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Summary 

In the context of plasma-facing walls in future nuclear fusion devices, a knowledge of 

the reaction mechanisms and properties of these materials is essential for operation and 

safety. The aim of the studies for this thesis was to investigate the effect of implanting 

ke V deuterium ions in various mixed and pure materials. 

To do so required an adaptation of the existing ultra-high vacuum experiment Artoss; 

the modified version of this apparatus allowed the detection of hydrogen isotopes, 

besides having an updated vacuum system where vacuum conditions with base pressures 

of less than 3 x 10-9 Pa were achieved. 

Using Artoss and another ultra-high vacuum device (XPS), clean samples of crystalline 

beryllium, highly-oriented pyrolytic graphite, and mixed materials consisting of 

beryllium and titanium substrates with carbon surface layers of less than 10 nm 

thickness were bombarded with 1 and 4 ke V deuterium ions. 

Deuterium retention in clean metallic beryllium was found to saturate at 2x 1015/cm2; 

beryllium samples prepared with carbon surface layers displayed higher hydrogen 

isotope retention. 

In addition to eroding the carbon surface layer, the deuterium ions carry the energy to 

modity the carbon surtace layer, creatmg metallIc carbIde phases. 

Carbon in its elementary form was found to erode at a significantly greater rate than 

carbon in the metallic carbide phases. The erosion behaviour of titanium carbide is in 

good agreement with computer simulations of a kinematic sputtering model, whereas the 

exponential erosion rate of elementary carbon suggests that chemical interactions play 

an additional important role. 

These findings suggest that beryllium, despite being a highly toxic material, is well 

suited as a first-wall material in future fusion devices, provided a high-quality vacuum 

can be consistently achieved. 
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1 Introduction 

The growth in demand for energy both in the industrialised and the developing world 

has led to a rapid consumption of the available natural resources coal, oil, and gas. To 

maintain the current standard of living in an industrialised world, a continued 

availability and supply of energy is essential. At the same time, the burning of fossil 

fuels leads to the emission of so-called "greenhouse gases", in particular carbon dioxide 

( CO2 ) into the atmosphere. This accelerates global warming, a general increase in the 

temperature of the atmospheric air and seawater. 

Therefore, and especially with a decrease in natural resources - and thus an increase in 

energy prices - alternative energy sources are urgently sought. Numerous possibilities 

have been developed in recent years. Some countries, for example France, gain the bulk 

of their electricity supply through conventional nuclear energy, which is obtained 

through nuclear fission of heavy nuclei. Nuclear fission enables a supply of electricity 

without emission of greenhouse gases. However, the catastrophe at the conventional 

nuclear power station in Chernobyl, USSRlUkraine, in 1986 highlighted the risks of 

using a nuclear chain reaction to obtain electricity. Furthermore, long-term storage of 

radioactive wastes with lifetimes of thousands of years leads to concerns. 

Argentina, Brazil, Canada, China, Finland, India, Iran, North Korea, Russia, Pakistan, 

Japan, South Korea, Taiwan, Ukraine, and the U.S.A., are currently planning or building 

new nuclear reactors or reopening old ones. Bulgaria, the Czech Republic, Egypt, 



France, Indonesia, Israel, Romania, Slovakia, South Africa, Turkey, and Vietnam are 

considering doing this. Armenia, Belgium, Germany, Hungary, Lithuania, Mexico, the 

Netherlands, Slovenia, Spain, Sweden, Switzerland, and the United Kingdom have 

nuclear reactors but currently no proposals for expansion. 

Alternative possibilities for electricity supplies are the use of the natural resources wind, 

water, and sun. The development of wind turbines, hydroelectric plants, and solar panels 

in the past decades has led to the installation of these facilities in suitable regions. 

Whilst these alternative sources of energy allow the use of electricity without the 

emission of gases that are harmful to the environment, there is currently no energy 

source available which delivers electricity on a sustainable level to satisfy the current or 

predicted future demands without negative side effects for the environment or life on 

Earth. 

1.1 Thermonuclear fusion as an energy source 

For several decades, nuclear fusion has been seen as a potential source of energy, not 

least since it is this kind of a reaction that powers the sun. There are various competing 

forces stabilising an atomic nucleus; Figure 1 shows the binding energy per nucleon as a 

function of atomic mass number. As the binding energy of light nuclei increases with 

atomic mass number, it is clear that they also become more stable until a maximum is 

reached for nuclei close to iron. Beyond this maximum, nuclear stability decreases, 
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though more slowly than in the other direction. This peak is the basis both of nuclear 

fu sion and fission. The energy released in the fusion of e.g. deuterium (D) with tritium 

(T) nuclei is 3.5 MeV/amu, compared with 1 MeV/amu in nuclear fission . 
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Figure 1: Binding energy per nucleon as a function of atomic mass number 

For the fusion of two light nuclei to occur, it is necessary to bring the nuclei together 

sufficiently closely for the attractive short-range nuclear strong force to exceed the 

Coulomb repulsion. As the mass of the resultant nucleus is slightly smaller than the 

combined mass of the two original nuclei, this mass difference is converted into kinetic 

energy of the fusion products . The distribution of this kinetic energy is reciprocall y 

proportional to the masses of the fusion products . 

Investigations into the field of controlled nuclear fusion have in the past focu ed on the 

creation of suitable conditions for fusion to occur. Thi requires high kinetic energie ' of 



the original particles (or equivalently high temperatures T), a sufficientl y high density 

n of nuclei, and a long energy confinement time r . To achieve ignition of a nuclear 

fusion reactor, the fusion product must exceed n· T . t = 6 x l 0 21 m J ke V s . 

As can be seen in Figure 2, the fu sion of deuterium (0 ) and tritium (T) nuclei require 

the least energy. Consequently, efforts to create fu sion reactions in laboratories have 

been mainly directed towards fusion of these two nuclei: 

D+T~a(3.5MeV)+ n(14 . 1 MeV) Equation I 

In this reaction an energy of 17.6 Me V is released. As a neutral particle the neutron is 

not trapped by the toroidal magnetic chamber and is free to leave the plasma. Its energy 

is thus avai lable for extraction. 
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The progress that has been made over the past 50 years in achieving the conditi ons 

necessary for fusion to operate as a sustainable energy source has been substantial. 

Figure 3 shows the performance of past and present experimental fusion devices. A 

significant step was taken at the Joint European Torus (JET) in 1991 , where for the first 

time a significant amount of energy was obtained in a contro ll ed fus ion process. Thi s 

reinforced the idea that nuclear fusion has the potential to act as a fu ture energy suppl y. 
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Figure 3: The fusion product nTr vs . kinetic energy. At the break even condition the 

amount of energy obtained equals the amount of energy invested. 



One possible way of achieving the conditions required for fusion of deuterium with 

tritium nuclei is to create a magnetically confined D/T plasma with a kinetic energy of 

about 10 ke V of the hydrogen isotope ions. This corresponds to a plasma temperature of 

l08K. 

In the so-called tokamak design of a nuclear fusion device, a plasma is contained in a 

toroidal magnetic field which is maintained by a set-up of toroidal coils. This setup is 

shown schematically in Figure 4(a). As the intensity of the magnetic field in a toroidal 

arrangement of field coils decreases radially, a drift of the plasma is induced which 

would result in an inevitable contact of the plasma with the inside surface of the vacuum 

device. To avoid this drift, an additional magnetic field is created through an induced 

toroidal electric current in the plasma, which leads to several poloidal revolutions of the 

field lines during one toroidal traversal of the tokamak (Figure 4 a). This current also 

heats the plasma together with microwave and neutral particle injection, and finally the 

energy deposited by the a-particles created in the fusion process. The stellarator design 

(Figure 4 b) operates without the induced plasma current. The design of stellarators is 

some decades behind the tokamaks; its advantage is the basic steady-state operation. 
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(a) Tokamak (b) Stellarator 

Figure 4: Schematic view of two magnetic setups for fusion devices. The tokamak 

design will be used in ITER. The stellarator operates in a steady-state mode without 

induced plasma current. 

Despite the magnetic confinement of the plasma, charged particles escape from the 

magnetic cage due to collision events and interact with the first-wall of the reactor. The 

expression "first-wail " descnbes the plasma-tacll1g ll1 slde surtace ot the vacuum vesse l. 

Ions with several 100 e V impact on the inner wall of the main chamber of tokamak 

devices, while the divertor and high particle-flux baffle regions of the reactor experience 

particle implantation at some e V and some hundreds e V, respectively [FedO 1]. In 

addition, energetic plasma ions neutralised in collisions with thermal neutral atoms 

recycling from the walls are not confined by the magnetic fi eld and hit the vesse l wa ll s 

with energies of up to 10 ke V. The interaction of charge-exchange neutrals from the 

plasma was investigated by H. Verbeek ef al. [Ver98]. 



The interaction of these particle and heat loads with plasma-facing wall components 

together with the neutron irradiation establishes the plasma-wall interaction. Aspects of 

plasma-wall interactions that are particularly important for the operation and safety of 

future fusion devices are the erosion of wall materials as well as the hydrogen isotope 

inventories in the plasma-facing components (PFC). Erosion of the first-wall must be 

minimised as the penetration of eroded atoms will lead to a dilution of the plasma. 

Especially impurities of heavy elements in the plasma must be avoided as these will not 

completely ionise, leading to radiative power losses from the bound electrons. This 

power loss results in cooling of the plasma which deteriorates the required conditions 

for the nuclear fusion of ions from the plasma. 

Eroded wall material migrates to other parts of the vacuum vessel as plasma impurity. 

These impurities are re-deposited on the first-wall of the chamber with particle energies 

ranging from thermal energy (a few e V) to several ke V. Deposition and implantation of 

plasma impurities on the first-wall thus leads to the formation of multi-material surface 

layers which exhibit altered physical and chemical properties compared to the originally 

designed first-wall material. As a result of investigations of plasma-wall interactions the 

current design for the next step tokamak fusion experiment, the "International 

Thermonuclear Experimental Reactor" (ITER) [ITER96, Con97, ParOO, JanOl] 

envisages to tile large areas of the first wall of the chamber with beryllium, while the 

high-flux divertor region will be coated with tungsten and carbon fibre composite (CFC) 

tiles as shown in Figure 6. 

Beryllium was chosen due to its low atomic mass which allows significantly greater 

impurity concentrations in the plasma, as shown in Figure 5. In contrast to carbon, the 
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erosion of beryllium through chemical interactions with hydrogen isotopes is reduced 

substantially. 
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Figure 5: Pemlitted plasma impurity concentration for increasing atomic numbers. For 

light atomic nuclei the allowed impurity concentration is dilution-limited, whereas 

impurities consisting of heavy ions lead to radiative power loss. 

The high-flux regions of a fusion reactor will experience high particle and heat loads. 

These regions will therefore be fitted with tungsten, for reduced sputtering through 

particle loads due to its high atomic weight, and carbon-fibre composite materials , 

which can withstand high transient heat loads due to the high temperature of sublimation 

of carbon of 4000 K. 
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main chamber 
(8e) 

\ 
/\ 

\ 

high flux regions (CFC) 

Figure 6: Poloidal cross-section through the planned "International Thermonuclear 

Experimental Reactor" (ITER). The regions where beryllium, tungsten and carbon fibre 

composites (CFC) are planned as first-wall material are indicated. 

Most current nuclear fusion testing devices are equipped with carbon tiles as plasma-

facing material because the benefits of carbon as first-wall material are its high 

temperature of sublimation and the low atomic number, which allows a large impurity 

concentration of the plasma during operation (Figure 5). 
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However, the chemical erosion of carbon due to hydrogen is a substantial drawback of 

carbon as a first-wall material. It has been shown that especially at low energies 

« 1 00 e V) which are typical for ions in the plasma edge, there is a significant chemical 

erosion of carbon due to hydrogen ion bombardment [Rot96]. 

As an alternative first-wall material Beryllium has the disadvantage of a low melting 

temperature (1560 K). However, it shares the low-Z advantage of carbon, and more 

importantly, chemical erosion due to hydrogen is not known. Furthermore, as a highly 

reactive getter material beryllium accumulates impurities from the vacuum chamber, 

thus reducing the contamination and therefore dilution of the plasma. 

As the fusion reaction requires the use of the radioactive hydrogen isotope tritium 

(cf. equation 1), the knowledge about the hydrogen inventory of materials is essential 

for the choice of the plasma-facing first-wall material in magnetic confinement nuclear 

fusion devices. The hydrogen isotope tritium eH) is a low energy [3- emitting isotope 

with a half-life of 12.3 years, and hence trapping of tritium in the plasma-facing 

components (PFC) will lead to activation of the first-wall. It has been observed [ParOO] 

that deposited surface layers have a great influence on the hydrogen inventory in the 

first-wall materials. 

1 1 



1.2 Hydrogen retention in beryllium 

The present work is carried out to investigate the fundamental processes governing the 

hydrogen inventory in well-defined materials. In particular, deuterium ion bombardment 

of prepared titanium and beryllium substrates as well as these metals with well-defined 

carbon surface layers was studied. 

Models to describe the behaviour of wall materials have been based on kinematic 

interactions [Nau92, Hir97]. So far most research into plasma-wall interactions was 

carried out by analysing wall tiles or probes which had been inserted into fusion devices 

[May97]. This method yields information on the time-integrated macroscopic plasma­

wall interactions. However, it is difficult to investigate and understand the underlying 

processes which lead to the behaviour observed in tiles that have experienced a long 

camoaign in a large-scale exoerimental fusion device. 

In order to predict the behaviour of first-wall materials for the strongly varying 

conditions in a full-scale fusion device, the fundamental properties of the particle­

surface interactions must be studied under well-defined conditions. Individual processes 

such as particle reflection, sputtering or hydrogen retention have to be investigated on 

specifically prepared elementally clean and intermixed surfaces. These investigations 

must be performed in ultra-high vacuum conditions in order to minimise the effect of 

surface impurities from the residual gas in the vacuum system. Only ultra-high vacuum 
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(UHV) conditions at residual gas pressures lower than 10-8 Pa allow the study of clean 

metallic samples without oxidic surface layers. 

The ideal choice of material for the investigation of the fundamental properties of a 

material is a single crystal, which eliminates effects due to grain boundaries, impurities, 

vacancies and porosity of the material. Whilst the effects of impurities from eroded first­

wall material in the plasma are important for the operation of a nuclear fusion 

experimental device, individual properties of the materials which are considered for 

future first-wall operation can only be distinguished on single crystals. 

To date only very few of the studies have been performed investigate the properties of 

beryllium were conducted in ultra-high vacuum. Whilst as plasma-facing material 

beryllium is not kept in ultra-high vacuum in fusion devices, it is only under these 

conditions that the underlying processes can be distinguished. Many of these studies 

have yielded widely varying results for the parameters being investigated [May97, 

May98, Cau02]. 

Many of these variations may be due to the effects of undefined surface oxide layers. 

Laboratory plasma experiments [Cau90a] have shown that hydrogen retention in 

beryllium is strongly affected by the presence of oxide and carbide on the surface of 

beryllium. It was found that no detectable permeation of hydrogen was obtained for 

temperatures below 670 K [Cau90b]. 



Analysis of the hydrogen transport behaviour of beryllium has been conducted by 

R.A. Anderl et al. [And92]. Their work was carried out studying polycrystalline 

beryllium in a vacuum chamber with a base pressure lower than 10-6 Pa, and their 

studies showed that the formation of an oxide layer during the course of the analysis had 

a significant effect on the retention of hydrogen isotopes in beryllium. It was observed 

that at 750 K hydrogen solubility in beryllium is 30 times higher than in beryllium oxide 

(BeO). A model was proposed in which a BeO layer acts as a diffusion barrier. 

The study of hydrogen capture of carbidic surface layers by K. Ashida et al. [Ash97] 

indicates that the chemical state of the carbon has a great influence on the hydrogen 

inventory of the material. Their analysis was carried out by creating carbon/hydrogen 

surface layers through radio frequency discharge of ethylene (C2H4), where the 

hydrogen was captured in chemical bonds with carbon after deposition. Thermal 

treatment up to 1073 K did not lead to significant desorption of hydrogen. Although the 

surfaces of the samples in this analysis were contaminated with 20 at.% Zn from the 

electrode that was employed during carbon vapour deposition, it was observed that 

samples with a beryllium carbide, Be2C, surface layer exhibited only a minor capacity 

for the capture and retention of hydrogen. 

In agreement with measurements by J. Roth et al. [Rot97] the analysis that has been 

carried out until now clearly shows that to understand the mechanisms governing the 

hydrogen inventory in first-wall materials, it is necessary to investigate well defined 

samples in very well defined conditions. 
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All the above studies were performed on polycrystalline beryllium samples in vacuum 

conditions at pressures greater than 10-7 Pa , which unavoidably lead to beryllium oxide 

surface layers as impurities. 

For the work presented in this thesis, the samples used are Be (0001) single crystals. 

Using single crystalline samples allows the detachment of the effects of initial damage 

in the crystalline structure from damage that results from the sample treatment. 

This separation is significant in order to distinguish the effects of ion bombardment 

from those on the ab initio condition of the crystalline structure of a sample. 

The apparatus Artoss, which is described in detail in chapter 3.1, allows not only the 

preparation of mixed carbon and oxygen surface layers but also in situ implantation of 

hydrogen isotope ions and analysis of the sample with a variety of experimental 

techniques. 

These investigations build on the results ofP. OoldstraB [00199], who assembled parts 

of the apparatus Artoss to investigate the formation of carbide on a beryllium single 

crystal with (0001) orientation through implantation ofC+ and CO+ ions and annealing 

of vapour deposited carbon surface layers. 

However, the influence of the carbide formation on the retention of implanted hydrogen 

could not be investigated using the original setup of the apparatus. In the context of the 

present work a major reconstruction of the setup of Artoss was carried out. The main 

vacuum chambers were replaced and a new vacuum pumping system was installed. The 



base pressure of the target-holding main chamber was reduced to 3 xl 0-9 Pa through the 

use of a turbomolecular pumping system, liquid nitrogen cooling, and titanium 

sublimation. 

The apparatus was relocated and connection to a new 3 MV tandem accelerator was 

completed. New diagnostics have been added to allow the detection of hydrogen 

isotopes and the study of interactions between implanted ions and surfaces of solids. 

The new experimental possibilities of Artoss are discussed in chapter 2, Experimental 

techniques, and the setup is described in chapter 3.1, Apparatus: Artoss. 

Chapter 4 deals with computer simulations which were performed to assist the analysis 

of the measured data. In particular, the simulation code TRIDYN is described. 

The performance of measurements is explained in chapter 5. The possibilities and limits 

of the experimental setups are also discussed in this section. 

Chapter 6 presents the results on the effect of deuterium ion bombardment of highly 

oriented pyrolytic graphite, titanium, and carbon layers on titanium on the chemical 

states of the surface of samples with X-ray photoelectron spectroscopy. Results on the 

physical composition, deuterium retention, and chemical surface states of beryllium and 

beryllium-carbon systems are presented in section 6.3. 

A discussion of the obtained results is given in section 6.4, and chapter 7 offers a 

concluding summary. 
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2 Experimental techniques and data evaluation 

In order to analyse the elemental composition of the surface of mixed materials 

consisting of metals. carbon and hydrogen isotopes, a yariety of experimental techniques 

are required. Combining these techniques in the ultra-high yacuum system Artoss it is 

possible to observe and quantify the composition of mixed materials and to measure the 

chemical states of the inyol\'ed atoms in the surface layer. 

Quantitatiye information on the composition and depth profiles of the constituents of a 

sample can be studied through the accelerator-based techniques that are explained in 

detail in section 2.1: Rutherford backscattering spectrometry (RBS), nuclear reaction 

analysis (NRA). and elastic recoil detection (ERD). 

To identit\ the chemical states of a specimen photoelectron spectroscopy is required as 

discussed in section 2.2. X-ray photoelectron spectroscopy (XPS) yields information on 

the binding energy of core electrons. Chemical interactions of constituents of a sample 

are identified through shifts in binding energies. 

Furthermore. desorbed or emitted particles. in particular hydrogen isotopes, may be 

detected with a quadrupole mass spectrometer in order to investigate thermal desorption 

and re-emission of implanted ions (see section 2.3). 
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2.1 Accelerator-based techniques 

In accelerator-based ion beam analysis (rnA) techniques the sample is exposed to a 

monoenergetic ion beam, and detectors count particles coming back from the sample. 

Figure 7 shows a schematic diagram of the collision. Depending on the geometry of the 

setup, and the type and energy of the incoming ion beam a number of regimes are 

possible: 

• heavy elements in a sample can be measured using backscattered light projectiles 

at a high scattering angle. This setup is known as Rutherford backscattering 

spectrometry (RBS). 

• Recoiling light elements may be observed using heavier projectiles and a small 

scattering angle, also known as elastic recoil detection analysis (ERD). 

• Some combinations of projectile and target isotopes also allow the detection and 

projectile and target resulting in high-energy emission reaction products (e.g. 

protons and a -particles). This technique is known as nuclear reaction analysis 

(NRA). 

The knowledge of the slowing-down of ions in traversed matter is of fundamental 

importance in methods of material analysis using beams of charged atomic particles. 

Depth perception follows directly from the energy lost by the probing particles. 
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Many of the features of a backscattering spectrum are due to the energy loss of the 

analysis beam ions as they traverse the sample material. Hence, a quantitative 

knowledge of this energy loss is a key element in understanding a backscattering 

spectrum. 

~~ 
~~ 

q>r~~~~~~~~ 
---------------------

Figure 7: Schematic diagram of an elastic collision between a projectile MI and target 

atom M 2 • The scattering angle of the projectile () and the direction of the target ¢ are 

labelled. The initial and final velocity of the projectile are given by Vo and VI' and v 2 is 

the velocity of the target after the collision. 

The stopping power of a material for a particular ion is defined as the energy loss per 

distance travelled in the material, denoted by d%x. This quantity depends on the ion, 

its energy, and the traversed material. 
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The stopping cross-section £ is defined as the ratio of energy loss and areal density of 

atoms. 

Thus, the relation between stopping power and stopping cross-section is given by 

dE =N£ 
dx 

Equation 2 

where N denotes the number of target atoms per unit area. 

When a beam of charged particles penetrates matter, the slowing down of projectile ions 

is accompanied by a spreading of the beam energy. This phenomenon, known as 

"straggling", is due to statistical fluctuations in the number of collision processes. In 

material analysis with ion beams straggling broadens the measured energy distributions, 

which is discussed in chapter 2.1.1. This may limit depth and mass resolution. 

To utilise ion backscattering for depth profiling of sample surfaces, it is necessary to 

1 4 .tl. __ .. _ ~ C'.l..l _ ___ _ .LJ.. _ • 1 •. 1 J.1 d . .1 1. _.t 1 
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occurred. This depends on the energy loss of the analysis beam in the target, the 

kinematic factor for the scattering, the experimental setup, as well as the orientation of 

the sample. 

2.1.1 Rutherford Backscattering Spectrometry (RBS) 

Rutherford Backscattering Spectrometry (RBS) is based on elastic collisions between 

projectile ions from a monoenergetic beam and target atoms in a sample. To obtain 
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depth profiles of target atoms, the energy of back scattered ions is measured in surface 

barrier detectors at a high backscattering angle. 

The energy measured for a backscattered particle depends on two processes: 

• Elastic scattering and 

• Inelastic effects of nuclear and electronic interactions with the traversed material. 

Particles lose energy as a result of the collision with a target nucleus. A particle will also 

lose energy while it traverses the sample, both before and after the collision due to 

electron interactions while passing the target atoms. 

The energy El of a backscattered projectile is a function of the energy of the incoming 

ion Eo, the scattering angle () and the masses of the projectile ion Ml and target atom 

M
2

• The kinematic factor K is defined by the ratio of the projectile energy after and 

before the collision: 

2 

1 - (~ sin (})2 ± ~ cos () 
M2 M2 Equation 3 

From conservation of energy and momentum it follows that backscattering is only 

possible from atoms that are heavier than the projectile ion. 

The energy loss as the projectile passes through the sample is given by the stopping 

power do/dx (cf. equation 2). 
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The number of back scattering events that Occur from a given element in a sample also 

depends on two factors: the concentration of the element and the effectiYe size of its 

nucleus. The probability that a material will cause a collision is described by the 

scattering cross-section CJ . 

For a proportion dQ/Q of particles deflected into the solid angle dO., the differential 

cross-section is defined as 

dCJ 1 dQ 1 
- -'-'-

dO. NdQQ 
Equation -1-

where N denotes the number of target atoms per unit area. 

If the collision between projectile and target can be modelled as a Coulomb interaction 

between the two positively charged nuclei, the differential cross-section is given by the 

Rutherford cross-section, which is defined as 

( ,2 I 1- (;~o_1 sin 0 y + cosol
2 

ArT' 7 7 17
2 , L1 I 

dO. = lI6~oE) sin.j 0 -
(
,If[' r 1- -smO ,If, 

tquauon) 

in the laboratory frame of reference, where 0 is the scattering angle. 

E is the kinetic energy of the projectile ion, ZI and Z~ are the atomic numbers of the 

projectile ion and target atom respectively, Co is the dielectric constant and e denotes 

the elementary unit charge. 

By looking at the range of the projectile ions it is thus possible with RBS to obtain 

quantitative information on the elemental composition in the near-surface of a sample. It 

is, however, only possible to detect and quantify elements that are heavier than the 



projectile ions. Otherwise only forward scattering will occur and a detector at a large 

backscattering angle (e.g. 165°) will not collect any counts. 

It is nonetheless possible to detect hydrogen with ion beam analysis techniques. Two 

methods are described below: elastic recoil detection (section 2.1.2) and nuclear reaction 

analysis (section 2.1.3). 

2.1.2 Elastic Recoil Detection (ERD) 

Elastic recoil detection analysis is in essence based on the same assumptions as RBS, i.e. 

energy and momentum transfer through scattering. However, rather than measuring 

backscattered projectiles at a high scattering angle, recoiling target atoms are detected in 

a forward scattering geometry. ERD uses high-energy ions with a mass greater than that 

U1 Largel aLUlll~ LU De ~LUuleu. A. ueleCLUl al a lOW ~Lallenng angle ~ e.g . .)u ) well LUI ILLl~ 

the recoiling atoms. The detector can be covered with a foil (e.g. some J.1m Ni or mylar) 

to ensure that only recoiling light elements are detected while the heavy projectile 

cannot penetrate the barrier. 

The heavy ion projectile must have a mass greater than that of the target atom due to the 

scattering laws; hence, alpha particles are commonly used to obtain recoil spectra of 

hydrogen isotopes. 



2.1.3 Nuclear Reaction Analysis (NRA) 

The nuclear reaction D (3 He, p fHe allows quantitative measurements of the implanted 

D. The reaction has a broad resonance at an energy of around 640 keY for the incoming 

3He ions, as shown in Figure 8. 

:c 
.s 
c 
0 
+-' 
() 
Q) 
en 
en en 
0 .... 
() 

ctS 
+-' 
0 
I-

800 

600 

400 

200 

~ ~ ~ ~ 1~ 1~ 1~ 1~ 1~ ~ 

3He energy [keV] 

Figure 8: Cross section of the nuclear reaction D (3 He, p)-' He. The resonance around 

640 ke V allows the detection of deuterium with a 3 He ion beam. 

Using two detectors at scattering angles of 135° and 105° allows the detection of the 

products of the reaction. If the 135° detector is covered by a 0.1 mm stainless steel foil 

only the high-energy protons from the nuclear reaction are observed, while the 105° 

detector is located such that it detects 4He at a shallow exit angle. The 135° proton 

detector yields quantitative information on the amount of deuterium in the surface of the 

sample. A depth profile of the deuterium may be obtained through analysis of the 4 He 

detected at 105° due to the shallow exit angle and thus a longer path through the sample 



[Rot80]. Using a 800 keY 3He beam, the accessible depth in graphite is about 1500 nm 

[Fra89]. 

2.2 Photoelectron Spectroscopy 

The chemical composition of the surface layer of a sample can be analysed using 

photoelectron spectroscopy. With these techniques electrons are emitted from the near­

surface layer of a sample after excitation with photons. Depending on the energy of the 

photon source, core electrons or valence band electrons can be emitted. By using an 

X-ray source it is possible to excite core electrons, whilst an ultra-violet light source will 

only emit electrons with a small binding energy. 

2.2.1 X-ray Photoelectron Spectroscopy (XPS) 

Surface analysis by X-ray photoelectron spectroscopy (XPS) is achieved by irradiating a 

sample with monoenergetic, soft X-rays and analysing the energy of the detected 

electrons. The setup Artoss is equipped with a Mg Ka (1253.6 eV) X-ray source: the 

XPS system used for titanium and carbon systems is equipped with a monochromatic 

Al Ka (1486.6 e V) source. These photons have a limited penetration power of less than 

10 !Jm in solids. They interact with atoms in the surface region, causing electrons to be 
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emitted through the photoelectric effect. The emitted electrons have measured kinetic 

energies given by 

Equation 6 

where h v is the energy of the photon, Eb is the binding energy of the atomic orbital 

from which the electron originates, and CPs is the spectrometer work function. 

The binding energy Eb denotes the difference in the total energy of a system in the 

ground state and the energy of the system after an electron has been removed. 

The connection between the photon energy, the electron binding energy, and the kinetic 

energy of the photoelectron is shown in Figure 10. 

The binding energy may be regarded as the energy difference between the initial and 

final states after the photoelectron has left the atom. Because a number of possible final 

states are available to the ions of each type of atom, there is a corresponding variety of 

cross-section) exists for each final state. 

As each element has a unique set of electron binding energies, XPS can be used to 

identify the elements in the surface and determine their surface concentrations. 

Variations in the elemental binding energies - "chemical shifts" - arise from differences 

in the chemical potential of compounds. These chemical shifts can be used to assign the 

chemical state of the analysed sample. 

Figure 9 shows typical spectra of the Be I s binding energy region for clean, metallic 

beryllium and beryllium carbide (Be2C). 
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Figure 9: XPS spectra of beryll ium : the shi ft in the binding energy peak of Be 1 s 

electrons allows the identification of the chemica l state of the surfac e layer on the 

analysed samples . 
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while the path length of the photons is of the order of micrometre , that of the electrons 

is only of the order of some nanometres. 

Thus, whil st ioni sation occurs to a depth of a few micrometres, onl y the electrons that 

originate within the top nanometres below the ample surface can leave the urface 

without energy loss through inelastic colli sion processes . Electron that ha e 10 t energJ 

before emerging from the surface fonn the underground of every photoelectron energ_ 

spectnlm. 



After leaving the sample, the kinetic energy of the electrons is detected by an electron 

spectrometer. The analyser is operated as an energy window, referred to as the "pass 

energy", accepting only electrons with an energy within this energy window. To 

maintain a constant energy resolution the pass energy is fixed; incoming electrons are 

adjusted to this pass energy window through a variable electrostatic field prior to 

entering the energy analyser. Hence a scan of the retardation voltage yields a spectrum 

of the number of electrons for a given pass-energy window as a function of the kinetic 

energy, and thus the binding energy, of the detected electron. 

Energy scans across a wide binding energy range, e.g. 1200 eV to 0 eV in 0.2 eV steps, 

generate a survey spectrum showing electron contributions from all elements in the 

sample surface. To obtain chemical information on a particular element, scans of the 

appropriate binding energy region with a finer energy resolution (0.05 eV) are required. 
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To summarise, in the case of XPS the sample is in-adiated by an X-ray source and the 

emitted photoelectrons are detected and analysed. The energy of emitted photoelectrons 

is given by equation 6. 

Typically, a Mg Ka X-ray source with a photon energy of 1253 .6 e V is u ed . As a 

result of a variation of the binding energy Eh due to a particular chemica l reaction , XPS 

allows not only an identification of elements but also yields information on the chemical 

state of the elements within the analysis region. 



The information depth accessible with XPS is limited owing to scattering of 

photoelectrons as they travel through the sample. Hence, for a depth d the attenuation 

of the emitted intensity 10 is given by the Lambert-Beer-Law 

Equation 7 

where A is the inelastic mean free path of electrons. For A = 2 nm this means that only 

8% of the detected intensity originates from a depth greater than 5 nm . 

Due to the random path that photoelectrons take on their passage to the surface of a 

sample, the attenuation length indicating the information depth of photoelectrons is 

smaller than their inelastic mean free path. The attenuation length is defined as the depth 

from the sample surface from which the intensity of the photoelectron signal is reduced 

to Ye. The attenuation of photoelectron intensity is described by D. Briggs and M. Seah 

[Bri83]. 

For a quantification of the atomic composition of a sample with XPS, the intensity of the 

observed elements within the attenuation-limited analysing depth is determined. With 

the measured intensities of each element the atomic concentration is calculated. For 

these calculations a homogeneous distribution of elements in the surface layer is 

assumed. The ratio of the concentrations of two elements A and B is determined by 

equation 8, where 1 A and 1 B denote the intensity of the signals, and S~ and S B the 

sensitivity factors corresponding to the elements A and B . The sensitivity factors take 

into account the electrical and optical parameters of the setup, and depend both on 

elements and energy. 



NA = lA/SA 

NS IS/SS 
Equation 8 

The concentration of A, CA ' is thus given by 

Equation 9 

The intensities of measured lines result from the integral of the area beneath a peak, 

weighted according to their respective sensitivity factors. 

Studies of the carbon CIs binding energy region with XPS [LutO 1] have shown that the 

elementary carbon phase of graphitic carbon is composed of two contributions: 

At a binding energy of 284.2 e V the CIs electrons are arranged as in regular graphitic 

systems; and at a binding energy of285.3 eV in carbon there is a "disordered" graphitic 

The disordered graphitic phase appears after the graphite has been bombarded with ions. 

Annealing leads to reordering of the carbon with a reduction of the disordered 

component. 

2.2.2 Calculation of surface layer thicknesses using XPS 

XPS provides, as discussed above, the capability of elemental surface analysis. The 

surface composition can also be determined in a quantitative manner. Upon deposition 

of e.g. a carbon surface layer on a substrate, the inelastic mean free path (IMFP) A of 
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the photoelectron originating from the substrate is changed. The number of 

photoelectrons from the substrate reaching the detector, and therefore the substrate 

intensity, decreases according to the Lambert-Beer law (cf. equation 7). 

The determination of the inelastic mean free path is subject to controversial discussions 

between A. Jablonski and C.J. Powell, B. Lesiak et al., S. Tanuma et al., 

W.S.M. Werner, and W.H. Gries [Jab99, Les89, Tan88, Tan91a, Tan91b, Tan97, Wer92, 

Gri95, Gri96]. The resulting values differ up to a factor of 2. Both the material 

properties (density, atomic volume) and fit parameters enter into the various calculations. 

A comprehensive survey on the different approaches and the resulting values has been 

compiled by A. Jablonski and C.J. Powell [Jab02]. 

In this work, the "universal equation" (equation 10) is used. It is based on a compilation 

of numerous experimental data of IMFPs, determined as a function of the excitation 

energy in the range of 1 eV to 1500 eV. For pure elements, A (in nm) is calculated 

according to equation 10 by M.P. Seah and W.A. Dench (1979) [Sea79]. For 

experiments with inorganic compounds, this equation is slightly modified. 

1(£ )= 538 +0413/2£ .1/2 
/l, k· 1 a . a kin 

In E-
kin 

Equation 10 

In this equation E. is the kinetic energy of the photoelectrons (in eV), and a is the 
, kin 

atom diameter (in nm) of the attenuating material through which the photoelectrons 

travel. For the determination of the atomic diameter of carbon, here a density of the 

deposited carbon layers of 1.8 g cm-J is used, which differs from the values for the 

density of graphite (2.2. g cm-3) or diamond (3.51 g cm--'). Measurements of carbon 



layers, which were deposited by magnetron sputtering, resulted in a density of 1.9 g cm-3 

[Mar84]. The resulting carbon layer thicknesses for the carbon layers deposited from the 

vapour phase and determined by XPS using a density of 1.8 g cm-3 agree well with the 

layer thicknesses which were determined independently by RBS, as described by 

[GolOO]. This observation justifies the determination of the carbon layer thicknesses by 

equation 10. 

Generally, layer growth is assumed for the determination of the thicknesses of the 

deposited layers. From the XPS intensities measured for the substrate and film elements 

(Is and IF, respectively), the layer thicknesses can be determined according to 

equation 11 and equation 12 [Bri85]. Both the IMFP A of the photoelectrons and the 

analysis angle of the photoelectrons e are considered in the calculations. The values for 

A correspond to the attenuation of the photoelectrons from the substrate by the film A~ 

and to the attenuation of film photoelectrons, attenuated by the film itself A: . 

Equation 11 

Equation 12 

According to these equations, also the intensities of the respective elements for a clean 

substrate I; and a clean, thick film I; are necessary. However, it is impossible to 

determine both intensities during the course of a measurement series. Moreover. the 

substrate intensity at the beginning of the measurement cannot be used, because the 

sample needs to be moved to a different position within the chamber for the film 
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deposition. Due to this, the position of the measurement spot is varied and the absolute 

intensity is not comparable for all the measurements during the experimental series. 

Analogous arguments hold true for the intensity of a thick film. To solve these 

difficulties, the film thicknesses are not determined using equation 11 or equation 12, 

but by using the ratio of these equations (cf. equation 13). Therefore, for the calculation 

of the layer thickness, both the substrate and the film intensities are used. 

I S [ ( 1 )]d
F 

[ (1 1 )]d
F 

L_S = exp - exp - __ _ 
Is SF A; cosO A; cosO A; cosO 
~ \ V I \, V I 

Equation 13 

r m n 

Equation 14 

The solution of equation 14 and therefore the film thickness d F is determined 

numerically (using Mathcad). The ratio of the unknown intensities for the clean 

substrate respectively the infinitely thick layer (r; and I;) is replaced by the known 

sensltlvlly tactors tor the pure elements, ct. equatIOn l). 1 i1cse tactors are detcrmIned 

with elemental samples and are tabulated for the used XPS system, taking into account 

the experimental settings, particularly the apertures of the analyser system (PC-

ACCESS ESCA (1999)). Those factors are based on the photoelectron cross-sections for 

ionising core levels with Al Ka and Mg Ka radiation, respectively, for each element. 

The relation between the intensities (~ , I; and the sensitivity factors SF and 5s IS 

given by 

Equation 15 



The analysis of the deposited layers is limited by the inelastic mean free path of the 

photoelectrons through these films. The intensity of the photoelectrons with element-

specific kinetic energies is attenuated on their way through the material. The values for 

A used in this work are given in Table 1 below. The maximum carbon layer for the 

detection of a substrate signal amounts to approximately 9 nm. For the Be signal, the 

relatively small sensitivity factor is of importance, as it limits the maximum carbon layer 

thickness at which a Be 1 s signal can still be detected with a sufficiently large intensity. 

The sensitivity factors for the geometries used in the Artoss and XPS experiments, 

respectively, are also given in the table. Only for titanium (Ti) the sensitivity factors for 

54° (non-monochromatic X-ray source, Artoss) and 90° (monochromatic X-ray source, 

XPS) are different. 

XPS signal A (nm] Al Ka A [nm] Mg Ka Sensitivity factor S 
54° / 90° 

r 1 ~ {thrAl1rrh r l'::nTPr\ 1 ,10,1 1 1,11 () lOA 
-

Be 1 s (through C layer) 1.597 1.454 0.074 

Be Is (through Be layer) 1.365 1.243 0.074 

Ti 2p (through C layer) 1.381 1.219 2.001/1.798 

Ti 2p (through Ti layer) 0.536 0.471 2.001 / 1.798 

Table 1: Inelastic mean free paths and sensitivity factors for the XPS (AI Ka) and 

Artoss (Mg Ka) setups. 



2.2.3 XPS difference spectra 

The shift in binding energy of some of the peaks with increa ing exposure to ion 

bombardment is very small , as can be seen in Figure 11 . The peak po ition 

corresponding to carbon in the titanium carbide phase (Ti C) remains fixed, a th re I ' no 

further chemical interaction between the carbon in the carbide phase and the implanted 

deuterium. 

With the standard fitting parameters it is not poss ibl e to quanti fy thi s phenomenon in 

terms of changed parameters beyond the allowed margin of errors. However, the 

accuracy of the used apparatus permits the assumption that thi s shift is a result of 

chemical interactions with the implanted hydrogen isotopes and not onl y a stati sti ca l 

artefact. 

Figure 11: A clear shift in the position of the elementary carbon peak around -

visible, while the signal from carbon in TiC remain at its fi ed po ition . 
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Subtracting the initial and final spectra shows the variation more clearly: Figure 12 and 

Figure 13 are examp les of such difference spectra . 
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Figure 12: Difference spectrum of a carbon layer on titanium after deuterium ion 

born bardmen t. 
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F igure 13 : Difference spectrum of a carbon layer on titanium after noble ga 

bombardment with argon . 
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The study of chemical interactions due to electron binding energy shifts is not possible if 

the shifts are low compared to the accuracy of the parameters in the fitting procedure. 

This is particularly evident in the case of binding energy shifts due to interactions with 

hydrogen isotopes. Electrons from hydrogen itself are not discernible as a discrete peak 

in the electron binding energy spectrum. However, the comparison of binding energies 

after bombardment with deuterium ion with noble gas ions shows that small shifts in 

electron binding energy occur through deuterium ion bombardment. 

2.3 Quadrupole Mass Spectrometry (QMS) 

The term desorption describes the process of breaking a chemical bond (chemisorption) 

or releasing a trapped particle (physisorption) and removing an adsorbed particle from a 

surtace. 11 the desorptlOn energy results trom thermal excltatlOn ot a sample, thIS 

mechanism is called thermal desorption and may be exploited for thermal desorption 

spectroscopy (TDS). Any particle that carries more thermal energy at a particular 

temperature than the desorption energy for this particular particle will be desorbed. It is 

thus possible to measure the binding energy of a particle through its temperature of 

desorption. For TDS measurements the temperature of the sample is increased and the 

number of desorbed particles is measured quantitatively as a function of time. If the 

temperature is increased through a constant ramp there is a linear relation between time 

and temperature which facilitates interpretation of measurements. 
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The desorption rate Rd (t) may be described formally by the Arrhenius relation 

Equation 16 

where k8 is the Boltzmann constant, T the temperature of the sample, Ed(e) the 

activation energy for desorption. e denotes the ratio of adsorbed particles N and the 

total number of surface particles No, and is thus a measure of the coverage of the 

surface of the sample. The order of the reaction m describes the dependence of the 

concentration of a particular particle on the desorption rate. It is not necessarily an 

integer if interactions take place between desorbed particles and the surface of the 

sample or between adsorbed particles. The pre-exponential factor v m (e) corresponds to 

the frequency of oscillations of adsorbed particles for first order reactions, and is of the 

order of 1013 
S-I. For higher order reactions corrections must be made to take 

interactions of the adsorbed particles into account. 

In general, Ed' V m and m are functions of e, making the evaluation of TDS spectra 

very complex. Hence, for practical purposes a number of approximate solutions with 

simplified assumptions are used. Most methods for evaluating spectra assume that Ed 

and v are independent of e for a fixed order parameter m . 

An experimental setup that provides a direct line-of-sight between the implantation spot 

on the sample from an ion gun enables the measurement of particles that are directly re­

emitted during implantation. Moreover, if the quadrupole mass spectrometer is equipped 

with a mechanical chopper that periodically interrupts the emitted particle beam, it is 



possible in combination with a lock-in amplifier to distinguish particles that have 

traversed the direct line-of-sight from those that have had collisions with the wall of the 

experimental chamber [Vie82]. The differentiation of directly emitted species from 

those which have undergone collisions with the wall of the vacuum chamber is 

important, as wall interactions can lead to a change in the composition of emitted 

molecules through molecular recombination of the species. 
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3 Experimental setups 

In this chapter the experimental setups which were used to carry out the measurements 

for this work are described. 

The apparatus Artoss is an ultra-high vacuum (UHY) setup with facilities to clean and 

prepare samples, the possibilities for sample modifications through ion implantation and 

thermal treatment, as well as the availability to study the composition of a sample with 

ion beam analysis and chemical information through photoelectron spectroscopy (see 

section 3.1). An earlier design of this apparatus was dismantled and reconstructed with 

updated vacuum equipment, new vacuum chambers as well as a new vacuum pumping 

system. As part of the upgrade of the setup Artoss, facilities were installed for the 

detection and quantification of hydrogen isotopes in the near-surface of samples through 

ion beam analysis techniques with a new 3 MY tandem accelerator and the ability to 

study emission and desorption of particles with a line-of-sight quadrupole mass­

spectrometer. 

The XPS apparatus is a further URY setup. This apparatus allows X-ray photoelectron 

spectroscopy with a monochromatic X-ray source for increased electron binding energy 

resolution (see section 3.2). 
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3.1 Apparatus: Artoss 

The setup Artoss was designed to investigate the surfaces of prepared mixed-material 

systems and to study the effect ofkeV ion implantations on these surfaces in ultra high 

vacuum (URV) conditions. 

A previous setup of the apparatus was used to study the formation of carbides on 

beryllium [GolOO, GolOl]. To analyse the effects of hydrogen isotopes on the surfaces of 

mixed materials, an adaptation of the apparatus was required. 

The apparatus consists of three chambers and a load lock; a schematic top view is shown 

in Figure 14. Chamber I holds the low energy ion source for implantation. Chamber II 

contains a bending magnet for mass separation of the low-energy ion beam. The ultra­

high vacuum chamber III. the main target chamber. is equiooed with the facilities for 

preparation and analysis of samples. 



Figure 14: Schematic top-view of the setup of the vacuum chambers of Artoss: 
• 1: Ion source 1 
• II : Bending magnet 
• Ill : Main target chamber 

3.1.1 Chamber I: Ion source 1 

The ion source (IS 1) is used to generate an ion beam fro m gaseo u precursor materia l 

for implantation and sputter cleaning of samples in chamber fI r. Ioni sation is ac hi eved 

by electron impact from an incandescent fil ament. Ion energies can be set between 

1 keY and 20 keY with an energy width of about 3 eV [Ara89]. Chamber L the ion 

source, can be separated from the bending magnet, chamber II, by a mechanical valve . 

Ion lenses and steering plates allow shaping of the ion beam and directing it int the 



bending magnet. A steering plate allows blanking of the beam by applying an 

appropriate voltage. 

3.1.2 Chamber II: Bending magnet 

In chamber II the ion beam from IS I is deflected through 80° by a bending magnet into 

the main target chamber III. Thus a mass separated, monoenergetic beam is available. 

The chamber is equipped with an ion pump (PHI Captorr 640 lis) and a turbomolecular 

pump. The ion beam of a 3 MV tandem accelerator is guided through chamber II, with 

the bending magnet switched off. The chamber also acts as a differential pumping stage 

between the accelerator beam line (typical pressure 10-6 Pa) and the ion source 

chamber I and the URV main target chamber III. The magnet current is controlled by a 

Hall probe with field controller (Bruker B-H 15) outside the vacuum chamber in the 

cellll c 01 llle lllagllel. 

The ion species constituting the ion beam can be selected through the bending magnet. 

Figure 15 shows the ion current constituents with argon, Figure 17 shows the ion current 

constituents with deuterium (m/q=4, 0:/), argon (m/q=40 Ar+; 20 Ar
2
+), and impurities 

from a vacuum leak (m/q=28, N2). 
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Figure 15: Mass to charge ratio of ions on the target: scan of the current in the bending 

magnet with argon as source gas. 
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flux was always achieved with D3 + ions, whi ch equals ion bombardment of individual 

D ions with 1/3 of the kinetic energy. 

Through deflection of the ion beam by 80° it is thus poss ible to elect ind ividual ion 

species for implantation. Operation of the ion source IS 1 with deuterium O
2 

precur or 

gas and a voltage of 3 kY yields a current of 1 j.1A before mass separation. This current 

consists of all ions in the ion source vacuum chamber, and includes impuriti es both fro m 

the source gas supply and from the residual gas in the vacuum sys tem. With suitabl e 

operation of the bending magnet it is possible to se lect the des ired ion spec ies, 0 + , D ,! , 

and D/ with kinetic energies of3 keY, 1.5 keY and 1 keY per deuterium nucleus, 

respectively (see Figure 16). The ion source in the Artoss setup prov ided the highc t 

current with DJ + ions. Implantations were therefore performed with thi s ion pecIc. 
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Figure 17: The ion source and bending magnet combination alloy unique ~ election of 

individual ion species of up to great atomic masse exceeding that of argon (m q=40). 



Vacuum leaks in the ion source (e.g. m/q=28: :d are gu ided from the ampl e during 

standard operation . 

3.1.3 Chamber III: Main target chamber 

A schematic side view of the main target chamber is shown in Figure 18. 

It is equipped with a turbomolecular pump to maintain a base pre sure of less than 

I x l 0-8 Pa after baking. To achieve these vacuum conditi ons baking of the experimental 

chambers at ISO°C is required for several days. 

With a titanium sublimator and a liquid nitrogen cooling trap the base pressure i ' 

reduced to below 3 x 10-9 Pa. 
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Figure 18: Schematic side-view of the main target chamber. The components are shown 

in one plane for the purpose of demonstration. 

The keY (from IS 1) and MeV (from the tandem accelerator) ion beams are guided 

towards the sample in the centre of chamber III through an ion optical system. The 

system has two operational modes: it is used to focus the ke V ion beams by electrostatic 

lenses, and to decelerate the ke V ion beam from IS 1 down to energies below 100 e V. 

It is based on the design of H. Liebl et al. [Lie87] and has been optimised for the Artoss 

geometry using SIMION, a computer code [Dah95]. The keV or decelerated ion beams 

may be scanned across the sample with two pairs of deflection plates at the exit of the 

lens system. In addition, to prepare multi-component materials by ion implantation, the 

chamber can be backfilled with gases through a leak valve. For vapour deposition of 

solid materials, in particular carbon, an electron evaporation source (Omicron EFM3) is 

available. 

In the plane of the beam lines from IS 1 and the 3 MV tandem accelerator four bakeable 

silicon surface barrier detectors (Eurisys Measurements) are installed at scattering 

angles of 165°, 135°, 105° and 30° for Rutherford backscattering (RBS), nuclear 

reaction analysis (NRA) and elastic recoil detection (ERD). The layout of these 

detectors is shown in Figure 19. 

The detector at 165° was used for standard RBS analysis. Particularly the 135°, 105° 

and 30° detectors are well-suited for hydrogen isotope analysis. ERD at 30° detects 

target atoms recoiled by MeV ions (e.g. 2.7 MeV 4He or 24 MeV ~:-ISi), while NRA at 

1350 and 105° allows depth profiling of deuterium through the D (~He, p).t He reaction. 



For precise sample current measurements, the sample is shielded by a double cylinder 

Faraday cup with dimensions large compared to the sample size. The outer cylinder is at 

ground potential. During ion beam analysis and implantation, the inner cylinder is 

biased with respect to the sample to collect secondary electrons and reflected charged 

particles. Therefore, the inner cylinder is included in the sample current measurement 

(Keithley 6517 A electrometer or Ortec 439 digital current integrator). 
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Figure 19: Installations in the ion beam analysis plane. Shown are the double cylinder 

Faraday cup, the QMS differential pumping stage, the ion optical lens and the surface 

barrier detectors. 

Further techniques to study the hydrogen isotope inventory and interaction with multi-

component materials are available with a line-of-sight quadrupole mass spectrometer 

(adapted version of Balzers QMG 422). The ioniser is located in the ion beam plane to 

ensure a direct line-of-sight. The mass spectrometer is housed in a differential pumping 

stage within the main chamber III, pumped by two sequential turbomolecular pumps to 

increase the compression for light particles, in particular hydrogen isotopes. A movable 

cone with an entrance aperture of the size of the sample diameter (12 mm) is placed 

directly in front of the sample during thermal desorption spectroscopy (TDS) or direct 

re-emission measurements. 

Ion implantation and ion beam analysis techniques are not obstructed by the differential 

numninQ chamher or the OMS cone durinQ standard oneration. 

The differential pumping stage lowers the background pressure around the mass 

spectrometer, which is particularly important during direct re-emission measurements. 

In these experiments, the sample is implanted by an ion beam through the ion optical 

lens system via a channel in the collector cone, while the mass spectrometer detects 

particles emitted from the sample. To discriminate directly-emitted particles from 

background particles, a tuning-fork chopper interrupts the particle nux from the sample 

periodically with a frequency of approximately 8 Hz. 
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The mass spectrometer signal is detected by a lock-in amplifier. For TDS measurements, 

the chopper does not obscure the line-of-sight between the sample and the ioniser of the 

quadrupole mass-spectrometer. When not in use, the bottom plate of the differential 

pumping stage with the collector cone is opened and the cone does not obstruct the ion 

beam analysis equipment. 

Above the ion beam analysis plane, surface analysis and preparation equipment is 

installed in a second plane. For sample cleaning by sputtering and for XPS sputter depth 

profiling, a second ion source IS 2 (Specs IQ 12/38) is available. Up to four different 

gases are available simultaneously and are dosed by means of a leak valve. The chamber 

is equipped with two photon sources: 

An ultra-violet source (VSVSpecs UVS 300) for valence band spectroscopy (ultra-violet 

photoelectron spectroscopy, UPS) employing He I (21.2 eV) and He II (40.8 eV) 

radiation, and an X-ray source (PHI, model 04-548) with Al (1486.6 eV) and Mg 

(1253.6 e V) anodes for core level spectroscopy (X-ray photoelectron spectroscopy, 

XPS). 

The ion source and both photon sources are confocal with the entrance lens system (PH I 

Omni Focus III) of the hemispherical electrostatic analyser (PHI, model 10-360). The 

hemispherical analyser is equipped with a multi-channel detector for fast data 

acquisition. The analyser allows detection of electrons as well as positively charged ions. 

Thus, not only photoelectron spectroscopy is possible with this set-up, but also low­

energy ion scattering spectroscopy (ISS) with monolayer surface sensitivity is a\ailable. 
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The sample may be positioned with the computer-controlled manipulator in all three 

dimensions, as well as rotated about the vertical axis. On the lower end of the 

manipulator a Faraday cup (aperture 0.5 mm) is mounted to enable the determination of 

the intensity, the precise position as well as the profiles of the ion beams. Three 

permanently mounted reference materials (gold, silver, and highly oriented pyrolytic 

graphite) are used for energy calibration. Samples can be heated by a filament which is 

mounted on the sample holder, and also cooled through a liquid nitrogen reservoir which 

is mounted to the manipulator. 

The samples are mounted on a transferable support which also contains a filament for 

electron bombardment heating, contacts for thermocouples (chromel-alumel) and a 

separate connection for sample current measurements. The whole unit can be transferred 

from the load lock to the central manipulator. Therefore, filament exchanges or broken 

thermocouples can be repaired without breaking the vacuum in the main chamber. 

Sample temperatures between below 200 K and above 1000 K are easily accessible. The 

cooling system is particularly useful during TDS experiments to bring the sample back 

to low temperatures after a desorption run. 

The sample transfer into the main vacuum chamber passes through a differentially 

pumped load lock. The base pressure in the load lock after extended pumping is below 

5x 10-7 Pa. 



3.2 Apparatus: XPS 

To achieve higher precision in electron binding energies an XPS et-up 

(PHI ESCA 5600) was used. 

This setup is equipped with a monochromatic X-ray source, which yield an increased 

energy resolution of below 0.29 e V [MiI97]. 

The increased energy of the XPS setup is shown in Figure 20. 
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4 Computer simulations 

The deuterium ion bombardments were simulated using the Monte-Carlo simulation 

code TRIDYN which models the collisional transport of energetic (\' »Vthenn) 

projectiles in amorphous materials. Comparing the measured data to the simulations 

which only take collision-induced processes into account, yields further information on 

the possible occurrence of chemical reactions during erosion of the carbon surface layers. 

The TRIDYN simulation code by W. Moller and W. Eckstein [Moe84, Eck91] is an 

extension of the TRIM-SP code by Biersack and Eckstein (Bie84), which is based on the 

TRIM ("Transport of Ions in Matter") code by J. Biersack and L. Haggmark [Bie80] to 

calculate the trajectories of ions in materials. Particle trajectories in TRIM calculations 

are followed using the binary collision model between the projectile and the sample 

atoms. Recoils generated during these collisions are followed in the same manner; thus 

TRIM models the entire collision cascade induced by the incident particle. The collision 

cascade is followed until the entire energy of the incident particle and of any generated 

recoil has been deposited due to inelastic energy loss through interaction with the target 

electrons. The inelastic energy loss is simulated in TRIDYN using the Lindhardt 

stopping formula [Lin61] which is well suited for projectile energies below 25 ke V /amu, 

as is the case in this work. 
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While in TRIM the target is considered to be static the TRIDYN code additionally 

includes a dynamic adaptation of the bombarded material due to deposition of implanted 

ions as well as physical sputtering of surface atoms. 

The target sample is divided into layers of equal thickness. Layer thicknesses are free to 

vary due to particle implantation from the ion beam as well as erosion processes through 

kinematic collisions. The ion beam is modelled by pseudo-particles (consisting of a 

number of particles) and after the collision cascade of each pseudo-particle the 

composition of the target system is re-evaluated, taking into account kinematic effects of 

implantation and sputtering. Diffusion, segregation and chemical erosion are not taken 

into account; it is thus possible to identify these effects by comparing kinematic 

simulations with the experiment. 



5 Experimental procedures 

The study of the elementary composition and chemical states of mixed materials with 

chosen prepared composition in ultra-high vacuum requires careful planning. The 

analysis of clean beryllium systems must be carried out in quick succession to avoid 

surface contamination from residual gas even in ultra-high vacuum. 

To achieve the implantation fluences for these measurements with a deuterium (D -+ ) 3 

ion current of lOO nA , it was possible to perform up to 20 successive implantations with 

sample analysis after each implantation step in one day. 

5.1 Preparation of mUlti-component surface layers 

Samples may be cleaned by noble gas sputtering from IS 2 at ke V ion energies, also 

during sample annealing. In a beryllium single crystal it is possible to reduce the oxygen 

impurity to less than l014 cm-2 by Ar+ and He + ion bombardment [GolOO]. Multi-

component surface layers can be created through vapour deposition with the electron 

beam evaporation source as well as by implantation of ions with energies ranging from 

below 100 e V (operating the electron optical system in deceleration mode) to 20 ke V 

using IS 1. During deposition of carbon from a high-purity (99.999 %) source the 

pressure does not exceed 5 xl 0-
8 

Pa. 
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The ion implantation experiments on beryllium by P. Goldstraf3 [GolOO] used carbon 

dioxide CO2 (Linde 4.5) as source gas both for C+ and CO+ ions. Using carbon 

monoxide CO as source gas gives larger beam currents. However, the CO in the residual 

gas leads to adsorbed C and 0 (both up to 4%) on the Be surface. 

The mixed materials in this work were created by carbon vapour deposition on cleaned 

metallic surfaces. 

5.2 Measurement strategy 
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Figure 21: Beryllium XPS survey spectrum after introduction into the ultra-high \'Jcuum 

system before cleaning through noble gas sputtering. Impurities of oxygen and carbon 

are clearly visible. 



After exposure to atmospheric conditions, XPS analysis of beryllium samples exhibits 

an oxygen- and carbon-containing surface layer, shown in Figure 21. The XPS analysis 

after noble gas sputtering (Figure 22) clearly shows a dominant signal from beryllium 

(Be Is) photoelectrons, with impurities of carbon and oxygen reduced to below one 

monolayer. 
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Figure 22: A survey spectrum of a cleaned beryllium sample shows no oxygen impurity. 



- . - 800 keV 3He+ 

• • 3 keV 0 + 

• 3 

• • • • • • • 
2 • • • • • 

• ,........, • ::J ••• • co • • • .......... • • • / I · \ • • • 
\ • • • • I \ 
• • • 

• • 
0 
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 

X [mm] 

• '0\",11'-' _ _ ' . J. I' ...... 1- / 1V ll l \,... ,, 1 VI ~'I""" ,,-, it .... .. \,..0'-1111 .. 1 IVI 1III t l t\"llli.I..I\'I '-I '1 11 ...... ' 111 I v i \... 1 11'-' .11 '- ,",-' ' 1.11,-,1'1,,-,,\ 

from the accelerator were chosen such that accelerator analysis was alway po s ible 

within the implanted region. 

Series of deuterium implantation and analysis cycles were always carried out within one 

day, without any interruption. With a deuterium ion current of 200 nA it is pos iblc to 

perfOlm up to 15 cycles of implantations and accelerator-based analy i , or Ie than 10 

cycles of implantations and XPS analysis in one day. The ion beam profiles were 

selected such that the 3He ion beam for RBS and NRA wa alway within the deuterium 

implanted area (Figure 23). 



The oxygen impurity from residual gas at 5 x 1 0-9 Pa from a I5-hour pause made it 

impossible to continue implantation series the following morning. 

During deuterium ion bombardment, the oxygen impurity concentration was not 

increased while measurement series were carried out. 

5.3 Analysis 

The setup of Artoss allows in situ analysis with a variety of techniques which have been 

chosen to investigate various properties of multi-component surface layers. Previous 

analysis has concentrated on X-ray and ultra-violet photoemission spectroscopy (XPS, 

UPS) as well as ion beam techniques. 

While XPS is very sensitive in the top few monolayers, the range of RBS is 

considerably deeper, ranging from several hundred nm to some pm, depending on ion 

species and primary energy. With RBS it is, however, not possible to obtain information 

on very thin surface layers which XPS can detect. Therefore, XPS and RBS not only 

complement each other in elemental and chemical state information, but also with 

respect to quantitative analysis. XPS is sensitive at very low coverages down to small 

fractions of a monolayer. Up to several monolayers, both methods provide quantitative 

information with similar accuracy and this coverage region allows a comparison and 

calibration of both methods. 
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At surface layers with thicknesses well above the inelastic mean free path of the 

photoelectrons (some nm), RES is still able to probe the layer thickness with large 

accuracy. Figure 24 shows a comparison of both methods for carbon films deposited on 

beryllium. Below the inelastic mean free path of the photoelectrons (depicted in 

Figure 24 as horizontal lines for Be 1 sand CIs photoelectrons) both RBS and XPS 

results agree well. For thicker carbon layers, RBS is the method of choice. since for XPS 

not only do inelastic mean free paths limit the information depth, but the layer 

morphology is also crucial for quantification of thick layers. 

The combination of XPS and RBS has been applied successfully to characterise mixed 

carbidic and oxidic surface layers on beryllium [GolOO]. However, with RBS 

backscattering only occurs if the target atom is heavier than the projectile, and XPS is 

not sensitive to the s state electrons of hydrogen and helium. It is therefore not possible 

to detect hydrogen or helium with this technique. 
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Figure 24: Carbon layer thickness obtained from the XPS CIs and Be 1 s signals versus 

the thickness from the RBS signal. The broken lines indicate the inelastic mean free 
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6 Results 

This chapter contains the results of the experimental series that wcre performed in thc 

experimental setups Artoss and XPS. Measurements were carried out in sequential series 

of deuterium ion implantation and subsequent analysis through accelerator based ion 

beam analysis (as described in section 2.1), or X-ray photoelectron spectroscopy 

(section 2.2). 

Presented in this chapter are the measurements of ion bombardment of 

• Highly-oriented pyrolytic graphite, a particularly clean form of graphitic carbon 

(section 6.1) 

• carbon layers on polycrystalline titanium (section 6.2) 

• carbon layers on single-crystalline beryllium (section 6.3) 

• single-crystalline beryllium (section 6.3) 

All experimental series were conducted with varying ion fluences; both survey spectra 

to observe general features, and high-resolution spectra to detect details, were taken. 

Two types of ions were used: deuterium, as this is of interest in nuclear fusion, and 

argon, to highlight the effects of chemical reactions between the hydrogen isotope and 

the materials. 



The data collected in the first series (using HOPG) not only yielded results that were 

interesting in their own right, but also provided useful reference for later experiments. 

where carbon-coated titanium and beryllium were used. 

Figure 27 shows difference spectra of highly-oriented pyrolytic graphite bombarded 

with D+ ions. The peak position in the spectrum at 284.2 eV indicates elementary carbon. 

The contribution at 282.6 eV stems from carbon in the beryllium carbide state (Be2C) at 

the interface with the beryllium substrate. 

A small chemical impurity in the form of oxygen is observed at 531 eV in Figure 22 

after noble gas sputtering. The oxygen impurity of less than half of one monolayer was 

present due to the residual gas in the UHV vacuum of 5x 10-9 Pa. During the vapour­

deposition of carbon, a pressure rise to 5 xl 0-8 Pa was caused by the heating of a 

tungsten filament and a graphite rod in the vapour-deposition source. No further 

contamination through an increase in the oxygen contribution was observed during 

carbon vapour-deposition or deuterium ion implantation. 

In atmospheric conditions, the surfaces of beryllium samples are always covered by 

oxide layers through oxygen impurities from the air. Figure 21 shows a typical XPS 

spectrum of beryllium after introduction into the ultra-high vacuum system from 

atmospheric conditions. 

After introduction of a beryllium sample into the vacuum chamber, the oxide layer 

covers on the surface of the beryllium crystal can be removed through physical 
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sputtering. To achieve elementary beryllium surfaces without chemical impurities. 

sputtering with chemically inert noble gases of some keY is an appropriate technique. 

Figure 21 shows the surface composition of an uncleaned beryllium specimen. After a 

series of bombardments with noble gas ions it was possible to obtain a beryllium surface 

with less than 0.5 monolayers oxygen as the only chemical impurity observable in XPS 

spectra (Figure 22). 

Series of successive deuterium implantations and measurements were carried out with 

accelerator-based techniques (RBSINRA) and XPS. The accelerator based techniques 

yield quantitative information on the retention of implanted deuterium as well as the 

erosion of the carbon surface layer. The XPS spectra show the chemical state of the 

system, indicating the formation of beryllium carbide Be 2C. 

To study the retention of deuterium in beryllium, a series of implantations and NRA 

spectra was performed. 

X-ray photoelectron spectroscopy yields very precise information on the creation of 

chemical interactions between the various substances of a sample due to external 

application of energy through heating or ion implantations. It is thus possible to 

investigate the formation of a metal carbide phase through ion bombardment of carbon 

layers on metals. 



However, XPS is not sensitive to hydrogen isotopes or the effect of chemical bonds 

between hydrogen and a substrate. 

The formation of a carbidic phase between carbon and a metal substrate thus leads to 

peak shifts of several eV, whilst chemical phases consisting of carbon and hydrogen 

isotopes merely produce minute shifts of peaks of photoelectrons plotted as functions of 

electron binding energy. To distinguish these small shifts in binding energy, the 

difference of signals was established, which indicated decreases and increases in 

intensity and thus allowed the identification of interactions with hydrogen ions, after 

comparison with analogous implantations with noble gas argon ions. 

6.1 Graphite 

1 he hydrogen IOn bombardment ot carbon was analysed through deuterIum lOn 

bombardment of highly oriented pyrolytic graphite (HOPG), which contains well-

aligned layers of carbon in the graphitic sp 2 phase. HOPG is a particularly clean form 

of graphitic carbon. The sample is simply cleaned by removing some surface layers, 

which hold the surface impurities with a sticky tape before introduction into the vacuum 

chamber. Thus, cleaning of the sample does not require ion bombardment, which would 

lead to disordering of the graphitic carbon structure. 

A highly oriented pyrolytic graphite (HOPG) sample is bombarded with 1 keY 0"' ions 

up to tluences of2.3x1016 cm-2• After each ion bombardment cycle. XPS spectra are 



taken both in survey and high-resolution modes Surve t . . 
. y spec ra prove no contammatlOn 

accumulation at the sample surface during all treatment t . I s eps, SInce on y peaks 

attributable to carbon are observed (see Figure 25). 
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Figure 25: Survey spectrum of clean HOPG. 

Already after a D+ fluence of 1 x 1015 cm -2 the Cis peak shows a shift in its overall 

maximum of 0.1 e V to lower binding energies (from 284.2 to 284.1 e V). After an 

implanted deuterium fluence of2.3x1016 cm-2
, the shift amounts to 0.15 eV and after 

annealing at 700 K the peak maximum is at 284.0 eV. In contrast to Ar+ bombardment 

measurements of thin carbon layers on gold [LutO 1 a] where the disorder introduced by 

the ion beam and the remaining graphitic peak can be separated unambiguously by peak 

fitting, this procedure is not possible here. Nonetheless, to gain information on the 

additionally introduced binding states of carbon under D+ irradiation, the CIs spectrum 

from clean, unirradiated HOPG is subtracted from the respecti\'e bombarded spectra 



after Shirley background removal. This background is the result of inelastic electron 

scattering processes and leads to a gradual increase in the base line of the signal at 

higher binding energies [Shi72]. 
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Figure 26: XPS spectra in the CIs region of HOPG showing increasing fluences of 0 

ion bombardment at 1 ke V. 



The difference spectra are plotted in Figure 27 in two groups for better visibility. The 

upper group consists of the first six implantation steps between 1.0 and 4.7xl015 cm-2. 

The lower group comprises the following five implantation steps from 

6.6 to 23xlO l5 cm-2 together with the final annealing experiment at 700 K for 30 min. 

Solid and broken lines alternate with increasing fluences; the first and last curves in the 

groups are marked in the plot. Positive intensity differences (values above the zero lines) 

in these spectra denote additional intensity compared to clean HOPG, whereas negative 

values show decreased intensity at the respective binding energy region. 
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Figure 27: XPS difference spectra in the C Is region ofHOPG bombarded with 1 keY 
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The consecutive fluence steps are separated into two groups. Successive spectra are 

marked with solid and broken lines, respectively. Some fluences are indicated. the 
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intermediate fluences correspond to the values of the data points in Figure 30. The final 

spectrum is measured after annealing at 700 K for 30 minutes. 

The difference spectra immediately indicate intensity variations during the treatment 

cycles at three distinct binding energies. The intensity changes (height at 

maximum/minimum in Figure 27) of the three peaks in the difference spectra are plotted 

with increasing deuterium fluence in Figure 28(a). The greatest changes take place at a 

binding energy of284.2 eV, which can be attributed to graphitic carbon. The position of 

this peak does not change throughout the whole treatment series. However, intensity in 

this position continuously decreases compared to the clean HOPG. After the final 700 K 

heating, a slight increase in intensity at this position is again observed. 

The peak at the higher binding energy of284.9 eV is very weak. However, its position is 

also stable. Intensity at this binding energy increases during the first implantation steps 

up to a fluence of approximately 7xlO l5 cm-2
. At higher fluences, first a small decrease 

is noticed and the intensity then remains constant up to the final implantation step. After 

heating at 700 K, the intensity around 284.9 eV almost drops back to the level at the 

clean HOPG surface. 

The third peak component appears at 283.9 eV and shifts during the implantation to 

283.7 eV. This component appears immediately after the first ion implantation step and 

maintains the initial maximum intensity throughout the subsequent ion treatments. It is 

only after the 700 K heating that the intensity of this component increases again and 

reaches a new maximum, while remaining constant at 283.7 eV binding energy. 
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Figure 28: Chemical composition of highly oriented pyrolytic graphite during deuterium 

bombardment. Panel (a) shows the intensity changes of the three peaks identified in 

Figure 27. Positive values indicate an increase in intensity compared to HOPG at the 

respective binding energy, negative values a decrease. Panel (b) compares the total CIs 

intensity from the raw spectra (after subtraction of a Shirley background) with the sum 

of the heights from panel (a) at each fluence. The scaling of the height curve is chosen to 

allow comparison with the intensity curve. Values after 700 K heating are indicated in 

the plots. 
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This method of spectrum evaluation by differences is justified by the O\oerall 

development of the sum of the three difference peaks. In Figure 28(b) the sum of the 

three peaks is plotted together with the total CIs peak integral from the XPS spectra 

(after Shirley background subtraction) to allow a comparison. For comparison, the sum 

is normalised to the amplitude of the CIs curve. Both lines show the same o\Oerall 

behaviour. 

After a small initial intensity increase during the start of ion bombardment, the curves 

decrease until a fluence of approximately 8x 1015 cm -2 is reached. At higher fluences, no 

further changes are observed. The intensity increase seen for the CIs peak after sample 

heating to 700 K is also reproduced by the sum of the difference peaks. 

The variations in the difference spectra of the HOPG bombarded with deuterium are 

compared to the difference spectra of HOPG bombarded with argon. 

Figure 29 shows an analogous experiment to Figure 27 for 1 keY Ar+ up to a fluence of 

8.5 x 1015 cm -2 and final annealing to 970 K for 60 min. As in the difference spectra from 

the D+ experiment, three peaks are observed. However, the peak positions after Ar+ 

bombardment do not shift with fluence. The peak around 285 eV appears under Ar+ 

bombardment and develops with fluence. The dashed line corresponds to 8.5 x 10
14 

cm -~, 
15 -2 d8-xloI5, -2) 

the subsequent implantation steps (fluences between 2. 1 x 10 cm an .) em 

already show saturation at this binding energy. After annealing to 970 K this peak 

almost completely vanishes again, as in the deuterium case. 



The gradual changes with fluence are also visible in the intensity at 284.2 e\'. At this 

position, however, no influence of the annealing step is recognised. The peak around 

283.7 eV exhibits the most pronounced alteration after annealing. While Ar~ 

bombardment creates this peak already after the first fluence step and subsequent 

implantation cycles do not modify it, annealing strongly increases the intensity at this 

binding energy. The peak position, however, remains unaffected. 

This confirms that the peak shift due to deuterium ion bombardment originates from 

chemical interactions between the projectile deuterium ions and the carbon sample. No 

such chemical interactions are possible with noble gas ions. 
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Figure 29: XPS difference spectra in the CIs region of HOPG bombarded with 1 keV 

Ar+. Sample treatments are indicated. The overlapping spectra correspond to fluences 

15 -, 
from 2.1 to 8.5 x 10 cm-. 
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6.2 Carbon films on titanium 

A 2.9 nm carbon film on titanium was bombarded with 4 keY 0+ ions up to a fluence of 

1 4 10 17 -2 h . . x cm. T e carbon layer thIckness was determined from the XPS signal through 

the model for electron attenuation lengths in solids by A. Jablonski et al. [Jab02] as 

described in chapter 2.2.2. 

The XPS information depth therefore is larger than the carbon layer thickness. Figure 30 

shows the CIs range after the indicated fluences. The spectrum without ion 

bombardment shows a broad peak compared to HOPG located at 284.6 eV, originating 

from graphitic carbon. A second peak at 281.8 eV originates from titanium 

carbide (TiC), formed at the interface between deposited carbon and titanium metal. 

Intensity between these peaks around 282.6 e V can be attributed to titanium subcarbides. 

Aalready after a fluence of3.9xl0 15 cm-2
, the graphitic peak shifts by 0.11 eV to lower 

binding energies and reaches a fixed position at 1.2x 1016 cm-
2 

after a total shift of 

0.22 eV. At the same time, no shift is observed in the position of the TiC signal. The 

total intensity of the C Is signal decreases. The peak corresponding to elementary, 

graphitic carbon vanishes after a D+ fluence of5.5 X l0 16 cm-
2

, up to where the TiC 

signal continually increases. Within the fluence range applied here, no complete erosion 

of formed TiC is observed. Compared to the spectra of the bombarded HOPG samples. 

no increased intensity around 285.2 eV due to ion-beam-induced effects is visible. 
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Figure 30: XPS spectra in the C Is region ofa 2.9 nm carbon film on titanium before 

and after n+ ion bombardment at 4 keY. The curves are labelled with the applied 0+ 

fluences. The vertical lines indicate binding energies of graphitic carbon (2 X4.2 e \'), 

titanium subcarbides (282.6 e V), and TiC (281.8 e V), respectively. 
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These observed changes in the Cis signals are more clearly visible in the difference 

spectra (plotted in Figure 31). Shown is the difference of the unirradiated spectrum from 

the spectra observed after fluences of3.9xlOl5 to 4.7xl016 cm-2. Compared to HOPG in 

Figure 27 and Figure 29 where a peak in the differences around 285 eV is observed. 

here only an intensity decrease is visible. No additional intensity is produced by the 0+ 

ion beam. In contrast to Ar+ bombardment experiments of carbon films on Ti where the 

disordered graphitic carbon (peak at 285.2 eV), produced during the carbon vapour 

deposition, is eroded during the first ion implantation steps, no peak is formed at this 

binding energy under D + bombardment. 
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Figure 31: XPS difference spectra after D+ implantation in 2.9 nm carbon on Ti. in the 

3 9 lO iS d 4 7xl016 cm-2 (difference spectra at higher t1ucnccs fluence range between . x an. 

in Figure 30 are omitted for clarity, since they exhibit only minor further changes). 
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Consecutive spectra are marked with solid and broken lines, respectiyely. The 

intermediate fluence values are labelled in Figure 30. 

The peak around 283.8 eV, well developed in the HOPG experiments. is also identified 

on the carbon film. However, the maximum is only distinct at a fluence of 3.9x 10 1
:' em ~2; 

it vanishes at higher ion fluences. The 281.8 eV peak originating from carbon in a TiC 

environment is clearly observed and remains fixed in its binding energy position for all 

fluences. The carbide intensity continues to increase with fluence. while the total carbon 

intensity decreases. Intensity pointing to the existence of titanium subcarbides (around 

282.6 eV) is visible at the initial stages ofD+ bombardment. Beyond fluences of 

1.6 x 1016 cm -2 the subcarbides are hardly discernible in the difference spectra. However, 

in the raw spectra (Figure 30) there is still some intensity around this binding energy. 

The existence of subcarbides cannot therefore be excluded. 

AY~ analy~l~ Y1C1US no UlreCll1110nna11011<.WOUl pnuLOelcLlrull~ llUllIlI)UWgCll I~Ulupe~. 

However, comparison of deuterium ion bombardment with noble gas (argon) 

bombardment shows slight shifts in binding energies of the bombarded material. These 

shifts thus indicate chemical interactions between the hydrogen isotopes and the sample. 

During deuterium and argon ion bombardment of HOPG a shift in binding energy and a 

broadening of the C Is peak are observed. The shift of the C Is peak to lower binding 

energy for both ion species is caused by a decrease in intensity at the graphitic carbon 

position (284.2 e V) and an increase of intensity at lower binding energy. The di fferenee 

I k 0 35 0 53 eV below the graphitic signal. In contrast to the existing 
spectra revea a pea . -. 



literature the difference spectra allow to distinguish components in the CIs signal rather 

than to characterise spectral changes through mere peak shifts. 

Compared to results from previous work it is possible to attribute the main peak and the 

high binding energy signal to graphitic carbon and carbon in a disordered graphitic 

environment [LutOla]. The fact that the high binding energy component (285.2 eV) also 

disappears in the HOPG experiments under annealing confirms the assignment to a 

disordered graphite state. The new peak at lower binding energy is assigned to states 

induced by the ion beams. A shift to lower binding energy has previously been observed 

in the literature [Ash86, U g092] without separating components in the CIs signal. In 

these measurements no shift towards higher binding energies after extended ion 

implantation is observed. On the contrary, after annealing of the implanted samples the 

C Is signal shifts even further to lower binding energy. 

The intensity decrease in the C Is signal during ion implantation into HOPG is 

explained by the dilution of the carbon in the XPS information depth by hydrogen or 

argon. In contrast to what has been reported in the literature [Ash86, U g092, FinO 1] no 

peak shift to higher binding energies at prolonged D+ implantation is observed: this shift 

had been attributed to the formation ofC-H bonds [Ug092, FinOl]. Binding energies 

above 285.0 eV could also be attributed to sp3-hybridised carbon [FinOI] \vhich, 

however, is unlikely to be produced within a collision cascade at low fluences. Not 

compatible with the argument of C-H bond formation for a signal at any new binding 

energy is the fact that all binding energy shifts and intensity contributions obs~r\'ed here 

appear under both D+ and inert Ar+ bombardment. The binding energy values for sp and 
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Sp2 carbon from M. Portail et al. [PorOO] indicate an interpretation of the shift to low~r 

binding energies by C-H bond fonnation of unsaturated hydrocarbons. High Resolution 

Electron Energy Loss Spectroscopy (HREELS) measurements also confirm the 

fonnation of Sp2 and Sp3 carbon [PorOO]. However, the identical observations for Ar" 

implantation rule out this interpretation at least as far as being the only explanation. 

Similar shifts were also observed under He+ implantation by K. Ashida et al. [Ash84]. 

The CIs intensity below 284.0 e V can therefore be attributed to defects in the graphite 

lattice, produced by the collision cascades, and is therefore different from the disordered 

graphitic carbon with a binding energy of 285.2 e V. The reason for the smaller changes 

at below 284 eV in the case of the carbon film compared to the HOPG is the lower 

degree of structural order in the film. The film CIs peak is initially already much wider 

than from HOPG and changes due to the ion-beam-induced effects are harder to detect. 

The CIs spectra and also the respective difference spectra of the carbon film on 

titanium do not allow a similar distinction between the elementary carbon binding states 

as in the case of HOPG. Initially, the disordered graphite phase has a high weight within 

the whole peak. The D+ bombardment leads to an erosion, preferentially of the 

disordered graphite, and finally also of the graphitic carbon. The preferential erosion of 

the disordered phase is concluded from the decrease of the full-width at half-maximum 

(FWHM) of the high binding-energy-peak (1.63 e V initially and 1.04 e V after the 

implantation of 3.9xl016 cm-2 ), the total shift of the peak to lower binding energies, as 

well as from the asymmetric development of the peak in the difference spectrum. 



As in the HOPG experiments, the D+ bombardment leads to the fonnat ion of a ' mall 

amount of radiation-induced defects, indicated by the small peak around 2 3.6 e\ ' in the 

difference spectra . In contrast to the HOPG samp les, the e defects in the film are only 

visible initially and are obscured by the decrease of the subcarbide pha e during D-

implantation . Carbon bound directl y to titanium in TiC is initiall y pre ent at the 

interface between the carbon layer and the substrate [LinO I]. It become more accc:s ible 

to XPS with progressing layer erosion and even increases by ion-beam mi xing. 10 11-

beam-induced carbide fomlation was already observed for noble gas ions [LutO 1 b]. 

After a maximum of the TiC signal (at 281.8 eV) at S.S X IO lh cm -2 thi inten ity 

decreases because of TiC erosion. 
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The total Cis intensity decreases exponentially up to a deuterium fluence of 

8 xl 016 em -2 . At higher fluences, the intensity decrease follows a linear shape. The 

threshold between the two parts is accompanied by the complete disappearance of all 

carbon intensity other than from TiC (peak at 281.8 e V). The different slopes sugg~st 

different erosion mechanisms. Below the threshold, elementary carbon is eroded 

chemically by deuterium ions. The exponential shape is caused by an erosion 

mechanism which involves the entire carbon layer, similar to the ion-induced desorption 

of an adsorbed monolayer which was described by E. Taglauer et al. [Tag80]. This 

model describes erosion of atomic monolayers through ion bombardment. The projectile 

ions interact with the atoms in the entire surface layers, which thus do not provide 

sufficient atoms for linear erosion yields and hence erosion follows an exponential 

pattern. Applying this model to the deuterium ion bombardment of carbon layers on 

titanium shows that the erosion mechanism of the carbon layer is governed by an 

interaction between the implanted deuterium ion and the entire carbon surface layer. 

This is plausible since the implantation range of 4 keY D+ in Con Ti extends to more 

than 100 nm, as calculated by TRIDYN. Therefore, the whole carbon layer of2.9 nm is 

irradiated and chemical erosion takes place simultaneously throughout the entire layer. 

From the exponential curve (Figure 32), a reaction cross-section for carbon by 0+ of 

(J = 4.32xI0-17 cm2 is calculated. Above the threshold fluence. an erosion yield of 

Y=O.Ol results from a linear fit to the data. The erosion yield Y is defined as the ratio of 

the number of eroded atoms to the number of projectile ions. This number is in the range 

of the physical sputtering yield: TRIDYN simulations using the code of \\"" Eckstein 

:-:' , -



[Eck93] were perfonned to simulate the kinematic erosion of this. For 4 ke\' 0- ion 

bombardment of graphite a yield of 0.04 was obtained. 

Taking into account that TiC has a 1: 1 stoichiometry, the result of this work agrees \\dl 
'--

with this TRIDYN calculation. 

6.3 Deuterium bombardment of beryllium 

The bombardment with deuterium of clean, metallic beryllium, and clean beryllium with 

carbon surface layers was investigated to detennine the retention of deuterium in these 

samples, the erosion of surface layers, and the chemical states of the surface layers. 

The deuterium retention was measured with the 3He(D,~He)p nuclear reaction, the 

carbon surface layer thickness was quantified through Rutherford backscattering 

spectrometry, and the chemIcal state ot the carbon surtace layer was determmed through 

X-ray photoelectron spectroscopy. 

Section 6.3.1 contains the results of deuterium retention in clean beryllium, section 6.3.2 

contains the results of deuterium retention in beryllium with carbon surface layers and 

beryllium carbide surface layers and section 6.3.3 presents the formation ofbery'llium 

carbide through deuterium ion bombardment of elementary carbon layers on beryllium. 

The effect of carbon-containing surface layers on the retention of deuterium in clean 

beryllium substrate, was looked at through consecutive series of implantations and 



quantitative (RBSINRA) measurements which were carried out on cleaned beryllium, 

elementary carbon layers as well as beryllium carbide (Be2C) surface layers on cleaned 

beryllium substrates. 

The process of erosion of beryllium carbide was detached from the formation of 

beryllium carbide by creating beryllium carbide through annealing before deuterium 

implantation. Annealing at 700 K was sufficient for the formation of beryllium carbide 

without substantial quantitative loss of carbon from the surface of the sample. 

To understand the effects of the formation of beryllium carbide through deuterium ion 

bombardment and the chemical implications of implanted and retained deuterium, it is 

necessary to create conditions in which these two effects can be observed independently. 

This was achieved by annealing samples of beryllium with elementary carbon surface 

layers at 700 K. The carbon surface layer was thus transformed into beryllium carbide 

(Be2C) before deuterium implantation. As a result, no further chemical interactions 

between the beryllium and carbon in the form of beryllium carbide formation are 

possible. Comparison of the scenarios of elementary and carbidic carbon surface layers 

thus allows the identification of the effects of carbide formation and deuterium retention. 

To identify and separate the effects of carbide formation from the erosion of carbon, a 

series of implantations was carried out on a prepared beryllium carbide surface layer on 

beryllium substrate. 



The carbide layer was created by carbon vapour deposi ti on on clean d beryllium and 

subsequent annealing of the system at 700 K . This heating tep wa ufficient for the 

fonnation of beryllium carbide without quantitative los of carbon from the urface la\'cr 

on the sample. 

6.3.1 Deuterium retention in clean, metallic beryllium 

To study the retention of deuterium in beryllium, a cleaned beryllium crystal \\'as 

bombarded with deuterium. Before implantation, an XPS spectrum indicates clean 

elementary beryllium with less than 0.5 mono laye rs oxygen and less than 

0.1 mono layers carbon (see Figure 22). 
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After an initial linear increase in the retention of deuterium with a retention rate of 1% 

up to an implanted fluence of 1.5xl017 cm-2
, saturation in the retained deuterium is 

achieved after an implanted fluence of 2.5xl017 cm-2
• The saturated retained quantity 

of deuterium is determined at 2x 1015 D per cm2
. This level of saturation is maintained 

after further deuterium implantation. (Figure 33) 

Previously reported saturation levels of hydrogen isotopes in elementary beryllium 

indicate an impurity surface layer. Operation in vacuum conditions of 10-6 Pa to 10-7 Pa 

invariably leads to an impurity surface layer, consisting mainly of atmospheric oxygen 

[And99]. These values will therefore reflect the conditions in a fusion reactor. However, 

they differ from hydrogen isotope retention in clean, metallic beryllium samples, which 

were studied here. 

The retained neon from the sputtering cycles amounted to I ess than 5 x 10
15 

cm-
2 

(Figure 22). As a noble gas, the neon does not represent an impurity for chemical 

reactions between the available species of beryllium, carbon, and deuterium. 

For the cleaning of the beryllium substrate, neon was chosen because its boiling 

temperature of 27.07 K ensured that no sublimation would occur on the liquid nitrogen 

cold trap at 77.36 K. Alternatively, the choice of argon (boiling temperature: 83.8 K) 

would have resulted in sublimation on the cold trap while the sputtering yield of the 

main impurities oxygen and carbon through helium ion bombardment would require 

significantly longer sputtering periods. 



The effect of surface impurity layers on the hydrogen isotope retention in b ryllium i-

shown in Figure 34. The first six implantations of a clean beryllium ample \\'ere 

perfonned in one day. The following implantations were continued on the followinQ de1\·. 

In the interruption of 15 hours, a thin beryllium oxide surface laye r \,,\'a fonned and a 

change in the deuterium retention is observed . After a deuterium flu ence of 

75 x l0
15

cm-
2 

the trend of the previous day is resumed, as indicated by the da hed line 

to guide the eye. 

As a result, all following implantations which are presented here were ca lTi ed out 

uninterruptedly in one day to ensure that the effects of oxygen impurities were 

minimised. 
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Figure 34: Retention of deuterium in cleaned beryllium and effect of beryllium oxide 

surface impurity layer after 15 hours (dashed line) in ultra high vacuum (belo\\ 

3xlO-9 Pa). 



6.3.2 Deuterium retention in beryllium with carbon and beryllium 

carbide surface layers 

To study the retention of deuterium in beryllium with carbon surface layers, systems of 

elementary carbon surface layers and systems of beryllium carbide (Be2C) surface layers 

were bombarded with deuterium ions. The combination of projectile energy 

(1.0 keY deuterium) and surface layer thickness (2-8 nm) was chosen such that the 

implanted deuterium came to rest in the beryllium substrate; the mean range of 

implanted deuterium ions into beryllium at 1 ke V is greater than 26 nm. 

To be able to separate the processes of carbide formation as well as its effects on the 

deuterium retention in beryllium, implantations were also investigated on prepared 

carbide layer systems on beryllium. 

The discrepancy in the retention of deuterium in beryllium between the results presented 

here and earlier observations [Cau97] must be attributed to surface conditions of the 

samples. 

Surface layers of oxygen or carbon affect the retention of deuterium. The surface 

impurities provide new binding states for the deuterium which act as barriers to the 

desorption of the implanted deuterium. 
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Fillure 35 : The retention of deuterium in bervllium with elementarv ca rbon surface laver 

is observed and quantified using the nuclear reaction DC~ H e, p )-I He. 
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Figure 36: Quantitative erosion of elementary carbon surface layers and carbon in 

beryllium carbide due to deuterium ion bombardment. 

The erosion of e lementary and carbidic carbon surface layers through deuterium ion 

bombardment at 1.0 keY is shown in Figure 36. The erosion rates show no ignificant 

deviation which is caused by the absence of elementary carbon . 
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Figure 37: Retained deuterium in carbon-beryllium systems after I keY deuterium ion 

bombardment. 

NRA spectra of the retained deuterium in carbon layers on beryllium is shown in 

Figure 35 . The retention of implanted deuterium in beryllium with carbon urface laye rs 

is plotted in Figure 37. LnitialIy, the retention of deuterium is independent of the 

chemical state of the carbon surface layers. Saturation of deuterium i reached abO\ e a 

18 ? fluence of 10 /cm- . 

The chemical state of the carbon surface layers does not have a igni ficant quant itati\ c 

effect on the retention of deuterium in beryllium. However. the rete nt ion in ber) Iliulll 

with surface layers is significantly greater than in clean, elementary ber, Ilium . 
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After an initial linear retention of deuterium with increasing implanted fluence at a 

retention rate of 0.003, retention saturated after a fluence of 1 x 10 18 
I cm2 at a level of 

7.6 x 1015 
/ cm 2 

• 

6.3.3 Formation of beryllium carbide 

To understand the chemical processes during the formation of beryllium carbide through 

deuterium ion bombardment a sequence of implantations and XPS scans of the 

beryllium (Be Is) and carbon (C Is) binding energy regions was performed. The 

beryllium carbide (Be2C) formation through deuterium implantation is observed with 

XPS of the C Is electron binding energy region. (Figure 38) 

Hetore the 11rst ImplantatIOn, a survey spectrum covenng the electron binding energy 

region up to 1200 e V shows an elementary carbon layer of 2. I nm on the cleaned 

beryllium substrate. 

The deuterium bombardment of carbon layers on beryllium not only leads to retention of 

the implanted deuterium ions: 

The implanted deuterium ions also supply the energy which leads to the chemical 

formation of beryllium carbide (Be2C). 
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Figure 38: Beryllium carbide (Be2C) formation through deuterium ion bombardment. 

The series of XPS spectra of the binding energy region of carbon CIs electrons (288 e V 

This can be seen more clearly in Figure 39, where the contributions of the elementary 

and carbidic carbon phases are shown. 



3,0 ~ -----. 
~ .. • • • <"! --II 
E 2,5 ~ () 

"' 
0 ..-
~ .... 2,0 
(l) 
>-
cu 
(l) 

1,5 ---- C total () 

~ ~ ~ C elementary 
::l '" .- C in Be

2
C (/) 

'" c 1,0 "'. 0 
.0 .... 
cu 

U 0,5 

~ 
-~ -4- • 0,0 

0 50 100 150 200 250 300 350 

o fluence [10 15cm-2] 

Figure 39: Chemical composition and erosion of carbon surface layer durin g I keY 

deuterium ion bombardment 

invariably have ex perienced exposure to atmospheric conditi ons, particu lar ly a 

beryllium tile will carry a surface impurity layer. T he effect of thi s impurity grea tl y 

affects the hydrogen in the plasma. This unfavourable behaviour is particul arly 

undesirable in operation modes with tritium-containing plasmas, because the increa cd 

retention of {J - emitting tritium in bery llium wi th impurity urface laye r lead, to 

further activation of components in the first-wall material. 



6.4 Summary of results 

The analysis of the effect of carbon surface layers on the retention of deuterium in 

metals was studied with a variety of techniques, to investigate the retention of implanted 

deuterium, the erosion of samples through ion bombardment, as well as the underl ying 

chemical composition of mixed material surface layer systems. 

All these effects can be observed and deduced from the collected data that is presented 

in chapter 6. 

6.4.1 Erosion of carbon 

The XPS spectra of pure carbon samples (HOPG) show a shift to lower binding energies 

of the CIs photoelectrons with increasing deuterium ion fluence. This suggests that an 

interaction between the deuterium ions and the graphite produces slight changes in the 

chemical composition of the surface layer. The height of the peak is reduced with 

increasing ion fluences; however, at the same time the width increases such that the 

integral remains constant. This is because XPS can only probe the near-surface region of 

the carbon sample. For this reason it is impossible to measure the erosion of a bulk 

material. 

These shifts were also observed in the XPS spectra of titanium with a carbon surface 

layer, suggesting that the same interaction takes place in this case. From the fact that the 
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height of the peak corresponding to graphite falls with increasing deuterium ion fluence. 

it can be deduced that the carbon layer is being eroded. Howe\'er, this is not the only 

effect taking place; the growth of the peak at 284.2 e V, corresponding to titanium 

carbide TiC, indicates that some of the kinetic energy of the D ions is deposited and 

causes the formation of a TiC phase. This is discussed in more detail in section 6.-+.3. 

The shrinking of the graphite peak at 288.2 eV cannot therefore be attributed to erosion 

alone. 

Some observations can be made about the physical effects goyeming the erosion process 

of the surface layer. At low ion bombardment fluences there is an exponential decrease 

of the amount of carbon held in the surface layer, indicating a non-kinematic erosion 

process. Chemical interactions playa dominant role in this regime. 

By contrast, at high fluences where the carbon in the surface layer has been fully 

converted into the TiC phase, the erosion process agrees well with the kinematic model. 

as simulated using TRIDYN. 

Similar effects can be observed in the XPS spectra obtained for carbon-coated beryllium. 

Again, shrinking of the peak corresponding to graphite suggests erosion of the carbon 

layer. However, as in the case of a titanium substrate, this shrinkage is accompanied by 

the growth of a peak at 282.6 e V, indicating formation of a Be::C phase (cf. section 

6.4.3). 

Comparison of the results obtained for beryllium with a pure carbon layer to results 

obtained for beryllium with a Be::C layer show that carbon erodes at a similar rate for 

both types. This differs from the behaviour displayed by the titanium samples. 
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6.4.2 Deuterium retention in beryllium samples 

The NRA spectra obtained for deuterium-bombarded sample of beryllium ' ho\\ a 

similar increase in retained deuterium with increas ing ion fl uence both for pure 

beryllium as well as for carbon-coated beryllium, as can be seen in Figure -+0. Th i may 

be due to similar caption mechanisms for all type of beryllium ample 
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Figure 40: Retention of deuterium in clean beryllium and in beryllium with carbon 

surface layers . The effect of surface layers is an increased deuterium retention capac ity. 

The retention of deuterium in clean metallic beryllium aturated at a leve l of 2x 10
1 ~ cm

2

. 

This is substantially lower than the saturation levels obtained for both mi ed-material 

beryllium samples ; 5.5 x lO is /em 2 for beryllium with an elementary carbon 'urfacc . and 

7.6 x 1 015 /cm 2 for a beryllium carbide urface la er. 



Metallic beryllium that was left in a vacuum of3xl0-9 Pa for 15 hours showed a 

modified retention rate upon ion bombardment compared with the retention rate 

observed for clean beryllium, indicating the presence of accumulated impurities in the 

surface layer. At higher fluences, this difference disappeared. This can be explained by 

the erosion of the impurities through ion bombardment. 

Previously reported values of saturation in deuterium retention are greater than the value 

observed here for clean metallic beryllium. However, measurements on which these 

values are based were conducted under vacuum conditions with pressures of the order of 

10-8 Pa. 

It may be assumed that this leads to a much higher density of impurities in the surface 

layer that was not fully removed by ion bombardment. 

6.4.3 Changes in chemical composition 

XPS spectra of argon implantation in highly-oriented pyrolytic graphite show no shifts 

in the positions of the peaks with increasing ion fluence. This is in contrast to what is 

observed in the spectra of deuterium ion bombardment, suggesting that a chemical 

interaction takes place between the hydrogen isotope ions and the carbon. As a noble 

gas, argon is not involved in a chemical reaction and cannot therefore lead to chemical 

shifts in the binding energy levels of Cis electrons. 



This effect of a modified carbon state is also observed in deuterium ion bombardment of 

carbon-coated titanium, where the peaks corresponding to carbon shift in a similar wa\'. 

In addition, a further peak grows with increasing deuterium fluence. This may be 

attributed to the growth of a TiC phase; the deuterium ions deposit some of their kinetic 

energy, thus creating carbides. A small intensity contribution at this position before ion 

implantation is due to the carbon-titanium interface, where TiC is present from the first. 

This peak does not shift in position with increasing ion fluence, implying that no 

changes are made to the chemical state. 

Similar observations can be made from the spectra for deuterium ion bombardment of 

beryllium with a carbon layer: a shift in the position of the carbon peak indicates a 

chemical interaction between the carbon layer and the implanted hydrogen isotope. 

Moreover, as with titanium, the formation of beryllium carbide is indicated by the 

growth of a further peak. 

99 



7 Conclusions 

The aim of this work was to investigate the effect of implanting hydrogen isotopes with 

energies in the ke V range into materials, as applicable to plasma nuclear fusion devices. 

This involved the redesign and construction of an ultra-high vacuum device, Artoss. The 

modified apparatus has the facilities to clean, modify, and analyse samples with mixed 

material surface layers, and can achieve ultra-high vacuum conditions with base 

pressures of less than 3 x 10-9 Pa . 

During the construction phase of Artoss, the effects of deuterium ion bombardment of 

carbon layers on titanium were studied using X-ray photoelectron spectroscopy on 

another ultra-high vacuum setup (XPS). 

In measurements where samples consisting of carbon layers on a titanium or a beryllium 

substrate were bombarded with deuterium ions, it was observed that the carbon erodes at 

higher yields when it is present in its elementary state than when it is present in the form 

of a carbide. Moreover, it was found that different mechanisms govern the erosion 

process, depending on whether the carbon is elementary or carbidic. The erosion rate of 

carbon in titanium carbide is well accounted for in a kinematic collision model, as could 

be shown by comparing the data to a computer simulation. By contrast, elementary 

carbon erosion has further contributions from chemical interactions between the 

deuterium and the carbon atoms. 
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The saturation level of deuterium retention was found to be considerably affected by 

modifications in the surface of a material. Clean metallic beryllium saturated at a lower 

deuterium level than beryllium with a carbon or a beryllium carbide layer. 

Additionally, it was noted that even under the achieved ultra-high vacuum conditions. 

the surface layer of pure beryllium accumulated impurities, mainly oxygen, from the 

residual gas over the course of 15 hours, which changed the material's reaction 

properties with hydrogen isotopes and allowed a higher retention rate. This implies that 

previous studies of beryllium bombarded with deuterium, which have been conducted 

under vacuum conditions with 10-7 Pa dealt with modified surface layers rather than 

pure beryllium. 

Hydrogen isotope retention is ideally minimised in any first-wall material for a number 

of reasons. It disturbs the plasma: and as tritium is radioactive, retaining this isotope in 

the building blocks of a fusion device is not desirable. 

Fusion in magnetically confined hydrogen isotope plasmas depends to a great extent on 

a low level of impurity ions in the plasma, as these either reduce the hydrogen isotope 

density through dilution (in the case of light isotopes), and lead to cooling of the plasma 

through radiation from the bound electrons in heavy, not fully ionised impurities. 

Therefore, its low atomic weight, coupled with the fact that beryllium is a highly 

reactive getter material that binds oxygen impurities from the residual gas in the 

chamber, make beryllium a very attractive plasma-facing material in fusion energy 

devices. 
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