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Abstract 

Many contaminants exhibit decay. Decay mechanisms include consumption by bacteria 

or radioactive decay (temporal decay uniform across the flow), heat loss or evaporation 

through the surface (decay decreasing with depth), and break up by turbulence (decay 

proportional to the product of velocity and depth). This thesis investigates how the decay 

of pollutants in a river effects the dilution process and the selection of discharge siting to 

achieve minimum environmental impact. 

For a non-symmetric river with non-reversing flow, exact solutions are presented that 

illustrate the effect on the optimal position for a steady discharge of cross-channel variation 

in the decay (uniform, decreasing or increasing with depth). The optimal position is shifted 

to deeper or to shallower water accordingly as the temporal decay divided by flow speed 

decreases or increases with water depth. 

When advection dominates diffusion, there are special directions (rays) along which in

formation is carried. For steady, unstratified, plane parallel flow, the effects of decay are 

allowed for in specifying these special directions. Two special cases are considered. Firstly, 

for a smoothly varying depth, a general result has been derived for the curvature of the 

rays as effected by spatial non-uniformity in decay, mixing, flow speed and flow direction. 

Secondly, for discontinuous variations in depth, diffusivity, velocity and decay, approximate 

concentration formulae are derived. Ray bending indicates that the downstream propaga

tion of pollutant is principally in the low-decay region. 

Computational results are used to give pictorial illustration of the concentration distri

butions and of the difference between discharging at non-optimal and optimal sites. 
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Notations and Dimensions 
Herein all the mathematical symbols and abbreviations that are used throughout in the 

thesis are explained in their order of appearance according to the chapters. Boldface type 

means a vector quantity. 

Chapter 2 

Symbol Meaning Dimension 
M change of mass of a dissolved tracer in a given system ML·;5 

t time T 
~ a unit change operator 
S source or sink reaction term T- 1 

CV control volume L3 

x,Y,z longitudinal, transverse and vertical distances L 
X(x,y,z) concentration or accumulation of contaminant ML-3 

r(y) rate constant T- 1 

<Px, <Py, <Pz, diffusive fluxes along x, y and z direction ML-2T- 1 

2: <Pin, 2: <Pout total fluxes in and out of CV system ML-2T- 1 

ex,ey,ez diffusion coefficients along x, y and z direction L 2T- 1 

¥X !!x !!x turbulent diffusive fluxes along x, y and z directions ML- 2T- 1 ex x' ey ay , ez az 
e diagonal matrix of the diffusion coefficients (ex, ey, ez) L 2T- 1 

\l gradient operator 
ux,uy,uz velocity components along x ,y and z directions LT-1 

u velocity vector of the component velocities (ux, uy, uz) LT-1 

Po fluid bulk density ML-3 

a(x, y), b(x, y) river bed and surface L 
h(y) local water depth L 
>.(y) first-order decay parameter T- 1 

ux depth-average 
W depth-averaged contaminant concentration M 
X' contaminant concentration of vertical-deviation M 

I I velocities of vertical-deviation along x and y directions LT-1 ux,uy 
r' vertical deviation of rate constant T- 1 

u(y) steady non-reversing velocity LT-1 

"'x,"'y longitudinal and transverse dispersion coeffficients L 2T- 1 

B characteristic width 
H characteristic average or maximum depth 
L characteristic longitudinal length 
U reference flow velocity 

'" average transverse mixing L 2T- 1 
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Chapter 3 

Symbol Meaning Dimension 

X,Y longitudinal and transverse distances L 
c(x, y) concentration of contaminant ML-3 

a,b river bed and surface L 
h(y) local water depth L 
u(y) steady non-reversing velocity Lr- 1 

~(y) transverse diffusivity L 2r- 1 

>.(y) first-order decay parameter r-1 

n integer 
en weights 
cf>n (y) pollutant modes ML-3 

J.ln spatial decay rates 
f(y) cross-stream discharge profile ML-3 

Q volume flux MT- 1 

q contaminant discharge rate MT- 1 

B reference width 
H reference depth 
U reference flow velocity 
K reference transverse mixing 
A decay strength 
m degree of contaminant decay 
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Chapter 4 

Symbol Meaning Dimension 

X,Y longitudinal and transverse distances L 
c(x, y) concentration of contaminant ML- 3 

a,b river bed and surface L 
h(y) local water depth L 
u(x,y) vertically-averaged steady velocity vector LT-1 

D(x,y) vertically-averaged effective transverse diffusivity across the flow L 2T- 1 

>.(y) first-order decay parameter T- 1 

"V horizontal gradient operator 
A(x, y) amplitude 
<p(x, y) exponential decay or phase function 
i an imaginary unit 
s arc length L 
t a unit tangent vector 
f(x, y) function 
k a unit vertical vector 
n ray normal unit vector 
K(s) curvature 
K ad vection-diffusion vector 

IMI advection-diffusion vector and decay-diffusivity ratio parameter 
p parameter that labels rays 
J(p, s) ray separation 
w(p) constant along rays 
N number of rays 
n number count of rays 

Rn rays 
(xo ,yo) source point 
H reference depth 
A decay strength 
m degree of contaminant decay-diffusivity ratio 

f3 strength of decay-diffusivity ratio 
B reference width 
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Chapter 5 

Symbol Meaning Dimension 
r depth ratio 
M non-dimensional parameter for jump in the longitudinal decay 
p a position factor 
hi constant depth L 

Ai decay rate T- 1 

Ui longitudinal flow LT-1 

Di transverse diffusivity L 2T- 1 

Ci(X,y) contaminant concentration ML-3 

i an integer 
X,y along-flow and cross-flow distances L 

Yo lateral distance between the discharge and the discontinuity L 

A[,AR,AT incident, reflected and transmitted amplitudes 
R reflection coefficient 
<I> [ , <I> R , <I>T incident, reflected and transmitted phases 
x,Y unit vectors along the x and y axis 
t[, tR, tT directional vectors for the incident, reflected and transmitted rays 
0[, OR ,OT incident, reflected and transmitted angles 0 

T[TR,TT ray slopes for the incident, reflected and transmitted rays 
q volume flux MT-l 

A uniformity in longitudinal decay 
H(-M) , H(M) pair of Heaviside functions 
(XV,yv) virtual source 
T[,TR scaled incident and reflected tangents 
(X, Y) non-dimensional scaled longitudinal and transverse distances 

Q discharge strength 
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Chapter 6 

Symbol Meaning Dimension 
X,Y longitudinal and transverse coordinates L 
c(x, y) concentration of contaminant ML-3 

a,b river bed and surface L 
h(y) local water depth L 
u(y) vertically-averaged steady velocity LT-1 

K(Y) vertically-averaged effective transverse diffusivity across the flow L 2T- 1 

,\(y) first-order decay parameter T- 1 

m degree of contaminant decay 
U reference flow velocity 
K reference transverse mixing 
A decay strength 
j transverse spatial grid 
n longitudinal spatial grid 
(n,j) mesh point 
eff 

J 
numerical approximation to concentration of contaminant ML-3 

D.x,D.y grid spacings along the x- and y-axis 
O,P, Qw, R weights 
k wave number 
J number of transverse grid points 
Q volume flux MT-1 

(xo ,Yo) source point 
o(y - yo) Dirac delta function 
Qf non-dimensional volume flux 

X* ,y* non-dimensional longitudinal and transverse coordinates 
G growth or amplification factor 
z an imaginary unit 
B reference width 
<Po(Y) zero or lowest eigenmode 
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Chapter 1 

General Introduction 
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1.1 Introduction 

1.1 Introduction 

The dissertation concerns the investigation of the fate and transport of contaminants in 

rivers. Contaminant and effluent discharges into rivers are an almost inevitable feature of 

many agricultural, domestic and industrial practices such as thermal effluents from cooling 

facilities, contaminant releases from chemical processing plants, and sediment movement by 

local scouring. These discharges have the potential to tax the natural cleansing action of 

waterways to the point where serious environmental consequences may result. To this end, 

there has been growing international public concern and increased awareness of the con

centration peaks associated with the discharges by river managers, engineers and scientists. 

Optimal strategies for discharging contaminants, general details and guidelines of effective 

models used for monitoring flow, water quality, contaminants transport and concentra

tion predictions are available in literature. Particular emphasis is focused on the influence 

of physical master variables in the hydro-environmental modelling of rivers to minimize 

the concentration peaks of the discharged contaminants. For a minimum concentration it 

implies that the effects of pollution are minimized when the maximum concentration is 

minimized (Giles, 1995). 

Research studies reported in literature (Munro, 1975; Gould and Munro, 1981) indicated 

that one measure of the fate of a contaminant is the knowledge of the decay rate. These 

studies have shown that decay rates of total and fecal coliform indicator bacteria vary spa

tially and temporally in coastal waters between T90 values of less than 1 hour to more than 

100 hours. Further applications of the use of fecal coliform as indicator bacteria to quantify 

the degree of contamination of natural waters has been widely used for the monitoring and 

formulation of discharge outfalls and waste stabilization pond designs (Sarikaya and Saatci, 

1987; Saqqar and Pescod, 1992; Mayo, 1995; Falconer and Lin, 2003). Examples from these 

studies suggested the significance and sensitivity of bacterial pollution at the shore to the 

bacterial decay rate. 

The survival of the contaminants in the aquatic environment depends upon the ability to 
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1.2 Concept and definition of the Research 

tolerate a set of alien biological, physical and chemical conditions. The most important fac

tors among others considered to be controlling the decay rate are dispersion, temperature, 

solar intensity, and PH ofthe environment (Mayo, 1989). Investigations using pilot plant ex

periments on bactericidal action of solar radiation in waste stabilization pond revealed that 

the decay or die-off rate of fecal coliform vary significantly with the pond depth (Sarikaya 

et al., 1987; Sarikaya and Saatci, 1988; Mayo, 1989). The e-folding times for fecal coliform 

incubated at the pond surface, a depth of 1m and 1.5m respectively were found to be 14.46, 

64.86 and 75 hours (Mayo, 1989). For a heat diffusion problem into a sea with a sloping 

bed with the typical depths 1m and 1.5m resulted respectively the e-folding times 58.33 

and 87.5 hours (Macqueen and Preston, 1983; Mebine and Smith, 2006). Therefore, the 

testament from these examples imply that there is a qualitative and quantitative evidence 

that decay processes and rates vary significantly from one pollutant to another and involve 

site hydrography features and many other functions which are yet to be modelled. Mathe

matical modelling and understanding of the optimal mixing processes involving variability 

of contaminant decay would enhance insights into applicable criteria, critical conditions and 

allowable dilution for water quality standards in the natural environment. 

1.2 Concept and definition of the Research 

The subject 'Minimum Environmental Impact Discharging' herein referred to as MEID is 

defined as optimal mitigation processes in ameliorating water quality impairments and the 

ecological effects of emitting contaminants into the environment of rivers. The investigation 

utilises mathematical models and numerical algorithms of depth-averaged variable coeffi

cients advection-diffusion-reaction equations for describing the variations of the pollutant 

concentrations. By their nature, the hydraulic geometry (width, depth, and velocity) of 

rivers are not constant; these variables typically increase downstream. In consequence, the 

mathematical models describing the flow of contaminants through rivers are quite involved. 

Thus, it is not surprising that many simplifying assumptions are made in the mathematical 
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1.3 The Objective of the Research 

models, and that there are important areas of the subject which are controversial and not 

yet modeled satisfactorily. 

1.3 The Objective of the Research 

Given that oil, chemical and biological waste will continue to be discharged into rivers, it 

is clearly apparent that rivers serve as media of waste discharges in spite of their economic 

importance to man and the livelihood of aquatic life. The questions posed by this work 

are that does it matter (a) where, and (b) what is discharged? For small discharges that 

do not change the flow in a non-branching straight section of a river, this work is intended 

to answer these questions, and proffer measures for optimal transport of contaminants in 

rivers. It is appropriate to note here that solutions to mitigate potential environmental 

impacts can incorporate optimal measures to avoid, reduce or remedy the impact in the 

design and formulation of rational policies towards the management of rivers. Therefore, 

the identification and clarification of the physical mechanisms that will lead to 

• the attenuation of contaminants, 

• the determination of the mixing or diffusion centre of a channel for optimal discharges, 

and 

• optimal measures in order to enhance contaminant transport 

are much needed research endeavours for environmentally aware waste discharges in rivers. 

Thus, the main objective of this work is concerned with the development of mathematical 

ideas and computer programmes to make direct computations of best discharging for rivers 

principally considering the effects of variability of loss mechanisms of contaminants. 

Knowledge of the sources, interactions, and effects of water pollutants is essential for 

controlling pollutants in an environmentally safe and economically acceptable manner. In 

the following, a brief overview of related literature of sources and effects of pollutants is 

given. 
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1.4 An Overview of the Sources and Effects of Pollutants 

1.4 An Overview of the Sources and Effects of Pollutants 

There are a variety of sources of contaminants which ultimately impair our rivers, and 

most of these are organic solvents and petroleum hydrocarbons originating from leaking 

underground storage tanks, ruptured pipelines, surface spills, hazardous waste landfills and 

disposal sites, and as such many authors and researchers have investigated their origin and 

effects (Jorgenson and Johnson, 1989; Pereira et al., 1996; Larkin and Hall, 1998; Mason 

and Sullivan, 1998; Fisher et al., 1999; Fyrillas, 2000; Gromaire-Mertz, 2000; Manahan, 

2000; Nebel and Wright, 2000; Ahyerre, 2001; Ahyerre et al., 2001; Lee and Bang, 2000; 

EPA, 2003). However, early investigations of streams, rivers or estuaries by limnologists 

and hydrobiologists were directed largely at classification and description, with primary 

attention given to local phenomena such as water temperature, flow regime, water chem

istry and substrate as factors affecting resident flora and fauna (Rhodes, 1950; Stommel 

and Farmer, 1952). As knowledge grew and the works of hydrologists, soil scientists and 

researchers in related disciplines were integrated into the understanding of flowing waters, it 

became evident that, when considered as ecological units, streams and or rivers could not be 

separated from their watersheds (Hynes, 1975; Fisher, 1986). Studies have shown that with 

the exception of a small percentage of material decomposed and oxidized in the terrestrial 

environment, most materials ultimately received and transported by streams and or rivers 

are deposited from their catchments (Mullholand and Watts, 1982). Therefore, any conceiv

able noxious or otherwise deleterious material, action, process or organism, whether input 

at the outer watershed limits or directly into a flowing channel, may have profound effects 

on the ecosystem of rivers (Minckley and Kubly, 2003). Consequently, site investigations 

and selection of discharge sites of pollutants become vital in order to control, reduce, or 

avoid the risk of pollution. To this end, hydrographic, engineering and theoretical aspects 

of studies have been carried out by various researchers (Oakley, 1981; Willis, 1981; and 

Smith, 1981, 1982) in an attempt to determine where appropriate to put a discharge. 

In assessing the effects or impact of a pollutant it is necessary to have a clear objective, 
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1.4 An Overview of the Sources and Effects of Pollutants 

that is, to know the target it is desired to protect and the volume of the environmental 

concentration of the pollutant that could be tolerated by that target. To some extent 

this could be done for most recognized pollutants, albeit with varying degrees of precision. 

It is pertinent to emphasize here that the pollutants are directly or indirectly introduced 

by man into the marine environment (including streams, rivers and estuaries) resulting in 

such deleterious effects as harm to living resources, hazards to human health, hindrance 

to marine activities such as fishing, impairing of quality for use of water. Investigations 

have shown that the most common pollutant in terms of quantity is domestic sewage. 

Sewage disposal have been reported to constitute environmental and health risks (Akinluyi 

and Odeyemi, 1984). In the marine environment the aforementioned poses two potential 

pollution problems: microbiological contamination and a high Biological Oxygen Demand 

(BaD). The former leads to health hazards of enterococcus density in marine bathing 

waters and swimming-associated rate of gastroenteritis (Cabelli, 1981). On the other hand, 

the high BaD leads to serious ecological damage. We note here that sewage is primarily 

organic in nature and therefore subject to bacterial decay. As a result of this bacterial 

activity, the oxygen concentration in the water is reduced, thereby starving aquatic life 

of the oxygen it needs. Another inevitable consequence is the breakdown of proteins and 

other nitrogenous compounds, releasing hydrogen sulphide and ammonia, both of which 

are potentially toxic to marine organisms in low concentrations (MCS, 2003). Baker et al. 

(2003), using recent advances in fluorescence spectrophotometer enabled the detection and 

analysis of river dissolved organic matter, and indicated that sewage pollution is by far the 

greatest volume of waste discharged to the marine environment. 

Another cause of ecological damage is the dumping of sewage sludge at the sea. De

pendent on the hydrography, sludge can smother the benthos, increase biomass, decrease 

species biodiversity and increase heavy metal concentrations (MCS, 2003). Discharges that 

affect both water quality and habitat quality can have complex effects on flowing commu

nities. Nedeau et al. (2003) studied the effect of an industrial effluent on an urban stream 
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benthic community: water quality versus habitat quality, and illustrated the need for careful 

consideration of habitat quality and water quality in restoration programmes. 

To predict pollution levels for establishing an optimum management strategy for water 

quality control, it is important that specific criteria of acceptability for any given situation be 

formulated. For instance, efRuent discharges in natural water systems such as river channels, 

one of the basic policies is keeping concentration peaks at certain locations minimum. And 

the criterion behind such a strategy is a measure of the degree of mixing. In the following, 

we consider an overview of mixing and its importance. 

1.5 An Overview of Mixing and its Importance 

Mixing is simply the tendency towards a uniform distribution. In other words, mixing tends 

to reduce concentration differences between fluid particles or substances. The concept of 

mixing appears in both industry and nature and its development and importance has cut 

across various fields of research. Mixing processes are found in geophysical and astrophysical 

flows, which influence a wide range of dynamical systems (Rees, 2001). Mixing is intimately 

connected with turbulence, earth and natural sciences, and various branches of engineering. 

Various examples of mixing are found in literature. The knowledge of mixing processes is of 

fundamental importance in weather prediction and in chemical engineering. The importance 

of mixing is as well considered in the analysis of efRuent streams conveying a variety of 

chemicals (Neely, 1982). 

The study of mixing processes in natural streams is important in regulating pollution 

sources as well as evaluating the risks involved in accidental contaminant releases. Research 

on mixing processes includes theoretical and numerical modelling, as well as experimental 

and observational studies. At the largest scale of tens to hundreds of kilometres, studies of 

mixing longitudinal processes and characteristics have dated several decades back (Arons 

and Stommel, 1951; Francis et al., 1953; Preddy, 1954; Kent and Pritchard, 1959; Pritchard, 

1960; Bowden, 1963; Hansen, 1965; Yotsukura et al., 1970; Beltaos, 1978; Beltaos and 
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Anderson, 1979). At the intermediate scale of hundreds of metres to tens of kilometres 

transverse mixing has a shorter history (Fischer, 1967; Okoye, 1970; Holley, 1971; Holley et 

al., 1972; Yotsukura and Cobb, 1972; Sayre and Yeh, 1973; Engmann and Kellerhals, 1974; 

Sium, 1975; Yotsukura and Sayre, 1976; Lau and Krishnappan, 1977; Meyer, 1977; Beltaos, 

1978, 1980; Lau and Krishnappan, 1981). 

The mixing of an effluent discharged into a river can be divided into several stages. 

Initially, mixing with the river water is caused by the momentum and buoyancy of the 

plume itself and is relatively unaffected by the flow in the river. This is called the initial 

mixing zone. However, within a few metres, the plume is bent over the river current and 

turbulent motions in the river enhance mixing. Because rivers are generally much shallower 

than they are wide, the plume mixes over the depth of the river before it mixes across the 

width of the river. The river is divided into three fields: the near field which extends 

from the point of discharge to the point at which mixing is complete throughout the depth; 

the intermediate field within which transverse mixing across the river occurs; and the 

far field downstream of the point at which transverse mixing is complete (see Figure 1.1; 

Marks, 1996). 

A comprehensive and relatively detailed account of flow models of river mixing reported 

by Rutherford (1994) showed that transverse mixing is arguably more important in water 

quality management than either vertical or longitudinal mixing, especially when dealing 

with the discharge of water from point sources or the mixing of tributary inflows. 

Quantitative predictions of the rates of mixing of tracers (principally neutrally-buoyant 

tracers) in rivers are needed in a variety of situations including the preliminary design of 

outfalls, the impact assessment of discharges, water resource planning, and research on 

biological processes in rivers. Such predictions are mostly carried out using mathematical 

models and optimization techniques. 
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Figure 1.1: Plan and Profile schematics of the spreading of a discharge into a river. 
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1.6 Structure of Mathematical Models 

When a tracer is injected into a stream, its concentration will generally vary with respect to 

both space and time. Certain specialized problems still remain within the realm of physical 

modelling. However, the use of mathematical models has become commonplace. The basic 

tool available for predicting the concentration is the principle of conservation of tracer mass, 

in differential form. In its most general form, the resulting partial differential equation 

involves formidable difficulties; even a numerical solution would be so laborious as to be 

impractical, at best. The increased efficiency of digital computers has triggered a strong 

research effort in the refinement of mathematical models. While offering almost unlimited 

flexibility in the simulation of various alternatives, these models have the additional appeal 

of smaller developments and operating costs. 

Mathematical models of river flow exist at various levels of sophistication. The de

tailed description of flow phenomena is best accomplished in a three-dimensional spatial 

framework; however, the complexity of a formulation in three dimensions often requires 

tremendous amounts of computational effort. Where valid, the simplification to a two

dimensional representation can offer a considerable reduction in complexity and expense. 

This involves an integration of the three-dimensional equations of fluid dynamics over flow 

depth. Hansen (1962) is credited for being the first to outline the depth-averaged two

dimensional formulation. Since after the pioneering work of Hansen, depth-averaged for

mulation to flow problems has been employed by several other researchers to diverse areas 

such as erosion and accretion processes, heat diffusion, contaminant dispersion and mixing 

problems. Leendertse (1967, 1970) followed Hansen in applying two-dimensional modelling 

concepts to the study of estuarine and coastal hydrodynamics. McGuirk and Rodi (1978) 

developed a depth-averaged velocity and contaminant distribution model of open channel 

flow, which described the recirculation region immediately downstream of a side discharge 

into a flowing river. Holley and Nerat (1983) used depth-averaged dispersion of an inert, 

neutrally buoyant contaminant in steady river flow to describe field calibration of stream-
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tube dispersion model. Holley and Nerat's work, which was based on engineering study, 

used depth-averaged stream-tube dispersion model of Holley (1975). Yotsukura and Sayre 

(1976) extended the work of Yotsukura and Cobb (1972), which considered the transverse 

diffusion of solutes in natural streams using depth-averaged advection-diffusion equation to 

the study of transverse mixing in natural channels taken into account orthogonal curvilin

ear (natural) coordinate system. The transformed mixing equation obtained by Yotsukura 

and Sayre unified and generalized essential concepts of several existing models which were 

successfully used for simulating steady state transverse mixing in irregular natural channels. 

Wastes are commonly discharged steadily from point sources and it is important to 

choose the correct location for the outfall. The littoral zone in rivers contains more abundant 

plant and animal communities than the main channel and a commonly encountered problem 

is to choose the optimum source location, which minimizes bankside concentrations. There 

have been several theoretical studies of contaminant discharges in river flows with a view to 

finding the optimal site of discharge. The optimal choice is the best position of discharge, 

which minimizes the transverse mixing distance of the contaminant plume. This is an 

important measure in controlling water pollution problems by large-scale processes and 

sewage works, which are designed to avoid intermittent high-level discharges, and instead 

are aimed at steady low-level discharges (Smith, 1982). For a continuous point release in 

a river Smith (1982) finds that the optimal site is somewhere near the middle of such a 

channel; this keeps the contaminant plume formed away from the banks as long as possible. 

This is the same thing as saying that the best discharge site is the location where complete 

mixing is achieved as quickly as possible. For the optimal placement of underwater outfalls 

Martfnez et al. (2000) considered a control problem arising in the process of waste water 

purification. Alvarez-Vazquez et al. (2002) made an extension of Martfnez et al. model and 

formulated a mathematical analysis of the optimal location of wastewater outfalls. Using 

optimal control techniques, where the control is the position of the outfalls, Alvarez-Vazquez 

et al. demonstrated the evolution of the optimal locations somewhere in the deeper water 
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for a coastal beach. In the case of sudden or instantaneous contaminant release, the optimal 

discharge locations are quite different. For steady flows in rivers Smith (1981, 1984) and 

Daish (1985) have shown that the cross-stream location of an instantaneous contaminant 

release can have a persistent and marked effect upon the concentrations experienced far 

downstream. 

The dispersion of pollutants in rivers is greatly affected by the depth topography. Kay 

(1987) discussed the importance of depth topography and modelled the effect of cross-stream 

depth variations upon dispersion of contaminants, and suggested that outfall of an efHuent 

discharge should be kept away from the shoreline for the avoidance of it being affected by the 

contaminants. In the study of dispersion of methanol in natural rivers, Jamali et al. (2005) 

reported that the hydraulic geometry (width, depth, and velocity) are not constant and 

showed their effects. They used their solution to assess the potential environmental impacts 

of methanol releases into a hypothetical river. The resulting downstream concentrations 

of methanol were considerably lower than those calculated assuming constant hydraulic 

geometry. This points to the importance of varying coefficients in the study of the fate and 

transport of contaminants in rivers. 

One critical element in designing management strategies for rivers is the understanding 

of the dynamics of perturbations introduced into the water. After the initial discharge 

of contaminants into the rivers, physical processes such as advective transport, dispersion 

and contaminant decay mechanisms play important roles in determining the movement and 

change in concentration of contaminants. Thus, they influence decision on methods used for 

detection and remediation. At present, many uncertainties exist in mathematical modelling 

of depth-averaged variable coefficients advection-diffusion with variable decay mechanisms 

in river flows. Several mathematical models, which exhibit decay of pollutants, are present 

in literature (Nassehi and Bikangaga, 1993; Bikangaga and Nassehi, 1995; Smith, 2000; Yoo 

et al., 2003; Araujo et al., 2005). However, no comprehensive analysis of the effects of the 

variability of decay with depth in the advection-diffusion of pollutants has been attempted 

MEID 12 Mebine, 2006 



1.1 Organisation of the Thesis 

in conjunction with numerical models. Hence, it is no gainsaying that in order to present 

managerial policies for water quality control, it is vital to have knowledge of the effects of 

the variability of decay of pollutants in the context of MEID. This is the distinctive centre 

point of the present research. 

1. 7 Organisation of the Thesis 

This thesis covers the theoretical, numerical and applications of MEID using mathematical 

models. Having emphasized the challenging nature of the subject, let us also stress that 

it is possible to make good progress provided we accept and acknowledge the limitations 

of our mathematical models. In this introductory chapter, we have briefly examined the 

preliminary concepts of the subject and review of related literature. It must be emphasized 

here that no attempt at completeness has been made in terms of the references. 

The second chapter is concerned with the relevant physical- mathematical formulations 

and various functional relationships underlying the fate and transport of contaminants. 

The third chapter considers the explanation and mathematical definition of the diffusion 

centre of a river. The method of eigenmodes is employed which eventually introduces diffu

sion longitudinal and pollutant modes. Several test cases are considered given benchmark 

analytical results for the determination of the diffusion centre. 

The fourth chapter provides ray approximation for steady discharges. The derivations 

give formulae for the phase function, the curvature and the amplitude factor. Ray tracing 

algorithms are constructed to compute the ray curvature numerically. 

The fifth chapter considers the investigation of the effects of diffusivity-velocity aug

mented fractional change in contaminant decay upon contaminant dispersion for steady 

discharges in a vertically well-mixed current in rivers with discontinuous variations in depth. 

The method of steady-state response to a propagating incident wave technique was applied 

to derive approximate concentration formulae. 

The sixth chapter gives advection-diffusion-reaction finite difference, implicit numerical 
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schemes. The numerical methods are applied to achieve high-order accuracy with stability 

over a wide range of parameters in rivers. 

The seventh chapter is concerned with the conclusions and recommendations for further 

work. 

1.8 Concluding remarks 

The sciences do not try to explain, they hardly even try to interpret, they mainly make 

models. By a model is meant a mathematical construct which, with the addition of certain 

verbal interpretations, describes observed phenomena. The justification of such a mathemat

ical construct is solely and precisely that it is expected to work. - John Von Neumann 

(1903 - 1957) 

The motivation for the development of the concepts within this work is to provide 

realistic models of solute transport in rivers with special considerations to the behaviour 

of reactive flows which can be described by Partial Differential Equations of advection

diffusion-reaction models. The chapter that follows gives the mathematical formulations of 

the equations governing the fate and transport of contaminants. 
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Chapter 2 

Mathematical Formulations 
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2.1 Introduction 

2.1 Introduction 

The present chapter provides a brief and, hopefully transparent, formulation of the par-

tial differential equations of advection-diffusion-reaction describing the fate and transport 

of contaminants. The presentation follows closely the work of Rutherford (1994), though 

modifications necessary for treating contaminant decay have been introduced. In establish-

ing the mathematical model, we shall adopt the general law of conservation, on which all 

phenomenological descriptions of change in the physical world are based. 

2.2 Law of conservation 

Let M denotes a change in mass of a dissolved tracer in a given system. Then the Conser-

vation of Mass requires that 

aM 
Tt = I: <Pin - I: <Pout ± S, (2.1) 

where S is a source or sink reaction term. The relevance of equation (2.1) in this study is seen 

in the inclusion of the reaction term. To derive the governing equation (2.1), consider the 

control volume (CV) depicted in the rectangular Cartesian coordinate system, Figure 2.1, 

where the x-axis is measured in the longitudinal (downstream) or the flow direction, y-axis 

is measured transversely (cross-stream), and z-axis is measured vertically upwards. 

2.3 Advection-diffusion-reaction equation 

The standard advection-diffusion-reaction model deals with time evolution of chemical or 

biological species in a flowing medium such as water or air. The mathematical equations 

describing this evolution are partial differential equations that can be derived from mass 

balances. If we consider a parcel of fluid that moves at a mean velocity through the system 

(Figure 2.1), then the average concentration or accumulation of the quantity X considered 

MEID 24 Mebine, 2006 



2.3 Advection-diffusion-reaction equation 

y 

z 

~ X, in ----+-----~ 

Figure 2.1: Schematic of a control volume with crossflow. 
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2.3 Advection-diffusion-reaction equation 

per time interval ..6.t in the system is given by 

aM ox 
at = at ..6.x..6.y ..6.z. 

The net inflow of X in the x, y and z- directions are 

(2.2) 

(2.3a) 

(2.3b) 

(2.3c) 

where <Px, <Py and <Pz are the fluxes of the quantity X in the x, y and z-directions, respectively. 

Equations (2.3a- 2.3c) sum up to give 

(2.4) 

The reaction term in the system is kinetic rate law integrated over the volume, giving 

s = ± r X ..6.x ..6.y ..6.z, (2.5) 

where r is the rate constant. The reaction term actually decribes the rate of decay/loss/e

vaporation of X in the system. By combining equations (2.2), (2.4) and (2.5) we can therefore 

write equation (2.1) for the CV as 

oX 
at ..6.x..6.y..6.z 

a<px acpy a<pz A A 
= --..6.x..6.y..6.z - - ..6.x ..6.y..6.z - - ux uy..6.z - r X..6.x..6.y ..6.z. 

ox ay az 
(2.6) 

oX a<px a<py a<pz 
::} -=-------rX· 

at ox ay az 
(2.7) 

In most general problems, typical of a river channel, advection and turbulent diffusion 
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2.3 Advection-diffusion-reaction equation 

occur in each of the three coordinate directions (Rutherford, 1994). Consequently, the 

diffusive fluxes would be different in the respective axes, and for Newtonian fluids, the 

component velocities are also incorporated. Following Ficks law of Molecular Diffusion, 

these fluxes are written as 

8X 
cPx = -ex 8x + U x X , 

8X 
cPy = -ey 8y + uy X , 

8X 
cPz = -ez 8z + U z x, (2.8) 

where ex, ey , ez,~,~,~, U x, uy and U z are the diffusion coefficients (turbulent), tracer 

concentration gradients and velocity components in the x-, y-, and z-directions, respectively. 

Putting equations (2.8) into equation (2.7) gives 

(2.9) 

Equation (2.9) is written in the so-called Conservation form, and possible other forms are 

found in literature. In the classical vectorial analysis notation, as can be found for instance 

in Apostol (1964), equation (2.9) becomes 

(2.10) 

where u = (ux, uy, uz), \1 is the gradient operator \1 = (tx' gy' fz) T and e is the diagonal 

matrix e = diag( ex, ey , ez). In Einsteinian notation equation (2.9) is written as 

(2.11) 

For an incompressible fluid, equation (2.10) can be simplified using the continuity or con-

servation of mass equation for the ambient fluid. For incompressible fluid, the density is a 

constant Po everywhere, and the conservation of mass equation reduces to the continuity 
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2.4 Depth-Averaging 

equation (2.12) 

'V·u=o (2.12) 

(see, for example Batchelor (1967)). If we expand the advective term in equation (2.10), we 

can write 

'V . (UX) = ('V ·u)X+u· 'VX, (2.13) 

and by virtue of the continuity equation (2.12) the term ('V . u) X = 0; thus, the equation 

(2.11) takes the form: 

(2.14) 

where equation (2.14) is the advection-diffusion-reaction equation of an incompressible fluid. 

2.4 Depth-Averaging 

The three-dimensional advection-diffusion equation (2.14) incorporating the decay (that 

is, reaction) term will form the basis for analysing mixing problems in real rivers in this 

work. One practical difficulty is that the full equation is complicated and requires a lot 

of information about water depths, velocities, diffusion coefficients and bathymetry; more 

than can conveniently be gathered during field experiments in natural channels. In addition 

the three-dimensional equation is difficult to solve in a complex natural channel. Thus, 

any hope of making progress would mean considering necessary steps to simplifying the 

equation (2.14) without loosing grip of the essential ingredients required for analysing mixing 

problems. One major procedure of simplifying the mixing equation is to average it over the 

depth of the channel. The resulting depth-averaged concentration equation would then be 

used in the midfield region in which vertical concentration gradients are small, and hence 
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attention is focused on transverse and longitudinal change. This is the case in most rivers 

where the aspect ratio (width/depth) is large. 

To achieve the purpose of averaging, we integrate equation (2.9) term by term over the 

depth from the bed z = a(x, y) to the surface z = b(x, y) assuming steady flow. The ap-

plication of Leibnitz's Theorem for Differentiation of an Integral (Abramowitz and Stegun, 

1968): 

a I b(X'Y) Ib(X'Y) af(x, z) aa ab 
-a f(x, z)dz = a dz - f(x, a) -a + f(x, b) -a 

x a(x,y) a(x,y) X X X 
(2.15) 

in integrating equation (2.9) term by term leads to 

Rearranging equation (2.16) 

(2.17) 

Equation (2.17) can be simplified by imposing that at the water surface and the riverbed 
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the fluxes of water and tracer normal to the boundaries are zero. These are commonly 

known as no-flux boundary conditions, and hence the last four terms of the equation 

(2.17) reduces identically to zero. Therefore, equation (2.17) becomes 

(2.18) 

The integrals over the depth can be represented as 

(2.19) 

where the over bar denotes a depth-average and h is the local depth. Putting equation 

(2.19) into equation (2.18) yields 

(2.20) 

Using Reynolds decomposition of averaging, the reaction, velocities and concentration 

can be expressed as the sum of a depth-average and a vertical deviation as follows: 

r = >. + r' , 

where 

MEID 

, 
Ux = Vx +Ux , 

1 ib 
Vx = h a uxdz, 

, 
U y = Vy + U y , x='l1+x', (2.21) 

1 ib 
Vy = h a uydz, 

lib 
'l1 = h a xdz . (2.22) 
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The depth-average of a product is defined as follows: 

UxX = (Vx + u~) (W + x') = vxW + u~X'· (2.23) 

The depth-average of the deviations X', r', u~ and u~ are zero. For ex and ey to be inde-

pendent of the depth, implies 

(2.24) 

Making these substitutions into equation (2.20) gives 

(2.25) 

where vxw and VyW are known as the advective fluxes while ex~ and ey¥U are turbulent 

diffusive fluxes in the longitudinal and transverse directions respectively. The terms -u~X' 

and -u~X' are the additional transport which are artifacts of depth-averaging and quantify 

the longitudinal and transverse tracer fluxes which result from vertical shear in the 

longitudinal and transverse velocities. 

Taylor's analysis of turbulent shear flow suggests that at asymptotically large times the 

longitudinal dispersive flux is proportional to the longitudinal gradient in depth-averaged 

concentration: 

(2.26) 

where f\,x is the longitudinal dispersion coefficient which accounts for the effects on the 

depth-averaged tracer concentration of depth variations in the longitudinal velocity. By 
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analogy, the transverse dispersive flux is given by 

-,-, _ aif! 
-uyX - K,y ay , (2.27) 

where K,y is the transverse dispersion coefficient which accounts for the effects on the depth

averaged tracer concentration of depth variations in the transverse velocity. The literature 

on turbulent-diffusion theory contains many discussions of the validity, or otherwise, of 

equations (2.26) and (2.27) [see, for example, Tennekes and Lumley (1972, pp.11, 40-52)]. 

Incorporating equations (2.26) and (2.27) into equation (2.25) gives 

(2.28) 

In river channels, K,x » ex and K,y » ey (Rutherford, 1994), and the application of the 

continuity equation (2.12) gives the advection form 

(2.29) 

The above depth-averaged advection-diffusion equation (2.29) can be used in predicting 

tracer concentration where the channel is straight and uniform which is the case in man-

made channels such as canals and laboratory flumes, and is also satisfactorily applied in the 

mid-field of natural rivers. However, the equation (2.29) can further be simplified to render 

it mathematically tractable. Therefore, by considering that the tracer source is steady and 

on the assumption of a long-narrow channel (that is, the length-to-width ratio is large) by 

employing the following scales: 

(2.30) 
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z 

y 

~----~x 

+-----------------·u 

Figure 2.2: Sketch of Configuration of a uniform straight channel. 

where B, H, L, U, and /\'x are characteristic width, average (or maximum) depth, longitudi-

nallength (which is of the order of the distance which contaminant will have been advected 

downstream before it meets the shoreline), average or discharge velocity and longitudinal 

dispersion coefficient of the channel, respectively. Therefore, the reciprocal of the square of 

the aspect ratio (width/length) of the channel becomes 

(2.31) 

which renders the longitudinal dispersion term negligible. Also, the transverse advective 

term is negligible due to the large width-to-depth aspect ratio which enhances vertical 

equilibrium much more rapidly than transverse equilibrium. In this case /\'y = /\', and at the 
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banks the no-flux boundary conditions are applied. If now the x-distance is measured in 

the local downstream direction with a local uniform longitudinal velocity u that depends on 

the y-distance the local transverse direction (see Figure 2.2; Daish, 1985), equation (2.29) 

reduces to 

oW 0 ( oW ) h)..w+hu- = - h/<i,-ox oy oy (2.32) 

with 

(2.33) 

For a fast equalization of concentration in depth and with constant coefficients equation 

(2.32) reduces to 

(2.34) 

Equations (2.32), (2.33) and (2.34) with appropriate initial conditions will form the basis 

of our mathematical analysis in this work. 

2.5 Concluding remarks 

We have briefly discussed some important basic concepts of the fate and transport of contam-

inants and derived the governing advection-diffusion-reaction partial differential equations. 

With regard to applications in environmental modelling the aim has been to present mate-

rial specifically directed at solving transport -chemistry problems in river systems such that 

the transport part is based on advection and diffusion processes and the chemistry part on 

chemical reaction processes modelled by first-order decay parameter. The next four chap-

ters that follow give outlines of the methods of solution to the specific applicable problems 

respectively as the following: 1) The diffusion centre of a river; 2) Ray approximation for 
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steady discharges in rivers; 3) Decay and depth discontinuity effects upon steady discharges 

in rivers; 4) Computational scheme for steady discharges in rivers. 
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Chapter 3 

The diffusion centre of a river 

This chapter has been published (P. Mebine and R. Smith, 2006: Effects of Contaminant Decay on 

the Diffusion Centre of a River. Environmental Fluid Mechanics, 6, 101-114.) 
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3.1 Introduction 

3.1 Introduction 

Modern large-scale sewage works and industrial processes are designed to avoid intermittent 

high-level waste-water discharges, and instead are aimed at steady low-level discharges. 

The environmental impact can be further reduced by careful selection of the discharge 

location. In rivers, the near-shore or littoral zones contain more abundant plant, fish and 

animal communities than the main channel. A commonly advocated managerial policy 

to conserve these areas of economic importance is to choose the source location of large-

scale contaminant discharges to avoid excessive shoreline concentrations. The magnitude 

of avoidable shoreline excesses is shown in Figure 3.1 for the illustrative case of a conserved 

solute discharged at a steady rate from a single point into a channel with water depth that 

increases from zero at the left to maximum water depth at the right of Figure 3.1. 
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~ tl 
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Figure 3.1: Magnitude of shoreline pollution if a discharge is not at the diffusion centre. 

Yotsukura and Cobb (1972) used the degree of mixing as a measure of the effectiveness 

of different discharges of non-decaying solutes in a river. Their criterion for the optimal 

site, or diffusion centre, is that the transverse mixing distance be minimized with complete 

mixing achieved as quickly as possible. For a laterally symmetric river the diffusion centre 

coincides with the geometric centre. In general, the diffusion centre tends to be displaced 
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towards the deeper side of a river (as in Figure 3.1) and close to the centre with respect to 

volume discharge (Smith, 2004). A nice consequence of positioning a steady discharge at 

the diffusion centre is that at both banks the concentrations gradually increase downstream 

without local pollution hot-spots along either shore (Smith, 1982). In Figure 3.1, the peak 

shoreline pollution increases quadratically for discharge sites away from the diffusion centre, 

reaching 0.4 above optimal for displacements of an eighth of a channel breadth away from 

the diffusion centre. 

Many contaminants exhibit decay. Decay mechanisms include consumption by bacteria 

or radioactive decay (temporal decay uniform across the flow), heat loss or evaporation 

through the surface (decay decreasing with depth), and break up by turbulence (decay 

proportional to the product of velocity and depth). For slow-moving rivers with widths 

of a few hundreds of metres, the time scales for transverse mixing can be of order a day 

and comparable with the time scales for decay. So, decay cannot be regarded as a minor 

perturbation that simply lowers the concentration. There are numerical models in literature 

which allow for the decay of contaminants (Bikangaga and Nassehi, 1995; Nassehi and 

Bikangaga, 1993; Yoo, Cho and Jun, 2003). However, no previous investigation of the 

effects of decay on the discharge sites has been attempted. 

In the present work a mathematical model is used to include a profile of decay in 

a definition of the diffusion centre for a non-symmetric straight river with non-reversing 

flow. Three families of exact solutions are given with profiles of decay corresponding to 

consumption by bacteria, to evaporation and to break up by turbulence. It is found that 

the diffusion centre shifts to deeper or shallower water accordingly as the the temporal 

decay divided by flow speed (local downstream spatial decay rate) decreases or increases 

with water depth. 
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3.2 Governing equations 

An account of flow models of river mixing by Rutherford (1994) suggested that transverse 

mixing is more important in water quality management than either vertical or longitudinal 

mixing, especially when dealing with discharge of water from point sources or the mixing 

of tributary inflows. In natural streams it is known that the width-to-depth aspect ratio is 

large and therefore vertical equilibrium (usually vertically uniform) is achieved very much 

more rapidly than transverse equilibrium. Thus, for lateral mixing of solute from a steady 

discharge in nonstratified unidirectional flow, the concentration can be regarded as being 

in vertical equilibrium, and hence attention is focused along and across the flow. Steady 

contaminant plumes also have a large length-to-width ratio, which makes the effect of 

transverse turbulent diffusion more important than longitudinal shear dispersion (Elder, 

1959). 

For a straight channel with a cross-section that is unchanging in the downstream di-

rection, the steady-state vertical-equilibrium advection-diffusion equation, incorporating a 

first-order decay parameter )..(y) that is a function of the transverse coordinate y only, is 

)"hc+hu- - - hK- = O. ac a ( Bc) 
ax ay ay (3.1) 

The no-flux boundary conditions at the shorelines are 

h .. ac = 0 b ,,, a on y = a, . 
y 

(3.2) 

Here x and y are the longitudinal and transverse coordinates, c(x, y) is the contaminant 

concentration between the shorelines y = a, b in water of depth h(y) ~ 0, steady non

reversing velocity u(y) ~ 0, and transverse diffusivity K(Y) ~ O. It is not necessary that 

)..(y) be single signed, but all the examples in this work concern decaying rather than growing 

contaminants. If the vertical equilibrium is non-uniform (light oils, heavy oils, bed sorption, 
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death of bacteria in bright sunlight near the surface), then c, u and K, are appropriately 

weighted vertical averages (Smith, 1996). 

3.3 Pollutant modes 

To solve the system (3.1, 3.2), the method of modes is employed. The eigenmodes are herein 

described as the pollutant modes. A separation of variables solution: 

00 

c(x, y) = 2:Cn exp( -/-Lnx ) <Pn(Y) , (3.3) 
n=O 

leads to the introduction of the pollutant modes <Pn (y) and their associated spatial decay 

rates (eigenvalues) /-Ln: 

d: (h K, ~; ) + [/-Ln U - A 1 h <Pn = 0 , (3.4) 

with 

h .. d<Pn = 0 b '" on Y = a, . 
dy 

(3.5) 

Modes are only known explicitly for restricted families of exactly solvable test cases, but 

exist and are countable for any non-negative depth, diffusivity and velocity profiles. 

It is conventional to order the modes in increasing values of the spatial decay rates 

/-Lo < /-Ll < /-L2 < .... (3.6) 

This ordering corresponds to the modes becoming increasingly oscillatory with respect to 

y. Figure 3.2 shows the first few modes for the illustrative case of a conserved (A = 0) 

solute in a channel with water depth that increases from zero at the left to maximum at 

the right (§3.5, equation(3.15)) with u and K, dependent on the water depth as specified in 
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§3.4, equation (3.11). Universal properties are: i) the zero mode <po(y) is single signed; ii) 

the n'th pollutant mode <Pn(Y) has n zeros that interlace with the n + 1 zeros of <Pn+1(Y); 

iii) for n = 1 there is a position Yl such that 

(3.7) 

In a river with symmetric depth, flow, mixing and decay, Yl is at the geometric centre. 

18 

16 \. , , 
14 .. , , 
12 .. 

10 \<1>2 , , 
8 \ , , 
6 ........... \, 
4 ~ <P-

Zero depth "'\ '- 1 
2 at y=a \\\ '- -

Maximum 
depthaty=b 

--------------------o 
-2 

0.1 0.2 '",--__ 0.4 ______ --------- 0 7 0 8 09 
---------- (y-a)/(b-a) . ~. . 

Figure 3.2: Normalized modes for linearly increasing depth. 

1 

If at x = 0, the cross-river concentration profile is denoted by f(y), or the profile of 

discharge flux is denoted by huf(y), then the weights en can be evaluated from integrals 

across the river 

Cn = l' huf(Y)<I>n(y)dy / l' hu<l>~dy. (3.8) 

Normalizing the modes with respect to the volume flux Q: 

(3.9) 

gives minor simplifications. In particular, for a pollutant flux rate q discharged at the point 
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YP' the formula (3.8) takes the neat form 

(3.10) 

The normalization (3.9) permits the higher modes to become large in shallow, slow-flowing 

water, as at the left of Figure 3.2. The shallow-water concentrations are sensitive to the 

weights Cn and those weights are sensitive to shallow-water positioning of the discharge. 

For the illustrative case, the shoreline pollution is in excess of five times optimal for the left 

three-tenths in Figure 3.1. 

For the solution (3.3) the lowest mode 4>o(y) is the transverse equilibrium concentration 

profile and the lowest eigenvalue /-lo is the spatial rate of downstream decay at large distances 

downstream. If Cl is non-zero then the decay-adjusted exponential rate of approach to that 

transverse equilibrium is /-ll - /-lo with shape Cl 4>l(Y). The sign of Cl determines at which 

of the two banks there is a decay-adjusted relative pollution excess (as in Figure 3.1). Such 

shoreline excesses are avoided if Cl = O. It is clear from equations (3.7, 3.10) that Cl = 0 

can be achieved for a discharge flux confined to the single point YP = Yl. In that case, 

the decay-adjusted relative exponential rate of approach to the transverse equilibrium is 

increased to J-l2 - /-lo with shape C2 c/>2(Y) and size C2 = 4>2(yI)q/Q. From the inequalities 

(3.7), it follows that far downstream at both banks there is a negative departure relative 

to decay adjusted equilibrium. Shoreline pollution hot-spots (relative to decay adjusted 

equilibrium) have been eliminated. Consequently, Yl is the diffusion centre. 

Numerical methods for computing low modes 4>o(y), 4>l(Y) of the system (3.4,3.5) and 

for the estimation of the root Yl, are well established (Fox, 1957). Instead, this work pursues 

exact solutions. One motivation is to sharpen understanding. Another motive is to add 

decay examples to the stock of non-trivial exact solutions for the benchmark testing of 

numerical computation schemes for environmental impacts in rivers (Nassehi and Passone, 

2005). 
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3.4 Flow parameters in straight channels 

Flows in natural streams tend to be turbulent. Elder (1959) showed that the local turbu-

lent diffusivities are proportional to the product of the local water depth and longitudinal 

velocity. This implies (Kay, 1987; Rutherford, 1994; Smith, 1981), that the longitudinal 

velocity varies as square-root of the depth and the diffusivity as the three-halves power of 

the water depth: 

( h)~ (h)~ u=u H ,K,=K H . (3.11) 

The capital letters H, U and K denote the depth, flow and transverse mixing at a reference 

position in the channel. The depth-linked formulae (3.11) ensure that in the deepest parts 

of the channel the velocity is greatest and transverse mixing is most vigorous (Daish, 1985). 

It is implicit that the pollutant is sufficiently dilute that it does not significantly modify 

the turbulence (for example, applicable to oil in droplets but not to a continuous oil slick). 

The illustrative examples in this work use power-law models for the decay: 

( 
h )m+~ 

>..=A H . (3.12) 

For positive (or negative) m the ratio >..(y)/u(y) increases (or decreases) with depth. 

With the representations (3.11, 3.12) the eigenvalue problem (3.4, 3.5) becomes 

(3.13) 

with 

(
h) ~ d<pn 
H dy = 0 on y = a, b. (3.14) 

For zero decay, the concept of the diffusion centre and the method of modes that is 
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used to identify it, are not restricted to straight non-varying channels (Smith, 1982). The 

mathematics looks more daunting because of the need to use of flow-following coordinates 

(Yotsukura and Sayre, 1976). Also, the modes split into downstream evolving ~n(x, y) and 

upstream evolving ~n(X, y) adjoints. The diffusion centre is where ~l(X, Yl(X)) = o. It is 

evolving upstream in response to downstream changes to the cross-sectional profile on the 

length scale 1/J.L2 of cross-sectional mixing (Smith, 1982), that is, it is downstream of the 

discharge where shoreline pollution excesses might otherwise have occured. With decay, the 

principal changes would be that the transverse equilibrium ~o(x, y) ceases to be constant 

across the channel and has decay J.Lo(x) along the flow. 

3.5 Linearly increasing depth 

For illustrative purposes, the chosen depth profile across the flow is linear increase from 

zero depth at one side Y = 0 to maximum depth H at the other side y = B: 

h(y) = H (~) for 0 < y < B. (3.15) 

Decay proportional to the flow speed>. = A(h/ H) ~ (that is, m = 0) has no effect on the 

modes. The modes are unchanged from those for a conserved solute. The lowest mode is 

constant across the channel ~o = 1. Higher modes (normalized) can be represented (Smith, 

1982): 

(3.16) 

The square-root terms in the denominator that normalize the modes for arbitrary an. 

The no-flux boundary condition (3.14) at y = B restricts the an to being non-negative 
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roots of the equation: 

3an cos(an ) 
a2 _ 3 ,al = 5.763, a2 = 9.095, 

n 
(3.17) 

The construction of Figure 3.1 from the modal solution (3.3) used up to 40 modes to achieve 

high accuracy. Figure 3.2 shows the n = 0,1,2 normalized modes. The diffusion centre is 

at 

YdB = 0.608. (3.18) 

Decay proportional to the flow speed, augments the eigenvalues J-tn by A/U: 

(3.19) 

For n = 2, transverse mixing and decay give equal contributions to J-tn for AB2 / K ~ 20. 

For larger rates of decay shoreline pollution becomes insignificant unless the discharge is 

irresponsibly close to shore. The subsequent computations are restricted to AB2 / K :::; 10. 

In the context of pollution minimisation from sudden discharges of pollutants, Daish 

(1985) used piecewise linear depth profiles to construct a wide range of test problems. The 

following three sub-sections concern the linear depth profile (3.15), but with decay profiles 

corresponding to uniform consumption by bacteria, to evaporation and to break up by 

turbulence. The diffusion centre Yl is found to deviate by ±B /8 from the non-decaying 

reference case (3.18). 

3.5.1 Constant decay 

Radioactive decay or consumption by bacteria (at a rate unaffected by sunlight or turbidity) 

are examples of constant temporal decay). = A (that is, m = -~) . 

The exact solutions for the pollutant modes (not normalised) have an explicit solution 
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3.5 Linearly increasing depth 

proportional to a Whittaker function with first and third arguments imaginary: 

(3.20) 

The sign switching (_1)n is included so that, for compatibility with Figure 3.2, <PI (y) 

exhibits a change from positive for small Y to negative for large y. The no-flux boundary 

condition (3.14) at y = B yields an equation satisfied by the eigenvalues J.Ln: 

( 2+ iAB !) [WhittakerM (iAB/(J.LnU K)~, ~2' 4i(J.LnU B2/K)~) 
(J.LnU K)2 

- Whittaker M (i A/(/'nU) + 1, ~, 4 i (I'n U B' / K) l) 1 
= 2i (J.LnUB2/K)~ WhittakerM(iA/(J.LnU), ~,4i(J.LnUB2/K)~). (3.21) 

Once an eigenvalue J.Ln is evaluated, the shape of the mode <Pn(Y) is given by equation 

(3.20). Figure 3.3 shows the normalized first mode shapes for three values of the decay 

parameter. For zero decay the first mode <PI(Y) and discharge centre YI are identical with 

those in Figure 3.2 and equation (3.18). The effects of decay on <PI(Y) are most marked 

near the beach. For a fixed distance downstream, the slower flow in shallow water gives 

more time for the contaminant to be depleted. 

AB:I./K yI/B 
0 0.608 
2 0.637 
4 0.657 
6 0.673 
8 0.685 

10 0.696 

Table 3.1: Optimal discharge positions for linearly increasing depth and constant decay. 

From a <PI (y) curve it is straightforward to compute the root YI. Table 3.1 lists AB2 / K, 

yI/ B pairings including those appropriate to the curves shown in Figure 3.3. Constant 
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3.5 Linearly increasing depth 
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Figure 3.3: First mode (Pt (y) for constant decay A and linearly increasing depth. 

decay shifts the diffusion centre towards the deeper water by an amount proportional to A. 

3.5.2 Decay that decreases with depth 

The decay can decrease with depth if c(y, t) is a number count of bacteria which are killed 

by sunlight (Gould and Munro, 1981) only in the top few metres of the water column. A 

second example is removal at the bed (feeding by marine micro-organisms, fungi or yeasts). 

A third example is air-water contaminant exchange at the surface. For example, evaporation 

accounts for largest loss in oil volume during the early stages (Overstreet and Galt, 1995; 

Reddy and Brunet, 2003). Fingas (Fingas, 1994a; Fingas, 1985) notes that light crude oils 

can lose as much as 75 per cent of their original volume within the first few days after 

a spill; medium-weight crudes might lose as much as 40 per cent of the original volume. 

Heavy crude or residual oils, on the hand, will probably only lose about 10 per cent of their 

volume in the first few days. 

An exactly solvable model problem that illustrates decay decreasing with depth is A = 

1 
A(h/H)-"2 (that is, m = -1) . The modes (not normalised) are proportional to a Bessel 
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3.5 Linearly increasing depth 

function of non-integer-order: 

Bessel J ((t + 4AB2 / K)~, 2 (/-Ln U By/ K)~) 
<Pn = 3 

(y/ B) "4 

(3.22) 

The no-flux boundary condition (3.14) at y = B yields the eigenvalue equation with roots 

8 

7 

6 

5 

4 

(~ + 4 A B2 / K) ~ Bessel J (( ~ + 4 A B2 / K) ~ ,2 (/-Ln U B2 / K) ~ ) 

-2 (/-Ln U B2 / K)~Bessel J ((~ + 4AB2 / K)~ + 1,2 (/-Ln U B2 / K)~) 

= ~BeSSelJ((~+4AB2/K)~,2(/-LnUB2/K)~). (3.23) 

~.2 
~'o 

Zero depth 
3 aty=a be 

~~~------- ---~~ 

1 

, Q ~- .. --.., 

/~~~...... "<~:........ Maximum 
" ~Vy .................. ........ 

,/ /"" •••• ::.......... depth at y=b 
,/ _// ylB ~ •••• :::.......... 0 8 0 9 1 o ' ~ -..... . . 

2 

0.1 0.2 0.3 0.4 0.5 0.6 
-1 

Figure 3.4: First mode <PI(Y) for decay that decreases with depth. 

Figure 3.4 and table 3.2 respectively show the effects of the strength of the decay on 

the <PI pollutant mode and upon the diffusion centre. Again, for zero decay the first mode 

<PI(Y) and discharge centre YI are identical with those in Figure 3.2 and equation (3.18). 

For non-zero decay, the singularity in )..(y) at the beach y = 0, gives a jump to zero for 

<PI(O). Also, the displacement of the optimal discharge site towards the deeper part of the 

channel scales as the square-root of A. 
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3.5 Linearly increasing depth 

AB'2/K YdB 
0 0.608 
2 0.676 
4 0.705 
6 0.723 
8 0.736 

10 0.747 

Table 3.2: Discharge positions for decay that decreases with depth. 

3.5.3 Decay that increases with depth more than the velocity 

The dissolution of oils or break up of clay floes is most rapid in regions of the flow where 

the turbulence is energetic. In this sub-section, the decay is modelled A = A (h/ H) ~ , 

as proportional to the turbulent mixing (that is, m = 1) and increasing with depth more 

strongly than the velocity (3.11). 

The pollutant modes (not normalised) are proportional to Whittaker function modes 

with all three arguments real: 

WhittakerM(~J-LnU B/(AK)t,~, 2(A/K)ty) 
~n = 5 

(y/ B)4 
(3.24) 

The no-flux boundary condition (3.14) at y = B yields an equation satisfied by the eigen-

values J-Ln: 

(
5 J-Ln U B ) 
4 + 2(AK)t [ (

1 1 3 1 ) 
Whittaker M 2J-Ln U B/(AK)2, 4' 2(A/K)2B 

1 1 3 1 1 - Whittaker M(2J-Ln U B/(AK)2 + 1, 4' 2(A/K)2B) 

1 1 1 3 1 

= (A/K)2B WhittakerM(2J-LnU B/(AK)2' 4' 2(A/K)2B). (3.25) 

Figure 3.5 and table 3.3 respectively show the first pollutant mode ~l(Y) and the opti

mum discharge site Yl for a few values of AB2 / K. Once more, for zero decay the first mode 

~l(Y) and discharge centre Yl are identical with those in Figure 3.2 and equation (3.18). 
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3.6 Ratio >../u as an indicator for changes in YI 
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Figure 3.5: First mode <PI (y) for decay that increases with depth. 

AB2/K YdB 
0 0.608 
2 0.589 
4 0.568 
6 0.544 
8 0.518 

10 0.489 

Table 3.3: Discharge positions for decay that increases with depth. 

Contrary to the previous two sub-sections, the diffusion centre shifts to the shallower water. 

3.6 Ratio A/U as an indicator for changes in Y1 

A physical interpretation of the ratio >..(y)/u(y) is as the local spatial decay rate for the 

contaminant at the cross-channel location y. For the special case of linear depth, it was 

observed in §3.5 that if >..(y)/u(y) is constant (that is, m = 0), then the modal shapes <Pn(Y) 

are not effected by decay and the spatial decay rates fln for the modes are merely augmented 

by that constant spatial decay rate >../u. It is evident from the square-bracketed terms in 

equation (3.4), that the same is true whatever the depth profile h(y). 

It is natural to investigate whether the depth-dependence of the ratio >.(y)/u(y), or 

the sign and magnitude of the exponent m in the power-law model (3.12), can be used 
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3.7 Concluding remarks 

as an indicator for changes to the position of the diffusion centre. In §3.5.1 and Figure 

(3.3), >.(y)/u(y) decreases with negative exponent m = -! and the diffusion centre shifts 

weakly to deeper water. In §3.5.2 and Figure (3.4), >.(y)/u(y) decreases more strongly with 

negative exponent m = -1 and the diffusion centre shifts more strongly to deeper water. 

Finally, in §3.5.3 and Figure (3.5), >.(y)/u(y) increases with positive exponent m = 1 and 

the diffusion centre shifts to shallower water. Hence, the diffusion centre is shifted to deeper 

or to shallower water accordingly as the ratio >.(y)/u(y) decreases or increases with water 

depth (that is, m negative or positive). 

3.7 Concluding remarks 

Avoidable shoreline pollution excesses can be large for steady discharges close to shore. 

The special cases solved in this work sharpen insight about how loss mechanisms displace 

the best siting of steady discharges away from the site appropriate to non-decaying solutes. 

The mixing or diffusion centre is shifted to deeper or to shallower water accordingly as the 

spatial decay rate (that is, ratio >.(y)/u(y)) decreases or increases with water depth. 

The three families of exact modes (3.20, 3.22, 3.24) together with the exact series solution 

(3.3) and weights (3.8) permit the construction of exact solutions that include decay. Such 

exact solutions extend the scope for the benchmark testing (Nassehi and Passone, 2005) of 

numerical computation schemes for environmental impacts in rivers. 

Commonly, a steady discharge will comprise a mixture of pollutants with different decay 

processes and rates. The chosen discharge site will be a compromise between the diffusion 

centre for the constituent pollutants. For the wide range of cases considered in this work, 

the optimal discharge position for the different decay processes is never found to be more 

than one eighth of a channel breadth from the site appropriate to non-decaying solutes. 

For each decaying constituent the displacement between the discharge site and the diffusion 

centre for that constituent, corresponds to shoreline pollution excesses less than a factor of 

0.4 above optimal (as contrasted to the factor of 4.0 excess at which Figure 3.1 is truncated). 
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3.8 References 

The variety of exact solutions in this chapter illustrate the robustness of the commonsense 

policy that, to avoid large shoreline pollution excesses from any of the constituents in a 

mixture of pollutants, the discharge should be sited more or less in the middle of the river. 
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Chapter 4 

Ray approximation for steady 

discharges in rivers 
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4.1 Introduction 

4.1 Introduction 

One critical element in designing management strategies for rivers is the understanding 

of the dynamics of perturbations introduced into the water. Such perturbations include 

climatically forced variables (for example, changes in freshwater runoff) as well as spills 

of contaminants related to human activities along the river or in its watershed. For ex

ample, toxic contaminants could enter rivers by a variety of methods, including industrial 

and municipal wastewater discharges, urban runoff, accidental spills, landfill leachate, and 

tributary discharges (Fyrillas, 2000; Ho et al., 2002; Baker et al., 2003; Nedeau et al., 2003). 

After the initial discharge, physical processes such as advective transport, dispersion and 

contaminant decay mechanisms (Mebine and Smith, 2006) play important roles in deter

mining the movement and change in concentration of contaminants. Thus, they influence 

decision on methods used for detection, remediation, and treatment are likely to be most 

successful. 

Kay (1987) demonstrated that depth topography has strong influence upon the hori

zontal spreading of a contaminant plume in vertically well-mixed currents. The method of 

solution of Kay's problem utilised the method of images, with real and virtual contami

nant sources, and is therefore restricted to certain abrupt geometries. One objective of the 

present work is to investigate the effects of depth-dependent decay upon steady discharges 

in water of smoothly varying depth. 

When advection dominates diffusion, there are special directions (rays), distinct from but 

closely related to the contaminant flux vector, along which information is carried (Smith, 

1981). A second objective of this work is, therefore, to sharpen our intuition about the 

relative complementary role of decay upon such rays. 

It is pertinent to note here that, undoubtedly, the ray method remains one of the 

most powerful and broadly used methods for investigating both forward and inverse wave 

propagation problems in modern exploration geophysics. Some fundamental ideas of the 

ray theory and its applications have been known in physics and the like for a long time 
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4.2 Advection-diffusion equation 

(Babich, 1956; Karal and Keller, 1959; Smith, 1970; Cerveny and Ravindra, 1971; Cerveny, 

Molotkov and Psencik, 1977; Hanyga, 1984; Kravtsov and Orlov, 1990). 

The ray method has the following advantages. It provides a physical insight to the wave 

propagation phenomenon in rather complicated geophysical models, by describing the total 

wave field as a sum of different types of waves generated in the problem under consideration. 

It gives rise to rather effective and not so time consuming numerical algorithms when 

compared to the finite difference and finite element methods. On the other hand, the ray 

method is not without its limitations. The ray method does not correctly describe the wave 

field in the vicinity due to caustic problems. 

Cohen and Lewis (1967) have shown that the mathematical methods of ray developed 

for wave problems can be applied for diffusion problems. Here we apply these methods to 

the two-dimensional advection-diffusion equation with contaminant decay. The outcome is a 

simple constructive procedure, which yields an accurate approximation to the concentration 

distribution. 

4.2 Advection-diffusion equation 

In keeping with the generality of the dispersion concept for horizontal spreading of a con

taminant plume in vertically well-mixed currents and the loss of reactive contaminant by a 

first order reaction in the moving fluid, we start our mathematical analysis with the steady 

state depth-averaged advection-diffusion-reaction equation: 

)"hc+ V'·(huc) - V'·(hDV'c) = O. (4.1) 

Here x and y are the longitudinal and transverse coordinates, c(x, y) is the contaminant 

concentration in water of depth h(x, y), u(x, y) is the vertically-averaged steady velocity 

vector, D(x, y) is the vertically-averaged effective transverse diffusivity across the flow, )..(y) 

is the first-order decay parameter, and V' is the horizontal gradient operator (ax , ay). It 
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4.3 The ray ansatz 

is the long-thin nature of steady contaminant plumes that gives predominance transverse 

diffusivity and permits a scalar rather than tensor characterisation of the dilution process. 

Conservation of mass for the steady current implies that 

V'. (hu) = O. (4.2) 

4.3 The ray ansatz 

In the spirit of the WKB approximation we shall assume that, with a suitable choice for 

the amplitude and phase (decay) functions A(x,y),~(x,y), the classical geometrical optics 

solution 

c= A exp(±~) (4.3) 

can be constructed. If ± is replaced by i, where i is an imaginary unit, then the equation 

(4.3) becomes a specification of any local property of wave train (that is, pressure, velocity, 

displacement) in coastal zones (Massel, 1989) and also known as Fresnel representation 

(Iglesias and Negro, 2003). The representation (4.3) is due to Cohen and Lewis (1967) and 

has been widely used in the study of contaminant discharges in river systems by Smith(1981, 

1983). If the steady flow were reversed (that is, +u replaced by -u), then the direction of 

the plume would likewise be reversed. The ± sign is a technical device to ensure that this 

property is preserved exactly. 

4.3.1 Eikonal and Transport equations 

If we substitute the ansatz (4.3) into the advection-diffusion-reaction equation(4.1), with 

flow velocity ±u, then we generate terms proportional to 

exp(±<I» and ± exp(±~). 
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4.3 The ray ansatz 

Equating these groups of terms separately to zero, we have 

(4.4) 

and 

V·(huA) - hD'lA·Vip - V·(hDAVip) = O. (4.5) 

The first, equation (4.4), governs the phase function ip and is designated in analogy with 

geometrical optics, an Eikonal equation. The second, equation (4.5), is referred to as the 

Transport or the Energy equation, for it expresses mathematically the transmission of energy 

associated with wave propagation in wave dynamics. 

The equations (4.4) and (4.5) are coupled. These equations can be decoupled by consid

ering the essential features for the WKB-type approximation such that the phase ip varies 

more rapidly than does the amplitude A (that is, the long-thin nature of steady contaminant 

plumes). Therefore, the corresponding approximation of equation (4.4) becomes 

>. + u· V<I> - D(Vip)2 = O. (4.6) 

What has been achieved with the ray approximation is that the parabolic equation (4.1) has 

been replaced by the hyperbolic equations (4.5) and (4.6). Thus instead of the concentration 

at anyone point being influenced by all other points, the influence only comes outwards from 

the source (along ray paths). For conserved contaminants Smith (1983) solved equations 

(4.5) and (4.6) by marching methods. The main limitation of the ray approximation is that 

it is only applicable for wide rivers or open coastlines. It fails to account for the reflection 

at any far shoreline, or abrupt depth change. 

MEID 59 Mebine, 2006 



4.3 The ray ansatz 

4.3.2 Exponential Decay 

The equation (4.6) is a nonlinear first-order partial differential equation, but it can be 

presented as an ordinary differential equation along a ray. The method of solution is the 

well known method of characteristics or rays (Sneddon, 1957; Courant and Hilbert, 1962). 

To this end, let 

x = x(s) , y = y(s) 

be a curve in 2D and consider a function f = f(x, y). Then the derivative along the curve 

is defined by the formula 

df = aj dx + af dy = \1 f . t, 
ds ax ds ay ds 

(4.7) 

where s is the arc length also referred to as the travel time (Benamou, 1996) along the curve 

and t is a unit tangent vector to the curve. The formal derivatives of equation (4.6) with 

respect to ~:, ~ define the ray direction. Normalization yields the unit tangent vector 

t= u-2D\1<I> . 

Vlul2 +4,\D 
(4.8) 

From equation(4.7), taking f = <I> the rate of the exponential decay or the phase function 

along a ray is defined via the formula 

a<I> = t . \1<I>. 
as 

By eliminating (\1<I»2 by means of the Eikonal equation (4.6), we obtain 

a<I> u . t - Vlul2 + 4,\D 
= = 

as 2D 

MEID 

(4,\D + lul2 - (u· t?) 
2D ( u . t + Vlul2 + 4'\D) 

60 

(4.9) 

(4.10) 
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4.3 The ray ansatz 

Hence, we see that the phase function along a ray depends upon the rate of contaminant 

decay and the relative direction of the ray path, and current. Decay is least in the flow 

direction with t aligned with u. 

In order to extend a ray path away from the source, we must know both its direction t 

and its curvature K(s). If k is the unit vertical vector, a ray normal unit vector n can be 

defined such that t, nand k form a right-handed triad. The curvature K(s) can be defined 

in terms of n, sand t as follows: 

a 
K == n· as t = n· [(t· V)t] = n· [(V x t) x tJ, (4.11) 

since t . t = 1. The equation (4.11) is also known as Frenet's formula. If we define the 

advection-diffusion vector K by 

u 
K= 2D' 

then it follows from equation (4.8) that 

Now denoting 

(4.12) 

(4.13) 

(4.14) 

with some manipulation of vector products, it follows from equations (4.11) and (4.13) that 

K 
= n . VIMI + k . (V x K) 

IMI . (4.15) 

Decay A influences the ray curvature via the appearance of the decay-diffusivity ratio AID 

in the formula (4.14). 
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4.3 The ray ansatz 

4.3.3 Amplitude Factor 

The field of geometrical optics has been developed within the context of light wave trans-

port, it is valid to a great extent for water waves. It is known that waves carry energy along 

with them. In fact, water waves are just energy being transported along the sea surface. 

The amount of energy at each point on the wave train is directly related to the amplitude 

of oscillation at the same point. Here we draw an analogy and derive, in this section, the 

formulation for the amplitude factor as an energy conservation principle. As the contami-

nants spread out over a shoaling bottom, the contaminants are dispersed along a larger area 

and the amplitude decreases correspondingly. In the opposite case, if the bottom causes 

the rays to approach each other, the contaminants are focused and the amplitude increases. 

When this amplitude increase is large enough, the ray description breaks down. 

The derivatives of the amplitude factor A(x, y) in the transport equation (4.5) exactly 

conform to the ray direction. Therefore, to complete our solution for the concentration 

distribution c(x, y), we need to determine the amplitude factor A(x, y). Again, the aid of 

the solution is by the use of ray paths. It can readily be observed that by the use of the 

equations (4.7) and (4.8), the transport equation (4.5) can be written as 

(4.16) 

Next, we introduce a parameter p which labels the individual rays, and we consider the 

ray separation 

1

8(x,y) I 
J(p, s) = 8(p, s) . (4.17) 

This is called the spreading of a ray tube or geometrical spreading. In terms of the geomet-

rical sense of the spreading we can infer that if the ray tube becomes wider, J increases, 

and if the ray tube becomes narrower and rays are focusing, for example, at a certain point 
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4.4 Ray tracing algorithm 

J decreases and J = 0 precisely at that point. 

If we take the s-derivative of the formula (4.17) and eliminate second derivatives with 

respect to p by means of the chain rule, relating X-, y- and p-, s- derivatives, for example, 

{px (8X 8 8y 8) 8x 
--= --+-- -
8s 8p 8p 8x 8p 8y 8s ' 

(4.18) 

then we obtain the result: 

(4.19) 

This result (4.19), together with equations (4.8) and (4.14), permits us to rewrite the 

transport equation (4.16) as 

1 8A 1 1 8J 1 1 8 1 \1 . (hu) 
A 8s +"2 J 8s +"2 hD IMI 8s (hD IMI) = -4 hD IMI· (4.20) 

Conservation of mass (4.2) for the steady current implies that the right-hand side is zero. 

Thus, equation (4.20) reduces to a homogenous ordinary differential equation, whose solu-

tion is given by 

w(p) w(p) 
A= 1 1 1 1 = l' 

J'2 h'2 D'2IMI'2 J~ h~ (lu l2 + 4AD) 4 

(4.21) 

where w(p) is a constant along rays. An immediate implication is that the contaminant 

concentrations are greatest where the ray separation J is relatively small or where the water 

depth, flow, diffusion and contaminant decay are least. 

4.4 Ray tracing algorithm 

The ideas developed in the previous sections constitute the building blocks for the analytical 

computation of the phase function, the curvature and the amplitude factor. We now propose 
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4.5 Model problems to determine the curvature 

an algorithm with minimum computational demands for the numerical solutions of the 

curvature. 

Ray tracing is a well established rendering technique in optics and computer graphics 

employed to create convincing depictions of natural environments (Whitted, 1980). The 

steps involved in the algorithm for the present work are as follows: (a) Define a source 

point (xo, yo); (b) Shoot a given number of rays, N, in regularly spaced directions. Denote 

these rays by (Rn)n=O N; (c) Define the components of the unit vector t in the x- and y

directions respectively as tl and t2 such that tl = cos On , t2 = sin On, with On = (-! + ~)71", 
where n is the number count of the rays; (d) Compute the curvature; (e) Advance the 

rays and the direction vector t (or the angle On), then return to step (d). These processes 

evaluate the curvature numerically. The illustrative examples considered hereafter takes 

N = 20 and ray tracing has been performed using a code written in Maple to integrate the 

ray equations. 

4.5 Model problems to determine the curvature 

For any real topography, the ray curvature would have to be calculated numerically and the 

previous section gives steps of the algorithm for the computation. However, it is of interest 

to consider some simple illustrative examples to sharpen our intuition about the relative 

roles of water depth, current strength, turbulence intensity and contaminant decay. 

For steady, unstratified, plane parallel flow in water of non-uniform depth h(y), Elder 

(1959) gave the scalings for the velocity and turbulent diffusivity respectively as 

(4.22) 

Therefore, the advection-diffusion vector is modelled as 

K = constant (l/h, 0,0). ( 4.23) 
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For the contaminant decay, power-law models with respect to the non-uniformity of the 

depth is employed: 

( 
h )3/2+m 

)..=A H . (4.24) 

Accordingly, the decay-diffusivity ratio then becomes 

( 4.25) 

where m is an integer relating to the nature of decay-diffusivity ratio with respect to the 

depth, H and A are respectively reference depth and decay. With the equations (4.23) and 

(4.25), the curvature (4.15) can be constructed for some powers of m in general: 

1 [J (h)m+2 ( f3 m (h)m+2) 1 h' 
K= 1+f3(j})m+2 1+f3 H - 1--2- H tl h' (4.26) 

where f3=4t;o. Much as A quantifies the strength of the decay, f3 the strength of the 

decay-diffusivity ratio. 

4.5.1 Conserved contaminants 

In the absence of decaying contaminants (f3 = 0), the curvature profile (Smith, 1981; equa-

tion (6.2)) becomes 

h' 
K=(1- tl)-. 

h 
(4.27) 

Ray paths are closely related to the directions of contaminant flux. The results indicated 

that the rays and hence the contaminant flux, tend to curve towards the deeper water. 

Moreover, the variation in h lul further exaggerates the asymmetry of the concentration 

distribution. Figure 4.1 shows the ray paths for equation (4.27) and it is observed that the 
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rays curve towards the deeper water, the ray at the middle is straight along and the lowest 

ray hits the bank at 1. 

Figure 4.1: Ray paths for conserved contaminant spreading. 

The following three subsections concern the same depth related velocity, turbulent diffu-

sivity and decay profiles, but with decay-diffusivity ratio profiles corresponding to uniform 

consumption by bacteria, to evaporation and to break up by turbulence. For positive 

(or negative) m the ratio AID increases (or decreases) with depth and gives indication of 

changes to the curvature. Herein we consider three cases: (i) constant decay-diffusivity 

ratio, (ii) decay-diffusivity ratio that decreases with depth, and (iii) decay-diffusivity ratio 

that increases with depth. 

4.5.2 Constant decay-diffusivity ratio 

Radioactive decay or consumption by bacteria (at a rate unaffected by sunlight or turbidity) 

are examples that the temporal decay to diffusivity ratio is constant (that is, m = 0). For 
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this decay-diffusivity ratio model, from equation (4.26) it then follows that 

( 4.28) 

As our study is primarily intended to highlight the effect of decay actions via the decay-

Figure 4.2: Ray paths for constant decay-diffusivity ratio: (a) f3 = 2; (b) f3 = 4; (c) f3 = 8. 

diffusivity ratio, the illustrative decay-diffusivity strengths are taken to be 2, 4 and 8, and 

Figures 4.2 (a), (b) and (c), respectively show their effects for the curvature (4.28). From 
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each of the figures it is straightforward to compute the point where the lowest ray hits 

the bank. It is clearly observed from these figures that the ray paths curve towards the 

deeper water and the lowest ray hits the bank just before 1. For the ray that starts along 

x-direction, decay curves it up. For the ray that starts directly toward the shoreline, the 

point of hit shifts backwards as compared to the conserved case (see Figures 4.2). As h 

tends to zero, h = 1 removes the singularity in curvature, but makes ray separation tend 

to zero. 

4.5.3 Decay-diffusivity ratio that decreases with depth 

The decay can decrease with depth if c(y, t) is a number count of bacteria which are killed 

by sunlight (Gould and Munro, 1981) only in the top few metres of the water column. A 

second example is removal at the bed (feeding by marine micro-organisms, fungi or yeasts). 

A third example is air-water contaminant exchange at the surface. Here we illustrate the 

decay-diffusivity ratio that decreases with depth in three illustrative examples. In the first 

example, the degree of decay of the decay-diffusivity ratio is modelled m = -2. Here the 

curvature from equation (4.26) is given as 

1 h' 
K = JI+71 [Ji+7j - (1 + ,8)tl] h' ( 4.29) 

Figures 4.3 (a), (b) and (c) depict a spectrum of twenty ray paths for the curvature 

(4.29) for each of the decay-diffusivity strengths ,8 = 2,4 and 8, respectively. The power 

law m = -2 gives a transition for shoreline behaviour of the ray paths. It can easily be 

observed from the Figures 4.3 (a), (b) and (c) that the rays hit the shore at approximately 

the same angle and the ray separation remains non-zero. Again, the lowest ray hits the 

shore far before 1 as compared to the conserved case (see Figure 4.1). The curvature of the 

rays significantly depend on the decay-diffusivity strength,8. For each decay strength there 

is a threshold as to when the rays curve. In particular, for ,8 = 2,4 and 8 the ray paths 
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Figure 4.3: Ray paths for decay-diffusivity that decreases with depth, m = -2: (a) {3 = 2; 
(b) {3=4; (c) {3=8. 
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curve up if m exceeds 1 - V3, 1/2 - 1/2.../5, and 1/4 - 1/4V9, respectively. The obvious 

shapes seen in the figures are due to small dropoffs, situations more often encountered when 

the rays are hyperbolic. This fact was emphasized by Musgrave (1990) who suggested that 

in this case the rays are best approximated by perfectly reflecting rays. The shapes of the 

rays confirm this suggestion (see Figures 4.3 (a), (b) and (c)). In this context the caustics 

do not render the ray solution invalid. The direct rays give the dominant contribution to 

the concentration. The reflected rays give an exponentially small contribution, by virture 

of the «I> exponent. The caustics makes the J tend to zero and the representation for the 

reflected contribution is not valid. The true reflected contribution remains exponentially 

small, but not as small as suggested by the ray calculation. 

Another view of the ray crossings observed in the Figures 4.3 are due to the occurrence 

of complicated slowness profiles (symbolically these are 1/ J, 1/h, 1/ D and 1/M) at the 

caustic line x = o. Physically the ray crossings indicate multiple arc lengths occuring at 

the same location. In order to recover multivalued arc length field in the whole domain, 

the ray solutions have to be interpolated. Such considerations are reported in literature 

(Gjoystdal, Vinje, and Iversen, 1993; Kawanada and Asakawa, 1993; Hanyga, Lambare and 

Lucio, 1994). 

We consider next under this subsection two specific examples where m > -2 and m < 

-2. The first of these is when m = -3/2. The resulting curvature to this power-law is 

given by 

1 [J ( h ) 1/2 ( 3f3 ( h ) 1/2) 1 h' K = 1/2 1 + f3 H - 1 + 4 H tl h· 
1+f3(t) 

(4.30) 

Figures 4.4 (a), (b) and (c) demonstrates the decay-diffusivity action for the curvature 

(4.30) with f3 = 2,4 and 8, respectively. Here it is observed that at t = 1 the rays are 

tangent at the shoreline but renders the ray separation zero. Once again, the lowest ray 

hits the shore far before 1 as seen different from the conserved situation. 
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Figure 4.4: Ray paths for decay-diffusivity ratio that decreases with depth, m = -3/2: (a) 
{3=2j (b) {3=4j (c) {3=8. 
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The third illustrative example is when m = -5/2. Here the curvature from this power-

law is given by 

_ 1 [J ( h ) -1/2 ( 5 f3 ( h ) -1/2) 1 h' K - 1 + f3 - - 1 + - - t1 -. 
(1 + f3(t) -1/2 H 4 H h 

(4.31) 

Figures 4.5 (a), (b) and (c) show the ray paths for the curvature (4.31) with decay strengths 

f3 = 2 ,4 and 8, respectively. The ray paths curve toward the shoreline and the lowest ray 

in each of the figures hits the shore far below 1. The decay strength shifts the point of hit 

of the lowest ray towards the origin. The ray separation remains non-zero. 

Comparison of the models of decay-diffusitivity ratio that decreases with depth with 

the conserved case shows generally the expected decrease in contaminant concentration 

in the deeper water, and an overall decrease in the distance downstream for which high 

concentrations persist. 

4.5.4 Decay-diffusivity ratio that increases with depth 

The dissolution of contaminants or break up of clay flocs is most rapid in regions of the 

flow where the turbulence is energetic. Two illustative examples are considered here. In the 

first example, the decay-diffusivity ratio is modelled as proportional to the velocity (that 

is, m = 1/2). The curvature (4.15) is obtained as 

1 [J ( h ) 5/2 ( f3 ( h ) 5/2) 1 h' 
K= 1+f3(tr/2 1+f3 H - 1-"4 H t1 h· ( 4.32) 

As can be seen in Figures 4.6 (a), (b) and (c) the rays and hence the contaminant flux, 

tend to curve towards the deeper water. In particular, the middle ray curves up and the 

lowest ray in each of the figures hits the shore before 1 and the decay ensure its gradual 

shift towards the origin. 

The second example under the decay-diffusivity ratio that increases with depth is when 
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5 1 1 
Longitudinal distance 

Figure 4.5: Ray paths for decay-diffusivity ratio that decreases with depth, m = -5/2: Ca) 
(3=2; Cb) (3=4; (c) (3=8. 
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Figure 4.6: Ray paths for decay-diffusivity ratio that increases with depth, m = 1/2: Ca) 
/3=2; Cb) /3=4; Cc) /3= 8. 
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m = 3/2. This results in the following relation for the curvature: 

1 [J (h)7/2 3f3(h)7/2)]hl 
K= 1+f3(tf/2 1+,8 H -(1-4 H tl h' (4.33) 

Figures 4.7 ( a), (b) and (c) compare the ray paths in the case of equation (4.33) for f3 = 2,4 

and 8. Although there are qualitative changes, the general features for the illustrative 

examples considered under decay-diffusivity ratio that increases with depth remain as before 

for the constant decay-diffusivity ratio model problems. 
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Figure 4.7: Ray paths for decay-diffusivity ratio that increases with depth, m = 3/2: (a) 
f3 = 2; (b) f3 = 4; (c) f3 = 8. 
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4.6 Sensitivity of curvature to decay-difffusivity ratio 

In order to construct the sensitivity analysis of curvature to the decay-diffusivity ratio, we 

make use of the x-component of the unit vector t, tl = cos e, where e is the angle between 

t and some fixed direction in the plane of motion. To this end, the sensitivity analysis of 

the curvature to the decay-difffusivity ratio can be investigated in terms of e and for its 

derivative with respect to f3 for some powers of m in general. In particular, for the linear 

depth profile where h(y) <X Y and by putting y I B = 1 (the point source plume), we obtain 

the curvature: 

(4.34) 

A critical survey of equation (4.15) indicates that the curl gives the average curvature, as 

in rays pointing along or opposite to the gradient of decay-augmented absolute value, and 

the directional variation has tightest left curvature when large decay-augmented absolute 

value is on the left. The following Figures 4.8 (a), (b), (c) and (d) give illustrations of the 

sensitivity of curvature to decay using equation (4.34). Clearly, it can be observed that the 

rays at y I B = 1 point in all possible directions. 

A second illustration of the sensitivity of curvature to decay is the derivative of the 

curvature (4.26) with respect to the strength of the decay-diffusivity ratio. At the point 

source plume, y I B = 1 using equation (4.34) we obtain 

dK 1 [ ] df3 = 2(1 + (3)2 (f3 m + 2) cos e - J1 + f3 . ( 4.35) 

Generally, it can be observed that decay makes curvature negative (shore wards) (see Fig-

ures 4.9 (a), (b), (c) and (d)). In effect, the decay reduces the concentration of the contam-

inant downstream. 

MEID 77 Mebine, 2006 



4.6 Sensitivity of curvature to decay-difffusivity ratio 

(a) 

-3 -2 

(b) 

-1 o a 23 

(c) 
m =-2 

.r+----~--- 1/2 

Figure 4.8: Curvature as a function of ray angle for different powers of m: (a) {3 = Oj (b) 
{3=2j (c) {3=4j (d) {3=8. 
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Figure 4.9: Curvature-strength derivative as a function of ray angle for different powers of 
m: (a) /3=0; (b) /3=2; (c) /3=4; (cl) /3=8. 
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4.7 Caustic problems and other observed phenomena 

The ray tracing algorithm of the curvature was intended to construct continuous and 

smoothly varying rays. However, during the course of testing the algorithm for the model 

problems, we came across situations where it did not work as expected. These situations 

are due to physical phenomena that had been overlooked in the implementation of the 

algorithm. Here two transport mechanisms that are being triggered by some terrain con

figurations are identified: caustics and reflection-refraction processes. 

4.7.1 Caustics 

A caustic is a geometrical object in which at each point the geometrical spreading or ray 

separation J vanishes. In other words, a caustic arises in regions where the rays intersect. 

A caustic creates a singularity which invalidates the computation of the amplitude A, while 

the real contaminant field remains to be finite on the caustics. This means that the ray 

method applied here does not properly describe the real contaminant field in a vicinity of 

caustics. This is precisely what is called caustic problems in ray theory. 

Caustics are most likely to appear over underwater steps or channels. Our current algo

rithm is not capable of handling caustics properly because it cannot prevent the amplitude 

from going to infinity at caustics. Some corrective measures of handling caustics exist in 

literature. In particular, Chao (1971) constructed a uniformized asymptotic representation 

which is valid everywhere. Another approach to the caustic problem, based on the station

ary phase method, was proposed by Lighthill (1978). Other simple approximate treatment 

of detecting and handling the caustic region to some extent are given in Mei (1983) and Be

namou (1997). The method of parabolic approximation is suggested elsewhere in literature 

(Massel, 1989). 
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4.7.2 Reflection-refraction processes 

The relevance of the above solutions is based upon certain assumptions in the shallow water 

environment. These include among others (i) the contaminant concentration gradients 

based upon the ray contours must be very small; (ii) under the assumption of a smoothly 

varying water depth within a characteristic contaminant plume length, any reflection can 

be neglected; (iii) the rays can be defined as a family of curves such that the amplitude at 

given points is conserved between two adjacent rays. There are, however, some difficulties in 

using and interpreting the results based on these assumptions, (for example see Figures 4.3). 

The solutions obtained give rays which are crossing. Any initial contaminant front which 

is concave in the direction of propagation leads to crossed rays and the algebraic amplitude 

factor then disappears to have a singularity. As the contaminant propagates into shallower 

water its concentration gradient becomes steeper because the phase decreases. In order to 

maintain the flux, the amplitude increases at the same time as the contaminant plume length 

shortens, the contaminant eventually becomes too steep for the simple ray approximation 

to handle. 

4.8 Concluding remarks 

In this work extension has been made of the investigation of Smith (1981) to the effects of 

contaminant decay. The ray approximation technique is employed to solve the advection

diffusion equation with spatially variable coefficients, proving itself as a useful analytical

numerical method. The special models considered sharpen insight about how loss mecha

nisms displace the ray paths and the consequent effects upon the curvature. In the absence 

of the decay and depth variations, the curvature of the ray paths is the same as the curvature 

of the current. This has the nice consequence that the central ray from the contaminant 

source continues along the changing flow direction. For the inclusion of the decay, the ori

entation of the curvature of the ray paths depend on accordingly as the spatial decay rate 
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(that is, ratio AI D) decreases or increases with water depth. In general, the curvature of the 

ray paths are effected by spatial non-uniformity in the decay, depth, mixing, flow speed and 

flow direction. The corresponding results for the amplitude and the spatial rate of decay 

along rays together, permit the development of secure general principles for analysing water 

quality in rivers and channels and admit qualitative prediction for the different concentra

tion distributions corresponding to different decay processes, up to the limit imposed by 

the phenomena of caustics and reflection-refraction processes. A consequence of this level 

of accuracy is to devise a new set of investigation of reflection and transmission phenomena 

for which no solutions yet exist in the effects of sharp changes in water depth, flow speed 

or diffusivity including contaminant decay upon diffusion problems. It is hoped that this 

work provides a sound theoretical framework and an implementation testbed where these 

new phenomena can be investigated further.Therefore, the next chapter concerns the inves

tigation of the effects of sharp changes in contaminant decay, water depth, flow speed and 

diffusivity upon diffusion problems in rivers. 

4.9 References 

1. Babich, V. M.: 1956, Ray method of computation of the intensity of wave fronts. 

Doklady Akademii Nauk SSSR, 110 N3, 355 - 357. 

2. Baker, A., Inverarity, R., Charlton, M., and Richmond, S.: 2003, Detecting river 

pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE 

England. Environmental Pollution, 124, 57 - 70. 

3. Benamou, J-D.:1996, Big Ray Tracing: Multivalued Travel Time Field Computation 

Using Viscosity Solutions of the Eikonal Equation. J. Comp. Physics, 128,463 - 474. 

4. Benamou, J-D.:1997, Multivalued Solution and Viscosity Solutions of the Eikonal 

Equation. Tech. Rep. 3281, INRIA Rocquencourt, available at 

http://www.inria.fr/rrrt/rr-3281.html. 

MEID 82 Mebine, 2006 



4.9 References 

5. Cerveny, V., Molotkov, 1. A. and Psencik, I.: 1977, Ray method in seismology. Praha, 

Universita Karlov. 

6. Cerveny, V. and Ravindra, R: 1971, Theory of seismic head waves. University of 

Toronto Press, Toronto. 

7. Chao, Y. Y.: An asymptotic evaluation of the wave field near a smooth caustic. Jour. 

Geoph. Res., 76, 7401 - 7408. 

8. Cohen, J. K. and Lewis, R M.: 1967, A ray method for the asymptotic solution of 

the diffusion equation. J. Inst. Math. Applic., 3, 266 - 290. 

9. Courant, Rand Hilbert, D.: 1962, Methods of Mathematical Physics, vol. 2. Inter

science, New York. 

10. Fyrillas, M. M.: 2000, Advection-dispersion mass transport associated with a non

aqueous-phase liquid pool. J. Fluid Mech., 413, 49 - 63. 

11. Gjoystdal, H., Vinje, V. and Iversen, E.: 1993, Traveltime and amplitude estimation 

using wavefront construction. Geophysics, 58, 1157 - 1166. 

12. Gould, D.J. and Munro, D.: 1981, Relevance of microbial mortality to outfall design. 

Coastal Discharges, Thomas Telford, London, U.K., 45 - 50. 

13. Hanyga, A.: 1984, Seismic Wave Propagation in the Earth. In: Hanyga, A.(Ed.)j 

Physics and Evolution of the Earth's Interior 2. Elsevier, Amsterdam-Tokyo. 

14. Hanyga, A., G. Lambare, G. and Lucio, P.: 1994, 2-D Asymptotic Green's Functions. 

Proceedings of the 64th SEG annual meeting. 

15. Ho, D. T., Schlosser, P. and Caplow, T.: 2002, Determination of longitudinal disper

sion coefficient and net advection in the tidal Hudson River with a large-scale, high 

resolution SF6 tracer release experiment. Environ. Sci. Technol., 36, 3234 - 3241. 

MEID 83 Mebine, 2006 



4.9 References 

16. Iglesias, G. and Negro, V.: 2003, An engineering approach to wave propagation. 

Water and Maritime Engineering, 156, 165 - 174. 

17. Karal, F. C. and Keller, J. B.: 1959, Elastic Wave Propagation in Homogeneous and 

Inhomogeneous Media. J. Acoust. Soc. Am., 31, 694 - 705. 

18. Kawanada, T and Asakawa, E.: 1993, Seismic ray tracing using linear traveltime 

interpolatioon. Geophysical Prospecting, 41, 99 - 111. 

19. Kay, A.:1987, The effect of cross-stream depth variations upon contaminant dispersion 

in a vertically well-mixed current. Estuarine, Coastal and Shelf Science 24, 2, 177 -

204. 

20. Kravtsov, Y. and Orlov, Y.: 1990, Geometrical Optics of Inhomogeneous Media. Spring

Verlag, New York. 

21. Lighthill, J.: 1978, Waves in fluids. Camb. Univ. Press. 

22. Massel, S. R: 1989, Hydrodynamics of Coastal Zones. Elsevier Oceanography series, 

Elsevier Science Publishers B.V. 

23. Mebine, P. and Smith, R : 2006, Effects of contaminant decay on the diffusion centre 

of a river. Environmental Fluid Mechanics, 6, 101 - 114. 

24. Musgrave, F. K.: 1990, A Note on Ray Tracing Mirages. IEEE Computer Graphics 

and Applications, 10(6): 1012. 

25. Nedeau, E. J., Merritt, R. W. and Kaufman, M.G.: 2003, The effect of an industrial 

effiuent on an urban stream benthic community: water vs. habitat quality, Environ

mental Pollution, 123, 1 - 13. 

26. Smith, R: 1970, Asymptotic solutions for high-frequency trapped wave propagation. 

School of Mathematics, University of Bristol, 268, A. 1189, 289 - 324. 

MEID 84 Mebine, 2006 



4.9 References 

27. Smith, R.: 1981, Effect of non-uniform currents and depth variations upon steady 

discharges in shallow water. J. Fluid Mech., 110, 373 - 380. 

28. Smith, R.: 1983, The dependence of shoreline contaminant levels upon the siting of 

an effluent outfall. J. Fluid Mech., 30, 153 - 164. 

29. Sneddon, I.: 1957, Elements of Partial Differential Equations. McGraw-Hill Book 

Company, Inc. 

30. Whitted, T.: 1980, An Improved Illumination Model for Shaded Display. Communi

cations of the ACM, 23, 6, 343 - 349. 

MEID 85 Mebine, 2006 



Chapter 5 

Decay and depth discontinuity 

effects upon steady discharges in 

• rIvers 
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5.1 Introduction 

Downstream of a steady point discharge of a variety of contaminants into a moderately 

sized river, it can take several kilometres travel, or several hours transit, for the overlapping 

plumes to mix across the river (Yotsukura and Cobb, 1972). On such time scales evapora

tive heat loss (Macqueen and Preston, 1983) or bacterial decay (Gould and Munro, 1981) 

can be significant. The losses differ in mechanism and in lateral distribution. Could the 

consequent differences in concentration distributions be substantial enough to amount to 

lateral separation between plumes for contaminants with different decay mechanisms while 

a significant fraction of the contaminant remains in the flow? 

In real rivers or coastal waters, properties (such as depth, velocity, mixing and decay) 

vary continuously. For computational modelling or for developing understanding, those 

properties are often considered to be piecewise constant with abrupt jumps. On a sufficiently 

small length scale any curve of discontinuity can be regarded as being locally straight. Kay 

(1987) gave exact solutions for non-decaying solutes from a point source in an idealised 

river where the depth discontinuity is aligned with the flow (see Figure 5.1). The aim of 

the present work is to illuminate the effects of a jump in decay, by means of an appropriate 

modification to Kay's (1987) ray-tracing interpretation of his generalised Gaussian solutions. 

Figure 5.1: Steady source in flow along a depth discontinuity with a jump in decay. 

Instead of ray reflection and refraction depending just on the depth ratio r (Kay, 1987), 
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5.2 Advection-diffusion equation and flux matching 

for each decaying contaminant there is a second non-dimensional parameter M proportional 

to the change across the jump in the longitudinal decay (quotient of temporal decay rate 

and flow speed). Appropriate scaling permits the variation of the ray patterns with rand 

M to be collapsed into just two cases depending upon whether the discharge takes place at 

the side of the jump with greater or lesser longitudinal decay for the particular contaminant. 

Likewise, there are just two alternatives for the scaled ray amplitudes and phases. 

The variety of contaminant plumes stems from the reconstruction of the concentration 

from the two alternative sets ofray ingredients. A position factor P (proportional to IMI~ 

and to the distance from the source to the jump) quantifies both the tendency for plumes to 

migrate to the respective low-decay side of the jump and the amount of decay experienced 

in that migration. For small P there is little migration and for large P there is little 

contaminant remaining in the flow after the migration. The interesting regime is P of order 

unity. It is demonstrated that for P = 1 there can be lateral separation between the two 

plumes associated with an anti-symmetric pair of contaminants with 1 : 2 and 2 : 1 changes 

of longitudinal decay across the jump, while a significant fraction of the contaminant remains 

in the flow. 

5.2 Advection-diffusion equation and flux matching 

As a starting point for our mathematical analysis, we consider the steady-state horizontal 

spreading of the plume for one of the contaminants in a vertically well-mixed current with 

the loss modelled as a first order process. In the region i of constant depth hi, decay rate 

Ai, longitudinal flow Ui, and transverse diffusivity D i , this corresponds to the advection-

diffusion-reaction equation: 

(5.1) 
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5.3 Exponential solutions 

Here Ci(X, y) is the contaminant concentration, x is along-flow distance and y is cross-flow 

distance. It is the long-thin nature of steady contaminant plumes that gives predominance 

to transverse diffusivity and permits a scalar rather than tensor characterisation of mixing. 

Far downstream, as the plume widens and transverse diffusion reduces in importance, the 

effective longitudinal rate of decay in each region is Ai/Ui. 

For brevity, this work restricts attention to the case of two regions: i = 1 denotes the 

region Y < 0 which contains a contaminant point source at (0, -Yo) and i = 2 denotes the 

region y > O. The transport between those regions is modelled through boundary conditions 

which ensure matching both of concentrations and of diffusive fluxes across y = 0: 

(5.2) 

5.3 Exponential solutions 

For the piecewise constant pollution problem as sketched in Figure 5.1, we shall represent the 

concentration as a superposition of generalised Gaussian exponential solutions (Cohen and 

Lewis, 1967; Smith, 1981; Kay, 1987) with incident, reflected and transmitted contributions: 

(1 + R)AT exp( -rpT) for y > o. 

(5.3a) 

(5.3b) 

The long thin nature of the plumes makes the exponential phases vary rapidly by comparison 

to the spatial rate of change of the amplitudes. The discharge originates from (0, -yo) with 

zero incident phase (/>J(O, -yo) = O. Along the discontinuity, there is matching of all three 

phases upstream of any limit point XL (see §5.6) 

rp I = <PR = rpT for x < XL along y = 0 . (5.4) 
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5.3 Exponential solutions 

It is convenient to impose similar matching for the amplitudes: 

AI = AR = AT for x < XL along y = o. (5.5) 

The reflection coefficient R is used to quantify immediate changes across the discontinuity. 

The transmission coefficient is (1 + R). Absence of transmission implies R = -l. 

For the incident contribution, we seek to split a single equation (5.1) into a pair of 

equations for <PI(X, y) and AI(x, y). To do this we follow Smith (1981) and assume that 

flow reversal ±Ui has unchanged AI but phase reversal ±<pI. Writing 

8<PI 8<PI 
ax = kI(X, y), ay = EI(X, y), (5.6) 

the non sign-changing incident terms in equation (5.1) give 

(5.7) 

The ray approximation, of neglecting the right hand side term in equation (5.7), yields an 

algebraic dispersion relation between kI' El. Phase matching (5.4) has k-matching counter-

parts 

kI=kR=kT for X<XL along y=O. (5.8) 

The ± terms from equation (5.1) give a transport equation for the incident amplitude 

(5.9) 

There are similar reflected and transmitted dispersion relations and transport equations. 

Cohen and Lewis (1967, §2.2) point out that the ray representation (5.3a,b) can be 

interpreted as a steepest descent approximation to an integral representation for the con-
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5.4 Incident rays 

centration. 

5.4 Incident rays 

The formal derivatives of the dispersion relation (5.7) with respect to (kI' fI) defines the 

ray or bi-characteristic direction along which the phase 4>1 is directly computable (Sneddon, 

1957). Normalisation yields the directional vectors: 

tI= uIx+2DI f I y , 
JUI 2 + 4DI2 fI2 

(5.10) 

where x and Y are unit vectors along the x and Y axis, respectively. The constancy of AI, 

UI, DI within region i = 1 implies that moving along a ray keeps kI, fI unchanged, the rays 

are straight lines and the change in phase along the ray conforms with the expression 

4>1 = kIX + flY + constant. 

y 

Yo ••• ~mage Source 
" . 

........... 
'. 

'" 

Regioni:2 

' . 
................ 

~D~i~sc~on~ti~nu~i~.-__ ~~~~~~ll-____ ~X 
(XvlV,,) !!.T •• 
~,. 

Virtual Source ... 
\j,,,..-

...... tr Incident 

-Yo Source 

(5.11) 

Figure 5.2: The variety of rays (continuous and dashed) either side of a discontinuity. 

If (h denotes the incident angle between the incident ray and the x-axis (see Figure 5.2), 
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5.4 Incident rays 

then from the x and y components equation (5.10) we infer that 

(5.12a) 

(5.12b) 

The larger the slope 7] of the rays the larger the lateral decay rate £]. Ray trigonometry 

gives y = X7] - Yo. In incident ray co-ordinates (x, 7]) or Cartesian co-ordinates (x, y), the 

incident phase (5.11) has the alternative representations 

(5.13) 

corresponding to a decaying Gaussian plume from the source (O, -Yo). 

In the ray co-ordinates (x, TJ) the transport equation (5.9) becomes 

(5.14) 

For a point source at (O, -Yo) with volume flux q, the solution for the incident amplitude is 

the standard Gaussian amplitude 

(5.15) 

The Cartesian counterpart A]{x, y) has the same formula, with zero second y-derivative. 

Thus, no error was made in neglecting the right hand side of equation (5.7). The incident 

plume contribution to the solution (5.3a) is exact, rather than approximate. 

MEID 92 Mebine, 2006 



5.5 Reflected rays 

5.5 Reflected rays 

By analogy to equation (5.12b), for reflected rays coming at downward angle ()R > 0, we 

have 

\ 2 2 
, kR 

-__ "I _ uITR with TR = tan ()R . 
UI 4DI 

(5.16) 

Ray trigonometry gives y = Yo - X TR. Matching kR = k[ along the discontinuity implies 

mirror-like reflection TR = T[ (Kay, 1987). The incident and reflected rays through a point 

(x, y) below the discontinuity have tangents related by 

2y 
TR =T[ --. 

X 
(5.17) 

The solution for the reflected phase has the ray (x, TR) or Cartesian (x, y) equivalents 

(5.18) 

corresponding to a decaying Gaussian plume from the image source position (0, YO). 

In reflected ray co-ordinates (x, TR) the reflected transport equation becomes 

~(RAR)+RAR=O for yo <x. 
ox 2x TR -

(5.19) 

1 
The product RAR has x-2" decay. If the reflection coefficient R(x, TR) does not vary along 

a ray (see §5.10), then at the discontinuity x = YO/TR, matching AR = A[ leads to the 

solution 

(5.20) 

The Cartesian counterpart AR(x, y) is unchanged. For the reflected plume contribution to 

the solution (5.3a) to be exact (for example, Kay, 1987), it suffices that R( TR) be linear in 
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5.6 Transmitted rays and decay-jump parameter M 

5.6 Transmitted rays and decay-jump parameter M 

If eT denotes the transmitted angle into y> 0, then the counterpart to equation (5.12b) is 

(5.21) 

Again, kT, eT are constant along a ray, the rays are straight and the change in phase along 

the ray conforms with the expression 

if>T = kTX + £TY + constant . (5.22) 

Matching kT = kI along the discontinuity Y = 0 gives the refraction equation 

(5.23) 

We introduce two parameters M and A to classify respectively, the jump and uniformity 

in longitudinal decay: 

M= 4DI (A2 _ AI) , 
UI U2 UI 

Al = uIIMI {A + H( -M)} , 
UI 4DI 

A = min(A2/u2, AI/uI) > 0, 
IA2/u 2 - AI/uII -

A2 = uIIMI {A+H(M)} , 
U2 4DI 

(5.24a) 

(5.24b) 

where the pair of Heaviside functions H( -M) and H(M) switch 0 or 1 depending upon 

the sign of M. If the longitudinal decay is greater in the upper region i = 2, then the 

jump parameter M is positive. For the illustrative case of a factor of two variation in the 

longitudinal decay rates Ai/ui, the uniformity parameter has the value A = 1. 

The refraction equation (5.23) can be used to express TT in terms of TI: 

(5.25) 
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5.6 Transmitted rays and decay-jump parameter M 

There is an implicit restriction to T[ > 0 for positive M and to 

x < x - Yo IMll/2 <_ T[ for transmission with M < 0 . 
- L - IMll/2' 

(5.26) 

Downstream of XL, the limiting ray for M < 0 transmits along the discontinuity with 

TT = O. It is convenient to use T[ > 0, rather than TT, to label the transmitted rays: 

(5.27) 

The virtual source (xv, YV) corresponds to where adjacent transmitted rays meet, that 

is, the mathematical solution of equation (5.27) by setting its T[-derivative to zero. In terms 

of T[, a parametric representation for the virtual source is 

yoM 
Xv = --3-' 

T[ 
(5.28) 

For M positive (negative), as T[ decreases from infinity, the virtual source moves upstream 

(downstream) and further from (closer to) the discontinuity. The position of the virtual 

source in Figure 5.2 corresponds to negative M. 

In (x, T[) co-ordinates, the phase along a transmitted ray can be written 

A. AlX UlTJX MUl ( yo) £ yo < x. 'l'T=-+--+-- x-- or 
Ul 4Dl 2Dl T[ 71 -

(5.29) 

For M < 0, the limiting ray along the discontinuity has phase 

(5.30) 

In (x, T[) co-ordinates the transmitted transport equation becomes 

~((l+R)AT)+ (l+R)AT =0 for yo <x. 
ox 2 (x - xv) 71 -

(5.31) 
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5.7 Reduction to two scaled ray patterns 

1 
Along rays, there is (x - xv) - 2 decay. If the reflection coefficient R( x, TI) does not vary 

along a ray (see §5.10) then matching AT = AI at 7[ = Yo/x leads to the solution 

(5.32) 

In (x,y) co-ordinates the transmitted amplitude has y-dependence via 7[. It is only for 

M = 0 (Kay, 1987) that the transmitted contribution to the solution (5.3b) is exact. For 

M < 0 the limiting transmitted ray along the discontinuity has zero amplitude. 

Alas, rapid variations in the transmitted amplitude (5.32) and reflection coefficient (5.44) 

render the ray approximation (5.3a,b) inapplicable near (XL'O). Downstream, the ray solu

tion exhibits a abrupt jump in concentration across the reflected ray through (XL, 0), akin 

to the shortcoming of the abrupt model of a shadow boundary in optics (Peatross and Ware, 

2004). The present work does not investigate whether, as in higher-order optics, a suitable 

integral superposition over a secondary fan of rays might represent the smooth transition, 

that is, a ray description for leakage of concentration back from region i = 2 into region 

i = 1. 

5.7 Red uction to two scaled ray patterns 

To compress the variety of ray patterns, we scale the incident tangent TI = Td1M11/2 and 

introduce non-dimensional scaled distances : 

y = JL for y < 0, 
Yo 

1 

Y (D1U2)2 y=- -D for y>O. 
yo 2 Ul 

(5.33) 

The disparity in y-scalings at the two sides of the discontinuity eliminates the M = 0 

ray refraction investigated by Kay (1987), leaving just the decay contribution to the ray 

bending. The Cartesian (X, Y) formulas for scaled incident, reflected and transmitted rays 
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5.7 Reduction to two scaled ray patterns 

(indexed with the scaled incident tangent TJ = TR at the discontinuity) become: 

(5.34) 

;..,I~ 

~ 
-l~~--~~~~~----~----~-----

-2 

;..,I~ 

~ 
-1~~--~~~~~----~----~-----

-2 

-3 

Figure 5.3: There are only two possible scaled ray patterns: a) M < 0 and b) M> o. 

Figure 5.3a shows the scaled ray pattern at intervals of 0.4 in TJ or TR with lower decay 

in Y > O. The transmitted rays are restricted to TJ > 1 and are at a lower angle than the 

incident rays. For 0 < TJ < 1 the incident rays reflect but do not transmit. 
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5.8 Decay-adjusted phases and position factor P 

Figure 5.3b shows the scaled ray pattern with greater decay in Y > O. The transmitted 

rays are at a higher angle than the incident rays. 

The incident and reflected rays through a point (X, Y) below the discontinuity have 

tangents related by 

(5.35) 

For example, there is intersection between the rays TI = -0.8 and TR = 1.6 at the location 

X = 2.5, Y = -3 along the bottom of Figures 5.3a, b. 

5.8 Decay-adjusted phases and position factor P 

Far downstream, most of the remaining contaminant will be at the side of the discontinuity 

with lower longitudinal decay. For the incident phase, we extract that lower decay: 

with 

with similar reflected and transmitted decay adjustments. P is a position factor proportional 

to the lateral distance Yo between the discharge and the discontinuity. The zero-decay work 

of Kay (1987) corresponds to P and X tending to zero at the same IM11/2 rate. 

Diffusive mixing over the lateral distance Yo between the source to the discontinuity, can 

be estimated as requiring a longitudinal distance ~Y5ud Dl and can be associated with the 

standard Gaussian e-folding of~. On that longitudinal distance, the difference in e-foldings 

either side of the discontinuity can be estimated ~ p2. Comparability between mixing and 

the variability of non-uniform decay can be characterised by P = 1. 

Larger P gives more emphasis to <I> I and to migration of the contaminant plume to the 

region of lower longitudinal decay. However, larger P also gives more mean e-folding loss 

i p2 A in that migration, possibly making the concentrations too small for the structure to 
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5.8 Decay-adjusted phases and position factor P 

be of interest. For small P there is neither much migration nor much loss and the zero-decay 

work of Kay (1987) would be applicable. The interesting regime is P of order unity. 

The M, A, P three-parameter continuum for cPI(X, y) is collapsed to just two cases for 

<PI (X, Y). In (X, T) co-ordinates, the decay-adjusted phases for M < 0 are: 

(5.37a) 

There is the requisite matching of phases along X TI = 1 where TI = TR. For M > 0, the 

different decay adjustment gives the different phase expressions 

(5.37b) 

For M < 0, Figure 5.4a gives composite contours at 1/4 intervals of the decay-adjusted 

incident and transmitted phase. The matching of phases across the line of discontinuity 

is restricted to X < 1. In region i = 1 with Y < 0, the contours are exactly circular 

and mutually tangential at the source (0, -1). The decay-adjusted reflected phase contours 

correspond to an upwards displacement, from source to image source, of the exactly circular 

contours of incident phase. Far downstream (X > 2) in Figure 5.4a the lowest values of the 

decay-adjusted phase and highest concentration occur in the upper region, as a consequence 

of the smaller longitudinal decay. 

For the other case M > 0 of larger longitudinal decay in region i = 2, Figure 5.4b 

gives contours of the decay-adjusted phase. There is matching of phases all along the 

line of discontinuity. In region i = 1 the phase contours are exact parabolas through the 

source (0, -1). Again, the contours of the decay adjusted reflected phase correspond to an 

upwards displacement, from source to image source, of the contours of incident phase. Far 

downstream in Figure 5.4b the contours in region i = 2 become lines of constant y, that 

is, the route for arriving contaminant is principally carried along by flow in the low-decay 
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5.8 Decay-adjusted phases and position factor P 

Figure 5.4: The two decay-adjusted phase patterns: a) M < 0 and b) M> O. 
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5.9 Transmitted amplitude 

region followed by a shorter span of transverse diffusion into the high-decay region. 

5.9 Transmitted amplitude 

To scale the discharge strength we define 

1 

Q 
= qlMI:r 

1 , 

h (2 Dl UIYO) "2 
(5.38) 

with the sequels 

1 

AT = Q {1 + sign(M)/T¥P 1 

(27r [X + sign(M)/TrD"2 
(5.39) 

Only the transmitted amplitude AT exhibits Y-dependence and contours that deviate from 

being perpendicular to the discontinuity. Figures 5.5a, b show the AT contours, correspond-

ing to unit scaled strength Q = 1. For M < 0 (Figure 5.5a) there is rapid variation near the 

limit point (1,0). Further downstream, the contours give the appearance of pivoting about 

the limit point and the transmitted amplitude tends to zero as the line of discontinuity is 

approached. For M > 0 (Figure 5.5b) the contour shapes tilt gradually more as X increases. 

In the non-plotted region Y < 0, the AI = AR contours are straight down extensions from 

where the AT contours intersect Y = O. 

2 3 4 

Figure 5.5: The two transmitted amplitude patterns: a) M < 0 and b) M> O. 
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5.10 Reflection coefficient 

5.10 Reflection coefficient 

The R-structure of the ansatz (5.3a,b) is designed to guarantee concentration matching 

Cl = C2. For the flux matching (5.2), we neglect y-derivatives of AI, RAR , (1 + R)AT and 

solve for the reflection coefficient 

R= hIDI.eI-h2D2.eT. 

hI DI.eI + h2 D 2 .eT 
(5.40) 

Such coefficients are extensively used in the contexts of water waves (Mei, 1983; Massel, 

1989) and optics (Peatross and Ware, 2004). The expressions (5.12b, 5.21) permit the 

reflection coefficient to be expressed in terms of the ray tangents at the discontinuity: 

R = hI UITJ - h 2 U2TT . 

hI UITI + h2 U2TT 
(5.41) 

This expression for R only depends on the transition and does not vary along a ray. 

If r denotes the depth ratio across the discontinuity, then the turbulent open-channel 

flow scalings noted by Elder (1959) and used by Kay (1987) link the flow quantities in region 

i = 2 to those in i = 1: 

In particular, the non-dimensional scaled lateral distances (5.33) are 

y = JL for y < 0 , 
Yo 

Y=+ for y>O. 
r'iyo 

With the above scalings, the reflection coefficient (5.41) becomes 
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5.10 Reflection coefficient 

Since R only depends on the transition, in evaluating the transmission coefficient 1 + R for 

the transmitted rays, it suffices to replace TR by T[ or to replace TR by T[. Negative M 

increases the reflection coefficient, while positive M decreases the reflection coefficient. The 

M = 0 limit gives the result obtained by Kay (1987, equation 18a): 

1 - r2 
R= 2 for M = O. 

1 + r 
(5.45) 
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Figure 5.6: Reflection coefficient as function of reflection point for three depth ratios. 

For compatibility with the three pairs of previous figures, Figure 5.6 plots the reflection 

coefficient for both signs of M as a function of the ray intersection point X = IIT[ for 

depth ratios r = !, 1, 2. At small non-dimensional distances X downstream of the source, 

the reflection coefficient has the constant value as given by the Kay (1987) result (5.45). 

Moving downstream for M < 0, there is a rise in R as more of the arriving contaminant is 

transmitted, escalating to R = 1 at the limit point X = 1, beyond which the transmission 

ceases and the reflection coefficient has been extended as R = -1. By contrast, for M > 0 

the reflection coefficient reduces smoothly with asymptote R = -1. 
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5.11 Concentrations 

5.11 Concentrations 

The two alternative scaled rays, phases, amplitudes and reflection coefficients plotted in 

Figures 5.3-5.6, give all the ingredients needed to construct the ray approximation (5.3a,b) 

to the concentrations. 

As the first pair of illustrative examples, we consider anti-symmetric pair of contami

nants with 2 : 1 or 1 : 2 changes of longitudinal decay across the jump. For opposite signs 

of M the two contaminants share the dimensionless specification 

A = 1, r = 0.5, Q = 1 , P = 1 . (5.46) 

Thus, region i = 2 has water depth half that of region i = 1, the two contaminants have 

equal rates of discharge, and the position factor is taken to be unity. In X units, the 

e-folding distance in the lower decay region is two and the figures only extend to two e

foldings. Figures 5.7a, b show the ray approximation (5.3) to the concentration contours. 

By X = 0.5 the contours have already begun to differ, for example, the extent to which the 

0.2 contour crosses the discontinuity line Y = O. 

In Figure 5.7a, by X = 1 (one e-folding in region i = 1) there is a clear separation into 

a more rapidly-decaying plume in region i = 1 and a less rapidly-decaying plume in region 

i = 2. The erroneously sharp jump in concentration across the reflected ray through the 

limit point (1,0) is revealed from the displacements in the concentration contours either 

side of the -450 line down to the bottom right-hand corner of Figure 5.7a. It is evident 

that the ray approximation fails to include a contribution of magnitude 0.02 that switches 

on at the limit point. 

In Figure 5.7b only a single plume is evident, that is principally in the less longitudinal

decay region i = 1. In region i = 2 the concentrations for the anti-symmetric pair of contam

inants are of similar magnitudes. However, in region i = 1 the disparity in concentrations 

becomes marked as X increases. 
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5.11 Concentrations 
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Figure 5.7: Ray approximations to concentration for half-depth far side. 
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5.11 Concentrations 
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Figure 5.8: Ray approximation to concentration for double-depth far side. 
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5.12 Concluding remarks 

For the second pair of illustrative examples, we change the depth ratio to r = 2, that is, 

for example, region i = 2 has water depth twice that of region i = 1. The other parameters 

are unchanged: 

A=l, r=2, Q -1 - , P=1. (5.47) 

Figures 5.8a, b show the ray approximation (5.3) to the concentration contours. Similarity 

to the first pair of examples is evident. Strict equality is restricted to the triangular sector, 

where the ray approximation fails, between the discontinuity and the -450 line down to the 

bottom right-hand corner of Figures 5.7a and 5.8a. For fixed properties in region i = 1, the 

water depth in region i = 2 for Figure 5.8 is four times that for Figure 5.7. Consequently, 

region i = 2 in Figure 5.8 has approximately a factor of four concentration reduction as 

compared to Figure 5.7 whatever the side of less longitudinal decay. Again, the disparity in 

concentrations between the anti-symmetric pair of contaminants is most marked in region 

i = 2. 

In translating the collapsed variety of (X, Y) ray solutions into the greater variety of 

(x, y) physical quantities, it needs to be recalled that for each contaminant the longitudinal 

X scaling (5.33) depends upon the \M\ value for that contaminant. Also, at the far side of 

the jump there is r-dependent Y scaling (5.43). For fixed properties in region i = 1, the 

physical y range into region i = 2 for Figure 5.8 is twice the physical y-range for Figure 5.7. 

5.12 Concluding remarks 

A mathematical topic requiring further study is the inadequacy of the ray approximation 

across the reflected ray through the limit point (XL, 0) for M < O. The derivatives of the 

reflection coefficient and of the transmitted amplitude become singular at the limit point. 

The jump from reflection coefficient R = 1 at the left of the dividing reflected ray, to 

R = -1 to the right, gives a shadow-like drop in concentration. Also, the ray solution gives 
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5.13 References 

zero concentration along both sides of the discontinuity downstream of the limit point. A 

possible way to resolve the inadequacy would be first to seek an integral representation for 

the exact solution using a Laplace transform in x, then to investigate why steepest descent 

(Cohen and Lewis, 1967) ceases to be accurate, and finally to seek a tractable improvement 

upon steepest descent. The desired outcome would be an addition to the ray solution 

that yields rapid but smooth drop in concentration across the dividing reflected ray, with 

non-zero concentrations smoothly matched across the discontinuity downstream of the limit 

point. 

One revelation from the present work is that in the ray approximation there are just 

two scaled ray pattern (phase and amplitude), depending upon which side of the jump has 

less longitudinal decay. Another revelation is that the position factor P quantifies both the 

migration of contaminant to the side of less longitudinal decay and the amount of decay 

experienced in that migration. It is for P of order unity that migration and concentrations 

are both large enough to be important. Two illustrative examples revealed that for a pair 

contaminants with P = 1 and interchanged decay rates either side of a depth jump, plume 

separation to the respective low-decay sides takes place while a significant fraction of both 

contaminants remain in the flow. 
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Chapter 6 

Computational scheme for steady 

discharges in rivers 
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6.1 Introduction 

6.1 Introduction 

The possibility of a contaminant being accidentally or intentionally spilled upstream from 

a water supply is a constant concern to those diverting and using water from streams 

and rivers (Jobson, 1997). The effects of variability of depth, flow, mixing, decay, and 

irregular boundaries or boundary conditions in rivers pose problems for the construction of 

accurate modelling techniques and prediction of mixing processes. Except for some special 

initial and boundary conditions, the partial differential equations governing the very many 

mathematical models of the physical, chemical and biological phenomena are not easily 

amenable to closed form analytical solutions. Instead, to investigate the predictions of 

these models it is often necessary to approximate the solutions numerically. Examples 

that use the finite-difference method are presented in this work. Several mathematical 

models, which exhibit decay of pollutants, are present in literature (Nassehi and Bikangaga, 

1993; Bikangaga and Nassehi, 1995; Smith, 2000; Yoo et al., 2003; Araujo et al., 2005). 

However, numerical investigations of the effects of the variability of decay with depth in 

the advection-diffusion of pollutants has not been attempted. Thus, the overall goal of 

this work is intended to provide efficient numerical methods for the solution of advection

diffusion-reaction equations that include the effects of the variability of decay together with 

the complexity of the changed coefficients and of the geometry in river systems. 

6.2 Background and model equation 

A significant proportion of the contaminant sources introduced into waterways approximate 

to steady state conditions, such as cooling water returns or sewage treatment outfalls. Un

der steady state conditions, modelling transverse mixing is critical in assessing the impacts 

of pollutants, or establishing discharge/loading levels such that water quality criteria are 

complied with (Yotsukura and Cobb, 1972; Boxall, Guymer and Marion, 2003). Longitu

dinal mixing becomes less significant under these conditions. Fischer (1969) showed that 
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6.2 Background and model equation 

there is an inverse relationship between the transverse and longitudinal mixing. Transverse 

mixing is important with steady state sources in the near and mid-field prior to complete 

cross-sectional mixing, and to quantify longitudinal mixing in the far-field. Recent devel-

opments of this theory and models are summarized by Rutherford (1994). For a channel 

that is much wider than it is deep, the timescale for cross-sectional mixing is much greater 

than that for vertical mixing. Thus, in a study of the even slower process of longitudinal 

dispersion, the contaminant can be regarded as being transversely well-mixed. Studies of 

steady contaminant plumes in natural channels has shown to have a large length to width 

ratio, which implies that transverse turbulent diffusion is more important than longitudinal 

shear dispersion (Elder, 1959). 

Hence, as the starting point of the mathematical analysis, the depth-averaged model 

advection-diffusion-reaction equation, 

with 

ac 
h /'i, - = 0 on y = a, b, for all x, ay 

(6.1) 

(6.2) 

will form the basis of application for the numerical analysis. Here x and y are longitudinal 

and transverse coordinates, c( x , y) is the contaminant concentration between the shorelines 

y = a, b in water of depth h(y), vertically-averaged steady velocity u(y), vertically-averaged 

effective transverse diffusivity /'i,(Y). Macqueen and Preston (1983) and Gould and Munro 

(1981) noted that even within a single application, the magnitudes of the decay rate .-\(y) 

(evaporative heat loss or bacterial decay), the flow velocity and the diffusivity can vary 

significantly. For the predictions of the effectiveness of pollutant dispersal in rivers in order 

to enhance water-quality the process can involve flows ranging from droughts to floods, 

and biochemical constituents with widely differing decay rates. Therefore, the intended 
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numerical method is to achieve high-order accuracy with stability over a wide (h,.x, u,,..;) 

range of parameters. 

6.3 Flow profiles 

In order to illustrate the validity of the shallow water assumption (that is, all horizontal 

length scales are much greater than the water depth), the flow profiles (the power-law ve

locity and diffusivity appropriate to turbulent flow) for linearly sloping straight channels as 

provided by Elder (1959) is presented as a single severe test case for the variable coefficients 

(see Figure 6.1(a)): 

(6.3) 

For the variability of decay, use is made of depth-dependent power-law models (Mebine and 

Smith, 2006) (see Figure 6.1(b)): 

(6.4) 

The capital letters H, U, K and A denote the depth, flow, transverse mixing and contam-

inant decay at some reference position in the channel. The parameter m is a number that 

quantifies the degree of contaminant decay. The chosen scalings (6.3) are not unduly com

plicated, but are nevertheless of interest in their own rights in linearly sloping beach, and 

they are used to illustrate the problem of contaminant dispersion in a vertically well-mixed 

channel of transverse cross-section where the presence of contaminant decay (6.4) in river 

flows play a vital role. It is pertinent to note here that the variables c, y and x in the 

equations (6.1) and (6.2) have their appropriate scales. 
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Figure 6.1: (a) Variable depth, velocity and diffusivity profiles; (b) Decay profiles for (i) 
constant decay m = 0, (ii) decay that decreases with depth m = -1/2, (iii) decay that 
increases with depth more than the velocity m = 3/2. 
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6.4 Finite-difference scheme 

6.4 Finite-difference scheme 

In order to discuss the prediction of pollutant dispersion phenomena from steady discharges, 

the finite difference technique would be applied to solve equation (6.1) numerically together 

with the specified boundary conditions (6.2). The transverse spatial grid will be indexed 

by the subscript j, while the superscript n indexes the longitudinal spatial grid. If at the 

nth longitudinal spatial level the transverse grid points are the locations Yj, then the cor

responding numerical approximations to the concentration are denoted Cf. Richtmyer and 

Morton (1967) pointed out that, if on advancing to the (n + l)th longitudinal spatial-step, 

only three successive spatial mesh points are used in the local approximation scheme, then 

the tri-diagonal matrices linking the numerical approximations to the concentrations C'j!l, 

Cj+!, CrN are straightforward to solve. Bowen and Smith (2005) introduced maximal 

accuracy three-point approximations to e, aye, a~e at the computational module, that is, 

Yj = !(Yj-l + Yj + YHI) - the centroid: 

(6.5a) 

(6.5b) 

(6.5c) 
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6.4 Finite-difference scheme 

The use of the centroid as the reference point makes the numerical scheme particularly neat 

(and easy to program). The equations (6.5) are connected together through the relation

ships: 

(6.6a) 

(6.6b) 

The accuracy of the three-point approximations is studied in detail by Bowen and Smith 

(2005). 

A combined scheme of equations (6.5) and the weighted average or 0- method (Mor

ton and Mayers, 1994) has been employed. The advection term has been discretised using 

forward difference technique but for the decay and the diffusion terms the three-point ap-

proximations (6.5) are appropriately applied. Therefore, equation(6.1) becomes 

Dglh AI (0 Dglcr 1 J + (1 - O)DgICjJ) + Dglh uJ (Cj+:: Cj ) 

-Dnh~] (0 Df[Cj+1] + (1- O)DnCj]) 

-Dg[h~] (0 D~[Cj+1] + (1- O)D~[Cj]) = O. (6.7) 

The resulting system of equations from equation(6.7) is tri-diagonalj equation number 

j in the system only involves unknowns with numbers j - 1,j and j + 1, so that the matrix 

of the system has non-zero elements only on the diagonal and in the positions immediately 

to the left and to the right of the diagonal. The Thomas algorithm is therefore employed 

to solve the system most efficiently. For constant coefficients, the scheme has the desirable 

attributes of being unconditionally stable, second-order accurate, economical to formulate, 

cost minimal computer time and applicable to both regular and irregular grid points. The 
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6.5 Regular grid spacing with constant coefficients 

parameter controlling the degree of implicitness, (J, is such that 0 ~ (J ~ 1; (J = 0 gives 

the explicit scheme, (J = ! the Crank-Nicolson (1947) scheme and (J = 1 the fully implicit 

scheme. 

Specific examples are presented to illustrate and demonstrate the proposed finite differ-

ence scheme. Recognising that a real test of any newly proposed numerical method lies in 

the ability to handle efficiently, robustly and accurately solute transport in non-uniform and 

truly variable coefficients, the scheme is applied to simulate solute transport in turbulent 

flow with variable contaminant decay with respect to the depth of the river. The scheme is, 

therefore, applied to both constant and non-constant coefficients with regular grid spacings. 

The Fourier analysis of error and the plots of error are equally discussed in the following 

sections. 

6.5 Regular grid spacing with constant coefficients 

A direct method for verifying the accuracy of a numerical scheme is to compare the pre-

dictions with non-trivial exact solutions. Therefore, the numerical test considered herein 

apparently utilises a regular grid spacing with constant coefficients. Here, C( n, j) is the 

value of C at the mesh point (n, j) : x = n.6.x and y = j .6.y, .6.x and .6.y are grid spac

ings along the x- and y-axis, respectively. The D notations of (6.5) of the three-point 

approximation now reduces to 

MEID 

-Cj_1 + Cj+! 
2.6.y 

CTf 1 - 2CTf + CTf+1 J- J J 

(.6.y)2 

117 

(6.8a) 

(6.8b) 

(6.8c) 
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6.5 Regular grid spacing with constant coefficients 

The Crank-Nicolson and Crandall (1955) implicit schemes are employed for the test cases. 

The later scheme uses the choice of () = ! - 1~ v' where v = (~~)2 is a dimensionless diffusion 

parameter. The Crandall scheme is often known as an optimum scheme (Smith, 1999). The 

application ofthe equations (6.8) yields the following discrete approximation to (6.1): 

-() ver:+1 + (u + 2 () v + >. () ~x)C~+1 - () v C~+1 )-1 ) )+1 

= (1 - ()) v C]_1 + [u - 2 (1 - ()) v - >. (1 - (})~xlC] + (1 - ()) v C]+1' (6.9) 

Giving j the values 1 , 2 , ... , (J -1), a system of J - 1 linear equations in the J -1 unknowns 

cy+1 ,j = 1 ,2, ... , J -1 are obtained. The Thomas algorithm is applied to solve the system 

of equations (6.9) efficiently. 

A separation-of-variables exact solution for the constant coefficients of the equation (6.1) 

together with (6.2) is given by 

(6.10) 

Any other solution of the advection-diffusion-reaction equation (6.1) can be regarded as 

being built from a superposition of the solution (6.10). In general, the superposition will 

tend to reduce errors. 

The benefits of an accurate numerical scheme could be lost with the use of an inaccu-

rate boundary condition. In order to ensure that to a high order the exact solution fits 

the discrete boundary condition, the following boundary condition generating function is 

employed 

9 = exp( _k2 ~ ~x) - P exp( _k2 ~ ~x) cos (k ~y) + Qw - R cos (k ~y), (6.11) 

where k = 7r/b and P, Qw and R are weights. Optimal selection of the weights as ~x and 
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6.5 Regular grid spacing with constant coefficients 

t1y tend to zero is 

6 (t1y)2 
P = 1 - 6 k t1x + 5 (t1y)2 , (6.12a) 

10 (t1y)2 
Qw = 1- 6kt1x + 5 (t1y)2 ' (6.12b) 

R = 1- 4 (t1y)2 . 
6 k t1x + 5 (t1y)2 

(6.12c) 

Sufficient conditions for computational accuracy are that the grid spacings t1y and t1x are 

small enough. Therefore, the chosen parameter values are 

1 
t1x = 47r2 ' 

1 
t1y= --, 

J-1 
",t1x 
(t1y)2 = 0.633 , 

where J denotes the number of transverse grid points. 

). t1x = 0.0253 , u= 1, (6.13) 

Figure 6.2 shows the discrete Crank-Nicolson numerical solutions with J = 6 obtained 

with the initial condition c(O, y) = cos (¥) and the exact solutions for the first and second 

longitudinal-steps, n = 1 and n = 2, respectively. Figure 6.3 demonstrates the errors at 

these longitudinal steps. The error maximum is 4 x 10-3 , and is a vast improvement on 

explicit schemes at such low resolution. 

The numerical method is designed to give the best possible results. Figure 6.4 pertains 

to the Crandall scheme for the first and second longitudinal-steps, n = 1 and n = 2, 

respectively. The error maximum is 1.3 x 10-3 (see Figure 6.5). The superiority of the 

Crandall scheme is clear. 
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Figure 6.2: Crank-Nicolson finite difference solutions at the first and second longitudinal 
steps. 
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Figure 6.3: Error plots of Crank-Nicolson finite difference solutions at the first and second 
longitudinal steps. 

6.6 Regular grid spacing with non-constant coefficients 

In natural channels the behaviour of the discharged pollutant is influenced by a number 

of factors including: (i) the properties of the effluent being discharged, that is, its phys

ical, chemical, and biological transformations, (ii) the rate at which the effluent is being 

discharged, that is, the total mass of pollutant injected in a given time, (iii) the spacing 

and orientation of the discharge outlets, that is, the height of the injection point above the 

outfall of the shoreline, and (iv) the characteristics of the river, that is, its depth, width 

and flow velocity. Thus, this section considers the numerical computation of equation (6.1) 

with the no-flux boundary conditions (6.2) and the prescribed variable coefficients (6.3) and 

(6.4). In the present problem, contaminant is injected at the point x = 0 in the form: 

c(O, y) = Q 8(y - yo), (6.14) 
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Figure 6.5: Error plots of Crandall finite difference solutions at the first and second longi
tudinal steps. 

where Q is the contaminant discharge rate or the total volume flow rate, Yo is the height 

of the injection point above the outfall of the shoreline and 6(y - Yo) is the Dirac delta 

function. Normalizing the concentration with respect to the volume flux Q: 

lb hucdy = lb hudy = Q , (6.15) 

ensures a unit average concentration when there is no decay. 

We note here that the numerical scheme is constructed to give the highest-order accuracy 

at long length-scales. This is of particular importance in real river situations where the fate 

of contaminant dispersion downstream is monitored. For the purpose of insights, the non-

dimensional domain length and width are chosen as 4 x 1 and the number of grids in x

and y- directions are chosen respectively as 2020 and 201. The grid spacings applied here 
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6.6 Regular grid spacing with non-constant coefficients 

are box = 0.0005 and boy = 0.02, and the initial concentrations used for the computations 

are deduced from the relation (6.15) such that 

_ 1 2 5/2 
C - 3/2 A -5 Yb , 

Yo I...l.y 
(6.16) 

where Yb denotes the width of the river. 

6.6.1 Kay benchmark problem 

Benchmark problems with known exact solutions permit stringent assessment of the numer-

ical methods. Section 6.5 considered such an exact solution for constant coefficients. This 

section considers an exact solution for non-constant coefficients. 

For conserved contaminants, Kay (1987) investigated the effect of cross-stream depth 

variations upon contaminant dispersion in a vertically well-mixed current. Applying similar 

scaling conditions (6.3) for the current speed and lateral eddy diffusivity, he obtained an 

exact solution of the variable-coefficient advection-diffusion equation that corresponds to 

a constant-rate point discharge in steady flow along a sloping beach. The exact solution 

derived by Kay (1987, equation 36) can be written in non-dimensional variables as 

(6.17) 

where /3/2 is a modified Bessel function. Figure 6.6 (with solid lines) (Kay, 1987; Figure 8) 

is based upon the exact solution (6.17) and shows concentration contours, with contours at 

intervals of 0.2, up to 2.0 units, in the (x, y) plane for the benchmark case Q' = 1, x* = 0, 

Y* = Yo· For uniformly sloping natural beaches the ratio of the distance from the outfall to 

the shoreline (reference off-shore distance) and the distance which contaminant will have 

been advected downstream before it meets the shoreline (reference long-shore distance) is 

about 0.001 and pollutant plumes are elongated 1000 times relative according to Figure 6.6 

(with solid lines). The most striking feature is the high concentration tongue from source 
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6.6 Regular grid spacing with non-constant coefficients 

to shoreline, which may be due to the higher velocity gradient near the shoreline. As 

the velocity is low near the shoreline, the solute concentration in the lower velocity region 

disperses slowly, where in the higher velocity region, it disperses faster. This reveals that 

the contaminant remains at high concentrations further downstream in the shallower water 

near the shoreline than in the deeper water. Thus, the solute disperses to a great extent 

downstream as seen from the figure. 

The exact analytical result (6.17) has been widely used as benchmark problem for vali

dating experiments, the testing and comparison of random walk and Galerkin finite element 

schemes (Potter et al., 1996; Scott, 1997; Nassehi and Passone, 2005). Figure 6.6 (a) shows 

the contour plots of the exact versus the numerical result obtained using the no-flux bound

ary conditions. The Figure 6.6 (a) has acceptable level of evidence that the numerical results 

give reasonable approximations to the exact solution near the lower boundary or shoreline. 

The numerical solution fails along the upper boundary where low solute concentrations are 

expected. This failure is observed at about 0.2 units downstream. Beyond this point, the 

numerical solution overestimates the analytical solution near the upper boundary. Again, 

the comparisons (Figure 6.6 (a)) indicate that the numerical approximation gives mismatch 

with the analytical result in the leading concentration tongue with unit 1.4. The overesti

mation near the upper boundary could be attributed to the difference between the boundary 

conditions used in the analytical and the numerical solutions. While the numerical solu

tion uses no flux boundary conditions in both boundaries, the analytical solution uses no 

flux boundary in the lower boundary and zero concentration at great distances from the 

shoreline in the upper boundary. For curiosity and compatibility, a zero concentration far 

boundary condition is used giving the Figure 6.6 (b). Once again, the numerical solution 

represents the exact solution reasonably well near the lower boundary. The numerical re

sults give an underestimation of the exact solution from the centerline of the plume toward 

the upper boundary. The discrepancies observed in the Figures 6.6 are attributed to the 

inherent weakness of numerical schemes to resolve properly the problems associated with 
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Figure 6.6: Concentration contours of midpoint discharge for the Kay exact solution (6.17) 
versus the numerical computation with (a) no-flux boundary conditions, (b) Zero concen
tration far boundary condition. 
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variable coefficients in the prediction of pollutant dispersion in coastal waters (Nassehi and 

Passone, 2005). 

6.7 Optimal and non-optimal discharge 

An optimal discharge site for a steady discharge in a river was obtained by Smith (1982) 

using the method of eigenmodes. The precise location of the optimal discharge site was 

found at the single zero crossing of the first advection-diffusion eigenmode. Simple examples 

revealed that this position tends to be weighted towards the deeper part of the channel, 

where it was determined as Yl = 0.607 B. The explanation is that contaminant plumes tend 

to curve towards the shallower water. It is to counteract this tendency that the siting of 

the discharge must be weighted towards the deeper water. Figure 6.7 (a) demonstrates 

contour plots of the computational scheme using the optimal discharge site with no-flux 

boundary conditions. For the zero concentration far boundary condition Figure 6.7 (b) gives 

the contour plots. It can readily be observed that the solute concentration is moderately 

dispersed near the origin than the midpoint discharge (see Figures 6.6 (a, b) with dashed 

lines) and the centre-line of the contaminant plume is reasonably far away from the shore. 

The high reduction in the concentration tongue from source to shoreline is a clear indication 

that the point of injection changes significantly the pattern of dispersion downstream. 

To further illustrate the gains of using optimal discharge other than non-optimal dis

charge and the use of the no-flux and zero concentration far boundary condition, Figures 6.8 

and 6.9 present the concentration contours of two scenarios of the point source taken to be 

halfway above and halfway below the midpoint discharge respectively with no-flux and zero 

concentration boundary condition. Evidently, putting the discharge site further out to the 

deeper water can drastically reduce the shoreline concentration (Figures 6.8 (a, b)) but gives 

peak concentration greater than 1 along the deep-water boundary. On the other hand, the 

Figures 6.9 (a, b) demonstrates high solute concentration in excess of 7 along the shoreline. 

This again emphasizes the existence of the physics of a higher velocity gradient near the 
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origin. The consequent effect is, therefore, the slow dispersion in this region due to the low 

velocity. In practice, the cost of using an optimal discharge site in relatively deep water, 

rather than a site closer to the bank, is justifiable only if there is a significant reduction in 

the pollution levels. To this end, from the Figures 6.8 and 6.9, it is conveniently observed 

that if the discharge site were too near one of the banks then the contaminant plume would 

reach that bank relatively soon with a concentration in excess of the eventual asymptote 

(Smith, 1982; figure 1). The remarkable differences between these two cases exemplifies 

further the significant importance of the need to use optimal discharge sites in rivers in 

order to make water quality management decisions. Therefore, it is for often-repeated wa

ter quality predictions, such as controlling environmental impact of discharges from sewage 

works, that the gains in using optimal discharge sites are potentially of greatest importance. 

In natural river systems the cross-section is rarely of uniform depth, and the fall-line 

tend to meander. Therefore, it is usually the lateral shear rather than the vertical shear 

that plays the more important role. This affects the fate of an effluent discharged and 

ultimately the decay mechanisms. The following three subsections concern the same depth 

related velocity and turbulent diffusivity profiles (see Figure 6.1(a)), but with decay profile 

applications corresponding to uniform consumption by bacteria, to evaporation and to break 

up by turbulence (see Figure 6.1(b)). The no-flux boundary conditions are herein applied 

since the contaminant decay will effect the reduction in the overestimation of the numerical 

computations. The numerical computations uses the reference decay strength of AB2 / K = 

2. 

6.7.1 Constant decay 

This is a situation where the contaminant is consumed by bacteria, that is, decay uniform 

across the flow. The decay profile for the constant case is quantified by m = O. Figure 6.10 

(a) depicts a midpoint injection concentration contours for the computation with the ref

erence decay strength. Remarkable differences between the non-decaying (see Figure 6.6 
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Figure 6.7: Concentration contours for optimal discharge with (a) no-flux boundary condi
tions, (b) zero concentration far boundary condition. 
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Figure 6.8: Concentration contours of discharge (a) halfway above the midpoint discharge 
with no-flux boundary conditions, (b) halfway above the midpoint discharge with zero 
concentration far boundary condition. 
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Figure 6.9: Concentration contours of discharge (a) halfway below the midpoint discharge 
with no-flux boundary conditions, (b) halfway below the midpoint discharge with zero 
concentration far boundary condition. 

MEID 131 Mebine, 2006 



6.7 Optimal and non-optimal discharge 

(a)) and the decaying contaminant for the midpoint discharge can clearly be examined from 

the contour patterns, for instance between the 1.4 unit contour. Therefore, the decay ef

fects qualitatively the loss of the contaminant from the river flow. For the reference decay 

strength for constant decay, Mebine and Smith (2006) obtained the optimal discharge site 

0.637B, and Figure 6.10 (b) gives the plots of the concentrations. A distinctive contribu

tion of the optimal discharge as compared to the midpoint discharge is the reduction in the 

tongues of the concentration contours. 

Because the decay is not proportional to the flow velocity, the concentration far down

stream is not uniform, but has structure <Po(y) of the lowest eigenmode. It is c(x, y)/<Po(y) 

that becomes uniform. Hence, the increase in c(x, y) towards the deeper boundary echoes 

the structure of <po(y). 

6.7.2 Decay that decreases with depth 

The time rate of decay can be greater in shallower water if there is air-water contaminant 

exchange at the surface. Other removal processes that are more effective in shallower water 

are the killing of bacteria by sunlight (Gould and Munro, 1981) and feeding at the bed by 

marine micro-organisms, bacteria, fungi or yeasts. In this subsection, the degree of contam

inant decay parameter is given by m = -1/2. Figure 6.11 (a) shows the numerical contour 

plots. The optimal discharge site for the decay that decreases with depth for the reference 

decay strength is 0.676B (Mebine and Smith, 2006). Figure 6.11 (b) illustrates the contour 

profiles of optimal discharge for decay that decreases with depth. Once again, it is observed 

the distinctive reduction of the tongues of the concentration contours of the optimal dis

charge as compared to the midpoint discharge. The stronger lateral concentration structure 

echoes that of <Po(y) for this decay structure. 
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Figure 6.10: Concentration contours for constant decay with decay strength AB2 / K = 2 
(a) midpoint discharge, (b) optimal discharge. 
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Figure 6.11: Concentration contours for decay that decreases with depth and with decay 
strength AB2 / K = 2 (a) midpoint discharge, (b) optimal discharge. 
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6.8 Evolution of Fourier modes and Stability Analysis 

6.7.3 Decay that increases with depth more than the velocity 

The dissolution of oils or flocs is most rapid in regions of the flow where the turbulence is 

energetic. It is worth noting that the level of turbulence affects flocculation in the near field, 

and therefore shear in the discharged plume. Increases in turbulence intensity tend to result 

in larger flocs due to an increase in the probability of collision between particles. In this 

subsection, the degree of decay is modelled m = 3/2. The centre-line of the contaminant 

plume is displaced towards the shore (see Figure 6.12 (a)). Using the optimal discharge site 

0.589B (Mebine and Smith, 2006) reduces the extent of the displacement of the centre-line 

of the contaminant plume towards the shore (Figure 6.12(b)). The changed form of decay 

from the previous case, changes the lowest mode <Po (y) to being largest in shallow water 

(where decay is least). Hence, the largest concentrations are along the shallow shoreline. 

6.8 Evolution of Fourier modes and Stability Analysis 

Insight in the solution of the advection-diffusion-reaction equation (6.1), or of any numerical 

approximation, can be obtained by Fourier decompositions. We consider the construction 

of a solution of the finite difference equations for Fourier modes of the form: 

(6.18) 

where i = H, kj is the wave number and denotes the number of waves that exist over a 

distance of 27r and G is a function of kj and is known as the growth or amplification factor 

for the modes. For a flat channel (that is, fi, = 1, u = 1, A = 1), using equation (6.18) and 

similarly for the other terms, equation (6.9) results 

G = _1_-_4_(1_-_0_) v_sin....."2"",,,(;7!_k;;.....j t::.----;,y)_-_(1_-_0)_t::._x 
1 + 40 vsin2 (! kj t::.y) + 0 t::.x 

(6.19) 

Fourier decompositions determines the stability of the solution of the finite difference 
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Figure 6.12: Concentration contours for decay that increases with depth and with decay 
strength AB2 / K = 2 (a) midpoint discharge, (b) optimal discharge. 
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equations. Decay or growth of an amplification factor indicates whether or not the numerical 

algorithm is stable. This is known as von Neuman stability analysis (Orthega and Rheinbolt, 

1970). The computational scheme (6.9) is said to be stable if 

I G I:::; 1 for all kj fly. (6.20) 

Evidently equation (6.19) can never have G> 1 for any positive choice of v, assuming 

o :::; 0 :::; 1. Thus, instability arises only through the possibility that G < - 1, and hence 

4 v (1 - 20) sin2 (~ kj fly) > 2 - (1 - 20)flx. (6.21) 

The mode most liable to instability is the one for which the left side is largest, and this 

occurs for kj fly = 1r. Hence, this is an unstable mode if 

1 1 
v (1- 20) > - - -(1- 20)flx 24· (6.22) 

Therefore, a necessary and sufficient conditions for the stability of equation (6.9) are: 

1 1 1 1 
when 0 :::; 0 < 2' stable if and only if v:::; 2(1 - 20)- - '4flx, 

when ~ < 0 < 1, for all v. 2- -

(6.23a) 

(6.23b) 

These two cases are often referred to as conditional and unconditional stability respectively. 

For variable coefficient problems, the von Neuman stability analysis can also be applied 

locally (with local values of the coefficients). Because instability is a local phenomenon, 

due to the high frequency modes being most unstable, the von Neuman stability analysis 

gives necessary stability conditions which can often be shown to be sufficient (Morton and 

M ayers , 1994). For the incorporation of the effect of boundary conditions, conservation 
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laws and the energy method analysis can sometimes be employed to yield sufficient stability 

conditions to complement the necessary conditions given by the von Neuman analysis. 

6.9 Concluding remarks 

The special cases solved broaden insight about a quantitative criterion for environmental 

impact of a contaminant released into rivers. The quantitative influence far downstream can 

be characterized in terms of the point of injection and the rate of contaminant decay, and 

hence changes significantly the pattern of dispersion. For an optimal discharge, the shear 

dispersion near the origin is greatest when there is both strong shear and strong turbulent 

mixing, while the velocity is least and the time-lag maximized for an injection close to the 

origin other than the middle of the transverse direction. As the contaminant moves faster 

for higher point of injection than for lower one, there is a tendency to develop an asymmetry 

in dispersion of material when it is injected near the origin. The major conclusion is that 

optimal discharges in the presence of a varying decay, current and diffusivity with depth 

can lead to the rapid attainment of the equilibrium lowest mode shape 4>o(y) of the cross

stream concentration profile. The computational results provide reasonable estimates and 

give pictorial illustrations of the concentration distributions and of the difference between 

discharging at non-optimal and optimal sites in rivers. 
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7.1 Conclusions 

7.1 Conclusions 

In this dissertation both analytical and numerical developments for the study of steady dis

charges of contaminants in rivers have been performed. The fate and transport of contam

inants have been analysed using depth-averaged partial differential equations of advection

diffusion-reaction models with appropriate initial and boundary conditions. The main moti

vation of the work was concerned with the development of mathematical ideas and computer 

programmes to make direct computations of best discharging for rivers principally consid

ering the effects of loss mechanisms of contaminants. 

The research done here has generally been written about in the order in which it was 

actually done. Hopefully, this has given both a flavour of what has been achieved and also 

serves as a good indication of how the research proceeded step-by-step. 

Chapter 1 began by introducing the specific problem under consideration with some 

related literature and basic concepts of mixing and its importance. 

The derivations of the equations governing contaminant transport with the discussions 

of some basic concepts were carried out in Chapter 2. All the techniques in formulating the 

model equations were taken from standard mathematical texts and literature. 

Exact analytical results were presented in Chapter 3. Given that oil, chemical and 

biological waste will continue to be discharged into rivers, Chapter 3 posed the questions 

does it matter (a) where, and (b) what is discharged? For small discharges in a non

branching straight section of river, answer (a) yes, there is a well-defined best place to 

discharge (that is, the mixing or diffusion centre), and (b) yes, but the best place only 

depends weakly on the ratio of decay rate to flow speed. Three test problems were used to 

determine the effective role of the decay rate. Decay mechanisms included consumption 

by bacteria or radioactive decay (temporal decay uniform across the flow), heat loss or 

evaporation through the surface (decay decreasing with depth), and break up by turbulence 

(decay proportional to the product of velocity and depth). It was observed that for a mixture 

of pollutants with different decay processes and rates, the chosen discharge site will be a 

MEID 143 Mebine, 2006 



7.2 Further Work 

compromise between the diffusion centre for the constituent pollutants. The variety of the 

exact analytical results illustrated the robustness of the commonsense policy that, to avoid 

large shoreline pollution excesses from any of the constituents in a mixture of pollutants, 

the discharge should be sited more or less in the middle of the river. 

Chapter 4 introduced ray approximation for representing steady discharges in river 

flows. In this work extension was made of the investigation of Smith (1981) to include the 

effects of contaminant decay. The special models considered sharpened insight about how 

loss mechanisms displaced the ray paths and the consequent effects upon the curvature. 

Critically however, the results indicated that there was a dependence upon reflection and 

transmission phenomena at sharp changes in water depth, flow speed or diffusivity including 

contaminant decay upon diffusion problems. 

Chapter 5 extended the findings of Chapter 4 to include reflection and transmission 

phenomena in steady discharges in river flows with depth discontinuities or sharp depth 

changes. The heuristic formulations predicted that by using characterisation of pollution 

levels by rays, ray bending indicated that the downstream propagation of pollutant is prin

cipally in the low-decay region. 

The complexity of the changed coefficients and of the geometry in rivers, makes numeri

cal computations inevitable. Therefore, Chapter 6 focused on the development of numerical 

schemes to handle the computations of steady discharges. The results indicated the ability 

of the proposed schemes to handle efficiently, robustly and accurately solute transport in 

non-uniform and truely variable coefficients. The computational results provided reason

able estimates and give pictorial illustrations of the concentration distributions and of the 

difference between discharging at non-optimal and optimal sites in rivers. 

7.2 Further Work 

The implementation of all the techniques developed in this research has provided insight 

into how it may be extended to provide practical results. To this end, there is a considerable 
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amount of further work that requires investigation. 

The results obtained for the mixing or diffusion centre of a river indicated that variability 

of decay can shift it in either direction. Therefore, for an optimum and definite diffusion 

centre, optimisation techniques should be applied to control the diffusion centre. 

In a meandering channel the complexity of the flow field and the strong dependence of 

the transverse-dispersion coefficient upon the flow curvature, means there is the practical 

alternative to use a generalized co-ordinate system to reflect the naturality of rivers in 

the computations of the diffusion centre. In this case the computations may not only be 

analytical but numerical computations are inevitable for practical purposes. 

The memory character of longitudinal dispersion processes as well as the importance 

of centrifugal effects as regards transverse dispersion in rivers are available in literature. 

Therefore, the incorporation of curvature effects for further studies in this work is in order. 

Rivers do not necessarily constitute constant hydraulic geometry (width, depth and 

velocity), thus, turbulent mixing analyses and investigations of potential environmental 

impacts of contaminants downstream be conducted with varying-geometry river character

istics. 

Branchings of fluid flow are extremely common in rivers and involve various complex 

geometrical configurations and flow conditions. Branchings greatly affect the fluid dynamics 

and are common sites of contaminant trapping. A natural continuation of this work is the 

modelling of the proximity of the discharge site to the branching and upon how the rate of 

discharge is adjusted to enhance optimum discharging. 

The various investigations of the research involved small discharges that do not change 

the flow. Therefore, further work for best discharging in rivers should incorporate large 

discharges with volumetric discharge rates comparable to that of the rivers. 

The accumulative message of this dissertation is that an easy, effective and robust way 

of reducing the environmental impact of unavoidable wastewater discharges in rivers is to 

determine the loss mechanisms of contaminants which modify the diffusion centre. It is 
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hoped that the developments made herein to steady discharges will find effective use in 

direct computations of best discharging sites and in the building of discharge outlets that 

make more environmentally aware waste discharges. 
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