface Roughness and Hardness measurements 

5.1.1.2.1. M etals 

Bombardi er fin ishes their metal too ling using Scotchbrite® fine abras ive pads. The 

surfaces o f all the metal too ling used for testing was mechanicall y abraded using these 

pads prior to be ing c ut into test coupons. Average ro uglmess measurements were 

made on the abraded plate surfaces and R, = 0.40S micrometres was obtained for the 

nicke l plate and Ra = 1.2 10 micrometres for the mild steel. The mild stee l pl ate as 

received was oxid ised with dull grey co lourati on and the abrasive fi ni shing applied 

was not suffic ient to remove the ox ide. The hard ni ckel too ling in compari son was 

highl y refl ecti ve and it is suggested that the relati ve hardness di fferences are refl ected 

in the roughness measurements obtained. 

5.1.1.2.2. Composites 

A di fferent cleaning regime has to be applied to the composite too ling used by 

Bombardier and this invo lves manual rubbing the sur face with a very mildly abrasive 

proprietary compound ca ll ed G3 Farecla that is readil y ava il able from many hardware 

retail ers. A sample of the un used composite too l suppli ed by Cytec possess ing a gloss 

fi nish was treated in thi s way and surface roughness measurements made and 

compared with those for the unused composite. Despi te vigorous manual rubbing, the 

Farecla compound did not appear to noticeably roughen the gloss surface of the 

unused compos ite although the average R, fo r the rubbed composite was 0.2S0 

micrometres and that fo r the untreated virgin materi al was 0. 177 micrometres. The 

corresponding values for used compos ite too ling received from Bombardier were R, = 

0.270 micrometres. 
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5.1.1.2.3. Electroless Ni/PTFE alloy 

Tal ysur f roughness measurements were made on Apticote 450 coating which was 

deposited onto a piece of the ex Bombardier nickel tooling plate. The measured 

surface roughness parameter Ra = 1.498 micrometres for Apticote 450. 

Table 9 summari ses the average surface roughness values from measurements made 

in two orthogonal directions. Indentati on hardness measurements, measured from the 

area for the indentati on of a stylus or ball bearing under a specific loading, reall y 

measure the yield stress o f the materi al, which is dependent on the plasti c properti es 

of the material 1188J 

Hardness measurements were made for se lec ted samples using the Rockwell C sca le 

and measured using an Indentec 8150 ACD tester, which applied a load of 150kg to a 

pyramidal shaped indenter fo r a dwell time of approximately 8 seconds. A conversion 

chart was used to convert the average of three separate read ings into the Vi ckers 

hardness scale and these are shown in Table 8. 

Substrate Ra Vickers 

micrometres Hardness 

Nickel ex Bombardier 0.483 372Hv1150 

Nickel ex Bombardier 0.405 

Scotchbrite abraded 

Hand poli shed Nickel Plate 0.0240 471Hvl150 

S304 Stainless Steel Foil 0.1295 

Mi ld steel Scotchbi te abraded 1.2 10 45 8Hy ll 50 

Virgin Composite 0.177 

Composite ex Bombardier 0.270 

Composite Farecla rubbed 0.250 

Apticote 450 1.498 354Hy ll50 

Table 8 Rouglmess and hardness values o f selected substrates 

No hardness measurements were possibl e on the stainless steel foil (type SS304) or 

the composite material. 
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Since the Apticote 450 coating is applied (0 nickel plate substrate, it is not surpri sing 

that the hardness values are similar under this loading. Some microhardness 

measurements were made using a Buehler 2100 Microhardness Tester (which applies 

loads from 109 force to 1 kg force). 

Difficulty was encountered in obtaining consistent results for the Apticote 450 sample 

because the indentations were poorl y defi ned and due to the presence of the softer 

PTFE phase in the material. A Vickers hardness 364 HvIO.2 was obtained (i.e. fo r a 

loading of200 g). It is thought that penetration ofthe 20 micrometre Apticote coating 

occun'ed even at thi s low loading. 

As (he load is reduced further, the indentation becomes small er and backlash errors 

associated with the curtain micrometer in the eyepiece reduce accuracy of 

measurement of the dimensions of the indentation. Us ing a 25 g force, the average of 

three read ings gave a hardness of 222HvI0.025. The manu fac turers quote a bulk 

hardness of250Hv though no load ing is specified. 

5.1.1 .3.Friction coefficient and wear test comparisons 

Friction coe ffi cient and wear test measurements were made on the Apticote 450 and 

460 coatings appli ed to Bombardier nickel too ling substrate. Both Apticote coatings 

were compared against cleaned but untreated nickel tooling and the same tooling that 

had been treated with Frekote mould release. 

Figures 58 and 59 show tbe friction coeffici ents for 5N and ION loadings. Figure 60 

shows combined images for the wear tests on the samples. 
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Figure 58. Friction coefficient for selected surfaces 

using a 5N loading. Sample legend as follows: 

Sample I = Frekote on nickel 

Sample 2 = Apticote 460 

Sample 3 = Apticote 450 

Sample 4 = untreated nickel 
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Figure 59. Friction coefficients for selected surfaces 

using toN loading. Same legend as for figure 58. 

From figures 58 and 59 it is clear that both Apticote coatings clearly have 

exceptionally low friction coefficients. 
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Wear depth - -

3.3 m 
Wear depth - -
4.8 m 

Wear depth - -
1.0 m 

Wear depth - -

3.7 m 
Figure 60. Wear test images for sample surfaces us ing 5N and ION 10adings.Sample 

legend as follows: Sample I : Frekote on nickel , Sample 2: Apticote 460, 

Sample 3 : Apticote 450, Sample 4 : untreated nickel. 

An approximate wear depth was measured for the ION load tests. This depth would 

also include any deformation of the sample. The wear is greatest for the softer 

Apticote 460 coating. The Apticote 450 coating is heat treated to enhance its 

hardness . The Frekote makes little difference to the wear of the untreated tooling. 

5.1.1.4. Surface topography 

Scanning electron microscopy was the preferred method of surface characterisation 

because it can image both very rough and smooth surfaces at a wide range of 

magnifications . Atomic force microscopy is capable of greater spatial resolution but 

the areas imaged are smaller and the technique copes less easily with industrially 

rough or contaminated rough surfaces where large differences in surface relief can 

damage the mechanical probe or cause it to stick. The electron beam probe in an SEM 

does not suffer from this disadvantage . SEM images for some of the substrates are 

presented with corresponding AFM images where appropriate. 
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5.1.1.4.1. Industriallv sou reed substrates 

Figures 6 1 to 65 shows the surface topography of the industri all y sourced nickel 

substrate using SEM and AFM. Mechanical abrasive cleaning lIsed by Bombardier 

results in scouring of the surface with many scratches as shown in fi gure 6 1. Such a 

rough surface is not conducive to obtaining good AFM images because the scratches 

give ri se to deep fUITOws (fi gure 62) using the very high reso lution obtainab le with the 

technique. The brown contaminant layer on the nickel substrate is shown in fig ure 63. 

The contaminati on has a discontinuous tex ture as revealed by SEM (figure 64) and 

was estimated to be between 2 and 7 micrometres in thickness, as deternl ined from 

SEM cross secti on (fi gure 65). It is di ffic ult to measure the thi ckness of the 

contaminati on, as it does not form a uni fo rnl layer but instead fonns di screte is lands 

of contaminat ion. Also cross section techniques require samples to be embedded in 

resin that is then subsequently mechanica ll y ground down and the contrast between 

the contamination and embedding res in is poor. Since the resi n interface is 

mechanicall y weak, good cross sections are also diffi cult to obtain and the reli ability 

of the contaminati on thi ckness measurements is questionable. 

It is apparent, however, from fi gures 63 and 64 that the contamination is very thin and 

likely to be of order of the thi ckness measurements quoted. The light brown coloured 

contaminati on on the ni cke l too ling was sc raped off fro m a large area using a razo r 

blade in an attempt to collect suffi cient contaminant to di sso lve up into a so lution for 

in frared analysis. It was found that insufficient materi al could be co llected thi s way 

and that it was in any case inso luble in common so lvents. No further attempt at 

identification using infrared spectroscopy was attempted. 

SEM examinati on of tlli s contaminated compos ite too ling reveals a roughened surface 

(fi gure 68) ri ch in silicon as detected by EDX. This is consistent with mould release 

residue. By contrast the virgin composite (macro-photograph shown in fi gure 44, 

secti on 4.2.2) possesses a smooth, largely featureless, surface by SEM (fi glll'e 66) and 

by AFM (fi gure 67). 
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Figure 61. SEM image of abraded nickel Figure 62. AFM image of abraded nickel 

tooling ex-Bombardier. 

equivalentto 100 micrometres. 

Scale bar tooling ex-Bombardier (5 x 5 micrometres 

area). Vertical scale 0.3 micrometres. 

Figure 63 . Macro-photograph of coupon of Figure 64. SEM Image of resinous 

resinous contamination on nickel tooling ex contamination. Scale bar equivalent to 20 

Bombardier. micrometres. 

EHt . s.oow 
.1 : 

Fig 65. Cross-section of contamination on Figure 66. SEM image of virgin composite 

nickel tooling (ex Bombardier). tooling. Scale bar equivalent to I micrometre. 
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Figure 67. AFM image of virgin composite. 

Area scanned 5 x 5 micrometres. Vertical scale 134 nm. 

Figure 68. SEM of used composite tooling show 

what is bel ieved to be degraded resin and 

residual Frekote contamination. 

Scale bar = 10 micrometres 

5.1.1.4.2 Model substrates 

Figures 69 to 73 show SEM and AFM images of the model substrates discussed in 

section 4.2.2. The mild steel surface was characteri sed using SEM only since the 

oxide scale on the surface was very uneven (figures 69 and 70) and judged unsuitab le 

for characterisation by AFM. The thickness of the oxide layer was determined from a 

cross section (figure 71) examined in the SEM. 
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Figure 69. SEM Image of oxide scale on Figure 70. Higher magnification of figure 

mild steel substrate. 69. 

Figure 71. Cross-section of oxide scale 

(central region) on mild steel substrate. 

The stain less steel foi l substrate is generall y smooth in comparison to the surface of 

the mild steel and shows only un idirectional fabrication features (see figure 72 for 

SEM image and figure 73 for AFM image). 
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Figure 72. SEM image of surface of Figure 73 . AFM image of stainless steel foil 

stainless steel foil substrate. Scale bar substrate (5 x 5 micrometres area). Vertical 

equivalent to 100 micrometres. sca le 264 nm. 

The polished nickel 10mm x 10mm squares, referred to in section 4.2.2, were 

examined by SEM (figure 74) and AFM (figure 75) and are relatively smooth 

surfaces. 

;J • 

..... , 

.... . ,. , 

-:.: ; -" '. 

Figure 74. SEM image of hand polished Figure 75. AFM Image of hand polished 

nickel tooling. Scale bar equivalent to 10 nickel tooling (5 x 5 micrometres area). 

micrometres. Vertical scale 60 nm. 

5.1.1.4.3 Apticote 450 coatinl! 

Figure 76 shows a macro-photograph of the Apticote 450 coating applied to 

industrially sourced nickel plating. A five pence coin is used as a scale. The coating, 

as received, has a brown colouration thought to be due to heating which hardens the 
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coating. Figure 77 shows an SEM image of the coating and it is seen to possess a 

shallow dimpled appearance. Higher magnification (figures 78 and 79) reveals the 

dispersed PTFE phase that contributes to the enhanced release properties of the 

coating, discussed in section 4.4.7. The coating thickness, measured from a cross 

section, was found to be approximately 20 micrometres (figure 80). 

Figure 76. Macro photograph of Apticote Figure 77. SEM image of Apticote 450 

450 coating on nickel tooling. A five pence coating. Scale bar equivalent to 20 

piece used for scale. micrometres. 

Figure 78. Higher magnification of figure 77. Figure 79. SEM image of PTFE 

Scale bar equivalent to 2 micrometres. particle phase. Scale bar equivalent to 

I micrometre. 
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"------------- - ------1 Figure 8 I. EDX spectrum of Apticote 

Figure 80. Cross-section of Apticote 450 450 coating. 

coating 

Elemental analysis using EDX in the SEM identifi es Ni, P and F as the major peaks 

(figure 8 1). The size of the PTFE particles is below the reso lution limit for X-ray 

mapp ing and so it was not possible to produce a map to show the fluorine rich sites 

but it is reasonable to assume that the dark, roughl y circu lar features in figure 79 are 

the PTFE phase. These particles have a diameter of approximately 200rull. 

5.1.1.5.Surface Chemistry of Contaminants 

X-ray photoelectron spectroscopy was used to characteri se a sample or the 

contam ination on the nickel metal tooling plate received from Bombardier. The 

results suggested that this contamination IS a mixture of hydrocarbons from 

breakdown depos its of the resin and some si licon from Frekote residues. Table 9 gives 

the elemental quantification data. In all cases peak positions were energy referenced 

to C Is defined at 285eV. 

Binding Atomic % 
Element & Peak 

EnergyeV present 

Carbon C ls 285 64.5 

Oxygen Ols 532.5 23.7 

Silicon Si2p 102.3 3.6 

Sulphur S2p 168. 1 1.6 
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Calcium Ca2p 348. 1 1.2 

Nitrogen NI s 399.8 3.3 

Fluorine Fl s 689.1 1.5 

N ickel Ni2p3 855.9 0.3 

Sodium Na l s 107 1 0.4 
.. 

Table 9. XPS composition ofcontamll1ated Nickel toolll1g (ex-Bombardier) 

The surface of the used composite too ling (ex-Bombardier) was also exam ined llsing 

XPS . Table 10 shows the surface composition of the used composite and it is seen 

that higher leve ls of sili con are found on the used tooling surface. The surface 

composition of virgin unused composite too ling is included for reference. 

Binding Energy Atomic % 
Element & Peak 

eV present 

Carbon C l s 285 82.2 

Oxygen Ols 525.8 17.8 

VirgIn composite too ling 

Binding Energy Atomic % 
Element & Peak 

eV present 

Carbon C l s 285 56.9 

Oxygen Ols 532.6 23 .9 

Si li con Si2p 102.3 19.2 

Used composite tooling 

Table 10. Compari son of XPS surface composition of virgin and used 

composite too ling (ex-Bombardier). 

The higher level of sil icon on the used composite tooling may refl ect the less abrasive 

cleaning that is conunon ly applied to such tooling ( in compari son to the very abrasive 

cleaning app li ed to ni ckel tooling). Also mi ld abrasives polishes are used to clean the 

composite too ling and these likely contain si li con compounds which remain as a 

surface residue. The chemical nature of the residue on either type of tooling is 

complex and difficu lt to interpret. 
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S.1.1.6.Summary 

It is useful to summarise the fi ndings from the three principal characteri sations as 

outlined above. 

S.1.1.6.1.Contact angle data 

Thi s shows that reasonably clean metal surfaces can be prepared using the procedures 

described. When the cleaned surfaces are treated with mould release coatings, these 

exhibi t the properti es of low energy surfaces and the data shows that surfaces energies 

lower than that measured for PTFE can be obtained using fluoroalkylsilane 

treatments. 

S.I.l.6.2.Substrate roughness 

The di fferent surface chemistries and roughness of the substrates makes correlati on to 

contact angles very difficul t. The main value of the surface rougluless measurements 

is in compari son to similar measurements made following the appli cation of cleaning 

technologies. For example, there ex ists the need to detenn ine how laser cl eaning 

affects the surface rougluless of substrates. 

S.1.1.6.3.Substrate topography 

The sur face topography of the substrates, revea led by SEM and AFM images as 

shown, contrasts the very rough sur face of ex Bombardier nickel too ling to the 

smooth composite too ling. These images justi fy, in part, the choice to adopt the 

sta inless steel foil materi al as a sUITogate replacement for the nickel too ling. The foil 

has a roughness approximately in telmedi ate between that of the metal and composite 

tooling and the use polished nickel samples supplements the foil for specific 

experiments. 
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5.] .1.6.4.Surface chemistry of contamination 

The ev idence from XPS suggests the contamination on the tooling received comprises 

organic material containing silicon but is of complex composition. 

5.2. Laser Cleaning of Resin from Metal Mould Tooling 

5.2.1 . Initial investigation of laser cleaning using a TEA CO2 laser 

The use of a Laserbrand TEA CO2 laser to clean inorganic contamination from a 

vari ety of metal substrates had been studied by Cottam\49\ and the experimental 

characteristics of the laser such as the temporal beam profile and temperature ri se at 

surfaces were determined as part of his PhD di ssertation. A schematic diagram of the 

experimental set up used in thi s research is shown in figure 82. After initial trials the 

go ld mirror was removed and the only opt ica l elements used was a ZnSe focussing 

lens of focal length 30cm. The energy density (fluence) is one parameter that can be 

s imply vari ed. This is a measure of how much energy is concentrated into the beam 

and is defined by: 

Fluence (J.cm-2) = Energy of laser per pulse (J)/ Area of laser beam on surface 

(cm2
) ........ ....... ....... . ........ . ... .. .... . .......... ... . .................................... (53) 

It was found in the present study that the clean ing fluence was too great for samples 

when they were located at the focal point of the lens where the area in'ad iated was 

approximate 4mm x 5mm. Plasma fonnation occurred at the foc us. Also for cleaning 

applications, the area irradiated needs to be larger whi lst sti ll possessing enough 

energy to remove contamination. By trial and error it was found that an optimum 

cleaning fluence occurred for samples located 15 cm in front of the foca l point, or 

some 45 cm in total. Apart from tlli s sample to source distance, the on ly other 

parameter that could be vari ed was the number of pulses app lied to effect remova l by 

laser ablation. 
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Gold j, MirroL 11- -- , 
~ 

ZnSe Lens / Sample 

r-.- I Unlocussed beam I 
- 35mm x35mm Norma' cleaning 

lluence 2, 4 J/cm 2 

Carbon 4J per pulse, 
Surface plasma 

jf E > 1OJ/cm 2 
Dioxide 1 DOns duration, 

Laser 10Hz rape/Won 

Figure 82. Initia l experimental atTan gement fo r Laserbrand TEA CO2 laser (After 

CottaI11 1491
). 

[n the majority of investigati ons reported using the Laserbrand TEA CO2 laser the 

flu ence values given are estimates based on measurements made by Cottam. 

Unfortunately the laser manufacturers could not be contacted for advice o n thi s and 

related topics since they ceased trading many years earli er. No effi cient extraction 

fac ilities for the removal of ablated material were available in the laboratory and 

simple means had to be improvised to implement some rudimenta t·y level of 

ex traction . In practice the extracti on nozz le could not be located close enough to the 

wo rk piece without obsCllring the line of sight from the laser. Poor extracti on resulted 

in re-deposition of ablated materi al onto the area treated and because of thi s water 

contact angles were higher than expected on cleaned sur face (usuall y 400 o r 500
) 

unless a high fluence was used, when ang les o f approximately 200 could be measured. 

One of the experimental difficulti es in using high power lasers is in measuring laser 

ene rgy per pulse. This measurement is relatively easy in the lower power laser 

systems that are frequently encountered in telecommunication applications and use 

solid-state area detectors. The output of such detectors is saturated by the energy from 

high power lasers and the energy is suffi cient to permanently damage them. 

Advice concerning flu ence measurements was sought from Roberts [361 and hi s 

comments were pat1iculatly informative: "There's no easy way to measure jluel1ce for 

a TEA CO2 laser! The higher the power, the more difficult it is. With an 

homogenised beam it should be relatively easy as the jluence is j ust th e p ulse energy 

divided by the area of the "footprint n. We measure the pulse energy here (National 
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Laser Centre, South Aji-ica) with a Molectron detector but care must be taken to 

expand the beam over a large area and sample over a small number of pulses to 

avoid detector damage. We don't have an homogeniser with our TEA so we measure 

the jluence by scanning the beanl area with a pinhole (0.5 to 1 mm diametel) and 

normalize the profile to the lotal energy. Even here the beam has 10 be expanded up 

from the pinhole to avoid detector damage. We have also measured beam profiles 

with all inji-a-red l1lultichannel camera (Spiricon) but the intensily has to be 

maSSively attenuated to avoid damaging the camera. With a Gaussian or near 

Gaussian beam profile we measure the transmissioll of circular steel apertures of 

different sizes and find the best fit to FM = F(O) exp (-2r2/w2). In all cases to get 

absolute errors within 10% is quite difficult. Of course with non-homogenised beams 

one has to take account of the dis tribution of jluence and not just use an 

average jluence. Wh ile the beam centre may be efficiently removing the coating, 

the outer regions could be below threshold and remove nothing at all H. 

The above extract gives some insight into the complex ity of just one aspect of laser 

cleaning - the specification ofa key operating parameter. The beam qua lity for a so lid 

state Nd:Y AG laser is much greater and approximates to a Gaussian energy 

distribution. However, for laser clean ing, as oppose to laser cutting, the beam pro fil e 

needs modify ing to approxim ate a "top-hat" distribution where the intensity is 

uni form over the beam area. 

In the present study an initi al investigation was made using FM 300 epoxide resin 

sheet of 150 micrometres thi ckness that was fastened to a steel supporting substrate 

with tape and the effects of only 5 pulses fro m the laser are shown in figure 83. The 

laser fluence was approx imately I J.cm'2 and a fi ve pence co in was used as a scale. At 

the area shown, the absorption of the resin was large and the heati ng at this fluence 

was suffic ient to cause the laser to ignite the res in . 

A solution o f the res in sheet was prepared by disso lving 30 square centimetres in a 

beaker containing 100ml of acetone. The inso luble PET supporting membrane was 

removed and the so lution painted onto a steel substrate and allowed to drain 

verti call y. This was then cured ill an oven at 180°C for three hours and a thin film of 

resin approx imately 20 micrometres thickness was obtai ned. Figure 84 shows the area 
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of this thin film that was irradiated by the laser. The area treated was the same size as 

shown in figure 83 except that the image has been enlarged to show the incomplete 

removal of the resin .Using the same fluence Cl J.cm-2
) , 100 laser pulses were required 

to produce the effects shown in figure 84 which also illustrates the poor uniformity of 

the beam intensity comprising a series of lines. This means that laser ablation is much 

more efficient at removing thick coatings of strongly absorbing resin that much 

thinner layers of the same resin. 

Figure 83 . Photograph showing effect of 5 

laser pulses from Laserbrand TEA CO2 

laser on alSO micrometre thick sheet of 

strongly absorbing pigmented resin. 

Figure 84. Photograph showing effect of 

100 laser pulses from Laserbrand TEA 

C02 laser on a thin cast film of the same 

reslll . 

Irradiation of clean nickel substrates at fluences up to 2 Jcm-2 appeared to cause no 

microstructural damage at all when the surfaces were examined by SEM. 

The radiation from the Laserbrand CO2 TEA laser has a wavelength of 10.6 

micrometres and because this is large compared to the scale of surface damage caused 

by mechanical abrasion cleaning on the sample, this level of surface roughness has a 

negligible influence on the reflective properties of the substrate. If laser treatment had 

damaged the surface, thermal effects would expect to be seen but none were resolved. 

The same was not true for the mild steel but in thi s case the presence of a thick oxide 

layer gave rise to artefacts . These observations will be developed later in section 

5.3.2.2. 
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5.2.1.1. Roughness measurements on TEA CO2 laser treated metal samples 

Talysurf profilometry was used to measure the surface roughness Ra parameter (in 

mi crometres) for the treated areas of the nickel and steel samples. Table 11 compares 

these to the corresponding roughness values on the untreated substrates. 

Ra Untreated Ra Treated 
Abraded nickel plate 0.2099 0.287 1 
Abraded mild steel 0.9049 1.3804 

Tab le 11 . Measured roughness va lues of laser cleaned metal tooling. 

Compari ng the SEM images fo r the CO2 laser treated nickel pl ate; these suggest that 

not all the resin has been removed and that further passes of the laser would be 

required. This may be a consequence of photothermal ablation predominantly 

assoc iated with high power pul sed TEA CO2 lasers. The diffe rent in surface 

roughness before and after treatment is not great and probabl y simply represents 

sample-to-sample vari ation. 

Although the SEM images for the laser c leaned steel suggest a much c leaner surface 

has been obtained, the creation of porosities in the surface associated with the 

proposed melt ing of the thick oxide layer are the most noti ceab le feature. Since these 

porositi es are - 1 micrometTe di ameter or less and the Talysurf stylus tip is 2 

mi crometres di ameter, it is unl ikely that the difference in Ra is attributable to any 

change is sur face topogmphy resulting from laser cleaning, and again , the data may 

simply refl ect sample-to-sample variation. In view of the above results roughness 

measurements were not made on the Nd: Y AG treated samples. 

5.2.2. TEA CO2 laser irradiation of contaminated nickel tooling (ex Bombardier) 

A sample of contaminated nickel too ling similar to that shown in figllre 63 (section 

5. 1.1.4.1) was c leaned using a Laserbrand TEA C02 laser. The contamination is slight 

and, as discussed in section 5.2.1 , thi s leads to inefficient cleaning with many pulses 

required to achieve a visibly clean surface. It was fo und that the fluence had to be 

increased to approximately 2J.cm'2 and 12 pulses applied to completely remove a ll 

visible traces of the contamination. The area irradiated was approx imately 25mm2 
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and in order to attempt a measurement of contact angle the sample was moved 

manually to irradiate a target area of approximately 100mm2
. It is likely that some 

fraction of the areas rece ived more pulses than others si nce the samp le was moved 

manually. Examination of the cleaned area using SEM showed (mostly) only the 

abrasion scratches from previous cleaning of the tooling (figure 85) with no apparent 

themlal damage to the nickel substrate at higher magni fications. 

Figure 85. TEA CO2 laser removal of contamination 

on nickel tooling. Scale bar = 200 micrometres. 

Three water contact angles of 54°, 42° and 39° were measured on the small area 

cleaned by laser. These measurements had to be done sometime after the cleaning 

although the sample was wrapped in aluminium foil fo r protection after laser 

cleaning. It is li kely that the surface picked up carbonaceous contamination that is 

reflected in the high contact angles. The extraction facilities to remove ab lated 

materials were not efficient at the point of cleaning and although the SEM shows the 

sample is relatively clean, the level of cleanliness attained is relatively poor and 

consequentl y AES was not used to detemline residual contamination levels. Overall 

the subjective impression obtained from several attempts at cleaning the type of 

contamination shown in figure 63 was that although the cleaning efficiency was poor, 

(resulting from the very thin, weakly absorbing contaminant layer), the contamination 

could be removed to produce a visibly cleaner, more reflective surface. 
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5.2.3. TEA CO. laser irradiation of RTM6 resin coated metal substrates 

As discussed in section 4.3.3, the co-operation of external laser laboratories was 

sought to conduct some sample trials using measured fJuences. Nicke l and mild steel 

coupons coated with approximately 150 micrometres of RTM6 resin were laser 

cleaned and returned. The results are presented and interpreted. With reference to the 

macro-photographs of the laser cleaned samples, the fo llowing treatment cond itions 

applied. 

5.2.3.1 Resin coated nickel coupon 

See Figures 86 to 9 I. 

Treatment conditions: Larger removed area, laser fluence F= 8 J.cm-2 

Single line, F= 6.0 J.cm-2 

Figure 87. Macro-photograph at 

slightly higher magnification of area in 
Figure 86. Effect of TEA C02 laser cleaning 

Figure 86. This again contrasts clean 
of epoxide resin from nickel tooling. 

and uncleaned and uncleaned areas as 
Originally the epoxide resin covered the 

described in the legend for Figure 86 .. 
whole sample. The laser was then used to 

selectively remove the resin over most of the 

surface leaving two epoxide resin strips 

(depicted by the brown colouration) to 

contrast the areas cleaned against uncleaned 

areas . 
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Figure 88. SEM of laser cleaned surface 

shown 111 Fig.87. Scale bar = 100 

micrometres 

Figure 89. As figllre 8.Scale bar = 100 

micrometres 

Figure 91. As figure 90.Scale bar = 2 

Figure 90. SEM of laser cleaned surface micrometres. 

Scale bar = 20 micrometres. 

Figures 86 and 87 show macro-photographs of TEA CO2 laser treated resin bonded to 

a nickel substrate. The coupon dimensions were 50mm x 50mm x 5mm thickness. It is 

seen that the laser removes most of the brown resin but that it does not leave a bright 

metal surface. This is apparent when the surface is examined in the SEM (figures 88 

to 90) where the dark features are resin residues. Only at high magnification where 

the area examined is very small , is the surface clean but here there is some evidence 

of thermal damage from the laser, implying that the fluence used was too hjgh for a 

cleaning application (figure 91). 
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S.2.3.2.Resin coated mild steel coupon 

See figures 92 - 97. 

Treatment conditions: Larger removed area, F= 8 J.cm-2 Part of this area single scan, 

the remaining region (more complete removal) three scans. 

Single line, F= 6.0 J.cm-2 single scan. 

Figure 92. Macro-photograph showing the 

partial removal of epoxide res in bonded onto 

a mild stee l test plate using a TEA C02 

laser . 

area laser cleaned in figure 92 at a slightly 

higher magnification. 

Figure 93 . Macro-photograph at a 

slightly higher magnification of an area 

depicted in Figure 92. This more 

clearly contrasts cleaned and uncleaned 

areas (darker grey colouration with 

brown edges where the resin has been 

burnt during the laser cleaning. 

Figure 95. This figure shows an SEM 

image of the surface depicted in figure 

94 from which it is seen that there is 

little obvious surface damage at low 

magnifications. Scale bar = 200 

micrometres 

180 



Figure 96 . As the magn ification for the area 

depicted in the previous fi gure is increased 

fin e scale damage begins to be reso lved by 

the SEM. Scale bar = 20 micrometres 

Figure 97. At fairly high magnification 

the SEM resolved a fine scale pitting of 

the oxide sur face of the cleaned mild 

steel plate. Scale bar = 2 micrometres 

Figures 92 to 94 show macro-photographs of resin bonded to the mild steel substrate 

that was cleaned using a TEA CO2 laser. The SEM images of the cleaned sur face, 

shown in figures 95 and 96, reveal a much cleaner surface than was seen for the 

nickel substrate. The difficulty in comparing these effects is that the absorption 

properti es of mild steel surface are different to that of the nickel. The laser fluence fo r 

th is sample may have been hi gh enough to completely remove the bonded resin but 

the presence of the thick oxide layer on the surface of the mild steel has apparently 

resulting in an additional effect resulting from the laser treatment (fi gure 97). This 

shows that the substrate surface is pitted with numerous circular poros ities suggestive 

of the release of trapped gas fro m the surface. 

Similar effects were reported by Cottam [491 and are thought to ari se from interaction 

of the laser-generated plasma with the substrate surface. When the surface is 

irradiated, the res in is vapori zed and very hot plasma exists momentarily above the 

surface. The temperature of thi s plasma is believed to be several thousand degrees 

Celsius and heat from it re-radi ates to the surface and is suffi cient to cause the surface 

layers to melt. Gases trapped in the surface below this melt zone then migrate into it. 

At the cessation of laser treatment, the melt zone cools and solidifies causing micro­

cracks to appear, as are seen in the above micrograph. Also gases present are trapped 
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giving the appearance of porosities although no simi lar surface features are seen in 

unlr'eated surfaces. The effects are, of course, non-unifonll and reflect the spatial 

distribution of the laser energy. 

5.2.4.Laser cleaning using a Nd:YAG laser 

5.2.4.1 Laser cleaning of contaminants from nickel and mild steel samples using 
a Spectron Nd:YAG laser 

The Spectron 450 Nd:YAG laser was used for a number of experiments to study the 

efficiency of laser c leaning on selected samp les. The following photographs illustrate 

some oflhe effects obtained. Figure 98 shows an untreated nickel coupon (50nun x 60 

mm) cut from a used tool whose surface is uniformly covered with the s light brownish 

contamination typical of Bombardier used tooling and upon which the imprint from 

the weave pattem of mouldings can just be discemed. This adhered quite tenaciollsly 

to the nickel substrate and could not be removed using a cloth moistened wi th 

acetone. 

The Nd:YAG laser was used to remove this contamination at a range of fluences and 

the results are shown in Figure 99. This coupon was then sputter coated with gold and 

examined in tbe SEM to determine the microstructural effects for the different areas 

treated. 

As discussed, the Spectron laser output is not optimised for a cleaning application 

since the largest beam diameter than can be used is approximately 8 mm and cleaning 

is consequently slow. The brown resinous contamination is easi ly removed (figure 

I DD) at a variety of fluences that cause no significant damage to the substrate. Figure 

101 shows the effects for an RMT6 resin coated mild stee l coupon of the same 

dimensions. 
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Figure 98. Macro-photograph showing the Figure 99. This figure depicts the partial 

texture of the contamination present on cleaning of se lected areas of 

used nickel tooling (ex-Bombardier) contamination (s imilar to that shown in 

the previous figure) using a Nd:Y AG 

laser at different clean ing fluences. 

Figure 100. This figure is similar to Figure 101. This figure shows mUltiple 

figure 99 and shows removal of the impacts of a Nd:Y AG laser on a mild 

particulate contamination depicted m steel sample which has been coated with 

figure 98. a thin layer of epoxide resin. The resin is 

de bonded at each point of impact. 

The Nd:Y AG laser was operated in Q-switched mode with the power level set at 

850mJ and repletion rate at I Hz in all the above figures. This allowed the test piece to 

be moved manually and an area cleaned. In an optimised laser cleaning application 

either the mould tool would be moved automatically in a controlled manner or else the 

laser would be mounted on a robot arm and automatic cleaning effected in that way. 

Manual cleaning is only genera lly used for restoration applications where cleaning 

speed is not an important factor. 
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Figure 102. This fi gure shows an SEM Figure 103. Th is figure shows how a 

image of bonded resin which has been foc ussed Nd:YAG laser will also damage 

attacked by a Nd:Y AG laser which was a ni ckel surface unless a low cleaning 

focussed onto the reslll surface at fluence is used. 

suffi cientl y high fluence to burn it. 

Figure 99 shows four areas where the Nd: Y AG laser beam has been progressively 

defocused to reduce the energy density. It is necessary to recognise that without this 

degree of de foc us, the laser beam can greatl y damage the surface as shown in fi gure 

103. Continued pulses would bore a hole in the meta l surface qui te easily. As 

di scussed in Chapter 2, res in poorl y absorbs light energy of 1.06 micrometre 

wavelength (the output of a Nd:YAG laser). However, when a suffic ientl y high 

fluence is used, the resin is attacked. Figure 102 fo r an RTM6 resin coating on mild 

steel illustrates this. These operating cond iti ons have to be avoided for laser cleaning 

applications and by optimising the laser parameters, effecti ve cleaning can be 

demonstrated which causes negligible surface damage. 

S.2.4.2.Laser cleaning of contaminants from a nickel sample using a commercial 

Nd: Y AG laser system at Ouantellnc., France. 

A contaminated tooling plate (ex Bombardier) of dimensions 150 mm x 205 mm was 

divided into two and one half (figure 104) submitted to Quantel in Paris, France fo r 

laser cleaning using a 20W LaserBlast Nd: Y AG laser which has been designed for 

commercial laser cleaning applications. The laser output energy was 330mJ per pulse 

at 1064nm . The other half was sent to the National Laser Centre in Pretoria, South 

Africa to be similarly treated using their laser fac ilities. 
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Figure 104. Nd:Y AG cleaned nickel Figure 105. Close up photograph of area 

tooling plate (150 nun x 100 mm) cleaned by laser in figure 104. 

Figure 106. As figure 105. 

r,,' , ' I .... T .,. . . 

Figure 107. Low magnification SEM 

image of area in figure 106. Scale bar = 

2.0 millmetres. 

Different fluences were tried initially and it was found that a fluence of 2J.cm-2 

attacked the resin but tbat the best results were obtained using a lower tluence of 1.0 

J.cm-2 The used nickel tooling plate was positioned on a platform, which was moved 

under computer control relative to a static laser beam, and this allowed cleaning at a 

speed of IOcm2 per second. This equates to approximately two and three quarter hours 

to clean an area of one square metre. The lines resulting from this scanning are 

evident on the cleaned face, which has a bright metallic lustre (figure 104). As is 

apparent from Figures 105 and 106, a regular patteming is discernable . The Nd:YAG 

laser used to clean the sample has a square beam profile. ft is thought that overlap of 

this profile during mechanical scanning of the plate results in corners of successive 

profiles receiving an overdose of radiation and that this gives rise to the patterning 
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effect shown. Figure 107 shows that the surface is clean at low magnifications when 

viewed in the SEM. 

The laser treatments di scussed in sections 5.2 .2 and 5.2.3.2 were performed in 

di fferent laboratori es and in both cases involved returning of samples by overseas 

mail. Consequently it was not possible to quanti tatively measure c leanliness on the 

treated surfaces immedi ately following laser cleaning. Such measurements were 

restri cted to laser treatments conducted at Loughborough where treated sample could 

be analysed relatively quickly and contact angle analys is was used. Such 

measurements, however, gave water contact angles in the order of 70°. ft is very 

probable such angles rellect the fac t that the samples absorbed atmospheric 

contamination very readil y. 

S.2.4.3.Laser cleaning of RTM6 resin coatings from nickel tooling 

The prev ious discuss ion of the cleaning application of Nd:Y AG lasers has been 

restri cted to the removal of the relati vely sli ght leve ls of resinous contamination 

present on the ex Bombardier too ling. The RTM6 resin coatings on both ni ckel and 

mild steel samples pose a more significant chall enge. Figures 108 and 109 show the 

effect o f cleaning using the Spectron 450 Nd:Y AG laser for res in coatings on nickel 

and mild steel test coupons respecti vely. The laser beam diameter was approximately 

5mm and the Iluence - 1.0 J.cm-2 The laser beam was very effi cient at detaching 

resin from the area irradiated and only a single pul se was necessary to achieve thi s. 

The test coupon was moved manually in the laboratory and so there was some overlap 

of the treated areas to produce the area c leaning illustrated. This makes it difficult to 

estimate the precise anlO unt of energy imparted to the sampl e during treatment. Resin 

coated samples were also submitted to the Quantel laboratories and the same effects 

were observed to those reported except in thi s case, the samples were mechanicall y 

scalmed. 

The resin itsel f does not appear to absorb the laser energy to any significant degree 

and thi s is, perhaps, not surprising in view of the data published by Stratoudaki t211, as 

di scussed in Chapter 2. The laser treatment appears to destro y the adhesion of the 

resin and thi s is an important finding in the present study. As a consequence, effective 

186 



removal of resin bonded to metal substrates is not dependent on thermal degradation 

of the resin through absorption of the laser energy at a particular output wavelength . 

• I 

Figure 108. Photograph showing how Figure 109. Photograph showing how 

bonded resin fl akes away from Ni bonded resin flakes away from steel 

substrate after Nd :Y AG laser cleaning. substrate after Nd:YAG laser cleaning. 

SEM examination of the surface of the nickel coating in an area where the resin had 

been removed showed that at low and moderately high magnifications, there was no 

noticeable substrate damage. Only at higher magnification was there any evidence of 

thermal effects (figures 110 and Ill ). Th is is attributed to the fact that metal 

substrates do not reflect the incident laser energy at the shorter wavelengths used by 

Nd :Y AG lasers ( 1.06 micrometres) as effic iently as occurs witb C02 lasers (10.6 

micrometre wavelength). The thermal damage is, however, relatively slight in 

comparison to the surface finish produced by abrasive cleaning of the tool surface so 

it is not thought to be deleterious to the cleaning application. 

Figure 110. SEM of area of nickel too ling Figure Ill. Higher magnification of 

after removal of bonded reSin by area m Fig.IIO.Scale bar = 2 

thermomechanical detachment as micrometres 

described. Scale bar = ID micrometres 
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SEM examination of the ox ide layer undemeath the detached res in on the mild steel 

sample ( fi gure 109) revealed no surface porosities similar to the effects noted for CO2 

laser treatment shown in fi gure 97. To arri ve at an explanation for the resin removal 

mechanism foll owing laser treatment it is necessary to consider the structure of a 

typ ical ox ide layer on a metal. The ox ide at the surface of meta l can have a complex 

structure as dep icted schemati call y in fi gure 11 2. Onl y in the case of a noble metal 

such as go ld or pl atinum is the layer non-ex istent or else comprises a monolayer of 

oxygen atoms. On common meta ls, oxygen atoms in the atmosphere react with the 

metal to fom1 a surface ox ide layer. There then ex ists a layer on top of thi s, which 

absorbs atmospheric gases and molecules of water vapour. On top of tlus is a 

hydrocarbon layer of contamination, which the surface attracts fro m contaminants 

present in most industri al and laboratory environments. 

Figure 11 2. Structure ofa typ ical metal surface. (After Rabinowicz (189 1) 

It was conj ect1lred that the Nd:YAG rad iation might be preferenti all y absorbed by the 

surface ox ide layer since the resin or indeed any hydrocarbon contamination has little 

propensity for absorption at thi s laser wavelength for low flu ence levels of irradiation. 

The underside ofa piece of the detached resin from figure 109 was examined by XPS 

to ascertain whether any metal ox ide was present. If present thi s would suggest the 

locus of adhes ive failure occurred at the ox ide/resin interface. It was found that iron 

was present on the underside of the resin fl ake and that there was a small chemical 

shift in the binding energy of the oxygen peak from 53 1.0 eV to 530. 5 eV. A shift to 

lower binding energies for the oxygen peak is associated with the presence of a metal 

oxide and since iron is present, it is reasonable to assume that cohes ive failure of the 

oxide did occur in some measure. Simi lar measurements were not made on res in 
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detached from the nickel sample and in that case the oxide present is denser but also 

finer so that the substrate thus appears bright in reflected light. 

As have been discussed in Chapter 2, laser interaction mechanisms are strongly 

dependent on the absorption properties of coatings and substrates and this makes it 

difficult to correlate effects observed on different samples. In all probability, in the 

case of bright metals with only fine oxide layers, absorption by the oxide may be less 

s igni ficant in comparison to removal caused so lely by shock waves resu lting from 

laser irradiation. Out of interest, one sample of the mild steel that possessed the thick 

grey oxide layer was ground down, removing most of the oxide to a bright finish. This 

was then coated with resin, which was cured. Laser cleaning under identical 

conditions had the same result - that the resin was mechanicall y detached and flaked 

off the treated surface. 

Roberts f36J also reports that epoxide resin is weak ly absorbed by laser energy and that 

the penetration depth (reciprocal of absorption coefficient) for 10600nm radiation is 

- 20 micrometres but is - 100 micrometres for radiation of 1064nm wavelength. 

Assuming the validity of these figures, in the present case of a resin coat ing of 

nominally 150 micrometres thickness, the fact that detaclunent rather than 

photothermal vaporization apparently dominates the laser cleaning using Nd:Y AG 

lasers seems reasonable in view of the expected penetration depth and assumes 

preferential absorption of the radiation by a metal oxide layer is responsible for the a 

detaclunent mechanism. In this case the coating thickness is of the same order as the 

penetration depth. 

Another possible explanation that concu rs with the experimental observations is that 

the detaclunent of resin is due to thermall y induced shockwaves resu lting from the 

rapid expansion of the surface of the metal substrate following pulsed laser 

irradiation. This expansion creates a compressive wave that propagates through the 

substrate and is then reflected back fro m the other face . The reflected wave subjects 

the metal-resin interface to a tensional force and it is conjectured that the magnitude 

of this force is great enough to detach the resin, destroying its adhesive bonding to the 

substrate. In separating, the resin could remove with it fragments of metal oxide from 

the substrate. 
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Further, water, present either as a molecularly absorbed layer on the substrate prior (0 

resin coating, or by ingress from the atmosphere after coating, may ass ist in the 

detachment process, since thi s will readily absorb laser energy and spontaneously 

vaporise. Thus mechanisms similar to those involved in laser particle removal (section 

2.3.4) may be invoked. 

It is argued that this theml0-mechanica l detachment mechani sm for contaminant 

coatings is superi or in some ways to cleaning using pulsed CO2 lasers because a 

c leaner surface is obtained with less opportunity for redepos ition of themlally ej ected 

materi al onto the surface or· incomplete volatili sati on of the coating as seen in some of 

the CO2 laser treated samples in thi s study. 

AES was used to detennine the c leanliness of a ni ckel plate sample fo llowing 

Nd: YAG laser c leaning ofa 150 microl11 etre thick resin coating. Figure 11 3 shows the 

concentrati on of carbon and oxygen from a hydrocarbon residue (assLUlled to be resin 

residue) as a function of etching time. The concentrati on of these elements approaches 

zero after 100 seconds of etching and so assuming an etching rate of 12nm/min (see 

secti on 3.8.5) the thi ckness of the residLle is approx imately 20 am and thi s value 

suggests the sur face is very c lean fo ll owing laser treatment. 

The surface was protected from contaminati on a fter laser treatment by the resin itself 

since, although detached from the metal, thi s adhered at an untreated area and could 

then be broken off prior to preparati on. Water contact angle measurements of 36° and 

38° were obtained for fi·eshl y cleaned stee l and llickel surfaces respectively following 

Nd:YAG laser removal o f resin . 
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AT% cone versus etch time(s) for resin residue on Ni plate after 
Nd :Yag laser cleaning 
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Figure 113. Elemental concentrations as a function of AES etching time 
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5.3 Laser Cleaning of Resin from Composite Mould Tooling 

The application of lasers for the cleaning of composite too ling used for aerospace 

manufacturing processes was briefl y di scussed in Chapter 2. The principal di ffi culty 

for thi s application is that for lasers that offer e ffi cient cleaning rates, such as pulsed 

TEA CO2 or pulsed Nd: YAG lasers, fibre reinforced compos ite materi als possess 

similar absorption coefficients to those of typica l hydrocarbon contaminants. Unlike 

metal substrates, where laser cleaning is se lf-limiting due to the good refl ectivity of 

metal s once the contamination is removed, there is no similar discontinuity in the 

properties of contamina ted composite tooling. Consequently, there ex ists a high 

probability that the laser will attack the res in rich surface layers of composite 

structures with the same vigour as the contamination unless a means is employed to 

di stingu ish between them. Thi s can only be achieved in two ways, both of which 

reduce signifi cantly the rate at which large surfaces areas can be cleaned and add 

substantial capi ta l cost for setting up the laser cleaning process. 

The first method invo lves using an effi c ient cleaning laser such as those mentioned 

and continuously monitoring the cleaning process using a technique that is sensiti ve to 

the di scontinuity at the contaminant-substrate interface. One means to monitor the 

process is to spectroscopica ll y detect the molecular fragments of the materi al being 

removed using teclmiques such as Laser Induced Breakdown Spectroscopy (LIBS) [1 90 

.1921, as di scussed in section 5.3. 1. This technique will detect the small di fference in 

chemical composition between the contamination and the res in ri ch composite 

surface. 

A second method is to monitor the refl ective properti es of the surface between each 

applied laser pulse. This process is used by Domi er Wessling, Germany to strip paint 

from airbus fuse lages and utili zes a 2kW pulsed TEA CO2 laser. The automated 

computer controlled process claims ablation depth control to within a couple of 

micrometres [11[. Laser fluence control pennits intensive cleaning where required and 

assist gases are used either to support selective combustion or else cool the surface. 

Us ing two laser systems it is claimed tbat 630m2 of an A320 airbus fuselage can be 

stripped of paint in just less than 40 hours. Details of the calibration process are not 

given in the reference cited and one wo uld envisage that some form of dynamic 
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calibration wo uld be required Since the refl ecti ve properti es of a newly painted 

surface would change after subsequent paint ('emovals. The first time the paint was 

stripped the calibration would use the refl ecti on from the unpainted surface as a 

reference standard and thi s would simplify the process but this reference standard 

would change each time paint was stripped so that the process control wo uld need to 

be related to tbe hi story of a parti cul ar airbus fuselage that was treated. 

In the first method di scussed ultra-v iolet wavelength li ght either in the fo rm of a high 

intensity lamp or more commonl y an Excilller laser is commonl y used to remove the 

contamination . Ul tra-vio let excimer lasers are ten times as precise as infrared lasers 

at removing coatings, as di scussed in Chapter 2. For reasons discussed previously, 

Excimer lasers tend to be used more in art restoration laser cleaning where cleaning 

rate and cleaning costs are less important than in a commercial manufac turing 

process. 

Similar technical problems are encountered in art restorati on. For example, in 

varni shed paintings the underlying pigments are sensiti ve to photons transmitted 

through the resin so that remova l of the varni sh to effect any restoration has to be 

sensitive ly controlled as di scussed by Zafiropul os [( 91. For such resins of thickness in 

the range 10 - 100 micrometres, the penetrat ion depth per pulse is typi ca ll y - 0.1 

mi crometres fo r a laser wavelength of I 93 n111 and - 1.0 micrometres for 248nm. 

Th is author also sites the example of paint removal from an epoxide/carbon fibre 

composite painted with a sili con based polymeric paint which was stripped using a 

XeCI excimer laser at an operating fluence of lA JcIll'2. In thi s materi al a 3 

microllletre thick epoxide primer had been used to treat the composite prior to 

painting and it was possible to control the laser ablation to strip the paint down to thi s 

primer without exposing the carbon fibres beneath, Similar effects were reported for 

polyurethane based paint removal from Kevlar composites us ing a KrF excimer laser 

operating at a fluence 0[ 0. 5 J.cm'2 

Although photochemical (bond breaking) laser interaction mechanisms are involved 

in laser cleaning at ultra-violet wavelengths, Zafiropulos [( 91, investigating the 

photoablation of polyurethane film s from delicate compos ite materi als using pulsed 
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ultra-violet lasers, commented on the fact that the upper limit of the mean acti vation 

energy fo r the removal process was 3 to 15 times lower than the average energy 

required to break single covalent bonds suggesting that photophys ical ablation 

mechanisms such as shock wave generation also play a part in the removal process 

and the evidence co llected in the present study supports thi s. 

S.3.1.Laser Induced Breakdown Spectroscopy 

Laser-induced Breakdown Spectroscopy (LIES) is a fo nn of atomic emission 

spectroscopy in which a pulsed laser is used as the excitation source .. The output of a 

pulsed laser, typ icall y a Q-switched Nd:Y AG, is focussed onto the surface of the 

materi al to be analysed. For the duration of the laser pulse, which is typicall y 10- 50 

nanoseconds, the Ouence is high enough to eject a microgramme quantity of the 

surface coating in·adiated. Assuming the laser parameters are set to generate a 

microplasma, the ejected material will be di ssociated into excited ionic and atomic 

species. At the end of the laser pulse, the pl asma quickly cools as it expands outwards 

at supersonic speeds. During thi s time the exc ited ions and atoms emit characteri stic 

optica l radiation as they revert to lower energy states. Detection and spectral analys is 

of thi s optical radiation using a sensiti ve spectrograph can be used to yield 

in fo nnation on the elemental composition of tbe material. 

Time-gated detectors are employed which allow the optica l emiss ion from the laser 

plasma to be recorded at some time delay after the laser pulse. This is important since 

the characteri stic atomic and ionic emission lines onl y start to appear after the plasma 

has expanded and cooled and the delay can be - 10 mjcroseconds. The LIES 

instrument would be calibrated to perform quantitative measurements of minor 

elements within a matri x materi al. 

Since the laser may be used to remove sur face coatings in a contro lled manner, depth 

profiling of layered structures is possible with LIES. Spectroscopi c measurements 

may be perfonned as the laser "drills" into the materi al, providing info rmation on the 

elemental composition of the materi al as a function of di stance into the layered 

structure. Generally, thi s technique is effective onl y for materials that are relati vely 

easy to ablate using laser powers typ ical of a LIES instrument. Examples include 
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compos itional analysis of ZII1C coatings on steel for process control during 

manu facture, detection of heavy metals (lead, uranium, plutonium) in pai nt and 

detecti on of elemental contamination in concrete. Commercial LIES instruments 

come with their own laser but in a laser cleaning application the specific laser used fo r 

the applicati on would be linked to the LIES instrumentation. Problems envisaged in 

their use for laser cleaning wo uld again relate to how to ca li brate a system using thi s 

spectroscopic technique in such a way that the ablation depth could be contro lled to 

cut off at the composite too ling surface. If the contamination possessed a markedl y 

di fferent composition to the substrate, such as in the case of a pigmented paint layer, 

then the spectral data wo uld show a di scontinuity once the non-pigmented composite 

surface was reached. However, if the composition of the contaminant were very 

similar to that o f the resin composite, di fferenti ation would st ill be di ffi cult. 

5.3.2 Laboratorv study of the laser cleaning of composite tooling 

It is apparent from the above di scussion that considerable investment and resources 

are required to use lasers to clean composites in a contro lled manner. Without these 

sophisticated means of moni toring the ablation depth, laboratory based investi gations 

inevitably show that laser cleaning produces substrate damage. The s im plest means of 

effecting contro l is to moni to r the acoustic reports that are generated as each laser 

pulse ejects materi al. The intensity of the aco ustic emissions fa ll o ff rapidly as the 

substrate, possessing di fferent properties from those of the contamination, is 

approached. Cottam [49] di scussed the use of thi s technique. However, it is not suitable 

to contro l the laser ab lation of composites for the reasons already di scussed. 

5.3.2.1.Cleaning of composites using TEA CO2 lasers 

Use of the Laserbrand TEA C0 2 10.6 micrometre wavelength laser at Loughborough 

showed that a single laser pulse directed at virgin composite or used composite 

too ling caused signi fican t surface damage. The flu ence used was approximately 2 

Jcm-2 Identical damage resulted when the pulses were applied to res in coated onto 

vlrgll1 composite coupons. The res in was removed after several pulses but the 

underlying substrate was damaged since there was no means of controlling the 

process. 
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The polished reflective surface of the virgin composite tooling reflected some of the 

laser light for the fLrst pulses as shown in figures 114 -116 but after two or more 

pulses or so carbon, ejected in the ablation as the underlying carbon fibres began to be 

exposed, initiated plasma formation and the intensity of the acoustic emissions 

increased as a result. The process created smoke from the combustion and was 

unstable. 

Figure 1 14. Macro-photograph showing 

TEA CO2 laser focussed onto virgin 

composite tooling. 

Figure I 16. In 

Figure 11 5. As Figure 114 

showing a close up photograph of 

the laser focussed onto the 

composite tooling .. 

this macro-

photograph of the laser focussed 

onto composite tooling it is possible 

to see the stronger absorption of the 

carbon fibre resin matrix .. 

Identical samples were treated using the faci lities at the National Laser Centre, 

Pretoria, South Africa. These show that at higher fluences (7.6 Jcm-2
), using TEA CO2 
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laser operating at the same output wavelength as the Loughborough laser, similar 

damage occurs on virgin composite too ling as shown in figures 11 7 and 11 8. The 

tested coupon in Figure 120 was 120mm x 100 mm in area. Figures 1 19 and 120 show 

the effect of the laser, using the same fluence, for RTM6 resin coated onto virgin 

composite tiles. 

As expected these macro-photographs show how difficul t it is to control the laser 

cleaning process such that it will remove a hydrocarbon based contaminant coating 

without exposing the fibres of the composite. The Ra roughness parameter for the 

gloss area of the tile shown in Figure 117 was 0.04 18 micrometres. After laser 

treatment the surface was damaged and this increased the roughness value by two 

orders of magnitude to 4.5293 micrometres as measured using Talysurf profi lometry. 

Figure 117. Photograph showing effect of Figure 118. Close up photograph of 

TEA C02 laser on virgin composite tile. effect shown in figure 11 7. 

The resin rich ge l coat has been striped by 

the laser to expose the carbon fibre matrix. 
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Figure I 19.Close up 

effect of TEA C0 2 laser on resin, which 

has been bonded onto the surface of a 

compos ite tile. The resin layer is striped 

away together with the resin rich gel coat 

and also exposes the carbon fi bre matrix. 

5.3.2.2.C1eaning of composites using Nd:Y AG lasers 

The Spectron 450 Nd:YAG Q-switched laser at Loughborough was used to study the 

effects of the 1.06 micometre radiation fro m this laser on similar virgin and res in 

coated composite tiles. Figure 121 shows the pronounced plasma plume, typica l on 

composites treated with with lasers. Greater surface damage results when target-to­

source distances used for meta l substrates are tried with composites. With the beam 

d iameter approximately 2mm, a s ingle pu lse penetrated the resin rich surface of a 

virg in composite til e to expose the carbon fibres beneath . This is shown in the low 

magnification SEM image in figure 122. The beam area was expanded to its 

maximum (about 8mm diameter) for subsequent tests though damage was still severe. 
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Figure 121. Photograph showing plasma 

effect when Nd: Y AG laser focussed onto 

resin bonded to composite ti le. 

Figure 122. SEM image showing carbon 

fibre damage for area in figure 124. 

Diameter of hole approx.O.5mm. 

Using a similar Q-switched Nd:YAG laser at the National Laser Centre, South Africa 

(with pu lse duration 7ns) a single line scan was made on a resin coated composite tile 

as shown in figure 118. An area from this scan was examined using an SEM and rJle 

images shown in figures 123 - 125 were recorded which show the substrate damage at 

a range of magnifications. 

Figure 123. Close up macro-photograph 

showing effect ofNd:Y AG laser used to 

clean resin bonded onto composite ti le. 

Figure 124. This figure shows an SEM 

image of a damaged area depicted in 

figure 123 . 
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Figure 125. This figure also shows an SEM 

image of a damaged area of the composite 

too ling depicted in the macro-photograph 

(figure 123). 

Figure 126 illustrates how absorption within the carbon fibre reinforcement of the 

composite tile causes the fibres to fracture. The energy dissipated disrupts the 

surrounding non-absorbing res in causing it to fracture extensively and this changes 

the scattering properties when the treated tile is viewed in visible light. Shockwaves 

associated with the energy release can cause fractured fragments of the overlying 

resin to be blown off expos ing areas of fibre beneath (figure 125). The leve l of 

damage is similar to that found using TEA C02 lasers at Loughborough. 

Figure 126. Close up photograph of composite tile 

where Nd:YAG laser beam was manually scanned 

across the surface. 
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5.3.3.Summarv 

The results presented illustrate the diffIculti es in removing res inous contamination 

from composite mould tooling possessing a very similar chemical composition. The 

potential to clean composite structllres us ing lasers has, however, been established 

and the key to success is in controlling the process by continuous monitoring llsing 

techniques such as LIBS. This is a proven technology but constitutes a specialised 

cleaning application and the capital costs invo lved in setting up the teclmology may 

well render it uncompetitive as a general mould cleaning method when compared to 

different cleaning technologies wh ich will be discussed in the following sections. 

5.4. Dry ice Cleaning 

The principles and technology associated with this cleaning method were di sCllssed in 

Chapter 2 and in the present study cleaning was performed on selected res in coated 

metal and composite test coupons. Although coated metal samples were examined, 

the main reason for investi gating this clean ing technology was to appraise its potential 

fo r cleaning composite tooling. Detai ls of the results are shown in this section for a 

range of bl asting pressures and treatment times as detailed in section 4.3 .4. 

No signifi cant effect was observed using small , dry ice shavings except for very long 

treatment times. The add ition of sodium bicarbonate as an abrasive medium also 

failed to have much significan t effect on the cleanjng produced. Most success was 

obtained using standard size dry-ice pell ets, which are a few cubic millimetres in 

vo lume. 

5.4.1. Resin coated composite samples 

Macro-photographs were subsequently taken fro m areas of treated resm coated 

composite samples. Further quantifi cation of surface damage was made using the 

SEM. 
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Figure 127. Dry Ice blasting 

damage to resin on composite tile 

(see description in 5.4. 1.1 below). 

5.4.I. I.Sample treated at 3 bar (304kPa) for 20 seconds 

Figure 127 above shows tbat very little dry ice blasting damage has occurred to resin 

bonded onto a composite tile at an operating pressure of3 bar (304kPa) applied for 20 

seconds. 

5.4. I.2 .Sample treated at 4 bar (40SkPa) for 10 and 20 seconds 

At 4 bar pressure, figures 128 - 132 on the next page show macro-photographs of the 

composite tiles for treatment times of 10 and 20 seconds respectively together with 

corresponding SEM images. These SEM images show that not only the resin 

contamination is removed but also the process continues and attacks the substrate 

exposing carbon fibres . 
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Figure 128. Close up photograph of dry Figure 129. SEM image of area in figure I 28. 

ice blasted composite tile coated with resin Scale bar - 2 millimetres. 

(10 seconds treatment time at 4 bar). 

Figure 130. As figure 131 but treatment Figure 13 I. SEM image of area in figure 130. 

time increased to 20 seconds. Scale bar = 2 millimetres 

Figure 132. SEM image of area in Figure 131. 

Scale bar = 20 micrometres 

203 



5.4.1.3 Sample treated at 5bar (506kPa) for 10 and 15 seconds 

Figures 133 - 136 show composite tooling tiles dry ice blasted treated at a constant 

pressure of 5 bar for 10 and 15 second intervals 

Figure 133. Dry ice blasted composite Figure 134. SEM image of area in Fig.1 33 . 

tile coated with res in (J 0 seconds Scale bar - 2 millimetres. 

treatment time at 5 bar). 

F igure 135. Treated 15 seconds 
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Figure 136. SEM image of area in figure 135. 

Scale bar = 2 millimetres. 

5.4.1.4.Sample treated at 7 bar (709kPa) and 10 bar (lOIMPa) for 15 and 30 

seconds respectively. 

Figures 137 and 138 show macro-photographs of resin coated composite tiles treated 

at 7 bar for 15 seconds and lObar for 30 sec respectively. No corresponding SEM 

images were recorded. 

Figure 137. Close up photograph of dry Figure 138. Close up photograph of dry 

ice blasted composite tile coated with ice blasted composite tile coated with 

resin ( 15 seconds treatment time at 7 bar). resin (30 seconds treatment time at 10 

bar). 

5.4.2.Discussion of results 

It became apparent when these dry ice blasting experiments were conducted that there 

existed a threshold pressure at which cracking of the resin contamination layer was 
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initiated, and further, that once this process had begun, the reverse fracturing effect 

discussed in Chapter 2 accelerated the removal of further materi al with continued 

treatment time. 

The problem is that the choice of res in as a contamination layer that is cured onto a 

res in compos ite surface is just about the worst materi al combination possible. With 

laser cleaning, sim ilari ty of the chemistry and absorption properties of the res lJ1 

contam ination and res in matri x of the substrate posed the biggest problem in 

controlling the clean ing process. The same problem ari ses with dry ice blasting except 

that here is it similarity of the phys ical properties of the two materi als that is the 

problem and since the bonding between the samples is so good, it is almost 

impossible for the process to remove the res in contamination without pitting the resin 

matrix of the substrate. The results using 3 bar pressure show that pitting of the 

contaminant layer is just occurring but at 4 bar pressure the resin matTix of the 

substrate is attacked. The macro and SEM images clea rl y show sign i fi cant damage at 

4 bar and higher pressures. 

In rea l samples, however, there wo uld ex ist a weak boundary layer compris ing of 

degraded mould release between the substrate and any contaminant materi al and the 

reverse fracturing effect wo uld then resul t in removal of the contaminant skin wi thout 

necessaril y causing the same degree of damage to the resin matri x of the substrate. 

Although thi s contamination may be resinous in nature, SEM analys is of typical metal 

mould too ling contamination shows that it comprises of fine beads of material s and 

not a continuous cohesive layer. 

It was very diffi cult to simulate a weak boundary layer on composite substrates in the 

preparation of test samples in the laboratory because such a boundary laye r possesses 

a low surface energy, which resists wetting by an applied adhesive resin. 

Consequently an applied res in beads up on the surface as its viscosity is reduced 

during oven curing and it is impossible to prepare an even coating of any res in that 

sits over such a boundary layer even with moderate pressure is applied during the 

curing process . In essence one is trying to make a coating stick to a good mould 

release agent and surface physics makes this difficult. Very similar conditions must 

exist to some extend when such too ling is used industrially except that in these 
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conditions a very high pressure is exerted which forces the res in against the tooling 

and which is maintained fo r the duration of a curing cycle that may last 8 hours or 

more. 

Another problem with dry ice cleaning of compos ites is that the surface gets very co ld 

and frosts up with ice condensed from the atmosphere as shown in figure 12, section 

2.4. 1. This also occurs with meta l samples but the low thermal conductiv ity of 

compos ite tooling means that it takes longer for this ice to dissipate and in practice 

some form of heating would be required iflarge area tooling were cleaned. 

5.4.3 RTM6 resin coated metal substrates 

Resin coated ex-Bombard ier nickel plate of dimensions 50mm x 50mm x 5mm was 

treated for 5 seconds at 3,4,5 7 & l Obar pressure ( 304, 405, 506, 709, and 10 13kPa). 

Wi th reference to figure 139 be low the centra l area shows damage at l Obar. The area 

in the bottom left hand corner shows damage at 7 bar. Other corners treated at 3, 4 

and 5 bar in clockwise order. 

Figure 139. Resin coated nickel substrate dry ice blast 

treated for 5 seconds at 3,4,5,7 and 10 bar pressure . 

In the next test a sample of resin coated mild steel was treated using a constant 

pressure of 10 bar ( l.OIMPa) for different treatment times. These are shown in figure 
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140 below where, in clockwise order from bottom right hand corner, the treatment 

times were 3, 7 and 10 seconds. The central area was treated for 20 seconds. 

Figure 140 Resin coated stee l dry ice blasted at lObar 

for 3,7, 10 and 20 seconds. 

Higher treatment pressures can be used to remove coatings from metal tooling 

substrates in comparison to those applicable to composite tooling. Pressures up to 10 

bar ( l.OIMPa) were observed to have no detrimental effect on metal substrates and 

cleaning efficiency was greater at these higher pressures . 

5.4.4 Summary 

The results of the present srudy suggest that dry-ice pellet blasting would be effective 

for metal mould cleaning but that the low damage threshold of composite tooling 

might result in substrate damage unless low treatment pressures are used which 

reduce cleaning efficiency. 
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5.5 Sodium hydride c1eanin2 process 

5.5.1 Evaluation of the cleaning procedure 

Details of this cleaning process were discussed in Chapter 2 and in this section the 

results from two test trials are presented together with ana lytica l data . 

Figure 141. Treatment of resin coated nickel using the sodium hydride process 

Figure 141 above shows a photograph of a resin coated nickel sample (left) adjacent 

to one that has been treated using the sodium hydride process (centre). The high 

temperature process reduces any organic material to a black char which is easi ly 

removed lIs ing a water jet provided this is done immediately following treatment. 

The result of washing after treatment is shown in the third image (right) and it is seen 

that a bright metal surface is revealed. Water contact angle measurements gave an 

average angle of 40° but the surface rapid ly contaminated by absorption from the 

laboratory atmosphere. 

On the first trial of the process the samples were not washed vigorous ly enough and 

a lthough they looked cleaned, exam ination by SEM, (figure 142), show dendrite 

growths of carbonates formed through absorption of carbon dioxide from the 

atmosphere by sodium salt residues on the surface. These growths fo llow the scratch 

marks caused by mechanical polishing of the sample prior resin coating and 

subsequent sodium hydride cleaning. 
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Figure 142. SEM Image of sodium sa lt 

growths on poorly washed nickel substrate 

following sodi um hydride cleaning. Scale bar 

= 20 micro metres 

A second test trial was conducted later where the treated samples were first 

thoroughl y washed before being stored under abso lute ethanol to protect them until 

they could be examined in the laboratory. Examination by SEM revea ls on ly the 

scratches from abrasive scouring prior to bonding of the resin (figures 143 and 144). 

Figu re 143. SEM Image of nickel Figure 144. As Figure 143. 

substrate fo llowi ng resin removal hy 

sodium hydride process. Scale bar = 10 

micrometres. 

Us ing EDX microanalysis, the elemental composition of the cleaned surface is 

revealed (figure 145 below) and this shows only trace levels of elemental impurities 
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Figure 145. EDX spectrum from sodium hydride cleaned nickel tooling 

below the main intense peaks associated with nickel. The most likely source of these 

impurities is from samples previously cleaned using the process since a commercial 

metal fmishing bath was used. 
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AES etch profile for residue surface 
contaminants for resin removed from 

nickel plate by sodium hydride cleaning 
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Figure 146. Residual contamination profile by AES 

By usmg Ion etching in an AES experiment the residual surface contamination 

(assumed to be solely hydrocarbons) was removed after 600 seconds of etching. 
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Assuming an etch rate of 12nm/minute (see section 3.8.5) thi s equates to a residue 

contamination thickness of approximately l20nm (see fi gure 146). Although 

considerabl y thi cker than that obtained by laser cleaning the level of contamination is 

still sli ght and relati vely inconsequential for industrial applications. 

Water contact angle measurements showed an average va lue of 32° also indicating a 

reasonably clean surface. This average angle increased to 45° after the sample had 

been exposed to the atmosphere fo r 30 minutes. 

5.5.2 Summarv 

The sodium hydr ide process has been demonstrated to be very effective at removing 

bonded epox ide res in from nickel too ling and wo uld offer one so lu tion to removing 

contaminati on quickl y [Tom complex shaped metal moulds. AES shows that a very 

clean surface is obtained after thi s chemical treatment . 

Although the sodium hydride cleaning process was applied to resin coated steel 

samples, it was a measure of how effi cient the cleaning process was that these 

samples rusted very quickl y after treatment. The need to remove carbonised 

contamination using water jets immediately following treatment poses di ffi culti es fo r 

the cleaning of steel too ling usi ng thi s technique. Even samples of stainless steel were 

prone to rusting after the sodium hydride cleaning. It is concluded the process is 

unsuitable fo r cleaning fe rrous metals. 
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Chapter 6 Results and Discussion of Coatings for Mould 
Release Applications 

6.1. Fluoroalkvlsilane coatings 

6.1.1. Introduction 

At the sta rt of thi s experimenta l as pec t of th e research, one of th e major aims 

was to eva lu ate sur face coatings th at o ffered potential as mo uld release agents. A 

number of candid ate systems we re se lected using the c rite ri a detailed in section 

T~e premise initi all y adopted was th at the mould re lease pro pert ies of a coa ting 

we re domina ted la rge ly by its sur face chemi stry and the requirement to enginee r 

an exception all y low energy surface that would res ist the adhesion of any liquid 

res in . The properti es of fluo roalkylsilanes , discussed in Chap te r 3, sugges t these 

m a te ri als sa ti sfy these req ui remen ts. 

As the ex pe rim enta l da ta acc umul a ted it beca me ev ident that c rea ting a low 

surface energy alone was insuffi cient to engender good release properti es and 

th at comme rcial mo uld release p roducts, developed ove r many yea rs, function ed 

on a numbe r o f diffe rent levels and low surface energy was only o ne propert y 

th at contributed to their success . 

From the lite ratu re sur vey in Chapte r 3, covering the many di ffe rent facets o f 

non-sti ck coa tings, the functi ona lity required for good release began to emerge 

and la rge ly suppo rt s the above ass umptio n. In the following sections, the stages 

by which these views we re formul ated a re developed and supporting 

experimental evidence presented. 

6.1.2. Dvnasvlan fluoroalkvlsilane coating evaluation 

The inte resting properties of these coa tings we re di scussed in C hapte r 3 and a 

pa rti cular com pound, Dynasylan F826 1 (tr idecafluo ro-l , 1 ,2,2-te tr ahyd rooctyl) 

tri ethoxys ilane C I4H I9F IlO]S i.) was identifi ed as worthy o f furth e r stud y. A 

patent fil ed in Am erica (6,544,466) in April 2003 di scusses the use of 

fluoroalkylsilanes to provide non-stick moulds for use during semiconductor 
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fa b rication and provides evidence th at the surface modi fying prope rti es of these 

compounds are beginning to fi nd industri al appli cations. 

Stainless steel fo il samples we re coated w ith th is chemical and cured acco rding to 

the schedule di scussed in section 4.4.3 . 

6.1.2.1 Surface energy measurements 

Co ntact ang les and sur face energy ca lcul ations we re made on stai nless stee l fo il 

(model subs trate) th at was trea ted usi ng diffe rent concentra tions of th e chemical 

and for di ffe rent t rea tm ent times. These res ul ts a re presented in Table 12 below. 

fluoroalkylsil an Dipping Co ntac t Contact Ca lcul ated 
e conc % on SS time(min ang le 1I1 angle In sur face 
fo il subs t ra te ) water (0) DIM (0) energy 

mJ.m·2 

0. 1 10 104 94 14.0 
0.1 30 1 14 97 10.6 
0.1 60 114 96 10.9 
0.5 0.5 11 2 97 11.0 
0. 5 1.0 116 95 10.2 
0.5 2.0 11 8 95 10.6 
0.5 5.0 1 I I 97 10. 1 
0.5 10 III 97 11.1 
0.5 20 11 2 99 10.5 
0.5 60 11 9 106 7.4 
1.0 0.5 11 8 98 10.0 
1.0 1.0 11 7 100 9.5 
1. 0 2.0 11 6 98 10. 1 
1.0 5.0 I 14 95 11.5 
1.0 10 11 6 100 9.6 
1.0 30 11 7 99 9.6 
1.0 60 11 8 96 10.8 
5.0 1.0 11 9 101 8.3 
5.0 2.0 11 9 106 7.5 
5.0 60 122 103 7.6 

Table 12 Contact angles and sur face energies fo r different fluo roalkylsllane 
treatm ent times 

Measu rements were also made on a stand ard sample of PTFE. An average wate r 

contac t angle of 11 60 was obta ined although thi s value can va ry depending on the 

sur face roughness between 110° and 140°. Us ing diiodometb ane an ave rage 

contact angle of 82° was obtained. F rom these va lues a sur face ene rgy of 16.72 
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mJ.m -2 was computed. The standa rd va lue is 18. 5 mJ.m -2 so the measured va lue 

is somew hat low. The reason fo r thi s is unknown hut even ass uming a systemati c 

e rror of the same order appli es to the va lues tab ul ated above, the surface 

energies meas ured for the coatings are ve ry low and significantl y lower than 

PTFE suggesting that th ey would cons titute very effective coa tings for release 

applications. 

From the data in Table 12 it was co ncluded that a trea tment time of 10 minutes 

for a concentrati on of 1% of the chemical was optimal for most app li cations and 

gave a surface energy - 10 mJ.m-2
. Improvements of surface ene rgy using highe r 

concentration we re impractical for industri al samples because the chemical is 

ex pensive and wo uld treat large r areas more econom ically at the lower 

concentration. Trea tm ent times in excess of 10 minutes did not result in a 

propo rtionate ly enh anced sur face energy but for practical reaso ns a treatment 

time of 30 minutes was more conveni ent when trea ting many samples. 

Subsequent laborato ry samples we re treated at concen trations and trea tme nt 

times according to what specifi c inform ation was sought from an analytical 

techni que. 

Beca use the sta inl ess steel foil substra te for these coat ings was being used as a 

surroga te material for limited suppl y of real mo uld too ling plate received , it was 

decided to appl y the coa ting at 1 % concentrat ion for 10 minutes on a sam ple of 

clean ni ckel pl ate tooling. It was conj ectured that the effectiveness of the coating 

might be a function of the sur face a rea access ible for reaction and hence 

dependent on the surface roughness of the subst ra te (the surface roughness 

pa ra mete r for ni cke l plate was Ra = 0.405 micrometres whe reas that for the steel 

foil was 0. 1295 nl ic rom etres, as li sted in Table 8) . 

Allowing a trea tm ent tim e of 30 minutes uSing a 1 % co ncentration of the 

chemical in ethano l, a wa ter contact angle of 11 90 was obtained for a treated 

nickel tooling plate and a contact angle of 1040 using DIM. A surface energy of 

7.9 mJ. -2 was calculated. This exceptionally low value could be due to the hig h 

packing density of the CF2 and CF) groups on the Dynasylan treated surface. 
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The cured fluoroalky lsilane film was co lou rl ess and stable. It did not appear to 

be susceptible to moisture abso rption even with exposure of severa l weeks to 

laboratory a ir. From published work on fluoroalkylsilan es [13 3), [137 ), [ 140), [141J and 

other si lane meta l treatments [186J it was believed that the cured coa tings were 

ve ry thin extending to a few na nometres and to invest igate the surface 

morph ology of the coa ting it was apparent that high reso luti on microscopy 

wou ld be req uired. XPS was used to confirm the estim ated coating thickness . 

6.1.2.2 High Resolution SEM 

As di scussed in Chapter 4, samples of nickel sputte red onto glass slides to a 

th ickness of 1.1 micrometres we re prepared to be utili zed for such investiga ti ons 

since th e surface roughn ess va lues of rea l too ling o r even the stainless steel 

su rrogate materia l were too high to a llow clea r reso lution of th e coating. 

Init ia ll y, one of the sputtered nicke l slides was treated in a 1 % so lu tion of 

Dynasylan fo r 30 minutes and the coa ting cured. The sample was then examined 

using high reso lution SEM without any additional preparation and the images 

shown in fi gures 147 and 148 were recorded . These im ages appear to show th e 

coat ing compri ses discrete islands of the c ured chemical with features up to 

abo ut 40 nanomet res in diameter. 

There is a problem in knowing whether this struct ure is representati ve of a 

coa ting o f the sil ane on a rough meta l surface or mere ly an artefact of 

preparation reflecting poo r wetting of the chemical on the very smooth substra te 

used. Other observations from the t reatment of the smooth surfaces of virgin 

composite too ling suggested that smooth subst rates are not conducive to th e 

production of a uniform coa ting and that the chemica l binds more effectively to 

rougher surfaces. Indeed the chemical is marketed as a surface treatment for 

tex tile fibres and these affo rd much grea ter surface areas over which the 

chemical can react and bind itself. 
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Fi gure 147. SEM im age offluoroalkylsilane coa ting on 

stainless stee l foil. Sca le ba r = I micrometre 

Figure 148. SEM image offluoro alkylsilane coating on 

stainless steel foil. Scale bar = 200 nanometres 

6.1.2.3 Analysis of coatings using XPS 

A sample o f stainless steel foil was treated with 5% Dynasylan fo r 60 minutes to 

full y react the chemica l with the metal substra te and produce the lowest s urface 

energy possible, as indicated by treatm ent table 12. Analys is using XPS was then 

perfo rmed to confirm the expected surface chemistry and obta in inform ati on 

about the coating thickness. 
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XPS survey spectrum for fl uo roalkylsilane 
coating on stainless steel foil 
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Figure 149.XPS survey spectrum offluoroalkyl sil ane on steel. 

A su rvey spectrum shown in fi gure 149 shows that the la rgest peaks in spectrum 

are for oxygen (53 JeV) and fluor ine (698eV). Smalle r peaks for carbon were also 

seen (285 eV and 29 IeV). Other elements detected are Si, Mn, Cr and Fe 

associated with the stain less steel substrate. The fact that these e lements are 

detected is evidence that the fluoroalky lsilane coating is between 5 and 10 

nano metre in thi ckness since thi s is the samp ling depth fo r photoelectrons as 

previously di scussed in section 3.8 .4. 

A hi gher energy reso lution scan was performed for ca rbon to obtain more 

accurate information about chemical shifts in binding ene rgy (figure 150). The 

binding energy shift between the two ca rbon peaks is 6.0eV. From XPS refe rence 

data the chemical shift in binding energy associated with a CF2 functional g roup 

should be S.90eV and for a CF3 functiona l group the shift shou ld be 7.6geV. 
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XPS ca rbon spectrum for fluoroalkyls ilane coating 
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Figure ISO. Chemical shift of ca rbon fo r fluoro alkylsil ane coating 

The molecular structur e of the Dynasylan molecule is as shown in figure 151 and 

has five CF2 functional groups terminated by a single CFJ funct ional gro up and it 

is suggested that the 6.0eY shift seen in the hi gh resolution sca n fo r the ca rbon 

peak implies tha t the shift due to the CF2 functi onal g roups domin ates and 

effecti ve ly masks the presence of the te rminal CF] gro up. 

(OCHz C 1-IJ~ 

(OCH2 CHJf-- SiCHzC1-I2CFzCF2CF2CF2CF2CFJ 

(OC1-I 2 CI-IJV 

Figure 15 1. Molecular structure of Dynasy la n F8621 
molecule. 

XPS spectra are usuall y collected at a take off angle of 90° so that the 

photoelec trons generated origina te from the deeper layers of the sample (5 to 10 

nm). By thi s means the best chemical shift data for an unknown sample is 

obta ined. If the photoelectrons we re collected a t a g razing take off angle of a few 

degrees they would originate from the ve ry surface laye r, as discussed in 

Chapter 3. In practice it is possible to collect spec tra at a range of take off angles 

and thus vary the sampling depth of the technique. By comparing the relative 

intensities of peaks of the same kinetic energy for different take off angles it is 

possib le to ca lculate the thickness of a thin coating. 
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In Angle Reso lved XPS experi ments a very smooth substrate is rea ll y essential 

and the sputter coating nickel samples used for high resolution SEM were also 

used for thjs experiment. In thi s case the purpose of the proposed experiment 

was to obtain any information about how the fluoroalkylsil ane molecules might 

be oriented on the ni ckel substrate. 

The ion etc hing fac ility in the inst rument used for these ex periments had been 

disabled. In these exper im ents it was not appropr iate to ion etch th e sampl es 

since this wou ld have destroyed the coa ting we wished to examine. However, all 

samples prepared in any laboratory environment (no matter how carefu ll y 

prepared) attract a laye r of hydroca rbon severa l monolaye rs thick and thi s is 

seen when they are examined in an XPS because of the extreme surface 

sensi ti vi ty of the techniq ue. 

In thi s ex pe rim ent it was appropriate to attempt to produce a coating thickness 

of on ly a few monol aye rs and a low co ncentr ation so lution of 0. 1 % Dynasylan 

was used to treat a nickel sputte red slide for a reaction time of one minute. 

Data was co llected using take off angles of 20°, 50°, 70° and 90°. 

XPS spectrum of fluoroalkylsilane coating prepared 
on nickel sputtered glass substrate 
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Figure 152.XPS survey spectrum for fluoro a lkylsila ne on ni ckel. 

Figure 152 shows an XPS survey spectrum for the treated nickel s lide and fi gure 

153 below shows the atomic percentages for carbon, fluori ne and nickel plotted 

as a function of take-off angle. 
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Figure 153. Carbon, Fluorine and Nickel concentrations for different XPS take-off 

angles . 

The data can be interpreted either as suggesting an enrichment of fluorine at the 

surface consistent with the known molecular structure as depicted and comprising a 

CFz tail terminated by a eF) group in which the tail orients itself perpendicular to the 

surface or the data may simply show that de fluorination is occurring over the time 

scale taken to collect the data in each case. Fluorine present on surface coatings 

examined using XPS is known to be sensitive to the X-ray irradiation experienced 

during XPS analysis. The fact that the fluorine to carbon ratio does not exceed unity is 

suggestive that defluorination is occurring since if eF3 were present at the surface, 

one wou ld expect the ratio to be greater than un ity. Defluorination at the sample 

surfaces by irradiation over the duration of these experiments severely limits the 

interpretation of the data. 
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6.1.2.4 Atomic Force Microscopy (AFM) 

Published literature (138]. (193] suggests that AFM can provide useful topographic and 

functional images relating to the tr ibological properties of fluoroalkylsilanes. AFM 

images were collected from nickel sputtered coated glass slides following treatment 

with Dynasylan fluoroalkylsilane for varying concentrations and treatment times, 

referenced against an untreated contro l sample (figure 154). The images show the pull 

off force or "stickiness" of the surfaces represented in three-dimensional plots. One 

of the AFM images for the treated surface is shown in figure 155. Although the 

vertical scaling is different, the area examined is 2.5 x 2.5 micrometres in each case 

and the images suggest that there is not a great deal of difference in the surface 

stickiness between the treated and control surface, which is surprising, The patterning 

developing on the treated sample comprising circular blotches is difficult to interpret. 

The features are - 180 nm diameter and do not correlate with the islands shown in the 

high resolution SEM images which were only - 40 nm diameter. Simi lar structures 

attributed a phase separation effects have been reported in the literature. 

3·d Pull-olfforce 

~ v 

o nm 1% 20 min o nm 

Figure 154.AFM image of untreated Figure 155.AFM image of surface in 

nickel sputter coated onto glass. figure 154 following treatment w ith 

fluoroalkylsi lane. 

It was decided to repeat the AFM experiments at a later stage substituting polished 

nickel plate for the nickel sputtered glass slides since the Dynasylan fluoroalkylsilane 

was shown to coat rough nickel plate effectively and this would then reduce the 

variables that needed to be considered to surface roughness only. 
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6.1.2.5 Testing the release properties of Dvnasylan 

Following the ana lyti ca l work di scussed it was decided to use the bliste r tes te r 

developed, as di scussed in Chapter 4, to evaluate the potential of thi s 

fluoroalkyls ilan e coating as a mould release agent. It was applied to pre-c1 eaned 

sta inless steel di scs (65 mm di amete r) at 2% concentration and cured. A wate r 

contact ang le meas u rement resulted in an ave rage ang le of 12 1 ° (ove r twenty 

measurements) implyi ng a low sur face energy coating had been c reated. Next 

FM300 Cytec res in sheets, cut to size, we re laid on top and weighted in an oven 

set at 180°C. The FM300 resin was used for convenience and also since it 

compri sed m ate ri al used by Bombardie r and represented a reali sti c mate rial to 

test. It was oven cured for 3 hours. 

Another stainless stee l di sc mac hin ed to fit the bliste r tester was simil a rl y 

clea ned and th en coa ted with F rekote mo uld re lease co mponents comprising of 

surface sea le r and mo uld release age nt. T he manu fac ture rs recomm end a tions fo r 

coa ting were fo llowed. Afte r curing of the F rekote, FM300 res in sheets we re laid 

onto the di sc and cured in exac tl y the same way as desc ribed prev iously. 

After removal from the curing oven and cooling the two samples we re compared. 

The FM3 00 resin di sc had onl y to be touched lightl y to a ffect its immedi ate 

release from the meta l di sc that had been Frekote treated. In compa ri so n, the 

res in di sc fo r the Dynasylan trea ted surface stu ck tenac iously as s hown in the left 

han d im age in fi gure J 56 below. The res in di sc stuck so tenac iously to the metal 

th at it had to be g round off mechanicall y back to befo re it was poss ible to begin 

to detac h the res in at the edges of the metal disc using a razo r bl ade. It was 

perplex ing that despite possessing producing a low ene rgy surface, the 

Dynasylall coating had so little effect in reducing adhesion of the res in . 
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Figure 156.Comparison of poor release for fluoroalkylsi lane coating 

(left disc) to excellent release obtained for Frekote (right). 

It was suspected that to obta in good re lease propel1ies it was necessary to fi ll in the 

asperit ies and porosities on a rough surface such that mechanica l interlock ing was 

denied as a mechanism for adhes ion. It was clear that many widely used commercial 

mould releases used a sealing agent that was compatible with a mould release coating 

applied aftelwards. In other words it was necessary to use a primer to treat the surface 

before producing a low energy surface. 

One of the di scs shown in figure 156 was subsequently hand poli shed to a mirror 

finish and then cleaned thoroughly before be ing and coated with 2% concentration 

fl uoroalkyls ilane, which was cured. An average water contact angle of 118°C was 

measured for the treated surface. FM300 epoxide adhesive was applied and cured 

under the same conditions as previously used. The purpose of thi s test was to see if 

the coating would produce better release properties if the stal1ing substrate was 

relatively smooth. It was found that the epox ide res in stuck with a lmost equal vigour 

on this surface also. The problem with this test is that in creating a smooth polished 

substrate, the surface area over which the fluoroalkylsilane can react and bind to the 

metal is reduced sign ificantly over that of a mechan ica lly abraded substrate. Therefore 

rather than hav ing a s ingle variable of surface roughness, the reactivity of the sW'face 

has to be considered also which complicates interpretation of the result. 
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6.1.2.6 Other silane coatings 

The use of Oxsilan AL-0501 sil ane as suc h a prime r w as di scussed in Chapte r 4 

a nd thi s was used to coat a fr esh, pre-c1eaned bli ste r tes t di sc pri o r to application 

of a furth e r coating Dynasyla n fluoro alkylsilane. Tt was thought thi s combin ation 

might const itute a bi functiona l coating whe re a weak bound a ry laye r wo uld exist 

between the Oxs il an and the Dynasylan coatings and thus enginee r good release 

prope rti es. Repea ting the comp a rati ve test desc ribed prev iously, essenti all y the 

same res ult was o btain ed and it was co ncluded tha t the proble m mi ght be th a t 

the DynasyJan coa ting fai led to react suffi cientl y to bind it self o nto an a lready 

ex isting sila ne treated surface. 

E lem ent & Peak Binding Ene rgy eV Atomic % p resent 

Carbo n C l s 285 34.8 

Oxygen 01 s 525.8 29.8 

Silicon Si2p 102.5 33.8 

Fluorine F l s 689.0 1.6 
.. 

Ta ble 13. XPS composItiOn of Oxs Ii a n coating 

XPS analysis of Oxs il an (Table 13 above) shows it to be a fluo ri na ted s i lane itself 

a nd thi s sugges ts it might be di ffi cult to bind to anothe r sil ane. It was app a rent 

from these result s th at a fa r mo re detailed stud y of the phys ics and chemistry of 

mould releases was necessa ry in o rder to formul ate new coa tings th at wo uld 

per fo rm bette r than the PO MS based products such as F re kote th at we re used 

comm ercia lly. The amount of work necessa ry is commensurate with a sepa ra te 

doctoral di sse rt ati on and it was conside red tha t the time remaining for this 

r esearch wo uld be bett er spent in trying to und ersta nd why produ cts s uch as 

Frekote o r the wate r based Zyvax re lease, mentioned in C hap te r 4 , functioned so 

well as mould release agents and how conventional PTFE based po lyme rs used 

for non-sti ck coatings would comp a re . 
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6.1.3.Summarv 

Wllil s t comme rc ial fluoroalkylsil anes such as Dynasylan produce ve ry low 

sur face ene rgy coatings with a surface energy value lower than Frekote re lease 

age nt a nd even lowe r than PTFE, its weakness fo r mould re lease applica ti on li es 

in its propensity to form onl y a mo nolaye r film thi ckness on the subst rate 

surface. Altho ugh Dynasylan is a n ex pensive mate ri a l, the self- limit ing th ickness 

of the coa ting meant th at a sma ll amo unt dilu ted in a so lvent wo uld coat large 

sur face a reas econo mica ll y. As has been arg ued, the weakn ess of th is for re lease 

applica ti ons is th at resin used for moul dings will be forced unde r pressure a nd 

tempera ture into the mi c ro-cavi ti es in a ro ugh substrate providing ma ny sites fo r 

mecha nical inte rl ockin g. Thi s does not appa rentl y occur fo r Fre kote. T he 

ev idence from cont ac t a ngles a nd AF M (secti o n 6. 1.2) illustr a tes th at a c u red 

Dy nasylan coa ting is less sti cky than a Fre kote coa ting but th a t, despite thi s fac t, 

it is not suitable o n its own as a rel ease agent. 

Me ntio n has been m ade of the use o f ano the r m ate ri al (Oxsi lan) as a prime r to 

treat sur faces p rior to applica tio n of Dynasylan. Ev idence fro m bo th 

ellipsomet ry (section 6. 1.2) and SEM s ugges ts thi s m ateria l fo rm s a suffi c ientl y 

thi ck coa ting to fi ll in m any mi c ro-cavit ies in a subs trate surface. XPS ana lysis 

shows th a t it is a flu o rin ated compound a nd ex pe riments with depos iting 

Dy nasylan onto a n Oxs il an coa ting have not been successful. It is fe lt th at the 

che mistri es of the two mate ria ls are no t suffi c iently compatible to allow thi s a nd 

th a t use of Oxsil a n alone is not appropriate as the chemical is not intended as a 

re lease age nt and is not optimised fo r th at appli cation . 
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6.2.Frekote mould release coating 

6.2.1. Analvsis of the chemical and phvsical propel·ties of Frekote 

6.2.1.1.FfIR 

The applicati on o f thi s commercial mould release product bas been di scussed in 

section 3.2 .2. Semi-pe11l1anent mould release products in general comprise of a 

sealing materi al or sur face primer, which is cured and then the mould release prod uct 

is applied. Usuall y several coats of each are appli ed. In the Frekote products 

evaluated, B 15 sealer was used with 710 NC mould release. 

Us ing FTIR spectroscopy the abso rption spectra for Frekote 710 mould release agent 

(figure 157) and Frekote B 15 sea ler ( fi gure 158) were obtained as shown below. The 

most intense peaks occur at simil ar pos itions between 1500 and 500 wavenumbers 

(cm -I ) in both spectra but show a number of subtl e di fferences in minor peaks and 

broadening of the abso rption bands. Other peaks common to both samples are 

clustered close to 3000 wavenumbers. 

Considering the spectrum fo r Frekote 71 0, the principal peaks occur at 293 1, 

2878, 1261,1095, 1020 and 807 cm -1 Strong absorption peaks ass igned to dimethyl­

and trimcth yl-substituted si licon atoms are reported to occur near 800 cm - I [196[ . Also 

a strong band at 1263 cm - I is ass igned to the bending mode for a silicon bonded 

methyl group [197] Absorptions correlated with CH2 and CH} stretching are observed 

at higher wavenum bers and overall the spectTum resembles that obta ined for PDMS. 

Overall there appears to be a reasonable qualitati ve similarity between the spectrum 

for Frekote and the B 15 sealing agent and since these are chemically compatibl e, it is 

reasonab le to assume thi s may al so be based on PDMS . 
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Figure 157. FTIR Spectrum of Frekote Figure 158. FTIR SpectTum of Frekote 

71 0 mould rel ease agent. B I 5 sea ler. 

6.2.1.2. SIMS 

Blanchard [49[ used secondary ion mass spectrometry (SIMS) to detemline that 

Frekote was based on polydimethylsiloxane (PDMS). The positive ion SIMS 

spectrum of PDMS [1 98] shows peaks at 73, 147, and 221 atomic mass un its (a.m.u .) in 

order of intensity and attributed to (CHl)l Si, (CHl)lSiOSi(CH lh and 

(CHlhS i(OSi(CHlhh. Minor peaks also occur at 207 and 295 a.m.u. 

SIMS spectra from Frekote cured onto nickel foi l were acquired in th is study and are 

shown in fi gures 159 to 161 below. 

SIMS spectrum Frekote on nickel foil 
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Figure 159. SIMS positi ve ion spectrum for Frekote on nickel foil. Range 

0 - 100 a.m.u. 
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SIMS spectrum Frekote on nickel foil 
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Figure 160. SIMS posi ti ve ion spectrum for Frekote on ni ckel foil. Range 

100 - 200 a.m. u. 

SIMS spectrum Frekote on nickel foil 
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Figure 16 1. SIMS positive ion spectrum for Frekote on ni ckel foil. Range 

200 - 300 a. m.u. 

The main peaks at 73 and 147 a.m.u. are seen in the above spectra confirming the 

presence of PDMS although there are many other peaks which caIlnot be as eas il y 

assigned and are li kely to be associated with the formulation of Frekote which is a 

complex product and not a single compound such as PDMS. These results are very 

similar to those published by Blanchard. 

6.2.1.3. DSC and TGA 

From simple evaporation experiments di scussed in Chapter 3, it was apparent that 

Frekote mould release agent would condense down to a transparent, rubbery film once 

the dibutyl ether so lvent had been dri ven off. This again was consistent with the 

physical prope11ies of PDMS and an experiment was performed using differential 
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scanmng calorimetry (DSC) to determine its glass transition temperature. The 

experimental details for these themlalmeasurements were di scussed in section 4.5. 10. 

The rubbery nature of solid Frekote at room temperature suggested a sub-ambient Tg 

and the calorimeter was cooled using liquid nitrogen to a temperature of - 100° before 

the experiment was started. Despite these efforts no Tg was measured and it was 

concluded that the Tg must be very low and this is consistent with the known Tg fo r 

PDMS that has been measured as - 127°C. Both figure 162 and a thel1110gravimetric 

analysis of the sample (figure 163) showed that it is a very thennaJly stab le materi al. 

Sample weight losses of only 2.18% were measured from ambient to 300°C. 

The signifi cance of these measurements mean that films of the mould release agent 

wi JI be very viscoelasti c at the temperatures experienced by mould tooling during a 

typ ical heating cycle. Consequentl y the mo lecular mobility release molecules will 

tend to lubricate the moulding and the viscoe last ic nature of the film will res ist the 

pressures applied to the too l surface during the cure cyc le. The desirability of these 

properties to obtain good release was discussed in Chapter 3 where other researchers 

cited had reached similar conclusions. These are very different properties to those of 

fluoroalkylsilanes that cure to fOlln a scratch resistant very thin film on a surface that 

confollns to the surface topography wi thout sealing porosities or roughness 

irregularities on the sur face. In temlS of re lease properties such cured films onl y 

possess low surface energy and this appears to be only one property that must be 

possessed by a good release agent. 
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I 
DSC plot of Temperature (0C) 

versus Heat Flow (mW) for Solid 
film of Frekote Mould Release 
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Figure 162. TA Instruments 2920 Modulated DSC data plot. 

TGA Plot of Weight Loss versus 
Temperature for Solid Film of Frekote 
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Figure 163. TA Instruments Auto TGA 2950HR data plot. 

6.2.2.Coating thickness measurements using SEM, ellipsometry and interference 

microscopv 

Conventional methods of preparing cross sections of materials by embedding samples 

in resin, curing the resin and then grinding and poli shing cannot be used with mould 

re leases since resin will not stick to them and an indirect method has to be used. 
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Frekote sealer and mould release agent were applied to nickel mould tooling 

according to the manufacturers instructions and the resulting film was stripped off and 

examined edge on in the SEM to obtain a thickness measurement (figure 164). This 

shows the thickness to be - 5 micrometres. The R, surface rouglmess for the untreated 

substrate vari es in the range 3.8 to 5.4 micrometTes and consequentl y a typical 

application of the Frekote products must largely fi ll in most surface irregularities. 

( fi gure 165 shows an X-ray spectrum (EDX) for the sample shown in the prev ious 

fi gure. 

...,'" 

'-" .... ", '" 

Figure 164. SEM thickness measurement Figure 165. EDX spectrum ofFrekote flake 

of a fl ake of Frekote(and sealer) is shown in figure 164 shows that that it is an 

and thi ckness measured as 5.033 organos ilicon compound . The largest peak 

micrometres. is fo r silicon. 

I ... • ... ~ 

Figure 166 Diagram of rough surface undulatiolls(After 
Dagnall [194 I) 

Figure 166 shows a schematic representation of a rough surface and, as di scussed, it is 

though that the Frekote products fill in the surface irregularities depicted . When a 

surface coated with these products is examined using SEM, it is seen that thi s is the 
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case. Fi gure 167 shows an area at the boundary between a Frekote treated and 

untreated substrate. The scratch marks from the abrasive cleaning of the substrate are 

clear on one half o f the image but are clearl y obscured on the other half by the 

Frekote coating. The coating shown was produced by dipping an abraded and cleaned 

metal coupon into a beaker of Frekote 7 10 NC mould release agent so that when it 

was withdrawn, half the area was coated. This coating was then cured. 

EHT 5 20.00 IN 
WO .. 13mm 

Stgnlll A t SEl 081&:27 F,b 200J 
Photo No. - 4608 Time :11:40:20 

Figure 167. SEM image showing boundary between areas 

coated with Frekote (ri ght) with un coated surface (left). 

Scale bar = 10 micrometres 

The Frekote sealer and mould release combinati on create a comparatively thick film 

when appli ed acco rding to the manu facturers instructions. An attempt was made to 

quanti fy how the surface roughness vari ed on a model stainless steel substrate with 

and without a single coating of Frekote mould release agent. Ra and R, roughness 

parameters were measured in two orthogonal directions as shown in Table 14 below. 

Ra(micrometres) R,(micrometres) Ra(micrometres) R,(micrometres) 

Un coated 0.1703 1.6040 0. 1610 1.5358 

Coated 0. 1318 1.0591 0. 1678 1.3313 

Table 14.Surface rouglllless compan son of uncoated and Frekote treated stamless 

steel foil. 
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These show an apparent reduction in surface roughness but only in one direction . An 

SEM image of the uncoated substrate (figure 72, section 5.1.1.4.2) shows that it 

possesses unidirectional surface features attributed to production of the foil by rolling. 

The surface roughness values seem consistent with this microstructure where 

depressions have been parti all y fill ed with the Frekote product. Both original samples 

were cut from the same area of steel foi l so it would be expected that the rouglmess 

va ri ation between each (prior to coating of one sample) would be small. Different 

areas though show signifi cant di fferences in Ra. A measurement given in Table 8, 

section 5. 1.1.2.3, fo r cleaned fo il was Ra = O. I 295 micrometres and so some care is 

required in interpretation. 

It is apparent though that fo r a full application of Frekote sea ler and mould release on 

an industriall y sourced substrate, many of the surface irregulariti es resulting fTom 

abrasive c leaning are at least parti all y fi ll ed. When one rubs ones finger over such a 

Frekote treated surface it does not, however, fee l very smooth .. On c loser inspection 

using an SEM it is apparent that thi s rubbing action di slodges platelets of cured mould 

release (fi gures 168 & 169). This would be expected since the Frekote functionality 

requires it to act as a weak boundary layer and the cohesive strength between separate 

ap pli cations of coatings must be poo r. It is conjectured that under conditions of 

elevated temperature and appli ed pressure commensurate with moulding processes, 

the Frekote smears and fl ows over a surface filling in many microscopi c substrate 

irregulari ties. 

The following images show a full application of Frekote sealer and mould release 

applied to a steel substrate that was de greased and then grit blast cleaned prior to 

Frekote treatment. 

Mould sticking is beli eved to be due to the build up of res idues of degraded mould 

release after many mould cure cycles. 
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Figure 168.SEM image of full Frekote Figure 169. Higher magnification of Frekote 

application on grit blasted steel surface. layers shown in figure 168.Scale bar = 20 

Scale bar = 100 micrometres. 111 icrol11etres. 

The thickness reslllting from a single dip coating of a metal substrate in Frekote 710 

mould release was measured using Ellipsometry and Interference Microscopy and 

compared to measurements from s imilar dip app lications of Oxsi lan. The fo llowing 

results were obtained using Ellipsometry: 

Frekote on nickel (sputtered onto glass slide) 56 nm (nanometres) 

Frekote on stain less steel foil 120nm 

Oxsilan on nickel (sputtered onto glass slide) 421 n01 

Oxsilan on stainless steel foil219 nm 

Since a film of Oxsi lan shows interference co lours when coated onto sta inless steel 

fo il , thi s implies a coating thickness equa l to some fract ion of the wavelength of 

visible light and so the ellipsometry value is of the cotTect magnitude. 

Both ellipsometry and interference microscopy are best suited to measuring coatings 

on smooth substrates. No measurements were possib le using interference microscopy 

for the coated stainless steel samples. For the Frekote coating a thickness of 68 n01 

was obtained which is in reasonable agreement with that obtained by ellipsometry. 
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Unfortunately, it is difficult to correlate these measurements made on smooth glassy 

surfaces (as required by the measurement techniques) to the film thickness that may 

exist on abrasive ly cleaned metal tooling. In that case the Frekote may be retained and 

fill porosities rather than spreading evenly to form a uniform film . The measurements 

suggest that the Frekote product itself has no propensity to form an intrinsica lly thick 

layer on a substrate. Since Frekote and similar PDMS products are always appJied as 

multiple coats following surface sealing w ith a compatible product, it is probable that 

that thick coatings g ive the best results in terms of release. This can only be because 

they reduce the opportunity for adhes ion by mechanical interlocking. The role of the 

sea ling component in mould release products is also clearly important. 

6.2.3.Comparative AFM study of adhesion differences between Frekote and 

other coatings 

N ickel mould tooling substrate was hand poli shed and characterized as discussed in 

Chapter 4. Four samples were mounted for AFM study as shown in figure 170. These 

were identified: -

Ci) Sample I. Untreated clean surface contro l. 

(ii) Sample 2. Zyvax water soluble semi-permanent mould release 

(iii) Sample 3. Frekote mould release, 

(iv) Sample 4. Dynasylan fluoroalky lsi lane (5% solution) 

Figure 170. Samples 1 - 4. A five 

pence com is used as a scale 

reference. 
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Water contact angle tests were made to ensure surface cleanliness on the polished 

nickel substrates prior to coating and it was found that a drop of water would spread 

over the cleaned surfaces (average contact angle _35°). For samples 2, 3 and 4 water 

contact angles of 110°,107° and 116° were measured . 

." , . , 

Figure 171. AFM pull-off force tmages for 

samples I - 4 shown in figure 171. 

Figure 171 shows the pull-off force images for samples 1 - 4. The area examined was 

I OOx 1 00 micrometres. For sample 2 the signal was saturated due to the AFM tip 

being stuck to the surface. For thi s reason the top right image is absent. The darker 

colour indicates the lower pull-off force. 

These AFM images imply that the f1uoroalkyl silane coating produces the lowest pull­

off force closely followed by the Frekote treated surface, both compared to the 

untreated surface. The result for sample 2 for the Zyvax treated surface was 

interesting. The surface energy of this coating was 24.4 mJ.m-2 The AFM tip 

apparently stuck to the surface during AFM characterisation. This is interpreted as 

implying that this release coating is unstable by virtue of it being hygroscopic. It is 

suggested that a trace residue of the surfactant, used to aid emulsification of the 

silicon based release agent in an aqueous solvent, remains on a treated surface after 

the coating is cured and that over time this can attract moisture from the atmosphere. 

Confinnatory evidence for this was also obtained from water contact angle analysis 

where it was observed that a water droplet applied to a cured coating would gradually 

spread implying some component on the surface was changing the surface tension of 
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the water. The spreading was measured and is shown in figure 172. The initial water 

contact angle was 1100 but reduced so rapidly that data co llection could only be 

started once the angle had reached 105° as shown. Since thi s product gave thi s result 

it was decided to eliminate it from further study and restrict this to present samples 

already considered. 

Water COllla!:1 Ang le"verWIRllldmg number(81 40mlll iseeondin lerval s) 
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Figure 172. Spreading of water on Zyvax mould release coating showing 

contact angle reducing over 40 millisecond time period. 
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Figure 173. Pull-off force distributions fo r samples I -4 from a smaller area of2.5 x 2.5 

micrometres over which the adhesion was more uniform. 
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The pull-off force images (figure 171) can be converted into data point distributions 

that reflect the adhesion of the tip as it is retracted from the sample. As has been 

discussed in section 3.8.5, it is difficult to quantify this force since it depends on many 

AFM instrumental parameters such as the stiffness and spring constant of the probe. 

Presenting the data in this form more clearly illustrates the differences between the 

samples and it is that there exists a clear distinction between the fluoroalkylsilane 

coati ng and the Frekote with the distinction between Frekote and the untreated control 

not being as great as might have been expected. 
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6.3 . Alternative nuoropolvrner-based nOli-stick coatings 

6.3. 1 Si ll ter'ed nuoropolvmer coatings 

The application of Whitford Xylan and Xylar PTFE based coatings, discussed in 

section 4.4.6, and the perfOnllanCe of these coatings sintered onto different steel 

substrates has been evaluated. The contact angles and surface energies of the prepared 

coatings were measured and tabu lated in Table 8, sec tion 5.1.2. The surface of the 

cured Xylar coating was examined using SEM and an EDX spectTum obtained 

(figures 174 and 175). Cytec Fiberite FM300 epoxide resin sheets were used as a test 

resin system and sheets were laid onto a 65 mm blister test di sc upon which the Xylar 

coa ting had been prepared. The FM300 resin was cured under weighted loading in a 

laboratory oven maintained at 180°C for three hours. 
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Figurel74. SEM Image of Xylar 2020 Figure 175 . EDX spectrum of Xylar 2020. 

surface coating. C,O,F,Si and Fe detected 

It was found that the FM300 epoxy res in tenaciously adheres to the Xylar coating 

despite the fact that the Xylar coating possessed a low surface energy of 10.8 mJ.Il1 -2 

This is shown in fi gure 176. The adhesion was so strong that a segment could be sawn 

from the disc as shown without releasing the epoxide resin or reducing its adhesion at 

al l. The removed cross section was mounted in res in, ground and polished and then 

examined in the SEM. Using a backscattered electron detector, which is sensitive to 

differences in atomic number that exist in the structures resolved, enhanced the image 

contrast. The coatings are soft and smear easi ly during sample preparation resulting in 

an indistinct interface when examined using a secondary electron detector. Figures 

176 and 177 show areas of the section. in figure 177 the white area on the right hand 

side of the image originates from the steel substrate that was very bright in the SEM 
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image. A polyethylene terepthalate (PET) support membrane is present in the FM300 

resin sheet as a supporting binder and this is seen as the oval and round, darkened 

areas PET on the left hand side of the image (figure 177). The Xylar coating is 

sandwiched between the two and has sufficient contrast to be just discernable . [t is 

seen to be approximately 50 micrometres thick . 

• 

Figure 176. Photograph showing Figure 177. SEM cross section of Xylar 

adhesion of FM300 resin to Xylar 2020 2020 from area removed in figure 176. 

coating on steel blister test disc. Steel substrate on right with Xylar coating 

in centre. 

Figure 178. SEM cross-section of Xylar 

2020 at interface with FM300 resin . 

A higher magnification image of the interface between the Xylar coating and the resin 

is shown in figure 178. It is interesting to note there is a particulate phase present in 
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the resin, which is uniformly di spersed and appears as white specs. There are also 

dark specs. An EDX ana lysis using spot mode was made of these white parti cles and 

the spectrum collected is shown in fi gure 179. 
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Figure I 79.EDX spectrum o f white particulate fill er in FM300 

resin shown in fi gure 181. 

It is apparent from fi gure 179 that the resin contains a brominated compound. This is 

possibly a fire retardant. It is diffi cult to know how a resin system such as thi s, with 

one or more unsuspected components, will react at temperature and pressure with a 

substrate coating of di fferent chemistry. It is poss ible tbat quite complex reactions 

occur which may in some part account for the sti cking observed . The number o f 

vari ables in the combined system makes it diffi cult to formul ate a strategy for 

investi gating the effects more full y in the time available. Ideall y it would have been 

desirable to work with a monocomponent resin system rather than a proprietary resin 

whose chemistry was not divulged. The FM 300 resin was chosen because this resin 

was that used by Bombardier and is there fore closer to the intended application being 

investigated. Shrinkage of the resin during cm e has not been quantifi ed (thought to be 

several percent) but does not seem to decrease the tenac ity of its adhes ion to the 

substrales . 
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When the surface of non-sti ck Xylan 8080 is exam ined (figure ISO below) a different 

mo rphology again is reso lved. When examined at higher magni ficati on the porous 

structure of PTFE is clearly reso lved (figure 18 1). It is these porosities combined with 

the pressure and temperature appli ed to the res in system that causes mechanical 

interlocking and adhesion despite the low sur face energy of the PTFE surface. Again 

it is seen that a low energy surface does not by itse lf prevent sticking. Thi s fact is we ll 

known in the marine coatings industry. The key point about thi s applicati on is the 

app li ed pressure and hi gh temperature (IS0°C). Other non-sti ck applications of the 

Whit fo rd coatings are unlikely to have to contend with relatively high-pressure 

conditions and therefore the coatings al most certainly sati sfy their intended functi on. 

Figure 180.Xylan 8080 surface topography Figu re l 8 1. Higher magnificati on of area 

using SEM.Scale bar = 10 micrometres. in figure 183. Scale bar = 2 micrometres. 

Fig ure 182 shows an EDX spectrum for the Xylan 8080 coating from which it is seen 

that the coating compos ition is different to that of the previous Xylar 2020 coating 

with poss ible barium sulphate and copper ciu'omate present as additives. The rol e of 

these additives is unknown and aga in emphas ises the difficulty in understanding 

adhesion when the chemistry of both ad hesive and adherent are unknown. 
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182.EDX spectrum of Xylan 8080 coating showing a 

di fferent fill er composition to that fo r Xylar 2020 (fi g. 179) . 

6.3.2 Interpretation of the findings for the XvlarlXvlan coatings 

These Whi tford coatings are commercial products and assumed to per form as non­

sti ck coatings as claimed by the manufacnlrers. Therefore their apparent failure in 

these tests suggests that either 

(i) the coatings have not been prepared properl y or 

(ii) they react in some way with addi tives present in the FM300 epoxide resin 

adhesive 

(iii) they are not being used as intended by the manufacturers 

There is no evidence to suggest that coatings used for testing were unsatisfactory 

a lthough some experimental di ffi cul ty was encountered in their preparation. The 

coatings used were visibly smooth over the areas used and yielded low energy 

surfaces. PTFE is a major additi ve in the coating fOlllllllation and tlus is very 

unreactive so although the second cause li sted cannot be eliminated, it is highly 

unlikely. 

The intended applications of these coatings are most often as non-stick coatings 

for bakeware and whi lst these items will be used at high temperatllfes 

commensurate with cooking food, substances are unlikely to be squeezed against 

the coated surfaces under considerable pressure, and the latter condition is that 

under which the coatings gave poor results in these tests. 

244 



Further tests were made on the Xylan 8080 coating. This PTFE coating was 

sintered onto a piece of stainless steel foil and Cytec FM300 epoxide resin sheets 

were laid up and cured onto the coating under weighted loading in an oven. It was 

found that the resin could be peeled away from the metal foil substrate with only 

slight difficulty on this occasion (figure 183 below). This is attributed to the 

flexibility of the thin substrate, which a llowed the materials to be more easily 

pulled apart. It was thus possible to remove the epoxide resin from an area where 

it had been in contact with the Xylan coating and examine the surface using SEM 

(figures 184 & 185). 

Figure 183. Xylan 8080 coating sintered Figure 184. SEM image of Xylan 

onto stain less steel foil (black coating) . 8080 coating following removal of 

FM300 resin (green) was then cured onto green FM 300 resin in figure 183 . 

the Xylan coating. Scale = 10 micrometres 

Figure 185 . Higher magnification of area in Figure 186. SEM image of unders ide 

figure 184. Scale = 3 micro metres surface of FM300 resin shown III 

figure 183. Scale = 20 micrometres. 
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Figure 186 shows an image o f the underside on the res in where it has been in 

contact with the Xylan coating. It is suggested that the asperiti es seen on thi s 

surface may be points where mechani ca l interl ocking has occurred with the Xylan 

coating giving ri se to a level of adh esion making it difficult to separate the two 

surfaces. The virgjn Xylan coating surface possesses fine structural porosites 

typical of PT FE (fi gure 181) but does not normally possess the pi ts seen in fi gures 

184 and 185. It is suggested that the Xylan coating resists wetting fi'o m the res in 

in its liquid phase, but that the pressure applied overcomes the surface tension 

forces and forces the resin into the porosities in the soft PTFE SU'ucture and opens 

them up at the elevated cure temperatures. In other words tbe conditi ons 

prevailing in an unres trai ned sys tem where surface tension fo rces are dominant do 

not ex ist in a sys tem constra ined by pressure and temperature. When the liquid 

resi n cross li nks and cools, a mechani cal interl ock has occurred and the surfaces 

become d iffic ult to separate. It would be fortui tous if a s ingle p repared cross 

secti on, such as that shown in fig ures 177 or 178, wo uld show one of these sites of 

mechanical interlocking, and, although this cross-section was thoroughl y 

examined at a range of magnification no features resembling an "ink-pot" fea ture 

were fo und. It would be necessary to many cross sections to find evidence of 

features commensurate with sites of possible interlocki ng. 

6.3.3. Electroless Ni/PTFE non-stick coatings 

Stevensl1471 has c laimed that the Apticote coatings already described offer a good 

so lu tion to the problems of mould users. They possess many of the good attributes 

of PTFE coatings but offer greater toughness and durabi Iity for industri al 

appli cati ons. As has been shown the microstrllcture of the PTFE particle phase is 

very fine (figure 79) and the surface does not contain the same deficiencies of 

surface poros ity seen in fi gure 180 above. 

The FM300 epoxide resin sheets, which stuck tenacious ly to the other coatings as 

discllssed, did not stick to an Apticote 450 coating when cured under weighted 

loading in exactl y the same way as for the other coatings. The cured epoxide resin 

sheet re leased witb ease from the Apticote coating and behaved similarly to a 

Frekote treated substrate. This release is shown ill figures 187 and 188 . 
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Figure 187. FM300 epoxide resin Figure 188. Ease of release of cured 

sheet cured onto Apticote 450 coated epoxide. 

nickel substrate. 

This release behaviour is not perhaps surpriSing In view of the very low friction 

coefficient measured for the Apticote 450 coating. This surface was characterised in 

section 5.1.4.3 for 5N and ION loadings. The Apticote 450 coating was used in 

preference to the Apticote 460 coating, despite its sI ightly lower friction coefficient, 

because 450 is temperature hardened. 

The desirable properties of mould releases have been discussed previously. Two of 

these were that the release coating should possess molecular mobility and cohesively 

weak boundary layers. Clearly the Apticote coating does not meet these particular 

properties and yet it appears to be successfu l at ensuring easy release of parts moulded 

against it. This emphasises an important fact, namely that whilst mould releases may 

possess a number of desirable propelties, one or more of those properties may only be 

required in a particular environment with a given set of moulding processes. For 

example the Apticote coating might perform badly as an antifouling coating for 

marine applications but appears to perform well as a mould release for bakeware and 

similar industrial applications. 

In discussing the non-stick properties of these coatings it is necessary to distinguish 

between "release" and " Iow friction" as depicted in figure 189. Friction results from 

two surfaces sliding across each other and is measured by a number that describes the 

reduction of drag (drag force) between the sliding parts. Release is different because 

the separating force is normal to the two surfaces involved and relates to the material 

properties of the surfaces such as, though not exclusively, surface energy. 
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Figure 189. Diagram showing the 
di fference between fricti on and release 
forces. 

6.3.4. Mechanical testing 

The bl ister test method proposed fa i led to generate useful data on the moul d release 

properties of the coatings discussed. The epox ide adhesive either releases fro m a test 

surface with such ease that the re lease force is too small to measure, as occurs with 

Frekote treated surfaces and Apticote 450 coatings, or else it adheres so stro ngly that 

the separation force likely exceeds that required to fracture the resin at the point 

where the gas presses against the res in disc in the test geometry. Figure 176 illustrates 

thi s latter case obtained fo r the Xylar 2020 coating. For that test the blister tester was 

connected to a small gas cy linde r that applied pressures up to 6 bar (608IcPa) but 

application of the max imum pressure fa iled to produce a bli ster or show any sign that 

the res in di sc was separating from the coating. The fact that the res in has to be 

phys icall y ground away to remove it testi fies to the fact that it adhered quite stro ngly 

to the coating. 

An alternative means of testing is required and vari ous designs have been cited in the 

literatme, as discussed in chapters 3 and 4. The different subject areas studied in thi s 

di ssertati on were so broad and encompassed many di ffe rent teclmologies and 

materials that there has been insuffi cient time to develop a lternati ve testing methods 

that could yield thi s quanti ta ti ve data. 

6.3.5 Comparative AFM studies 

In thi s respect the qualitative data provided fro m the pull-off forces determined from 

AFM studies of different coating surfaces is encouraging. Pull-off fo rce compri ses a 
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histogram of contact measurements and the force is a function of the spring constant 

of the cantilever and area of contact, though the latter is unknown for the particular 

instrument that was used. This technique has been used to rank the performance of 

Apticote 450 coating in relation to Frekote. 

Figure 191 and 192 show AFM topographic images at different scales for the Apticote 

450 coating surface. It is seen that the surface topography correlates well with the 

images obtained from SEM (figures 78 and 79, section 5.1.5.3). Figure 192 shows 

both a topography image and pull-off force image for the same area examined. 

Figure 190. AFM Topographic 3D image for 

Apticote 450. Area I OOx 100 micrometres. 

Figure 191 .AFM Topographic 20 

image for Apticote 450Area 3x3 

micrometres. 

Om OIVl\ 

Figure 192. AFM Topographic 3D image (blue) and pull-off force image (green) 

for Apticote 450. Area 3x3 micrometres. 
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The pull-off force, as discussed previously, is a mixture of the elastic, frictional and 

adhesive properties of the surface [1601 . The adhesion component can be separated 

using the AFM software and allows images showing differences in adhesion to be 

displayed (figures 193 and 194). The dark areas in these images represent points 

where the adhes ion is low and conversely the bright areas are those where the 

adhes ion is greatest. The scale of the dark areas in figures 193 and 194 suggest a 

correlation exists between these and the dispersed PTFE particles in the Apticote 450 

coating as shown using SEM (figure 79). 

Figure 193. AFM Adhesion image for 

Apticote 450. Area 3x3 micrometres. micrometres. 

Four different surfaces were compared using AFM and the pull-off force data 

is presented in figure 195. 
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Figure 195. AFM pull-off force comparison for different surfaces. 

The data in figure 195 shows clear differences between the adhesive nature of both 

Frekote and Apticote coatings re lative to the control sample comprising an untreated 

sample of abrasive ly cleaned nickel tooling. The data suggests that the Apticote 

coatings are least as good as the Frekote treated surfaces allowing for the closeness 

between the peak distributions. 

6.3.6 Summary 

The requirements of mould users in the aerospace industry are such that few coatings 

wi ll be as widely applicab le as Frekote, not least because it can be easily applied from 

an aerosol spray and this allows surfaces to be touched up easi ly as and when 

required. 

Sintered fluoropolymer coatings based on PTFE perform well in food industry 

app lications but do not perform as well when subjected to crosslinking epoxide 

adhesives cured against their surfaces at elevated temperatures and pressures. 

Apticote coatings in contrast offer good release properties and are tough enough to 

withstand the aggressive moulding conditions prevalent in the aerospace industry. 

They may find application in niche areas in the fabrication of composite products that 

currently use existing so lvent based chemicals as mould releases . 
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Chapter 7. General Discussion 

7.I.Mould cleaning procedures 

This first Palt of this thesi s has considered the use of several procedures for cleaning 

metal and composite tooling that are used in the aerospace industry. Throughout the 

ex perimental investigation an emphasis has been placed on eva luating the merits of 

the different procedures by app raisa l of the surfaces of treated substrates using a 

broad range of analytica l techn iq ues. The link between substrate clean liness and the 

effecti ve perfomlance of a semi-pemlanent mould release agent is very important 

since such mould releases must adhere strongly to a substrate if they are perfoml well 

for many moulding cycles. 

7.1.1. Laser cleaning 

A signi licant finding of the present work was the importance of thermomechanical 

effects that contribute to efficient laser removal of bonded epoxide resin at low energy 

densities. 

The pure epoxide resin wi ll absorb the laser energy relatively weak ly but th is energy 

will be strongly absorbed in the electromagneti c ski n layer of the metal (5 - 10 nm) 

causing it to heat up and th is surface heating will be influenced by the thermal time 

constants of meta ls for very short duration pulses (section 2.2.3.2). 

The heated skin layer will expand rapidly along the plane of the interface crea ting a 

shear stress between itself and the epoxide resin layer bonded to it. The expansion 

will also exel1 a powerful compressive force directed into the bulk of the substrate and 

the rapidity of the event will thus generate a compressive shockwave that will 

propagate through the thickness o f the too ling plate and be refl ected back from the 

non-contaminated face. This re flected wave will in tum generate a tensile force within 

the epox ide contaminallt layer of suffi cient magnitude to completely detach it from 

the metal surface at the interface (figure 109, sect ion 5.2.3.3). 

If the laser fluence is increased, a level wi ll be reached when any surface material , 

even one that weakly absorbs at a given wavelength, will be heated suffi ciently to 
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melt or vaporise. In the case of very short durati on, high power laser pulses these 

effects can be so rapid that the surface layer is effectively detonated explos ively, 

ejecti ng material at high veloc iti es. The resul ting recoil force exerted by thi s materi al, 

and fTom any expanding plasma o f vapori sed material, will also generate a powerful 

ultrasonic shockwave in the substrate. Two energy regimes are thus identifi ed as 

capabl e o f generating powerful debonding forces which assist in coating removal 

through the absorption o f high power laser pulses of very shol1 durati on. This 

absorption is dependent on many vari ables but parti cularl y on the wavelength of the 

laser rad iation, as described in thi s thesis. 

Signi fi cant heating e ffects can also be observed at sub-plasma fluences, as reported by 

Cottam!49! and these are influenced by the absorpti ve and refl ecti ve propert ies of any 

sur face contaminati on and substrate as discussed in deta il in section 2.2.3. 1. 

The experimental results for TEA CO2 and Nd:Y AG lasers will now be interpreted. 

7.1.1.1. Laser cleaning using TEA C02 1ascl' (output wavelength 10600nll1). 

These lasers are cunentl y used to re lnove thick paint layers (typica ll y > 500 

micrometres) on aircraft . Typical paint fOllnulati ons comp rise o f inorgan ic pi gments 

and fill ers dispersed in a resin bind ing matTix. Pure epoxide resin absorbs the far 

infrared output wavelength from th is laser such that the reported opti ca l penetration 

depth is in the order of 100 micrometres and is thus a relati vely weak absorber. 

However, inorganic pigments in the paint absorb the radiation much more strongly 

and thi s abso rption at many sites within the resin binder initiates a pyrolys is reacti on. 

In an air atmosphere thi s will lead to the fomlation of carbon char that will further 

enJlance absorption, and the gas pressure resulting from the pyrolys is will fragment 

and crack the surrounding resin matri x and assist in breakdown of the contaminant 

layer under the action of the laser pulse. Absorption o f laser radiation is thus e ffi cient 

for thick layers ofpi gmented paint and gives rise to combustion conditions such that a 

few laser pulses are usuall y suffi cient to ab late paint layers or, as observed in the 

present work, to ablate a l SO micrometre thi ckness of pigmented resin sheet (fi gure 

83 section 5.2. 1). The energy density in the beam from a conunercial 2kW TEA CO2 

laser is such that thermal vaporisation will also OCCUl'. Paint stripping of thick layers 

o f paint from aircraft can thus be achieved at impressive removal rates. 
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For an epox ide resin contaminant th ickness less than 100 micrometres and where 

there is little or 110 inorgan ic pigmentation present, absorption of the laser radiation is 

much weaker such that repeated laser pulses are required to achieve a significant 

removal and where the poor spatia l homogeneity of the laser beam becomes 

signi ficant (figure 84 section 5.2.1). However, despite the use of repeated pulses to 

remove such weakly absorb ing layers, the hi gh renectivity of metal substrates for far 

infrared l"adiation resu lts in no observable microstructural changes to the metal or 

changes in its surface roughness (figure 85 section 5.2.2). 

If the nuence is increased then although the res in is a weak absorber, the energy 

density in the radiation is such that thennal vaporisafjon becomes the dominant 

ablation mechanism and the results obtained (figures 87 and 93 sec tion 5.2.3) show 

that the laser can effectively clean epoxide resin. Whilst most of the contamination is 

removed, remaining residues are detectable by electron microscopy (figure 90 section 

5.2.3) and contribute to a signi fi cant ly higher surface energy than might be expected. 

The presence of a thick oxide layer on a metal substrate, however, significantly 

changes the absorption characteristics for 10600nm radiation. The effect of this 

combi ned wi th the lower thennal conducti vity and diffusivity of the ox ide layer 

causes significant surface heating. The experimental results obta ined supp0l1 this 

conclusion (figure 97, section 5.2.3 .2) . A plausible explanation of the features shown 

in the lalter figure is that significant absorption occurred for this sample within the 

thickness of the epoxide resin resulting in vaporisation of material. The poor thennal 

properties of the oxide prevented any dissipation of the heat and energy re-radiated 

from the plasma, momentarily confined above the sur face, resulted in melting of the 

surface layer of the oxide. Gases present in the porous oxide would then have 

migrated through the melt zone to the surface and burst. Once the vaporised material 

dissipated, the surface wou ld rapidly cool and surfaces stresses concentrated at the 

frozen gas bubbles would cause loca li sed surface fractures radiating between the 

microporosities, as seen in figure 97. The scale of these effects is smal\ such that they 

can only be seen using an electron microscope. Consequently the effects are below the 

reso lution of profilometry techniques and 110 signifi cant difference in surface 

roughness is detected from the untreated oxide surface. Resin residues as depicted in 

figure 90 (for the case of cleaned nickel tooling) were not seen on the mild stee l 
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sample and it is conjectured that the di fferent absorption properties of the oxide 

present on the surface of the steel, combined with the fluence used, created greater 

vapori sation temperatures that completely removed all the resin. Similar effects to 

those shown in figure 97 were not observed for d: Y AG lasers and thi s is attributed 

to the fact that the wavelength for thi s laser is an order of magnitude lower at 1064nm 

and it is concluded that ox ides are not as strongly absorbing at thi s lower wavelength. 

In the case of the industrially-sollrced contami nation on nickel too ling from 

Bombardier, this is seen to be very thin and possesses a discolltimlOus texture (figures 

63 and 64 sect ion 5.1.1.4.1), and its reflection and absorption properti es are very 

diffe ren t from the homogeneous model resin con tamination used to assess laser 

cleaning. This disparity has complica ted eva luation of cleaning procedures generally 

but was unavoidable for the reasons given in Chapter I . Experiments show that 

repeated pulses at moderately high fluences were required to remove this material 

using a TEA C02 laser and that the cleaning effi ciency was not very grea t on account 

of the very small thickness of material. No damage to the substrate was apparent 

(figure 85 section 5.2.2). 

When a TEA CO2 laser is focussed at typica l cleaning fluences (0.5 - 2.0 J.cm .2) on a 

piece of virgin carbon fibre rein forced composite tooling, it is observed that 

absorption is greatest in the carbon fibres that li e j ust below the resin rich surface. The 

resin at this level usuall y is discoloured as the carbon fibres fracture and the fracture 

energy dissipates in the surrounding resin matri x, creating mUltiple fractures. These 

scatter incident li ght different ly to the untreated composite and give ri se to 

perceivable damage. As more pulses are applied the res in ri ch surface layer is 

disrupted and the carbon fibres are exposed (figures I 17 - 120 section 5.3.2. I) . Thi s 

exposure of the fibres increases the surface roughness by two orders of magn itude 

over that of the untreated surface. When the virgin composite is coated with a model 

epoxide resin at a thickness of approximately 150 micrometres, thi s is greater than the 

optical penetration depth of this material for 10600nm radiation and so the laser 

energy is absorbed below this depth but continues to extend within the bulk of the 

composite with repeated pulses. The overall effect is usually exposure of the carbon 

fibres as before. Laser cleani ng is thus destructive. 
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With hindsight the model resin system applied to composite tooling fails as a reali stic 

contamination since resin flash contamination on real used composite tooling would 

be overl aid upon residues of si li cone based mo uld release agents at the surface (figure 

68, sec tion 5.1.1.4.2). This system could not be reproduced in the laboratory because 

of the low surface energy of the mould release residues that prevented adhesion of a 

subsequentl y applied resin layer o f uniform thickness . 

The literature ci tes examples of successful applicati ons of TEA CO2 lasers for paint 

stripping from composite structures. It is the author's view that thi s can onl y be 

achieved using a technique such as LIBS (section 5.3. 1) that allows continuous 

spectroscopic analysis of the molecular fragments of tbe ablated contaminati on. This 

must slow the cleaning process appreciab ly. In the aforementioned case of removing 

of epoxide resin flash from used composite tooling, the differen t chem ical 

composition of mould residues underlying the contamination wou ld allow easy 

differentiation of the contamination from the composite subs!rate despite their 

similarity in composition of the latter materi als. Thus the laser cleaning could be 

controlled precise ly and the technique would not damage the tooling. 

TEA CO2 laser clean ing solutions are usuall y bespoke and designed around specific 

high technology appli cat ions with the conseq uence that clean ing systems are currently 

very expensive in temlS of hardware and total running costs. 

7.1.1.2 Laser cleaning using Nd:YAG laser (output wavelength 1064nm). 

The application of Nd:Y AG laser cleaning for the removal of epoxide reSin IS 

dominated by the optical penetration of the radi ation in tillS material which has been 

reported as several millimetres. The model resin contaminant is thus virtuall y 

transparent at typical cleaning fluences. Where the resin coats a metal substrate, 

removal of the coating was found to be very good due to themlomechanical ablation 

as previously described in section 7.1. I.\, FUl1her the detachment of resin by this 

mechanism leaves no residue behind and the surface is very clean as detennined using 

AES. The same mechanism ejects resinous particulate contamination such as that 

found on the Illckel tooling received from Bombardier (figure 100, section 5.2 .4. 1) but 

here lack of efficient extraction of the ablated material can cause it to redepos it back 
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onto (he surface. Highl y effi cient extraction is required for all laser cleaning. In (he 

case o f composite too ling, onl y the carbon fi bres absorb the laser energy and these 

fracture ( fi gure 126 section 5.3.2.2) and give ri se to similar effects as di scussed for 

TEA CO2 laser cleaning. Shockwaves can be generated with both types of laser that 

can cause fragments of the fractured res in above the fibres to be blown off exposing 

the fibres ( fi gure 125 section 5.3.2.2) . Only if the fluence is increased near to or at the 

level where plasma fomlati on occurs ( fi gure 47, section 4 .3 .2) will the res in absorb 

sufficient energy to degrade. Overall the net e ffect is still one of destructi ve cleaning 

since the carbon fibre rein fo rcement is attacked and fibres exposed on the laser 

cleaned surface. 

Commercial d:YAG laser cleaning systems are already available and are reasonably 

priced, offering affordabl e solutions for industri al applications. Such systems are very 

fl ex ible because the laser energy can be transmitted to the work piece using optica l 

glass fibre technology thus avoiding the need for expensive roboti cs, and working 

units are compact making them ideal for industry ( fi gure 196). 

Figure 196. Commercial Nd :YAG 

laser cleaning system. 

Their di sadvantage, compared to a TEA CO2 laser system, is that cleaning is slower 

where ablation by vaporization processes are involved, since the peak power per pulse 

is lower for Nd:Y AG lasers, and the operating lower wavelength of the laser is less 

e fficient in coupling to the absorption propel1ies of a contaminant layer 0 f comparable 

thickness. However Nd:Y AG laser ab lation using shockwaves has been demonstrated 
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to be very effecti ve and may be a better method of producing clean substrate surfaces 

under certain circumstances. 

Experimentall y, detelll1ining the best set of laser operating parameters for ablati on of 

contaminant coatings on meta l substrates is dependent on knowledge of the 

absorption characteri sti cs and tex ture of the materi als to be irradiated, both of the 

contaminant and underl ying substrate. Metal ox ides have di fferen l absorption 

properti es fro m the parent metals and these may be attacked by laser radiation even in 

cases where an organic coating over the oxide does not appear to interact with the 

laser. A secondary effect may occur where the ox ide acts as a weak boundary layer 

and fail s cohesive ly aiding the removal of the overl ying contaminant layer. 

Cleani ng parameters are generall y much more con tro ll able using so lid state lasers and 

the direct ion of the present resea rch has been bi ased towards stud ying the effects of 

Nd:YAG lasers on different substrates. There is some ev idence that a tin y amount o f 

thermal damage to the substrate occurs with cleaning using N d:YAG lasers (fi gure 

110 secti on 5.2.3.3). Such damage is insignificant in comparison to ex isting abrasive 

cleani ng methods used by Bombardier (figu re 6 1 sect ion 5.1.1 .4. 1). The effects very 

likely refl ect non-optimised process ing conditions with the target being too close to 

the laser source or the laser beam not being suffi cientl y defocused. 

7.1.2. Drv ice blasting 

The ex perimental evaluation presented in secti on 5.4.3 shows that thi s cleaning 

procedure is effecti ve at removing resin that is cured onto metal too ling. The res in is 

removed without any detrimental effect to the substrate at blasting pressures up to 10 

bar (I OIMPa). 

The apparent failure of the procedure to clean composite samples without substrate 

damage (except at very low pressures) occurs for the same reasons as di scussed in 

section 7. l.l above, i.e., that there is no appreciable di scontinuity o f properti es at the 

interface between the res in contaminant and the composite substrate. Aga in the model 

RTM6 resin contaminant cured onto virgin composite is a very severe test and in 

reality mould release present at the interface would greatly assist this cleaning 

procedure. Thermal differential s, discussed in section 2.4.1, associated with thi s low 
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temperature process wo uld embrittl e and dislodge resin flash and act in an analogous 

role to thermomechanical c leaning invoked by laser ablation. 

It is believed that dry ice blasting offers an acceptable means of cleaning composite 

and metal too ling but suffers from the practical disadvantage that the too l that is 

c leaned becomes very co ld and moisture fi·om the surrounding air condenses as ice 

onto the surface. This has to be removed by heat ing for industrial tooling and this 

adds addi tiona l cost to the process and can be detrimenta l to metal tooli ng which may 

rust quickly when cleaned. 

7.1.3. Sodium hydride cleaning 

This procedure is very effect ive at removing any organic or inorganic contaminati on 

from a metal surface and results in a very clean surface. Because it is a high 

temperature process it cannot be used to clean compos ite tooling. The most obvious 

di sadvantage of the procedure is that it cannot be applied on s ite and aerospace 

tooling wo uld have to be shipped to a treatment wo rks. The process uses hazardous 

materi als and can onl y accommodate too ling of moderate dimensions. Another 

di sadvantage is that freshly cleaned parts must be pressure washed with water jets to 

remove reduced organic materi al. Unless rapid and thorough drying can follow this 

post cleaning operation immediately, there is a high probab ility that steel too ling 

wou ld rust. Consequently thi s restricts the practical appl ication to non-ferrous metal 

tooling such as ni ckel. There may exist a ni che applicati on for this procedure where a 

complex shaped non- ferrous tool needs to be cleaned. 

7.1.4 Summary 

Of the three cleaning procedures investigated, the advantages of laser cleaning appear 

to outweigh its di sadvantages . The literature suggests it can be successfully applied to 

composi te tool ing though with this latter substrate, dry ice blasting comes a close 

second as an acceptable cleani ng procedure. The sodium hydride c leaning procedure 

is novel and very effective but limited to metal too ling and carlllot be used on site in 

the aerospace industry. 
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7.2. Alternative mould release coatings 

The second part of this thesis considered some aspects of the chemistry and physics of 

non-stick coatings and the role of polydimethylsi loxane in some mould re lease agents 

that are wide ly used in the aerospace industry. Following a detail ed literature survey 

several coatings capab le of producing a low surface energy were identified and 

investi gated, with a view to eva luating their performance under similar conditions of 

use to ex isting mould release agen ts used in the aerospace industry. As a consequence 

of thi s study the essentia l properties of a successfu l mould release agent have been 

identified and one commercial coat ing found that offers good release properties has 

been found and evaluated. 

7.2.1. Fluoroalkvlsilane coatings 

Wi th hindsight it was naYve to suppose that simply engineering a low energy sur face 

would be sufficient to give good release properties. If that were the case the di scovery 

of PTFE many years ago wou ld have solved many mould release problems. The fact 

that marine organisms can stick with apparent impunity to such low energy 

tluoropolymer surfaces is evidence that abhesion, like its counterpart ad hesion, is not 

a simple phenomenon. 

The tluoroalkylsilane compound investigated in this research has been successfull y 

applied to enamelled surfaces to prevent the s ticking of food and has a lso been used 

successfull y as a water repell ent coating for tex tiles. In both these app lications high 

applied pressure against the coated substrate appears to be a common system variable 

that is absent. It is claimed that it is effective in mould release for semiconductor 

fabrications but in such applications only moderate moulding pressures are used . The 

molecu lar structure of tluoroa lkylsilanes makes it diffi cult to develop a thi ck coating 

on any surface. In fact the coating th ickness is usually only a few monolayers and this 

is assumed to conform to any substrate topography. The surface energy of the coating 

is lower than that of PT FE. 

A water drop let appl ied to such a coating cured onto a rough surface wi ll not wet the 

surface but instead ro ll off the surface if the sur face is tilted. If the water droplet is 

applied to such a horizontal coated surface and then defonned by the application 
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pressure, in sllch a way that it is trapped on the sllrface, it is argued that the droplet 

will defol1l1 itse lf to the contour o f the surface. 11 will not intimately wet the surface 

because the low surface energy resists thi s but it may well fill some o f the larger 

irregulariti es on the surface. Once the pressure is re leased the water droplet will retul1l 

to a roughl y spheri cal bead on the surface because thi s shape is thennodynamically 

favow·ed. I f instead of water, a drop of liquid thennosetting resin is appli ed to the 

coated surface and deformed by pressure, thi s will behave similarly to the water 

droplet. However if the system is now heated so that the defonned res in crosslinks 

and hardens, then it will still grip the surface once the pressure is released . In essence 

this corresponds to mechanical interlocking which is one mechanism be lieved to be 

responsible for adhesion. 

The above scenari o is presented as a plausible explanati on of the observed facts that 

despite engineering a low energy surface , liquid resin applied to such a 

fluoroalkylsilane coated sw·face and cured by hea t, whil st being vigorously pressed 

against the surface as, for example, under autoc lave conditions, results in apparent 

adhesion. It is unlikely, however, that thi s simplisti c explanation full y explains the 

observation. It is implied that the res in whilst still liquid would fill an " ink pot" 

shaped micro-poros ity in the surface in such a manner as to provide a mechanical 

keying point once the resin set. No evidence has been found to show the ex tent o f 

pore penetration as a function of applied pressure to support thi s argument. 

Microscopic evidence of mechani ca l interlocking has been presented in the case of 

fluoropolynler coatings but the extreme thinness o f the fluoroalkylsilane coating 

makes it difficu lt to study by SEM. Evidence from high resolution SEM of 

fluoroalkylsil ane treated surfaces sugges t that deposition conditions may be critical to 

prevent aggregation of the polynler. The fine sca le o f aggregates ( fi gure 148, section 

6. 1.2.2) may have negligi ble effects on surface energies calculated deri ved from 

contact angle measurements but any uncoated metal surface area would provide sites 

for chemical bonding of a resin under circumstances where it was pressed hard 

against the surface. 

Comparing the behaviour of fluoroal kylsilane coatings against Frekote, the 

commerciall y sllccessful PDMS based mould release agent, evidence has been 

presented to show that Frekote largely satisfies the criteria required for a non-stick 

coating (outlined in section 3 .9) . 
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Frekote provides: -

• a low surface energy 

• thennal stability (and chemicall y inertness) 

• durability and will last for at least twenty releases 

• mobility at a molecular level, associated with low glass transition temperature 

• a coating that will cover and fill major surface irregulariti es resulting frolll 

abrasive fini shing. 

• a coat ing that creates weak boundary layers assisting the separation of a 

moulded part. 

These properties deri ve from the Cannulation of Frekote developed over many years 

and it is the combination of these propelt ies that renders it such a useful product. 

For rough surfaces such as industri ally sourced metal substrates, although several 

coatings of mould sealing agent and mould release agent are applied, these do not 

necessaril y fill in all tbe rough contours and irregularities on the surface. Grit-blasted 

metal surfaces for example, that have been treated wi th Frekote can still fee l s lightl y 

rough and it may be that a degree of roughness assis ts separation of a moulding since 

this will trap air pockets. On rough surfaces, thin layers of Frekote are eas il y parted 

and SEM shows the presence of irregularl y shaped platelets overl ying surface 

asperi ties ari sing from the grit blasting treatment. These must act are weak boundary 

layers and assist in mould release. 

The Oynasylan nuoroalkylsil ane product evaluated in the present wo rk sati s fi es the 

first two criteri a and is also durable but it does sati sfy the last two requirements and it 

appears that these are important. It calmot be co incidental that other ri val products to 

Frekote all use a compatible sealing compounds expl icitly designed to fill in surface 

micro-porosti es and thi s seems to be a crucial factor. Fluoroakylsilanes such as 

Dynasylan , by virtue of their chemistry, cannot be deposited as th ick coatings and 

this appears to make them unsui table as mould release agents when used on their own 

to modify a surface. Commercial products providing non-stick coatings with very low 

surface energy have found application in low temperature envirOlmlcnts where ice 
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build up is a problem. Such ice repellent coatings combine the properties of 

Ouoropolymers (O uoropolyurethane and PTFE) wi th both Ouoroalkylsilane and 

PDMS. 

7.2.2. Fluoropolymer coatings 

It has been shown that sintered Ouoropolymer coatings containing a hi gh proportion 

of PTFE, whilst effective as non-stick coat ings for bakeware applications, do not 

apparently function well under the ri gours of temperature and high pressure that are 

utilized in the present applicat ion. High pressure applied to a mobile adhesive in 

conjunction wi th moderately high temperatures commensurate with curing appears to 

open up the micro porosities present in the PTFE structure and when the resin 

cross links and sets, a degree of mechanical interlocking has occulTed which makes it 

di fficult to separate the resin from the coati ng. 

7.2.3 Electroless Ni/ PTFE co mposite coating 

[n the case of the Apticote 450 release coatings, very tiny PTFE particles are 

uni form ly dispersed in a strong nickel matrix that resists the appl ication of pressure 

applied to a curing resin system. The porosities present in a PTFE film of continuous 

coating are not manifest in the - 200nm diameter PTFE particle phase present in the 

Apticote 450 coating. Thus the coat ing combines a low surface energy, derived from 

the PTFE, with the toughness of a nickel matri x and it is conjectured that these 

qualiti es aCCOUJ1t for its apparent success as a release coating as demonstrated in the 

present work. The FM300 resin system used for these tests is the same resin system 

used by Bombardier Aerospace and therefore the results are very re levant to the 

proposed industrial application. The ease of release of cured FM300 resin from 

repeated app li cation and curing of the resin on the same area of coating was assessed 

and five test applications were made. The res in removed easi ly from the substrate and 

in this sense performed equall y as well as the PDMS based Frekote mould release 

agent. The results from the AFM pull-off force measurements concur with thi s fi nding 

(figure 195). The Frekote coating does however have the advantage that it is appli ed 

as a spray coating and coatings can be easily and quickly repaired on site in an 

industria l app lication. This advantage is not ava ilable for the Apticote 450 coating, 

which has to be applied off-site, and this might limit its usefulness to small moulds 
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that can be easily shipped for coating repa ir. Another advantage of Frekote is that it 

can be applied to composite moulds whilst the Apticote 450 process can onl y be 

applied to metals at present. 

Taken co ll ecti vely the results of the eva luations of di fferent potential mould release 

coatings show that the problems associated with achieving a successful mould release 

aI·e not simpl y restricted to engineering a low energy surface. This is onl y one of 

several desirable properties and the success o f commerc ial products such as Frekote 

testify to the fact that considerable fonnulation experti se is requ ired to achieve these 

optimum properties. The present work has highli ghted these di fficulti es and attempted 

to explain the observations recorded. The stud y has concluded with an example of a 

commerciall y avail able coating (Apticite 450) that ri val s the perfomlance of the 

Frekote and offers some potent ia lly useful applicati ons for aerospace mould tooling. 

Despi te the diffi culties encollntered in obtaining a quantitati ve measure o f mould 

rel ease perfOl"ll1anCe, the study was abl e 10 show, qualitati vely, that an electroless 

nicke llPTFE coating offered the best compromise of properties and durability for an 

industri al application. 
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Chapter 8. Conclusions 

8.1. Laser Cleaning 

This research has demonstrated that a Nd:Y AG laser has the potenti al to clean full y 

bonded epox ide resin contamination from metal surfaces and that thi s is achieved 

primarily through thermomechani ca l effects associated with concussive shockwaves 

refl ected back from the metal sur face, which c leanl y detaches resinous contamination. 

The TEA COl laser is also effective at removing resinous contaminati on from metal 

surfaces and has the capability to achieve this at impressive cleaning speeds. This type 

of laser ablation is dominated by thermal rather than thermomechanical processes. 

Very fine scale altefacts can be associated with the TEA COl laser when it interacts 

wi th thick ox ide layers present on steel surfaces. Plasmas can be created during laser 

cleaning under certain conditions and these plasmas can be very hot. Thermal energy 

can be re-radiated to the surfaces below and can induce surface melting when the 

surface strongly absorbs the laser energy. The arte facts, compris ing porosities created 

at the oxide surface, are bel ieved to ari se from the migration of gases absorbed into 

the bulk ox ide layer which are released when the oxide melts under the plasma layer. 

In contrast, cleaning of metal surfaces using Nd:YAG lasers does not produce any 

similar artefacts even when a thick oxide is present, though at high magnifications 

some slight thermal damage is apparent on bright, cleaned surfaces. 

Laser c leaning of resinous contamination from composite tooling is difficu lt uSlllg 

either Nd:Y AG or TEA CO2 laser technology. This is because the absorption 

properti es of the matrix match so closely those of typical resinous contanlination, 

which leads to significant substrate damage with carbon fibres being exposed in the 

matrix of the composite tooling following laser c leaning. Monitoring of thi s process 

by the technique of laser induced breakdown Spectroscopy has been di scussed and is 

one method which might successfull y enable such composite tooling to be cleaned by 

lasers though this might reduce cleaning speeds considerably. 

The most cost effective overall laser cleaning technology utiLises Nd:Y AG lasers . The 

cost saving arising from using this teclmology over a bespoke TEA COl laser system 
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is signi (jcant despite the fact that these lasers can remove contamination at impressive 

cleaning rates. The cost saving achieved us ing Nd:YAG lase rs is made at the expense 

of cleaning speed although the solid state technology is more reliable for an industria l 

application and this is another factor that has to be considered. 

S.2. Dry ice blasting 

This is an effective method of cleaning resinous contamination from metal tooling 

surfaces, as has been demonstrated. One disadvantage is that the tooling becomes very 

co ld in the process and this causes condensation of moisture [Tom the atmosphere 

onto the treated surface. For an industri a l process environment, this would require 

post cleaning treatment to dry the tooling thoroughly before use and this would incur 

extra costs. 

Dry ice blasting for the removal of contamination from composite tooling would be 

an effective cleaning technology provided a physical di scontinuity such as a weak 

boundary layer existed on the su rface due to degraded mould release residues. Such 

residues wou ld be expected on used composite tooling. In cases where resinous 

contamination has adhered to virgin tooling, dry ice blasting cannot differentiate 

easi ly between the physical properties of the resin contamination and the resin 

component in the too ling with the result that the too li ng surface is damaged. 

S.3. Sodium hydride cleaning 

Th is teclUlology can only be lIsed on metal tooling and is best suited to non-ferro us 

metals. It can clean complex shapes very thoroughly provided these can be lowered 

into a treatment bath. As such its application is restricted to modest sized tooling. As 

it is a high temperature process it cannot b used for cleaning composite tooling. 

SA.Mould Release Coatings 

Bombardier currently use Frekote mould release agent which is available as an 

aerosol spray. Tt is based on PDMS and is a semi permanent release agent. It is 

extremely effecti ve as such, and, when used in conjunction with a chemicall y 

compatible sealant, it can be applied to clean metal tooling and allows many moulding 
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cycles to be completed before any mould fou ling problems are experienced. It has 

proved difficult to fi nd an alt ernati ve release that is as effecti ve and o ffers the same 

versati I i ty as F rekote. 

8.4.1 Fluoroalkvlsilane coatings 

The work presented in this thesis suggests that ca l'e ful pl'eparation of these coati ngs is 

required to ensure to optimise their properties. They produce very thin coatings which 

conform any ex isting surface topography. As such, whil st they provide a low energy 

surface, they do not sea l any surface porosities present on a sllbstrate and adhesion 

through mechanica l interlocking can occur without any significant impediment. 

Whilst there are undoubtedly some specialised applications of these materials, 

especially in the microelectronics industry, it is considered that they are not suitable 

for the proposed industrial application in an aggressive environment. 

8.4.2 Fluoropolymer coatings 

The commercial formulations investigated in this thesis were PTFE based and 

produced low energy coatings on meta l substrates which were claimed to provide 

good release properties for app lications such as bakeware. 

Two examples of these coatings were evaluated for use with metal tooling materials . 

It was found that when adhesive contami nants were cured under elevated pressure and 

temperature whi lst in contact wi th the coa tings, subsequent release was poor or 

imposs ible. It is conjectured that the porosities present in PTFE surfaces allow 

penetration of the resin and, after curing, these bond by partial mechanica l 

interlocking. The formulations were cons idered not to be suitable mould release 

coatings for the intended application. 

8.4.3. Electroless Ni/PTFE composite coatings. 

These specialised coatings have been evaluated. They can only be applied to metal 

tooling and produce a hard coating comprising a nickel phospborus matrix containing 

a very fi ne dispersion of PTFE particles. The ni ckel matrix is robust and hard and is 

considered suitable for iJ1dustri al applications, and the low friction coefficien t and low 
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surface energy of the embedded PT FE palticles ensllre an efficient mould release. The 

electroless coating is thick enough to completely fill any substrate porosities. In 

conclusion these coatings provide the best mould release found in this research that 

satisfies the particular requirements for tooling used by Bombardier. 
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Chapter 9. Further Work 

The present study has covered two re lative ly broad subject areas to address the 

ori ginal aims of the project di scussed in Chapter 1. The research content has been 

strongly influenced by the need to identify cost effecti ve so lutions that are robust 

enough for industri al applicati ons. 

S.1 Cleaning technologies 

Laser generated shockwaves have been shown to possess the potenti al to clean full y 

cured epoxide resin from a meta l subs trate at relati vely low flu ences that do not 

damage the substrate itself. Thi s enables modestl y priced laser technology to be used 

to implement an effi cient c leani ng process that is enviro nmentally benign. It wou ld be 

use ful to be able to specify the laser operating conditi ons conducive to industri al sca le 

cleaning requirements and to be able to deteml ine cleaning rates over large substrate 

areas. This would requ ire close li aison between a chosen laser manu facturer and an 

ind ustri al partner. Such a collaborat ion would demonstrate the viability of this method 

of laser cleaning over the predominantl y photothermal cleaning affo rded by more 

powerful bu t expensive carbon diox ide gas lasers. 

This research has highlighted the importance of having real istic examples, covering 

the full range o f contaminants, that such a cleaning technology is expected to remove. 

The presence of thick oxide layers on surrogate substrates generates artefacts ari sing 

from laser cleaning that would probably not be encountered on real aerospace tooling. 

Gi ven an appropriate range of samples, it would be useful to measure the amount of 

materi al removed per laser pul se (possibly using a sensi ti ve mass balance) and try to 

optimise the laser operat ing variables to achieve the greatest cleaning rate. The 

influence o f thin oxide layers on commo n metals in relation to laser c leaning would 

also be a useful extension of the work. 

In respect of composite tooling, the presence o f partiall y degraded mould release on 

the surface of used tooling provides a surface di scontinuity (both chemical and 

physical) wo uld provides a means of controlling either laser ablati on or dry ice 
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blasting. There is considerable scope to investi gate how laser induced breakdown 

spectroscopy can be employed to limit substrate damage in laser cleaning. The scope 

of tJle present work has limited the time available to adequately address the problems 

of composite cleaning. The solvent properties of carbon dioxide for typ ical aerospace 

tooling contaminants is another area that could be investigated in relat ion to dry ice 

cleaning. 

S.2.Mould Releases 

Thi s research has highlighted some of the properties of these materials that make 

commercial products successful. The research has described the problems 

encountered when seeking to find altemative release coatings and has been successful 

in identifying electro less nickel/PTFE coat ings as being a durable and effective for 

mould release applicati ons in industry. There is a real need to obtain quantitati ve 

measurements of mould release effi ciency and the two mechanical test methods 

reported in thi s research have proved inadequate in providing thi s data . The testing 

geometry is critical and since mould release forces are small , especiall y in laboratory 

sized apparatus, a sensi tive method is sought. 

The real need in the aerospace industry is to find a so lvent based replacement for 

Frekote that is envi rOJU11entall y benign. Insufficient ti me has been devoted to studying 

the properties of water solubl e semi-pennanent mould release fonnulations and this is 

an obvious area where further work could be done. This work would be most 

productive if or·ganised as a co ll aborative pmject with an ex isting mould release 

manufacturer since any student working alone is disadvantaged by the scarcity of 

useful infomlation published in the area. 
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