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Abstract 
Chronic wound infections represent a worldwide problem, generating high morbidity and 
medical expense. Failure to control infections such as MRSA in the reparative process of a 
wound can cause disruption of normal anatomical structure and function, resulting in a  
chronic wound. Existing approaches to identifying infection largely involve surveying a 
range of physical parameters, and a limited use of non-invasive technologies. Evaluation is 
time consuming, and often results in inconsistencies in patient care.  
 
This project researches three possible alternative methodologies/technologies for the 
monitoring of wounds, by measuring components of wound fluid. Two of the three 
technologies are designed to be used by physicians and patients, similarly to commercially 
available home blood glucose test kits, and are based on the measurement of three 
biomarkers: glucose, ethanol and H2O2 in PBS, and in serum as surrogate wound fluid. 
The first is a voltammetric technique known as dual pulse staircase voltametry (DPSV), 
which produces peaks characteristic of particular analytes at an electrode. The second is 
an amperometric biosensor array, based on screen printed three electrode assembies of 
carbon, rhodinised carbon (glucose biosensor only) and Ag/AgCl reference. The glucose 
biosensor uses glucose oxidase enzyme as the biorecognition agent, the H2O2 biosensor is 
a mediated system using horseradish peroxidase enzyme and dimethylferrocene mediator, 
and the ethanol biosensor is a bienzyme mediated system utilising alcohol oxidase enzyme 
horseradish peroxidase enzyme and coupled dimethylferrocene mediator. Wounds are 
known to produce characteristic odours, therefore the third technology studied is a single 
sensor odour analyser with advanced data analysis to detect five commonly occuring 
wound bacteria, S.aureus, K.pneumoniae, S.pyogenes, E.coli and P.aeruginosa in growth 
media and surrogate wound fluid. This technology would be used as a �near patient� 
monitoring system and is based on machine olfaction similar to that of a commercial 
electronic nose, but uses a single metal oxide sensor in combination with principle 
components analysis.  
 
DPSV scans of the individual analytes demonstrated distinctive peaks, exhibiting non-
linear relationships with concentration. A great deal of useful information was generated 
using this technique, however, limitations were discovered regarding repeatability and 
inter-analyte interference in mixtures. Limits of detection in surrogate wound fluid with the 
glucose biosensor, hydrogen peroxide biosensor, and ethanol biosensor were as follows: 
169.5 µM glucose, 8.43 µM hydrogen peroxide, and 7.94 µM ethanol respectively (all at 
99.7% confidence). Direct detection of ethanol from metabolically active S.aureus in 
surrogate wound fluid yielded a limit of detection of 1.23 x 108 CFU/ml at 99.7% 
confidence, and 19 µM in terms of ethanol specific response. The single sensor odour 
analyser demonstrated the ability to detect and discriminate between the three biomarkers, 
between five bacteria individually, and partial discrimination of paired bacteria (in broth 
and surrogate wound fluid). It was also found that S.aureus could be detected down to a 
cell density of 5x106CFU/ml in surrogate wound fluid, lower than that found for the 
biosensor concept.  
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1. Introduction 

 
 

1.1 Biochemistry and Physiology of the Skin 

1.1.1 Structure of the skin 

The skin is a large organ covering every contour of the human body, conforming to the 

movements of the organism inside. The skin provides the major interphase between the 

organism and its environment, and is adapted to withstand the desiccation of dry 

environments, as well as exposure to the many mechanical, chemical and microbial 

variables. It also contains a vasculature and sweating system to thermally regulate the body, 

and a neuroreceptor network to report environmental information. The skin is 

conventionally recognised as having two major layers. The outer layer is a thin stratified 

epithelium, known as the epidermis, ranging only from 75 to 150 µm in thickness around 

the body (except palms and soles). Underlying the epidermis is a dense fibroelastic 

connective tissue called the dermis. Unlike the epidermis, the thickness of the dermis varies 

considerably throughout regions of the body. The dermis contains the extensive vascular 

and nerve networks, as well as specialised excretory and secretory glands, and keratinised 

appendage structures such as hair and nail. Beneath the skin lies the subcutaneous tissue 

(hypodermis), which is composed of loose areolar connective tissue and fatty connective 

tissue, and also has substantial variations in its thickness. Fibrous bands run from the 

dermis through to the subcutaneous tissues, thereby providing attachment of the skin to the 

fibrous skeletal components (Odland, 1983).   
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The epidermis is subdivided into (Odland, 1983): 

1) A germinative basal cell layer of keratinocytes; 

2) Above the germinal layer is the stratum spinosum, comprising several layers of 

polyhedral cells; 

3) Above this is the stratum granulosum, which is a layer of flattened nucleated cells 

containing distinctive cytoplasmic inclusions, and keratohyalin granules.  

4) The stratum granulosum is the transition to the overlying end product, the stratum 

corneum, consisting of the keratinised lamellae of anucleate, thin flat cells. This 

final layer ranges from 15 to 20 cellular layers in thickness. 

 

The epidermis is constantly replacing itself, by keratinocyte daughter cells dividing and 

migrating outward, and transforming to eventually becoming flattened anucleate cells of 

the stratum corneum. On average, it takes a period ranging from 45 to 75 days for the 

epidermis to completely renew itself. It is because of the constant renewal of the epidermal 

cell population that the skin is able to react so diversely to both physiological and 

pathological stimuli. 

 

In psoriasis, there is a prominent increase in mitotic activity in the epidermis. In 

hyperproliferative states, cell production can be governed by a reduction in cell cycle, or an 

increase in the number or proportion of proliferating cells (Holbrook, 1983). The 

mechanism for this is not yet understood.  

 



 3

 

1.1.2 Carbohydrate metabolism of epidermis  

Glucose is a fuel for energy metabolism and a substrate for biosynthesis of 

mucopolysaccharides, lipids, glycogen, nucleic acids, and proteins. Glucose circulates 

freely in the interstitial fluid space of the dermis and epidermis and is thought to diffuse 

freely across epidermal cell walls. The utilisation of glucose in the epidermis probably 

differs in basal and upper cell layers (Freinkel, 1983), and is proportional to substrate 

concentration, except at very high concentrations. The utilisation of glucose increases in 

proliferative states, and glucose uptake is enhanced during wound repair and psoriatic 

epidermis (Freinkel, 1983, Im & Hoopes, 1970).  

 

Anaerobic glycolysis produces a high lactic acid content in the skin, far exceeding that of 

blood by as much as three fold. Lactic acid is the major metabolite of glucose. When 

glucose is absent, the epidermis oxidises endogenous lipids. This occurs in cornification 

when exogenous substrate is limited, or as a result of a pathological or physiological 

increase in circulating fatty acids (i.e. starvation or diabetes) to a level high enough to 

compete for access to the tricarboxylic acid cycle. The increase in glucose and O2 

utilisation in wound repair is accompanied by a decrease in the formation of lactic acid and 

CO2. All of the sugar moieties used to form the carbohydrate components needed by the 

skin are derived originally from glucose. Glycogen is one of the products of synthesis 

derived from glucose metabolism in the skin. Except for in foetal epidermis, glycogen is 

sparse in the human dermis. However, in proliferative responses to physical trauma, such 

as a wound or exposure to radiation with UV light and X-ray, glycogen accumulates and 
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probably serves as an added source of energy during repair processes. In psoriasis, the 

amount of glycogen is four or five times greater than the level in normal epidermis 

(Freinkel, 1983, Im & Hoopes, 1974).  X-ray irradiation also produces an inflammatory 

reaction, caused by cellular damage, and ultraviolet light causes an increase in acid 

proteinase in the skin. Healing wounds contain a methionine and valine napthylamide 

hydrolase, which is different from normal skin enzymes (Frienkel, 1983), and also have 

increased levels of the serum arylamidase and aminopeptidase activity 

 

1.1.3 Physiology of wound healing 

This Section is taken from Gogia (1995). Wound healing is a complex and highly regulated 

series of biological events. Wounds are categorised on the basis of severity and extent of 

injury to the dermis. Epidermal wounds extend into the epidermal layer and possibly the 

superficial layer of the dermis. These are called partial thickness wounds. The wound 

initially forms a crust of blood and debris particles, and then proceeds to heal by 

regeneration i.e. re-epithelialisation. The new cells gradually thicken until healing is 

complete, at which point the crust falls off leaving the proliferated cells to keratinize. It 

takes 24 to 48 hrs for the epithelial cells to respond to injury, and the wound heals without 

scar tissue. Dermal wounds extend through the epidermis and dermis to the subcutaneous 

tissue, and may also involve muscles and bone. These are called full thickness wounds, and 

heal by three mechanisms resulting in scar formation (Figure 1.1). The first phase is 

inflammation, which prepares the wound for healing. The second is the fibroplastic phase, 

which rebuilds damaged structures, and the third is the remodelling phase, which modifies 

the scar to fit the wound. In normal healing, each phase overlaps. 
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Figure 1.1: The phases to scar formation in a full thickness wound (Gogia, 1995). 
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1.1.3.1 Inflammatory phase 

Inflammation is a prerequisite to wound healing. It is a vascular and cellular response to 

dispose of bacteria, foreign material, and dead tissue. The first stage is the vasoconstriction 

of the damaged blood and lymphatic vessels, to slow or stop blood loss. This is achieved 

through the secretion of norepinephrine by the blood vessels, and serotonin by the platelets 

and mast cells. The platelets also plug or stop blood loss.  

 

At the same time, leukocytes cluster along the sticky vessel walls, which is known as 

neutrophilic margination. Following vasoconstriction, the non-injured vessels dilate and 

increase their permeability in response to the histamine released by the mast cells, and the 

prostaglandin released by the injured cell membrane. Vasoconstriction lasts for about five 

to ten minutes, and vasodilation lasts for less than one hour. The increase in vessel 

permeability allows plasma to leak into the wound area, so that fibrin can block the 

lymphatic flow and seal off the wound, localise the inflammatory reaction, and prevent the 

spread of infection. The wound is red, hot, swollen, and painful at this stage of healing.  

 

Leukocytes, erythrocytes and platelets adhere to the dilated blood vessel walls. 

Polymorphonuclear leukocytes migrate through the capillary pores first, and prevent 

infection by enzymatically dissolving and digesting debris and foreign material by the 

process of phagocytosis. When these leukocytes die, they release their intracellular 

enzymes and debris, which becomes part of the wound exudate. Mononuclear leukocytes 

move from the capillary into the wound next, where they are transformed into 

macrophages, the most important cells of the inflammatory stage. The macrophages ingest 
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the unsolubilised material, engulf leftover polymorphonuclear leukocytes, and ingest 

microorganisms. The products of digestion of these materials are excreted, i.e., ascorbic 

acid, hydrogen peroxide, and lactic acid. The hydrogen peroxide released helps to control 

anaerobic microbial growth. Ascorbic acid and lactic acid accumulate and signal to 

increase production of macrophages. The macrophage products result in greater pus 

production, which can impair wound healing. At the end of this phase, fibrinolysin is 

produced by the blood vessels to dissolve the blood clots, and the lymph channels then 

open to help reduce wound edema.  

1.1.3.2 Fibroplastic phase 

This phase is also referred to as the proliferative phase, since rebuilding of the damaged 

tissue occurs. Repair of the epithelium goes through a sequence of mobilisation, migration, 

proliferation, and differentiation, and continues until the wound is healed. The epithelial 

cells migrate into the wound area to form multiple layers beneath the clot. This provides a 

protective barrier to prevent fluid and electrolyte loss from the wound, and to reduce the 

chance of infection.  The temporary crust loosens and detaches once epithelialisation is 

completed.  

 

While re-epithelialisation occurs, the wound contracts and is remodelled by mobilisation of 

the surrounding tissues. The centripetal movement of normal skin, primarily 

myofibroblasts, decreases the size of the wound by forcing granulation tissue to retract. 

Contraction begins after five days of wounding and peaks at two weeks. Contraction 

proceeds at a uniform rate, and is not affected by the size of the wound, though is affected 
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by the shape. However, if the wound has not closed by two to three weeks, contraction 

stops.   

 

Fibroblasts are produced by undifferentiated mesenchymal cells, and are stimulated to 

synthesise collagen tissue by lactic acid, ascorbic acid, and other cofactors. Collagen tissue 

is necessary to strengthen and stiffen the wound. Collagen molecules cross-link 

intermolecularly to increase the tensile strength of the wound. A gel-like substance called 

glycosaminoglycans (GAG) is also produced by fibroblasts, to give lubrication and density 

to the connective tissue. As the amount of collagen increases, the number of fibroblasts is 

reduced, marking the end of the fibroblastic phase. 

 

1.1.3.3 Remodelling phase 

This phase is also called the maturation phase, and begins after approximately two to four 

weeks. The enlarged, dense scar formed in the fibroblastic phase is remodelled in form, 

bulk and strength. New collagen is produced as the old breaks down. If the rate of collagen 

production exceeds its breakdown, a hypertrophic scar or keloid forms, which is either 

raised, or extends beyond the normal boundaries of the wound. If collagen breakdown 

exceeds its production, a softer scar forms.  
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1.1.3.4 Types of healing wounds 

Primary closure / healing by first intention: Occurs when full-thickness surgical incisions 

or other wounds with minimal skin loss are approximated and sutured together. Healing is 

completed by re-epithelialisation only. 

 

Secondary closure / healing by secondary intention: Occurs in large, open, full-thickness 

wounds with soft tissue loss. They heal by collagen deposition, wound contraction, and 

granulation, followed by epithelialisation. These wounds take longer to heal, and form a 

scar. 

Delayed primary closure / healing by third intention: Occurs in contaminated more 

extensive wounds, or wounds at risk of infection. By deliberately delaying wound closure, 

infection can be treated and monitored, without delaying the formation of tensile strength. 

The wounds are then sutured together and complete healing by re-epithelialisation.  

 

1.1.4 Body composition and body fluid compartments 

In an average male, body weight is split as follows (Ganong, 2003):  
 
18% protein and related substances 
 
7% mineral 
 
15% fat 
 
60% water 

 
These values differ with sex, age, and degree of obesity. With age, the percentage of body 

fat increases, which in turn decreases the percentage of water. Total body fluid is mostly 

distributed between two compartments: extracellular and intracellular. A third and smaller 
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compartment is referred to as transcellular, and includes fluid from synovial, peritoneal, 

pericardial, and intraocular spaces.  

 

The distribution of the ~60% water in body fluid compartments can be divided as follows 

as a percentage of body weight (Ganong, 2003, Guyton & Hall, 2000) : 
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Figure 1.2: Distribution of water in major body fluid compartments 
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The intracellular fluid is inside the cells of the body. The concentration of substances is 

similar from one cell to another and is therefore considered to be one large fluid 

compartment. The extracellular fluid is outside the cells and is further divided into blood 

plasma and interstitial fluid, which is often referred to as a gel phase. Plasma is the 

noncellular part of blood, and continuously communicates with the interstitial fluid through 

the pores of the capillary membrane. The extracellular fluids are constantly mixing, and 

almost all solutes in extracellular fluid can pass though the pores, except for proteins. For 

this reason, the composition of the two fluids are approximately similar, except for the 

protein content, which is higher in plasma (Guyton & Hall, 2000). The molecular masses of 

the major proteins in plasma are (Ganong, 2003): 

 

Albumin 69,000 

Haemoglobin 64,450 

β1Globulin 90,000 

 γ Globulin 156,000 

 Fibrinogen 340,000 

 

Since the proteins cannot pass through to the interstitial fluid, they exert an osmotic force 

across the capillary wall that pulls water into the blood. The proteins also provide ~15% of 

the buffering capacity of blood in an anionic form at the normal plasma pH of 7.4. The 

normal composition of the major body fluid compartments is listed in Table 1.1, though it 

should be noted that these values vary slightly from book to book.  
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Table 1.1: Composition of major body fluid compartments (Guyton & Hall, 2000). 

Constituent Plasma 
(mmol/L) 

Interstitial fluid 
(mmol/L) 

Intracellular fluid 
(mmol/L) 

Na+ 142 139 14 
K+ 4.2 4.0 140 
Ca++ 1.3 1.2 0 
Mg+ 0.8 0.7 20 
Cl- 108 108 4 
HCO3

- 24 28.3 10 
HPO4

-, H2PO4
- 2 2 11 

SO4
- 0.5 0.5 1 

Amino acids 2 2 8 
Creatine 0.2 0.2 9 
Lactate 1.2 1.2 1.5 
Glucose 5.6 5.6  
Protein 1.2 0.2 4 
Urea 4 4 4 
Others 4.8 3.9 10 

 

 
  
Although blood contains both extracellular fluid and intracellular fluid, it is considered a 

separate fluid compartment because it is contained within the circulatory system.  

 

1.1.5 Biochemical composition of wound fluid 

Wound fluid bathes the tissue undergoing repair and regeneration. When tissue is damaged, 

a cascade of reactions causes blood to coagulate by converting soluble fibrinogen (the 

largest plasma protein) into insoluble fibrin. What remains is an exudate of plasma called 

serum. Serum has the same components as plasma, except that it doesn�t contain 

fibrinogen. The wound fluid may also contain soluble tissue and cell-derived molecules 

responsible for co-ordinating the healing process (Ganong, 2003, Clough & Noble, 2003). 
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It is a highly complex biomatrix containing thousands of species at steady state, including 

essential trace elements of amino acids such as citrate and arginate, and metal ions such as 

iron, copper and zinc. Proteins and enzymes uptake the metal ions to form metal ion-

protein complexes. The protein bound total metal fraction is not known in wound fluid, but 

can be assumed to be analogous to that of blood plasma.  

 

Jones, Taylor and Williams (2000) investigated the change in levels of these trace elements 

in wound fluid by Potentiometric Stripping Analysis, a quantitative electro-analytical tool. 

Wound fluid was sampled from 20 female breast cancer patients, and analysed for total 

copper and zinc levels on the day of the operation, and each day for 5 days post-op. The 

copper and zinc levels in blood plasma were also measured 1 day pre-op. Though there 

were some day to day variations, they found that overall the mean total copper varied little 

from the first day to the fifth post-op day, and were very similar to the levels measured in 

blood plasma. The values measured in individual samples ranged from 7.5 µM to 61.2 µM . 

The same observations were found for zinc, with individual values ranging from 10.1 µM 

to 65.8 µM.  

 
Recent studies in wound fluid have targeted metabolites such as creatinine, urea, lactate, 

glucose, serum proteins, proteolytic enzymes and their inhibitors, inflammatory mediators 

such as prostanoids and cytokines, and growth factors. Both total protein and albumin 

(serum protein) are present in wound fluid, with total protein levels reaching >40g/l of 

which ~60% was albumin (Clough & Noble, 2003). James, Hughes, Cherry et al (2000) 

studied the exudate from the chronic wounds of 12 patients over 8 weeks, and found that 

exudates from healing wounds had a significantly higher total protein concentration than 
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that from non-healing wounds.  They also found that in wound fluid with albumin levels of 

<20g/l the wound failed to heal. This is in agreement with Trengove, Langton and Stacey 

(1996) who studied biochemical changes in paired serum and wound fluid samples from 

non-healing and healing chronic leg ulcers. Trengrove et al (1996) also found that C-

reactive protein, a marker of inflammation, decreased in healing wounds, suggesting a 

decreased inflammatory state in the wound. C-reactive protein is used as a clinical marker 

of inflammation in disorders such as rheumatoid arthritis, pancreatitis, postoperative 

complications, appendicitis, and infection. The wide range of other biochemical parameters 

studied were: sodium, potassium, chloride, urea, creatinine, uric acid, calcium, magnesium, 

phosphate, bicarbonate, glucose, lactate, LDH, alkaline phosphatase, ALT, AST, GGT, 

CK, total bilirubin, α-1-globulin, α-2-globulin, β-globulin, γ-globulin, C3, C4, cholesterol, 

and triglycerides.  

 

The analysis of healing and non-healing wound fluid found that there was a significant 

increase in six of the biochemical analytes, and a significant decrease in one from the non-

healing to healing phase. The values found are tabulated below.  

 

Table 1.2: Comparison of selected biochemical analytes from non-healing and 
healing wound fluids (from Trengove, Langton and Stacey, 1996) 

 
Biochemical Non-healing wound Healing wound Units 
Glucose 1.2 2 mM 
Biocarbonate 17.5 19 mM 
Albumin 19 23 g/L 
Total protein 34 41 g/L 
Gamma globulin 4.5 6 g/L 
Cholesterol 1.6 1.8 mM 
C-reactive protein 13 5 g/L 
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In the comparison between paired wound fluid and serum samples (from blood), no 

significant difference was found in sodium, magnesium, phosphate, urea, creatinine, 

potassium, or chloride. Lactate levels were greater and glucose and bicarbonate levels 

lesser in wound fluid compared to serum. These results are thought to be consistent with 

the existence of an acidotic, anaerobic environment. In wound fluid, LDH was almost 

twenty times the value in serum, and albumin, total protein and the globulins were 

approximately half the levels found in serum. Cholesterol and triglyceride levels were 

reduced in wound fluid. The levels of C-reactive protein were similar in wound fluid and 

serum. This study concluded that wound fluid has the electrolyte composition, urea, 

creatinine levels and osmolarity equivalent to serum and therefore appears to reflect the 

extracellular environment of the wound.  

 

Earlier studies by Burton, Hohn & Hunt et al (1977) found that there is increased 

consumption of oxygen, oxidation of glucose, and increased generation of hydrogen 

peroxide and superoxide anion in surgical wounds. This is a result of phagocytosis by 

mammalian polymorphonuclear leukocytes and monocytes. Hydrogen peroxide and 

superoxide anions are either directly or indirectly important microbicidal agents, and their 

generation by the leukocyte oxidase system is a necessary requisite for the killing of many 

species of microorganisms.   

 

Nanney & Wenczak (1993) investigated the role of growth factor-α and its receptor in 

epithelial cell proliferation in human burn wounds. By isolating and labelling growth 

factor-α with proliferating cell nuclear antigen, and using it to treat partial and full 



 16

thickness burn wounds 2 to 22 days after injury, they found that both growth factor-α and 

its receptor are present in proliferating epidermis. The simultaneous intense localisation 

supports an epidermal growth factor/transforming growth factor-α/epidermal growth factor 

receptor-mediated growth repair mechanism.  Growth factor-α and epidermal growth factor 

receptor were also found to be present in non-proliferating populations within healing burn 

wounds, which suggests additional roles for this growth factor pathway during wound 

repair.  

 

Differences also occur in proteolytic activity in acute and chronic wound environments. 

During wound repair, many different matrix metalloproteinases (MMPs) are produced 

which act on protein. Bennett, Buslem & Gibson et al (1999) analysed wound fluids from 

acute surgical and chronic wounds of various types, and found MMP activity was elevated 

by 30 fold more in chronic wounds than in acute wounds. There was also much higher 

degradation of epidermal growth factor in chronic wound fluid samples than in acute 

wound fluid samples. Levels of MMP activity decreased significantly from the non-healing 

to healing phase in chronic leg ulcers, and therefore a reduction in MMP levels may be 

required for healing to occur in chronic wounds. Proinflammatory cytokines IL-1 and TNF-

α stimulate the production of MMPs. TNF-α, IL-1, IL-6, and IL-8 elevate in chronic 

wounds, and TNF-α, IL-1, and IL-6 then decrease as healing occurs. Parks (1999) reported 

that MMPs are typically not expressed in normal, resting, healthy tissue. However, 

expression occurs in any active cell involved in injury repair or remodelling process of 

diseased, tumour or inflammatory conditions, and therefore expression of MMP does not 

necessarily indicate a chronic wound. Though they are assumed to be involved in 
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remodelling the local extracellular environment, the different distinct functions and actual 

substrates of the many MMPs are not known, but are likely to serve different functions in 

different compartments. It is reasonable to assume that a wound that requires a large degree 

of remodelling would have elevated levels of MMPs. Collagenase-1 is the best understood 

MMP, and is thought to facilitate cell movement during re-epithelialisation by breaking 

down matrix barriers that impede cell migration (Parks, 1999). 

 

1.1.6 Factors affecting wound healing 

There are many factors, both systemic and local, that affect the normal healing of wounds. 

General/systemic factors include: age, obesity, malnutrition, endocrine and metabolic 

disorders, hypoxia, anaemia, malignant disease and immunosuppression. Local factors 

include: necrotic tissue, foreign bodies, tissue ischaemia, haematoma formation, and poor 

surgical technique. Microbiological factors: type and virulence of organism, size of 

bacterial dose, antibiotic resistance. Table 1.3 summarises the most common and important 

clinical factors, (Gogia, 1995, Surgical-tutor.org., 2002). 

 

1.1.6.1 Bacterial invasion 

Skin and mucous membranes are the major protective boundaries between bacterial 

pathogens and soft tissue. Mucosal membranes are covered with commensal flora that help 

to prevent infection, and the skin is populated by certain bacteria and fungi. Physical 

disruption of the body�s epithelial barrier physiologically and immunologically 

compromises the host, and may result in the invasion of microorganisms. Even latent 

organisms may become activated and invasive. Invading bacteria may translocate from the 
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Table 1.3: Factors affecting wound healing (Gogia, 1995). 
 

FACTOR   AFFECT ON WOUND HEALING 
Systemic factors: 
Nutrition 

Balanced nutrition is crucial for normal healing. Deficiency of any nutrient during 
healing may result in impaired or delayed healing. Protein is one of the most 
important nutrients since its deficiency impairs the formation of new capillaries, 
fibroblastic proliferation, proteoglygans and collagen synthesis, and wound 
remodelling. Deficiencies in vitamins A, E, C and K also adversely affect wound 
healing. Minerals are also important. Deficiency of zinc and magnesium causes a 
decreased rate of epithelialisation and collagen synthesis. People with high fat 
content and poor dietary habits are at risk of delayed healing, and infection.       

Vascularity Arterial insufficiency causes tissue hypoxia and results in chronic, non-healing 
wounds, which are susceptible to infection. Venous pressure causes leakage of 
fibrinogen around the capillaries into the dermis. This results in a blockage of 
tissue oxygenation, nutrient exchange, and waste removal. Venous stasis ulcers 
are at risk of infection and difficult to heal. 

Systemic 
medications 

Steroids decrease tensile strength, rate of epithelialisation and neovascularisation, 
and inhibit wound contraction. They also suppress the immune system. Other 
medications such as chemotherapeutic agents and immunosuppressive 
medications also increase susceptibility to infection, prolong inflammation, and 
impair the healing process.  

Systemic diseases Diabetes mellitus adversely affects wound healing. Uncontrolled diabetes 
decreases collagen synthesis and phagocytosis, and increases the risk of infection. 
It also often causes atherosclerosis, resulting in circulatory deficiency. Acquired 
immune deficiency syndrome (AIDS), and diseases which reduce the blood 
supply, make the wound susceptible to infection and affect phagocytosis and 
collagen synthesis. Renal and liver failure significantly affect wound healing. 

Age With aging, physiological changes occur that cause wounds to heal at a slower 
rate, and increase the risk of multiple breakdowns.   

Local Factors: 
Local infection 

All wounds are contaminated, but not all are infected. A bacterial concentration 
>105 organisms/gram of tissue is defined as infection. Approx. 50% of wound 
complications are due to local wound infection. The highest effect of infection is 
the reduction of collagen production. The toxicity of bacteria also kills cells 
needed for healing.  

Blood supply The supply of blood and oxygen to the wound cells is vitally important, since it is 
depended upon to deliver components for healing.  Therefore, wounds with 
decreased blood supply are at higher risk of infection and impairment.   

Local medications Although topical agents help to prevent infection or promote healing, they have 
been known to have adverse affects on wound healing. Topical antimicrobials, 
such as acetic acid or hydrogen peroxide, can affect fibroblast function at certain 
concentrations. Other antimicrobials can cause slower re-epithelialisation and 
decreased collagen synthesis.  

Dressings Dressings can facilitate and inhibit wound healing. The choice of dressings is vast, 
and all have advantages and disadvantages. The right type of dressing should be 
used for each stage of healing. The wrong choice could have a detrimental effect 
on the rate of healing.  

Nectrotic tissue  / 
Eschar 

Eschar, and the presence of necrotic tissue, impairs healing and increase the risk 
of infection. This results in a chronic, non-healing wound. 

Desiccation Moist wounds heal much faster than dry wounds. A moist environment has a 50% 
faster rate of epithelialisation.  
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gut and enter a wound by the slowed capillary blood flow. Bacteria also survive in skin 

appendages, such as sweat glands and hair follicles, thereby enabling colonisation and 

invasion by movement upwards, rather than from the surface of large wounds (Smith & 

Thomson, 1994). 

 

The primary pathogens isolated from wounds include Staphylococcus aureus and 

Pseudomonas aeruginosa.  Endogenous wound infections are usually caused by more than 

one organism. Table 1.4 lists the organisms commonly isolated from wounds, their 

percentage occurrence, the wounds they were isolated from, and the volatiles they are 

reported to produce. However, quantitative biology alone cannot predict sepsis. The 

presence of >105 organisms/g of tissue does not mean infection is present, since the 

development of infection depends on the nature of the wound and of the organism(s) 

involved. Attempts to use other systemic microbial indicators, such as endotoxin, have not 

been successful since they do not cover the entire microbial population. Physiologic 

indicators such as circulating tissue necrosis factor or other cytokines, do not differentiate 

injury from sepsis and therefore also cannot predict wound infection or systemic sepsis 

(Slack & Greenwood, 1992; Smith & Thomson, 1994).     

 

1.1.6.2 Hospital acquired infection 

Wounds are acquired in a number of ways. Hospital-acquired wounds, from surgery or 

intravenous medical devices for example, are surprisingly one of the highest causes of 

morbidity and medical expense, classified as follows: 
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Clean wounds: are not inflamed, and less than 1% of the wound has become infected. 

Also, the wound is not located in a site with a heavy microflora population, and the surgical 

practice was good.   

Clean-contaminated wounds: are located at sites of heavy microflora load, but surgical 

practice was good. 1 to 5% of the wound is infected.  

Contaminated wounds: are located in the bowel, or previously infected areas where pus 

has accumulated. 10 to 20% of the wound is infected.  
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In the United States in 1999, two million people with a wound caught bacterial and viral 

infections in hospital. Ninety thousand of these people died, which made hospital infections 

the number five killer in the U.S. (Plotkin & Shnayerson, 2002). In England one in ten 

patients acquire an infection and there is a 10% chance of dying. The economic burden is 

almost £1 billion a year for the NHS in England (Plowman, 2000). These patients also 

spend 2.5 times longer in hospital than if they had not contracted a hospital acquired 

infection. Such patients also often require additional treatment once they have left hospital.  

 

The elderly and persons with spinal cord injury are two groups known to be at risk for 

pressure ulcer development. A survey revealed the percentage of patients with ulcers to be: 

9.2% in multiple acute care hospitals, 3 to 14% for hospitalised patients, and up to 25% in 

nursing homes (Ablaza & Fisher, 2003).  Pressure sores are not only a source of infection 

and medical expense, but also have a significant impact on a number of quality of life 

issues, including life satisfaction, mental health, and productive use of time.  

 

The magnitude of the problem of wounds has prompted the development of telemedicine, 

in which patient hospitalisation is shortened by being discharged to receive home health 

care. Interactive video and transmission of high-resolution images allows a specialist to 

review a wound without being present. The patient can then be treated by their local 

practitioner or by nursing home visits. As well as cutting costs and increasing access to 

care, home health care also improves psychosocial aspects.    
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1.1.7 Conventional wound assessment 
 
Conventional identification usually involves morphological evaluation by microscopic 

methods, and growth tests on selective media under a range of conditions. These tests are 

time consuming, taking up to 48 hours, manually intensive, and there is no single definitive 

test for the identification of a particular bacteria.  Also, before identification tests can be 

performed, a series of basic steps, involving pre-enrichment, selective enrichment, 

biochemical screening and seriological confirmation, must be performed (Bamberg, 

Sullivan, Conner-Kerr, 2002). To reduce time, API bacterial identification strips are used 

by bacteriologists throughout the world because they are easy to use, and give good 

performance. The strips usually contain 20 miniature biochemical tests, the results of which 

can be checked on a database to give the identity of the microorganism (Biomerieux, 

2002). ELISA, gene probes, latex immunofluorescence and latex agglutination all require 

obligatory and extensive sample preparation, are expensive and require a high competence 

level.  

 
 
1.1.8 Wound management 

1.1.8.1 Odour and dressings 

Many infected wounds produce an unpleasant odour. Malodour and exudate is thought to 

be a result of the overgrowth of bacteria in damaged tissue. The smell is usually attributed 

to anaerobic bacteria, although anaerobic bacteria only make up about 50% of bacteria 

isolated from wounds. Discussions and data specifying the chemical nature and origin of 

these wound odours are limited and often contradictory. 
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Since the formation of odour cannot be prevented, dressings have been developed to adsorb 

the volatile molecules released from the wound responsible for the malodour.  There are 

over 2,000 dressing materials available commercially, which can be organised into eight 

commonly used dressing categories: gauze dressings; non-adherent dressings; hydrocolloid 

dressings; semi-permeable films; semi-permeable hydrogels; semi-permeable foams; 

exudate absorbing dressings; biologic dressings (Cuzzell & Krasner, 1995).  Many of the 

odour absorbing dressings contain activated charcoal or carbon (Fisher, Fram & Thomas et 

al 1999).  The idea of integrating a sensor into a dressing to produce a �smart bandage� or 

�smart plaster� to measure wound biomarkers is attractive. The properties of some 

commercially available wound dressings are given in Table 1.5.  

 

Table 1.5: Properties of some odour absorbing wound dressings                                
(Fisher, Fram & Thomas et al 1999). 

 

 

Dressing name Manufacturer Properties 

Actisorb Plus Johnson and 
Johnson 

Charcoal cloth of 95-98% carbon and viscose rayon fabric. 
Fabric is enclosed in a sleeve of spun-bonded non-woven nylon, 
and sealed. Designed to be placed directly on wound and 
covered with secondary absorbent layer to remove the odour 
causing molecules and toxins. 

 Carboflex  ConvaTec Ltd Consists of a wound contact layer composed of alginate and 
carboxymethylcellulose fibres, bonded to a plastic film with 
perforations for one-way liquid flow. Behind film is charcoal 
cloth and absorbing layer, followed by a second perforated 
plastic layer and sealed all around. 

Carbonet Smith and 
Nephew Medical 

Wound contact layer of knitted viscose backed with absorbent 
fibrous cellulose, bonded to activated charcoal layer between 
two layers of polyethylene net. Completed with outer layer of 
polyester fleece. 

Lyofoam C Seton Healthcare Can be applied directly. Two pieces of polyurethane foam 
bonded around the perimeter, and enclosing a non-woven fabric 
with activated carbon granules. 
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1.1.8.2 Antibiotic Treatment 

The most effective way of treating wounds is to prevent or eradicate the infection. In some 

cases this can be achieved with either antibiotics, or antimicrobial agents. Sensitivity 

testing is performed on skin and wound cultures to help choose the antibiotic that will be 

most effective. However, it is not possible to achieve the desired concentration of antibiotic 

at the site of infection. Also, bacteria are becoming resistant to an increasing number of 

antibiotics, and therefore wounds often cannot be treated in this way. For example, 

Staphylococcus aureus (S.aureus) was a major killer until 60 years ago, before the advent 

of Penicillin. However, now that certain strains (such as MRSA252) of S.aureus have 

become resistant to penicillin, S. aureus preys on patients with weakened immune systems 

again, and remains the fastest bacteria to develop resistance to each new antibiotic. S. 

aureus has been resistant to methicillin for some time now. This strain of S.aureus is 

referred to as methicillin resistant staphylococcus aureus (MRSA). It is now often found to 

be resistant to vancomycin (VRSA), one of the few remaining antibiotic defences against 

bacteria (Dorey, 2005). New antibiotics named Linezoid and Quinupristin are being used to 

tackle S. aureus, but strains resistant to these have already been identified (Pearson, 2002; 

Huycke, Sahm, Gilmore, 1998).   

 

1.1.8.3 Alternative treatments 

There are a vast range of topical medications and pharmacological agents used in wound 

healing, including: cleansers and antiseptics, antimicrobials, anti-inflammatory agents, 

anaesthetics and analgesics, debriding enzymes, and tissue glues. In addition, a new 

alternative hydrogel treatment has been developed called metronidazole. Metronidazole 
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works by entering the cell where it is reduced and binds to DNA causing interference with 

replication. This only occurs under a low redox potential. In studies discussed by Hampson 

(1996), the data suggests that the odour is eradicated within seven days of treatment with 

metronidazole, although, these studies were not standardised, and lacked adequate controls.  

 

Nabi Biopharmaceuticals (Boca Raton, Fla.) are developing a vaccine called StaphVax to 

combat S.aureus. Vaccines are much harder to develop and also to prove to be effective 

than antibiotics, but all of nature�s obvious antibiotics have been found. Newly sequenced 

genomes have yielded a number of possible new genetic targets, but it will take years to 

develop new drugs. Vaccines must be tested more vigorously than antibiotics, since they 

are given to healthy people and routinely to children. However, a vaccine against these 

bacteria would have a huge advantage over antibiotics, since it would knock out the 

bacteria before resistance develops. StaphVax was researched and developed by NIH for 17 

years, before it was licensed to Nabi Biopharmaceuticals to try to complete and take it to 

market. Nabi invested $100 million into the vaccine over the next 8 years, and results 

showed that the vaccine may protect sick patients for at least a year. Nabi is currently 

planning Phase III trials for the vaccine (Plotkin & Shnayerson 2002).    
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1.2 Electroanalytical chemistry 

1.2.1 Fundamentals 
 
Electroanalytical chemistry is essential to results Chapters 3 and 4, where a scanning 

voltametric technique and biosensor array were used to detect biomarkers of wound 

infection. Therefore, this section covers the fundamental concepts of electroanalytical 

chemistry. Electroanalytical chemistry is generally accepted as its own branch of analytical 

chemistry, providing an overlap between physical electrochemistry and chemical analysis, 

by practically applying the theories of physical electrochemistry to investigate the 

properties of solutions. An electrode in solution is an ideal transducer between the chemical 

and electrical domains, whether its role is to monitor species in the solution, or to generate 

a new species that will interact with the medium, and itself be monitored. In 

electrochemistry, charge is transported through the electrode by the movement of electrons. 

Electrodes are typically composed of solid metals such as platinum or gold, liquid metals 

such as mercury, carbon such as graphite, or semiconductors such as indium-tin oxide. The 

passage of charge in the electrolyte phase, is carried via the movement of ions, and is 

typically a liquid solution containing ionic species, such as H+, Na+, Cl-, usually in water.  

 

Electrochemical properties are studied in an electrochemical cell, which commonly consists 

of three electrodes immersed in an electrolyte phase. Two of these electrodes are typically 

platinum, gold or carbon, and function as the working and counter electrodes, and the third 

is a reference electrode, such as the Ag/AgCl reference electrode or the saturated calomel 

electrode (SCE). The electrolyte phase is usually a liquid phase containing ionic species, 

for example NaOH or PBS. In an electroactive system, the electric potential generated 
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between the electrodes can be measured in volts (V), or the resulting current at a particular 

potential in amps (A). One is most often interested in the reaction at the working (or 

indicator) electrode, and therefore a reference electrode is necessary to standardise 

measurement.  

 

1.2.1.1 Reference electrodes 

The primary internationally recognised reference electrode is the standard hydrogen 

electrode, or normal hydrogen electrode (NHE). However, there are several reference 

electrodes to choose from, and therefore a measured potential is quoted with respect to the 

reference electrode used. The two other common reference electrodes are the saturated 

calomel electrode with a potential of 0.242 V vs. NHE, and the silver-silver chloride 

electrode (Ag/AgCl) with a potential of 0.197 V vs. NHE (Bard & Faulkner, 2001). 

     

Since reference electrodes have constant concentration of the complimentary ionic species, 

and therefore a fixed potential, any changes in the electrochemical cell are attributed to the 

working electrode. Therefore, the potential of the working electrode is controlled with 

respect to the reference. If the working electrode is driven at a suitably negative potential, 

electrons may be donated to ionic species within the supporting solution. This flow of 

electrons from the working electrode to the electrolyte solution constitutes a reduction 

current. For example, when a power supply and microammeter are connected across a cell, 

and the potential at a platinum electrode is held at a sufficiently negative potential with 

respect to a Ag/AgCl reference electrode, electrons flow from the electrode to ionic species 

in the solution, i.e. reduction of such species to yield a reduction current. Conventionally, 
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this is called a cathodic current and is taken as negative (Bard & Faulkner, 2001). For 

example: 

 

2H+ +  2e- →  H2         

 

The reverse of this whole process generates an oxidation or positive anodic current. With a 

Ag/AgCl reference, the reaction would be: 

 

 Cl2 + 2e-  → 2Cl -          

 

i.e. the Ag/AgCl is reduced to Ag, and Cl- is liberated into the solution. The rate of flow of 

electrons is defined as current, i, with units of Amperes (A). By plotting a current vs. 

potential curve, one can gain information about the nature of the solution, the electrodes, 

electroactive species and the reactions that occur at the interfaces (Bard & Faulkner, 2001). 

 

1.2.1.2 Faradaic and non-Faradaic currents 

The arrangement of the charged species at the electrode interface is often referred to as an 

electrical double layer, since its structure loosely resembles two layers. The electrode 

double layer constitutes the non-faradaic current. The layer closest to the electrode, the 

inner layer (or compact, Hermholtz, or Stern layer), contains solvent molecules and 

sometimes ions or molecules that have been specifically adsorbed. The centre of the 

specifically adsorbed ions is called the inner Helmholtz plane. The centre of the nearest 

solvated ions is called the outer Helmholtz plane (OHP). Since the interactions between the 

OHP and the charged metal only involve long-range electrostatic forces, their interaction is 
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essentially independent of the chemical properties of the ions. These ions are therefore non-

specifically adsorbed. Thermal agitation in the solution causes the non-specifically 

adsorbed ions to be distributed in a region called the diffuse layer, from the OHP to the 

bulk of the solution. The thickness of this diffuse layer depends on the ionic concentration 

in the solution (concentrations >10-2M have a thickness < ~100Å) (Bard & Faulkner, 

2001). Sometimes the effect of the non-faradaic double layer is negligible and can be 

ignored, but at other times the presence of the double-layer capacitance or a charging 

current is too great to be ignored.  Advanced electroanalytical methods aim to reduce the 

non-faradaic current since it limits analytical detection. Since Faradaic currents are 

proportional to the concentration of chemical species, and non-faradaic currents are 

independent of the concentration of species, at low concentrations, the observed current is 

inaccurate and has limited sensitivity. This is because the non-faradaic current will be 

greater than that of the faradaic current. The non-faradaic current is also larger at high scan 

rates (rate of increase in potential with time in voltametric measurements), resulting in 

distorted electrochemical responses. However, since non-faradaic current decays 

exponentially with time, one can reduce its contribution to the signal by sampling the 

current when the non-faradaic current has reached a steady state.        

 

1.2.2 Electroanalytical techniques 

To investigate electrochemical behaviour, certain variables of an electrochemical cell are 

kept constant, and the resulting variation of the other variables (such as current, potential, 

or concentration) is observed. Electroanalytical techniques are characterised as either static 

or dynamic. In static methods, no experimental parameters are changed during 
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measurement of potential differences at zero current. In dynamic techniques, system 

conditions change during measurement. Dynamic electrochemical techniques are largely 

controlled by diffusion, which may or may not be coupled with chemical reactions in 

solution or on the surface. Voltage, current and time variables can be adjusted to obtain 

maximum information. Within these categories, there are two principle classes depending 

on whether current or voltage is the controlled variable. Techniques within these classes are 

often described by an operational nomenclature consisting of an independent-variable part, 

followed by the dependent-variable part, i.e. (volt-ammetry, chrono-potentiometry). 

Generally, an electrical excitation signal (often the independent variable) is applied to a 

system, with particular electrodes, solution composition and geometry, and the response 

signal is monitored (dependent variable). Together this gives a description of the properties 

of the system (Heineman & Kissinger, 1984).  In a generalised system: 

 

 O + ne-          R       

   

where O and R are oxidised and reduced forms of an electroactive species, in a solution 

containing a relatively high concentration of inert supporting electrolyte, and the 

heterogeneous electron transfer rate is fast and reversible. In dynamic experiments, the 

sample is often either completely in the O or R form, whereas in static experiments, both 

forms are usually present (Heineman & Kissinger, 1984). 
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1.2.2.1 Diffusion 

An important process influencing electrochemistry is diffusion, a factor in almost every 

analytical measurement. Derivation of Fick�s mathematical laws of diffusion uses a 

collection of inert particles in random motion as its model. In fluid media, a molecule 

undergoes frequent and continuous collisions with other molecules, which generates 

randomness to each molecules trajectory. In a closed isotropic system, with no thermal, 

electromagnetic or concentration gradients, or phase boundaries, the number of molecules 

moving in a given plane approximate the number moving in alternative planes, and thus 

there is no net movement of molecules in any given direction. Therefore, the concentration, 

or chemical potential, of the solute is uniform throughout the system, and at equilibrium. If 

a dissimilar chemical potential region is created, the solute molecules will temporarily 

move between regions until a homogeneous condition is restored. This is known as mass 

transfer. The movement of molecules from a higher to a lower chemical potential is known 

as diffusion, and is also an example of mass transfer. The driving force for diffusion is to 

reach the most energetically favourable state, and thus maximise entropy. However, in real 

systems, the transition between high and low chemical potential regions is not infinitely 

sharp. 

 

Another important concept is flux (mol/cm2 s). Flux is defined as the number of molecules 

passing through a unit area of an imaginary plane per unit of time. As with mass transfer, 

equilibrium requires the sum of all fluxes in a given system to equal zero. Flux is a measure 

of the rate of mass transfer at a fixed point, and holds a direct relationship to electrode 

current.  
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In an infinite system of pure solvent at equilibrium, we can imagine it divided into a 

number of thin adjacent slabs of uniform thickness ∆x. If a number, N0, of solute molecules 

is introduced at time t=0 into the central slab, at the start, the concentration profile exhibits 

a sharp spike at the centre. The gradient at each boundary of the central slab is a huge 

negative number, but is a short-lived behaviour. Bombardment by solvent molecules with 

each other causes the molecules to move randomly from the central slab, the motion of 

which is no more probable in one direction than the other. Therefore, the fluxes across 

either boundary are equal at all times. However, the time steps are not evenly spaced. If the 

distance increments become infinitesimally small (∆x → dx), the distribution will follow 

the normal curve giving a Gaussian distribution (Figure 1.3) (Heineman & Kissinger, 

1984), 

        

       Positive gradient / negative flux       Negative gradient / positive flux 

 
             x1    x1+∆x 
 
      slabs (thickness = ∆x)  
 

 

Figure 1.3: Representation of a Gaussian concentration profile 
 

1.2.2.2 Chronoamperometry 

The Cottrell equation forms the foundation for chronoamperometric techniques. In 

chronoamperometry, a potential is applied that is sufficient to reduce or oxidise species at 
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the electrode surface, and the current response is measured as a function of time, hence 

�chrono�. This technique is more commonly referred to as amperometry, and is particularly 

useful for the detection of individual analytes.  It has been exploited as a detection method 

in liquid chromatographic techniques, such as high performance liquid chromatography. 

Amperometry is also widely used in biosensor applications where the use of biological 

reagents confers specificity of the sensor, thus allowing individual electroactive species to 

be determined.  

 

At a favourable potential (the driving force), electrons will be donated to, or accepted from 

an electrode and a current will flow. An increased potential above the standard electrode 

potential (an over-potential), may be applied to increase the rate of electron transfer. The 

magnitude of the current produced depends on two factors: 

1) The rate of electron transfer between the electrode and the redox species in the 

surrounding medium. 

2) The rate of mass transfer of electroactive species to the electrode.  

 

Since electroanalytical techniques are controlled by the mass transport of reactants or 

products to or from the electrode, it is assumed that the rate of electron transfer at the 

electrode is greater than the rate of mass transfer. The Cottrell equation relates the diffusion 

limited current (ID) to the bulk concentration of the species (Heineman & Kissinger, 1984). 

This equation tells us that the diffusion controlled current is proportional to the bulk 

concentration of the species of interest.  
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 iD = nFAC0√(D0/πt)        

 
iD = Current (Amps, A) 
n = Number of electrons transferred by molecule (mol/mol) 

 F = Faraday constant (9.6485x104 C/mol) 
 A = Electrode area (cm2) 
 C0 =  Concentration of the bulk (mol/cm3) 
 D0 = Diffusion coefficient of the reactant (cm/s2) 

t = Time (s)   

 

1.2.2.3 Pulsed amperometric detection 

Pulsed amperometric detection (PAD) is a sensitive method which has been used for the 

detection of many compounds, including carbohydrates following separation by liquid 

chromatography (Neuburger & Johnson, 1987; Johnson & LaCourse, 1991, 1993), the 

detection of carbohydrates, amines and sulphur species (Johnson, Dobberpuhl, Roberts et 

al, 1993), detection of thiols and disulfides (Owens & LaCourse, 1997) and more recently 

for the detection of sulphur containing antibiotics following separation by HPLC 

(LaCourse & Dasenbrock, 1999), and the detection of sulphur-containing amino acids with 

disposable gold electrodes (Cheng, Jandik, Avdalovic, 2003). PAD is based on �the 

application of triple-step potential waveforms to incorporate amperometric detection with 

alternated anodic and cathodic polarisations to clean and reactivate electrode surfaces� 

(Johnson & LaCourse, 1991) (Figure 1.4). These polarisations clean and reactivate the 

electrode surface, thus improving its sensitivity with respect to fixed potential 

amperometry.  
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               Eox (tox)  
   
        
                 Edet (tdet) 
 
    Potential            im  
                         

              
                                       Ered (tred)     

      
 
      Time 

 

Figure 1.4: A single PAD cycle. Current is sampled at im. Edet is the anodic measuring 
potential, Eox the oxidative cleaning potential, and Ered the cathodic reactivation potential. 

tdet, tox, and tred are the time periods for Edet, Eox, and Ered respectively. 
 

The detection potential (Edet) used in the waveform is chosen to suit the particular surface-

catalysed reaction of interest, the current of which is sampled during a short time period 

(tdet) after a delay, near the end of the detection period (im).  After detection, adsorbed 

species are oxidatively desorbed by an electrolytic process which occurs simultaneously 

with the anodic formation of surface oxide, by application of a positive step (Eox) in the 

potential wave-form. Next, a negative step (Ered) is applied to regenerate the �clean� 

electrode surface by cathodic dissolution of the oxide film prior to the next cycle of the 

wave-form. 

1.2.2.4 Voltammetry 

In linear sweep, or staircase voltammetry (LSV), the potential of the working electrode is 

swept across a potential range in a linear manner and the resultant current recorded. 

Considering the situation where the potential is increased with time, species are oxidised at 

the electrode surface at different potentials depending on redox properties of the analyte(s), 
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producing separate peaks at these potentials, pertaining to the analytes reacted. The current 

produced is plotted against potential as a voltammogram, and can be used to give 

information about different species in solution. In cyclic voltammetry (CV), as with LSV, 

the potential is swept, for example, forward in a linear manner versus time, before the 

�direction� of the scan is reversed and sweeps back in a negative manner. The term cyclic 

arises from the closed loop drawn within the plot (Monk, 2001).  

 

As Figure 1.5 shows, in the presence of a reversible redox species, a peak may be evident 

in both the positive and negative CV scans. In ideal, fully reversible systems, these peaks 

are of similar shape, and their peak heights and peak area will be the same. Oxidation 

occurs in the forward scan, and reduction in the reverse. The magnitude of the current is 

proportional to concentration. Cyclic voltammetry is a useful technique for identifying the 

potentials of interest for a species in solution prior to the application of other 

electrochemical methods (Owens & LaCourse 1997). It is also useful for determining 

reaction kinetics, diffusion data and the reversibility of a system.  
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Figure 1.5: Example of a Cyclic Voltammetry scan of ferricyanide 
 

1.2.2.5 Dual pulse staircase voltammetry 

Dual pulse staircase voltammetry (DPSV) incorporates cleaning pulses to clean and 

reactivate the electrode, as with PAD. In DPSV, the cleaning phase is applied at the start  

of the scan, and followed by linear sweep (staircase) voltammetry, increasing in discrete 

steps to approximate a continuous waveform (Figure 1.6). The scan yields a voltammogram 

containing current-voltage peaks which correspond to different compounds present in the 

solution. This technique has been used successfully for the simultaneous voltammetric 

detection and quantification of glucose and fructose (Fung & Mo, 1995, Bessant & Saini, 

1999), the detection of ethanol (Fung & Mo, 1996), and for the measurement of aliphatic 

compounds (Bessant, 1998). This technique has not yet been incorporated into most 

Forward

Reverse
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commercially available potentiostats, but its use only requires simple modification of the 

linear sweep method that is incorporated.   

 

        Dual pulse  
      
        Potential 
                      Eox (tox)  
   
        
                Erest          
            

                        
                         Estart               Time 

              
                        Ered (tred)     

      
 
       

          Linear sweep 

 
Figure 1.6: DPSV waveform. Erest is the resting potential, Eox (tox) is the oxidative cleaning 
potential and time, Ered (tred) is the cathodic reactivation and time. Estart is the potential  

at which the linear staircase sweep starts. 
 
 
 
1.2.3 Electroanalytical detection of H2O2 

As mentioned, hydrogen peroxide (H2O2) is produced in wounds by phagocytosis and is 

therefore a potential marker of healing. H2O2 is also found in the tissues, since substantial 

amounts of H2O2 are present in beverages (coffee), and in urine and exhaled air (Clement, 

Halliwell & Long, 2000). Electrochemical determination of H2O2 is usually performed by 

oxidation at a platinum electrode, which is often modified by deposition of a film with 

enhanced electrocatalytic activity (Bertotti, Kosminsky & Matos et al, 2003).  Detection of 

H2O2 is also important in biosensor construction, because many oxidase enzymes used in 
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biosensors such as glucose oxidase or alcohol oxidase produce H2O2 as an end-product, 

which can be directly electrochemically determined at the electrode (Gorton, Karyakin & 

Palleschi et al, 2003). 

 

1.3 Biosensors 

Biosensors are currently defined as analytical devices incorporating either: a biological 

material, such as a tissue, microorganism, organelle, cell receptor, enzyme, antibody or 

nucleic acid; a biologically derived material, for example recombinant antibody, 

engineered protein or aptamer; a biomimic such as a synthetic catalyst, combinatorial 

ligand or imprinted polymer. Furthermore, the recognition element should be intimately 

associated with, or integrated within, a physicochemical transducer or transducing 

microsystem, which may be optical, electrochemical, thermometric, piezoelectric, magnetic 

or micromechanical (Turner, 2005). Biosensors usually yield a digital electronic signal 

which can be related to the concentration of a specific analyte or group of analytes. 

Biosensors have been developed for use in a wide variety of sectors including medicine, 

drug discovery, environment, food, process industries, security and defence. 

 

Enzyme based electrochemical biosensors can be classified as (Saxena & Malhotra, 2003): 

i) Potentiometric biosensors, which use ion-selective electrodes to determine changes in 

concentration of chosen ions, for example hydrogen ions. 

ii) Amperometric biosensors, which determine the electric current associated with the 

electrons released during redox processes. 
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iii) Conductimetric/Impedimetric biosensors, which determine conductance/impedance 

changes associated with changes in the overall environment.  

The next section focuses on amperometric biosensors, since amperometric biosensors were 

used in this thesis. 

 

1.3.1 Amperometric biosensors 

Amperometric biosensors have proven the most commercially successful biosensor devices 

to date, with applications as diverse as breath alcohol detection and blood glucose 

monitoring. Biosensors may be operated in a two electrode configuration (a working 

electrode and joint reference/counter electrode) if currents are low enough to avoid 

disturbing the reference electrode equilibrium potential, and the iR drop through the 

solution does not significantly alter the applied potential from the potentiostat. To prevent 

both these problems a three electrode configuration is often adopted using an auxiliary 

(Counter) electrode through which the current arising from analyte-specific reactions at the 

working electrode may pass. 

 

Electrode designs are constantly evolving, ranging from the standard solid laboratory 

electrodes, screen printed electrodes of varying composition, to needle type electrodes for 

implantable devices. A discussion of the three generations of biosensors, exemplified by 

the glucose sensor is included in the glucose measurement section that follows.  
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1.3.1.1 Glucose measurement  

Glucose biosensors are by far the most commercially successful biosensors to date, with 

over 40 home blood glucose meters on the market for those with diabetes (Newman & 

Turner, 2005). The main share of the market is occupied by Roche Diagnostics, LifeScan, 

Abbott and Bayer. The most commonly used enzymes in glucose biosensors are glucose 

oxidase (GOx) and glucose dehydrogenase (GDH). GOx enzymes oxidise ß-D-glucose 

substrate, accepting electrons at its FAD prosthetic site in the process. GOx is able to 

transfer these electrons to molecular dioxygen present in the sample, resulting in the 

production of hydrogen peroxide. 

 

By immobilising GOx close to, or onto a suitable transducer, an amperometric biosensor 

can be made, monitoring either O2 depletion of H2O2 production, and as such represents an 

example of a first generation biosensor.  

 

One difficulty in using GOx is the potential problem of dissolved dioxygen limitation. To 

overcome this, oxygen can be replaced with an artificial mediator (electron acceptor). A 

mediator is a redox couple that can shuttle electrons between the redox centre of the 

enzyme and the electrode, and can be electrochemically regenerated at potentials where 

interference from species such as ascorbic acid (vitamin C) and acetaminophen 

(paracetamol) are minimised (Newman & Turner, 2005). Commonly employed mediators 

include hydroquinone, ferrocene, certain redox dyes and ferro/ferricycanide. Mediated 

enzyme systems represent the second generation of biosensors.  
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An alternative approach is offered by the so-called �third generation biosensors�. In this 

case, the electrode is configured such that it is able to exchange electrons directly with the 

enzyme active site deeply buried within the protein, thus negating the need for electron 

shuttle molecules. The difficulty in engendering electrical contact between the active site of 

the enzyme and the electrode make this a difficult and rarely reported approach (Varma et 

al, 1993), but has been reported by Yang, Lanqun and Takeyoshi, et al (2005), Christenson, 

Dock and Gorton et al (2004), Xu & Han (2004) for example. 

 

The first widely-commercially successful glucose biosensor was a mediated device (second 

generation) based on a screen printed disposable sensor design called the ExacTech device, 

developed by MediSense in conjunction with the Universities of Cranfield and Oxford. The 

majority of products today utilise similar technology, i.e. using the basic concept of an 

amperometric biosensor, employing GOx and electrochemical mediators on a disposable 

strip format. This type of glucose monitor is based on the measurement of glucose in a 

blood sample typically taken from the finger using a small lancet.  

 

Since finger pricking is uncomfortable, other sampling sites and methods have been 

investigated. For example, the GlucoWatch® biographer - a continual, non-invasive, 

automatic glucose monitor. This device incorporates the use of an amperometric biosensor, 

which detects glucose in interstitial fluid as it is extracted through intact skin by a process 

of reverse iontophoresis every 20 minutes, for 12 hours, after a 3 hour warm up period. The 

amount of glucose extracted within one three minute iontophoresis cycle is estimated to be 

between 50 � 500 picomol. It is favourable over the finger-prick methods, since it lacks the 
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discomfort, is convenient, automated, and facilitates intensive glucose control regimes. The 

GlucoWatch® is a small, wrist-watch device capable of both sampling and detection, 

contains all necessary circuitry, and a digital display. The operation of the device is 

controlled by a microprocessor, which also converts the sensor signals into glucose 

readings. The circuitry includes two independent potentiostat circuits to operate the 

biosensors, and a galvanostat circuit for the iontophoresis. Temperature fluctuations and 

perspiration are detected by the incorporation of temperature and skin conductivity sensors. 

The AutoSensor itself is disposable, and fits into the skin-side of the biographer.  It 

contains two identical biosensors and iontophoresis electrodes, two hydrogel disks which 

serve as biosensor electrolyte, glucose reservoirs, and also have the glucose oxidase 

enzyme dissolved into them. The biosensor working electrodes have a screen-printed layer 

of Pt/C composite ink. The reference and counter electrodes have screen-printed Ag and 

Ag/AgCl layers. The counter electrode is also used as the iontophoresis electrode. 

However, the Glucowatch has not been as successful as hoped, due to its high cost 

compared to other glucose measurement devices available, and problems with skin 

irritation after prolonged use (Garg, Jovanovic & Potts et al, 2000; Panchagnula, Pillai, 

Nair et al, 2000) 

 

For further information on finger prick biosensors, minimally invasive systems and the 

potential of non-invasive systems such as fluorescence or IR spectroscopy, readers are 

referred to Newman & Turner (2005) who have reviewed blood glucose biosensors from a 

commercial perspective.  
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1.3.1.2 Alcohol measurement 

Another major area of biosensor use is for the detection of characteristic odours of alcohol 

in breath, and alcohol in beverages. Sprules, Hartley, Wedge et al (1996) investigated the 

use of screen printed amperometric biosensors for the measurement of alcohol in beverages 

for example. Kim, Lee, Lee et al (1999) investigated using an amperometric biosensor to 

determine breath alcohol, and was able to measure over the concentration range 20-800 

ppm. The selective, sensitive, and reliable detection of ethanol in the breath of a vehicle 

driver is essential to determine whether a driver has consumed too much alcohol. This 

biosensor utilises nicotinamide adenine dinucleotide (NAD+) cofactor, which is reduced in 

the presence of ADH and ethanol to NADH (Kim, Lee & Lee et al, 1999) which can be 

subsequently oxidised at an electrode poised at a suitable oxidising potential. 

 

    ADH 
CH3CH2OH + NAD+    →    CH3CHO + NADH + H+ 

    Electrode 
  NADH    →    NAD+ + H+ + 2e- 
 
 
 

This biosensor consists of an Ag/AgCl reference electrode, an active working electrode 

containing ADH, and a �compensator� electrode containing a protein analogue (typically 

bovine serum albumin) in place of ADH. The differential signal that is produced between 

the active and inactive electrodes minimises the interference from oxidisable species in a 

person�s breath. Before measurement, the biosensor is hydrated in phosphate buffer at pH 

7.4. Ethanol catalysis and stoichiometric levels of NADH are produced by the enzymatic 
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reaction, with the NADH being subsequently oxidised at the active electrode poised at a 

potential of +470mV (vs. Ag/AgCl), and compared to the compensator electrode.  

 

There are few commercially available amperometric biosensors based on gas-phase 

analysis, as opposed to liquid-phase analysis. This is because of the difficulty associated 

with the use of enzyme electrodes to monitor gaseous samples without aqueous media. For 

this reason, gas-phase biosensors, like the differential-type amperometric biosensor 

described above, are pre-hydrated in buffer, which is retained in the enzyme-immobilised 

gel layers. Small thick-film based sensors can be made cheaply by conventional screen 

printing technology. 

 
 

1.3.2 Screen-printed electrodes 

Screen-printed electrodes are commonly used instead of the conventional solid-state 

electrodes because they lend themselves more easily to mass production and commercial 

use. Layers of speciality inks are deposited sequentially onto an insulating support or 

substrate. They have certain favourable characteristics that have contributed to their 

widespread use in environmental, clinical or industrial applications.  Benefits include their 

small size, low cost, simplicity of manufacture and disposability. They have been used as 

amperometric sensors and/or biosensors, for example in the detection of maltose and 

glucose (Feng, Zhang & Zhang et al, 1998), sulphur-containing amino acids (Cheng, 

Jandik & Avdalovic 2003), and alcohol in beverages (Sprules, Hartley & Wedge et al 

1996). Gorton, de Mattos and Ruzgas (1996) have discussed the properties of modified 

gold and platinum screen printed electrodes for use as sensors and biosensors, and Hart, 
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Turner & Hopcroft (1996) compared the use of screen- and ink-jet printing to produce 

electrodes. Alegret, Albareda-Sirvent & Merkoci (2000) have reviewed the configurations 

used in the designs of screen-printed enzymatic biosensors.  

 

Often, the surface of the screen printed electrode is modified for a particular application. 

For example, coating the electrode surface with a transition metal such as a 

hexacyanoferrate (HCF) film, confers additional electrocatalytic properties on the 

electrode. For example, reduced form Prussian blue (FeHCF) can electrocatalytically 

reduce H2O2 by acting as an electrocatalytic mediator, (Gorton, de Mattos & Ruzgas, 1996; 

Ricci & Palleschi, 2005; O'Halloran, Pravda and Guilbault, 2001). Certain analytes can be 

amperometrically detected at low potentials by combination of catalytic materials with 

oxidase enzymes, 

 

The versatility and simplicity of screen-printing means that designs can be simply and 

cheaply configured, and sensor and biosensor strips are increasingly being incorporated 

into small hand held or portable devices.  

 

1.3.3 Direct (label-free) detection of bacteria with biosensors 

Most microbiological tests are performed in large centralised laboratories, and require 

highly trained technical staff. However, the desire for tests to be portable, rapid and 

sensitive has led to the development of biosensor technologies in the clinical field. Since 

one aspect of this thesis is concerned with bacterial detection, a summary of the main direct 

and indirect biosensor technologies reported for bacterial detection follows. 
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The monitoring of cells at solid-liquid interfaces is generally based on the direct 

measurement of a biochemical reaction at the transducer surface, for example, changes in: 

pH, oxygen consumption, ion concentrations, potential difference, current, resistance, or 

optical properties. For example, certain optical biosensors can detect minute changes in the 

refractive index when cells bind to immobilised receptors on the transducer surface. An 

interferometer (Edwards, Hartman & Schneider, 1997) is an optical unit consisting of an 

LED/filter excitation source, and a photodiode detection system. The increase in CO2 

concentration that can arise from active bacterial metabolism, may be detected by the 

change in emulsion of the aqueous colorimetric pH indicator, which in turn modulates the 

fluorescence detected by the photodiode.  

 

Bioiluminescence biosensors 

Certain enzymes emit photons as a by-product of their catalytic degradation of substrate 

molecules, a phenomenon known as bioiluminescence. This phenomenon maybe used to 

detect the presence and physiological conditions of cells. These systems have been used to 

detect a wide variety of microorganisms, for example of Salmonella Newport and E.coli 

(Blasco, Murphy & Sanders et al, 1998). Bacteriophages are used to lyse bacteria, such that 

the cell content released can be measured by ATP bioluminescence. This is an attractive 

approach due to its high specificity and ability to distinguish between viable and non-viable 

cells. However, the assay time is long, and the method is not suitable for determining low 

bacterial numbers.  
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Piezoelectric biosensors 

These systems may be used for direct label-free detection of bacteria, and other 

applications, with real-time output. The surface of a PZ sensor is coated with selective 

ligands, such as antibodies, and placed in a solution containing bacteria. Bacteria of the 

required specificity will be bound by the antibodies, which results in an increase in the 

mass of the crystal, and a proportional decrease in the resonant frequency of the crystal. 

These have been developed for Vibrio cholerae (Carter et al, 1995) and Salmonella 

typhimurium (Prusak-Sochaczewski et al, 1990) for example.  

 

Electrical impedance biosensors 

This method is useful in the detection of bacteria in clinical specimens, to monitor quality, 

detect specific food pathogens, and in industrial microbial process control. Cell density, 

growth, and long term behaviour of cells on the electrodes cause a change in the impedance 

of the biosensor. A reusable Bulk Acoustic Wave Impedance Sensor has been developed to 

continuously detect the growth of Proteus vulgaris on the surface of solid medium (Deng et 

al (1996).   

 

1.3.4 Indirect Detection of Bacteria  

Fluorescent immunoassay techniques 

The immunogenic nature of microorganisms, due to the presence of proteins and 

polysaccharides in their outer coats, allows the development of fluorescent immunoassay 

(FIA) techniques for bacterial detection. Fluorochrome molecules are used to label 
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immunoglobulins, absorb light at a short wavelength, and emit it at a higher wavelength 

which is detected by fluorescent microscopy. FIA utilises the high degree of specificity 

inherent in immunological reactions.  

 

Microbial metabolism based biosensors 

Microorganisms can transduce their metabolic redox reactions into quantifiable electrical 

signals by oxidoreductase reactions and a mediator. The microbial content of a sample can 

be determined by monitoring the microbial metabolism. For example, oxygen consumption 

could be detected by a transducer. It may also be possible to detect other metabolic 

products of bacteria.  

 

Electrochemical immunodetection of bacteria 

The advantages of electrochemical sensors over optical sensors are that they can operate in 

turbid media, with comparable instrumental sensitivity, and are also easier to miniaturise.  

The continuous response of an electrode system also allows on-line control. Light 

addressable potentiometric sensors (LAPS) based on field effect transistor (FET) 

technology has been used successfully for the immunoassay of bacteria (Abdel-Hamid, 

Atanasov & Ivnitski et al, 1999).  

 

Further information on biosensors for the detection of pathogenic bacteria can be found in 

Abdel-Hamid, Atanasov, Ivnitski et al (1999) who have reviewed the aforementioned 

techniques in 1.3.3 and 1.3.4 in detail. 
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1.4 Electronic Nose 

1.4.1 The human olfactory system and odours 

The inspiration behind the mechanisms of an electronic nose is that of human olfaction. 

Therefore, to understand the operation of an electronic nose it is important to first 

understand the biological act of �smelling� with the human olfactory system that enables us 

to characterize an odour (Gardner, Craven & Bartlett, 1996). Therefore, a description of the 

human olfactory system and the properties of odorous molecules shall follow before 

discussing the so-called method of �machine olfaction�.   

 

Humans have three sensory systems which play a part in the sensation of flavour. These are 

olfaction or sense of smell, gustation or sense of taste and trigeminal sense (response to 

irritant chemical species). Of these three, smell is the dominant contributor to the sensation 

of flavour, and has much wider powers of classification than the taste or trigeminal senses. 

Smell alone can often determine the flavour profile of a product.  

 

Odorant molecules stimulate the human olfactory system located in the human nose. Here, 

they are drawn into the nasal cavity across the epithelium, which contains a mucous layer 

and olfactory hairs or cilia leading into olfactory cells. The cilia have G-receptor binding 

proteins which act as chemosensory receptors. Since there are only a limited number 

(~100) of receptor proteins, they require partially overlapping sensitivities in order to allow 

complex smells to be identified. There are ~100 million olfactory cells, which serve as 

signal amplifiers and generate secondary messengers. These messengers generate signals 

which travel from the olfactory nerves to ~5000 glomeruli nodes in the olfactory bulb via 
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axons. In the olfactory bulb, the signals are further processed by ~100,000 mitral cells 

before they are sent via a granular cell layer to the higher sensory centers in the cerebral 

cortex of the brain. The receptor cells only live an average of 22 days, and are believed to 

have a low sensitivity in the ppm range, and low specificity. However, the signal 

amplification and neural processing that subsequently occur greatly enhance the sensitivity 

and discrimination between thousands of odours (Gardner & Bartlett, 1994). The perceived 

intensity of an odour is not linearly related to its concentration, but typically a sigmoidal 

relationship. A more detailed analysis of each aspect of the human olfactory system can be 

found in Gardner & Bartlett (1999).   

 

1.4.1.1 Properties of odorous molecules 

Many simple odours may arise from single molecular species. Such odorants are typically 

hydrophobic and polar with a molecular mass of 30-300 Da.  However, most natural 

smells, perfumes and flavours are complex mixtures of chemical species frequently 

containing hundreds or maybe thousands of constituents. Subtle differences between the 

relative quantities of these constituents can determine the overall odour of a product. It is 

essential that the molecules are volatile in order to be carried up into the nose via the nasal 

passages to the olfactory receptors. Molecules heavier than 300 Da are generally not active 

odorants at room temperature. However, volatility is not just determined by molecular 

weight. The strength and type of interactions between molecular species is also important, 

as is the geometrical shape and charge distribution of the odorant species. Typically, for 

example, polar molecules are more volatile than non-polar molecules. Odorous molecules 

generally possess one or two functional groups within the structure which makes them 
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more polar. Examples of two functional group structures that are associated with odorous 

molecules are shown below.  

 
Alcohol 

R     O 
           
    H  
 
Acid              O 
  

R     C 
                
                 O�H 
 
 
Aromatic molecules are also important in odour chemistry, since they are often highly 

odorous and are generally chemically stable. This is because they have six delocalized π�

electrons involved in the π bonding molecular orbitals localized above and below the plane 

of the molecules, referred to as aromaticity. A more in depth description of the molecular 

structure of odour molecules and intermolecular forces can be found in Gardner & Bartlett 

(1999).  

 

1.4.2 Machine olfaction 

In many industries, the human nose is still the main �instrument� used to evaluate the smell 

and flavour of products, such as perfumes and foodstuffs. However, this is a costly process, 

since trained panels of experts are required. Physicochemical properties are measured using 

conventional analytical equipment, such as gas chromatography-mass spectroscopy (GC-

MS). As well as being time consuming, these methods often fail to detect some key flavour 

constituents since they fall below the capability of the instrument. These factors generated 
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a demand for electronic instruments that can imitate the human olfactory system, and also 

provide a low cost, rapid sensory system.  

 

The first reported electronic nose was in 1964 by Wilkins & Hatman, who studied the 

redox reactions of odorants at an electrode. However, the first report of the concept of an 

electronic nose as an intelligent chemical array sensory system for odour classification, was 

not until the early eighties, by Persaud & Dodd (1982) and Ikegami & Kaneyasu (1985). 

The term �electronic nose� was first used in the late eighties and appeared at a conference 

in 1987 in the UK (Gardner, 1987).  There are various synonyms for electronic nose such 

as artificial nose, mechanical nose, odour sensing system, and as yet the term has not been 

defined. A definition proposed by Gardner & Bartlett (1994) shall be used for the purpose 

of this thesis: �An electronic nose is an instrument, which comprises an array of electronic 

chemical sensors with partial specificity and an appropriate pattern-recognition system, 

capable of recognizing simple or complex odours.� 

 

As the name �machine olfaction� suggests, it is an intelligent chemical array sensor system 

analogous to the human nose. The process of machine olfaction fundamentally consists of 

three stages: an electronic sensor array, a pre-processor and a pattern recognition engine 

(PARC). The broadly responsive sensor array imitates the olfactory receptor cells, the pre-

processing corresponds to the processes of the olfactory bulb, and the computer based 

pattern recognition system mimics the cerebral cortex of the brain. The diagram in Figure 

1.7 illustrates the basic analogies between human and machine olfaction. 
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Figure 1.7: Diagram showing the analogy between the three basic stages of machine and 
human olfaction. 

 
 
 
1.4.3 Sensors 

The primary requirement of the sensor array is to generate a pattern of responses that is 

discernibly different for different samples. The sensors in the array of an electronic nose 

are therefore required to have partial sensitivity to permit response to a broad range of 

gases or odours, i.e. they should differ but overlap between sensors across the array, in a 

similar manor to biological olfactory receptors, thereby ensuring that the entire pattern of 

response across the sensor array is analysed (Gardner & Bartlett, 1999). The sensor array 

responses are processed by specialised computer software which produces profiles, and 

thus converts smells into a digital representation, or �fingerprint� (Gibson, Prosser, Hulbert, 

2000). This enables the identification of many odours that may contain hundreds of 

individual chemical components. This is opposite to the requirements of an ideal gas 

sensor, which should respond to only one gas.  
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It is desirable for the sensors to have a reasonable response time and recovery time. It is 

also important that the individual sensors are reproducible in their response to a given 

odour, and that the response is reproducible between sensors of nominally the same type. 

This eliminates the need to fully retrain and recalibrate the system if a sensor needs 

replacing. Numerous sensor technologies have been utilised in sensor arrays, most notably 

inorganic semi-conducting materials such as metal-oxide sensors, acoustic wave sensors 

and conducting polymers. 

 

1.4.3.1  Metal-Oxide Sensors 

Metal oxide semi-conductor (MOS) gas sensors are available commercially from suppliers 

such as Fiagro Engineering (Japan) and Capteur mixed MOS sensors from City 

Technology (UK), and are the most widely used sensors for construction of arrays for the 

measurement of odours. The most widely used material in metal oxide sensors is tin-

dioxide, SnO2, doped with small amounts of catalytic metal such as palladium or platinum. 

Varying the choice of catalyst and operating conditions enables these sensors to be used in 

a wide range of applications. The construction of each of these sensors is similar, 

consisting of a ceramic support tube coated with tin oxide (and catalysts), and containing a 

platinum heater coil (Gardner & Bartlett, 1999). 

 

The gas or odour is sensed by a change in resistance at the semiconductor. As the 

concentration of adsorbed oxygen at the semiconductor surface changes, the change in 

resistance proportional to the concentration of the analyte can be measured. At ambient 

conditions, oxygen adsorbs to the surface of the metal oxide layer and dissociates to form 
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O-, by extracting electrons from the semiconductor. Semiconductors come in two types, n 

or p. The electron extraction will respectively increase or decrease the resistance. For 

example, if the semiconductor is exposed to a reducing gas, oxygen will be removed from 

the surface and thus will gain electrons, leading to a positive (p) or negative (n) change in 

resistance, depending on semiconductor type (Lee-Davey, 2004). Other factors such as 

humidity also have an effect on resistance. At low temperatures it is possible that water 

may form. This complicates the detection of volatile odours (Gibson, Prosser, Hulbert, 

2000). However, these sensors are usually operated at elevated temperatures of 100-600 °C 

which reduce the negative effects of water.  

 

In terms of suitability to the application of wound monitoring, MOS sensors have the 

advantages of low cost, and fast response times. They are also particularly sensitive to 

volatiles such as alcohols (0.1-100 ppm) (Ragazzo-Sanchez, Chalier, Chevalier et al, 2006; 

Hansen, Petersen, Byrne, 2005) and are not sensitive to the detection of sulphur- or 

nitrogen-based odours. The disadvantage of MOS sensors and other chemical sensors is 

that they are susceptible to baseline drift, defined by D�Amico & Di Natale (2001) as: �a 

slow unpredictable change of the sensor response, undefined from the statistical point of 

view, which is superimposed to both the signal and noise levels�. Drift is particularly 

insidious in machine olfaction, since their utility is based upon pattern recognition models 

developed from particular responses. Therefore it is important that drift behaviour is 

identified early on and compensated for by the incorporation of a suitable mathematical 

models. 
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1.4.3.2 Conducting Polymer Sensors  

Organic materials offer a wider choice of sensor materials, and more importantly, can 

incorporate functional groups that can interact with different classes of odorant molecules. 

For example, conducting polymers, such as poly(pyrrole), and biological lipid coatings. 

They can also be operated closer to room temperature (20-60°C). As a result of this, the 

first commercial electronic noses used conducting polymer gas sensor arrays.  

 

Polymer sensors generate a change in resistance when analyte adsorbs onto the polymer 

film and induces swelling. However, they are susceptible to changes in humidity, since it 

affects the baseline structure and swelling behaviour of the polymer (Gardner & 

Bartlett, 1994, 1999). 

1.4.3.3 Acoustic wave sensors  

Acoustic wave gas sensors detect the effect of sorbed molecules on the propagation of 

acoustic waves. The basic device consists of a piezoelectric substrate, usually quartz, 

coated with a suitable sorbant coating. Sorption of vapour molecules into the sorbant 

coating is detected by changes in wave velocity, and hence frequency and amplitude of 

oscillation of the sensor. Acoustic wave sensors operate at ultrasonic frequencies of 

typically 1 to 500 MHz.  

 

Two main types of acoustic wave sensors exist: bulk acoustic wave (BAW) and surface 

acoustic wave (SAW). BAW sensors rely upon the application of an electric field to make 

the quartz crystal oscillate at its resonant frequency. SAW sensors exploit wave 
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propagation across the sensor surface. Both of these acoustic wave-type sensors require 

excitation by a.c. voltage.  

 

1.4.4 Signal pre-processing 

Figure 1.8 depicts the generic architecture of an electronic nose. Individual sensors i 

produce a time-dependent electrical signal yij(t) in response to odour (a set of unknown 

odour samples  A, B, C of unknown class j). The rise and decay time of the sensor will 

depend upon one or more of the following parameters (Gardner & Bartlett, 1994):  

1) the flow delivery system that carries the odour from the source to the sensor array 

e.g., the flow profile and type of carrier gas; 

2) the nature of the odour, e.g., type, concentration; 

3) the reaction kinetics of the odour and the active material; 

4) the diffusion of the odour within the active material; 

5) the nature of the sensing material e.g., physical structure, porosity, thermal time-

constant; 

6) the nature of the substrate supporting the active material e.g., thermal conductivity, 

acoustic impedance; 

7) ambient conditions, e.g., temperature of active material, carrier gas, humidity, 

pressure. 
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Figure 1.8: Architecture and processing stages of an electronic nose, including 
unsupervised learning of unknown odour inputs. The difference between the response 

vectors xj are maximized in the transformed vector space, e.g. X-space for eigenvectors in 
PCA.  (Based on Gardner & Bartlett, 1994, 1999). 

 
 

An array of n sensors gives a response vector Xj. The array response vector may be pre-

processed to help the discrimination process. The technique of baseline manipulation 

relates the sensor response to a constant signal value, the baseline. For example, with MOS 

sensors, the baseline signal is the sensors response to air. The signal noise can be reduced 

parametrically or as a specific requirement for the input to a pattern recognition engine. 

The scale of the response vectors is often normalized so that the output of individual 

sensors can be visualized within the range. This process conditions the data so that all 

features in the response vectors are of the same magnitude. Next, the vectors are analysed 

by a suitable pattern recognition technique. 
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1.4.5 Pattern recognition techniques 

The processing of input odour signals in an electronic nose can essentially be divided into 

two methods: unsupervised and supervised. The objective of unsupervised learning is to 

discriminate between unknown odours by enhancing the differences between their related 

input vectors, while supervised learning aims to classify unknown odours as known ones 

that have been learnt during earlier training and calibration of the PARC engine.  

 

The pattern recognition technique of supervised learning essentially involves the 

introduction of known sets of odours to the sensor array, which produce corresponding sets 

of response vectors. These sets are known as training or calibration sets, and are used to 

generate a knowledge base. The knowledge base is further extended by incorporating 

regression coefficients in a parametric model, or a non-parametric model such as a neural 

network. Once the system has been trained, unknown odours can be analysed with the 

electronic nose using the knowledge base to assign the most likely class of odour. Artificial 

neural networks can handle non-linear data, and are tolerant to sensor drift or noise 

(≈10%). They also produce lower predictive error rates than chemometric techniques 

(Gardner & Bartlett, 1994; Ciosek & Wroblewski, 2006).  

 

Figure 1.8 also illustrates the spread of signals through an electronic nose using an 

unsupervised pattern recognition technique. The set of N unknown odour samples produce 

a corresponding set of N unknown array vector responses (x). The vectors are separated in 

multidimensional space by maximizing the distances between the vectors. This can lead to 

a set of p clusters in a feature space of reduced dimensionality, which can be associated 
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with the known classes of odour (i.e. j takes the value of 1 to p). Techniques such as 

principle component analysis (PCA) and cluster analysis are useful for displaying the 

differences of multivariate data in a reduced dimensionality.  

 

1.4.5.1 Principle components analysis 

Since PCA was the methodology implemented for the investigation of odour analyser 

response to imitation wound odour in this thesis, a brief description of this technique 

follows. Further details of PCA can be found in Gardner & Bartlett (1999), Wold, Esbensen  

& Geladi (1987), and Massart, Wu & Guo et al (2002). PCA is an unsupervised technique 

(i.e. does not require a training set), multivariate (i.e. can consider many variables 

simultaneously), non-parametric statistical technique. It is widely used, due to its powerful 

ability to discriminate between simple and complex datasets, such as array-generated odour 

profiles. PCA analyses the inter-relationships between a large number of variables and 

seeks to reduce them to a smaller number of indices, called principle components (Xp), that 

describe their common underlying dimensions.  

 
 
Each principle vector accounts for a degree of variance in the data. The principle 

components are ordered so that the first component, X1 displays the greatest amount of 

variance, followed by the second greatest as X2 and so on. It is typical for a large proportion 

of the variance in the data to be within the first two principle components. Therefore, a plot 

of these two principle components can be used to represent a large proportion of the 

variance in the data, and thus determine any distinct groups of odours. High Xp values show 

a disciminating sensor, whereas values nearer to zero contribute noise to the score. PCA is 
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a useful technique to explore the functionality of an electronic nose, by determining 

differences in multivariate data. 

 

1.4.6 Applications of electronic nose technology 

Commercial electronic noses were first launched in the 1990s, for example, from Alpha 

MOS in 1993, Neotronics and Aromascan in 1994, Bloodhound Sensors and HKR 

Sensorsysteme in 1995 (Gibson, Hulbert, Prosser, 2000). Commercial odour monitors have 

been produced for several years, such as the Portable odour monitor by Sensidyne Inc, 

USA, which can detect the intensity of an odour using only one sensor.  

 

Electronic noses have been used in a variety of applications, mostly to classify the smells 

of beverages and foods (Schaller, Bosset and Escher, 1998), giving information about the 

grade or quality of whiskeys, beers, and wines (Lamagna, Reich, Rodriguez, et al, 2004; 

Marti, Busto, Guasch et al, 2005), or freshness of meat and fish (Blixt, Borch, 1999; 

Olafsdottir, Nesvadba, Di Natale, et al, 2004) for example. They have also been reported 

for use in monitoring cell culture (Bachinger, Riese, Eriksson, et al, 2000), the automotive 

industry (Garrigues, Talou, Nesa, 2004), environmental monitoring (Onkal-Engin, Demir, 

Engin, 2005; Nake, Dubreuil, Raynaud et al, 2005), and the characterisation of perfumes 

(Penza, Cassano, Tortorella et al, 2001; Yang, Yang and Peng et al, 2000). Odour analysis 

is also a promising area of interest in medical diagnostics. Portable, application specific 

devices could be used for a wide range of diseases, and are likely to become more common 

and user friendly for the detection and identification of clinical infections in the future.  
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Magan, Pavlou, McNulty et al (2002) have reported the use of an electronic nose for the 

diagnosis of urinary tract infections (UTIs), by examining the volatile production patterns 

produced by bacterial contaminants in urine samples. Larsson, Mardh and Odham (2000) 

have investigated the use of an electronic nose to detect breath alcohol, using ANNs for the 

prediction of ethanol concentration. Gibson, Prosser, Hulbert, Pavlou (2000) reported a 

project carried out in 1996 between Bloodhound Sensors Ltd with Oxoid Ltd, investigating 

selective culturing techniques and subsequent measurement of the odours generated by the 

organisms. A 4-6 hour incubation time was found to be sufficient to produce characteristic 

odours. A number of strains of E.coli, P.mirabilis, P.aeruginosa and S.aureus were used to 

train a neural network, and were identified with 95% confidence match. Gibson, Prosser, 

Hulbert et al (1997) have also studied the detection and simultaneous identification of 12 

different bacteria and 1 yeast using headspace samples from plate cultures using an 

electronic nose and neural networks with a classification rate of 93.4%. Gardner, Shin and 

Hines (2000) have investigated the use of an electronic nose system based on an MOS 

sensors array to diagnose illness from the breath of dairy cows. In 2005 the same group 

also published a paper on the identification of Staphylococcus aureus (MRSA, MSSA and 

C-NS) from ear, nose and throat infections using an electronic nose. An array of 32 

polymer carbon black composite sensors were exposed to swab samples from patients in 

hospital known to be infected, to produce distinctive response patterns for each vapour. 

Swabs were cultured for 24 hours before �sniffing� with the electronic nose. This was 

followed by a combination of three statistical techniques PCA, self-organising mapping, 

and fuzzy C means, with the objective of producing clusters of the different bacteria 

species and prediction with an accuracy of 99.69%.   
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Although in the aforementioned study culturing time was long, and no attempt was made to 

determine the limits of detection or the chemical make up of the odours, the results from 

this and other initial investigations into the use of odour analysis in clinical applications are 

encouraging and suggest that odour analysis is a worthwhile area of continued investigation 

for the identification of bacterial species for a range of clinical conditions, such as UTI�s, 

throat infections, lung cancer, diabetes or hospital acquired infection of wounds. Odour 

analysis has the prospect of supplying answers to medical practitioners by measuring 

distinct odours characteristic of certain clinical conditions, such as acetone of the breath of 

diabetics for example. It is hoped that one day odour analysis may also form an integral 

part of diagnostic medical practice in hospitals, and in the case of this thesis, be used to 

provide rapid diagnostic information about the nature of a wound environment in an effort 

to help combat the growing threat of hospital acquired infections such as MRSA.   

 

1.5 Chromatographic techniques and test kits  

Chromatography is a widely used standard technique, both for routine analysis and for the 

validation of new and developing analytical technologies. It is a separation procedure for 

resolving mixtures and isolating components, based on differential migration, i.e. the 

selective retardation of solute molecules during passage through a bed of sorbant or porous 

material (stationary phase). As solvent (mobile phase) flows through the column, the 

solutes travel at different speeds depending on their relative affinities for the stationary 

phase. The solutes are separated, and elute from the column at different times. The pattern 

of solute peaks emerging from a chromatographic column is called a chromatogram. 
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Chromatographic analysis has been described in detail elsewhere (Kolb & Ettre, 1997) but 

a brief description of the main chromatography techniques follows.  

 

1.5.1 Liquid chromatography 

Liquid chromatography can be classified into three types. In adsorption chromatography, 

the stationary phase is an adsorbent such as gel, and separation is based on the repeated 

adsorption and desorption of solute species on the stationary phase. There are two modes 

for this type: normal and reverse. Normal phase chromatography utilises a more polar 

stationary bed, with the mobile phase being more non-polar, thus polar species are retained 

longer. Reverse phase chromatography is the opposite of this. In ion exchange 

chromatography, ions are held on a porous insoluble solid and are exchanged for ions in a 

solution that are brought in contact with the solid. Synthetic ion exchange resins are used in 

applications such as water softening and solution purification. The resins are high-

molecular-weight polymers that contain large numbers of an ionic functional group per 

molecule. Cation-exchange resins contain acidic groups such as sulfonic acid groups, and 

anion-exchange resins contain basic groups. In size exclusion chromatography, the column 

is filled with porous material, resulting in separation based on size. Larger molecules that 

are too large to enter the pores are eluted first, whilst smaller molecules are more able to 

penetrate the pores and thus take longer to elute. This technique is also often called gel 

permeation chromatography.  In all types, as molecules are eluted from the column, they 

are detected and a chromatogram is produced (Skoog, West, Holler, 2000).  
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1.5.2 Gas chromatography 

In gas chromatography (GC), the mobile phase is a gas. Gas chromatography is widely 

used as an analytical tool for separating relatively volatile components such as alcohols, 

ketones, aldehydes and many other organic and inorganic compounds. In gas 

chromatography, the sample is vaporized and injected onto a chromatographic column. The 

sample must be of a suitable volume, and is introduced as a �plug� of vapour. Calibrated 

microsyringes are used to inject liquid samples through a rubber or silicone diaphragm or 

septum into a heated sample port located at the head of the column. The sample port is 

usually about 50 °C above the boiling point of the least volatile component of the sample. 

Elution is brought about by the flow of an inert gaseous mobile phase, commonly helium.   

Many changes and developments have occurred in gas chromatographic instruments since 

their first commercial introduction. Microprocessors are used for automated control of most 

parameters, such as column temperature, flow rates, and sample injection. Columns have 

been developed that are capable of separating components of complex mixtures in 

relatively short times.  

 

Detection devices must be used which are able to respond to minute quantities of solutes as 

they exit the column. The ideal detector would also have a linear response, stability, and 

uniform response for a wide variety of chemical species. Several types of detector exist. 

The effluent from a chromatographic column is often monitored continuously by selective 

techniques such as spectroscopy or electrochemistry, such as mass spectroscopy (MS) or 

Fourier Transform IR spectroscopy (FTIR), to give techniques such as GC-MS. These so-

called �hyphenated techniques� are powerful tools for the identification of components of 
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complex mixtures. Computer-based chromatography instrumentation often incorporate 

large databases to compare spectra and identify compounds eluting from the 

chromatographic column.  

 
 
1.5.3 Applications of Chromatography 

1.5.3.1 Chromatographic detection of bacteria 

Bartlett, Gorbach & Mayhew et al (1976) hypothesized that short-chain fatty acids (SCFA) 

produced by certain organisms might serve as markers in clinical samples. Table 1.6 

summarises this and other reported cases of the use of different chromatographic 

techniques. 

1.5.3.2 GC-MS analysis of urine 

GC-MS has been used in many clinical applications, such as in the analysis of urine. The 

often characteristic odours of a culture often give a clue as to the identification of one or 

more of the organisms present, and trained microbiologists can often identify a microbial 

culture by smell alone. Traditionally, volatile species are determined by sample extraction 

followed by GC-MS analysis. However, this approach requires some knowledge of the 

molecules involved. Several variables, such as pH, acidity, carbohydrate content, 

temperature and protein levels, need to be kept within a narrow range.  

 

GC-MS is often used along with the e-nose in research, to provide valuable compositional 

data and for validation purposes. For example, Evans, Persaud & Pisanelli (1996) used both 

techniques in a diagnostic study of urine odour of UTI patients. Urine samples were 

collected over a period of several days, and the urine headspace was analysed by GC-MS 
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and e-nose. The patterns obtained from the sensor array were captured and stored for 

further processing. Mathematical treatment of the data enabled differentiation between the 

normal population and myopathy population. GC-MS analysis found that the composition 

of urine headspace is markedly different within normal and diseased populations. The key 

volatile components found in normal urine were 2-heptanone and 4-heptanone. In diseased 

urine, the amounts of these volatiles increased, and also contained 2(3H)phenanthrene-4-

4a, 10-tetrahydro-4a-methyl and phenyl-isopropylphenyl. The GC-MS analysis validated 

the results obtained from the electronic nose, since the different patterns obtained from the 

gas sensor apparatus correlated with the different volatiles detected by GC-MS.  

 

Headspace GC-MS (HS-GCMS) was chosen as the standard method with which to 

compare the electronic nose and generate information on the five bacteria used in this 

thesis. Though not directly comparable, it was acknowledged to possess the most 

similarities to the single sensor odour analyser. 
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1.5.4 Test kits 

Test kits are also often used to validate a new or emerging technology. For example, Draeger 

Ltd (Blyth, UK) produce gas detection systems, such as their �Accuro� pump. These are used 

in combination with a detection tube, specific to the analyte of interest, e.g. alcohol, carbon 

monoxide, carbon dioxide, hydrogen sulphide, benzene, giving a colorimetric chemical 

sensor. The pump pulls the sample through the detector tube at a precisely defined volume. 

Direct reading is based on the chemical reaction of the measured substance with the 

chemicals in the tube, which leads to a discoloration in the detector tube. The length of this 

discoloration indicates the concentration of the reacting gas (Draeger, 1992). This system is 

typically used for the measurement of emissions or for air investigation in the workplace. 

However, such a system may be used to support the finding of work involving analysis of 

volatile gaseous samples, e.g. HS GC-MS and machine olfaction.  

 

Lovibond (Amesbury, UK) produce a number of test kits, which are designed for water 

analysis e.g. washing water, ground and raw water, wastewater and effluents, industrial 

processes, and swimming pools, but can be used for other applications. The �Checkit� range 

contains a range of test kits, including for hydrogen peroxide, ammonia, aluminium, chlorine, 

copper, and pH. Under the action of appropriate chemical reagents, samples develop a 

specific colour that reveals the presence and concentration of the substance being tested.  

 

A number of other colorimetric tests are available for validation of research data. For 

example, BioAssay Systems (Hayward, USA) manufacture a range of �QuantiChrom� assay 

kits, based on enzymatic colorimetric detection using standard 96 well plates and a plate 
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reader. A number of assay kits are available, such as for measurement of glucose, calcium, 

magnesium, haemoglobin and uric acid, in blood, serum and urine.   

 

1.6 Project objectives 

Chronic wound infections, often acquired in hospital and caused by bacteria such as MRSA, 

represent a worldwide problem generating high morbidity and medical expense. If a wound 

becomes infected during the reparative process, the wound does not heal properly and may 

result in a  chronic wound, which may also lead to the bacterial infection spreading beyond 

the initial site of infection. Existing approaches to identifying infection largely involve 

surveying a range of physical parameters, and a limited use of non-invasive technologies. 

Evaluation is time consuming, and often results in inconsistencies in patient care. Also, by 

the time a bacterial infection has been identified, it is difficult to treat.  

 

It is therefore preferable to detect a non-healing wound as early as possible. It is proposed 

that this could be achieved by monitoring the wound environment with either: a small, 

portable handheld device incorporating an array of single use disposable sensors; and/or a 

simple and fast �near-patient� monitoring system. For both of these a sample would need to 

be taken and analysed at regular intervals, giving almost instantaneous results.  

 

Three possible monitoring concepts have been identified for investigation, the objectives of 

which are listed below: 

1) Identify a suitable model for wound fluid, and determine how best to produce it  

2) Identify biomarkers indicative of healing/non-healing wounds 
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3) Identify key bacteria commonly isolated from wound infections 

4) Investigate the feasability of using the scanning voltametric technique Dual Pulse 

Staircase Voltametry to monitor wounds. 

5) Construct and optimise a biosensor array (to measure each of the selected biomarkers) 

and determine suitability for monitoring wounds 

6) Investigate a single sensor odour analyser for its suitability as a near patient wound 

monitoring system, by �sniffing� surrogate wound samples containing pathogenic 

bacteria commonly isolated from wounds 

7) Use headspace GC-MS as a standard laboratory technique to identify bacterial 

metabolites. Use Draeger tubes to further verify findings. 

8) Use enzyme based colorimetric test kits to validate biosensor measurements. 
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2. Standard methods 

 
 
2.1 Bacteria, biomarkers and surrogate wound fluid 
 
From the extensive literature search, it was decided to use the following bacteria to 

interrogate the discriminatory powers of the odour analyser: Staphylococcus aureus; 

Streptococcus pyogenes; Klebsiella pneumoniae; Pseudomonus aeruginosa; Escherichia 

coli. These bacteria were selected for their high occurrence in a range of wound infections, 

as summarized in Table 1.4. 

 

Three biomarkers indicative of healing/non-healing were selected though the literature 

search (see Section 1.1.5 on the biochemical composition of wound fluid). Glucose was 

selected because it has been reported to increase from the non-healing to healing phase of a 

wound (Trengove, Langton and Stacey, 1996). H2O2 generation has been reported to 

increase in surgical wounds as a result of phagocytosis by mammalian polymorphonuclear 

leukocytes and monocytes. This is because hydrogen peroxide and superoxide anions are 

either directly or indirectly important microbicidal agents, and their generation by the 

leukocyte oxidase system is a necessary requisite for the killing of many species of 

microorganisms (Burton, Hohn & Hunt et al (1977)). Ethanol was selected because it is 

produced metabolically by certain pathogenic bacteria commonly isolated from wounds 

(Barchiesi, D�errico, Del Prete et al, 2000; Murray et al, 1998 - Table 1.4), and could thus 

indicate an increase or decrease in bacterial numbers in the wound environment.  

 



 76

As a proof of concept study, a surrogate wound fluid was required which represented �real� 

wound fluid as closely as possible. Wound fluid bathes the tissue undergoing repair and 

regeneration. When tissue is damaged, a cascade of reactions causes blood to coagulate by 

converting soluble fibrinogen (the largest plasma protein) into insoluble fibrin, leaving an 

exudate of plasma called serum (Ganong, 2003, Clough & Noble, 2003). A study by 

(Trengove, Langton and Stacey, 1996) concluded that wound fluid has the electrolyte 

composition, urea, creatinine levels and osmolarity equivalent to serum and therefore 

appears to reflect the extracellular environment of the wound (Section 1.1.5). Given these 

findings, serum was considered to be a suitable choice of surrogate wound fluid. 

 

2.1.1 Introduction  

The aim of this chapter is to provide information on the bacteria used in this thesis to 

investigate the use of sensor technologies to monitor wounds. The five commonly 

occurring wound bacteria: S.aureus, S.pyogenes, K.pneumoniae, E.coli, P.aeruginosa were 

chosen for investigation in this thesis (see Table 1.4). Each of the 3 sensor technologies 

investigated in this thesis were examined with respect to their ability to detect and possibly 

discriminate between these bacteria in a model wound environment. Were such an 

approach to be successful it is possible that such an approach would provide in situ 

information on the pathogenic state of a wound. It is envisaged that wound fluid would be 

sampled for analysis in a �real� situation, but at this early investigative stage, serum was 

chosen as a model, or surrogate, for wound fluid, since this is the major component of 

wound fluid. Bacteria could then be grown to the desired cell density in a controlled 

environment. 
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In order to obtain information on the cell densities of a bacterial population at a given time 

in a given growth medium, it was necessary to construct growth curves for the five bacteria 

selected in each of the selected media. This is a standard microbiological technique, 

described in Section 2.2.5. Controlling cell density enabled comparison of data within and 

across experiments.  

 

In the development of new technology, it is important to also use a standard technique to 

provide a basis for comparison and validation. Headspace GC-MS (HS GC-MS) was 

selected as the standard method to investigate the presence of volatiles in the headspace of 

the five chosen bacteria. Although an off-line technique, gas chromatography (GC) has 

been used for the analysis of fatty acids present in glucose-containing culture media. 

However, HS GC-MS is also suitable for the study of acidic, neutral and alkaline 

compounds, including fatty acids up to octanoic acid, alcohols up to octanol and amines up 

to decylamine (Larsson, Mardh & Odham, 1981) and is thus a more preferable technique. 

HS GC-MS is particularly suited to the detection of relatively volatile early eluting 

compounds such as alcohols, which are commonly produced by bacteria. A Draeger tube 

system for alcohol detection was also used for further verification of bacterial headspace 

content. Glucose and hydrogen peroxide test kits were chosen to validate the detection of 

the biomarkers glucose and hydrogen peroxide by the biosensor array investigated in 

Chapter 4.   
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2.2 Materials and Methods 
 
2.2.1 Bacteria, growth media and equipment 

Five laboratory strains of bacterial cultures were obtained from NCIMB Ltd, Aberdeen, 

UK, freeze dried in vacuum sealed ampoules. These were: Escherichia coli (NCIMB 

11943), Klebsiella pneumoniae subsp. pneumoniae (NCIMB 13281), Pseudomonas 

aeruginosa (NCIMB 8295), Staphylococcus aureus subsp. aureus (NCIMB 13062), 

Streptococcus pyogenes (NCIMB 11841).  

 

Agar and broth powders were dissolved in RO water at appropriate concentrations, and 

sterilized by autoclaving. The growth mediums nutrient agar (NA), brain-heart infusion 

agar from (BHI) and tryptone-soya broth (TSB) were supplied by Fisher, Loughborough, 

UK. 28 ml capacity universal glass media vials, 500 ml Pyrex bottles, sterile disposable 

Petri dishes, 10 µl inoculation loops, Bunsen burner, isopropanol, Laylette pipettes and tips 

were also from Fisher, Loughborough, UK. 10 ml quantities of broth were made up in 

28 ml universal bottles for sub-culturing, and 5 ml quantities in 20 ml HS GC-MS vials 

(Sigma, Poole, UK) for HS GC-MS experiments, and autoclaved. The NA and BHI agar 

were autoclaved in 500 ml Pyrex bottles, then poured into sterile Petri dishes in a laminar 

flow cabinet, and left to set. Plates and broths were stored at 4 ûC in a constant temperature 

room.   

  
2.2.2 Revival of freeze dried bacteria  
 
Revival of the vacuum packed freeze dried cultures was carried out with aseptic technique 

in a type II laminar flow cabinet. A file cut was made around the diameter of the vial at the 
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mid-point of the cotton wool plug inside the vial and then cracked open. The cotton plug 

was removed and the open end of the vial flamed in a Bunsen burner. 0.5 ml of growth 

media was added and mixed with a pipette. The suspension was sub-cultured onto pre-

labelled nutrient agar plates and tryptone soya broth, and incubated at 37 ûC to grow. The 

organisms were sub-cultured at least twice before use in experiments, since resuscitated 

freeze-dried cultures exhibit a lengthened lag period.  

 

2.2.3 Cryopreservation of bacterial cultures  
 
As a precautionary method (in case of culture attenuation, death, suspected contamination 

or cross contamination) after revival and subculture of the freeze dried culture, each 

bacterial species was also cryopreserved with a cryopreservation kit from Sigma, 

Loughborough, UK. This is a commonly used method for the long term preservation of 

bacteria. Before preservation, each strain was grown up on NA plates for about 10 hours. 

Under aseptic conditions in a type II laminar flow cabinet, individual colonies were picked 

off plates of a particular culture using a sterile inoculation loop, and placed into duplicate 

cryopreservation tubes which were supplied containing beads and liquid. This process was 

repeated until a visibly dense suspension was formed. The caps were put onto the tubes, 

and shaken a little to distribute the colonies amongst the beads before freezing. This was 

repeated for each bacterial culture before freezing at -20 ûC. Therefore, when required, a 

tube of a given bacteria could be removed from the freezer, and using aseptic technique, a 

bead removed from the tube and placed into broth where the bacteria bound to the bead 

formed a �fresh� bacterial suspension.    
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2.2.4 Blood collection and separation  

To imitate wound fluid, serum was the model chosen for the reasons given in Section 2.1. 

After obtaining ethical approval from The Cranfield Biomedical Ethics Committee 

(Cranfield University, Cranfield, UK), blood samples were collected from volunteers 

within the Faculty of Medicine and Biosciences by trained medical personnel. Volunteers 

were asked to fast overnight before donating approximately 50 ml of blood early morning. 

Blood was collected in Sarstedt (Nümbrecht, Germany), S-monovette 9 ml serum gel tubes 

with multifly needle and adapter, which form a closed blood collection system. After 

collection, the serum gel tubes were centrifuged at 3500 rpm for 20 minutes in a Jouan B4i 

bench-top centrifuge. This separated the serum from the blood with a gel layer in-between 

the two, to reduce the chance of contamination of the serum with red blood cells. Serum 

was removed and transferred to new centrifuge tubes, and either placed in the refrigerator 

for immediate use, or stored in the freezer. The blood collection tubes and remaining blood 

content were treated with a 1% Virkon solution for 48 hours before being autoclaved and 

discarded.       

 

To produce imitation interstitial fluid, protein reduced plasma was produced, since the only 

significant difference between plasma and interstitial fluid is the high protein content of 

plasma (see Section 1.1.4). Blood was collected in S-monovette plasma gel tubes (instead 

of serum), and centrifuged to separate the plasma. The plasma was transferred to Vivaspin 

2 concentrator tubes (Sartorious, Epsom, UK) with a molecular weight cut off of 10,000. 

The Vivaspin tubes could hold a 2 ml volume of plasma. Six tubes were used to remove 

protein from a volume of 12 ml of plasma, by centrifugation at 4,700rpm for 1 hour. Build 
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up of protein occurred at the PES vertical membrane in the Vivaspin tube preventing all the 

plasma from being filtered through. Therefore, the plasma that had not filtered through was 

transferred to a fresh Vivaspin tube and the cycle repeated until filtration was complete. 

The filtrate produced was a clear colour due to the protein removal, and thus considered a 

reasonable representation of interstitial fluid. A discussion of the differences between 

interstitial fluid, serum and plasma can be found in Sections 1.1.4 and 1.1.5.  

 

2.2.5 Bacterial calibration curves 
 
In order to gain an understanding of the growth rates of each of the five bacteria used in 

this study, it was necessary to establish growth curves. This also facilitated the control of 

bacterial cell densities in later experiments. Therefore growth curves were constructed for 

each bacteria in each of the media they were grown in. The methodology employed for the 

construction of the growth curves follows.  

 

9 ml of growth media (TSB, YPD, or serum + DMEM) was inoculated with 1 ml of 

bacterial suspension and incubated overnight (O/N) at 37 ûC. The following morning, 1 ml 

of medium was removed from the O/N broth and used to inoculate 9ml of fresh growth 

media. The optical density was measured at 600nm with a Beckman DU-640 

spectrophotometer immediately after inoculation, representing time zero. Non-inoculated 

growth media was used as the blank for optical density readings. The freshly inoculated 

broth and blank were incubated at 37 ûC in a Gallenkamp Orbital Incubator at 140 rev/min. 

After every 1 hour, 1 ml of broth was removed, and its optical density measured. This was 

followed by serial dilutions of the broth from 10-1 to 10-6 in sterile RO water. 10 µl of 
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dilutions 10-2, 10-3, 10-4, 10-5, 10-6 and blank were spotted and spread onto NA plates in 

pre-marked 1/6 sections, as illustrated in Figure 2.1. Plates were allowed to dry near a 

Bunsen flame, and then inverted and incubated at 37 ûC overnight. These steps were 

repeated for each culture, and performed in triplicate.  

 

Absorbance versus time values were plotted, illustrating the standard phases of growth: lag, 

exponential and stationary, (death not recorded). The following morning, the colonies for 

each dilution in each of the 1/6 sections of the plates were counted. The most appropriate 

(countable) dilution was converted into colony forming units per ml (CFU/ml) and plotted 

against absorbance. When growing bacteria in the studies that follow it was therefore 

possible to approximate what time the bacteria would reach a particular cell density, and to 

check this by measuring the optical density and referral to the relevant graphs.   
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Figure 2.1: Serial dilution and plating layout for production of bacterial growth curves 
 

 
 
 

 10-1     10-2      10-3      10-4      10-5        10-6 

Growth medium 
(Inoculated from 

O/N broth) 

     1ml               1ml      1ml     1ml       1ml     1ml   

Serial dilution in vials containing 
9 ml sterile diluent 

10µl spread onto 
sections of NA plate, 

and incubated at  
37 ûC O/N. 

         10-6        blank
 
    10-5                    10-2 

 
10-4    10-3 

Colonies counted 
and converted 
into CFU/ml 
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2.2.6 Headspace GC-MS  

Standards and bacterial samples were run on a Perkin Elmer (Wellesley, MA, USA) 

Autosystem XL gas chromatograph, linked to a Turbomass mass spectrometer and 

Turbomatrix 16 headspace sampler. A Perkin Elmer Elite FFAP GC column (30m x 

0.25mm x 0.25µm) was used, the stationary phase being nitroterephthalic acid modified 

polyethylene glycol, and features high polarity, a broad temperature range of 40°C to 

260°C, and is especially suited for organic acids, free fatty acids and alcohols. The 

headspace GC-MS hardware was operated via a Dell Optiplex GX110 PC, running 

Turbomass version 4.1.1, Turbomatrix, and the National Institute of Standards and 

Technology (NIST) mass spectral database. Glass sample vials (20 ml), aluminium caps, 

starsprings, PTFE Butyl rubber septa, and hand crimper were also from Perkin Elmer. 

 

The methods for the Turbomatrix, GC and MS follow: 

Turbomatrix 

Temperatures (°C)   Times (min)  Pressure (psi) 

Vial oven:   75  Thermostat: 15  Column: 35 

Needle temp:   80  Pressurise: 3 

Transfer line temp:  85  Withdraw: 0.2 

 

GC       MS 
Equilibration 0.5 min     Scan masses (m/z) 33 to 350  

35 °C for 6 min     Retention window 1 to 29.63 min 

200 °C for 3 min increasing at 8 °C/min 

Total run time 29.63 min  
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2.2.7 Test kits 

To validate the biosensor data in this thesis, test kits were used. A Lovibond (Amesbury, 

UK) �Checkit� hydrogen peroxide test kit based on colorimetric observation was supplied 

by Fisher. The hydrogen peroxide kit involved adding and crushing a tablet supplied with 

the kit to a 10 ml test sample (H2O2 in 0.1M PBS) transferred to the test compartment, 

inverting and waiting for two minutes. The colour produced was then compared against 

standards colours on the kit. It was not possible to use this kit to test the serum samples 

because serum has an inherent colour similar to that generated by the kit. Only clear 

samples, such as PBS, could be tested. 

 

The glucose test kit selected was a BioAssay Systems (Hayward, USA) Quantichrom 

glucose test kit. This assay was also based on colorimetric detection, but using 96 well 

plates and a plate reader (Dynex Technologies MRX Revelation Micro Plate Reader) rather 

than the eye. This kit is designed to be used with serum or plasma samples. Standards were 

prepared and 5 µl added to centrifuge tubes, and 500 µl �reagent� added (supplied by kit). 

The tubes were heated in boiling water for 8 minutes, and cooled for 4 minutes in cool 

water. 200 µl of the standards were transferred to a 96 well plate, and the optical density 

measured at 630nm. Optical density values were blank subtracted and plotted against 

glucose concentration.    

 

To support the findings of HS GC-MS, a Draeger short-term gas detector pump called an 

�Accuro� pump was used with short term alcohol measurement tubes from Draeger Ltd, 

Blyth, UK (also refer to Section 1.5.4). By connecting the Draeger pump with an alcohol 
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detector tube to a compressible bag, as illustrated in Figure 2.2 (b), it was possible to 

measure the alcohol content of the headspace of bacteria, although it should be noted that 

Draeger pumps and tubes are not designed for this application, and the tube does not 

differentiate between different alcohols. Bacteria were grown up as normal to 

5 x108 CFU/ml, and 5 ml transferred to a compressible bag. The bag was inflated using a 

pump, and kept compressed by closing the clamp located around the tubing. The tubing 

was then attached to the end of the Draeger tube, and the tubing clamp opened. The Accuro 

was pumped 10x, and the change in colour over part of the alcohol tube was read off as 

alcohol in ppm. 

 

(a) 

 
(b) 

Figure 2.2: (a) Draeger Accuro pump and tubes, (b) experimental setup for the 
measurement of alcohol content of five bacteria in the headspace of a compressible bag. 
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2.3 Results and discussion 

2.3.1 Bacterial growth curves 

The calibration growth curves for each of the bacteria grown in TSB are shown in Figure 

2.3.  The three phases: lag, exponential and stationary can be seen, more obviously for 

S.aureus and S.pyogenes than for others. P.aeruginosa appears to have had the smallest 

overall change in absorbance, while E.coli has had the greatest, and all have grown 

successfully. Figure 2.4 illustrates the calibration plot for these five bacteria in TSB. The 

bacterial inoculation procedure was such that the curves produced were for bacterial 

numbers of x108 CFU/ml. The reasons for this are two fold: firstly, to consider instrument 

sensitivity, i.e. levels below this are not detected; secondly, to save time.  

 

In order to move one step closer to that of a �real� wound environment, bacteria were later 

grown in a variation of Eagles medium, a minimal medium called Dulbecco�s modified 

Eagles medium, which itself has many variations. Figure 2.5 shows the calibration plots for 

the bacteria grown in DMEM. After successful initial investigations with the odour 

analyser using DMEM (see Chapter 5), the bacteria were grown in serum as the surrogate 

wound fluid. However, it was found that only S.aureus would grow in serum, therefore it 

was necessary to supplement the serum with DMEM. It was found that 90:10 v/v 

serum:DMEM was enough for the bacteria to grow, illustrated in Figure 2.6.  
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Figure 2.3: Growth curves of five bacteria grown in TSB 
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Figure 2.4: Calibration plots for five bacteria grown in TSB. 
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Figure 2.5: Calibration plots for five bacteria grown in DMEM. 
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Figure 2.6: Calibration plots for five bacteria grown in 90:10 v/v serum:DMEM. 
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Figure 2.7 demonstrates the large differences in cell densities produced by growing 

S.aureus in serum, 90:10 v/v serum:DMEM, and protein reduced plasma. Although protein 

reduced plasma was not used in the studies in this thesis, it was considered, since some 

interstitial fluid may also be present in wounds, and may well be more of a major 

component than serum in superficial wounds to the skin, and could be an area to investigate 

in the future. It can be seen that S.aureus grown in serum reached much higher cell 

densities than when grown in protein reduced plasma, and when grown in 90:10 v/v 

serum: DMEM higher still densities were achieved.  
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Figure 2.7: Comparison of calibration plots for S.aureus grown in protein reduced 
plasma, serum, and 90:10 v/v serum:DMEM.  
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2.3.2 Detection of ethanol by headspace GC-MS 
 
Information related to the detection of bacterial volatiles by chromatographic methods or 

otherwise was limited. However, it was known that ethanol is the major metabolic product 

of many bacteria, and it was known that ethanol could be detected by HS GC-MS 

(Hayward et al 1977, 1983, Coloe, 1978).  

 

100 ppm aqueous ethanol was used to optimise the Turbomatrix (headspace sampler) and 

GC methods by varying the oven temperatures, temperature gradients, sample and injection 

volumes pressures and temperatures to produce peaks of acceptable resolution and size.  To 

enable quantification of the concentrations of ethanol in the bacterial samples analysed, it 

was necessary to produce a standard calibration curve for ethanol. Therefore, ethanol 

standards were run and analysed. Figure 2.8 illustrates the process of converting the 

chromatogram produced into appropriate quantitative information. Within the Turbomass 

software it was possible to integrate the area of a peak, in this case ethanol. A value for the 

area was also displayed. The peaks were confirmed as ethanol by using the peak 

information to search the NIST database, which produced a list of possible matches, each 

scored out of 1000 for probability of a match to the data.     

 
 
Figure 2.9 (a) depicts the increase in ethanol peak size with increase in ethanol 

concentration, and (b) the calibration graph generated from the integrated peak area data. A 

clear linear relationship is present with an R2 value of 0.9826. This graph was used to 

quantify the bacterial ethanol data 
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Figure 2.8: Headspace GC-MS detection of ethanol standards � example peak area 
integration and identification.  
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Figure 2.9: Headspace GC-MS detection of ethanol standards � 

(a)Ethanol peaks, (b) Calibration plot. 
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2.3.3 Detection of bacteria by headspace GC-MS 
 
The headspace of the five bacteria: S.aureus, K.pneumoniae, E.coli, S.pyogenes, and 

P.aeruginosa was analysed by HSGC-MS. The bacteria were grown as normal to three 

different cell densities: 0.5x109, 1.0x109, 1.5x109 CFU/ml in duplicate in 90:10 v/v 

serum: DMEM. 1 ml samples were pipetted into headspace vials, sealed and the headspace 

analysed.   

 

Selection of a peak revealed the molecular weights that made up the peak. The peaks 

produced were verified as ethanol by removing background noise (Figure 2.10) and 

importing the peak information into the NIST database. Following this, integrating the peak 

yielded a value for the area. Figure 2.10 also illustrates the process of integration. It can be 

seen that some small �peaks� (red line) that do not exist before integration (green line) are 

generated in this process. This is simply the programs interpretation of the data, i.e. three 

points increasing/decreasing in number is interpreted as a peak, however small. This 

process could be manipulated within the program and the same parameters were used for 

each bacterial sample peak integration.  

 

It was hoped that other metabolic products would also be detected such as lactic acid, 

however, it was found that in this instance, it was only possible to detect ethanol. It is 

assumed other compounds produced were at levels too low to be detected by this method, 

perhaps because of the minimal nature of the medium the bacteria were growing in.  
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Figure 2.10: Headspace GC-MS detection of bacteria � S.pyogenes example � Peak area 

integration and identification as ethanol. 
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The peak areas, which are the average of duplicate runs, are recorded in Table 2.1. Using 

the ethanol calibration graph the peak areas were converted to ethanol concentration, 

shown in Figure 2.11. The concentration increased with cell density for all bacteria. The 

most ethanol was produced by S.aureus, closely followed by S.pyogenes in the region of 

325 µM at a cell density of 1.5x109 CFU/ml. K.pneumoniae, E.coli, and P.aeruginosa 

produced similar concentrations of ethanol to each other at all three cell densities.  

 

The data generated does reveal the limitations of a technique such as HS GC-MS. One 

ethanol peak produced for each bacteria is not enough to be able to use a discriminatory 

technique such as principle components analysis, and hence it may not be possible to use 

this technique as a diagnostic tool with wound fluid samples containing unknown bacteria. 

Development work beyond the scope of this project may improve the range of bacterial 

metabolites detected. However, this data was useful, as it confirmed the metabolic 

production of ethanol by the five bacteria, and that the concentrations produced were in a 

range that could potentially be detected by other means with more diagnostic potential, 

such as by electrochemical methods (Chapter 3), biosensors (Chapter 4), or by odour 

analysis (Chapter 5). It has previously been shown that machine olfaction based 

instruments, and more specifically the single sensor odour analyser developed by Lee-

Davey (2004) are particularly suited to detecting volatiles such as ethanol.  
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Table 2.1: Integrated ethanol peak area values for headspace GC-MS of bacteria grown  
in 90% serum 10% DMEM.  

 
 Integrated peak area 
CFU/ml S.aureus K.pneumoniae P.aeruginosa S.pyogenes E.Coli 
1.5x109  224 156 144 219 138 
1.0x109 145 56 53 65 51 
0.5x109 52 6 19 13 26 
0 0 0 1 0 1 
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Figure 2.11: Ethanol concentrations detected by headspace GC-MS analysis of bacteria 

grown in 90:10 v/v serum:DMEM 
 
 

2.3.4 Detection of mixed bacteria by headspace GC-MS 
 
It is normal for more than one bacteria to be seriologically confirmed as present in a sample 

taken from a wound. Therefore paired combinations of the five bacteria, and one combined 

sample of all five bacteria were analysed by headspace GC-MS. Two cell densities, 1.0x109 
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and 1.5x109 CFU/ml were analysed in duplicate. Bacteria were grown separately in 90:10 

v/v serum:DMEM as normal to the required densities, and added together to form the 

combinations listed in Table 2.2. Minor adjustments to densities were made using blank 

90:10 v/v serum:DMEM to produce the desired final numbers of CFU/ml.  

 

Ethanol peaks were integrated as described for the individual bacterial populations in 

Section 2.3.3, giving the values recorded in Table 2.3. These were converted into ethanol 

values displayed in Figure 2.12. The letters refer to those allocated in Table 2.2 for the 

particular bacterial combinations studied. 

 

Table 2.2: Bacteria combinations analysed by headspace GC-MS.  
 

Symbol Bacteria  
A S.aureus + S.pyogenes + E.coli + 

K.pneumoniae + P.aeruginosa 
B S.aureus + S.pyogenes 
C K.pneumoniae + P.aeruginosa 
D S.aureus + E.coli 
E P.aeruginosa + S.pyogenes 
F K.pneumoniae + S.pyogenes 
G K.pneumoniae + E.coli 
H S.aureus + K.pneumoniae 
I P.aeruginosa + E.coli 
J S.pyogenes + E.coli 
K S.aureus + P.aeruginosa 

 
 
 

Table 2.3: Integrated ethanol peak area values for headspace GC-MS of combinations of 
bacteria grown in 90:10 v/v serum:DMEM  

 
 Integrated peak areas             
CFU/ml A B C D E F G H I J K 
1.5 x 109  222 283 89 182 80 76 377 292 74 353 522
1.0 x 109  82 105 53 64 42 34 124 110 38 103 179
0 1 0 1 0 0 0 1 2 0 0 1
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Figure 2.12: Ethanol concentrations detected by headspace GC-MS analysis of bacteria 

combinations grown in 90:10 v/v serum:DMEM  
 

 
As found with the individual bacteria, ethanol concentration increased with cell density, 

and negligible amounts of ethanol were detected in the blanks. The amount of ethanol 

produced for different combinations varied from 49.5 to 261 µM for 1.0x109 CFU/ml, and 

from 111 to 761 µM for 1.5x109 CFU/ml. Combination K (S.aureus + P.aeruginosa) 

produced the most ethanol at both densities. There does not appear to be a relationship 

between the results for the combinations of bacteria and the individual bacteria.   

 

2.3.5 Alcohol Draeger tube test 
 
Further authentication of the presence of ethanol in bacterial headspace was provided by 

detection using an alcohol Draeger tube, as described in Section 2.2.7. The levels detected 

are shown in Table 2.4. The values are lower than those detected by HS GC-MS, but as 

already mentioned, the Draeger pump and tubes are not designed for this application, and 
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therefore care must be taken in interrogating these results. They do however suggest the 

presence of ethanol at slightly higher levels in the headspace of S.aureus and S.pyogenes 

than in P.aeruginosa, E.coli and K.pneumoniae, as found by HSGC-MS.  

 
Table 2.4: Alcohol levels detected by Draeger tubes 

 
Bacteria Alcohol (µM) 
P.aeruginosa 431 
E.coli 431 
S.pyogenes 517 
K.pneumoniae 431 
S.aureus 517 
Blank 86 

 
2.3.6 Glucose BioAssay 
 
The calibration graph generated from the QuantiChrom glucose BioAssay is displayed in 

Figure 2.13. A clear linear relationship was present with an R2 value of 0.9975 for the 

range 0 to 16 mM glucose.  

y = 0.0217x
R2 = 0.9975

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18
Glucose concentration (mM)

A
bs

or
ba

nc
e 

63
0n

m

Glucose stds
Linear (Glucose stds)

 

Figure 2.13: Glucose BioAssay standards 
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2.3.7 H2O2 �Checkit� test kit 
 
Standards tested produced colours matching those displayed on the Lovibond �Checkit� kit 

box.  

 
2.4 Overall Chapter Conclusions 
 
A suitable surrogate wound fluid (serum) was identified and produced successfully. It was 

found that S.aureus was able to grow in serum alone, and that by supplementing the serum 

so that it contained 90:10 v/v serum: DMEM, all five selected wound bacteria could grow 

and be used for odour analysis. Growth curves and calibration plots were produced for the 

five bacteria grown in TSB, DMEM, and 90:10 v/v serum: DMEM, providing useful 

information on the growth cycles and cell densities of the bacteria, which will be used in 

the studies on odour analysis that follow in Chapter 5. HS GC-MS and a Draeger pump and 

tube system was used to detect volatiles in the headspace of five bacteria grown in 90:10 

serum: DMEM, verifying the presence of ethanol, and that it is produced at a level 

measurable by other means, such as by an alcohol biosensor. Standard calibrations were 

produced for the glucose test kit, which is referred to in Chapter 4, to validate the biosensor 

data.  
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3. Detection Using Dual Pulse Staircase Voltammetry 
 
3.1 Introduction 

This chapter investigates the first of three possible monitoring technologies, the 

electrochemical technique of dual pulse staircase voltammetry (DPSV) described in 

Section 1.2.2.5. This technique was identified as an appropriate technique, due to its 

rapidity and ability to produce information rich voltammograms while also cleaning the 

electrode surface of fouling agents. Using a standard three electrode system, this technique 

has been reported to produce characteristic peaks for different analytes allowing both 

qualitative and quantitative determination of analytes in solution (Bessant, 1998; Fung & 

Mo, 1995). and may present an alternative to the more common approach of using 

amperometric biosensors for such measurements. If successful, this approach would offer 

the benefits of reduced cost of sensor fabrication, and it is possible that a single sensor may 

be used to measure several components, rather than the necessity of using a biosensor array 

to determine individual components, as investigated in Chapter 4. However, reports using 

the technique of DPSV are limited, and there are none relating to its use in a complex 

matrix such as a biological fluid, and therefore this study was undertaken to establish the 

feasibility of this technique for wound monitoring.  

 

Amperometric detection was not investigated for the monitoring of wounds, since it lacks 

specificity in mixtures, however, cleaning pulses are common to the techniques of pulsed 

amperometric detection (PAD) and DPSV. Therefore, for illustrative purposes, PAD was 

compared with amperometry to demonstrate the functionality of the cleaning pulses for the 

removal of fouling agents. Following this, gold and platinum solid electrode materials were 
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compared. The suitability of two screen printed electrodes for use in DPSV were tested, 

since ultimately, if the technique was successful, it is envisioned that a portable device 

using disposable electrodes would be produced. Work was carried out initially referring to 

the work of Bessant (1998) to establish the system (using NaOH). Once established, PBS 

was used as it is known to have similar electrolyte composition as serum. Each of the three 

biomarkers identified (Section 2.1): ethanol, glucose and H2O2, were investigated 

individually and in mixtures, and corresponding voltammograms produced. The influence 

of a number of possible electrochemical interferents such as paracetamol (acetaminophen) 

and vitamin C (ascorbic acid) that may be present in �real� (i.e. clinical) samples was also 

investigated.  

                                                                                                                                                                              

3.2 Materials and Methods 

3.2.1 Reagents 

Solutions of NaOH and NaCl (both Sigma, Poole, UK) were prepared in reverse osmosis 

water. Ethanol (99.9% denatured HPLC grade) was from Aldrich (Poole, UK). 4-

Acetomidophenol, salicylic acid, L-ascorbic acid, bilirubin, distilled water, cholesterol, 

cysteine and creatinine, methanol, propanol, acetone, glucose, trichloroacetic acid, 

glutathione, dopamine were from Fisher (Loughborough, UK). Hydrogen peroxide (31.3% 

v/v assay ACS reagent), fructose, gentisic acid, levo-dopa, tetracycline, tolazamide, and 

tolbutamide were from Sigma (Poole, UK).  
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3.2.2 Instrumentation 

Electrochemical measurements were made using a PGSTAT10 multichannel (4 channels) 

Autolab (Eco Chemie, Utrecht, The Netherlands), which was operated by GPES (version 

4.9) software under PC control.  

 

A Chemlab SS3 stirrer was used during all amperometric experiments with an 8x6mm 

magnetic follower (Fisher, Loughborough, UK). The electrochemical cell was a 10 ml glass 

beaker (Fisher, Loughborough, UK). A standard laboratory clamp stand and clamps were 

used to hold beakers and three electrode configuration with Autolab connections in position 

(Figure 3.1). Screen printed electrodes were connected to the Autolab using connectors 

made in house from standard components from Maplins, UK. The connectors are known as 

FFC (Flat Flexible Cable) Connectors, using a 1.25mm pitch (Molex, part number 39-51-

3084). They are mounted onto �Veroboard�, and then connect via 4mm plugs and sockets to 

the potentiostat. The wires were protected by heat shrink rubber, and the circuit board by 

PVC tape. 

 

     
 

Figure 3.1: Assembly of solid electrodes (working (w.e.), reference (r.e.), counter (c.e.)).  

w.e. r.e. c.e. 
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3.2.3 Electrode materials 

Gold and platinum solid-state electrodes and the Ag/AgCl solid-state reference electrode 

were from Bioanalytical Systems (BAS), West Lafayette, USA. The reference electrode is 

internally saturated with KCl to maintain a constant Cl- ion activity, and maintains its own 

internal redox potential. The Ag/AgCl reference was stored in 3 M NaCl when not in use. 

The screen printed three electrode assembly of carbon, carbon, and Ag/AgCl were made in 

house. The carbon ink base layer 145R and Ag/AgCl reference electrode layer was from 

MCA Services Ltd., Melbourn, UK, and the insulation layer � 242-SB epoxy-based blue 

protective coating ink was from Agmet ESL, Reading UK. A further description of the 

screen printing process is given in Section 4.2.4. The screen printed electrodes with gold 

working electrode (w.e.), carbon counter (c.e.) and Ag/AgCl reference (r.e.) were from an 

existing in-house design and fabricated by Dupont (Bristol, UK). These two screen printed 

sensors are shown in Figure 3.2.  

 

 

 
 
 

 
Figure 3.2: Screen printed three electrode assembly electrodes  

(a) carbon (w.e.), carbon (c.e.) Ag/AgCl (r.e.), (b) gold (w.e.), carbon (c.e.), Ag/AgCl (r.e.). 
 
 

 (a)            (b) 
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To remove electroactive agents from the solid-state electrodes between measurements, they 

were first polished with 0.05 µm alumina (Sigma) in reverse osmosis water and a polishing 

pad, secondly washed with acetone, and thirdly, ultrasonicated in a beaker of acetone to 

remove remaining alumina, and allowed to air dry. 

 

3.2.4 Electrochemical  techniques 

In pulsed amperometric detection (PAD), the cleaning and detection parameters were as 

follows: Eox = 0.8 V, Ered = -0.2 V, Edet = 0.2 V, tox = 0.2 s, tred = 0.4 s, tdet=0.2 s (Bessant, 

1998 - refer to Section 1.2.2.2).  

 

The technique of dual pulse staircase voltammetry (DPSV), described in Section 1.2.2.5, 

consisted of two electrode cleaning pulses, (the first a 3 s pulse at +0.7 V (vs. Ag/AgCl 

reference electrode), the second a 2 s pulse at -0.9 V) to clean the electrode surface, 

followed by detection typically scanning the potential range - 0.9 V to +0.8 V, following 

the work of Bessant (1998). A response was registered even before the addition of analyte, 

due to electrode effects and the electrochemical activity of the buffer solution. This 

response took time to reach steady state, and therefore no analyte was added until steady 

state had been reached i.e. a scan of the blank (0.1 M NaOH or 0.1 M PBS as stated) was 

repeatable, typically requiring 8 to 10 scans. This also allowed the option of blank 

subtraction, since, in this study, the response of a system was taken as a summation of the 

blank response and the response of the analyte.  After each addition of analyte, the cell was 

stirred for 10 s before being scanned until a repeatable response was obtained. Detection 
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was performed in 10 ml of either 0.1 M NaOH, 0.1 M HCl or 0.1M PBS as indicated for 

each result.  

 

3.3 Results and Discussion 

3.3.1 Comparison of amperometry and pulsed amperometric detection 

Although DPSV is the technique being investigated here, the effectiveness of the cleaning 

pulses can be illustrated by comparing fixed potential amperometry with pulsed 

amperometric detection. Figure 3.3 compares these two techniques for the detection of 64 

mM increases in ethanol concentration in 0.1 M NaOH buffer at a gold working electrode. 

It can be seen that PAD gives significantly higher current values with each step increase in 

ethanol concentration when compared to fixed potential amperometry, therefore illustrating 

that the cleaning pulses employed in PAD are effective. In fixed amperometry, the lower 

sensitivity is thought to be due to the organic residue of the dehydrogenation reaction 

remaining strongly adsorbed to the electrode surface, and therefore hindering further 

adsorption of molecules from the bulk of the solution. The application of the three step 

waveform aims to maintain a uniform electrode activity. After measurement, the anodic 

polarisation step oxidatively degrades the adsorbed organic material to CO2 simultaneously 

with the formation of the oxide layer. The cathodic polarisation step that follows reduces 

the PtO and regenerates the active platinum electrode (Hughes, Meschi and Johnson, 1981; 

Johnson & LaCourse, 1990; LaCourse, Johnson, Rey, et al, 1991; Tarnowski & 

Korzeniewski, 1996). 
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Repeating this study for glucose at a platinum electrode found that as glucose concentration 

was increased, the sensitivity of the platinum electrode was reduced, due to fouling. 

Sensitivity to glucose was better with PAD than fixed-potential amperometry, but the 

difference was far smaller than for ethanol. This may mean that glucose has less of a 

fouling effect than ethanol, and therefore the effect of the desorption and regeneration 

cleaning pulses of PAD would not be as significant. Further information on the use of PAD 

to detect carbohydrates can be found in: Cai, Liu, Shi (2005); Neuburger & Johnson 

(1987); Johnson & LaCourse (1991); Johnson, Dobberpuhl, Roberts, et al (1993). 
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Figure 3.3: Comparison of fixed-potential amperometric and pulsed amperometric 

detection (PAD) to 64 mM increases in ethanol concentration in 0.1M NaOH, at a gold 
working electrode with Ag/AgCl reference. 

 

3.3.2 Comparison of gold and platinum electrodes 

Figure 3.4 compares the responses of platinum and gold working electrodes in PAD. The 

responses are similar in shape, and in magnitude of current, and both electrode materials 
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show a decrease in sensitivity at higher concentrations, characterized by smaller increases 

in current. This is due to adsorption of ethanol oxidation products to the electrode surface 

(Tarnowski & Korzeniewski, 1996). Although this effect is less significant when 

performing PAD due to the potential cleaning pulses applied, at higher concentrations, the 

accumulation of adsorbed ethanol reduces the electrode catalytic surface activity, thus 

resulting in lower sensitivity (Johnson, Dobberpuhl & Roberts et al, 1993).  
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Figure 3.4: Comparison of platinum and gold working electrode vs. Ag/AgCl reference, for 
determination of 64mM increases in ethanol by pulsed amperometric detection (PAD). 

(PAD [platinum]:0.6 V (detection), 1.2 V (oxidation), 0.2 V (reduction); PAD [gold]: 0.2 V 
(detection), 0.8 V (oxidation), -0.2 V (reduction)). 

 
 

3.3.3 Dual pulse staircase voltammetry  

Despite PAD being a good aliphatic determination method, its use in a system to monitor 

the wound environment is not practical, since it lacks selectivity for samples containing 

more than one electrochemically active species, and therefore the sample would ideally 
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require some form of pre-treatment, such as fractionation, by HPLC for example. However, 

the cleaning parameters employed in PAD that are used to regenerate the surface of a 

working electrode, can be used in combination with the greater selectivity of staircase 

voltammetry to create the potentially useful method of DPSV. Voltammetry, incorporating 

in situ cleaning reduces losses in electrode activity, a common phenomenon when using 

solid, nobel metal electrodes for voltammetric measurements. Fung & Mo (1996) have also 

shown that ethanol can be detected by DPSV over a large linear range (0.01 � 10 mM), a 

useful characteristic in the context of this work.  

 

Initial validation of the DPSV method was performed by repeating earlier studies 

performed in this laboratory. Since the determination of glucose and ethanol are of interest 

here, data first presented in a paper by Bessant & Saini (1999) was reproduced using the 

system described in this Chapter (Figure 3.5). The potentials of the peaks in Figure 3.5 are 

similar for glucose and fructose, though interestingly glucose gives a higher response in the 

first peak (-0.7 V), and fructose the second peak (-0.14 V). The potential of the second 

ethanol peak (-0.2 V) is slightly lower than that of glucose and fructose (-0.14 V) and the 

peak is also broader. With regards to glucose and fructose, the peaks around -0.7 V were 

due to hydrogen oxidation and reduction, and the oxidation peak around -0.14 was due to 

the oxidation of the carbonyl group present in both fructose and glucose (Fung & Mo, 

1995). Figure 3.6 and 3.7 show DPSV responses to increasing concentrations of glucose 

and ethanol respectively in 0.1 M NaOH.  
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As observed for the two sugars studied, it is possible that other alcohols may produce 

similar DPSV curves to ethanol. Therefore, DPSV of methanol and 1-propanol was carried 

out. Figure 3.8 compares the DPSV responses of 64 mM ethanol, 64 mM methanol and 

64 mM 1-propanol. The shape of the methanol response curve is similar to ethanol, but a 

much lower current is observed. 1-Propanol produced less distinguishable peaks, similar to 

that of the blank. Therefore, it seems that in the case of these three alcohols, there is the 

possibility of inter-analyte interference, but with greater selectivity towards ethanol.  
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Figure 3.5: DPSV responses for 1 mM glucose, 1 mM fructose, and 64 mM ethanol in 
0.1 M NaOH at a platinum working electrode vs. Ag/AgCl.  
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Figure 3.6: DPSV responses for different concentrations of glucose in 0.1M NaOH, at a 
platinum working electrode with Ag/AgCl reference. 
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Figure 3.7: DPSV responses for different concentrations of ethanol in 0.1M NaOH, at a 
platinum working electrode with Ag/AgCl reference. 
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Figure 3.8: DPSV responses to 64 mM Ethanol, 64mM Propanol, and 64 mM Methanol, at 
a platinum electrode, in 0.1 M NaOH, with Ag/AgCl reference. 

 
 
3.3.4 Comparison of platinum and gold solid electrodes for DPSV 

Typically, platinum electrodes are only chosen when the sensitivity of gold electrodes is 

not sufficient, such as in the detection of low-molecular-mass n-alcohols and glycols, 

which can be detected at platinum electrodes with high sensitivity (Johnson, Dobberpuhl, 

Roberts et al, 1993). Since platinum and gold are both known to be excellent solid-state 

working electrodes, the sensitivities of both of these were compared. Figure 3.9 compares 

the DPSV responses of platinum and gold working electrodes to 5 mM ethanol in 0.1 M 

NaOH, where it can be seen that the platinum displays a slightly superior response curve to 

gold. Therefore platinum would seem a preferable choice to gold as a solid working 

electrode for the measurement of ethanol. 
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Figure 3.9: Comparison of blank subtracted DPSV responses to 64 mM ethanol at 
platinum and gold working electrodes in 0.1 M NaOH, with Ag/AgCl reference. 

 

3.3.5 Investigation of interferents 

A common problem in the development of new sensor technologies is that of interfering 

species i.e. chemicals present in the sample that yield an electrochemical signal that 

conflicts with that of the analyte of interest, thereby reducing the effectiveness of the sensor 

measurement. The most commonly problematic interferents in sensor/biosensor 

construction with respect to clinical samples are ascorbic acid (vitamin C) and 

acetaminophen (paracetamol). It was therefore of interest to determine whether a range of 

possible interferents were electroactive in the potential regions of those peaks produced by 

DPSV for the analytes of interest in this study. The potential interferents were measured 

electrochemically in 0.1 M NaOH at clinically valid levels (Table 3.1) at a platinum 

electrode vs. Ag/AgCl. 
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Table 3.1: Concentrations of possible interferents found in blood  

Interferents  Chemical Molecular  Concentration   

  Name weight from: (mM/l) to: (mM/l) 

Acetominophen 4-acetomidophenol 151 0.33 1.32 

Ascorbic acid L-ascorbic acid 176.13 0.04 0.17 

Bilirubin Bilirubin 584.67 0.17 0.68 

Cholesterol Cholesterol 386.65 4.53 18.10 

Creatinine Creatinine 113.12 0.66 2.65 

Cysteine Cysteine 121.11 0.05 1.00 

Dopamine 3-hydroxytyramine-hydrochloride 189.64 0.17 0.69 

Gentisic acid 2,5-dihydroxybenzoic acid 154.12 0.81 3.24 

Glutathione (y-GLU-CYS-GLY;GSH) 307.19 0.0081 0.032 

Levo-dopa 3-3,4-dihydroxyphenyl-L-alanine 197.2 0.05 0.20 

Salicylic acid 2-hydroxybenzoic acid 160.02 0.78 3.10 

Tetracycline Tetracycline 444.18 0.056 0.23 

Tolazamide 
1-[hexahydro-1H-azepin-1-yl]-3-[p-tolyl-
sulfonyl] urea 311.4 0.04 0.16 

Tolbutamide 1-butyl-3-[4-methyl benzynes sulfonyl] 
urea 270.4 0.92 3.70 

Urea Urea 60.06 20.63 82.50 

Uric acid 2,6,8-trihydroxypurine 168.11 0.30 1.19 
 

Some of the interferents tested occur naturally in the body, such as cholesterol or urea 

(although this is also found in skin treatments such as emollients for eczema), but most are 

substances taken to treat illness or other medical conditions. Some of these substances are 

more commonly administered medications than others, such as acetominophen 

(paracetamol), tetracycline (antibiotics), and ascorbic acid (vitamin C), whereas drugs such 

as levo-dopa used to treat Parkinson�s disease, and methyl-dopa for blood pressure 

treatment, are only used by a small portion of the population. Figure 3.10 shows the 

detection of these potential interferents in 0.1 M NaOH by DPSV. The voltammetric 

responses are blank subtracted, and varied considerably as may be observed.  
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Figure 3.10: DPSV responses (blank subtracted) for: (a) Acetominophen (b) Ascorbic acid 
(c) Bilirubin (d) Cholesterol ( e) Creatinine ( f) Cysteine (g) Dopamine (h) Gentisic acid (i) 

Glutathione (j) Levo-dopa    (k) Salicylic acid (l) Tetracycline (m) Tolazamide (n) 
Tolbutamide (o) Urea (p) Uric acid, , in 0.1 M NaOH at a platinum working electrode vs. 

Ag/AgCl reference.  
 

It was evident that many of these species are electroactive and may cause interference 

problems, therefore it was necessary to run DPSV of ethanol, glucose and H2O2 in 0.1 M 

PBS in the presence of the most common and problematic of the interferent species, in 

order to determine their effect on the scan data. Solutions representing the higher 

concentrations found in the body of ascorbic acid (0.17 mM), acetaminophen (1.32 mM), 

cysteine (1 mM), uric acid (1.19 mM) and urea (82.5 mM) were made up in 0.1 M PBS 
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containing 5 mM ethanol. Each of these were measured by DPSV and compared to a DPSV 

scan of 5 mM ethanol in 0.1 M PBS alone (Figure 3.11). This process was repeated for 

glucose and H2O2. All five species have interfered with the normal DPSV scan for 5 mM 

ethanol to varying degrees. Ascorbic acid caused the current to increase but a similar 

current versus potential profile was maintained. Cysteine, acetaminophen and urea 

significantly altered the profile of the overall voltammetric response. The presence of uric 

acid yielded a slight increase in current, also yielding an additional peak at around -0.5 V.      
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Figure 3.11: DPSV (blank subtracted) of interferents in 0.1M PBS (blank)containing 5 mM 

ethanol. 
 

Figure 3.12 shows the effects of the species on the DPSV scan of 5 mM glucose in 0.1 M 

PBS. As with ethanol, all five species tested had an effect. Ascorbic acid had the least 

effect, causing the current to decrease slightly at the -0.25 V and -0.8 V peaks but remained 

a similar shape scan. Cysteine, acetaminophen and urea significantly altered the shape of 
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the voltammograms. Uric acid decreased the current slightly at the -0.25 V peak region and 

increased current in the -0.5 V and -0.8 V region.       

 
 

Figure 3.13 shows the effects of the species on the DPSV scan of 5 mM H2O2 in 0.1 M 

PBS. As for ethanol and glucose, cysteine had the most significant effect, altering the shape 

of the whole scan. Uric acid and ascorbic acid had the least affect, remaining a similar 

shape scan, but at a more negative current. Acetaminophen and urea had a similar shape but 

a less negative current in the ~-0.4 V peak area, and different shapes and currents over the 

remainder of the scan.  

 

It seems that overall for DPSV of glucose, ethanol and H2O2, ascorbic acid has the least 

significant effect, followed by uric acid. Cysteine has the most significant effect, followed 

by urea and acetaminophen. Therefore the presence of any of these species in a sample, 

will influence the voltammetric profile, making it more difficult to accurately predict 

concentrations of ethanol, glucose or H2O2. It may be possible to reduce the effect of some 

or all of these interferents by using a suitable membrane to exclude species based on size or 

charge, such as Nafion, which is negatively charged and repulses negatively charged acids 

such as ascorbic acid and uric acid. It should be noted that even commercially available 

self-test glucose biosensors are susceptible to the affects of acetominophen (Cartier, 

Leclerc, Pouliot et al, 1998). Also, if a patients medication is known, it may serve to aid 

complex volatmmogram interpretation.  
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Figure 3.12: DPSV of interferents in 0.1M PBS containing 5 mM glucose. 
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Figure 3.13: DPSV of interferents in 0.1M PBS containing 5 mM H2O2. 
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3.3.6 DPSV of glucose, ethanol and H2O2 in PBS  
 
Having established a working system, each of the three identified markers glucose, ethanol 

and H2O2 were measured at different concentrations in 0.1 M PBS by DPSV. The data from 

triplicate measurements was averaged and used to identify peaks in the scans that could be 

used as a basis for the construction of a calibration curve.  

 

Figure 3.14 illustrates the results for the measurement of 0.5 - 15 mM glucose in 0.1 M 

PBS. Three main peaks have been identified as possible sources from which to produce 

calibration plots. Peak one (-0.825 V) becomes increasingly negative in current with 

increase in glucose concentration, while peaks two (-0.54 V) and three (-0.1 V) become 

more positive with each increase in glucose concentration.  

 

From these peaks, a given peak height value could be taken, as indicated by the red lines, 

or the peak area measured using Autolab software. Ratios between peak areas may also 

prove important indicators.  

 

The DPSV scans for 0.5 to 10 mM ethanol can be seen in Figure 3.15. Three peaks were 

identified. Peaks one (-0.8 V) and two (-0.36 V) become more negative in current with 

increase in ethanol concentration, whilst peak three (-0.14 V) increases in peak height and 

area with increasing ethanol concentration.  Examination of the raw voltammetric data 

suggests that peak three would provide the least linear relationship between peak current 

and concentration. 
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Figure 3.14: DPSV of glucose in 0.1M PBS at platinum working electrode vs. Ag/AgCl 
reference. Scans are blank subtracted averages of 3 scans. 
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Figure 3.15: DPSV of ethanol in 0.1M PBS at platinum working electrode vs. Ag/AgCl 

reference. Scans are blank subtracted averages of 3 scans. 
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Two oxidation peaks (-0.76 V and -0.34 V) were identified for H2O2 across the 

concentration range studied (0.25-10 mM), as illustrated in Figure 3.16. Both peaks exhibit 

more negative peak currents with increasing concentration. However, it can be seen that for 

peak one (-0.76 V) at concentrations less then 2 mM, this pattern is not followed. For peak 

two (-0.34 V), it can be seen that increase in peak size does not follow an entirely linear 

relationship until a concentration of 2 mM is exceeded.   

 

Although patterns can be observed for averaged scans, the differences between scans of 

different concentrations were not very large, making it especially important to check the 

deviation that occurs with replicate scans. Therefore, a single concentration of ethanol (5 

mM), glucose (5mM), and H2O2 (1 mM) in 0.1 M PBS were measured five times by 

DPSV, and the variation determined. As normal, electrodes and cells were cleaned between 

measurements, and each DPSV replicate was scanned ten times to establish blank 

equilibrium, and again for measurement equilibrium. Figure 3.17 displays that average of 

the five scans together with the standard deviation for each analyte. 

 

The standard deviations were large, particularly for the glucose peak, which would make 

accurate prediction of concentration difficult in a sample containing, for example, elevated 

levels of ethanol. The major cause of this problem lies with the baseline (blank), since 

despite establishing a stable baseline for each measurement, the location of this baseline 

was found not to be reproducible between experiments. It is also clear that the analytes 

studied yielded peaks with similar potentials. Consequently, mixtures of these three 

analytes were examined to determine the effect of this factor on analyte determination.  
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Figure 3.16: DPSV of H2O2 in 0.1M PBS at platinum working electrode vs. Ag/AgCl 

reference. Scans are blank subtracted averages of 3 scans. 
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Figure 3.17: DPSV of 5 mM glucose, 5mM ethanol, 1mM H202 in 0.1 M PBS at platinum 
working electrode vs. Ag/AgCl reference. Scans are blank subtracted averages of 5 scans. 

Shaded areas represent +/- 1 standard deviation. 
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3.3.7 DPSV of mixtures of glucose, ethanol and H2O2 in PBS 
 
Solutions were prepared of combinations of the three selected target analytes in order to 

examine the resultant DPSV scans. The results of four combinations in 0.1 M PBS at a 

platinum working electrode vs. Ag/AgCl can be seen in Figure 3.18. By comparing the 

scans for ethanol and ethanol with glucose, it can be seen that the presence of glucose 

positively shifted the scan ~10 µA and added a broad peak between -0.6 and -0.9 V 

mirroring that present in the scan of glucose alone. H2O2 alone produces the most negative 

scan. The addition of ethanol to H2O2 shifted the scan positively between -0.9 and 0 V and 

negatively from 0 to 0.6 V. The same pattern is replicated to a greater extent with the 

presence of glucose with H2O2, and greater still with the presence of both glucose and 

ethanol with H2O2.  
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Figure 3.18: Blank subtracted DPSV scans of mixtures of 5mM ethanol, 5 mM glucose and 
5 mM H2O2 in 0.1 M PBS at platinum working electrode vs. Ag/AgCl reference. n=3. 
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Observation alone of Figure 3.18 has revealed that since the presence of either or both of 

glucose and ethanol in a solution containing H2O2 seems to yield voltammograms with a 

number of similar features. In an unknown sample, it would prove challenging, even with 

advanced statistical data treatment models, such as those employed by Bessant (1998), to 

determine whether the solution contains H2O2 alone, or one or both of glucose and ethanol. 

An unknown solution that does not contain H2O2, could be determined as containing 

ethanol alone, and not ethanol and glucose, by the absence of a peak from -0.6 to -0.9 V. A 

solution containing both glucose and ethanol may not be possible to determine from one 

containing glucose alone due to inter-analyte interference. 

 
 
3.3.8 DPSV with screen printed electrodes 
 
Despite the limitations of DPSV already uncovered, it was of interest to see whether the 

technique of DPSV could be performed using screen printed electrodes, since a portable 

device with disposable electrodes would be desirable for use with clinical material, and 

therefore the use of solid state electrode is therefore not practical. Two screen printed 

electrode assemblies were tested, both three electrode systems with a Ag/AgCl reference, 

but one type having a carbon working electrode, and the other a gold working electrode. 

Neither type was particularly successful, although the screen-printed gold electrode proved 

superior with respect to the voltammetric response profiles obtained. Figure 3.19 illustrates 

the problem encountered in establishing a stable baseline in 0.1 M PBS. The first eight 

blank scans are shown. Only a very minor change in the response profile was noted on 

addition of ethanol. The carbon design produced less of a distinctive peak for the baseline, 

which decreased further with the addition of ethanol (Figure 3.20). 
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Figure 3.19: Aging effect of repeated DPSV scans in 0.1M PBS (blank) and 5 mM ethanol 
with a screen printed gold working electrode (vs. Ag/AgCl reference). 
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Figure 3.20: DPSV scans of 0.1 M PBS (blank) and 5 mM ethanol with a screen printed 
carbon working electrode (vs. Ag/AgCl reference). 
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Therefore, neither of the two screen printed electrodes tested are suitable for DPSV, since 

the response profiles obtained illustrate that they are not sufficiently electrochemically 

sensitive to ethanol.  

 
3.4 Conclusions 
 
PAD was shown to be more sensitive than fixed-potential amperometry, thus illustrating 

the benefits of the cleaning pulse waveform, which was also employed in DPSV. The 

DPSV procedure employed was based on that used in earlier published work from this 

laboratory, for the determination of glucose, fructose and ethanol in complex solutions.   

Initial experiments were performed using the same experimental set-up and were found to 

concur with this earlier study (Bessant & Saini (1999)). Voltammograms of fructose and 

glucose, and of ethanol, methanol and propanol were created and examined. Gold and 

platinum solid-state working electrodes were compared, with platinum being found to be 

more favourable in this case. Possible electrochemical interfering species were also 

individually measured by DPSV in NaOH at clinically valid concentrations.  

 

Following this, DPSV of ethanol, glucose and H2O2 was carried out in PBS in the presence 

of five of these species, selected according to their frequency of usage by the general 

population. All had an effect, cysteine being the most electrochemically active, followed by 

urea, acetaminophen, uric acid and ascorbic acid. Measurement of different concentrations 

of glucose, ethanol and H2O2 individually in PBS demonstrated clear peaks and 

relationships between peak heights and concentration. However, repeat measurements at 

one concentration for each analyte revealed high standard deviation values. DPSV of 
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mixtures of the three analytes illustrated potential difficulties in identifying individual 

components and concentrations of the analytes due to inter-analyte interference. A limited 

evaluation using carbon and gold screen printed electrodes found them to be of limited 

value for DPSV measurement of the selected analytes in the context of this study. 

 

Given the problems highlighted in this initial study with: baseline reproducibility; large 

deviations (error); interfering species; identification in mixtures; and unsuitability of screen 

printed electrodes; it was decided that DPSV was not a suitable technique for the 

monitoring of wound biomarkers, and therefore not to progress the DPSV study further in 

favour of the biosensor array and odour analyser which held more promise after initial 

studies, and would be tested in surrogate wound fluid.      

 

However, it is possible that incorporation of a negatively charged membrane such as 

Nafion may reduce interferent effects. Also, there is still some potential for the use of 

sophisticated data analysis, though this would be more difficult than anticipated due to the 

similarities in some voltammetric profiles. Also, little has been reported regarding DPSV of 

glucose and ethanol, and literature searches have not revealed any reports on DPSV of 

hydrogen peroxide, or of clinical interferents. Also, none of the reports have been based on 

measurements in PBS. Though a small section of work, no reports have been identified 

investigating the use of screen printed electrodes for the technique of DPSV. Therefore the 

work in this Chapter does hold the significant benefits of generating data and assessing the 

feasibility of this approach for clinical measurements.     
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4. Detection Using a Biosensor Array 

 
4.1 Introduction 
 
The objective of this Chapter, as outlined in Section 1.6, is to investigate whether a 

biosensor array may be used as a diagnostic tool in the early stages of wound healing, 

based on the detection of the bacterial metabolite ethanol, and the human markers glucose 

and hydrogen peroxide, within the wound fluid sample.  

 

The suitability of a glucose biosensor, hydrogen peroxide biosensor and ethanol biosensor 

were investigated for the measurement of the selected biomarkers - glucose, hydrogen 

peroxide and ethanol respectively (outlined in Section 2.1), in 0.1M PBS, and secondly in 

model wound fluid. Since one of the main causes of complications in wound healing is 

bacterial, as discussed in Section 1.1.6, the direct detection of metabolic ethanol production 

by S.aureus with ethanol biosensor was also investigated. The effect of the presence of 

bacteria on the performance of the glucose and hydrogen peroxide biosensors was also 

tested. The effect of possible interferents such as ascorbic acid (vitamin C) was assessed for 

each of the three biosensors.   

 

The objectives were achieved by screen printing a three electrode (carbon working, carbon 

counter, silver /silver-chloride reference) assembly (described in Section 4.2.3) which 

could be used as the basic starting point for each of three amperometric biosensors, with 

the exception of the glucose biosensor which had an additional layer, rhodinised carbon, 

printed onto the working electrode (reasons outlined in Section 4.3). The experimental 

programme followed for the biosensor work is illustrated in Figure 4.1: 
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Figure 4.1: Flow diagram of biosensor development and testing stages 
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The stages of Figure 4.1 are described in this chapter for each of the three biosensors. 

Model wound fluid was made by separating serum from blood, as described in 2.2.4, giving 

a surrogate wound fluid, based on the major component of wound fluid, namely serum.  

 

4.2 Materials and Methods 

4.2.1 Reagents 

Aqueous solutions of phosphate buffer saline (Sigma, Poole, UK), ethanol ( 99.9% 

denatured HPLC grade, Aldrich, (Poole, UK), hydrogen peroxide (31.3% v/v assay ACS 

reagent, Sigma, Poole, UK), and glucose (reagent grade, Fisher, Loughborough, UK) were 

made using reverse osmosis water. Cellulose acetate MW 37,000 (Sigma, Poole, UK), and 

dimethylferrocene (Aldrich, Poole, UK) were prepared in acetone (Fisher, Loughborough, 

UK). Glucose oxidase (from Aspergillus niger, E.C. 1.1.3.4) was in the form of a freeze 

dried powder from Biozyme, Blaenavon, Wales. Horseradish peroxidase (from Amoracia 

rusticana, E.C. 1.11.1.7) was from Sigma (Poole, UK) in lyophilized powdered form. 

Buffered aqueous alcohol oxidase (from pichia pastoris, E.C. 1.1.3.13) and lyophilized 

powdered alcohol oxidase (from Candida boidinii, EC 1.1.3.13) were also from Sigma, 

(Poole, UK).       

 

4.2.2 Instrumentation 

Amperometric measurements were made using a PGSTAT10 multichannel (4 channel) 

Autolab illustrated in Figure 4.2 (Eco Chemie, Utrecht, The Netherlands), operated using 

GPES software (version 4.9). The biosensors were connected to the four channels of the 

Autolab using connectors made in-house using basic electronic components from Maplins, 
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UK. The connectors are known as FFC (Flat Flexible Cable) Connectors, using a 1.25mm 

pitch (Molex, part number 39-51-3084). They are mounted onto �Veroboard�, and then 

connect via 4mm plugs and sockets to the potentiostat, as illustrated in Figures 4.2 and 4.3. 

The wires were protected by heat shrink rubber, and the circuit board by PVC tape.  

 

4.2.3 Measurement 

Amperometric measurements were made using the �Chrono methods > 0.1s� method of the 

GPES software. The interval time between points was 0.1 s, and measurements were made 

for a period of 150 s. The operating potentials for each of the biosensors are discussed later 

in the chapter.   

 

4.2.4 Fabrication of screen-printed electrodes 
 
Identical screen-printed 3-electrode assembly designs were used for each of the three 

biosensors, involving the successive deposition of ink layers. A DEK 248 printer (DEK, 

Weymouth, UK) incorporating screens with appropriate stencil designs (60 sensors per 

screen) were used for precision ink depositioning. The base material for electrode 

fabrication was 250 µm polyester sheeting (Cadillac Plastic, Swindon, UK) onto which was 

deposited successive ink layers. The hydrogen peroxide and ethanol sensors consisted of 

three deposition layers. The first of these was carbon ink 145R layer (MCA Services Ltd., 

Melbourn, Cambs. UK) - the base layer for all three electrodes; the second was a Ag/AgCl 

layer (MCA, UK) covering just the reference electrode; and the third an insulation layer � 

242-SB epoxy-based blue protective coating ink (Agmet ESL, Reading UK). The electrodes 

were then heat-treated at 125°C for 1 h to cure the insulation shroud. The glucose sensor 
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had an additional layer applied before the insulation layer � rhodinised carbon (MCA, UK). 

Rhodinised carbon has been found to be a catalytic material with excellent properties for the 

oxidation of H202, therefore one part rhodinised carbon 4a mixed with four parts 2.5% w/v 

hydroxyethyl cellulose in 0.1M phosphate buffer (pH 7.2) was screen-printed over the 

underlying working electrode (Kroger, Setford, & Turner (1998). The four layer assembly 

of the glucose sensor can be seen in Figure 4.4.  

 

                        

Figure 4.2: Multichannel Eco Chemie   Figure 4.3: Biosensor connection 
 Autolab and sensor connections 
 
    Ag/AgCl Rhodinised carbon  
   
        
 
 
 
 
 
 
 
 
 
    
    Carbon          Insulation layer 

Figure 4.4: Four layers of the screen printing process for three electrode assembly 
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4.3 Glucose Biosensor  
 
Following from screen printing the three electrode assembly with rhodinised carbon 

working electrode, the final stage of the glucose biosensor fabrication was the deposition of 

the enzyme glucose oxidase. The glucose biosensors made were based on the amperometric 

detection of H2O2 catalytically oxidised at the rhodinised carbon working electrode 

(Newman, White, Tothill et al, 1995). Several studies have reported the benefits of using 

rhodinised carbon in biosensor design, such as Turner, White, Schmid et al (1994), Kroger, 

Setford & Turner (1998), and Cullen, Jawaheer, White et al (2003). The enzyme glucose 

oxidase (GOx) (Biozyme, Blaenavon, Wales, UK) was acquired in the form of a freeze 

dried powder with 261.7 U/mg material, originating from Aspergillus niger. GOx from 

A.niger is a dimer of two identical subunits, each containing a tightly bound FAD molecule 

as cofactor, and is highly specific for ß-D-glucose. The glucose biosensor operating 

principle is depicted in Figure 4.5, where H2O2 was amperometrically detected at the 

rhodinised carbon working electrode poised at a suitable operating potential: 

 

 

 

  

  

Figure 4.5: Glucose biosensor reaction scheme 

The GOx powder was dissolved in 0.1M PBS pH 7.2 to give the required activities for 

glucose determination in the context of this study. The work of Kröger, Setford & Turner 

(1998) was used as the basis for the optimisation of the glucose biosensor that follows.  
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4.3.1 Standard electrochemical measurement methodology 

Although electrochemical theory activities for glucose determination in the context of this 

study suggests that amperometric measurements are best performed in stirred solutions, this 

is not practical, nor commonplace with commercially available screen-printed biosensor 

assemblies. It has also been shown previously with the sensors used in this study (Kröger, 

Setford & Turner, 1998) that it is not necessary to stir the measurement solution. Therefore, 

it was possible to carry out the experiments by pipetting a small droplet of test solution 

onto the sensor, covering the three electrodes. It was found that a volume of 150 µl was 

suitable.    

 

Kröger, Setford & Turner (1998) also demonstrated that the background current for these 

sensors was consistently within a narrow range, and therefore, it was possible for glucose 

to be present in the measurement solution from the beginning.  Using a four channel 

Autolab, one channel was used to measure the background current (blank), whilst the three 

remaining channels were used to simultaneously measure glucose in test solution. The 

sensors were equilibrated in the measurement solution and a current plateau was reached. A 

differential measurement was taken after 150 s (analyte current - background current = 

signal). An example can be observed in Figure 4.6, where H2O2 is measured at the 

rhodinised carbon working electrode.  H2O2 was used for this example since H2O2 is the 

reaction product detected at the electrode surface in the glucose oxidase based system that 

follows.    
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Figure 4.6: Example amperometric measurement of H2O2 at rhodinised carbon working 
electrode vs. Ag/AgCl, at +300mV.  

 
 

 
4.3.2 Determination of optimum operating potential  
 
The operating potential for the amperometric detection of GOx generated H2O2 at 

rhodinised carbon working electrodes has been reported in a number of publications as 

+300mV or +350mV vs. Ag/AgCl (White, Turner, Bilitewski et al 1994; Kröger, Setford, 

Turner, 1998; Cullen, Jawaheer, Rughooputh et al 2003).  

 

To verify this, 10mM H2O2 was prepared in 0.1M PBS pH 7.2 for detection by the three 

electrode assembly in the absence of GOx. The current was measured at operating 

potentials from 100 to 600 mV, repeated in triplicate for each potential. The average 

current response to 10mM H2O2 at each potential, and the background current are shown in 
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Figure 4.7. The ratio between H2O2 current and background current (Figure 4.8) revealed 

the optimum potential to be in the region of +300mV to +350 mV.      

 

The electrocatalytic activity of rhodinised carbon does indeed reduce the potential from 

that required using a standard carbon working electrode (typically >700mV), thus reducing 

the effect of interferences, as previously reported by Cullen, Jawaheer, Rughooputh et al 

(2003) for example. Therefore a potential of +300 mV was used for all future amperometric 

measurements of glucose using the screen printed three electrode system with rhodinised 

carbon working electrode. 
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Figure 4.7: Hydrodynamic voltammogram of background current and response towards 10 

mM H202 in 0.1M PBS (pH7.2) at screen printed three electrode system with rhodinised 
carbon working electrode vs. Ag/AgCl. Error bars=SD, n=3. 
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Figure 4.8: The signal to background ratio for rhodinised carbon three electrode system at 

10 potentials in 10 mM H2O2 in 0.1M PBS pH7.2. n=3. 
 

4.3.3 Optimisation of glucose oxidase loading 

To determine the optimum number of units of glucose oxidase required per sensor, a range 

of GOx loadings were tested in the range 0.5 to 4 U/sensor using a substrate solution of 

10mM glucose in 0.1M PBS (pH 7.2) and at an operating potential of +300mV (n=3). The 

GOx preparations were applied to the rhodinised carbon electrode in a volume of 5 µl by 

pipette. The small volume and the porous nature of rhodinised carbon meant that 

immobilisation by an entrapment method or membrane was not necessary. The sensors 

were also designed for single use, and therefore the water solubility of the enzyme was of 

no concern. The signal: noise ratio was calculated for each enzyme loading 

(differential signal / standard deviation) and the optimum GOx loading found to be 
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1U/sensor. It can be seen in Figure 4.9 that the signal: noise value increases up to 1U, with 

no increase in response evident at higher enzyme loadings.  

 

 

Figure 4.9: Signal to noise ratio for 7 glucose oxidase loadings on rhodinised carbon 
working electrode in 10mM glucose in 0.1M PBS pH7.2. n=3. 

 
 
 
4.3.4 Shelf life testing 
 
In order to make glucose biosensors of sufficient batch size for large-scale testing, it was 

decided to investigate the shelf life of the biosensors. This is of course also an important 

factor to consider from a commercial point of view, where it could be many months 

between the time of production and the use of a sensor by the patient or physician.  

 

Therefore, a batch of 100 glucose biosensors were prepared using 1 U GOx per sensor. The 
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and stored at 4 °C. On the day of biosensor production (day 0), 500 µM glucose in 0.1M 

PBS was amperometrically measured with the biosensors in triplicate at +300 mV. This 

measurement was repeated regularly over a period of 77 days (sensors were not stored for a 

longer period than this during the project). The differential mean and standard deviations 

were calculated, as shown in Figure 4.10.  After the first few days, the signal subsided by 

approximately 0.5 µA to a relatively stable value, averaging at 3.012 µA for the remaining 

73 days, and showed no signs of significant further signal reduction.  
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Figure 4.10: Shelf life testing of glucose oxidase glucose biosensor.  

Error bars are std dev, n=3. 
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4.3.5 Determination of linear region and limit of detection  
 
A batch of glucose biosensors containing 1 U GOx / sensor were prepared. Glucose 

concentrations from 50 µM to 7500 µM were prepared in 0.1M PBS pH7.2. Each 

concentration was determined amperometrically at +300mV (n=3). The resulting current 

values were averaged, blank subtracted and plotted vs. glucose concentration,. The mean 

background current was 0.0832 µA with a standard deviation of 0.0191 µA. The linear 

region was determined to be between 0 and 2500 µM, with the equation: y = 0.0006x and 

R2 value of 0.994 (Figure 4.11).  

 

The limits of detection (LOD) were determined as follows: 

At 99.7% confidence: 3 x SD of blank = 0.0573 

y = 0.0006*x therefore 

0.0573 = 0.0006*(LOD) 

LOD = 95.5 µM 

 

At 95% confidence: 2 x SD of blank = 0.0382 

y = 0.0006*x therefore 

0.0382 = 0.0006*(LOD) 

LOD = 63.67 µM 
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Figure 4.11: Calibration of screen printed three electrode glucose biosensor and 
determination of linear region for detection of glucose in 0.1M PBS.  

Error bars are std dev, n=3. 
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4.3.6 Detection of glucose in model wound fluid with glucose biosensor 
 
Having established the glucose biosensor could detect glucose down to 99.5 µM (99.7% 

confidence) in 0.1 M PBS, the next stage was to detect glucose in serum, used as a model 

for wound fluid in this thesis. As mentioned in the introduction, monitoring the glucose 

levels in wound fluid may be one of a number of useful indicators as to whether a wound is 

healing properly. 

 

To reduce sensor fouling and hence signal reduction, and to provide necessary electrolyte 

for electrochemical measurement, a single dilution step was required with 0.1M PBS to 

give a 1:1 v/v ratio of serum: PBS. It should also be noted that although a glucose value of 

0 mM was ascribed to the �blank� serum, the average blood glucose value of the donors 

was 4.8 mM. Therefore after the 1:1 dilution step, the background glucose level was in the 

region 2.4 mM, prior to spiking with glucose. However, as for measurements in PBS, 

readings were blank subtracted. Concentrations of glucose were prepared from 0.25 mM to 

7.5 mM in the serum/PBS. Glucose was detected amperometrically at +300mV. The results 

are shown in Figure 4.12.  The linear region of the calibration profile was determined to be 

from 0 to 2500 µM, as for glucose in PBS, with a limit of detection of 169.5 µM at 99.7% 

confidence, and 113 µM at 95% confidence. However, since 0 µM is really 2400 µM (due 

to presence of glucose before spiking), the linear curve may be extendable to ~ 4900 µM in 

a real situation, but may have slightly larger error bars. The detection limit was not quite as 

low as for the detection of glucose in PBS, and the error bars were noticeably larger, 

particularly from 3500 µM upwards. This was not unexpected, given the presence of more 

complex biological components in the sample, such as proteins and protein fragments.  
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Figure 4.12: Calibration of screen printed three electrode glucose biosensor and 

determination of linear region for detection of glucose in model wound fluid. 
Error bars are std dev, n=3. 

 

LINEAR REGION
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4.3.7 Validation with glucose BioAssay test kit 

The results for the detection of glucose in serum with the glucose biosensors were validated 

using the glucose BioAssay test kit described in Chapter 2. Four solutions of 1:1 v/v serum: 

PBS were prepared containing unknown concentrations of glucose. The test kit procedure 

was followed as in Chapter 2 and the optical densities of the glucose containing 1:1 v/v 

serum: PBS solutions measured. The solutions were also measured amperometrically using 

the glucose biosensors, and the current values recorded converted into glucose values using 

the calibration graph in Figure 4.12. The test kit calibration graph (Figure 2.13) was used to 

convert the optical density values into glucose concentrations, tabulated in 4.1, and plotted 

against the glucose concentrations determined amperometrically (Figure 4.13). 

 

Table 4.1: Results of glucose biosensor validation by glucose BioAssay test kit 
 
BioAssay: 
 
 
 
 
 
Biosensor: 
 
 
 

 
 

  
 
The glucose concentrations determined by the BioAssay method were very similar to those 

determined by the glucose biosensor, illustrated in Figure 4.13 with an R2 value of 0.9998. 

Therefore the glucose biosensor could be considered a suitable rapid means of monitoring 

glucose in model wound fluid.    

Glucose solution # Optical density (630nm) Glucose conc. (µM) 
1 0.0404 1862 
2 0.1072 4940 
3 0.0740 3408 
4 0.1328 6120 

Glucose solution # Current (µA) Glucose conc. (µM) 
1 1.854 1854 
2 3.056 4850 
3 2.792 3400 
4 3.321 6100 
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Figure 4.13:Validation of glucose biosensor with BioAssay test kit  
 
 

4.3.8 Detection of glucose in model wound fluid containing S.aureus with  
 glucose biosensor 
 
The final test with the glucose biosensor again involved the detection of glucose in model 

wound fluid, but this time containing S.aureus, in order to test whether the presence of 

bacteria affects the performance of the biosensor. S.aureus was grown in serum to a cell 

density of 2 x 108 CFU/ml. This was then used to prepare known glucose concentrations as 

before, which were measured at +300 mV in triplicate with the glucose biosensors. 

Differential means and standard deviations were calculated shown in Figure 4.14 versus 

concentration. The linear region was similar to detecting in serum without S.aureus, from 0 

to 2000 µM. The blank standard deviation was 0.051 µA, with a limit of detection of 146 

µM at 95% confidence and 218.77 µM at 99.7% confidence. At 99.7% confidence, this is 
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49 µM higher than in S.aureus free serum. Therefore it would appear that the presence of 

bacteria does have a limited effect on glucose biosensor performance.    
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Figure 4.14: Calibration of screen printed three electrode glucose biosensor and 
determination of linear region for detection of glucose in model wound fluid 

containing 2 x 108 CFU/ml S.aureus. Error bars are std dev, n=3. 
 
 
 
4.3.9 Interferent testing 
 
As already mentioned in Chapter 3, a problem in the development of new sensor 

technologies is that of interfering species, particularly ascorbic acid (vitamin C) and 

acetaminophen (paracetamol), which commonly interfere with commercial home blood 

glucose monitoring kits. Therefore, five common interfering species were tested for their 

affect on the measurement of 5 mM glucose in 0.1 M PBS with glucose biosensors. The 

results are summarised in Figure 4.15. As normal, results are blank subtracted averages of 

three replicates, and error bars are +/- standard deviation.   
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Figure 4.15: Affect of interferents on the measurement of 5 mM glucose in 0.1 M PBS with 

glucose biosensor. Error bars are std dev, n=3. 
 
 

The levels of interferents tested were the highest concentrations of the ranges reported in 

Table 3.1, and therefore represent worst case scenarios. Ascorbic acid had by far the largest 

affect on the signal, increasing it by >4x the normal level. This was followed by cysteine, 

which ~ doubled the signal. Acetominophen and uric acid had a similar smaller affect, and 

urea had the opposite affect by decreasing the signal slightly. Clearly all have had some 

affect, but ascorbic acid seems to pose the largest problem. These effects are either because 

the interferents are electroactive at the operating potential of the biosensor, or they interfere 

with the electrode signal though reaction with the analyte (McGrath, Iwuoha, Diamond, et 

al, 1995). Some of these effects could be reduced or removed by incorporation of a perm-

selective layer (Palmisano, Centonze, Guerrieri, et al, 1993; Centonze, Guerrieri, Malitesta, 

1992; Garjonyte & Malinauskas, 2000) or by incorporation of a compensator electrode 
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(which has no enzyme and measures the background current of the solution which can be 

subtracted from the measurement by the enzyme electrode, assuming effects are additive) 

 
4.3.10 Conclusions: Glucose biosensor 

A rhodinised carbon three electrode assembly glucose biosensor was successfully 

fabricated, optimised and tested in 0.1M PBS and model wound fluid. The limit of 

detection was determined to be 170 µM at 99.7% confidence in model wound fluid with a 

single dilution step. Ascorbic acid was identified as a key interferent, greatly increasing the 

signal. The biosensor was tested in model wound fluid containing bacteria and validation 

with BioAssay test kit was also successful. It was concluded that the glucose biosensor 

approach is a suitable means of monitoring glucose in wound fluid and may form a useful 

component of a wound fluid biosensor array. 

 
4.4 Hydrogen peroxide biosensor 
 
The second of the three biosensor systems studied was a hydrogen peroxide (H2O2) 

biosensor. Hydrogen peroxide biosensors have been widely investigated, and there are 

many different variations of sensor construction. H2O2 biosensors were also fabricated �in-

house�. which gave the benefit of having full control over every parameter of the 

construction and operation of the biosensor. For the purposes of this study, i.e. to 

investigate the amperometric detection of hydrogen peroxide in model wound fluid, a 

mediated enzyme reaction was chosen (a so-called �second generation� biosensor). Use of a 

mediated system overcame problems associated with direct (non-mediated) detection of 

H2O2, notably the need for higher operating potentials which increases the likelihood of 

interference problems. The enzyme used was horseradish peroxidase (HRPx) (E.C. 
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1.11.1.7) sourced from Amoracia rusticana (Sigma, UK). It was supplied as a liquid with a 

specific activity of 224U/mg, and stored in the freezer at -20 °C. HRPx is isolated from 

horseradish roots and belongs to the ferroprotoporphyrin group of peroxidases. HRPx is a 

single chain polypeptide containing four disulfide bridges and is a glycoprotein containing 

18% carbohydrate. HRPx has been widely used in conjunction with electrochemical 

transduction for the detection of hydrogen peroxide (Moody, Saini & Setford, 2001; Wang 

& Wang, 2004; Kulys & Schmid, 1991; Johansson, Jonsson-Pettersson, Gorton et al, 

1993). 

 

The use of 1,1�-dimethylferrocene (DMFc) as a mediator (i.e. a non-physiological small 

redox mediator that shuttle electrons between the reduced enzyme prosthetic group and the 

electrode) in a HRPx biosensor has been investigated by Kulys & Schmid (1991) and 

Moody, Saini & Setford (2001) and found to be superior to other commonly used 

alternative mediators such as tetrathiafulvalene and potassium hexacyanoferrate. Therefore, 

the biosensor was developed using DMFc as the mediator. DMFc is a relatively stable dark 

red crystalline solid with limited water solubility. The reaction is illustrated in Figure 4.16.  

  

 

 

 

 

  
 

Figure 4.16: Reaction scheme on the carbon working electrode of the dimethylferrocene 
mediated horseradish-peroxidase H2O2 biosensor  
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In this work, the working electrode was coated with a membrane.  Membranes serve a 

number of functions in biosensor applications.  For example, a membrane may serve as a 

protective layer to prevent interfering species from reaching the electrode surface, by size 

exclusion or by charge repulsion. A membrane may also prevent soluble enzymes or 

mediators such as DMFc, initially physically immobilised on the transducer surface from 

desorbing and affecting the biosensor response. A membrane may also act as an additional 

diffusion barrier between the transducer-immobilised bioligand on the electrode surface 

and bulk solution, thus extending the dynamic range of the device (Johansson, Jonsson-

Pettersson, Gorton et al, 1993).  A range of membrane materials such as nylon and 

cellulose nitrate, and polymers have been investigated for use in biosensor construction. A 

popular choice of polymer is Nafion, a highly negatively charged perfluorated polymer. 

Nafion, by virtue of its negative charge, allows the passage of cations and repels anionic 

species, and can be used either alone or in combination with other polymer materials such 

as cellulose acetate (Wang & Wu, 1995). The use of electrochemically deposited polymers 

such as polypyrrole, polyphenylenediamine, polyaniline and polyphenol as permselective 

layers in the construction of biosensors is also commonplace, and has been recently 

reviewed by Emr & Yacynych (2005).  

 

Cellulose acetate can be formulated to create size exclusion membranes, the size of pore 

being dictated by the particular molecular weight of the cellulose acetate used and the 

drying regime applied. Cellulose acetate is ideal for use in biosensor construction, since in 

solution form it can be dip coated, pipette deposited, or ink jet printed, making it amenable 
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to a range of mass production processes. It is also relatively cheap, easy to handle, and has 

been used successfully in a number of studies involving the electrochemical measurement 

of hydrogen peroxide (Ward, Jansen, Anderson et al, 2002; Cullen, Jawaheer, Rughooputh 

et al, 2003; Moody, Saini & Setford, 2001). Therefore cellulose acetate was selected for 

use with the hydrogen peroxide biosensor. 

 

4.4.1 Determination of optimum operating potential 

The basic electrochemical methodological approach used during the glucose biosensor 

development was also used for the H2O2 biosensor. To determine the optimum operating 

potential at which to operate the biosensor, staircase amperometry was performed across 

the potential range -100 mV to -500 mV (100 mV steps) using 3 mM H2O2 in 0.1M PBS 

(all tests in triplicate). The average current at each potential for 3 mM H2O2 and the blank 

controls (background) were calculated. The ratio between the H2O2 generated current and 

background current revealed the optimum operating potential to be -300 mV. Therefore this 

potential was used for all future amperometric measurements with the H2O2 biosensor. This 

concurs with the work of Moody, Saini & Setford (2001).      
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Figure 4.17: The signal to background ratio for carbon three electrode system at 5 
potentials, in 3 mM H2O2 in 0.1M PBS pH7.2. n=3. 

 
 

4.4.2 Application of horseradish peroxidase, dimethylferrocene and cellulose acetate 

Initially, HRPx, DMFc and cellulose acetate (CA) were applied to the carbon working 

electrode, according to the procedure of Moody, Saini & Setford (2001). HRPx was made 

to 5U/µl in 0.1M PBS pH 7.2, DMFc to 12.5 g/L in acetone, and CA to 20g/L in acetone. 

The following volumes were applied to the working electrode: 

HRPx (5U/µl)  5 µl 

DMFc (12.5 g/L) 4 µl 

CA (20 g/L)  4 µl    

These volumes were applied together in a single solution deposition of 13 µl. In making a 

batch of sensors, the three components were pre-mixed by pipette action in a tube in order 

to provide a suitable batch size. However, it was found that preparing too large a volume at 
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one time, for example to make 100 sensors, resulted in acetone evaporation during the 

depositioning procedure, resulting in poor sensor repeatability. It also proved difficult to 

maintain a homogeneous mixture during the depositioning step, due to immiscibility 

between the aqueous and solvent phases, also contributing to sensor irreproducibility. 

Therefore a method was developed whereby a volume sufficient for the production of 60 

sensors was prepared, but aliquotted into 10 microcentrifuge tubes. Therefore one tube 

contained enough mix for 6 sensors, and while depositing the mix to 6 sensors, the 

remaining 9 tubes remained capped thereby preventing evaporation until opened. This also 

improved the uniformity of the mixture, and hence reduced inter batch variation. Once 

prepared, sensors were allowed to dry at room temperature overnight, and then foil 

wrapped and stored in an air tight glass jar �bocal canette� (Luminarc, France), with a silica 

gel sachet inside to absorb moisture.    

 
 
4.4.3 Shelf life testing 
 
Shelf life tests were carried out on the H2O2 biosensors for the same reasons given in 

Section 4.3.4 for the glucose biosensors. A batch of 100 H2O2 biosensors was made as 

described in Section 4.4.2. The sensors were foil wrapped and stored in air tight glass jars 

(Luminarc, France) containing one silica gel sachet and stored at 4 °C. On the day of 

biosensor production (day 0), 100 µM H2O2 in 0.1M PBS was amperometrically measured 

with the biosensors in triplicate at -300 mV. This measurement was repeated regularly over 

a period of 77 days, since the sensors were not stored for a longer period than this during 

the project. The differential mean and standard deviations were calculated, and are shown 
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in Figure 4.18. The largest reduction in signal took place between day 0 and day 4. This 

was followed by minimal signal reduction for the remaining 73 days.  
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Figure 4.18: Shelf life testing of H2O2 biosensor. Error bars = std dev, n=3. 

 

4.4.4 Determination of linear region and limit of detection 
 
A batch of H2O2 biosensors were made as described in Section 4.4.2. H2O2 concentrations 

of 5-2000 µM were prepared in 0.1M PBS pH7.2. Each concentration was 

amperometrically determined at -300 mV in triplicate. The resulting current values were 

averaged and blank subtracted and plotted vs. H2O2 concentration (error bars = standard 

deviation). The results for H2O2 solutions of 0- 200 µM and the linear region 0 to 25 µM 

with equation y = -0.011x and R2 value of 0.975are shown in Figure 4.19. The background 

standard deviation was 0.0138 µA. The limit of detection was determined to be 3.8 µM at 

99.7% confidence (2.5 µM at 95% confidence).  
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Figure 4.19: Calibration of screen printed three electrode H2O2 biosensor and 
determination of linear region for detection of H2O2 in 0.1M PBS. 

Error bars are std dev, n=3. 
 
 
 

LINEAR REGION
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4.4.5 Validation with Checkit H2O2 test kit 
 
The results for the detection of H2O2 in PBS with the hydrogen peroxide biosensors were 

validated using the Lovibond H2O2 Checkit test kit described in Section 2.2.7. Four 

solutions were prepared containing unknown concentrations of H2O2 in 0.1M PBS. The test 

kit instructions were followed as described in Section 2.2.7, to determine the concentrations 

of the four solutions. The solutions were also measured amperometrically using the H2O2 

biosensors, and the currents recorded converted into H2O2 values using the calibration 

graph in Figure 4.19. The H2O2 concentrations in Table 4.2 determined by each method are 

plotted in Figure 4.20, where it can be seen that an R2 value of 0.997 demonstrates the 

reliability of the H2O2 biosensor.   

 

Table 4.2: Results of H2O2 biosensor validation by H2O2 Checkit test kit 
 
Test kit: 
 
 
 
 
 
 
Biosensor: 
 
 
 

 
 
 

 
  
 
 

H2O2 solution # Checkit reading (mg/l) H2O2 conc. (µM) 
1 0.20 5.80 
2 0.50 14.70 
3 0.70 20.60 
4 0.85 25.00 

H2O2 solution # Signal (µA) H2O2 conc.  (µM) 
1 -0.06655 6.05 
2 -0.1672 15.20 
3 -0.22902 20.82 
4 -0.27852 25.32 
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Figure 4.20: Validation of H2O2 biosensor with Checkit test kit 
 
 
4.4.6 Detection of H2O2 in model wound fluid with hydrogen peroxide biosensor  
 
Having established the hydrogen peroxide biosensor could detect H2O2 down to 3.8 µM 

(99.7% confidence) in 0.1 M PBS, the next stage was to detect H2O2 in 90:10 v/v serum in 

0.1M PBS, as was also performed for the glucose biosensor in Section 4.3.8.  

 

Concentrations of H2O2 were prepared from 200 µM to 2000 µM in the 90:10 v/v serum: 

PBS and determined amperometrically as before. The results are shown in Figure 4.21. The 

linear portion of the response profile was determined to be 0-1000 µM, a four-fold increase 

in comparison to the PBS data, (y = -0.0028x: R2 value of 0.9846). The standard deviation 

of the blank was 0.007865 µA, and the limit of detection was found to be 8.5 µM at 99.7% 

confidence (6 µM at 95% confidence), similar to the limits found in PBS, having increased 

from 3.8 µM to 8.5 µM at 99.7% confidence.  
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Figure 4.21: Calibration of screen printed three electrode H2O2 biosensor and 
determination of linear region for detection of H2O2 in model wound fluid. 

Error bars are std dev, n=3. 
 

 

LINEAR REGION
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4.4.7 Detection of H2O2 in model wound fluid containing S.aureus with  

 H2O2 biosensor 

As with the glucose biosensor tests, the final test with the hydrogen peroxide biosensor 

again involved the detection of H2O2 in model wound fluid, but this time containing 

S.aureus to test whether the presence of bacteria affects the performance of the biosensor. 

S.aureus was grown in serum to a cell density of 2 x 108 CFU/ml. This was then used to 

prepare known H2O2 concentrations in 0.1M PBS from 250 to 2000 µM, which were 

measured at -300 mV in triplicate with the H2O2 biosensors. Differential means and 

standard deviations were calculated and plotted versus concentration as shown in Figure 

4.22. The linear range of the sensor was equivalent to that obtained for H2O2 in serum 

without S.aureus (0-1000 µM). The blank standard deviation was measured at 0.0897 µA, 

with a limit of detection of 9.6 µM at 99.7% confidence (6.4 µM at 95% confidence), less 

than 2 µM higher than in S.aureus free serum, indicating that the presence of bacteria does 

not significantly effect biosensor performance.  

 
 
4.4.8 Interferent testing 
 
As done so for the glucose biosensor, five common interfering species were tested for their 

affect on the measurement of 0.5 mM H2O2 in 0.1 M PBS with H2O2 biosensors. The 

results are summarised in Figure 4.23. As normal, results are blank subtracted averages of 

three replicates, and error bars are +/- standard deviation.   

 



 163

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
0 250 500 750 1000 1250 1500 1750 2000

H202 conc. (µM)

Si
gn

al
 (µ

A
)

y = -0.0024x
R2 = 0.9864

 
 

Figure 4.22: Calibration of screen printed three electrode H2O2 biosensor and 
determination of linear region for detection of H2O2 in model wound fluid 

 containing 2 x 108 CFU/ml S.aureus. Error bars are std dev, n=3. 
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Figure 4.23: Affect of interferents on the measurement of 0.5 mM H2O2 in 0.1 M PBS with 

H2O2 biosensor. Error bars are std dev, n=3. 
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Inversely to the glucose biosensor (except for urea), the interferents reduced rather than 

increased the signal by differing amounts. Acetominophen and ascorbic acid had the 

greatest effect reducing the signal by ~7 times. The least effect was given by cysteine. Urea 

and uric acid approximately halved the signal. This is because they are electroactive at the 

same potential as H2O2, and are therefore adding to the reduction signal. As mentioned for 

the glucose biosensor, the incorporation of a compensator electrode could help to alleviate 

this. 

 
 
4.4.9 Conclusions: H2O2 biosensor 

A mediated three electrode H2O2 biosensor was fabricated and optimised in 0.1M PBS 

spiked with H2O2. Testing of the biosensor in model wound fluid with a single dilution step 

revealed the limit of detection to be 8.43 µM. The biosensor was tested in model wound 

fluid in the presence of bacteria, which had no significant effect. Interferent effects were 

tested where acetominophen and ascorbic acid were found to exhibit the most significant 

affects on signal. Validation using a Checkit enzyme based colorimetric test kit was 

successful. Although without data on the levels of H2O2 in the body one cannot be certain 

that the levels are detectable, but as a concept, a hydrogen peroxide biosensor could 

successfully be used to monitor H2O2 in wound fluid down to a level of approximately 8.4 

µM. To take this further, real sample testing would be required.  

 
4.5 Ethanol biosensor 
 
The third biosensor was designed for the detection of ethanol in 0.1M PBS and model 

wound fluid. Many analytical methods have been developed for the measurement of 

ethanol, including chemical, colorimetric, chromatographic and refractive index methods. 



 165

However, although these methods are precise and reliable, they are relatively complex and 

time consuming, and also require expensive instrumentation and training of operators. 

Much research has been directed towards overcoming these disadvantages by use of the 

biosensor approach, particularly those based on electrochemical transduction.  

 

Two enzymes, alcohol oxidase (AOx) and alcohol dehydrogenase (ADH) have been 

extensively used in ethanol biosensor studies (Lee, Kim, Lee et al, 1999; Sprules, Hartley, 

Wedge et al, 1996). ADH based biosensors require the co-enzyme nicotinamide adenine 

dinucleotide (NAD+). However, the NAD+ also needs to be able to diffuse to the enzyme 

active site without becoming irreversibly entrapped or otherwise linked (Fonseca, Azevedo, 

Prazeres et al, 2004). AOx is an oligomeric enzyme consisting of eight identical sub-units 

arranged in quasi-cubic arrangement, each containing a strongly bound co-factor, flavin 

adenine dinucleotide (FAD) (Vonck & van Bruggen, 1990). It is produced by 

methylotrophic yeasts, commonly Hansenula, Pichia, and Candida. AOx has been used 

extensively in ethanol biosensors from each of these three yeast sources (Gorton, Heller, 

Vijayakumar et al, 1996; Patel, Meier, Cammann et al, 2001, Kulys & Schmid, 1991). AOx 

irreversibly oxidises short chain alcohols to the corresponding aldehyde, using molecular 

oxygen as the electron acceptor. The reaction can be followed by either monitoring 

decrease in O2 tension or the increase in H2O2 concentration. 

RCH2OH + O2   AOx   RCHO + H2O2 

 

Sensors based on O2 measurement have the advantage of minimal electrochemical 

interference in real samples. However, response values are relatively low with high 

background signals, giving poorer detection limits when compared to H2O2 measurement 
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approaches.  Furthermore, the dependence on oxygen can reduce sensor accuracy and 

reproducibility, since O2 levels vary from sample to sample (Bott, 1998). Therefore H2O2 

detection is the more commonly used and preferred method.  H2O2 sensors have a greater 

dynamic range and wider linear range, but as previously mentioned for the H2O2 biosensor 

(Section 4.2), first generation sensors based on direct detection of H2O2 require an elevated 

detection potential, increasing the likelihood of electrochemical interference in real 

samples, for example from electroactive ascorbic acid or acetaminophen. Therefore, in a 

similar manner to that employed for the H2O2 biosensor developed for this study, an 

alternative direct detection route was employed. Options included: modifying the electrode 

with an electrocatalyst (such as that used for the glucose biosensor � see Section 4.3); using 

an alternative electron acceptor to O2; to regenerate the oxidised form of FAD, (a rarely 

used method); use of a mediator (second generation biosensor) such as ferrocene, (although 

a literature search yielded no such mediator for AOx; use of a bienzyme system such as the 

many examples where HRPx is used to catalyse the electro-reduction of H2O2 at reduced 

potentials, either directly or by use of a mediator. The latter option of a bienzyme system 

using HRPx and AOx has been utilised successfully by a number of groups for ethanol 

detection, including Kulys & Schmid, (1991); Gorton, Heller, Vijayakumar et al. (1996).       

 

After careful consideration, and based on the success of the HRPx sensor approach, a 

mediated bienzyme (HRPx and AOx) system was chosen using DMFc as the mediator. 

Having already developed a H2O2 biosensor utilising HRPx and DMFc, the simple  

addition of AOx to the deposition medium resulted in the relatively straightforward 

development of a mediated bienzyme ethanol biosensor.  
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4.5.1 Operating potential 
 
Since the ethanol biosensor had a similar operating procedure as for the H2O2 biosensor, 

namely the current generated from the reduction of the oxidised form of the DMFc 

mediator at a carbon working electrode, the same operating potential of -300 mV (vs. 

Ag/AgCl reference electrode) was employed.   

   
4.5.2 Determination of optimum alcohol oxidase loading 
 
Two sources of AOx were investigated: Candida boidinii and Pichia pastoris, both 

purchased from Sigma (Poole, UK). AOx from C.boidinii was supplied with a specific 

activity of 13.6U/mg protein and AOx from P.pastoris with 23U/mg protein, both as a 

liquid stored at -20 °C. The optimum number of units of AOx per sensor was determined 

for both sources. A range of AOx loadings were prepared and applied to the working 

electrode at the same time as the HRPx, DMFc and CA as a total deposition volume of 15 

µl, with the AOx fraction accounting for 2 µl of the total depositioning volume (as 

described by Moody, Setford, Saini, 2001). A 2mM volume of ethanol in 0.1M PBS (pH 

7.2) was determined amperometrically at -300mV (n=3). The signal: noise ratio was 

calculated for each enzyme loading by determining the ratio of the differential signal versus 

standard deviation for each AOx source. The optimum loading for AOx from C.boidinii 

and P.pastoris was found to be 1.25 U/sensor and 1.15 U/sensor respectively, as illustrated 

in Figure 4.24 (a) and (b).   The optimum number of units of AOx/sensor was similar for 

both sources, but AOx from C.boidinii was approximately twice as expensive, and also less 

widely available, both of which are important issues when considering possible production 

issues. Therefore AOx from P.pastoris was selected to prepare subsequent batches of 

ethanol biosensors, at an enzyme loading of 1 U/sensor.   
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Figure 4.24: Signal: noise ratios for alcohol oxidase loadings of bi-enzyme mediated 
system in 2mM ethanol in 0.1M PBS pH7.2. (a) C.boidinii and (b) P.pastoris. n=3.  
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4.5.3 Deposition of horseradish peroxidase, alcohol oxidase, dimethylferrocene and 

cellulose acetate 

As with the H2O2 sensors, deposition modification was required to increase uniformity and 

reduce sensor losses. The batch volume made was split up into microcentrifuge tubes, as 

described for the H2O2 sensors. However a reduction in deposition volume was also 

required. A volume of 15µl/ sensor resulted in spread beyond the working electrode film on 

a high percentage of sensors. Therefore, the depositioning volume was reduced which 

eliminated the solution-spread problem. Accordingly, the concentration of DMFc was 

raised  from 12.5 to 25mg/ml thereby reducing the volume of DMFc  per sensor from 4 to 2 

µl and hence the overall deposition volume to 13 µl.  

 
4.5.4 Shelf life testing 
 
Shelf life tests were carried out on the ethanol biosensors for the same reasons given in 

Section 4.3.4. A batch of 100 ethanol biosensors was made as described in Section 4.5.3. 

The sensors were foil wrapped and stored in air tight glass jars containing one silica gel 

sachet and stored at 4 °C. On the day of biosensor production (day 0), 1000 µM ethanol in 

0.1 M PBS was determined amperometrically in triplicate. This measurement was repeated 

regularly over a period of 77 days, since the sensors were not stored for a longer period 

than this during the project. The differential mean and standard deviations were calculated 

and are shown in Figure 4.25. The largest reduction in signal took place between day 0 and 

day 4, as observed for the glucose and H2O2 biosensors. Following this initial reduction, the 

signal stabilised to an average of -0.90 µA for the remaining 73 days of the test.  
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Figure 4.25: Shelf life testing of alcohol biosensor. Error bars = std dev, n=3. 
 

 
 
4.5.5 Determination of linear region and limit of detection 
 
A batch of ethanol biosensors was prepared as described in Section 4.5.3. Ethanol 

concentrations of 25-10,000 µM were prepared in 0.1M PBS pH7.2. Each concentration 

was determined amperometrically (n=3). The resulting currents were averaged and blank 

subtracted (signal) and plotted vs. ethanol concentration, with error bars. The background 

standard deviation was 0.0366 µA. The linear region was determined to be between 0 and 

750 µM, yielding the equation: y = -0.0011x with an R2 value of 0.9946, as illustrated in 

Figure 4.26. The limit of detection was determined to be 99.8 µM at 99.7% confidence 

(66.5 µM at 95% confidence).  
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Figure 4.26: Calibration of screen printed three electrode ethanol biosensor and 

determination of linear region for detection of ethanol in 0.1M PBS. 
Error bars are std dev, n=3. 
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4.5.6 Validation 

A test kit was not available for the detection of ethanol in solution in the range required. 

However, since the ethanol biosensor is ultimately based on the determination of hydrogen 

peroxide at the working electrode and utilises the same HRPx enzyme loading and 

mediator as for the hydrogen peroxide biosensor, it is not unreasonable to assume that the 

ethanol biosensor has a similar operational capability.  

 

4.5.7 Further ethanol biosensor development � membranes and deposition regime 
 
Before commencing work on the detection on ethanol in simulated wound fluid, further 

development work on the ethanol biosensor was carried out. To reduce the possible effects 

of interferents and proteinacious material present in serum, a range of membranes were 

investigated.  Variations in the deposition of the enzymes, DMFc, CA and of Nafion were 

also investigated. The aim was to improve the linear range and the limit of detection of the 

sensor, by reducing inter-batch variation and hence noise. Table 4.3 below lists the 

membranes investigated.  

 

Table 4.3: Membranes tested on ethanol biosensor 

Manufacturer Membrane name Membrane pore  
    size (um) 
Pall, Portsmouth, UK Biodyne A  0.2 
Pall, Portsmouth, UK Biodyne A  0.45 
Pall, Portsmouth, UK Biodyne A  1.2 
Pall, Portsmouth, UK Immunodyne ABC 0.45 
Whatman, Loughborough, UK Cellulose nitrate 0.2 
Whatman, Loughborough, UK Cellulose nitrate 0.45 
Whatman, Loughborough, UK Cellulose nitrate 3 
Whatman, Loughborough, UK Cyclopore polycarbonate 0.4 
Sterlitech, Kent, WA, USA Nylon 0.45 
Millipore, Watford, UK Nylon 0.45 
Spectrum, Loughborough, UK Spectra membrane MWCO 6-8k 
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A batch of ethanol biosensors were made according to the single deposition method 

described in Section 4.5.3. The membranes were cut into 1 cm squares, and placed on the 

sensor such that they covered the three electrodes (pre-dosed with enzyme, DMFc and CA) 

and secured using PVC tape. The amperometric procedure was initiated and 100 µl of 1:1 

v/v serum: PBS deposited onto the membrane and the electrode response allowed to 

equilibrate prior to addition of 100 µl of 5 mM ethanol in 1:1 v/v serum: PBS. Tests were 

performed in triplicate, and the differential signal and signal: noise determined.  

 

The Whatman Cyclopore proved unsuitable, since upon application of the serum/PBS, the 

membrane proved relatively hydrophobic resulting in uneven sample spread, and the serum 

did not filter though to the sensor surface. The Spectrum spectra membrane could not be 

used since it disintegrated upon application of serum/PBS. For all of the remaining 

membranes tested, there was a general difficulty in achieving full contact between the 

sensor and the membrane, and retaining contact once serum had been applied. Figure 4.27 

shows the signal: noise ratios obtained for each of the membranes incorporated into the 

ethanol biosensors. 

 

Only two of the membranes improved the signal to noise ratio beyond that of using no 

membrane. These were both Biodyne A membranes of 0.2 µm and 0.45 µm pore size, with 

a signal to noise of 54.4 and 10.4 respectively. Using no membrane gave a signal to noise 

of 8.7, therefore using the 0.45 µm Biodyne membrane would not greatly improve the 

sensor performance (compared to the improvement that follows through deposition 

development).   
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Figure 4.27: Comparison of signal: noise of ethanol biosensor using of a range of 
membranes.n=3. 

 

Given the difficulties associated with membrane integration into the sensor, the regime of 

applying AOx and HRPx enzymes, DMFc, and CA to the sensor, with the aim of 

improving the signal to noise ratio without the use of a membrane, was investigated further. 

Instead of applying all four components in one step, alternative depositioning regimes were 

examined, including the application of combinations of the reagents in seven variations of 

one, two or three layers, as shown in Table 4.4. The 13 µl deposition volume comprising 

two enzymes HRPx and AOx, and the CA immobilisation/diffusion layer were prepared, as 

described in Section 4.5.3. The same volumes per sensor also applied. A 5% v/v Nafion 

perfluorated resin aqueous dispersion (Aldrich, Poole, UK) was also investigated, at two 

drying temperatures to vary pore size. Except for the Nafion layers which were dried at 4°C 

and 50 °C, each layer was allowed to dry at room temperature before deposition of the next 
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layer. Each variation was made and deposited in replicates of six sensors (three for 

measurement, three for blank). 5 mM ethanol in 1:1 v/v serum: PBS was determined 

amperometrically to compare the formulations.     

 
Table 4.4: Ethanol biosensor deposition parameters for the 4 biosensor reagents studied: 
AOx and HRPx enzymes, dimethylferrocene film, cellulose acetate and Nafion membrane 

materials. Numbers indicate layer number 
 

Combination Enzymes Enzymes Enzymes + DMFc  5% Nafion 5% Nafion CA 
   + DMFc DMFc + CA + CA Dried at 4 °C dried at 50 °C   

1 1   2    
2 1   2 3   
3 1   2  3  
4  1   2   
5  1    2  
6   1     
7  1     2 

 
. 

The average signal, standard deviations and signal to noise ratio were calculated for each of 

the seven combinations, plotted in Figure 4.28. It can be seen clearly that combination  

number seven had by far the best signal to noise ratio of 19.1. This combination consisted 

of two deposition layers - layer one: HRPx, AOx and DMFc, and layer two: CA. The 

second best signal to noise was given by combination 6, the single deposition combination 

as used earlier in the chapter to detect ethanol in PBS, but was still considerably less than 

combination number 7. The addition of a Nafion layer increased the signal but had less 

favourable signal to noise ratios, possibly due to difficulty achieving a uniform and 

repeatable layer of nafion on the sensor surface. The very low signals and signal to noise 

witnessed for combinations 4 and 5, where a CA layer is absent, illustrate the importance of 

using CA as a diffusion layer on these sensors. Therefore, combination 7 was selected as 

the deposition regime of choice.     
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Figure 4.28: Signal:noise ratio for the 7 deposition combinations of enzymes, 
dimethylferrocene, cellulose acetate and nafion used in alcohol biosensor construction. 

Error bars are std dev, n=3. 
 
 

Having decided to apply cellulose acetate as a separate second layer, a small investigation 

was carried out to determine whether application of CA by pipette action or dip coating 

was preferable. CA (20mg/ml) volumes of 0, 3 and 5 µl were applied to sensors by pipette 

action in replicates of six, and six sensors were also dip coated in CA. The sensors were 

then interrogated amperometrically using 5 mM ethanol in 1:1 v/v serum: PBS. The 

resulting average signals and signal to noise ratios were calculated and are shown in Figure 

4.29. It can be seen that a far greater signal to noise ratio was present for the dip coated 

sensors, with a value of 238.0. This value far exceeded that produced when using the 

Biodyne A (0.2 µm) membrane, indicating that the dip coating route was superior to the 

pre-formed membrane depositioning approach, for the membranes studied in this work. CA 

was therefore applied by dip coating for all subsequent alcohol biosensor batches produced.  
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Figure 4.29: Comparison of cellulose acetate application methods and volumes  
applied to alcohol biosensor. Error bars are std dev, n=3. 

 
 
4.5.8 Detection of ethanol in model wound fluid with ethanol biosensor 
  
Having established that the alcohol biosensor had a limit of detection of 99.8 µM (99.7% 

confidence) in 0.1 M PBS using the single step reagent depositioning approach,  the next 

stage of development was to examine the performance of the reformulated ethanol 

biosensors in 1:1 v/v serum: PBS, as performed for the glucose and hydrogen peroxide 

biosensors. A batch of ethanol biosensors was prepared using the new two layer deposition 

method, as described in Section 4.5.7   

 

Concentrations of ethanol were prepared from 100-2000 µM in the 1:1 v/v serum: PBS. 

Ethanol was determined amperometrically at -300mV as before. Results are shown in 

Figure 4.30.  
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Figure 4.30: Calibration of screen printed three electrode ethanol biosensor (2 layer 
deposition procedure, described in 4.5.7) and determination of linear region for detection 

of ethanol in model wound fluid. Error bars are std dev, n=3. 
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The linear range of the sensor response was determined to be 0-1000 µM, 250 µM longer 

than in PBS alone, which were prepared by the single deposition formulation; (y = -

0.0037x, R2 value of 0.997). The standard deviation of the blank was found to be 0.0098 

µA, yielding a limit of detection of 7.94 µM at 99.7% confidence (5.3 µM at 95% 

confidence), much lower than the limits found in PBS with the single deposition 

formulation (99.8 µM at 99.7% confidence). 

 
 
4.5.9 Detection of S.aureus in model wound fluid with ethanol biosensor  
 
Having established the biosensor could detect ethanol in diluted model wound fluid (1:1 

v/v serum: PBS), it was next tested for its ability to detect bacteria in model wound fluid, 

by determining ethanol produced by metabolically active bacteria. However, as already 

mentioned in Section 2.3.1 only S.aureus would grow in serum alone. Attempting detection 

in serum supplemented with Dulbecco�s modified Eagle�s medium (DMEM) (as 

implemented in Chapter 5 for the odour analyser work), significantly interfered with the 

performance of the biosensor and thus this approach was not suitable. S.aureus alone was 

grown in serum (cultured as described in Section 2.2.5), and after a 1:1 dilution with 0.1 M 

PBS, was determined amperometrically (n=3) at five different cell densities. The average 

signals and standard deviations can be seen in Figure 4.31. The standard deviation of the 

blank was 0.02355 µA, and a linear biosensor response was observed over the range 

0 to 4 x 108 CFU/ml (y = -0.0574x). The limit of detection was found to be 1.23 x 108 

CFU/ml at 99.7% confidence (0.82 x 108 CFU/ml at 95% confidence). By using the 

mathematical relationship shown in Figure 4.30, the limit of detection in terms of the 

ethanol specific response was 19.0 µm at 99.7% confidence (12.7 µm at 95% confidence).  
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Figure 4.31: Detection of metabolic ethanol production by S.aureus with screen printed 
three electrode alcohol biosensor in serum. Error bars are std dev, n=3. 

 
 

4.5.10 Interferent testing 

As done so for the glucose and H2O2 biosensors, five common interfering species were 

tested for their affect on the measurement of 0.5 mM ethanol in 0.1 M PBS with ethanol 

biosensors. The results are summarised in Figure 4.32. Results are blank subtracted 

averages of three replicates, and error bars are +/- standard deviation.   

 

The results are similar to those observed for the H2O2 biosensor, with acetominophen and 

ascorbic acid having the most significant affects on signal, and cysteine the least affect. 

However, the effects of urea and uric acid are not so severe. The change in signal is either 

because the species are electroactive at the same potentials as the analyte, or by electrode 
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fouling. These effects could be reduced by use of a perm-selective layer (Carelli, Centonze, 

De Giglio, et al, 2006; Hamdi, Wang, Monbouquette, 2005). 
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Figure 4.32: Affect of interferents on the measurement of 0.5 mM ethanol in 0.1 M PBS 

with ethanol biosensor. Error bars are std dev, n=3. 
 
 
4.5.11 Conclusions: Ethanol biosensor 

A bienzyme mediated ethanol biosensor was fabricated using a screen-printed three 

electrode assembly. AOx selection and optimisation determined that the optimum AOx 

loading was 1U/sensor using AOx isolated from P.pastoris. This enzyme was combined 

with HRPx and DMFc mediator. Cellulose acetate was found to be the most suitable 

immobilisation / diffusion layer when compared to Nafion and other membrane materials, 

with dip coating proving preferable to pipette application, with signal: noise values of 

238.0 and 8.7 respectively. A detection potential of -300 mV was used for the detection of 
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H2O2 at the sensor surface. In model wound fluid with a single dilution step, the limit of 

detection for ethanol was 7.94 µM at 99.7% confidence.  Direct detection of metabolically 

produced ethanol by S.aureus grown in model wound fluid by the ethanol biosensor, gave a 

limit of detection of 1.23 x 108 CFU/ml. This level does represent a significant bacterial 

count, since bacterial colonisation in wounds is considered problematic at levels of greater 

than 106 CFU/ml. Therefore, further biosensor refinement and optimisation is required in 

order to be used as an early warning system for bacterial invasion of a wound. However, 

this sensor does have potential to be used for monitoring further rises in bacterial 

colonisation, or indeed as part of a wound monitoring process where falls in ethanol 

production below a certain level could indicate reducing bacterial numbers and hence the 

success of a patient treatment regime. 

 

4.6 Conclusions: Overall 

The glucose, hydrogen peroxide and ethanol biosensors were all successful, detecting 

glucose, hydrogen peroxide and ethanol in surrogate wound fluid with a single dilution 

step, with limits of detection of 169.5 µM glucose, 8.43 µM hydrogen peroxide, and 7.94 

µM ethanol respectively. The ethanol biosensor could detect S.aureus down to 1.23 x 108 

CFU/ml, which could signal bacterial numbers falling below this level, possibly indicative 

of healing, or rising above a �safe� level (i.e. >106 CFU/ml). Using the biosensor array, 

perhaps within a suite of diagnostic wound monitoring tests, a non-healing wound could be 

signalled to a busy physician more rapidly than it would otherwise be using conventional 

methods.    
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5. Bacterial Detection Using a Single Sensor Odour Analyser 
 
5.1 Introduction 
 
This Chapter aims to investigate whether a single sensor odour analyser may be used as a 

diagnostic tool in the early stages of wound healing, based on the detection of volatile 

bacterial metabolites and human markers of immune response within the localised wound 

environment.  

 

Using a single sensor based odour analyser instead of an array of sensors, as present in 

commercially available electronic nose devices, has the advantages of reduced cost, and 

reduced complexity with respect to the sensor array. This is achieved by augmenting the 

volume of information gained from the sensor response by considering an increased 

number of sensor response curve features. Further information on the development of this 

machine can be found in the thesis of Lee-Davey (2004). There are many potentially 

influencing factors in the wound environment, for example: antiseptics and other 

antimicrobial agents; changing temperature of the wound environment; cell-derived 

molecules responsible for co-ordinating the healing process; medications taken by the 

patient, and though considered, could not all be investigated within the scope of this study. 

However, by separating serum from blood, as described in Section 2.2.4, it was possible to 

create a surrogate wound fluid, since the major component of wound fluid is serum. This 

enabled experimentation to be confined to the laboratory under a controlled environment in 

this preliminary feasibility study.  

 



 184

The objectives were limited to identifying whether the system could discriminate between 

those five bacterial species commonly associated with wound infection: Staphylococcus 

aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Escherichia coli and 

Pseudomonus Aeruginosa.  Tests were performed on individual cultures, then culture pairs, 

initially in broth and secondly in serum at fixed cell densities. By examining the headspace 

at constant cell densities, the differences detected may be more directly attributed to 

particular bacterial metabolic features, and not differences in cell numbers between 

bacteria. Detection and discrimination of the biological markers glucose, ethanol and H2O2 

was also investigated. Headspace GC-MS (results presented in Section 2.3.3.) was used as 

the standard method as a basis for comparison.  

  

Following odour analysis, discrimination of samples was based on principle component 

analysis (PCA), an unsupervised technique executed in Matlab. It requires the user to 

examine the data and select the principle components which provide the best virtual 

discrimination of samples, realised through plots of one principle component versus 

another. As described in Section 1.4.5.1, this technique reduces the dimensionality whilst 

retaining the variance of the original data, providing a relatively fast method of determining 

the success of the experiments at this developmental stage.  
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5.2 Materials and Methods 
 
5.2.1 Odour analyser instrumentation 
 
The odour analyser, developed by Lee-Davey (2004) at a basic level may be considered a 

relative of the traditional machine olfaction approach as exemplified by the so-called 

�electronic nose�. However, instead of housing an array of sensors for odour detection, it 

uses just one - a single mixed metal-oxide semiconductor sensor (MMOS). MMOS sensors 

are designed for a range of applications, including air quality and volatile organic 

compounds (VOCs), and have found application in commercial systems, such as the 

Marconi eNOSE 5000 units. These sensors typically have a lifetime >5 years for some 

applications, repeatability, and a broad range - useful characteristics for the detection of 

multi component mixtures such as that of wound fluid.   

 

G series CAP25 sensors from City Technologies Ltd, Portsmouth, UK, are p-type semi-

conductors based on a chromium titanium oxide layer sandwiched between two electrodes. 

If the semiconductor is exposed to a reducing gas, oxygen is removed from the surface and 

thus gains electrons, leading to a positive (p) change in resistance. Further details of sensor 

operation can be found in Section 1.4.3 and from the supplier�s website: 

www.citytech.co.uk.  

  

The pattern of response from the sensor is dependent on the sensor operation temperature, 

which is 430 ± 50 °C. The sensor chamber is designed to be completely sealed and includes 

temperature control using a Peltier thermoelectric controller - TEC (Oven Industries Inc., 

PA, USA). This is connected to a temperature sensor (also within the chamber) and 
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microprocessor heat sink and fan (exterior). The chamber also contained an elongated path 

in order to equilibrate the volatilised sample at a uniform, desired temperature. An 

annotated photograph of the sensor chamber is given in Figure 5.1.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: The interior of the MMOS system sensor chamber, displaying the MMOS 
sensor, the relative humidity sensor, and the Peltier Thermoelectric Controller, 

temperature sensor.  
 
 

Resistance change is affected by humidity and water formation. At low temperatures, 

hydrogen gas may react with OH- bonded to the surface of the sensor, however, by 

operating the sensor at an elevated temperature, a reduction in the negative effect of water 

is achieved. The sensor chamber also contains a sensor to monitor relative humidity 
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(Honeywell Inc., IL, USA). The program LabVIEW is used to vary system parameters and 

control the system. The system and sampling parameters employed are given in Table 5.1. 

 

Table 5.1: Odour analyser system parameters 
 

Parameter  Value 
Bacterial sample volume (ml) 0.5 
Injection volume (ml) 5 
Sensor chamber temperature (°C) 30 
Sample temperature (°C) 37 
Carrier gas flow rate (ml/min) 150 
Sensor baseline resistance (kΩ) 150 
Sensor temperature (°C) 430 

 
 

Achieving a stable baseline and response from an MMOS sensor is an important step to 

ensure repeatable sensor performance. Sensor sensitivity can be manipulated by increasing 

or decreasing the resistance baseline value and should be selected based on the particular 

nature of the samples to be analysed. Therefore, after sensor installation or replacement, the 

baseline resistance was adjusted to a final value of 150 KΩ after equilibration at the 

operating temperature for 24 hours to allow sensor stabilisation. The sensitivity of newly 

installed sensors was checked using 1.72 mM ethanol samples. This procedure was also 

carried out routinely to periodically check the performance of the sensor by comparing the 

response profile with that obtained when the sensor was first installed.  

 

5.2.2 System operation 

There are four stages to the sampling sequence: 

 

 Sensor  
preparation 

Sample
injection 

Sample 
exposure 

System 
Clean-up 
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First the sensor must adjust and stabilise to any differences between the sampling and 

standby flow rates. Secondly, a fixed period of time (20 s) is allocated for sample injection. 

Following this, data is collected and recorded for analysis. Fourthly, there is a clean-up 

stage post analysis.  

 

Figure 5.2 is a schematic representation of the odour analyser. The sensor manufacturer 

recommends a continuous air flow, even in standby mode, therefore the carrier gas zero 

grade air (BOC Ltd, Windlesham, UK) continually flowed over the sensor unit, allowing 

the baseline resistance pre and post analysis to stabilise. Flow control was maintained by a 

Mass Flow Controller (Brooks Instruments, PA, USA). 

Sensor
Chamber

- Relative Humidity Sensor
- Temperature Sensor
- MMOS Sensor
- Peltier Thermoelectric Device

Mass Flow
Controller

6-Port Valve

Hydrocarbon
Trap

Carrier
Gas

Supply

Flow Meter

Injection Port

Exhaust

Sample

4

5
6

1

2
3

6-Port Valve Legend

Position A (Standby)
Position B (Injection)

 

Figure 5.2: Mode of operation of the single MMOS sensor odour analyser  
(Lee-Davey, 2004) 
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In sampling mode, a headspace sample was injected into the sample port, and the six-port 

valve (Vici Valco Instruments Co., Houston, USA) switched so the zero grade air supply 

passes through the injection valve. This directed the headspace sample over the sensor 

surface in an undiluted �plug� and the sensor response was recorded over a period of 180 s. 

The response could be viewed in real-time using the LabVIEW software (National 

Instruments, Newbury, UK).   

 

The sensor resistance response required data pre-processing in order to reduce noise. 

Therefore, post acquisition digital filtering was used, also conducted through LabVIEW, to 

automatically produce a noise-reduced sensor signal. Data from each analysis was recorded 

in the form of a tab separated spreadsheet, accessible through programs such as MS Excel 

and Mathworks Matlab for analysis. The parameters recorded in each file are listed below: 

 

• Date and time of analysis 

• Carrier gas flow rates in and out (ml/min) 

• Relative humidity (%) 

• MMOS sensor voltage (V) 

• Sensor Resistance (Ω) 

• Mean sensor resistance (Ω) 

• Deviation from the sensor baseline resistance (%) 

• Standard deviation of the mean resistance value (Ω) 
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After sample exposure there followed a system clean-up period of 600 s. Further 

information on the design of this system, including operation, configuration and calibration 

can be found in the thesis of (Lee-Davey, 2004).   

 

5.2.3 Data Analysis 

The second stage of the odour analysis procedure was that of data analysis, in this case by 

principle component analysis (PCA) of key response curve values using Matlab. PCA was 

considered a suitable chemometric technique for the validation of the odour analyser as a 

potential diagnostic tool, since there was little knowledge regarding the response of the 

sensor to various bacterial odours, and therefore an unsupervised learning technique (i.e. 

does not require a training data set) has obvious advantages. This technique is widely used 

as the analytical method of choice in the investigation of machine olfaction sensor 

responses. By using PCA, many variables could be considered simultaneously and with 

reduced dimensionality, making it easier to identify relationships between samples.  

 

Individual features of the response curve recorded during sample analysis were used for 

PCA. Three distinct aspects to the response curve produced by the odour analyser MMOS 

sensor are immediately evident: a) the magnitude of the response curve, b) following a 

brief negative deviation from baseline resistance, a sharp rising slope rising to a maximum 

response value, and c) a decay slope as the sensor returned towards the baseline value. 

These three portions of the sensor response can be observed in Figure 5.3, in which a 

typical response to the headspace of a 1.72 mM (v/v) ethanol sample is shown.  
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Figure 5.3: A typical MMOS sensor response curve showing the three main 

characteristics: a) the magnitude of the response, b) the rising slope, c) the decay slope. 
 
 
 

Twenty seven distinct measurable parameters were extracted from the response curves. A 

list of the extracted features recorded from a sensor response curve can be found in Table 

5.2. The curve features were obtained from the odour analyser output files using a program 

written in Matlab (Allnostril). Features of the samples were compiled into a matrix 

whereby principle component analysis could be conducted on the data using the �pcagui� 

function of the PLS Toolbox (Eigenvector Research Inc., Washington, USA) which ran as 

an �ad-on� in Matlab. Once the PCA model loaded, it was possible to view the sample 

scores, eigenvalues, and to select the number of extracted features to apply to the model, 

which was usually the first eight.  
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Table 5.2: The twenty seven components extracted from MMOS response curves. 
 

PC number Extracted Components 
1 Baseline resistance (Ω). 
2 Maximum response (Ω). 
3 Time of maximum response (s). 
4 Signal to noise ratio (Ω). 
5 Noise ratio (%).  
6 Last value logged (%). 
7 Minimum value (%). 
8 Ratio of baseline resistance to maximum response.  
9 Peak width (s). 
10 Maximum gradient.  
11 Time of maximum gradient (s). 
12 Gradient of minimum to maximum slope. 
13 Rising slope. 
14 Area under the entire curve. 
15 Area to maximum response value. 
16 Area of peak width. 
17 Area from maximum response to the end of file. 
18 Decay curve half life (s). 
19 Decay curve one third life (s). 
20 Decay curve two third life (s). 
21 Ratio of maximum response to half life.  
22 Ratio of maximum response to one third life. 
23 Ratio of maximum response to two third life. 
24 Ratio of maximum response to last value logged. 
25 Gradient of the logarithm linear curve of the decay slope. 
26 Constant of the logarithm linear curve of the decay slope. 
27 Coefficient of determination of the logarithm linear curve 

of the decay slope. 
 

 
 

5.2.4 Preparation of non-bacterial  samples 
 
Aqueous solutions of phosphate buffer saline (Sigma, Poole, UK), ethanol (99.9% 

denatured HPLC grade, Aldrich, Poole, UK), hydrogen peroxide (31.3% v/v assay ACS 

reagent, Sigma, Poole, UK), and glucose (reagent grade, Fisher, Loughborough, UK) were 

prepared in reverse osmosis water.  
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5.2.5 Preparation of bacterial samples 
 
Bacteria were grown up in glass �universal� vials (Fisher, Loughborough, UK) containing 

5 ml of the growth media stated for each study (tryptone soy broth (TSB) or yeast peptone 

dextrose (YPD) sterilized by autoclaving). For studies where serum or 90:10 v/v 

serum: Dulbecco�s modified Eagles medium (DMEM) was used, the bacteria were grown 

in 40 ml clear plastic vials supplied sterile from Fisher, Loughborough, UK. All 

inoculations and sampling was carried out in a type 2 laminar flow cabinet with aseptic 

technique. The bacteria were cultured at 37 °C in a Gallenkamp orbital incubator at 140 

rev/min.  

 

By referring to the growth curves generated for each bacteria in the different media used 

(Section 2.3.1), it was possible to determine the number of bacteria at a given time by 

measuring optical density at 600nm. It was therefore possible to keep a constant bacterial 

count (± 0.05 abs reading) for headspace measurements, when required.    

 

5.2.6 Sample injection 

It was found that 1 ml was a suitable sample volume for analysis of the marker analytes 

ethanol, glucose and H2O2. However, for bacterial samples because the deviation in 

baseline resistance in analysis was often very large, the time required for the sensor to 

restabilise to its baseline value was much longer, and therefore a sample volume of 0.5 ml 

was used in order to reduce the time required for the baseline signal to restabilise after 

analysis, whilst still eliciting a sufficiently large sensor response.  
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Before analysis, all samples were held at 37°C in a water bath for 15 minutes to equilibrate, 

unless otherwise stated. Each sample was held in a 20 ml glass vial (Sigma, Poole, UK) and 

capped with air-tight aluminium pressure release seal caps pre-fitted with silicone septa 

(Sigma, Poole, UK). After equilibration, 5 ml of headspace was withdrawn from the vial 

and injected into the odour analyser system using a 5 ml gas tight syringe from SGE 

International PTY Ltd., Ringwood, Australia. Samples were processed randomly with 

replicate tests being performed as stated for each study.   

 
 

 
5.3 Results and Discussion 
 
5.3.1 Effect of sample preparation temperature and pH on odour analyser response 

It was important to assess the impact of certain variables on the response produced by the 

odour analyser before studies involving bacterial samples and marker analytes were 

performed. Therefore initial studies on the key experimental parameters of sample 

preparation temperature and pH were performed, since temperature has been reported as 

having a major influence on headspace generation (Lee-Davey, 2004). 

 

Using 1 ml of 4.31 mM ethanol in H2O as the test sample, the effect of sample preparation 

temperature was tested by varying the water bath temperature for each sample from 19 °C 

to 43 °C for the 15 minute equilibration period prior to headspace sampling. Figure 5.3 (a) 

shows the direct response produced by the MMOS sensor in response to the headspace 

from 4.31 mM ethanol equilibrated at different temperatures. The clear increase in 

deviation from baseline resistance is depicted in Figure 5.4 (b) as a linear relationship.  
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(b) 

Figure 5.4: Detection of 4.31 mM ethanol in water held at different temperatures before 
odour analyzer injection. (a) Deviation in baseline resistance with time. (b) Linear 
relationship between temperature and maximum deviation in baseline resistance. 
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From this study it was clear that temperature has a large effect on MMOS response, which 

concurs with the findings on Lee-Davey (2004). It was therefore essential to maintain 

consistency in sample preparation temperature, and sensor operation temperature.  

 

The effect of pH was tested by analysis of 0.1M phosphate buffer saline at pH values 6, 7 

and 8 in triplicate, selected to cover the values either side of normal physiological pH 

(pH7.2), with an equilibration temperature of 37 °C. The direct responses from the odour 

analyser can be seen in Figure 5.5 (a).  Figure 5.5 (b) was produced by taking the greatest 

positive and negative deviations from baseline resistance. A slightly non-linear relationship 

is apparent, but no significant effect was observed with pH change. Work that followed on 

marker analytes was carried out at pH 7.2 since this is the normal pH of human serum.    

 

5.3.2 Detection of ethanol, glucose and H2O2 in PBS 
 
Although the biological markers ethanol, glucose and H2O2 are not detected individually by 

the odour analyser in the bacterial studies that follow, it was of interest to determine 

whether the odour analyser was capable of detecting and/or discriminating between them. It 

also provides some basis to compare the odour analyser system with the biosensor array 

based system, which is able to detect these individual components.  
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Figure 5.5: Odour analyser detection of 0.1M PBS of different pH values. (a) Deviation 

from baseline resistance with time. (b) Mean maximum positive and negative deviations in 
baseline resistance with pH.   
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Therefore, samples of ethanol at 2 and 20 mM, H2O2 at 0.1 and 1mM, and glucose at 2 and 

10mM were prepared in 0.1M PBS for analysis. Each concentration of each analyte were 

tested in triplicate randomly at two equilibration temperatures, 25°C and 37°C, followed by 

PCA analysis. The circles around the clusters on the PCA plots were added by hand after 

PCA analysis in Matlab, and are there for illustrative purposes to highlight clustering for all 

graphs that follow. The PCA scores-plot results presented in Figure 5.6 (a) and (b) depict 

the lower concentration values of the three analytes studied at an equilibration temperature 

of 25°C for PC1 vs. PC2 and PC1 vs. PC3 respectively.  These scores-plots illustrate 

overlapping between the glucose and 0.1 M PBS (blank) samples, although the virtual 

separation was much better than expected, due to the low volatility of glucose and H2O2. 

The circles around the points are for illustrative purposes only, of clustering. Ethanol, being 

a more volatile species, was clearly discriminated from the other analytes which exhibited 

much lower volatilities and hence response profile similarities. Figure 5.7 (a) and (b) shows 

that at the same temperature, but with higher concentrations of these analytes, the virtual 

separation is improved. 

 

By raising the sample equilibration temperature to 37°C, even at the lower concentrations 

studied, the marker analytes were more clearly separated as illustrated in Figure 5.8 (a) and 

(b).  Higher concentrations at 37°C are shown in Figure 5.9 (a) and (b). Spatial separation 

of the analyte groups at this temperature does not appear to be significantly different 

between the two concentrations studied.  
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(a) 

 
(b) 

 
Figure 5.6: Discrimination by PCA analysis of odour analyser detection of low 

concentration marker analytes with a pre-sampling temperature of 25°C.  
(a) PC1vPC2. (b) PC1vPC3 
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(a) 

 
(b) 

 
Figure 5.7: Discrimination by PCA analysis of odour analyser detection of higher 

concentration marker analytes with a pre-sampling temperature of 25°C.  
(a) PC1vPC2. (b) PC1vPC3 
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(a) 

 
(b) 

 
Figure 5.8: Discrimination by PCA analysis of odour analyser detection of low 

concentration marker analytes with a pre-sampling temperature of 37°C.  
(a) PC1vPC2. (b) PC1vPC3 
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(a) 

 
(b) 

 
Figure 5.9: Discrimination by PCA analysis of odour analyser detection of higher 

concentration marker analytes with a pre-sampling temperature of 37°C.  
(a) PC1vPC3. (b) PC1vPC4 



 203

 
5.3.3 Detection of ethanol in serum 

Since the main metabolite produced and detected by the bacteria being used in this thesis 

was ethanol, as confirmed by headspace GC-MS in Section 2.3.3, the ability of the odour 

analyser to detect different concentrations of ethanol was investigated. Ethanol solutions of 

1, 5, 10 and 20 mM were prepared in serum, as a model for wound fluid (see Section 1.6). 

Random tests for each of these concentrations were performed in triplicate.   

 

Figure 5.10 (a) shows the direct deviation in baseline resistance produced by the odour 

analyser. The triplicate mean maximum value from these deviations was used to produce 

Figure 5.10 (b) which illustrates a linear relationship between ethanol concentration and 

maximum deviation in baseline resistance. Therefore, the device is suited to the 

determination of ethanol, and potentially to other similar metabolic markers in wound fluid.  

 

Since the odour analyser would not be used to detect each of the marker components 

separately in this application, the work that follows has focused on the detection and 

discrimination of five bacteria commonly isolated from wounds.   
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Figure 5.10: Odour analyser detection of 0 to 20 mM ethanol in serum. (a) 

Deviation in baseline resistance with time, (b) Linear relationship between ethanol 
concentration and mean maximum deviation in baseline resistance. 
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5.3.4 Detection of Staphylococcus aureus at different stages of growth 
 

In order to ascertain whether the odour analyser was able to detect differences in growth 

phases of bacteria, a small proof of concept study was carried out. Staphylococcus aureus 

was grown in TSB at 37 °C, and headspace analysis carried out at the start (inoculation), 

lag, exponential and stationary phases of growth, determined by optical density readings 

and referral to bacterial growth figures in Section 2.3.1. The use of growth curves is 

illustrated in Figure 5.11, where the arrows indicate the times of odour analysis of S.aureus 

for this study. 
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Figure 5.11: Illustration of the use of S.aureus growth curve to determine growth phase. 
Arrows indicate time of odour analysis for this study. 

 

Figure 5.12 shows the deviations in baseline resistance that occurred at each of these 

stages. As expected, the deviation increased with the length of time the bacteria had been 
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growing, most probably due to the accumulation of volatile metabolic products such as 

those listed in Table 1.4, with accumulation in cell mass. Volatile metabolic profiles may 

also change with growth phase, with the production of volatile secondary metabolites as the 

cultures mature in the stationary phase. This is also true of spoilage bacteria isolated from 

milk (Haugen, Rudi, Langsrud, et al, 2006), and in cheese maturation (Marilley & Casey, 

2004). Since the odour analyser was capable of detecting differences in concentration of 

bacteria, further studies on the detection of wound bacteria were carried out.   
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Figure 5.12: Deviation in baseline resistance with time for odour analyser detection of 

S.aureus from 0 to 12 hrs growth at 37 °C in TSB. 
 
 
 
5.3.5 Detection of five species of bacteria grown in broth and discrimination using 
 PCA analysis 

 
In this study five of the most commonly isolated wound bacteria were grown and subject to 

headspace analysis using the odour analyser. The bacteria were grown up in YPD broth, a 
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more basic broth, in order to more closely represent the nutrients found in wound fluid. 

Each type of bacteria was analysed in replicates of four randomly. The bacterial broths 

headspace was analysed after 6 hours (exponential phase) and 24 hours (stationary phase). 

The data recorded was again analysed by PCA as before. The abbreviations used in the 

PCA plots that follow are tabulated below. �Blank� refers to growth media alone which was 

also tested. 

Table 5.3: Bacteria abbreviations used in PCA plots 
 

Bacteria name Abbreviation used in graphs 
Staphylococcus aureus SA 
Streptococcus pyogenes SP 
Escherichia coli EC 
Klebsiella pneumoniae KP 
Pseudomonus aeruginosa PA 

 
 

Depending on the study, different principle components provided better discrimination 

between samples. The results of the best combinations of principle components for 6 hours 

growth are illustrated in Figure 5.13 (a) and (b) and in Figure 5.14 (a) and (b) for 24 hours. 

 

PCA analysis provided good discrimination after both 6 hour and 24 hour incubation, 

although the virtual separation between each bacterial set appeared more distinct after 24 

hours, where tighter clustering is evident. At both analysis times there was clear distinction 

between all cultures and the �blank� samples. It therefore seems reasonable to conclude that 

under this set of conditions, the odour analyser is capable of discriminating between these 

five bacteria commonly isolated from wounds.  

 

 



 208

 
(a) 

 
(b) 

Figure 5.13: Discrimination by PCA analysis of odour analyser detection of Pseudomonus 
aeruginosa, Streptococcus pyogenes, Escherichia coli, Staphylococcus aureus and 

Klebsiella pneumoniae, after 6 hrs growth in YPD broth (a) PC1vPC2. (b) PC1vPC3. 
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(a)  

 
(b) 

 
Figure 5.14: Discrimination by PCA analysis of odour analyser detection of Pseudomonus 

aeruginosa, Streptococcus pyogenes, Escherichia coli, Staphylococcus aureus and 
Klebsiella pneumoniae, after 24 hrs growth in YPD broth (a)PC1vPC2, (b) PC1vPC3. 



 210

 
5.3.6 Detection of five species of bacteria grown in serum and discrimination using 

 PCA analysis 

Following the positive findings of the detection of bacteria in broth, the tests performed in 

the following study aimed to more accurately represent wound fluid samples, and hence 

more accurately reflect the �real-world� situation. As previously stated, serum was used as 

the model for wound fluid in this thesis. It was found however that only S.aureus would 

grow in serum alone. It was established that by supplementing the serum with DMEM, 

which is itself a minimal medium, all five bacteria would grow. After looking at different 

ratios of serum:DMEM, it was found that 10% v/v DMEM in serum was a sufficient 

supplement, without considerably altering the wound fluid model. Therefore the bacteria 

were grown in a 90:10 v/v serum:DMEM mix.   

 

Instead of keeping growth time constant, in this study CFU/ml was kept constant. 

Therefore, differences detected by the odour analyser combined with PCA analysis were 

based on differences in headspace content, and hence the volatile metabolic signatures of 

each bacteria, and not numbers of bacteria (since the bacteria grow at different rates). 

However, it should be noted that in a �real� situation, cell densities would vary depending 

on the levels of growth, which itself may depend on the type of wound, and if more than 

one bacterial species was present, it is likely that one species would be more prevalent than 

another. For this study, bacteria were grown in replicates of five, and their headspace 

sampled at 1.5x108 CFU/ml. Cell densities were determined by checking optical density 

regularly and referral to the bacterial growth figures shown in Section 2.3.1.  

 



 211

Figure 5.15 demonstrates that virtual separation of the five bacteria and serum is possible 

using the odour analyser. All bacterial clusters are well discriminated from the serum 

cluster. E.coli has clustered around the centre of the plot, therefore having values closer to 

0 for PC1 and PC3. S.aureus and K.pneumoniae are located relatively closely, and are both 

tightly clustered. 

 

 

Figure 5.15: Discrimination by PCA analysis of odour analyser detection of 
1.5x108 CFU/ml Pseudomonus aeruginosa, Streptococcus pyogenes, Escherichia coli, 
Staphylococcus aureus and Klebsiella pneumoniae grown in 90:10 v/v serum: DMEM. 

 
 
 
The average maximum deviations in baseline resistance with corresponding standard 

deviations for each bacterial population grown in the serum culture, and the culture blank 

are shown in Table 5.4. S.aureus produced the greatest change in resistance, followed by 

S.pyogenes, K.pneumoniae, P.aeruginosa, and E.coli.  
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Table 5.4: Maximum deviations in baseline resistance of odour analysis of 1.5x108 CFU/ml 

bacteria grown in 90:10 v/v  serum:DMEM  
 

Bacteria Mean max. deviation (%) Std dev.  
S.aureus 13.123 0.502 
S.pyogenes 11.757 0.354 
K.pneumoniae 10.853 1.628 
P.aeruginosa 8.007 1.147 
E.coli 5.539 0.777 
Serum (blank) 4.303 0.274 

 
 

Although a quantitative comparison cannot be made, this order correlates with that detected 

by headspace GC-MS analysis under the same conditions (Section 2.3.3). During GC-MS 

analysis, the ethanol peak produced for each bacteria could be quantified using the standard 

curve produced. However, since only an ethanol peak was detected this was not sufficient 

to discriminate between bacteria. With the odour analyser, it is not possible to quantify the 

amount of ethanol in the headspace of the bacterial sample because of the broad specificity 

of the sensor used (essential for the single sensor olfactory device to function). The sensor 

responds to many more metabolites in the headspace than ethanol, and with the aid of PCA 

has demonstrated an ability to discriminate between those bacteria most commonly found 

to infect wounds. 

 

5.3.7 Examination of paired bacterial cultures grown in serum 

Having established that the odour analyser could discriminate between the five selected 

bacteria at a fixed cell density, the study was further advanced by examining paired 

samples of bacteria, since there is usually more than one main bacterial culture present in a 

typical wound fluid. Therefore each possible paired combination of the five bacteria were 
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grown separately to a cell density of 1.5x108 CFU/ml, combined, and tested according to 

the methods outlined in the preceding Sections. Again, it should be noted that in a �real� 

situation, it is unlikely that different bacteria would be present at the same cell densities, 

and that this is an artificial population mix. It is evident from Figure 5.16 that some 

overlapping is evident following PCA analysis. Serum was clearly discriminated from the 

bacterial preparations, although with a relatively broad clustering.  

 
KPEC: K.pneumoniae + E.coli  ECPA: E.coli + P.aeruginosa 
KPPA: K.pneumoniae + P.aeruginosa SAKP: S.aureus + K.pneumoniae 
SAPA: S.aureus + P.aeruginosa  SPPA: S.pyogenes + P.aeruginosa 
SPKP: S.pyogenes + K.pneumoniae   SPEC: S.pyogenes + E.coli 
SAEC: S.aureus + E.coli   SASP: S.aureus + S.pyogenes 
 

Figure 5.16: Discrimination by PCA analysis (PC1vPC3) of odour analyser detection of 
pairs of bacteria at 2x108 CFU/ml grown in 90:10 v/v serum:DMEM at 37 °C  
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Where significant overlapping was evident, it was usual for one of the bacterial species to 

be present in both overlapping pairs, for example in the overlapping of SPPA (S.pyogenes 

and P.aeruginosa) and SPEC (S.pyogenes and E.Coli), where S.pyogenes is common to 

both, and therefore similarities in volatile metabolic signatures may be produced. Clearly, 

discrimination of the paired bacteria has not been as successful as for individual bacteria, 

but nevertheless, some bacterial combinations can be clearly differentiated, such as the 

SASP and SPEC combinations suggesting that the approach can provide some useful 

diagnostic information. If we compare Figure 5.16 of mixed bacteria and Figure 5.15 of 

single bacteria (both compare PC1 and PC3), some similarities of cluster location are 

evident. SA and SP clusters are located in the bottom right corner of the plot in Figures 

5.15 and 5.16, and both SA and SP are prevalent in pairs in the bottom right quadrant. 

Similarly, EC is located centrally in Figure 5.15, and finds itself located centrally in two of 

its four pair combinations in Figure 5.16. 

 

5.3.8 Detection of different cell concentrations of S.aureus grown in serum 

The aim of the final study was to investigate whether the odour analyser was able to detect 

differences in S.aureus cell density when grown in serum (un-supplemented), at a range of 

bacterial cell densities as present in the wound environment. S.aureus was grown up in 

serum alone under normal growth conditions. Three cell densities: 5x106, 8x107, and 

2.25x108 CFU/ml were randomly tested in replicates of five with the odour analyser. Figure 

5.17 of PC1v3 illustrates that a distinction between clusters based on cell density is evident.  
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It appears that the odour analyser is able to detect cell densities at least as low as 

5x106 CFU/ml which is the level at which bacterial colonisation becomes problematic in 

bacterial infection of wounds (Smith & Thomson, 1994). It may be that the odour analyser 

is able to detect below this level, but lower levels were not tested. This level of bacteria is 

not visible to the eye when growing bacteria in a broth or serum, and cannot be detected by 

conventional methods such as spectroscopy where the optical density is measured, or by 

GC-MS.  

 

 

Figure 5.17: Discrimination by PCA analysis (PC1vPC3) of odour analyser detection of 
three cell densities of S.aureus grown in serum at 37 °C. 

 
 
 

Some work has been carried out investigating the possibilities of using an electronic nose 

device in a hospital environment as a diagnostic tool (Gardner, Dutta, Morgan et al, 2005),  
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no public-access literature has been identified in which an odour analysis study has been 

successful in determining the differences in numbers of S.aureus (or other bacteria) with 

which to compare these results. However, Haugen, Rudi, Langsrud, et al (2006) have 

reported using a gas sensor array to detect milk spoilage bacteria down to 104 CFU/ml after 

7 hours of growth.  

 

 
5.4 Overall Chapter conclusions 
 
The single sensor odour analyser combined with the discriminatory powers of PCA 

analysis was found to be capable of detecting and discriminating between three marker 

analytes, and five wound bacteria. It was able to detect differences in ethanol concentration 

in serum. Discrimination between individual bacteria was illustrated, and partial 

discrimination of paired bacteria was possible. It was also found that S.aureus could be 

detected down to a cell density of 5x106 CFU/ml. Although there is much interest in the 

areas of combating hospital acquired infections, early detection, and electronic nose 

technology, literature searches have not revealed any other investigations of the use odour 

analysis to detect and discriminate these five bacteria, or differences in numbers of 

bacteria, in a wound environment. The results from these studies are very encouraging. 

Further research and development into this single sensor based system may potentially lead 

to a near patient monitoring system whereby a wound could be monitored and provide 

regular feedback and early warning of infection or other causes of non-healing. The system 

may also potentially be used for monitoring a variety of other infections and diseases, by 

detecting the odours from bodily fluids, such as urine or sputum.   
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6. General Discussion 
6.1 Conclusions 

Three possible wound monitoring concepts, with the potential to be integrated into wound 

dressings, or for near patient monitoring applications, have been investigated. The overall 

conclusions in the context of the initial objectives (Section 1.6) are discussed below: 

 

1) From reviewing the literature, serum was identifed as a suitable model for wound 

 fluid in which to investigate the three concepts. Serum samples were obtained 

 from human volunteer whole blood samples which were spun down and the serum 

 fraction obtained. 

 

2) Three biomarkers indicative of healing/non-healing were identified though 

 literature searches. These were: glucose � reported to increase from the non-

 healing to healing phase of a wound; H2O2 � increased generation in surgical 

 wounds as a result of phagocytosis by mammalian polymorphonuclear leukocytes 

 and monocytes reported; ethanol - since it is produced metabolically by certain 

 pathogenic bacteria commonly isolated from wounds.  

 

3) From literature searches, S.aureus, K.pneumoniae, E.coli, P.aeruginosa, and 

 S.pyogenes, were determined  to be five key bacteria commonly isolated from 

 wound infections (Table 1.4). Laboratory strains were obtained, and growth 

 characteristics  determined in each of the different growth media examined. 

4) Dual Pulse Staircase Voltammetry (DPSV) was investigated for its feasability as a 

 technique for the monitoring of wounds, by detecting the biomarkers glucose, 
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 ethanol and H2O2 in PBS. Scans of the individual analytes demonstrated 

 distinctive peaks exhibiting, non-linear relationships with concentration. 

 Limitations were discovered regarding repeatability and inter-analyte interference 

 in mixtures of  the three biomarkers, due to similar peak potentials. This study 

 represents the first detailed study on the performsance of DPSV for determination 

 of metabolites in biological fluids.  Although a great deal of useful information was 

 generated using this technique, it was decided not to progress this work further 

 due to the complexity of the voltammograms obtained and issues regarding 

 deconvolution of voltammograms obtained from analyte mixtures. 

 

5) A biosensor array was constructed from three biosensors each consisting of a screen 

 printed three electrode assembly of carbon (w.e), carbon (c.e.) and Ag/AgCl (ref) as 

 the basal layer. The glucose biosensor also incorporated rhodinised carbon within 

 the working electrode to allow reduction in the operating potential required to 

 oxidise the enzymatic hydrogen peroxide by-product to +300 mV (vs Ag/AgCl).  

 The optimal sensor performance was obtained using 1U of glucose oxidase per 

 biosensor. The limit of detection was found to be 169.5 µM glucose (99.7% 

 confidence) in surrogate wound fluid with a single dilution step. 

 

 The hydrogen peroxide biosensor utilised 25U/sensor of horseradish peroxidase 

 with 12.5 mg/ml dimethylferrocene mediator, a cellulose acetate diffusion layer, 

 and operated at a potential of -300 mV relative to the reference electrode.  The limit 
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 of detection in surrogate wound fluid with a single dilution step was found to be 

 8.43 µM (99.7% confidence).  

 

 The ethanol biosensor was constructed with the same components as the hydrogen 

 peroxide biosensor, except that it also used 1U/biosensor of alcohol oxidase, giving 

 a mediated bi-enzyme system. Following optimisation of the deposition procedure, 

 the limit of detection in surrogate wound fluid with a single dilution step was 

 determined to be 7.94 µM (99.7% confidence). Direct detection of  ethanol from 

 metabolically active S.aureus in surrogate wound fluid, (with a single dilution step) 

 yielded a limit of detection of 1.23 x 108 CFU/ml at 99.7%  confidence, and 19 µM 

 in terms of ethanol specific response. 

 

 All three biosensors were successful, and subject to further study, could be 

 suitable for the monitoring of a wound, either alone or within a suite of diagnostic 

 tests. Although the alcohol biosensor could only detect S.aureus down to 

 1.23 x 108 CFU/ml, it could still provide useful diagnostic information. It could 

 signal bacterial numbers falling below this level, possibly indicative of healing, or 

 rising above a �safe� level (i.e. >106 CFU/ml), which would only take a matter of 

 hours, and would in all likelihood still signal a non-healing wound to a busy 

 physician more rapidly than would otherwise be observed.    

 

6) Investigation of the single sensor odour analyser as a �near patient� wound 

 monitoring system found it to be capable of detecting and discriminating between 



 220

 three biomarkers, glucose, ethanol and H2O2, and detecting differences in ethanol 

 concentration in surrogate wound fluid, when combined with principle 

 components analysis. Discrimination between individual bacteria and partial 

 discrimination of paired bacteria was illustrated, in broth and surrogate wound 

 fluid. It was also found that S.aureus could be detected down to a cell density of 

 5x106 CFU/ml in surrogate wound fluid, lower than that found for the biosensor 

 concept.  

 

 The odour analyser concept was particularly successful, and has the potential to 

 be used as a �near patient� monitoring system for patients with wounds, and 

 perhaps other infections or diseases by �sniffing� samples such as urine, sputum or 

 other excreted or exhaled body fluid.  

 

7) Headspace GC-MS was used to detect volatiles in the headspace of five bacterial 

 preparations grown in surrogate wound fluid. A slightly higher concentration of 

 ethanol was detected in S.aureus and S.pyogenes than K.pneumoniae, E.Coli and 

 P.aeruginosa.  Levels detected were at a concentration suitable for measurement 

 by other means, such as sensor technology or odour analysis. This data was 

 verified further using Alcohol Draeger tubes to detect alcohol in the headspace of 

 bacteria grown in surrogate wound fluid.     

8) Hydrogen peroxide and glucose test kits were used successfully to validate the 

 biosensor data.  

 
 



 221

6.2 Suggestions for Future Work 

Literature searches have revealed much interest in the area of hospital acquired infections, 

most notably: in the prevention of infection after an operation; reducing further antibiotic 

resistance of bacteria; exploring alternative treatments; the development of technologies to 

monitor the progress of wound healing, in particular using electronic nose technology.  

 

The results from the odour analyser work in Chapter 5 are very encouraging. Further 

research and development into this single sensor based odour analyser system may 

potentially lead to a �near patient� monitoring system for bacterial infection of wounds. 

Suggestions for further work with the single sensor odour analyser follow: 

1) Test system with clinical samples of wound fluid. 

2)  Investigate detection limits for the four other bacteria used in Chapter 5 (i.e. 

 E.coli,  S.pyogenes, K.pneumoniae, P.aeruginosa) in supplemented surrogate 

 wound fluid (to enable bacterial growth). 

3) Investigate ways of improving limit of detection, such as the use of different growth 

 media to increase production of volatile metabolic products.  

4) Investigate discrimination and detection limits of other commonly isolated wound 

 bacteria, such as Enterobacter, Serratia, Enterococcus, Proteus individually and in 

 combinations. 

5) Investigate whether the system can discriminate between different strains of 

 S.aureus, such as methicillin resistant S.aureus, coagulase negative S.aureus, and

 methicillin susceptible S.aureus.  
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6) Investigate suitable supervised learning pattern recognition techniques, and train 

 and calibrate the system so that it can classify unknown odours as known ones 

 that have been learnt. 

7) The system could be investigated for its use in the diagnosis of urinary tract 

 infections, by examining its ability to discriminate the bacteria commonly isolated 

 from UTI infections: E.coli and P.mirabilus. 

8) The system could also be investigated for its potential as a diagnostic tool for 

 diabetes, by �sniffing� breath odour. 

 

Though DPSV was concluded to be an unsuitable electrochemical technique for monitoring 

wounds, the following suggestions are made: 

1) Integration of a suitable membrane such as Nafion may improve repeatability, and 

 reduce interference effects.    

2) Investigation of less complex mixtures. 

 

The biosensor array holds potential either alone, or as part of a suite of tests, to monitor the 

levels of three biomarkers present in the wound environment. The work in this thesis could 

be continued as follows: 

1) Investigate ways to improve the bacterial limit of detection, e.g. by using other 

 size exclusion techniques not studied in this thesis. 

2) Investigate whether other possible biomarkers could be measured using biosensor 

 technology, e.g. C-reactive protein, lactate, albumin. 
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