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MANIPULATION OF DEFENCE RELATED LIGNINIFICATION IN WHEAT 

by Christopher John Loades 

Lignin is a complex phenolic hetropolymer with an established role in structure, 

support and defence in higher plants. The chemical structure of lignin is as yet 

undefined but controlled by an enzymatic pathway leading to three monomeric sub-

units. Lignin accumulates in plants in response to pathogen challenge. A scanning 

densitrometric assay to detect lignin was developed that was non-invasive, 

quantitative and quick to perform. The assay was used in conjunction with 

assessments of phytotoxicity, mycotoxity and pathogen resistance to assess the 

efficacy of potential biochemical inhibitors of the phenylpropanoid pathway in 

vivo. With this information, tolerances for biochemical inhibition of the 

phenylpropanoid pathway were obtained. This allowed further investigation of the 

basis of genetic and metabolic regulation of one form of one enzyme of the 

pathway, phenylalanine ammonia lyase, in wheat. Evidence of a potential role for 

endogenous elicitation in the ligninification pathway was also gained by the use of 

the assay. Elicitation in terms of the hypersensitive response was also investigated 

during attempts to purify the fungal elicitor Avr2 using the tovnaXo!Cladosporium 

fulvum model; however this work was completed by an alternative genetic screen 

protocol published elsewhere. Control of ligninificiation and the enzymes that 

produce the polymer is therefore an essential part of the defence response in wheat. 

This has important implications for genetic modification of the pathway. It was 

shown in this study that the phenylpropanoid pathway controls one aspect of 

resistance in wheat and concludes that care must be taken when manipulating the 

pathway in plants for increased digestibility or ease of pulping. 



In addition, a separate project was undertaken in order to purify an avirulence 

protein possessed by the Cladosporium fulvum fungus. The projects aim was to 

obtain amino acid sequence(s) of potential interacting proteins that would be used 

to design primer sequences to provide a genetic sequence of the target avirulence 

protein Avr2. Although several candidate proteins were obtained and amino acid 

sequencing attempted; a competing group obtained the genetic sequence of Avr2. 

The sequence of this clone predicts a protein whose molecular weight and 

isoelectric point falls within a region of proteins whose isoelectric points and 

molecular weights show activity in a bioassay for Cf-2 interacting proteins. This 

data supports the conclusion that the work by Luderer et al (2002) defines the 

genetic sequence of Avr 2. 
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General Introduction : 
Manipulation of defence related lignification in wheat 



LI The role of lignin in plants 

Lignin is the second most abundant biological polymer, second only to cellulose. It is 

a complex phenolic hetropolymer derived from the activities of the shikimate 

pathway, general phenylpropanoid pathway (GPPP) and the lignin specific pathway 

(LSP) (Figure 1.1). The final structure of lignin is so complex that it has been 

compared to the variation in snowflakes (Hopkins 1999). 

Lignin functions in the cell as a matrix polymer that encloses cellulose and other cell 

waU materials, which renders the cellulose fibrils inaccessible to microbial enzymes. 

In situ lignins perform a variety of useful functions such as secondary reinforcement 

to the secondary cell waU. Lignin forms a protective barrier of metabolically inert 

non-repetitive units and is most abundant in the vascular tissues, where its 

hydrophobicity waterproofs the conducting cells of the xylem and its rigidity 

strengthens the supporting fibre cells of both the xylem and phloem (Walter 1992). It 

may also play an important role in defence against pathogen attack (Hawkins et al, 

1997X 

The polymer has a wide significance to man, lignin is a major sink for carbon and 

accounts for 30 % of the more than 1.4 x 10̂ ^ kg of carbon sequestered into plant 

material (Battle et al 2000). The presence of lignin affects pulping processes and 

lodging because of its role as a mechanical support to cell walls. The digestibilities of 

forage crops such as alfalfa are also affected, which impacts the livestock industry 

(Humphreys and Chappie 2002). 



1.2 The role of lignin in primary cell wall architecture. 

The cell wall of plants is composed of two layers; the primary wall is a thin 

micrometre thick polymer of glucose monomers called cellulose, which is a long 

unbranched B-l,4-glucan (Hopkins 1999). Cellulose is grouped into microfibril arrays 

and embedded in a matrix of noncellulosic polysaccarides chiefly made up of 

hemicelluloses; this is a highly branched network of sugars and sugar derivatives. The 

final part of the primary cell wall is the pectic substance characterised by the 

abundance of galacturonic acid as a major part of this hetrogenous polysaccaride. The 

secondary cell wall is laid down on the inside of the primary cell wall and is 

comprised of 45 % cellulose and relative to the primary waU less hemicelluloses and 

pectic substance. It is on this structure that the cells differentiation is buUt. Outside the 

primary cell wall, the middle lamella forms the interface between the primary cell 

walls of neighbouring cells, the primary component of this space being pectin rich 

polysaccarides 

Lignin is primarily found in the secondary cell wall of plant cells and complexes with 

cellulose and hemiceUulose through the middle lamella to form a matrix. Lignin has 

been described as the cement of the cell wall matrix (Hopkins 1999). The 

phenylpropanoid pathway, the enzymes of which control the carbon flux to the 

production of the hetropolymer, primarily controls the assembly of lignin. Therefore 

the activation of this pathway controls the lignin deposition and the make up of the 

polymer. 

1.3 The biosynthesis of lignin. 

Lignin biosynthesis begins with the deamination of phenylalanine to produce trans 

cinnamic acid. The hydroxycinnamic acids are then formed by a series of 

hydroxylation and methylation reactions. The hydroxycinnamic acids are precursors 

for several other defence related metabolites such as the flavanoids, suberin, the 

coumarins and salicylic acid. The further routes to lignin biosynthesis were initially 

thought to proceed via co-enyzyme A ligation to the CoA esters of the acids (Barber 

and Mitchell 1999). These esters were then reduced by a reductase to the aldehyde 

form. The final enzyme was then an alcohol dehydrogenase that forms the alcohols of 

the corresponding acids. This gave the (H) hydroxyphenyl (G) guiaiacyl and (S) 



syringyl monomers that form the heterogeneous polymer (Figure 1.1). However, 

recent research has given greater insight into this pathway. 
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Figure 1.1 The general phenypropanoid pathway. Offshoots to metabolic pathways 

are indicated with arrows and capital letters. PAL, Phenylalanine Ammonia Lyase; 

TAL, Tyrosine Ammonia Lyase; C4H, Cinnamate 4 Hydroxylase; C3H, Cinnamate 3 

Hydroxylase; F5H, Ferulate 5 Hydroxylase; OMT, O - Methyl Transferase; COMT, 

Caffeic acid / 5-hydroxferulic acid 0-methyltransferase; CCoAOMT, Caffeoyl CoA 

O-methyltransferase; 4CL, 4 Coumarate Co-Enzyme A Ligase; CCR, Cinnamoyl Co-

Enzyme A Reductase; CAD, Cinnamoyl Alcohol Deydrogenase. 



1.4 The "primary" route 

It now believed that not all the hydroxycinnamic acids have a role in the production of 

lignin and the previously described grid structure is not strictly appropriate. The 

primary route of lignin biosynthesis is now believed to change at the point of 

production of/»-coumaric acid. The order of catalysis is now directed through 4-

coumarate Co-enzyme A ligase to /?-coumaryl Co A, which is a part of the flavanoid 

biosynthetic pathway. At this point it is now believed the order of catalysis does not 

pass directly through to Cinnamoyl Co-Enzyme A reductase (CCR) to form p-

coumaraldehyde but continues through two previously unrelated enzymes in this 

context; hydroxycinnamoyl CoA:shikimate hydroxycinnamoyltransferase (CST) and 

hydroxycinnamoyl CoAiquinate hydroxycinnamoyltransferase (CQT) which form the 

shikimic acid and quinic acid derivatives of />-coumaryl CoA. 

The reason for the inclusion of these enzymes is due to the discovery and 

characterisation of the C3H enzyme. It is a P450 that uses the shikimate and quinate 

esters ofp-coumarate as substrates Schoch et al (2001). The biochemical 

characterisation of the candidate C3H enzyme CYP98A3 shows that the enzyme 

actively converts the 5-0-shikimate and 5-(9-D-quinate esters of^-coumaric acid into 

their corresponding caffeic acid conjugate, thus meaning that ̂ -coumaryl shikimate 

and /?-coumaryl quinate are important intermediates in the pathway. These data 

implicate the CoA esters of these acids as very important intermediates in the 

biosynthesis of lignin (Humpreys and Chappie 2002). 

The action of the C3H enzyme hydroxylates the shikimic acid and quinic acid 

derivatives ofj?-coumaryl CoA and feeds into the co-enzyme A ligation pathway 

provided by 4CL. This in turn provides a build up of caffeoyl CoA, which is 

methylated by the action of caflFeoyl CoA O-methyltransferase (CCoAOMT), which 

forms feruloyl-CoA. 

First indications of the role of the C3H enzyme were provided by experiments with an 

elicitor inducible form of caffeoyl CoA 3-0 methyltransferase. This suggested that p-

coumaryl CoA is converted to feruloyl CoA, providing an alternative route for lignin 



biosynthesis. (Pakusch et al. (1991), Schmitt et a/ (1991), Ye et al (1994), Ye and 

Vamer (1995) Zhong et al (1998). 

The actions of CCR and CAD then lead directly to the production of guiaiacyl units in 

lignin through the production of coniferaldehyde and coniferyl alcohol respectively. 

At this same point Ferulate 5 hydroxlase (F5H) hydrolyses coniferaldehyde and 

coniferyl alcohol to their 5 hydroxlated derivatives. 

Kinetic analysis of the F5H enzyme shows that although F5H does catalyse the 5-

hydroxylation of Ferulic Acid, there is a thousand fold greater affinity for 

coniferaldehyde and coniferyl alcohol (Humpreys et al 1999). Recent experiments 

with recombinant forms of COMT from popular (Li et al 2000), Arabidopsis 

(Humpreys et al 1999) and alfalfa (Parvathi et al 2001) show that COMT has a higher 

kcat for 5-hydroxyconiferaldehyde than 5-hydroxyferulate. This leads to the 

positioning of COMT acting after F5H in the conversion of coniferaldehyde and 

coniferyl alcohol to sinapaldehyde and sinapoyl alcohol. Coniferaldehyde and 

coniferyl alcohol are therefore fiirther methylated by caffeic acid / 5-hydroxferulic 

acid (9-methyltransferase (COMT) to produce sinapaldehyde and sinapoyl alcohol. 

This forms the syringyl units in lignin through the action of SAD (a dedicated form of 

alcohol dehydrogenase for sinapaldehyde), or CAD (Figure 1.2). 
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ĈHgOH 

OMe 

T 
GUAIACYL 
LIGNIN 

COMT 

'i* 
: c r ^ 

OMe 

MeO 

HO' 
C 

4 
SYRINGYL 
LIGNIN 

CHgOH 



Figure 1.2 The primary route pathway. (Adapted from Humpreys and Chappie 

2002). Intermediate compounds thought to form the most likely route to lignin 

biosynthesis are highlighted in light blue. Metabolic intermediates of the 

phenylpropanoid pathway are underlined in bold; their reactions are shown in 

coloured arrows to indicate the enzyme involved. Offshoots to other metabolic 

pathways are indicated with arrows and capital letters. PAL, Phenylalanine Ammonia 

Lyase; TAL, Tyrosine Ammonia Lyase; C4H, Cinnamate 4 Hydroxylase; C3H, 

Cinnamate 3 Hydroxylase; F5H, Ferulate 5 Hydroxylase; OMT, O - Methyl 

Transferase; COMT, CaflFeic acid / 5-hydroxferulic acid 0-methyltransferase; 

CCoAOMT, CafFeoyl CoA 0-methyltransferase; 4CL, 4 Coumarate Co-Enzyme A 

Ligase; CST, hydroxycinnamoyl CoAishikimate hydroxycinnamoyltransferase; 

CQT, hydroxycinnamoyl CoA:quinate hydroxycinnamoyltransferase; CCR, 

Cinnamoyl Co-Enzyme A Reductase; CAD, Cinnamoyl Alcohol Deydrogenase; 

SAD, Sinapyl alcohol dehydrogenase. 



1.5 The enzymes of the phenvlpropanoid pathway 

1.5.1 Phenylalanine Ammonia Lyase. PAL; EC 4.3.1.5 

The PAL enzyme represents the Grst step of the phenylpropanoid pathway and 

catalyses the deamination of phenylalanine to cinnamic acid. 

The PAL enzyme is generally found as a tetramer and exists in multigene families that 

have two to fourty different members (depending on the species) that encode PAL 

subunits in plants. These are weU reviewed by Wanner et al. (1995). 

Considerable divergence is shown between species in the nature of the PAL enzyme. 

Induced PAL in rice is a single isoform of 84 kD, (Sarma and Sharma 1999) whereas 

in Chinese cabbage PAL exists in four sub-units of 38 kD (Lim et al. 1998). In wheat 

the tetramer is made up of pairs of two different subunits, which may be identical with 

the subunits perhaps generated by proteolytic modification (Barber and Mitchell 

1997). 

A site of phosphorylation of PAL has been identified as Thr 545 in French bean, 

(AUwood et al 1999). The kinase that phosphorylates PAL has also been identified 

and has a molecular weight of 55 kD, both in Aabidopsis and French bean, (Cheng et 

al 2001, AUwood et al 2002). It is a calmodulin-like domain protein kinase (CDPK). 

In-gel assays were also used to show that this kinase and a number of other CDPKs of 

similar molecular weight showed complex changes in elicitor-treated suspension-

cultured cells of French bean. The kinase was activated 10 min after elicitation and 

stayed activated up to 4 h. This activation was different from MAP kinase and casein 

kinase assayed in the same extracts. When added 30 min before elicitation, addition of 

forskolin (an activator of adenylate cyclase that increases the concentration of cAMP) 

changed the cellular pH. This mimicked the observed transient inactivation of the 

CDPK five min after elicitation. When elicitor is added the in the presence of 

forskolin the oxidative burst started. Also forskolin treatment stops the CDPK's 

activation by an elicitor (AUwood et al 2002). 
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PAL is most often reported in the cytoplasm (Smith et al 1994) although there is one 

report of PAL being localised to the membrane (Halbrock and Grisebach 1979). 

Organelles such as plastids, microbodies, glyoxysomes and peroxisomes also contain 

PAL (Hanson and Havir 1981). It was thought that PAL was the single controlling 

factor in the phenylpropanoid pathway but that idea has been shown to be incorrect 

(Barber and Mitchell 1999, Humpherys and Chappie 2002). 

1.5.2 Tyrosine Ammonia Lyase TAL; EC 4.3.1.5 

Tyrosine ammonia lyase (TAL) catalyses the deamination of L-tyrosine to para-

coumaric acid. Although PAL and TAL are two measurable enzyme activities it is 

generally believed that the same enzyme catalyses both phenylalanine deamination 

and tyrosine deamination. The flux of the material by the TAL route is thought to be 

secondary and most material enters the general phenylpropanoid pathway via PAL. So 

there remains little data on this entry point into the pathway (Barber and Mitchell 

1997). 

1.5.3 Cinnamate 4 Hydroxylase C4H; EC 1.14.13.11 

This enzyme introduces the j?ara-hydroxyl group in coumaric acid (Walter 1992) and 

is dependent on cytochrome P450. C4H is widely expressed in many Arabidopsis 

tissues, particularly in roots and cells undergoing lignification (Bell-L^long et al, 

1997). C4H accumulation is light dependent but is detectable even in dark grown 

seedlings. Expression of C4H is also coordinated with both PAL and 4CL in response 

to light, wounding, fimgi and elicitors (Mizutani et al., 1997; Batard et al., 1997; 

Koopmann et al., 1999, Ride and Pearce 1987). 

Work on French Bean C4H by Nedelkina et al. (1999). has lead to the isolation of 

cDNAs showing high sequence similarity to plant CYP73A orthologues from other 

species. This open reading frame, codes for a protein with a predicted molecular 

weight of 59 kD and an isoelectric point of 8.8. 

C4H has been shown to be associated \yith ER membranes in xylem parenchyma cells 

and has also been found in Golgi stacks (Smith et al 1994). 



1.5.4 Coumarate 3 Hydroxylase (C3H)(no EC) 

Until recently two enzymes were thought to catalyse the hydroxylation on the 3"̂^ 

carbon ofjcara-coumaric acid and its Co enzyme-A ester. One enzyme was thought to 

hydroxylate para-coumaryl Co-A and termed Caffeoyl Co enzyme A 3 Hydroxylase 

(CCoA3H) (EC 2.1.1.104). The evidence for the existence of this enzyme was 

supported by a mutation in Silene dioica that prevented the conversion of pam-

coumaryl Co-A to caffeoyl Co-A, blocking the production of anthocyanins (Kamsteeg 

a/1981) and also by the ability of microsomal fractions to hydroxylate 

hydroxycirmamyl shikimate esters in parsley, (Heller and Kuhnl, 1985) and 

hydroxyquinate esters in carrot (Kuhul et al 1987) thus fixing the hypothetical 

location of this enzyme to the microsomes. 

The enzyme most involved in 3-hydroxylation has recently been isolated by Schoh et 

al (2001) and has been identified as a cytochrome P450 enzyme. It has been identified 

as CYP98A3 and was discovered by phylogenetic analysis of the now complete 

Arabidopsis thaliana genome. It is highly expressed in inflourescence stems and 

wounded tissues. CYP98A3 does not metabolise oara-coumaric acid or its glucose or 

Co A esters, /»-coumaryl aldehyde and ̂ -coumaryl alcohol. This is unexpected, as 

previous thinking preferred a "metabolic grid" model of lignin biosynthesis. The 

function of CYP98A3 is to convert 5-0-shikimate and 5-0-quinate esters of trans-'p-

coumaric acid into the corresponding caffeic acid conjugates. Of these derivatives the 

shikimate ester is converted four times faster than the quinate ester. CYP983A has 

been localised to the vascular tissues in stem and root. 

12 



1.5.5 Fenilate 5 hydroxylase (F5H)fno EC) 

Ferulate 5 hydroxylase (F5H) catalyses the hydroxylation of the 5^ carbon of 

cinnamic acid to produce 5-hydroxy cinnamic acid. This is the rate-limiting step in 

syringyl lignin biosynthesis. There are exceptions to this; in the presence of 

coniferaldehyde, ferulate 5 hydroxylation does not occur in Liquidambar styraciflua 

(Osakabe et al 1999). The Arabidopsis mutant sinl (also known as fahl) is blocked in 

the conversion of ferulate to 5-hydroxyferulate (ferulate-5-hydroxylase (F5H)); the 

lignin of the mutant lacks sinapic acid-derived components typical of wild-type lignin, 

and the mutant lacks sinapyl esters which may play an important role in UV-B 

resistance (Chappie et al, 1992; Landry et al, 1995). The ferulate-5-hydroxylase was 

cloned by T-DNA tagging and was found to be a cytochrome P-450 monooxygenase 

(Meyer et al, 1996). F5H expression has been shown to parallel sinapate ester 

accumulation in developing siliques and seedlings oiArabidopsis thalaina (Ruegger 

et al, 1999). 

1.5.6 Coumarvl aldhyde 5 hydroxylase CAld5H 

From work by Osakabe et al (1999) it has been shown that in Liquidambar styraciflua 

CAldSH also catalyses the step attributed to F5H in some systems. CAldSH h ^ a km 

value 140 times greater than that of ferulate 5 hydroxylase making it a more likely 

catalytic partner for this step of the pathway. 

1.5.7 Methyl transferases 

Methyl transferases are enzymes that add on a methyl group at the 5,3 or 2 positions 

on the primary aromatic ring. They represent an important step in the pathway as their 

action is thought to be a major controlling factor in the distribution of H, G and S 

units. There are two parts of the pathway where methyl transferases operate, firstly in 

the conversion of the caffeic derivatives (acid, Co A, aldehyde, alcohol). The second 

place is in the conversion of 5-hydroxyferulic acid (5-HFA) derivatives to sinapoyl 

derivatives. 
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1.5.8 Caffeic acid 3-O-methvltransferase C-OMT EC 2.1.1.68 

CaGeic acid 3-0-methyltransferase (C-OMT), catalyses the conversion of caffeic acid 

to ferulic acid. The same enzyme is thought to be responsible for converting caflfeyl 

aldehyde to coniferaldehyde and caffoyl alcohol to coniferal alcohol. 

Two COMT classes (I and II) occur in tobacco {Nicotiana tabacum) (Maury et al. 

1999). Expression profiles upon tobacco mosaic virus infection of tobacco leaves 

revealed a biphasic pattern of induction for COMT II and I. COMTs eflSciently 

methylated hydroxycinnamoyl-CoA esters. COMT I was also active toward 5-

hydroxyconiferyl alcohol, indicating that COMT I that catalyses syringyl unit 

synthesis in planta and may operate at the free acid, CoA ester, or alcohol levels. 

COMT II was found to be highly inducible by infection and also accepted caffeoyl-

CoA as a substrate, thus suggesting a role in ferulate derivative deposition in the walls 

of infected cells. Elicitation has also been found to increase COMT activity in wheat 

(Maule and Ride, 1976) and in alfalfa (Goweri et al. 1991). 

There is evidence that just a few amino acid residues could determine O-

methyltransferase substrate preference. Wang and Pichersky (1999) demonstrated this 

using a hybridisation approach on two methyl transferases from Clarkia breweri ^ 

annual plant from CaUfomia. When seven crucial amino acids were rerqoved froir> 

(Iso)eugenol 0-methyltransferase (lEMT) and replaced with seven frOiQ caffeiQ acid 

0-methyltransferase (COMT) the resultant protein had activity with caffeic acid and 

hydroxyferulic acid. The converse was true as well making these amiho acids very 

important in the phylogenetic evolution of these enzymes. 

Recently, several groups (Oskabe et al. 1999, Li et al. 2000, Farvathi et al. 2001) 

have reported that the alfalfa 0-methyltransferase (OMT) has a substrate preference. 

This preference is for the alcohol and aldehyde precursors in the pathway that contain 

either the 3 or 5 hydroxyl motif (Caffeate and 5-hydroxyferulate), as opposed to the 

free acids. The protein exists as a dimer in solution and has a molecular weight of 43 

kD (Zubieta et al 2001). The crystal structure of OMT in alfalfa shows that 5-hydroxy 
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precursors are preferred over 3-hydroxy precursors as the position of the alpha 

hydrogen bond allows its sequestration closer to the catalytic site of the enzyme. In 

addition the propanoid tails of the precursors are bound in the active site, which 

shows specificity in the order of aldehyde-alcohol-acid thus explaining substrate 

preference. It is also reported that the use of the structural data enables them to design 

mutant plants with point mutations in the COMT enzyme. These mutants show 

complete losses of caflfeate binding. 

The divergence of COMT is quite great; examples have been cloned in many species 

including Pinus radiata, Habenero chile and Basil. The brown-midrib (bm3) mutation 

in maize and sorghum has been shown to be in the caffeic acid 3-0-methyltransferase 

structural gene responsible for converting cafifeate to ferulate (Vignols et al. 1995). 

This enzyme can utilize either caffeic acid or 5-hydroxyferulic acid as substrates (Tsai 

et al. 1995). However, the alfalfa enzyme has a preference for 5-HFA (Inoue et al 

1998). Suppression of the caffeic 0-methyltransferase gene in the xylem of quaking 

aspen results in novel phenotypes with mottled or red-brown wood (Tsai et al. 1998). 

A high amount of coniferyl aldehyde residues in the lignin is the origin of the red-

brown coloration (Tsai et al. 1998). 

All of the methyl transferases are S-adenosyl-L-methionine dependent. OMT is found 

in the xylem adjacent to the cambium, with no activity in the phloem. It appears that 

OMT could be a key factor that explains differences in lignin composition. The 

methylation of caffeic acid specifically is only catalysed by OMT from gymnosperms. 

Whereas angiosperm type OMT preferentially methylates 5-hydroxyferuUic acid over 

caffeic acid. It appears that bamboo OMT methylates both with equal eflRciency 

(Humpherys and Chappie 2002). However it does not necessarily follow that if a plant 

possess specific OMTs that these are the one controlling factor in the distribution of 

G, S and H units. 

In alfalfa Kersey et al. (1999) have localised both OMT and COMT to the cytoplasm 

of xylem parenchema cells these enzymes have also been found to a lesser extent in 

the cytoplasm of pMpepi cells of Medicago sativa L. It was found that there was i>o 

significant differei^ce tlj^ localisation pat|^m oftiiese two enzymes, which suggests 

a role in the lignific^jpi) pf alfalfa stem int^modes. 
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1.5.9 Caffeoyl CoA 3-O-inethvltransferase CCoAOMT EC 2.1.1.104 

The CCoAOMT of Vitis vinifera methylates both caffeoyl- and 5-hydroxyferuloyl-

CoA (Busam et al. 1997). The CCoAOMT of alfalfa has a preference for caffeoyl-

CoA (Inoue et al. 1998). CCoAOMT expression has been associated with 

lignification in several dicot species (Ye et al. 1997). In cell-suspension cultures of V. 

vinifera CCoAOMT activity is induced upon fungal elicitation (Busam et al. 1997). 

Treatment vwth a fungal elicitor, low concentrations of salicylic acid and some other 

inducers of the systemic acquired resistance (SAR) response, raised the abundance of 

transcripts of CCoAOMT (Busam et al. 1997). Tobacco plants that express antisense 

CCoAOMT show marked reductions in lignin content and altered lignin composition. 

In these experiments by Zhong et al. (1998); guaiacyl lignin was preferentially 

reduced, resulting in an increase in the syringyl / guiaiacyl ratio. 

When an aspen xylem cDNA library (Bugos et al. 1991) was screened with the Zinnia 

CCoA-OMT cDNA (Ye a/. 1994). A novel cDNA (Ptccomtl) was found that 

encodes a polypeptide of 247 amino acid residues with a predicted Mw of 28 kD. The 

deduced amino acid sequence is similar to other higher plant CCoA-OMTs including 

maize and parsley. The Aspen CCoA-OMT polypeptide also has significant similarity 

to Homo sapiens and Rattus norvegicus catechol OMT and Streptomyces 

mycarofaciens OMT (Meng and Campbell 1995). Should this similarity hold true for 

all plant CCoA-OMTs there is a reasonable chance for known inhibitors of catechol 

OMT in other systems being effective in the plant system. 
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1.5.10 4-coumarate CoA-ligase 4CL [EC 6.2.1.121 

The ligation of CoA glucose to the acids of the phenylpropanoid pathway is catalysed 

by 4CL. At least 3 forms of 4CL are found in poplar; all share similar 

hydroxycinnamic acid substrate specificities (4-coumarate >ferulate > caffeate), all 

are unable to utilise sinapate (AUina et al. 1998). The encoding of the 4CL enzyme is 

by a multi gene family in poplar (Allina et al. 1998). In Arabidopsis thaliana however 

the three forms of 4CL can be classified into two different classes (Ehlting et al 

1999). Class I 4CL are encoded by the transcripts of At4CLl and At4CL 2; based on 

their evolutionary characteristics and expression patterns they are likely to participate 

in lignin formation. At4CL 3 however, is an independent class of transcript that 

encodes a protein that has a role in the flavanoid bio synthetic pathway. However with 

the increased knowledge of the 3-hydroxylation step, it is possible that At4CL3 might 

be a significant part of the lignification pathway. 

Transgenic plants of tobacco in which the activity of 4-coumarate CoA-ligase is very 

low (due to down-regulation of the endogenous gene(s)) contain a novel lignin in their 

xylem. The levels of three hydroxycinnamic acids, pam-coumaric, ferulic, and 

sinapic, which were bound to the cell walls, were increased. Some of these 

hydroxycinnamic acids were linked to cell walls via ester and ether linkages (Kajita et 

al, 1997). In Arabidopsis antisense suppression of 4CL has resulted in a transgenic 

plant with a large decrease in guiaiacyl (G) to syringyl (S) lignin units. This suggests 

that there is an uncharacterized metabolic route to sinapoyl alcohol that is independent 

of 4CL (Lee et al, 1997). 
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1.5.11 Cinnamyl CoA reductase CCR (EC. 1.2.1.44) 

CCR is the enzyme that diverts the general phenylpropanoid intermediates toward the 

accumulation of monolignols by reducing the CoA esters to their aldehyde form. 

Two full length cDNAs have been isolated from Maize by Pichon et al (1998). These 

two cDNAs designated ZmCCRl and ZmCCR2 exhibit 73 % sequence conservation 

at the nucleotide level for their coding regions and are relatively divergent at their 5'-

and 3'-untranslated regions. They both contain a common signature, which is thought 

to be involved in the catalytic site of CCR. Northern blot analysis indicated that 

ZmCCR2 was expressed at very low levels in roots whereas ZmCCRl was widely 

expressed in different organs. The high level of ZmCCRl gene expression along the 

stalk suggests that the corresponding enzyme is probably involved in constitutive 

lignification. 

CCR is thought to be a monomeric protein with molecular weight of 36-40 kD. 

Recently SelmanHousein et al (1999) have cloned a full-length cDNA from sugar 

cane that encodes for a protein of 40 kD. 

Ralph et al (1998) found that lignin content was reduced in antisense-CCR tobacco, 

which displayed a markedly reduced vigor. The lignin contained fewer coniferyl 

alcohol-derived units and significant levels of tyramine ferulate, Tyramine ferulate is 

a sink for the anticipated build-up of feruloyl- SCoA, and may be up-regulated in 

response to a deficit of coniferyl alcohol. 

Piquemal et al (1998) have transformed tobacco plants with antisense constructs and 

have examined lignin content and composition in the progeny of primary 

transformants down-regulated for CCR activity and exhibiting one single T-DNA 

integration locus. AH CCR down-regulated lines displayed common features, such as 

an orange brown coloration of the xylem cell walls, an increase in the syringyl over 

guiaiacyl (S/G) ratio, and the presence of unusual cell wall bound phenolics. The less 

severely depressed lines exhibited a normal phenotype and a very slight reduction of 

the thioacidolysis yield, which is an indication of the abundance of the beta-0-4 

linkages in lignin. The line with the most severely depressed CCR activity exhibited a 
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strong reduction in lignin content together with altered development (reduced size, 

abnormal morphology of the leaves, collapsed vessels). 

CCRs activation appears dependant on what substrates are available; this depends on 

the species of plant. Most angio sperms produce sinapoyl Co-A, thus this is the route 

taken to produce the corresponding aldehydes (Barber and Mitchell 1997). 

When tobacco plants that carry an antisense construct for CCR are crossed with those 

containing an antisense construct for CAD, the result is a major loss of lignin content. 

Under controlled conditions these plants exhibit normal developmental 

characteristics, thus giving some hope toward reducing lignin for environmental and 

biotechnological applications (Chabbenes et al 2001). 

1.5.12 Cinnamyl-Alcohol Dehydrogenase CAD EC 1.1.1.195 

Cinnamyl alcohol dehydrogenase is the enzyme that catalyses the production of the 

final primary alcohols at the end of the phenylpropanoid pathway. From this point the 

alcohols are converted into the lignin polymer. 

CAD isoforms have been found in a number of species including wheat, eucalyptus, 

soybean and bean (Ros Barcello et al. 1995). Expression of different iso forms of 

CAD with different substrate specificities is a potential mechanism for control of 

lignin heterogeneity (Campbell and Sederoff 1996). CAD has been confirmed to be a 

dimeric protein of 63-84 kD with sub units of 38-45 kD. Extensive polymorphism has 

been found in angio sperm CAD. This leads to great difficulty in determining the 

substrate specificity of CAD. 

In wheat Mitchell et al. (1994) showed that there are three different forms of CAD 

(CAD A CAD B and CAD C). Only CAD C was found to be responsive to eHcitors. 

Its preferred substrate was sinapyl alcohol: this correlates well with the deposition of 

defence related syringyl residues in wheat. 

CAD has been found in sub epidermal layers of roots and shoots, xylem elements and 

phloem fibers and is localised in the cytoplasm (Ros Barcello et al. 1995). 
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1.6 The role of defence related tignification. 

1.6.1 The defence response to pathogens 

Plants possess many ways to defend themselves against pathogens; these responses 

may be constitutive or induced. Constitutive structures include the waxy surface of 

the plant and the cuticle that cover the epidermal cells. These provide a barrier to 

fungal attachment and penetration. Other structural barriers to pathogen ingress form 

during the defence responses to pathogens such as cork layers beyond the point of 

infection, tyloses that form from overgrowths of the protoplast into the xylem and 

gums that form in intracellular spaces. In particular, an abscission layer often forms in 

healthy layers adjacent to lignified cells in order to completely isolate or excise the 

affected area of the plant. In the plant cell the outer layer of the cell wall swells and 

produces an amorphous, fibrilar material that surrounds and traps bacteria to prevent 

their multiplication. This material is cellulosic but infused with phenolic substances. 

Papillae made from caUose often are deposited in frmgal plant interactions, on the 

inner side of the cell wall and appear to repair or prevent cellular damage. In some 

cases a sheath or lignotuber forms around penetrating fimgal hyphae and phenolic 

substances infuse into it (Agrios 1993). The rigid lignin polymer is also believed 

(through its lack of biodegradability) to be a structural chemical barrier to pathogen 

ingress (Ride 1983). Other specific constitutive responses include the cytoplasmic 

defence reaction that occurs in conditions of weakly pathogenic fungal-plant 

interactions the cytoplasm surrounds the pathogen and enlarges along with the 

nucleus, this eventually causes disintegration of the fungal mycelium (Reviewed by 

Hooker 1974). The hypersensitive response involves the death of the cell that the 

pathogen has ingressed into. When the pathogen contacts the protoplast of the cell, the 

nucleus moves toward the pathogen and disintegrates leaving a browning 

discolouration of the cytoplasm. The hypersensitive response destroys aU membranes 

in contact with the pathogen and the cell dies, the pathogen can then no longer 

proliferate in the plant. This is a very common form of plant defence and is highly 

effective as the faster the invaded cell dies the more resistant to infection the plant 

appears (Agrios 1993). 
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1.6.2 Biochemical inhibitors of pathogens 

Some common phenolic compounds notably Catfeic acid (produced by the 

phenylpropanoid pathway) accumulate at a faster rate after infection in resistant 

plants. Recently, the anti-microbial potential of several intermediates of the 

phenylpropanoid pathway has been determined Barber et al. (2000). 

Some phenolics are linked to sugars such as glucose, when glucosidases, released by 

some bacteria and fungi are present; the toxic phenolic compound is released and 

causes damage to the pathogen. Polyphenyloxidases play a role in defence by 

oxidising phenols to quinones that are often more toxic than the original phenols. In 

particular peroxidases catalyse the production not only of phenolics but increase the 

rate of polymerisation of phenols into lignin and lignin like substances. 

1.6.3 The synthesis of defence related lignin 

Although plants naturally possess lignin and the compounds of the general 

phenylpropanoid pathway, defence related lignin must be induced or elicited by a 

challenge by a stimulus of microbiological origin. The compounds that do this are 

termed elicitors. Examples of these include extracellular fungal proteins, (Ricci et al 

1989) chitin oligomers (Barber and Ride 1988) and fiingi themselves (Ride 1975). 

They act as the starting point in a range of defence responses in plants. The early 

events in these responses can include protein phosphorylation, high calcium influxes, 

hydrogen, potassium and chloride effluxes, plasma membrane depolarisation and 

activation of NADPH oxidases, which produce active oxygen species. Later events 

include the elicitation of PAL, C4H, 4CL, CAD and more than likely all the other 

enzymes of the phenylpropanoid pathway (Somssich and Halbrock 1998). 

First indications of the significance of the liginification pathways significance to 

defence were observed in experiments with Botrytis cinerea where autoradiography of 

the ultrastructure of wounded wheat leaves revealed significant deposits of 

lignification that prevented ingress of the non host pathogen B. cinerea (Maule and 

Ride 1982). Further experiments revealed that the activation of Cinamate 4 

Hydroxylase and Coumarate Co-Enzyme A Ligase were both important in producing 

the lignification response in response to challenge with B. cinerea in wheat (Maule 

and Ride 1983). Cellular ligninification was also shown to be a major factor in the 

hypersensitive resistance to stem rust in wheat (Beardmore et al. 1983). CAD and its 
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specific forms e.g. CAD C, which is specific for swingyl units have also been found 

to be defence related (Barber and Mitchell 1998). 

In relation to these later events much work has been done on the localisation and 

nature of the response. It has been found that cinnamic acids incorportate into cell 

walls under conditions of elicitation after 24 hours. These acids are esterifed rather 

than lignified in nature, thus raising the question why. An answer is that the acylation 

of these acids protects them fi-om the hydro lytic enzymes of pathogenic fimgi in the 

first stages of the interaction. This acylation is a process that is thought to be random 

throughout the cell wall whereas Hgnification is perceived to stem from a cell comer 

using hydroxycinnamic acids as an anchoring site. Acylation is reported to give 

mechanical rigidity to the cell wall thus giving some protection to the aforementioned 

oxidative burst generated active oxygen species. In addition, hydroxycinnamic acids 

are thought to work as scavengers of radicals: this is also postulated as one of the 

phenomena that help the plant survive the oxidative burst Matem and Grimmig 

(1993). 

Coumaroyl and femloyl wall esters may also play a role in the defence response. 

These compounds, under physiological pH conditions change to 4-

hydroxybenzaldehyde and vanillin. This is important because these are compounds 

that have antimycotic potential Matem and Grimmig (1993). The antimicrobial 

compounds that are actively produced in plants are known as phytoalexins. A great 

many exist such as pistain in pea and wyerin in bean, however none have been 

described in wheat to date. 

1.6.4 Defence vs developmental lignin. 

There may be a difference in the forms of lignin that are elicited by microbial attack 

and those forms deposited during development. Walter (1992) refers to several papers 

on the nature of lignin induced by defence responses. For instance in radish root cells 

it has been found that high amounts of syringyl units are found on vessel walls 

whereas guiaiacyl lignin predominates in the parenchyma. In cucurbits, material that 

was rich in coumaryl moieties but poor in guiaiacyl units was found in response to 

infection. In wheat, a higher proportion of 4-coumaryl and syringyl units have been 

22 



found in cells infected by fungi. Walter (1992) criticises the available literature, as 

developmental lignin has not been distinguished from pathogen related "defence" 

lignin thus making it harder to know if there is really a difference between the two. 

Lignin and lignification are clearly important processes in plant defence and further 

understanding of the nature of this response by careful manipulation of the 

phenylpropanoid pathway may lead to some insights into the way the response 

functions in wheat. It is also possible that information gathered in this study may aid 

the ability of agro-industrial companies to evaluate the best options for lignin 

manipulation in other plant species. 

1.7 Artificial manipulation of lignification 

The goal of lignin reduction can also be applied in an agro-industrial context, mainly 

in two areas, the increase in the digestion of forage crops and the reduction of lignins 

for kraft pulping methods (paper making). These two goals are not necessarily 

mutually exclusive however, care must be taken to ensure that transgenic or 

biochemically modified plants going toward these processes are not altered in their 

susceptibility to biotic attack. 

1.7.1 Forage crops digestion 

If lignin is reduced in forage crops such as wheat or grasses, it is thought that the 

digestibility of the fodder wiU increase, thus increasing weight gain for the animal in 

question and less requirement of feed reducing the primary costs of farming, or 

alternatively allowing more animals to be fed with the same amount of feed. 

Lignin interferes with the digestion of cell-wall polysaccharides by acting as a 

physical barrier to digestive enzymes. Lignification therefore has a direct and often 

important impact on the digestible energy (DE) value of the forage. 

Using chemical composition and in vitro digestibility data from temperate and 

tropical forages Traxler et al (1998) have developed relationships between indices of 

lignification and forage indigestible Neutral detergent fibre (NDF). Indigestibility was 
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shown to increase nonlinearly as the lignin concentration of the NDF increased. 

Differences in estimated indigestible NDF using equations developed for a specific 

forage class (C-3 and C-4 grasses and legumes) were small and are probably not 

biologically significant when compared to those estimated from a common equation. 

Selected equations were compared with the Cornell Net Carbohydrate and Protein 

System (CNCPS) for the prediction of average daily growth (ADG). Despite some 

discrepancies in the methods of obtaining lignin measurements it can be shown in this 

work that lignin and forage crop digestibility are well related. 

1.7.2 Paper making 

The reduction of lignins for kraft pulping would reduce the amount of 

environmentally undesirable chlorine containing waste that it is present in the 

chemical treatments used for eliminating lignin. The market for these types of woods 

is increasing with the advent of medium-density fibres (MDF) for domestic use. 

Hu et al (1999) have made some progress with their transgenic studies on aspen 

down-regulation of 4CL reduces lignin by 45 % and increases cellulose by 15 %, also 

the lignin esters moved to the cell wall providing some support, thus reducing the 

effects on hydrostatic pressure due to the loss of lignin. 

In work by Lapierre et al (1999) the downregulation of COMT led to a non-reduction 

in lignin but a decrease in the efficiency of kraft pulping, due to a dramatic increased 

the frequency of guaiacyl units and resistant biphenyl linkages in the lignin present. 

However a severely depressed line where CAD had been downregulated did not 

change the frequency of labile ether bonds or guaiacyl units in lignin, it increased the 

proportion of syringaldehyde and diarylpropane structures and, more importantly with 

regard to kraft pulping, of free phenolic groups in lignin. This means that free 

phenolic units were created, this aided lignin solubilization and fragmentation during 

kraft pulping. 
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1.8 Manipulation of defence related lignification in wheat 

Clearly, the pathway that forms lignin is stiU a complex and unresolved puzzle. The 

present trend is to try to manipulate the pathway not only to discover its nature but 

also for biotechnological goals as outlined above. By manipulating purely defence 

related llgnin it may be possible to add to the understanding of some of the underlying 

mechMsms that control this particular phenomenon. This may allow some insight 

into t6e relative importance of some of the enzymes and metabolites of the pathway in 

the production of the defence related ligniGcation response in wheat. 
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Chapter 2 Development of a quantitative assay for induced 

lignification in wounded wheat leaves. 
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2.1 Analysis of lignin 

The analysis of lignin is extremely difficult due to the high molecular weight, mass, 

insolubility and multiplicity of the functional groups and bonding patterns 

occurring in lignin (Ros Barcleo 1997). There are many analytical methods, some 

histochemical, some extractive, some qualitative and some quantitative. 

As lignification is one result of the hypersensitive response to pathogens, it is 

important to be able to quantitatively analyse the amount, deposition and 

composition of the polymer. This would allow the quantitation of the level of plant 

resistance to a pathogen and the nature of the lignification response present. 

However, the analysis of lignin has been reviewed aU methods have relative 

advantages and disadvantages associated with the particular technique Boudet et al 

(1995). Some methods are so invasive and destructive that no single method can 

provide a complete analysis of lignin. 

2.2 Histochemical techniques 

Specific histochemical tests give information about the localisation and sometimes 

the composition of the lignin barrier. The chlorine sulphite method, (Campbell 

1937) is specific for syringyl groups and has been used to locate in situ syringyl 

groups in defence related lignin in wheat (Ride 1975). This technique is only 

appropriate for those lignin compositions rich in syringyl moieties, which is a 

disadvantage for total lignin quantification. 

The reaction involving O-toluidine blue turns Ugnified ceU walls blue and cellulose 

cell walls purple (Salisbury and Ross 1992). Toludine is an aromatic amine that 

also turns glucose residues green; tliis could lead to some confusion particularly in 

wounded tissues. 

Another histochemical stain that has been used is the phloroglucinol (HCl) test; this 

test turns lignified cell walls red. Ride and Pearce (1975) found that this test for 

cinamaldehyde end groups in lignin did not react with papillae haloes or lateral 

walls in wheat tissues infected with Botrytis cinerea. 
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Other stains include Lignin pink and fast red GG salt (p-Nitrobenzene diazonium 

tetrafluoroborate) in 0.1 mM phosphate buffer Barber and Ride (1987). 

Lignin autofluoreses blue under UV light, this has been used for quantitative 

purposes. This property allows the variation in lignin depositions to be more 

closely studied than with invasive methods. It could be that more advanced forms 

of microscopy could conceivably be used for lignin such as confocal microscopy 

which may allow the imaging of the build up of lignin in a 3D environment. 

More recently Kapat and Dey (2000) have developed a specific detection method 

for lignin using polyclonal antibodies raised against BSA coupled lignin. This 

method was found to be highly sensitive and linear in enzyme linked 

immunosorbant assay (ELISA) within the coating lignin concentration range of 

0.01 lag ml"̂  to 1 fxg ml"'. 

2.3 Extractive techniques 

Chemical techniques such as nitrobenzene oxidation, permanganate oxidation, 

acidolysis and thioacidolysis can all be used to determine the monomeric 

composition of Hgnins (Ros BarceUo 1997). 

The Klason lignin process involves vigorous treatment with ethanol, Sodium 

Dodecyl Sulphate and Sodium hydroxide in ethanol. After these treatments leaves 

are put into 72 % (v/v) Sulphuric acid solution and refluxed for 4 hours and filtered 

onto a glass fibre disc. The disc is then washed at 80 °C and then dried at 105 

the mass of the solid residue remaining is calculated. This is the amount of lignin 

per gram fi-esh weight (Ros Barcello 1997). 

The acetyl bromide method consists of the solubilization of lignins with acetyl 

bromide in glacial acetic acid. This method is only appropriate for brassicas and 

legumes that have lignified cell walls in tissues that do not contain significant 

amounts of ester bound cinnamic acids (Ros Barcelo 1997). 
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Nitrobenzene oxidation is commonly used as a determination for the monomeric 

composition of lignins; lignified cell walls are treated with nitrobenzene in sodium 

hydroxide. This releases the lignin monomers as hydroxybenzaldehyde (H), 

vanillin (G) and syringaldehyde (S). The relative abundance of these monomers can 

then be quantified by HPLC. The drawback to this method is that cell wall 

phenolics such as coumaric acid and ferulic acid interfere with the assay as they are 

oxidised to benzaldehydes. Nitrobenzene oxidation causes shortening of lignin side 

chains, thus no information on functionality and interconnections can be derived 

from this method (Ros Barcello 1997). 

Thioacidolysis involves soIvolysis of lignin in dioxane or ethanethiol, which breaks 

the structure into thioethylated H, G and S monomers. This method provides 

information on the core lignin structure and on the nature of C-C and C-O-C bonds. 

This method does not have the drawback of interference by other cell wall 

phenolics Ros Barcelo (1997). 

2.4 Assay of Barber and Ride 

The most quantitative assay for induced lignification in wounded wheat leaves is 

that of Barber and Ride (1987). The method involves killing and decolourising 

leaves by boiling in ethanol. Phenolic compounds are then extracted by incubating 

in 0.5 M NaOH in ethanol. After washing, leaves are stained withp-

nitrobenzenediazonium tetrafluroborate, blotted and dried. Gel scanning was then 

used to make a linear trans-section through the leaf wound; this can then be used as 

a basis of comparison between wounds. 

2.5 Aim 

The aim of this section is to improve the assay of Barber and Ride (1987) to 

provide a simpler method of quantifying the relative amount of lignin deposited 

during the elicitation of a defence response to a non-pathogen. 
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Materials and Methods 

2.6 Chemicals and reagents 

Agar No 2 

Malt extract agar 

Myco logical peptone 

Silwet 

Levington F2 compost 

Sodium Hydroxide 

Ethanol 

p-nitrobenzenediazoniumtetrafluoroborate (fast GG) 

Phosophate buffer 

Oxoid 

Oxoid 

Oxoid 

Dr M.S.Dixon, Southampton University 

Levington Seeds 

Fisher Scientific 

Fisher Scientific 

Sigma Aldrich 

Fisher Scientific 

Treatment of fungi 

2.7 Culture of Botrytis cinerea 

Botrytis cinerea (Dr C. Jackson Southampton University, UK) was grown on 3.0 % 

(w/v) malt extract agar with 0.5 % (w/v) myco logical peptone and 1.5 % (w/v) agar 

No 2. The media was autoclaved at 15 psi 115 °C for 10 min. This agar 

composition facilitated high levels of sporulation (Galloway and Burgess 1952). 

Spore suspensions were prepared by washing 10-day-old plates of B. cinerea in 

0.0001 % (v/v) silwet. Spores were washed twice with sterile distilled water by 

centrifugation for 1 min at 11 200 g. Spore density was adjusted to 1 x 10^ spores 

ml"' using a haemocytometer. 

Treatment of plants 

2.8 Growth of plant material 

Seeds of Triticum aestivum c.v. Brigadier (Dr R. Stratford, Monsanto, UK) were 

grown in Levington Professional F2s compost in a plant growth room at 22 °C with 

lighting providing a 16 h photoperiod. Seeds were sown adjacent to the long side 

of the seed trays (35 by 22 cm). All experiments were performed on 10 days old 

primary leaves. 
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2.9 Bioassav Preparation 

Primary leaves were taped horizontally without detaching them from the plants, on 

a rigid plastic sheet and wiped with a tissue soaked in 70 % (v/v) ethanol to reduce 

microbial contamination of the surface. The leaves were wounded by compression 

using a 3 mm diameter metal rod, each leaf receiving five wounds approximately 

0.5 cm apart, the first being 1.5 cm from the tip. Drops (10 piL) of distilled water 

containing the compound in question at 0.2, 1.0, 5.0 mM and in a spore suspension 

of Botrytis cinerea (1x10^) spores per ml were placed on each wound. Similarly, 

10 pi drops of Botrytis cinerea suspension alone and distilled water alone were 

used as positive and negative controls. The treatments were then left for the allotted 

time for the assay under clear plastic bags. During the course of the treatment, 

should the leaf drops appear to dry off, the wounds were re-inoculated with 10 pT 

distilled water per wound (Barber 1987). 

2.10 Lignin staining by p-nitrobenzene diazonium tetrafloroborate - Fast GG 

Treated leaves were excised and boiled in two washes of 70 % (v/v) ethanol. 

Unbound phenolic residues were extracted by boiling with 0.5 M NaOH in 70 % 

(v/v) ethanol for 1 h. The leaves were then washed for 2 h in distilled water and 

stained with 0.5 % (w/v) p-nitrobenzenediazoniumtetrafluoroborate (fast red GG 

salt) in 0.1 M pH 7.0 phosphate buffer to produce rings of lignification. The leaves 

were left in 70 % (v/v) ethanol and dried at room temperature. A digital scan was 

taken using a video camera of the wheat leaves and a quantitative measurement of 

the density of black pixels around the wound area taken. Values obtained from B. 

cinerea innoculated leaves was set as 100 % and used as the basis for reduction in 

lignification using the value obtained for water treated leaves as 0 %. 
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2.11 The determination of lignin by the scanning densitometric method. 

Scanned leaves were visualised with the alpha imager software package (Alpha 

Image, UK), using set parameters. The filter was set to chemiluminescence, all 

illumination was switched on, (diaphragm level 16), zoom was set to max, (level 

75) and focused to a clear image (level 3). The alpha ease software enhanced the 

picture (level 4) and the images were stored as a Tagged Image File Format (TIFF). 

Leaves were scanned and measured using the alpha imager software package to 

determine pixel density. Measurements were taken from wounded leaves inoculated 

with 1 X \0^B. cinerea spores produced strong rings of lignification (Figure 2.1). 

This was used as a basis for levels of biochemical inhibition of lignification and 

comparisons were made between treatments with a repetition of five wounds per 

leaf and four leaves per treatment. 
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Method development 

2.12 Development of the scanning densitrometric method. 

In order to improve the quantification of the lignification response at wound 

margins it was necessary to modify the assay of Barber and Ride (1987). The 

original staining method for lignification was retained and the image was captured 

in grey scale using a video scan (Figure 2.1). 

The alpha imager software spot densitometry package was used to draw (toolbar 4) 

two computer generated concentric circles around the lignin ring image (Figure 

2.2). The outer concentric circle (objective) was a measurement that calculated a 

count of aU the pixels in its area and marked them on a scale between 255 (Black) 

and 0 (white). This gave the integrated density value (IDV) for the area. Similarly, 

the inner concentric circle (background) calculates the IDV for its area. The outer 

concentric circle was linked (using the software package) to the inner concentric 

circle by clicking on the link background option (toolbar 4). This subtracted the 

count for the inner circle (background) fi"om that of the outer circle; giving the IDV 

value for the ring produced by lignification at the wound margins. 

The software allowed an exact copy to be made of the two concentric circles so that 

the area analysed for each wound was identical for each measurement. The 

measured area of the ring was therefore standardised and it was possible to use the 

IDVs to compare the dififerences in lignification between wounds by different 

treatments that may affect lignification. 
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Lignin deposition 

Figure 2.1 Grey scale image of Lignin deposition at wound margins induced by 

Botrytis cinerea on wheat leaves after 48 h. Leaves were stained with fast red GG 

salt and scanned using the alpha imager software package; Arrow indicates lignin 

deposition at wound margin. Bar = 5 mm 
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Objective 

Background 

Figure 2.2 Grey scale image of Lignin deposition at wound margins induced by 

Botrytis cinerea on wheat leaves after 48 h; with overlaid software based 

measurement. Leaves were stained with fast red GG salt and scanned using the 

alpha imager software package, bar = 5 mm, Objective, outer concentric circle 

count of pixels; Background, inner concentric circle count of pixels. 
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2.13 Analysis of lignification at wound margins 

2.13.1 Fungal data 

Wounding alone can also induce lignification; to account for this a negative control 

of distilled water was used in place of the fungal spore suspension. To account for 

wounding the average IDV for distilled water treated wound margins was 

subtracted fi-om the individual IDV for each B. cinerea inoculated wound margins. 

This gave the IDV (therefore the amount of lignification) induced by B. cinerea 

alone. The average IDV due to B. cinerea alone was calculated fi-om 20 wounds 

and used as the base to calculate the percentage lignification by converting the IDV 

induced by B. cinerea alone into a percentage (Formulae A). Consequently, the 

average of all of the results is 100 % as it is the maximum lignification induced by 

B. cinerea alone in this system. 

A. Fungal data: 

Individual IDV(5. cinerea) - average IDV (water) = IDV by B. cinerea alone 

IDV (B. cinerea alone) X 100 = % lignification {B. cinerea) 
average IDV (5 .cmerea alone) 

Example analysis 

These calculations show the fluctuations in lignification apparent between wound 

margins on the same leaves. Lignification due to the presence of B. cinerea alone at 

48 h on leaf (1) varies between 58 and 146 % on five wounds. Lignification due to 

the presence of B. cinerea alone at 48 h on leaf (2) varies between 75 and 181 % on 

five wounds. Lignification due to the presence of B. cinerea alone at 48 h on leaf 

(3) varies between 23 and 146 % on five wounds. Lignification due to the presence 

of B. cinerea alone at 48 h on leaf 4 varies between 23 and 146 % on five wounds 

(Table 2.2). 
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Table 2.1 Sample data set of integrated density values obtained by inoculation 

of wounded wheat plants with B.cinerea: Leaf, T. aestivum 10-day-old leaf; 

Wound, compression wound; Individual IDV, IDV per wound; Average IDV 

(Water), Average integrated density value for wounded leaves with distilled water; 

Individual IDV {B. cinerea alone), IDV subtracted by average IDV (Water); 

Percentage lignification (B. cinerea), degree of ligniJScation per wound {B. cinerea 

- 100 %). 

Leaf Wound Individual 
IDV 

Average 
IDV (water) 

Individual IDV Percentage lignification 
{B. cinerea alone) (B.cinerea) 

1 60781 34229.3 2655L7 146 

2 51184 34229.3 16954.7 93 

1 3 51184 34229.3 16954.7 93 

4 44786 34229.3 10556.7 58 

5 51184 34229.3 16954.7 93 

6 67179 34M&3 32949.7 181 

7 60781 34229.3 26551.7 146 

2 8 60781 34229.3 26551.7 146 

9 47985 34229.3 13755.7 75 

10 47985 34B9J 13755.7 75 

11 60781 34229.3 26551.7 146 

12 51184 34229.3 16954.7 93 

3 13 38388 34229.3 4158.7 23 

14 44786 34229.3 10556.7 58 

15 51184 34229.3 16954.7 93 

16 60781 34229.3 26551.7 146 

17 57582 34229.3 23352.7 128 

4 18 54383 34229.3 20153.7 111 

19 47985 34229.3 13755.7 75 

20 38388 34229.3 4158.7 23 

Average IDV {B. cinerea) = 18234.3 Average % lignification {B. cinerea) = 100 % 

36 



2.13.2 Treatment data 

In order to calculate the effect of a treatment on lignification; data from the 

scanning densitrometric assay were entered into formulae A in place of data 

obtained from the effect of 5. cinerea alone (formulae B). When combined with 

data for the positive control {B. cinerea alone) the effect of the treatment on the 

level of lignification induced by the presence of the fungus was shown. As average 

IDV {B. cinerea alone) is a maximum level of lignification the average of the 

results obtained for the treatment show a difference equivalent to the level of its 

effect on lignification. 

The data from experiments where treatments were incorporated into the assay (such 

as the PAL inhibitor AIP; see results Chapter 3) was handled in the exact same 

manner as outlined above, with the treatment data replacing that of the fungus in 

the calculation. However, the Average IDV {B. cinerea alone) from formulae A 

was used to calculate percentage lignification. Therefore the result obtained by 

Average IDV {B. cinerea alone) acts as a positive control for the effect of the 

treatment in question (formulae B). Consequently, the average of the results is 

dependent on the difference between the treatment and the positive control. 

B. Treatment data: 

Individual IDV (Treatment) - Average IDV (water) = IDV by treatment alone 

IDV (Treatment alone) X 100 = % lignification (treatment) 

average IDV {B. cinerea alone) {A} 

Average (n=20) = percentage lignification 

Example analysis 

These calculations show the fluctuations in lignification apparent between wound 

margins on the same leaves. Lignification due to the presence of 0.2 mM AIP and 

B. cinerea alone at 48 h on leaf 1 varies between -30 and -100 % on 5 wounds. 

Lignification due to the presence of 0.2 mM AIP and B. cinerea alone at 48 h on 

leaf 2 varies between -82 and -12 % on 5 wounds. Lignification due to the presence 

of 5. cinerea alone at 48 h on leaf 3 varies between -170 and -47 % on 5 wounds. 

Lignification due to the presence of B. cinerea alone at 48 h on leaf 4 varies 

between -153 and -30 % on 5 wounds (Table 2.2). 
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Table 2.2 Sample data set of integrated densit) values obtained by inoculation 

of wounded wheat plants with B.cinerea in the presence of ATP 0.2 mM: Leaf, 

T. aestivum 10-day-old leaf; Wound, Consecutively numbered wound obtained by 

compression using a metal stake; Water controls, Average integrated density value 

for wounded leaves treated with distilled water; IDV-Water, Integrated density 

value subtracted by average IDV from water controls; Percentage lignification 

accumulation. Relative contribution to total lignification {B. cinerea =100 %). 

Leaf Wound Individual Average Individual IDV Percentage lignification 
IDV IDV (Water)(5. cinerea alone) (treatment) 

1 25592 34229.3 -8637.3 -47 

1 
2 28791 34229.3 -5438.3 -30 

1 
3 22393 34M9J -11836.3 -65 

4 15995 34229.3 -18234.3 -100 

5 19194 34229.3 -15035.3 -82 

6 31990 34229.3 -2239.3 -12 

7 22393 34229.3 -11836.3 -65 

2 8 22393 34229.3 -11836.3 -65 

9 19194 34229.3 -15035.3 -82 

10 19194 34229.3 -15035.3 -82 

11 12796 34229.3 -21433.3 -118 

12 3199 34229.3 -31030.3 -170 

3 13 6398 34229.3 -27831.3 -153 

14 9597 34M9J -24632.3 -135 

15 25592 34229.3 -8637.3 -47 

16 19194 34229.3 -15035.3 -82 

17 6398 34229.3 -27831.3 -153 

4 18 12796 34229.3 -21433.3 -118 

19 25592 34229.3 -8637.3 -47 

20 28791 34229.3 -5438.3 -30 

Averages -15355.2 -84.15 
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2.13.3 Calculation of lignification reduction or accumulation 

A final value for the percentage reduction or accumulation in lignification is 

obtained by subtraction of the average percentage lignification value for the 

treatment fi-om the B. cinerea alone value (Formulae C). To check the statistical 

significance of the results, a 1 tailed t-test was calculated for the data (Table 2.3). 

Conversely because of the nature of the calculation if the data produced by the 

treatment is negative i.e. less than the water controls then the result would be 

recorded as an over 100 % reduction in defence related lignification. 

C. Calculation of lignification reduction or accumulation 

% lignification {B. cinerea) - % lignification (treatment) 

= % accumulation or reduction of lignification 

Example analysis 

Treatment with B. cinerea alone to wounds on wheat plants results in a 100 % 

response of defence related lignification on wound margins. Treatment with 0.2 

mM AIP with B. cinerea after 48 h results in an average -84 percent defence related 

lignification response. Subtracting the result fi-om (100 %- -84 %) results in a 184 

% reduction in defence related lignification in the presence of this inhibitor. This is 

recorded as a greater than 100 % reduction of lignification for simplicity. 
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2.14 The accumulation of lignin 

Induced lignin is known to increase over time; 48 h was picked as an appropriate 

time to measure lignification due to the strong results shown (Figure 2.1). By using 

the result at 48 h as 100 % measure of lignification an estimate can be made of 

when defence related lignification i.e. an amount of lignification above the stimulus 

induced by wounding alone has accumulated. 

The accumulation of lignin iti wounded wheat leaves increases in a linear fashion 

with time (R^ 0.9495), as such it is appropriate to relate values obtained from the 

scanning densitrometric analysis to time points along the linear regression line 

shown by use of the equation y = 2.5856x - 40.868. The Hne of accumulation of 

lignin passes through the origin after 20 h; after this point the lignin synthesised can 

be interpreted as defence related only, rather than as a response to wounding alone 

(Figure 2.3). 
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Figure 2.3 Time course of accumulation of lignin due to inoculation with B. 

cinerea in wheat leaves based on that observed at 48 h. Data is expressed as 

percentage accumulation of lignin based on IDV values for B. cinerea at 48 h (100 

%) and water alone at 48 h (0 %). Error bars represent standard errors of the mean 

(n = 20); Green dashed line represents the trend of linear regression (R^ 0.9495); 

Equation, y = 2.5856x - 40.868; (*), significant difference ixom lignification at 48 

h. 
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2.15 Discussion 

By localising the lignin wound and taking away the background measurement 

(Figure 2.2) it can be seen that the estimated lignification will only be that which is 

directly associated with the defence response, i.e. by fungal induction. The gel-

scanning assay of Barber and Ride (1987) does not allow for this, being a measure 

of lignification per leaf The lignification per wound margin is a more reliable 

estimate of total lignification and allows higher numbers of replications per 

treatment. The throughput of analysis is significantly improved; four leaves gave 

four results in the assay of Barber and Ride (1987) and four leaves give 20 results 

in this scanning densitrometic assay. 

As a specific template can be drawn and measured each time for each treatment, 

complete reproducibility can be maintained between treatments. Slight variation 

can still occur as wheat leaves grow differently after germination, perhaps due to 

intergenic differences. 

Another improvement of the assay is in the areas of file storage and of access to 

information. These can be stored on computer and the software allows the gel 

scanning data to be directly imported into a spreadsheet for manipulation purposes. 

The use of this assay is demonstrated by the accumulation of lignin (Figure 2.3). It 

is now possible to model how much a non-pathogen directly induces lignin over 

time post inoculation as only that lignin produced in response to the non-pathogen 

is measured. The accumulation of lignin shown (Figure 2.3) is the accumulation 

from two potential stimuli wounding and the presence of a non-pathogenic ftingus. 

However, wounding itself appears to induce a small level of lignification, from this 

graph it may be as much as 25 %. This correlates with reports of wounding leaves 

of Triticum aestivium induced lignification Ride and Barber (1987). 

It is probable that for ftirther validation a technique such as the nitrobenzene 

oxidation or the thioglycoUic acid extraction procedure might be required to 

completely relate the defence related values to actual lignin composition. As 
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however the original leaf scanning assay of Barber and Ride (1987) has been 

validated in this way it is unlikely that the results would differ. 
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Chapter 3: Biochemical inhibition of the phenylpropanoid pathway 

enzymes. 
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3.1 Manipulation of the phenylpropanoid pathway 

The phenylpropanoid pathway is clearly a complex and unresolved puzzle, as 

highlighted in the general introduction. There are three avenues that are employed to 

manipulate and study phenylpropanoid metabolisms; transgenic manipulation, the 

study of natural mutations and biochemical inhibition. This study will focus on 

specific biochemical inhibitors to the enzymes of the phenylpropanoid pathway. 

3.2 Occurrence of natural mutation 

Within generations of plants deletion or loss of gene base pairs occurs spontaneously. 

This is sometimes manifested by a change in physiological character. 

This is the first advantage manipulating the phenylpropanoid pathway via the process 

of natural mutation is that all the work required is the characterisation of the 

phenotype. For natural mutants, containment or biological safety issues are not as 

pertinent as for GM crops. Natural mutants provide a better model for understanding 

the phenylpropanoid pathway because the mutation is a permanent alteration that 

leads to a non-lethal phenotype, this usually means that they are stable. However, 

mutations seldom occur in the genes required naturally. Exposure to mutation agents 

such as ultra violet radiation and chemical agents such as psorlen can lead to 

increased frequency of mutation. Mutants have been characterised in Arabidopsis, 

maize, rice, populus and pine species. Most of the enzymes of the phenylpropanoid 

pathway have a mutant type in a plant species. Mutation offers a chance to see a 

change in a biological system that may not yet be fully characterised; this provides 

important information that may not be easily discovered by other means (Table 3.1). 

This is particularly true of the mutation of the C3H gene in the phenylpropanoid 

pathway (Section 1.6). 
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Enzyme Species Enzyme 
Activity 

Lignin 
content 

Lignin 
composition 

Reference 

S-
adenosylmethionine 
synthetase 

A. thaliana n.d. 22% n.d. Shen et al (2002) 

PAL Oryza saliva increased n.d. Increased p-CA 
and FA 

Nishikubo et al 
(2000) 

C3H A. thaliana n.d. n.d. H units only Franke et al 
(2002) 

4CL A. thaliana decreased n.d. n.d. Stuible et al 
(2000) 

COMT Zea. Mays n.d. n.d. H units only Veremis et al 
(2002) 

COMT Populous spp n.d. n.d. H units only Ralph et al 
(2001) 

CAD Pinus taeda 
L. 

Reduced decreased Increased 
coniferaldehyde 

Mackay et al 
(2002) 

CAD Zea. Mays Reduced n.d. Increased 
coniferaldehyde 

Veremis et al 
(2002) 

Table 3.1 Physiological mutants impaired in the phenylpropanoid pathway. 

Enzyme activity, The level of enzymatic activity relative to wild type; Lignin content. 

Content of lignin c.f wild type; Lignin composition, proportions of H, G and S and 

other units relative to wild type; SAM S-adenosylmethionine synthetase; PAL, 

phenylalanine ammonia lyase; C3H, Cinnamate 3 Hydroxylase; 4-CL, 4-coumarate 

Co-A ligase; COMT, Caffeic acid 0-methyltransferase; CAD, Cinnamoyl alcohol 

dehydrogenase. H, hydroxyphenyl lignin unit; p-CA, /?-Coumaric Acid; FA, Ferulic 

Acid; n.d, not determined. 
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3.3 Transgenic manipulation 

Molecular biology can be used to reduce lignification by various methods (Table 3.1 , 

3.2) including anti-sense or sense suppression, transposon mutatgensis, tDNA 

introgression, siRNA. 

The genetic engineering approach involves making a sense or anti-sense construct to 

the gene encoding one of the enzymes of the lignin biosynthetic pathway. Sense 

suppression can be a side aJffect of overexpression of a transgene. The presence of the 

extra copy of the gene perturbs the normal function of the target overexpressed gene 

Flavel (1994). This technique has been used successfully to suppress the O-

Methyltransferase gene of Aspen (Tsai et al 1998). Commonly this technique is also 

reffered to as Co-supression, following work by Jorgensen et al on petunia (Napoli et 

al 1990, Jorgensen et al 1996). Anti-sense involves putting in a copy of the gene of 

interest in the plant that represents the mirror image of the coding strand, so the 

mRNA produced is not read by the ribosome and hence no protein is produced. 

Promoter fusion involves joining a gene to a different promoter in order to regulate 

transcription (GrilSths et a/. 1996). It also is possible that induction of an alternative 

enzyme to the phenylpropanoid pathway related enzyme may shift the carbon flux 

away from the production of lignin. 

Other methods are more recent in their construction and use and may not be 

applicable for use in the wheat system. The bacterium Agrobacterium tumefaciens can 

in the course of its life cycle produces a crown gall on susceptible plants. The 

bacterium possesses the Ti plasmid which contains virulence and T-DNA transfer 

regions that aUow intra-species DNA transfer between^, tumefaciens and its host 

plant. The Ti plasmid has been used in several plant species to integrate non-host 

DNA randomly into the host chromosome (Griffiths et al. 1996). 

More recent innovations in transgenic manipulations focus on induction of post-

transciptional gene sUencing. This is the silencing of an endogenous gene caused by 

the introduction of homologous double stranded RNA (dsRNA). The direct 

introduction of dsRNA is refered to as RNA interference (RNAi). Induction of 
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smaller nucleotide sequences of 21-23 dsRNA as an interference mechanism is known 

as small interfering RNAs (siRNA) (Ambion.com 2002). 

The main advantage of transgenic manipulation is the specificity of the approach, no 

indirect effects that are not a direct consequence of the manipulation should occur. 

Once a sequence of any phenylpropanoid related enzyme is available it is possible to 

use any of the above methods to manipulate the enzyme or the sequence. Transgenic 

manipulation is therefore very applicable and allows close comparison of 

manipulation strategies between species. 

However, as the enzymes of the phenylpropanoid pathway differ 6om species to 

species in their nature (chapter 1); this difference may hinder any cross species 

comparison of their down regulation Whetten et al (1998). In wheat the molecular 

biology approach is hampered by the fact that most commercial varieties are 

hexaploid in nature, making plant regeneration and gene silencing more difficult. 

Another drawback is that comparisons of genes across species are used to identify 

genes and therefore only those enzymes broadly similar to those already discovered 

can be successfully discovered using this method. The transgenic method is costly and 

difficult to perform, requiring specific techniques for each species, particularly in 

regeneration of fragile transformed plants. Plants must also be contained and currently 

are under review for their viability as commercial products. Lignification is normally 

permanently altered by the transgenic methods means that all development is changed 

in terms of the change in the phenylpropanoid pathway. The difficulty in 

transformation of plants often leads to model plant systems being used, although 

plants like Nicotiana tabaccum and Arabidopsis thaliana are easy to manipulate it is 

hard to correlate enzyme effects to the whole of the plant kingdom if only one or two 

species of plants are used. 
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Table 3.2 Transgenic plants where enzymes of the General Phenylpropanoid 

Pathway have been targeted. (Whetten et al. 1998). Enzyme activity; The level of 

enzyme activity relative to wild type (%), Lignin content: percentage of wild type 

content. Lignin composition: relative to wild type. POD: peroxidase LAC: laccase. 

n.d.; not determined. S and G: Syringyl and Guiacyl moieties. 

Transgenic method Species Enzyme 
activity 

Lignin 
content 

Lignin 
composition 

Sense suppression of PAL 
(heterologous PAL) 

N. tabaccum PAL 5-30 % Decreased 
10-80 % 

n.d. 

Sense suppression of PAL N. tabaccum PAL decreased Decreased Increased 

Antisense C4H N. tabaccum C4H decreased Decreased Decreased S:G 

Antisense OMT N. tabaccum OMT 5 % No effect Decreased S:G 

Sense suppression OMT N. tabaccum OMT 180% No effect No effect 

Antisense OMT Populous spp OMT 2 % No effect Decreased S:G 5-
OH-G subunits 

Antisense and sense 
suppression OMT 

Populous spp OMT decreased No effect Decreased S only 

Antisense 4CL N. tabaccum 4CL 8 % Decreased 
to 50 % 

Decreased G 
only 

Antisense 4CL and sense 
suppression 

N. tabaccum n.d. n.d. Decreased G & S 
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Table 3.3 Transgenic plants where enzymes of the Lignin Specific Pathway have 

been targeted. (Whetten et al. 1998). Enzyme effect: The level of enzyme activity 

relative to wild type (%). Lignin content: % of wild type content. Lignin composition: 

relative to wild type. POD: peroxidase LAC: laccase. n.d.: not determined. S and G: 

Syringyl and Guaiacyl moieties. 

Transgenic method Species Enzyme 
activity 

Lignin 
content 

Lignin 
composition 

Antisense CCR N. tabaccum CCR 25 % Decreased to Increased S;G 
75% 

Sense suppression CCR N. tabaccum CCR 2 % n.d. Decreased S:G 

Antisense CAD N. tabaccum CAD 7 % No effect Increased 
aldehyde 

Antisense CAD N. tabaccum CAD 50 % No effect Increased 
aldehyde 

Antisense CAD Popolous CAD 30-50 % No effect Increased 
aldehyde 

Antisense POD N. tabaccum POD decreased No effect n.d. 

Over expression POD N. tabaccum POD increased Increased to n.d. slower 
130 % growth 

Antisense LAC Tulip poplar LAC 10 % 
(preliminary) 

n.d. n.d 

Constitutive f5h overexpression A. thaliana F5H ectopic No effect Ectopic S lignin 

F5h-C4H promotor fusion A. thaliana n.d. n.d. Almost only S 
lignin 

Introduction of TDC 
(tryptophan decarboxylase) 

S. tuberosum TDC active Decreased to Decreased S:G 
60% 
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3.4 Biochemical Inhibition 

Many inhibitors of enzyme activity have been used in the study of phenylpropanoid 

biosynthesis (Table 3.4). Biochemical inhibitors have been tested on almost every 

known enzyme in the pathway. Many different inhibitors exist and some have already 

been documented to have effects across the phenylpropanoid pathway, whereas others 

are more specific to individual enzymes. Three different strategies are used. Substrate 

analogues (SA) are the most abundant and mimic the substrate of the enzyme and 

reduce the availability of the active sites of the enzymes for catalysis. A suicide 

inhibitor (SI) irreversibly binds to the enzyme preventing the true substrate from 

binding. Chelators bind the inorganic co-factors required for enzyme function (Table 

3/0. 

The main advantage of the inhibitor method is speed and broad application range. An 

inhibitor of PAL in alfalfa for example is likely to have the same effect in wheat. For 

the same process to work using molecular biology the specific gene(s) must be 

isolated, cloned, transformed into a vector and antisensed and re-transformed 

successfiaUy into the target plant which must also survive long enough for 

experiments to proceed. To make a less severely impaired transgenic plant the whole 

process must be repeated again. When inhibitors are used the target compound only 

requires dilution. Inhibitors allow specific rather than continuous manipulation at 

different plant developmental levels, whereas when a plant is transgenically modified 

it is always impaired in that fimction. 

One of the main disadvantages of inhibitors comes from their innate lack of 

specificity in planta, which can lead to non-target enzymes being inhibited by the 

presence of the inhibitor. The presence of the inhibitor itself will also cause changes 

in the concentrations of solutes in the plant cell and this may also cause non-target 

effects. Inhibitors are often only soluble in solvents, which damage the in vivo plant 

system. These solvents can often lead to phytotoxic symptoms independent of the 

inhibitor effect. Equally important are the effects of these compounds on microbial 

communities, especially in terms of defence related studies. 
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Table 3.4 Inhibitors of the Phenylpropanoid Pathway; PAL, Phenylalanine 

ammonia lyase; C4H, Cinnamate 4 Hydroxylase; OMT, O-methyltransferase; 4CL 4-

coumarate co-enzyme A ligase; CAD, Cinnamoyl Alcohol Dehydrogenase; S A, 

Substrate analogue; SI, Suicide Inhibitor; CuCh, Copper Chelator; ZnCh, Zinc 

Chelator. 

Target 
enzyme 

Inhibitor Mode of 
Action 

Reference 

PAL 2-ainino indan 2-phosphonic acid. (AIP) SA Zon and Amrhein (1992) 

PAL Alpha aminoxy phenyl propionic acid. (AOPP) SA Morschbacher et al ("1990) 

PAL Alpha Aminoxyacetic Acid (AOA) SA Ride and Barber (1987) 

C4H 1 aminobenzoltriazole (ABT) SI Reichart et al (1982) 

C4H Piperonylic Acid (PA) SA Schalk et al (1997) 

C4H 1.2. Naptholic Acid (1.2 Na) SA Schalk et al (1997) 

C4H 2.1 Naptholic Acid (2.1 Na) SA Schalk et al (1997) 

C4H 3.2 Naptholic Acid (3.2 Na) SA Schalk et al (1997) 

OMT 2-Hydroxy-2,4,6-cycloheptatrien-1 -one (Tropolone) CuCh Eshelman et al (1997) 

4CL 3,4 methylene dioxy cinnamic acid (MDCA) SA Funk + Brodelius(1990) 

CAD N-(O-hydroxyphenyl) sulfinamoyltertiobutyl acetate 
(OH-PAS) 

ZnCh + SI Carver et al (1994) 

CAD N-(O-aminophenyl) sulfinamoyltertiobutyl acetate 
(NH2-PAS) 

ZnCh + SI Carver et al (1994) 

CAD CI SA Hall (1998) 

CAD ML19 SA Hall (1998) 

CAD 4-hydroxy alpha mecapto-3-methoxycinnamic acid. 
(HAMMA) 

SA Hall (1998) 

CAD 2.2. dipyridyl SA Hall (1998) 
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Each enzyme of the phenylpropanoid pathway has been studied to a greater or lesser 

extent by the use of biochemical inhibitors. Generally, the effect of biochemical 

inhibition is considered only in vitro and potential conflicts of specificity are not fully 

considered. A brief description of the known characters of these inhibitors follows. 

3.5 Inhibition of Phenalanine Ammonia-lvase 

PAL converts phenylalanine to /rara-cinnamic acid. Several compounds have been 

documented to inhibit PAL. These compounds are alpha amitioxyacetic acid (AOA), 

2-iminoindan-2-phosphonic acid (AIP) and alpha-aminooxi-beta-phenylpropionic 

acid (AOPP) (Figure 3.1). These compounds act as substrate analogues of 

phenylalanine but, only AOA is currently commercially available (Sigma Aldrich). 

Sources of both AIP and AOPP have been obtained for this study (Grabber: Personal 

communication and Amrhein: Personal communication). 

3.6 Inhibiton of Cinnamate 4 hydroxylases 

C4H converts cinnamic acid to /'ara-coumaric acid. l-Aminobenzotriazole (ABT) is a 

suicide inhibitor of C4H (Reichart et al. 1982). In the presence of 1 mM ABT, C4H 

activity was reduced to 3 % of the control enzyme in Helianthus tuberosus. Inhibition 

of C4H by ABT is irreversible or the inhibitor has a much higher aflSnity for the 

enzyme than the substrate. It is reasonable to assume toxic effects by ABT on non-

target hydroxylases. ABT is commercially available (Sigma Aldrich). 

Other mechanism-based inhibitors have been developed from the naptholic acid 

groups of compounds (Schalk et al. 1998, Schalk et al 1997). Piperonylic acid is 

claimed to be the ideal Hgand for C4H in vitro. AH the naptholic acid derivatives are 

generic inhibitors of cytochrome P450 hydroxylases of which the phylogenetic femily 

includes C4H. The inhibitors are commercially available (Sigma Aldrich). 
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Figure 3.1 Structures of inhibitors of PAL and C4H 
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3.7 Inhibition of methyl transferases 

The methyl transferases are a diverse group of enzymes that act across the phenyl 

propanoid pathway to catalyse the addition of methyl groups to the intermediates. The 

problem with blocking the lignification response at the precursor of methyl group 

approach is that the ethylene biosynthetic pathway would also be affected. Such 

effects would make interpretation difficult. 

Some examples of cited inhibitors include competitive product inhibition by S-

adenosyl-L-homocysteine and probably the most useful inhibitor has only been tested 

in vitro, it is a rabbit anti-O-methyltransferase IgG (Bugos et al. 1992). An inhibitor 

of a catechol-O-methyltransferase called tolcapone is used as a treatment for 

Parkinsons disease in humans (Jorga et al 1999) (Figure 3.2). It may be possible that 

this compound could be a general inhibitor of 0-methyltransferases in plants, but it 

remains to be tested. Tropolone (Figure 3.2) was the older predecessor of tolcapone 

and inhibits catechol 0-methyltransferases. Catchetol-O-methyl transferases require 

copper as a co-factor. Tropolone is a chelator of copper ions and as such will impair 

physiological function of aU copper requiring enzymes (Eschelman et al. 1997). 

However tropolone has only been used in humans as an adjunct to Parkinsons disease 

therapy. It is available (Sigma Aldrich), but has never been tested in plants. 

3.8 Inhibition of 4-Coumarate co-enzvme A lipase 

4-Coumarate co-enzyme A ligase (4CL) converts all the derivatives of cinnamic acid 

to their corresponding CoA ester. Only one inhibitor of 4CL, has been reported in the 

literature 3,4 (methylenedioxy) cinnamic acid (MCDA) (Fig 3.2). MDCA is 

commercially available and in addition to competitively inhibiting 4CL also has no 

effects on the activities of PAL, OMT and CAD in Vanilla planfolia (Funk and 

Brodelius 1990). However, MDCA has a non-competitive inhibition effect on CCR. 
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Tolcapone (not available) Tropolone (Sigma) 

OH3C 

OH3C-

-COOH 

MDCA (Sigma) 

Figure 3.2 Structures of inhibitors of OMT and 4CL The compounds source is 

denoted by brackets. 
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3.9 Inhibition of Cinnamovl Co-Enzyme A reductase 

CCR converts some CoA esters to their corresponding aldehydes. MCDA (the 

inhibitor of 4CL, see above) is a non-competitive inhibitor of CCR (Funk and 

Brodelus 1990). Similarly, an inhibitor of CAD called NH2PAS has also been 

reported to inhibit CCR in vitro (Carver et al. 1994). Other potential inhibitors include 

Co-A, NADP^ and protein-modifying agents specific for lysine and cysteine residues 

are cited as potential inhibitors, but these are too non-specific to use in planta 

(Goffiier et al 1994). 

3.10 Inhibition of Cinnamovl Alcohol Devdrogenase 

CAD catalyses the production of the alcohols formed from the aldehydes of the 

phenylpropanoid pathway. Several inhibitors of CAD have been reported some of 

which are commercially available (Figure 3.3). Zinc is a co-factor for CAD and a 

number of zinc chelating substrate analogues have been developed as potential CAD 

inhibitors. OH-PAS and NH2PAS are both suicide inhibitors of CAD and are also zinc 

chelators (Carver et al. 1994). 

2.2. dipyridyl is a non-specific cation chelator that has been shown to reduce defence 

related lignin in wheat (Riatt 1998). 

Several novel inhibitors have been designed and produced at Southampton University. 

These include ML 19, a zinc-chelating compound produced from eugenol and two 

sinapoyl analogues HMMCA and CI (Hall 1998). These compounds have been 

specifically designed to inhibit CAD in planta and have dramatic effects on the 

activity of CAD in vitro. 
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Figure 3.3 Structures of inhibitors of CAD. Sources are denoted by brackets. 
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3.11 Aims 

To evaluate inhibitors of phenylpropanoid metabolism as potential tools for the 

assessment of the role of lignification in plant defence. This wUl be achieved by 

testing the efficacy, phyto and mycotoxicity of the compounds and by challenging 

inhibitor-treated plants with a non-pathogenic fimgus. 
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Materials and Methods 

3.12 Chemicals and reagents 

Agar No 2 

Aniline blue 

Chloral hydrate 

DimethyLformamide 

Ethanol 

Glycerine 

Lactic acid 

Mycological peptone 

Malt extract agar 

p-Nitrobenzene diazonium tetrafloroborate - Fast GG 

Phenol 

Oxoid 

Sigma-Aldrich 

Sigma-Aldrich 

Fisher 

Fisher 

Sigma-Aldrich 

BDH 

Oxoid 

Oxoid 

Sigma-Aldrich 

Fisher 

3.13 Culture of Botrytis cinerea 

Botrytis cinerea was grown on 3.0 % (w/v) malt extract agar with 0.5 % (w/v) 

mycological peptone and 1.5% (w/v) Agar No 2. The media was autoclaved at 115 °C 

121 psi for 10 min (Galloway and Burgess 1952). 

3.14 Treatment of plants 

Plants were grown, wounded and inoculated as described in Chapter 2. 

3.15 Preparation of inhibitors 

A specific dissolution protocol was developed for each inhibitor and is presented in 

the results section. All inhibitor solutions were initially prepared as 5.0 mM and 

stored at -20 °C. All treatment solutions were subsequently diluted with distilled 

water from these stocks to the required concentrations. 
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3.16 Lignin staining by p-nitrobenzene diazonium tetrafloroborate - Fast GG 

All staining by this method was carried out in the same manner as that used in chapter 

2. 

3.17 Phytotoxicitv: - Chlorophyll assay 

Leaves were wounded and inoculated as per the general bioassay method (Section 

2.7). The inhibitors were applied with or without B. cinerea (1x10®) spores ml"'. 

After 48 h four primary leaves were cut, (32 mm in length) weighed and transferred 

into 1 ml of Dimethylformaldehyde (DMF). After 72 h at 4 °C the absorbance of the 

DMF was recorded at 647 and 664 nm. The total amount of chlorophyll was 

calculated using the following equation (Moran 1982): 

( 7.04 X Absorbance 664 nm + 20.27 x Absorbance 647 nm) = total chlorophyll 
Average weight of a wheat leaf x 1000 ()j,g ml'') 

Total chlorophyll fj,g ml"' 
1000 

Percentage reduction in chlorophyll 

100- total chlorophyll mg.ml"' ('inhibitor value) 
total chlorophyll mg.ml"' (water control) 

= total chlorophyll 
(mg ml"') 

100 

Results are presented as percentage reductions in chlorophyll for the inhibitor alone 

and in the presence of B. cinerea. 

Worked example 2.1 Naptholic acid 

Total chlorophyll mg ml" 

1.0 mM 2.1 Naptholic acid 
Wounded control (water) 

0.518 
1.811 

100 0.518 
1.811 

X 100 = 7 1 % reduction in total chlorophyll 
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3.18 Fungal Germination assay 

Wounded wheat leaves were inoculated with B. cinerea 1x10^ spores ml"' containing 

inhibitors at 0.2, 1.0 and 5.0 mM. 

After 8 h, leaves were stained with alcoholic lactophenol cotton blue; prepared 

according to Riatt (1998). Alcoholic lactophenol cotton blue was prepared by mixing 

one part lactophenol cotton blue (10 g phenol, 10 ml glycerine, 10 ml lactic acid, 0.02 

g aniline blue and 10 ml distilled water) with two parts 95 % (v/v) ethanol. Slides 

were rinsed briefly (10 s) in 2.5 M chloral hydrate to clear the stain before mounting 

in 50 % (v/v) glycerol. 

Five conidia chosen at random from each wound were examined under the light 

microscope at X 10. Germination was defined as when the length of the germinating 

hyphae exceeded the diameter of the conidia. The calculation of percentage 

germination is given below. 

Reduction in spore germination Worked example OH-PAS 0.2mM 

Reduction (%) - 100- ( a x 100) 
b 

47 X 100 = 47 % 
100 

100-47 = 53 % 

a = Number of germinated conidia 

b = Total number of conidia 
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3.19 Quantification of resistance. 

Four leaves comprising five wounds per leaf were inoculated with spores of B. 

cinerea as described in the general bioassay method and left for 72 h. The leaves were 

stained with Alcoholic lactophenol cotton blue as described previously and the extent 

of fungal growth examined by light microscopy between 8 and 72 h. Resistance 

breaking was judged on two criteria, penetration through the lignin barrier and 

presence in the healthy tissue at 72 h after inoculation. If these criteria appear to be 

met at any point along the leaf section it was regarded as a break in resistance. 
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Results 

3.20 Screen of potential inhibitor compounds 

To ascertain if the known inhibitors of phenylpropanoid metabolism are effective and 

non-toxic a screen of these compounds was set up. This study tested four parameters 

mycotoxicity, phytotoxicity and reduction of lignin. Once tolerance levels had been 

established on these three criteria the candidate inhibitors were tested for their ability 

to break resistance to Botrytis cinerea. For this in vivo study attempts were made to 

dissolve the inhibitors in a potentially non-toxic solvent, these are outlined for each 

inhibitor. 

Conidia germination (mycotoxicity) was measured at 8 h after inoculation with 

Botrytis cinerea in the presence of the test inhibitor compound. Conidia germination 

was defined as an extension of the fungal hyphae above the width of the conidia itself. 

An example of ungerminated and germinated conidia is shown (Figure 3.4 A). 

The reduction in total plant chlorophyll (phytotoxicity) by the inhibitor after 48 h was 

measured in the presence and absence of Botrytis cinerea according to Moran (1982). 

Reduction in defence related lignin at wound margins (efficacy) by the inhibitor was 

calculated by the scanning densitometry method (chapter 2). 

Only those compounds that at any concentration significantly reduced defence related 

lignin in the presence of the fongus and were sufficiently non-toxic were tested for the 

ability to break non-host resistance. An example of the staining shown for fungal 

hyphae that have extended into healthy tissue from a wound margin in the presence of 

a PAL inhibitor (5.0 mM AOPP) is shown. The adjacent cartoon illustrates the 

penetration through the wound margin that is shown in the micrograph (Figure 3.4 B). 

In addition fungal hyphae that persist in the wound area after 72 h in the presence of a 

4-CL inhibitor (1.0 mM MDCA) is shown. The following diagram illustrates the 

restriction in the wound area that is shown in the micrograph (Figure 3.4 C). 
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Ungerminated Germinated 

B 

Hyphae 

' Wound margin 

Hyphae 

Figure 3.4 Fungal germination and resistance breaking. In all photographs the 

stain used is alcoholic lactophenol cotton blue; A, Comparison of germinated and 

ungerminated conidida at 8 h, (x 10). Test inhibitor AOA 1.0 mM B; Resistance 

breaking through lignin barrier after 72 h, (x 100). The arrow shows a fungal hyphae 

penetrating intracellular space. Bar: 2 juM. Test inhibitor: AOPP 5.0 mM. C: 

Restriction in wound after 72 h, photograph at (x 10) The arrow shows a flmgal 

hyphae growing in a compression wound. Bar: 10 jiiM. Test inliibitor: MDCA 1.0 

mM. 
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3.21 Screening of potential inhibitors of Phenylalanine Ammonia Lyase (PAL) 

Three known PAL inhibitors: AO A, AIP and AOPP were screened. 

Alpha amino xyacetic acid (AO A) was dissolved in distilled water. Dilution to 5.0, 1.0 

and 0.2 mM was with distilled water. Significantly reduced lignification at wound 

margins was observed at concentrations of 1.0 mM and 5.0 mM. At the higher 

concentrations this compound showed some toxicity effects significantly reducing 

plant clilorophyll levels in the presence of B. cinerea and reducing spore germination. 

At 1.0 mM these toxic effects were not observed and this concentration was deemed 

appropriate for subsequent resistance studies (Table 3.5). 

2-iminoindan-2-phosphonic acid (AIP) was dissolved in distilled water. Dilution to 

5.0,1.0 and 0.2 mM was with distilled water. Significantly reduced lignification at 

wound margins was observed at concentrations of 0.2 mM, 1.0 mM and 5.0 mM. 

Fungal spore germination is unaffected by the compound. Interestingly, at the highest 

concentration in the absence of B. cinerea there are no toxicity effects. However, in 

the presence of B. cinerea a slight reduction in plant chlorophyll is observed at the 

highest concentration. The 0.2 mM concentration displays an ideal screen profile for 

this study (Table 3.5). 

Alpha-aminooxi-beta-phenylpropionic acid (AOPP) was dissolved in distilled water 

and brought to pH 7 using 2.5 mM NaOH. Dilution to 5.0, 1.0 and 0.2 mM was with 

distilled water. Significantly reduced lignification at wound margins was observed at 

concentrations of 0.2 mM, 1.0 mM and 5.0 mM. At 5.0 mM this compound showed 

some toxicity effects significantly reducing plant chlorophyll levels in the presence 

and absence of B. cinerea. Interestingly, at a concentration of 0.2 mM in the presence 

of the fiingus total plant chlorophyll was significantly reduced. At 1.0 mM these toxic 

effects were not observed and this concentration was deemed appropriate for 

subsequent resistance studies (Table 3.5). 
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Table 3.5 Screen of inhibitors of Phenylalanine Ammonia Lyase (PAL) activity. 

Inhibitiors were screened by microscopy, chlorophyll extraction and the scanning 

densitometry method. Data is expressed in terms of percentages of spore germination 

after 8 h (n = 20), chlorophyll reduction after 48 h (n = 4) and lignin reduction after 

48 h (n = 20). W = inhibitor alone (wounded control) F = Presence of B. cinerea. A * 

indicates those results that significantly (p = 0.05) reduced the test criteria. 

Inhibitor Dose (mM) % Reduction 
in spore 

germination 

% Reduction 
in total 

chlorophyll 
(W) 

% Reduction 
in total 

chlorophyll 
(F) 

% Reduction 
in Lignin 

AOA 5.0 50 29 51* >100* 
1.0 19 8 15 73* 
0.2 18 0 30 34 

AIP 5.0 1 0 25 >100* 
1.0 0 0 2 >100* 
0.2 0 0 0 >100* 

AOPP 5.0 0 43* 37* >100* 
1.0 0 8 7 >100* 
0.2 0 12 34* 94* 
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3.22 The significance of PAL in the defence response 

Inhibiting PAL with 1.0 mM AO A, leads to no change in the defence response up to 

48 h after inoculation. However, resistance appears to break down by 72 h (Table 

3.6). The change in the defence response with AO A is surprising as PAL is the first 

enzyme in the phenylpropanoid pathway, therefore it would be expected that 

inhibition of PAL would change the defence response earlier. 

Inhibiting PAL with 5.0 mM AOPP, leads to a break down in resistance by 72 h post 

inoculation (Table 3.6, Figure 3.6). It is also interesting to note that a significant 

amount of chlorophyll is reduced in the presence of B. cinerea after 48 h (Table 3.5). 

Chlorosis is often associated with fungal penetration into plants. However inhibiting 

PAL with 1.0 mM AOPP did not lead to a break in resistance. As the screen data 

implicates 1.0 mM as the only concentration that does not induce chlorosis (Table 

3.5) it is difficult to directly relate inhibition of PAL by AOPP to the break down of 

resistance. 

Inhibiting PAL with 5.0 mM AIP, leads to a break down in resistance by 72 h post 

inoculation (Table 3.6). It is interesting to note that some reduction in total plant 

chlorophyll is observed in the presence B. cinerea after 48 h (Table 3.5). At 1.0 mM 

AIP, resistance appears to break down by 72 h post inoculation (Table 3.6). It was not 

possible to repeat these experiments in any further detail due to the short supply of the 

compound. 
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Table 3.6 Inhibition of resistance by inhibitors of PAL: All observations were of 

alcoholic lactophenol cotton blue stained 10 day old wheat leaves wounded and 

inoculated with 1x10^ spores ml"' B. cinerea using a Nikon light microscope 

between x 10, x 40 and x 100 objectives; +, Potential repression of the defence 

response; Defence response is progressing normally, n = 20 wounds observed. n.d. 

not determined. * photomicrographs included (Figures 3.5,3.6). 

Compound 
and dose 

8h 24 h 48 h 72 h Verdict 

AOA 1.0 mM Low 
germination 
(-) 

Hypiiae 
contact the 
lignin wall (-) 

Breakthrough 
lignin wall (+) 

Growth in 
tissue (+) 

Break in non 
host 
resistance 

AIP 5.0 mM n.d. n.d. n.d. Break 
resistance (+) 

Break in non-
host 
resistance. 

AIP 1.0 mM n.d. n.d. n.d. Break 
resistance (+) 

Break in non-
host resistance 

AOPP 5.0 mM Low 
germination 
(-) 

Break out of 
barrier (+) 

Clearing of 
fungi (-) 

Growth in 
healthy tissue 
(+)* 

Break in non-
host resistance 

AOPP 1.0 mM Good 
germination 
(-)* 

Immature 
spores (-) 

Breakthrough 
lignin wall (+) 

No Growth in 
healthy tissue 
(-) 

No Break in 
non-host 
resistance 
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corddia 

Figure 3.5 Photomicrograph of a wheat leaf surface inoculated with B.cinerea in 

the presence of 1 mM AOPP, 8 h post inoculation. The leaf surface is stained with 

lactophenol cotton blue. Arrows show conidia germinating on leaf surface, inside a 

compression wound. 

X 100 magnification Bar =10 |iM 
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Figure 3.6 Photomicrograph of a wheat leaf surface inoculated with B.cinerea in 

the presence of 5 mM AOPP, 72 h post inoculation. The leaf surface is stained with 

lactophenol cotton blue. The arrow shows a fungal hyphae pentrating through the 

mesophyU layer from a compression wound (dashed line). 

X 1000 magnification Bar = 1 |iM 
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3.23 Screening of potential inhibitors of Cinnamate 4 Hydroxylase (C4H) 

Five known C4H inhibitors: ABT, 3.2 naphthoic Acid, 2.1 naphthoic Acid, 1.2 

naphthoic Acid and piperonylic Acid were screened. 

1-Aminobenzoletriazole (ABT) was dissolved in distilled water. Dilution to 5.0, 1.0 

and 0.2 mM was with distilled water. Significantly reduced Hgnification at wound 

margins was observed at concentrations of 1.0 mM and 5.0 mM. At the highest 

concentration this compound showed some toxicity effects but did not significantly 

reduce plant chlorophyll levels in the presence of the fimgus. At the highest 

concentration spore germination was affected. At 1.0 mM these toxic effects were not 

observed except in the presence of B. cinerea and this concentration was deemed 

appropriate for subsequent resistance studies (Table 3.7). 

3.2 Naphthoic Acid was dissolved in 100 p,l acetone, 9 ml distilled water was added to 

the solution which was then de-protonated with 2.5, 1.0 and 0.1 mM NaOH to adjust 

to pH 7.0. Dilution to 5.0, 1.0 and 0.2 mM was with distilled water. Significantly 

reduced lignification at wound margins was observed only at 5.0 mM. Fungal spore 

germination was severely impaired at 5.0 mM but unaffected at lower concentrations. 

In the absence of the fiingus only the 5.0 mM concentration induced phytotoxic 

effects. In the presence of B. cinerea all concentrations exhibited phytotoxic effects. 

Therefore no concentration can be considered for resistance studies (Table 3.7). 

2.1 Naphthoic Acid was dissolved in 100 }xl acetone, 9 ml distilled water was added to 

the solution which was then de-protonated with 2.5, 1.0 and 0.1 mM NaOH to adjust 

to pH 7.0. Dilution to 5.0,1.0 and 0.2 mM was with distilled water. Significantly 

reduced lignification at wound margins was observed at all concentrations. Fungal 

spore germination was unaffected at all concentrations. In the absence of B. cinerea 

only the 0.2 mM concentration did not induce phytotoxic effects. In the presence of 

the fungus aU concentrations exhibited phytotoxic effects. Only low concentrations 

can be considered for resistance studies (Table 3.7). 
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1.2 Naphthoic Acid was dissolved in 100 jal acetone; 9 inl water was added to the 

solution, which was then de-protonated with 2.5, 1.0 and 0.1 mM NaOH to adjust to 

pH 7.0. Dilution to 5.0,1.0 and 0.2 mM was with distilled water. Significantly reduced 

Hgnification at wound margins was observed at all concentrations. Fungal spore 

germination was badly affected at 5.0 mM. In the absence of 5. cinerea only the 5 

mM concentration induced phytotoxic effects. In the presence of B. cinerea no 

concentration significantly reduced total plant chlorophyll. Only 1.0 and 0.2 mM 

concentrations can be considered for resistance studies (Table 3.7). 

Piperonylic Acid was dissolved in 2 ml 0.1 M PO4 buffer and then de protonated with 

2.5, 1.0 and 0.1 mM NaOH to adjust to pH 7.0. Dilution to 5.0,1.0 and 0.2 mM was 

with distilled water. Lignification at wound margins was not reduced at all 

concentrations. Fungal spore germination was badly affected at all concentrations. In 

the absence of B. cinerea all concentrations induced phytotoxic effects. In the 

presence of B. cinerea all concentrations reduced total plant chlorophyll. No 

concentration of this compound can be considered for resistance studies (Table 3.7). 
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Table 3.7 Screen of inhibitors of Cinnamate 4 hydroxylase (C4H) activity. 

Inhibitiors were screened by microscopy, chlorophyll extraction and the scanning 

densitrometric method. Data is expressed in terms of percentages of spore 

germination after 8 h (n = 20), chlorophyll reduction after 48 h (n = 4) and lignin 

reduction after 48 h (n = 20). W = inhibitor alone (wounded control) F = Presence of 

B. cinerea. A * indicates those results that significantly (p = 0.05) reduced the test 

criteria. 

Inhibitor Dose (mM) % Reduction 
in spore 

germination 

% Reduction 
in total 

chlorophyll 
(W) 

% Reduction 
in total 

chlorophyll 
(F) 

% Reduction 
in Lignin 

ABT 5.0 27 14 17 >100* 
1.0 0 0 29 >100* 
0.2 6 0 14 0 

3.2 5.0 58 71* 67* >100* 
Naphthoic 1.0 0 7 20* 0 

Acid 0.2 0 0 28* 0 

2.1 5.0 0 92* 44* >100* 
Naphthoic 1.0 0 71* 22* 100* 

Acid 0.2 0 16 32* 100* 

1.2 5.0 93 69* 25 >100* 
Naphthoic 1.0 0 13 4 >100* 

Acid 0.2 0 12 6 >100* 

Piperonylic 5.0 31 36 23 0 
Acid 1.0 79 21 23 0 

0.2 74 23 36 0 
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3.24 The significance of C4H in the defence response. 

ABT at 1.0 mM causes a break in non-host resistance at 24 h post inoculation. It is 

interesting to note that some reduction in total plant chlorophyll is observed in the 

presence B. cinerea after 48 h (Table 3.7). By 72 h B. cinerea appears to be able to 

penetrate the stomata. This indicates that the C4H step is very important in terms of 

defence related Hgnification (Table 3.8). 

In the experiments involving 1.2 Naphthoic acid and 2.1 Naphthoic acid microbial 

contamination occurred, this could mean a break in non-host resistance with these 

compounds but these experiments were not repeated. 
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Table 3.8 Inhibition of resistance by inhibitors of C4H. All observations were of 

alcoholic lactophenol cotton blue stained 10 day old wheat leaves wounded and 

inoculated with 1x10^ spores ml"' B. cinerea using a Nikon light microscope 

between x 10, x 40 and x 100 objectives; +, Indicates potential repression of the 

defence response; indicates defence response is progressing normally. For each 

time point 20 wounds were observed. n.d. not determined. 

Compound 
and dose 

8h 24 h 48 h 72 h Verdict 

ABT 1.0 mM Germination 
in healthy 
tissue (-) 

Break in 
resistance (+) 

n.d. Penetration of 
stomata (+) 

Break in non -
host resistance 

2.1 Naphthoic 
Acid 1.0 mM 

n.d. n.d. n.d. Growth (-) Repetition req 

1.2 Naphthoic 
Acid 1.0 mM 

n.d. n.d n.d. Growth and 
some 
contamination 
(-) 

Repetition req 

77 



3.25 Screening of potential inhibitors of O-Methvltransferases (OMT) 

One known inhibitor of methyltransferases was screened. 

Tropolone was dissolved in water. Dilution to 5.0, 1.0 and 0.2 mM was with distilled 

water. Significantly reduced hgnification at wound margins was observed only at 5.0 

mM. Fungal spore germination was reduced at 0.2 mM. There are significant 

reductions in total chlorophyll at 1.0 and 5.0 mM in both the presence and absence of 

B.cinerea. Therefore this compound was not studied fiirther (Table 3.9). 

3.26 The significance of OMT in the defence response 

As no inhibitors were obtained that eSectively inhibited the defence response, no 

results can be obtained on this enzyme. 
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Table 3.9 Screen of the inhibitor of O-methyltransferase (OMT) activity. Data is 

expressed in terms of percentages of spore germination after 8 h (n = 20), chlorophyll 

reduction after 48 h (n = 4) and lignin reduction after 48 h (n = 20). W = inhibitor 

alone (wounded control) F = Presence of B. cinerea. A * indicates those results that 

significantly (p = 0.05) reduced the test criteria. 

Inhibitor Dose (mM) % Reduction 
in spore 

germination 

% Reduction 
in total 

chlorophyll 
(W) 

% Reduction 
in total 

chlorophyll 
(F) 

% Reduction 
in Lignin 

Tropolone 5.0 1 88* 93* >100 
1.0 4 76* 46* 14 
0.2 75 19 20 14 

79 



3.27 Screening of potential inhibitors of 4-coumarate co-enzyme A Ligase (4CL) 

One inhibitor of 4CL was screened. 

Methylene dioxy cinnamic acid (MDCA) was dissolved in 200 p,l acetone and 9 ml 

water was added. The solution was sonicated for 5 mins @ 60 °C and de-protonated 

using 2.5 and 0.5 mM NaOH adjust to pH 7.0. Dilution to 5.0, 1.0 and 0.2 mM was 

with distilled water. Significantly reduced lignification at wound margins was 

observed at 5.0, 1.0, and 0.2 mM. Interestingly, the lower concentrations only reduced 

lignification by approximately a half. Fungal spore germination was severely 

impaired at 5.0 mM but this effect was less apparent at 1.0 and 0.2 mM. In the 

absence of the fungus no concentration induced phytotoxic effects. In the presence of 

the fimgus only the 5.0 and 1.0 mM concentrations exhibited phytotoxic effects. 

Therefore this inhibitor merits further study at a 1.0 mM concentration (Table 3.10). 
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Table 3.10 Screen of the inhibitor of 4-coumarate co-enzyme A Ligase (4CL) 

activity. Data is expressed in terms of percentages of spore germination after 8 h (n = 

20), chlorophyll reduction after 48 h (n = 4) and lignin reduction after 48 h (n = 20). 

W = inhibitor alone (wounded control) F = Presence of B. cinerea. A * indicates those 

results that significantly (p = 0.05) reduced the test criteria. 

Inhibitor Dose (mM) % Reduction 
in spore 

germination 

% Reduction 
in total 

chlorophyll 
(W) 

% Reduction 
in total 

chlorophyll 
(F) 

% Reduction 
in Lignin 

MDCA 5.0 95 15 27* >100* 
1.0 20 16 24* 46* 
0.2 0 0 12 48* 
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3.28 Significance of 4CL in the defence response. 

Application of MDCA caused no visible break in non-host resistance at both the 1.0 

and 0.2 mM level (Table 3.11). It is interesting to note that in the presence of the 

fiingus total plant chlorophyll was significantly reduced at 1.0 mM but not at 0.2 mM 

(Table 3.10). 
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Table 3.11 Inhibition of resistance by inhibitors of 4CL: All observations were of 

alcoholic lactophenol cotton blue stained 10 day old wheat leaves wounded and 

inoculated with 1x10^ spores ml"' B. cinerea using a Nikon light microscope 

between x 10, x 40 and x 100 objectives; +, Indicates potential repression of the 

defence response; - , indicates defence response is progressing normally, n = 20 

wounds observed. * Illustrated by photomicrograph (Figure 3.7). 

Compound and 
dose 

8h 24 h 48 h 72 h Verdict 

MDCAl.OmM Germination Could be 
breaking 
resistance (+) 

No break (-) Growth in 
wound (-)* 

Does not 
break non-host 
resistance 

MDCA 0.2 mM Germination No change in 
lignin barrier 
(-) 

Break (+) No Growth (-) Repetition req 
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Figure 3.7 Photomicrograph of a wheat leaf surface inoculated with B. cinerea in 

the presence of 1 mM MDCA, 72 h post inoculation. The leaf surface is stained 

with lactophenol cotton blue. The arrow shows a fungal hyphae growing in a 

compression wound. X 10 magnification Bar =10 |iM. 
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3.29 Screening of potentiai inhibitors of Cinnamoyl Alcohol Dehydrogenase 
(CAP) 

Six CAD inhibitors were screened. 

OH-PAS, was dissolved in distilled water and diluted to 5.0, 1.0 and 0.2 mM 

concentrations. Significantly reduced lignification at wound margins was observed at 

all concentrations. Spore germination was reduced greatly at aU concentrations. There 

were significant phytotoxic effects at all concentrations in the presence and absence of 

B. cinerea. The only possible concentration for further study may be 0.2 mM (Table 

3.12). 

NHiPAS was dissolved in distilled water and diluted to 5.0, 1.0 and 0.2 mM 

concentrations. Significantly reduced lignification at wound margins was observed at 

all concentrations. Spore germination was reduced greatly at 5.0 and 1.0 mM 

concentrations. There were significant phytotoxic effects at 5.0 and 1.0 mM in the 

absence of B. cinerea. In the presence of B. cinerea total plant chlorophyll was only 

significantly reduced at 0.2 mM. The only possible concentration for fiirther study 

may be 0.2 mM (Table 3.12). 

2.2 Dipyridyl dissolves in water after sonnication at 50 °C for 10 min. 

Significant reduction in lignification at wound margins was observed at 5.0 and 1.0 

mM concentrations, but at these concentrations spore germination is heavHy reduced. 

Total plant chlorophyll in the presence and absence of B. cinerea is not significantly 

affected. Due to the mycotoxic effects, this inhibitor is will not be considered fiirther 

(Table 3.12). 

ML 19 was received as a 5 mM stock (Hall 1998). Significant reduction in 

lignification at wound margins was observed at 5.0 mM. Spore germination is only 

slightly affected at 5.0 and 1.0 mM. Total plant chlorophyll in the presence and 

absence of B. cinerea is not significantly affected. As only the 5.0 mM concentration 

reduces lignification this wiU be used for fiirther study (Table 3.12). 
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4-hydroxy alpha mecapto-3-methoxycmnamic acid (HMMCA), dissolved in distilled 

water by boiling with gentle agitation. No concentration significantly inhibited the 

lignification response. Spore germination was only affected at 5.0 mM. There were no 

significant reductions in total chlorophyll any concentration in the presence or 

absence of B. cinerea. As this compound does not reduce lignification it is not 

appropriate for further study (Table 3.12). 

CI was as a 5.0 mM stock (Hall 1998). Significant reduction in lignification at wound 

margins was observed at 5.0, 1.0 and 0.2 mM. Spore germination is only affected at 

5.0 mM. Total plant chlorophyll in the absence of B. cinerea is not significantly 

reduced. In the presence of B. cinerea total plant chlorophyll is significantly reduced. 

The 1.0 and 0.2 mM concentration will be used for further study (Table 3.12). 
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Table 3.12 Screen of the inhibitors of cinnamoyl alcohol dehydrogenase (CAD) 

activity. Data is expressed in terms of percentages of spore germination after 8 h (n = 

20), chlorophyll reduction after 48 h (n = 4) and lignin reduction after 48 h (n = 20). 

W = inhibitor alone (wounded control) F = Presence of B.cinerea. A * indicates those 

results that significantly (p = 0.05) reduced the test criteria. 

Inhibitor Dose (mM) 
% Reduction 

in spore 
germination 

% Reduction 
in total 

chlorophyll 
(W) 

% Reduction 
in total 

chlorophyll 
(F) 

% Reduction 
in Lignin 

OH-PAS 5 100 66* 31* >100* 
1 100 60* 44* 81* 

0.2 53 28* 19* 100* 

NH2PAS 5 100 32* 7 >100* 
1 93 42* 35 >100* 

0.2 12 18 43* 100* 

2.2 Dipyridyl 5 100 6 22 >100* 
1 100 21 6 99* 

0.2 22 26 11 30 

ML19 5 17 0 25 >100* 
1 23 14 33 0 

0.2 0 26 24 0 

HMMCA 5 44 0 20 0 
1 0 0 17 0 

0.2 0 0 14 0 

CI 5 88 0 1 72* 
1 0 0 21 65* 

0.2 0 0 22* 61* 
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3.30 The significance of CAD in the defence response 

OH-PAS at 0.2 mM shows a break in non-host resistance after 72 h (Table 3.13). 

However, at all concentrations total plant chlorophyll was significantly reduced in 

both presence and absence of B. drierea (Table 3.12). 

Treatments with 1.0 mM NHiPAS and 5.0 mM 2.2 dipyridyl did not break resistance; 

fungal spore germination in these experiments was not recorded (Table 3.13). 

Treatment with ML19 5.0 mM does cause a break in non-host resistance after 72 h the 

hyphae are present in the healthy tissue of the plant (Table 3.13, Figure 33). 

In the resistance experiments with CI growth is observed after 72 h on the healthy 

tissues with the 0.2 mM concentration rather than the 1.0 mM (Table 3.13). Although 

the initial tests do not confirm that 1.0 mM CI is mycotoxic, this is one possible 

explanation for the lack of spores after 72 h in these experiments. Interestingly at 0.2 

mM chlorophyll is significantly reduced only in the presence of the ftmgus (Table 

3.12). 

88 



Table 3.13 Inhibition of resistance by inhibitors of CAD. All observations were of 

alcoholic lactophenol cotton blue stained 10 day old wheat leaves wounded and 

inoculated with 1x10^ spores ml"' B. cinerea using a Nikon light microscope 

between x 10, x 40 and x 100 objectives; +, Indicates potential repression of the 

defence response; indicates defence response is progressing normally, n = 20 

wounds observed. 

Compound 
and dose 

8h 24h 48h 72h Verdict 

OH PAS 
0.2 mM 

n.d. n.d. n.d. Break of 
resistance (+) 

Breaks non-
host resistance 

NH2PAS 
1.0 mM 

No growth (-) n.d. n.d. n.d. No break 

2.2 Dipyridyl 
5.0 mM 

No growth (-) n.d. n.d. No growth No break 

ML19 
5.0 mM 

n.d. n.d. n.d. Breaks 
resistance (+)* 

Breaks non-
host resistance 

CT 
1.0 mM 

No growth (-) No change in 
healthy tissue 
(-) 

n.d. No spores (-) Does not 
break non-host 
resistance 

CT 
0.2 mM 

Growth (-) Very 
immature 
spores (-) 

n.d. Growth on 
healthy tissues 
(+) 

Breaks non-
host resistance 
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hyphae 

Figure 3.8 Photomicrograph of a wheat leaf surface inoculated with B. cinerea in 

the presence of 5 mM ML19, 72 h post inoculation. The leaf surface is stained with 

lactophenol cotton blue. Arrows show hyphal structures growing in healthy tissue. 

X 1000 magnification Bar = 1 p,M. 
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Discussion 

Several studies have shown that in general the tested compounds work well to reduce 

ligniGcation in vitro (Table 3.4). The question remained if these inhibitors had any 

general problems that prohibited their use in vivo for agro-industrial purposes or for 

the study of defence related lignification. 

3.31 Potential for PAL manipulation to reduce lignification. 

3.31.1 Specificity of the inhibitors of PAL 

All the inhibitors of PAL tested here are well-characterised inhibitors of the PAL 

enzyme. 

2-Aminoxyacetate (AOA) was first introduced by Amrhein et al (1976), but has been 

criticised because its lack of specificity. Pyrodoxial phosphate enzymes such as 1-

aminocyclopropane-1 -carboxylate synthase an enzyme involved in ethylene synthesis 

(De Laat and Van loon 1981) and aminotransferases (Amrhein et al 1976) are affected 

by AO A. However, this study shows that at 1.0 mM concentration in vivo the 

production of chorophyllus pigments is not affected. The lack of specificity therefore 

makes AOA alone not a good candidate inhibitor for study of defence related 

lignification. Studies that make exclusive use of AOA as an inhibitor of PAL may be 

viewed with some caution. 

Recent research highlights AIP as possibly the best inhibitor to study PAL action 

(Appert et al 2003). When compared to AOPP 100 fold less AIP is required to 

completely inhibit cinnamic acid synthesis (measured by its effect on light induced 

anthocyanin synthesis) (Zon and Amrhein 1992). However fiirther research in Vica 

faba shows that AIP can slow down the cell cycle progression between G1 to S phase. 

This is likely to because free phenylalanine is required for normal cell cycle progress. 

However, it is observed that this difference gradually diminished during the later 

stages of the cycle (Cvikrova et al 2003). Although AIP does have some limitations 

for long-term study it clearly reduces lignification and is a good tool for study of PAL 

as a part of defence related lignification. 
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AOPP was not as effective as AIP in reducing defence related lignification. 

Only the highest (5.0 mM) concentration of AOPP causes a break in resistance, at 

these levels the reduction in total chlorophyllus pigments is quite high, and this non 

specific inhibition may mask the true effect of the inhibitor on the PAL enzyme. No 

further data is available on the side effects of AOPP. 

Clearly, as would be assumed, the first step of the production of lignin is very 

important in the final outcome or progression of the response. The flux induced by the 

presence of the non-host response however is so great that unless PAL is very 

significantly inhibited, then the non-host response will occur as normal. It will be 

interesting to see more evidence for the mechanism of action of AIP later in this 

series. 

3.31.2 Significance of PAL to plant defence in wheat 

The deamination of phenylalanine to trans-c\mmmc acid makes PAL an important 

molecule in plant defence (Appert et al 2003) as trans cinnamic acid leads to several 

other defence related metabolic pathways. 

This study shows that in aU the PAL inhibitors can provide some information on the 

defence response but are best viewed as a suite of inhibitors rather than individuals. 

Recent studies on barley with the wheat pathogen Erysiphe graminis using inhibitors 

show that penetration of the fungus is increased in the presence of the inhibitors AIP, 

AO A and AOPP (Arkawa et al 1997). A criticism of this work is that E. graminis is a 

pathogen of graminacae and thus it is harder to quantify the susceptibility produced to 

aU potential pathogens when PAL is inhibited. Although this supports the work here 

the same limitations may well exist in barley as in wheat and the use of the suite of 

inhibitors is important to show that PAL inhibition is the caustive factor in loss of the 

defence response. 

Another similar study shows that 1 mM AOPP treated wheat plants did not show 

increased penetration efficiency by Blumeria graminis f.sp. tritici (Stadnik and 

Buchenauer 2000). Again the same criticism is that a direct pathogen of wheat is not 

the best choice to model a break in constitutive resistance of wheat. The work here 
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shows that albeit with some induced phytotoxicity, resistance to B. cinerea is 

decreased after inhibition of the PAL enzyme. 

3.31.3 Potential for manipulation of lignin by inhibiting PAL 

As PAL is an important branch point for many pathways, attempts have already been 

made to manipulate it for commercial purposes. The production of taxol (Brincat et al 

2002), the control of abscission of citrus fruits (Kostenyuk et al 2002) and the control 

of browning of lettuce (Peiser et al 1998) have aU been successfully manipulated 

using biochemical PAL inhibitors. Although none of the inhibitors have been 

approved for food use there is some commercial interest in their application. 

With the production of taxol only AOA and AOPP were considered and differing 

effects were observed in that AOA decreased taxol production and AOPP slightly 

enhanced and then had no effect at 1 and 10 p,M respectively. The shutting down 

effect may be due to AOA having effects on other pathways (not necessarily the 

phenylpropanoid pathway). Interestingly AOPP in this study also has an effect on 

chlorophyll biosynthesis (phytotoxic effect) at 200 p,M and not at 1 mM. A possible 

explaination could be dissociation of the compound during dilution however, there is 

no evidence for this. 

Recently some new inhibitors of PAL, (AIC, APEP) have been developed Appert et 

al (2003). These were not available at the time of this study but may well be useful 

tools to further investigate PALs action. A recommendation would be to subject them 

to similar bioassay tests to further define the effects in vivo. 
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3.31.4 The study of plant defence with the inhibitors of PAL. 

The combination of AOA as inhibitor of the PAL enzyme at a 1.0 mM concentration 

may be used to study PAL or the phenylpropanoid pathway but results should be 

considered in terms of other inhibitors. Only if other inhibitors also show affects in a 

similar fashion should results with AOA be taken to be the effect of direct inhibition 

of the PAL enzyme. 

The combination of AIP as inhibitor and PAL as enzyme at 1.0 mM can be used to 

study PAL or the phenylpropanoid pathway. As PAL is a major step in the pathway 

and resistance to non-pathogens is directly affected this inhibitor may be a usefixl tool 

to study the metabolic background in which PAL functions. 

Some evidence may also be gained on PAL function with AOPP. However the 

likelihood of studies continuing with this compound is reduced due to its lack of 

availability at this time, as with many compounds a source is hard to secure. Recent 

work however has cited Genosys Biotechnologies Inc, Cambridge UK (Stadnik and 

Buchenauer 2000) as a possible source, or relied on synthesis by the laboratory itself 

Appert et al. (2003). 

The best strategy is to use AIP as the major component of any further study on the 

PAL enzyme or genes. Data from AOA and AOPP may well be of use in vitro but 

their use in vivo should be viewed with some caution. 

PAL is clearly an important enzyme in the wheat defence response as inhibition of 

PAL by three inhibitors at non-toxic concentrations leads to a break in resistance 

accompanied by a significant reduction in lignification and total plant chlorophyll. 
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3.32 Potential for C4H manipulation to inhibit lignification 

3.32.1 Specificity of the inhibitors of C4H 

l-Aminobenzyltriazole (AST); is an inhibitor of hydroxylation reactions that may be 

considered too unspecific due to its probable effects on non-target hydroxylases 

(Reichart et al 1982). This study shows at 5.0 mM concentration and 1.0 mM 

concentration, 17 and 29 % of total chlorophylls are reduced respectively. 

The naptholic acid and piperonylic acid compounds are cytochrome p450 inhibitors, 

C4H is believed to be a p450 dependent hydroxylase (Schalk et al 1998). Piperonylic 

acid was the most effective compound in vitro but causes some chlorosis in vivo. 

Lignification was not affected at any concentration by Piperonylic acid. The degree of 

difficulty of dissolution of the compound may explain its lack of efficacy. However 

Piperonylic acid has been shown to be effective as an inhibitor of C4H at 10 |xM, 

measured by the accumulation of saHcyclic acid (Schoch et al. 2001). 

Although being less potent inhibitors ofp450 hydroxylases the compounds 2.1 and 

1.2 Naptholic acid did cause some phytotoxicity. These inhibitors could only be used 

at low concentrations. 
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3.32.2 Significance of C4H to plant defence in wheat 

With ABT lignification is reduced significantly and resistance can be seen to be 

broken at 1.0 mM concentration. This is consistent with the results of Riatt (1998) 

who provided some preliminary data on this inhibitor. 

The lack specificity of the inhibition by the naptholic acid compounds in vivo due to 

their phytotoxicity makes the significance of C4H to plant defence is hard to quantify. 

The resistance breaking experiments for these compounds were not successfiil and 

required repetition. 

C4H may be significant to plant defence but the inhibition caused by the compounds 

tested here cannot show this due to their lack of specificity. 

3.32.3 Potential for manipulation of lignification bv inhibiting C4H 

Several new inhibitors of C4H have been developed these are substrate analogues of 

C4H (Schoch et al. 2001). However several reactions do involve hydroxylation via 

p450s and it is likely that substrate analogues of one hydroxylase substrate may cause 

damaging effects on other plant metabolic pathways. These substrates were not 

available at the time of the experiments and were not considered for this study. 

3.32.4 The studv of plant defence with inhibitors of C4H 

The inhibitors tested here fall short of the criteria required for a good inhibitor of 

C4H, as they are too phytotoxic. The newly developed inhibitors (Schoh et al. 2001) 

may have greater specifity and could provide a better model to understand the 

significiance of lignification. 
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3.33 Potential for Methyltransferasc manipulation to inhibit lignification 

3.33.1 Specificity of the inhibitors of OMT 

The OMT described by Funk and Brodelius (1990) in phenylpropanoid metabolism is 

a catechol O- methyltransferase. The catetchol O-methyltransferase inhibitor 

Tropolone had not been previously tested in plants. This chemical was hoped to have 

enough similarity to plant caflfeoyl (9-methyltransferase reactions to reduce 

lignification. In this study, the presence of tropolone does reduce defence related 

lignification but at the expense of the loss of chlorophyllus pigments and at lower 

concentrations causes reduction in spore germination. One possible explaination is the 

requirement of the metabolism of B. cinerea using methyl-transfer enzymes. The 

plant toxicity may come Irom the interaction between tropolone and copper 

(Eschelman et al 1997). Although some potential compounds for inhibiting OMT 

exist, at present no fiirther progress can be made at present by manipulating the 

phenylpropanoid pathway by inhibiting OMT. 

OMT may be significant step in plant defence in wheat, this study is unable to expand 

on the known evidence. Considering its position in the phenylpropanoid pathway the 

potential for manipulating lignification via OMT is great but no potent inhibitors exist 

of this compound. 
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3.34 Inhibitors of 4-coumarate co-enzyme A Ligase 

3.34.1 Specificity of the inhibitors of 4CL. 

Only one potential inhibitor has been characterised for this particular step in the 

pathway. However Funk and Brodelius (1990) note that there is some effect on the 

CCR enzyme as well. This inhibitor has great potential as it reduced lignification by 

almost exactly half It is possible therefore that the lignin specific pathway of PPM 

could be isolated and fiirther study could be made of uncharacterised routes into the 

pathway as if lignification is reduced by half, this half must have come &om some 

other source. If the hgnins present in MDCA treated leaves are sinapoyl in nature it 

could be good evidence for a pathway in wheat. The maule test Chappie et al. (1992), 

Ilyama et al. (1988) is postulated to preferentially bind sinapoyl units. This is because 

of the creation of methoxy-o-quinone structures in the reaction that produce a purple-

red colour. This reaction is probably only specific to the "sinapoyl" end of the 

pathway. This represents one way of quantifying this potential difference. 

Another method would be nitrobenzene oxidation which transforms the H,G and S 

units into substrates which can be visualised by chromatography and quantified. 

Obviously the nature of the lignins produced with this particular inhibitor present 

would be very interesting to ascertain. 

3.34.2 Significance of 4CL to plant defence in wheat. 

This study cannot conclusively show a break in non-host resistance because 4CL is 

inhibited. The method of examining leaves for breaking resistance by looking at the 

change in the lignin barrier or for presence in the leaf itself is time consuming and not 

a very robust assay. Other studies that examine lignification as a defence response 

look at penetration eflSciency of the fimgus but this requires a fimgus that penetrates 

and is therefore pathogenic to the plant. No other work has attempted to correlate 

purely defence related lignification and the inhibition of 4CL. 
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3.34.3 Potential for manipulation of lignin by inhibiting 4CL. 

As inhibition of 4CL by MDCA does not break resistance to non-host fiingi, this step 

could therefore be a safer target for genetic manipulation or the development of new 

inhibitor compounds on this step. The recent development of the aspen mutants by 

Chiang et al. (2002) and the reduction of the lignification thereby and its use for 

paper-making makes this the ideal step for further research into the mechanism of 

inhibition. 

3.34.4 The study of plant defence with the inhibitor of 4CL. 

Use of MDCA at 0.2 mM to inhibit 4CL has potential for further investigation of the 

phenylpropanoid pathway, it would be hoped that further studies could design more 

specific inhibitors that could truly test the inhibition of 4CL alone. 

3.35 Inhibitors of Cinnamovl Alcohol Co-enzyme A Reductase 

There are no direct inhibitors of this step of metabolism, however it is clearly a target 

of researchers, (Grabber, personal communication). The best inhibition comes from 

NH2PAS and MDCA, it is unclear therefore the best method of inhibition of this 

compound and could be a target for further studies of potential inhibitors using the 

bioassay method. 

Although hydroxycinammic acid is mentioned as an inhibitor of CCR in popular 

(Oskabe et al. 1999), it is currently unavailable. No direct data has been obtained on 

the nature of CCR to plant defence in wheat by biochemical inhibition. Therefore its 

potential or significance to the manipulation of lignification in wheat will not be 

considered. 
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3.35 Inhibitors of Cinnamoyl Alcohol Dehydrogenase 

3.35.1 Specificity of the inhibitors of CAD 

HMMCA appears to augment rather than reduce lignification, this compound was 

designed at Southampton University. However HMMCA does show effects in vitro 

on CAD activity and a preference for CAD A (Hall 1998). A possible explaination for 

the effect on lignification could be its structural similarity to the other units of 

lignification. This may lead to its direct incorporation into lignin itself A possible 

method for investigating this would be to use an extractive technique such as 

nitrobenzene oxidation. This may lead to changes in an HPLC elution profile of the 

lignin monomers. Previous work has shown a 70 % reduction in lignification 

measured by the Klasson technique, however no effect on lignification was shown in 

this study. One possible explanation could be dissociation of the compound over time 

in storage; re-synthesis of this compound would be required to test this. 

2.2. Dipyridyl has been shown by to inhibit CAD in vitro Hall (1998). However m 

vivo this compound has mycotoxic effects and was not investigated fiirther. This may 

be due to its broad spectrum of activity as a chelator of Zinc, which is presumed also 

to be the cause of phytotoxic effects (Hall 1998). 

NH2PAS has been shown to inhibit CAD and CCR in vitro by Carver et al. (1996). 

However in this study only at the lowest concentration (0.2 mM) NH2PAS shows any 

potential to break resistance, even so total chlorophylls are reduced significantly 

heavily. This compound is probably not a good choice for the study of the defence 

response. 

OH PAS has been shown to inhibit CAD by Carver et al. (1996), although being a 

more effective inhibitor of CAD. At the lowest concentration (0.2 mM) total 

chlorophylls are slightly reduced making it not ideal for the study of lignification. 

ML 19 is a suicide inhibitor of CAD (Hall 1998). Only the highest (5.0 mM) 

concentration seems to be effective at reducing lignification. At 0.2 mM ML 19 has 

been shown to have a preference for CAD C but only shows a 30 % inhibition of 
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CAD. Possibly a tighter dilution series could lead to more accurate inhibition data. 

However, at the 5.0 mM concentration the criteria for a good inhibitor are met. 

CI (Coniferal thiol) is also an inhibitor developed by Hall (1998), again being 

specifically designed to inhibit CAD. In contrast to ML 19, CI does not completely 

inhibit Ugnification. There are three isoforms of CAD in wheat (Mitchell et al. 1996) 

and CAD C is inducible. Previous work shows that CI preferentially inhibits CAD 

isoforms A and B over CAD C but that only 40-50 % of the activity is reduced. It is 

hypothesised that the oxygen group of CI may form a stable anion during the 

dehydrogenase reaction of CAD, which may chelate zinc, the co-factor of CAD. 

3.35.2 Significance of CAD to plant defence 

Resistance breaking experiments with ML 19 and CI do detect a break in non-host 

resistance. Both ML 19 and CI have been shown to be inhibitors of CAD in vitro with 

a preference for CAD C (Hall 1998) this study gives some evidence that they are good 

candidates for study of the defence response. Taken together these experiments give 

evidence that in vivo CAD induction is a vital step for the progression of the defence 

related lignification and the preservation of non-host resistance. 

Interestingly, application of CI breaks non-host resistance only at the 0.2 mM 

concentration. As the phyotoxicity results and lignification inhibition levels are so 

similar for both the 1.0 mM and 0.2 mM concentration this is surprising. One possible 

explanation could be a threshold inhibition of the CAD isoforms, the plant may 

synthesise more CAD in response to the inhibition by CI, and therefore in the end the 

non-host fungus cannot break resistance. This remains to be tested. 
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3.35.3 Potential for manipulation of lignin by inhibiting CAD 

CAD is four enzymes downstream of the start of the phenylpropanoid pathway. The 

potential for manipulation is therefore less as the derivatives that feed to CAD are 

already part of a complex pathway. 

CAD C in wheat has been shown to be inducible defence related interactions 

(Mitchell et al. 1996), therefore it is not the best candidate to manipulate for 

lignification, as treatments that effect CAD are shown to cause a non-pathogen to 

have greater penetration in plant cells. 

3.35.4 The study of plant defence with the inhibitors of CAD. 

Two of the potential CAD inhibitors provide a potential novel approach to managing 

plant defence. Some intermediates of the phenylpropanoid pathway have been shown 

to be mycotoxic Barber et al. (2000). Analogues of the phenylpropanoid pathway that 

are not only mycotoxic such as 2.2 Dipyridyl but augment Ugnification such as 

HMMCA may provide some protection against potential pathogens. Potentially these 

compounds could be phytoalexin Uke chemicals. 

The compounds ML 19, CI and OH-PAS all show at some concentration an ability to 

reduce plant defence for the germination of a non-host fimgus, these compounds 

therefore are useful for manipulation of lignification through inhibition of CAD. 

Possibly as with the PAL inhibitors the best data would be obtained by use of the suite 

of inhibitors rather than a single inhibitor. To confirm the specificity of the novel 

CAD inhibitors assays of their effect against the enzymes of the phenylpropanoid 

pathway must be performed. 
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3.36 Conclusions 

Botrytis cinerea is an obligate biotroph that will grow well on necrotised tissue. 

Therefore any inhibitor that produces phytotoxicity defined as loss of 25 % of the 

chlorophyllus pigments could lead to a false positive break in resistance. This is a 

weakness of the study as is the lack of a quantitative assay to measure the breaking of 

resistance. One possible improvement would be to add a positive control of a fungus 

that is known to affect wheat such as Puccina graminis to allow actual comparison of 

penetration efficiency. More sophisticated microscope techniques such as electron or 

confocal microscopy may also provide improved data on the maintenance of 

resistance. 

In terms of useage of these inhibitor compounds in an industrial context, it is clear 

that much more work needs to be done, however the only steps of inhibition not 

clearly shown to lead to a break in resistance are the 4CL, OMT and CCR steps. This 

is chiefly due to the lack of availability of appropriate specific inhibitor compounds. 

Only 4-CL can be judged as possibly being a good target for transgenic inhibition 

strategies, it is very important that non-host elements are taken into account when 

choosing a strategy for manipulating lignin. Indeed the 4CL reduced apsen lines of the 

Chiang group show a comparable level of lignin reduction as shown in this study. If 

these values hold true for the safe manipulation of lignin by the transgenic method 

then there is great hope for both the forage crop and paper milling industries. 

It is clear that both the PAL and CAD steps are very important in determining the 

non-host resistance outcome. The C4H step may also be important. However 

conclusive data cannot be drawn fi-om this study. More inhibitors however have 

recently been developed and with access to the sequences for the C3H enzyme 

perhaps more specific inhibitors can be designed. 

It is too simple to conclude that reduction in lignification can directly lead to non-

pathogen colonisation. Factors such as pathogen strain and whether it has recently 

infected a plant, humidity and light may well have effects on pathogencity of the 

pathogen. In the end it is a myriad of defence responses that control accessibility and 
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no one response at a particular time or space can be said to be the overriding factor in 

the determination of the compatible or incompatible host outcome for every species. 

So it is prudent to say that in fact pathogens in general only infect when both biotic 

and abiotic conditions are heavily weighted in their favour and that changing one of 

those conditions may not necessarily influence the outcome. 

3.37 Further work 

An interesting avenue would be the evaluation of the units of lignin (hydroxyphenyl, 

guaiacyl and syringyl) present in the inhibited tissues. This could yield useM 

information on the flux of metabolites through the system. 

An assay of PAL/CAD in the presence of MDCA may show that in the case of CAD 

that it can work preferentially on sinapic acid. 

Another useful technique would be to use nitrobenzene oxidation to see if it can shed 

any light on the nature of lignin units left after breaking resistance. This may also 

yield useful information on some of the contaminated resistance experiments. 
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Chapter 4; Regulation of gene expression and role of PAL in 

defensive lignification in wheat. 
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4.1 Regulation and role of PAL in the defence response in wheat 

The PAL enzyme represents the &st step of the phenylpropanoid pathway and 

catalyses the deamination of phenylalanine to cinnamic acid. The process continues 

with hydroxylation, methyl transfer, ligation and dehydrogenation reactions to 

produce lignification (see chapter 1). The knowledge of which intermediates of the 

lignification pathway affect PAL is therefore important and may allow a greater 

understanding of what parts of the defence response are significant. 

4.2 PAL expression and the defence response 

PAL expression is accepted as a marker of the defence response. In monocots such 

as barley PAL expression is induced in response to the development of primary 

germ tubes and appressoria of Blumeria graminis a fungal pathogen of barley 

{Boyd etal. 1994). 

PAL expression is also correlated to harpin (a bacterial elicitor secreted by a plant 

pathogens) and to hydrogen peroxide (a component of the hypersensitive response) 

in Arabidopsis thaliana making its expression an essential component of the 

defence response (Deskian et al. 1998). 

In wheat, three PAL genes have been reported (Liao et al 1996: Snowden and 

Gardner 1993) and challenge by the wheat pathogen Puccinia graminis fsp. tritici 

is known to induce Wpall (Li et al. 2001). A recent study has isolated a clone of 

PAL from elicitor treated wheat undergoing defensive lignification Hall (1998). 

Winter wheat has akeady been used as a model system to study PAL. Under 

controlled conditions of growth, hardening and dehardening of winter wheat, PAL 

expression was measured in wheat plants resistant to snow mould. (Gaudet et al. 

2000). PAL expression was found to be low or absent in the autumn, reached high 

levels by midwinter and decreased during the spring. PAL transcripts were weakly 

expressed in unhardened tissues, strongly up-regulated following hardening and 

down regulated under dehardening conditions. It is clear that environmental 

conditions play an important role in the transcriptional regulation of PAL. This is 
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important in the seasonal susceptibility of wheat plants to fungal invasion, however 

this study was carried out using a non defence related PAL. 

No study as yet can correlate defence related expression of a PAL gene in wheat to 

any specific time of induction of the defence response as a purely defence related 

PAL in wheat is yet to be fully characterised. 

4.3 PAL activity and the defence response 

Clearly if expression of PAL is a factor in the defence response it is likely that the 

activity of the PAL enzyme produced by the gene is also an important component. 

The timing of the activation of PAL may be a critical component of the defence 

pathway in wheat. In the interaction between the coffee plant and orange rust 

fungus, PAL is activated. The activation has two peaks of activity at two and five 

days after inoculation of the fungus. The 1®' peak coincides with accumulation of 

phenolic compounds and with the beginning of cell death. The 2"'' peak is related to 

later accumulation of phenols and lignification of the host cell wall. Interestingly 

although PAL activity was stimulated in susceptible plants, the delay in the host 

response allowed ftingal growth and sporulation (Silva et al. 2002). 

One piece of evidence that points to PAL having a significant role in the defence 

response has been shown using poplar suspension cultures. Eleven fungal 

phytotoxins postulated as pathogenicity factors that help circumvent plant defence 

responses were shown to reduce elicitor induced increases in PAL activity. 

Critically, two toxins appeared to have little effect on cell growth but were able to 

suppress PAL activity by 40-50 % (Vurro and Ellis 1997). If fungal populations 

possess phytotoxins that reduce PAL activity by a large amount it is likely be a 

critical component of the defence response in wheat. 

In conclusion, if PAL activity is delayed or reduced fungal penetration may be 

more likely to succeed. The catalysis of phenylalanine to cinnamic acid is therefore 

an important part of the defence response. 
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4.4 Role of intermediates in the regulation of PAL 

The role of the metabolic intermediates of the phenylpropanoid pathway is 

important to understand in the defence response in wheat. It is known that 

expression and or activity of PAL increases as part of the defence or stress 

response. As acids and aldehydes and alcohols are all formed continuously during 

plant development, levels may exist that can stimulate or reduce PAL activity and 

expression. 

Supporting evidence for this regulation in wheat is found in alfalfa suspension 

cultures. Where it is proposed that PAL transcript levels are regulated by 

endogenous phenylpropanoid intermediates. This regulation may come about 

because of the microsomal location of the C4H enzyme (Orr et al. 1993). 

4.5 Biochemical inhibitors and PAL 

The aforementioned inhibitors AO A, AIP and AOPP have already been tested for 

their ability to reduce defence related lignification at wound margins (Chapter 3). 

By inhibiting PAL, the effect on PAL gene(s) may be that of up or down 

regulation. Interestingly, the inhibitor AIP although being a potent reducer of PAL 

activity has been shown to reduce the level of the PAL promoter in Arabidopsis 

thaliana c.v. Columbia (Mauch-mani and Slusarenko 1996). 

The previously tested inhibitors of the phenylpropanoid pathway that are not PAL 

specific (chapter 3), have not yet been flilly evaluated for their effects on activity 

and expression of PAL. As some authors report effects by inhibitors on different 

parts of the pathway it is reasonable to assume that some inhibitors may affect PAL 

activity or expression. These effects should be quantified in order to give a clearer 

idea of the specificity of the inhibitors. 

4.7 Aims 

To investigate the effect of phenylpropanoid intermediates and known inhibitors on 

PAL regulation in wheat. 
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Materials and Methods 

4.8 Chemicals and reagents 

Tryptone Oxoid 

Yeast Extract Oxoid 

Agar No 2 Oxiod 

Sodium Chloride Fisher Scientific 

Sodium Hydroxide Fisher Scientific 

Glycerol Fisher Scientific 

Ampicillin Sigma Aldrich 

Tris-HCl Sigma Aldrich 

Ethylene diaminotetracetic acid (EDTA) Sigma Aldrich 

Glucose Sigma Aldrich 

Sodium Dodecyl Sulphate BDH 

Sodium Acetate Sigma Aldrich 

Phenol Fisher 

Chloroform Fisher 

Chloroform / Isoamyl Alcohol solution Sigma Aldrich 

Ethanol Fisher 

Sequence Mix Applied Bio systems 

Bromophenol Blue Sigma Aldrich 

Buffer H Applied Biosystems 

Ml 3 Primer Forward and Reverse AppHed Biosystems 

Tris-Acetate Sigma Aldrich 

Ethidium Bromide Sigma Aldrich 

Sodium Iodide Sigma Aldrich 

XDNA Bio 101 

NEW WASH Bio 101 

Glassmilk Bio 101 

Hybond-N Pharmacia Biotech 

Lithium Chloride Sigma Aldrich 

[a-^^P] dCTP Redipritne Pharmacia Biotech 

Formamide Sigma Aldrich 
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Sodium Citrate Sigma Aldrich 

X-ray film Kodak BioMax MS Pharmacia Biotech 

3-(iV-morpholino)propanesulfoiiic acid Sigma Aldrich 

Formaldehyde Sigma Aldrich 
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4.9 Growth and storage of bactcria 

Bacterial cultures were grown in Luria-Bertani (LB) medium (10 g tryptone, 5 g 

yeast extract, 10 g NaClz, in 1 L distilled water, pH 7.0 adjusted with 0.1 M NaOH, 

autoclaved). Addition of 15 g agar 1"' to LB prior to autoclaving produced solid 

media. Cultures were grown for 14-18 h at 37 °C in liquid medium. Glycerol 

stocks were produced by addition of 0.3 ml 50 % (v/v) glycerol to 0.7 ml of 

bacterial culture; storage was at -80 °C. 

4.10 Preparation of transformation-competent E. coli for clectroporation 

A culture ofE. coli strain DH5a cells (a gift of Dr A. McCormac, Southampton 

University) was grown to log phase (OD 600nm = 0.4; 4 h growth at 37 °C) in LB 

medium. The culture was chilled on ice and cells pelleted by centrifugation (3,000 

g for 5 min). The pellet was washed three times with ice-cold 10 % glycerol. The 

final pellet was re-suspended in 1/1O*** original culture volume. Aliquots of 80 uL 

were used for transformation with plasmid. 

4.11 Vectors 

The pBluescript SK (-) phagemid carried the gPAL insert (Hall 1998). It has a 

universal primer compatible origin of replication and an ampicillin resistance gene 

for antibiotic selection of the plasmid vector. The plasmid pBG35 contained the 

insert for the 18S transcript (Goldsbrough and Cullis 1981). 

4.12 Transformation of Escherichia coli cells using clectroporation 

An 80 uL aliquot was thawed on ice and 5 uL of approximately 5 ng ml"̂  gPAL 

cDNA clone (Hall 1998) was added to 0.2 cm cuvette and electroporated in a Bio-

Rad Gene pulser (2.5 Kv 0.2 cm"', 25 fxF and 400 ohms). After the pulse, the cells 

were re-suspended in 500 |iL LB broth, and incubated at 37 °C for 0.5-1 h before 

plating out onto LB agar plates containing 100 mg L"' ampicillin. 
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4.13 Plasmid DNA mini-prcps 

A transformed colony was aseptically transferred from antibiotic selection media to 

20 ml of liquid LB medium containing 100 mg 1"' ampicillin and shaken at 20 r.p.m 

overnight. E. coli cells were recovered by centrifugation at 1000 g for 5 min. The 

resulting pellet was re-suspended in 400 jj.1 (100 ja.1 5 ml"') culture ice-cold cell re-

suspension solution (25 mN'I Tris-HCl, pH 8.0, 10 niN'l EDTA, 50 mM glucose) and 

incubated for 5 min at room temperature. To lyse cells; 800 jxL cell lysis solution 

was added (0.2 N NaOH, 1 % SDS) and incubated for 5 min. To neutralise the 

lysate; 600 |a,l of 3.0 M-sodium acetate solution (pH 4.8) was added, the solution 

shaken by hand for 10 s and left on ice for 15-30 min. The resulting supernatant 

was dispensed into aliquots of 0.5 ml in fresh sterile eppendorf tubes and extracted 

twice via centrifiigation in the presence of (1:1) phenohcholoroform. 

The upper aqueous phase of 500 p-L was subjected to 500 jxL chloroform isoamyl 

alcohol solution, vortexed for 10 s and centrifiiged at 11,200 g for 5 min. The upper 

0.5 ml of the extract was washed in 1 ml 95 % (v/v) ethanol and centrifiiged at 11 

200 g for 5 min. The pellet was dried for 30 min and resuspended in 50 p,l SDW. 

4.14 Polymerase Chain Reaction (PGR) sequencing 

The gPAL plasmid was verifed by sequencing. Plasmid DNA (200 ng) was mixed 

with 4 p,L water and added to 4 )j,L (Applied Biosystems) sequence mix. To this 1.6 

pM of forward or reverse Ml 3 primer (1 uL stock) was added. After PGR at 96, 60, 

50 and 14 °C stages and 25 cycles the sample was diluted with SDW. This was 

added to 50 uL 95 % (v/v) ethanol and 2 (iL 3.0 M sodium acetate pH 4.8. The 

solution was incubated at room temperature for 30 min and centrifiiged at 11,200 g. 

The pellet was washed two times with 250 uL 70 % (v/v) ethanol and vortexed for 

10 s and centrifiiged at 11,200 g for 3 min. The ethanol was removed and the pellet 

was dried at 94 °C on a heating block for 1 -2 min. Samples were analysed on an 

AB1377 sequencer. 
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4.15 Plasmid digestion and electrophoresis. 

The program "Remap" (NCBI 2001) was used to identi^ potential restriction 

enzyme sites in the gPAL sequence. Combination of this data and the choice of 

adapter ligands used for the synthesis of gPAL (HaU 1998) lead to the choice of 

Eco RI, as an appropriate enzyme to cut the plasmid. 

For each sample 3 ixL 10 X buffer H {Eco RJ) was used in conjunction with 1 jiL 

enzyme, 5 |iL gPAL cDNA, this was made up to 30 p,L with distilled water and 

incubated overnight at 37 °C. After incubation 3 pJL bromophenol blue dye (50 

mM EDTA, 0.2 % (w/v) SDS, 50 % (v/v) glycerol and 0.05 % (w/v) bromophenol 

blue) was added and the sample was mixed and loaded into a well on a TAB buffer 

(0.4 M Tris-acetate, 0.1 M EDTA pH 7.0 ) 0.8 % (w/v) agarose and 500 p,g L"' 

ethidium bromide gel. Electrophoresis was performed at 120 V for 30-60 min. 

4.16 Removal of DNA gel consituents 

After exposure to Ultra Violet (UV) light the gel fragment containing the 1.9 kb 

insert was excised and frozen at -20 °C. Gel size was determined by weight 0.1 g = 

100 uL. Sodium iodide 6 M, 600 \xL (3 volumes) was added and the sample was 

incubated at 50 °C for 2 min. "Glassmillc" 5 \iL (Bio 101) was added, mixed by 

gentle agitation and incubated at room temperature for 5 min. The mixture was 

centrifiiged at 11,200 g, the precipitate retained and 500 jiL NEW WASH (Bio 101) 

was added. The precipitate was re-suspended and washed three times with the 

NEW WASH solution. The supernatant was discarded and the DNA eluted by 

addition of 20 uL SDW, with mixing and centrifiigation at 11 200 g. A sample of 

the supernatant was electrophoresed on a TAE buffer gel as above, against a X 

DNA marker (1 |xL A, DNA, 10 pE SDW, 1 pL ethidium bromide). 
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4.17 Electrophoresis of RNA in a denaturing gel system 

Gels were made up by melting 1-1.5 g agarose in 10 ml 10 X MOPS bufifer (0.2 M 

3-(A^-morpholino)propanesuLfonic acid pH 7.0, 0.5 M sodium acetate, 0.01 M 

EDTA) and 75 ml SDW. After dissolution 40 % (v/v) formaldehyde was added and 

gels poured into a gel tank. Electrophoresis was carried out in 1 X MOPS buffer 

and at 40-80 V. Samples were prepared by incubating 12 RNA, 25 p,L 

Formamide, 5 |j,L 10 X MOPS buffer and 8 pL Formaldehyde at 65 °C for 5 min. 

4.18 RNA gel blot analysis. 

Total RNA was extracted from 10-day-old wheat leaves. Wheat leaves were 

wounded five times with a rounded metal stake and treated with 10 p,L per wound 

of either 5 mg ml"' chitin (section 4.19) or distilled water. The leaves were covered 

and left for 16 h (22 °C 16 h day) and cut to 32 mm strips encompassing the five 

wounds, Unwounded leaves were cut at the same time as wounded leaves. 

An excised leaf was frozen in 1.5 ml liquid N? and ground in 800 pL extraction 

buger (phenol: 0.1 M LiCl, 0.1 M Tris-HCl pH 8.0, 10 mM EDTA and 1 % (w/v) 

(SDS) (1:1, v/v). RNA was extracted by partioning with 400 pL chloroform and 

precipitated in an equal volume of 4 M LiCl, followed by precipitation with (100 

%) ethanol. Total RNA (5 ug per lane) was heat deatured (65 °C for 10 min) and 

separated in the presence of 50 % (w/v) formamide, separated on a denaturing 1.3 

% agarose gel and blotted onto Kybond-N (Amersham Pharmacia Biotech, UK) 

overnight at room temperature according to Sambrook et al (1989). Equal loadings 

of RNA were calculated via ethidium bromide staining of samples before loading 

and confirmed by hybridisation of stripped blots with an 18s rDNA probe (section 

4.17). Prehybridisation and hybridisation was at 42 °C in the presence of 50 % 

formamide. Washing was completed to a final stringency of 0.2 X SSC + 0.1 % 

(w/v) SDS at 42 °C. (20 X SSC, 175.3g NaCL 88.2 g sodium citrate pH to -7.0 

with 10 M NaOH Adjust volume to IL). The gPAL DNA probe was obtained by 

digestion of the the cDNA clone (HaU 1998) with Eco RI and labelled with [a-^^P] 

dCTP using the Rediprime (Alpha Pharmacia Biotech) system. Blots were exposed 

onto X-ray film (Kodak BioMax MS, /unersham Pharmacia Biotech, UK) and 

densitrometric scans were performed using a digital imaging system (Alpha 
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iiiiiOl L tro. CA USA) and the AlphEase software package. 

Hybridisation was performed separately for the time course blots and the 

metabolite or inhibitor blots. 

4.19 RNA quantitiation 

Extracted RNA samples were prepared by incubating 2 p,L RNA, 5 p,L Formamide, 

1 jj-L MOPS buffer and 2 jiL Formaldehyde at 65 °C in the presence of 0.2 p.L 

Ethidiuni Bromide for 5 min. "rvlini" gel electrophoresis was carried out as above 

and differences were compared by eye to a sample with a known volume of RNA 

(5 fig ml"'). The 5 p,g ml"̂  sample was quantified from a comparison with RNA 

obtained from Arabidopsis seedlings that had been quantified at 260 nm to 5 |ig ml' 

' (McCormac personal communication). Dilutions were then prepared with RNAse 

free water equalise RNA volumes to account for differences in extraction. 

For example, duplicate standards of RNA of 5 p.g ml"' were compared with RNA 

extracted from chitin treated wheat plants at 12 and 36 h. For the final adjustment 

the brightest of the four 36 h treatment RNAs had 2 fil water extra added to the mix 

(12 |j,l max) before loading into wells in preparation for electrophoresis (Table 4.1, 

Figure 4.1). 
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Ctrl RNA Chitin 12 h Chitin 36 h 

1 2 3 4 5 6 7 8 9 10 11 12 

Total RNA 

•» /5 "g Bi' 4" ? 2 DXT A 

extracted from wheat leaves using the phenol; chloroform method. Samples were 

prepared in a formaldehyde, fbrmamide and MOPS buifer in the presence of 

ethidium bromide lanes 1 and 2, 5 |ig ml"' RNA; lanes 4-7, RNA extracted from 

chitin treated wheat leaves at 12 h; lanes 9-12, RNA extracted from chitin treated 

wheat leaves extracted at 36 h. 

Lane Description Volume used to 
equalise RNA for 
Northern analysis 

1 5 \xg ml"' of known quantified RNA (McCormac) 10 nL 
2 5 f.ig m r ' of knowR quantified RNA (McCormac) 10 
3 Empty 
4 Chitin treated Wheat leaf RNA extracted at 12 h 10 \iL 
5 Chitin treated WTieat leaf RNA extracted at 12 h 10 pL 
6 Chitin treated Wheat leaf RNA extracted at 12 h 10 pL 
7 Chitin treated Wheat leaf RNA extracted at 12 h 10 pL 
8 Empty 
9 Chitin treated Wheat leaf RNA extracted at 36 h 12 pL 
10 Chitin treated Wheat leaf RNA extracted at 36 h 10 pL 
11 Chitin treated Wheat leaf RNA extracted at 36 h 12 pL 
12 Chitin treated Wlieat leaf RNA extracted at 36 h 12 pL 

Table 4.1 Dilutions prepared from ethidium bromide stained gels to equalise 

RNA loading; Lane, Lane on gel (Figure 4.1); Description, concentration of RNA 

or plant treatment before RNA quantitiation; Volume used to equalise RNA for 

Northern analysis, based on 12 p-L as maximum RNA and water mix. 
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4.20 Northern blot analysis 

To quantify northern blots the Alpha Imager software (Alpha Innotech) spot 

densitometry package was used to draw (toolbar 4) a square around a video 

captured image of the blot (section 2.10). Another square of equal size was fixed to 

the unhybridised area of the blot and set as background. The IDV (integrated 

density value) for each areas pixels was calculated on a scale between 255 (Black) 

and 0 (white). After subtracting the background value the magnitude of gPAL 

expression could be ascertained. After normalising this value with the value 

obtained by 18S RNA analysis the fold induction of gPAL irom a set time (0 h or 

unwounded) could be ascertained. 

Biochemical methods 

4.21 Preparation of Chitin 

Chitin was prepared by adapting the protocol of Shimahara and Takiguchi (1988). 

Chitin suspension was prepared by dissolving 8 g ground chitin in 80 ml 

concentrated HCl at 0 °C for 12 h with slow agitation. The solution was centrifiiged 

at 500 g for 10 min, the supernatant collected and slowly added to rapidly agitated 

50% pre-cooled ethanol solution and allowed to precipitate for 2 h. The precipitate 

was collected by centrifiigation (500 g 10 min') and washed tliree times with 

distilled water. A polytron homogeniser (10 mm head) at speed five for 1 min was 

used to fully disperse the chitin. The precipitate was centrifuged (500 g 10 min"') 

and treated with 1 M NaOIl for 36 h at 90 °C. The pellet was collected via 

centrifligation (500 g 10 min" ) and washed extensively with distilled water. 

Ethanol (95 % v/v) was added and the solution was incubated at 60 °C for 6 h. 

Reacetylation was achieved by addition of 2 % (v/v) acetic anliydride in methanol 

and cooling to 0 "C for 2 h. The chitin suspension was then dialysed in two batches 

of 2 L distilled water overnight at 4 °C. A dry weight analysis was performed by 

transferring three replicates of 1 ml samples of the solution to aluminium cups and 

drying at 60 °C for 5 hours. The solution was diluted to 5 mg ml"', autoclaved (121 

"C 15 min) and dispensed into 10 ml fractions stored at -20 °C. 
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4.22 Assay of PAL activity 

The measurement of PAL activity was based on the method of Thorpe and Hall 

(1992) '"'C L-phenylalanine (Amersham) was diluted to 2.5 |4. Ci |a mol"' in 100 mM 

Tris-IICl pi I 8.8. A chitin treated wheat leaf was ground in 200 jxL Extraction 

BuSer (100 mM Tris-HCl pH 8.8, 0.05 % (w/v) EDTA, 0.05 % (v/v) 

Mecaptoethanol). The solution was centrifaged at 11 200 g and 100 jiL of the 

aqueous phase was added to a solution of200 jliL L-phenylalanine solution and 200 

pL 2.5 mM phenylpiopanoid pathway intermediate or 1.0 mM phenylpropanoid 

enzyme inhibitor. This solution was incubated at 35 °C in a water bath for 3 h. To 

stop the reaction 50 jiL 50 mM fran^-cinnamic acid in 0.1 % (w/v) NaOH and 50 

pL 50 % (v/v) trichloroacetic acid were added. The solution was mixture shaken by 

inversion and left for 10 min. Toluene was added (200 pL) and the mixture 

centrifliged at 1000 g. The "organic" phase of 150 |.iL was removed and counted in 

5 ml scintillation fluid. Counts were performed on a Wallac 1209 liquid 

scintillation counter, using water as a blank. 
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Results 

4.23 Expression of gPAL 

The gPAL clone was sequenced previously from nucleosomic cDNA stocks by 

Hall (1998). The sequence revealed high similarity to PAL clones of wheat and as 

it was from genetic stocks from diseased afflicted wheat the clone was referred to 

as gPAL (Stratford 2002). 

Initially, a time course of chitin-stimulated expression of gPAL related RNA was 

performed. This was achieved by northern analysis of chitin and water treated 

wheat leaves over a 48 h period. RNA was prepared from 10-day-old wheat plants. 

Gels (5 jxg RNA per lane) were probed under high stringency conditions with gPAL 

and constitutive 18s RNA (Figure 4.2). This allowed quantification of the 

normalised levels of gPAL RNA accumulation using a scanning densitrometric 

package (Alpha Imager). 

Northern analysis is presented in terms of fold induction of gPAL normalised 

against 18s RNA expression (Figure 4.3). Treatment with water has little effect on 

gPAL induction, expression remains unchanged from that at 0 h throughout the 

time course (Figure 4.3a). The gPAL related RNA is induced at the highest levels 

(7 fold) with chitin between 12 and 20 h and this increase is maintained at above 6 

fold for 24 h until 36 h where expression begins to decline until reaching 2 fold at 

48 h (Figure 4.3a). 

As both chitin and water treatment involves wounding, subtraction of the water 

treated values from the chitin treated results reveals the effect of the chitin 

treatment alone. The net effect of chitin alone is to induce a 4-fold induction of 

gPAL by 8 h that increases to a maximum of over 6-fold induction of gPAL 

expression at 16 h. This induction is maintained at 5-6 fold for a 24 h period until 

36 h. Expression then declines to 4 fold by 40 h, which continues to decline to a 2-

fold induction by 48 h (Figure 4.3 b). 
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Figure 4.2 Accumulation of gPAL RNA in wheat leaves in response to chitin 

and water: Northern analysis using gPAL and 18S probes was used to quantify the 

response of PAL transcript induction over 48 h; (a), accumulation of gPAL RNA in 

wheat leaves after treatment with 5 mg ml'̂  chitin; (b), accumulation of gPAL RNA 

in wheat leaves after treatment with water. In both (a) and (b) the level of the 

corresponding constitutive 18S RNA is shown. RNA loading (5 pig per lane) was 

equalised across the gels by reference to ethidium bromide stained mini gels. 
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Figure 4.3 Time course of chitin-induced gPAL expression in wheat leaves: 

Northern analysis was performed (a). Fold induction of gPAL by 5 mg ml'̂  chitin(^ 

and water(^); (b). Net gPAL induction (chitin-water) ( ^ . RNA was loaded at 5 (xg 

per lane. Gels were electrophorised under high stringency conditions. Scanning 

densitrometric analysis was used to normalise data by probing blots with a probe 

specific for 18s RNA (n = 1). 
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4.24 PAL activity 

In order to determine how the expression of gPAL related RNA fits into the total 

activation of PAL in the lignification response, the PAL activity stimulated by 

cMtin was measured using the radiochemical method of Mitchell et al (1994) to 

ascertain the activity of PAL over a 48 h period. Data is expressed in terms of total 

activity per gram iresh weight and further analysis in terms of activity per wound. 

Unwounded leaves elicit PAL activity to no greater than two pkat per gram fi-esh 

weight; this level is maintained throughout the 48 h period. In wounded leaves 

treated with water, initial PAL activity is below 5 pkat per gram fi-esh weight. 

However at 32 h the activity rises to 8 pkat per gram fi-esh weight, a 2-fold 

induction over unwounded leaves. This activity is maintained at 5 pkat per gram 

fi-esh weight until 48 h (Figure 4.4). 

In wounded leaves treated with chitin, PAL activity is significantly increased 

compared to unwounded plants at 4 h. This significant increase continues to a peak 

of activity at 12 h of 12 pkat per gram fresh weight, which represents a 4-fold 

induction over water treated leaves (3 pkat per gram fresh weight) (Figure 4.4). 

This level is maintained until 48 h where activity drops to 9 pkat per gram fresh 

weight but remains significantly different from water treated controls (Figure 4.4). 

As both chitin and water treatments involve wounding, subtraction of the water-

treated values from the chitin-treated results reveals the effect of the chitin 

treatment alone. Chitin alone induces a significant increase of PAL activity at 4 h. 

However, at 8 h this is not statistically significant (Figure 4.5). By 12 h chitin 

induced PAL rises to 65 flcat per wound. Although declining, this significant 

difference between chitin and water treated leaves is maintained until 36 h after 

which it is no longer statistically significant. After 36 h the induced PAL activity 

rises to 50 fkat per wound and from 40 to 44 h declines to 20 fkat per wound but 

remains statistically significant (Figure 4.5). 

When net PAL activities from unwounded and water treated leaves are compared 

there is no significant difference until 24 h. After this point PAL activity in the 

water-treated leaves remains significantly different from unwounded leaves until 48 
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h. The PAL activity in the water treated leaves is highest at 32 h (28 f kats per 

wound) (Figure 4.6). 
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Figure 4.4 Time course of chitin induced PAL activity in wheat leaves: Data 

was obtained from radiochemical assay of incorporation of from 

Phenylalanine to trans-cinnawic acid: Treatments ( ^ , 5 mg ml"' chitin; ( # water; 

( • ) , unwounded plants; (*), Significant difference using students t-test (p = 0.05, n 

> 4) between chitin induced and unwounded plants. Vertical bars show standard 

errors. 
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Figure 4.5 Net effect of chitin on PAL activity in wheat leaves: Data was 

obtained from radiochemical assay of incorporation of from Phenylalanine to 

trans-c\mmmc acid: Treatment (A), 5 mg ml'̂  chitin. * Significant difference 

using students t-test (p = 0.05, n => 4) between chitin and water induced activity. 

Vertical bars show standard errors. 

124 



3 50 

water-unwovinded 

1 30 

Time (h) 

Figure 4.6 Net effect of wounding on PAL activity in wheat leaves. Data was 

obtained from radiochemical assay of incorporation of from Phenylalanine to 

trans-cmmrmc acid: Treatment ( # water. * Significant difference using students t-

test (p = 0.05, n > 4) between water treated and unwounded leaves. Vertical bars 

show standard errors. 

125 



4.25 Effect of the metabolic intermediates of the phenvlpropanoid pathway on 

gPAL expression. 

To investigate the regulation of the response to chitin of gPAL by the presence of 

the intermediates of the phenylpropanoid pathway, RNA was prepared from 10-

day-old wheat plants. The plants were treated with a combination of 5 mg ml"' 

chitin and 1 mM phenylpropanoid pathway intermediate for 16 h. Results are 

presented in terms of fold gPAL expression induced by chitin. Subtracting results 

of RNA expression for leaves treated with water alone from those obtained for 

treatment with chitin and a metabolite or inhibitor revealed the effect of chitin 

alone. Dividing results of RNA expression for leaves treated with chitin and a 

metabolite or an inhibitor by those obtained for chitin alone revealed the percentage 

inhibition of the gPAL transcript by the metabolite or inhibitor. 

The presence of 1 mM phenylalanine, 1 mM 5-hydroxyferulic acid and 1 mM 

sinapic acid with chitin although leading to a greater than 1-fold induction of 

gPAL; did not give a significant decrease in gPAL expression. The presence of 1 

mM Ferulic acid with chitin lead to either a total reduction of all RNA or a problem 

with loading on the gel, as such no data can be determined for this compounds 

effect on expression. However, its effect on activity of PAL wiU be determined 

later. 

The presence of 1 mM /rani'-cinnamic acid with chitin leads to a greater than 2-fold 

expression of gPAL representing a significant difference in expression from chitin 

treated, water treated and unwounded leaves (Figure 4.7). The net effect (-water) of 

^rara-cinnamic acid is a greater than 1 fold induction of gPAL (Figure 4.8). trans-

Cinnamic acid increases gPAL expression by a factor of 55 % (Table 4.1). 

The presence of 1 mM para-CovLmaxic acid with chitin leads to a greater than 3-

fold expression of gPAL (Figure 4.7). The net effect (-water) ofpam-Comnaric 

acid is a 3-fold induction of gPAL (Figure 4.8). /'ara-Coumaric acid increases 

gPAL expression by a factor of 176 % (n =1) (Figure 4.7). 
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Figure 4.7 Fold gPAL expression in the presence of cinnamic acids of the 

phenylpropanoid pathway: Data obtained from scanning densitrometric analysis 

of northern blots, a, Total fold gPAL expression, b net (-water) gPAL expression. 

Unwounded, untreated leaves Water, wounded leaves treated with distilled water, 

all other treatments were with 5 mg ml"' chitin. Increase, decrease; percentage 

change relative to chitin in gPAL expression under the treatment. * significant 

difference using students t-test (n = 2, p = 0.05) from unwounded, water and chitin 

treatments. Vertical bars show the standard error of the mean. 
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The presence of 1 mM caffeic acid with chitin leads to a greater than 2-fold 

expression of gPAL (Figure 4.7). The net effect (-water) of caffeic acid is a greater 

than 1-fold induction of gPAL (Figure 4.7). The presence of caffeic acid increases 

gPAL expression by 70 % (n = 1) (Figure 4.7). 

Not aU the hydroxycinnamyl aldehyde and hydroxycinnamoyl alcohol 

intermediates of the phenylpropanoid pathway were available at this time. Of those 

tested, /»-coumarylaldehyde and sinapaldehyde did not significantly decrease the 

chitin stimulated gPAL expression (Figure 4.8). Flowever, it is likely from the data 

from one experiment that the presence of coniferal aldehyde does inhibit the chitin 

stimulated gPAL expression (Figure 4.8). The alcohols of the phenylpropanoid 

pathway that were tested are all likely to inhibit chitin stimulated gPAL expression 

from the data obtained from one experiment (Figure 4.8). 
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Figure 4.8 Fold gPAL expression in the presence of hydroxycinnamyl 

aldehydes and hydroxycinnamyl alcohols of the phenylpropanoid pathway: 

Data obtained from scanning densitrometric analysis of northern blots, a. Total fold 

gPAL expression, b net (-water) gPAL expression. Unwounded, untreated leaves 

Water, wounded leaves treated with distilled water, all other treatments were with 5 

mg ml"' chitin. Increase, decrease; percentage change in gPAL expression under 

the treatment. * Significant difference (n = 2, p = 0.05) from unwounded, water and 

chitin treatments. Vertical bars show the standard error of the mean. 
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4.26 PAL activity in the presence of metabolic intermediates of the 

phenvlpropanoid pathwav. 

To investigate the possibility of feedback inhibition of PAL by phenylpropanoid 

intermediates, the intermediates were incorporated into the enzyme assay of 

Mitchell et al (1994). Wounded primary leaves of wheat were treated with 5 mg ml' 

' chitin and harvested after 16 h post inoculation. PAL activity was extracted from 

leaves in the presence of 2.5 mM phenylpropanoid pathway intermediates. To 

calculate induced PAL per wound, water control values (p kat leaf') were 

subtracted, the result multipled by 1000 (fkat) and divided by the number of 

wounds (5). The presence of both phenylalanine and /ram-cinnamic acid inhibited 

PAL activity significantly as did 5-hydroxy ferulic acid. Coumaric acid and ferulic 

acid also appeared to inhibit the response to chitin however this is not significant 

(p=0.05). Caffeic and sinapic acid did not inhibit the response at all (Table 4.3). 

None of the hydroxycinnamyl aldehydes or hydroxycinnamyl alcohols present in 

the phenylpropanoid pathway can be shown to significantly inhibit PAL activity. 

However both the coniferal aldehyde and coniferal alcohol analogues show some 

inhibition of PAL activity. This inhibiton is comparable to that shown by ferulic 

acid (Table 4.4). 
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Table 4.2 Activity of PAL chitin-stimulated in the presence of 

hydroxycinnamic acids of the phenylpropanoid pathway. The effect of 

hydroxycinnamic acids on the activity of phenylalanine ammonia lyase (PAL) 

activity induced by chitin in wounded wheat leaves at 16 h post inoculation. Data is 

expressed in terms of total activity per gram fresh weight of tissue and as the 

activity induced per wound by chitin in the presence of the metabolite and as the 

degree of inhibition of the induction of chitin. All assays were repeated at least 

eight times. A * indicates those compounds that significantly (p = 0.05) inhibited 

the chitin response. 

Plant treatment Addition to PAL 
assay (2.5 mM) 

Total PAL 
(pkats g'l 

FW) 

Induced PAL 
(fkat wound"') 

Inhibition 
(%) 

Unwounded water L29 0 

Wounded and 
water 

water 3.46 0 

Wounded and 
chitin (5 mg ml'^) 

water 13.7 58.0 

Wounded and 
chitin 

Phenylalanine 4.44 5.60 90* 

Wounded and 
chitin 

trans Cinnamic acid 3.07 -2.20 104* 

Wounded and 
chitin 

para-Coumaric acid 9.45 33.9 42 

Wounded and 
chitin 

Caflfeic acid 15.1 66.0 -14 

Wounded and 
chitin 

Ferulic acid 9.45 3 ^ 9 41 

Wounded and 
chitin 

5-Hydroxyferulic 
acid 

4.51 5.90 90* 

Wounded and 
chitin 

Sinapic acid 15.3 
66.9 -15 
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Table 4.3 Activity of PAL in the presence of aldehydes and alcohols of the 

phenylpropanoid pathway. The effect of various treatments on the induction of 

phenylalanine ammonia lyase (PAL) activity in wounded wheat leaves at 16 h post 

inoculation. Data is expressed in terms of total activity per gram fresh weight of 

tissue and as the activity induced per wound by chitin in the presence of the 

metabolite and as the degree of inhibition of the induction of chitin. All assays were 

repeated at least eight times. A * indicates those compounds that significantly (p -

0.05) inhibited the chitin response 

Plant treatment Addition to PAL pkats g"' PAL 
assay (2.5 mM) FW &at wound"^ 

% Inhibition 

Unwounded Water 1.29 

Wounded and water Water 3.46 

Wounded and chitin 
(5 mg ml'i) 

Water 13.7 58.0 

Wounded and chitin j9ara-Coumaryl 
aldehyde 

16.8 

Wounded and chitin Coniferal aldehyde 8.07 

75.7 

26.1 

-31 

55 

Wounded and chitin Sinapaldehyde 13.5 57.0 

Wounded and chitin para-Coumaryl 
alcohol 15.6 68.6 -18 

Wounded and chitin Coniferyl alcohol 9.25 32.8 43 

Wounded and chitin Sinapoyl alcohol 
13.6 57.5 
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4.27 Effect of the known inhibitors of the phenvlpropanoid pathway on chitin 

induced gPAL expression. 

To investigate the regulation of the response to chitin of gPAL by the inhibitors of 

the phenylpropanoid pathway, RNA was prepared from 10-day-old wheat plants. 

The plants were treated with a combination of 5 mg ml"' chitin and 1 mM 

phenylpropanoid pathway inhibitor. Results are presented in terms of induction of 

gPAL by chitin after 16 h post inoculation. The PAL inhibitor AOA significantly 

reduced gPAL expression, whereas AIP had no discemable effect. The hydroxylase 

inhibitor ABT, the 4CL inhibitor MDCA and the CAD inhibitor OH-PAS all 

increased gPAL expression. The CAD inhibitors NH2PAS and ML 19 also 

decreased expression. 
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Figure 4.9 Effect of the inhibitors of the phenylpropanoid pathway on chitin 

induced gPAL expression. Data obtained from scanning densitrometric analysis of 

northern blots, a. Total fold gPAL expression, b net (-water) gPAL expression. 

Unwounded, untreated leaves Water, wounded leaves treated with distilled water, 

aU other treatments were with 5 mg ml"̂  chitin. Increase, decrease-, percentage 

change in gPAL expression under the treatment. * Significant difference (n = 2, p = 

0.05) from chitin alone treatment. Vertical bars show the standard error of the 

mean. 
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4.28 PAL activity in the presence of known inhibitors of the phenylpropanoid 

pathway. 

To check the effect and relative efficacy of the known inhibitors of lignification on 

PAL activity the inhibitors of the phenylpropanoid pathway were incorporated into 

the enzyme assay of Mitchell et al (1994). Wounded primary leaves of wheat were 

treated with 5 mg ml"' chitin and harvested after 16 h post inoculation. PAL activity 

was extracted from leaves in the presence of 2.5 mM phenylpropanoid pathway 

biochemical inhibitor. To calculate induced PAL per wound, water control values 

(pkat leaf') were subtracted, the result multipled by 1000 (fkats) and divided by 

the number of wounds (5). Unsurprisingly both AOA and AIP significantly reduced 

PAL activity significantly. AIP appears to completely reduce all PAL activity. 

More surprising was that both the CAD inhibitors NH2PAS and OH-PAS also 

significantly reduced PAL activity. None of the other phenyl propanoid pathway 

inhibitors can be shown to reduce PAL activity. 
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Table 4.4 Activity of PAL in the presence of known inhibitors of the 

phenylpropanoid pathway The effect of various treatments on the induction of 

phenylalanine ammonia lyase (PAL) activity in wounded wheat leaves at 16 h post 

inoculation. Data is expressed in terms of total activity per gram fresh weight of 

tissue and as the activity induced per wound by chitin in the presence of the 

metabolite and as the degree of inhibition of the induction of chitin. Proposed target 

a, PAL; b C4H; c MDCA/CCR d CAD. All assays were repeated at least eight 

times. A * indicates those compounds that significantly (p = 0.05) inhibited the 

chitin response 

Plant treatment Addition to PAL pkats g"' Induced PAL flcat % Inhibition 
assay (2.5 mM) FW wound" 

Unwounded Unwounded 1.29 

Wounded and 
water 

water 3.46 

Wounded and 
chitin 

water 13.70 58.0 

Wounded and 
chitin 

AOA* 5.16 09.6 83" 

Wounded and 
chitin 

AIP* 0.18 -19.1 133* 

Wounded and 
chitin 

ABT" 17.58 79.9 -38 

Wounded and 
chitin 

Wounded and 
chitin 

Wounded and 
chitin 

MDCA" 

OH-PAS'* 

NHzPAS* 

12.29 

2.75 

5.41 

50.0 

-04.0 

11.1 

14 

107* 

81" 

Wounded and 
chitin 

ML19'' 13.04 54.3 
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Discussion 

4.29 The expression of gPAL activity induced by chitin and wounding. 

Although the defence related clone of phenylalanine ammonia lyase (gPAL) has 

been sequenced (HaU 1998), the relationship between the expression of this defence 

related clone and total PAL activity had not been fully explored. These experiments 

investigated the consequence of adding a defence response elicitor (chitin) to wheat 

leaves on the induction of gPAL. 

gPAL is induced over 48 h in 10 day old wheat plants wounded and inoculated with 

chitin (Figure 4.3). In the presence of chitin the pattern of gPALs expression 

mirrors that of the total PAL activity. The expression of the gPAL gene increases 

12 h after wounding and chitin treatment (Figure 4.3); similarly PAL activity 

increases at 12 h (Figure 4.4). Both the activity and expression patterns are 

maintained throughout 48 h period. Chitin therefore is a potent elicitor of gPAL 

activity and expression in 10-day-old wheat plants. 

In water-treated wounded 10-day-old wheat plants an increase in PAL activity is 

observed at 32 h (Figure 4.4). Although this point is not directly measured in the 

expression data the data shown does not support that gPAL expression is directly 

responsible for the increases in PAL activity at this point. In addition the net effect 

of wounding on PAL activity (Figure 4.6) shows that after 24 h through to 48 h 

PAL activity induced by wounding is significantly different to untreated plants. 

This is in contrast to reports that wounding does not induce PAL activity in wheat 

(Peltonen 1998). This may be due to the increased sensitivity of the radiochemical 

assay used in this study. 

As wound induction does not stimulate gPAL it is likely that some other PAL genes 

are involved in the activation of PAL. At least two PAL genes (Liao et al 1996, 

Snowden and Gardner 1993) are known to exist in wheat and one possible 

explanation may be that another gene is activated to increase PAL activity. Many 

mechanisms may underlie PAL expression. In tobacco and populus at least two 
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different temporally activated PAL genes are expressed and regulate the PAL levels 

(Moriwakl et al 1999) (Thamarus and Fumier 1998). Another possible mechanism 

of regulation may be increased activation of PAL enzyme via a protein kinase such 

as the CDPK shown m Arabidopsis (Cheng et al 2001). Further analysis such as 

microarray or proteomics techniques may reveal the temporal expression and 

activation patterns of wheat PAL. 

Regulation of PAL therefore is under the control of at least four genes, which 

contribute to the PAL activity profile. The first described defence related PAL in 

wheat is activated significantly only by direct elicitor treatment and not by 

wounding. Wounding itself however causes a small increase in PAL activity but 

this cannot be attributed to gPAL, or fi-om the literature any other PAL described in 

wheat to date. 

4.30 Specificity of PAL inhibitors 

The inhibitors of PAL activity were chosen for two reasons. In the case of the 

documented PAL activity inhibitors AOPP, AIP and AO A, the effect of the 

inhibition of the PAL enzyme can be correlated wdth the effect on the transcription 

of gPAL in wheat. This gives some insight into the dependence of wheat for gPAL 

as part of the defence response. 

Both PAL inhibitors do reduce PAL activity but only AOA reduces PAL 

expression (Figure 4.13, 4.14). This is in contrast to work reporting that the PAL 

promoter m Arabidopsis was negatively affected by the presence of AIP (Mauch-

Mani and Sluslarenko 1996). Further work with AIP indicates that high levels may 

be phytotoxic and the competition with phenylalanine by AIP may arrest the cell 

cycle (Appert et al 2001). The inhibitor AOPP was not considered in this study 

because of its short supply, and its lack of specificity as highlighted in chapter 3. 

However, AOPP has been reported to increase PAL expression in Medicago sativa 

Ni et al (1996), clearly the structures of the known inhibitors and their enzymes are 

sufficiently different to have divergent effects on expression and activity. A 

possible explanation for these differences may be genetic variation between wheat 

and these other species. 
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The specificity of other phenylpropanoid enzyme inhibitors was investigated for 

their effect on gPAL expression and PAL activity. This gives some insight into the 

specificity of the inhibitor for its target enzyme. A facet of this approach is if the 

inhibition of the target enzyme (e.g. CAD by ML 19) is specific enough the effect 

on PAL activity may be akin to that achieved by mutational analysis of the wheat 

plant. Mutational analysis is a difiScult tool to use in wheat due to the hexaploid 

nature of the wheat genome (Barber and Mitchell 1999). 

The C4H inhibitor ABT increases both gPAL expression and PAL activity in the 

presence of chitin (Figure 4.11, Table 4.7). This indicates some regulation by the 

presence of active hydroxylase enzymes of the phenylpropanoid pathway; as C4H 

is activated during defence related stimulus in Medicago sativa (Ni et al 1996). In 

particular the presence of 1 mM cinnamic acid is shown in this study to increase 

PAL expression indicating a feedback loop. This is some evidence toward the C4H 

enzyme being sufficiently different from the PAL enzyme to allow discrimination 

between the two potential substrates, phenylalanine and cinnamic acid. 

The 4CL inhibitor MDCA increases expression of PAL but does not have any 

effect on activity (Figure 4.11, Table 4.7). It is likely therefore that this inhibitor is 

quite specific for 4CL and the effect of inhibiting 4CL would be to produce less 

aldehydes and alcohols across the pathway. As defence related lignin is stiU 

produced in the presence of MDCA it is likely that some other route is taken to 

produce lignin. As mentioned below it appears that only the addition of alcohols 

reduces PAL activity and expression therefore it is logical that physiological loss of 

these increases PAL expression. 

The CAD inhibitors NH2PAS and OH-PAS both reduce PAL activity. This may be 

due to a lack of specificity for these two inhibitors. The treatment with OH-PAS 

has a negligible effect on PAL expression (Figure 4.11, Table 4.7). This effect with 

OH-PAS mirrors results with the PALI promoter m Arabidopsis (Mauch-Mani and 

Sluslarenko 1996). Alternatively NH2PAS has been shown to show some activity 

toward CCR (Carver et al 1996) this may be why NH2PAS shows no effect on PAL 

expression. 
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The CAD inhibitor ML 19 however appears specific, as PAL activity is relatively 

unaffected. Data with ML 19 indicate that if CAD is inhibited so expression of 

gPAL is decreased (Figure 4.11, Table 4.7). ML19 is specific for the form of CAD 

known as CAD C, which produces the syringyl-rich defence lignins. Syringyl 

Ugnins are the most common in defence related interactions (Agrios 1993). 

4.31 Regulation of PAL by the metabolites of the phenvlpropanoid pathway. 

4.31.1 Evidence for feedback inhibition of PAL 

The metabolites of the phenylpropanoid pathway used in this study were chosen 

primarily because of their availability from commercial companies or had been 

previously chemically synthesised. The metabolities chosen represented a broad 

base of the pathway intermediates but were not a complete Est. 

The main candidates that inhibit PAL activity are phenylalanine, frotm-cinnamic 

acid and S-hydroxyferuHc acid which all show significant reductions in PAL 

activity in wheat. Other possible candidates include ferulic acid, /jara-coumaric 

acid, coniferal aldehyde and coniferal alcohol. 

It was expected that phenylalanine and trans-c\mmmc acid would feedback inhibit 

PAL activity, unfortunately one problem with this result is that the extra 

phenylalanine in the radiochemical assay reduces the specific activity of Ĉ '̂  in the 

assay and consequently a reduction in PAL activity is recorded. Similarly; addition 

of trans-c\mmmc acid is the end point of the reaction and therefore Ĉ "̂  

concentration in the organic phase is decreased. The reduction of PAL activity by 

trans-cmmvcAc acid is well documented (Reichart 1982). 

In this study />ara-coumaric acid decreases elicited gPAL activity. However, in 

cucumber, feeding />flra-coumaric acid increases the activity of PAL (Politycka 

1999). Although these experiments are not necessarily comparable aspara-

coumaric acid was not measured under defence-stress conditions. This is some 
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evidence for a change in the role of the phenylpropanoid pathway intermediates in 

plant metabolism in conditions of challenge compared to usual conditions. In wheat 

resistant to Fusarium culmorum head blight increased levels of para coumaric acid 

are observed (Siranidou et al 2002). A possible hypothesis therefore would be that 

the production ofpara coumaric acid in wheat continues the PAL expression 

pathway. 

In this study caffeic acid increases PAL activity and has no effect on elicited gPAL 

expression. Caffeic acid has been shown to be inhibitory to PAL activity in sweet 

potato but not in pea (Sato et al 1982). This is some evidence for a change in 

discrimination between species, but the experiments with sweet potato and pea 

were not in an elicited system. 

In wheat ferulic acid also decreases PAL activity, but not significantly, no data can 

be presented for expression as no signal was detected on the northern blot (Fig 

4.13, 4.14). This result is unexpected as several authors report in sweet potato, pea 

and soybean that ferulic acid increases PAL activity (Sato et al 1982), (Herrig et al 

2002). However yeast PAL activity is decreased by ferulic acid (Sato et al 1982); 

the isoform nature of PALs in different systems may account for the discrepancy of 

this substrate. Ferulic acid levels were also found to be unchanged between 

susceptible and resistant cultivars of wheat in response to Fusarium culmorum 

(Siranidou et al 2002). 

The only significant inhibitor of PAL activity is 5-hydroxyferulic acid. This may be 

due to its similarity to trans-cmaaxmc acid, this has not yet been reported in the 

literature. However as sinapic acid does not appear to induce PAL activity and the 

general consensus of the role of sinpoyl derivatives is that the path of sinapic acid 

is independent to that involving PAL, the role of production of 5-hydroxyferulic 

acid may be as a metabolic block. This is conjecture however and would be best 

assessed with a dose response of 5-hydroxyferulic acid to determine the kl. The 

main problem with this result is that the compound was manufactured some years 

ago and may have changed somewhat over time. The effects shown here therefore 

may not be true of 5-hydroxyferulic acid (Barber personal communication 2003). 
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Clearly these results are a Srst step to understanding the regulation and role of these 

metabolities in the phenylpropanoid pathway. Confirmation by analysis of mutants 

of wheat on the effects of the levels of metabolities is required for verification. 

The best study would be one that could measure all the levels of all the metabolities 

concurrently in vivo over time in normal development and correlate these with the 

levels in elicited conditions. In addition, the expression levels and activities of aU 

the defence related enzymes of the phenylpropanoid pathway would have to be 

measured. 

4.31.2 Evidence for feedback repression of PAL 

To date there is no other evidence in any plant species to show that aldehydes or 

alcohols of the phenylpropanoid pathway reduce expression of the defence related 

forms of PAL. 

In wheat, the main candidates that inhibit gPAL expression are coniferaldehyde, 

para coumaryl alcohol, coniferal alcohol and sinapoyl alcohol. Suprisingly, gPAL 

expression was not affected by frara-cinnamic acid as some previously reported 

PAL genes fi-om alfalfa (Orr et al 1993) and bean (Mavandad et al 1990) are 

repressed in the presence of trans-cmmrmc acid. 

When the gene PAL2 is overexpressed in Nicotiana tabaccum, the amount of lignin 

does increase and the flux of carbon appears to move toward the production of 

chlorogenic acid. This may not be analogous to the defence response shown here in 

wheat but in N. tabaccum 4CL is believed to be the limiting factor. This 

overexpression of PAL leads to a build up of coumaric acid, which in wheat 

increases gPAL expression (Howells et al 1996). 
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4.33. Three possible regulatory mechanisms that involve PAL in wheat. 

From the evidence found in this study there appears to be three possible modes of 

regulation of PAL by the phenylpropanoid pathway intermediates and the activity 

of the PAL enzyme. These are hydroxycinnamic acid de-repression of gPAL, PAL 

inhibition by methoxy-hydroxycinnamates and repression by hydroxycinnamoyl 

alcohols of gPAL. 

4.33.1 Hvdroxveinnamic acid de-repression of gPAL. 

In the early stages of stimulation of the phenylpropanoid pathway, the presence of 

hydroxycinnamic acids, /ra«5-cinnamic acid, para-comxmic acid and caflfeic acid 

appear to de-repress expression of gPAL. This correlates well with the effects of 

ABT appearing to increase PAL activity and gPAL expression. As ABT is a broad 

spectrum cytochrome p450 inhibitor (Sigma) its application would lead to a build 

up of cinnamic acid. 

4.33.2 Methoxv-hydroxycinnamate inhibition of PAL 

The second mode of regulation appears to be a substrate based inhibition involving 

intermediates methoxylated at the three or five carbon position of the 

phenylpropanoid. The substrates tested here; ferulic acid, coniferaldehyde and 

coniferal alcohol all appear to inhibit PAL activity by half Interestingly MDCA the 

inhibitor of 4CL which leads to the production of coniferal aldehyde (after action of 

CCR) has no effect on PAL activity but increases PAL expression. This can be 

taken to be consistent with the theory of one of the acids acting as a metabolic 

block as activity is slightly decreased, eventually the block would build up. If PAL 

was examined at a later time point activity would be declining, however this is 

speculation. 
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4.33.3 Hvdroxvcinnamovl alcohol repression of gPAL. 

The final mode of regulation comes irom the presence of the alcohol group at the 

end of the phenylpropanoid pathway. Addition of all three primary alcohols that 

form the hydroxyphenyl, guiaiacyl and syringyl units (para-coumaryl alcohol, 

coniferyl alcohol and sinapoyl alcohol) results in repression of gPAL. AH CAD and 

CCR inhibitors have no effect (ML 19) or heavily inhibit PAL activity. As ML 19 is 

CAD C specific (HaU 1998) this is some evidence that direct control of the final 

production of the S units of lignin is not under feedback control to PAL, this may 

be why lignin in wheat is so rich in syringyl units (Ride 1975), this however is 

speculation. Surprisingly OH-PAS although thought to be a specific CAD inhibitor 

also affects PAL activity, so its usefiilness in this discussion is limited. NH2PAS 

has effects on CCR and CAD could cause a build up of intermediates e.g. coniferal 

aldehyde that depresses PAL activity. It is surprising that the expression is not as 

markedly decreased as when coniferal aldehyde is added alone, this may be due to 

a difference in the actual levels of the metabolites in planta during defence being 

different from those used here. The addition of inhibitors therefore does not back 

up the asserion that aU phenylpropanoids with alcohol groups decrease gPAL 

expression, the unavailable intermediates caffeoyl alcohol and 5-hydroxyconiferal 

alcohol when tested may shed some light on this apparent discrepancy. 

A scheme for this possible regulation and its adherence to the criteria of the main 

flux of carbon through the phenylpropanoid pathway (Humpreys and Chappie 

2002) is shown below (Figure 4.10). 
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Figure 4.10 The effect of intermediates and biochemical inhibitors of the 

phenylpropanoid pathway on the regulation of activity and expression of chitin 

stimulated PAL. Analysis of PAL and gPAL was by spectropliotometric and Northern 

blot methods respectively. Intermediates denoted bold indicate the major carbon flux 

through the pathway (Humpreys and Chappie 2002); Red, intermediates involved in 

de-repression of PAL; blue intermediates with 3 or 5 carbon methoxylation 

substitution patterns involved with inhibition of PAL; green, intermediates involved in 

PAL repression; numbers one through seven denote biochemical inhibitors; 1 AIP; 2, 

AOA; 3, AOPP; 4, ABT; 5, MDCA; 6, NHjPAS; 7, OH-PAS. 
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4.34 Further work 

To fully understand the changes in PAL activity and expression over time in 

response to a defence related stimulus in wheat, all the PAL genes must be fully 

characterised. This allows a full assessment of the role of defence related PAL 

genes and developmental related PAL genes at times of plant defence. 

It is also important to fully explore the levels of all the metabolites in wheat both in 

defence related (stimulated) conditions and in normal development. The ideal study 

would be one that could relate aU Ugnin pathway substrate concentrations and 

enzymes to their sub-cellular compartments. This would further enhance the 

knowledge of how and where the precursors to the lignin scaffold are controlled. 

4.35 Conclusions. 

As aforementioned the presence of all alcohols measured reduces expression of 

gPAL. Taken together these results show some evidence that the presence of the 

precursors to the hydroxyphenyl, guaiacyl and syringyl units down-regulates the 

expression of PAL. It is therefore interesting that in the presence of pam-coumaryl 

alcohol, activity of PAL is increased whereas expression is decreased of gPAL. The 

most likely explanation would be the effect of another PAL gene and others have 

been reported (Liao et al 1996, Snowden and Gardner 1993). 
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Chapter 5: Evidence for endogenous elicitation of the 
lignification response in wheat 
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5.1 Defence related endogenous elicitation 

Molecules that induce a defence related biological response are termed elicitors. 

Essentially, two types of elicitors exist exogenous and endogenous. The process of 

exogenous elicitation in plant defence concerns the outcome of a host pathogen 

interaction. This may govern the hosts ability to perceive and initiate defence 

responses against a pathogen via perception of the elicitors the pathogen produces. 

Elicitors derived from plants are called endogenous or constitutive elicitors and 

have been reported in many species (Table 5.1). The &st so called endogenous 

elicitor was characterised by Hargreaves and Bailey (1978), in true bean 

{Phaesolous vulgaris). The majority of endogenous elicitors are derived from the 

plant cell wall and are of a pectic nature. Some exceptions exist; ethylene (Dutta 

and Briggs 1991) and cutin monomers (Schweizer et al 1996) have some 

endogenous elicitation capability. It is not surprising that some plant-derived 

signals are also involved in suppressing plant defence. These molecules are known 

as endogenous suppressors (Table 5.2). The suppressors are diverse in form ranging 

from single molecules like methyl jasmonate (Andi et al 2001) to various oligomers 

of galacturonic acid (Morshbacher et al 1999). In wheat both an elicitor (Hahn et al 

1981) and a suppressor (Morshbacher et al 1999) molecule have been reported. 
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Species Elicitor Origin Reference 

Citrus spp Ethylene ACC synthase Dutta and Briggs (1991) 

Acer plantus Polysaccaride Cell wall Hahn etal (1981) 

Nicotiam tabaccum Polysaccaride Cell wall Hahn efa/(1981) 

Glycine max Fragment Cell wall Hahn a/(1981) 

Glycine max Galacturonic acid 
oligosaccaride 

Cell wall Nothangel et al (1983) 

Solatium tuberosum Cutin monomers Cuticle Schweizer et al (1996) 

Lycospersicon 
esculentum 

Pectic polysaccaride Cell wall Walker-Simmonds et al 
(1983, 1984) 

Dacus carrota Polygalacturonide / 
Polypeptide 

Cell suriace Kurosaki andNishi (1984) 

Phaseolus vulgaris Aqueous extract of 
Bean tissue. 

N.D. Hargreaves and Bailey 
(1978) 

Raphinus spp Lignification inducing 
factor 

N.D. Asada and Matsumoto 
(1987) 

Racinus spp Pectic fragments Cell wall Bruce and West (1982) 

Triticum aestivum Polysaccaride Cell wall Hahn et al (1981) 

Table 5.1 Endogenous elicitors in plants N.D. not determined. 
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Species Elicitor Origin Reference 

Nicotiana tabaccum Methyl Jasmonate Jasmonic acid Andi et al (2001) 

Pisum sativum N.D* N.D. Nasu et al (1992) 

Triticum aestivum Di and tri oligomer of 
galacturonic acid 

Pectic fractions Morshbacher et al 
(1999) 

Lycospersicon 
esculentum 

N.D. Inter-cellular fluid Peever and Higgins 
(1989) 

Table 5.2 Endogenous suppressors in plants. N.D. not determined.* only 

evidence rather than nature is presented. 
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It is hypotheised that cutin monomers have a role in recognition of tissue damage, 

such as is caused by fungal attack (Schweizer et al 1996). 

5.2.3 Gaseous elicitors 

These elicitors are difiusible throughout the whole plant and are thought in general 

to be involved in longer distance signalling between organs of the plant. The plant 

hormone ethylene is involved in many aspects of the life cycle of plants, including 

seed germination, root hair development, root nodulation, flower senescence, 

abcission and fmit ripening (Johnson and Ecker 1998). Ethylene (Fig 5.1) 

ultimately functions as a defence response by leading to leaf abscission. In 

particular ethylene stimulates PAL, (3-1,3 glucanase and chitinase (Salisbury and 

Ross 1990). 

5.2.4 Ethylene production. 

The biosynthesis of ethylene comes from 1-aminocyclopropane l-carboxylic acid 

(ACC). The rate limiting step for its synthesis comes from the the conversion of S-

Adomet to ACC by the enzyme ACC synthase. The final step in the production of 

ethylene is the enzyme ACC oxidase which converts ACC to ethylene (Wang et al 

2002X 

5.2.5 Ethylene receptor pathway. 

The full extent of the ethylene reception signalling pathway is not fully known. 

Evidence for the pathway comes from ethylene insensitive mutants (ein) or 

ethylene resistant mutants (etr) of Arabidopsis. Initially ethylene binds to one or 

more members of a family of membrane localised two-component receptor kinases, 

ETRl, ETR2, EIN4, ERSl and ERS2 and inactivates them. This inactivation 

triggers the switch off of CTRl (a RAF-like serine/tlireonine kinase). The 

inactivation of CTRl activates the integral membrane protein EIN2 which is known 

to function downstream of CTRl. This activation activates the gene EIN3. EIN3 is 

a known transcription factor which in turn activates ethylene responsive genes. 

Other proteins as yet undefined in function; but possibly also transcription factors 
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(EIN5 and EIN6) have been shown to act downstream of EIN2 but their function is 

unknown Gazzaraini and McCourt (2003), Wang et al (2002) 

5.2.5 Ethylene as a defence response. 

Confusingly plants deJScient in ethylene biosynthesis can show increased 

susceptibility or resistance to virulent pathogens. Soyabean mutants with reduced 

ethylene sensitivity showed increased resistance to Psedomonas syringae p.v. 

glycinea and Phytophythora sojae but less resistance to Septoria glycines and 

Rhizoctonia solani (HoflSnan et al 1999). 

An accepted reason for this apparent discriminatory behaviour of ethylene is the 

conversion of defence signalling pathways. Other defence related pathways involve 

compounds such as Jasmonic acid and SalicycUc acid. Jasmonic acid is 

independently sensed by a pathway involving the gene coil in Arabidopsis and 

elicits a range of pathogensis related (PR) proteins. Salcyclic acid increases 

endogenously with PR gene accumulation after the activation of the hypersensitive 

response. (Wang et al 2002). 

Evidence for this conversion comes from experiments particularly with ethylene 

insensitive mutants (ein2) together with mutants that have defects in the coil gene 

are impaired in the jasmonic acid signal transduction pathway m. Arabidopsis. In 

particular the expression of the plant defencin gene PDF. 1.2. requires both 

jasmonic acid and ethylene signalling pathways to be operative (Penninckx et al 

1996). Also a recent survey of expression levels of many genes to pathogen 

infection, salicylic acid, jasmonic acid and ethylene shows that although some 

genes are affected by one signal or another, many respond to two or more defence 

related signals (Schenk et al 2000). Salicylic acid and ethylene signalling pathways 

are linked together from evidence showing that the expression of the gene PRl 

which is consitutively expressed in the presence of S A can only be completely 

switched off in the npr-1 (non-expressor of PR-1) mutation if the ein2 mutation is 

present as well. This suggests the existence of an ethylene independent pathway the 

existence of interactions between ethylene and S A dependant signalling through an 

NPR-1 independent pathway (Wang et al 2002). 
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Clearly these defence related pathways may also be subject to endogenous 

regulation or suppression. 

5.3 Evidence for the physiological significance of the role of endogenous 

elicitors in plant defence. 

Although the general form of an endogenous elicitor is thought to be a hydrolysed 

part of the cell wall, ftingi also use this mechanism for plant perception. In Solarium 

tuberosum L soft rot is caused by Erwina carotovora. In potato plants transformed 

with the gene encoding the isoenzyme of pectate lyase from E. carotovora ssp 

altroseptica resistance was enhanced to E. caratovora. Compared to untransformed 

plants soft rot was significantly (p=0.001) reduced. The presence of the pectate 

lyase gene mediates the degradation of plant cell wail pectin into 

oligogalacturonates that are known to induce plant defence responses. The 

transformed plants could activate defence responses earlier compared to 

untransformed plants and although this lead to greater numbers of bacteria on the 

tubers, the rotting caused was diminished (Wegener 2002). 

5.4 Forms of endogenous suppressors 

Endogenous suppressors appear to constitutively regulate the defence mechanisms 

when the defence mechanisms are not required. Endogenous suppressors become 

an important part of the host pathogen interaction when their activity is induced by 

a pathogenic mechanism. This is usually through the action of CWDE and the 

suppressors are usually degradation products of the cell wall. An endogenous 

suppressor has been proposed in this vein in wheat. This was found by extraction of 

pectic fractions with the use of calcium chelators, pectic enzymes and a 

recombinant endopolygalactuonidase. Interestingly, only co-injection of the 

fractions with a glycoproteogalactan elicitor caused suppression of phenylalanine 

ammonia lyase and peroxidase activities. The activity of the suppressor against 

PAL and peroxidase activities was correlated with the presence of galacturonic acid 

and the di and trimer of this oligomer were shown to be the most effective 

suppressors. The role of this suppressor is unknown but is hypothesised to have 

some role in the establishment of the host-pathogen interaction (Morshbacher et al 

1999X 
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5.5 Gaseous suppressors 

It has recently been proposed that some gaseous compounds released during 

pathogen invasion may retard the defence response. Jasmonate (Figure 5.1) and 

methyl jasmonate are formed from linoleic acid, which is one of the major fatty 

acids that make up plant membranes. These compounds are released when plant 

pathogens degrade plant membranes and act as a long distance signalling molecule 

involved in such responses such as systemic acquired resistance (Ryals et al 1994). 

Methyl jasmonate (MeJA) has recently been proposed as an endogenous suppressor 

in N. tabaccum c.v. BY-2. MeJA has been found to inhibit responses mediated by 

the elicitor harpin such as PAL induction and generation of the oxidative burst. 

Recent evidence shows that Harpin alone elicits hydrogen peroxide as measured by 

chemiluminsence of luminol by a relative factor of 50 after 4 h compared to a 

relative factor of 17 when 20 îM MeJA is added in the presence of harpin in N. 

tabacum. MeJA is thought to function by inducing jasmonate inducible proteins to 

inactivate de novo protein synthesis (Andi et al 2001). 
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Figure 5.1. Structures of endogenous elicitors. A, Jasmonic acid B, 8, 16-

Dihydroxypalmitic acid (8, 16-DHPA) C, Ethylene. 
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5.6 Rationale 

To date there is no published evidence that endogenous elicitors are involved in the 

regulation of defence related lignification in wheat. However, there are some 

observations that such molecules may exist. Firstly, wounding alone induces a 

small but detectable lignification response. Secondly, water droplets from water 

treated wounds induce PAL when injected into healthy leaves. Finally, cell wall 

degrading enzyme preparations from Trichoderma spp are potent elicitors of the 

lignification response. 

5.7 Approach 

To ascertain if any there is any evidence for an endogenous elicitor acting in the 

induction of the lignification response in wheat the following strategy will be 

employed. Firstly culture filtrates of T. viride will be fractionated and used to 

identify heat-labile elicitors. Secondly, the identified heat-labile elicitors will be 

incubated with wheat cell walls to determine if any heat stable elicitors are 

generated. The elicitors will again be detected by the scanning densitometric assay 

for lignification. 

5.8 Aim 

The aim is to investigate whether endogenous elicitors operate in the lignification 

response in wheat. 
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Materials and Methods 

5.11 Culture of micro-organsims 

Trichoderma viride was cultured on 2 % (w/v) Malt Extract Agar (Malt Extract 20 

g L' \ Agar 20 g L' \ SDW to 1 L, adjusted to pH 6.5 and autoclaved 121 °C, 20 

min, 15 psi). After 7 days growth at 24 °C the fungus was sub cultured into 175 ml 

2 % (w/v) Malt Broth (Malt Extract 20 g L' \ SDW to 1 L autoclaved 121 °C, 20 

min adjusted to pH 6.5 with 0.1 M HCl) by cutting out 10 plugs using a sterile 8 

mm cork borer. After 6 days the culture filtrate was collected through a buchner 

funnel, using Whatman No 1 filter paper and stored at -20 °C. 

5.12 Treatment of plant material. 

Details of the wheat leaf bioassay are described in fuU in chapter 2 (section 2.7). 

Culture filtrates fractions were applied to wounded wheat leaves at 10 pi per 

wound. In addition a visual assessment was made on the presence (+) or absence (-) 

of lignin ring on fast GG stained leaves. 

5.13 Wheat cell wall extraction 

Triticum aestivum plants were grown for 10 days (16 h photoperiod, 21°C) in 

Levington F2 soil. Leaves were cut from the stem and ground using a chilled pestle 

and mortar in 2-fold excess (w/v) 0.1 M sodium phosphate buffer pH 7.0. The soHd 

matter containing the cell walls was collected by centrifiigation for 10 min at 2000 

g, re-suspended in 0.1 M sodium phosphate buffer pH 7.0 and centrifiiged again for 

10 min at 2000 g. The cell walls were washed twice in ethanol and twice in 

acetone, collecting via centrifugation for 10 min at 2000 g. 
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5.14 Column chromatography 

G25 Sephadex beads were packed in a 60 cm column (radius 2.35 cm, volume 1308 

ml). Flow rate was set at 1.5 ml min"\ Crude culture filtrate (5 ml) was passed 

down the column and collected as 50 ml j&actions with distilled water as a running 

solvent. The column was run at 4°C. The bed and void volume was determined by 

loading a mixture of blue dextran (mw 1x10^) and sodium chloride (mw 60). Blue 

dextran was detected by absorbance at 600 nm, sodium chloride by reaction with 

AgNOa to yield a white precipitate of AgCl. 

5.15 Protein assay 

Protein content was determined by the Bicinchoninic acid(BCA) method (Smith et 

a/1985^ 

5.16 Dialysis of candidate fractions 

Dialysis of 5 ml of candidate fractions took place in visking tubing at 4 °C in 200 

ml distilled water over 48 h, changing the water twice. For the second dialysis 1 g 

wheat cell wall was added and incubation was at 25 °C in 200 ml distUled water for 

24 h. The diasilate was collected and frozen at -20 °C and freeze-dried. 

5.17 Assay of candidate pectic elicitor fractions 

A 1 ml aliquot of candidate fraction was removed and boiled in an eppendorf tube 

for 5 min. After cooling, drops were inoculated onto wheat leaves as described in 

chapter 2. Assay was by the scanning densitometric method and a visual 

assessment. 
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Results 

5.18 Endogenous elicitor activity. 

To test if the culture filtrate components have the ability to elicit lignification, 

preparations of Malt broth 2 %, Cellulase RIO 1 mg ml'\ Trichoderma viride 

conidial suspension 10 mg ml"' and culture filtrate were placed in 10 p,l droplets on 

wound lesions of taped down 10-day-old wheat leaves. Droplets were left for 48 h 

and leaves stained for lignin with fast GG stain. Scanning densitometric analysis 

was used to compare relative levels of lignification at wound margins. 

Accumulation of lignin was calculated fi-om integrated density values generated 

fi"om examination of images of leaves, using the value achieved by chitin alone as 

100 %. None of the components of the culture media could elicit accumulation of 

lignin to the same degree as 5 mg ml"' chitin. The highest accumulation was 

observed with T. viride. Cellulase RIO and sterile distilled water produced a very 

similar accumulation, with Malt Extract Agar producing only 50 % of the activity 

shown by chitin (Figure 5.2). 

In order to observe endogenous elicitation a stimulus must be used to faciliate the 

production of this phenomena. If Trichoderma viride produces heat labile elicitors 

they will be secreted into the mycelial culture. These heat-labile elicitors may be 

capable of releasing heat stable "endogenous" elicitors from wheat cell walls. 

5.19 Identification of elicitor active, heat labile fractions in T. viride 

In order to separate components of the T. viride culture, the filtrate was passed 

through a sephadex G25 column. Large peaks of protein were observed between 

the void (231 ml) and bed (833 ml) volumes (fractions 5 and 20). There were also 

several other peptide peaks that eluted after the bed volume. Peptides did not elute 

until 380 ml (fraction 9) and peaked at 2 mg ml"' (fractions 9,10 and 11) and then 

reduced only to increase sharply to 5 mg ml"' (fraction 20) as the column was 

eluted toward the bed volume (Figure 4.3). 
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Column fractions were then tested for their ability to elicit lignification in wheat 

leaves. Both a visual assessment and a quantitative assessment using the scanning 

densitrometric method of accumulated lignification were used to analyse the 

lignification data. Fractions 9 to 15 all induced the accumulation of lignin 

comparing favourably to that induced by chitin at 5 mg ml"'. This was confirmed 

by visual assessment. Most fractions appeared to elicit lignification, by the 

scanning densitometric method. The visual assessment however gave only 5 more 

candidates 22,29,31,33 and 34 (Table 5.3). The elicitor active fractions were re-

assayed for their ability to induce lignin after boiling for Ih. This indicated three 

heat-labile fractions 10,12 and 33 that lost their activity after heat treatment. 
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Figure 5.2 Ability of the culture filtrate of Trichoderma viride to elicit 

lignification in wheat; SDW, sterile distilled water; Chitin, Cliitin 5 mg ml"'; T. 

viride, Trichoderma viride condial suspension 10 mg ml''; Filtrate, accumulation 

induced by culture filtrate. Malt, Malt Broth 2 % (w/v); RIO, Cellulase RIO 1 mg 

ml"'; Culture filtrate components were analysed for their ability to elicit 

lignification using the scanning densitrometric assay compared to chitin (Chapter 

2); (*), significant difference from water treatment. Vertical bars represent standard 

errors 
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Figure 5.3 Separation of Trichoderma viride culture filtrate by Sephadex G25 

column Data is expressed in terms of protein mg ml ' and was determined using 

the BCA method-^ Void volume (231 ml)^Bed volume (833 ml). 1-37 fraction 

numbers. 
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Table 5.3 Ability of fractions of T. viride culture filtrate to elicit lignification. 

Wounds were assessed visually after fast GG staining (+/-). Percentage 

accumulation of lignin, as compared to 5 mg ml"' chitin treated leaves (100 %): 

Grey shading indicates elicitor active fractions. Dark grey shading indicates elicitor 

active fractions inactive after boiling. (*) significant difference (p = 0.05 n = 20 

per fraction.) from water treatment. 

Unboiled Boiled 

Fraction Visual Percentage Visual Percentage 
Number assessment of accumulation assessment after accumulation 

lignin of lignin boiling after boiling 

9 + 52+/-14* 
10 + 77+/-16* - 0+/-4 
11 + 107+/-16* + 41+/-9* 
12 + 92+/-13* - 0+/-3 
13 + 89+/-15* 
14 + 39+/-14* + 0+/-4 
15 + 45+/-16* + 0+/-30 
16 - 54+/-14* + 0+/-23 
17 - 51+/-14* 
18 - 84+/-15* - 9+1-9 
19 - 47+/-16* 
20 - 54+/-13* 
21 - 42+/-14* 
22 + 91+/-14* + 0+/-8 
23 - 73+/-15* + 0+/-8 
24 - 87+/-17* 
25 - 41+/-15* 
26 - 71+/-14* 
27 - 105+/-15* + 0+/-5 
28 - 100+/-18* - 0+/-30 
29 + 131+/-15* + 0+/-30 
30 - 115+/-15* + 0+/-30 
31 + 107+/-18* + 0+/-30 
32 - 88+/-21* 
33 + 161+/-14* - 0+/-41 
34 + 111+/-16* 
35 - 154+/-16* - 0+/-55 
36 - 103+/-15* 
37 - 100+/-21* 
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5.20 Release of heat-stabile elicitors from wheat cell walls 

Candidate fractions (10, 12, 33) were incubated with or without wheat cell walls in 

dialysis bags. The diasilates from these incubations were freeze-dried and assayed 

for the presence of elicitor activity (Table 5.4). Of the three fractions tested activity 

was only found in the diasilate of fraction 12 when incubated with wheat ceU walls. 

Boiling of this fraction failed to inactivate elicitor activity. 
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Table 5.4 Ability of heat labile Trichoderma viride fractions to release heat 

stable elicitors of lignification from wheat cell walls. Wounds were assessed 

visually after fast GG staining (+/-). The percentage accumulation of lignin as 

compared to 5 mg ml"' chitin treated leaves (100%). n = 20 per fraction. Brackets 

indicate standard errors. 

Fraction + Wheat cell walls -Wheat cell walls Heat treatment 
number + Wheat cell walls 

Visual Percentage Visual Percentage Visual Percentage 
assessment accumulation assessment accumulation assessment accumulation 

10 - 4 +/-10 - 0+/ -10 - 0 + / - 1 4 

12 + 49 +/-15 - 0 +/-10 + 30 +/- 12 

33 - 0 +/-15 - 0 +/-10 - 0 +/- 9 

166 



5.21 Discussion 

Plants perceive fungal pathogens through chemical signals termed elicitors and can 

initiate host defence responses against these diseases. Some of these signals in are 

perceived when part of the host cell wall is degraded and are thus termed 

endogenous elicitors. Many examples of endogenous elicitors exist and are usually 

pectic cell wall fragments involved in defence related responses. Lignin is a 

constitutive part of the cell wall and is well established as an important part of the 

plant defence response to pathogens. 

Evidence for an endogenous elicitor mediated lignification comes from a heat labile 

culture jfiltrate fraction having the ability to induce wheat cell walls to release a heat 

stable inducer of lignification. Although only three candidate fractions were 

examined it is clear that fraction 12 shows some evidence for this activity pattern. 

The size of the endogenous inducer of lignification in fraction 12 is likely to be less 

than 10 kD due to the dialysis used. Further separation techniques such as TLC or 

HPLC could be used to frirther explore the nature of this endogenous elicitor. 

Previous evidence for both endogenous elicitation (Hahn e/ a/1981) and 

suppression (Morschbacher et al 1999) has been shown in wheat, but this has not 

been linked directly to lignification. A possible role for the endogenous inducer for 

lignification may not be defence related. A hypothesis is that plants require gain 

and loss of lignin units in the cell wall during the period of wall loosening during 

growth. A factor inducing and controlling the production of lignin units that are 

sequestered into the plant cell wall is not inconceivable. However little is known 

about this subject (Salisbury and Ross 1989). 

In conclusion evidence is presented here of a link in wheat between endogenously 

induced lignification and wheat cell wall fragments. Although its nature has not yet 

been fiilly explored. 
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Chapter 6: General discussion on Manipulation of defence 

related phenylpropanoid metabolism in wheat. 
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6.0 Manipulation of defence related phenvlpropanoid metabolism in wheat* 

Lignin is a major constituent of the cell plant wall where it provides mechanical 

strength, waterproofing and plays a role in defence. In wheat defensive lignification 

occurs at wound margins in response to challenge by potential pathogens (Ride 

1975). This response occurs at the correct time and in the correct place and in 

significant concentration to account for resistance (Ride and Pearce 1982), 

(Beardmore et al 1983). If defensive lignification does indeed contribute towards 

non-host resistance, then treatments that inhibit its production might be expected to 

lower resistance. As lignification is dependant on phenylpropanoid metabolism for 

the supply of hydroxycinnamoyl alcohols, it might be expected that inhibitors of 

phenylpropanoid metabolism reduce lignification and lower resistance. It is 

important to assess any treatment that can be used to reduce lignification in vivo for 

its potential toxicity to the plant and to fimgal non-pathogens because of the dual 

role of lignification in defence and mechanical support. 

6.1 Assessment of potential compounds as suitable inhibitors of the 

phenvlpropanoid pathway. 

The main aim of this part of the study is to quantify the efficacy and toxicity of the 

inhibitors of the phenylpropanoid pathway. These inhibitors can then be used as 

tools to fiirther investigate the importance of lignification in wheat in determining 

resistance. 

This study investigates the efficacy, toxicity and defence response reducing 

capabilities of the current biochemical inhibitors of the phenylpropanoid pathway. 

This provides a usefiil basis for comparison of the known literature and allows the 

comparison of newer inhibitors in a weU characterised in vitro system, allowing 

some assessment of the relative importance of the targeted enzyme to the pathway. 

Furthermore, the quantitative nature of the lignin assay allows comparisons 

between treatments that can effect lignification to fiirther investigate the nature of 

the response. 

* This section deals with experiments detailed in chapters 1,2,3 and 4 only, 

chapters 5 and 7 are discussed in their own sections. 
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Inhibition of enzymes of the phenylpropanoid pathway can lead to a break in 

resistance to a non-pathogenic fimgus at wound margins. This is further evidence 

for the role of lignification as a defence response in wheat. Furthermore many of 

the inhibitors such as AOPP have been shown to be toxic toward plants and fungi. 

This questions their use in both in vitro Appert et al (2003) and in vivo Carver et al 

(1992), Arakawa et al (1997) as tools for studying the importance of defence 

related lignification in higher plant systems. 

The main drawback in the use of inhibitors is that they are artificial compounds and 

as such may have inherent non-specific effects on other plant metabolic pathways. 

Thus it is highly possible that indirect effects of the inhibitors not accounted for by 

this study and that are as yet unknown could be the responsible factors for observed 

breaks in resistance. This has been highlighted in Arabidopsis thaliana when using 

AIP to inhibit PAL where the PAL promoter was downregulated (Mauch-Mani and 

Sluslarenko 1996). The pleiotropic effects of the PAL inhibitors are also further 

investigated by Appert et al (2003). 

A major difficulty of the current work has been assessing the break of resistance 

due to reduction in lignification for a non-pathogen. Although in some cases 

(ML 19 and AOPP) it is easy to tell via microscopy at the wound margins that 

resistance has been broken, in others it is less conclusive. Indicators such as 

penetration efficiency (Morshbacher et al 1999) have been used but are not 

appropriate for assessment with non-pathogens. Perhaps a better comparison could 

have been made using a wheat pathogen in this system as a positive control. True 

resistance between plants and pathogens is a multi-variable trait where responses 

that occur in the correct time and place are thought to be directly responsible for the 

outcome of the interaction. 

Many enzymes of the phenylpropanoid pathway such as CCR or C3H do not have 

direct inhibitors, further interest and work on the nature of the fiinction and 

structure of lots of the enzymes needs to be done to achieve this. However in the 

current post-genomics era the most likely target to manipulate the phenylpropanoid 

pathway is through transgenic techniques. It may be that combinations of mutation, 

transgensis and biochemical inhibition may be the most powerful tools to 
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manipulate lignification for its industrial goals. This is perhaps stUl far in the 

Aiture. 

6.2 PAL as a target for manipulation of the phenvlpropanoid pathway. 

Phenylalanine ammonia lyase is the first enzyme of the phenylpropanoid pathway. 

Its role is to convert the amino acid phenylalanine to trans-ciimaimc acid. This 

response is a well-characterised part of the defence response in many plant species. 

The study of PAL in wheat is particularly important as it is used worldwide as a 

staple crop plant. In wheat, four PAL genes, (Liao et al. 1996, Snowden and 

Gardner 1993, HaU 1998) at least one of which there is good evidence for induction 

during resistance (gPAL) have been characterised. The inhibitors tested in the first 

part of the study AO A, AOPP and AIP are the most consistently used to study the 

phenylpropanoid pathway by affecting PAL (Morsbacher et al. 1999, Carver et al. 

1996). 

The aim of this part of the study is to assess what available biochemical inhibitors 

have on PAL activity and gPAL expression. The PAL inhibitors need to be 

assessed for their specificity and should just affect PAL activity and not gPAL 

expression. Other inhibitors targeted to other enzymes in the pathway (e.g. MDCA 

to 4CL) should also not affect expression. If non-PAL inhibitors affect activity of 

PAL it might be taken as the same affect as the target enzyme being inactivated 

during the course of the defence response. This gives some idea of the importance 

of these enzymes during the response. 

The effect of the expression of the defence related gPAL clone is unlikely to 

account for all of the PAL activity shown, it is likely therefore that in wheat other 

PALs must be involved in plant defence. Both PAL inhibitors AOA and AIP 

reduced PAL activity and defence related hgnin. However, AOA reduced gPAL 

expression casting more doubt on its use as a PAL inhibitor. In contrast, the highly 

effective at reducing liginification phenylpropanoid pathway inhibitor AIP did not 

affect gPAL expression. The inhibitor of C4H (ABT) increased gPAL expression as 

did that of 4CL (MDCA) and one of the CAD (OH-PAS) inhibitors. Interestingly, 
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two of the CAD inhibitors OH-PAS and NH2PAS both reduced PAL activity, 

casting some doubt on their specificity. 

One problem in studying PAL and Mgnin using the wheat system is the hexaploid 

nature of the wheat genome. The gP AL clone was obtained from a lengthy cloning 

process. To obtain further clones, even some for comparison was outside the remit 

of this study. The best comparison would be between some of the existing wheat 

PAL clones. 

The major problem with the biochemical inhibition approach is the lack of 

specificity of these inhibitors, this is criticised in the literature (Blount et al. 2000), 

however by studying the effects more closely in the first section inhibitors such as 

AIP can be seen to be good candidates for PAL inhibition. However, it is very hard 

to quantify exactly what effects each enzymes inhibition is having on PAL activity 

or gPAL expression. The effect of increased gPAL expression with hydroxylase, 

4CL and some CAD inhibitors may be indicative of a feedback loop requiring 

levels of some of the compounds produced by these enzymes. 

Another mechanism that may be affected by the presence of biochemical inhibitors 

may be the phosphorylation state of the PAL enzyme. However the precise nature 

of the role of phosphorylation of PAL in wheat has yet to be explored. Some 

evidence exists of regulation of PAL involving phosphorylation in bean (AUwood 

et al. 2002). To fliUy evaluate the effect of inhibition on the PAL enzyme the 

protein-protein interactions concerning the level of phosphorylation of the PAL 

enzyme required for activation to be fully explored in the presence of these 

inhibitors. 

In the future perhaps proteomics or genomics in the form of microarray analysis 

from elicited wheat plants could shed light on PAL isoforms and relative 

abundance and potential roles. 
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6.3 The role of regulation of the Dhenvlpropanoid pathway in the defence 

response. 

Metabolic pathways are regulated by a variety of mechanisms. The expression of 

genes encoding enzymes that catalyse the pathway influnces the amount of 

transcripts available to produce the enzymes from the messenger RNA thus the 

amount of active sites available for catalysis. The catalytic sites are often hidden 

within the protein based enzyme complex and often phosphorylation or de-

phosphorylation of the protein reveals the active site for catalysis. Another control 

comes from the end product of the catalysis, where the build-up of end product 

inhibits the further catalysis of substrate. This is normally referred to as end product 

inhibition and can occur both up and dovrastream of a specific enzyme reaction. It 

is also possible that the end product of catalysis influences the expression of genes 

directly both up and downstream of the specific enzyme, thus providing interlinks 

between enzymes and genes. This is known as cross-talk. 

In the phenylpropanoid pathway the role played by the metabolites of the pathway 

is not yet fuUy understood. The aim of the study was to find out if any of the 

metabolites present in the phenylpropanoid pathway influence the defence related 

PAL genes or PAL activity. 

Activity of wheat PAL stimulated by chitin was inhibited by the presence of 

phenylalanine, trans-amscmic acid and 5-hydroxy ferulic acid. The activity was 

increased by the presence of caffeic acid, sinapic acid para courmaryl aldehyde and 

para coumaryl alcohol. These elements therefore may also play some role in the 

defence response. 

Expression of gPAL was negligibly decreased by phenylalanine, 5-hydroxy ferulic 

acid, sinapic acid and para-covmaryl aldehyde. Other compounds such as para-

coumaryl alcohol, coniferal aldehyde, coniferal alcohol and sinapoyl alcohol all 

heavily decreased gPAL expression. Whereas; gPAL expression was increased by 

trans cinnamic acid, para coumaric acid, caffeic acid, and sinapaldehyde. These 

findings point toward some endogenous regulation of the phenylpropanoid pathway 

from its metabolites. In contrast to this in pea and in sweet potato PAL is inhibited 

by cinnamic acid and caffeic acid (Sato et al. 1982). However, in wheat cultivars 
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resistant to Fusarium culmorum /»ara-coumaric acid increased in response to 

challenge by this pathogen (Siranidou et al. 2002). In conditions of over-expression 

ofPAL2 mNicotiana tabaccum para-coximaric acid increases indicating that the 

weakest link in the chain is the hydroxylase step to produce caffeic acid. This 

correlates well with the observation in this study that ABT (a dedicated 

hydroxylase inhibitor) breaks resistance to the non-pathogenic fiingus B. cinerea in 

wheat. 

This may mean a three component regulatory system exists around PAL in the 

defence response to produce lignin in wheat. The first three intermediates of the 

pathway may act as de-repressors of gPAL expression, with caffeic acid acting as 

the first activator of defence related PAL activity. This may be part of an 

"overdrive" mechanism that helps the plant overcome the first stages of fungal 

infection. The activity of wheat PAL may be governed by the accumulation of 

ferulic acid as this is the first substrate that in the phenylpropanoid pathway that 

decreases PAL activity. The important aspect may be the presence of a methyl 

group at position three or five on the carbon ring as addition of coniferaldehyde and 

coniferal alcohol also significantly reduces the activity of PAL. The final part of the 

regulation comes fi-om the presence of the alcohol group on the phenylpropanoid. 

All the alcohols tested in this system show a decrease in gPAL expression. This is 

logical as a shut off to the system (Figure 4.10) 

The major problems associated with these findings is whether the physiological 

concentrations of these metabolites are sufficient enough to play a regulatory role. 

As aforementioned not all phenylpropanoid pathway and particularly PAL genes 

have been characterised and the fiill regulation of the pathway in any plant species 

is not known. However most of the findings in this study correlate well with the 

model offered by Humpfi-eys and Chappie (2002). Some evidence has already been 

presented of cinnamic acid acting as an endogenous regulator of PAL and operating 

as a feedback loop in Alfalfa Blount et al. (2000). Although trans cinnamic acid 

reduces PAL activity and it increases gPAL expression indicating that the feedback 

loop extends to the genome and involves defence related PAL. 
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6.4 Conclusion 

This study has revealed that biochemical inhibition of the phenylpropanoid 

pathway is a valid technique to further understand the nature of the pathway. 

However, carefiil consideration must be given to choices of compounds and their 

effects on plant or fungal toxicity particularly in the case of the study of defence 

related lignin. The most specific inhibitor is one that affects PAL (AIP) and 

completely reduces PAL activity. Any new inhibitor compounds need to be 

assessed for this toxicity as well as their effects on enzyme activity. 

With the current knowledge and availability of the substrates of the 

phenylpropanoid pathway a great deal of information has been gained about the 

nature of defence related Hgnification passing through the PAL enzyme. Several 

inhibitor compounds affect not only PAL activity but also PAL expression. This 

gives some evidence for endogenous regulation by these enzymes. Further insight 

might be gained if all the defence and developmental related forms of the enzymes 

of the phenylpropanoid pathway need to be assessed in stimulated and unstimulated 

plants. The advent of microarray technology and proteomics may well assist in this 

aim. The substrates and metabolites of the phenylpropanoid pathway also affect 

PAL activity and expression. Clearly, the levels of the substrates in vivo need to be 

measured to allow accurate modelling. 

Manipulation of the phenylpropanoid pathway has a wider application. Down-

regulation of lignin pathway enzymes is a goal in the paper industry. Loss of lignin 

units may lead to a reduction in chlorinated waste production in the paper making 

process, which is of environmental benefit. Equally, reducing lignin increases 

digestibility of forage crops for animal feed which could lead to higher production. 

However, a great deal more work is required on the phenylpropanoid pathway 

before major manipulation changes can be performed to reduce lignin for agro-

industrial purposes. Evidence is growing of the nature of the pathway. The goal of 

understanding how to produce a lignin-reduced plant that is not compromised from 

one of its important defence mechanisms is a long way off. As more intensive 

molecular biology techniques improve and the genome of wheat and other 

173 



important crop plants is sequenced, perhaps more interest in this topic wiU be 

created in the post-genomic era. 
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Chapter 7 

Purification of a fungal elicitor specific for the Cf-2 protein 

in Lycospersicon esculentum 
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7.1 Pathogenesis and life cycle of Cladosporium fulvum. 

Cladosporiumfulvum is a biotrophic pathogen of the tomato Lycopersicon spp and 

causes leaf mould on susceptible plants. It was first described by Cooke in 1883 

and belongs to the Fungi Imperfecti, also known as the Deuteromyctes. The 

pathogen is relatively economically unimportant as a disease of tomato, only 

slightly affecting greenhouse grown crops (Joosten and De Witt 1999). 

Cladosporium fulvum colonises only the intracellular spaces of tomato and enters 

the plant through stomata and is most successful in high humidity environments 

such as greenhouses. This is due to the increased numbers of open stomata. 

Lifection occurs after spore germination on the leaf surface and germ tubes 

penetrate through the stomata and grow between the mesophyll and the vascular 

bundle cells. The germ tubes of C. fiilvum do not form haustoria but remain in the 

apoplast until asexual conidophores emerge onto the leaf surface. Nutrient transfer 

is thought to come about from secretion of proteins in to the apoplastic fluid that 

induces host cells to leak nutrients into the extracellular fluid, thus establishing a 

sink relationship. The lack of a sexual stage in the fungi gives rise to a well-

conserved genome that is ideal for academic study. Unlike most biotrophic 

pathogens Cladosporiumfulvum is easily cultured on % strength potato dextrose 

agar in vitro (Joosten and De Witt 1999). 

In a resistant interaction the outcome of an attempted infection is a hypersensitive 

response (HR). The HR is a localised self-induced cell death that initially prevents 

a pathogen from gaining entiy into the host. This necrosis produces a lesion that is 

easily identifiable microscopically and is thought to be a key stage in triggering 

other host cell defence responses. The host plant responds after the elicitation of the 

hypersensitive response and produces defence related chemicals such as 

phytoalexins, lignin and hydrogen peroxide (May et al 1996). These biochemical 

changes therefore can be used as a marker for the presence of the HR response. 
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7.2 Specificity of resistance in the C. fulvum / tomato interaction. 

Resistance in plant pathogen interactions is thought of in two ways horizontal and 

vertical. Horizontal or non specific resistance refers to the general ability of plants 

to resist their pathogens and is controlled in general by multigenic traits. Vertical or 

specific resistance refers to an interaction involving one or two genes controlling a 

major step in the host pathogen interaction. A specific form of vertical resistance 

termed race-cultivar specificity is observed in C. fulvum / tomato interactions. C. 

fulvum is classified into race types due to the possession of "avirulence" genes 

(Avr) in the pathogens genome. The nature of avirulence genes is surprising in that 

they confer the inability to infect to the pathogen. A race of C. fulvum that carries 

all avirulence genes with respect to L. esculentum spp is referred to as race 0. If a 

specific gene is lacked this is reflected in the C fulvum race type. A race 9 C. 

fulvum carries all avirulence genes bar Avr9 (Lucas 1998)(Table 7.1). 

The host tomato plants exhibit varying degrees of ability to defend themselves 

against C. fulvum. Similarly tomato cultivars are classified according to the 

resistance genes present in their genome. A cultivar o f f . esculentum with no 

resistance genes with respect to C. fulvum is referred to as a CfO plant 

(moneymaker). If a resistance gene is possessed then this is reflected in the cultivar 

name. Cf5 tomato plants contain the resistance gene Cf-5 (Table 7.1). ^ 
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Table 7.1 Race-cultivar specifity in the Cladosporium fulvum / tomato 

interaction adapted from Lucas (1998): Cf, host resistance gene; A, pathogen 

avirulence gene (dominant allele); a, pathogen avirulence gene (recessive allele); +, 

susceptible interaction; resistant interaction. 

Tomato cultivar C.fulvum race (genotype) 
(genotype) 

0 2 2,5 5 9 
(A2, A5, A9) (a2, A5, A9) (a2, a5, A9) (A2, a5, A9) (A2, A5, a9) 

CfD + + + + 

C£2 

Cf5 

Cf9 

178 



7.3 The gene for gene hypothesis 

Work on flax and flax rust proposed the gene for gene concept to account for the 

race-cultivar specificity observed in race-cultivar resistance Flor (1971). This 

broadly states that for every gene that confers resistance in the host there is a 

corresponding gene in the pathogen that confers avirulence to the pathogen. This 

denotes a stepwise evolution of resistance and virulence. 

hi the gene for gene concept genes for resistance are dominant in a host plant while 

genes for susceptibility are recessive. In the pathogen the genes for avirulence are 

dominant and the genes for virulence are recessive. The Avirulence genes (A,a) 

control the production of a microbial elicitor that can be recognised by a host 

receptor protein, encoded for by a dominant or recessive resistance gene (R,r). If 

the gene for this receptor protein is recessive (r) the receptor will not be functional 

when produced and thus no pathogen recognition occurs. Similarly no pathogen 

recognition can occur if the pathogen avirulence gene is recessive (a) and the 

elicitor is not produced. Only when both the dominant characteristics of receptor 

and elicitor production are expressed then the gene for gene interaction occurs. The 

plants defence mechanisms are then initiated resulting in an HR that renders the 

plant resistant to the attacking pathogen (Figure 7.1). 
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A(i) 
Susceptible 

Elicitor produced 

R(i) - Resistant A(i) 

host 

Ri) 

host 

Receptor produced Elicitor produced No Receptor 

3(1) 

Susceptible 

No Elicitor 

R(i) - Susceptible a(i) 

host 

Receptor produced No elicitor 

r(i)-

host 

No receptor 

Figure 7.1 The gene for gene hypothesis. (Adapted from Lucas 1998), dominant 

allele avirulence gene; a, recessive allele avirulence gene; R, dominant allele 

resistance gene; r, recessive allele resistance gene; (i) designates the gene for gene 

pair. 
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7.4 Virulence / Avinileiice (Avr) genes in C. fulvum. 

The Avirulence genes that have been fully characterised in C. fulvum (Avr4 and 

Avr9) both encode low molecular weight proteins (AVR4 and AVR9). Both the 

Avr4 and Avr9 genes encode for a pre-pro-protein that includes a signal sequence 

for extracellular targeting. Avr4 lacks introns whereas the Avr9 gene contains one 

intron of 59 base pairs in the open reading frame. Avr9 is transcribed only in planta 

(Joosten and De Wit 1999). The expression of Avr9 is regulated by the nitrogen 

response factor Nrf 1. Under conditions of nitrogen starvation without the presence 

of Nrf 1 Avr9 was no longer induced (Perez Garcia et al. 2001). Avr4 and Avr9 are 

true avirulence genes. Transformation of the Avr4 or Avr9 genes into C. fulvum 

strains that do not produce the corresponding AVR proteins made the strains 

avirulent on tomato cultivars containing the corresponding Cf resistance genes 

(Joosten and De Wit 1999). 

7.5 Products of Avirulence genes. 

Virulence/Avirulence factors are those that determine the outcome of a race-

cultivar interaction, specifically these are the products of the avirulence genes. Both 

the Avr9 and Avr4 genes in C. fulvum encode a precursor protein of 63 amino acids 

and 135 amino acids respectively. Both appear to be modified by plant and fiuigal 

proteolytic modification. Both proteins contain cysteine residues that are involved 

in di-sulphide bridges. The mature AVR9 protein is 28 amino acids and the mature 

AVR4 is 86 amino acids. (Luderer et al. 2002). The structure of AVR9 has been 

determined by 'H NMR analysis. The AVR9 peptide contains three anti parallel 

strands that form a compact region of P-sheet and two solvent exposed loops, a 

short one between Phe26 and Leu20 and an extended one from Thrl2 to Gln20. 

There is great structural similarity between AVR9 and serine protease inhibitors, 

ion channel blockers and growth factors. The greatest similarity is to be found 

between AVR9 and carboxy peptidase inhibitor. The hydrophobic residues of 

AVR9 present in the solvent exposed loops are essential for the necrosis inducing 

activity of the AVR9 peptide. Within this it is thought that Phe21 is one of the 

essential residues. No complete structural data exists for AVR4 except for the fact 

that the AVR4 protein has a hydrophobic centre that may be crucial for antigenicity 

(Joosten and De Wit 1999). 
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So far no evidence has been shown for direct binding of these proteins to their 

complementary Cf gene product. Recent work shows that there is no evidence of a 

direct interaction between AVR9 and Cf-9 (Luderer et al. 2001). 

7.6 Resistance (Cf) genes in £. esculentum. 

Many Cf resistance genes from tomato have been cloned and localised to a 

complex resistance locus by use of classical and Restriction Fragment Length 

Polymorphism (RFLP) analysis. The Cf-2 and Cf-5 genes are found on 

chromosome 6 of Z. esculentum. Cf-2 comes from two closely linked near identical 

genes Cf-2.1 and Cf-2.2. Little is more known about the Cf-5 gene however 

experiments are continuing Dixon (personal communication). 

The genes Cf-4 and Cf-9 are found on chromosomes 1 and 10 respectively (Jones et 

al. 1993). It has either been demonstrated or hypothesised that the tomato Cf-2, Cf-

4, Cf-5 and Cf-9 genes confer resistance to C fulvum by recognition of the 

complementary Avr genes 2, 4, 5 and 9. 

7.7 Cf proteins of L. esculentum 

Three Cf proteins have been characterised. Cf-9 is a 863 amino acid membrane 

anchored, extracytoplasmic glycoprotein containing 27 imperfect leucine rich 

repeats (LRRs) of 24 amino acids in length. The repeats have a consensus sequence 

of LxxLxxLxxLxLxxNxLxGxIPxx. The LRRs are interrupted by a short region 

termed a "loop out" domain which divides the LRRs into 23 amino terminal and 4 

carboxyl terminal LRRs. As the carboxyl terminal ends with the motif KKxx it is 

thought the protein is localised to the endoplasmic recticulum Jones and Jones 

(1997). 

Cf-4 has also been localised to the same complex locus as Cf-9 on the short arm of 

chromosome 1. As the Cf-4 carboxyl terminal is almost identical to that of Cf-9 it is 

thought that the specificity between the two proteins is derived from the amino 

terminus. 
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Cf-2 comes from two closely linked near identical genes Cf-2.1 and Cf-2.2. The 

products of these two genes diflfer only by three amino acids. The Cf-2 gene 

encodes for a protein of 1112 amino acids. The localisation of Cf-2 is currently 

under investigation and appears to be in the microsomal fraction of the cell (Poole 

2003). Cf-2 is composed of 34 LRRs (2-31) and (35-38) which are of 24 amino 

acids. There are 20 LRRs (6-24) which show an alternating structure of two highly 

conserved repeats designated type A and B and are reminiscent of the alternating 

LRRs of porcine ribonuclease inhibitor. The consensus sequence for Type A is 

EEIGYLRSL(T/N)xL(D/S/G)LSENALNGSIP and Type B has a consensus 

sequence ASLGNLNNLS(M/H/R)L(Y/F/N)LYNNQLSGSIP. These are arranged 

(AB)3AB4(AB)4 followed by the first 5 residues of a B repeat. The carboxy 

terminal 360 amino acids of Cf-2 show high homology to the 352 carboxy terminal 

amino acids of Cf-9, which includes the region that is identical between, Cf-9 and 

Cf-4. This region of conservation may play a similar and important role in all 3 

proteins. It is thought that the loop out domains and the amount of conservation 

between Cf9 and Cf2 might mean that they interact with similar components Jones 

and Jones (1997). 

7.8 Pathogenicity factors of C. fulvum. 

Pathogenicity factors are molecules possessed by a pathogen to aid its interaction 

with the host. Cladosporium fulvum possesses several proteins that aid its 

interaction with tomato. The hydrophobin protein HCf-1 of C. fulvum is required 

for efficient water-mediated dispersal of conidia. Six hydrophobin genes (HCf-1 to 

-6) have thus far been identified in the tomato pathogen C. fulvum. Recently, 

analysis of the mutant strains that lack HCf-1 revealed that HCf-1 confers 

hydrophilic character to the conidia and this facilitated the dissemination of conidia 

on the surface of water droplets. Other hydrophobins, may be involved in the 

development and germination of conidia (Whiteford and Spanu 2001). The direct 

interaction that these proteins affect is the initial colonisation of the intracellular 

space by the water borne conidia of C. fulvum. 

During the colonisation of a susceptible tomato plant by C fulvum two extracellular 

proteins called ECPl and ECP2 are secreted. Of these ECP2 is very important as a 

183 



pathogenicity factor, as a deficient strain poorly colonised the leaf tissue and 

secreted lower amounts of other pathogenesis related proteins (Lauge et al. 1997). 

In contrast, deletion of ECPl did not affect the colonisation ability of the fungus 

but reduced the production of in-planta produced proteins. Other effects included 

the quicker accumulation of pathogen related proteins in the plant and quicker 

induction of leaf desiccation and abscission of leaves. These results suggest that 

these two proteins play a role in the suppression of the host response. An effect on 

cytokines, a proteinaeous mediator in the animal immune system has been 

proposed. A pathogenicity gene has been discovered that complements this system, 

designated ECP2 (Lauge a/. 1998). 

Other factors that are present in the interaction in the apoplastic fluid that have an 

effect on the disease process are Nitrogen, the presence of which has been shown to 

induce the expression of the Avr9 gene (Van Den Akerveken et al. 1994). A wall 

bound invertase in C. fulvum likely of use in degrading photoassimilates in the 

interaction has also been discovered Noeldner et al (1994). 

7.9 Resistance factors of L. esculentum 

Resistance factors are required as part of the recognition process of the gene for 

gene signal. However, although not being the primary part of the complementary 

gene for gene system, resistance factors may act as mediators of the response that 

comes about because of the gene for gene interaction. A high affinity binding site 

(HABS) has been found in the plasma membrane of L. esculentum that is required 

for AVR9 function in lines containing Cf-9. HABS is thought to be a third 

component that is required for perception of AVR9 by Cf-9, but has yet to be 

isolated (Luderer et al 2002). 

The gene Required for Cladosporium Resistance 3 (Rcr3) has been shown to be 

specifically required for Cf-2 mediated resistance to C. fulvum. Two other genes Cf-

5 and Cf-9 were unaffected by the deletion of the Rcr3 gene (Dixon et al 2000). 

Recently, the RcrS gene has been cloned and the proteinaceous product purified via 

an affinity column to a molecular weight of around 38 kd. RcrS is a secreted 
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cysteine protease that functions upstream of Cf-2. The actual role of Rcr3 in the 

defence response has yet to be ascertained (Kruger et al. 2002). 

7.10 Aim 

At the time of the study Avr 2 had not been characterised. The aim of this study 

was to obtain amino acid sequence of Avr 2 to allow subsequent cloning of the 

gene. 

7.11 Approach 

In order to purify AVR2 a bioassay for its detection is required. It has been shown 

that Avr9 induces a burst of hydrogen peroxide (H2O2) at a very early stage of the 

recognition process (Hammond-Kosack et al. (1996), May et al. 1996). A 

reasonable assumption is that the AVR2-Cf2 interaction would produce an 

oxidative burst as; this is a fairly ubiquitous phenomenon in elicitor-receptor 

interactions (Baker and Orlandi 1995). It is proposed to detect AVR2 by 

monitoring H2O2 production in tomato leaf discs using the chromophore ABTS. 

Peroxidase in the leaf discs in the presence of H2O2 converts colourless ABTS to a 

coloured compound (radical cation) that can be measured spectrophotometrically. 

Using this method of detection for AVR2 standard protein purification techniques 

will be employed in order to purify AVR2 to homogeneity and allow subsequent 

amino acid sequencing. 
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7.12 Plant maintenance 

Lycospersicon esculentum cv. Cf2 and CfD were a gift of Dr Mark Dixon and were 

sown on F2 soil in 3 cm pots under greenhouse conditions (16 h photoperiod 25°C). 

After 10 days post germination, plantlets were transferred to individual pots in M2 

soil until they reached a height of 10 cm and were suitable for inoculation. For seed 

collection plants were maintained in 9 cm pots on M2 soil with a bottom layer of 

"Grits". 

Nicotiana tabaccum c.v. Petit gerard and c.v. 2. ID were a gift of Dr Mark Dixon. 

Petit Gerard is a cultivar Nicotiana tabaccum (J.D.G Jones unpublished) and 

carries no resistance genes for C.fulvum. 2. ID is a transformant of Petit gerard 

transformed with Cf-2.1 from Lycospersicon esculentum (Dixon unpublished). 

Seeds of Nicotana tabacum c.v. 2. ID and c.v. Petit gerard, were sown on 

Levington F2 compost, by spreading on damp soil and watering in. Plantlets were 

transferred to 3 cm pots and then fiirther to 9 cm pots containing F2 soil. Sowing 

times were altered to ensure comparable stages of development of leaves between 

the two species. 

7.13 Fungal culture maintenance 

Cladosporium fulvum Race 5 was a gift of Dr P.Seear and Dr M.S.Dixon and was 

maintained on Ya strength potato dextrose agar (1 % Potato Dextrose Media and 

0.625 % Agar No 2) and sub cultured every 2 weeks. 

7.14 Infection of plants with Race 5 Cladosporium fulvum 

Tomato plants (10 cm high) were placed in an inoculation tent and 100 p,l L"' 

paclobutrazol was added (50 ml per plant) as a soil drench, the apical meristem was 

also removed. To make the spore suspension a single two-week-old plate of C. 

fulvum was used to 750 ml distilled water, for 15 plants. Plants were inverted and 

immersed into the spore solution for 10 s ensuring that all leaves were well covered 

with the spore suspension. The remainder of the solution was drenched over the 

plants. Infection in general took place when overcast weather conditions prevailed; 

in order to prevent direct sunlight the plants were shaded. 
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When plants had visible coverings with powdery spores (generally two weeks after 

inoculation) the leaves were removed and vacuum infiltrated with distilled water. 

Saturated leaves were carefiilly blotted to remove excess surface water. The leaves 

were rolled into cylinder shape and inserted into the barrel of a 20 ml syringe. The 

syringe was placed into a 50 ml centrifuge tube and centrifiiged at 400 g for 10 

min. The apoplastic fluid was collected and stored on ice. The tubes were 

centrifuged two further times to extract the maximum amount of apoplastic fluid. 

To ensure protein to ensure protein homogeneity throughout the batch all samples 

were pooled and then stored at -20 °C in 1 ml aliquots. 

7.15 Detection by visual assay of HR due to Avr2 in intact leaves 

Tomato plants either containing no resistance genes for the fimgus Cladosporium 

fulvum (Cf 0) or the resistance gene Cf-2 were grown for three weeks to reach 

approximately 15 cm in height. Leaves were injected with 0.1 ml candidate fi-action 

on the underside of a leaf at an interstice between the major and minor veins; untU a 

visibly darkened panel appeared. Primary leaves were not used for this assay. 

Plants were grown for 14 days after injection and assessed for signs of chlorosis by 

visual inspection throughout this period. The visual assay of chlorosis was initially 

taken on a semi-quantitative three-point scale defined as: (1) slight activity flecking 

or darkening of the leaf area, (2) beginnings of yellowing or chlorosis, (3) 

chlorosis. All injections into leaves were at the concentration achieved directly 

from apoplastic fluid harvest. Digital photographs were taken to record the 

symptoms. 

In later experiments (purification method three), four independent assessors scored 

leaves on a five-point scale (5 chlorotic to 1 no symptoms). After averaging the 

data and subtracting values for the Cf 0 (no Cf-2 gene) control plants, the level of 

Avr2 in these test samples was expressed as a semi quantitative value ranging fi-om 

zero to five. 
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7.16 Biochemical detection of Avr 2 in leaf discs 

Prior to the experiment leaf discs (7 mm diameter) were incubated in 70 % (v/v) 

leaf disc buffer (LDB) (70 % (v/v) 0.2 M acetate buffer pH 5.75, 0.0005 % (v/v) 

Silwet, 2 % (v/v) 1.0 M MnCli) and incubated at 25 °C for 18 h in the dark with 

gentle shaking. Three leaf discs were then transferred into a 24-well assay plate. 

For each sample tested, six treatments as were set up in triplicate (table 7.2). 

The assay plate was incubated in the dark for 2 h with agitation (50 r.p.m) and the 

level of H2O2 in the bathing solution was measured indirectly by measurement of 

peroxidase activity. Three 100 p.1 fractions were taken from each well and were 

transferred to a 96-multiwell plate and incubated with 100 jaL of ABTS (2.2-azino-

bis(3-ethylbenz-thiazoline-6-sulfonic acid)) l.lmg ml"' in 0.3 mM acetic acid, pH 

4.4. The plate was read at 410 nm at t = 0 min and t = 20 min and the level of 

induced H2O2 in the last samples was calculated (table 7.3). 

From the resulting calibration curve the following equation was derived for 

transformation of absorbance values obtained to f mol hydrogen peroxide. 

Abs 400nm- 0.0173 = f mol hydrogen peroxide 

0.0001 
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Table 7.2 Experimental set up for leaf disc assay; Lane, Assay plate lane; Leaf 

Disc, plant type; LDB, Leaf disc buffer; Test, candidate fraction, e.g Apoplastic 

fluid from CfD plants infected with Race 5 C.fuhum\ Control, distilled water. 

Experimental conditions 

Lane Leaf Disc LDB Test (T) or Control (C) 

1 Petit Gerard 420^1 T 

2 Petit Gerard 420M.1 C 

3 2,1 D 420|il T 

4 2,1 D 420 .̂1 C 

5 No leaf discs 420^1 T 

6 No leaf discs 420|xl C 
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Table 7.3 Calculation of hydrogen peroxide burst by the Cf-2 / Avr2 

interaction: Plant, N. tabaccum c.v. Petit Gerard (PG), (2.ID), or no plant (NP); 

Treatment; T, Test, (apoplastic fluid); C, Control, (distilled water); Rep: Replicate 

number; 20, 0, Time of incubation (min); *, average of 3 experiments; 20-0, 

Subtracting background hydrogen peroxide; Test-Control, Subtraction of elicited 

cells from non-elicited ceUs; TC-NP, Subtraction of no disc control. 2.ID - PG: 

Subtraction of values for plants containing no Cf genes from one containing the Cf-

2 gene. 

Hydrogen peroxide ( f mol) 

Plant 
Treatment Rep 20* 0* 20-0 T-C TC-NP 

2 . 1 D -
PG Average S.E. 

N. 
tabaccum 

T 

1 

2 

3 

0.437 

0.438 

0.415 

0.248 

0.252 

0.223 

0.189 

0.185 

0.192 

0.174 

0.157 

0.167 

0.163 

0.147 

0.161 

-0.005 

0.020 

0.026 

0.019 0.01 

c.v. Petit 
Gerard 
(PG) 

C 

1 

2 

3 

0.092 

0.130 

0.113 

0.076 

0.102 

0.088 

0.016 

0.028 

0.025 

N. 
tabaccum 

T 

1 

2 

3 

0.374 

0.451 

0.430 

0.186 

0.262 

0.222 

0.189 

0.189 

0.208 

0.168 

0.177 

0.193 

0.158 

0.167 

0.188 

C.V. Petit 
Gerard 
(2.1 D) 

C 

1 

2 

3 

0.093 

0.083 

0.085 

0.072 

0.071 

0.070 

0.021 

0.012 

0.015 

No plant 
(NP) 

T 

1 

2 

3 

0.150 

0.174 

0.144 

0.130 

0.154 

0.128 

0.020 

0.020 

0.016 

0.010 

0.010 

0.005 No plant 
(NP) 

C 

1 

2 

3 

0.076 

0.077 

0.084 

0.067 

0.067 

0.073 

0.009 

0.010 

0.011 
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Methods - Protein purification 

7.17 Protein estimation hv Bicinchoninic acid method 

Protein estimation was performed from Smith et al (1985), with modifications. 

Reagent A was comprised as follows; 0.4 % (w/v) NaOH, 1.71 % (w/v) NazCOg, 1 

% BCA (Naz), 0.16 % (w/v) Sodium tartrate 0.95 % (w/v) NaHCOa, with distilled 

water to volume. Reagent B comprised 4 % (w/v) CUSO4. Prior to the assay the 

standard working reagent (SWR) was prepared by mixing 50 volumes reagent A 

with one volume reagent B. Test samples (10 jxL) were incubated with 200 p.L 

SWR in multi-well plates and left overnight at 20 °C. The absorbance at 570 rnn 

was then read on a multi-well test plate reader (Dynatech Mr 5000). The standard 

used was 100 mg L"̂  Bovine Serum Albumin. 

7.19 Gel filtration 

A 90 X 2 cm column was prepared by adding 28 g of Bio Rad P6 gel to 250 ml of 

water and poured according to the manufacturer's instructions. The resulting 

column separated between 6000-1000 Daltons. Blue dextran and copper chloride 

were used to find the void and bed volumes of the column. The column was run at 

20 ml per hour with fractions of 5 ml collected every 15 min with an automatic 

collector (Foxy instruments). Protein estimation was taken via the BCA method on 

20 |iL of each tube. Fractions were pooled and frozen overnight at -80 °C. 

Fractions were dried on a freeze drier, and re-suspended in 1 ml of distilled water 

and used in the visual or biochemical assay, at the appropriate dilution. 
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7.20 Rotofor protein DurijBcation - Preparative Isoelectric focusing. 

Preparative isoelectric focusing took place using a Rotofor cell (Bio-Rad). The cell 

was pre-focused two times with distilled water at four watts power prior to 

injection of apoplastic fluid. Apoplastic fluid (30 ml) was mixed with 15 ml buffer 

A (a-Amino-Caproic Acid) and 15 ml buffer B (Bis-Tris) to produce a pH gradient 

of 8.8-9.3. The cell was run at 12 W constant power for 4 h to produce an even 

separation. The anode and cathode buffers were per the manufacturers instructions. 

A Bio Rad peristaltic pump provided cooling. After focusing a vacuum pump was 

used to draw the sample out of the cell and into test tubes where the pH of the 

fractions was measured on a Coming 245 pH meter. 
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Methods - Gel electrophoresis. 

7.21 Isoelectric Gel focusing 

Ampholine PAGE gel plates were used at pH range 3-9.5. Standards of a range of 

isoelectric points were obtained from Sigma-Aldrich. The standards used were: 

Atnyloglucosidase, pi 3.3; Glucose oxidase, pi 4.2; Trypsin inhibitor, pi 4.6; Beta 

lactoglobulin, pi 5.1; Carbonic anhydrase II, pi 5.9; Carbonic anhydrase I; pi 6.6 

and Trypsinogen; pi 9.3. 

Apoplastic fluids harvested from Cf-0 plants infected by Race 5 C. fulvum and 

normal healthy Cf-0 plants were used as a control. Protein solutions were applied in 

10 nL volumes onto applicator wicks and laid in lanes. The gel was cooled to 10 °C 

with an ice cooled water pump (Bio Rad) and run at 1 500 V 25 mA and 15 W for 3 

h as per the manufacturers instructions. All fixation, staining, anode and cathode 

solutions were from the manufactures booklet Pharmacia (1990). 

7.22 SDS page electrophoresis 

SDS page electrophoresis was carried out using the protean II gel tank system, 

30:0.8 acyrlamide: bis acrylamide was used to make gels of 15 % total acrylamide 

in the gel. The buffers used were reservoir: 0.025 M Tris, 0.192 M glycine pH 8.3. 

Resolving: 0.375 M Tris-HCl, pH 8.8 and Stacking: 0.125 M Tris-HCl pH 6.8. 

Cooling was provided as aforementioned. 

7.23 Tris-Tricine gel electrophoresis 

Tris tricine gel electrophoresis allows resolution of proteins between 1 and 100 kD 

Schagger and von Jagow (1987). A mix of 29:1 acrylamide: bis-acrylamide was 

used to produce a 15.8 % acrylamide gel to resolve the proteins. Ultra low 

molecular weight standards were obtained from Sigma and ranged from 1 kD to 

26.6 kD and contained: Triose phosphate isomerase (26.6 kD), horse heart 

myoglobin (17 kD), bovine P-lactalbumin (14.2 kD), bovine aprotinin (6.5 kD), 

bovine insulin chain B (3.5 kD), and bradykinin (l.lkD). High molecular weight 
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standards ranged from 6 kD to 65 kD and consisted of Bovine serum albumin (66 

kD), Ovalbumin (45 kD), Glyceraldehyde-3-phosphate dehydrogenase (36 kD), 

Carbonic anhydrase (29 kD), Typsinogen (24 kD) Trypsin inhibitor (20 kD) and 

m -Lactalbumin (14.2 kD). Cathode buffer was made to a final buffer concentration 

of 0.1 M Tris-Cl, 0.1 M Tricine and 0.1 % SDS. Anode buffer concentration was 

0.2 M Tris-Cl pH 8.9. Samples were prepared in Tricine Sample Buffer. (TSB: 1 ml 

1 M Tris-Cl pH 6.8 (see SDS page method) 2.4 ml (3 g) glycerol, 0.8 g SDS, 2 mg 

Coomassie blue G-250 and 0.3 Ig DTT made up to 10 ml. A three mm gel 

containing 15 weUs was prepared, measuring 160 mm by 160 mm with a 30 mm 

stack and hence a 160 by 120 mm resolving gel. 

The freeze-dried protein sample (10 |iL) was boiled with the TSB in a total volume 

of 30 nL for 5 min. Samples were loaded through the cathode solution, into the 

wells. Electrophoresis (Protean II gel tank system (Bio-Rad)) was at 30 V for 1 h 

(to stack the gel) and then 150 V for 7 h, or until the dye front had reached the 

bottom of the resolving gel. The apparatus was cooled to 4 °C with a peristaltic 

pump. 

7.24 Purification of a specific proteins by Isoelectric focusing. 

An lEF gel was used in order to gel purify a protein from a fraction. 

Electrophoresis was carried out as per above. The fraction was added in 10 fxL 

aliquots to the wicks and separated on the gel. Loading positions were omitted to 

aid in continuous separation. A few lanes of the gel were excised and stained using 

aforementioned methods, then realigned to show the position of the candidate 

protein. The candidate band was then excised and prepared for western blotting. 

7.25 Mini Gel electrophoresis for Protein transfer 

This was carried out using a mini protean II apparatus (Bio Rad). Each gel was 0.75 

cm thick and comprised a 5 cm deep resolving gel (12.5 % acrylamide pH 8.8) and 

a 2 cm deep stacking gel (4.5 % pH 6.8) The resolving gel was prepared by mixing 

7 ml water, 8 ml acrylamide monomer (30 % (v/v) pre-mix Acrylogel; BDH, Poole, 

UK), 5 ml 1.5 M Tris, pH 8.8, lOO^L 10 % SDS, 20 piL TEMED and 100 nL 10 % 

(w/v) ammonium persulphate. The stacking gel was prepared similarly using 5.8 ml 

water, 1.5 ml monomer, 2.5 ml 0.5 M Tris pH 6.8, 50pT10 % (w/v) SDS, 10 |j.L 
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TEMED and 50 10 % (w/v) ammonium persulphate. Electrode buffer contained 

25 mM Tris, 3.5 mM SDS and 0.2 M glycine. Gels were run at a constant 200 V for 

45 min. 

7.26 Western blotting 

The electrophoretic transfer of the SDS mini gel to a nitrocellulose membrane was 

carried out in a Bio-Rad Mini-Protean II transblot apparatus, according to the 

manufacters instructions. Low molecular weight markers as aforementioned 

(Sigma) were used to assess approximate molecular weight of the transferred 

product. Gels, membranes and filter papers were all soaked in ice-cold transfer 

buffer (20 % (v/v) methanol containing 20 mM Tris and 0.15 M glycine) at 4 °C for 

30 min prior to blotting. The gel was blotted at 30 V for 2 h and the resulting blot 

stained with 2 % (w/v) amido black in 90 % (v/v) methanol 10 % glacial acetic acid 

to visualise the protein. The blot was washed in once in 90 % (v/v) methanol 10 % 

glacial acetic acid and again in distilled water. 

7.27 Reduction of suIphvdrvUs on western blot 

After western blotted protein band excision, 1.0 ml, 10 mM dithiothreitol (DTT) in 

0.1 M ammonium bicarbonate was added to the protein blot. The blot was 

incubated for 30 min at 56 °C to reduce the protein. After reduction the DTT was 

removed and replaced with 1.0 ml 55 mM iodoacetamide in 0.1 M ammonium 

Bicarbonate and incubated in the dark for 20 min at room temperature. The 

iodoacetamide solution was removed and 1 ml 0.1 M ammonium bicarbonate was 

added to alkylate the blot for 15 min. The blot was then air-dried and sent for 

sequencing. 
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Gel staining methods 

7.28 lEF gels 

After electrophoresis gels were stained with 0.2 % (w/v) coomassie brilliant blue 

R-250 in 20 % (w/v) methanol, 0.5 % (w/v) acetic acid for 20 min (without fixing), 

and destained using 30 % (w/v) methanol until the protein bands became visible. 

7.29 Silver staining of lEF gels 

The gel was fixed in 20 % (w/v) TCA for 30 min. The gel was then sensitised in a 

solution of 0.125 % (w/v) Glutaraldehyde, 0.2 % (w/v) Sodium Thiosulphate, 6.8 

% (w/v) sodium acetate and 30 % (v/v) ethanol for 30 min. The gel was washed 

was three times in distilled water, for five min per wash. The gel was then exposed 

to a 0.25 % (w/v) silver nitrate solution with 0.15 % (v/v) formaldehyde. After 20 

min the gel was washed two times for 1 min with distilled water. Developing of the 

gel took place in 2.5 % (w/v) sodium carbonate with 0.0074 % (v/v) formaldehyde 

until clear bands could be seen. The developing reaction was stopped by addition of 

1.46 % (w/v) EDTA-Na2 and washed three more times for 5 min in distilled water. 

Gels were preserved in a solution of 8.7 % (w/v) glycerol. 

7.30 Staining method for Tris tricine gels 

The gel was washed for 5-10 min in distilled water to decrease the background 

staining and fixed in freshly prepared 5 % (w/v) glutaraldehyde for 1 h. Washing 

was three times with distilled water for 5 min per wash. Staining was in 0.025 % 

(w/v) coomassie brilliant blue G in 10 % (v/v) acetic acid for 1 h. De-staining took 

place in 10 % (v/v) acetic acid overnight with several changes of de-staining 

solution, until bands were easily visible. The advantage of this method was that it 

prevented the lower molecular weight peptides fi-om difiusing out of the gel. 
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Results 

7.31 Development of the leaf assay 

In order to find the biological activity of an elicitor of the hypersensitive response 

induced via the Cf-2 protein (Avr2) a specific assay was required that could detect 

this element in apoplastic fluid. Two methods were attempted. The first method 

involved a direct injection of apoplastic fluid into tomato plants containing the gene 

Cf-2. Tomato plants containing the gene Cf-2 exhibit a chlorotic response to 

injection of neat apoplastic fluid from C. fulvum Race 5 infected plants. This 

response is absent in isogenic plants without the Cf-2 gene (Cf-0) (Figure 7.2). This 

characteristic chlorosis formed the basis for the leaf assay. The assay involves 

direct injection of separated fractions of apoplastic fluids into leaves of the two 

tomato varieties and scoring on a three-point scale (1) slight activity flecking or 

darkening of the leaf area, (2) beginnings of yellowing or chlorosis, (3) chlorosis. 

This assay also served throughout the experimental program as an indicator of Avr2 

presence in batches of apoplastic fluid. 
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Figure 7.2 Hypersensitive response induced by apoplastic fluids from infected 

and healthy C£2 plants. AF 1 apoplastic fluid from CfD plants infected with race 5 

C. fulvum. AF 0 apoplastic fluid collected from healthy CfO plants. Cf2 and CfD 

plants carrying the Cf2 gene or no resistance gene respectively. 
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7.32 Development of the hydrogen peroxide bioassav. 

The second method for detection of Avr2 involved biochemical detection of the 

oxidative burst produced, in separated apoplastic fluids. The assay was based on the 

premise that the direct interaction of Avr2 and Cf-2 would produce a detectable 

oxidative burst in a similar fashion to the Avr9 - Cf-9 protein interaction. To 

control for intergenic differences and to assure the assay detected only the oxidative 

burst produced by the Avr2 - Cf-2 interaction; two cultivars of Nicotiana tabaccum 

were used. N. tabaccum c.v. Petit Gerard carried no Cf genes whereas the gene Cf-

2.1 from tomato had been transformed into the cultivar N. tabaccum 2.1 D (Dixon 

unpublished). 

In order to detect Avr2 activity, hydrogen peroxide evolution was assessed 

indirectly by measuring peroxidase activity. The assay involves the conversion of 

the chromogen ABTS is to radical cation measured by its absorbance at 400 nm, 

pH 4.4 (Shindler et al 1976). In this hydrogen peroxide limited enzyme assay 

peroxidase activity is proportional to hydrogen peroxide production. This principle 

was adapted to work on a multiwell plate to produce a small volume activity assay 

for directly interacting proteins that produce hydrogen peroxide. 

finol hydrogen peroxide = Absorbance 400 nm - 0.0173 

0.0001 

To calculate activity, the equation above was calculated by use of dilutions of 

hydrogen peroxide appropriate to preliminary absorbance readings from neat 

apoplastic fluids in the assay (Figure 7.3). 
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Figure 7.3 Calibration assay for hydrogen peroxide. Absorbance was measured 

on a multiweU plate reader at 400nm and frnol dilutions of hydrogen peroxide were 

added in place of apoplastic fluid. Error bars represent standard error of nine 

experiments. 
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7.33 Strategies to improve the hydrogen peroxide assay 

In the presence of neat apoplastic fluids a significant difference in hydrogen 

peroxide production could not be measured between the two plant varieties. 

Several factors were tested that could have aided the assay. Senescent tissue was 

shown to stop the assay fi-om producing any detectable hydrogen peroxide. 

Wounded leaf discs from each variety were found to produce some non-specific 

hydrogen peroxide. In order to eliminate these factors leaf discs from visually 

healthy plants were pre-incubated for 18 h in leaf disc buffer before using them for 

the measurement of hydrogen peroxide. However, pre-incubating the leaf discs in 

glass vials at pH 5.75 also had a detrimental effect (Figure 7.4). All of these 

measures did not result in a detectable oxidative burst. However it was thought that 

pure Avr2 interacting with Cf-2 would result in a detectable oxidative burst once 

any factors suppressing the interaction already present in the apoplastic fluid were 

eliminated by separation. This observation does not support the hypothesis that the 

direct interaction of Avr2 and Cf-2 produces detectable hydrogen peroxide. 
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Figure 7.4 Strategies to improve the hydrogen peroxide bioassay: Absorbance 

was measured on a multi-well plate reader, all experiments used neat apoplastic 

fluids from Race 5 C. fulvum infected Cf-0 plants; A, original assay; B, presence of 

senescent leaf tissue in assay; C, using pH 5.75 buffer; D, pre-incubating leaf tissue 

and using glass vials. Error bars represent the standard error of three experiments. 
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7.34 Purification method 1 

In order to obtain DNA sequence of the Avr2 protein, the method of protein 

purification was employed to yield candidate proteins of which the amino acid 

sequence would be determined. Eventually, this information would be used to 

generate degenerate oligonucleotide sequences capable of amplifying Avr2 related 

DNA fragments via a PGR method. 

The apoplastic fluid harvested from Cf-0 plants infected with race 5 Cladosporium 

fulvum was applied to a biogel P6 column (Bio Rad). Four major peaks of protein 

eluted from the column between the void and the bed volumes. Seven fractions (A-

F) of around 30 ml were dialysed and freeze dried and assayed for production of 

hydrogen peroxide in the leaf disc assay and chlorotic lesions in the leaf assay 

(Figure 7.5). 
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Figure 7.5 Separation of apoplastic fluids by gel filtration on biogel P6. 

A Void volume • Bed volume. Protein determined by BCA method; ~(A)~, 

Fraction A (41 - 78.5 ml); ~(B)~, Fraction B (82.6-105.9 ml); —(C)— Fraction C 

(109.7-135.8 ml); - (D) - , Fraction D (139.4-169.3 ml), - (E)- , Fraction E (173.1-

203.4 ml) —(F)—, Fraction F (207.2-236.3 ml). 
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7.35 Analysis of Avr2 activity in fractions 

The visual assay of chlorosis was taken on a semi-quantitative three-point scale 

(Figure 7.6). This was defined as: (1) slight activity flecking or darkening of the 

leaf area, (2) beginnings of yellowing or chlorosis, (3) chlorosis. All injections into 

leaves were at the concentration achieved directly Irom apoplastic fluid harvest. 

Injection of water did not induce a chlorotic lesion with the leaf assay. Injection of 

neat apoplastic fluid induced a yellow chlorotic lesion (3) with the leaf assay. 

Fraction A (41 - 78.5 ml) was active (2) by the leaf assay. Fraction B (82.6-105.9 

ml) was inactive (1) by the leaf assay. Fraction C (109.7-135.8 ml) was inactive (1) 

by the leaf assay. Fraction D (139.4-169.3 ml) was inactive (1) by the leaf assay. 

Fraction E (173.1-203.4 ml) was inactive (1) by the leaf assay. Fraction F (207.2-

236.3 ml) was active (3) by the leaf assay (Figure 7.6). The leaf disc assay was also 

performed on aU pooled fractions (A-F) from the column however; no significant 

results were achieved (data not shown). 
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Figure 7.6 Chlorosis development in Cf-2 leaves injected with column 

fractions. AF, Apoplastic fluid from Cf-0 plants infected with Race 5 C. fulvum-, 

H2O, Water control; A-F, fractions from gel filtration column. Numbers indicate 

activity value of chlorosis (3 chlorotic, 2 turning yellow, 1 other symptoms). 
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7.36 Isoelectric focusing of separated column fractions 

In order to separate candidate proteins to a greater degree, fractions from Bio Gel 

P6 separation were analysed by isoelectric focusing. (lEF). Apoplastic fluids from 

Race 5 infected Cf-0 plants produced 18 resolvable proteins ranging from pi 3.9 to 

pi 10.1. Apoplastic fluids obtained from healthy Cf-0 plants produced 11 resolvable 

proteins ranging from pi 4.1 to pi 10.1. A 50:50 (v/v) mixture of the neat apoplastic 

fluids produced eight resolvable proteins ranging from pi 3.9 to 9.9. Analysis by 

lEF of fraction A revealed 10 proteins ranging from pi 4.2 to 10.2. Analysis by lEF 

of fraction B revealed 12 proteins ranging from pi 4.3 to 10.3. Analysis by lEF of 

fraction C revealed 15 proteins ranging from pi 3.9 to 10.2. Analysis by lEF of 

fraction D revealed 13 proteins ranging from pi 4.0 to 10.2. Analysis by lEF of 

fraction E revealed 13 proteins ranging from pi 4.2 to 9.6. Analysis by lEF of 

fraction F revealed 12 proteins ranging from pi 4.0 to 9.2 (Figure 7.7). 
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Figure 7.7 Isoelectric focusing gel of fractions from gel filtration column; 4.2 -

5.9, migration of standard proteins; Mix, 50;50 (v/v) A mix of apoplastic fluids 

harvested from Cf-0 plants that are infected with Race 5 C. fulvum and healthy Cf-0 

plants; INF, Apoplastic fluid from Cf-0 plants infected with Race 5 C. fulvum-, 

HEA, Apoplastic fluid from healthy Cf-0 plants; A-F, Pooled fractions from gel 

filtration column. 
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7.37 Candiadate proteins for Avr2 from purification method 1. 

Six resolvable candidate proteins were present exclusively in apoplastic fluids 

harvested from Race 5 infected CfD plants but absent from apoplastic fluids 

obtained from healthy CfO plants. Of these, one appears in the active fraction A (pi 

6.1). 

The lEF also reveals 23 resolvable proteins that are not resolved in lanes 

electrophoriesed with Race 5 or CfD apoplastic fluid. These proteins are likely to be 

present in low (unresolvable) amounts in neat apoplastic fluids from the Race 5 

infected or healthy CfD plants and therefore are also potential candidates for Avr2. 

Of these, three proteins appear in the active fraction F (pi, 4.2, 4.7, 8.7) and two 

proteins appear in active fraction A (pi, 4.2, 5.7) (Table 7.4). 
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Table 7,4 Isoelectric points of resolved proteins from lEF. Fractions were tested 

by direct injection into Cf-2 and Cf-0 plants: (A-F), fractions from gel filtration 

column; Red, present only in apoplastic fluid from plants infected with Race 5 

C.fulvum\ Green, present in healthy apoplastic fluids. Oa' , protein not resolved 

in lanes electrophoriesed with apoplastic fluid from Race 5 infected or healthy Cf-0 

plants; tolerance, +/- 0.1 pH units; (*), candidate proteins for Avr2. 

Apoplastic 
fluid from 

Race 5 

Healthy 
from 
cm 

Mix 
of 

fluids 
B D 

3.9 3.9 3.9 3.9 4.0 4.0 
4.1 4.1 4.3 4.3 4.0 4.3 
4.4 4.3 4.4 4.4 4.3 4.4 4.6 4.3 
4.8 4.8 4.^ 4.6 4.9 4.9 4.4 
5 5 5.1 5.0 5.0 

5.3 5.3 5.7 5.2 5.5 5 
5.4 5.4 5.5 5.5 5.8 5.4 
6 5.9 5.7 5.9 5.9 5.6 
6 6 6.1* 6.3 6.. 

6.8 6.6 6.8 7 6.8 6.6 6.9 
7.5 7.5 " -

8.2 8.1 8.2 8.2 8.3 8.1 8.1 
8.5 8.4 8.4 8.5 8.4 8.3 
9 9.0 8.9 

9.3 9.3 9.2 0 9.4 9.4 9.2 
9.9 9.9 9,9 9.9 
10.1 10.1 10.2 10.3 10.2 10.2 
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7.38 Purification method 2. 

As resolution of the proteins lead to some difficulty in the quantification of the 

proteins character, for the second purification method the apoplastic fluid was 

concentrated 10 fold to improve resolution. The Bio Gel P6 column was again run 

with apoplastic fluid obtained fi-om Cf-0 tomato plants infected with Race 5 C. 

fulvum. Three major peaks of protein eluted fi-om the column between the void and 

the bed volumes. Eight fi-actions (A-G) of around 30 ml were dialysed and freeze 

dried and assayed for chlorotic lesions in the leaf assay and production of hydrogen 

peroxide (Figure 7.8). 
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Figure 7.8 Separation of concentrated apoplastic fluid by gel filtration on 

biogel P6. Void volume. ^Bed volume. Protein determined by BCA method; — 

(A)—, Fraction A (45.9 - 74.9 ml); —(B)--, Fraction B (79.5-97.8 ml); —(C)—, 

Fraction C (102.1-124.3 ml); —(D)—, Fraction D (128.0 -150.0 ml); —(E)—, 

Fraction E (158.4 - 171.5 ml); —(F)—, Fraction F (175.0-197.0 ml); —G—, Fraction 

0(201.0 - 231.0). 
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7.39 Analysis of Avr2 activity in fractions 

The visual assay of chlorosis was taken on a semi-quantitative three-point scale 

(Figure 7.9). This was defined as: (1) slight activity flecking or darkening of the 

leaf area, (2) beginnings of yellowing or chlorosis, (3) chlorosis. All injections into 

leaves were at five times the concentration achieved directly from apoplastic fluid 

harvest. Preliminary experiments showed that injection of apoplastic fluid at 10 

times the harvested concentration was lethal (data not shown). 

Injection of water did not induce a chlorotic lesion with the leaf assay until 13 days 

after injection and only on CfD plants. Injection of five times apoplastic fluid from 

infected plants induced a yeUow chlorotic lesion (3) only on CQ plants. Injection of 

apoplastic fluid from healthy plants did not induce any chlorosis in Cf2 or Cffl after 

13 days. 

Fraction A (45.9 - 74.9 ml) showed activity only in CfD plants by the leaf assay and 

is not a candidate fraction for Avr2. Fraction B (79.5-97.8 ml) showed activity only 

in Cf2 plants and is therefore a strong candidate for the presence of Avr2. Fraction 

C (102.1-124.3 ml) showed more activity in Cf2 plants than CfO plants and is 

therefore a weak candidate active fraction for the presence of Avr2. Fraction D 

(128.0-150.0 ml) showed less activity in Cf2 plants than CfD and is therefore not a 

candidate active fraction for the presence of Avr2. Fraction E (158.4-171.5 ml) 

showed no activity in either plant and is therefore not a candidate active fraction for 

the presence of Avr2. Fraction F (175.0-197.0 ml) was only active in CfD plants is 

unlikely to contain Avr2. Fraction G (201.0 - 231.0 ml) showed more activity in 

Cf2 than CfD plants and is a weak candidate fraction for Avr2. 

The leaf disc assay was also performed on aU pooled fractions from the column 

however; no significant results were achieved (data not shown). 

213 



5 -

0 
3 

•t 
I . 

• 13 d 

u u u u u u u u u u u u u u u u u u u u 
fefe<<<<mmouQQwmtt(pHOOpilP!i 
S S g S B B 

s s 
Plant and treatment 

Figure 7.9 Activity of fractions from Bio Gel P6 column in CfO and Cf2 tomato 

plants at 5 X concentration; Plants with (Cf2) and without (CID) the Cf-2 gene 

were injected with water, apoplastic fluids from infected (INF), healthy (HEA) and 

separated fractions (A-G) of apoplastic fluids; 4 d, 7 d, 13 d, days after injection. 

Activity was measured by degree of yellowing (chlorosis) on a three point scale;(*) 

, candidate active fraction. 
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7.40 Isoelectric focusing of separated column fractions 

In order to separate candidate proteins to a greater degree, fractions from Bio Gel 

P6 separation were analysed by lEF. A 10 fold concentrated mix of Apoplastic 

fluids from Race 5 infected CfO plants produced seven resolvable proteins ranging 

from pi 4.6 to 6.4. Apoplastic fluids obtained from healthy plants produced four 

resolvable proteins ranging from pi 5.0 to 6.6 (Table 7.5). Analysis by lEF of 

fraction A revealed 14 proteins ranging from pi 3.6 to 9.1. Analysis by lEF of 

fraction B revealed nine proteins ranging from pi 4.4 to 6.4. Analysis by lEF of 

fraction C revealed seven proteins ranging from pi 4.4 to 8.8. Analysis by lEF of 

fraction D revealed seven proteins ranging from pi 4.7 to 5.9. No other fraction 

produced any resolvable proteins. 
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Figure 7.10 Isoelectric focusing gel of fractions from gel filtration column. The 

gel was stained with Coomaisse blue for proteins: 4.6 - 9.3, migration of standard 

proteins; INF, Apoplastic fluid from Race 5 C.fulvum infected plants; HEA, 

Apoplastic fluid from healthy Cf-0 plants. 19.M6: A candidate protein that has a 

molecular weight of around 6 (present in fraction A and an isoelectric point of 

around 9). 
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7.41 Candidate proteins for Avr2 from purification method two. 

Six resolvable candidate proteins were present exclusively in apoplastic fluids 

harvested from Race 5 infected CfD plants but absent from apoplastic fluids 

obtained from healthy CfD plants. Of these, two appear in the active fraction B (pi 

5.4,6.4), and two appear in the active fraction C (pi 5.4, 6.4) no proteins were 

resolved in active fraction G. 

The lEF also reveals 12 resolvable proteins that are not resolved in lanes 

electrophoresed with Race 5 or Cfi) apoplastic fluid. These proteins are likely to be 

present in low (unresolvable) amounts in neat apoplastic fluids and are potential 

candidates for Avr2. Of these, two proteins appear in the active fraction B (pi, 4.4 

and 4.8) and three appear in active fraction C (pi, 4.4, 4.8 and 8.8). 

Another interesting protein band is at pi 9 in fraction A. The staining on this band 

is heavier than any other band in the gel. In view of the increase in concentration in 

this protein purification method may also be considered as a potential candidate for 

Avr2. In view of its elution on the column, the molecular weight of this band is 

approximately 6 kD. It was decided to further investigate the character of this band 

by trying to obtain the amino acid sequence of this protein. 
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Table 7.5 Isoelectric points of resolved proteins from lEF (2). Fractions were 

tested by direct injection into Cf-2 and Cf-0 plants: A-G, Fractions from gel 

filtration column; Red, Present only in apoplastic fluid from plants infected with 

Race 5 C.fulvum\ Green, Present in apoplastic fluid from healthy plants; , 

protein not resolved in lanes electrophoriesed with apoplastic fluid from Race 5 

infected or healthy Cf-0 plants; tolerance, +/- 0.1 pH units; (*), candidate proteins 

for Avr2. 

Apoplastic 
fluid from 

Race 5 
infected 
plants 

Apoplastic 
fluid from 

healthy 
plants 

A B C D E-G 

3 No 
3.P Proteins 
J 
4. 

4.6 4.5 4.5 4.7 
4.7 4.7 4.7 

V.A" V.g* 4.9 
5 5 5.1 

5.3 5.3 5.2 5.2 5.2 
5.4 5.4* 
5.5 5.5 5.5* 5.5 
5.8 5.8 5.6 5.6 5.6 

5.9 5.9 5.9 5.9 
6.3 
6.4 6.4* 6.4* 

6.6 
9.1 
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7.42 Localisation of candidate protein. 

During the course of attempting to use purification method two, information was 

gained that the correct molecular weight of the Avr2 protein was around 6 kD, and 

the isoelectric point (pi) of this protein was around nine (Luderer (2000)). A single 

discreet band of this approximate molecular weight and isoelectric point was 

observed in firaction A. This band is a good candidate for the Avr2 protein and was 

designated 19.M6. In order to establish if any other resolvable bands of protein 

were present around the probable molecular weight region of 6 kD and isoelectric 

point of nine, a new gel was prepared. Fractions B and G, exhibited the greatest 

activity in the leaf assay and were subject to electrophoresis again. The new 

electrophoresis gel was stained with AgNOs, which can detect to protein of 

proteins. 

When the new gel was stained with AgNOs, 24 proteins were revealed in fraction A 

between pi 3.3 and 8.9. However, none of these proteins appeared to co-localise 

with the candidate I9.M6. However it is possible that any of the newly detected 

proteins in fraction A could be natively bound to I9.M6 and may impair its 

biological function. 

In fraction B four proteins were resolved between pi 4.7 and 5.8, fraction G 

revealed no proteins. Both of these fractions were therefore discounted as possible 

sources of native Avr2 protein (Figure 7.11). 
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Figure 7.11 Isoelectric focusing gel of fractions from gel filtration column Gel 

was stained with silver nitrate. STD 6.6- 9.3: migration of standard proteins. A-G: 

Fractions from gel filtration column. I9.M6: A candidate protein that has a 

molecular weight of around 6 (present in fraction A and an isoelectric point of 

around 9). 
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7.43 Gel purification for sequencing. 

In order to afSrm I9.M6 as Avr2 it was decided to attempt to obtain amino acid 

sequence of this protein. In order to achieve this, the protein band had to be isolated 

in high amounts. As no discrete bands were observed close to I9.M6 in the previous 

gel an electrophoresis gel was run entirely with fraction A to gel purify the 

candidate protein. The portion of the lEF gel containing fraction A was excised and 

freeze-dried (Figure 7.12). 
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I9.M6 

Figure 7.12 lEF to localise a candidate protein prior to sequencing. Gel is 

stained with coomassie blue to localise proteins: A, Fraction A from bio gel P6 

column; dotted line and arrows, portion of gel containing I9.M6, removed for 

sequencing; a circle highlights protein I9.M6. 
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7.44 Western blotting for candiate protein 

The candidate protein fragment (I9.M6) was freeze-dried to a 30 jo,! aliquot and 

subjected to SDS page electrophoresis. The protein was transferred via western 

blotting to a nitrocellulose membrane from which sequencing could be performed. 

A large band of protein was observed at around 6 kD, giving confirmation of the 

molecular weight of I9.M6. Other transferred bands were observed and may be due 

to very high molecular weight and higher pi proteins (i.e. those greater than 9.3). 

The portion of the membrane containing the highest amount of the protein present 

at 6 kD was excised and amino acid sequencing performed (Figure 7.13). 
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14 kD 

6kD 

Figure 7.13 Western blot of candidate protein. Arrows indicate migration of 

protein standards. Square indicates portion of blot used for sequencing. The blot 

stained with amido black to localise proteins. 14-6 kD position of protein molecular 

weight markers. 
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7.45 Result of sequencing 

The sequencing of I9.M6 failed, the protein was blocked at the N-terminus, 

attempts to cleave the sequence by cleaving at methione residues also foiled. 

Therefore this protein cannot be confirmed as Avr2. 
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7.46 Purification method 3 Preparative Isoelectric focusing 

As activity of Avr2 had already been localised to around pi of 9 and very few 

resolvable proteins were present around that isoelectric point, preparative lEF was 

used to provide concentrated small volume samples without the need for prior 

concentration. The rotofor required 30 ml of apoplastic fluid per run. 

Separation of apoplastic fluids from the race 5 C. fulvum-Cf-Q tomato interaction 

using preparative isolelectric focusing was between pH two and 12. The highest 

resolution occurred for 16 fractions between pH six and pH 10. The major peak of 

protein elution detected by the BCA assay was below pi eight (fraction 11). Protein 

remained under 0.1 mg ml'̂  until fraction 20, however a slight peak is observed at 

fraction 17 (pi 9.4) (Figure 7.14). 
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Figure 7.14 Separation by Preparative lEF of apoplastic fluids by Rotofor Bio 

Rad: • , protein mg ml'̂  measured by BCA method; ^ pH using a pH meter 

(Coming 245). Fractions of 1.5 ml were collected. 
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7.47 Analysis of Avr2 activity in fractions 

Each fraction was separately tested for activity in the leaf assay. In order to prevent 

bias, four different observers ranked the degree of chlorosis on a five-point scale (5 

highest - 1 lowest). The test was carried out independently on CfZ and Cfl) plants 

injected with candidate fractions (10-20) in the range pi 8 to 10. The average values 

of activity for CfO plants were subtracted from those obtained for CfZ plants to give 

the net activity value, which was divided by the number of observers. Net activity 

appeared to be clustered around pH 8.5 to 10. Another peak of activity was 

observed at pH 6.75 to 4.5. This peak was not investigated further due to the 

resolution of the fractions between pi 6.75 and 4 (Figure 7.15). 

Fractions were also tested in the hydrogen peroxide assay, however; no significant 

results were produced (data not shown). 
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Figure 7.15 Activity of fractions from rotofor focusing via bioassay: Activity 

value, calculated on a scale (1-5) and averaged between 5 operators; pH, measured 

by pH meter. 
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7.48 Tris tricine Gel electrophoresis 

In order to resolve proteins below 10 kD tris-tricine gel electrophoresis was used in 

order to further separate the candidate active fractions (Schagger and Von Jaggow 

1998). The gene Avr2 predicts a 78 amino acids protein (Luderer 2002), this refers 

to native protein of 6 kD that should be resolved in a strong band in an active 

fraction at an isoelectric point of nine. Standards between 66 and 6 kD and 26 and 1 

kD were run in order to find apparrent molecular weights of candidate proteins on 

gels in active fractions (Figure 7.16). 

On all gels proteins were stained with co-maissie blue. No proteins were detected in 

a pi 11.7 fraction. Five proteins between 56.3 and 9.6 kD were detected in a 

fraction of pi 11.1. Two proteins between 13.4 and 5.3 kD were detected in a 

fraction of pi 9.9. Seven proteins between 58.3 and 4.3 kD were detected in a 

fraction of pi 9.4. Three proteins between 13.4 and 5.3 kD were detected in a 

fraction of pi 8.9. Eight proteins between 56.1 and 4.3 were detected in a fraction 

of pi 8.7. Five proteins between 33.7 and 5.3 kD were detected in a fraction of pi 

8.5. Six proteins between 56.1 and 6.8 kD were detected in a fraction of pi 8.3. Five 

proteins between 34.6 and 2.3 kD were detected in a fraction of pi 8.1. Six proteins 

between 60.2 and 12.2 kD were detected in a fraction of pi 8.1. Five proteins 

between 57.2 and 26.7 kD were detected in a fraction of pi 8.0. Ten proteins 

between 57.2 and 7.0 kD were detected in a fraction of pi 7.8. Eleven proteins 

between 41.4 and 2.4 kD were detected in a fraction of pi 7.5. Ten proteins 

between 57.2 and 7.0 kD were detected in a fraction of pi 7.4. Twelve proteins 

between 40.2 and 2.6 kD were detected in a fraction of pi 7.2. Ten proteins 

between 56.3 and 7.3 kD were detected in a fraction of pi 7.0. Nine proteins 

between 40.2 and 2.6 kD were detected in a fraction of pi 6.8. Eight proteins 

between 41.8 and 7.0 kD were detected in a fraction of pi 6.3. Seven proteins 

between 40.2 and 10.5 kD were detected in a fraction of pi 4.6. Ten proteins 

between 58.3 and 7.3 kD were detected in a fraction of pi 2.6. In total 139 proteins 

were detected ranging from 58.1 kD to 2.3 kD (Figure 7.16). 
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Figure 7.16 Tris-tricine gel of fractions from preparative isoelectric focusing; 

the gel was stained with Coomaisse blue for proteins, LS, low molecular weight 

standards 26-1 kD; 11.7-4.6, isoelectric point of fraction. HS, high molecular 

weight standards. Arrows indicate molecular weights of standard proteins. 
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7.49 Correlation of activity with candidate protein isoelectric points and 

molecular weights. 

Activity from the leaf assay toward Cf-2 was related to apparent molecular weight 

and isoelectric point of the candidate proteins. The criteria for a candidate active 

protein was that its apparent molecular weight band encompassed the entirety of the 

active fractions between either pi 4.6 to 6.3 or pi 8.5 to 9.4. If the apparent 

molecular weight band of the protein crossed into an inactive fraction it was not 

considered a candidate Cf-2 active protein band (Figure 7.17). 

The two-dimensional separation combined with the activity data reveals 13 

candidate bands that may be linked to nine separate proteins. Six candidate bands 

lay at pl 9.4 at 58.3 kD, 53.9 kD, 41.8 kD, 26.7 kD, 16.4 kD and 6.8 kD. One 

candidate band lies at pi 8.9 at 6.8 kD. Three candidate bands lay at pi 6.3 at 41.0, 

26.2 and 6.8 kD. One candidate band lies at pi 6.3 at 21.6 kD. Two candidate bands 

lay at pi 4.6, at 20.0 kD and 12.8 kD (Figure 7.17). 
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Figure 7.17 Molecular weight estimation and activity of proteins separated by 

preparative isoelectric focusing: Proteins were electrophesised on tris-tricine gels 

and detected by staining with Coomassie brilliant blue. 6 , inactive protein in Cf-2 

interaction; 6 , candidate active protein 6 , Avr2 from Luderer et al (2002). 
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7.50 Discussion 

The main aim of this study was to provide information on the protein character of 

Avr2 or possible interacting proteins in order to facilitate cloning of the Avr2 gene 

by a PGR method. This study however only provides some complementary data 

about the nature of resistance mediated by the Cf-2 interaction. 

7.51 Avr2 is already purified 

Cloning of the Avr2 gene has now been completed Luderer et al (2002). A screen 

of a cDNA library from a C. fulvum strain avirulent on Cf2 plants was performed 

using a potato virus X expression vector system. This gave two isolates that 

reproducibly induced an HR upon Agrobacterium tumefaciens-medisXedi expression 

in Cf2 plants. The Avr2 ORF predicts a cysteine-rich protein of 78 amino acids, 

vyith a predicted signal peptide of 20 amino acids (Accession no AJ421629). The 

predicted molecular weight of this protein is 33 kD with an isoelectric point of 

4.75. This is in contrast to information received previously. However, by 

examination of the data shown in this study some similarities in activity patterns 

can be drawn. Avr2 related activity is shown in this study between pi 4.6 and pi 

6.3. Also a protein can be resolved in the active fraction at pi 4.6 that has a 

molecular weight of 33.7 kD (Figure 7.17). However, Luderer et al (2002) state 

that antibodies could not be raised against a synthetic peptide derived from Avr2 

and therefore the molecular weight of Avr2 from a western blot could not be 

confirmed. It may be that using the isoelectric focusing method could allow the 

production of native Avr2 protein. This would allow more efficient binding studies. 

Additionally the protein resolved at 33.7 kD in this study is also resolved in 

fractions without activity. It is unlikely however that any protein can exist between 

pi 4.7 and pi 6.3, these may be separate proteins, so this may not hold true. 

In the first purification method (section 7.15) a protein is resolved at pi 4.6 that is 

separate from other fractions in the apoplastic fluid and is high in its abundance. 

Similar proteins are also present on this gel at pi 4.5 but they are resolved in 

inactive fractions. 
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7.53 A method for Avr2 purification 

The preferred method for successful purification of Avr2 from apoplastic fluid 

would be to run a rotofor cell between pi 4 and 5 approximately and separate 

fractions using gel electrophoresis designed to run between 25 and 40 kD. From 

this study perhaps some proteins would co-localise with Avr2 and make it difficult 

to discern the mature protein. 

7.54 Lack of fimction of hydrogen peroxide assay 

The simplest explanation for why hydrogen peroxide inducing activity could not be 

detected is that RCR3 is not present in the system, although an alternative 

explaination may be that not enough hydrogen peroxide is detectable by the assay 

system used. The basis of the assay possibly is sound and it would be useful to try a 

different detection system such as Luminol as used by Hammond-Kosak et al 

(1989). 

7.55 How does Ayr2 compare with other Ayrs 

Cladosporium fulvum and its interaction with tomato closely resemble the gene for 

gene model. The implication of a complementary gene interaction implies a 

complementary protein interaction. Although this seems to be true for both the 

Avr4 Cf-4 interaction (Joosten et al 1997) and the Avr9 Cf-9 interaction (Piedras et 

al 1998) it may be that the interaction between Cf-2 and C fulvum is far more 

complex. Already implicated in the interaction is the plant gene RCR3, (Dixon et al 

2002) a gene absolutely required for mediation of resistance through Cf-2. 

7.54 Possible dual activity in the Avr 2:Cf-2 interaction 

An explanation for the two points activity in the Avr2 : Cf-2 interaction shown in 

this study could be endogenous activity. Two main studies support this Peever and 

Higgins (1997) show that endogenous elicitation activity exists between the C. 

fulvum and Tomato interaction. RCR3 is completely required for absolutely 

required for mediation of resistance through Cf-2 (Dixon et al 2002). One 

hypothesis that encompasses aU the known elements in the equation is that RCR3 

itself can activate the Cf-2 gene, Avr2 therefore only is a factor in releasing RCR3 

and perhaps interacts with RCR3 in such a way that induces a conformational 
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change in the protein which allows it to become delocalised and cause the 

elicitation effects mediated by Cf-2. 

This would mean that one element of the equation is clearly RCR3 and one element 

is Avr2 with RCR3 in a bound or initiated state. This may explain some of the 

difiBculties observed trying to separate activities between RCR3 and Avr2 and why 

activity is not recoverable. This however is supposition. 

Further experiments involving RCR3 being injected with and without the presence 

of Avr2 would confirm RCR3 as an endogenous elicitor. 

To understand the role of these elements more clearly, studies such as binding and 

X-ray crystallography could be undertaken to model these proteins structures and 

attempt to understand the nature of the confirmational changes that may play some 

role in the outcome of the interaction. 
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