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Abstract 

The principal Water target of the Millennium Development Goals (MDG) is to Ensure 

environmental sustainability by halving the proportion of people without access to 

safe water by 2015. Although great strides have been made in meeting this challenge 
in terms of provision of services since the year 2000, the safety of many these water 

supplies remains unknown. One of the biggest challenges therefore facing water 
development professionals is how to ensure sufficient levels of both uanti and 

guality of safe water. One of the principal mechanisms for monitoring the progress 

towards attaining the MDG goals for access to safe water is the UNICEF/WHO Joint 

Monitoring Programme (JMP). 

However, the JMP acknowledges that one of its current weaknesses is in assessing 

safety related to different technology types. In acknowledgement of these weaknesses 

and of the weakness of reliance on "end product testing" as a means of assuring 

microbiological safety, the thesis proposes improved methods of assessment and 

management of microbiological water safety based on a "risk" paradigm. Coinciding 

with proposed new risk based methods of assessing water safety outlined in the 3d 

edition of the World Health Organization Guidelines for Drinking Water Quality 

(2004), the thesis researches the risk to three well technology types in Mozambique. 

Principal pathways to microbiological contamination of shallow groundwater were 

assessed which included both the conventional aquifer pathways and preferential or 
localised pathways. 

The research adopted an experimental design that uses a mix of qualitative and 

quantitative data collection techniques. Data were collected over 12 months in 25 well 

sites in Lichinga, Mozambique. Findings from the research demonstrated that risk 

assessment and management are effective tools in understanding the level of safety 

associated with the well technologies under study. The research indicated firstly that 

risk assessment aids the identification of specific risk variables (of which animal 
faeces is a predominant risk), secondly that the use of alternative indicator organisms 
(e. g. enterococci) may improve risk understanding, thirdly that there is a strong 

statistical correlation between use of surrogates (e. g. turbidity) and microbes and 
fourthly that Water Safety Plans are an appropriate method of risk management. 
Furthermore, the research supports the JMP definitions of improved water sources, 
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which suggest that upgraded wells are not an improved source due to their high 

vulnerability to contamination through localised pathways. 

The recommendations from the thesis include; non-inclusion of upgraded wells in the 

JMP in Mozambique, greater use of enterococci and turbidity as surrogate indicators 

of faecal pollution, the need for the development of rapid risk assessment and 

management techniques for rural areas in developing countries and the inclusion of 

localised pathways as a principal route of assessment. Potential areas of further 

research include field-based studies of assessment of faecal sources of Enterococci 

bacteria, and rapid methods for the development of model Water Safety Plans. 

Key words: Microbiology, Bacteria, Groundwater, ' Hydrogeology, Localised 
Pathways, Mozambique, Rainfall, Risk, Virus, Wells 
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Glossary of Terms 
Aquifer pathway 
Pathways permitting flow of water that occur naturally in the subsurface due to 
openings and cracks in the soil and rock. 

enterococci 
Subgroup of larger group of organisms known as Faecal Streptococci, comprising of 
the genus Streptococcus. Gram-positive and relatively tolerant to temperature. 

Hazard 
Biological, physical or chemical agents with the potential to cause an adverse health 
affect 

Improved Well 
Concrete caisson lined hand dug well with handpump 

Indicator bacteria 
Bacteria that normally live in the intestinal tract of man and other warm-blooded 
animals without necessarily causing disease. They are always and naturally present in 
faeces and their presence in drinking water indicates faecal pollution. 

Indicator Organism 
Organisms that point to the likely presence of pathogenic organisms 

Localised pathway 
Man-made pathways permitting flow of water that occur as a consequence of the 
design and construction of the receptor 

Logistic Regression 
Multivariate analysis of two or more single variates against a dependent variable. 

Microbial 
Belonging to or relating to microorganisms 

Microbiological 
Study of biological microorganisms 

Pathogen bacteria 
Those that cause disease are transmitted through direct contact with an infected host, 
by ingestion of contaminated food or water, or by action of an intermediate host or 
disease vector. 

Pathway 
Routes by which contaminants reach a receptor (e. g. aquifer) 

Quantitative Microbial Risk Assessment (QMRA) 
Risk assessment tool to determine health based targets 

Receptor 
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Groundwater supply (e. g. hand dug well) 

Risk 
Combination of the probability or frequency of particular event occurring and 
consequences of its occurrence 

Somatic Coliphage 
Bacteriophage (phage) are viruses that use bacteria as hosts with Somatic Coliphage 
being an ideal indicator virus of contamination from warm blooded animals. 

Shallow groundwater 
The water bearing materials that are strongly influenced by physical and chemical 
processes on the surface (topography, precipitation, man-induced negative changes), 
because the water is relatively close to the ground surface. 

Source 
Anthropogenic Source of contamination (e. g. pit latrine) 

Surrogate 
Suitable alternative or substitute 

thermotolerant coliforms 
Escherichia coli (or alternatively thermotolerant coliforms) is an indicator bacteria 
that occur in high numbers in human and animal faeces, sewage and water subject to 
faecal pollution. These organisms grow at 44 or 44.5°C and are able to ferment lactose 
to produce acid and gas. 

Traditional Well 
Unlined well with no constructed headworks 

Unsaturated zone 
Zone below the soil layer in which pores are only partially filled with water. The 
remainder of the pore spaces are filled with air. 

Upgraded Well 
Brick lined well with windlass 

Vulnerability 
Susceptibility of the physical properties of groundwater systems to a hazard event 

Water Safety Plan 
Comprehensive risk assessment and management approach that encompasses all steps 
in water supply from the catchment to the consumer. 

Water level 
The level below which a geological formation is completely saturated with water. 

Windlass 
Rope and bucket form of extraction with winch. 
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Chapter 1: Introduction 
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1.1 Purpose. of the study 

The principal Water target of the Millennium Development Goals (MDG) is to Ensure 

environmental sustainability by halving the proportion of people without access to 

safe water by 2015 (WHOIUNICEF 2004). In the year 2000, the WHO/UNICEF 

stated that 47% of the population of rural areas in Africa, 62% in Latin America and 

75% in Asia had access to improved water (WHO/UNICEF, 2004). Although great 

strides have been made in meeting the MDG water target in terms of provision of 

services since the year 2000, the safety of many water supplies remains unknown. 

One of the biggest challenges therefore facing water development professionals is 

how to ensure sufficient levels of both uanti and quality of safe water. 

Current debates within the water and sanitation sector focus on the means of 

addressing the Millennium Development Goals. One of the principal mechanisms for 

monitoring the progress towards attaining the goals for access to safe water is the 

WHO/UNICEF Joint Monitoring Programme (JMP). In the 2004 JMP Interim Report, 

WHO/UNICEF presented findings on levels of access to "safe" water from improved 

and unimproved water supplies. In the JMP Interim report, access to water-supply 

services is defined as "the availability of at least 20 litres per person per day from an 

"improved" source within 1 kilometre of the user's dwelling. " Furthermore, improved 

water supply is defined as "a source is one that is likely to provide=csafe" water" 

(WHO/UNICEF 2004). This includes the technologies outlined in Table 1: 

Table 1: JMP definitions 

Improved Unimproved 

" Household connection " Unprotected well 

" Public standpipe " Unprotected spring 

" Borehole " Vendor provided water 

" Protected dug well " Bottled water 

" Protected spring " Tanker truck water 

" Rainwater collection 

Source: WHO/UNICEF 2004 

Technologies are considered to be unimproved if the quantity or quality cannot be 

assured. However, as recognised by WHO/UNICEF, "current information does not 

allow us to establish a relationship between access to safe water and access to 

2 



improved sources" (WHO/UNICEF 2004). Although WHO and UNICEF are 

examining this relationship, any correlation will be country specific and dependent on 
definitions of improved and unimproved water sources in each country. This is the 

case in Mozambique where there is currently a high level debate being undertaken 
between the UN, Government Ministers, Non Government Organizations and 
Practitioners. The basis of this debate is whether an upgraded well (well with 
headwall and windlass) constitutes an improved water source under the definitions 

outlined in the JMP. Due to the high number of such water supplies in the North of 
Mozambique, the potential inclusion or exclusion of the technology would clearly 
bias coverage figures in the JMP for Mozambique. 

In 2002, the JMP estimated that 42% of the population of Mozambique had access to 

safe water, with a 76% and 24% coverage in urban and rural areas respectively 
(WHO/UNICEF 2004). Due to these low levels in rural areas, the debate over the 

definition of improved water technologies in the JMP is evermore pertinent. Presently, 

upgraded wells (wells with headwall and windlass) are not included in the JMP 

definitions of an improved technology. The Government of Mozambique argues that 

this is correct. However, NGOs (including WaterAid) state that upgraded wells are the 

predominant form of safe water supply in Northern Mozambique and that their 

exclusion is drastically affecting coverage figures. 

1.2 Methodology and Conceptual Design 

In light of this debate, this research has the following methodology: 
AIM: To assess the level of "safety" of upgraded wells as a water source in 

comparison to both traditional (unprotected wells) and 'improved (concrete 

caisson lined) wells with handpumps. 

To achieve this, the research has two hypotheses: 

Hl: It is possible to determine the relative risk to microbiological groundwater 

quality by study of the source, pathway and receptor, 
H2: It is possible to quantify the overall risk to microbiological groundwater 

.. quality by study of the collective risks from source, pathway and receptors. 

In this research, the source is defined as the hazard event/environment (e. g. septic 
tank), the pathway as the vulnerability of the media (e. g. soil type) and the receptor as 
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the receiving water infrastructure (e. g. hand dug well). Shallow groundwater is 

defined in this thesis as the water bearing materials that are strongly influenced by 

physical and chemical processes on the surface (topography, precipitation and man- 

induced negative changes) (Melian et al. 1999). 

To address these hypotheses, the research has three specific objectives: 

01: To assess the sources, pathways and receptors that present greatest risk to 

shallow groundwater, 

02: To analyse levels of significance of individual risk variables, 

03: To propose appropriate Water Safety Plans (WSPs) to manage and minimise 

existing and probable risks. 

To research these aims and objectives, an experimental design framework will be used 

that follows the five step methodology outlined in Figure 1 (Allison, 1997). 

Figure 1: Experimental design framework 

Problem Problem Experimental Data Data Analysis 
Definition Variate Design Collection and 

Selection Conclusions 

The basis of the experimental design is described as "the specification of the 

conditions at which experimental design will be observed" (Greenfield 2000). It 

begins with a defined problem or hypothesis and ends with a solution and conclusion. 

The research question is addressed repeatedly throughout the research to question the 

what if ? scenario. The defined problem in this research was; 

How to assess the significance of variables affecting microbiological risk to shallow 

groundwater? 

To answer the defined research problem, this study collected data from three sources: 
1. Review of available literature from UK based libraries, internationally 

accessible academic journals and articles, relevant literature in the 

Loughborough University library and the WEDC Resources Centre. 
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- 2.12 months field work in Mozambique in collaboration with the UK charity 
WaterAid between November 2003 and October 2004 (the author was 

awarded a travel bursary for fieldwork by the Tony Drake Scholarship from 

CIWEM and the UK Water Conservators Company to f nance the field work). 

3. Interviews, discussions and communications with water sector professionals 
during the period of research. 

These three sources are considered appropriate data sources as they combine both 

qualitative and quantitative information. In addition the data sources are likely to 

provide reliable information with opportunity for comparison and validation of data 

from different sources. 

Initially, a review of background literature was undertaken. This was followed by a 

thorough review of available literature. The objective of the literature review is to 

identify gaps in the literature through an analysis of microbiological and chemical risk 

to infrastructure. On the basis of the review, specific risk variables affecting shallow 

groundwater was identified. Quantitative data will then be collected from a field site 

in Mozambique over a 12 month period for each of the required variables. Based on 

this, statistical and data analysis was result in the development of appropriate risk 

management strategies. 

Figure 2: Research Methodology 

Identification Identification 

of data of risk 

variates variates 

Analyse data Develop risk 
Collection Review literature Data 

to identify management 
of literature collection principle risk strategy 

" variates 

From: Water characteristic 
Publications Hydrogeology 
Correspondence Meteorology 
Internet Demographic 
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1.3 Background 

1.3.1 Hydrogeological risk assessment 
It is commonly known that hydrogeologists and water quality professionals have 

failed to reach a consensus on definitions, reference terms and methods of effective 

groundwater risk assessment (Doerfliger et al. 1999, Gogu et al. 2000). Terms such as 

vulnerability, hazard and risk are commonly used, but commonly misunderstood. 
Indeed, due to the numerous variables that contribute to groundwater risk, various 

overlay and index tools have been developed. Overlay and index methods are 

numerical, statistical, conceptual and computer-based multivariate models that are 
developed to improve. groundwater risk assessment. They are commonly developed 

using Geographic Information System (GIS) formats in order to visually depict the 

multiple variables in GIS layers. Further information on overlay and index tools can 
be found in texts such as Doerfliger et al (1999) and Gogu et al. (2000). 

For hydrogeologists, the understanding of risk has historically focussed on the 

assessment of possible pollution from faecal sources to a water supply receptor 

through movement of microbiological pathogens through aquifer pathways (Gogu et 

al. 2000). Hydrogeologists consider factors such as contaminant loading, soil 

permeability and porosity, ambient temperature of soil microbes relative to 

physiologic temperature and distance from source to receptor to develop overlay and 

index risk-based tools. Many of these tools are heavily reliant on quantitative data and 

are used to delineate the boundaries of groundwater supply protection areas (Foster et 

al. 2002). 

There are, however, limitations in providing such guidance in developing countries. 
These include limited data availability, complex and dynamic traditional land tenure 

practices and adoption of unrealistic distances for siting water supply points from 

domestic dwellings (Gelinas et al. 1996). Indeed it can be argued that factors, other 

than the conventional hydrogeological factors, are of greater importance in developing 

countries in defining a "safe distance" from a faecal source (e. g. septic tank/pit 

latrine) to a water receptor (e. g. well/borehole). For example, research by the British 

Geological Survey (BGS) and the Robens Institute at Surrey University, UK on the 

Associated Risks to Groundwater from On Site Sanitation (ARGOSS) identified 
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"engineering" variables such as poor workmanship as primary pathways to the short 
circuiting of the wellhead protection zone (ARGOSS 2001, Howard et al. 2003). 

The ARGOSS study noted ingress of contaminants through localised pathways (short 

circuiting). These originated from diffuse surface faecal sources (associated with 
inadequate sanitation conditions) and through poorly sealed annuli of boreholes or 

cracks in surface aprons (associated with construction faults and inadequate 

maintenance of wells). This resulted in higher levels of microbiological contamination 

than from the conventional aquifer pathways (Howard et al. 2005). Studies by 

ARGOSS (2001) and Howard et al. (2003) further noted that to reduce risk of 

contamination of shallow groundwater, a more thorough understanding of the 

mechanisms affecting the formation of preferential flow paths through localised 

pathways is required. 

1.3.2 Water quality, risk assessment 

In comparison to hydrogeologists, water quality professionals' assessment of safety of 

groundwater supplies has historically relied upon results from microbiological and 

chemical analysis. However, fundamental weaknesses in this approach have resulted 
in changes in recommended practices for water safety. In the World Health 

Organization Guidelines for Drinking Water Quality (GDWQ) edition 3, there is a 

move away from the reliance on end product testing of water quality as a means of 

assuring water safety and towards a risk based approach termed Water Safety 

Framework (Davison et al. 2005). 

Since 2001, the author has advised on the development of parallel research into the 

application of an aspect of the Water Safety Framework termed Water Safety Plan in 

developing countries (Godfrey et al. 2005) The methodology adopted in that research 
formed an essential evidence base for the proposed new approaches outlined in the 311 

edition of the World Health Organization (WHO) Guidelines for Drinking Water 

Quality (WHO 2004). This thesis therefore builds on the experience of the 
development of the principles of Water Safety Plans (WSPs) and provides examples 

of how to apply WSPs for risk management of shallow groundwater. 
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Combining the principles of WSPs with improved hydrogeological risk assessment, 

this thesis provides further scientific and technical evidence to support the WSP 

approach. The WSP approach is designed to be a "holistic" approach to shallow 

groundwater risk assessment that considers the hydrogeological, microbiological, 

sociological and engineering principles of risk assessment. 

Conceptually, the thesis follows the framework outlined in Figure 3. 

Figure 3: Conceptual framework 

PhD thesis Research 
University of 

Makerere 

WHO Risk Management 
framework BGS 

"Water Safety Plans" 
< 

ARGOSS 

Where; 
WHO = World Health Organization 
BGS = British Geological Survey 
ARGOSS = Associated Risk to Groundwater from On-Site Sanitation 

This research uses the findings of the BGS and WHO as its point of departure 

(ARGOSS 2001, WHO 2004). The thesis focuses primarily on improved risk 

assessment and management techniques based on a study of 25 well sites in Northern 

Mozambique. The research complements a further, currently ongoing, piece of 

research by the University of Makerere, Uganda which is developing source specific 

models for assessing levels of anthropogenic pollution to shallow groundwater in peri- 

urban Kampala, Uganda. 
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1.4 Justification and Originality 

The original contributions of this thesis to academic research are therefore threefold. 

1. Firstly, the research explores the area of localized pathways of groundwater 

contamination which to date have been greatly overlooked by the scientific 

community's emphasis on aquifer pathways of contamination. The research into 

localized pathways in the context of low-income communities in developing 

countries is, in the author's opinion, essential to gaining a greater understanding of 

safe water provision. 

2. Secondly, this research identifies the key variables that define risk to shallow 
groundwater through localized pathways, and explores the statistical relationship 

or weighting of significance between the variables. Although the use of statistical 

methods to establish relationship between variables is not uncommon, its 

application in this context is original. 
3. Thirdly, the research proposes risk management tools that follow the principles of 

Water Safety Plans for each of the three well technologies studied. 

1.5 Structure of Thesis 

The thesis is divided into 6 further chapters. Chapter 2 provides a systematic review 

of literature that is available in the area of groundwater risk assessment. The chapter is 

divided into three clear sections examining the source, the pathway and the receptors 
in groundwater contamination. The chapter concludes with the identification of key 

indicators or variables for groundwater risk assessment. Chapter 3 provides rationale 
for the selection of the variables required for further research and is followed by 

Chapter 4 which provides details of the sample design and methodology for field 

data collection for each of these variables in Mozambique. Chapter 5 then presents 

results from the fieldwork and analysis of those results. The analysis identifies 

specific risk variables and then Chapter 6 provides sample Water Safety Plans for 

risk management of these variables for each of the well technologies studied. Finally, 

Chapter 7 presents the conclusions from this work and identifies potential areas of 
future research. 
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Chapter 2: Literature review 
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2.1 Chapter Introduction 

Chapter 1 provided an introduction to the research. This chapter establishes the 

conceptual and theoretical foundation for the research by reviewing relevant literature 

to identify key research issues. Specifically, this chapter has three objectives: 
1. to distinguish what has been done and what has not been done in the 

groundwater risk assessment and management sector, 
2. to identify specific sources and principal pathways of risk to shallow 

groundwater to be researched in the thesis, and, 

3. to evaluate effectiveness of varied engineering barriers in reducing risk of 

contamination to shallow groundwater. 

As outlined in Chapter 1, the aim of this thesis is to determine the relative risk of 

microbiological groundwater quality by a study of the source, pathway and receptor. 

In many developing countries, the majority of small-scale groundwater supplies are 

community managed. This thesis bases its research on the premise that small scale 

water supplies are community managed and that the technology choices made by 

communities are based on Demand Responsive Approaches (DRA). The objective of 

this research is therefore to complement the DRA approach by providing both water 

supply agencies and communities with greater informed choice of the effectiveness of 

selected technologies in reducing risk of shallow groundwater to contamination. This 

will be achieved through a scientific analysis of available literature of risk reduction 

measures in the shallow groundwater supply sector followed by a selection of 

appropriate indicators that require further research to improve risk assessment and 

management. 

2.1.1 Literature review methodology 
The importance of this research for the water sector in developing countries is 

emphasised through the declaration of both the International Drinking Water Supply 

and Sanitation Decade in the 1980s and the recently authorised Millennium 

Declaration Goals (MDGs) (UN'2005) As previously noted in the UN Conference at 
Mar del Plata, 1977 at the launch of the Drinking Water Supply and Sanitation decade 

"All people, whatever their stage of development and social and economic condition, 
have the right to have access to drinking water in quantities and of a quality equal to 

their basic needs" (UN 1977). To date this goal has not been achieved. 
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To address these UN goals, greater consideration is being given to the quality of 

water. Historically, since the work of John Snow (1854) in the United Kingdom, there 

has been recognition of the importance of microbiological safety of drinking water 

and its risk to public health. Methodologically, the achievement of safe water has 

historically relied upon quality control procedures through end product testing of 

selected indicator bacteria. A number of recent scientific studies suggest that " this 

process of water quality monitoring is ineffectual. For example studies undertaken in 

North America provide evidence that a 35% occurrence of Gastro Intestinal (GI) 

illness was related to water consumed meeting E. coli standards (Payment et al 1991, 

Payment 2003). Further work has also linked indicator bacteria presence and turbidity 

with a rise in the number of cases of infant gastroenteritis (Schwartz et al 1997). As 

noted in Chapter 1, there is therefore increasing recognition of the importance of 

assuring the "safety" of water based on a range of multiple barriers. It is 

recommended that these are controlled through quality assurance procedures that rely 

on a thorough understanding of the management of risk in a water supply from the 

catchment to the consumer (WHO, 2004, Davison et al. 2005). 

Central in applying these quality assurance procedures to shallow groundwater 

sources is an appreciation of the SOURCE - PATHWAY - RECEPTOR relationship 
ARGOSS 2002). This relationship is commonly applied in hydrogeological analysis 

of groundwater. This chapter bases its literature review on this relationship (as noted 
in Figure 4). 

Figure 4: Source, pathway, receptor relationship 

Groundwater Contamination Model 

Source Pathway, 
ý Receptor 

" Source - Hazard event/environment (e. g. septic tank) 

" Pathway - Vulnerability of media (e. g. soil type) 

" Receptor - Receiving water infrastructure (e. g. hand-dug well) 
with consideration of time dimension and consumer aspects (Household level storage) 

The literature review begins with a review of generic risk management principles and 
then focuses on the identification and differentiation between chemical and 

microbiological hazard sources. The relevance of each in the context of risk reduction 
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measures is discussed, and selected parameters are highlighted for further research. 
Secondly, the review identifies pathways to contamination, reviewing the importance 

of localised as well as aquifer pathways of contamination of shallow groundwater in a 
developing country context. Thirdly, the chapter reviews existing evidence in the 

literature of both the design and effectiveness to contamination of existing 

engineering barriers. Combining these three principles, the final section of the 

literature review focuses on identifying appropriate risk variables that require further 

study and may be used to compose a multivariate risk model. 

2.2 Risk Defmition 

To assess or manage risk to potable water supplies, clarity of definition of risk is 

required. Conceptually, risk is often defined as a measure that combines the 

probability or frequency of a particular event occurring with the consequences of its 

occurrence (Dixon 2001). 

Conventional definitions note that risk consists of three variables: 

R(A) = C(A). P(A) 

Where; 
R(A) is the magnitude of the risk associated with an event A 
C(A) is the consequence of the event 
P(A) is the probability of occurrence of the event (Dixon et al., 2001) 

The use of this definition is highly applicable to assessing risk of contamination to 

shallow groundwater to microbiological contamination where, as noted in Chapter 1, 

shallow groundwater is defined in this thesis as the water bearing materials that are 

strongly influenced by physical and chemical processes on the surface (topography, 

precipitation, man-induced negative changes etc) (Melian et al 1999). 

This literature review examined the applicability of risk models applied to varied 
infrastructure (including piped water supplies, sewers and groundwater) with the aim 

of identifying potential methodological commonalities. Using evidence from risk 

management tools developed for other infrastructure, the thesis will identify 

appropriate indicators of risk and then develop appropriate models for managing risk 

reduction. 
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2.2.1 Risk Assessment and Risk Management 

Due to the uncertainties in assessing public health risks derived from water quality, 

there is a recognition within the water and public health sector that comprehensive 

risk assessment and management tools founded upon the principles of quality 

assurance are required (Davison et al. 2005, Godfrey et al. 2005). These tools focus 

on both monitoring and controlling water safety through quality assurance processes 

such as the principles outlined in Water Safety Plans (WSPs) (WHO, 2004). There is 

an appreciation within these quality assurance approaches that there are a number of 

contributing variates to risk. These include, for example, establishing both potential 

pathways of contamination and approximating survival time of pathogens in a specific 

environment (Fourie et al 1995, Van Ryneveld et al, 1995). Evidence therefore 

suggests that risk should be considered in a broader context where contributing 

variates are considered as multivariates that contribute to a risk model (Fewtrell et al. 

2001). The literature suggests that in isolation each variate gives a limited point of 

reference for assessing risk and that they must be considered together as multivariates 

in order to scientifically assess their impact (Haas et al. 2001). 

The importance of recognising risk as a multifaceted or multivariate entity is essential 
in assessing risk to infrastructure. For example, in assessing risk of piped distribution 

to bursts, Woodward et al (2001) identifies uncertainties stating that "until recently 

there has been limited understanding as to why mains fractures occur. A number of 
different factors such as ground movement, rapid changes in air temperature, traffic 
loadings, have been suggested as causes, however the degree to which each factor has 

an influence on mains failure has not been established. " Similarly, lessons may also 
be learnt from vulnerability assessment of sewers (Horold et al. 1997). Horold et al 
(1997) note that due to uncertainties in forecasting the risk of sewer failure, a 

multivariate model approach that includes pipe material, diameter, age and period of 

construction and location is required. 

There are further examples of the use of multivariate models in assessing the 

vulnerability of groundwater to a risk event (e. g. chemical pollution, microbiological 

contamination). In the groundwater sector, these have included extensive development 

of vulnerability maps, most notably DRASTIC and EPIK and these approaches are 
discussed in more detail in chapter 3 (Doerfliger et a11999, Rupert 2001). 
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In assessing the vulnerability of Karst aquifers, Doerfliger et al. (1999) used a 

multivariate method of vulnerability mapping which considered specific 
hydrogeological behaviour of Karst aquifers known as EPIK. The EPIK method is an 

overlay weighting and rating method similar to that of DRASTIC. It considers both 

the intrinsic vulnerability of aquifers (i. e. the risks associated with non-point sources 

of pollution) and the specific vulnerability (considering all types of contamination). 

Indeed, to overcome the uncertainties in microbiological risk assessment, Havellar in 

Fewtrell (2001) recognises the importance of "the development of structured, 

transparent methods to precipitate expert opinion in the risk assessment process. " 

Such methods may include the use of Quantitative Microbiological Risk Assessment 

(QMRA) methods, decision-making tools, developing predictive models and the use 

of Geographical display systems such as Geographical Information Systems (GIS). 

The use of a multivariate model is of particular relevance in assessing the risk of both 

microbiological and chemical contamination to groundwater from both point and 

diffuse sources of industrial, agricultural and other anthropogenic pollution. The 

occurrence and transport of these pollutants in groundwater is however complex and 

one that requires significant further research. This is of particular importance in 

developing countries where unregulated discharge of pollutants from multiple sources 

results in high levels of risks of groundwater contamination. The use of a multivariate 

risk model to predict and control this risk is critical for shallow groundwater sources 
due to their inherent vulnerability. Indeed, the early work by Foster et al (1991) in 

South America, highlights the importance of specific assessment of the vulnerability 

of shallow groundwater sources as opposed to deep groundwater sources to 

contamination. 

There is further consensus as to the multiplicity of sources of this contamination, with 

studies acknowledging the importance of both point and diffuse sources of 

contamination from agricultural, anthropogenic and industrial activity (Melian et al 
1999). Lewis et al (1980) highlights the need of a "pollution risk array" which not 

only acknowledges the multiplicity of hazard sources but also the physical variables 
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(such as soil porosity) that affect the vulnerability of groundwater to contamination. 
This is supported by more recent research by ARGOSS 2002 and Howard et al. 2003 

emphasising the need to evaluate a multiplicity of pathways. 

This approach is supported by Gerba et al (1975) who note that minimum distances 

of a shallow groundwater source from a hazard that solely conforms to hypothetical 

hydrogeological profiles will be affected by varying permeabilities and be dependent 

on die off rates of specific microorganisms at specific locations. Crucial to the 

establishment of these distances are processes of contaminant transport based on the 

movement of the contaminant from SOURCE through a geological PATHWAY to a 

groundwater RECEPTOR. 

This source pathway receptor relationship is commonly used in the hydrogeological 

field to assess risk of groundwater to pollution. It is however a complex process and 

one that involves a number of key data sets ranging from the key characteristics of the 

microbe or source (i. e. contaminant loading, size of microbe, inactivation - die off - 

rate and surface electrostatic properties), the physical determinants of the aquifer or 

pathway (i. e. physiological flow velocity, porosity, temperature and aquifer grain pore 

size) and the type of receptor (i. e. lined/unlined well, tubewell or spring). The 

theoretical justification for using the Source-Pathway-Receptor model as the 

methodological basis of this research relates to its acknowledgement of the 

multivariate nature of risk reduction in shallow groundwater. Other risk models used 
in the groundwater sector include establishing groundwater protection zones based on 

theoretical travel distances and multivariate vulnerability models (e. g. DRASTIC and 

EPIK) that assume the presence and concentration of a hazard source (Foster et al. 
2002). In a developing country context where there are a number of uncertainties in 

estimating risk, it is important to establish a relationship between the source, the 

pathway and the receptor. This thesis therefore uses this relationship as a guide to 

reviewing literature on the subject. 

2.2.2 Summary 

In summary, the literature suggests a multivariate approach to risk assessment and 

management is required that considers risk as multifaceted entity. The critical 

components in this risk definition are the source of the contaminant, the pathway from 
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which it reaches the receiving groundwater and the effectiveness of the receptor in 

reducing overall risk of contamination. The subsequent sections will consider each of 

these components in turn; section 2.3 will review relevant literature on the source of 

contamination, section 2.4 will review the pathways of transmission and section 2.5 

will review the types of receptors that receive these sources. 

2.3 Microbiological/Chemical Pollutant Source 

Specification of the type of hazardous source can be divided into three categories 

defined as "a biological, physical or chemical agent with the potential to cause an 

adverse health effect" (WHO, 2004). The assessment of these hazards involves 

"collecting and interpreting information on hazards, and events leading to their 

presence, to decide which are significant for water safety. " (Davison et al. 2005). 

Deere et al (2001) note that the identification of the sources of these hazards provides 

an easier means of developing an understanding of hazards that may affect 

groundwater, than attempting to isolate specific contaminants within supplies. 

These contaminants of public health concern are broadly subdivided into chemical 

and microbiological contaminants. The consumption of water polluted with chemical 

or microbiological contaminants is associated with both acute and chronic health 

problems, whose impact range from mild symptoms to fatality (Murray et al. 1996). 

The following subsections will discuss both the persistence and public health impact 

of both the chemical and microbiological sources of contamination. 

2.3.1 Chemical sources of contamination 

There is increasing concern regarding the public health significance of both naturally 

occurring and synthetic sources of chemical pollutants. These pollutants occur in 

shallow groundwater through two sources: 
1. Naturally occurring contamination occurs where chemical evolution of 

groundwater and solution of minerals can be aggravated by manmade pollution 

and/or excessive abstraction (Foster et a! 2002), 

2. Synthetic contaminants introduced to groundwater through anthropogenic, 
industrial or agricultural sources (Foster et a! 2002). 
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Of increasing global concern is the presence of inorganic chemicals in groundwater. 
The WHO (2004) consider the greatest concern to be associated with the presence of 
inorganic arsenic and fluoride in groundwater and their inherent public health 

effects. The presence of this contamination is not a problem solely affecting 
developing countries. Studies in the USA and Northern Ireland support global 

concern regarding the significance of excessive fluoride levels in causing dental or 

skeletal fluorosis, extensive studies undertaken in Bangladesh, India and China 

further emphasise the importance of arsenic and its associated public health effect 
(arsenicosis) (Robins 1998). 

The management of the risk of naturally occurring chemical contamination can be 

achieved through varied engineering measures such as treatment of water at source 

or at household level. Of particular relevance for both arsenic and fluoride mitigation 

are the use of dilution, source substitution, appropriate coagulation and flocculation 

techniques, safe disposal of treated sludge and more long term engineered remedial 

measures such as deepening of boreholes to unpolluted aquifers. Although of 

relevance in the management of risk reduction in shallow groundwater, due to the 

scope of this research, these mitigation options will not be considered in this thesis. 

As well as naturally occurring contamination, there is further concern regarding the 

risk of shallow groundwater to synthetic pollutants. The United States Environment 

Protection Agency (USEPA) note that at least 63,000 synthetic organic chemicals are 
in common industrial and commercial use in the United States alone (USEPA 1994). 

Of this total number, 200 have been found present in groundwater of which many 

could have a potential adverse health effect. The presence of many of these synthetic 

chemical pollutants is related to land use practices. For example Fourie et al (1995) 

noted great uncertainty regarding pollution loads of nitrates during a study of the fate 

of subsurface contaminants associated with on site sanitation. 

This view is supported by a study of risks to groundwater from onsite sanitation by 

the British Geological Survey and the Robens Institute (ARGOSS 2002). The study 

noted that of principal importance are nitrate and chloride and their associated health 

effects of methaemoglobiminia (or blue-baby syndrome) and possible links to 

stomach cancers. Further studies undertaken in Central Nigeria and the Gambia 
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indicate a significant correlation between the proximity of shallow wells to 

settlements and nitrate contamination (Langenegger 1981). These studies outline how 

nitrate is derived from multiple sources such as indiscriminate disposal of human 

waste and decomposing organic matter or fertilisers (Amuzu 1993). Results from 

these surveys indicate that high nitrate levels in groundwater originate from naturally 

occurring wastes of both plant refuse as well as human and animal excrement. 

The management of the risks of these pollutants to shallow groundwater relate to 

informed policy making, application of legislation and enforcement of clear licensing 

laws (Zoller 1993). Many of the solutions for risk reduction of chemical pollutants 

require international legislation and are not locally specific. As noted by Zoller (1993) 

in a study of groundwater contamination in Israel by detergents and polycyclic 

aromatic hydrocarbons, risk reduction can only be achieved through long term 

international cooperation. The detail of these measures of chemical risk reduction 

measures are beyond the scope of this research. 

2.3.2 Microbiological sources of contamination 
Since John Snows' work in the 19th Century, numerous studies of the impact of 

microbiologically contaminated drinking water and its associated impact on health in 

developing countries have been undertaken (Esrey et al. 1990). Appropriately, a 

controlled case study of the impact of improved water sources in Sri Lanka by the 

London School of Tropical Hygiene and Medicine noted a 46% reduction in episodes 

of diarrhoea in children from families drinking water from protected handpump 

sources as opposed to unprotected sources (Mertens et al. 1990). This is supported by 

a small scale epidemiological investigation undertaken in Kanpur, India where an 

overall incidence rate of 80.1 per 1000 population was recorded in population 

consuming water from unprotected sources (Pedley et al. 1997). 

The priority in water quality control has therefore focussed on the elimination of 

pathogenic micro-organisms. There is a wide variety of micro organisms that may be 

found in water (Mara 2003). These include pathogenic (can lead to infection of 
human hosts) and non pathogenic (WHO 2004). Listed in order of size these include 

viruses, bacteria, protozoa and helminths (see Figure 5 below). 
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Figure 5: Pathogen size compared to groundwater matrix properties 
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(Source: ARGOSS 2002) 

As noted in Figure 5, the transmission of helminths in groundwater is unlikely due to 

the size of the micro organism at >251im (ARGOSS 2002). Unless there is direct 

ingress of surface water into the groundwater source, the majority of the helminths are 

efficiently removed through physical filtration in the soil (Cave et al. 1999). For this 

reason and because public health risks from waterborne diseases transmitted through 

groundwater focus on the ingestion of other groups of micro organisms, helminths 

will not be considered in this thesis. 

Table 2 outlines the primary pathogenic micro organisms of concern in groundwater 
(Macler et al. 2000). The occurrence of these specific micro organisms is dependent 

on varied factors including incidence of disease in the community, known seasonality 

of human infections, characteristics of both the water supply and aquifer and 
hydrological patterns. 
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Table 2: Pathogenic micro organisms 

Organism Associated Health Effect 

Bacteria 

Escherichia coli Gastroenteritis 

Salmonella spp. Enterocolitis, endocarditis, meningitis, pericarditis, reactive 

arthritis, pneumonia 
Campylobacterjejuni Gastroenteritis, Guillain-Barre syndrome 
Yersinia spp Diarrhoea, reactive arthritis 
Legionella spp Legionnaire's disease, Pontiac fever 

Vibrio cholerae Cholera 

Virus 

Coxsackievirus Fever, pharangitis, rash, respiratory disease, diarrhoea, 
haemorrhagic conjunctivitis, myocarditis, pericarditis, aseptic 

meningitis, encephalitis, reactive insulin dependent diabetes, hand, 

foot and mouth disease 

Echovirus Respiratory disease, aseptic meningitis, rash, fever 

Norwalk Gastroenteritis 

Hepatitis A Fever, Nausea, Jaundice, Liver Failure 

Hepatitis E Fever, Nausea, Jaundice, Death 

Rotavirus A and C Gastroenteritis 

Calicivirus Gastroenteritis 

Astrovirus Gastroenteritis 

Enteric Adenvirus Respiratory Disease, Haemorrhagic Conjunctivitis, Gastroenteritis 

Protozoa 

Cryptosporidium parvum Diarrhoea 

Giardia lamblia Chronic diarrhoea 

(Adapted from Macler et al. 2000) 

Of greatest concern to contamination of groundwater are bacteria, viruses and 
protozoa (Gale 2001). Due to their size and high concentration in wastewater 
discharge, viruses and bacteria pose the greatest risk to contamination of groundwater 
sources (Pedley et a1 2005). According to Fourie et al (1995) there are two major 
considerations affecting the mobility of these pathogens in soils; namely their physical 
size and mobility. Studies of outbreaks of Cryptosporidium and Giardia protozoa in 
both Milwaukee and Las Vegas in the USA indicate that these organisms are more 
than 100 times greater in linear size than viruses. Therefore, viruses would be an 
effective surrogate for monitoring the potential for their breakthrough. 
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To pollute the receiving groundwater these organisms must have a source and 

pathway. Pathways to contamination of groundwater will be discussed in greater 

detail in the subsequent section; this section will address the hazardous source. 

The identification of these hazard sources is essential in the estimation of potential 

levels of contamination. Evidence from assessing risk of contamination to potable 

water supplies by the American Water Works Association Research Foundations 

(AWWARF, 2002) suggest that hazard identification of pathogens in water supply 

should involve linking each pathogenic agent to a specific health effect. This, note 

AWWARF, will direct the water professionals to focus on agents of highest 

pathogenic priority to limit any further specific risk analysis as well as to prioritise 

remedial actions. 

However, Deere et al. (2001) note limitations of assessing hazards based on an 

assessment of health effects. Deere provides the example of assessing pathogen 

loading in the piped water supplies where he states that the nature of movement of 

pathogens, microbiological die off, extent of human exposure and the likely dilution 

of pathogens create wide uncertainties in establishing appropriate pathogen levels. 

Instead, Deere proposes the use of hazard event scenarios that are assessed based on 

the potential sources of hazard and the pathways of the hazard into the water supply. 

The approached adopted by Deere et al (2001) is of particular relevance for assessing 

risks to groundwater from both animal and human faeces. Research indicates that both 

animals and humans harbour bacteria in their gastro-intestinal tract that are of risk to 

human health. Varied methods for distinguishing between the risks of the two have 

been undertaken. Early investigations explored the use of ratios between enterococci 

(EF) and faecal coliforms (FC) as indicators of both animal and human derived faecal 

sources respectively (Lewis et al 1984). Research indicated that human faeces have a 

ratio' of 4.0 FC/EF as compared to 0.7 or less of FC/EF in faeces derived from 

livestock or poultry. The use of these ratios assists in the identification of what Deere 

et al (2001) refer to as hazard events. 

There is however doubt in the use of these ratios for hazard determination. Studies 

undertaken by Wright (1986) on the seasonality of bacterial quality of water in Sierra 
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Leone noted distinct limitations in this method. The study highlights that the ratios 

apply only to fresh faecal contamination and do not consider the die off kinetics of the 

specific microbes. The study observed that enterococci survive longer in human 

faeces after defecation (but before entering a water source) than faecal coliforms. The 

ratios were therefore only applicable for the source of faeces and not at the point of 

contamination. 

Alternative approaches in identifying hazard events were adopted for distinguishing 

between human and animal faecal sources of pollution. Field research in Nigeria and 

Zimbabwe demonstrated that sorbitol fermenting bifidobacteria - SFBs (unique to 

human faeces) and Rhodococcus coprophilus (unique to animal faeces) could be used 

to distinguish between hazard sources (Barret et al. 2000). Nonetheless, limitations 

were identified in the application of analysis of these indicators in developing 

countries. Firstly, the identification of Rhodococcus coprophilus requires a minimum 

of 18 to 22 days incubation time, a period that precludes the use of the indicator 

during epidemics due to the requirement of rapid results. Secondly, the positive 

identification of Rhodoccus coprophilus post incubation requires a good 

understanding of microbe morphology as the description of the expected colonies is 

rather imprecise and complex in available papers (Howard et al. 2000). These 

problems preclude the use of Rhodoccus coprophilus as a routine indicator. The 

analysis of Sorbitol Fermenting Bifidobacteira (SFB) in comparison is a more realistic 
indicator to be used in hazard assessment and as a possible indicator in epidemic 
investigation. The study concluded that although anaerobic conditions are required for 

analysis, a shortened period of 48 hours incubation combined with clearer available 

guidance on colony identification resulted in SFB as a more reliable indicator in 

developing countries. 

Further studies reinforce the point that both on site and off site-sanitation systems in 

developing countries pose varied degrees of pollution threats. Studies by Hoffman 

(1994) of off site sanitation on surface water recorded high levels of E. coli and 

phosphates in a surface' water source downstream from overflow from a blocked 

sewer with a reduction in levels of concentration of these pollutants downstream due 

to natural processes of purification and dispersion. Studies by Hoffman (1994) and 
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Fourie et al (1995) concluded that definition of pollution from sanitation is complex 

and requires consideration of three main factors: 

1. Varying subsurface conditions - including a number of subsurface soils with 

distinction between saturated and unsaturated layers, 

2. Varying contaminants - varied contaminants with different characteristics 
(e. g. mobility and persistence) affected by differing subsurfaces, 

3. Varying mechanisms of movement - through varied materials. 

The literature suggests a consensus as to the importance of on site sanitation as a 

primary cause of microbiological pollution of groundwater. However, the majority of 

evidence presented relates to point source pollution from water-borne sanitation (such 

as septic tanks, sewers) in the developed world (Cogger 1988). In this. case, the 

hydraulic loading exceeds the saturation capacity of the topsoils resulting in 

percolation of pathogenic micro organisms into the groundwater. Studies by Fourie et 

al (1995) note that where hydraulic loading exceeds soil saturation capacity, 

breakthrough of pathogenic material may occur. For example studies by Cogger 

(1988) of the risk of groundwater contamination from on site sanitation from a high 

rise apartment complex in Long Island, New York, viruses leached through 

approximately 3m of unsaturated soil. The study concluded that extensive viral 

movement was only possible due to the design of the on site system used for the 

apartment complex that experienced heavy hydraulic loading. 

In contrast, on site sanitation systems in developing countries associate less 

significance to sanitation as a potential source of contamination (MacDonald et 

al. 1999). In many developing countries, a large percentage of on site sanitation is 

provided through pit latrines where the potential hydraulic loading is less than from 

water borne sanitation. Where the hydraulic loading is less, studies indicate the 

subsurface leaching can provide a very effective means of attenuating contaminants. 
Studies by Lewis et al (1984) indicate that the risk to groundwater from onsite 

sanitation is minimal. They state where the thickness of fine unconsolidated strata is 

at least 2m between base of latrine and groundwater, adequate filtration of pathogenic 

micro-organisms is achieved. 
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Supporting the theories of Lewis, findings from catchments in South Africa (Fourie et 

al 1995) and Kampala, Uganda (Howard et a12003) suggest that pollution derived 

from water-borne sanitation (off site sanitation) is of greater concern than that from 

basic unimproved pit latrines (on site sanitation). Fourie et al concluded that the 

microbiological risks associated with helminths and protozoa from on site sanitation 

are minimal due to either absorption in clayey soils or physical filtration restricting 

movement of helminths and protozoa in alluvial soils. The potential risk of 

contamination from viruses and bacteria was concluded as being only significant 

when either the water table or a horizon of fractured or karst bedrock occurs at 

shallow depths. The study concluded that risks from pit latrines are minimal where an. 

unsaturated layer underlain pit latrines acting as a barrier to reduce hydraulic 

conductivity. For water-borne sewerage the potential of breakthrough in the 

unsaturated zone increased due to its greater hydraulic loading. 

Pedley et al (1997) emphasise that the greatest risk posed by on site sanitation to 

groundwater occurs at depth where engineering works meaningfully penetrate the 

unsaturated zone. The studies indicate that where a pit latrine is greater than 3 metres 
in depth, the potential risk to groundwater increases as the pit bypasses the most 

active attenuating layer in the unsaturated zone. This, note Pedley et al (1997), results 
in a higher concentration of faecal loading as opposed to conventional water -borne 

sanitation systems such as septic tanks. This is supported by, Sutton et al (1994), who 

argue that in sparsely populated rural areas, existing practices of shallow burial of 
faeces close to the ground surface may present less risk to groundwater pollution than 

pit latrines as disposal of faeces in shallow pits allows decomposition of faeces 

through exposure with direct sunlight resulting in solar injury of pathogenic bacteria. 

In support of Pedley et al (1997), studies of the risk of microbiological contamination 

to groundwater supplies in Bangladesh, Ghana, Malawi, Mozambique, and Uganda, 

indicate that direct ingress of contaminants through insanitary well completion is the 

primary route of contamination (Amuzu 1993). The studies note that where 

engineered insertions such as wells, springs and boreholes are made to access 

groundwater sources, increased risk of groundwater contamination occurs. The studies 

note that of greater concern than sub surface leaching of contaminants in developing 

countries, is the potential of localised pathways of contamination. These include 
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percolation of contaminants through poorly sealed wellheads, pollution from the use 

of contaminated water lifting mechanisms (such as rope and buckets, handpumps etc), 

ingress of contaminants through cracks in wellhead platforms and subsurface leaching 

of contaminants from poor drainage. 

The studies conclude that insanitary practices in the proximity of a wellhead are 

primary causes of contamination of groundwater sources. Studies by Amuzu (1993) in 

Ghana note a direct correlation between microbiologically deteriorating water quality 

and scouring of contaminated storage containers and washing of faecal infested 

children's clothes on a cracked apron head. Similarly, studies of priming handpumps 

with contaminated water, and feeding cattle in close proximity to a water source 

create direct hazard sources (MacDonald et al. 1999). In support of MacDonald, 

Cronin et al (2002) note that studies from Mozambique indicate the primary 

hazardous sources relate to surface faecal matter (discarded faeces, flooded latrine 

contents) entering the wells through insanitary well protection. 

2.3.3 Summary 

The literature recognises microbiological contamination to be of greater health 

significance than chemical contamination as chemicals have been proved to cause 

adverse as opposed to acute health effects. Furthermore, it suggests that factors 

affecting the occurrence of pathogenic micro organisms in groundwater include 

environmental conditions, properties of the organisms, and survival and transport of 

micro organisms in the subsurface soils. For these reasons, the literature concludes 

that viruses and bacteria are of greatest significance as indicators of pathogenic 

contamination of groundwater. The literature further suggests that viruses 

(specifically coliphage) are also useful indicators. 

The literature highlights the need to develop a multivariate risk model that can be 

used to both assess and manage risk of microbiological ingress to groundwater. Due 

to the scope of this research, the model will not include naturally occurring or 

- -- - -- synthetic chemicals, but will rather focus on the risk of microbiological contamination 

through localised and aquifer pathways. The relative significance of these factors as 

compared with current knowledge will be researched in section 2.4 with a view to 

identifying key indicators in the development of a multivariate risk model. 
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2.4 Pathways to Contamination 

Reviews of the source-pathway-receptor relating to the contamination of shallow 

aquifers from faecal sources suggest that reliance on hydro geological models alone is 

inadequate. As noted by Gelinas et a! (1996) "although thorough hydro geological 

studies are needed to determine contaminant pathways there are other contaminant 

pathways such as insufficient well maintenance which appear to be the main factor 

contributing to bacteriological contamination. " Review of available literature on this 

subject reveals two main pathways of contamination - see Figure 6 (ARGOSS 2002): 

a) Aquifer pathway - where pathogens migrate through the subsoil from a faecal 

source to the water table, 

b) Localised pathway -a rapid bypass mechanism where pathogens enter the 

intake of the water supply. This is due to poor design and/or construction of 

the water supply and surface cracking of unsaturated soils resulting in limited 

residence time of the microbes in the subsurface. 

Figure 6: Pathways to Contamination 
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The subsections 2.4.1 and 2.4.2 will review available literature on both aquifer and 
localised pathways. The review will begin with the inference of subsurface leaching 

of contaminants and specific aquifer properties on shallow groundwater pollution. It 

will then examine the significance of localised forms of contamination in developing 

countries. 
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2.4.1 Aquifer Pathways 

Comprehensive literature reviews have been undertaken on the topic of aquifer 

pathways of pollution in developing countries namely by Lewis (1980), Van 

Ryneveld (1997) and Howard et al (2003). These reviews observed that much of the 

scientific literature on pathogen behaviour in aquifer pathways related to the risk of 

contamination from septic tank effluent in the United States and not to the use of pit 

latrines in developing countries. More recently, the British Geological Survey and the 

Robens Institute have published findings from research to Assess the Risk to 

Groundwater from On Site Sanitation (ARGOSS) in developing countries. The 

ARGOSS (2002) research defines aquifer pathways as the "hydrogeological 

conditions that affect the migration pattern of a pathogen from a faecal source to the 

receiving water body. " 

These aquifer pathways consider factors such as contaminant loading, soil 

permeability and porosity, and distance from source to receptor. A number of 

multivariate groundwater vulnerability index tools have been developed to assess this 

risk including DRASTIC, EPIK, GOD and LE GRAND (Auge 2004). These tools are 

reliant on data, and can be used to delineate the boundaries of groundwater supply 

protection areas (Foster et al 2002). In a developing country context this may result in 

establishing safe distances between a faecal source (e. g. septic tank/pit latrine) and a 

water receptor (e. g. well/borehole). There are however limitations in providing 

guidance on supplying protection zones in developing countries including; limited 

data availability, complex and dynamic traditional land tenure practices and adoption 

of unrealistic distances for siting water supply points from domestic dwellings. These 

are discussed in detail below. 

Of concern for this research are the specific hydrogeological conditions that determine 

extended risk to groundwater from both on-site sanitation and off-site sanitation 

systems. These specific hydrogeological conditions include flow velocity, porosity, 

temperature, aquifer grain (pore) size, solid organic carbon, temperature, pH, 

advection and hydrodynamic dispersion (USEPA 1994, Robertson et al. 1997). More 

specifically, the literature suggests that central to an understanding of aquifer 

pathways is a knowledge of specific die off kinetics of individual microbes. Foster et 

al (2002) notes that these are dependent on the size of the microbe as well as the 
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matrix of the aquifer. Guidelines on specific die off kinetics however vary from virus 

survival of up to 400m in silt or sand to 1600m in Karst limestone aquifers (Robertson 

et al 1997, Doerfliger et al 1999). 

Despite the aquifer-specific die off kinetics, there is a recognised consensus that 

primary attenuation of polluted groundwater occurs in the unsaturated soil surface. 

For example studies by Gebra et al 1975, note that straining of bacteria occurs at soil 

surface through the accumulation of retained bacteria. This is reinforced by further 

studies by Brown et al (1979) who noted that most faecal coliform bacteria and 

coliphage viruses were removed within the first 30cm of unsaturated soil beneath 

absorption trenches in Texas, USA. Similarly, laboratory studies undertaken at the 

University of California by Regli et al. (1991) reported that in permeable alluvial 

soils, complete virus die off occurred within 1. Om of subsurface. This is also 

applicable in developing countries, where studies undertaken in South Africa indicate 

virtually complete die off of both selected bacteria and viruses within 3m of top soils 

(Fourie et a! 1995). 

Nonetheless, the majority of evidence suggests significant migration pathways are 

achieved where preferential pathways are created below the topsoil. This is of 

particular concern in chalk or karrt aquifers where multiple preferential flow paths 

can be created. In comparison in the majority of confined clay topsoils, minimal 

migration pathways are present. Exceptions are montmorillonite clays that occur at 

ground level or at shallow depths. These clays are prone to fracturing due to their high 

shrinkage rates and the flat plate like structure of clay particles. 

Studies by Preene et al (2003) in the United Kingdom have indicated that increased 

risk of aquifer pollution from surface activities occurs when the top soil is punctured 
by civil engineering works resulting in migration of polluted water along vertical 

preferential pathways. This is of particular relevance for developing countries where 

pit latrines frequently puncture top soil and place the pollutant below the top soil 

-- zone, leaving the unsaturated zone as the first line of defence to groundwater pollution 
(Howard et al. 2003). 
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Evidence of the potential for micro organisms to pollute groundwater aquifers from 

pit latrines suggests that lessons cannot generally be learnt from pollution via aquifer 

pathways from water-borne sewerage. Studies undertaken in Nottingham, United 

Kingdom to estimate the risk to groundwater of leaking sewers in sandstone aquifers 

challenge conventional theory that states that "sewage exfiltration is mainly biological 

in nature and bacteria in the groundwater would render it harmless before it can 

reach the groundwater table" (Powell et al 2003, Reynolds et al 2003). The study 

assessed the microbiological quality of groundwater collected from depth at specific 

intervals using multilevel piezometers within a Permo-Triassic Sherwood sandstone 

aquifer. The study concluded that sewage-derived bacteria and viruses are observed to 

penetrate the entire thickness of the sandstone aquifer with the shallowest sampling 

interval near the water table being the least heavily contaminated. The investigations 

confirmed widespread contamination of shallow groundwater from a sewage derived 

source (Reynolds et al 2003). Limitations acknowledged in the study however note 

that the findings may be particular to sandstone geology and not be applicable to other 

geological formations where sandstone aquifers aid rapid dispersion through flow 

paths that allow near-surface flows to quickly reach depths. 

The Nottingham study supports evidence that sewage derived micro organisms do not 

migrate from the water table at the sampling location but spread laterally at specific 

depths. Although true for water-borne sewerage, this is not the case for dry pit latrines 

due to the reduced hydraulic loading experienced in pit latrines. Estimations of the 

impact of pit latrine infiltration into groundwater undertaken in Epworth, Zimbabwe 

indicate that pit latrine contents leach downwards (vertically) and not laterally 

(horizontally) as in sewers (Chidavaenzi et a! 2001). Results indicate that a minimum 

5mri depth between the base of the latrine and the static groundwater level is required 

to reduce potential groundwater pollution. This ensures a thicker dry soil filtration 

buffer layer which reduces the potential for groundwater contamination. The study 

further emphasised the importance of refuse pits and unused wells as an additional 

means of short-circuiting potential groundwater protection. Nonetheless, studies 

undertaken into pollution of both deep and shallow aquifers in the weathered 

crystalline basement rock in Uganda, indicate no apparent relationship between the 

magnitude of contamination and the distance separating a shallow well from a 
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contaminated scoop latrine (human excreta disposed of in open pits) (Howard et al 

2003). 

Conflicting evidence of die off rates of selected pollutants in aquifer pathways has 

therefore resulted in the creation of wellhead protection areas or setback distances 

from faecal sources of pollution. These areas are usually divided into wellhead 

operational zones, sanitary inspection zones, microbiological zones and total source 

capture areas (Foster et al 2002). The indicated set back distances from sources of 

faecal pollution to the groundwater sources is site specific and varies from country to 

country. 

In a study of Groundwater Quality Protection, Foster et al (2002) note varied 

distances from 10 to 400 days travel time at flow velocities of lm per day as a suitable 

size for the total source capture areas. In contrast, the USEPA (2001) have indicated 

distances of between 210-325 days travel time from septic' tanks to achieve a 

minimum 11 log reduction at a travel velocity of lm per day in risk of viruses to 

groundwater. In comparison for protection zones established for the coral limestone 

aquifers of Barbados, it is recommended that delineation distances of 600 travel time 

days should be used for total source protection. There are therefore various sizes of 

source protection zones for different aquifer properties. 

Further research by Yates et al (1989) give estimations of appropriate set back 

distances from septic tanks that are not founded on numerical guidelines for distances 

but rather on statistical techniques for determining probability of faecal 

contamination. These distances are dependent on local hydro geological, climatic and 
land use categorisations. The study concluded that to maintain a7 log reduction in 

numbers of viruses in groundwater, a wide range of setback distances (from less than 

15m to greater than 300m) are required dependent on soil types. Further research by 

the University of Idaho (2003) support the views of Yates et al noting that delineation 

of protection zones is dependent on both prevailing soil conditions and topography. 

In contrast to this research, Chilton et al (2003) note the research by Yates et al 

neglects two keys components in their estimation of protection zone, namely; 
intensity of pollutant and duration of application of pollutant load. In agreement with 
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Chilton, Robertson et al (1997) note that the horizontal travel distance of pathogens is 

governed principally by the intensity of the pollutant load and its ability to varied flow 

velocity with in groundwater. This is of particular significance when estimating the 

potential for contamination of groundwater from on site sanitation. Due to the limited 

hydraulic loading of a pit latrine, a biological layer forms at the base of the latrine, 

which limits vertical contaminant movement. This is of great significance when 

approximating appropriate distances for enteric viruses, as they require a live host, 

such as a vertebrate animal, to reproduce. The lack of such a host, notes Robertson et 

al (1997) in a groundwater environment limits both the migration and life span of 

viral pathogens. 

There is however a consensus that the delineation of zones based on hydraulic 

gradient is dependent on prevailing hydrological conditions. This is particularly 

pertinent in tropical countries where seasonal rainfall results in temporal variations in 

levels of contamination. Studies undertaken of springs in weathered crystalline 

aquifers in Kampala, Uganda indicate a significant deterioration in microbiological 

groundwater quality with in 12 hours of a rainfall event (Howard et al 2003). An 

important consideration for delineation of protection zones is that the study identified 

the spring to be fed from interflow (locally recharged waters moving laterally through 

unsaturated, heterogeneous material) and/or surface runoff infiltrating the hardcore 

behind the protected springs. The presence of this recharge contributes to spring water 

quality and must also be considered in approximating groundwater protection zones. 

This is supported by evidence from studies undertaken in Gambia, Sierra Leone and 
Zambia regarding the seasonality of groundwater quality (Barrel et al 1979, Wright, 

1986). In a study of wells in rural village in the Gambia, Barrel et al (1979) noted an 
increase of 10 orders of magnitude for bacteria following the onset of the rains over a 

period of 6 days. Further studies in Zambia concluded that peaks in faecal 

contamination of wells were associated with rainfall as a result of surface flushing of 
faecal material. 
However in contrast to these views, studies by Wright (1986) of the seasonality of 

water quality in Sierre Leone noted consistently low rates of contamination during the 

wet season. The study examined levels of selected faecal indicator bacteria and 
incidence of Salmonella spp. over a one year period. The study concluded that counts 
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were generally increasing during the dry season culminating in peaks at the transition 

from dry to wet season. This increase was attributed to lack of sanitation development 

and the sporadic nature of rainfall patterns in the study area. As a result much of the 

human and animal waste was deposited at the soil surface and flushed into the water 

sources during the rains. Additionally, due to the water sources diminishing in the dry 

season, a lower level of dilution or concentration effect of faecal contamination was 

observed in the dry season resulting in higher detection levels. 

There are therefore limitations in providing guidance on source protection zones as a 

risk reduction measure for shallow groundwater in developing countries. Often the 

delineation of these zones requires extensive knowledge of the prevailing hydro 

geological, hydrological and geological conditions. This data is often not available in 

developing countries and can result in the adoption of unrealistic and unobtainable 

protection zones. Instead, alternative methods are required. As noted by Cave et al 
(1999), data from research undertaken into technology choice and risk reduction 
indicate that it may be cheaper to combine on-site sanitation with public water 

supplies drawn from outside the protection zone, than to combine on-site wells with 

off-site sanitation. Although of relevance to urban areas, financial and cultural 

constraints make such service levels difficult to achieve in remote rural communities. 

Instead simplified approaches to estimation of groundwater protection zones are 

required. For example, Foster et al. (2002) proposed a simplified approach using a 

simple mass balance equation. The approach involved estimations of safe distances 

based on a theoretical relationship between population density, rainfall infiltration and 

resulting nitrate concentrations. Many other countries have adopted a similar 

simplified minimum distance approach. In South Africa for example standard 

minimum distances of construction of pit latrines 15m from shallow water sources 

and 30m from very shallow water sources are applied (Van Ryneveld et al 1997). 

Studies by BGS and the Robens Institute on the Associated Risks to Groundwater 

from On-Site Sanitation also developed minimum distance and depth guidelines for 

latrines and wells based on specific aquifer media (ARGOSS 2001). 

Gerba et al (1975) however note limitations in adopting a minimum distance approach 

as they do not confirm to hypothetical hydrogeological profiles, do not consider die 
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off rates of specific micro organisms and make limited distinction between 

permeability in saturated and unsaturated zones. Gerba states the importance of 

consideration of survival of enteric bacteria in soil. Factors affecting greater survival 

time include soils with high moisture content during peak periods of rainfall, longer 

survival in cooler temperatures with high pH and in soils in the unsaturated zone. 

The applicability of these groundwater protection zones in developing countries is 

questionable for a number of reasons. The first is that safe distances for siting a water 

source are dependent on changing land use practise. In a developed country context, 

public land tenure acts may result in the development of dynamic groundwater 

protection zones. In developing countries this is less feasible as many private owned 

lands have traditional land laws that do not conform to civilian law. Furthermore, the 

application of protection zones in developing countries will inevitably increase the 

distance between a domestic dwelling and a water source. In rural areas, where in 

house or yard water connections are uncommon, water usage patterns will be affected. 

Studies undertaken in the 1970s and 1980s indicate that where water is further away 

or involves a return trip travel time exceeding half an hour, water consumption 

significantly decreases (see figure 7). Although there are limitations in the size and 

shape of the graph, it offers a guide to the time and distance relationship, showing that 

for short journey times large volumes of water will be used; for journey times of 

between about 5 and 30 minutes water use does not change significantly and for 

longer journey times (round trip times of more than 30 minutes) water use decreases. 

Figure 7: Time distance graph 
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Studies by Lewis et al (1984) state the application of stringent groundwater protection 

measures may result in communities in developing countries siting boreholes or wells 
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in areas outside of village boundaries. For example in Malawi the application of a 

minimal distance of 100m from water source to pit latrine resulted in communities 

reverting back to the use of more polluted unprotected sources. Therefore the 

application of groundwater protection zones that require extensive travel times for 

microbiological die off will discourage the collection of the recommended 20 litres 

per person per day and result in negative public health outcomes. 

In summary, the literature suggests uncertainty in estimating appropriate methods for 

establishing wellhead or set back distance protection zones. Methods to estimate these 

distances range from standard distances of construction, site-specific detailed hydro 

geological setback distance calculations and statistical probability methods. Despite 

discrepancies over the most appropriate methods for groundwater protection 
delineation, the literature provides agreement on the importance of both topsoils as a 

means of increasing residence time and in limiting potential aquifer contamination 

and of the impact of localised pathways of contamination. It furthermore emphasises 

the risk of aquifer pollution when civil engineering works such as water well or 

sanitation construction punctures the confining bed or topsoil. These forms of 
localised pathways are discussed in greater detail in the following section. 

2.4.1 Localised Pathways 

Shallow groundwater is generally assumed -to 
be of good quality due to the filtration, 

absorption, advection, hydrodynamic dispersion and inactivation of pathogenic micro 

organisms in the sub soil. Nonetheless, as noted in section 2.4.1 the creation of 

preferential flow paths through forced abstraction can increase the risk of 

contaminating water quality due to localised pollution (Gelinas et al 1996).. These 

localised pathways may include ingress of contaminants along localised pathways 
from diffuse surface faecal sources (associated with inadequate sanitation conditions), 

and through poorly sealed annuluses of -boreholes and cracks in surface aprons 
(associated with construction faults and inadequate maintenance of wells). 

-- 
Of particular relevance to microbiological contamination of shallow groundwater is 

direct contamination of groundwater at the point of abstraction or resulting from rapid 

recharge pathways close to the source. As noted by Robertson et al (1997), where 

contamination is allowed to enter the groundwater source via localised pathways, the 
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travel time may be too limited to ensure adequate die-off and processes of attenuation 

may not be effective to reduce risk of microbiological contamination. 

A number of recent studies highlight the importance of localised pathways of 

contamination as a primary route of microbiological contamination of shallow 

groundwater in developing countries (Gelinas et al 1996, MacDonald et a! 1999). The 

studies point to localised pathways being of particular relevance for microbiological 

contamination due to direct ingress at the point of abstraction. This is of particular 

relevance in boreholes and wells where poor design, construction and operation and 

maintenance of headworks and pumping mechanisms can result in the creation of 

preferential flow paths and rapid bypass mechanisms to the intake of the water supply 
(Amuzu 1993, Barret et al. 1999). 

Furthermore, the importance of localised pathways is not a problem solely affecting 
developing countries. Examples from both Nottingham, UK and Walkerton, Canada 

emphasise importance of localised pathways as primary routes of contamination 

(Hrudey et al. 2002, Powell et a! 2003). Studies of the impact of leaking sewers on 

shallow groundwaters in Nottingham, UK by Powell et al (2003) indicated that the 

insertion of piezometers provided preferential pathways for bacteria and viruses to 

penetrate the aquifer. This resulted in significant short circuiting of vertical 

groundwater flow around the annuli of each bundled multilevel piezometer. Similar 

results were found from a study of an outbreak of disease caused by the presence of 
Cryptosporidium in water supplies in April 2001 in North Battleford, Canada (Hrudey 

et al. 2002). In total between 5800 and 7100 people were affected with severe gastro 
intestinal illness resulting from contamination from disposed sewage effluent 3km 

upstream of the drinking water intake. It led to a legal enquiry (known as the 

Walkerton enquiry) as to the specific cause of the outbreak. The study concluded that 

lack of management of source protection of shallow wells (5-8m) within the vicinity 

of the main water intake resulted in cross contamination from livestock faeces 

(Hrudey et al. 2002). 

Further studies in the literature from developing countries support the views that 

traditional (shallow) sources are prone to contamination through direct ingress of 

contaminated water from localised pathways. For example scoping studies of 
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groundwater quality in Dar Es Salaam, Tanzania revealed more than 70% of samples 

taken from traditional sources indicated faecal contamination (Hepworth 2001). The 

study identified livestock /human faecal polluted water seeping in through poorly 

sealed well heads as the principle cause of contamination (Hepworth 2001). In 

agreement with Hepworth, a study of the effects of on site sanitation on groundwater 
in Kampala, Uganda, (Howard et al 2003), noted that high levels of localised 

contamination from surface pollution were recorded in water sources with poor 
headworks protection. The study concluded the quality of water from point water 

supplies is largely technology dependent. 

Similarly, studies by (MacDonald et al 1999) in perl urban communities in Dhaka, 

Bangladesh point to localised contamination of the tubewells as the primary pathway 

of contamination. The contamination was attributed to three sources; firstly the use of 

poor quality of water for the priming of the handpump. The study recorded counts of 

>500FC/100ml during the first round of sampling. Secondly, the percolation of 

contaminated shallow water down the back of the casing. This was of particular 

concern in tubewells drilled with the manual "sludging" technique where the method 

of construction often precludes the sealing of the annulus between the borehole and 

casing with a gravel pack. The third possible pathway of contamination was seepage 
from contaminated surface water through cracked (or missing) platforms. 

A comparison of field based observational sanitary inspections and water quality 

monitoring in studies in Guinea by Gelinas et al (1996) indicated a strong correlation 
between unsanitary wellhead completion and the magnitude of faecal contamination. 
Specific localised pathways such as lack of adequate plinths and limited grouting of 

upper well walls correlated with increases in contaminated water. 

In contrast to these findings, Sutton (1994) suggests that, although a primary route of 

contamination, localised pathways alone are not the primary cause of faecal 

contamination of unprotected wells (Sutton 1994). In a study of more than 1000 wells 

-- -. -.. in Zambia, only-one in three traditional wells were polluted. Sutton (1994) suggests 
that other routes such as poor hygiene practice at household level are of greater 

significance. 
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Studies by Bartram (1996) and Howard (2003) identify some of the contributing 

hazards and vulnerability factors and tools used for the assessment of risk to shallow 

groundwater from faecal contamination. The studies noted that the collection and 

analysis of water quality monitoring and sanitary inspection data could be an effective 

means of establishing the source of contamination of shallow groundwater. In relation 

to risks from on-site sanitation, BGS and the Robens Institute further note that the use 

of these tools "offers the potential for countries and organizations that lack detailed 

hydrogeological data to develop an understanding of the relative risk to groundwater 

contamination ". 

2.4.2 Summary 

A review of available scientific literature suggests there are high incidences of 

microbiological contamination of shallow groundwater in developing countries. 
Global studies suggest that this - contamination is derived from a number of sources 
including: 

- On and off site sanitation, 

- Polluted surface water intrusion from anthropogenic/livestock surface activity, 

- Surface leaching within groundwater protection zone. 
Due to the construction of sanitation facilities below the subsurface, the literature 

emphasises the importance of various barriers to reducing risk of shallow groundwater 

to microbiological contamination. 

The first of these is subsurface soil filtration as an effective means of pathogen 

removal. The literature emphasises the importance of the topsoil as the first line of 

natural defence to reduce the risk of microbiological contamination of groundwater. 
The second barrier to contamination is related to localised pathways of contamination. 
The literature suggests that the pathway provides rapid bypass mechanisms to the 
intake of the water supply limiting the residence time of the microbes in the 

subsurface levels. 

Factors affecting the potential for ingress through localised pathways include poor 
design, construction and maintenance of water supply headworks, linings and 

pumping mechanisms. The literature suggests that localised pathways are of 
increasing concern and require further research. However, the literature reveals 
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limited information on the effectiveness of these varied engineering barriers to 

contamination through localised pathways. Section 2.5 will therefore review the 

effectiveness of varied engineering barriers in reducing the risk of microbiological 

contamination of shallow groundwater through localised pathways. 

2.5 Barriers to Contamination 

The severity of contamination of shallow groundwater is closely related to the design 

and construction of the protective engineering barriers. As noted in studies by Lewis 

et al (1984) "inadequate sanitary protection measures during construction allow 

pollutants to bypass the natural soil protection normally given to the aquifer. " Sub 

section 2.5.1 will review the available literature on engineering barriers to 

microbiological contamination of shallow groundwater through localised pathways. 

Sub section 2.5.2 will then discuss various studies undertaken in developing countries 

as to the effectiveness of these engineering barriers in reducing risk of contamination 

followed by sub section 2.5.3 that will select appropriate indicators or control 

measures required to manage risk reduction of the varied engineering barriers. 

2.5.1 Technology Types 

Roberston et al (1997) note four basic principles in the protection of groundwater 

from faecal contamination: 
1. Minimizing existing potential surface source of contamination within the 

watershed, 
2. Protecting the water collection system and the immediate areas, 

3. Minimising mobility/persistence of microbes and chemical contaminants in 

the soil, and, 
4. Monitoring the resource for early signs of problems. 

This section will focus on the protection of the water collection system and the 

immediate area with specific reference to varied engineering barriers to reduce risk of 

microbiological contamination of shallow_ groundwater through localised pathways. 

Engineering barriers in this context are defined as "the protective barriers that 

prevent direct ingress of pollutants through localised pathways. " (Howard et al 

2005). Similar to processes adopted in environmental risk assessment models, it is 
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essential to identify these protective barriers as indicators during the risk assessment 

stage (Gale 2001). These barriers then serve as indicators for effective prediction of 
failure during the risk management stage. 

Of particular importance is the barrier of wellhead protection and sanitary completion. 

Wellhead completion is defined within the WHO Groundwater Monograph as "the 

underground and over ground construction of the abstraction facility as well as the 

immediate area surrounding the abstraction point. " (Howard et al 2005) This 

wellhead protection prevents direct ingress of contamination through localised 

pathways. This chapter will review specific wellhead protection and sanitary 

completion measures used in hand dug well and borehole construction in shallow 

groundwater. The specific wellhead completion measures include varied materials for 

well lining, well grouting and sealing, types of sanitary seals, designs of headworks 

and types of pumping mechanisms. Each of these can be considered an engineering 
barrier to contamination. 

More specifically, these barriers may be considered control measures to 

contamination. Adopting the WHO recommended Water Safety Plan (WSP) approach 

to the assessment and management of microbiological risk to groundwater; specific 

control measures may be identified for each technology (WHO 2004, Davison et al 

2005, Godfrey et al 2005). For example a specific control measure for an apron of a 

hand dug well is: 

" Good drainage around wellhead, 
This may be achieved through: 

" Construction of diversion ditches to direct run off away from wellhead. 

To identify appropriate control measures, this section will firstly review the available 

technologies and then establish appropriate control measures for each technology. 

The protection of shallow groundwater sources is designed to enable the extraction of 

a sufficient quantity of uncontaminated drinking water for public consumption. 
Crucial- to achieving this are both underground and overground construction 

technologies. Each are protective measures employed to reduce the possibility for 

contaminants to migrate into the groundwater source. Robertson et al (1997) highlight 

four guiding principles in the establishment of these protection measures: 
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1. Increase travel time of groundwater and/or microbes from the source area to 

the well, 
2. Increase degree of physical filtration, 

3. Increase physical interception of microbiologically contaminated water, and, 

4. Alter chemical environment to decrease subsurface mobility/longevity of 

microbes. 
The selection of appropriate technology options to achieve effective protection 

measures must firstly consider the prevailing hydro geological environment - depth 

and extent of aquifer, attenuation capacity of topsoil, expected yields, depth and 

nature of overburden, degree of inter-connection between different aquifers (Pedley et 

a! 2005). Based on these conditions, appropriate technological choices can be made. 
Protection of shallow groundwater in developing countries often involves the use of 

three technologies; boreholes, hand dug wells and spring protection. The third of these 

(spring protection) involves the protection of a natural groundwater source by 

providing protection measures around the `eye' of the spring (where the water 

emerges) (Morgan 1990). Assessment of microbiological risk to springs often 
involves a broader understanding of the prevailing hydrogeological conditions and is 

less dependent on the specifics of the engineering barriers at the point of abstraction. 
Recent studies by Howard et al (2003) however emphasise the importance of the 

immediate surroundings and engineering barriers but acknowledge the overriding 
importance of hydrogeological conditions for springs. For these reasons, springs are 

excluded from this study. Focus will be given specifically to a comparison of the 

effectiveness of wellhead protection for both hand dug and borehole wells. 

2.5.1.1 Boreholes and Wells 

Definition and terminology applied to both boreholes and wells are country specific 

with the United States referring to boreholes as water wells and the United Kingdom 

referring to shallow boreholes as tubewells (Clark 1992). For the purpose of this 

thesis, the following standard definitions will be used: 

" Borehole -a drilled well constructed for the principal purpose of obtaining a 

water supply 

" Hand dug well -a large-diameter shallow water well constructed by manual 
labour. 
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Both are manmade insertions from surface to groundwater level, constructed with the 

principal aim of protecting and extracting groundwater sources. The wells are 

constructed using varied lining techniques and materials (see section 2.5.1.3 for 

details) and are protected using appropriate methods of wellhead protection (see 

section 2.5.1.2). The methods for abstracting water include levels of complexity of 

water lifting which (see section 2.5.1.4). This section will focus on the design of 

hand dug well and borehole. 

Boreholes: 

Boreholes are drilled or sunk holes constructed in the ground using drilling techniques 

and lined to prevent collapse. The most common drilling techniques for accessing 

shallow groundwater include rotary mud flush and percussion (cable too]) drilling of a 

small diameter hole (<200mm) to a depth of 10 to 40m (Driscoll 1995). The choice of 

appropriate drilling technology and the depth and diameter of the borehole drilled is 

dependent on whether the aquifer is confined or unconfined and in what given 

geological formation it is located. Detailed hydrogeological investigation is therefore 

required before any drilling commences. Figure 8: shows a vertical section through a 

borehole. 

Figure 8: Borehole (Source WEDC, UK) 
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Following the construction of a shallow borehole, the borehole is then lined with a 

uPVC or metallic borehole casing with an adequate annulus left between the screen 

and bored hole for the insertion of a gravel pack or filter. A filter media is then 

inserted to fill the annulus to above the slotted area and developed/cleaned using 

compressed air or water until uniformity in the gravel pack is achieved (Driscoll 

1995). Design of sanitary completion of wells varies between backfilling of remaining 

annuli with puddle clay/cement slurry or the use of bentonite seals. The top 1-2m is* 

then sealed using concrete grout to ensure sanitary protection. 

The literature highlights uncertainty in reducing microbiological risks throughout the 

process of borehole design and construction. These include the importance of 

observing hygiene codes of construction as well as appropriate design of boreholes to 

minimise ingress of contaminated water post construction. For example, Robertson et 

al (1997) highlight the importance of using clean drilling mud during rotary flush 

drilling. This is of particular importance in developing countries where, due to cost 

and availability, cow dung may be used as an additive to bentonite or chemical/natural 

polymer drill mud (Ball 2001). The use of this medium can result in the introduction 

of microbiological pollutants. Furthermore, the use of the sludging form of drilling in 

South Asia often precludes the use of a gravel pack within the annulus of the 

borehole. Studies undertaken in Bangladesh indicate increased presence of micro 

organisms in boreholes constructed using the sludging method due to downward 

percolation of micro organisms from subsurface. It should be noted however that 

where sludging is undertaken in sandy soils, natural collapse of the soils around the 

well point results in the formation of a natural gravel pack and increased filtration 

efficacy. 

Once the hole has been drilled, microbiological risks can be further introduced 

through inappropriate gravel pack and casing/screen design. Studies by Godfrey et al 
(2003) highlight the importance of appropriate design of a graded gravel pack within 
the annulus between the drill screen and the bore wall to minimise ingress of 

contaminated fine material. These appropriate designs include the use of appropriately 
double casing construction with grout between inner and outer casing, appropriate 

grades and thickness of gravel packs, use of geotextile stockings and insertion of 
internal filters within screens. The use of these measures reduces risk of 
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microbiological contamination via aquifer pathways. Specific mitigation of localised 

pathways of contamination may include the use of a puddle clay grout inserted above 
the gravel pack or the use of a cement slurry. 

The materials and methods used for borehole casing pose further risks of 

microbiological contamination For example the use of corroded galvanised iron 

screen may result in excessive pitting and the formation of biofilms. Studies of the 
deterioration mechanisms in metallic pipes by Rajani et al (2001) indicate that 

metallic fatigue occurs due to electrochemical decay and results in excessive 

corrosion and graphitisation. The formation of these corrosive pits support increased 

biofilm formation as well as the depositing of graphite flakes in borehole water. In 

comparison, uPVC casing is glued, and potential openings occur either where the 

solvent based cement deteriorates with age or where the casing cracks due to 

excessive pressure when the casing is inserted into the bore. 

Hand dug wells: 

Watt et al (1979) define a well as "a device for extracting water from the ground. ". 

Wells can be broadly classified into: 

a) Improved sealed wells that are lined and equipped with a pump, 
b) Protected wells with concrete plinth and windlass with drainage channel 

c) Traditional wells without concrete plinth. Water is collected by bucket. 

Various other definitions are used for hand dug wells including scoop wells, a 
traditional water source constructed at a shallow depth to 'access subsurface water 
(Sutton 1994) and upgraded wells that are periodically chlorinated (Godfrey et al 
2003). 

Hand dug wells are often only constructed to a depth of 20m, although wells have 

been constructed to 120m (Watt et al 1979). The well shaft is often dug to the water 
level and then deepened using a motor driven dewatering pump or manual suction lift 

pump. Where a suction lift pump is employed, a maximum of 6.5m depth can be 

achieved which limits the total depth of the well constructed in shallow groundwater 
to 7m. The use of centrifugal pumps can facilitate the deepening of the well to 20m 

but requires additional cost and for both pump fuel and lining materials. 
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Collins (2000) state wells can be considered in three distinct parts: the intake, the 

shaft and the wellhead. The intake is the part of the well constructed within the 

aquifer and is designed to support the exposed section of the aquifer and permit water 

to flow into the well acting as a subsurface reservoir. The intake also reduces the risk 

of fine suspended material entering the well that may increase potential turbidity of 

the well water. The rate and means of infiltration is dependent on the choice of lining 

material and type of soil. In highly permeable soils, reinforced concrete caisson intake 

linings are used with infiltration through a filter layer placed at the base of the well. In 

less permeable aquifers a perforated or permeable concrete caisson may be used 

comprising spaced perforations to facilitate the inflow of water through the sides of 

the caisson. 

Figure 9: Hand dug well (Source WEDC, UK) 
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The shaft is defined as the "section of the well between the head and the intake " 

(Collins 2000). It is designed to prevent the ingress of polluted subsurface leaching 

into the intake and to provide structural support to the headworks. Various methods 

are used to construct the shaft including in situ, caissoning, parpen, Modi/ied Chicago 

Method, cribbing and steining lining (Godfrey 2004). These involve the use of various 
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lining materials including reinforced concrete, stone, bricks, wood and plastic. The 

comparative effectiveness of each of these lining methods and materials in reducing 

risk of microbiological contamination of shallow groundwater is highly under 

researched and is an area that require substantial further research. As noted by Gorter 

et al (1995) in a review of upgrading of hand dug wells "it is not known however how 

effective are the individual components of the upgrading in reducing contamination or 

whether their combined effect is greater or smaller than the sum of the separate 

effects. " 

Evidence suggests that where in situ concrete linings are used, preferential flow 

pathways often form through cracks in cement slurry due to insufficient cement 

strength or mixing In situ linings are often only used in consolidated soils where a 

shaft is dug to the point of intake and then lined using a "dig and line" technique. In 

less stable soils, the shaft is lined at Im intervals with 0.5m deep internal steel moulds 
(formwork) (Koegel 1977). The shuttering is oiled at the surface and lowered and 

assembled using vertical reinforced bar into the well. A cement slurry of 1: 2: 5 

(cement: sand: gravel) is poured between the well and the "formwork. " Where 

shuttering is unavailable, a cement slurry (1: 4 Cement: Sand) is splashed on the well 

wall. Both constructions may be supported using what Watt et al (1979) describe as 

curbing (addition of a thicker curb or outside section every Sm to support shaft).. The 

final section of the well (the intake) is then either lined using reinforced'caisson rings 
in unstable soils or left unlined in stable soils. 

In situ lining of hand dug wells requires high levels of expertise and often is very 

complex to construct (Collins 2000). Due to poor quality of cement and inadequate 

mixing, cracks within the cement mortar are common and can result in ingress of 

contaminated water. Additionally, the seal between the base of the shaft and the intake 

often allows further ingress of contaminated water reaching the groundwater sources 
through downward percolation of micro organisms from the surface. 

-- Alternatively reinforced concrete caissons are used. These involve the sinking of a- 

preformed caisson on a cutting ring. Each of the caissons are precast on the surface 

with solid rings constructed for the shaft and porous rings for the intake. The caisson 

rings are sealed using a 10mm cement mortar layer and are sealed using a porous base 
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plug. The plug is precast at the surface from porous cement of 1: 1: 4 (cement: sand: 

gravel). Studies of the effectiveness of well protection suggest caisson lined wells 

significantly reduce the risk of microbiological contamination when properly 

constructed (Collins 2000). In cases where poor codes of construction are observed, 

severity of ingress of contaminated water is severe as the caisson provides a highly 

preferential flow path from hazard source to receptor. Examples of where this occurs 

include at the joints between caissonings. 

Other methods of lining the shaft include use of plastic pipe, wood, brick or stone 
linings. Lewis et al (1984) notes that the irregular annular spacing used in brick 

linings results in adequate seal and limit reduction in risk of microbiological pollution. 

Similarly, studies on use of wood linings note the occurrence of undue rotting off 

intake lining resulting in increased instability in the well. Studies of the effectiveness 

of backfilled wells constructed using a 200mm rising pipe backfilled with excavated 

material to ground level and connected to a reinforced concrete caisson intake in 

Malawi, noted a 31% reduction in microbiological contamination during the rainy 

season compared to previous years data (Lewis et a! 1984). The use of the backfilled 

material increased travel times of microbiological pollutants through the subsurface 

therefore increased inactivation of pathogenic micro organisms. However, despite 

reduction in risk of microbiological contamination, deepening of the well during 

drought periods or maintenance of below surface pump components were difficult to 

achieve due to minimal access to the caisson intake. 

2.5.1.2 Wellhead 

Wellhead completion is defined as encompassing "the underground and overground 

construction of the abstraction facility as well as the immediate surface area 

surrounding the construction point. " (Howard et al 2005). Watt et al (1979) note that 

a properly designed wellhead has two essential features: firstly a headwall that rises 

sufficiently high above ground surface to prevent anything "washing or blowing into 

the well mouth and narrow enough to discourage the users from standing on it and 

secondly an impervious 2m wide apron that slopes away from the well allowing 

sufficient drainage. " Many designs of aprons exist, this section outlines the guiding 

principles of these design. 
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It is recommended that headworks involve the sealing of the top 1-3m of the well with 

a cement or puddle clay sanitary seal either inserted into the annulus between the 

well/borehole lining and outer wall or the excavation of 50-100cm wide shaft (Watt 

et al 1979). This is an essential component of well design. As noted by Olanrewaju 

(1990) in a study of groundwater pollution from soak away tanks, the use of clay 

sanitary seals help absorb charged colloidal particles such as viruses. The study 

concludes that virus absorption increases with the clay content in the sanitary seal. 

If the well is to remain open, the final section of the shaft lining should be built up at 

least 80cm above ground level and if the well is to be closed, 20cm of shaft lining is 

built above ground and then a top slab or well cover is cemented onto a the shaft 
(Collins 2000). Where a sanitary seal is not used the open backfill area is subject to 

extensive erosion and potential pollution from surface run off (Nyanchaga 1994) 

The well cover should be built with a 15cm thick reinforced cement slab (8 or 6mm 

rebar at 15cm spacing) and a minimum circular or square opening of 50cm x 50cm 

inspection hole for access to the well for essential maintenance. Due to additional 

stresses around the inspection hole, extra diagonal rebars are used at each corner to 

prevent cracks developing in the concrete, as cracks may allow infiltration of 

contaminated water into the well. If a mechanical pump is used, the well cover is 

designed to facilitate the bolting of the pump on a raised pedestal 

The well is surrounded by a concrete apron or plinth. The literature highlights various 
designs of apron. Common to each of these is the importance of both an impermeable 

concrete platform around the well to prevent ingress of contaminated water and a 

soakway channel to remove stagnant discharged water. The diameter of the apron will 
be dependent on whether it is an apron for a borehole or a hand dug well. A general 

rule of thumb adapted from Watt et al (1979) is a minimum drainage apron of 2m 

from outer diameter of well or borehole. This is clearly technology specific as for a 
borehole of 0.2m diameter, a 2.5m diameter apron is sufficient and for a hand dug 

well of 1.7m diameter, an apron of at least 6m may be required (Oxfam 1998). 

A drainage channel and fence are constructed to minimise potential hazards in the 
immediate proximity of the source. The fence should enclose an area of at least 1Om 
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around the well, but care should be taken to construct it with locally available material 
in order to achieve sustainability in maintenance. The drainage or water run off 

channel should be at least 3m in length and should be constructed to divert discharged 

and stagnant water away from the source (Collins 2000). In contrast to Collins, 

Morgan (1990) recommends a water run off channel between 6 to lOm and states that 

the length of the run off should be dependent on local hydrogeological conditions. 
The method of construction of this channel may include the use of interlocked lm 

length reinforced concrete slabs or cement mortared stabilised/cement blocks. Care 

should be taken to reduce potential ingress of contaminants at the weak jointing 

between the drainage channel and the apron base. 

A soak away pit at the end of the channel can be used to collect wastewater from the 

run off in the drainage channel. Spilled water is often used for irrigation of vegetable 

gardens (Morgan 1990). However, Howard et al (2003) note this may reduce 

possibility of animals being attracted to the source but may also increase potential 
infiltration of contaminated water into the source via aquifer pathways. 

Many wells are constructed with out an apron and use only a rope and bucket. These 

are commonly termed protected or traditional wells. The literature notes varying 
degrees of protection offered by traditional wells (discussed in detail in section 2.5.2). 

Watt et al (1979) note that wells without headwalls are susceptible to microbiological 

contamination due to ingress of contaminated water through eroded sections to the 

sides of the wells. 

Traditional or protected wells are in their simplest form "a water hole, which is hand 

dug down into the water table. " (Morgan 1990). Traditional methods of upgrading the 

well include the lining of the well shaft with stones or burnt bricks to prevent well 

collapse, and the addition of cover slabs made of wood or concrete to prevent 

children/animals falling into the well. Protected wells often involve the use of a raised 
hygienic apron with a water run off or drainage channel for discarded or stagnant 

water. 

Contamination of wellheads can occur due to poor design and construction. Care must 
therefore be taken to ensure appropriate design and monitoring of specific control 
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measures within the wellhead. This may include addition of clean inert clay or other 
fine-grained material into the upper 50cm of sanitary seal to reduce permeability or 

use of cut off or curtain walls may be installed 

2.5.1.3 Water lifting 

A variety of water lifting mechanisms are used for extracting water from shallow 

groundwater for potable purposes. These range from simple rope and bucket pumps, 

shallow suction pumps functioning to 7m depth to direct action and deep well 

reciprocating handpumps (Morgan 1990). Varied levels of theoretical risk of 

microbiological contamination are known to be associated with each of these pumps. 

Outlined below is a review of the published studies on the implications of risk of 

varied levels of water lifting technologies. 

In a study in Kenya, Nyanchaga (1994) notes a direct correlation between an increase 

in faecal contamination and an increase in the number of buckets used for water 
lifting. The study observed a 70% increase in levels of contamination in wells with 

more than 3 families due to the percentage increase in numbers of families using their 

own buckets. These, note Nyanchaga, became contaminated whilst left lying on the 

polluted ground surrounding the wellhead resulting in the direct introduction of 

contaminants into the well. 

A comprehensive review of the risk posed by the rope and washer handpump in 

Nicaragua by Goiter et al (1995) indicates a reduction in levels of contamination. The 

study compared the effectiveness of an unimproved well with a rope and bucket to 

both wells with a windlass and wells with a rope pump. Results indicated a 62% 

reduction of the geometric mean of faecal contamination in wells using a rope pump. 
The study further compared the difference on the impact of water quality of using a 

rope pump either with or without concrete headworks concluding that the headworks 

had a minimal effect on the fluctuations in water quality. Conclusions drawn from the 

study agreed with Nyanchaga (1994) stating that levels of contamination increased 

with number of users as the potential for cross contamination from polluted buckets 

increases. 
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The Swiss Appropriate Technology Centre (SKAT) further recognise the current 

weakness in non standard handpump base plate design (Baumann 2003). The majority 

of handpumps require an individual well cover design to facilitate the use of the 

varied pumps. Although many of these pumps require the use of a rubber gasket 

placed between the pump base and the well cover, there is limited evidence in the 

literature to suggest how effective these gaskets are in preventing the ingress of 

stagnant water gathered at the base of the pump. Indeed, experience has shown that 

often poor concrete formwork results in the sheer pins being placed at unsymmetrical 
distances resulting in poor pump fitting. This view is supported by Jenkins (1984) 

who states that to ensure adequate protection of water sources, an off set pump is 

required. In a study of the use of off set handpumps in Nepal, Jenkins (1984) 

concluded that the pumps are effective in improving water quality as they reduce the 

level of human and animal activity at or around the well site. The disadvantage 

however of this method is that it is difficult to use with deep well pumps due to the 

type of rising rods and mechanism used for lifting. 

Further studies of the maintenance of village Level Operation and Maintenance 

(VLOM) pumps such as the Afridev or Kanzee pumps plastic indicate that where 

spare parts are unavailable or unaffordable, sever deterioration of water quality can be 

observed (Breslin 2002). Studies by Breslin (2002) indicated high levels of faecal 

contamination (>180cfu/100ml) in Afridev handpumps. The study concluded that 

principal route of contamination came from ingress of contaminants at the outlet 

nozzle of the pump. 

Conclusively, the studies note varying effectiveness of water lifting devices in 

reducing risk of contamination. There is however a consensus that the risk of 

contamination is dependent on both the age and regularity of maintenance of the water 
lifting device. There is however, limited consensus as to the effectiveness of each of 
the water lifting devices in reducing risk of contamination. This is an area that 

requires significant further research. 

2.5.2 Effectiveness of Technologies 

Conflicting evidence exists over the effectiveness of varied levels of water source 

protection. Nonetheless, there is a consensus that the design and type of source 
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construction has a major impact on water quality. This section reviews existing 
literature on the effectiveness of the varied levels of technologies for shallow 

groundwater source protection in developing countries. As well as highlighting the 

potential public health benefits of water source protection, this review indicate that 

low cost improvements to traditional sources can have as great (and in some cases 

greater) effect in reducing risk of microbiological contamination. 

Studies undertaken in the 1970s into the effectiveness of varied engineering measures 

of source improvement, highlight the importance of rainfall as key determinant of 

well water pollution (Barrel et al 1979). A study by Barrel et al (1979) of 6 wells in a 
Gambian village indicates a4 log increase in microbiological pollution during 1 to 6 

days of rainfalls. Two of the wells were improved wells constructed with caisson 

concrete linings and equipped with a sanitary wellhead and windlass. The remaining 

wells were either protected or traditional wells with poorly constructed plinths. The 

study noted an increase in levels of microbiological contamination (thermotolerant 

coliforms and enterococci) to 105/100m1 in both lined and unlined wells with the onset 

of rains with a limited difference in the degree of protection The isolation of 
Salmonella bacteria in a non lined well with a defective concrete plinth indicated a 

correlation between washing of clothes and cooking pots on concrete plinths and 

presence of Salmonella. 

This can be compared to studies by Lewis et al (1984) on the performance of sanitary 

completion measures in wells and boreholes and onset of rain in Malawi. A total of 68 

wells were analysed in 2 villages in Malawi between October 1983 and January 1984. 

The wells were divided into shallow boreholes, backfilled wells and improved wells. 
The boreholes were constructed using cable tool percussion drilling to between 10- 

40m in depth and lined with 110mm uPVC borehole casing, gravel pack, sanitary 

seal, wellhead and handpump. The dug wells were constructed using reinforced 

concrete caissoning for the intake and brick lining for the shaft. The backfilled well 
intakes were caissoned and then the shaft consisted of a 11mm uPVC guide pipe 
backfilled with excavated material. Wells were equipped with sanitary seal headworks 

and handpump. Results in the dry season indicated only 63% of dug wells, 81% of 
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backfilled wells and 80% boreholes had numbers of thermotolerant coliforms in 

excess of 20 cfu/100ml In comparison results in the wet season indicated only 50% of 
backfilled wells and 19% of non backfilled wells at 20 cfu/100ml, a dramatic increase 

in contamination in all well types. The results were more striking with the use of 

enterococci bacteria that indicated a significant increase in all well types. The study 

concluded that borehole water was better than from wells (backfilled or not) and that 

"good sanitary completion of boreholes and wells cannot guarantee total absence of 

contamination, this can only be achieved by disinfection. " 

Further studies by Gelinas et al 1996 undertaken in two districts of Conakry, Guinea 

further emphasised the importance of localised pathways of contamination through 

insufficient well maintenance. The study by Gelinas et al (1986) compared well water 

quality from both traditional and protected wells with water from the piped water 

system. The study indicated that after long periods of dryness, elevated levels of 

nitrate contamination were in the unsaturated soil layer. This resulted in high leaching 

of nitrate into wells during the wet season through localised pathways such as in wells 

with no sanitary seal. Nonetheless, of greater significance were levels of 

microbiological contamination which were noted as higher during the wet season than 

during the dry season with levels recorded as >100 cfu/100ml. The study concluded 

that lack of well designed wellheads '(including drainage channels) contributed 

significantly to microbiological contamination with limited variance between 

traditional and protected wells due to poor sanitary completion and design. 

In a study of water quality from a variety of water sources including traditional, 

protected and improved sealed wells in Mozambique, Breslin (2002) concluded that 

there was "no measurable difference between water in protected wells or handump 

(improved sealed wells). " In a detailed study of one community, results of >180 

cfu/100ml of thermotolerant coliforms were recorded in an improved well with 
handpump as compared to <30cfu/100ml in a protected well. The study noted that of 

equal importance to the engineering intervention to improve water quality were the 

hygiene messages regarding where, how and when to maintain the wells. Furthermore 

the study concluded that handpump wells provide limited improvement in water 

quality and are not a sustainable option for rural water supplies in the Mozambique 

context. 
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This view is supported by Sutton (1994) and Mbewe et al (1999) in research 

undertaken by the Ministry of Health and Department of Water Affairs in Zambia. An 

inventory of over 1500 traditional sources (including scoopholes, unlined wells and 

springs) using semi qualitative techniques was undertaken. The study observed that in 

over half of the sources, faecal coliform counts were <10cfu/100ml. The study 

concluded that minimal improvements to traditional sources can improve both quality 

and availability of safe water. 

Detailed studies undertaken by Howard et al (2003) highlight the specific risk factors 

that contribute to microbiological contamination of shallow groundwater in Kampala, 

Uganda. The study was undertaken over 12 months and involved the collection of 

rainfall, population density and water quality data related to risk of contamination of 

shallow spring water sources. Results indicated significant correlation between the 

poor sanitary condition of many of the springs and faecal contamination. Limited 

evidence pointed to aquifer pathways of contamination with greater emphasis placed 

on localised forms of contamination. 

Although the study by Howard et al (2003) is of significance for this research, it 

should be noted that the study focussed on contamination of shallow spring water 

sources and not hand dug wells or boreholes. There are limitations in this approach 

such as the distinction in levels of recharge due to the difference in depths to water 
table in both springs and wells as well as the obvious variance in design of appropriate 

engineering barriers. Methodologically however the study further highlights the 
importance of establishing a statistical association between individual variables (such 

as presence/absence of sanitary protection) and the risk of contamination of shallow 

groundwater. Section 2.5.3 explores this idea further and attempts to identify 

appropriate risk variables applicable to assessing risk of contamination of shallow 

groundwater in wells and boreholes. 

2.5.3 Variables 

In line with section 2.5.2, this section will build on the principle of dealing with risk 

as a multi-attribute or multivariable concept. A multivariate concept is a concept that 

requires numerous variables. This section identifies the key variables required to 
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develop a multivariate decision making tool to reduce risk of microbiological 

contamination of shallow groundwater. The means of comparing, presenting and 

using these variables as a decision support tool are described in greater detail in 

chapter 3. 

1. Hazard Source/Events 

The literature highlights the importance of sanitary risks located in proximity to water 

sources. It furthermore, states that location of on site sanitation facilities should not be 

considered as a primary hazard source due to minimal potential hydraulic movement 
in dry sanitation systems. Instead, research indicates that primary hazards from 

surface leaching of both animal and human faecal matter results in direct ingress of 

contaminants. This is further reinforced by studies of clothes washing in proximity of 

the well and presence*of bacteria in shallow groundwater. 

2. Rainfall 

The literature emphasises the importance of a measurement of rainfall to estimate of 

the travel distance within the contaminant pathway. The literature suggests that one 
key determinant in this movement is rainfall. It is therefore important to consider 

rainfall as an indicator within the multivariate model. 

3. Soil Conditions 

The literature further suggests that a key to minimising risk to shallow groundwater is 

a thorough understanding of the attenuation processes taking place with in the topsoil 

or surface media. A thorough understanding of its attenuation properties is key in 

assessing risk of groundwater to contamination. It should f rther be noted that where 

the top soil is thin or absence, the vulnerability of groundwater to contamination 

greatly increases. For example, numerous studies reviewed in this section indicate that 

primary routes of contamination occur through localised pathways such as poor 

wellhead construction. 

--- " 4. Engineering Barriers 

In assessing the potential for microbiological risk of contamination through localised 

pathways on wells/boreholes, limited evidence is available on the effectiveness of 
individual engineering barriers. The majority of published studies focus on a direct 
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comparison of technology types (e. g. between a protected well and a sealed lined 

well) with limited attention as to the effectiveness of each component (e. g. well 

lining, water lifting device, sanitary seal or wellhead). A statistical study into the 

effectiveness of these components of the well would be a useful tool in aiding 

decision makers to select the most appropriate form of well technology. 

5. Water Quality 

The literature also emphasises the importance of microbiological water quality testing. 

Appropriate indicators for this include selected indicator micro organisms for 

presence of bacterial and viral contamination. These may include thermotolerant 

coliforms, Enterococci, E. co1i, Coliphages and Clostridia Perfringens but suitable 

organisms are subject to further field validation. Each of these indicators will be 

discussed in greater detail in Chapter 3. 

2.5.4 Summary 

In summary, this section has reviewed a selection of engineering barriers currently 

used to reduce risk of microbiological contamination of shallow groundwater in 

developing countries. Due to the scope of the research not all technologies have been 

reviewed. Nonetheless, the reviews concluded that there remains great uncertainty in 

assessing the effectiveness of each technology. Some studies suggest that traditional 

wells are more cost effective, reach adequate levels of safe water for a greater number 

of people and are more sustainable due their lack of reliance of imported spare parts 

and skills. Other studies highlight the need for sealed, lined wells with handpumps 

stating that only with proper design and construction can safe water be assured. 

Possible construction options include the use of off set handpumps and cut off walls 

to increase travel time of contaminant water through topsoils resulting in a greater 

microbial die off. 

Consensus was however raised in the literature for the need for further research into 

risk assessment and management of technological options. To achieve this, the 

literature has identified the following key indicators of: 

- Hazard Source, 

- Soil Condition, 

- Rainfall, 
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- Engineering barriers, and, 

- Water quality. 

2.6 Literature Review Summary and Identified Research Gaps 

The literature review has assessed literary evidence on the risks of shallow 

groundwater to contamination. Using the SOURCE - PATHWAY - RECEPTOR 

relationship, the review highlights: 

a. importance of microbiology (as opposed to chemical, sources of contamination), 

b. localised pathways (as opposed to aquifer pathways of contamination), 
c. analysis of individual variates of engineering barriers as a means of minimising 

risk of contamination through groundwater receptors. 

Of significance, the review has identified a significant gap in the literature related to 

the statistical association between individual risk variates and deterioration in shallow 

groundwater quality. Although recent studies by Howard et al (2003) explore this 
idea for shallow springs, there are few other identified studies related to 

contamination of shallow wells or boreholes. The following chapters will therefore 

expand on this and present data collection, analysis and management tools to improve 

academic understanding of the risk of microbiological contamination of shallow 

groundwater. 
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Chapter 3: Selection of Risk Variables 
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3.1 Introduction: 

Chapter 2 highlighted the importance of the three principal patterns of groundwater 

pollution, namely the source, pathway and receptor routes to contamination. Review 

of available literature highlighted a consensus that microbial (as opposed to chemical) 

contamination is of greater significance due to its rapid adverse impact on public 
health. It further stated the importance of localised as opposed to aquifer pathways of 

contamination as of significance in a developing country context, and finally focused 

on wells as opposed to boreholes as the selected technology to be used for shallow 

groundwater exploration in this research. 

In reference to the research methodology outlined in Chapter 1, this thesis follows an 
Experimental Design research method. Within this design, the defined problem within 

the research is repeated continuously to remind the reader of the research aims and 

objectives. The defined problem of this research is, How to assess the significance of 

variables affecting microbiological risk to shallow groundwater? In line with Chapter 

2, this section will build on the principle of dealing with risk as a multi attribute or 

multi variable concept or model. 

This chapter identifies the key variables in the multivariate model. Variables or 

attributes were selected from a variety of sources including literature, interviews, 

discussions and communications with other professionals in the sector and were 

selected for the following reasons; 

" Firstly the literature review provided evidence of the significance of variables at a 

generic level (i. e. in defining risk to shallow groundwater at a catchment level). 

" Secondly the discussions/communications provide sound observations in the area; 

although they may not follow rigorous scientific methodology and have not been 

published they are of significant value in identifying the risk variables, and are 
based on professional experience. 

This chapter explores the variables identified from these sources. The chapter 

researches in greater detail the specific factors that must be monitored in the field to 
gain a better understanding of the significance of each of the risk variables. The 

chapter is therefore divided into sections that correspond to the groupings of each of 
the variables: 
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" Section 3.2: Source variables 

" Section 3.3: Pathway Variables- Meteorological 

" Section 3.4: Pathway Variables - Hydrogeological 

" Section 3.5: Receptor - Engineering variables 

" Section 3.6: Water Quality Variables 

The final section of the chapter summarises the selected variables that were identified 

from each section and that will be considered in this research. It is acknowledged that 

additional variables such as hygiene practices are of great significance when assessing 

the microbial risk to shallow groundwater. However, as the focus of this research is 

on physical interventions, the scope of the research was not extended to include a 
human study of human hygiene practices and behaviour. 

3.2 Source Variables 

The literature highlights the importance of sanitary risks located in the proximity of 

water sources. These are identified as sanitation facilities, solid waste dumps and 
diffuse pollution from open defecation. The literature furthermore states that location 

of on-site sanitation should not be considered as a primary hazard source due to 

minimal potential hydraulic movement around dry sanitation systems (Barret et al. 
2000). Instead, research indicates that primary hazards should be considered from 

surface leaching of both animal and human faecal matter through localised pathways. 
These result in direct ingress of contaminants into water sources. For example, studies 

of clothes washing in proximity to wells and the presence of Salmonella in shallow 

groundwater by Barrel et al (1979) note that faecal materials leach into -the well 
through localised pathways such as cracks in the well apron. 

The literature further makes a critical distinction between human and animal faecal 

hazard sources. For example, studies of the source types in Kampala, Uganda by 

Barret et al (2000) emphasised the importance of human over animal sources due to 

the severe adverse health risks associated with ingestion of water contaminated by 

human faeces. The assessment of the precise origin of this human faecal source in 

developing countries is however difficult to achieve due to the multiplicity of possible 
faecal pollution sources in the environment. As an alternative Deere et al (2001) 

highlight the use of hazard events as a means of assessing the origin of the source. 
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Research undertaken on the assessment of these hazard events in developing countries 

by Bartram (1996) and Howard (2002) emphasises the importance of sanitary 
inspections as a key tool in grouping hazard events. Sanitary inspections are 

qualitative methods that include visual assessments of the source of sanitary risk. The 

WHO (2004) recommend that sanitary inspections are applied each time a 'water 

sample is collected in order to correlate water quality results with identified risk 

variables. The risk variables commonly identified as part of the sanitary inspection 

include a minimum safe distance from a faecal source to a water point. This is 

indicated as 30m in the WHO (2004) Guidelines for Drinking Water Quality 
. 

(GDWQ) due to the potential attenuation processes in most common topsoil types. A 

similar distance of 30m is also used for a safe distance from other potential sources of 

contamination. In addition, the sanitary inspection also identifies potential pathways 

of contaminant movement. For example, visual inspections of the headworks around a 

well site can reveal if there are cracks in the headworks that may result in ingress of 

the contaminant and or if the drainage channel or seepage pit could result in seepage 

of contaminants into the well. 

For a more detailed assessment of the sanitary risk, quantitative methods (that 

combine physical measurements with survey data) are often used. For example, 

Hartley (2000) in studies to assess the risk to groundwater from on site sanitation in 

South Africa, notes the need to identify flag situations. These flag situations include 

circumstances where conditions are unfavourable for shallow groundwater due to the 

increased possibility of groundwater contamination. To ascertain where conditions are 

unfavourable, it is recommended that a selected number of the water sources being 

monitored are identified as flag situations and are then assessed in further detail. This 

assessment may include an analysis of the depth of a randomly selected number of 
faecal sources in order to ascertain if the depths intersect with the groundwater table. 

This is supported by studies by Chidavaenzi et al (2001) where the precise number of 
latrines (of varying depth) were monitored against the aquifer depth. The location of 

these latrines can assist in reducing the formation of horizontal preferential flowpaths 

through the aquifer. This is of particular importance if the distance from the faecal 

source to the water source is not considered to be a risk factor, and that instead the 

potential for subsurface leaching may be the predominant source of contamination. 
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In agreement with Hartley and Chidavaenzi, Rupert (2001) concluded that due to 

difficulties of precise pathogen loading assessments, land use categorisation of urban, 
irrigated agriculture, rangeland, dry land agriculture and forest may also be used 
Rupert (2001) developed a hazard source ranking using land categorisations. His 

categorisation is supported by studies undertaken in Sweden and Ireland by Stejmar 

(1998) and Swartz et al (2003) respectively, where land use categorisations were used 

to approximate hazard sources. The objective of the land use categorisations was to 

determine the relative level of hazard source in proximity to selected well sites. To 

achieve this, Rupert (2001) proposed the use of the following methods to assess land 

use practices. 

" Detailed direct on-ground inspection of the zone/area/catchment, 

" Fly-over inspection from aircraft, 

" Detailed examination of current and historical aerial photographs, 

" Review of land ownership and use from title and other historical records, 

" Investigation of current and historical characteristics of abutting properties, 

" Interviews with knowledgeable people, 

" Sampling and testing of suspect areas (Robertson et al. 1997) 

These methods were subsequently. used in the United States where they were 

considered successful in estimating pathogen loading associated with land use over a 
large area or catchment. Indeed, detailed studies by the USEPA and by the British 

Geological Survey on pathogen load estimation found close statistical correlations 
between predictions of levels of microbial pollution and land use categorisations 
(BGS 1994, USEPA 2001). 

The literature therefore suggests that a combination of routine monitoring of 

parametric variables through the use of sanitary inspection as well as more detailed 

monitoring of categorical variables should be undertaken. This research will therefore 

focus on this combination. Data will be collected through monthly sanitary 
inspections as well as detailed sanitary inventories on the following variables: 

" Human/Animal and Solid Waste Hazardous Sources, 

" Population Density, 

" Distance to and depth of latrine, 

" Land use. 
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3.3 Pathway Variables - Meteorological 

The movement of contaminants in the subsoil requires a time/distance estimation of 

the travel distance from the hazard source to the water receptor. The literature 

suggests that one key determinant in this movement is rainfall. It is therefore 

important to consider rainfall as an indicator within the multivariate model (Wright 

1986). Additionally, the literature identifies the depth to the groundwater table as a 

critical variable in determining the die-off of microbes in the vadose zone (Gogu et al. 
2000, Pedley et al. 2005). 

3.4 Pathway Variables - Hydrogeological 

The literature suggests that the key to minimising risk to shallow groundwater is a 

thorough understanding of the attenuation processes taking place within the topsoil or 

surface media in the close vicinity of the wellhead (ARGOSS 2001, Pang et al. 2003). 

As noted by Robertson et al (1997) and Foster et al (2002), the, soil is a very important 

first line of defence against contamination. A thorough understanding of its 

attenuation properties is key in assessing the risk to groundwater of contamination 
(Chilton et al. 2003). It should further be noted that where the topsoil is thin or absent, 

the vulnerability of groundwater to contamination greatly increases. For example, 

around the wellhead, preferential flowpaths may form resulting in increased risk of 

contamination (ARGOSS 2001, MacDonald eta!. 1999). 

The assessment of the vulnerability of these topsoils is a well researched discipline. 

Methods developed include vulnerability matrices, vulnerability mapping and 

vulnerability/risk tabulation (Daly et al. 2002). It should however be noted that the 

majority of these methods have been developed to be applied at the "macro" level i. e. 
for the management of vulnerability/risk within groundwater catchments. The 

challenge of this research is to select or adapt an appropriate existing model for 

application in the assessment of risk from localised pathways in the close vicinity of 

the wellhead. To select the appropriate method, this section reviews the existing 
"catchment" methods and then selects the key variables which will be assessed in this 

research. - Table 3 below provides a summary of the most common methods used for 

assessing aquifer vulnerability. The information only contains the principal 

groundwater vulnerability methods as identified by (Auge 2004). Individual 

approaches are described briefly below. 
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Table 3: Aquifer vulnerability assessment methods 

DRASTIC GOD EPIK Hydrogeological 
settings 

D= Depth to water G= Groundwater 
occurrence 

E= Epikarst formation Subsoil thickness 

R= Recharge 0= Overall aquifer 
vulnerability class 

P= Protective cover Subsoil permeability 

A= Aquifer media D= Depth to water I= Infiltration cover Unsaturated zone 
S= Soil media table K= Karst network 
T= Topography development 
I= Impact on 
unsaturated zone media 
C= Hydraulic 
conductivity 
Source: Adapted from Auge (2004) 

Common to many of these approaches is an acknowledgement that risk is a 

multivariate concept consisting of a number of contributing variables 
(Thirumalaivasan et a! 2001). Literature review highlights extensive examples of the 

use of these multivariate models in assessing vulnerability of groundwater to a risk 

event (e. g. to microbial contamination). For example Thirumalaivasian et al (2001) 

examined the application of assessing vulnerability of groundwater using the 

DRASTIC model developed for assessing aquifer vulnerability by the United States 

Environmental Protection Agency (USEPA). Critics of the DRASTIC model note that 

the DRASTIC model is a poor predictor of areas of groundwater contamination. 
Rupert (2001) proposed that instead of the use of the DRASTIC models that are solely 

reliant on hydrogeological variables, consideration should be given to anthropogenic 

and above ground factors such as land use and vegetation. In application of the model 
to the Idaho Snake River Basin in the United States, Rupert (2001) notes that hazard 

assessment could be effectively achieved through solely assigning probability ratings 
to land use types. Similarly, studies by Lee et al. (1992) suggest that vegetation is a 

useful secondary indicator for levels of subsoil permeability. 

Further methods for assessing groundwater vulnerability include the EPIK method 

which is an overlay weighting and rating method similar to that of DRASTIC 

(Doerfliger et al. 1999). It considers both the intrinsic vulnerability of aquifers (i. e. 
the risks associated with non point sources of pollution) and the specific vulnerability 
(considering all types of contamination). EPIK was adapted by the et al. (2001) when 
developing groundwater protection strategies in Owerri, South Eastern Nigeria. The et 
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al. (2001) used the triple variable GOD (Groundwater Occurrence, Overall Aquifer 

Vulnerability Class and Depth to Water Table). Conclusions from this study noted 

that hydrogeological variables alone are insufficient and that an additional variable 

that should be considered is the topography of the study site (topographical features 

include drainage features, soil distribution characteristics, slope variations and ground 

surface elevations). In agreement with the et al, Secunda et al. (1998) note that 

topography is a key variable in estimating percolation times from the ground surface 

to water tables. In a study of groundwater vulnerability in the Sharon region of Israel, 

they note that although the study site was relatively flat, approximate estimates of 

topography based relative slopes was key to understanding risk. potential. This is of 

equal importance in assessing risk through localised pathways of contamination, as 
increased slope will result in increased percolation of contaminated run off around a 

wellhead. 

Further variables in reducing or preventing the inflow of contaminated water at the 

wellhead are the specific soil types or aquifer properties. However, the literature 

suggests that few available studies have been documented that use a composite 

multivariate method of comparing soil types to assess risk of microbial contamination 

through localised pathways. Developing the principle of multivariate analysis, this 

research explores the use of an established visual method termed hydrogeological 

settings to provide answers on how to visually assess subsoil types. The 

hydrogeological settings method was developed by Swartz et al. (2003) and Stejmar 

(1998) and uses visual techniques to provide uniform assessments of groundwater 

vulnerability through aquifer pathways but is equally applicable for assessing 

vulnerability through localised pathways. Research undertaken in Sweden and Ireland 

by Stejmar and *Swartz et al respectively highlights the reliability of these visual 
techniques to assess the properties of top soil. The method used for this categorisation 
is known as hydrogeological settings. It is useful for the assessment of the subsoil 
described in the Irish groundwater protection scheme by Swartz et al. (2003) as the 

"sediment between the topsoil and bedrock". This term was first used by LeGrand 

(1970) and has since been used by the USEPA in the DRASTIC model. Stejmar 

outlines the application of hydrogeological settings in the Södermanland and 
Östergötland regions of Sweden. He describes the process as "a quick and useful 
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means of discerning the principles and processes in a particular environment" which 

enables the ease of transferral of information from one area to another. 

Hydrogeological settings are composed of elements affecting the character of 

groundwater. Specifically they include precipitation, geological factors and processes 

acting when the water moves through the ground. To facilitate the identification of 
hydrogeological settings, general geologic stratigraphy can be used based on a 

concept developed by Bengtsson et al. (1996). Building on the concept of visual 

categorisation through hydrogeological settings, Swartz et al. proposed a qualitative 

method of categorising subsoils based on the British Standard BS5930: 1999. In the 

Swartz method, assessment of the vulnerability of groundwater is determined by a 

combination of the thickness and permeability of the subsoil. The study by Swartz et 

al indicated a correlation between descriptions of subsoil based on BS5930, in situ 

permeability measurements and the three subsoil permeability categories of high, 

medium and low permeability. This is highly applicable for this research as it only 

requires the collection of data for subsoil thickness and permeability. The research 

was undertaken in Lichinga in the remote Niassa region of Northern Mozambique 

where there are limited electricity supplies, laboratory facilities, technical skills and 

equipment. The selection of the hydrogeological settings methods is therefore 

considered appropriate for the following reasons: 

" Limited technical equipment available in study site - for example use of 

generators, mechanised pumps, compressors or contaminant tracers is not 
logistically feasible, 

" Lack of an adequate soil laboratory which would permit the testing of more 

complex soil characteristics and variables such as soil organic matter (SOM) 

content of top soils, 

" Social considerations - limited access to operational private/communal wells 

precludes the use of tests that would disrupt service provision such as the use 

of coloured tracers. 

In addition, if the findings from this research are to be developed further, practical 

approaches using limited resources will again be needed. It is therefore proposed that 

the hydrogeological settings method is applied with minor modifications (see Chapter 

5. for details). 
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Consequently non destructive and/or visual techniques are required to ensure minimal 
disruption to operational service. Table 4 below outlines the priority weighting and 
justification for selection of the selected variables to be researched. 

Table 4: Justification for variable selection 

Variable Priority Justification 
Topography Low Research focussed on local pathways where 

topography has minimal effect 
Vegetation Low Considered as a secondary indicator 
Hydraulic conductivity Medium Calculated using permeability readings 
Permeability High Controls flow to water table 
Soil Composition High Link to permeability 
Subsoil thickness 

_High 
Controls flow in soil 

Rainfall High Influences transport 
Depth to Groundwater High Proximity to risk 

The variables given a high priority rating were selected for this research. Chapter 4 

outlines how data will be collected at each of the 25 wells during this research in 

Lichinga, Mozambique. 

3.5 Receptor - Engineering Variables 

As noted by Howard et al. (2003), the headworks are defined as "the underground 

and over ground construction of the abstraction facility as well as the immediate area 

surrounding the abstraction point. " In assessing, the potential for microbial risk of 

contamination through localised pathways on wells/boreholes, limited evidence is 

available on the effectiveness of individual engineering barriers. The majority of 

published studies focus on a direct comparison of technology types (e. g. comparison 
between a protected well and a sealed lined well) with limited attention as to the 

effectiveness of each component (e. g. well lining, water lifting device, sanitary seal or 

wellhead). 

Amongst the most comprehensive is that by Lewis et al. (1980). The Lewis et al 

study, although thorough, is outdated due to advances in analytical methods for 

assessing engineering variables. The study by Howard et al. (2003), although more 

recent, focuses on the effectiveness of spring protection rather than wells. Common to 
both of these, however, is an acceptance that each of the components of the 

engineering barrier must be assessed. In the case of well, construction, these can be 

divided into the following variables: 
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" Concrete apron (e. g. age/strength/design of apron) 

" Extraction mechanism (e. g. pump type) 

" Well design (e. g. depth/type of lining and protection) 

The justification for each of these variables was discussed in detail in Chapter 2. 

However, as very few studies have been documented in this area, the author consulted 

with UK based experts, Mozambique field staff and Loughborough University civil 

engineering laboratory technicians, to decide on the key criteria for selecting 

variables. Based on these discussions, three key criteria were selected. The variables 

when selected should; 

" provide sufficient data to demonstrate the relevance of the variable, 

" follow British Standard methods of non destructive testing, 

" provide an acceptable degree of accuracy when physically tested in remote 

conditions in Mozambique. 

Based on these criteria, a combination of variables and testing methods was selected. 

These include visual assessments of the quality of construction, type of pump/rising 

main and sanitary condition of the well. They also include selected physical tests in 

order to provide a comparison. As noted in the British Standards, a combination of 
different methods has the advantages that "one method can be used as a preliminary 

to another" (BS1881-201,1986). Based on this principle, the review selected visual 

and non destructive physical tests for the chosen variables. 

There are a range of non destructive tests to assess the strength of concrete including 

density, elastic modulus, strength, reinforcement location, cover and corrosion risk 

(BS1881-201,1986). The advantage of non destructive tests is that they are quick, low 

cost and often cause minimal damage. The strength of concrete is determined by a 

combination of factors. The principal factors include the moisture, surface hardness 

and reinforcement spacing in the concrete. Moisture content is commonly tested under 
field conditions using a Speedy Moisture Tester (Mastrad 2004). Although it is 

considered accurate (± 0.5%) the test has a disadvantage in that it requires Calcium 

Carbide to provide a gas reaction. The availability of Calcium Carbide is limited and 
international transportation of this substance is strictly prohibited due to its highly 

explosive properties. Surface hardness can, however, be tested. 
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Due to the possibility of limited access into wells at field level, the author also 

researched "expert judgement" systems - i. e. systems based on expert choice. These 

are discussed in greater detail in Chapter 5. 

3.6 Water quality variables 
Microbiological variables 
To assess the effectiveness of the barrier to reduce risk of contamination, microbial 

water quality testing for selected parameters is required. Due to the broad range of 

microbological parameters (bacterial, viral and protozoan), microbiologists 

conventionally select indicator organisms as evidence of faecal contamination in 

water (Mara 2003). These faecal indicator organisms have the following properties: 
1. Suitable for all categories of water, 
2. Present in wastewaters and polluted waters whenever pathogens are present, 

3. Present in greater numbers than pathogens, 

4. Having similar survival characteristics as pathogens in waters and wastewater 
treatment processes, 

5. Non-pathogenic, 

6. Able to be detected in low numbers reliably, rapidly and at low-cost. 

Adapted from Mara (2003) 

The indicator organisms selected for this study were enterococci, thermotolerant 

coliforms and somatic coliphage. 

Indicator Bacteria 

Although studies undertaken by the World Health Organization (WHO) have noted 
that less than 95% of thermotolerant coliforms in temperate climates are E. coli, 

studies in tropical climates indicate a higher percentage (Barret et al. 2000, WHO 

2004). The persistence of thermotolerant coliforms in shallow groundwater is 

however questionable. As noted by Bitton et al (1983) in sampling of 6 shallow wells 
for bacterial indicators during periods of intermittent sewage contamination, both 

thermotolerant coliforms and enterococci remained stable in the groundwater 

environment for up to 70 days. Nonetheless, the study noted that enterococci 
displayed a higher survival than thermotolerant coliforms, and did not multiple in 

polluted environments. 
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These findings are in agreement with studies which state that enterococci display a 
higher survival at depth than thermotolerant coliforms and so they are a more robust 
indicator organism as they are less vulnerable to die-off, dilution or filtration (Bitton 

et al. 1983, Fujioka et al. 1984, Macler et al. 2000, Massa et al. 2001, Melian et al. 
1999). Evidence from analysis of polluted waters by Massa et al. suggests that 

enterococci may be "a more reliable indicator of faecal pollution than faecal 

coliforms in raw water. " Their greater survival at depth in this study suggests that 

enterococci may be an ideal indicator organism for bacterial contamination of shallow 

groundwaters. Limitations in the use of enterococci as an indicator organism include 

limited availability of selective media and potential variance in growth rates of 

enterococci when exposed to variable temperatures and/or times (Godfrey et al. 
2005). 

Viral Indicators 

The selected pathogenic organism for viral presence used in this study was Somatic 

Coliphage. This was selected as studies have indicated incidence of coliphage 

presence even when coliforms are absent (Sivaborvorn et al. 1989). Studies 

undertaken on various water sources in Thailand indicated that coliphage was the sole 

contaminating organism in the 10 different wells tested even where coliform was not 
identified (Sivaborvorn et al. 1989). This study is supported by various studies 
including Petrivicova et al (1988) who noted that `presence of coliphages in drinking 

waters is an indication for aimed microbiological examination. " These combined 

studies indicate that somatic coliphage is an ideal indicator of viral presence. 

For each of these indicators, target levels must be established in order to assess risk 

reduction. For example, a target level of <10cfu/100ml may be established as an 
indicator of bacteriological water quality. Each of these indicators and target levels 

will be discussed in greater detail in Chapter S. 

Physicochemical variables 

pH - 
The pH of the water is related to the geological formation from which the water is 

extracted. Of interest to this study however is the linkage between pH and 

microbiological contamination. In an overview of the relationship between pH and 
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microbial growth, Kinsey et al. (2003) note that microbes grow over a wide range of 

pH values between 2 and 11. More detailed studies by Nola et al. (2002), note a 

correlation between pH and microbial growth where pH modifies the assimilation of 
different mineral or organic nutrients by the bacteria. The study further notes that at 
lower pH values (1-4), the Streptococcus lactis strain of enterococci is able to 

multiply. The inclusion of pH as an additional surrogate is therefore of importance. 

Turbidity 

Turbidity is the result of suspended particles that are too small to settle out readily 

under quiescent conditions (Taylor 2003). These particles include both organic and 
inorganic material. Due to the mixture of particles, some pathogenic microorganisms 

may be "masked" or protected by the particles. This prolongs the longevity of the 

microbe and may permit longer survival times. The use of turbidity is recommended 
by WHO as an operational monitoring parameter and is listed as one of the "critical 

parameters of drinking water quality" (WHO 2004). Justification for its inclusion 

however requires further empirical research. It is therefore included in this research as 

a variable to be monitored at field level. 

3.7 Selected Variables 

The variables selected for study are divided into four categories: 
1. Source Variables - Hazard/vulnerability analysis, distance from latrines, 

depth of latrines, animal presence and land use are selected to assess the extent 

of the source of contamination in the study site. 
2. Pathway Variables - Meterological and hydrogeological variables are 

selected to measure the impact of the pathway on contamination. 
3. Receptor Variables - Condition of the headworks through non destructive 

tests are selected to assess the contribution of the receptor to risk of 

groundwater contamination. 
4. Risk (water quality) Variables - Selected microbiological and physico- 

chemical parameters are selected. 

Table 5 shows the selected categories and variables for study. 
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Table 5: Selected Variables 

Variable Source Pathway Receptor Risk 
1 Hazard analysis Meteorological Surface hardness Turbidity 

H 
2 Distance from 

latrines 
Rainfall 
Precipitation 

Water lifting thermotolerant 
coliforms 

3 Depth of latrines H dro eolo ical Headwork Survey Enterococci 
4 Land use Depth to 

water/water level 
Well Design/lining Somatic Coliphage 

5 A uifer media 
6 Hydrogeological 

survey 

3.8 Conclusions 

This chapter has provided further justification for the selection of variables for 

inclusion in this study. Further literature has been cited and variables have been 

selected. Chapter 4 will review methods of collecting data for each of these variables 

at field level. 
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Chapter 4: Data Collection 
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4.1 Introduction 

Chapter 3 provided scientific rationale for the selection of the risk variables of 

greatest significance in this research. This chapter outlines the methods used to collect 
data for each of these variables. It is divided into three sections: 

" Section 4.2 - Methods used for definition of sample site and sample size 

" Section 4.3 - Visual field methods (qualitative surveys) 

" Section 4.4 - Physical/Non destructive field methods (quantitative methods) 

Justification for the methods selected is provided in sections 4.2,4.3 and 4.4 

respectively. 

The objectives of this chapter are therefore: 

1. To explore variables (identified in chapter 3) that affect risk of microbiological 

contamination of shallow groundwater, 
2. To develop appropriate methods of data collection, 
3. To provide a means of triangulation of results and 

4. To develop means of independent verification for data quality control. 

It should be noted that the visual and physical methods selected are designed to be 

complementary. They are not designed to be used in isolation. For example, data 

collected on the quality of workmanship of the headworks consist of visual survey 

methods and physical tests to quantify the visual survey methods. The precise use of 

each of these methods and the statistical validity is discussed in detail in Chapter 5. 

4.2 Selection of Study Areas and Sample Size 

The study was undertaken in Niassa province in Northern Mozambique through joint 

research between the UK Water, Engineering and Development Centre (WEDC), the 

Mozambique Estacäo Agraria de Lichinga (Agricultural Research Centre) and the UK 

charity WaterAid. The study area was selected for the following reasons: 

" Previous interest and work undertaken by WaterAid in the area of groundwater 

risk assessment, 

" Local availability of trained human resources, 

" Local availability of equipment, 

" Combination of groundwater technologies, 

" Financial and logistic support from WaterAid. 
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The precise study area selected was the town of Lichinga, the capital of Niassa 

province (selected due to the strong presence of WaterAid, and WaterAids long 

relationship with WEDC), located at 13° 18'S, 350 15'E. Figure 10 below shows the 

location of the town. 

Figure 10: Location of Lichinga, Mozambique 
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Lichinga is a town with a population of 110,000 people (GoM, 2003). The town was 
first constructed by the Portuguese as a market trading town for agricultural goods. To 

date, agriculture remains the main economic activity due to its temperate climate, 

abundant rainfall and high altitude. The water supply within Lichinga town consists of 

a centralised water distribution system combined with point source groundwater 

supplies (wells) in the perl-urban areas. Sanitation facilities in the town include septic 
tanks, pit latrines and ECOSAN (urine diversion systems). The town of Lichinga, 

rather than other towns in Niassa Province, was selected as the sample site as it: 

a) comprised a variety of groundwater point source supply technologies, 

b) was logistically accessible, 

c) has access to electricity supply necessary for sample incubation, and 
d) is where WaterAid has its head office in Niassa province. 

For appropriate study areas within Lichinga, the first important activity was to select 

suitable communities in Lichinga, and then to choose appropriate sample sites within 
those communities. To achieve this, two methods were used: 

1. Primary Stratification - Selection of sample communities based on practical 
and logistical rationale 

2. Secondary Stratification - Selection of sample size (i. e. number of statistically 

valid water points) within sample communities based on t-test statistical 

methods. 
The overarching sample design was based on the methods outlined in Figure 11. 

Figure 11: Sample Design 
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4.2.1 Primary Stratification 

To select appropriate communities within Lichinga, a stratification approach based on 

the following selection criteria was used. Selected communities were those that: 

1. have a combination of perl-urban and rural communities, 
2. have more than one well technology, 

3. have good links with WaterAid, 

4. have available data, 

5. contain low/middle income communities and 
6. are close to Lichinga to facilitate safe handling and analysis of water samples. 

Communities were then stratified on the basis of the number of selection criteria. 
Stratification, in this context, can be described as a "means whereby specific 

characteristics of individuals (e. g. technology type and low economic status) are 

represented in the sample and the sample reflects the proportion of individuals with 

certain characteristics of the population " (Creswell, 2003). 

Based on this stratification, it was concluded that the research should focus on 

communities surrounding the town of Lichinga. Data on each of these communities 

were verified during an initial field visit by the author. During a5 day visit, the author 
(and local mobiliser/engineer) visited all the communities surrounding Lichinga and 

undertook a technical and social evaluation through visits to the wells and discussions 

with the communities. From the field visit, five communities fulfilled the majority of 

the selection criteria. However, only three fulfilled all the criteria. These three 

communities (Lulimile, Nomba and Ceramica) were therefore selected. They are 
located to the West and North of the city and their locations are shown in Figure 12. 
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Where: 

" Improved Well = concrete lined well with handpump 

" Upgraded Well = Brick lined well with windlass 

" Traditional Well = Unlined well with rope and bucket 

" Raingauges 1,2 and 3 are identified by white squares 

" Box Text = Name of community 

Both Nomba and Lumilile may be considered rural communities located 5-8km to the 

South of the main Lichinga town. The principal sanitation type in these communities 

is pit latrines. In comparison, Ceramica is located in a perl urban area of Lichinga 

town. Pit latrines are the most common type of sanitation in this area although some 

ECOSAN (urine diversion) systems have been introduced (Breslin, 2002). Open 

defecation was noted as being uncommon in all three communities. 
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4.2.2 Secondary Stratification 

To define appropriate sample sizes within Nomba, Lulimile and Ceramica data on 

both water point coverage and water quality from the Mozambique Direcräo Nacional 

de Aguas and WaterAid were used (Mozambique, 2003). Simple random statistical 

methods were then reviewed to select the most appropriate method for calculating n 

water points for a population of size N, so that each one of the water points has an 

equal chance of being drawn (Dziegielewski et al. 1996). The t-test was selected as it 

is considered the most appropriate test for defining an appropriate sample size based 

on comparison of two independent data groups (Helsel et al. 1992). 

In the t-test, the size of the sample is dependent on the precision of measurement 

required and the variance in the parameters to be tested (Dziegielewski et al. 1996). 

Water quality based on levels of faecal (thermotolerant) contamination expressed as 

cfu (colony forming units)/100ml was used as the key selection variable. Using the 

World Health Organization (WHO) relaxation of the Guidelines for Drinking Water 

Quality for small untreated water supplies, the level of <_ 10cfu/100ml was selected as 

a means for water of acceptable quality (WHO, 2004). Thermotolerant coliforms were 

considered the most appropriate key selection variable as they were the primary faecal 

indicator bacteria that was historically tested by WaterAid and they are more reliable 

than the use of turbidity, when tested at field level due to high error levels in the 

visual tube turbidity method (RCPEH, 2000). 

The first approximation of the number of water supplies required for a representative 

sample was calculated using t-test statistics based on equations 1 and 2 

(Dziegielewski et al. 1996). 

_ 
{ts}Z 

no-rY2 

Where, 

no : first approximation of sample size 

t: confidence probability (t statistics). This value is 1.64,1.96 and 2.58 for 

confidence probabilities 90,95 and 99 percent respectively 

S: population standard deviation 

r: relative error 

(1) 
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Y: population mean 

n= 
no (2) 

+n° 
N 

Where, 

n: sample size 
N: population size 

no : first approximation sample size (see previous equation) 

For example in Lichinga, data exist on 362 "improved" water points constructed up to 

November 2003. The analysis of these data indicates that average levels of 

contamination are 8cfu/100ml and the standard deviation is 5cfu/100ml 

(Mozambique, 2003). Using the t-test, the number of water points required with 90 

percent confident of estimating average levels of contamination within 5 percent of 

the true value was calculated using equations 3 and 4 by substituting values in 

equations 1 and 2. 

no _ 
{t S}2 [(1.64) (5) 2= 

21.01 (3) 
ry2 (0.05 (8) 

21.01 
= 20 (4) 

1+21.01 1+n° 
N 362 

Therefore, for a statistically valid sample of 362 water points, 20 water points would 
be required. These were selected from the above selected communities based on 
logistics, practicalities, ease of access, available data and inclusion in an existing 

monitoring framework. 

In total, data were collected monthly from 20 water sources in 3 communities over 12 

months. In 2002, the total populations in the three communities were 11988 in 

Ceramica, 8846 in Lulimile and <1000 in Nomba. 

80 



Additional to the 20 water points were 5 control water points representing 20% of the 

sample size. The control sites selected at random from unprotected wells were prone 

to high levels of contamination. The objectives of choosing the control sites were; 

a) to ensure field-testing equipment was functioning, 

b) to act as a reference for comparative results, and 

c) to assess improvements in trends of contamination from improved sources. 

The sample and control sites were chosen from the three selected communities on the 

basis of criteria that included logistics, practicalities, ease of access, available data and 
inclusion in an existing WaterAid monitoring framework. A greater number of hand 

dug wells with bucket pumps were selected as they are representative of the (majority) 

of supplies in Lichinga. 

Table 6: Selected Water Points by Technology 

Number Site 1: Lulimile Site 2: Nomba Site 3: Ceramica 
Hand dug wells with 
handpump 

1 2 1 

Hand dug well with 
roe pump 

0 1 0 

Hand dug well with 
bucket pump 

2 1 11 

Traditional well 1 1 4 
Total 4 5 16 

The primary data source for the research was based on field data collection from 

Lichinga, Niassa province, Northern Mozambique. Data were collected over a 12- 

month period from November 2003 to October 2004. Historical data were made 

available to the researcher from August 2002 to October 2003 and were used to 

provide a rationale for the performance of each type of well prior to the start of the 

research. However, the historical data available were not quality controlled and had 

some evident errors. 

Data were therefore collected monthly by the author at each of the same 25 wells 
between November 2003 and October 2004. A stratified approach to data collection 

was adopted during the 12-month period that included the collection of data on both 

categorical and parametric variables. 

" Categorical Variables (or non changing data) were single measurements. 

These included a hazard assessment, soil characterisation study and an 

engineering assessment. 
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" Parametric variables (or continuous data) were collected either daily or 

monthly over a 12-month period. These included daily rainfall readings, 

monthly microbiological and physico-chemical data, depth to water table and 

sanitary inspection data. 

The dates when specific activities were undertaken are marked as shaded areas in 

table 7 below. 

Table 7: Activity plan 

Activity 11/03 12/03 01/04 02/04 03/04 04/04 05/04 06/04 07/04 08/04 09/04 10/04 
Set up rainfall gauges 

Set up WQ 
laboratory/specialised 

training for analyst 
WQ data collection 

Historical 
Rain fall/Precipitation 

data 
Rainfall data 

collection 

`ý --- __^__ -ý- --ý- 

Field Test SI forms 

SI data collection 
Identify wells 

- - --___ý- Hydrogeological 
survey 

- 

- -' 

---ý - -T _-_- - Headworks survey - - -- - 

Borehole camera 
analysis 

Particle size 
distribution test 

Soil classification 
Concrete Schmidt 

Hammer Test 
Analytic Hierarchy 
Process (AHP) data 

As the rainy season starts in Lichinga in December and ends in March, a large amount 

of the work was undertaken either before or after the rains in late 2003 and in early 

2004. Specific training was required for a selected technician from the Lichinga 

Agricultural Research Centre before the work could commence, as he was not familiar 

with the water quality tests used during this research. This training was undertaken by 

the author but supported by both an American trained molecular biologist and a 

member of the WaterAid field staff (who had received prior training from the Robens 

Centre for Environmental Health). 
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Outlined below (table 8) are the specific variables for which data were collected 
between November 2003 and October 2004. In the first and second columns are four 

categories of data: source, pathway, receptor and water quality. The source, pathway 

and receptor were selected as the study aims to investigate the following: 

" Source - to investigate possible pollution risks 

" Pathway - to investigate paths or obstacles to movement of pollutants 

" Receptor - to study the effectiveness of engineering barriers 

9 Water quality - to study the extent of pollution in the groundwater. 

Table 8: Data collection methods 

Variable Type Variable How? Where? 
Source: Hazard/Vulnerability Sanitary survey On site 

analysis 
Distance from latrines Field survey On site 

Depth of latrine Field survey On site 
Land Use Field survey On site 

Pathway: Rainfall/Precipitation Rainfall records Lichinga 
Daily monitoring On Site 

Depth to water/water level Dip Test On site 
Aquifer media Soil classification On site 

Borehole camera On site 
Field survey On site 
Particle size On site 
distribution 

Hydrogeological survey Field Survey On site 
Visual soil On site 

classification 
Subsoil thickness On site 

Geological On site 
observations 

Receptor: Surface hardness Schmidt Hammer On site 
Test 

Water lifting Structured survey On site 
Headwork Survey Borehole camera On site 

Structured survey On site 
Well Design/lining Borehole camera On site 

Structured survey On site 
Water Quality: Turbidity Turbidity tube On site 

pH Handheld comparator On site 
thermotolerant coliforms PotaFlex portable test Lichinga Laboratory 

kit 
Enterococci PotaFlex portable test Lichinga Laboratory 

kit 
Somatic coli ha e Laboratory Test United Kingdom 

Listed in the third column are the proposed field methods to collect information on 

each of the variables. Finally, the fourth column (marked Where? ) outlines where the 

physical testing was done. In situ data collection was done at each of the 25 well sites. 
This included data collection on hydrogeology and hazard source. Water quality 
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sampling was done in situ with microbiological samples being transported between 2 

and 6 km to a laboratory established specifically for this research. Due to the 

complexity of testing for enterococci, laboratory testing, as opposed to on site field kit 

testing, was selected. 

Outlined below are details of the methods used to collect data for each of the variables 

outlined in column 1 in Table 9. The sections are divided into two; visual and physical 

survey methods. Section 4.3 outlines the methods used for visual survey methods and 

section 4.4 outlines the physical methods. 

4.3 Visual survey methods 
This section discusses the survey methods used to collect qualitative data on the 

selected risk variables. The section is divided into the same categorisations of risk 

variables that were identified in Chapter 3, namely; 

" 4.3.1: Source - Risk variables 

" 4.3.2: Pathway - Meteorological and Hydrogeological Variables 

a 4.3.3: Receptor - Engineering variables 

" 4.3.4: End product - Water Quality Variables 

4.3.1 Source -Risk Variables 

To assess the source of a hazard, data on both categorical and parametric variables is 

required. Data were collected in this research for each of the hazard source variables 

outlined in Table 9. 

Table 9: Selected source variables 

Source: What Where Why 
HazardNulnerabili analysis Sanitary surve On site Visual assessment of hazard source 

Distance from latrines Field survey On site Distance between faecal hazard 
source and water supply 

Depth of latrine Field survey On site Assessment of potential of pit 
latrine to bypass unsaturated soil 

zone 
Land Use Field survey On site Categorisation of anthropogenic 

pollution activities 

Commonly, parametric variables such as hazard/vulnerability analysis are monitored 

using Sanitary Inspection (SI) forms. These SI forms are multiple question 

questionnaires with defined YES or NO answers. They combine questions on the 

identification of a hazard source as well as the identification of a specific localised 
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pathway to contamination. A summary of these risk scores gives an overall risk 
associated with a particular infrastructure type. Levels of risk in an SI form typically 

have the following range: 

" VERY HIGH = 10-12 

" HIGH = 7-9 

" MEDIUM = 4-6 

" LOW= 1-3 

9 VERY LOW = <1 

The target level is LOW or VERY LOW indicating limited pollution risk. Specific 

sanitary inspection forms were developed to identify sanitary risks associated with 
different technology types. The forms were developed 'through a round table 
discussion with project partners in Lichinga as to what specific risk factors should be 

considered for each technology. From there, draft sanitary inspection forms were 
developed. Following extensive field trialling of the forms, alterations were made and 
the final forms developed. A total of 4 sanitary inspection forms were developed for 

the following technologies: 

1. Traditional well 
2. Upgraded well with windlass 
3. Improved well with rope and washer pump 
4. Improved well with handpump 

For each question, the nature of the potential risk was determined as being the source, 

pathway or indirect factor (receptor). Table 10 shows the nature of the potential risk 
for each question and SI form. 

Table 10: Sanitary Inspection Question Categories 

Question Traditional well Upgraded well 
with windlass 

Improved well 
with rope pump 

Improved well 
with handpump 

1 Source Source Source Source 
2 Source Source Source Source 
3 Source Source Source Source 
4 Pathway Pathway Pathway Pathway 
5 Indirect factor Indirect factor Indirect factor Indirect factor 
6 Pathway Pathway Pathway Pathway 
7 Indirect factor Pathway Pathway Pathway 
8 Pathway Pathway Indirect factor Indirect factor 
9 Pathway Indirect factor Indirect factor Indirect factor 
10 Pathway Indirect factor Pathway Pathway 
11 Pathway Indirect factor 
12 Pathway 

TOTAL RISKS 10 10 11 12 
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Sanitary inspections were undertaken each time a sample was taken for analysis from 

a water point. In total 25 Sanitary Inspections were done once per month (1 per well). 
Two inspections were made for each well before the rains in November. 

Consequently, 25*2 = 50 Sanitary Inspections were done in November and 25 in each 

of the next 11 months, giving a total of 325 sanitary inspections during the research. 

Categorical variables can be monitored using singular detailed surveys. In this 

research detailed observations of land use were collected using a combination of a 

structured interview (with the village leaders) and visual survey techniques. The 

categorical variables discussed during the structured interviews included population 
density in a given area. Population density is taken for the immediate area around the 

water point. Subjective scorings of High (H), Medium (M) and Low (L) were 

assigned. 

Further structured survey data were collected to gain information on land use in the 

vicinity of the well. Reference was made to -work by Barret et al (2000). The study 

outlines methods for categorising sampling sites based on 5 main categories of land 

use. Table 11 outlines the specific land use categorisations. High/Medium and Low 

populations were calculated as <50 persons km2,50-100 persons Ian 2. and >100 

persons per km2. 

Table 11: Land use categorisation 

Site Population Pit latrines Surface water Scattered waste Animal 

Density within 30m dump within within 50m husbandry 

30m within 100m 

H/M/L YIN Y/N Y/N Y/N 

Other variables assessed included distance from hazard source and depth of hazard 

source, with guideline values based on scientific evidence presented by the British 

Geological Survey (2002) (ARGOSS, 2002). The distances were measured in the field 

by counting the number of paces of an average height male from the closest faecal or 
hazard source to the water point. Further in situ observations included the ' depth and 
type of latrines. Distances from faecal sources were then indicated as Y= Yes and N= 

No. Data were collected between March and April 2004 and involved interviewing the 

latrine owner to determine the approximate latrine depth. Due to the sensitivities of 
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human contact with faeces, it was inappropriate to take physical measurements of 
latrine depth within the communities. 

Before undertaking the survey, the sanitary assessment forms were field tested by the 

author in each of the communities in order to gauge the relevance of each of the 

questions. It was noted that there was some overlap between questions in the survey 

and those in the Sanitary Inspection forms. Nonetheless, it was concluded that the 

same questions were required in order to clarify the purpose of the survey to those 

community members who were participating in the survey. A total of 25 surveys were 

undertaken equalling one per well, during April 2004. 

4.3.2 Pathway - Meteorological and Hydrogeological Variables 

Data collected for all meteorological parameters involved physical quantitative tests. 

No visual or qualitative survey methods were used. Full details can be seen in section 
4.4.2. This section will outline the survey methods used in the research to collect data 

on the hydrogeological variables. The selected hydrogeological variables on which 

data were collected in this research are outlined in Table 12. 

Table 12: Selected Hydrogeological Variables 

Pathwa : What Where Why 
Hydrogeological Field Survey On site Site investigation 

survey: 
Visual soil On site Classification of soil 

classification permeability 

Subsoil thickness On site Classification of soil 
porosity and permeability 

Geological On site Vulnerability to 
observations subsurface leaching of 

contaminants 

Data were collected on categorical variables using visual and simple field techniques.. 
A total of 25 surveys were undertaken. Data were collected on subsoil thickness 

through visual observations of unlined traditional wells. These were logged as 0-1m, 

1-3m, 4-5m and >5m. Broad categorisations of the type of soil were undertaken and 
logged as the varied geological sections of each of the wells. These visual 

observations were supported by manual soil classification tests for soils. An augured 

sample was extracted from a depth of 0.5m at a distance of lm from the well. This 

was done at each of the 25 well sites. A segment of soil was extracted from the 
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sample and analysed by the author. The sample was placed between the thumb and 
finger and the soil was identified based on the methods outlined by CIBAGEIGY 

Agrochemicals in their Guide to Soil Identification. (CIBAGEIGY, 1986). Figure 13 

below outlines the method used for identifying the soil. 
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Does the soil lack Sand, 
all cohesion? 

YES I YES 

Is it difficult to roll 
the soil into a ball? Loamy 

Sand 
I YES 

Does the soil feel Sandy 
smooth and silky as Loam 
well as gritty? NO 

Sandy Silt 
" Loam 

YES 

Start Does the Does the soil mould to 
Here moist soil form an easily deformed 
Rub moist feel or ball and feel smooth and Silt Loam 

soil sound NO silky? YES 
between predomina 
thumb and ntly rough 
finger and gritty? 

NO 

Sandy 
Does the soil mould to Clay 
form a strong ball, which Is the soil also Loam 
smears but does not take rough and gritty? 
a polish YES YES 

NO Is the soil also Clay 
smooth and silky? Loam 

No 

Silty Clay 
Loam 

Does the soil mould like YES 
plasticine, polish and feel 
very sticky when wetter? Is the soil also Sandy 

rough and gritty? Clay 

YES 

YES 

NO 

Figure 1: Soil Identification Test 

(Source CIBAGEIGY, 1986) 
Start Again 
Or 
Soil is Organic 

Is the soil also Clay 
smooth and 
buttery? 

No 

Silty Clay 

YES 
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4.3.3 Receptor - Engineering Barriers 

Combinations of methods were used to collect data on the effectiveness of the 

headworks in reducing risk of shallow groundwater to contamination. These included; 

1. Visual inspections (structured surveys) - to understand the design and 

condition of the headworks structure. 
2. Non-Destructive - selected tests to validate findings from the visual inspection. 

This section will discuss the visual inspection techniques used. Section 4.3.4 will 

outline the Non Destructive physical tests used. The variables for which data were 

collected in the structured survey are outlined in Table 13. 

Table 13: Selected Engineering Barrier Variables 

Receptor: What Where Why 
Water lifting Structured survey On site Assessment of possible ingress 

through hand um annulus 
Ileadwork Survey Structured survey On site Assessment of possible ingress 

through headworks annulus 
Well Design/lining Structured survey On site Assessment of possible ingress 

through subsurface annulus 

A structured survey approach was used for monitoring the technical quality of the 

headworks. This focused on principles of Total Quality Management (TQM), which 

emphasise the importance of quality assurance during the process of production as 

opposed to sole reliance on quality control of the end product. The survey assessed: 

9 Wellhead design - questions focused on the diameter, height of apron, depth of 

sanitary seal and methods of drainage, 

" Pump type - questions focused on type of pump, rising main material used, 

appropriateness of pump for apron design used, 

" Well/Pump age - questions were asked about well and pump age. 

All the relevant measurements for this survey were gained from both the author's field 

experience and from the literature. The survey was undertaken once for each of the 25 

wells during April 2004. The survey was undertaken by the author for all of the wells 

to provide consistency/uniformity of results through the use of different survey 

techniques. 

Furthermore, the survey involved an assessment of the quality of workmanship. This 

focused on Total Quality Management principles using a combination of questions 

and structured observation techniques. The masons responsible for the construction of 
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each of the wells were interviewed and their responses combined with survey data 

obtained from the field. It is appreciated that some of the responses to the questions 

were difficult to quantify. For example the depth/diameter of the sanitary seal or the 

size of aggregate used for construction could not be measured directly. Nonetheless, 

using a combination of survey and physical techniques, triangulation of results was 

possible to reduce potential errors and to validate individual variable results. 

Structured surveys included assessment of the strength and integrity of the concrete 

using standard civil engineering practices. The variables that were visually monitored 

as indicators of construction were: 

" Aggregate segregation - identification of large stones grouped together and 

visible at the concrete surface 

9 Honeycombing - where air bubbles have become trapped leaving voids at the 

concrete surface or within the concrete 

" Dry joints -different layers applied after one concrete batch had started to dry 

" Cracking - indicating excessive loading, shrinking during drying, expansion, 

and contraction. 
Any faults in concrete could permit movement of pollutants through the concrete 

along paths of weakness. For concrete without faults, a non-destructive surface 
hardness test was undertaken to indicate the likelihood of water flowing through weak 

porous concrete (see section 4.4.4). 

4.3.4 End Product - Water quality variables 
Quantitative data collected for all water quality parameters involved physical tests of 

samples either in the field or in a laboratory. No visual or qualitative survey methods 

were used. Full details can be seen in section 4.4.5. 
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4.4 Physical/Non destructive field methods 
This section outlines the physical methods used for collecting data on the selected 
variables. The categories are the same as for section 4.3 but whereas section 4.3 

considered qualitative data based on observation, this section considers 

complementary quantitative data. The section is also divided into five sub-sections, 

namely: 

" 4.4.1: Source - Risk variables 

" 4.4.2: Pathway - Meteorological and Hydrogeological Variables 

" 4.4.3: Receptor - Engineering variables 

" 4.4.4: End product -Water Quality Variables 

4.4.1 Source -Risk Variables 

Data for source parameters rely on visual survey methods (see section 4.3.1). 

4.4.2 Pathway - Meteorological and Hydrogeological Variables 

Data on rainfall were collected as daily readings throughout the 12 months of data 

collection (November 2003 - October 2004) in order to determine the correlation 
between rainfall and contamination (See Godfrey et al. 2005 Appendix 3). Daily 

records were compared to monthly historical data. Table 14 outlines the data collected 
for the meteorological variables. 

Table 14: Selected meteorological variables 

Pathwa : What Where Why 
Rainfall Rainfall records Lichinga historical Annual rainfall record 

Daily monitoring records 
On Site 

Daily rainfall was measured using two 40mm capacity Dipflex raingauges (Sites 1 

and 2 as shown on figure 12) during the 12 month period. These data were then 

compared to historical rainfall for the preceding 8 years. Number 1 raingauge was 
located to the West of the city in a low lying area for data comparison to rainfall 

measurements at a higher altitude. Number 2 raingauge was located in the 

Agricultural Research Centre of Lichinga approximately 500 to 1000m from the 

project site. Each was positioned on a 1.5 to 2m high pole in an open area with a clear 
distance between the gauge and the nearest and tallest tree being twice the height of 
that tree (Gunston, 1997). The rainfall was measured at 17: 00 on a daily basis during 
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the 12 month data collection period (Gunston, 1997). Historical data from 1995 to 

date were also collected from the Meteorological Centre of Lichinga (marked as 

number 3 on figure 12). Monthly average rainfall data or figures measured at Lichinga 

Airport for the period of 1995 to 2003 were also obtained from the Meteorological 

Centre of Lichinga. 

This research selected three physical methods to test soil and aquifer properties. These 

included; 

1. Particle size distribution tests (soil classification) 

2. Borehole logging (variations in soil classification 

3. Depth to water 
Methods used to collect data for each are summarised in Table 15. 

Table 15: Selected hydrogeological variables 

Pathwa : What Where Why 
Depth to water/water level Dip Test On site Groundwater table 

monitoring 
Aquifer media Soil classification On site Determine soil 

Borehole camera On site characteristics 
Particle size distribution On site 

Particle Size Distribution 

Of critical importance in assessing subsoil vulnerability is permeability. Permeability 

is closely related to the more specific term hydraulic conductivity (Swartz et al. 

2003). To test permeability, the grain size or particle size distribution within a sample 

should be recorded. Methods proposed for testing particle size distribution follow 

BS 1377-2 (1990) and Barnes (2000). A single sample was taken at each of the 25 

wells and analysed by the author in March 2004. 

Specifically, 100g undisturbed samples were taken from 0.5m depth with a 4" 

(100mm) hand auger within lm of the well construction. The recommended sample 

weight in BS1377-2 (1990) is 200g when analysis is being undertaken on 

predominantly alluvial soils. However, due to the high concentration of fine material 

combined with the small size of sieve used, 200g were difficult to riffle through the 

sieves. Following a field trial, it was therefore decided to sample 100g only. Results 

showed consistency, with little variation, implying that accuracy was not 

compromised by used of a smaller sample than that recommended for alluvial soils. 
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The sample l OOg was extracted from a depth of 0.5m. This depth was selected as it is 

the average depth of the sanitary seal constructed around the well. It is therefore 

important to compare the permeability of the surrounding subsoil to the material of 

the sanitary seal to understand the subsurface movement of contaminants around the 

well. 

ºt- ` ... 

Figure 14: Enthusiastic community participation during soil sampling 

The extracted sample was weighed using aI gram-accuracy field balance. It was then 

dried in an oven at II O°C for a period of 1 hour to give an oven dry mass of 

approximately 100 gram. The sample was then crushed into a powder form and mixed 

with I litre of mineral water. Bottled mineral water was selected for the experiment. 

as the only alternative was either highly turbid groundwater or highly chlorinated tap 

water. A dispersant of sodium hexametaphosphate was then crushed into a powder 

and made in a solution of 40g per I litre of mineral water (BS1377-2,1990). This was 

selected as the soils in Lichinga contain a high clay fraction and are therefore highly 

cohesive. The solution was then agitated until mixed. 25m1 of the dispersant was then 

added to the Ilitre soil sample and left to settle for 1 hour with occasion agitation by 

hand. Figure 15 shows sieve analysis equipment used in the field. 

94 



0 

a .; 
ý-- 
" ýs.: 

,.: ;1 

POW, 
RIC OM 

Figure 15: Sieve Analyses equipment 

Samples were riffled through a set of 5" sieves with sizes of 5mm, 3.35mm, 2mm, 

1.18mm, 600µm, 425µm, 300µm, 212µm, 150µm, 63µm. A jet wash bottle 

containing water was used to manually wash the sample through the sieves. The 

material retained in each sieve was transferred into an evaporating tray and dried in 

the sun until completely dry. Samples were dried in a sheltered position, to avoid any 

particles blowing away. The material was then transferred onto glass watch glasses 

and weighed using the laboratory balance to 1-gram accuracy. Particles less than 

63µm in size were recorded as clay particles. 

For each sample, a grading curve was calculated using standard methods outlined in 

Barnes (2000). Results were recorded in a standard format outlined in Appendix 1. 

These were then converted into values for hydraulic conductivity. Full details of the 

analysis are outlined in chapter 5. 
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Borehole camera 

In situ readings of the well geology were recorded using a borehole camera. A 

GeoVision borehole camera that linked to a miniature colour monitor was used (see 

figure 16). 

Figure 16: Geovision Borehole Camera 

The GeoVision Borehole Camera provided a quick view of both the geological 
formation and level of sanitary protection afforded by the lining of the well. The 

camera was inserted into the well and images recorded at stratified depths. The 

images from the camera were used to compose well logs for each of the 25 sites. 

These included detail of the various geological formations, types of well lining 

(including identified failures), sanitary seals (where visible) and sanitary/structural 

condition of the well. 

Depth to Water Table 

Depth to water level was measured using a dipper tape on a monthly basis. The 

measurements were taken at the same time of day on each day's sampling. Field visits 

occurred between 7: 30 and 12: 00 to avoid early morning water collections in the 

communities. Due to the regime of testing and sample collection, the depth to water 
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table was measured at the same time each day. Results were recorded with water 

quality outcomes in a standard format as metre (m) below ground (mbg). 

4.4.3 Receptor - Engineering Variables 

A number of physical methods are available to test the effectiveness of the wellhead 
in reducing microbiological contamination. These include validation of surface 

hardness, tests of the concrete formwork, validation of material and depth of sanitary 

seal and quality of extraction mechanism. Table 16 outlines the selected variables that 

were monitored in this research. Detail of each is outlined below. 

Table 16: Selected Engineering Variables 

Receptor: What Where Why 
Surface hardness Schmidt Hammer Test On site Level of concrete hardness and 

quality of construction 
Headwork Survey Borehole camera On site Design and construction survey 
Well Design/lining Borehole camera On site View of sanitary protection 

afforded by well/lining type 

Surface Hardness 
The surface hardness test is a method of quality control based on the principle that the 

rebound of an elastic mass depends upon the hardness of the surface it strikes 

(BS1881-201,1986). Commonly this is tested using a handheld spring loaded steel 

rebound hammer, commercially known as a Schmidt Hammer. The test is highly 

appropriate for this research as it relies on the use of an on-site durable instrument that 

records a rebound number. No chemicals or electrical sources are required and 

therefore the test can be undertaken in situ. Furthermore, British Standard No 1881 

notes "the test is particularly suited to comparative surveys " (BS 1881-201,1986). 
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Figure 17: Surface Hardness testing by the author 

{Figure 17 shows the author using a Schmidt hammer to test the hardness of concrete 

at a well-head. Based on BS 1881-201 (1986) 30 vertical rebound tests were done at 

each well site. The rebound numbers for each were recorded in the standard formats 

shown in Appendix 1. The author undertook all the tests to ensure that the same 

operator was used, to reduce potential errors associated with inconsistent 

measurement techniques. Limitations of this test are that results only relate to surface 

hardness for up to 30mm depth and may be greatly affected by localised hardening 

(BS 1881-201,1986). Undertaking surface hardness testing on set concrete has a 

further limitation in that the concrete may be affected by localised carbonisation once 

the concrete is more than 3 months old (BS 1881-201,1986). Results from this test 

were therefore combined in this research with visual/survey observations outlined in 

section 4.4.4. 

4.4.4 End Product - Water quality variables 

Justification for the selected variables was discussed in detail in chapter 3. The section 

outlines the methods used in the field to collect data on the variables outlined in table 

17. 

.. 

ý`}ý. 

s 

-r 

98 



Table 17: Selected water quality variables 

Water Quality What Where Why 
Turbidity Turbidity tube On site Surrogate for 
pH Handheld comparator On site microbiological 

contamination 
thermotolerant coliforms PotaFlex portable test kit On site Bacterial 

Contaminant 
Enterococci Potaflex portable test kit On site Bacterial 

Contaminant 
Somatic Coliphage Laboratory Test United Kingdom Viral 

Contaminant 

Physico chemical data 
Two physical parameters were tested once per month at each well for the duration of 
the research. These included turbidity and pH. 

" pH - Tested using a handheld pH meter, WagTech code PSCANWP2. The pH 

meter was calibrated on a monthly basis using buffer pH 4 and buffer pH 7. The 

parameter was selected as a surrogate parameter for the presence of organic 

growth in the well water. 

" Turbidity - Turbidity was analysed using turbidity tubes calibrated against both 

the Nephelometric turbidity unit (NTU) and Jackson turbidity unit scales (JTU) 

(RCPEH, 2000). In this method, a black cross is marked on the base of the bottom 

tube and water added until it can no longer been seen. The turbidity was then read 
from the graduations on the tube. Where this fell between two graduations, an 

interpolated estimate was made. The tubes had a range of 5 to 2000NTU, results at 

extreme levels were recorded as <5 or >2000 as appropriate. 

Equipment used for both pH and turbidity were calibrated by the manufacturer 
(WagTech) before use for maximum accuracy and precision (WagTech, 2003). 

Microbiological Analysis 

The Robens Institute undertook initial training of WaterAid project staff on water 

quality monitoring in 2002 over a two-week period. Further refresher training was 

provided by the author (one week) in November 2003. During this training, standard 

procedures for both the field and laboratory work were developed in Portuguese to be 

used by the local staff, and in-depth training given on the analysis of enterococci. 
These were field tested and quality controlled over a 3-week period in November 

2003. 



Two microbiological parameters were tested: Presumptive (rather than confirmed) 

enterococci and thermotolerant coliforms. The author undertook sampling and 

analysis during the months of November/December 2003 and March/April 2004. The 

remainder of the sampling and analysis was done in collaboration with the technician 

from the Lichinga Agricultural Research centre who was trained and supervised by 

the author. Outlined below are the methods used during the research for testing the 

indicator bacteria and viruses. 

Sample Collection: 

Samples were collected by either the author or the trained laboratory technician from 

the Soil Research section of the Instituto Investigacoes de Agraria de Lichinga 

(Agricultural Research Centre on Lichinga). Standard aseptic procedures were 
followed (AWWA/APHA, 1998, WHO, 2004). These included sterilisation of the 

sampling cup through burning of methanol which inactivates bacteria through a 

combination of direct heat and the release of formaldehyde gas when methanol is 

burnt in restricted oxygen (RCPEH, 2000). This was used for collection of samples 
from open wells in order to prevent recontamination of well water. For water points 

with a handpump, the handpump was wiped clean with a paper towel and water 

collected directly in order to get a representative sample of the water consumed by the 

community. Samples were then collected using sterile 60m1 plastic sampling bottles. 

These were stored in cool bags ' at <4°C for a maximum of 6 hours whilst field 

sampling was undertaken. Samples were then analysed in a centralised WaterAid 

laboratory using hygienically/aseptic prepared apparatus. Two microbiological 

parameters were tested; enterococci and thermotolerant coliforms. 

Enterococci (EF): 

Presumptive enterococci were isolated using Azide Nutridiscs (pre-impregnated 

membranes) in deep plastic petri dishes supplied by Schleicher and Schuell (Product 

Reference Number 10433003) (WagTech, 2003). The Nutridiscs were selected due to 

their high selectivity and minimal fluctuation in colony growth under variable 

temperature and/or time (Godfrey et a! 2005). To activate the agar, 3.5m1 of distilled 

water was added to the Nutridiscs and a standing period of 10 minutes observed. 50m1 

samples were processed using membrane filtration (filter size of 451im) and applied to 



the Nutridiscs. During the rainy periods, excessive turbidity levels (>100NTU) meant 
1: 2,1: 5 and 1: 10 dilutions with sterile de-ionised water were used accordingly. 

A four-hour resuscitation period at ambient temperature was observed prior to 

incubation at 44°C (± 0.5°C) for 44 hours. As noted in the UK Methods for 

Examination of Water and Associated Materials "although incubation throughout at 
37° C may yield a higher count, it allows some organisms to grow which do not 

confirm to the definition of enterococci... incubation at 44-45° C thus has a selective 

effect and produces fewer false-positive results" (ANON, 1994). The WagTech 

Potaflex was therefore selected as an appropriate test kit as it can be programmed to 

44°C and will remain more stable (± 0.1°C) than other field test kits and has the 

inbuilt advantage of a uniform internal temperature regulation (Godfrey et al. 2005). 

The kit was selected for incubating the more temperature sensitive enterococci. A 

constant electricity supply helped to maintain accurate temperature control. The 

Potaflex kit was powered by 3x l2volt solar powered batteries for the first 
.3 months 

of the research. After the trial period it was found that 1x 12 volt battery was 

sufficient for the total incubation period. 

Post incubation, all red, maroon and pink bacterial colonies that were smooth and 

convex were examined using a hand lens were recorded as presumptive, enterococci 
(WagTech, 2003). Total plate counts were recorded per 100ml by multiplying the 

number of presumptive enterococci in 50ml by 2. Post counts, all plastic Petri dishes 

were incinerated in Lichinga hospital due to the potentially, harmful nature of the 
bacterial colonies and the Sodium Azide present in the Nutridiscs. 

thermotolerant coliforms (TTC): 

The isolation and enumeration of thermotolerant coliforms was carried out using 

membrane filtration (WagTech, 2003). 50ml samples were filtered through a 
Millipore 45µm nitro-cellulose filter. Membrane lauryl sulphate media was prepared 
in a specially developed membrane sulphate media measuring device (MMD) using 
50m1 batches with deionised water following standard methods (WagTech, 2003). 

2m1 of the solution was applied to each filter pad. The filtered membrane was then 

placed on a pad and incubated at an ambient temperature of 28°C for 4 hours to permit 
bacterial resuscitation, before transferring to 44°C for 14 hours incubation. Post 
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incubation, all yellow colonies were counted using a hand lens and results recorded as 
TTC per 100ml. The membrane pads and filters were also incinerated in Lichinga 

hospital. 

Somatic Coliphages 

Single samples were collected from each of the 25 wells by the author during April 

2004. Duplicate samples were taken on the first and last sample collected during the 

day's sampling. In total 31 samples were analysed for somatic coliphage. Standard 

glass 10ml collection jars were used. These were dosed with lml of chloroform to 

assist the preservation of the sample. The samples were kept in a cool dry condition 
for 2 weeks prior to analysis. Due to time and logistic constraints, samples were 

transported from Mozambique to the UK. They were then analysed by qualified 

microbiologists at the Robens Institute of Environmental Health at Surrey University. 

The method followed ASTM Standard D4201-82 using E. coli as the host to grow the 

coliphages. The host culture was reconstituted using the instructions contained with 

the culturing. A sample of the organism was then frozen down using protec beads 

after culture. In order to obtain the host for the test, 10mis of Luria broth containing 

the E. coli was incubated overnight at 36°C. This was then inoculated with lml into a 

new broth, incubated for 4 hours and then used as the host for bacteriophage 

identification. 

Quality Control 

For quality control, the testing kit was calibrated using a duplicate test on the first and 
last sample of each day's sampling as stated above. The duplicates were rotated for 

each month sampling to avoid repetition of control sites. For example Month 1 

(November), wells 1 and 9 were replicates, Month 2 (December), wells 2 and 8 were 

replicates, Month 3 (January), 3 and 7, Month 4 (February), 4 and 6 were used and 

then back to wells from month 3 etc. Well 5 was not included`due to the odd number 

of wells. See figure 18 for details. Blanks were taken from separate contaminated 

sources to test validity of equipment on a monthly basis. 
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Figure 18: Duplicate sampling routine (duplicates shown as shaded area) 

Sample Nov Dec Jan Feb March April May June July Aug Sept Oct 

No. 

1 

2 

3 

4 
14 

5 

6 

7 

8 

9 :; f , : 5 

Verification of plate counts was done on all samples by either the author or a qualified 

molecular biologist who had been working in Lichinga and was trained in the United 

States. The verification involved identification of thermotolerant and enterococci 

colonies as well as quality control of results for different dilutions. A 95% confidence 

interval was used to define variation in results. In addition, digital images were taken 

of each of the plates and sent through to the author each month for verification. The 

author undertook support supervision visits during 5 of the 12 monthly sampling 

periods (November, March, April, September, and October). These involved 

structured observation of the trained field technician by the author in Mozambique 

three times during the 12-month period. 

4.5 Summary 

This chapter has outlined the visual and physical methods used to collect 

complementary qualitative and quantitative data for this research. It has discussed the 

collection of data for both categorical and parametric variables. The methods involve 

the examination of soils, concrete and water quality as well as the measures to 

minimise the possible errors of uncertainty. Chapter 5 outlines the results from the 

data collection stage. 
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Chapter 5: Data Analysis 
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5.1 Introduction: 
Chapter 4 outlined the data collection methodology for fieldwork undertaken in 

Lichinga, Mozambique between November 2003 and October 2004. This chapter 

reviews and analyses the data collected during the fieldwork. The chapter is divided 

into three sections: 

" Section 5.2: Data Description 

Section 5.3: Data Mining 

" Section 5.4: Data Analysis 

Conceptually, each category contributes both individually and collectively to the 

potential risk of microbiological contamination of shallow groundwater (see Figure 

19). As noted in chapter 1, the defined research problem in this research is How to 

assess the significance of variables affecting microbiological risk to shallow 

groundwater. This chapter uses selected statistical techniques to-'assess the 

significance of each of these variables to risk. Risk is defined as a combination of "the 

probability or frequency of a particular event occurring with the consequences of its 

occurrence" (microbiological contamination) (Dixon et al. 2001). 

Figure 19: Conceptual framework 

SOURCE PATHWAY RECEPTOR 

RISK 

Categorical and parametric data are analysed on the basis of the categories of source, 

pathway and receptor. Due to the multivariate nature of the research there are 

numerous variates in each category of data. Results for each are therefore presented 

on the basis of the groupings of source, pathway and receptor. Sufficient data were 
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collected from field research for the source and pathway variables. Variables defining 

source in this research are; 

" hazard analysis: with quantitative data on hazard sources, and qualitative data on 
land use categorisations, 

" pathway analysis: with data a combination of quantitative data on rainfall, depth to 

water table and soil analysis data combined with qualitative visual soil and 

geological categorisations, and, 

" receptor analysis: quantitative data on surface hardness, inventory data and 

qualitative data from visual examinations. 

Due to difficulties of assessing underground facilities (well shaft and intake), an 

additional method of data generation was used (Analytic Hierarchy Process-AHP) 

following the initial data collection period. The AHP method relies on expert 
judgement to provide data on specific variables in which there is an element of 

uncertainty. This will be discussed in detail in section 5.2.4. 

Risk was then assessed on the basis of the quantitative water quality data. This 

included data on two indicator bacteria (thermotolerant coliforms and enterococci) as 

well as selected physico-chemical parameters. Although data were collected on 

somatic coliphage, it was withdrawn from further analysis as results were non 

conclusive (see section 5.2.5 for details). 

Due to the combination of both qualitative and quantitative data collected during this 

research, the initial requirement was to describe and then categorise data. This is 

outlined in section 5.2 and 5.3 and is then followed by statistical analysis in section 
5.4. 
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5.2 Data Description 
5.2.1 Introduction 

Data described in section 5.2 are sub divided into two categories: 

I. Geographical data - data based on geographical areas 

(Nomba/Lulimile/Ceramica). Geographical data are selected to assess the source 

and pathway to contamination as these reflect identified anthropogenic and 
hydrogeological conditions (Figure 20 below). 

2. Technological data - data based on well technology types (traditional well, 

upgraded well with windlass and improved well with handpump) are used to 

assess the effectiveness of the engineering barriers. 

Figure 20: Geographical location of Lichinga 
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(Source: WaterAid Mozambique) 

A combination of both geographical and technology sub groups was used to assess the 

microbiological and physico-chemical data. This combination was selected as it 

reflects both the technological and prevailing hydrogeological conditions. This section 

is divided into the source, pathway, receptor and risk categories, and will describe the 

data collected in each category. 

5.2.2 Source of anthropogenic contamination 

The first category described is the source of contamination. In total 325 sanitary 
inspections and 25-hazard analyses were undertaken between November 2003 and 

October 2004 in Lichinga to categorise sources of anthropogenic pollution at each of 
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the 25 well sites. Data were collected during the hazard analysis from all wells except 

Well 19 where the owner denied access. Results of sanitary inspections were used in 

the case of well 19 to define hazard sources (see observations below). 

" Population density - Using population density categorisations of Low (<50 

people/hectare), Medium (50-100/hectare) and High (>100/hectare) (WHO, 2004). 

Table 18 indicates low levels of population density in 19 wells, medium in 3 and High 

in 2 wells. Using population density as a surrogate for faecal loading, it can be 

concluded that only low levels of human faecal loading are presented except at Well 6 

(Health Centre - Lulimile) and Well 17 (Ceramica School). 

" Sanitation type - Limited open defecation was noted. 100% of surveyed wells 

had associated pit latrines. However, open disposal of children's faeces and baby 

nappies was noted with in 30m of the majority of the wells. 

" Latrine distance - 21 of the 25 surveyed wells indicated a distance of less 

than 30m from the latrine to the well site. In accordance with recommended safe 
distances of 30m outlined by WHO GDWQ edition 3, each of the 21 wells should 

therefore be considered at risk (WHO, 2004). Only Well 6 (Health Centre - Lulimile) 

and Well 10 (Victor Nuvaela) were located at a distance >30m from the nearest 

latrine. 

" Latrine depth - Information on latrine depth was difficult to obtain, as 

entering a private latrine to take engineering measurements was culturally not 

acceptable. Depths should therefore be treated as approximation based on verbal 

responses from residents. In total 19 of the 24 wells were constructed at a depth of 

<5m with only well 12,13,14,17 and 20 being constructed at >5m. The deeper 

latrines are all located in the Ceramica sample area. 

" Solid Waste - Broad definitions based on characterisations outlined in Barret 

et al (2000) were used. Minimal risk was noted from solid waste with low quantities 

present in the environment and the majority of solid waste dumps located >30m. 

" Solid waste depth - Low risk was noted as 100% of solid waste pits were 

recorded as having depths <5m, therefore not penetrating the groundwater table. 

" Animal Faeces - High risk was noted from animal faeces in 18 of the 25 

wells. Evidence of cow, goat, chicken and dog faeces was evident in the close vicinity 

of the wells. Presence of animal faeces is linked to high prevalence levels of recorded 
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enterococci in water samples analysed during the research (see section 5.2.4 for 

detail). 

Interpretation of the level of contaminant loading from the field data was then 

undertaken using an adaptation of the POSH (Pollutant Origin and its Surcharge 

Hydraulically) method of load characterisation (Foster et al. 2002). The POSH 

method characterises the potential sources of subsurface contaminant load based on 

two characteristics: 
1. Association of the likelihood of the presence of a groundwater-polluting 

substance with the type of anthropogenic activity 

2. Estimation of associated hydraulic load (surcharge) on the basis of water use 

activities (Foster et al. 2002). 

The POSH method provides three levels of "potential to generate a subsurface 

contaminant load" namely, REDUCED, MODERATE and ELEVATED. Precise 

characterisations outlined in Foster et al 2002, are based on experience in 

industrialised nations where sewered sanitation and high levels of industrial waste are 

the predominant pollution sources. These pollution sources differ from those in the 

study area in peri-urban and rural areas of Northern Mozambique. The author has 

therefore adapted the method outlined in Foster et al for the study site. Hazard sources 

have been identified from both the hazard inventory and hazard risks identified during 

monthly sanitary inspections at each of the 25 wells. 

Table 18: Classification of pollution sources using an adapted POSH method 

Subsurface contaminant load potential Pollution Sources 

ELEVATED On-site sanitation 

High concentration of on-site sanitation associated 

with population density >100 persons/ha 

MODERATE Livestock rearing, lower density on site sanitation 

coverage, constructed sanitation facilities intersect 

groundwater levels, washing in vicinity of well 

REDUCED Leaching refuse tips 

Table 19 applies the POSH method to the 25 well sites in Lichinga. The type of 

activity is based on the hazard inventory and sanitary inspection. The hydraulic 

surcharge is considered higher in traditional wells than protected wells and the soil 

zone by pass is based on results discussed in section 5.2.3. 
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Table 19: Pollution load characterisation 

Well 

No 

Type of Activity Character 

of Pollutant 

Load 

Subsurface 

contaminant 

load potential 

Distribution 

category 

Main types 

of pollutant 

Hydraulic 

surcharge 

Soil bypass 

zone2 

I Leaching Refuse tips r P-D nfot ++ + REDUCED 

2 Leaching Refuse 

tips/livestock rearing 

r P-D nfot + ++ MODI: RA FE 

3 Livestock rearing r P-D nfot + ++ MODERATE 

4 Livestock rearing r P-D nfot + + MODERATE 

5 Livestock rearing r P-D nfot + 1- MODERATE 

6 High density on site 

sanitation 

r P-D nfot + + 

7 Livestock rearing r P-D nfot ++ + MODERATE 

8 Livestock rearing r P-D nfot + + MOI)I": RA'I'I? 

9 Leaching Refuse tips r P-D nfot + + REDUCED 

10 Livestock rearing r P-D nfot + ++ MOl)I: RA IT, 

1 LR r P-D nfot + + REDUCED 

12 Livestock rearing r P-D nfot + ++ M(I)FRA l'F 

13 Livestock rearing r P-D nfot ++ ++ MODERATE 

14 Livestock rearing r P-D nfot + + MODI'RA'Ii. 

5 LR r P-D nfot + + REDUCED 

16 LR rP-D nfot ++ + REDUCED 

17 High density on site 

sanitation 

r P-D nfot + ++ ELEVATED 

18 Livestock rearing r P-D nfot ++ ++ MODERATE 

19 Livestock rearing r P-D nfot + ++ MODERATE 

20 LR r P-D nfot + ++ REDUCED 

21 Livestock rearing r P-D nfot + ++ MODI: RATF. 

22 LR r P-D nfot + ++ REDUCED 

23 Livestock rearing r P-D nfot + ++ MODERATE 

24 Livestock rearing r P-D nfot + ++ MODERATE 

25 Livestock rearing r P-D nfot ++ ++ MODERATE 

NOTEIS 

LR - Limited risk identified in well surroundings P (point) D (diffuse) 

Discussed in detail in section 5.2.2 n (nutrient compounds) f (faecal pathogens) o (overall organic load) t (toxic micro-organisms) 

r (rural) + Increasing significance 
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Summary 

This section summarised the key findings from sanitary inventory and inspections 

undertaken during the study period. By combining the variables affecting subsurface 

contaminant load potential, it can be concluded that a MODERATE to REDUCED 

level of hazard is present in the study site. Only Wells 6 and 17 were noted to have 

ELEVATED load potential due to their high population density and proximity of 
latrines. Due to low population density, minimal livestock activity and better sanitary 

condition, wells 1,9,11,15,16,20 and 22 have REDUCED load potential. These 

categorisations will be used in section 5.3 to determine the risk of microbiological 

contamination of shallow groundwater. 
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5.2.3 Pathways to contamination 

To assess the pathways to contamination, data were collected on both meteorological 

and hydrogeological variables. These included continuous data in the forms of daily 

rainfall recording in two fixed locations during the 12-month study and monthly water 

level testing. Categorical data in the form of detailed hydrogeological surveys were 

also included. This section will firstly discuss the meteorological findings and then the 

hydrogeological findings. 

Meteorological Variables: 

Rainfall records were collected on a daily basis during the 12 months of study. 

Readings were recorded in intervals of 0. lmm but are presented in this section to the 

nearest lmm (Brassington, 1998). The results indicate a similar pattern of rainfall to 

the previous 8 years. Figure 21 outlines the median rainfall from 1995-2003 compared 

to median results from the two rain gauges (Estacäo Agraria de Lichinga and Quinta 

Capriconia) set up and monitored for this research period 2003-2004. 

An average annual rainfall of 1157mm was recorded over the years 1995 to 2003. 

During the study period, the rain gauges recorded comparable results of 1047mm and 

1042mm in the Quinta and EAL rain gauges respectively. Highest rainfall was noted 

during the months of the monomodal rains (November - April) with peak rainfall 

recorded in January. During the study period, heavier than average rainfalls were 

noted in December 2003 with 252 and 297mm recorded in Quinta and EAL as 

compared to averages from the previous 8 years of 173mm. Rains were also more 

continuous during the study period with higher than average rainfall during the month 

of April. 

Periods of extended heavy rainfall were noted between the 15th November and the 7th 

December, the 13th of December and 29th January and 4th to the 25th February. 

Highest rainfall was noted in November 15th at 20mm in 24 hours, December 13th at 

76 mm in 24 hours, January 19th, 29th at 80 and 44 mm and February 23rd at 54mm. 

Source errors were recognised during collection of rainfall data. These included: 

" Variable collection times 

" Scale reading errors 

" Rounding off results to nearest mm 
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In line with recommendations from Freeman, a scale reading error of + 0.2 times the 

smallest division of the scale was used as error margins to all readings (see Figure 

21). For further analysis in section 5.3, average values for rainfall will be used. 

Figure 21: Median rainfall 

Median rainfall data (1995-2003) compared to rainfall (2003-4) 
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Depth to Water Table 

Monthly water table readings were taken using a water level dipper. 'These were taken 

once per month on the same day as the water quality sample. Figure 22 outlines 

summary findings for wells located in the three geographical areas of' the study 

(namely Nomba, Lulimile and Ceramica). As noted in Figure 22, deeper groundwater 

levels of between 8-10mbg were recorded in Lulimile than in Ceramica and Nomba, 

showing almost identical variations in groundwater levels during the study period. 

Figure 22: Groundwater levels 
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Naturally, seasonal fluctuations in the depth to the water table were noted. During the 

rainy season increased recharge results in shallow water levels during the months of 
April and May at 5.1 mbgl at both locations. During the drier period, the water level 

drops to below 7.5mbg1. Lowest recorded levels were noted in Well 13 (Traditional 

well owned by Luisa Juliasse) where levels dropped to 8.62mbg in October. In total 8 

wells were dry during October and therefore water levels could not be collected. 
While the wells were dry, it is believed that increased water demand during this 

period for intensive agriculture resulted in many of the wells being over exploited. 

Due to equipment malfunctioning ("well dipper") during the month of June, readings 

were taken but could not be recorded. 
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Hydrogeological Variables 

The following methods were used to collect data on hydrogeological variables: 

" Desk review 

" Sub soil field descriptions 

" Soil Particle Distribution analysis 

" Geological survey (CCTV Borehole camera) 

The desk review revealed limited data on the hydrogeological situation in Lichinga. 

Due to the underdeveloped nature of the town, limited investment has been made to 

map, log or record hydrogeological data. The only substantial available data were 

from a geological map dating to the Portuguese colonial period (see Figure 23 - 
Lichinga is named as Vila Cabrel and highlighted in blue). 

Figure 23: Geological Map of Mozambique 
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The geological map indicates that Lichinga is underlain by metamorphic rock with 

overlying alluvial drift. Due to limited data on the hydrogeology of the area, subsoil 
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field investigations were undertaken using the CIBAGEIGY classification method and 

soil particle distribution analysis. Findings of the soil particle distribution analysis are 

outlined in the ternary diagram in Figure 24: Readings for samples taken at 0.5mgl. 

Figure 24: Soil Ternary diagram 

Illustrates range of particle sizes within the three study sites (Depths of 1 to l Om - 
refer to Table 22 for detail for each geographical area) 
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The subsoil field survey revealed very high silt and clay content in samples from all 

three sites when analysed using the CIBAGEIGY method (CIBAGEIGY, 1986). As 

noted in Figure 24, based on the soil particle size analysis, the greater size distribution 

lies between the 50-75% range of silt/clay. Loamy sand was noted in Well 10 and 

Well 25. Data were not collected from Wells 18 and 19 as the owner denied access for 

the study. 

Further findings from subsoil analyses using Particle Size Distribution (PSD) analysis 

for each of the three study areas are outlined in figure 26. The figure indicates similar 

grading curves in Nomba and Lulimile with slight variations in Ceramica. Medium 

116 

h, 

25 50 75 100 



clay percentages (41%, 46% and 47%) in Ceramica, Nomba and Lulimile were noted. 
Very high fine sand/silt content was noted in all three samples with limited 

percentages of coarse materials. The K permeability value for each of the samples 

suggest a moderate to low permeability range at 10-4- 10-8 m/s (see Table 20 below). 

The medium to low permeability of the subsoil surrounding the well will limit the 

ingress of microbiological contaminants forcing higher attenuation and greater die off 

of pathogenic microorganisms. This in turn will reduce the vulnerability of the 

shallow groundwater to contamination through sub surface ingress. 

Errors in analysis included erratic sunlight for drying and inconsistent mixing of 

sodium hexametaphosphate (used as a dispersant) in tepid water. Based on the results 
from the PSD, the soils were classified using the British system for Soil Classification 

after BS 1377-2 - Methods of tests of soils for civil engineering purposes. 

To further define the subsoil vulnerability, an adaptation of methods developed by the 

University of Dublin and the Geological Survey of Ireland termed Adapted 

Hydrogeological Settings Method was used. The method considers four categories of 

vulnerablity - extreme, high, moderate and low (Swartz et al. 2003, Robins, 1998). 

These categories are calculated by combining subsoil field descriptions (as noted in 

Figure 24), grain size data (as noted in Figure 25), subsoil thickness (determined from 

water level data) and qualitative estimates of soil permeability. The permeability is 

used to define the specific hydraulic conductivity (Swartz et al. 2003). 

Table 20: Subsoil vulnerability based on hydrogeological characteristics 
Hydrogeological Characteristics 

Subsoil 

Thickness (m) Subsoil Permeability Unsaturated Zone 

High Vulnerability Medium Vulnerability Low Vulnerability (sand/gravel aquifers only) 

(e. g. Gravel/Sand)' (e. g. Sand, Sandy Silt)' (e. g. Clay, peat)' 

0-3 Extreme Extreme Extreme Extreme 

3-5 Extreme-High High High _ 
5-10 High High-Moderate Moderate High 
>10 Low -High Moderate Low 

(Source: Swartz et al 2003) 
1 Example description based on BS5930 
2 Thickness of the unsaturated zone is only considered for sand/gavel aquifers such as Lichinga 
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Figure 25: Coefficient of permeability (m/s) 

1 10-' 10"2 10-3 10-4 10"5 101 10"1 10'8 10-9 10-10 

Clean Clean sands and sand- Very fine sands, silts and Unfissured 

Gravels gravel mixtures clay-silt laminate clays and clay- 

Desiccated and fissured clays 
silts (>20% 

clay) 

(Source: Swartz et a12003) 

Although the Hazens method was considered, the author selected definitions from 

Swartz et al to define permeability. This was due to both the high fraction of fine 

sands and clay in the sample and the smaller sample size (100g as opposed to the 

standard 200g soil sample) used for the particle size distribution analysis (BS 1377-2, 

1990). The difference in sample weights requires an error margin which is best 

interpreted using the modified Swartz method. The categorisations of permeability 

outlined in table 20 and table 21 were therefore applied to the study sites in table 22 

(Craig, 1995). 

Figure 26: Particle Size Distribution analysis for Lichinga. 
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From table 22 it can be concluded with respect to soil conditions for the pathway that 

0% of the wells are within the EXTREME vulnerability category. Eleven (11) of the 

wells are within the HIGH vulnerability category and fourteen (14) of the wells are 

within the HIGH-MODERATE. This corresponds with the shallow groundwater 

depths. 

Summary 
Section 5.2.2 has examined the conventional aquifer pathways to contamination of 

shallow groundwater considering factors such as rainfall, subsoil thickness, depth to 

water level, soil permeability and distance from source to receptor. Due to time and 

financial constraints, additional factors such as ambient temperature of soil microbes 

relative to physiologic temperature and specific porosity could not be researched. 

Literature however suggests that the use of any one indicator of vulnerability should 

not be used in isolation and that a more holistic approach such as the Swartz et al. 

(2003) approach is of greater merit. Based on the soil conditions, the findings 

conclude a moderate to high level of vulnerability in the selected well sites with no 

wells categorized as either extreme or low vulnerability. 
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5.2.4 Receptor to contamination 
Conventionally, hydrogeologists assess risk to groundwater based on pollutant source 
loading and vulnerability of aquifer pathways. This research also assesses the 
influence of the receptor in minimizing risk through localized pathways (e. g. short- 

circuiting through the wellhead protection zone). The wellhead is defined in this 

context as the pipe and well structure, as opposed to the larger capture zone, where 
ingress of contaminants from diffuse surface faecal sources occurs due to poor 

workmanship through poorly sealed annuli of boreholes and cracks in surface aprons. 
The more effective the receptor is as a barrier, the fewer the localised pathways of 

contamination. To assess the risk of localised pathways through the barrier, this 

section will outline results from qualitative data collection from wellhead inventories 

and quantitative data from non-destructive tests on surface hardness. 

Well head inventory 

As noted in Chapter 3 the wellhead in this research is defined as "the underground 

and overground construction of the abstraction facility as well as the immediate area 

surrounding the abstraction point" (Howard et al. 2005). Inventories of the wellhead 
included: 

" Qualitative visual examination 

" Visual inspections 

" Non destructive surface hardness tests 

Designs outlined in Watt et al. (1979) and Collins (2000) were used to define standard 

codes of construction. Based on recommendations in Watt et al. (1979), wellhead can 
be divided into three components: the intake, the shaft and the headworks. Adequate 

data were obtained from fieldwork on the condition, type and quality of construction 

of the headworks. However, due to the limited accessibility of underground sections 

of constructed wells, limited data were collected for the shaft and the intake. To 

generate this data, alternative methods of data collected using the Analytic Hierarchy 

Process (AHP) based on expert judgement were used. Before discussing the AHP, this 

section will firstly outline findings from fieldwork associated with the headworks and 
then findings from the application of the AHP to the well intake and shaft. 
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Headworks 

Data were collected on the design and quality of worlananship of each well as well as 

the type and condition of the extraction (pumping) mechanism. Data were compared 

to both standard recommended design criteria and the authors' experience of apron 

construction outlined in Table 23. Table 23 below outlines some key design criteria 

Table 22: Wellhead design criteria 
Wellhead 
design 

Category Design Criteria References 

Wellhead Workmanship 1-3m sanitary seal of 50-100cm wide (Watt et a!. 1979) 
Design Headworks 0.8m above ground level (open 

with windlass) 
(Collins, 2000) 

Headworks 0.2m above ground level (capped 
with hand um 

(Collins, 2000) 

Apron foundation (clay/cement) (Oxfam, 1998) 
Well cover of 15cm thick (Watt et a!. 1979) 
Minimum 50x5Ocm inspection cover (Watt et a!. 1979) 
0 Apron 2: 3m diameter (Oxfam, 1998) 
Drainage channel = 23m in length (Collins, 2000) 
0 Drainage channel >0. lm (Oxfam-Angola, 2001) 
Drainage channel 1: 50 slope (Oxfam, 1998) 
Soak away pit should be present (Oxfam, 1998) 
<1m depth filtration pit (Oxfam-Angola, 2001) 

Extraction Flange bolt spacing ý22cm (ACME, 2002) 
mechanism uPVC and GI rising mains >2 years Collins 2000 

Full results of the well inventory are outlined in Appendix 1. Wells with construction 

and design criteria that are not in accordance with the recommended guidelines for 

construction are highlighted in red in Appendix 1. 

When compared to guideline methods of construction, results in Appendix 1 indicate 

the following results for 25 researched wells: 

" LOW RISK = Wells 2,4,5,6,15 and 16 (with 1 risk score), 

" HIGH RISK = Wells 3,8,9,10,11,12,14,20,21,22,23,24 (with >1 risk score). 

As the wells researched are operational wells, non-destructive tests of surface 

hardness and concrete strength were required. The Schmidt Hammer test was selected 

and 510 tests at four specific points on the apron were undertaken. Results of these 

tests and structural observations are outlined in Appendix 1. Source errors identified 

during data collection included: 

9 Poor quality of workmanship - Hand mixing of the cement resulted in poor 

compaction and aggregate distribution, 
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" Poor aggregate washing - noted that the aggregate was poorly washed resulting in 

poor concrete cohesiveness (dust on the surfaces of aggregates weakened the 

bonding potential), 

" Poor quality bricks - Poorly cured bricks were used for apron foundation and 

drainage, 

"' Sanitary seal - Wells were not properly sealed with filter material and were back 

filled with excavated debris of variable quality, 

" Age of concrete - tests were undertaken on concrete older than 3 months which 

affects readings (BS1881-201,1986). 

Results of the Schmidt Hammer tests are detailed in Appendix 1. A summary of the 

four main findings is given below: 

" Depth of concrete - 100% of wells were > 30mm (recommended depth) 

" Age of Concrete - 100% of wells were more than 3 months old as recommended 
in BS1881-201 (1986). 

" Optimum levels of R (Rebound Coefficient) = 30 were used as the lowest level 

recommended by the manufacturer (Mastrad, 2004) Using R= 30, it can be 

concluded that only the pre-cast reinforced concrete capping beam produced 

results z30 in wells 2,6 and 17. 

From the above list of compliance it can be concluded that the quality of concrete 

used in the headworks is poor. High levels of visible aggregate, suggesting poor 

mixing of concrete, by hand further reinforce this. It should also be noted that these 

are surface hardness readings and although considered indicative of concrete 

strength, are not alone a measure of concrete stability. Additionally therefore, a 

structural survey was undertaken. Results from the survey indicate high levels of 

surface cracking and dry jointing. Examination of these cracks and dry joints 

revealed high levels for risks of direct ingress of surface contaminants through 

unlined annuli of wells 11,14,17 and 21. 
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Below ground component (Intake and Shaft) 
The 25 wells assessed during this research were operational wells. Access to the well 

intake and shaft was therefore limited for the following reasons: 

" Wells were sealed and capped, 

" Culturally it is believed that foreigners entering a well may introduce disease 

(e. g. cholera), 

" Limited well inspection equipment was available. 

Although initial well inspections were undertaken usingsa CCTV Borehole camera, 

this yielded minimal results in sealed or capped wells such as the caisson lined wells 

fitted with handpumps. Due to these difficulties, four alternative options for data 

generation on the shaft and intake were considered: 
1. Excavate and inspect the environ of wells, 

2. Discard the shaft and intake as contributing variables, 
3. Assume quality of construction as comparable to headworks, 

4. Use "expert judgment' 'techniques to generate data. 

Option 1 was considered practically and logistically unfeasible due to the constraints 

of the research site, and option 2 would have not been rigorous in its contribution to 

the research objectives. It was therefore decided to use a combination of Options 3 

and 4, to assess the risk posed by the intake and shaft and apply it to the risk of the 

wells. To achieve this, various multi-criteria or multi-variate techniques were 

reviewed. These included the following methods as outlined in Triataphyllou et al. 

1994,1995 and 1997), Wang et al. (2002) and Ramanujam et al. (1981); 

" REMBRANDT, 

" The Weighted Sum Model, 

" The Weighted Product Method, 

" Analytic Hierarchy Process (AHP), and, 

" Multi Attribute Utility Theory (MAUT). 

This research selected the Analytic Hierarchy Process (AHP) as it is different from 

other decision making tools in that it requires the "simultaneous use of data and 

judgement as opposed to formal models" (Ramanujam et al. 1981). The AHP is a 
"multicriterion decision making approach that employs a method of multiple 

comparisons to rank order alternative solutions to a problem, formulated in a 
hierarchy" (Satty, 1980). It was developed "to solve a specific problem in 
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contingency planning and a later major application was to design alternative futures 

for a developing country, the Sudan" (Satty, 1980). The AHP is Analytic (i. e. it uses 

numbers), Hierarchical (it structures the decision problems in levels) and is a Process 

(real decisions require a process of learning, debating and revising decisions) (Fatti et 

al, 1989). In comparison, the other methods required either data or judgment. The use 

of the other methods limits the validity of the approach. 

Application of AHP as a method of forecasting appropriate technological choices in 

developing countries is well documented in (Ramanujam et al. 1981). Its application 
has also been successfully applied for decision making in the water engineering and 

water resources sector (Fatti et al. 1981). Also, and appropriately for this research, it 

has been applied in the groundwater sector by Thirumalaivasan et al. (2001 and 2003) 

in estimating specific aquifer vulnerability through use in conjunction with the 

DRASTIC model. 

AHP Method 
The AHP is decomposed into levels of criteria. The strength of influence between 

each of these criteria at different levels forms the basis for decision making. The AHP 

is an interactive process, where a group of decision makers relay their preferences to 

the researcher for specified technological options or outcomes. It is based upon the 

construction of Pairwise Comparison Matrices (PCMs). Satty, suggests a scale of 1-9 

for PCM elements (see table 23 below). Justification for these scales based on 

psychological tests in number identification is provided in Triantaphyllou et al. (1994, 

1995,1997). 

Table 23: Scale of measurement for AHP 

Numerical Values Definitions 
1 Equally preferred 
3 Moderately preferred 
5 

_. 
Strongly preferred 

7 Very strongly preferred 
9 Extremely preferred 
2,4,6,8 Intermediate values to reflect compromise 
Reciprocals Used to reflect dominance of the second alternative as compared with the first. 

The AHP decomposes a given problem into a hierarchy structure. The hierarchy 

comprises different levels and the AHP compares the different criteria of the levels. 

using the PCM. To estimate the likelihood of the various scenarios, each actor first 

makes a pair-wise comparison of the relative importance of specific variables 
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associated with engineering barriers to groundwater microbiological contamination. 
This yields a pair of weights for each variable. 

The relationship between the n criteria in the hierarchy is explained mathematically 

as: 

IA(u)JX [W(, )1= [n W(lJ)J 

Where; 

A= an nxn PCM in terms of ratio of ratings/weights, 
W= the ratings or weights (priority rankings/weights) of criteria, 

n= is the order of the PCM matrix. 

i= index of physical conditions 

j= index of well linings 

1= index of candidate technologies 

(1) 

The input matrix is A and the solution for equation (1) is the common eigenvalue 

problem. The AHP is founded upon a system of homogenous linear equations with a 

non trivial solution that only is incorrect if the determinant A- nl (i. e. n is an 

eigenvector of A) whose ultimate outcome is a principal eigenvector Q', ") defined as 

the sum of the criteria divided by the number of criteria. The closer X1 is to n (the 

number of activities in the matrix), the more consistent the result. 

Application of AIIP 

To apply the AHP to this research, the author developed an AHP specific 

questionnaire based on identified variables. As this research is specifically exploring 

groundwater contamination in Lichinga, Mozambique, only "experts" familiar with 

groundwater in Lichinga were selected. The author believed that the inclusion of 

actors not familiar with Lichinga would bias results. Three respondents from Lichinga 

were selected. These included engineers and managers from WaterAid as well as local 

government staff. It is acknowledged that this is a small sample size. However, these 

were the only water professionals available and they were confident with the subject 

matter. The author proposed the following hierarchical formulation to each of the 

actors: 
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GOAL 

" To provide judgement on the relative importance of various well linings in minimising 
microbiological risk to shallow groundwater 

Each of the actors was requested to weight and produce pairwise comparisons for 

each criterion at a particular level of the hierarchy, with regard to the "contribution" it 

makes to criteria at the succeeding level of the hierarchy, by means of a procedure of 

paired comparisons. For this research, the actors weighted the physical criteria 

associated with well linings that affect the risk of microbiological contamination of 

shallow groundwater. -Specifics of the types of contaminants were not a feature of this 

component of the research. Focus was solely on the effectiveness of the engineering 
barrier (i. e. the well lining) in reducing the risk of shallow groundwater to 

microbiological contamination. Finally, a "composite weight" was obtained for each 

of the "alternative well linings. " This composite weight is the overall measure of 
importance for the particular criteria. 

For this study a total of 11 independent characteristics were selected and compared in 

groups at two levels. The levels were divided between' the critical influential 

variables; physical condition of well (i. e. depth/diameter and prevailing soil type) and 

type of well lining (age, soil type, quality of worlananship, materials). From a pair- 

wise judgement, the most appropriate "candidate technology" was selected by each 

participant using the definitions outlined in Table 23. Figure 27 presents a 
diagrammatic representation of the decision tree used for the development of the AHP 

in this research. 

Figure 27: Well Lining Hierarchy 
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AHP Results 

Data from respondents was coded in an EXCEL spreadsheet developed by the author 

to gain estimates of weightings for each of the contributing variables (see screen shot 

of spreadsheet in Appendix 2). These were then used to assign composite weightings 

to each of the actual well lining technologies used in Lichinga. A summary of the 

composite weighting results from the AHP questionnaire is outlined in table 24 

below, with the shaded cells indicating the variable group considered most important. 

Table 24: AFIP Composite Weightings 

Group Variable group Respondent I Respondent 2 Respondent 3 

I Physical Conditions 0.09 0.65 0.23 

2 Well linings 0.62 0.0X 0.64 

3 Candidate 

technologies 

0.30 0.27 0.13 

' where I is maximum value 

The results revealed a strong preference for the importance of the well lining group 

(group 2) over groups I and 3. Specifically, this included the methods and materials 

used for well lining over the specificity of the technology or the physical conditions in 

which the well lining is constructed. Interestingly, the responses to the questionnaire 

reflected the academic background of the respondent. For example, respondent 2 was 

a technician from the Lichinga Agricultural Research center. The respondent 

indicated that the physical conditions (i. e. soil/hydrogeological conditions) were the 

most critical variable group in contributing to the risk of contamination. In 

comparison, respondent 1 was a WaterAid engineer. The respondent indicated that the 

physical engineering barrier was most critical. Respondent 3 was a Public Health 

specialist and the WaterAid Country Representative. Responses gained from both 

respondents I and 3 identified well linings as the most critical variable group. 

In summary, the AHP assigned greatest significance to the well lining variable group. 

This variable group includes the lining age, chemical properties of soil, absence of 

sanitary seal and low material quality and workmanship. Within this group, low 

quality of workmanship and low material quality were identified by all respondents as 

the two most important sub-variables. 

Uncertainty in AIIP process 

The author noted uncertainties in the application of the AHP process. These included: 
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1. Vagueness of how the attribute weights are assessed, 
2. Link between the points on 1-9 scale and corresponding verbal descriptions. 

These uncertainties or limitations correspond with difficulties noted in the use of the 

AHP method by the UK Office of the Deputy Prime Minister (ODPM 2001). It is 

therefore recommended that more precise numerical values be used during the 

composition and implementation of the AHP questionnaire, so that respondents are 

aware of the risk values being assigned to each of their responses. 

Application of AHP 

Results of the AHP questionnaire were then applied to each of the 25 well sites 

dependent on the type of receptor. Results were coded as High and Low depending on 

the candidate technology and variables affecting the use of the well lining. To gain a 

composite risk score, results of the AHP were combined with qualitative and 

quantitative data collected during the wellhead inventory (see Table 25 below). Table 

25 combines results obtained on both the wellhead and the below ground components 

of each of the 25 wells to assign a High or Low risk score for the effectiveness of the 

receptor (the well structure). 

132 



Table 25: Receptor Risk 

Well 

No 

Headworks (including low 

quality workmanship and 

materials) 

Below ground components RISK TO 

RECEPTOR 

Total risk 

score 

Schmidt 

Hammer 

Lining >5 

years 

Chemical Soil 

properties 

Sanitary Seal 

Absent 

5=H H- 113 H, II 

2 3=L L H H H LOW 

3 5=H H H L H 

4 1 =L H L L H LOW 

5 l =L H L L H LOW 

6 3=L L L H H LOW 

7 5=H H L H H 

8 2=L H L H H LOW 

9 2=L H L H 11 LOW 

10 3=L H L L II LOW 

II 2=L H L L II LOW 

12 3=L H L L H LOW 

13 5=H H L L H LOW 

14 2=L H L L II LOW 

15 I=L H L L H I OOW 

16 5=H L H L H HIG 

17 2=L H L L H- LOW 

18 5=H H H L H 

19 H estimate H L L H LOW 

20 3= L H L L H LOW 

21 4=L H L L H LOW 

22 3= L H L L H LOW 

23 3= L H L L H LOW 
24 3= L H L L H LOW 

25 5= H H H L H HIGH 

Where; 
5= High Risk (H) and <5 = Low Risk (L) 

2 Wells with R value <30 = High Risk (H) and Wells with R value >30 = Low Risk (I. ) 
Well linings <5 years = Low Risk (L) and Well linings >5 years = High Risk (11) 

Clay based soils (high acidity) = High Risk (11), Sandy soils = Low Risk (I. ) 
Wells without sanitary seals = High Risk (H), Wells with sanitary seals = Low Risk (L) 
Wells with total H of 1-3 = Low Risk, Wells 4-5 = High Risk 
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The variables of low quality materials and workmanship could not be assessed in the 

below ground components. Results from the above ground components (as outlined in 

the total score in column one), were therefore taken as indicative of these variables. 

From Table 25, it is observed that 6 of the 25 wells are considered at high risk and 19 

of the 25 wells are considered low risk. 

5.2.5 Risk Variables 

The parametric and categorical variables outlined for the source, pathway and 

receptor affect the severity of the microbiological contamination of shallow 

groundwater. The following sections describe the 12 months of data collected during 

the field study. The section begins by providing a summary of microbiological and 

physico-chemical results collected and then discusses key findings from sanitary 

inspections. Although sanitary inspections have been used in the preceding sections to 

determine contaminant loading at source, pathways to contamination and 

susceptibility of the receptor, this section will provide an overview of the key 

categorizations. 

Microbiological results: 

Thermotolerant Coliform 

Figure 28 presents data in graphical form for presumptive thermotolerant coliform 

analysis. The samples size/total data set of 351 samples is divided into the three 

geographic locations. The total number of results for Ceramica = 208, Nomba = 65, 

Lulimile = 52 (plus 26 duplicate samples). The three well technologies are indicated 

as: 

" Traditional Wells in Red 

" Upgraded Wells in Blue 

" ý. 
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Figure 28: Thermotoloerant Coliform Data 

The data indicates that in Nomba and Ceramic contamination levels were highest in 

traditional wells, followed by upgraded wells and then improved wells. 

Inconsistencies in results must be noted for Lulimile for the traditional wells as it was 

observed that the owner of Well 7 (Paulo Saide) admitted to chlorinating his well on a 

weekly basis. Additionally inconsistencies should also be noted for Improved Well 6 

in Lulimile as during the months of February to . Lune 2004, the handpump on the well 

was not functioning and abstraction of the water was being undertaken using 

potentially contaminated buckets. Despite these inconsistencies contamination levels 

were noted as less in Lulimile as compared to Ceramic in upgraded wells. Traditional 

wells in Nomba indicate increase in contamination immediately following the onset of' 

rains in October 2003 and again in September 2004. 
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Enterococci 
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Figure 29: Enterococci data 

Figure 29 uses the same colour coding as the previous Figure. Figure 29 indicates 

that in Ceramica and Lulimile, improved wells had consistently lower levels of' 

microbial contamination than upgraded or traditional wells. Levels ofcontamination 

were noted as highest in upgraded wells in Ceramica. This may he due to the high 

presence of animal faeces in the environment in Ceramica. Additionally, in all 

geographic locations an increase in contamination was noted following the first flush 

of rainfall in November/December 2003. Inconsistencies were noted in Lulimile and 

Nomba where contamination increased during the months of April (Lulimile) and 

May (Nomba) in improved wells. This was because the handpumps broke down 

during these months and buckets were used for abstracting the water which provided a 

significantly increased risk of contamination. 
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Figure 30 below outline the number of samples that fail to meet both the WHO 

Guideline value (<lcfu/100ml - shown as WHO) and the Mozambique National 

Standard (<lOcfu/100ml - for untreated supplies - shown as Moz SI. ) for presumptive 

thermotolerant coliforms (WHO, 2004, Mozambique WaterAid, 2003). Until 2003, 

the Ministry of Health (MoH) of Mozambique established a single standard of 

<3cfu/100ml for all potable water supplies. In 2003, the MoH proposed two water 

quality standards, one for treated supplies and one Ihr rural supplies. For rural 

supplies, a target level of <l0cfu/100ml was proposed for thermotolerant colilorms. 

This standard is used in this research. In the subsequent sections, results are expressed 

as the number of cfu per 100ml of water analysed that comply to comply with either 

the Mozambique standards or the World Health Organization GUWQ 3"1 edition- 

2004. Data provided considers 95% confidence intervals and where duplicate 

sampling has been undertaken only results within limit are included. In some months 

and locations results were recorded as >IOCFU/100ml and were theref re not 

recorded. 

Figure 30: thermotolerant coliform compliance 

Percentage Compliance of TTC Kith NVII0 GDW1'Q and Mozambique Standard 

I Nomba WHO (<1 cfu/100mI) Nomba Moz St (<10cfu1100mI)   Lulimile WHO (<1 cful100mI) 

Lulimile Moz St (<10cfu/100mI)   Ceramica WHO (<1 cfu/100mI) Ceramica Moz St (<1 Ocfu/100mI) 
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From Figure 30, it can be concluded that highest percentage compliance was achieved 

during the month of June with more than 25% of the total samples complying with 
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both WHO GDWQ and Mozambique Standards. Low levels of compliance were 

achieved during the months of December, January, August, September and October. 

Highest levels of compliance were achieved in Nomba and lowest in Lulimile. 

Summary of analysis of presumptive enterococci is outlined in Figure 3 1. It is 

important to note that currently the WHO GDWQ (3`" edition) expresses a similar 

guideline value (GV) of <lcfu/100ml for enterococci. It is noted that enterococci 

usually occur in lower numbers than thermotolerant coliforms (WI 10,2004). Results 

from the study in Lichinga note the opposite with only I sample within the WHO 

GDWQ GV < lcfu/100ml. It is therefore recommended that a relaxation of the value 

is used in this study of l Ocfu/100ml. The lack of compliance ofdata from rural water 

supplies to WHO GDWQ has been also been noted by Iloward (2003) and Lloyd c/ 

ul. (1991). The use of the WHO GDWQ GV <1d u! IO0ml for monitoring 

microbiological contamination of shallow groundwater is therefore an area that 

requires significant further research. 

Figure 31: Percentage compliance of enterococci 

Percentage Compliance of presumptive EF to %% liO GDWW'Q (<Icfu/IOOmI) and 
proposed \Iozambique Standard (<IOcfu/IOOml) 

  Norrba WHO (<lcfu/100nl) O Norrba <10cfu/100ni   Lulimle WHO (<Icfu/100n1) 

0 Lulimle <10cfW100rt1   Ceranica WHO (<1cfu/100rr1) O Cerarnca <10cfu/100n1 
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From figure 31 it can be concluded that a low level of samples complied with 

presumptive enterococci guideline values. 0% complied in the months of February 

and October and highest compliance noted in July and August. Overall, numbers of 

presumptive enterococci exceeded the enterococci guideline values at some stage in 

all wells over the 12 month period. 
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Figure 32 below analyses results for EF and TTC for each technology type. 'T'hree 

technologies were considered in this research (traditional wells, upgraded wells with 

windlass, and improved well with handpump). Results indicate a very low level of 

compliance of traditional wells to both the WHO GDWQ and Mozambique standard 

for TTC and EF during the rainy season and greater compliance during the dry 

seasons. 

Figure 32: EF and TTC results per technology 

Percentage (%) of Well Technology to comply with WHO GDWQ and Mozambique 
Standards 
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Results outlined in Figure 32 indicate that the level of compliance was greater in all 

wells to the Mozambique Standard for thermotolerant coliforms of <l0cfu/100ml than 

to the WHO Guidelines value of <Icfu/100ml or to the guideline value for 

enterococci. It can be noted that compliance levels for thermotolerant colitorms were 

highest in improved wells with handpumps, with >60% compliance noted from 

November to February and in June and September. Lower levels of compliance were 

noted in improved wells with handpumps during the dry season. This may be 

explained by the increased demand on handpumps during this drier period. 
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Importantly, frequently lower levels were recorded for improved wells than traditional 

wells. During the rainy season (November-March) very low levels of compliance 

were noted in both traditional wells and improved wells. This improved during the 

drier months of March to July and then deteriorated again in the lead up to the rains in 

August to September. It should be noted that increased demand on the wells during 

the later part of the year combined with minimal yield may have resulted in increased 

levels of contamination. 

Minimal difference however was noted between traditional and upgraded wells 

therefore questioning findings from Cronin et al. (2002) who note that minimal 

improvements to traditional sources can improve both quality and availability of safe 

water. Poor performance of the upgraded wells with windlass further contradict 

recommendations from Cronin et al that noted "no measurable difference between 

water in protected wells or handpump (improved sealed wells). " Indeed, based on the 

findings from end product testing of water quality in Lichinga, the results question the 

potential inclusion of the technology as an "improved source" under the Mozambique 

national survey and the WHO/UNICEF Joint Monitoring Programme. 

Numbers of EF were noted as consistently greater in all well technologies. Traditional 

wells indicated EF levels in excess of IOcfu/100ml in all months except the dry period 

of April and June. Upgraded wells demonstrated 20% compliance in both the rain and 

the dry seasons and improved wells indicated 25,40 and 40% levels during the 

monomodal rains. Interestingly, higher counts of EF were recorded in wells at greater 

depth. This may be explained by the robustness of the organism and its ability to 

survive, but not multiply under environmental conditions at depth (Mara, 2003). 

Numbers of TTC were more compliant with the Mozambique Standard 

(<10cfu/100ml) than the WHO GDWQ (<lcfu/100ml). A dramatic increase in TTC 

contamination levels was noted following the onset of the rains in November. This 

reduced towards the end of the rains (March/April) and then increased following the 

dry period (September). This was most pertinent in improved and traditional wells 

therefore suggesting minimal effectiveness of the engineering barrier in protecting the 

well during flushes of contamination from intense rainfall. Results for improved wells 

with handpumps, although following the trend, indicated less variability between 
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seasons. More than 50% of the improved wells complied with Mozambique Standards 

during 7 of the 12 months. 

Overall, the results suggest that a relaxation of the Mozambique Standard to 

<10cfu/100ml is a more realistic target for both improved and upgraded wells. 

Although the above observations are of use, limited conclusions should be drawn 

from Figure 30 alone. In line with recommendations in the 3d edition of the WHO 

GDWQ (2004), reliance on end product testing alone is inadvisable and a more 

thorough risk based approach should be adopted. For this study, limitations of 

interpretation of end product results include: Limited sample size - due to time and 

financial constraints and technology distribution -a greater number of upgraded wells 

were monitored compared to traditional and improved wells. Additionally, the 

following errors were noted; 

1. Experimental errors - 

a. Analyses was done outside and so there was potential for either wind, 
dust or sunlight exposure to affect results, 

b. MMD - Numbers of Media Making Devices (MMDs) were limited in 

January and February. Re-use of sterilised MMDs may have resulted in 

potential cross contamination. 

c. Dilutions - Samples with high turbidity made colony identification 

difficult during the end of the dry and beginning of the wet season. 1: 2, 

1: 5 and 1: 10 dilutions with deionised water were undertaken. 

d. Incubator tray - The removal of the incubator tray prior to incubation 

created minor fluctuations in the incubation temperature (±10C). In 

many cases this equalled -1°C over the first 10 minutes of incubation. 

e. Availability of ice - Limited availability of ice for transporting 

samples resulted in minimal quantities being used during some months. 

Samples may not have remained at <4°C during transportation. 

2. Human errors included: 

a. Timing - Although a stopwatch was used to control resuscitation and 

incubation times, potential human error may have occurred. 

b. Colony identification -A handheld 5" magnifying lenses was used to 

identify both enterococci and thermotolerant coliforms. The size of 
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some colonies made identification difficult and potential errors in 

colony vs. non-colony identification may have occurred. 

c. Community - Potential threat of cholera made communities highly 

suspicious of the data collected at each well, and resulted in some 

community members denying access to the wells for research. 

Due to these errors, duplicate results were taken on the first and last sample of' the day 

and 95% confidence levels were used to define compliance of' the microbiological 

results. In cases where 95% confidence levels were achieved a mean result was taken 

and computed. Where results were not within 95% confidence level, it was considered 

a statistical outlier and was removed from further analysis. 

pH 

pH was measured on a monthly basis at the same time as the microbiological analysis. 

Values ranges of recorded pH are outlined in Figure 33. pH values are constant with a 

median value of 6.1. Well 7 varies from the norm. It is a traditional well, which was 

visited on a limited basis during the study period due to lack of access provided by the 

owner. 

Figure 33: pH results 
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The author observed that the owners might have been chlorinating well 7 with 

hypochlorite during the study period. This would result in changes in pi{ due to the 

forming of hydroxyl ions. However low pH values may be naturally occurring and as 
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noted by Stejmar reflect the metamorphic rock underlying the alluvial unconfined 

aquifer (Stejmar, 1998). Higher values may relate to increased organic material in 

samples water and increased turbidity which consequently results in higher pi I values 

and greater alkalinity (WHO, 2004). However, due to the stability of the p1l in the 

sample wells and the fact that treatment of water is not included in this study, the 

author decided to remove pH from any further data analysis at this stage. 

Turbidity 

Figure 34 uses the same colour coding as previous graphs. The figure indicates 

highest levels of turbidity recorded in upgraded and traditional wells. Highest levels 

of turbidity were noted during the rainy period of November - February 2003 and 

then in September-October 2004. Inconsistencies were noted in Well 6 (Improved 

Well) of Lulimile where turbidity increased due to the removal of the handpump 

between February and June resulting in direct introduction of' contamination. In 

general turbidity levels were higher in Lulimile than at the other two sites. This may 

be due to the higher percentage of clay in the topsoil in Lulimile as compared to 
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Nomba and Ceramica. Very low levels of turbidity were noted in all wells in 

Ceramica during the dry season of March-August 2004 perhaps due to the high silt 
fraction in the soil resulting in higher filtration. 

Percentage compliance rates for turbidity are based on the WHO GDWQ GV and 

Mozambique Standard of <5NTU. Results indicated in Figure 35 below suggest high 

compliance levels in the Ceramica and Lulimile sample sites and less compliance in 

Nomba. Specifically, low levels of compliance were noted in wells I and 6 in Nomba 

and wells 9 and 10 in Lulimile. 

Figure 35: Turbidity result 
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Turbidity levels are a direct reflection on seasonal rainfall. During the monomodal 

rains, turbidity levels increased and levels of compliance fell below 50% in the 

majority of well sites. During the dry period (May, June, July and August, 100% 

compliance was noted in 2 of the 3 sites. It was noted that the community also related 

the increase in turbidity during the rainy season to the time of collection of water. 

During the rains, it is common for communities to collect water early in the morning 

(before afternoon or mid day rains). This disturbs sediment in the well and introduces 

turbidity. During the dry colder season, communities tend to collect water during the 

warmer late morning period causing higher turbidity rates at midday or later. As 

samples in this study were always taken between lam and 12 noon, the period of 

collection by communities will affect turbidity levels. 

  Lulimile   Ceramica 
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Sanitary Inspection Data 

Sanitary inspection data were collected each time a water sample was taken. The 

forms were field trialed and then standardized by the author at the beginning of the 

research with local counterparts in Lichinga. A total of 12 questions were included on 
the improved well with handpump, 11 questions on the improved well with rope and 

washer pump and 10 questions for the upgraded and traditional well. In this research, 

results for sanitary inspection will be included during the next stage of data analysis. 
As noted in Chapter 4, the sanitary inspection forms were divided into SOURCE, 

PATHWAY and RECEPTOR (INDIRECT FACTORS). Results for each of these will 
be included in section 5.4 during the process of data analysis. Results will be used as 

parametric variables to complement established categorical variables. 
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5.3 Data Mining 
5.3.1 Introduction 

This section will focus on the selection, cleaning and coding of data presented in 

section 5.2. It will follow the format of SOURCE-PATHWAY-RECEPTOR-RISK by 

selecting and coding the variables in preparation for multivariate statistical analysis in 

section 5.3. 

To achieve this, a process of Data Mining was used. This can be defined as "mining 

knowledge from large amounts of data" (Han et al. 2001). It is more comprehensively 
described as "the exploration and analysis, by automatic or semiautomatic means, of 
large quantities of data in order to discover meaningful patterns and rules" (Helberg 

2002). Data mining was first introduced by academics and industry to sort data 

electronically. It is a systematic means of coding data. There are a number of stages to 

data mining and each method varies according to the author of the method. 
Commonalities between methods however include an initial description and 

compilation of the data similar to that outlined in section 5.1. 
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5.3.2 Source Variables 

Due to the multivariate nature of this research, variables affecting pollutant loading at 

source have been "clustered" to provide a summary hazard rating. The variables 

considered in the definition of this hazard rating and links between the variables are 

outlined in figure 36. 

Figure 36: POSH method variables 

Primary Factors Secondary Factors Contaminant T, nad 

Population Density 

ELEVATED 
I Sanitation Type I 

Distance of well to 
faecal hazard 

Depth of hazard 

Distance of well to 
Solid Waste hazard 

I Depth of SW 

Hydraulic Surcharge 

MODERATE 

Soil Type 

REDUCED 
I Animal Faeces 1 

Sanitary Inspection 

Categorisations based on the POSH method (discussed in section 5.2.2) are 

summarised in Table 26. In column three, binomial categorical value labels are 

presented. These are the codes used in the statistical analysis using the software 

package SPSS. Where no data are available, 9 is used in accordance with standard 

statistical methods (Coakes et al. 1999). 

Potential errors were noted in historic data used for assessing population density. This 

is a common phenomenon in developing countries. As a result, a method of binomial 

coding was used that indicated 0 or 1 for presence or absence. This method was 

selected over a numerical weighting system due to potential discrepancies in margins 
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between interpretations of Elevated to Moderate to Low due to these potential error 

margins. 

Table 26: Subsurface contaminant load potential 

Category Wells Compliant Non Compliant 

ELEVATED 6,17 1 0 

MODERATE 2,3,4,5,7,8,10,12,13,14,18,19 1 0 

REDUCED 1,9,11,15,16,20,22 1 0 

The compliant or non-compliant coding forms the basis for the statistical analysis in 

section 5.4. 

5.3.3 Pathway Variables 

Two variable sets were assessed in selecting vulnerability categories using a modified 
Swartz method as described in section 5.2.3. These included meteorological and 
hydrogeological variables. Initial data description revealed a strong correlation 
between rainfall and risk to microbiological contamination. Following the first flush 

of rainfall, levels of contamination (measured in both presumptive thermotolerant 

coliform and presumptive enterococci) indicator bacteria increased by a5 and 10 

order of magnitude compared to mean results from before the rains. Initial results 
indicate a pulse response to rainfall. However, due to limitations of this research it 

was not possible to quantify the precise travel time using tracer studies. These 

limitations included: 

1. Funding constraints - limited funds for tracer studies 
2.. Social constraints - communities would not accept the addition of a tracer 

(regardless of type) into their water source, 

3. Logistics - transport of the tracer material from the UK to Mozambique would 
have presented foreseen difficulties. 

Direct pulse response graphs however indicate a correlation between increased 

rainfall and flushing of contaminants into wells. Particularly high contamination 

concentrations were noted in traditional wells and upgraded wells during the rainy 

season. Specifically, wells 1,18 and 22 were highly vulnerable to contamination 
during the rainy period. This is due to minimal protection afforded by well linings and 
drainage on headworks. Rainfall was therefore identified as a critical variable and, 

although considered as a variable of the pathway in section 5.2, has been removed 
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during the data mining process and will be considered as an independent variable for 

purposes of data analysis in section 5.4. The "clustering" of variables for selection for 

coding is outlined in Figure 37. 

Figure 37: Vulnerability categories based on modified Swartz method 
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Results were clustered into HIGH, MODERATE and LOW vulnerability categories. 

Results of these are summarised in Table 27. Binomial categorical value labels are 
presented in column three with the number 9 used for non-available data. 

Table 27: Vulnerability ratings Lichinga 

Vulnerability Well Nos Compliant Non Compliant 

HIGH 1,10,12,13,18,19,20,21,22,24,25 1 0 

MODERATE 2,3,4,5,6,7,8,9,11,14,15,16,17,23 1 0 

Highest levels of vulnerability were noted in wells in Ceramica, with lower moderate 
levels noted for wells in Nomba and Lulimile. When combined with the pollutant 

source categorisation, it can be concluded that the Ceramica area contains greater 
hazards and is at higher vulnerability than Lulimile but that animal hazards are still 

evident in Lulimile (see Figure 38 below for details). The vulnerability categories 

outlined in Figure 35 will be used in the data classification section 5.4 to determine 

statistical correlations between vulnerability and risk. 

Secondary Factors 
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Figure 38: Vulnerability and source loading categorisations 
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5.3.4 Barrier Variables 

Two variable sets were used to assess the risk to each engineering barrier. These 

included; headworks and below ground components. The headworks were assessed on 

the basis of quantitative and qualitative assessments. The below ground components 

were assessed based on the use of the Analytic Hierarchy Process. Table 28 

summarises the findings of the barrier results. 

Table 28: Risk to barrier ratings Lichinga 

Vulnerability Well Nos Compliant Non Compliant 

HIGH 1,3,7,16,18,25 1 0 

LOW 2,4,5,6,8,9,10,11,12,13,14,15,17,19,20 

21,22,23,24 

1 0 

5.3.5 Risk Variables 

Microbiology 
To test the assocation of the source, pathway and receptor on the risk of 

contamination, results from the two microbiological water quality parameters 

(presumptive thermotolerant coliforms and enterococci) were converted from colony 

forming unit counts (cfu) into binary variables of compliant or non compliant 

(Tesoriero et al. 1997). To achieve this, appropriate levels of cfu were established 

based on recommendations outlined in both Lloyd and Helmer and the Mozambique 

National Drinking Water Standards that recommend a relaxed guideline value for 

water quality in rural water supply systems (Lloyd et al 1991, WaterAid Mozambique 

2003). A further relaxation of the WHO guideline value (<1 cfu/100ml) and the 

Mozambique Standard (<1Ocfu/100ml) was used for the purposes of further analysis. 

Compliance or non compliance results were therefore expressed as YES 

(<10cfu/100ml) or NO (>10cfu/100ml). This data was then dummy coded in SPPS as 

1 or 0 representing compliance or non compliance. For the purpose of analysis, 

statistical outliers have been removed. These are defined as "observations whose 

values are quite different than others in the data set. " (Helsel et al. 1992). In 

accordance with the WHO Guideline for Drinking Water Quality, this study defined 

statistically non valid outliers as microbiological results >I000cfu (WHO, 2004). 
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Turbidity 

A further factor to be considered during the data analysis stage was turbidity. Limits 

placed on turbidity are based on WHO where low risk is defined as <5NTU (WHO, 

2004). Compliance or non-compliance ratings were assigned to each well as I or 0 for 

compliance to WHO risk factors associated with turbidity. 

Sanitary inspection 

Sanitary Inspection results were used to analyse the variable risk at each well during 

each month of sampling. The sanitary inspection form questions were divided into 

those affecting the source, pathway and receptor (See Appendix 1). 'Fhe breakdown of 

the risk variables monitored in each well type is outlined in 'Table 29 where the 

indirect factor is equal to the barrier top contamination through either the receptor or 

aquifer. 

Table 29: Sanitary inspection variables 

Question Traditional well Upgraded well 

with windlass 

Improved well 

with rope and 

washer pump 

Improved well 

with handpump 

1 Source Source Source Source 

2 Source Source Source Source 

3 Source Source Source Source 

4 Pathway 

5 Indirect factor Indirect factor Indirect factor Indirect factor 

6 Pathway Pathway Pathway Pathway 

7 Indirect factor Pathway Pathway Pathway 

8 Pathway Pathway Indirect factor Indirect factor 

9 Pathway Indirect factor Indirect factor Indirect factor 

10 Pathway Indirect factor Pathway Pathway 

1 Pathway Indirect factor 

12 Pathway 

TOTAL RISKS 10 10 11 12 

Results for each of the sanitary inspections for each category (Source, Pathway, 

Receptor) and for each technology were presented in SPSS as 0 or I (present or 

absent) for each category question. 
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Rainfall 

To consider rainfall separately, monthly mean rainfall results from both the EAL and 

Quinta for 2003-4 were coded into binomial data. Limits were established for rainfall 

based on mean monthly results. These included: 

" <10mm/month = Low Risk (0) 

"> 10mm/month = High Risk (1) 

I Omm was selected as an established limit based on evidence presented in the 

literature (see Godfrey et al. 2005, Gunston 1997). Compliance or non-compliance 

weightings were added at 1 and 0. 
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5.4 Data Analysis 
5.4.1 Introduction 

Section 5.3 selected the variables selected for further analysis based on data mining. 

This section applies statistical methods to analyse the data. Based on results of trends 

outlined in section 5.2, it can be observed that low levels of compliance to both WHO 

GDWQ and Mozambique microbiological standards were achieved in upgraded wells 

and high levels of compliance were achieved in improved wells. This questions the 

inclusion of upgraded wells as an improved technology within the JMP data. In order 

to assess the specific variables affecting the increased risk of microbiological risk, this 

section uses detailed statistical analysis to compare both the Chi Square (x2) and 

significance weightings (p-value) of a dependent variable to co-variates 

To achieve this, section 5.4 is divided into four sets of analyses. Each of these was 

performed based on technology type where one dependent variable (risk of 

microbiological contamination using both thermotolerant coliforms and enterococci) 

is compared to one or more co-variates. For this research the co-variates are: 

1. Hazard - source loading potential 

2. Pathway - vulnerability of aquifer 

3. Barrier - effectiveness of engineering barrier 

4. Hazard Sanitary Inspection Result 

5. Pathway Sanitary Inspection Result 

6. Barrier Sanitary Inspection Result 

7. Rainfall 

8. Turbidity 

Due to the large number of co-variates, four analyses were performed using logistic 

regression and Chi-Square. These include: 

" Analysis 1: Monthly analysis of the significance weightings by comparing the 

source, pathway and receptor on microbiological risk. 

9 Analysis 2: Monthly analysis of source, pathway, receptor plus significance of 

specific sanitary inspection results to microbiological non compliance 

9 Analysis 3: Monthly analysis of source, pathway, receptor plus significance of 

specific sanitary inspection results and rainfall to microbiological non compliance 
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" Analysis 4: Monthly analysis of source, pathway, receptor plus significance of 

specific sanitary inspection results, rainfall and turbidity to microbiological non 

compliance 

5.4.2 Statistical Analysis 

This research used multivariate statistical analysis due to the high number of variables 

to be analysed (Calder et al. 2001). This analysis involved both descriptive and 

quantitative statistics. Firstly, descriptive statistics were undertaken using Chi-Square 

analyses, and secondly logistic regression was applied. 

Chi-Square ()Z). 

Chi-Square analysis was selected for this research as it provides descriptive statistics 

to determine the probability of a statistical relationship between variables. This 

probability (p value) is calculated based on the estimation of degrees of freedom 

outlined in a Chi-Squared distribution. Levels of precision are estimated based on the 

output p-value. This provides an estimate of precision that is statistically significant at 

95% confidence. 95% confidence is equivalent to ap value of 0.05, and. significant 

results are noted for p-values nearer to zero than 0.05. The statistical models used are 

outlined in appendix 4. 

Logistic Regression 

Regression techniques were selected as they have the specific advantage of comparing 

variable weightings. From the regression family, the specific technique of Logistic 

regression was chosen for this research. It was selected for the following reasons: 

1. An effective predictive technique - used extensively in the health sciences 

since the late 1960s as a predictive statistical technique to predict binary 

response from explanatory variables (Tesoriero et al. 1997). 

2. Power of analysing "the extent to which one variable can be predicted by 

another" (Calder et al. 1997). 

3. Ability to handle binomial categorical data generated from sanitary inspection 

analysed against a dependent variable (Helsel et al. 1992). 

4. Enables an innovative linguistic translation of binomial data into a decision 

making tool (Calder et al. 1997). 

Logistic regression has also proved effective in: 
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a) analysis of data sets which have large numbers of values - this research 

analyses source, pathway, receptor and risk data with unequal numbers of 
data sets and values, 

b) identification of relations between water quality and explanatory variables - 
this research aims to identify the relative level of risk posed by the source, 

pathway and receptor on the potential for shallow groundwater 

contamination. 

Furthermore, logistic regression can establish which of the influences are strong and 

which are weak, to what extent the different independent variables are independent 

influences (or conversely, how much their influences overlap), and whether there are 
interaction effects between variables (Calder et al. 2001). 

Development of SPSS model 

For this research, data for the source, pathway, receptor and risk variables were 
dummy coded in SPSS 11 as 0 or 1 based on the compliance or non compliance with 

critical limits (Norusis, 1999). SPSS 11 was selected as it was the most current 

version at the time of research. Three models were developed; 

1. Model 1= traditional well, 
2. Model 2= improved well. 

3. Model 3= upgraded well 
Data was dummy coded on a monthly basis for each well in each model. This 

included coded data on the source, pathway and receptor as well as parametric data on 

sanitary risk, microbiological water quality, turbidity and rainfall. Results for source, 

pathway and receptors were presented as values of 0 or 1. For sanitary inspection 

data, values of 0 or 1 were entered monthly as YES or NO responses to each 
individual question. Where more than one assessment was made in a month (e. g. 
November 2003), results were given for the first sample visit only. Categorical data 

(rainfall, turbidity, microbiological results) were presented on a monthly basis as 

either in compliance (1) or non-compliance (0) with established limits. For this 

research, the following critical limits were used (see section 5.3.4 for justification). 

" Rainfall: >10mm as high risk and <10mm as low risk, 

" Turbidity: >5NTU = high risk, <SNTU = low risk, 

" thermotolerant coliforms: >10cfu/100ml = high risk, <10cfu/100ml = low risk, 
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" Enterococci: >l Ocfu/100m1=high risk, <l Ocfu/100ml = low risk. 

5.4.3 Analysis 1-source, pathway, receptor 
Firstly the data was analysed using the descriptive statistical technique - Chi-Square. 

This section uses Chi-Square analysis to estimate the significance weightings of the 

source, pathway and receptor categories to microbiological risk. The objective of 

the analysis was to decipher which of the source, pathway or receptor variables was 

statistically more significant for each well technology type for both occurrence of 

thermotolerant coliforms (TTC) and Enterococci. Results are presented for each well 

technology beginning with traditional wells and followed by improved and upgraded 

wells. 

Traditional Well - Chi-Square Analysis 
In traditional wells, Chi-Squared analysis revealed four constant variables. These 

were; 
1. Low source - low level of significance of hazard source on risk to shallow 

groundwater of microbiological contamination, 
2. High source - high level of significance, 

3. Low pathway - low level of significance, 
4. Low receptor - low level of significance. 

To determine the overall significance for the four variables Chi-Square analysis was 

undertaken. The results of this are summarised in the omnibus analysis below. The 

omnibus is a summary analysis to gain an overview of the statistical significance of 
the variables to non-compliance of thermotolerant coliforms. 

Table 30: Omnibus - thermotolerant coliform Non Compliance 

Chi- 
square 

Df Sig. 

TTC Model 12.442 3 0.006 
Where: 
Df - degrees of freedom 
Sig - significance 

The omnibus reveals medium levels of significance for all three remaining variables 

at 0.006 with a Chi-Square value of 12.442. To determine the influence of each 
individual variable, each. covariate was compared to the dependent variable (non 

compliance TTC). These are summarized below: 

" High Pathway - contributing 11.889 of 12.442 of Chi-Square with a high 

significance weighting of p=0.001. 
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" Medium Source -contributing 0.357 and a low significance weighting of p=0.550. 

" Receptor - minimal significance with a Chi-Square distribution of 0.005 and a very 

low significance weighting of p=0.941. 
The greater significance of pathway factors may be explained by the high presence of 

open wells in close proximity to many traditional wells. 

Note that low numerical values of p (p 5 0.05) indicate high significance, with the 

significance reducing as numerical values of p approach 1. 

In comparison, analysis of non-compliance of EF noted a lower Chi-Square value of 

6.218. Influence of individual variables was noted using cross tabulation. These are 

summarized below: 

" Pathway and Source - low p value of p=0.221 

" Receptor - high level of precision (p = 0.036). Chi-Square analysis further 

revealed a receptor contributory variable of 4.403 of total 6.218. 

The results therefore indicate that the receptor contributes most significantly to 

traditional well contamination of enterococci. The high level of significance of the 

receptor in the occurrence of enterococci can be explained by the unprotected design 

of traditional wells and the high risk of direct ingress of both animal and human 

derived contaminants following rainfall. As noted by Godfree et al (1997), 

enterococci are derived from a ratio of human and animal faeces. Due to high levels 

of false positives of specific Enterococcus genus groups, the precise ratio has been 

discredited as a means of determining the source of enterococci pollution. 
Nonetheless, the higher levels of enterococci in traditional wells may be related to 

washing in of both animal and human faeces through preferential flowpaths. 

Chi-Squared Analysis - Traditional Wells - Results Summary 

The results for traditional wells indicate: 

1. For enterococci receptor (or localised pathways) are a significant risk to 

contamination of shallow groundwater, 

2. For TTC, pathway is a significant due to presence of open wells, 

3. Difference in findings for TTC and enterococci may be explained by the 

relative amount of animal and human excreta in the environment. 
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Improved Well with Handpumps - Chi Square Analysis 

In Improved wells, Chi-Square analysis revealed that the receptor was the greatest 

contributing variable. Table 31 below outlines the omnibus results from the Chi- 

Square analysis. 

Table 31: Omnibus - Thermotolerant Non Compliance 

Chi- 
s uare- 

Df Sig. 

TTC Model 10.446 1 0.001 
Where: 
Df - degrees of freedom 
Sig m significance 

The omnibus indicates a Chi-Square value of 10.446 with only 1 degree of freedom. 

The results indicate a high level of probability that the relationship between the 

source, pathway and receptor are of statistical significance. Of the 10.446, the data 

indicates that the receptor and source equate to a Chi Square contribution of 4.301 or 

p=0.111. 

Chi-Squared Analysis - Improved Wells - Results Summary 

The results for improved wells therefore indicate: 

1. TTC and EF - receptor is the most significant variable, 
2. TTC - receptor is a highly significant variable, 
3. TTC and EF - risk is dependent on the combination of source and receptor. 

Upgraded Well with Windlass - Chi Square Analysis 

In upgraded wells, Chi-Square analysis indicates a value of 1.814'with 3 degrees of 
freedom. The level of significance between variables is considered low at 0.612. 

Table 32: Omnibus - Thermotolerant Non Compliance 

Chi- 
square 

Df Sig. 

TTC Model 1.814 3 0.612 
Where: 
Df a degrees of freedom 
Sig - significance 

Within the Ch Square value of 1.814, the receptor indicates greatest statistical 

significance, contributing 1.124 to the total. This may indicate that the design and 

workmanship of the upgraded well is a significant factor in the risk of contamination. 

Chi-Squared Analysis - Upgraded Wells - Results Summary 
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ýýý, 

" Receptor is of greatest statistical significance, 

"A combination of factors is required to cause microbial contamination. 

ANALYSIS 1 SUMMARY 

Findings and observations from analysis one include: 

" For both EF and TTC, high levels of significance were noted of localized 

pathways in both traditional and upgraded wells, 

" For both EF and TTC, a combination of variables is required for increased 

risk, 

9 For EF higher risk of direct ingress of both animal and human derived faecal 

matter was noted in traditional wells than other well technologies, 

9 For TTC and EF, the quality of the receptor of upgraded wells was of 

significance. 

S. 4.4 Analysis 2- Sanitary Inspection 

The second analysis involved monthly analysis of source, pathway, receptor plus 

significance of specific sanitary inspection results to microbiological non- 

compliance. The specific risks identified through the sanitary inspection forms are 

termed as hazards in Figure 39. Data were dummy coded as binomial data in SPSS 

Version 11 on a monthly basis. This considered variations in sanitary inspection 

results for each well technology in each month. Results are presented collectively for 

each well technology beginning with traditional wells, followed by upgraded and 
improved wells. 

Traditional Well 
Figure 39 below outlines results for significance weightings of individual sanitary 
inspection results and specific source, pathway and receptor variables for the non- 

compliance of EF and TTC. Greater levels of statistical significance were obtained in 

correlation of p-values for TTC as opposed to EF. 
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Figure 39 Traditional Well Sanitary Inspection Results 
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Specifically, results indicate low levels of significance of sanitary risk scores 5 and 7. 

Sanitary inspection point 5 (p= 0.918 and p=l for 'FTC and enterococci respectively). 

This equates to occurrence of solid waste dumps within 30m ofthe well site. Sanitary 

inspection 7 (p= 0.994 and p=0.996 for TTC and enterococci respectively) equates to 

Insanitary Headworks within 3m of well. Low level of risk is further noted from 

sanitary inspection no. 2 (p = 0.840/0.889), which refers to the existence of ummal 

excrela close to well. As results refer to traditional unlined wells, specific short- 

circuiting of aquifer pathways through preferential flow paths in the receptor appears 

common. 

Results reveal a further high level of significance associated with cross contamination 

from the bucket or rope being present on the floor (SI Question 10). IHih levels of 

significance are noted for SI QuestionlO (Insanitary use of rope and bucket) in 

relation to non-compliance with TTC but very low correlation is noted for non- 

compliance of EF. This is explained by a combination of high presence of human 
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(childrens) faecal matter. As many traditional wells are frequently used by un- 

supervised children in their housing compound, this may originate from the child poor 

sanitary practice either before or during his/her contact with the rope or bucket. The 

presence of human faeces has a greater correlation with TTC presence than EF 

presence. 

In summary, the following risk variables were identified to be significant in 

traditional wells: 

" Rope on floor, 

" Bucket on floor. 

Improved Well with Handpump 

Figure 40 outlines specific sanitary inspection risks associated with caisson lined 

improved wells. In comparison to other technologies, greater levels of high 

significance were noted. This may be explained by increased number of SI questions, 

although results indicate that high significance relates to the receptor. Specifically, 

high levels of statistical significance are noted for the influence of SI question 8 

(Deficient Drainage) or SI question 9 (Headwork's diameter <2m) for both TTC and 

EF. This indicates that the improved design of the headworks of the wells is not 

satisfactory. 
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Figure 40: Improved well Sanitary Inspection records 
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Lower significance was however noted in relation to the influence of cracks in the 

apron/headworks (SI 7) where p values of p=0.988 and p=0.857 were noted tier 'I"I'(' 

and EF non-compliance respectively. This may be explained by the age of the wells 

under study which were noted to be constructed during a period of' high quality 

control. Equally, low levels of significance were noted for open wells or refuse pits 

within 30m of the well at TTC (p=0.941) and EF (p=0.831) respectively. 

High level of significance was noted for both the presence of' stagnant water (SI 

question 6) and for the insanitary condition of the pump head (connection between 

pump base and apron (SI question 10)). This is explained by the tact that 75% of 

wells studied had unsecured and cracked handpump bases. Greatest significance was 

noted for the receptor as a whole where p=0.01 and p=0.15 for 'I'TC and FF 

respectively. The high level of significance of the receptor is explained by evident 

faults in the headworks which may result in greater risk of localised puihwuvs of 

contamination. 
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The receptor was identified as being the principal route of contamination. Specific 

risk factors identified included: 

1. Presence of stagnant water on and around wellhead, 

2. Loose base of handpump, and, 

3. Cracks at base of handpump. 

The high level of significance of the receptor is explained by evident liiults in the 

headworks which may result in greater risk of localised palhwav., " cif contamination. 

Upgraded Well with Windlass 

Figure 41 below outlines results for upgraded wells. Specifically low risk variables 

were identified for non-compliance of EF. These included SI question I (latrine 

<30m), SI question 2 (Animal excreta <30m). SI question 5 (Solid waste -3Om). Also 

of note are SI related to the receptor. These include SI question 9 (I)elicient 

headworks), SI question 9 (No well cover) and high risk of' receptor category. In 

comparison, high risk variables were identified for'l"ft'. 'T'hese included SI question 2 

(Animal excreta) where p=0.00, Sl question 3 (animals <lOm From well) where E) 

0.02 and Sl question 4 (Open Wells) where p= 0.05. 'T'hese results indicate that the 

source of contamination is of great significance for upgraded wells. 

Figure 41 Upgraded wells sanitary inspection records 
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In addition, medium levels of significance were noted for pathway factors (p=0.12). 

This may be explained by the denser population in which the wells are located as well 

as the higher vulnerability of soil type. The combination of the high faecal source 

factors suggests that upgraded wells are more susceptible to microbiological 

contamination by TTC indicator organisms than EF organisms. 

Specifically, the following risks were identified as being of significance for upgraded 

wells: 

" Solid Waste <30m 

" Animal excreta <30m 

" Deficient headworks (No well cover) 

ANALYSIS 2 SUMMARY 

Analysis of specific sanitary inspection risks indicates the following: 

" TTC is more numerous in traditional and upgraded wells than in improved 

wells, 

" EF is more numerous in improved sources than in traditional and upgraded 

wells, 

" Presence of animal faeces and solid waste was highly significant, 

" Presence of open wells was significant, 

" Deficiencies in wellhead (e. g. lack of sanitary seal, cracks in aprons, 

rope/bucket on the floor) were highly significant, and, 

" Distance to latrines was not significant. 

5.4.5 Analysis 3- Rainfall 

The third analysis involved monthly analysis of the statistical significance of rainfall 

to microbiological non-compliance when compared to source, pathway, receptor and 

sanitary inspection results (see Godfrey et a12005 for published results in Appendix 

1). Data were dummy coded as binomial data in SPSS Version 11 on a monthly basis. 

Results are outlined in relation to both the influence of high and low rainfall (where 

low is defined as <10mm per month) and high rainfall (as defined as >10mm per 

month). For both traditional and upgraded wells, levels of non-compliance were noted 

as being of greatest significance during periods of low rainfall. For all well types, 
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levels of microbiological non-compliance were noted as greatest during periods of 
high rainfall. Results are summarised in table 32. 

Table 33 Rainfall 

Traditional Well Improved Well Upgraded Well 

TTC EF TTC EF TTC EF 

Rain High 0.472 0.527 0.014 0.147 0.297 0.935 

Rain Low 0.963 0.852 0.225 0.948 

Rainfall was only significant in improved wells during peak rains. High p values of 

p=0.014 were noted for TTC indicating a high statistical correlation between TTC 

contamination and periods of rainfall. Equally, medium levels of compliance were 

noted for EF (p=0.147). The higher than average levels of significance in improved 

wells indicate the presence of preferential pathways. Further Chi-Squared analysis 

noted a Chi Square value of 37.116. Analysis of variance based on individual rainfall 

variables contribute to 2.001 of distribution. This is in combination with the specific 

risk variables of SI question 12 (pump base unhygienic p= 0.083) and high risk 

receptor (p=0.005), with Rain High p= 0.001. 

Rainfall is slightly less significant in upgraded wells than improved wells during peak 

rainy periods. However, both traditional and upgraded wells are affected by both high 

and low rains, whereas improved wells are not affected during periods of low rainfall. 
Chi Squared analysis of upgraded wells reveals a 24.138 total and significance of 

p=0.063. Cross tabulation reveals that SI question 2 and 4 with animal faeces within 

10m of well contribute 13.589 of significance of 24.138. 

In traditional wells, rain alone is not of significance. However, when combined with 
high risk pathways or high risk sources in the environment, high risk occurs. All wells 

are highly susceptible to high rains from both TTC and EF bacteria following first 

"low" flush of rainfall. This is outlined in figure 42, where the bottom axis graph 

outlines daily rainfall records and the top axis graph outlines results from three 

separate water quality results (13/14th November, 23/24`h November and 16/17`h 

December 2003). 
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Figure 42: EF/TTC contamination and Rainfall - Nov/Dec 2003 
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Figure 42 indicates rainfall as a blue line measured on a daily basis. "FTC numbers are 

shown as red columns and Enterococci as blue columns. These (numbers ot"I"l'C and 
EF) were measured less frequently. Results in Figure 42 indicate that microbiological 

analysis was undertaken on 13/14`', 23/24`h of December 2003 and on the 15/16'' of 

January 2004. The first significant rainfall of the season (25mm) occurred on the 15'x' 

of November 2003 and the next microbiological sample showed elevated numbers of 

TTC and EF. The assumption is that these elevated numbers are linked to the 

significant rainfall a eight days before. However, it was not possible to take 

microbiological samples at more frequent intervals. The further assumption that the 

first significant rainfall of the season produced a "first flush" is supported by the fact 

that subsequent higher rainfall incidents occurred, but numbers of TTC/EF reduced. 

Further analysis of the data indicated that upgraded wells were more susceptible to 

contamination from the first flush. This occurred due to: 

1. Greater proximity of upgraded wells to hazard sources, 

2. Low permeability of soils in Ceramica where the majority of upgraded wells 

are located, 

Mean daily thermo-tolerant 

coliform / enterococci 

-Mean Daily Rainfall 60 
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3. Low levels of receptor protection. 

Due to poor sanitary completion of many upgraded wells combined with siting of 

wells in densely populated areas of high vulnerability, high levels of rainfall proved 

statistically significant. 

ANALYSIS 3 SUMMARY 

" High levels of rainfall have greater significance than lower levels of rainfall, 

" enterococci non-compliance is less sensitive than TTC to rainfall. 

5.4.6 Analysis 4- Turbidity 

The fourth analysis involved monthly analysis of the significance of turbidity on 

microbiological non-compliance in comparison to the source, pathway, receptor, 

sanitary inspection results and rainfall. The WHO notes that where turbidity increases 

so too do levels of microbiological contamination (WHO, 2004). This is due to the 

masking of contaminants by organic matter, which reduces the microbiological die off 
kinetics. Results support this view by indicating a very high level of significance of' 

turbidity in relation to microbiological non-compliance. Figure 43 below outlines 

results from Lulimile for monthly turbidity and thermotolerant coliform readings. 

Figure 43: TTC v Turbidity 
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Figure 43 shows the monthly turbidity and TTC readings for the three study areas. 

The data is colour coded with I raditional Wells in Red. I lheraded Wells in Blue and 

The lines indicate the turbidity readings and the columns 

indicate the TTC readings. All data are shown as mean monthly data. From Figure 43 

a trend can be observed with a correlation between an increase in turbidity and an 

increase in microbiological contamination. This is particularly evident in Nomba and 

Lulimile, and less so in Ceramica 

To gain a better understanding, a Chi-Square analysis was undertaken. The results 

indicate a high level of statistical correlation between turbidity and TTC in all three 

well technologies. In traditional wells a Chi Square of 18.873 and significance of p= 

0.170 was noted for TTC and high turbidity levels. Cross tabulation reveals use of 

unhygienic bucket and rope as the most significant variable that contribute to 

increased contamination (12.913), indicating that increased turbidity introduced into 

the well from the rope or bucket results in elevated levels of contamination. 

Analysis of improved wells indicates that turbidity alone is not a significant risk 

variable. This is supported by results from upgraded wells which indicate a Chi 

Square of 24.184 with low level of significance for turbidity alone (p = 0.831) but 

high level of significance when combined with SI question 2 (animal excreta within 

10m of the well (p = 0.002). 

Analysis of trends of turbidity in the results suggests that contamination increases and 

decreases with levels of turbidity therefore supporting the view that turbidity is an 

effective surrogate of microbiological contamination. 
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ANALYSIS 4 SUMMARY 

Analysis four indicates that turbidity is a highly significant parameter and its use as a 

surrogate for microbiological contamination is recommended as a topic for further 

study. 

5.5 Conclusions 
Chapter 5 has provided analysis of data in three sections, data description, data 

mining and data analysis. A summary of the findings of the chapter is outlined below. 

SUM NARY OF FINDINGS 

General Sources of Contamination 

Findings 1. Animal Faeces major source of contamination. 

2. POSH method noted overall Moderate to Reduced levels of sources of contamination (2 

wells only with Elevated level). 

Pathways of Contamination 

1. Rainfall significant in increasing contamination 

2. Modified Swartz method indicated Moderate to High levels of vulnerability 

Receptor of Contamination 

1. Headworks major pathway to contamination 

2. High risk in 6 of the 25 wells 

Specific " Traditional Wells - Receptor most significant pathway (particularly rope and bucket) with 

Findings high levels of statistical significance between enterococci and Animal Faeces. 

" Improved Wells - Receptor most significant pathway (particularly risk through drainage, 

stagnant water, pumphead and apron) 

" Upgraded Wells - Source and Receptor most significant pathway (absent well cover and 

animal/solid waste close to well) 

" Turbidity - High statistical significance with presence of animal faeces and microbiological 

risk 

" Enterococci - Signficant correlation between identified risk factors and Enterococci presence. 

Section 5.2 provided a description of the data. The description was divided into a 

description of the source, pathway and receptor data collected. The source data were 

described using an adaptation of the POSH method where a moderate to reduced level 

of pollution loading was observed. The pathway was described using the 

Hydrogeological settings method. 
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From the data description the following findings regarding the study site 

1. It incurred heavy rainfall during study year 2003-4, 

2. It comprised of a clay/silt soil with a low permeability of 10-4 to 10"8 m/s 
3. It was moderate to high vulnerability. 

Description of the barrier noted an innovative use of the Analytic Hierarchy Process 

(AHP) due to the lack of available information on the below ground components of 

the study wells. The AHP and quantitative assessments revealed the following results: 

" Poor quality materials and workmanship combined with lack of sanitary seal 

resulted a high number of wells being at high risk to microbiological 

contamination. 

Further analysis of water quality data supported this view and noted low levels of 

compliance for both thermotolerant coliforms and enterococci in improved and 

traditional wells. 

Significantly, very low levels of compliance were noted in upgraded wells 

questioning the wells inclusion as an improved source. However, in line with 

recommendations from the WHO (2004), reliance on end product water quality results 

to determine "water safety" is inadequate. Therefore section 5.4 analysed the specific 

risk variables that contribute to these results. Data were analysed using logistic 

regression and Chi-Square. Analysis revealed: 

1. High levels of significance of the receptor in contributing to microbiological 
non compliance. 

2. Analysis 1 in section 5.4.2 noted high levels of statistical significance for both 

EF and TTC due to localized pathways in both traditional and upgraded wells. 
3. Greater risk was also noted based on a combination of variables and that 

although localized pathways appear predominant, there significance is 

dependent on the presence of other variables. 
Further analysis (2) noted: 

1. Distance to latrines was not a major risk variable. 

2. Presence of animal faeces was a major risk, 
3. Presence of open wells and deficiencies in wellhead (e. g. lack of sanitary seal, 

cracks in aprons, ropetbucket on the floor) were a major risk. 
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Analysis 2 noted that TTC is more prominent in traditional and upgraded wells and 
that EF is more prominent in improved sources due its higher survival function at 
depth. Analysis 3 and 4 further noted the significance of rainfall and turbidity in 

contributing to the risk of microbiological contamination with higher levels of risk 

noted during high rainfall periods and during periods of peak turbidity. 
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Chapter 6: Risk Management 
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6.1 Introduction 

Chapter 5 presented an analysis of data collected from Lichinga, Mozambique and 

provided answers to the defined research problem in this research of How to assess 

the significance of variables affecting microbiological risk to shallow groundwater. 

Chapter 5 identified specific variables associated with microbiological risk to shallow 

groundwater as well as specific weaknesses in sole reliance on end product (water 

quality) results. Having assessed the significance of each of these variables, this 

chapter (Chapter 6) presents potential methods of both managing and communicating 

risk. In line with global initiatives in the water quality sector, this chapter firstly 

presents a conceptual background to recent initiatives in the water risk management 

sector and then presents a model risk management strategy for each of the well 

technologies studied. 

6.2 Background 

As noted in detail in Chapter 2, fundamental weaknesses of reliance on end product 

testing in the water sector have been identified. In summary these include; 

9 Presence of indicator bacteria is not definitive evidence of pathogen presence, 

" Minimal link between bacteria and corrective actions, 

" Testing provides limited warning regarding water quality deterioration, 

" Testing is likely to be "Too little-too late" as once bacteria are identified, they 

have often already been consumed. 

Within the water and public health sectors, recognition of the weakness of the 

indicator bacteria system has led to increasing work to develop more effective 

methods of monitoring and controlling water safety. 

Similar problems with end-product testing were noted in the 1980s in the food 

industry. These in turn, led to the development of HACCP (Hazard Analysis and 

Critical Control Points). HACCP originated as a risk management tool for food safety 
but has its origins in the NASA programme. It is now widely accepted and is 

recommended through the FAO/WHO Codex Alimentarius as an effective risk 

management tool for managing food safety. 

In 1994, Havelaar proposed the transferral of the principles of HACCP to the water 

sector (WHO, 2004). Following its proposal, various initiatives have been undertaken 
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to trial HACCP in the water sector. These include work by Deere et al. (2001) in 

applying to piped water supplies in Australia, by Howard (2002) in application for 

small water supply systems and by the author in applying the principles to water 

supplies in developing countries (Godfrey et al. 2005). 

In light of these developments, the WHO (2004) proposed a more global application 

of HACCP for water supplies in the 3`' edition of the WHO Guidelines for Drinking 

Water Quality. The WHO GDWQ P edition proposed a fundamental shift in the 

approach to water safety. The process, termed Water Safety Framework, outlines a 

globally applicable method for assessing and managing microbiological risk founded 

upon the principles of quality assurance as opposed to quality control. Quality 

assurance in this context is defined as a thorough understanding of the risk associated 

with a groundwater supply, which is then verified through microbiological quality 

control. 

This framework has a number of components. These include (see figure 44): 

1. Setting up health based water quality targets based on health concerns, 

2. Undertaking system assessments to determine the safety of the water supply, 

3. Establishing operational monitoring of control measures in the water supply, 

4. Developing management plans to document the system assessment and 

monitoring, and, 
5. Providing an independent surveillance and verification system. 

Due to time and financial limitations, this research focuses on the main components of 

the Water Safety Framework known as Water Safety Plans (WSPs). The research 

does not address the health based water quality targets (using Quantitative Risk 

Assessment tools) outlined in red in figure 44. The principles of WSPs are: 

o to prevent contamination of source waters; 

o to treat the water to reduce or remove contamination that could be present to 

the extent necessary to meet the water quality targets; and 

o to prevent re-contamination during storage, distribution and handling. 

(Davison et al, 2005) 
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Figure 44: Framework for safe drinking water (WHO 2004) 
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Conceptually, the WSP varies from historical approaches, where water quality was 

controlled solely through end product testing (Godfrey et al. 2005). 

Figure 45: Historical and WSP approach 
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As noted in Figure 45, historically, sole reliance was placed on testing of indicator 

bacteria. The WSP approach identifies control points and control measures throughout 

the process of abstraction, distribution and collection of groundwater and then 

provides a means of monitoring and verification for each plus suggestions for 

potential corrective actions. 

6.3 Risk management 

This section describes the application of the WSP principles to the three well 

technologies under study in this research. Central to the understanding of the WSP 

application is an appreciation of the hydrogeological model used throughout this 

research, namely the SOURCE-PATHWAY- RECEPTOR relationship. Is: 

" Source = hazard event/environment (e. g. latrinelanimal faeces/solid waste), 

" Pathway = vulnerability of the media (e. g. soil type), and 

" Receptor= receiving water infrastructure (e. g. hand dug well). 

The first step in applying WSPs to the wells studied is to identify specific hazard 

events that affect the risk to each well technology at each of the three stages outlined 

above. Where these relate to particular points within the receptor (e. g. apron or 

extraction mechanisms), control points are identified on the basis of information 

gained about the system during the field study. 

Consideration is then given to how to monitor these points with emphasis on simple 

frequently repeatable methods (e. g. sanitary inspection or turbidity monitoring). 

Based on the information from this monitoring, control measures are established at 

the source, pathway and receptor. Critical limits are assigned to each control measure 

and consist of two levels; 

target level - state in which the well should be operated to ensure safety 

" action level - state in which remedial action is required immediately to, bring 

well back into compliance (VWHO, 2004). 

Microbiological testing is then undertaken as a means of verifying the compliance of 

the system to the control measure. The combination of these factors is known as a 

Water Safety Plan. The definition of the specific risk associated with each hazard 

event is based on definitions outlined in Davison et al. (2005) and WHO (2004). Both 

recommend an approach based on the identification of potential sources of hazards 

and then the pathways into water supply (receptor). Data from Chapter 5 are used to 
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assess the potential frequency of each event. The severity of impact of each of these 

events is based on a combination of the frequency of occurrence and extent and 

severity of impact of a specific risk. The weightings presented are based on those 

developed for the WHO (2004). These are outlined in table 33 below with a high 

weighting indicating greater significance. 

Table 34: Condition and weighting of hazard events (WHO 2004) 

Description Definition Weighting 
Frequency of occurrence Almost certain Once per day 5 

Likely Once per week 4 
Moderate Once per month 3 
Unlikely Once per year 2 
Rare Once every 5 years I 

Extent and severity of Catastrophic Potentially lethal to large population 5 
impact Major Potentiall lethal to small population 4 

Moderate Potentially harmful to large population 3 
Minor Potentially harmful to small population 2 
Insignificant No impact or not detectable 1 

The severity of impact of an individual hazard event occurring is then estimated on 

the basis of the product of a combination of the frequency of the conditions and these 

are outlined in table 34 below. 

Table 35 Final risk ratings for potential combinations (WHO 2004) 

Frequency of . 
Severity/extent of im act 

occurrence Catastrophic Major Moderate Minor Insignificant 
Almost 
certain 

25 20 15 10 5 

Likely 20 16 12 8 4 
Moderate 15 12 9 6 3 
Unlikely 10 8 6 4 2 
Rare 5 4 3 2 1 

The use of this aids the management of risk at identified control points. Outlined 

below are model Water Safety Plans for traditional wells, upgraded wells and 
improved wells. It is acknowledged that these are only model plans developed for this 

research. In order to apply them other "supporting programmes" would be required 

which may include community and water quality training, hygiene promotion and 

logistic supply. However, these are beyond the scope of this research and therefore 
focus is only given to model or conceptual risk management plans. 

Information provided in the model WSPs is based on specific risk variables identified 

in Chapter S. For example, means of verification are identified based on levels of 

statistical correlation (established in Chapter 5) to individual risk variables. Similarly, 
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means of monitoring are outlined based on effectiveness of turbidity monitoring and 

specific sanitary inspection results. It is recognised that although the monitoring may 
be feasible for community leaders, the means of verification (microbiology) must be 

done by external expertise such as by government staff or Non Government 

Organizations (NGOs). 

The tables below outline model water safety plans. Table 35 presents a Water Safety 

Plan for traditional wells, Table 36 for Improved Wells with a handpump and Table 

37 for Upgraded Wells with windlass. 
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Tables 36-38 outline Water Safety Plans for the three technology types. Five specific 

hazard events for each technology have been identified based on results outlined in 

analyses I to 4 in section 5.4. Using the matrix developed by WHO (2004) based on 

the severity of impact and frequency of occurrence of a specific hazard, risk 

weightings have been applied to each of the five risks per technology (see Table 39). 

Table 39 Risk Scores by technology 

Risk Traditional Well Im roved Well U graded Well 

Animal 16 16 
Latrine 6 12 
Deficient drainage 15 3 
Open Wells 8 6 12 
Roe and bucket 25 _ 
Missing well cover 12 16 15 

-------- ---- ------ Unsealed apron -- 25 
Cracked apron 20 

Mean 13.2 12.2 16 

The following can be observed from the table above: 

" Upgraded Wells = HIGH RISK (mean = 16) 

" Traditional Wells = MEDIUM RISK (mean = 13.2) 

" Improved Wells = LOW RISK (mean = 12.2) 

From the assessment it can be observed that upgraded wells are the most at risk well 

technology, followed by traditional wells and then improved wells. This corresponds 

with results outlined in Chapter 5 which it state that upgraded and traditional wells 

recorded higher mean levels of microbiological contamination. 

6.4 Conclusions 

This chapter developed Water Safety Plans for each well technology. Each provides 

risk management practices designed to manage specific risks associated with risk 

variables identified in Chapter 5. Based on the combination of frequency of 

occurrence and the extent and severity of impact of each risk, it is observed that 

upgraded wells with windlass in the study are at greater risk than traditional or 
improved wells. This is followed in order of risk magnitude by traditional and then 

improved wells. 



Chapter 7: Conclusions and Recommendations 
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7.1 Introduction 
This thesis has followed an experimental research design where the defined research 
problem was repeated throughout the research. For this thesis, the defined problem in 

this research was; 

" How to assess the significance of variables of ecting microbiological risk to 

shallow groundwater? 
In response to the defined research problem, the thesis has identified improved 

methods for both the assessment and management of specific risk variables affecting 

microbiological safety of shallow groundwater. 

Specific hypotheses of this research (Section 1.2) were: 

" Hypotheses 1: It is possible to determine the -relative risk to microbiological 

groundwater quality by study of the source, pathway and receptor 

" Hypotheses 2: It is possible to quantify the overall risk to microbiological 

groundwater quality by study of the collective risks from source, pathway and 

receptors. 

These were supported by the objectives to: 

" Objective 1: Assess the sources, pathways and receptors that present greatest 

risk to shallow groundwater, 

" Objective 2: Analyse levels of significance of individual risk variables, 

9 Objective 3: Propose appropriate Water Safety Plans (WSPs) to manage 

existing and probable risk. 

7.2 Conclusions 
To address these aims and objectives, the thesis has identified methods of improving 

risk assessment and risk management of microbiological contamination of shallow 
groundwater. Specifically, the research has addressed each hypotheses as outlined 
below: 

" Hypotheses 1: It is possible to determine the relative risk to microbiological 

groundwater quality by study of the source, pathway and receptor 
This thesis supports the view that groundwater risk can be effectively determined 

based on a study of the source, pathway and receptor. The thesis concludes that this 

requires a combination of both qualitative and quantitative assessment using selected 
hydrogeological assessment tools such as POSH and the Hydreogeological Settings 
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method (see Section 5.2.2 and 5.2.3). The research however concludes that in many 
developing countries limited data on groundwater is available. The use of expert 
judgement methods such as the Analytic Hierarchy Process to determine "unknown" 

variables associated with underground groundwater barriers, proved to be highly 

effective. Furthermore, the incorporation of "human factors" such as poor 

workmanship and selection of poor quality materials are as important as the source, 

pathway and receptor variables in effectively assessing the risk to shallow 

groundwater. The study notes that despite investment and good engineering, the 
barriers are not "fool proof' and that close quality assurance and quality control is 

required at all stages of construction (Section 5.2.4). 

" Hypotheses 2: It is possible to quantify the overall risk to microbiological 

groundwater quality by study of the collective risks from source, pathway and 
receptors. 

The use of a logistic regression and Chi-Square models were appropriate in the 

analysis of the collective risk. The use of these statistical models identified specific 

risk factors. These included 

" Traditional wells - rope and bucket (Section 5.4.4), 

" Improved wells - deficiency of drainage, the headworks diameter and 
insanitary condition/presence of stagnant water (Section 5.4.4) 

" Upgraded wells - presence of animal faeces / solid waste and no well cover 
(Section 5.4.4). 

Analysis of specific pathways to contamination supported the view that localised 

pathways are significant in Northern Mozambique. The study indicates that they an 
important route of contamination This supports earlier studies by BGS and the Robens 

Institute. In traditional wells localised pathways were a significant variable in the 

presence of EF contamination. In improved and upgraded wells, localised pathways 

were significant for both TTC and EF. Difference in findings for TTC and EF may be 

explained by the relative amount of animal and human excreta in the environment 

close to the traditional wells studied. Logistic regression indicates that analysis based 

on a combination of variates provides better statistical correlation than analysis based 

on one variate. However, the significance of localised pathways may be more or less 

significant depending on specific geological formations. 

186 



The use of rainfall and turbidity indicates a promising trend a may be considered as 

"proxy indicators of microbial water quality. " Greater levels of risk of contamination 

were noted during periods of high rainfall and at times of high turbidity. These 

scientific findings support the need for further research work to establish whether 

rainfall and turbidity can be used as proxy indicators of microbial water quality. 

As well as addressing the above hypotheses, the study further concludes that 

enterococci are the more robust organisms than thermotolerant coliforms in shallow 

groundwater systems. In agreement with studies by Massa et al this study concludes 

that evidence from analysis of polluted groundwater waters suggest that EF may be 

"a more reliable indicator of faecal pollution than faecal coliforms in raw water" 
(Massa et al. 2001). Enterococci displayed a higher survival rate and were less 

susceptible to die-off, dilution or filtration (Bitton et al. 1983, Melian et al. 1999, 

Macler et al. 2000, Massa et al. 2001). Their greater survival at depth in this study 

suggests that there is good evidence to support further work on using Enterococci as 

an appropriate indicator organisms.. 

To manage the identified risk in the selected wells, the Water Safety Plan (WSP) was 

a very useful too to identify risk. In adapting the WSP principles to the study, it can 
be concluded that in Northern Mozambique, Upgraded Wells with Windlass are at 

greater risk of contamination than Improved wells and Traditional Wells. These 

results therefore suggest that improvement in management and design are necessary 
for their inclusion as a technology to address the Millennium Development Goals 

(MDGs). 

7.3 Recommendations 

However, despite these clear conclusions, the methods developed and applied in this 

research suggest that further research is still required in selected areas. Outlined 

below are recommendations for future research. 

187 



7.3.1 Future Research 

The methods adopted in this research remain too data dependent. There is a need to 

adapt rapid assessment methods for drinking water quality to incorporate "risk" 

variables. These may include statistical methods of calculating sample size based on 

cluster statistics, 10% sampling or randomisation and should be based on analysis of 
"risk" as opposed to quality. This will aid specific programmes in assessing the 

relative level of safety of "improved" water supplies identified in the WHO/LTNICEF 

Joint Monitoring Programme (JMP). 

Further work may also be appropriate in the adaptation and simplification of the 

Analytic Hierarchy Process (AHP) for use by practitioners. The AHP proved to be a 

useful tool in this research in identifying risk variables for underground components 

of groundwater systems. It was furthermore appropriate as a decision making tool. 

Nonetheless, further research may be required into the determination of the minimal 

statistical number of respondents required for the AHP as well as its application at 
"field" level requires simplification. 

Further research is required into the derivation of pollutant sources for enterococci 

and thermotolerant coliforms. Although qualitative and quantitative (methods) 

estimates are provided in this research to establish a relationship between bacteria 

numbers and the characterisation of a pollutant source, further "laboratory based" 

research is required to develop simplified methods that can be used at field level. 

Turbidity proved to be a highly appropriate proxy indicator for faecal contamination. 
Further statistical research is required to determine the statistical relationship between 

turbidity and specific indicator organisms. This may include the use of Poisson 

distribution simulation models using control experiments. 

The research identified that "human" factors are important in the failure of 

engineering barriers. These include poor workmanship and user behaviour. Further 

sociological, research is required into risk communication, motivations, causes and 
frequencies of human actions or failures in affording adequate supervision and varied 
levels of quality of workmanship. 
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The WSP approach proved to be an appropriate method of risk management. 

However, the development of WSPs for all individual wells is not practical. Further 

research is therefore required into the development of "model Water Safety Plans" 

that include appropriate methods of monitoring, verification and corrective actions, 

which can be carried out at community level. Field trials into the effectiveness of use 

of different approaches to WSPs for small systems are recommended. This may 

include development of WSPs with community members (using pictorial rather than 

matrix style WSPs) and monitoring trials of various parameters. A critical component 

of this is the simplification and integration of Quantitative Microbiological Risk 

Assessments. 

7.4 Summary 

This research supports the fundamental changes outlined in the 3`d edition of World 

Health Organization (WHO) Guidelines for Drinking Water Quality (GDWQ) which 

state that "The most effective means of consistently ensuring the safety of a drinking- 

water supply is through the use of comprehensive risk assessment and risk 

management approaches that encompass all steps in water supply from catchment to 

consumer. " The study has selected methods to improve current understanding of 

microbiological risk assessment and risk management that enhance the understanding 

of risk outlined in WHO 2004. 

.J 
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Appendix 2: Analytic Hierarchy Process (AHP) 



Instruction 

For a group under consideration, two variables are compared separately and then 
compared to the other variables in the group. The questionnaire therefore consists of 
two columns for each comparison. The respondents are required to tick the choice of 
preference in the column 1 and tick the degree of preference in the column 2 of each 
comparison. 

For example in case of Questionnaire-1, to compare the two variables of soil 
permeability and well depth in the physical condition group, if the respondent feels 
soil permeability is a greater contributory variable to microbial contamination than 
that of well depth, respondent should tick `soil permeability' in the column-1 of the 
table and then go to column-2. If the respondent thinks that `soil permeability' is a 
`stronger contributory' than `well depth' to microbial contamination, then `strongly 
preferred' should be ticked in the column-2 of the table. In this way the respondent is 
required to complete all the pair-wise comparisons for each group at different levels. 
At the beginning of Questionnaire there are notes describing how each variable 
contributes to the final output. 

Level 1- Physical Condition Group 

Soil permeability -ell de th 
M YY Y 

Soil permeability Equally preferred 
Well depth Moderately preferred 

Strop lv preferred 

Soil permeability - Well diameter 

Soil permeability Equally preferred 
Well diameter Moderately preferred 

Very strongly preferred 
Extremely preferred 

Very strongly preferred 
Extremely preferred 
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The principal water target of the Millennium Development Goals (MDG) Is to 
ensure environmental sustainability by halving the proportion of people with. 

Correspondence out access to safe water by 2015. Although great strides have been, made in 
S. Godfrey, Water and Environmental meeting this challenge since the year 2000, the safety of many of these water 
Sanitation Project Officer, UNICEF Bhopal, supplies remains unknown. Acknowledging the weaknesses of current water 
India. Email: sgodfrey@unicef. org - quality and hydrogeological means of assuring microbial safety, this paper has 

the objective of developing improved methods for the assessment and manage- 
winner of the UK Water Conservators Society ment of microbiological water safety based on a 'risk' paradigm. This paper 
and CIWEM Tony Drake Scholarship 

' provides evidence for the risk assessment of both conventional aquifer path- 2003-2004. Findings presented from author s 
ways and localised (short circuiting) pathways to 25 wells of three well PhD. 

'Research cofinanced by the UK Water technology types in Mozambique between 2002 and 2005. ' Findings from the 
Conservators Society Tony Drake Scholarship research outline improve methods of risk assessment and management by 
and Loughborough University. demonstrating that (1) the predominant source of contamination was from 

animal faeces rather than from latrines/septic tanks, (2) short circuiting is a 
doi: 10.1111/J. 1747-6593.2006.00040x significant risk to shallow groundwater in developing countries, (3) the use of 

alternative indicator organisms (e. g. enterococci) may improve risk under- 
standing and (4) the World Health Organisation Water Safety Plans are 
recommended as an appropriate method of risk management. 

Introduction 

Because of rising populations in developing countries, 
many surface water resources are becoming highly vul- 
nerable to anthropogenic chemical and microbial pollu- 
tion. Consequently, many low-income communities have 
become increasingly reliant on shallow groundwater 
resources defined in this research as the water bearing 
materials that are strongly influenced by physical and 
chemical processes on the ground surface (Melian et al. 

, 
1999). These shallow groundwater sources are often 
exploited using low-cost technology facilities such as 
wells or tubewells, where the water quality is monitored 
based on 'end-product testing' of selected microbiological 
and chemical parameters and controlled through the 
establishment of groundwater catchment protection 
zones (Watt Er Wood 1979; Collins 2000). 

Fundamental weaknesses in both the 'end-product 
testing' and groundwater catchment approach have been 
highlighted in the third edition of the World Health 
Organisation (WHO) Guidelines for Drinking Water 

Quality and the British Geological Survey (BGS) study of 
Associated Risks to Groundwater from On-Site Sanitation 
(ARGOSS) (ARGOSS 2002; WHO 2004). Limitations 
highlighted by WHO include analysis based on a restricted 
range of indicator organisms and overreliance on a non- 
representative sample volume (Payment et al. 2003; WHO 
2004). Similar limitations in conventional approaches to 
groundwater catchment protection zones for developing 
countries have also been highlighted recently. Studies by 
the BGS on the ARGOSS suggest a high risk of short 
circuiting of the wellhead protection zone through loca- 
u sed pathways such as poorly sealed annuluses of bore- 
holes or cracks in surface aprons (associated with 
construction faults and inadequate maintenance of wells) 
(Gelinas et al. 1996; ARGOSS 2002). 

To counteract these weaknesses, the WHO propose a 
fundamental shift away from end-product testing towards 
alternative risk-based approaches termed Water Safety 
Plans (WSPs), where risk is defined as a combination of 
the probability or frequency of a particular event occur- 
ring with the consequences of its occurrence (Dixon et al. 

Water and Environment Journal (2006) m 2006 The Authors. Journal compilation m 2006 CIWEM. 
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2001; Godfrey & Howard 2005; Godfrey E Smith 2005; 
Godfrey et al. 2005). This is supported by the ARGOSS 
study, which concludes that effective groundwater risk 
assessment and management must include two main 
pathways of contamination: 
(a) aquifer pathway. migration of pathogens from the base 

of a pit latrine to the water table and then into intake of a 
well or a screen: 
(b) localised pathway. developed through poor design, 
construction and/or operation and maintenance of the 
water supply. 

In light of this debate, the objective of this paper is to 
develop improved methods for the assessment and man- 
agement of microbiological water safety based on a 'risk' 
paradigm. The conceptual basis of risk is defined in this 
context by the source pathway receptor model, where the 
source is defined as the hazard event/environment (e. g. 
septic tank), the pathway as the vulnerability of the media 
(e. g. soil type) and the receptor as the receiving water 
infrastructure (e. g. hand-dug well). 

Materials and methods 
This study was undertaken in Niassa province in northern 
Mozambique through joint research between the UK 
Water, Engineering and Development Centre (WEDC), 
the Mozambique EstagSo Agraria de Lichinga (Agricultur- 
al Research Centre) and the UK charity WaterAid. The 
precise study area selected was the town of Lichinga 
(population 110 000), the capital of Niassa province, 
located at 13°18'S, 35°15'E. Three sample communities 
(Nomba, Lulimile and Ceramica) were selected from 
within Lichinga based on practical/logistical criteria to 
achieve a statistically valid sample size (i. e. number of 
statistically valid water points). To calculate n water points 
for a population of size N within these communities, the 
Student's t-test was selected (Helsel Fr Hirsch 1992; Dzie- 
gielewski eta!. 1996). For a statistically valid sample of the 
total 362 water points in Lichinga, 20 water points would 
be required (plus five control 'traditional wells' at 25% of 
the sample size). Categorical (nonchanging) and para- 
metric (continuous) data were collected at each of the 
25 well sites over a 12-month period from November 
2003 to October 2004. Historical data were made available 
to the researcher from August 2002 to October 2003. The 
methods selected for each variable are outlined in Table 1. 

Results and data analysis 
Data analysis was conducted for the source, pathway, 
receptor and water quality data in three stages: 
" data description (based on geographical and techno- 
logical data), 

S. Godfrey et al. 

Table 1 Methods of analysis 

Variable Method Frequency 
SOURCE 

Hazard/vulnerability analysis Sanitary survey Monthly 
Distance from latrines Field survey Monthly 
Depth of latrine Field survey Annual 
land use Field survey Annual 

PATHWAY 
Rainfalllprecipltatlon DipFlex manual rain gauge Daily 
Depth to watertwater HORON dip test Monthly 
level 
Aquifer media Ciba-Geigy agrochemicals Annual 

guide to soil Identification 
GEO-VISION borehole Annual 

camera 
Field survey Annual 
Particle size distribution Annual 

(BS1377-2) 
Hydrogeological survey Field survey Annual 

Visual soft classification Annual 
Subsoil thickness Annual 
Geological observations Annual 

RECEPTOR 

Surface hardness MASTRAD Schimdt Annual 
Hammer (BS1881-201) 

Water lifting Structured survey Annual 
Headwork survey Borehole camera Annual 

Structured survey Annual 
Well design/lining Borehole camera Annual 

Structured survey Annual 
WATER QUALITY 

Turbidity Turbidity tube Monthly 
pH Handheld comparator Monthly 
Presumptive thermotolerant UK methods for Monthly 
coliforms examination of water and 

associated materials 
Presumptive enterococcl UK methods for examination Monthly 

of water and associated 
materials 

Note: Source is defined as the hazard event/environment (e. g. latrine). 
Pathway is defined as the vulnerability of the media (e. g. soil type). 
Receptor is defined as the receiving water infrastructure (e. g. hand-dug well). 

" data mining (statistical extraction of data) and 
" data analysis [statistical analysis using logistic regres- 
sion and chi-square (X2) significance weightings (P- 
values)]. 

Data description 

Hazard variables 
Results from 325 sanitary inspections indicated high 
usage of latrines by adults and low usage by children, 
resulting in the high presence of children/babies and 
livestock faeces in the wellhead catchment. 
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Pathway variables 

A total of 1047 and 1042 mm of rainfall were collected in 
the two rain gauges during the 12-month study. The 
highest rainfall was noted during the months of mono- 
modal rains (November-April) (see Godfrey et al. 2005). 
Additionally, water table depths were collected monthly 
in each well over the 12-month period. During the rainy 
season, increased recharge resulted in shallow water 
levels to 5.1 mbgl (metres below ground level) at both 
locations. During the dryer period, the water level 
dropped to below 7.5 mbgl. Lowest recorded levels were 
noted as 8.62 mbgl in October. 

Rainfall- and water-level data were linked to hydro- 

geological data, which indicated that Lichinga is under- 
lain by metamorphic rock with overlying alluvial drift. 
Because of limited available data on the hydrogeology of 
the area, subsoil field investigations were undertaken 
using the Ciba-Geigy classification method and soil parti- 
cle size distribution (PSD) analysis (see Fig. 1). The Ciba- 
Geigy method relies on visual examination and physical 
behaviour of the soil when handled without using analy- 
tical equipment. The Ciba-Geigy survey revealed very 
high silt and clay content in samples from all three sites 
(CIBAGEIGY 1986). In comparison, PSD results indicated 

a very high fine sand/silt content with a limited percen- 
tage of coarse materials. The Kpermeability value for each 
of the samples suggested a moderate to low permeability 
range at 10-4-10-8m/s (BS1377-2 1990). 

.0 
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Fig. 1. Suo, u'r-e geology. 

Receptor variables 

Microbiological risk assessment 

Conventionally, hydrogcologists assess risk to ground- 
water based on pollutant source loading and vulnerability 
of aquifer pathways. This research also assesses the inllu- 
ence of the receptor in minimising risk through localised 

pathways (e. g. short circuiting through the wellhead 
protection zone). The wellhead is defined as the under- 
ground and overground construction of the abstraction 
facility as well as the immediate area surrounding the 
abstraction point (Howard et al. 2003a). 

The headworks of the wellhead were assessed using 
510 Schmidt Hammer surface hardness tests at four 

specific points on the apron of each well and a qualitative 
headworks inventory. For the Schmidt Hammer tests, 
optimum levels of R= 30 were used as the lowest levels as 
recommended by the manufacturer for concrete products 
(Mastrad 2004) Using R= 30, it can be concluded that only 
the precast reinforced concrete capping beam produced 
results >_ 30 and that the quality of concrete used in all the 
headworks was poor. Visual inventories revealed high 
levels of visible aggregate (suggesting poor mixing of 
concrete by hand) and surface cracking and dry jointing. 
Examination of these cracks and dry joints revealed high 
levels of risks of direct ingress of surface contaminants 
through the unlined annuluses of wells to the well 
reservoir. 

Water quality 

Microbiological results 

As outlined in Fig. 2, low levels of compliance to the WHO 
guideline values for thermotolerant coliforrns (TTC) were 
noted in both traditional wells and improved wells during 
the rainy season (November-March). This improved dur- 
ing the drier months of March to July and then deterio- 

rated again in the leadup to the rains in August to 
September. It should be noted that increased demand on 
the wells during the later part of the year, combined with 
minimal yield, may have resulted in increased levels of 
contamination. Minimal difference, however, was noted 
between traditional and upgraded wells. Levels of enter- 
ococci (EF) were noted as being consistently greater in all 
well technologies. Higher counts of EF were recorded in 

wells at greater depth. This is explained by the robustness 
of the organism and its ability to survive, but not multiply 
under environmental conditions at depth (Mara 2003). 

Data mining 

In order to then refine the data, a process of data mining 
was undertaken. Data mining is described as the 
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 TW %TfC<1 cfu/100mL UW%TTC<10cfu/100mL 
: TW %TTC<10 cfu/100 mL UW %EF<10 cfu/100 mL 
m 1W % EF<10 cfu/100 mL   IW %TTC<1 cfu/100 mL 

UW %TTC<1 cfu/100 mL o IW °%TTC<10 cfu/100 mL 

o IW %EF<10 cfu/100 mL 

Percentage (%) of well technology to comply with WHO GDWQ and Mozambique standards 

S GoJirey e: a! 

vv 

90 

80 

70 
O 

CD 0) 
C 
U 

w CL 

HH HH -F 

50 

Nov Dec Jan Feb Mar Apr May Jun July Aug Sep Oct 
Month (2003-4) 

Fig. 2. Percentage compliance to World Health Organisation GDWQ third edition 2004. TW, traditional wells; UW, upgraded wells; IW, improved wells; 
EF, enterococci; TTC, thermotolerant coliforms. 

exploration and analysis, by automatic or semiautomatic 
means, of large quantities of data in order to discover 

meaningful patterns and rules (Helbcrg 2002). For this 
research, data mining of the source variable level of 
contaminant loading from the field data was undertaken 
using an adaptation of the pollutant origin source hazard 
(POSH) method of load characterisation - see Fig. 3 

(Foster et a!. 2002). The POSH method characterises the 

potential sources of subsurface contaminant load on the 
basis of two characteristics: 
1. association of the likelihood of the presence of a 
groundwater-polluting substance with the type of anthro- 
pogenic activity and 
2. estimation of associated hydraulic load (surcharge) on 
the basis of water-use activities (Foster et al. 2002). 

The POSH method provides three levels of 'poten- 

tial to generate a subsurface contaminant load', name- 
ly, Reduced, Moderate and Elevated. As noted in 
Table 2, by combining the variables affecting subsurface 
contaminant load potential, it was observed that a moder- 

ate to Reduced level of hazard is present in the study site. 
Data mining of subsoil vulnerability was analysed using 

an adaptation of the methods developed by the University 

of Dublin and the Geological Survey of Ireland, termed 
the adapted hydrogeological settings method. The method 
considers four categories of vulnerablity - extreme, high, 

moderate and low (Robins 1998; Swartz et a!. 2003). As 

noted in Table 3, these categories are calculated by 

combining subsoil field descriptions, grain size data, sub- 

soil thickness (determined from waterlevel data) and 
qualitative estimates of soil permeability. The permeabil- 
ity is used to define the specific hydraulic conductivity 
(Swartz et al. 2003). 

From the hydrogeological settings method, it was 
observed that 0% of the wells were within the Extreme 

vulnerability category. Fifty per cent of the wells were 
within the High vulnerability category and 50% of the 
wells were within the Moderate. Because of lack of 
available data, three wells had no vulnerability category. 
Because of time and financial constraints, additional 
factors such as ambient temperature of soil microbes 
relative to physiologic temperature and specific porosity 
have not been researched. The literature, however, sug- 
gests that any one indicator of vulnerability should not be 

used in isolation and that a more holistic approach such as 
the adapted hydrogeological settings method is of greater 
use (Stejmar 1998). A moderate to high level of vulner- 
ability was found in the selected well sites, with no wells 
categorised as having either extreme or low vulnerability. 

Data analysis 

Statistical analysis was undertaken using logistic rcgressicn. 
This technique was selected because of its successful use 
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I 
Primary factors Secondary factors 

I 
Contaminant load 

Population density 

Elevated 

Sanitation type 

Distance of well to 
ýý-a 

Hydraulic surcharge faecal hazard 
L 

Depth of hazard KIV %ý Moderate 

Distance of well to /// ýý 
Soil type 

solid waste hazard Výý-T-- 

Depth of SW 

Animal faeces 

Reduced 

Sanitary inspection 

Fig. 3. Pollutant origin source hazard data mining. 

Table 2 Source variable - subsurface contaminant load potential 

Category Wells 

Elevated 6,17 
Moderate 2,3,4,5,7,8,10,12,13,14,18,19 

Reduced 1,9,11,15,16,20,22 

in other studies (Howard et al. 2003b; Tesoreiro et al. 
2003). Because of the large number of covariates, four 

analyses were performed using logistic regression. This 

paper will focus on one of the analyses, namely 
" monthly analysis of source, pathway, receptor and 
significance of specific sanitary inspection results to mi- 
crobial noncompliance. 

Data were dummy coded as 0 or I in SPSS 11 based on 
compliance or noncompliance with the selected critical 
limits below for each well technology: 
" TTC > 10cfu/100mL=high risk, <10cfu/100mL= 
low risk; 
" EF > 10 cfu/ 100 mL=high risk, <10 cfu/ 100 mL=low 
risk. 

Outlined below are the results for significance weight- 
ings of individual sanitary inspection results and specific 

source, pathway and receptor variables for the non- 
compliance of EF and TTC in three well types: 
" traditional wells, 
" improved wells and 
" upgraded wells. 

For each, the categories along the x-axis (S12-SI10 
inclusive) refer to specific individual questions on the 
sanitary inspection form used. Each sanitary inspection 
(SI) number presented is a statistically generated number 
based on the mean of 12 months data. They-axis presents 
the statistical weighting represented as a P-value at 95% 
confidence or 0.05. 

Traditional wells (Fig. 4) 

Results suntnzary: traditional wells 
Statistical significance < 0.05, 
Statistical significance > 0.05. 
Two risk variables were identified to be significant in 

traditional wells: 
" rope on floor and 
" bucket on floor. 

Water and Environment Journal (2006) Oc 2006 The Authors. Journal compilation © 2006 CIWEM. 
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SI no. Hazard Result Risk 

TTC EF 

2 Existence of animals excrota 0.84 0.88 Low 
close to well 

5 Solid waste dumps within 0.91 1 Low 
30 m of the well site 

7 Insanitary head works within 0.99 0.99 Low 
3m of the well 

10 Insanitary use of rope and 0.11 1 High/Low 
bucket 

Variable 

Fig. 4. Traditional well sanitary inspection results. EF, enterococci; TTC, thermotolerant coliforms. 
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Fig. S. Improved well sanitary inspection records. EF, enterococci; TTC, thermotolerant coliforms. 

improved wells (Fig. 5) 

In comparison, in caisson-lined improved wells, evidence 

of high risk relates to the receptor (receiving water 
infrastructure). 

Results summary: improved wells 
The receptor was identified as being the principal route 

of contamination. Three specific risk factors were identi- 
fied: 
1. presence of stagnant water on and around the well- 
head, 
2. loose base of the handpump and 
3. cracks at the base of the handpump. 

The high level of significance of the receptor is 

explained by evident faults in the headworks, which 
may result in greater risk of localised pathways of 
contamination. 

SI no. Hazard Result Risk 

TTC EF 

4 Discarded open wells or 
refuse pits 

0.94 0.83 Low 

6 Stagnant water on apron 0.98 0.05 Luw/High 

7 Cracks in apron 0.98 0.85 co- 

w-8 Deficient drainage 0.18 0.18 High 

9 Headwork's diameter <2 m 0.10 0.13 High 

10 Insanitary condition of 
pumphead (pump and base) 

0.212 0.371 High 

Receptor category 0.01 0.15 High' 

Upgraded wells (Fig. 6) 

Results summary: upgraded wells 
Three risks were identified as being of significance for 

upgraded wells: 
" solid waste <30 m, 
" animal excreta <30in and 
" deficient headworks (no well cover). 

Discussion 

Analysis of specific pathways to contamination supports 
the view that localised pathways are significant in north- 
ern Mozambique. This supports earlier studies by BGS 

and Rubens (ARGOSS 2002). In tradition, il wells, loca- 
lised pathways or direct ingress of contamination were a 
significant variable in the presence of EF contamination. 
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SI no. Hazard Result r isk 

TTC EF 
1 Latrine <30 m 0.50 0.90 Low 

2 Animal excreta <30 m 0.00 0.89 High/Low 

5 Solid waste <30 m 0.15 0.91 High/Low 

8 Deficient headworks 0.11 1 High/Low 

9 No well cover 0.81 0.97 Low 

Pathway category 0.11 0.28 High/Low 

Fig. 6. Upgraded well sanitary inspection records. EF, enterococci; TTC, thermotolerant coliforms. 

In improved and upgraded wells, localised pathways were 
significant for both TTC and EF. To manage the risk 
through localised pathways, the study recommends the 

application of WSPs as outlined in the third edition of the 
WHO GDWQ (Godfrey et a!. 2005). To achieve this, 
hazards are identified from the risk assessment and are 
then ranked according to the severity of their risk based 

on recommendations outlined in Davison et al. (2004) 

and WHO (2004). A control measure (defined as steps in 
drinking-water supply that directly affect drinking water 
quality) is assigned to each hazard event, and then a 
method of monitoring these measures is considered with 
an emphasis on simple, frequently repeatable methods 
(e. g. sanitary inspection or turbidity monitoring). These 

control measures are then verified using microbial indi- 

cator organisms. 
Furthermore, the findings in Mozambique indicate that, 

statistically, EF would he a more appropriate indicator for 

all three well types studied than TTC. In agreement with 
studies by Massa et al. (2001), this study notes that 

evidence from analysis of polluted groundwater waters 
suggests that EF may be 'a more reliable indicator of faecal 

pollution than faecal colifonns in raw water' (Massa et a!. 
2001). EF displayed a higher survival and was less suscep- 
tible to die-off, dilution or filtration (Bitton et al. 1983; 

Melian et al. 1999; Macler & Merkle 2000; Massa et al. 
2001). Their greater survival at depth in this study suggests 
that EF may be a more appropriate means of verifying the 

compliance of the system to the control measure. 

Conclusions 
The objective of this paper was to develop improved 

methods for the assessment and management of micro- 
biological water safety based on a 'risk' paradigm. To 

achieve this objective, this paper concludes that the 
following points are critical for the effective assessment 
and management of groundwater microbiological risk. 
(1) Localised pathways are significant pathways in the 
risk of contamination of shallow groundwater in northern 
Mozambique. Contamination through aquifer pathways 
from latrines/septic tanks was not as insignificant as 
contamination from animal faeces. 
(2) The use of alternative indicator organisms (e. g. EF) 

may improve risk understanding associated with short 
circuiting. The findings indicated that although TTCs are 
more prominent in traditional and upgraded wells, EFs 
are a more detectable organism at depth in improved 

wells. 
(3) The study recommends the WHO WSPs as an appro- 
priate method of risk management. 
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Abstract 

Outbreaks of contamination events in many developing countries occur during periods of peak rainfall. This study presents 
evidence of direct pulse response of shallow groundwater contamination events to rainfall in Northern Mozambique The 
objective of the paper is to establish both a statistical relationship between rainfall and contamination and to analyse the path- 
ways through which runoff resulted in contamination. To achieve this, data from 25 wells were monitored over a 12-month 

period in Lichinga, Northern Mozambique, and then compared to historical rainfall from the previous 8 years. Categorical 
(soil survey) and parametric (water quality, rainfall, depth-to-water-table) data were further collected before, during and after 
the 4-month monomodal rains. Using logistic regression statistics, three distinct conclusions were drawn from the study. 
Firstly, the study demonstrated a direct pulse response between increased numbers of'presumptive thermotolerant colifbrms 
and enterococci bacteria. Secondly, the study observed high risk of contamination through localised, as opposed to aquifer 
pathways and thirdly, the study noted a higher survival function and stability of presumptive enterococci bacteria as com- 
pared to presumptive thermotolerant coliforms in the environment and at depth. 

Keywords: rainfall/runoff, contamination, groundwater monitoring, microbiological processes 

Introduction 

Studies of shallow groundwater contamination in developing 
countries have demonstrated a direct pulse-response between 
trends of rainfall and microbiological contamination (Barrel, 
1979; Lewis et al.., 1980; Lewis et al., 1984; Wright, 1986). A 

recent study of springs in the weathered crystalline aquifers of 
Kampala, Uganda by Barret (2000) and Howard et al. (2003) 
demonstrated a significant deterioration in microbiological 
groundwater quality within 12 hours of a rainfall event (Bar- 
ret et al., 2000; Howard et al., 2003). This study is supported 
by further evidence from studies undertaken in Peru, Gambia, 
Sierra Leone and Zambia regarding the seasonality of ground- 
water quality (Barrel, 1979; Wright, 1986; Utkilen et al., 1989; 
Bartram, 1996). For example, in a study of wells in rural villages 
in the Gambia, Barrel (1979) noted an increase of approximately 
10 orders of magnitude of faecal contamination following the 
onset of the rains over a period of 6 days (Barrel, 1979). Further 
studies by Utkilen et al. (1989) in Zambia concluded that peaks 
in faecal contamination of wells were associated with rainfall 
as a result of surface flushing of faecal material (Utkilen et at., 
1989). 

However, in contrast to these views, studies of the seasonal- 
ity of water quality in Sierra Leone noted decreasing rates of 
contamination during the wet season (Wright, 1986). The study 
examined levels of selected faecal indicator bacteria and inci- 
dence of Salmonella spp. over a one-year period. The study 
concluded that counts were generally increasing during the dry 
season culminating in peaks at the transition from dry to wet 
season. This increase was attributed to a lack of sanitation devel- 

opment and the sporadic nature of rainfall patterns in the study 
area. Consequently, the human and animal waste was deposited 
at the soil surface and flushed into the water sources during the 
rains. Additionally, due to the water sources diminishing in the 
dry season, a lower level of dilution or concentration effect of 
faecal contamination was observed in the dry season resulting 
in higher detection levels (Wright, 1986). 

Studies by I toward et al. (2003), although solely Ibcused on 
spring contamination, provide a significant background to the 
development of the study presented in this paper. Their study 
highlights the importance of contamination of shallow springs 
by short-circuiting of sanitary headworks through "localised 
pathways" (1-toward et al., 2003) It explores this alternative 
localised pathway by examining the microbiological contami- 
nation levels in wells with varied levels of sanitary protection 
during periods of high and low rainfall. 

This paper widens the I toward et al. (2003) research to inves- 
tigate microbiological contamination of25 shallow wells over 12 
months (November 2003 to October 2004) in Lichinga, North- 
ern Mozambique. The aim of the study outlined in this paper 
was to identify the influence of rainfall and localised pathways 
on groundwater contamination. Based on the source-pathway- 
receptor model of' groundwater contamination, "localised" and 
"aquifer" pathways of contamination are defined as hollows; 
" Localised pathways -a rapid bypass mechanism where path- 

ogens enter the intake of the water supply due to poor design 
and/or construction, the microbes having limited residence 
time in the saturated zone as a consequence. 

" Aquiler pathways - where pathogens migrate through the 
subsoil from a faecal source to the water table (ARGOSS. 
2002). 

" To whom all correspondence should he addressed. 
9 +91 755 2466568; fax: +91 755 2463623, 
e-mail: sgodfrey(unicefore 
Received 21 January 2005; accepted in revised form 9 June 2005 

Field workers report that localised pathways are considered of 
high significance in Mozambique, where poor quality materi- 
als, limited quality control in construction and high levels of 
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faeces in the environment result in high levels of microbiologi- 
cal ingress (Tina, 2003). This paper discusses the relationship 
between rainfall and contamination in three well types with 
respect to the contamination pathways. 

Experimental 

1 he study was undertaken in the town of Lichinga, the capi- 
tal of Niassa Province in Northern Mozambique, located at 
13" Is'S, 35° 15'E, through joint research between the UK- 
based Water, Engineering and Development Centre (WEUC'), 
the Mozambique Esta45o Agraria dc Lichinga (Agricultural 
Research Centre) and the UK charity WatcrAid. Twenty five 

groundwater sources were selected using the statistical t-test 
based on 2 comparable means from 2 variables, existing lev- 

els of contamination (water quality) and population served. 
Using the t-test, the number of water points required with 95% 

confidence level of estimating average levels of contamina- 
tion within 2% of the true value was calculated using Egs. (I) 

and (2): 

n_ 
{tS}' 

� rY, 
(1) 

where: 
n, : first approximation of sample size 

confidence probability (t statistics). This value is 
1.64,1.96 and 2.58 for confidence probabilities of 90, 
95 and 99 % respectively 

S: population standard deviation 
r. relative error 
Y: population mean. 

2 ISSN 0378-4738 - Water SA Vol. 31 No. 4 October 2005 

Figure 1 
Location of sample points and 

rain-gauges in Lichinga 

where. 
improved well = concrete caisson 
lined well with mochanised pump 
upgraded well = brick lined well with 
windlass 
traditional well = unlined well with 
rope and bucket 

Note. Raingaugos 1,2,3 are identi- 
tied by white squares in Fig. 1 

n= 
tt ,. 

tß (2) 
114 

where: 
N 

n: sample size 
N: Population size 
n� : first approximation sample size (see I q. (I)1. 

For a statistically valid sample, 20 water points would be 
required. These were selected from the communities outlined 
in Map I based on logistics, prarticaliticti, case ul'access, avail- 
able water quality data and inclusion in an existing monitoring 
framework. 

Data were initially collected from 211 water sources in three 
communities in Lirhinga with an additional live traditional wells 
used as control sites (at least one of rack located within a given 
sampling area). Sampling was undertaken twice per month 
immediately before the rains and at monthly intervals after their 
arrival to gauge the potential "pulse response" of levels of con- 
tamination in the shallow groundwater tu rainfall. Stratified data 
collection was done on both calegnriea/ and parametric vari- 
ables. 

Categorical variables (or non-changing data) were single 
measurements. These included geographic positioning system 
((; PS) readings, a soil characterisation study based on parti- 
cle size distribution (PSD) and soil classification tests and an 
engineering assessment. For the purpose of this paper, the soil 
characterisation methods will be discussed. The method tor col- 
lecting soil characterisation data included the particle size dis- 
tribution method and manual soil classification tests (Swartz el 
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al., 2003). Methods used for testing PSD followed BS1377-2 
(1990) and Barnes (2000) (BS1377-2,1990; Barnes, 2000). A 
single soil sample was taken at each of the 25 wells and analysed 
in March 2004. Samples were riffled through a set of 5" sieves 
with sizes of 5mm, 3.35 mm, 2 mm, 1.18 mm, 600 µm, 425µm, 
300 µm, 212 gm, 150 µm, 63 µm. PSD tests were supported by 
semi-qualitative manual tests using an augured sample from a 
depth of 0.5m at a distance of Im from the well. This was done 
at each of the well sites. A segment of soil was extracted from 
the sample and analysed. The sample was classified based on the 
thumb and finger test outlined in the Ciba-Geigy Agrochemicals 
"Guide to Soil Identification. " (CibaGeigy, 1986). 

Physical methods were supported by in situ readings of the 
well geology. These included: 
" GeoVision borehole camera readings of lined wells using 

a miniature colour monitor. This provided a quick view of 
both the geological formation and level of sanitary protec- 
tion afforded by the lining of the well. 

" Subsoil thickness visual observations of unlined traditional 
wells. These were logged as 0-1m, 1-3m, 4-5m and >3m. 

Parametric variables (or continuous data) were collected either 
daily or monthly from November 2003 to October 2004. These 
included daily rainfall readings, monthly microbiological and 
physico-chemical data, and monthly depth-to-water-table and 
sanitary inspection data. 

Rainfall data collection 

Daily rainfall was measured using two 40mm capacity Dip- 
flex raingauges (Sites I and 2 as shown on Fig. 1 during the 
12-month period to understand the correlation between rainfall 
and contamination. This data was then compared to historical 

rainfall for the proceeding 8 years. Number 1 raingauge was 
located to the west of the city in a low lying area for data com- 
parison to rainfall measurements at a higher altitude. Number 
2 raingauge was located in the Agricultural Research' Centre 
of Lichinga approximately 500 to 1000 m from the project site. 
Each was positioned on a 1.5 to 2.0 m high pole in an open area 
with a clear distance between the gauge and the nearest and tall- 
est tree being twice the height of that tree (Gunston, 1997). The 
rainfall was measured at 17: 00 on a daily basis during the 12- 
month data collection period (Gunston, 1997). Historical data 
from 1995 to date were also collected from the Meteorological 
Centre of Lichinga (marked as Number 3 on Map 1). Monthly 
average rainfall measured at Lichinga Airport for the period 
1995 to 2003 was also obtained from the Meteorological Centre 
of Lichinga (refer Fig. 1). However, it is possible that not all 
rainfall was measured during this period, the reasons for which 
are discussed within a later section. 

Water quality data collection 

Monthly water quality samples were tested at a centralised labo- 
ratory established in Lichinga following standard aseptic proce- 
dures (WHO, 2004) Samples were collected using sterile 60 mC 
plastic sampling bottles. These were stored in cool bags at <4°C 
for a maximum of 6h whilst field sampling was undertaken. 

Two microbiological parameters were tested; Presump- 
tive (rather than confirmed) enterococci and thermotolerant 
coliforms. Presumptive enterococci were isolated using azide 
Nutridiscs (AND), pre- impregnated membranes with sodium 
azide supplied by Schleicher and Schuell "Product Reference 
Number 10433003; " (WagTech, 2003). 50 mt samples were 

processed using membrane filtration (filter size of 45 µm) and 
applied to the ANDs. A 4h resuscitation period at ambient tem- 
perature was observed prior to incubation at 44°C (t 0.5°C) 
for 44 h. Although enterococci grow best at 37°C, they are 
less selective at this temperature than when incubated at 44°C 
(Anon, 1994). Post-incubation, all red, maroon and pink bacte- 
rial colonies that were smooth and convex were identified using 
a hand-lens and recorded as presumptive enterococci (WagTech, 
2003). Total plate counts were recorded per 100 mC by multi- 
plying the number of presumptive enterococci in 50 mt by 2. 
Confirmations were not possible at field level due to difficul- 
ties of preparation and storage of kanamycin aesculin azide agar 
plates. 

The isolation and enumeration of thermotolerant coliforms 
were carried out using membrane filtration (WagTech, 2003). 
50mC samples were filtered through a Millipore 45 µm nitro- 
cellulose filter. Membrane lauryl sulphate medium was prepared 
with 50 mC de-ionised water in a membrane sulphate media 
measuring device "MMD" (WagTech, 2003). 2mCof the solu- 
tion was applied to each filter pad. The filtered membrane was 
then placed on a pad and incubated at an ambient temperature of 
28°C for 4h to permit bacterial resuscitation, before being trans- 
ferred to 44°C for 14 h incubation. Post-incubation, all yellow 
colonies were recorded using a hand-lens as TIC per 100 mC. 

For quality control, the testing kit was calibrated using a 
duplicate test on the first and last sample of each day's sampling. 
The duplicates were rotated for each month's sampling to avoid 
repetition of control sites. Verification of plate counts was done 
on all samples by the authors. The verification involved identi- 
fication of thermotolerant coliforms and entcrococci colonies as 
well as quality control of results for different dilutions. A 95% 
confidence level interval was used to define variation in results. 
Due to elevated levels of colonies on some plates, a wider statis- 
tical variability was noted and a 95% confidence level could not 
always be achieved. 

Water level data collection 

Depth-to-water level was tested using dipper tape on a monthly 
basis. The measurements were taken at the same time of day 
on each day's sampling. Field visits occurred between 7: 30 and 
12: 00 to avoid early morning water collections in the commu- 
nities. Results were recorded with water quality outcomes in a 
standard format as metre (m) below ground (mbg). 

Results 

Three forms of analysis are presented. These include logistical 
regression analysis of rainfall to "non- compliance" of microbio- 
logical quality as well correlations between the first of flush of 
rainfall and contamination and the soil type and contamination. 
Results from the study are presented to demonstrate: 
" total rainfall received during the study period 
" pathways to contamination following the first flush rains 
" correlation between rainfall and contamination levels using 

regression analysis. 

For the purpose of analysis, statistical outliers have been removed 
from further analysis and are not indicated In this paper. These 
are defined as 'observations whose values are quite different 
than others in the data set. '(Helsei et at., 1992). In accordance 
with the WHO Guideline for Drinking Water Quality, this study 
defined statistically 'non- valid' outliers as microbiological 
results >1 000 cfu (WI 10,2004). 
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Monthly rainfall 

Rainfall 

The rainfall distribution during the study was 'typical' with peak 
periods of rainfall falling between summer period of November 
2003 and April 2004. Figure 2 outlines the mean monthly rain- 
fall measure at Raingauge 3 for the period between 1995 and 
2003 is compared with data collected from Raingauges I and 2 
between 2003 and 2004. The average rainfall at each of the three 

sites in 2003 and 2004 is also shown 
Both Raingauges I (Quinta) and 2 (EAL) provide higher 

average monthly rainfall figures than rainfall recorded at Rain- 

gauge 3 over the previous 8 years. The histogram in Fig. 2 illus- 

trates a higher pattern rainfall from Raingauge 2 located on 
higher ground than Raingauge I (located in lower ground). This 

may be due to the closer proximity of tree cover, "non- readings" 
during school holidays, location of a Raingauge on lower ground 

and/or rigour of the data collection undertaken in each gauge. 

Rainfall and microbiological contamination 

Prior to November 2003, contamination levels were noted as <=10 

cfu/100 ml. Analysis I indicates increased levels of microbio- 
logical contamination (noted as >I0cfu/100ml ) following the 
first flush of rainfall. Over the 12-month period, levels of micro- 
biological contamination increased at the beginning of the rains 
during the month of November where direct pulse response of 

contamination to rainfall was observed. Figure 3 outlines results 

obtained for thermotolerant coliforms and enterococci during 

the start of the rains in November 2003 and December 2004. 

The results are illustrated as blocks for improved, upgraded and 
traditional wells. Figure 3 indicates results from samples col- 
lected twice during November (14"'/151 - before the rains and 
23«'/241") and then once during December (16"'/171"). Rainfall 

records were collected daily through November and December 

with the first rains recorded on 151" November microbiological 

samples were collected. 
Statistical outliers, defined in this research as the upper 

hand limit of the WHO Guidelines for Drinking Water Quality 

of> 1000 cfu/100 m( are excluded from all data analyses in this 

paper (WHO, 2004). An average of 2 outliers was recorded in 

microbiological results per month. These results are accorded to 
initial errors due to cross-contamination during laboratory anal- 
ysis, they have not been discarded as errors but are considered 
as outliers (described in this context as observations whose val- 
ues are quite different to others in the data set) (Helsel et al., 
1992). 

Figure 3 indicates that the levels of recorded contamination 
increased dramatically following the first flush of heavy rainfall 
on 15"' November. Prior to the rains, low contamination levels 
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Figure 3 
First flush contamination in Lulimile and Nomba 

(Nov - Dec 2003) 
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were recorded in all wells before the peak contamination rates 
equalled 5 and 10 orders of magnitude for thermotolerant col- 
iforms and enterococci between the first and second sample in 
November This is believed to be due to a combination of f; ic- 
tors including use ot'unwashed and highly contaminated buckets 
for water extraction resulting from limited quantity of' water in 
the wells during this dry period, cross contamination from dire/ 
dust entering the wells, possible errors in analysis methods and 
raised turbidity/total dissolved solids 1I DS) masking contanii- 
nants and reducing die-off periods. Figure 3 further highlights a 
rapid "pulse response" of'levels ofcontamination to rainfall with 
Result I on 14/15 November at less than 24 It. 

Due to limitations in this paper, annual trends are not out- 
lined in detail. In summary however, a contamination reduced 
slightly during further rains in December and the trend was 
reflected in the following months, where contamination levels 
increased following torrential downfalls at the end of . 

1anuary, 
February and then began to reduce at the end of the rains in 
April. 

Pathways to contamination 

Analysis 2 involved the determination of' the hydrogeologi- 
cal correlation between soil types surrounding the researched 
wells and contamination. Data were collected using particle 
size distribution analysis and soil classification tests see Fig. 3 
(Ciba(eigy, 1986). 

Results indicate a litholugy of very high silt and clay con- 
tent with interspersed impermeable clay layers located at depth 
to bedrock. The l' permeability value fier each of the samples 
suggest a moderate to low permeability range at 10' 10" m/s 
(BS5930,1999) (Taylor et al., 2004). The findings suggest that 
direct ingress of'bacterial contaminants through the study soils 
to the well receptor is prevented due to the low permeability 
and depth to water table (>H mbgl) (Yates, 1989: Robertson et 
al., 1997; ARGOSS, 2002; Foster et al., 2002). Results therefore 
suggest that contamination of the wells has occurred through 
alternative localised pathways. These include identified weak- 
nesses in the engineering headworks such as cracks at base of 
hand-pumps, inadequate drainage, seepage through annulus of 
concrete caissons or ingress through pumping mains. 

Regression models of contamination 

The third analysis involved monthly analysis of the statistical 
significance of rainfall to microbiological non-compliance at 
>10 cfu! l00 m(. Data was "dummy coded" as hinoinial data in 
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Figure 4 
Ternary diagram showing range of particle sizes within the three 

study areas of Lichinga (depths of 1 to 10 m) 

SPSS Version 10 on a monthly basis. Results were outlined in 
relation to both the influence of high and low rainfall (where low 
is defined as <10mm per month) and high rainfall (as defined as 
>10mm per month) for the three well technology types. 

Levels of precision are presented in Table I and are 
estimated based on the output p-value. This provides an estimate 
of precision that is statistically significant at 95% confidence 
or 0.05. Significant results are noted at a p-value nearer to zero 
than 0.05. 

TABLE I 
Rainfall 

Traditional 
Well 

Improved 
Well 

Upgraded 
Well 

TTC EF TTC EF TTC EF 
Rain High 0.472 0.527 0.014 0.147, = 0.297 0.935 
Rain Low 0.963 0.852 0.225 0.948 

For both traditional and upgraded wells, levels of non-com- 
pliance were noted as being of greatest significance during peri- 
ods of low rainfall. For all well types, levels of microbiological 
non-compliance were noted as greatest during periods of high 
rainfall. Rainfall was however only significant in improved 
wells during peak rains. [filth p values of p=0.014 were noted 
for TTC indicating a high statistical correlation between TTC 
contamination and periods of rainfall. Equally, medium levels of 
compliance were noted for EF (p=0.147). Rainfall'is slightly ]gam 
significant in upgraded wells than improved wells during peak 
rainy periods. However, both traditional and upgraded wells are 
affected by both high and low rains; whereas improved wells are 
not affected during periods of low rainfall. In traditional wells, 
rain alone is 

. of significance. However, when combined with 
high risk pathways or high risk sources in the environment, high 
risk occurs. 

All wells are therefore highly susceptible to high rains from 
both TTC and EF bacteria following first "low" flush of rainfall. 
Due to poor sanitary completion of many upgraded wells com- 
bined with siting ofwells in densely populated areas of high vul- 
nerability, high levels of rainfall proved statistically significant. 

Discussion 

The analysis of groundwater quality at 25 sites in Lichinga, 
Northern Mozambique indicates that the microbiological qual- 

ity of the water increased by an order of 10 after 24 h of rain- 
fall. Quality recorded in these wells following the rainfall was 
in excess of the WHO Guidelines for Drinking Water Quality 
(WHO, 2004). The study further noted a higher level of pre- 
sumptive enterococci compared to presumptive thermotolcrant 
coliforms. These findings are in line with Bitton et al. (1983) 
who in sampling of 6 shallow wells for bacterial indicators dur- 
ing periods of intermittent sewerage contamination, noted that 
both thermotolerant coliforms and enterococci remained stable 
in the groundwater environment for up to 70 d (Bitton et al., 
1983) 

Findings from Lichinga, Mozambique further support simi- 
lar studies in noting that presumptive enterococci displayed a 
higher survival function than presumptive thermotolerant colif- 
orms and did not multiple under polluted environments (Bitton 
et al., 1983; Melian et al.. 1999; Mader et al., 2000). The find- 
ings indicate that enterococci were consistently higher than ther- 
motolerant coliforms both at shallow and deeper depths. This 
finding supports the opinion that enterococci may be 'a more 
reliable indicator of faecal pollution than faecal coliforms in raw 
water' (Massa at al., 2001) The greater survival of enterococcl 
both in the environment and at depth in this study suggests that 
enterococci may be an ideal additional or alternative indicator 
organism for bacterial contamination of shallow groundwaters. 

Conclusions 

Three conclusions can be drawn from this study. Firstly, the 
study demonstrates a direct pulse response of microbiological 
contamination to the first flush of rainfall. Levels of microbio- 
logical contamination identified in the selected well sites indicate 
increased levels of contamination of an order of 10 within 24 h 
of rainfall suggesting that contamination is occurring through 
preferential or localised pathways. Secondly, that localised, 
as opposed to aquifer pathways, may be responsible for rapid 
contamination following first flush and thirdly that enterococci 
demonstrated a higher survival rate, both in the environment, at 
deeper depths than thermotolerant coliforms. 
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Improved microbial risk assessment of groundwater 
S. Godfrey " M. Smith 

Keywords Risk " Groundwater " Microbial " Localised 
pathways " Developing countries 

Introduction 

The World Health Organisation (WHO) and the United 
Nations Children's Fund (UNICEF) estimate that at the 
beginning of the year 2000, one-sixth (1.1 billion) of the 
world's population lacked access to a safe water supply 
(WHO/UNICEF 2000). Despite global efforts made in the 
decade between 1980-1990, the majority of the worlds' 
population with access to safe water remains in developed 
countries (see Fig. 1). 

To address the inadequate level of coverage of safe 
water supply in developing countries, the United Nations 

established various initiatives including the Millennium 
Development Goals (MDGs) and the development of a 
Global Rapid Assessment of Drinking Water Quality 
Methodology (WHO/UNICEF 2000). The principal target 
of the MDGs is to Ensure environmental sustainability by 
halving the proportion of people without access to safe 
water by 2015 - where safe water is defined as a water 
supply that is devoid of disease-producing pathogenic 
bacteria/viruses and highly toxic substances (WHO/ 
UNICEF 2000; Howard et al. 2001). 

Due to the high cost and questionable sustainability of 
piped water supply in developing countries, many rural 
and perl-urban communities are solely reliant on water 
supply from shallow groundwater. This essay discusses 
appropriate methods for assessing and managing the 
"safety" of this shallow groundwater in developing 
countries. It will: 
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1. Acknowledge the increasing global importance of 
chemical contamination. 

2. Highlight the significance of assessment of the vul- 
nerability of groundwater to microbial contamination, 

3. Emphasise the specific challenges faced by hydroge- 
ologists in' assessing microbial risk in the future. 

Background 

The WHO/UNICEF 2000 Global Water Supply and 
Sanitation Assessment stated that 47% of the population 
of rural areas in Africa, 62% in Latin America and 75% in 
Asia do not have access to improved water (WHO/UNI- 
CEF 2000). The predominant source of improved water in 
many of these rural areas is shallow groundwater where 
water is extracted using shallow boreholes or protected 
hand dug wells with mechanised or hand powered pumps. 
However, increasing global concern over the safety of 
these water supplies has arisen due to the increased de- 
tection of toxic organic chemicals and high levels of 
pathogenic microorganisms. For example, recent studies 
by the WHO have identified elevated levels of arsenic 
(>0.01 mg/1) and fluoride (>1.5 mg/1) in shallow 
groundwater in Argentina, Bangladesh, Cambodia, China, 
Mongolia and Tanzania (WHO 2004). This is combined 
with increased concern throughout developing countries 
of high nitrate contamination from human and agricul- 
tural sources (WHO 2004). 

Of greater global concern however is the adverse 
health effect associated with the consumption of micro- 
bially contaminated shallow groundwater in developing 
countries. Since the work of John Snow (1854) in the 
United Kingdom, there has been increasing recognition of 
the importance of microbial contamination of drinking 
water and its risk to public health. This is of particular 
importance in developing countries where, due to limited 
access to improved sanitation combined with poor hy- 
giene practices, many shallow groundwater sources are 
highly susceptible to microbial contamination. Indeed, 
epidemiological studies by Esrey et al. (1990) have in- 
dicated a strong correlation between improved water and 
sanitation and reduced levels of gastroenteric disease. A 
key component of this diarrhoea-transmission model for 
low-income communities in developing countries is the 
control of water quality in shallow groundwater through a 
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Fig. I Distribution of the global population not served with im- 
proved water supply, by region (WHO/UNICEF 2000) 

reduction in pathogenic microorganisms that include, in 

order of functional complexity, viruses, bacteria, protozoa 
and helminths (WHO 2004). The remainder of this essay 
will therefore discuss improved methods of assuring mi- 
crobially safe, as opposed to chemically safe, shallow 
groundwater. 

Risk assessment and management 

The assurance of microbially safe water from shallow 
aquifers has historically relied upon good engineering 
practice with an understanding that "increased infra- 

structure" equals "increased safety" (i. e. the more ex- 
pensive the design and construction, the more effective 
the treatment and protection). This essay challenges this 
viewpoint, arguing that the determination of "safe" water 
in developing countries cannot rely on good engineering 
practice alone. Indeed, to understand the safety of shallow 
groundwater in developing countries, a thorough under- 
standing of the "risk" associated with the supply must he 

achieved. Central to the understanding of microbial risk to 
shallow groundwater is an appreciation of the hydrogeo- 
logical SOURCE-PATHWAY- RECEPTOR relationship 
where the source is defined as the hazard evenUenviron- 
rnent (e. g. septic tank), the pathway as the vulnerability of 
the media (e. g. soil type) and the receptor as the receiving 
water infrastructure (e. g. hand dug well). 

Aquifer pathways 
Historically, understanding of risk has focussed on the 
assessment of faecal sources to a water supply receptor 
through movement of microbial pathogens through 
aquifer pathways. These have considered factors such as 
contaminant loading, soil permeability and porosity, 
ambient temperature of soil microbes relative to physi- 
ologic temperature and distance from source to receptor. 
A number of multivariate groundwater vulnerability in- 
dex tools have been developed to assess this risk in- 

cluding DRASTIC, EPIK, GOD and LE GRAND (Auge 
2004). These tools are reliant on data, and can be used to 
delineate the boundaries of groundwater supply protec- 
tion areas (Foster et al. 2002). In a developing country 
context this may result in establishing safe distances 
between a faecal source (e. g. septic tank/pit latrine) and a 
water receptor (e. g. well/borehole). There are however 

limitations in providing guidance on supplying protection 
zones in developing countries including; limited data 
availability, complex and dynamic traditional land tenure 
practices and adoption of unrealistic distances for siting 
water supply points from domestic dwellings (Godfrey 
2003). 

Localised pathways 
Recent research in developing countries compared the 
significance of aquifer pathways to other pathways of 
contamination (Gelinas et al. 1996; BGS 2W1. Howard et 
al. 2003). The studies found that poor well completion 
practice combined with high risk of surface faecal loading 
resulted in short circuiting through the wellhead protec 
tion zone (defined in this context as the piping and well 
structure as opposed to the larger capture zone). They 

noted ingress of contaminants along localised pathways 
from diffuse surface faecal sources (associated with in- 
adequate sanitation conditions), and through poorly scaled 
annuluses of boreholes and cracks in surface aprons (as- 
sociated with construction faults and inadequate mainte- 
nance of wells) (Howard et al. 2003). The studies further 
noted that to reduce risk of contamination of shallow 
groundwater, a more thorough understanding of the 
mechanisms affecting the formation of preferential flow 
paths through localised pathways is required. It was 
concluded that these localised pathways were of higher 
significance in increasing the risk of' contamination in 
developing countries than aquifer pathways. 

Future challenges 
The challenge therefore facing hydrugeologists is how to 
effectively assess and manage microbial risk to ensure the 
provision of "safe" drinking water in developing coýun- 
tries. In the 3rd edition of the WHO (guidelines forr 
Drinking Water Quality (2004), a fundamental shift in the 
approach to water safety has been proposed (WI IO 2(X). 4). 
The process, termed Water Safety Plans (WSP), outlines a 
globally applicable method for assessing and managing 
microbial risk founded upon the principles of quality as- 
surance as opposed to quality control. Quality assurance 
in this context is defined as a thorough understanding of 
the risk associated with a groundwater supply, which is 
then verified through microbial quality control. The WSI' 
differs from historical approaches, where water quality 
was controlled solely through end product testing (see 
historical and WSP approach outlined in Fig. 2). 

The WSP approach is a useful method to identify 
control points and control measures throughout the pro- 
cess of abstraction, distribution and collection of 
groundwater. It is applicable for both the assessn ent of 
localised and aquifer pathways and uses sanitary inspec- 
tion to identify the distance and extent of' the hazard 
loading from the water source. This is then monitored 
using selected physico-chemical parameters (e. g. tem- 
perature, pH and turbidity, conductivity) to assess the risk 
of each control point to contaminant ingress. At each 
control point this is then verified using selected microbial 
organisms. The degree of compliance of the occurrence of 
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Fig. 2 Summary of approaches to assuring safe drinking water (Godfrey et al. 2004) 

these organisms (e. g. Enterococci) to numerical guideline 
values is an area that requires further research. 

Since 1998, the UK Water, Engineering and Devel- 
opment Centre (WEDC) has implemented various re- 
search projects in Bangladesh, Ghana, India, Mongolia, 
Mozambique and Uganda to assess the applicability of the 
approach in developing countries. Results from the re- 
search indicate that, although applicable, the WSP 
methodology still remains too data dependent. In rural 
areas in developing countries where protected ground- 
water sources are dispersed over a large area, there is a 
need for rapid methods of assessing groundwater vul- 
nerability through localised pathways. Due to limited 
access to data about prevailing hydrogeological, hydro- 
logical and geological conditions in many rural areas in 
developing countries, there is a need to develop the use of 
simple surrogate measures of assessment. The challenge 
therefore facing hydrogeologists is to develop rapid risk 
assessment methods for localised pathways of shallow 
groundwater contamination in remote areas of developing 
countries. 

Conclusions 
To address the global targets outlined in the Millennium 
Development Goals (MDGs), hydrogeologists require 

more appropriate tools for assessing microbial safety in 
developing countries. The current method of assuring 
safety based on groundwater protection zones is ques- 
tionable because other pathways have also proved to be of 
significance in developing countries. There is a need to 
develop methods for assessing and managing risk through 
localised pathways. The application of the WSP metho- 
dology is a good first step. However, greater attention 
needs to be given to the use of surrogate measures. 
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Abstract: 

It is commonly known that hydrogeologists and water quality professionals have 

failed to reach a consensus on definitions, reference terms and methods of effective 

groundwater microbial risk assessment. ; For hydrogeologists, the understanding of 

microbial risk has historically focussed f on the source-pathway-receptor relationship. 

In comparison, water quality professionals'? 'assessment of safety of groundwater 

supplies has historically relied upon results from microbiological or chemical 

analysis. Recent research identifies weaknesses in' höth approaches. Central to all 

critiques for developing countries is the fundamental -1acko°of available data to support 

quantitative decision making in the risk assessment (process. To improve these 

methods, this paper explores the use of the Analytic Hierarchy Process (AHP) 

decision making tool as a means of determining relative risk"' associated with the 

below ground engineering barriers (receptor). The study was applied to 25 wells in 

Northern Mozambique in 2004. Results indicate that AHP is an effective tool in 

decision making in data poor environments and conclude that the AHP should be 

explored as an effective alternative mechanism to groundwater microbial risk 

assessment for developing countries. 
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Introduction: 

It is commonly known that hydrogeologists and water quality professionals have 

failed to reach a consensus on definitions, reference terms and methods of effective 

groundwater risk assessment [1]. Terms such as vulnerability, hazard and risk are 

commonly used, but commonly misunderstood. Indeed, due to the numerous variables 

that contribute to groundwater risk various, overlay and index tools have been 

developed. For hydrogeologists, the understanding of risk has historically focussed on 

the assessment of faecal sources to a water supply receptor through movement of 

microbial pathogens through aquifer pathways [1]. Hydrogeologists consider factors 

such as contaminant loading, soil permeability and porosity, ambient temperature of 

soil microbes relative to physiologic temperature and distance from source to receptor 

to develop overlay and index nsk-based tools. Many of these tools are heavily reliant 
14-1-1 on data and are used to delineate the boundaries of groundwater supply protection 

areas [2]. 

Weaknesses in this approach were identified by the British Geological Survey (BGS) 

and Robens on the Associated Risks to Groundwater from On Site Sanitation 

(ARGOSS) who identified "engineering" vanäbles such as poor workmanship as 

primary pathways to the short circuiting of the wellhead protection zone [3,4]. The 

ARGOSS study noted ingress of contaminants through localised pathways (short 

circuiting). These originated from diffuse surface faecäl sources (associated with 

inadequate sanitation conditions) and through poorly sealed"; annuluses of boreholes or 

cracks in surface aprons (associated with construction' faults and inadequate 

maintenance of wells). This resulted in higher levels of microbiological contamination 

than the conventional aquifer pathways [5]. The studies further noted that to improve 

risk assessment, a more thorough understanding of the mechanisms affecting the 
formation of preferential flow paths through localised pathways is required. 

In comparison to hydrogeologists, water quality professionals' assessment of safety of 

groundwater supplies has historically relied upon results from microbiological and 

chemical analysis. However, fundamental weaknesses in this approach have resulted 

in changes in recommended practices to water safety. In the World Health 

Organisation Guidelines for Drinking Water Quality (GDWQ) edition 3, there is a 
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move away from the reliance on end product testing of water quality as a means of 

assuring water safety and towards a risk based approach termed Water Safety 

Framework [6,7]. 

Central to all these approaches is the availability of data. In many groundwater 

environments in developing countries limited data collection and data management is 

undertaken. As a result, many groundwater systems lack detailed lithological and 

engineering records. In line with recommendations outlined in the third edition of the 

WHO GDWQ this paper explores the application of risk assessment for data poor 

environments in develöping countries as a means of improving understanding of 

microbial risk. Central to the risk assessment methodological development is an 

acknowledgement of the, need for alternative methods of data generation. This paper 

explores the application of the Analytic Hierarchy Process (AHP) as a means of 

generating this data. The AHP yist "multicriterion decision making approach that 

employs a method of multiple comparisons to rank order alternative solutions to a 

problem, formulated in a hierarchy"`[811It, 4was 
developed "to solve a specific problem 

in contingency planning and a later mayor application was to design alternative futures 

for a developing country, the Sudan" [8]. The,., AHP is Analytic (i. e. uses numbers), 
Hierarchical (structures the decision problemszin levels) and is a Process (real 

decisions require a process of learning, debating and revising decisions) [9] 

Application of AHP as a method of forecasting appropriate technological choices in 

developing countries is well documented in [10]. Itsapplication has also been 

successfully applied for decision making in the water engineering and water resources 

sector [9,11] Also appropriately for this research, it has been applied in the 

groundwater sector by Thirumalaivasan et al (2001,2003) in estimating specific 

aquifer vulnerability through a combination use with the DRASTIC model [12,13]. 

Materials and Methods: 

Conventional methods of assessing risk to groundwater follow the source, pathway, 

receptor relationship of contaminant transport based on the movement of the 

contaminant from SOURCE through a geological PATHWAY to a groundwater 

RECEPTOR. This source pathway receptor relationship is commonly used in the 

hydrogeological field to assess risk of groundwater to pollution. It is however a 

ScholarOne support: 
J434)817.2040 

ext. 167 



Hydrogeology Journal 

complex process and one that involves a number of key data sets ranging from the key 

characteristics of the microbe or source (i. e. size, inactivation - die off - rate and 

surface electrostatic properties), the physical determinants of the aquifer or pathway 

(i. e. the flow velocity, porosity, temperature and aquifer grain pore size) and the type 

of receptor (i. e. lined/unlined well, tubewell or spring) [14,15]. The theoretical 

justification for using this model as the methodological basis of this research relates to 

its acknowledgement of the multivariate nature of risk reduction in shallow 

groundwater. Other risk models used in the groundwater sector include establishing 

groundwater protection zones based on theoretical travel distances and multivariate 

vulnerability models- (e. g. DRASTIGEPIK) that assume the presence and 4. Iýj 
concentration of a hazard source [16]. 

ýl ýL} 

Although qualitative and' quantitative assessments are feasible for the source and 

variables, the asses m 
nt 

'of the requires alternative approaches. pathway 
N 

pathway 

Data is often limited on the type ti'd condition of the receptor due to the lack of 

availability of the data and the limited, access to the well intake and shaft are limited. 
110 

Due to these difficulties, expert judg iit techniques are required to assess the 

microbial risk associated with the well structure. To achieve this, various multi. 

criteria or multi-variate techniques exist. These included; 

" REMBRANDT [17] 

" The Weighted Sum Model [18], 

" The Weighted Product Method [18] 
. �, 

Analytic Hierarchy Process (AHP) [10,13] 

Multi Attribute Utility Theory (MAUT) [ 19] 

This research selected the Analytic Hierarchy Process (AHP) as it is different from 

other decision making tools in that it requires the "simultaneous use of data and 
judgement as opposed to formal models" [10] The AHP is a mathematical technique 

for multicriteria decision making (Saaty 1977; Saaty 1980; Saaty 1994). The AHP 

allows the analyst to structure a problem hierarchically and guide themselves through 

a sequence of pairwise comparison judgements. 
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The AHP is conducted in six steps: 

1. Setting up the hierarchy (goal, factors and alternatives) 
2. Perform pairwise comparisons for factors 

3. Prepare a matrix (judgement matrix) for factors 

4. Compute the priority vector for factors 
5. Assess consistency of pairwise judgments 

6. Compute the relative weights/ranks 

The procedure used in obtaining the relative weights for each factor is described 

below and in Flowchart öf Figure **1. 

ek 
p4 

6 

ýG ý 
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Goal and factors 

Set tip the hierarchy 

Perform pairwise comparison for factors 

Prepare the Judgement m atrix fc)r factors 

Compute the priority vector fur matrix 
(row geometric method) 

Fi} 

l. ". c-L-valualc pall-wise 
COI II IrisC)n 

No 

IsCR< V 

Yrý 

Assign priority vector values as relative weights 
of factors 

ure 1: The procedure for obtaining the relative weights for each factor. 

1. Setting up the hierarchy 
The problem is structured into a hierarchy. The first level denotes the overall goal of 

the decision-maker. The second level consists of several different factors that 

contribute to this goal. The number of factors involved can vary from case to case, for 
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example in this thesis, Group-I of Level-l, these are three whereas in Group-2 of 
Level-1, these are five. 

2. Pairwise Comparisons 
The Analytic Hierarchy Process (AHP) method requires to carry out pairwisc 

comparisons among factors to give the relative importance of each pair according to 

established nine-point intensity scale systems shown in Table I. In this step, the 

factors are compared with each other to determine the relative importance of each 
factor in the accomplishing the overall goal. The structure of the questionnaire to aid 

the decision maker to determine the relative importance of each factor over another 

according to Scale system (modified to 5 point scale) is presented in Appendix-** 

Table 1 pair-wise comparisons 

Comparative Definition I; xlºI: Inatilln 

Importance 

I Equally irufwrtant TWO ilccitiilon eIcrnrnlti (r. ., 
in/hr: rtllis) 

equally influence the parent decision I-Icrnrnt 

3 Moderately Hore One decision clement is nwdcratriv rnlnr 

important influential than the other 

5 Strongly more important One. decision element has stronger influence 

than the other 

7 Very strongly nwrc One decision clement has si)tnificaruly murr 

important influence over the either 

9 Extremely more The difference between influences Ißt the two 

important decision elements is extremely significant 

2,4,6,8 Intermediate judgment Judgment values between equally, moderately, 

values strongly, very strongly, and cxtrenml). 

Reciprocals If v is the judgment value when i is compared 

to j, then IN is the Judgment value when j is 

Compared to i. 

WMd 
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3. Matrix for Factors 
A matrix with the factors (in our example soil permeability, well depth and well 

diameter) listed at the top and on the left is prepared. Based on individually . surveyed 

information and the resulting informed judgement of the decision-maker (Stcp-2), the 

matrix is then filled with numerical values denoting the importance of' the factor on 

the left relative to the importance of the factor on the top. A high value means that the 

factor on the left is relatively more important than the factor at the top. 

Table 2 provides an example where soil permeability is considered to he three limes 

as important as well depth, whereas well depth is only one third as i111porlant as the 

well diameter. When a factor is compared with itself the ratio cif' importance is Onc 

(1), resulting in a diagonal line across the matrix. They resulting matrix is known as the 

judgement niatix. 

Table judgement 1 the fac tors 
Soil Well (k11111 \\ (lI 

pernicahility diameter 

Soil I 3 2 

permeability 

Well depth 1 /3 I 

- -- ----- -- 

1/1 

Well 1/2 3 1 

diameter 

4. Priority vector for factors 
In this step the decision-maker uses the matrix in Table 2 to get an overall priority 

value for each factor. Al IP computes a overall priority value or wciI! Irt for Cacti 

decision element based on the pairwise comparisons using mathematical technique in 

o1' Row Geometric Mean 

The geometric mean of each row (i. e., the elements in each row are multiplied with 

each other and then the nth root is taken, where n is the number of elements in the 
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row) is calculated. This forms the vector of geometric mean. The elements of this 

vector are then normalized by dividing them with the sum. The resulting normalized 

vector is an approximated maximum eigenvector, herein named as priority vector. 

The Priority vector 

Soil permeability 0.53 

Well depth 0.14 

Well diameter 0.33 

5. Consistency of Pairwise Judgments 

If all the comparison are perfectly consistent, then the following expression should 

hold true for any combination of comparisons of the judgement matrix. 

aid =ak xakj (I) 

where a,, = relative importance factor (tabulated values in Table **2) of decision 

criteria i to j. 
AV 

However, perfect consistency rarely occurs in practice. Consistency ratio (CR) is 

commonly used to reflect the degree of consistency of judgment matrix. The CR is 

calculate as follow: 

CI = (n -1) 

CR = 
CI 

RCI 

where CI = consistency index; Amax = maximum eigenvalue of judgement matrix; 

RCI= Random Consistency index as given in Table 3; n= the number of factor. 

(2) 

(3) 
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Maximum eigenvalue (2m ) is obtained by adding the columns in the judgment 

matrix and multiplying the resulting vector by the vector of priorities (i. e., the 

approximated eigenvector) obtained earlier. 

The pairwise comparisons in a judgement matrix in AHP are considered to be 

adequately consistent if its CR is less than certain predefined values say 10% (Saaty 

1980). If CR is greater than predefined value, there is a need for further evaluation of 

the pairwise comparison in judgement matrix. 

6. Computing the Relative Weights 
If the CR of the judgement matrix is satisfactory, the priority vector values will be 

assigned as relative weights of factors. This weighting is used to assign to each 

variable group. 

The AHP is decomposed into levels of criteria. The strength of influence between 

each of these criteria at different levels forms the basis for decision making. The AI-IP 

is an interactive process, where a group of decision makers relay their preferences to 

the author for specified technological options or outcomes. It is based upon the 

construction of Pairwise Comparison Matrices (PCMs). Saaty (1990), suggests a 

scale of 1-9 for PCM element (see table I below). Justification for these scales based 

on psychological tests in number identification is provided in Triantaphyllou et al 
(1994) [20] 

Table 1: Scale of measurement for AIIP 

Numerical Values I Definitions 

I Equally preferred 

3 Moderately preferred 

5 Strongly preferred 

7 Very strongly preferred 
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9 Extremely preferred 

2,4,6,8 Intermediate values to reflect compromise 
Reciprocals Used to reflect dominance of the second alternative as compared with the first. 

The AHP decomposes a given problem into a hierarchy structure. The hierarchy 

comprises of different levels and the AHP compares the different criteria of the levels 

using the PCM. To estimate the likelihood of the various scenarios, each actor first 

makes a pair wise comparison of the relative importance of specifics variables 

associated with engineering barriers to groundwater microbial contamination. This 

Where; 

A: an nxn PCM in terms of ratio of ratings/weights, bi iJw 

W: the ratings or weights (priority rankings we` ightts) of criteria, 

n= is the order of the PCM matrix. iIII 

The input matrix is A and the solution for E. g. (1) is the common. eigenvalue problem. 

The AHP is founded upon a system of homogenous linear equ 
it öns with a non trivial 

solution that only is incorrect if the determinant A- nl (i. e. n is an eigenvector of A) 

whose ultimate outcome is a principle eigenvector (%,, ) defined as the sum of the 

11 
11 

1A(u)jX [W(u)I=1 W(u)I ý, GI 

Irl"ll 

yields a pair of weights for each variable. 

The relationship betwee'the n criteria in the hierarchy is explained mathematically 

ýsý as: woo 

criteria divided by the number of criteria. The closer Xm. is to n (the number of 

activities in the matrix), the more consistent the result [10]. 

The author developed an AHP specific questionnaire based on identified variables. As 

this research is specifically exploring the receptor variables of groundwater 

contamination in Lichinga, Mozambique, only "experts" familiar with groundwater in 

Lichinga were selected. The author believed that the inclusion of actors not familiar 
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with Lichinga would bias results. Respondents from Lichinga were selected. These 

included engineers and managers from WaterAid as well as local government staff. 
The author proposed the following hierarchical formulation to each of the actors 
GOAL 

" To provide judgement on the relative importance of various well linings in minimising 

microbial risk to shallow groundwater 
Each of the actors were requested to weight and produce pairwise comparisons for 

each criteria at a particular level of the hierarchy, with regard to the "contribution" it 

makes to criteria at the succeeding level of the hierarchy, by means of a procedure of 

paired comparisons. För this research, the actors weighted the physical criteria 

associated with well linings that affect the risk of microbial contamination of shallow 

groundwater. Specifics ? of 
the types of contaminants were not a feature of this ywi,. J, pýv 

component of the researchFöcus was solely on the effectiveness of the engineering 

barrier (i. e. the well lining) in reducing the risk of shallow groundwater to microbial 

contamination. Finally, a "composite weight" was obtained for each of the 

"alternatives well linings. " This ti' composite weight is the overall measure of 
importance for the particular criteria. ¢iVl 

For this study a total of 11 independent characteristics were selected and compared in 

three groups at two levels (see figure 1). The pair-wise judgement matrices developed 

for each of the relationships are outlined in table [21 

Figure 1: Well lining hierarchy 
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Results and Discussion 
Data from respondents was coded in an EXCEL spreadsheet developed to gain 

estimates of weightings for each of the contributing variables. These were then used 

to assign composite weightings to each of the actual well lining technologies. A 

summary of the composite weighting results from the AHP survey are outlined in 

table 2. 

Table 2: AIIP Composite Weightings 

Group I Variable group I Respondent 1 Respondent 2 Respondent 3 

1 Physical Conditions 0.09,0,65 0.? 3 

2 Well linings 0.62 0.0 0.64 

3 Candidate 0.3(1 0.27 (l. 13 

technologies 

where I is maximum value 

The results revealed a strong preference for the importance of the well lining group 

(group 2- marked as shaded above) over group I and 3. Specifically, this included 

the methods and materials used for well lining over the specificity of the technology 

or the physical conditions in which the well lining is constructed. Interestingly, the 

responses to the questionnaire reflected the academic background of the respondent. 

For example, respondent 2 was a technician from the Lichinga Agricultural Research 

center. The respondent indicated that the physical conditions (i. e. soil/hydrogeological 

conditions) were the most critical variable group in contributing to the risk of 

contamination. In comparison, respondent I was a WaterAid engineer. The 

respondent indicated that the physical engineering barrier was most critical. 

Respondent 3 in comparison was a Public Health specialist and the WatcrAid Country 

Representative. Responses gained from both respondent I and 3 both identified well 

linings as the most critical variable group. 

In summary, the AHP assigned greatest significance to the well lining variable group. 

This variable group includes the lining age, chemical properties of soil, absence of 

sanitary seal and low material quality and workmanship. Within this group, low 

quality of workmanship and low material quality were identified by all respondents as 

the two most important sub variables. 
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Results of the AHP questionnaire were then applied to each of the 25 well sites 

dependent on the type of receptor. Results were coded as high and low dependent on 

the candidate technology and variables affecting the use of the well lining. To gain a 

composite risk score, results of the AHP were combined with qualitative and 

quantitative data collected during a wellhead inventory. Table 3 combines results 

obtained on both the wellhead and the below ground components of each of' the 25 

wells to assign a High or Low risk score for the effectiveness of the receptor. 

Table 3: Risk Variable Table 

Well Headworks (including low 

No quality workmanship and 

materials) 

Below ground components RISK '1'() 

RECEPTOR 

Total risk 

score (see 

annex 3) 

Schmidt 

Hammer (see 

annex 4) 

Lining >5 

years 

Chemical Soil 

properties 

Sanitary Seal 

Absent 

1 5= H H H H H HIGH" 

2 3=L L H H H 

3 5=H H H 1. H 

4 1 =L H L L H LOW 

5 1=L H L L H LOW 

6 3= L L L H H 1 
, 
MV 

7 5=H H L H H HIGH 

8 2=L H L H H I M\ 

9 2=L H L H H LOW 

10 3=L H L I. H LOW 

11 2=L H L I. H LOW 

12 3=L H L L H LOW 

13 5=H H L L H LOW 

14 2=L H L L H LOW 

15 1=L H L L H IOW 

16 5= H L H I. H HIGH 

17 2=L H L I. H I M\ 

18 5=H H H I. H 

19 H estimate H L L H LOW 

21) 3=L H L L H LOW 

21 4=L H L L H LOW 

22 3=L H L L H LOW 

23 3=L H L I. H LOW 
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24 1 3=L HLLH LOW 

25 1 5=H HHLH 

Where; 

5= High Risk (H) and <5 = Low Risk (L) 

Wells with R value <30 = High Risk (H) and Wells with R value >30 = Low Risk (L) 

Well linings <5 years = Low Risk (L) and Well linings >5 years = High Risk (H) 

Clay based soils (high acidity) = High Risk (H), Sandy soils = Low Risk (L) 

Wells without sanitary seals = High Risk (H), Wells without sanitary seals = Low Risk (L) 

Wells with total H or L of 1-3 = Low Risk, Wells 4-5 = High Risk 

The variables of low quality materials and workmanship could not be assessed in the 

below ground components. Results from the above ground components (as outlined in 

the total score in column one), were therefore taken as indicative of these variables. 

From table 3, it is observed that 6 of the 25 wells are considered at high risk and 19 of 

the 25 wells are considered low risk. 

Discussion 

The author noted uncertainties in the application of the AHP process. These included: 

1. Vagueness of how the attribute weights are assessed, 

2. Link between the points on 1-9 scale and corresponding verbal descriptions. 

These uncertainties or limitations correspond with difficulties noted in the use of the 

AHP method by the UK Office of the Deputy Prime Minister [22]. It is therefore 

recommended that more precise numerical values be used during the composition and 
implementation of the AHP questionnaire, so that respondents are aware of the risk 

values being assigned to each of their responses. 

Conclusions 

The study indicates that the AHP is a useful tool in assigning risk rankings in data 

poor environments. Specifically, the AHP provides a method for identifying and 

ranking the risk associated with below ground components of a groundwater system. 
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Paper 46: Analysis of enterococci using portable testing equipment for 
developing countries - variance of Azide NutriDisk medium under variable 

time and temperature 

S Godfrey*', J Watkins2, K Toop3 &C Francis2 
'Water & Environmental Sanitation Project, (INI('EF Bhopal /Field l)//ire, E7/05() 
Area C'olonv, Shahpura, Bhopal, Madhva Pradesh/('hhuttisgarh, India; '('RE/1 

Analytical Lid, Horsjörth, Leeds, UK; Water, Engineering & Development 
Centre, University of Loughborough, Loughborough, (IK 

sgodfrev' ItiniceCor-; 

This report evaluates the appropriateness of pre-impregnated Aride NutriDisks 
(ANS) medium (sterile, dehydrated culture medium) for use in field water quality 
testing kits in developing countries. Findings are presented from two experiments 
designed to (a) evaluate the accuracy of enterococci analysis using AND medium 
compared to AWWA/APHA Standard Method 9230B & C. most probable number 
(MPN) and membrane filtration (MF) and (b) examine the recovery olcnterococci 
on AND and SB media with respect to variable incubation times and temperatures. 

Experiment I compared AND to presumptive controls based on inoculation ofa 
series of tubes with Azide Dextrose broth using a multiple tube technique and 
transferral of Millipore filters on Slanetz & Bartley (SB) agar. f; xperiment 2 
compared incubation temperature, time and combination of the two using 
membrane filtration. Presumptive counts were observed at (i) 37°C, 41"(', 46°C 
and 47°C and (ii) at 20,24,28 and 48 hours. These were compared to the 
AWWA/AHPA Standard Method 9230 C (44°C, 44 hours). Confirmations were 
performed on Kanamycin Aesculin Azide agar (KAA). Statistical analysis was 
done based on 95% confidence intervals, Friedman's ANOVA and student -test in 
EXCEL. 

Results from Experiment I indicated significant correlation (p = 0.85) between 
enumeration by AND medium and standard methods using SB agar with minimal 
correlation (p = 0.071) compared to MPN. 100% of presumptives were confirmed 
as enterococci on both media types. Results from Experiment 2 indicated higher 
enumeration using AND (p = 0.45) than with SB (p =<0.001) at all temperatures 
with a survival threshold of 47°C. Significant results for AND medium was noted 



at 20 (p = 0.021), 24 (p = 0.278) and 28 (p = 0.543) hours. 

The study concluded that AND was an appropriate medium for use in developing 
countries for identification of presumptive enterococci due to its accuracy at a 
greater time and temperature range. Significant findings from the study indicated 
the need to develop sterile, dehydrated culture media with the ability to provide 
confirmed enterococci. The study further concluded that AND provided flexibility 
in incubator technology making it an appropriate alternative to SB agar for 
monitoring drinking water using field testing kits in developing countries. 

This article is from WaterMicro 
httv: //www. watermicro. cactusbob. oriz / 



18 
Sanitary completion of protection 
works around groundwater sources 

G. Howard, S. Godfrey and T. Boonyakarnkul 

The proper sanitary completion of groundwater sources is of particular relevance to the 
microbial quality of water. It is essential to prevent the direct contamination of 
groundwater at the point of abstraction or resulting from rapid recharge pathways close 
to the source. Where contamination is allowed to directly enter the groundwater source 
or reach groundwater close to the point of abstraction, the travel time may be too limited 
to ensure adequate die-off and the processes of attenuation may not be effective in 
reducing the numbers of pathogens (Robertson and Edberg, 1997). 

Sanitary completion is also important in preventing direct chemical contamination, 
but often does not provide the same degree of protection. The subsurface leaching and 
transport of mobile and persistent chemical contaminants means that land use controls 
will be required to limit risks. This is illustrated, for instance, by studies in a small town 
in Uganda that showed little contamination by microbial contaminants, but significant 
increases in nitrate derived from faecal sources (Barrett et a/., 2000a). Large-scale 
protection measures, such as designation of groundwater protection zones, are discussed 
in Chapter 17. 

Sanitary completion refers to the protection works at the abstraction point and the 
immediate surrounding areas. It is sometimes also referred to as wellhead protection, 
although this would usually cover a wider area around the well than covered in this 

o 2006 World Health Organization. Protecting Groundwater for Health: Managing the Quality of 
Drinking-water Sources. Edited by O. Schmoll, G. Howard, J. Chilton and I. Chorus. ISBN: 
1843390795. Published by IWA Publishing, London, UK. 
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chapter. In this chapter, sanitary completion includes the underground and above ground 
construction of the abstraction facility as well as the immediate area surrounding the 
abstraction point. 

NOTE º This chapter introduces options for controlling risks through 
sanitary completion. The information presented supports defining 

control measures in the development of a Water Safety Plan 
(Chapter 16). 

18.1 SANITARY COMPLETION AND HEALTH 
The direct contamination of groundwater sources resulting from poor sanitary 
completion has been linked to both endemic disease and outbreaks. Such contamination 
is present in both developed and developing countries. For instance, Olson et al. (2002) 
describe an outbreak of Ecoli 0157: H7 in Alpine, Wyoming, including cases of 
haemolytic uraemic syndrome, which was related to consumption of water from a poorly 
protected spring which sanitary surveys had identified as being at risk from 

contamination by surface water. Poor sanitary completion measures also appear to have 

played a role in the Walkerton outbreak in Canada (O'Connor, 2002). In developing 

countries, the use of poorly protected groundwater sources has been linked to acute 
diarrhoeal disease (Trivedi et al., 1971; Nasinyama et at, 2000). Good sanitary 
completion measures have been shown to be necessary to maintain the quality of water 
and protect public health (US EPA, 1993; Pedley and Howard, 1997; Robertson and 
Edberg, 1997). 

The effectiveness of sanitary completion in reducing risks of pathogens is profound as 
it provides a barrier to direct contamination of the source (Robertson and Edberg, 1997). 
The degree to which risks will be reduced, however, varies between pathogen types and 
aquifer types and there is a need for multiple interventions to act as barriers to most 
pathogen types. 

For many aquifers, good sanitary completion measures will control the majority of 
risks posed by protozoa. Sanitary completion will greatly reduce the risks from bacteria 
in alluvial aquifers, but significant risks will remain in fracture flow aquifers where the 
enforcement of protection zones and, possibly, disinfection will be required. Sanitary 
completion measures will in general provide much less protection against risks posed by 

viruses, with protection zones and disinfection being required to reduce risks. 
Most sanitary completion measures do not significantly add costs onto good standard 

design practice. There are cost implications, however, in ensuring that effective 
maintenance is performed to prevent basic protection measures from deteriorating and 
becoming ineffective. In some cases, cost considerations may be important with regard 
to selecting whether improvement of sanitary completion measures or alternative 
interventions will be the preferred option. For instance, where an aquifer is subjected to 
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low-level or intermittent microbial contamination, it may be more cost effective to 
chlorinate the water prior to distribution than to try to deepen the borehole. 

18.2 THE NEEDS FOR EFFECTIVE CONTROL MEASURES 
IN SANITARY COMPLETION 

Sanitary completion typically includes a number of essential control measures to prevent 
the contamination of groundwater. Failures in such control measures have been reported 
from a variety of situations in both developed and developing countries (Lewis and 
Chilton, 1984; Lloyd and Helmer, 1991; Platenberg and Zaki, 1993; Daly and Woods, 
1995; Gelinas et at, 1996; Howard et al., 2003). In addition to the immediate protection 
works at the abstraction point, the appropriate sealing of abandoned wells is also noted as 
essential to protect functioning groundwater sources (Rojas et al., 1995; Robertson and 
Edberg, 1997). 

Failures in sanitary completion measures may result from poor construction and in 
particular lack of adherence to basic quality standards. For example poor jointing on 
casings of boreholes, incorrect selection and placement of grouting, poor selection and 
installation of gravel packs, poorly mixed concrete used for linings and aprons may all 
result in seepage of contaminated water into groundwater sources (Howsam, 1990; US 
EPA, 1993). 

Some drilling techniques lead to increased risks because they do not allow for 
grouting around the casing to be used (ARGOSS, 2001). Failure to consider the pH of 
the groundwater may lead to corrosion and rapid deterioration of rising mains, resulting 
in loss of water and abandonment of the supply (Leake and Kamal, 1990). In addition, 
methods of water lifting can present a direct route of contamination such as through the 
priming of handpumps with contaminated water (MacDonald et al., 1999). 

Failures in sanitary completion may also result from poor maintenance (Lloyd and 
Bartram, 1991; Lloyd and Helmer, 1991; Platenberg and Zaki, 1993; US EPA, 1993; 
Daly and Woods, 1995; Howard et al., 2003). In many cases specific measures 
constructed to protect a groundwater source fail because other measures, such as fences 
and diversion ditches, have not been maintained. The failure to maintain ditches and 
fences can result in increased access to the groundwater source, increased stress and 
erosion on the other protection measures and increased likelihood of inundation by 
surface water. 

Control measures as part of sanitary completion should be identified and 
implemented in the planning, design, construction, operation and maintenance of an 
abstraction facility. As the risks to groundwater sources can be described using the 
source-pathway-receptor model (see Table 8.8 in Chapter 8.5.2), control measures can be 
categorised as: controlling the source of hazards, e. g. faecal material from a pit latrine 
overlying an aquifer and close to an abstraction point, and controlling pathways to avoid 
direct or very rapid ingress of contaminated water, e. g. through cracks in the casing of 
boreholes, improperly sealed apron surrounding the headwall of a dug well or borehole, 
eroded backfilled area of a protected spring, abandoned dug wells and borrow pits. 
Control measures both for sources and for pathways include indirect measures to 
decrease the likelihood of a hazard or pathway developing, such as a fence around the 
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water source to prevent access of animals or humans which could be a source of hazard 
(through defecation) or cause a pathway (through causing damage to the source or the 
immediate surrounding area). 

In many cases, a combination of control measures addressing hazard sources and 
contamination pathways is necessary. Sanitary completion provides one barrier to 
contamination from such sources, but should be integrated with proper pollution 
containment practices and other environment engineering interventions (such as 
improved drainage) to be effective. 

183 CONTROL MEASURES IN SANITARY COMPLETION: 
PLANNING AND DESIGN 

The initial design of a groundwater abstraction facility is crucial in determining how 
protected the source will be. Some background information and a number of basic 
considerations should be taken into account at this stage. 

Planning site and design in relation to the hydrogeological environment 
The first step in sanitary completion is to understand the nature of the hydrogeological 

environment - where and how many aquifers exist, what type of aquifers exist, expected 
yields, depth and nature of the overburden and the degree of interconnection between 
different aquifers (Chapter 8). It is also important to assess how the water will be 

abstracted - are there springs or must the groundwater be abstracted through sinking a 
well or borehole into the ground? This information can then be used to make basic 
decisions such as the type of technology to be used, the depth of abstraction and 
additional protection measures required. 

Where aquifers are deep or multiple aquifers are found, setting the intake deeper is 
likely to improve the microbial quality of water. In many aquifers, in particular relatively 
fine-grained aquifers, there is far less vertical movement of water (and therefore 
pathogens) than horizontal movement. The increase in travel times for relatively small 
increases in depth may be many tens or hundreds of days (ARGOSS, 2001). This 
increases the potential for die-off of pathogens and potentially greater dispersion; 
although in the latter case sophisticated models may be required to predict this. It may 
also increase the potential for attenuation, although this cannot be relied upon. 

Sinking tubewells into deeper (usually older) aquifers may also be an important way 
of avoiding chemical contamination in shallow groundwater, as is the case in relation to 
arsenic contamination in Bangladesh (Ahmed et a!., 2002). Where tubewells are 
deepened it is important that shallower layers are cased off to prevent ingress. Often the 
incremental cost of deepening a well is relatively low in comparison to the overall capital 
investment and thus yields a significant cost-benefit. Deepening tubewells requires 
ascertaining whether there is no or very limited hydraulic connection between 
contaminated shallow and uncontaminated deeper aquifers. Hydraulic connection 
between aquifers is relatively common in aquifers found in weathered basement rocks 
and may also occur in alluvial aquifer sequences with no defined aquitard or aquiclude. 
Where hydraulic connections exist, deepening a tubewell may limit the improvement of 
water quality, as induced leakage from shallow aquifers may still lead to contamination. 
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Planning control measures in designing abstraction may be hampered by lack of 
hydrogeological information. For example in fracture aquifers it may be difficult to 
determine the level of risk posed to a deep aquifer by a contaminated shallow aquifer. 
Geophysical investigation and detailed assessment may provide some, but possibly not 
all, the answers required during the design stage. In such cases, monitoring as part of 
validation of the design chosen is particularly important. 

Planning site, design and operational control measures in relation to the outcome of 
hazard assessment 
As discussed in Section II and Chapter 14 of this book, a critical step before embarking 
on the design of a groundwater source is to evaluate what hazards exist close to the 
proposed site and their potential to be attenuated or diluted. This includes determining 
whether particular aquifers are contaminated and therefore whether their use as a 
drinking-water supply is justified. 

Where the situation assessment identifies existing contamination of a well or spring, 
or a high potential for pollution from activities and conditions too close to the abstraction 
facility, control measures can either be identified towards removing the cause of the 
hazard(s) (see also Section V), or towards changing the site or depth of the well. While 
removing hazards would be the preferable, in practice population density and/or severity 
of contamination may make relocation of wells more feasible. 

Whilst an emphasis should be placed on ensuring microbial quality of water, 
attention should be paid to the chemical quality of different groundwaters. Assessing 

whether particular aquifers contain toxic levels of chemicals (e. g. arsenic) or whether the 
levels of chemicals will affect the acceptability of water to consumers (e. g. high iron or 
manganese levels) or cause unacceptable operational problems (e. g. very hard waters) is 
critical in the design process. The acceptability of water is a particular problem as this 
may lead households to reject the use of an otherwise safe source and use contaminated 
sources for drinking. This not only fails to meet basic health needs for low-risk drinking- 
water, but also represents a significant waste of resources. 

In cases where the hazard only represents a risk under certain pumping conditions, the 
pumping regime could be defined as control measure in order to reduce the influence of 
the hazard. This is unlikely to be satisfactory, however, as there may be considerable 
uncertainty both in the abstraction model used as basis for decisions, and in operational 
monitoring and corrective action to ascertain that this pumping regime is always adhered 
to. 

If the hazard cannot be removed and changes in design of the source are not possible, 
post-abstraction disinfection is likely to be an effective control measure. In some cases, it 
will be more effective to use a lower microbial quality of water and then apply treatment 
at household or community level and/or implement a health education programme 
dealing with steps available at the household level to reduce the risks. Also, a residual 
risk may have to be retained if contamination is relatively low, other routes of disease 
transmission are more significant than water and are therefore other interventions are a 
greater public health priority where resources are insufficient to simultaneously improve 
drinking-water quality. 
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183.1 Drainage and fencing 
Control measures are important to protect abstraction facilities against the potential for 
inundation by contaminated surface water or damage by animals or overland flows 
caused by heavy rainfall by diverting surface water away from the headworks. For 
protected springs this diversion should be located above the protection works and should 
direct the water into a drainage ditch downstream and away from the spring. For dug 

wells and boreholes, diversion ditches should circle the headworks and drain the water 
away from the source. In designing the ditch, the topography and likely overland flows 

should be evaluated to ensure that the depth of the ditch is adequate to remove all 
stormwater. 

Diversion ditches should be located some way from the groundwater source, but not 
so far that significant overland flow will be generated within the area between the ditch 
and the headworks. A general rule of thumb is a minimum of 6m and preferably 10 m 
for boreholes and dug wells and up to 20 m for protected springs (Morgan, 1990). 

Restricting access by both humans and animals to the headworks is also important to 
reduce risks of contamination and thus, where possible, water sources should be enclosed 
by a fence. However, this needs to be balanced against cultural norms, for instance 
fencing of community water sources in Bangladesh is often not practiced because this 
may be interpreted as restricting the use of the source. 

The wellhead of boreholes serving a piped distribution system should be located 
within a locked building which only the operation staff of the water supplier should have 
access to. Where users must collect water directly at the borehole or dug well source, 
fencing is still required and access should be restricted to only one or two entrances. For 
springs, the whole backfilled area should be fenced and inaccessible as users will collect 
water from outlets on the spring box. Where the spring feeds a gravity piped water 
system, the whole spring protection works should be fenced off and access limited to the 
community operator. All valve and junctions boxes should have concrete lined sides and 
a lockable lid. 

18.3.2 Design of boreholes 
Boreholes or tubewells may be shallow (5-45 m) or deep (up to several hundred metres). 
The choice of pump (hand, mechanized or electric submersible) to withdraw the water 
will depend on the hydraulic (or pumping) head in the pump, with handpumps being 
typically constrained to depths of 45 m or less. Where confined or semi-confined 
aquifers are used, the water table may rise considerably higher than the depth of the well 
and a handpump may still be used despite the well being physically relatively deep. 
Where mechanized or electric submersible pumps are used, they are typically linked to a 
distribution system. An example of a shallow borehole is shown in Figure 18.1. Selection 
of appropriate design such as the use of geotextile stockings, telescopic screen or external 
gravel packs can improve filtration and reduce potential sanitary risk (Driscoll, 1986). 
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Figure 18.1. Design of a shallow borehole with handpump (Howard et at, 2001) 

For all boreholes or tubewells ensuring proper sanitary completion of the above 
ground infrastructure is essential to prevent direct ingress of contaminated surface water. 
Key components are to provide a casing over the unsaturated zone and over the upper 
part of the aquifer which may be expected to dewater during pumping. It is important to 
provide a bentonite grout seal for at least the top 1-3 m, which should be continuous with 
a concrete apron surrounding the top of the borehole (Driscoll, 1986). The apron must be 
in good condition with cracks and faults repaired rapidly. 

Sanitary completion of tubewells/boreholes will be dependent on the method of 
drilling. For instance, MacDonald et al. (1999) note that the use of the sludger method 
commonly employed in the alluvial aquifers in Bangladesh increases susceptibility to 
contamination via routes close to the tubewell because it precludes sealing the annulus 
between the casing and drilled tubewell. However, as the formation typically collapses 
around the casing, the susceptibility can be reduced (Ahmed et al., 2002). 

Boreholes are usually fully developed prior to commissioning to ensure adequate 
flow using a variety of techniques. Well development is not typically designed to 
improve water quality, but care is needed when using some techniques (notably 
hydrofracturing and acidization) to avoid the creation of preferential flow paths in 
consolidated formations that could allow rapid transport of contaminants. 

/titer pipe, slotted pvc 

183.3 Design of dug wells 
Most hand-dug wells are shallow (typically 20 m or less in depth) although wells as deep 
as 120 m have been constructed (Watt and Wood, 1977). They are often more vulnerable 
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to contamination than boreholes, thus while some shallow dug wells have mechanized 
pumping, the majority (particularly those in developing countries) have water abstraction 
through some form of handpump, windlass or rope and bucket system. A typical design 
is shown in Figure 18.2. 
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Figure 18.2. Design of a dug well with handpump (ARGOSS, 2001) 

Hand-dug well designs usually have some form of lining over the unsaturated zone. 
In order to secure a year-round supply, caissons may be sunk below the water table to 
prevent drying. The design should include an apron surrounding the top of the well 
(usually of 1-3 m radius) with lining extended 30-50 cm above the top of the apron to 
provide protection against direct ingress of surface water. It is preferable that a cover is 
put on the well to prevent direct contamination of the water (Collins, 2000). 

Studies by Lewis and Chilton (1984) note that the design, construction, operation and 
maintenance of the apron results in a direct reduction in levels of contamination. Dug 
wells can be backfilled with a sanitary seal of between 1-3 m, which increases travel time 
resulting in increased die off rates of pathogens. However, backfilling of wells is difficult 
if deepening of the well is required during drought periods. Alternative techniques such 
as curbing (attachment of section stabilizers) can be used to prevent movement of the 
shaft section of well and therefore not disturb the sanitary seal (Watt and Wood, 1977). 

The means of abstraction should minimize the potential for introducing contamination 
from dirty containers. This may include using a handpump or other sanitary means of 
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withdrawing water from the well such as a rope and washer pump, which have been 
shown to be effective in reducing levels of contamination (Gorter el a!., 1995). (See 
Section 18.5.1 for more detail about risks associated with pumps. ) Where a windlass, 
rope and pulley system with a bucket is used, then only one bucket should enter the well 
and hygiene education should emphasize the need to keep the well bucket from coming 
into contact with the ground. 

Hand dug wells often represent particular problems for sustaining good quality water, 
as it is difficult to ensure that very shallow water cannot enter the lining during wet 
periods. There are a number of different linings that may be used, including precast 
concrete, concrete cast in-situ and brick linings (Collins, 2000). Each of these methods 
gives varying degrees of sanitary protection. 

Where water quality is difficult to maintain, additional improvements have been made 
to dug wells. These include the addition of a small sand filter set inside a box at the base 
of the well, a permeable base plate or ongoing chlorination of the water in the well 
(Lloyd and Helmer, 1991; WHO, 1997; Godfrey et al., 2003). Chlorination has proven to 
be effective in post-emergency situations where other technology alternatives are 
unavailable but its effectiveness in terms of sustainability is questionable (Rowe el a!., 
1998; Godfrey, 2003). 

183.4 Design of protected springs 
A spring is a natural groundwater source which is protected by providing a concrete 
headwall or spring box around the eye of the spring (where water emerges) that prevents 
direct contamination (WHO, 1997; Howard eta!., 2001; Meuli and Wehrle, 2001). There 
are a number of designs for protected springs, all of which utilize some form of retaining 
wall or spring box with an excavated area backfilled with loose material to encourage 
spring flow towards the outlet. A protective cover usually overlies the excavated area and 
the area is fenced for some distance to prevent direct access by humans and animals. One 
design that has been used in periurban areas is shown in Figure 183. 

Figure 183. Cross-section of the backfill of a protected spring (Howard eta!., 2001) 

ý-ý `_ top roil 
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Where protection is poor, contamination may occur at the point of emergence due to 
recharge by contaminated water in the immediate area. Thus the proper protection of the 
spring eye becomes vital. At most springs, the eye of the spring is excavated and the area 
backfilled with loose material. The filter media should be sufficiently fine to provide 
reasonable filtration of the groundwater entering from the spring eye and any surface 
water percolating through the immediate area: usually gravel although finer media may 
be required in more polluted areas. 

It is important that this filter is overlain by an impermeable layer, commonly clay but 

can be a concrete cover, to reduce direct infiltration of surface water, and the whole area 
grassed (Howard et al., 2001; Meuli and Wehrle, 2001). The filter media should be 
placed in the backfill area from the base of the excavation up to the expected highest 
level of wet season water table rise (only applicable in gravity springs). 

18.3.5 Design of infiltration galleries 
Infiltration galleries come in a variety of forms - they may run alongside rivers or other 
surface water bodies or may tap a spring line. They can be used as a part of a treatment 
train or may provide water directly via a shallow well or from a gravity-fed piped water 
supply. Infiltration galleries have been used in many countries and often have long life 

spans, for instance an infiltration gallery has been in operation in Lima, Peru for over 100 

years and still provides high quality water with limited maintenance (Rojas eta/., 1995). 

When using an infiltration gallery it is important to ensure that the collector pipe is 
laid at an adequate depth to ensure a year-round supply. The collector pipe should be 
surrounded by a gravel pack designed to reduce the velocity of water entering the drain 
to ensure that suspended sediments are removed. It is preferable that the intake holes be 
on the underside of the collector pipe to increase the flow path length. However, it is 
recognized that in most cases inlet holes will be required on the full pipe for hydraulic 
reasons and that the gravel pack must be laid properly. The interior of infiltration 
galleries will be self-cleaning if the velocity is at least 1m per second. 

18.4 CONTROL MEASURES IN SANITARY COMPLETION: 
CONSTRUCTION AND MATERIALS 

The construction process and materials used are critical in ensuring that proper sanitary 
completion is achieved. Substandard work should be rejected. Poor construction quality 
allows faults to develop at the abstraction point. It is essential that technicians 
undertaking water source construction are properly trained and that guidelines for 
construction (for instance concrete mixes, rising main materials, etc. ) are provided and 
followed. 

The materials used can be critical to prevent water quality deterioration. Cement 
should be of good quality and within the recommended date of use. Sand and gravel 
should be clean and mixed in the proportions specified in the design. Reinforcing 
materials should be free of rust and dirt to ensure that a firm bond is formed with the 
concrete and care should be taken in selecting the gauge of reinforcing materials. 
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An important part of the construction process is quality control. This requires periodic 
checking and auditing of field practices to ensure that they are consistent with stated 
quality goals and objectives that the construction agency has set itself. Such quality 
control is necessary in all situations, whether construction is undertaken by the public or 
private sector. In all cases, but particularly where work is contracted to a third party, it is 

essential that there is evidence that the quality of construction is adequate. This may take 
the form of inspection and signing off a contract prior to full payment, or unannounced 
site visits. 

18.4.1 Pumps and rising mains 
For dug wells and tubewells, the selection of the rising main material is important. 
Galvanized iron rising mains should be avoided where water is relatively acid water 
because they are likely to corrode and lead to abandonment of the use of the handpump 

or the source. Where suction pumps are used, it is important that pumps are selected 
which have a non-return foot valve and do not require priming water to be added. As 
priming water is often taken from surface water or other stored household water, it may 
be contaminated (ARGOSS, 2001). Where priming water must be used, then it is 
important that only water collected from the well and stored in a covered container is 

used. 

18.4.2 Cleaning of facilities prior to commissioning 
For boreholes and dug-wells, good hygiene should be practiced by the team during 

construction. However, as some contamination will almost always remain, the wells 
should be thoroughly cleaned and disinfected prior to use and after maintenance tasks 
within the well. 

For dug wells, the lining and caisson walls should be scrubbed with a chlorine 
solution prior to commissioning; after this washing down with chlorinated water should 
be sufficient. Where a handpump is installed on a dug well, the rising main should be 
filled with a chlorine solution and left to stand for at least one hour and preferably 
overnight. 

Disinfection of boreholes requires filling the casing with a chlorine solution and 
leaving it to stand for at least one hour and preferably overnight. In both cases, the 
chlorinated water should be pumped to waste before use. 

18.5 CONTROL MEASURES IN SANITARY COMPLETION: 
OPERATION AND MAINTENANCE 

Whilst good design and construction will do much to ensure that wellhead protection is 
adequate, ensuring that it remains in good condition through ongoing preventative 
maintenance and repair is essential. This applies equally to springs and wells of large 
utilities and to small community or household supplies. The inspection routine should be 
defined in a management plan and include the recording of any deterioration detected 
and the action to be taken by whom and when. 
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For example, where pumps are used (whether handpump or mechanized), a stock of 
tools and spares should be kept by the operator so that repairs can be carried out quickly. 
Inherent to this is developing an effective supply chain for spares. In South Asia this has 
been successful as the small-scale private sector has been able to meet demand. In 
Africa, developing adequate supply chains has been more problematic, leading to 
relatively large numbers of boreholes being non-functional. In more developed countries, 
operators would normally have a store of the requisite tools and spares or would be able 
to source these quickly. 

Proper training of operators of a supply is of critical importance for them to have and 
have the skills and knowledge to undertake at least basic preventative maintenance and 
perform minor repairs. More than one operator per source should be trained to ensure 
that maintenance and repairs can still be undertaken even if an operator moves away 
from the area or cannot undertake work at a particular time. For utility supplies, a 
number of operators may be identified who work at the supply on a rotational basis. 
Operators should have access to guidance and information about maintenance and 
repairs - e. g. specifying frequencies for replacement or worn parts and giving detailed 
information of repair procedures. 

Where possible, the operators of water supplies should receive ongoing support from 
technical or professional support staff. Very often, even limited support in terms of 
regular visits to a supply to undertake an inspection and to meet with the operators of the 
supply can be very effective in sustaining good operation. This is particularly important 
for sustaining good quality small water supplies in both developed and developing 
countries and in rural and urban areas (Bartram, 1999; Holden, 1999). 

In addition to basic maintenance and repairs of equipment, it is important that basic 
cleaning tasks are routinely undertaken. This involves cleaning and repairing diversion 
ditches, ensuring that wastewater ditches from springs do not become blocked and 
allowed to flood the source and ensuring the fence remains in good condition. Such tasks 
are best defined in management plans and usually are not onerous if done regularly. They 
can make a crucial difference in water quality control. Such activities should be 

supported by inspections of the site by the operator. 
Experience shows that in order to sustain operation and maintenance some form of 

contribution from the users for the upkeep of the water source is very effective. In rural 
areas of low-income countries this may involve the contribution of labour. Other 
communities, particularly those in wealthier countries and those in urban areas of 
developing countries, may rely on payment by the users for the water services supplied. 
Most communities are willing to pay for water services providing the charges are 
realistic and the service meets the demands of the users. Routine payment is often 
preferred, as systems that operate solely on the collection of fees once a breakdown has 
occurred will mean that faults take longer to repair, although the latter approach has been 
found to work in some communities, for example in Eastern Uganda. 

In both cases, community organization is often key to ensuring that maintenance 
procedures are supported. This may take the form of a committee that oversees the 
operation of the water supply. In many low-income countries, such a committee may be 
specific to the water source and it is preferable to ensure that the members are 
representative of the different interest groups in the community and in particular that 
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women's concerns are adequately addressed. In higher-income countries such a 
committee may be a subcommittee from a local council or government at the local level. 
For instance in Chile user committees have been set up for all water supplies constructed 
by the regional water supply company using subsidies from the Goverment. These 
committees are supported by training programmes provided by the regional water supply 
companies who provide training to managers and operators of the supplies. 

18.6 ASSESSMENT OF SANITARY COMPLETION AND 
ESTABLISHING PRIORITY RISK FACTORS 

The state of sanitary completion can be assessed using inspection methodologies, as 
described further below. These are particularly important in the context of system 
assessment to determine risks and priorities for upgrading abstraction facilities as well as 
for defining control measures in the context of developing a Water Safety Plan (WSP). 
Sanitary inspections may also be used in verification via a surveillance programme using 
standardised approaches (Howard, 2002; WHO, 1997). Examples of such forms are 
commonly available, for instance in Volume 3 of the Guidelines for Drinking water 
Quality (1997). In both cases, water quality data would also typically be collected to 
allow combined analysis of the effectiveness of the control measures. 

Sanitary inspection methods may also be used in the routine operational monitoring 
of the water source as part of a WSP. Sanitary inspection approaches for routine 
monitoring in developed countries are likely to be the same as those used in assessment. 
In developing countries, other tools such as simple pictorial monitoring tools may be 
more effective. Routine monitoring may include some analysis of basic water quality 
parameters, particularly if chlorination is practiced, but this is dependent on the skill of 
the operators and funds for supporting such analysis. 

18.6.1 Sanitary inspection 
Sanitary inspection provides an easy but effective means of both assessing and 
monitoring sanitary completion, particularly when this employs a standardized and 
quantifiable approach (Lloyd and Bartram, 1991; Lloyd and Helmer, 1991; WHO, 
1997). Unless a standardized approach is adopted, problems are commonly found in 
comparing the findings between different inspectors (WHO, 1997; Howard, 2002). This 
leads to inaccurate and unreliable results and limits the potential for subsequent analysis 
of the data. A quantified approach allows an overall risk score to be calculated in order to 
assess the state of supply systems and to identify priorities for action. It also permits 
comparisons between different source types once the data is converted into a percentage 
risk. 

Sanitary inspections should be undertaken frequently, at least as often as samples are 
analysed for verifying water quality and in some cases more often. Risks are not static, 
they change over time as new development occurs in the area and are sometimes due to 
poor maintenance practices. Certain risks may also be important only seasonally, for 
instance the collection of surface water uphill of a groundwater source may only occur 
during wet periods. Therefore inspections may be required in both wet and dry seasons. 
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Most sanitary inspections involve a series of simple questions with Yes/No answers. 
As the questions are usually framed in such a way that a positive answer indicates the 
presence of a risk, typically a score is allocated for a positive answer and no score for a 
negative answer. Adding up the positive answers provides an overall sanitary risk score. 
An example of a sanitary inspection form is given in Box 18.1 below. Other examples 
are available from volume 3 of the Guidelines forDrinking-water Quality (WHO, 1997). 

In the form in Box 18.1, questions 7,8 and 10 refer to potential sources of faeces in 
the environment; questions 1,2 and 3 refer to direct pathway factors; and, questions 4,5, 
6 and 9 refer to indirect factors. The analysis of these factors in relation to water quality 
provides useful information regarding which remedial and preventative actions are 
required for the specific water source. Data collected this way can further be aggregated 
and evaluated across a range of abstraction facilities of a given region in order to identify 
key risk factors. 

Box 18.1. Example of a sanitary inspection form 

I. Type of Facility: PROTECTED SPRING 
1. General Information: Division: Parish: 
2. Code Number: 
3. Date of Visit: 
4. Water sample taken? Sample No.: 

Faecal Coliform/100 ml: 

II. Specific Diagnostic Information for Assessment 
Risk 

1. Is the spring unprotected? Y/N 
2. Is the masonry protecting the spring faulty? Y/N 
3. Is the backfill area behind the retaining wall eroded? Y/N 
4. Does spilt water flood the collection area? Y/N 
5. Is the fence absent or faulty? Y/N 
6. Can animals have access within 10 m of the spring? Y/N 
7. Is there a latrine uphill and/or within 30 m of the spring? Y/N 
8. Does surface water collect uphill of the spring? Y/N 
9. Is the diversion ditch above the spring absent or non-functional? Y/N 
10. Are there any other sources of pollution uphill of the spring 

(e. g. solid waste)? YIN 

Total Score of Risks: /10 (Risk score 0-3=low; 3-5=medium; 6-8=high; 9- 
10--very high) 

III. Results and Recommendations 
The following important points of risk were noted (list nos. 1-10): 
Comments: 
Signature of Health Inspector/Assistant: 
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18.6.2 System assessment through sanitary inspection as a 
management tool 

Sanitary inspections provide a useful management tool for communities, water supply 
agencies and surveillance bodies. The value of the sanitary inspection is that it provides a 
longer-term perspective on the risks of contamination, gives an overview assessment of 
how effective operation and maintenance has been and which system upgrade is needed. 
Such information can help in directing resources for improvement of the infrastructure 

and for improved training of water supply operators. Sanitary inspections also provide an 
additional means of assessing the differences in water quality from different types of 
water sources thus helping overall national and regional planning and policy-making 
(Bartram, 1999; Howard, 2002). This type of analysis is likely to be undertaken by a 
utility or surveillance body rather than an operator of a supply. 

In a number of countries, the combined analysis of sanitary risk scores and level of 
contamination has proved to be an effective way of prioritizing which water supplies 
receive investment (Lloyd and Helmer, 1991; WHO, 2004). In many cases there is a 
broad relationship between the overall sanitary risk score and level of contamination 
(Lloyd and Bartram, 1991; Lloyd and Helmer, 1991). However, such approaches do not 
necessarily identify which are the most important specific factors to address as the 
system of sanitary inspection provides each risk factor with equal weighting, despite 

awareness that this is unlikely to be the case. 
It is often useful to be able to determine the importance of different risk factors in 

order to direct investment and action on those improvements in the source that will yield 
the greatest improvements in water quality. Such an approach is often particularly useful 
in order to assess whether microbial contamination of groundwater derives from poorly 
sited and constructed sanitation facilities or from poor maintenance of sanitary 
completion measures. Leaching from on-site sanitation has been identified in some cases 
to be the major cause (Boonyakarnkul and Lloyd, 1994; Rahman, 1996; Massone et al., 
1998; Melian eta!., 1999). Other research from a number of countries indicates that poor 
sanitary completion was more important in microbial contamination than subsurface 
leaching from hazards such as pit latrines (Gelinas et a1., 1996; Cronin et al., 2002; 
Howard et al., 2003) as described further in Section 18.6.3 below. This is particularly the 
case in situations where there are a number of sources of human faecal matter in the 
environment such as refuse pits and dumps, open defecation and widespread occurrence 
of animal faecal matter (Barrett et al., 2000b; Chidavaenzi eta!., 2000). Furthermore, it is 
often important to determine the influence of other factors such as rainfall and population 
density, which may affect contamination risks (Wright, 1986; Goiter et a!., 1995; Barrett 
et al., 2000a; Howard, 2002). 

18.63 Establishing the importance of different risks due to poor 
sanitary completion 

There are a number of approaches that have been used to investigate the relationships 
between individual risks identified through sanitary inspection and water quality 
outcomes using statistical methods to analyse the data. These approaches range from the 
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use of simple reporting of the frequency of risks in relation to specified water quality 
targets to the use of contingency tables and logistic regression. In order to undertake such 
analysis, it is important that water quality data and sanitary inspection data are available 
and can be paired. 

In undertaking analysis of the relationship between sanitary risk factors and water 
quality outcomes, it is useful to compare risks in relation to water quality targets, as the 
failure to meet specified targets would trigger action. Cronin et a/. (2002) present the 

analysis of data from two sites in Kenya and Mozambique, where the frequency of 

reporting of individual risks identified in inspections of sanitary completion measures 
were compared against samples with results above and below the median concentration 
of thermotolerant coliforms. This is shown in Table 18.1 below. This analysis indicated 

that poor sanitary completion of wells was more important in leading to contamination 
than subsurface leaching from sources of faecal material. 

Table 18.1. Risk factors relating to higher levels of microbial contamination in dug wells in 
Kisumu, Kenya (Cronin eta!., 2002) 

Risk factor Percent of samples 
< median ITC/100 ml 

Percent of samples 
> median T170100 ml 

Difference 

Plinth <1.5 m 83 100 +17 

Well wall sealed 83 91 +8 

Surface waste within 30 m 83 91 +8 

Ponding on plinth 50 55 +5 

Drainage channel inadequate 100 100 0 

Well cover unsanitary 92 91 -1 
Latrines within 10 m 55 58 -3 
Open water within 20 m 64 67 .3 
Ponding within 3m 92 82 -10 

Other analyses have used concentrations of indicator organisms in water 'to define a 

water quality target based on international guidelines or national standards. In this 

approach, for each risk factor the difference in frequency of reporting of each risk factor 

is compared between when the target is met and when it is exceeded with the difference 

providing an indication of whether there is a relationship and the strength of relationships 
found. Howard et al. (2003) describe such an analysis of water quality and sanitary risks 
in shallow protected springs in Kampala, Uganda shown in Table 18.2. 

It is often useful to undertake further analysis of the data to assess the strength of the 

relationships between risk factors and water quality. In studies from Thailand, 
Boonyakamkul and Lloyd (1994) developed a Sanitary Hazard Index (SHI), which 
related the intensity of faecal contamination associated with individual risk factors 
identified from sanitary inspection. These authors were able to identify which factors had 

the highest SHI and concluded that this should provide direction in relation to the priority 
accorded to reducing the presence of individual risk factors. The authors noted that there 

was a difference between those factors with the highest SHI and those that were most 
commonly reported. 
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Combined analysis of water quality and sanitary inspection data can also be 
undertaken using a range of non-parametric tests, which is common in the analysis of 
water resources data (Helsel and Hirsch, 1992). The use of dedicated software packages 
will assist in undertaking such analysis, but are not essential. Such analysis often 
incorporates other data such as rainfall and population density that are considered 
important in controlling quality. 

Table 18.2. Sanitary inspection and water quality data for protected springs in Uganda (Howard et 
al., 2003) 

Risk factor Percent reported when 
<1 cfu/100 ml 

Percent report when 
Z1 cfu/100 ml 

Difference 

Masonry defective 8 17 +9 
Backfill eroded 29 67 +38 
Collection area flooded 79 83 +4 
Fence faulty 83 100 +17 
Animal access within 10 m 79 100 +21 
Latrine less than 30 m uphill 4 0 -4 
Surface water collects uphill 46 100 +54 
Diversion ditch faulty 79 100 +21 
Other pollution uphill 46 83 +37 

One example of non-parametric statistical tests is a contingency table of odds ratios. 
To make this analysis, variables with continuous data (e. g. water quality, rainfall and 
population density) must be converted into binomial categorical data. In the case of water 
quality targets the resulting variable will be whether the target was complied with or was 
exceeded (often simply expressed as either Yes or No). For rainfall data, a new variable 
may be whether rain was recorded within a specified time period or whether a certain 
depth of rainfall occurred. 

An example of a contingency table is given below in Table 18.3 taken from analysis 
performed by Howard et at. (2003), which combines analysis of sanitary risks and water 
quality objectives for faecal streptococci and thermotolerant coliforms in protected 
springs in Uganda. 

In the example of Table 18.3, two water quality objectives have been selected to 
allow the data to be analysed: the absence of faecal streptococci and less than 10 cfu/100 
ml thermotolerant coliforms, the latter being a more realistic target for non-chlorinated 
community-managed water supplies. Odds ratios exceeding I show a positive 
relationship between the risk factor and exceeding the water quality target. 

For both water quality targets the analysis demonstrates that localised pathways 
combined to sources of pollution and rainfall lead to contamination. Furthermore, in this 
setting thermotolerant coliform contamination appears to result from a more complex set 
of factors than faecal streptococci but is still primarily linked to poor sanitary completion. 

This data can be further analysed through logistical regression (Howard et al., 2003). 
Using the same data shown in Table 183, logistic regression models were developed and 
are shown in Table 18.4. The regression models included all co-variates where odds 
ratios showed relationships significant at least to the 95 per cent level. Although not 
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significant at least to the 95 per cent level for faecal streptococci, latrine proximity within 
30 m was forced into the model as this was still deemed a plausible route of 
contamination. 

Table 183. Contingency table for protected springs in Uganda (Howard et at., 2003) 

Variable FS >0 cfu. 100mf' 
Odds p 
ratio 

95%CI 
TIC >10 cfu. l00mr' 
Odds ratio p 95% 

CI 
Faulty masonry 1.216 0.475 2.42 1.506 0.075 1.4 
Back ill area eroded 4.135 0.000 5.8 2.762 0.000 2.73 
Collection area floods 0.619 0.085 0.71 0.603 0.035 0.53 
Fence absent or faulty 9.492 0.008 48.26 3.496 0.138 17.64 
Animal access <10 m 3.627 0.202 25.73 1.366 0.756 9.64 
Surface water uphill 2.203 0.014 2.95 3.933 0.000 4.36 
Diversion ditch faulty 0.755 0.369 0.98 1.324 0.263 1.35 
Other pollution uphill 3.75 0.041 12.3 5.728 0.029 26.23 
Latrine <30 m uphill of spring 1.938 0.057 2.85 1.759 0.036 1.94 
Latrine <50 m uphill of spring 0.838 0.531 0.98 0.738 0.198 0.17 
High population density 4.49 0.000 5.43 4.708 0.000 4.75 
Waste <10 m uphill ofspring 1.971 0.028 2.53 2.557 0.000 2.63 

Waste <20 m uphill of spring 2.437 0.001 2.78 3.085 0.000 3.03 

Waste ß0 m uphill of spring 1.547 0.191 2.17 1.896 0.031 2.4 

Rainfall within previous 2 days 4.966 0.000 6.29 3.827 0.000 3.75 

Table 18.4. Logistic regressions for protected springs in Uganda (Howard et al., 2003) 

Model Model log Variables 
estimate 

Log Standard 
estimate error 

df p-value 

Faecal 343.27 Constant 2.63 0.36 1 <0.001 
streptococci Eroded backfill -0.8 0.29 1 0.006 
>0 cfu/100 ml Faulty fence -1.94 0.88 1 0.027 

Surface water uphill -1.07 0.32 1 0.001 
Rainfall within 2 days -1.34 0.27 1 <0.001 

Thennotolerant 338.11 Constant 2.06 0.37 1 <0.001 
colifonns Eroded backfill -0.72 0.34 1 0.034 
>10 cfu/100 ml Collection area flooded 0.57 0.29 1 0.047 

Surface water uphill -0.7 0.32 1 0.031 
High population density -1.02 0.35 1 0.003 
Rainfall within 2 days -1.64 0.29 1 <0.001 

Both regression models indicate contamination resulting from rapid recharge close to 
the springs and suggest that it is poor sanitary conditions at the spring itself that represent 
the greatest problems for the microbial quality of water. It is likely that this occurs 
through both direct inundation and very rapid recharge through preferential flow paths. 
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In both cases, the principal sources appear to be waste dumps and surface water rather 
than latrines. This agrees with other studies that point to the importance of refuse dumps 
for the presence of indicator organisms (Chidavaenzi eta!., 2000). In a study of wells in 
rural Mozambique, Godfrey et al., (2005) found that there was a pulse response of 
microbial contamination to rainfall events. Soil and engineering studies indicated that 
localised pathways were likely to be the primary cause of contamination rather than 
contamination due to aquifer pathways (Godfrey et al., 2005). 

The findings of Howard et al., (2003) and Godfrey et a/., (2005) are in agreement 
with other studies into the causes of microbial contamination of shallow groundwater 
supplies, which have tended to emphasize direct ingress rather than subsurface leaching 
of contaminants in causing contamination (Rojas et a!., 1995; Gelinas et al., 1996). 
These findings emphasise the importance of sanitary completion of groundwater sources. 

The influence of sanitary completion on controlling quality may vary with different 
technologies and areas. For instance, studies in Thailand by Boonyakarnkul and Lloyd 
(1994) concluded that on-site sanitation factors led to the greatest Sanitary Hazard Index 
and were therefore priority risks to resolve. In Uganda, the major control on quality in 
tubewells appeared to be the proximity and location of on-site sanitation rather than 
wellhead completion (Howard et al., 2003). By contrast, studies in Bangladesh reported 
that wellhead completion was more important than subsurface leaching from on-site 
sanitation (MacDonald et al., 1999; Ahmed et a!., 2002). 

The results of these studies support the validation of control measures, an essential 
step within a WSP (see Chapter 16). The performance of a WSP may be assessed by 
repeating the above analysis after upgrading sanitary completion to address faults. 
identified. 

18.7 CONTROL MEASURES FOR SANITARY 
COMPLETION OF GROUNDWATER SOURCES 

The design, construction, operation and maintenance requirements for groundwater 
sources can be translated into a series of control measures or points at the wellhead or 
spring protection works. Key control measures for different types of groundwater source 
are shown in Table 18.5 below. Planning measures to control the presence of hazards in 
the catchment area or immediate vicinity of a well or spring are discussed in more detail 
in Chapters 18-25. 

NOTE º In water supplies developing a Water Safety Plan (Chapter 16), 

system assessment would identify which control measures exist, 
their effectiveness and which need to be upgraded or newly 
introduced Management plans would document why specific 
control measures were chosen, how their performance is monitored 
and which corrective action should be taken both during normal 
operations and during incident conditions when monitoring 
indicates loss of control 
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Table 18.5. Examples of control measures for sanitary completion and options for their monitoring 
and verification 

Process Examples for control measures in sanitary completion 
step 

Options for their monitoring 
and verification 

Plan site and depth of abstraction to avoid presence of hazards and Review (applications for) 
0, pathways for their ingress into the water source, e. g. prevent permits for construction of new 

presence of faecal material within set-back distance abstraction facilities or for 

Plan pumping regime to avoid leaching of contaminants into the instruction and upgrade of 
existing ones 

aquifer by providing sufficient distance from sources of 
contaminants 

Ensure good drainage around wellhead or spring, e. g. 

" with ditches to divert nmotlaway from the wellhead or backfill 
area of a spring 

" for wells with an apron to direct spills away from the wellhead 
" for springs with good drainage of wastewater away from the 

spring area 
Design wellhead or spring area protection to prevent direct 

" contamination, e. g. with 
" Fencing to exclude animals from wellhead or spring backfill 

area 
-. 0 "=" apron extending around the wellhead at least 1- 1.5 in from 

casing 
D: " for boreholes ensure that join between apron and casing or lining 

is sound 
ýý" " for dug wells ensure wellhead is raised by at least 0.3 m and 

covered by slab 
" for springs ensure backfill area behind spring box or retaining 

wall is protected, e. g. with grass cover 
�; . Ensure sanitary completion of lining, e. g. 

" with lining extending at least 30 cm above the apron 
" with seal sufficiently extended below ground level: at least 1.5 

m for boreholes with handpump and 5m for mechanised 
boreholes 

" for boreholes with rising main in good condition 
" for dug wel Is by proper construction and use of mortar seal on 

lining, ensure lining stays in good condition (no weep holes 
during rainfall l) 

Ensure adequate choice and good condition of structures, e. g. 
':. ;': " for boreholes that pumps are fumly attached to the wellhead 

; r.; + " for dug wells install handpump or other sanitary means of 
abstraction 

Sanitary inspection of design 
and condition 

For boreholes and wells, ensure pumping regime does not exceed Meter or estimate amount of 
amounts allowed for during planning water abstracted 
For dug wells ensure hygienic use of handpump or other means of Regular inspection of condition 
withdrawing water and of use. Periodic analysis of 

microbial indicators. 

Ensure regular maintenance and cleaning of well or spring Review inspection reports for 
t environment, e. g. removal of debris blocking diversion ditches or compliance to managemen 

those removing wastewater from the vicinity of springs; repair of plans. Periodic analysis of 
fences; repair of structures such as aprons, covering flaps, microbial indicators. 
handpumps 
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Table 18.5 focuses on control measures for the design and construction of wells and 
springs which are specific to sanitary completion. For the operation of abstraction 
facilities, maintenance and repairs are crucial control measures for keeping contaminants 
out, and management plans to define the scope and timescales of such activities are 
important to support that they are regularly carried out. 

Regardless of whether or not any of these control measures are part of a WSP, their 
monitoring and verification is crucial to ensure that they are in place and are effective. 
Table 18.5 therefore includes options for surveillance and monitoring of the control 
measure examples given. As most of the control measures for sanitary completion 
involve issues of design and maintenance, many of them are most effectively monitored 
by regular inspections and through reviewing inspection and maintenance reports. The 
periodic analysis of microbiological indicator organisms is also crucial to the verification 
and validation of protection measures. In this context, management plans are an 
important tool to ascertain that inspection and maintenance activities are regularly carried 
out. This aspect of monitoring focuses on checking whether the controls are operating as 
intended, rather than on contaminant concentrations in groundwater. 

NOTE º Options for monitoring suggested in Table 18.5 focus on the control 
measures rather than on groundwater quality. 
Comprehensive groundwater quality monitoring programmes are a 
supplementary aspect of verification of the efficacy of sanitary 
completion. 
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Appendix 4: Statistical Methods 



Logistic Regression 

With advances in computer technology, logistic regression has largely replaced 

discriminate analysis as the predominant form of multivariate analysis (Coates et al, 

2003). A standard linear regression model contains continuous and dependent 

variables taking ranges of values since the errors are normally distributed. In logistic 

regression, the dependent variable takes one of two values (typically the values of 0 or 

1). The form of the logistic regression model is outlined in equations 2 and 3: 

e 
(bo+nx) 

P1+e 
bo+bx 

(2) 

Where, 

P= probability that microbiological contamination is present at a count >10cfu/100ml 
X= vector of n explanatory variable values 
bo = scalar interceptor parameter 
b= vector of slope coefficient values, so that bX = b1X1 + b2X2+.... b,, X� 
e= error margin 

Lu 
1 

PP 
= bo + bX (3) 

Note P divided by 1-P as the odds ratio which equals the "success" to "failure. " 

Chi-Square (x2). 

Chi-Square is a mathematical distribution that enables researchers to equate the 

calculated X2 values to x2 (see equation 4). 

n(0, -E, 
)2 

i_i E, <4ý 

Where 
O; = observed frequencies 
E; = expected frequencies for i=1,2 

,...., n 

Chi-Square analysis was selected for this research as it provides descriptive statistics 
through the estimation of degrees of freedom outlined in a Chi-Squared distribution. 

The method is used to generate a significance level of p-value. Levels of precision are 

estimated based on the output p-value. This provides an estimate of precision that is 

statistically significant at 95% confidence or 0.05. Significant results are noted at a p- 

value nearer to zero than 0.05. 


