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Summary

Landslide is a type of mass movement that causes damage in many areas. The evolving
remote sensing technology in producing high resolution images may help in landslide
studics. However, the problem in detecting small size landslides is still challenging
when suitable image resolution of the area Deing analysed is not available.

In this thesis, first a simple method of landslide detection and identification is imple-
mented. It is based on the use of local mutual information. This simple method can
be used to deteet landslides of large extent., but it is not appropriate for the detection
of small landslides. Then, we propose a novel method based on elastic image regis-
tration. appropriate for the detection of small landslides. This method can be used
to detect and quantify landslide movement with sub-pixel accuracy. It is based on
the invocation of deformation operators which imitate the deformations expected to
be observed when a landslide occurs. The similarity between two images is measured
by a similarity function which takes into consideration grey level value correlation and
geometric deformation. The geometric deformation term ensures that the minimum
necessary deformation compatible with the two lmages is cmployed. An extra term,
ensuring maximum overlap between the two images is also incorporated. There are two
versions of this method. One using the correlation coefficient as a imeasure of similarity
for the grey level value, and another one using mutual information. These methods
are tested using real pairs of images with known small scale landslides. The mutual
imformation-hased method gives more reliable results.

Key words: local similarity measure, change detection, elastic image registration, size
of movement.
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Chapter 1

Introduction

In this thesis, we present the work on landslide detection and identification that can
be used for landslide monitoring. This includes the use of a local similarity measure
to detect and identify landslide areas, appropriate for the detection of large-scale land-
slides. Then, the problem of small scale landslides (in comparison with the resolution
of the available iinages) is tackled by using clastic image registration. The motivation
of this rescarch is presented in section 1.1. The aims and major achicvements of this
thesis are presented in section 1.2. Finally, an outline of the thesis is given in section

1.3.

1.1 Motivation

A Tandslide is defined as the movement of a mass of rock, debris or earth down a slope
[30]. Other terms used to refer to landslide events include “mass movements”. “slope
failures™, “slope instability” and “terrain instability” [12]. Landslides ave primarily
associated with high relief areas such as those found in mountainous regions. Never-
theless, they may also occur in low relief areas. The most commnion types of landslide

are described next [5, 6):

e Slides: Although many types of mass movement arc included in the general term

“landslide”, the more restrictive use of the term refers only to mass movement,
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where there is a distinet zone of weakness that separates the slide material from
more stable underlving material. The two major types of slide are rotational

slides and translational slides.

-~ Rotational slide (also called slump): This is a slide in which the surface
of rupture is curved concavely upwards and the slide movement is roughly
rotational about an axis that is parallel to the ground surface and transverse
across the slide (figure 1.1(a)).

— Translational slide: In this type of slide. the landslide mass moves along a

roughly planar surface with little rotation or backward tilting (ligure 1.1(h)).

o Falls: Falls arc abrupt movements of masses of geologic materials, such as rocks
and boulders, that become detached from steep slopes or clifts (figure 1.1(c¢)). Sep-
aration occurs along discontinuities such as fractures, joints and bedding planes,

and movement occurs by free-fall, bonncing and rolling .

e Topples: A topple is a forward rotation out of the slope of mass of soil or rock

about a point helow the centre of gravity of the displaced mass (figure 1.1(d)).

e Flows: There are five basic categories of flow that differ from one another in

fundaimental ways.

— Debris flow: A debris flow is a form of rapid mass movenent in which a
combination of loose soil, rock, organic matter. air and water are mobilised
as a slurry that flows downslope (figure 1.1{c)).

— Debris avalanche: A dcbhris avalanche is a variety of very rapid to ex-
tremely rapid debris flow (figure 1.1(f)).

— Earthflow: An earthflow is a downslope movement of soil which has been
saturated with water to the extent that the debris moves as a fluid (figure
1.1(g)). While flowing, cither slowly or rapidly, the mass generally remains
covered by a blanket of vegetation.

— Mudflow: A mudflow is an carthflow consisting of material that is wet

enough to flow rapidly and that contains at least 50 percent sand-. silt-,
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and clay-sized particles. In some instances, for example in many newspaper

reports, mudflows and debris flows are commonly referred to as “mudslides”.

— Creep: Creep is the imperceptibly slow, steady, downward movement of

slope-forming soil or rock (figure 1.1(h)).

e Lateral spreads: Lateral spreads are distinctive because they usually occur on
very gentle slopes or flat terrain (figure 1.1(i)). The dominant mode of movement
is lateral extension accompanied by shear or tensile fractures. Failure is usually
triggered by rapid ground motion, such as that experienced during an earthquake,
but it can also be artificially induced. The failure starts suddenly in a small area

and spreads rapidly.

A landslide occurs when the internal strength of the soil is not great enough. As a
result, it makes the slope produce a downward velocity. Variables that may influence
the decreasing of this strength are precipitation, moisture in the soil, weight and friction

[12). Therefore, factors that contribute to landslides are:
¢ Erosion by rivers, glaciers, or ocean waves which create oversteepened slopes [13].
¢ Heavy rains and snowmelt which weaken rock and soil slopes [13].

o Earthquakes which create stresses that make weak slopes fail |2, 98, 92, 91, 13].

e Volcanic eruptions which produce loose ash deposits, heavy rain, and debris flows

13, 91).

e Excess weight from accumulation of rain or snow, stockpiling of rock or ore,

from waste piles, or from man-made structures [92, 91] may stress weak slopes to

failure.

These geological and geographical factors can cause landslides to occur at the same

area as in the past [105, 113, 78, 35, 108, 68].

Landslides are a serious geologic hazard. Landslides cause deaths, homelessness and
often result in catastrophic damage to highways, railways and pipelines [91, 98]. Al-

though not every landslide results in a catastrophy, the damage from many small ones
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Figure 1.1: Type of landslide. (Picture taken from [5].)

may equal or exceed the impact of a single major failure. Thus, both large and small
landslides are capable of causing significant damage and loss of life [98]. Under the
assumption that future landslides will occur under conditions similar to those in the
past [13, 43, 57], the area where a landslide occurs is categorised as belonging to the
prone-to-landslide environment. Areas in such environments have high potential of new
landslide occurrence. Therefore, an effective way to prevent future damage is to iden-
tify landslide areas [57]. When such an area is identified, its activity may be monitored

and specific analysis can be done, so that precautions can be taken.
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Landslides are relatively small observation targets [110] and require the use of obser-
vational data with much greater spatial resolution with respect to that used for other
natural disasters such as earthquakes and volcanic eruptions [106, 98, 92]. There is no
standard for describing landslides by size. According to Singhroy [98], characteristic
dimensions of small slides generally range from 10m to 100m. Table 1.1 gives some

guidance to describing landslides by size, taken from [29)].

Descriptor ” Area, m?

Very small < 200
Small 200-2.000
Medium 2,000 - 20,000

Large 20,000 - 200,000

Very large || 200,000 - 2,000,000

Huge > 2,000, 000

Table 1.1: Grouping landslides by area taken from [29].

The single and most important factor which limits the utility of many currently available
Earth Observation datasets is the coarse resolution of space imagery [106]. The spatial
resolution required for recognition of most large landslides is about 10m [2]. In mapping
of large landslides, high resolution sterco Synthetic Aperture Radar (SAR) and optical
images may be used to give useful information. However, mapping of smaller scale
landslides still requires extensive use of aerial photo and fieldwork. Table 1.2 shows
the minimum size of landslides that may be recognised by various types of remote
sensing imagery based on its spatial resolution. According to Zhang et al. [115], the
System Pour L’Observation de la Terra (SPOT) 5. IKONOS, QUICKBIRD imagers
and aerial photos are more suitable for recognising most landslides (size of several tens
to a few hundred meters). However, the capability of these satellite images is limited by
their spectral resolution. Multispectral satellite remote sensing data give the spectral
characteristics of the Earth’s surface and this can be used for landslide inventories
(84, 3]. Identification and tracking of small landslides could also be greatly facilitated
by using spectral imaging [106, 98]. Landsat images have a high multispectral resolution
but because of the limitation of their spatial resolution, they are too coarse for landslide

identification unless the image data are resampled 91] and merged with other higher
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resolution airborne [102] or radar images [91].

{ Data Source H Spatial resolution (1n) | Landslide size (1n) J
MSS 80 800
Landsat-5
™ 30 300
ETM 30 300
Landsat-7
PAN 15 150
X5 20 200
SPOT-1,24 -
PAN 10 100
XS 10 100
SPOT-5 PANI1 5 50
PAN2 2.5 25
XS 4 10
IKONOS
PAN 1 10
XS 2.44 25
QUICKBIRD :
PAN 0.61 6
l Aecrial photos 1:50,000 J_L 0.50 ‘ 5.0 ‘
l Aerial photos 1:25,000 “ 0.25 ! 2.5 I
1 Aecrial photos 1:10,000 “ 0.10 ‘ 1.0 l

Table 1.2 Minimumn size of landslides that may be recognised by various types ol remote sensing

imagery based on its spatial resolution. (Taken from [115].)

Aerial photography has been used extensively to characterise landslides and to pro-
duce landslide inventory maps not only because of its high spatial resolution, but also
hecause of its stereo viewing capability [98]. However, air photos are not readily avail-
able in all areas [91]. Stereo capability is very useful in generating a Digital Elevation
Model (DEM) [71], which is used to study and analyse the details of the Earth's sur-
face [93, 48, 111, 112]. An alternative way to create DEMs is to use SAR images. SAR
images provide information on the terrain roughness and texture [91]. The airborne
Interferometric Synthetic Aperture Radar (InSAR) technique provides an accurate rep-
resentation of the slope geomorphology. This facilitated the identification of landslide
features in difficult high relief terrains [98, 91, 97]. However, its application is still lim-
ited because a good result can only be achieved when a good radar dataset satistying

interference conditions is available [110].
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Therefore, it is clearly seen that the adaptation of the image processing technology to
landslide studies is still challenging. More research in this area need to be done to

overcome the problem of the coarse resolution of satellite images.

1.2 Objectives and Achievements of this Thesis
The objectives of this thesis are as follows:

¢ to propose a new simple method of landslide detection and identification;

¢ to improve the capability of coarse spatial resolution satellite images so that they

can be used to detect and quantify landslide movement with sub-pixel accuracy.
The major contributions of this thesis are as follows:

o a novel approach for change detection and landslide identification has been im-

plemented by using a local similarity measure based on nutual information;

¢ novel deformation operators which imitate the way land deforms during a land-

slide have been developed;

¢ anovel approach of sub-pixel accuracy of landslide movement detection and ¢uan-

tification has been developed by using elastic iinage registration.

1.3 Structure of the thesis

Chapter 2 presents a literature survey on landslide detection and identification. The
available methods to date are described. The literature covers methods for different
types of image, different size of landslide and different triggering factors. The limita-

tions of the various approaches are also identified.

Chapter 3 presents a new simple method of landslide detection and identification. First,
a brief overview of the study areas is given. Then, we aligned the coordinates of the

available pair of images. We also present how the cloud and snow pixels in the images
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are removed. Then, the no-cloud and no-snow arcas of the images are enhanced us-
ing Principal Component Analysis (PCA). After the preprocessing stage is completed,
we use these images to test the method. The proposed method contains three stages:
finding the local mutual information for every pixel, thresholding the local mutual infor-
mation images and identifying changed blobs using an area-hased filter. The landslide
arcas are thus identified. This chapter concludes by showing that this method is not

appropriate for the detection of small scale landslides.

Chapter 4 presents a literature survey on image registration. The application of image
registration is widely used in the field of Remotely Sensed Data Processing, Computer
Vision and Pattern Recognition, and Medical Image Analysis. Thercfore, in order to
explain this methodology, the basic steps in registering two images are first described
in detail. Then, the literature survey is extended to the latest method of image regis-

tration.

Chapter 5 presents a new method of landslide movement detection and quantification.
The ahn of this chapter is to detect small landslides from coarse resolution imnages. This
is done by using clastic image registration. Four deformation operators are developed
to imitate the way land deforms during a landslide. Three terms are added to form a
cost function which controls the process of registration. They take into cousideration
grey level correlation, geometric deformation and overlapping. There are two versions
of the cost function. One uses the correlation coefficient in measuring the similarity of
the grey level values and the other uses mutual information. Before performing a full
run, we present ways that can be used to increase the efficiency of the method. This is
done by improved parameter selection and stopping criterion, and also by performing
exploratory runs. The algorithm is run several times with different sceds for the random

number of generator. The consensus result is considered to be the final result.

Finally, Chapter 6 presents the conclusions of this study. The main contributions of
this thesis are clearly outlined. In addition, some suggestions on future work are also

presented.
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Publications:

e S. Khairunniza-Bejo, M. Petrou, V. Kovalev. “Elastic image registration for
landslide deformation detections”. In Proceeding of the 11th SPIE International

Symposium. in Remote Sensing, Canary Island, Spain, 5573:344-355, 2004.

e S. Khairunniza-Bejo, M. Petrou, A. Ganas. “Landslide detection using a local
shmilarity measure”. submitted to the 7th NORDIC Signal Processing Symposium,
Iceland, June 7-9 2006.
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Chapter 2

Literature survey on landslide

detection and identification

Remote sensing data are primary sources extensively used for change detection and
identification. There are three important aspects in identifying landslides: size of the
features, their contrast (the difference in spectral characteristics between the landslides
and their surrounding areas) and their morphological expression [67]. Many change

detection and identification techniques have been developed [67, 70, 64].

This chapter presents a literature survey on the application of image processing tech-
niques used to detect and identify landslides using remote sensing data. This includes
image enhancement, image differencing, vegetation index differencing, image classifica-
tion, image registration and the Differential Synthetic Aperture Radar Interferometry
(DInSAR) technique. In the following, the basic idea of each technique will be de-
scribed, and the various papers published using it will be discussed. The papers vary
according to the use of different types of data, different size of landslide they are dealing

with and different triggering factors for landslide occurrence they consider.

2.1 Image enhancement

Enhancement alters the appearance of an image in such a way that the information

contained in that image is more readily interpreted visually in terms of a particular

11
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need [69]. Tmage contrast enhancement which modifies the grey scale of an image
[89] has been used by Kwang-Hoon Chi et al. [27] to detect and identify landslides
from various panchromatic remote sensing images: SPOT Pan., IRS 1-C and Korcan
Multipurpose Satellite (KOMPSAT-1 EQC) images. They compared the uscfulness of
these images for landslide detection. They first resamnpled these images, which had
spatial resolution of 10m, dm and 6.6m, respectively, to Sm. The result showed that
imagery from KOMSAT-1 EOC could be used to detect landslides which could not be
detected fromn SPOT and IRS 1-C imagery. In total 359 landslides, which had been
triggered by heavy rainfall, were used as input data in the Geographical Information

System! (GIS)-based landslide prediction and modelling.

The most commonly used image enhancement technique in landslide studies is to inte-
grate the spectral information stored in the separated bands by combining them into a
colour composite. Many band combinations are possible. The spectral information is
combined by displaying each individual band in one of the three primary colours: red,
green and blue. A specific band combination which is used to create a colour compos-
ite image is called False Colour Composite (FCC). In FCC, red is assigned to the near
Infrared (IR) band, green to the red visible band and blue colour to the green visible
band. The green vegetation will therefore appear reddish, water bluish and bare soil in
shades of brown and grey. This provides better discriminations of the laud cover areas.
Other band comnbinations are also possible. Bands of different images (from different
imaging systems or different dates) or layers created by band ratioing or PCA, can
also be combined using the colowr composite technique [14]. Whitworth et al. [109]
used this technique to produce a single image similar to a colour aerial photograpl
by assigning bands 4, 3 and 5 from the High Resolution Airbone Thematic Mapper
(ATM) to red, green and blue, respectively. Then, they combined this image with
Principal Component 1 (PC1) image to reveal detailed geomorphological information

about landslides, that could not have heen obtained using standard aerial photography.

Jin-King Lui et al. [63] used a combination that gave a colour output that resembled

YA geographic information system (GIS) is a powerful set of tools for collecting, storing. retrieving
at will, transforming and displaying spatial data from the real world for a particular set of purposes

22).
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natural colours on which forest was displayed as green and landslides or non-vegetated
areas as brownish or in earth colours. This combination is called a pseudo-natural colour
image. It really helped geologists to read or interpret landslides easily. This landslide-
enhanced SPOT image was exported to become GIS data layers in the Mapinfo GIS
system. It was concluded that pseudo-colour enhancement approaches, in conjunction
with additional information operated in a GIS environment can be used to identify

8000km? landslides effectively.

Another image enhancement technique that often is used in landslide studies is to merge
a sharpened image produced by the Intensity, Hue and Saturation (THS) transformation
with a higher spatial resolution image. This can enhance image features, improve spatial

resolution, and integrate disparate images at a low processing cost [25].

The IHS system is based on the colour sphere in which the vertical axis represents inten-
sity, the radius represents saturation, and the circunference represents hue. Intensity
(I) represents the total brightness of the colour, ranging from black (0) to white (255).
Hue (H) represents the dominant colour ranging from 0, at the midpoint of red tones,
through green, blue and back to red taking value 255, adjacent to value 0. Saturation
(S) represents the purity of colour relative to grey and ranges from 0 at the centre of

the colour sphere to 255 at the circumference [51].

The general procedure of this technique transforms three bands of a lower spatial reso-
lution dataset to the [HS space. First, each original low-resolution image is resampled
to match the high-resolution image. Then, these resampled images are transformed
mto their THS components. The Intensity component is then replaced by the high-
resolution image. The new set of IHS components is then transformed back to Red,
Green and Blue (RGB) components [114]. Estrada et al. [36] applied this technique
to merge an RGB composite colour image of Landsat 7 (ETM+) bands 3-2-1 with the
panchromatic band. As a result, an RGB image of 15m-pixel resolution was obtained.
The major landslides induced by an earthquake with 7.6 moment magnitude (M)
were successfully identified. It was also clearly shown that an RGB image of 6m resolu-
tion was useful to characterise 35 large landslides ranging in size from at least 1 million

to more than 500 million cubic meters [96]. This image also could be used to identify
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250 landslides in Ottawa and a huge landslide in Saskatchewan which were induced
by the same carthquake [97]. Ostir et al. [77] used this technigue to merge optical
and radar images. The merging of SPOT spectral and panchromatic images could de-
tect landslides with a total area of 20ka to 76ha and impact arca of 50ha. However,
the integration of European Remote Sensing (ERS) images with optical images, using
principal component and the Brovey transform? did not improve interpretation and
analysis of the land use and soil humidity at the time of landslides, due to high relief

variation.

Nichol and Wong [76] compared the usefulness of the merged hnages produced by dif-
ferent techniques of transformation. It was concluded that the visual (uality of images
obtained from Pan-sharpening (PCI Geomatica)? [114] of IKONOS images was com-
parable with that obtainable from 1:10,000 scale acrial photography, enabling detailed

interpretation of landslides and associated environmental features.

In suwmmary, image enhancement can be used to delineate landslides in Earth observa-
tion images. Neverthieless, this technique requires human expericnce and knowledge of

the study area for visual interpretation [64].

2.2 Image differencing

Image differencing is often carried out on a pair of co-registered images of the same
arca taken at different times. It is performed by subtracting two digital images from
one another based on a pixel-by-pixel basis, to generate a third iimage composed of the

numerical differences between the pairs of pixels [82].

Lee et al. [58] used this technique to detect landslides at Janghung, Korea, triggered
by heavy rain using two IRS images. They stated that images of 5.5m resolution can
be used to distinguish only large scale landslides. The detected landslide locations from

this difference image were verified by field survey. Thus, changes that were not related

2 S - . : Y Ty 1 .
The Brovey Transform normalises the multi-spectral bands used for RGB display and produces for every
pixel its (r, g,b) values. Then it multiplies them with the intensity value of another higher resolution image to

produce new RGB values for every pixel and thus incorporate the higher resolution information [90].

SPCI Geomatica is a software package that includes geospatial data manipulation algorithms [15].
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to landslides were excluded. The map of landslide locations was then produced and

used as the input data of a GIS-based landslide susceptibility map.

Cheng et al. [26] proposed a new method of image difference and thresholding to detect
the landslides in an area in Taiwan which covered a total area of 333km?, using SPOT
images. First, they performed an IR/R band ratioing® in both pre- and post-event
images to eliminate any atmospheric errors. The two peaks in both histograms of
band-ratio images represented major landuse/landcover types and they were assumed
to have stable grey levels. Thus, the histogram stretch technique was implemented to
match corresponding histogram peaks. However, the frequencies of specific grey levels
in the two himages were different. This was due to the landuse/landcover changes. The

total number of pixels associated with landuse/landcover changes, N, was calculated

as:

256

Ne=Y_1filg) = folg)] (2.1)

g=1
where f)(g) and fy(g) represent the frequency of grey level g in pre- and post-cvent

IR/R band-ratio images, respectively.

The percentage of change areas, p was estimated as:

Ne
p =100 x WP (2.2)

where N was the total nﬁmber of pixels in the image. This percentage of changes
was used as the threshold value of the difference IR/R images. They did a normalised
histogram of the values of the difference image, and used p on the vertical axis, to
define a threshold of difference along the horizontal axis. Any pixel with difference
higher thau the threshold was classified as landslide. Since not all change-detected

areas were landslide areas, Digital Terrain Model® (DTM) data were used to generate

Band ratioing is the process of dividing the pixels in one image by the corresponding pixels in a
second image [69).
“"Digital Terrain Model is a digital representation of a portion of the Earth's surface. It provides an

opportunity to model, analyse and display phenomena related to topography or other surfaces [89].
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a slope image of the study area and landslide identification was restricted to areas with

slopes steeper than 22°.

Hervds et al. [46] used the histogram of absolute difference images to define a threshold
value. To define this threshold, they drew a line joining the peak of the histogram with
its extreme point on the horizontal axis. The point of the histogram which was furthest
away from that line was defined as the “corner” of the histograin. The coordinate of this
point along the horizontal axis was used as the threshold (figure 2.1) . This threshold
was used to threshold the difference image. The resulting binary image could then be
classified into positive (increase in pixel brightness from the older image) and negative
(decrease in pixel brightuess from the older iimage) categories of change. Undesirable
noise was then filtered out. The method was argued to be particularly useful for

monitoring surface changes.
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Figure 2.1: Difference image histogram showing threshold value (7°) corresponding to the detected

corner [46].

It can be scen that the exact method of thresholding, which indicates change and no
change, plays an important role in this technique of change detection. The true changes
between different images are not satisfactorily identified using simple thresholding.
Rosin and Hervis [88] considered improving the raw thresholded output by filtering
out the noise using region properties: area, width, perimeter and shape. They found
that the application of large amounts of width and area filtering was the most effective
technique to climinate noise and thus the true regions of change within the landslide

regions were fairly well discriminated.
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In summary, image differencing has the advantage of being a simple, straightforward
method for which it is easy to interpret the results. Nevertheless, it cannot provide a

detailed change matrix and it requires the selection of thresholds [64].

2.3 Vegetation index differencing

Normalised Difference Vegetation Index (NDVI) is one of the most popular methods
for vegetation monitoring [99]. Wen-Tzu Len et al. [62] used multi-temporal NDVI
images derived from Advance Very High Resolution Radiometer (AVHRR) images to
detect landslides. First, they calculated the NDVI of all images. Then, in order to
eliminate some variations in the image, such as varying sun angles and atmospheric
conditions, they normalised the post-event NDVI image by using the pre-event NDVI
image. The difference image was then produced by subtracting the post-cvent NDVI
image from the pre-event NDVI image. In order to detect the landslide locations, the

difference image was thresholded using a percentage of change determined as:

NDVI,
O; = ¢ )OV) 23
T(/() NDV]('marz: - NDV](:mxi,n A0 /( ( )

where T is the suggested threshold, NDV I, is the NDVI difference between pre-event

and post-event image, NDV I e is the maximum difference and NDV1,,,;, is the

minimum difference. As a result, 8291a landslide arcas were successfully extracted.

In smmmary, the vegetation index differencing emphasises differences in spectral re-
sponse of different features and reduces impacts of topographic effects and illunination.

Nevertheless this technique also enhances random noise or coherent noise [64].

2.4 Image classification

Image classification is a technique that is designed to automatically separate all pixels
within an image scene into a series of user-defined classes [61]. The process of supervised
image classification starts by selecting the land cover types that will be defined as the

classes (e.g. water, soil, vegetation, etc.). Then, representative training areas for each
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defined class are identified and numnerical spectral attributes of each class are extracted.
Each pixel in the image data set is categorised into the class it most closely resembles.
After the entire data set has been categorised, the results which contain the user-defined

classes are preserited in the output stage [37].

Whitworth ct al. [109] used image supervised classification to split the ATM images
into three classes: landslides, woodland and stable slopes. A training region for cach
class was selected and used to train the iinage classifier. The inputs consisted of the
texture image and the first principal component (PC1) image. Texture allowed the
classifier to differentiate hetween landslides and stable slopes, while the PCIL image was
used to help the classifier to distinguish between landslides and woodland. Landslides

were identified with an accuracy of 83%.

Nichol and Wong [76] used as classes all significant land covers. Iimage classification was
performed for both pre- and post-event images. The results gave 85% accuracy in pre-
event and 87% accuracy in post-event images. These classified images were combined
to produce two change images, representing pixels that changed from grassland to
soil. Then, the Natural Terrain Landslides Inventory (NTLI) was used to identity the
positions of landslides which were overlaid onto cach change image. The results showed
that landslides which were crowns and/or trails (7m — 10m) could be detected. since
more than 60% change pixels were overlapping within their area. Sub-pixel accuracy
was achieved due to the capability of the SPOT image to give very high contrast

between landslides and their background [75].

In summary, image classification minimises the impact of atmospheric, sensor and cn-
vironmental differences between multi-temporal images. Nevertheless this method re-
quires the selection of sufficient training sample data for classification [64]. The quality
of the training process determines the success of the classification stage, and therefore

the value of the information generated from the entire classification effort [61].



2.5. Image Registration 19

2.5 Image Registration

In general, image registration, which is also known as image matching, is the process
of finding the position of the best match for two images which cover the same area.
First, two images are superimposed. Then, one of them is moved pixel-by-pixel and
the similarity between the original and the distorted image is calculated. Best match
is defined as the distortion of the second image which produced the highest value of

similarity [23).

Yamaguchi et al. [110] applied this techuique to detect landslide movement. They
assumed that the movement is due to geometric misregistration botweeu two images of
different acquisition dates. Two SPOT HRV panchromatic images with 6 years time
difference were used to detect Thm wide and 2km long landslides. They developed
two different algorithms to register landslide images with sub-pixel accuracy: the “im-
ageodetic” method and the parabolic function method. In the imageodetic method,
bilinear interpolation was used to generate a sub-pixel image by interpolating the val-
ues of the original pixels while maximising the correlation coefficient until the sub-pixel
accuracy became 1/128 of the image resolution. In the parabolic function method, they
used a parabolic function to model the correlation coefficient around its peak and from
it they located the position of the peak with sub-pixel accuracy. They found that the

parabolic function method could detect movement with 20m — 30 within the 6 years

span.

Ké&ab and Vollmer [53] and Kiiib [52] used this technique to detect horizontal surface
displacement. A reference block was first chosen from the pre-event ortl*xophoto“. Then,
its corresponding test block was chosen from the post-event orthophoto. The reference
block was searched for in the test block using cross-correlation. The peak value of the
cross-correlation indicated the relative shift of the two blocks. When this location was
successfully found, the differences in central pixel coordinates directly gave the horizon-
tal displacement between pre- and post-event. In order to obtain sub-pixel accuracy

the final level of the used image pyramid was computed from cubic interpolation of the

"An orthophoto is an aerial photograph that has been rectified so that it is equivalent to a map of

the same scale [61].
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original image into a higher resolution [52].

In summary, image registration can be used to detect landslide movements with sub-
pixel accuracy. The spatial resolution limits the detection. Nevertheless, since high
spatial resolution data have become available, this method can be used as a practical

approach to monitor landslide movement in various arcas [110].

2.6 DInSAR

The Differential Synthetic Aperture Radar Interferometry (DInSAR) techuique can be
used to map surface displacements. This is done by first, creating an interferograin
which repesent a topography before the event and then creating sccond interferogram
which represent a topography after tllc: event. By subtracting ouc interferogram from
the other, fringes that relate to common topography cancel cach other out, so that
remaining fringes should only represent a difference in topography, ie. displacement
[4]. Riedel and Lakakis [83] used this technique to detect landslides in Baota and
Prinotopa. As a result, the displacements of up to 14mm within 6 mmonths in Baota
were detected. Meanwhile, 2 up to 4em of the earth surface changes in Prinotopa were

indicated.

This technique is only successtul if the observed arca fulfils specific requirements, like

sufficient backscattering, flat slope gradients or very slow growth of vegetation [83].

2.7 Conclusions

Several methods have been proposed to detect and identify landslide areas. They
include manual detection, which requires an expert to identity the landslide arca, and
automatic detection. Studying the literature, it is clearly seen that the growth of remote
sensing technology really helped a lot this field of study. Nowadays, a lot of high spatial
and spectral resolution images are available and can be used to detect landslides. Most
of the research activity concentrates on making use of high resolution imagery. As a

result, these approaches cannot he used when there are no data with high spatial and



2.7. Conclusions 21

spectral resolution available. This is because many landslides occupy only a few pixels
n images that are routinely used. Only image registration techniques which allow sub-
pixel accuracy may be found useful to overcome this problem. Cwrrently, the use of
such techniques in landslide change detection and identification is still limited. Further

investigation is needed. The main thrust of this thesis will concentrate on such an

approach.
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Chapter 3

A local similarity measure and

the image thresholding method

In this chapter, we present a change detection and identification method using a local
similarity measure based on mutual information and image thresholding. This chapter
is divided into five sections. First, we present a brief overview on the study area in
section 3.1. Before performing a change detection and identification, we preprocess the
images as described in section 3.2. Then, we present our proposed change detection and
identification method in section 3.3. Section 3.4 presents the results and discussion.

Finally, we draw our conclusions in section 3.5.

3.1 Study area

3.1.1 Niigata, Japan

On 23/10/2004, a string of earthquakes with magnitude ranging from 5.9 to 6.8 struck
Niigata, located about 250km north of Tokyo [11]. The quakes killed 31 people, and in-
jured thousands more. Some of the most serious damage was caused by landslides when
rain-soaked hillsides slipped under the Earth’s tremors. The Typhoon Tokage which
had swept over the region the day before the earthquake might also have contributed to

the occwrrence of the landslides. The data used are IKONOS images taken before and

23
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after the earthquake. The image before the earthquake was taken on 13/8/2004 and
the image after the earthquake was taken on 24/10/2004, which is only one day after
the earthquake. These images are shown in figure 3.1. The image after the earthquake
shows one such landslide on the Enoki Tunnel with mud, rock and trees covering the
road along the river. Both, the earthquake-induced landslides and the run-off caused

by typhoon made the river to be tainted by sediment.

3.1.2 Caramanico, Italy

Caramanico is located in the south-central Apennine mountains, about 50km inland
from the Adriatic sea coast. The municipal territory of Caramanico Terme is situated
in the valley known in the geological literature as the Caramanico-Campo di Giove de-
pression. The Quaternary neotectonic activity has resulted in a significant uplift of the
region and on-going seismicity suggests that movements are still occurring. High local
relief and strong river down cutting are the main geomorphic factors responsible for the
recurrent landsliding. Caramanico is characterised by a long record of historical lands-
liding typical of a mountainous setting subject to relatively high average precipitation
and seismic activity. This historical landslide activity relies on previous and ongoing
investigations of the Caramanico area, and in particular on ground surface observa-
tions conducted during frequent walk-over surveys, interviews with local inhabitants,
examination of airphotos and review of technical/consultant reports available at local

administrative offices [40].

The data used are Landsat TM-5. Figure 3.2 shows the locations of the landslides which
occured from the year 1995 to 1998. The chronological list of the events with their
locations in the UTM WGS84° coordinate system are shown in table 3.1. Descriptions

of the landslide for each area is as follows [40]:

SUTM (Universal Transverse Mercator Projection) is the coordinate system that employs a series of
zones based on a specifically defined Transverse Mercator Projection. WGS84 (World Geodetic System

84) is a fixed global reference frame for the Earth [9].



o
o

3.1. Study area

Figure 3.1: Images of Niigata, Japan. (a) Image dated 13/8/2004. (b) Image dated 24/10/2004.
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The

The

The

1995 events

Case A: Caramanico (northern part). Shallow earthflow or shallow debris flow
mass movement activity along the right-lateral (northern) margin of the main
1989 slide. The movement was at least few tens of meters wide and extended for

over 200m upslope from the river.
1996 events

Case B: Case Mancini-Ischio. A major, approximately 80 wide rotational slope
failure in the first week of April 1996. The movements in the middle-lower part of
the landslide were mainly translational (earthflow /mudslide or slow debris flow).

The slide reached a few hundred meters in length.

Case C: Caramanico landslide (southern part). Local, shallow mudslide move-
ments in the middle-lower portion of the larger 1989 slide (superficial reactiva-

tion).

Case D: Case Mancini-Ischio. Resulted in an upslope enlargemnent of the slide
and about 25m downslope displacement of the building hosting the local aqueduct

pump station.
1997 events

Case E: Case Mancini-Ischio. Retrogressive mass movement activity on the
headscrap (shunping) and mainly mud-slide type displacements downslope. The
movenients resulted in a further upslope enlargement of the landslide and approx-
imately 30m additional downslope translation of the building hosting the local

aqueduct puinp station.

Case F and G: Gully north of Ischio. Shallow earthflow /slow debris flow along
the floor of the gully, involving mainly the superficial materials overlaying the
mudstones.

Case H: Caramanico. Local mudslide movements in the middle-lower portion of

the larger 1989 slide.
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The

e Case I and J: Case Mancini-Ischio.

1998 events

failures along the left-lateral margin.

Enlargement of the slide via rotational

e Case K: Caramanico. Mass movement activity (shallow earthflow or slow debris

flow) along the right-lateral northern margin of the main 1989 slide.

o Case L: Case delle Monache. An apparently gradual resumption of slope move-

nents was reported by the local inhabitants.

By July the slope movements re-

sulted locally in up to 1m subsidence, the damage of at least two houses and of

Route 487 pavement (formation of cracks and steps). The length and width of

the affected area reached at least few tens of meters.

Since there are no exact dates of the occurrence of the landslides

, and only the season of

their occurrence was reported, we used tables 3.2-3.5 to associate the landslide events

with pairs of images that we had. As a result, all the landslide events are sumnmnarised

in table 3.6.

on the locations shown in figure 3.2.

The labels used for the locations of the landslides in the table are based

Case

Nanme

I

Type:
First time (I7)
Reactivation (R)

Period of activity

Location

(UM WGS 84)

[_‘\* Caramanico {(northern part) R Autumn, 1995 (117531.93, 1666717.06)
B Case Mancini-Ischio F 1-2 April, 1996 (417598.90, 4666996.14)
C Caramanico (southern part) R Barly Spring, 1996 (N7777.51, 4()'()'6493.5())
[T; Case Mancini-Ischio R End of November, 1996 (417598.90. 4666996. 11)
15 Case Mancini-Ischio R Maxch, 1997 (417598.90. 4(5(3(59‘.)641»1)
Fand G Gully north of Ischio R Spring, 1997 (A17604.48, 4667068.71)
3! Caramanico (southern part) R Early Autumn, 1997 (417777.51, 4666493.80)
Fand J Case Mancini-Ischio R Spring, 1998 (417598.90, 4666996.14)
__L Caramanico {(northern part) R Late Spring-mid July, 1998 | (417531.93, -'1()'(i(57|7.()(ir
L Casa delle Monache R Late Spring-mid July, 1998 | (118369.17, ) |

4666052.85)

Table 3.1: Chronological list of landslide events (1995-1998).
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‘ Season ” Starting <lnt,eJ

‘ Season ” Starting date

Spring 21/3/1995
Summer 21/6/1995
Autumn 23/9/1995
Winter || 22/12/1995

Table 3.2: Season in year

1995. (Data taken from [8].)

' Season H Starting dal.(:’

Spring 20/3/1997

Sumimer 21/6/1997
Autumn 22/9/1997

Winter || 21/12/1997

Table 3.4:

Season in year

1997. (Data taken from [8].)

Spring 20/3/1996
Summer 21/6/1996
Autumn 22/9/1996
Winter 21/12/1996

Table 3.3:

1996. (Data taken from [8].)

’ Season “

Starting date

Spring
Summer
Autumn

Winter

20/3/1998
21/6/199%
23/9/1998
22/12/1998

Table 3.5:

Season in year

1998. (Data taken from (8].)

Season in year
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Figure 3.2: Landslide locations for 1995-1998 events. The labels are given in alphabetical order based

on their chronological order.
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k No ” [ovents J Clases

| 1995-1996 | A, B and C
2 1996-1997 | D, E and F
3 1997-1998 | G, H and 1
4 1998-1999 | J, K and L

[able 3.6: Summary of the landslide events from 1995 to 1998. The location for every case is shown

in figure 3.2.

3.2  Preprocessing

3.2.1 Images of Niigata, Japan

Before detecting any changes in the site, we performed global image registration, be-
cause the two images were slightly shifted with respect to each other. We selected the
image before the landslide (1037 x 1044 pixels) as the reference image and the image
after the landslide (1034 x 1067 pixels) as the sensed image. Then, the sensed image
was shifted by (x,y) where —10 < 2 < 10 and —10 < y < 10, with respect to the
reference image. For each relative shift, the mutual information of the two images over

their overlapping part was computed using:

Mg = Z Z Pip (/)'-A‘. [)B) log (ML[H)—> (3.1)
' e TSN Palp Y Relp” )

pA pB

where 4 (y)"l) is the normalised histogram of grey values of the reference image, Pp(p?)
is the normalised histogram of grey values of the sensed image and 1"_,11;([);-‘.1;{’) is the
normalised joint histogram of the grey values p' and [)f} which correspond to the
same pixel 7. Figure 3.3(a) shows the value of mutual information calculated for every
relative shift. The relative shift which gave the highest value of mutual information
was identified as the shift between the two images. The overlapping areas of the iimages
for this shift are shown in figure 3.3(b) and (c¢). These registered images with the size

of 1033 x 1044 pixels were used to test the change detection algorithm.
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Figure 3.3: (a) Value of mutual information calculated for every relative shift considered between

the two images. The peak was identified at cell (-1,-2). (b) Registered image dated 13/8/2004. (c)
Registered image dated 24/10/2004.

3.2.2 Images of Caramanico, Italy

The images of Caramanico were already registered. However, they contained clouds and
snowy mountain peaks. So, before proceeding to detect changes in them, we prepro-
cessed them to remove clouds and snowy mountain peaks. In addition, we performed
PCA to produce a grey band with maximum contrast. Cloud and snow regions are
masked out by using the cloud-snow detection algorithm proposed by Hou et al. [50].
It is an extension of the algorithm proposed by Hojjatoleslami and Kittler [47] for

identifying the outer fuzzy rims of microcalcifications in mammograms. It is based on
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a segmentation technique by using a region growing method. Like the other region
growing techniques, this cloud-snow detection method starts with a point that meets a
detection criterion and uses it as a seed to grow a region in all directions. T'wo criteria
are used to stop the growing process. There are referred to as average contrast bound-
ary (ACB) and peripheral contrast boundary (PCB). In order to define these stopping
criteria, the following terminology is introduced: the current boundary (CB) is the set
of pixels adjacent to the current region and the internal boundary (IB) is defined as
the boundary produced by the set of connected, outermost pixels of the current region.
The two concepts are illustrated in Figure 3.4. The current region and its two bound-
aries, CB and IB are changing during the growing process. Thus, the average contrast
boundary is defined as the difference between the average grey level of the region and
the average grey level of its CB pixels. The peripheral contrast boundary is defined
as the difference between the average grey level of its IB and CB. The sequence of
values of each measurement exhibits multiple peaks. When the value of PCB reaches
a local maximum before the maximum of its ACB value, the growing process stops

automatically.

- Current boundary, CB

. Internal boundary, I1B

E. Current region

Figure 3.4: Definition of IB and CB.

Cloud pixels of the image taken during the same time appear at the same location in
every band. Thus, for every set of images, only one band was used to perform cloud-

snow detection. This was the band with the highest number of the saturated pixels

with value 255.

All saturated pixels were used as seed points. Some of the saturated pixels were con-
nected to each other. Thus, we performed connected component analysis in order to
identify the number of distinct regions that had to be grown. For each identified seed

region we applied the cloud-snow detection algorithm. A seed pixel was chosen as the



3.2. Preprocessing 33

starting point. From all its neighbouring pixels, the one with the highest grey value
was selected to join the growing region. Thus, pixels with monotonically lower and
lower grey levels were sequentially joining the region. After each added pixel, the two
contrasts of the growing region were computed and used to test the stopping criterion.
After the region growing process had finished, mathematical morphology was used to
eliminate any holes in the grown regions. Finally, the identified regions were used to
mask out the parts of the images that were not going to take part in any subsequent
processing. The unmasked parts of the images were then used to produce the first prin-
cipal component of each image set that was to be used in the landslide detection and
identification process. Image of the band which contained cloud and snow pixels and
results of the cloud-snow region detection for the images dated 17/6/1995, 18/5/1996,
21/5/1997, 22/4/1998 and 27/5/1999 are shown in figures 3.5-3.9, respectively.
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Figure 3.5: Cloud-snow region detection of the image dated 17/6/1995. (a) Image of the band which
contained cloud and snow pixels (band 1). (b) Histogram of the grey level values of the image in (a).
Saturated pixels with value 255 created the peak on the right of the histogram. (c) Approximation of

cloud boundaries. (d) Image of the first Principal Component.
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Figure 3.6: Cloud-snow region detection of the image dated 18/5/1996. (a) Image of the band which
contained cloud and snow pixels (band 3). (b) Histogram of the grey level values of the image in (a).
Saturated pixels with value 255 created the peak on the right of the histogram. (c) Approximation of

cloud boundaries. (d) Image of the first Principal Component.
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Figure 3.7: Cloud-snow region detection of the image dated 21/5/1997. (a) Image of the band which
contained cloud and snow pixels (band 1). (b) Histogram of the grey level values of the image in (a).
Saturated pixels with value 255 created the peak on the right of the histogram. (¢) Approximation of

cloud boundaries. (d) Image of the first Principal Component.
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Figure 3.8: Cloud-snow region detection of the image dated 22/4/1998. (a) Image of the band which
contained cloud and snow pixels (band 1). (b) Histogram of the grey level values of the image in (a).
Saturated pixels with value 255 created the peak on the right of the histogram. (c) Approximation of

cloud boundaries. (d) Image of the first Principal Component.
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Figure 3.9: Cloud-snow region detection of the image dated 27/5/1999. (a) Image of the band which
contained cloud and snow pixels (band 1). (b) Histogram of the grey level values of the image in (a).
Saturated pixels with value 255 created the peak on the right of the histogram. (¢) Approximation of

cloud boundaries. (d) Image of the first Principal Component.
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3.3 Local mutual information

In this section, we describe a simple method of change detection. The method is based
on the use of the point similarity measure proposed by Rojelj and Kovaci¢ in [85]. Point
similarity is defined as a measure which is used to calculate the similarity of individual
pixels. The basic idea of the proposed method of change detection is that pixels affected
by landslides will be maximally dissimilar, i.e. the value of similarity of these pixels will
be low. We use mutual information as the measure of similarity. Point similarity based
on mutual information was used by Rojelj et al. [86] as a way of measuring similarity

when registering two medical images.

Local mutual information is derived from the global mutual information. Equation

(3.1) may be rewritten in the following way:

o = L2578 (miotenim) ~ v 2 (i) 02

where N; is the number of occurrences of intensity pair, (pf, piB) and N is the number
of pixels in the overlapping part of the two images. Furthermore, P4p(pZ,p?) is the
normalised joint histogram of grey values pf and pf which correspond to the same
coordinate ¢. Note that the final summation is taken over the spatial image coordinates
instead of the intensities. Therefore, the global similarity M4p can be treated as an

average of point similarities Spr, 5, defined for each pixel at coordinate c:

Mg = % Z SMap (3.3)
where
_ P4p(pd, p8)
Sus = log (PA(p AE (p3)> 34

We begin by calculating the point similarity of a pixel in every coordinate in the image.
Thus, every pixel ¢ is represented by its value of mutual information. We note that
Smup > 0 when Py B(02,p3) > Pa (p2)Pp(pP). This implies that the information of a

pixel at coordinate ¢ in image A can be predicted using the information of a pixel at
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coordinate ¢ in image B. Thus, since they are related to each other, point ¢ is defined
as a point with high value of similarity. Syr,, = 0 when Pag(p2,pZ) = Pa(p2)Ps(E).
It means that pixel at coordinate ¢ in image A does not give any information about
the pixel at the same coordinate in image B. They are totally independent. Either
pixel may take any value at all [80]. We note that Sps,, < 0 when Psp(pd,p?) <
P4(p2)Pg(p?). This means that values pf and p2 may have very high frequencies, but
they do not occur together. This is due to a high dissimilarity of the pixel at coordinate
¢ in images A and B. Thus, based on this definition, we threshold our local mutual

information image as follows:

255 if S >0
Gle) = Maz (3.5)
0 if Smup <0
where G(c) is the binary value of the pixel at coordinate ¢ in the thresholded image.

Therefore, the changed areas are represented by the black pixels in a binary image.

Simple thresholding is not sufficient to identify the true changes [88]. There will be
some undesirable change blobs detected. Therefore, in order to eliminate all undesirable
change blobs, we filtered out these pixels using an area-based filter. The filter assumed
the landslide to be the most significant changed region in the image. To apply it, we
first grouped the connected changed pixels into regions using connected component
analysis. The number of pixels that made up every region was then calculated. The

landslide area was identified as the largest area.

3.4 Results and Discussion

The registered images of Niigata, covering the period before and after the landslides
as shown in figure 3.3(b) and (c), respectively, were used to test our changed detection
algorithm. The results are shown in figure 3.10. The binary change image is shown
in figure 3.10(a). From this figure, we can see that the changed locations, which were
represented by black pixels, have very high concentration in the region of the landslide
and mudflow in the river. Figure 3.10(b) shows the area histogram of the connected

components identified using connected component analysis. In order to identify the
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landslide area, we chose a threshold value of 4000 pixels. Therefore, regions which
contained less than 4000 pixels were eliminated. As a result, only two regions were left.
These regions are shown in figure 3.10(c). From this figure, we can see that these pixels
coincide with the area affected by the landslide. In order to extract this region properly,
we dilate these pixels seven times with a 3 x 3 structuring element. The result is shown
in figure 3.10(d). The area threshold chosen and the number of dilations performed
may appear arbitrarily chosen here. However, one may be guided in their choice by the

resolution of the image, and the size of the changed regions one seeks to identify.

For the 1995-1996 landslides in Caramanico, we used the image dated 17/6/1995,
as shown in figure 3.5(d), as the image before the landslides, and the image dated
18/5/1996, as shown in figure 3.6(d), as the image after the landslides. In order to detect
the 1996-1997 landslide events in the same area, we used the image dated 18/5/1996,
as shown in figures 3.6(d), as the image before the landslides, and the image dated
21/5/1997, as shown in figure 3.7(d) as the image after the landslides. In order to
detect the 1997-1998 landslide events, we used the image dated 21/5/1997, as shown
in figures 3.7(d), as the image before the landslides, and the image dated 22/4/1998,
as shown in figure 3.8(d), as the image after the landslides. Finally, in order to detect
the 1998-1999 landslide events, we used the image dated 22/4/1998, as shown in figure
3.8(d), as the image before the landslides, and the image dated 27/5/1999, as shown
in figure 3.9(d) as the image after the landslides. The results are shown in figures
3.11-3.14. The binary change image is shown in panels (a). The area histogram of the
regions identified using connected component analysis is shown in panels (b). These
histograms are thresholded using a threshold value of 4000 pixels. Therefore, regions
which contained less than 4000 were eliminated. The regions left are shown in panels
(¢). The locations of the actual landslides are indicated by the boxes and labelled by
the letters. We can see that in all four cases, they are not included in the significantly

changed area.

These results show that this method cannot be used to detect the landslides in Cara-
manico. This is because these landslide areas are too small. Their zoomed-in binary
change images in the areas of these landslides are shown figure 3.15. From this figure,

we can see that although some landslides are identified with changed pixels, others are
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not. In addition, there are too many extra changed pixels to have any specificity. To
improve the effectiveness of our detection, we decided to crop the big images and keep
only subimages of size 50 x 50 which we know contain the landslides, and repeat the

process. The results are shown in figures 3.16-3.19.

10

Ill. | | |
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(b)

(c) (d)

Figure 3.10: Landslide in Niigata, Japan. (a) Binary change image produced by thresholding the
local mutual information of the image. The total number of changed regions is 35,408. (b) The area
histogram of the changed regions. (c) Regions which contain 4000 or more pixels. (d) The pixels in (c)

dilated seven times with a 3 x 3 structuring element.

3.5 Conclusions

In this chapter, we presented a simple method of change detection and identification
using a local similarity measure based on mutual information and image thresholding.

Since mutual information is used as a measure of similarity, this method can be used
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Figure 3.11: The 1995-1996 landslides in Caramanico. (a) Binary change image produced by thresh-
olding the local mutual information of the image. The total number of changed regions is 7064. (b)

The area histogram of the changed regions. (c) Regions which contain 4000 or more pixels.
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Figure 3.12: The 1996-1997 landslides in Caramanico. (a) Binary change image produced by thresh-
olding the local mutual information of the image. The total number of changed regions is 6758. (b)

The area histogram of the changed regions. (c) Regions which contain 4000 or more pixels.
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Figure 3.13: The 1997-1998 landslides in Caramanico. (a) Binary change image produced by thresh-
olding the local mutual information of the image. The total number of changed regions is 6227. (b)

The area histogram of the changed regions. (c) Regions which contain 4000 or more pixels.
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Figure 3.14: The 1998-1999 landslides in Caramanico. (a) Binary change image produced by thresh-
olding the local mutual information of the image. The total number of changed regions is 5131. (b)

The area histogram of the changed regions. (c) Regions which contain 4000 or more pixels.
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Figure 3.15: Zooming into the binary change images. (a) The 1995-1996 events. (b) The 1996-1997

landslide events. (¢) The 1997-1998 landslide events. (d) The 1998-1999 landslide events.
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Figure 3.16: Landslide sub-images in Caramanico, for the 1995-1996 events. (a) Image dated
17/6/1995. (b) Image dated 18/5/1996. (c) Binary change image produced by thresholding the local
mutual information. (b) Area histogram of the changed regions. The total number of region is 86. (c)

Regions which contain 3 or more pixels.
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Figure 3.17: Landslide sub-images in Caramanico, for the 1996-1997 events. (a) Image dated

18/5/1996. (b) Image dated 21/5/1997. (c) Binary change image produced by thresholding the local

mutual information. (d) Area histogram of the changed regions. The total number of region is 65. (e)

Regions which contain 3 or more pixels.
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Figure 3.18: Landslide sub-images in Caramanico, for the 1997-1998 events.
21/5/1997. (b) From image dated 22/4/1998. (c) Binary change image produced by thresholding

the local mutual information. (d) Area histogram of the changed regions. The total number of region
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is 52. (e) Regions which contain 3 or more pixels.
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Figure 3.19: Landslide sub-images in Caramanico, for the 1998-1999 events. (a) Image dated
22/4/1998. (b) Image dated 27/5/1999. (c) Binary change image produced by thresholding the local
mutual information. (d) Area histogram of the changed regions. The total number of region is 63. (e)

Regions which contain 3 or more pixels.
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to detect landslides even from different modality images. We demonstrated that this
method can be used to detect the changed areas. The area-based filter can be used
to identify the ﬁost significant changed areas. Therefore, this method is suitable for
detecting huge landslides, where the area covered by the landslide region is also iden-
tified as the largest area among the other regions. The use of dilation gave a good

approximation of the area where the landslide had occured.

We found that this change detection method cannot be used to detect and quantify
small landslides, even when small subimages were used. For this reason, a different
method for landslide detection has to be sought. We are going to use an elastic image
registration method for this purpose. The method will be described in Chapter 5, but

first a literature survey on image registration methods will be presented in Chapter 4.



Chapter 4

Literature survey on image

registration

This chapter presents a literature survey on image registration. An introduction to im-
age registration will be presented in section 4.1. The process of registering two images
consists of four important components: feature extraction, which will be described in
section 4.2, image transformation, which will be described in section 4.3, image resain-
pling, which will be described in section 4.4 and finally the definition of a similarity
measure, which will be described in section 4.5. Literature survey on the latest image
registration methods are presented in section 4.6. Finally, the conclusions can be found

in section 4.7.

4.1 Introduction

Image registration is the process of spatially matching two images taken at different
times or from different viewpoints or different sensors so that matched pixels in the two
images correspond to the same physical region of the scene being imaged {32, 56, 38, 21,
102, 16]. The application of image registration is widely used in the field of Remotely
Sensed Data Processing, Computer Vision and Pattern Recognition, and Medical Image

Analysis [103]. It is an essential requirement for several image analysis problems such

53
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as stereo matching, object recognition, feature tracking, temporal change detection,

motion analysis and many other sequence analyses.

Image registration consists of four basic components: feature extraction, image trans-
formation, image resampling and the use of a measure of similarity. In general, the

process of image registration counsists of the following steps:

o Establish a correspondence between the two images.

o This correspondence is used to establish the transformation from the sensed image
to the reference image. Then, this transformation is used to transform the sensed

image.

e Resampling process is performed to the transformed sensed image in order to

identify its grey level values at the new positions.

e The similarity between the transformed sensed image and the reference image is

calculated.

o If the value of the similarity measure is below an acceptable threshold, the process
of registration is stopped. If not, we go to the first step and the process is repeated,

with a new possible correspondence between the two images.

4.2 Feature extraction

Before performing image registration, the first thing that we have to decide is the type of
image features to be used for the correspondence. This depends on the type of images
that are to be matched [117]. Feature is a distinguishable point in the image, e.g.
point, curve, surface, ete. [42, 72]. Image registration which uses geometric features to
register the images is known as a feature-based image registration. In the extreme case,
when the images do not contain good geometric features or when we wish to establish
dense correspondence between them, the pixels themselves and their grey level values
will be used as features. This method of registration is known as pixel-based image

registration. A generalisation of the pixel-based image registration is the area-hased
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registration, where blocks of pixels of the same size are matched between the two images

on the basis of their grey level characteristics.

4.2.1 Area-based image registration

In the area-hased image registration, correspondence between image areas is detected
based on the similarity of their grey values [60, 103]. A window is selected both in
the refercnce and the sensed image. The similarity over their overlapping area is then
calculated. This calculation is repeated as the window in the sensed image is shifted
pixel by pixel through the search range. The window with the highest similarity defines

the position of the best match [32, 45, 74, 71, 49, 60].

Arca-based image registration has a high accuracy potential in a well-textured Iimage
region. In order to provide greater reliability, speed, versatility and accwracy in the
arca-based image registration, characteristics of grey level values, window size and

search range need to be considered [74, 71].

4.2.2 Feature-based image registration

Feature-based image registration relies on establishing feature correspondence between
two images [94]. The features ave used as the Ground Control Points (GCP) during the
registration process. The choice and accuracy of GCP determine how good the trans-
formation between the two images is [39]. Various features such as road intersections,
edges of water bodies [61], field boundaries [71], line intersections and corners [20] can
be used as control points. The selection is done if the features have sharp contrast
with relation to their surroundings [61]. They are extracted prior to matching them
[34, 72, 73, 16).

The number of GCPs should be more than the number of unknown parameters (1]. In
a region with a few GCPs, the transformation equations may produce unrealistic trans-
formations [39]. Bernstein et al. [18] present information that shows how registration
error decreases as the number of GCPs increased. Nevertheless, the gain in accuracy
may not be as high as expected when increasing the number of GCPs, because the an-

alyst usually picks the best points first [61]. In order to get the best result, the GCPs
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must be well distributed throughout the entire image [39, 1], with good coverage near

the edges [61].

Feature extraction reduces the amount of data to be matched and reduces the effect
of scenc and sensor noise. If the feature matching is reliable, the feature-based image
registration will give accurate results [20]. Nevertheless, significant numbers of miss-
ing or spurious features in the feature extraction process may cause difficulties in this
technique.  Feature-based image registration is also computationally expeunsive cspe-
clally when large point sets are involved and when the transformation space has many

degrees of freedom [20].

4.3 Transformation function

The most fundamental characteristic of any image registration technique is the type of
spatial transformation to properly overlay the two images [20]. Most of the researchers

use polynomial functions of different orders to transform the images.

A polynomial function in two variables ¢ and « can be written concisely as

mom—yj

i ok
§= Z Z atiu (4.1)
J=0 k=0
where mis the order of the polynomial function. If we assuie that a coordinate position

(x,y) in one image is transformed into a coordinate position (,9) in the other image

by equations

mom—j _
I = Z aj'k;szy"" (4.2)
§=0 k=0
m m-—j A
7= Z Z bjka;]yk (4.3)
3=0 k=0

then we can use GCPs for which we know the coordinate positions in both inmges, to
work out the values of parameters a;; and bj,. One of several order polynowmials may
be chosen based on the desired accuracy and the available number of GCPs [41]. Table
4.1 shows the relationship between the number of GCPs needed and the order of the

polynomial transformation that may be assumed, (taken from [41}).
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‘ Required GCPs ‘ Order l

B 5 Ind
7 2nd
11 3rd
16 4th
22 5th

Table 4.1: Relationship between number of GCPs needed and the order of the polynomial transfor-

mation that may be assumed. (Taken from {41].)

The first order polynomial transformation is also known as an affine transformation.
In general, it can model only rescaling, shear, translation and rotation to register
the images [104, 87, 31). If shear or rescaling is not modelled, the affine transform
reduces to rigid body transformation since there are no changes in shape [10, 20].
For example, straight lines in the sensed image will be mapped into straight lines, and
rectangles to rectangles, but if shear is present rectangles will be mapped to rthombuses.
Because of its simplicity, this transformation is computationally economical 139, 41},
Rigid body transformation is only sufficient for matching two images taken from the
same viewing angle with a different distance from the object [20], under very similar
imaging conditions [101]. Otherwise, a higher order polynomial which leads to non-
rigid transformation is necessary to model the transformation between the two images

[39].

Non-rigid or elastic transformations allow general changes of the image shapes and can
be used to register images which have local distortions [104]. Elastic image transforma-
tion considers the images as continuous bodies and models the distortion in the image
as the deformation of an elastic material. It is capable of registering images with some

of the most complex distortions (87, 20].

4.4 Resampling

Resampling is the process of determining a new pixel value for each of the pixels that

are being transformed to a new pixel location (23]. These new pixel values can be
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interpolated from the weighted values of the neighbouring pixels in the input (reference)
image [71, 23]. The most common resampling methods used are nearest neighbour

interpolation, bilinear interpolation and cubic convolution.

4.4.1 Nearest Neighbour Interpolation

Nearest neighbowr interpolation is the simplest and least expensive resampling method
[71, 23, 61]. It simply uses the value of the pixel closest to the transtoried coordinates
[71].  As a result, the original values are preserved (23, 61]. However, this method
tends to produce a rather blocky effect as some pixel values ave repeated [69]. This
method may be satisfactory if the scale and geometry change from the input image to

the output image is not too great [71].

4.4.2 Bilinear Interpolation

Bilincar interpolation calculates the value for cach output pixel based upon a weighted
average of the four nearest input pixels [23, 61]. Because each output value is based
upon several input values, the output image will not have the unnaturally blocky ap-
pearance of some nearest neighbour images [23] and a smoother resampled image is
generated [61]. Nevertheless, the brightuess values in the input himage are lost and the

spatial resolution is decreased [23].

4.4.3 Cubic Convolution

Cubic convolution uses the weighted average of values within a neighbourhood that
extends about two pixels in each direction, usually encompassing 16 adjacent pixels
[71, 61]. Typically, this method avoids the disjointed appearance observed in the results
of the nearest neighbour method and provides a slightly sharper image than the bilinear
interpolation method [61]. Nevertheless, compared with the nearest neighbour and
bilinear interpolation, this method requires more computation time and causes more

data to be altered [23].
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4.5 Similarity Measures

A similarity measure is used to determine the optimum match between two images. If
grey values are used, instead of features, a similarity measure might be selected to be
more noise tolerant since this was not done during feature detection. The choice of
a similarity metric is one of the most important elements on how the registration is
determined. For example, in the cross correlation, the peak value determines the best
control point matches which have to be used to find the appropriate transformation

[20]. Here, two popular similarity metrics are discussed.

4.5.1 The Correlation Coefficient

The correlation coefficient is the most commonly used similarity measure to match two
images [54, 66]. It is defined as follows:
A ANl =l
Siery (v = )Py — 1Y)
A _ 5A4)2 I
Zie’l“,\.,(l'f ) Z‘je’r,\,,(pj _[)1)2

R(A,B) =

(4.4)

where T4 ; represents the overlapping set of pixels of the two images, A is the first
image, B; is the sccond image, p;“ is the pixel value in the first image, pﬁ is the pixel
value in the second image, p* is the mean value of the first image and § is the mean
value of the second image. bovth computed over the overlapping part. This statistical
measure has the property that it measures correlation on an absolute scale, ranging from
(—1.1] [81]. The correlation coefficient is computed in each position. The maximum of
the correlation surface give the most likely shift between the images. The correlation
coefficient is one of the best similarity measures when registering two images from the

same modality [54].

4.5.2 Mutual information

Mutual information is a measure from the field of information theory of how much
information one random variable tells about another [59]. It has been used widely for
multimodality image registration (107, 65, 95]. For two images, mutual information is

computed from the joint probability density function of the images’ grey level values.
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When two hinages are aligned, the corresponding areas overlap, and the resulting joint
histogram or probability density function is peaked, resulting in a high mutual informa-
tion value. When the images are misregistered, non-corresponding areas also overlap,
resulting in additional grey level value combinations in the joint histogram, resulting
in a low mutual information value [59]. The value of mutual information between two

overlapping images is calculated by equation (3.1).

4.6 Latest research on image registration

This section presents some of the latest developments in the field of arca-based and
feature-hased image registration. Usually, feature-based approaches are supposed to be
more reliable than arca-based approaches when accurate feature points are available.
Therefore, a lot of effort has been spent on improving the reliability of the extracted

features.

Bentouton et al. [17] used local maxima of the grey level gradient magnitude to detect
features. The gradient magnitude was thresholded with its average value, resulting in
a binary image consisting of connected regions that were of interest. Then, interest
points were detected using a version of the Harris corner detector”. Chanwimaluang et
al. [24] used an efficient local entropy-based thresholding techuique to extract binary
vascular trees in medical images. Then a morphological thinni’ng operator was em-
ployed to obtain a centreline of the vascular trec. The method used a multiresolution
searching scheme to reduce the computational complexity. Therefore, the image grid
was resampled starting from the coarsest scale to the finest scale resolutions. Two types
of feature were used, i.e. control points and sampling poiuts. Potential control points
were identified with the locations where the 3 x 3 neighbourhood contained more than
three pixels helonging to the thinned vascular trec. Then, the finally accepted control
points were identified by considering an 11 x 11 window around all potential control
points. If there were more than two vascular tree points on the window boundary, the

control point was marked as a true control point. Alternatively, sampling points were

A Harris corner detector combined corner and edge detector based on the local auto-correlation

function in order to determine locations where the signal changes in two directions [44].
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introduced when control points did not meet the acceptance criteria. The sampling
points were identified as the intersections between the vessel branches of the thinned

vascular tree and the coarse grid lines.

An improvement in reliability was achieved when one moved from matching individual
points to matching contour lines. Bouchafa and Zavidovique [19] used the contrast
changes of the level lines of the image as features. The set of level-lines were extracted
by grouping pixels with grey values in the same narrow range, into the same level set.
Each level line was extracted as a connected line. The extracted lines were then sorted
by their reliability, which was defined according to their length and contrast. Lines
that did not meet certain criteria were rejected. Once line correspondence between
the two images was established, the centres of gravity of the corresponding lines were
used as control points. Another problem that was tackled was that of registering
images with different resolution. The difference in spatial resolution of images being
registered presents a problem in sclecting pixel landmarks since a pixel in the low
resolution image may correspond to more than one pixels in the high resolution image.
To solve this problem, Temkin et al. [100], at cach scaling step, reduced and equalised
the pixel resolution in both images being registered. The uniformity of pixel size in
both high resolution and low resolution images allowed high accuracy of control point
identification and in turn improved the accuracy of registration. Clatz et al. (28]
dealt with the problem of badly matched features. When matches were noisy or wildly
wrong, i.e. some of the measured displacements were outliers, an outlier rejection
step was introduced in the gradual registration process using a weighted least trimmed

squares® algorithm.

Moving away from the problem of accurate feature extraction, we come to improvements
in the problem of modelling the transformation between the two images. Bentoutou
et el. [17] used the thin-plate spline interpolation function on two scts of correspond-
ing points. Thin plate splines allow rotation, translation, scaling and skewing to be

modelled, while it allows lines to bend smoothly, preserving a smooth second order

®Least trimmed squares is a statistical technique for estimation of unknown parameters of linear
regression model and provides a “robust” alternative to the classical regression method based on min-

imising the sum of squared residuals [7].
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derivative. Therefore, a large number of deformations can be characterised. This inter-
polation model allowed the authors to achieve sub-pixel accuracy. On the other hand,
Chanwimaluang et al. [24] used a quadratic transformation model only when the affine
transformation produced significant errors. This was because in their case, the affine
model was usually sufficient and going to a quadratic model was more risky. The use
of a low order transformation function when possible, is preferred as, in general, it

increases the efficiency of the algorithm [100].

Mutual information was used as a measure of similarity when images were taken from
different modalities {33, 59, 116]. Lec et al. [59] concluded that a voxel intensity mea-
sure based on mutual information gave more reliable results compared with a surtace
fitting technique in registering magnetic resonance imaging (MRI) and computed to-
mography (CT) images of the liver. Instead of using grey scale images, Clhanwimaluang
et al. [24] used binarised images to determine their similarity. This was because the
contrast/intensity distributions within cach image field were not consistent, invalidating
the statistical dependency across images. As a result, they could handle retinal images
with small overlaps, and they used normalised mutual information over the overlapping
area making the performance less dependent on the size of overlaps. Usually arca-hased
methods use every pixel in both images to compute their correspondence. As a result,
they have high computational cost. Bentoutou et al. [17] reduced this computational
time by processing only some pixels belonging to regions that contain significant grey
level varjations (referred to as the control points). The local displacement of every
control point in the sensed image could be estimated over a circular neighbourhood of
each one of these points detected earlier. A set of combined-invariants (features that
are based on image monents and are invariant to symmetric blur, scaling, translation
and rotation) were used to measure the similarity between matched regions. The min-
imum distance rule with thresholding was applied to find the best matching features.
As a result, the problem of registering images which are sensitive to mean grey-level
offsets and local geometric distortion could be solved.

The process of registration is controlled by an energy function. In registering medical
images, Bios d’Aische et al. [33] tried to minimise a two term energy function. One term

was the matching energy which measured the similarity between the deformed image
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and the target image. The other was the regularisation term, the purpose of which was
to make the transformation as smooth as possible. An iterative gradient decent method
was used to optimise the cost function. The node displacements were updated at each
iteration, following the gradient of the cost function with respect to the transformation
parameters. The elastic energy regularisation term led to an adaptive regularisation,
giving more elasticity in specific regions than in others. This was because they used
prior information about the target deformation in the registration process. Gradient
descent optimisation energy was used and this enabled rapid convergence to the desired
estimate of the deformed field, but of cowrse it did not guarantee that this was the
global minimum of the energy. Instead of using only matching and regularisation
energy terms, Zhang et al. (116} added the consistency energy term to provide more
constraints on the forward and backward transform and thus make them smoother.
The consistency term was evaluated by using the forward and backward consistency
crror function which consisted of the forward, backward and inverse transformation
functions. The result gave smaller consistency error compared with the same method
without the consistency energy term. Periaswamy et al. [79] combined the steps of
geometric distortion and interpolation in a single step. The intensity values at the grid
positions and the parameters of the geometric distortion were simultancously estimated
for each pixel in the image, so that nonlinear distortions in both geometry and intensity

could be captured.

4.7 Conclusions

From the study of the various methods, it became clear that there is not a universally
accepted method appropriate for all problems and all application areas. For example,
none of the methods discussed above is appropriate for the detection of small landslides,
because in the case of landslides the deformation is highly non-lincar, highly inhomo-
geneous, and highly localised. That is why we shall develop our own methodology to

solve this problem.
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Chapter 5

Elastic image registration for
landslide movement detection

and quantification

In this chapter. we present a landslide movement detection and quantification method
which can be applied for landslide monitoring using elastic lmage registration. The
method is based on the invocation of deformation operators which imitate the defor-
mations expected to be observed when a landslide occurs. It is designed to detect
landslide movement with sub-pixel accuracy. We used a pair of sub-images taken from
the 1098-1999 landslide cvents in Caramanico as shown in figures 3.19(a)-(h) as the
training dataset. Three other pairs of sub-images of the landslide events in Caraman-
ico were used as the testing datascts. They were taken from the 1995-1996 landslide
events as shown in figures 3.16(a)-(b), from the 1996-1997 landslide events as shown
in figures 3.17(a)-(b), and from the 1997-1998 landslide events as shown in figures

3.18(a)-(b).

This chapter is divided into six sections. First, we present our proposed landslide nove-
ment detection and quantification method which is based on elastic image registration
in section 5.1. Techniques used to evaluate the quality of the results are described in

section 5.2. This method depends on a number of parameters. How to choose valueg
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for these parameters is presented in section 5.3. Ways of making the algorithim more
efficient arc described in section 5.4. The results are presented in section 5.5, Finally,

the discussion and conclusions are presented in section 5.6.

5.1 Methodology

In this section, we present an elastic image registration method which is inhomogencous
to account for the local deformations of the terrain, and allows us to register images with
sub-pixel accuracy. This method is based on a modification of the image registration
technique used to register 3D medical images by Kovalev and Petrou [55] in order to
monitor the growth of tumours. Instead of just using their three operators, one more

operator is added to register landslide images. We named it the exponential parabolic

flow front operator.

The purpose of elastic image registration is to detect small local changes, so owr method
is used to refine global registration alrcady performed. Two images, one before (B)
and one after (A) the landslides captured by the same sensor both geocoded and co-
registered are asswmed to be available. Starting from image B, a sequence of deformed
images denoted by By, Ba, By, ..., By is created. Each image in the sequence is more
similar to image A than the previous one. Each image is created from the previous
by applying to it one of the deformation operators chosen at random and applied at
a random position. As the image is deformed, the grey values at integer locations arc
calculated using the nearest neighbour interpolation rule. If the imposed deformation
improves the similarity with the second image, the change it creates is accepted. If it
does not, it is rejected and another operator is invoked. The process stops when the
deformed image is sufficiently similar with image A.

In order to distort image B, we adopt the following process: We define four deforma-
tion operators: exponential growth, exponential shrinkage, exponential translation and
exponential parabolic flow front. At each iteration step, we choose at random one of
the four operators to apply to the grid of the image in order to imitate the way land

deforms during landslides.
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If the exponential growth operator is chosen, one pixel 7 is randomly chosen as an
origin. All other pixels, k, will be moved directly away from that pixel by a distance
defined by:

dy = re 9% (5.1)
where 7 and ¢ are some parameters and dy, is the distance of pixels & from i. This
operator will deform the grid outwards form a central point as if material is pouring

out of a centre.

If the exponential shrinkage operator is chosen, one pixel ¢ is randomly chosen as
an origin. Instead of moving away from the pixel origin, now all other pixels, k, will
be moved directly towards that pixel by a distance defined by equation (56.1). This
operator will deform the grid inwards, towards a central point, as if material is lost into

a sink.

If the exponential translation operator is chosen, one pixel i is randowmly selected
as an origin. Then, we choose at random a distance d, an orientation 6 and parameter s
as the springiness parameter that controls the severity of this distortion. All remaining

pixels, &, move in the direction of the vector defined by 6 by a distance:
&y = des 652)

This model of deformation will always move a pixel by a fraction of d. The fraction
changes according to the distance dy; between the pixel of origin, i and the pixel in
question. If the value of dy increases, the value of e=%%+ decreages. Therefore, the
fraction reduces as & moves away from i. The value of dy;, reaches zero when § — L. At
this position we have the maximum movement. This operator is relevant for modelling
the movement of material during a landslide as chasms and gaps may be opened in the

surface of the earth.

We define the exponential parabolic flow front operator for a landslide front orig-
inating on an axis u moving the material along an orthogonal direction v. This way we
may define a (u, v) coordinate system (see figure 5.1). We describe the deformation by
choosing the following parameters: the origin of the deformation (x,, Yo), the extent of
the deformation, a, the severity of the deformation, b, the orientation of the deforma-

tion, #, the direction of the deformation, w, and the decaying parameter, t. We assune
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Figurc 5.1: Pixel origin with the shifting parameters o and b.

that material with coordinate position (t. ) for |i,| < a, moves along the v axis to

new coordinate positions (i, Uy -+ 0), where o is given by:

—(a% — @f)e Il (5.3)

This operator will shift all pixels with coordinate 1, —a < 4y < u,+ a along the v axis.
As the pixels along direction v move away from the origin of the landslide, the amount of
shifting decays. This is controlled by the value of . We have the maximum displacement
when the value of ¥, = 0. This operator is applied in a random orientation. When this
operator is chosen, one pixel, ¢, at location (i, y,) is selected randomly as the landslide
origin. The position of every pixel & in the image is then defined in terms of the new
origin (2, Yo):

(jkfgk) = (171\7 — Lo, Y — .7/0) (54)

We then define the position of pixel & in the rotated (u,v) coordinate system:

G, = Ty, cos @ + §p sin 8 (5.

i)
<
Nut

B, = i cos b — Fysin b (5.6)

A random number w either +1 or —1 is chosen to decide whether the material moves
in the anticlockwise or the clockwise direction, respectively. Then we check whethey

a pixel satisfies the conditions —a < i < +a and Uyw > 0. If both conditions are
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satisfied, the pixel is shifted in position (up,vy) = (dk, ¥ + wB) where 7 is given by
equation (5.3). Finally, the position of the pixel in the (x,y) coordinate system is

calculated as follows:

Lk = Uk COS O — vy sin O (5.7)

Yhpew = U SII 0 4 vy cosd (58)
Thus, this operator will deform the grid as if a slowly moving parabolically shaped Aow
front propagates along some direction.

The random combination of these four basic operators allows one to imitate much more
complex and inhomogeneous deformations. Note that as material is allowed to pour
outwards or disappear, the topology of the imaged surface changes, so these deforma.
tions arc not really elastic. Figure 5.2 demonstrates the effect of all four deformation
models on the pixel grid of the image.

The grey values at the integer positious of the image grid are calculated using the
necarest neighbour interpolation rule. These interpolated values are only used for the
comparison of the distorted image with the target image. Once this comparison is
made, these values are discarded, and the next image in the sequence is formed from
the non-integer positions of the pixels in grid B.

The deformed grid is accepted as the next grid B; in the sequence, provided that it
reduces the cost function of the quality of registration with image A. If it doeg not,
grid B, in the sequence is chosen to be the same as grid B;_,.

The cost function that expresses the quality of registration between images A and B,
is defined as follows:

In this expression, [ and vy are parameters controlling the relative importance of each

term. The three separate terms are the following:

U1 =1- S(A,BQ (5.10)
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Figure 5.2: Effects of the four deformation operators used in a regular 21 x 21 grid: (a) exponential

growth (b) exponential shrinkage (c¢) exponential translation (d) exponential parabolic flow front

where S(A. ;) is the measure of similarity between the two images either expressed
by the correlation coefficient or the mutual information between the two images. The

correlation coefficient is defined as in equation (4.4).

e : ; ;i k : o - My B,
For the case of mutual information, S(A, B;) is equal to T where M, g is the

ralue of the mutual information between images A and By, and M4 4 is the entropy of
the reference image. The mutual information is defined as in equation (3.1). In this
condition, the sensed image, B in equation (3.1) is replaced by the distorted image B,

5C, .

The entropy of the reference image, My 4 is defined as follows:

Maog=— Z Pa(p™) log Pa(p™) (5.11)
/I“

The second term in equation (5.9) expresses the desire for image B; to be distorted a8

little as possible to fit image A. It is a purely geometric term that does not involve any



5.1. Methodology 71

pixel values:

1
U = Na, (|eks1 — L — g |+ |Ye+1 _.’//\'_d:r!/’+"l’k+1\r’,,. _'I.A"d.l/‘l"+"Ul\-+/\'lr —'U"'*(l!/!/’)
Al e

T

m

(5.12)
Here N, is the size of the image along the  axis, N4, is the number of pixels in Ty,
and d,, 5 is the difference in the coordinate along the 3 axis in two neighbouring pixels
“aligned” along the o axis. In a regular grid, dy, = dy, = 1 and d,, = d,, = 0. Note
that A scans the image in a raster fashion, along the 2 axis on each successive line
corresponding to fixed y. More explicitly, the meaning of this term in this function
may be understood by the following example: x4 and x), are the coordinate positions
along the x axis of the two neighbouring pixels with indices & + 1 and % respectively.
At the beginning of the iterative process, the difference between these two coordinates
is d,., since these pixels are next to each other along the x axis. After an iteration takes
place, the two pixels may shift with respect to each other, so their distance along the
@ axis may have changed. The difference between this distance and the original value
dir expresses the distortion of the rigid grid. In a similar way, term [Than, — Tp — dye|
expresses the distortion of the grid away from the rigid one, due to the shifting in
relative position of two neighbouring pixels along the y axis (indices k + Ny and k

identify neighbouring pixels along the y axis in the raster indexing format).
Finally, the third term-of the cost function expresses the desire for maximum overlap

between images A and B:

Na, B,

U= 1= N

(5.13)

Here N is the maximum number of pixels in an image, and Na p, is the number of

pixels in the overlapping part of images B and A.

In summary, our image registration method works as follows:

Step 1: Image Bj_; is transformed by randomly selecting one of the four defor-
mation models.

Step 2: The cost function of the transformed image, By, is calculated.

Step 3: If the cost function value of the B; is equal or greater then the one
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alculated for By, discard By and use Bj_; in the next iteration, else replace

Bl—l l)y Bl-

e Step 4: If the cost function value has not changed in the last few loops, exit, else
xit, else

go to Step 1.

5.2 Evaluation of the results

There are three ways to evaluate the quality of our results. The first two ways to assess
the quality of the solution obtained is to use some objective measures of similarity
between two images: The similarity between the registered images should be higher
after registration than hefore registration. Therefore, first we used mutual information
defined in equation (3.1) as a measure of similarity. Mutual information is used because
it has the capability to measure the similarity between two images of different modal-
itics. A scene imaged by one sensor may contain different grey values when imaged
by another sensor. Nevertheless as long as the physical object which created a pair
of pixels in the two images remains the same, this pair of pixels should always have a
particular pair of grey values. Therefore, mutual information is looking for the number
of pairs of corresponding pixels that take the same pair of values. Although the mages
we register are of the same modality, they were captured about a year apart, so theiy
grey level content is very different, with or without any landslides. We first compute
the mutual information between the two images before the process of registration is
performed. We then compute it after the process of registration, and compare this new
value with the value before registration, to check whether the process of registration

increased the value of mutual information.

The second way to measure the similarity of two images is to subtract them point by
point and take the absolute difference of these images before and after registration ig
performed. We scale these difference images to have values in the range [0, 255] by using
the minimum and maximum value of the pixels in both of them, so the grey values we

use for display have the same meaning in both images:

Yold — Yra
Ynew = <_g~__7"il> X 255 (514>

Gmax — Gmin
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where ¢pin is the minimum difference in both images, gmaq is the maximum difference in
both images, gnew 18 the new value of a pixel and goq is its old value. How the similarity
between the two original images has improved can be judged by observing the increased
number of dark pixels in the difference image after registration, in comparison with the
difference image before registration. In addition, an objective measure of similarity
may be defined as the sum of the absolute differences over all pixels before and after

registration, without using any scaling, calculated as follows:
Dlpg, = Z 91, = 92,1 (5.15)

where gy, is the grey value of pixel (i,7) in image Iy and go,; is the grey value of the
same pixel in image Ip.

Our approach is stochastic. The solution we obtain, therefore, is also stochastic. If it is

the correct solution, it should persist even when the random algorithm is repeated with

different sceds of the random number generator. So, we run our algorithm several times

with different secds for the random number generator and combine the results using

some sort of consensus process. The stronger the consensus in the result obtained, the

more confident we are that the answer is correct.

There are various ways to do that. One way is to look at the histogram of total shift of

each pixel. The total shift a pixel underwent is computed by comparing its position in

the output image with its position in the input image. We threshold this histogram to

keep, say. the 2% most significant shifts. We then use some local window around each

pixel and count inside the window the number of such significant shifts. The number is

associated with the central pixel. To achieve a consensus between all runs performed
< b

we may sum up the values of the output shift maps, and look for peaks in the overall

output shift map.

To avoid the use of a threshold in the size of each shift, we may consider all shifts
inside a window around each pixel and simply sum up their magnitudes, ignoring their

direction. This way we shall have for each pixel an estimate of the total movement

around it. The size of the local window we have to use depends on the size of the

disturbances we hope to identify. In our experiments we use a window of size 15 x 15
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because we assume that the crowns of the landslides in the ground truth data to he
~ 7 x 7 pixels in size. (Crown is the region from which the movement of material has

started, and usually is much smaller than the total affected region.)

5.3 Choice of parameter values

5.3.1 Parameters of the operators

Our algorithm depends on a number of paramecters. This section describes the way thesc
parameters are selected. The satellite images we use for our experiments have alreacly
been globally registered and they only suffer from small deformations. Therefore, we
consider using parameter settings that produce small movements and thus can be used
to detect small local changes. In order to have only sub-pixel shifts, we shall allow
maximum movement of 1 pixel. Then, in order to avoid larger shifts, we fix the valye
of paramcter 1 for the growth and shrinkage operator to 2, and the values of parameters

d and b of the translation and the parabolic front flow operators to 1.

As the changes in the distorted image are small and decay quickly away from the loca)
arca to which cach operator is applied, it would be a waste of time to calculate the
new locations for every pixel in the image when an operator is applied. Therefore, we
introduce a local window for each operator. Only pixels inside the window have theip
positions updated according to the operator applied. To choose the size of the window,
we calculate the value of the shift for all operators by using various combinations of
permitted parameter ranges. In each case, we plot the amount of shifting as shown iy,
figure 5.3.

For the exponential growth and shrinkage operators, all pixels within a certain distance
from the seed point are shifted. However, the seed point stays at the same location.
Thus, we plot the shift these operators cause for the pixels from distance 1 to 25 pixels
from the seed point. These operators are very similar. The amount of shifting for the
exponential shrinkage is the same as for the exponential growth. For the exponential
translation operator, the maximum movement in the direction given by 6 is d, and it ig

located at the seed point. Therefore we plot the shifting starting from the seed point



5.3. Choice of parameter values s

to the 25" pixel along this direction. The exponential parabolic flow front operator is
localised along one direction (direction w of its definition) and exponentially decaying
along the orthogonal direction (direction v of its definition). We wish to know how
far along this direction the shifts it induces are non-negligible. So we plot the shift it
causes along the v direction for various combinations of values of its parameters. The

maxiimum shift is b which decays exponentially away from the base line of the operator

which has width 2a.

Different combinations of parameters will have different decaying rates of shifting. We
decide to neglect any shift smaller than 0.05 pixels. So, any parameter values that shift
the pixels by less than 0.05 pixels from the seed pixel are not used. We can see from
figure 5.3 that for the parameter values considered in these graphs, neglecting any shift
outside a 9 x 9 local window is consistent with keeping shifts of size greater or equal

to 0.05. In addition, we do not consider parameter values, which at distance 4 away
from the seed point, will create shifts greater than 0.05. Such parameter values would

obviously create shifts outside the 9 x 9 window we use which cannot be neglected.

5.3.2 Stopping criterion

The acceptance of a proposed deformation is controlled by the valuc of the cost function,

If it reduces the value of the cost function, the deformation is accepted. The algorithm

stops when the value of the cost function after each 100,000 tries changes by no more

than 1%. The relative change of the value of the cost function is calculated as follows:

Ca = Catl o 100% (5.16)

>
Q@

C

W

where ¢, and ¢, are the values of the cost function in two successive estimates one

hundred thousand tries apart.
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Figure 5.3: Shifting induced by the various operators. (a) Iixponential growth and shrinkage operator
with 7=2, g € [0.8, 2.0]. (b) Exponential translation operator with d=1, s € [0.6, 2.0]. The value of
parameter 0 is irrelevant here. (c¢) Exponential parabolic flow front operator with b=1 and ¢ ¢ 0.6

2.0] at ux = 0. The value of parameter a and ¢ are irrelevant here.
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5.4 Exploratory runs

The aims of the exploratory runs are:

e To find the best values for parameters [ and 7 in equation (5.9).

e To identify which deformation operators and parameter settings are most useful

so they are given preference by the random process that chooses the operator to

be used each time.

5.4.1 Methodology

(a) Parameters (3 and 7
The quality of registration between two images is controlled by the cost function, which

consists of three terms. Therefore, we have to identify the optimal values of the co-

officients with which we linearly combine them to form the cost function. In order to
find the values of 4 and -y, we perform a few exploratory runs for various parameter

settings. Mutual information is used to evaluate the quality of registration obtained

for each set of parameter values. The set of values of parameters 3 and ~ that gives
/ : Aat gives

the highest value of mutual information will be used in the full runs performed later
a bl .

The total number of tries used in these experiments was 50,000. Parameters 3 and ~

were allowed to take values from the set {0.001,0.005,0.010, 0.050. 0.100, 0.500, 1.000}

We used all possible combinations of these values. Then, we identified the parameters

that gave the maximum value of mutual information among them. In a second step

we refined the parameter values by exploring the parameter space around the identified

point using higher resolution.



78 Chapter 5. Elastic image registration

(b) Efficiency

During these experiments, all operators and all parameters were invoked equally fre-
quently. Nevertheless, when we plot the histogram of the accepted changes proposed
by the various operators, we find that not all operators and not all parameter valuoes
were equally likely to propose acceptable changes, i.e. changes that reduced the cost
function. To make our algorithm more efficient, we shall use the statistics of these
trial runs to work out the probability with which cach operator and cach parameter
value should be invoked, so that the fraction of successful suggested changes at the
successive iteration steps of the algorithm increases. For each operator we also plot the
normalised histograms of its parameter values which corresponded to successful trials

in the process of minimising the cost function.

In order to draw random numbers according to a probability density function, we
create the corresponding distribution function and draw random numbers uniformly
distributed in it. Thus, if the frequencies with which we wish to invoke operators (or
paramecter values) By, B, ..., By are Py, Ps, ..., Py respectively, we associate with each
By a corresponding interval of values | {;11 , Z{zl P and draw uniformly distrilyuted

numbers in the range [0,1]. When we draw a random number, we invoke that B js in
YAl

the interval of which the random number happens to fall.

For example, if we have three parameter values, a, b and ¢ with success frequencies
of 0.28, 0.22 and 0.5 respectively, we assign to parameter o the interval (0.0, 0.28), to
parameter b the interval [0.28, 0.28+0.22) or [0.28, 0.50) and to parameter ¢ the interya]
[0.2840.22, 0.504-0.50] or [0.50, 1.00]. When the random number generator generates

a value, say 0.51, since 0.51 is in the interval of ¢, parameter ¢ will be selected.

5.4.2 Exploratory runs for the cost function with the correlation co-

efficient as the similarity measure

In this section, we present the exploratory runs for the cost function with the correla-
tion coefficient as the similarity measure, using the method described in section 5.4 1
All tried combinations of the values of parameter 3 and v with their value of the mu-

tual information of the registration achieved each time are given in table 5.1. Fyopy
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this table, we can see that the maximum value of mutual information was achieved
when 3 = 0.005 and v = 0.100. Next, we refined the parameter values by exploring
the parameter space around this point. We run experiments allowing 3 to take val-
wes from the set {0.001,0.002, 0.003, 0.004,0.005, 0.006, 0.007,0.008, 0.009,0.010} and ~

from the set {0.050, 0.060, 0.070,0.080, 0.090, 0.100, 0.200,0.300,0.400,0.500}. All pos-

sible combinations of these values were used. The value of the mutual information of

the registration achieved each time is given in table 5.2. Based on this table, we can

see that 4 = 0.005 and v = 0.100 appear to be the optimal parameter values.

However, we can also see that for the full range of values of v we tried and for 3 values

in a range that spans at least one order of magnitude, we obtain comparable results.

This shows that the algorithm is not particularly sensitive to the values of these two
parameters.

Next, we want to find the frequency with which we should invoke each operator and

its parameters for maximum efficiency. Figure 5.4 shows the frequencies of acceptance

of the changes proposed by the various operators. The normalised histograms of the

y N M A 1 j * M . r & 1 - . .
parameters of cach operator are shown in figures 5.5-5.8. Based on these normalised

histograms, we fix our algorithm to invoke the deformation operators and their param-

eters using in the look up table the intervals listed in tables 5.3-5.11.

Jé]

" Toor | 0005 | 0010 | 0050 | 0.100 | 0.500 | L.ooo
oo [ o.8s17 | 08368 | 0.8341 | 08050 | 0.7759 | 0.7690 | 0.7650

0.005 || 0.8368 0.8372 | 0.8352 | 0.7992 | 0.7758 | 0.7690 | 0.7650
H_ 1

0.010 || 0.8281 0.8450 | 0.8250 | 0.8048 | 0.7756 | 0.7690 | 0.7650
| h ——
0.050 || 0.8458 0.8377 | 0.8323 | 0.8002 | 0.7785 | 0.7690 | 0.7650
0.100 || 0.8285 0.8573 | 0.8179 | 0.7925 | 0.7802 1 0.7695 | 0.7650
0.500 || 0.8464 0.8369 | 0.8369 | 0.7951 | 0.7790 | 0.7695 | 0.8347

S
L

1.000 || 0.8424 | 0.8485 0.8318 | 0.8008 | 0.7790 | 0.7695 | 0.7649

S

i
L

Table 5.1: Value of the mutual information after registration for various combinations of the values

of parameters {3 and ~ when the correlation coefficient was used as the similarity measure in the cost

function. The value of mutual information before registration was 0.7634.
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§ 0.001 l 0.002 l 0.003 T 0.004 l 0.005 | 0.006 l 0.007 r 0.008 I 0.00QT 0.010
0.050 || 0.8458 | 0.8299 | 0.8262 | 0.8293 | 0.8377 | 0.8328 | 0.8364 | 0.8361 | 0.8314 | 0.8323
0.060 || 0.8353 | 0.8447 | 0.8368 | 0.8341 | 0.8431 | 0.8371 | 0.8306 | 0.8433 | 0.8320 | 0.8258
0.070 || 0.8228 | 0.8316 | 0.8406 | 0.8322 | 0.8456 | 0.8322 | 0.8340 | 0.8286 | 0.8351 | 0.8317
0.080 || 0.8308 [ 0.8439 | 0.8372 | 0.8412 | 0.8362 | 0.8349 | 0.8259 | 0.8380 | 0.8398 | 0.8296
0.090 || 0.8256 | 0.8394 | 0.8362 | 0.8373 | 0.8410 | 0.8299 | 0.8239 | 0.8322 | 0.8323 | 0.8286
0.100 || 0.8286 | 0.8447 | 0.8389 | 0.8266 | 0.8573 | 0.8323 | 0.8182 | 0.8312 | 0.8265 | 0.8179
0.200 || 0.8336 | 0.8441 | 0.8341 | 0.8492 | 0.8414 | 0.8288 | 0.8368 | 0.8299 | 0.8319 | 0.8231
0.300 || 0.8325 | 0.8409 | 0.8425 | 0.8363 | 0.8370 | 0.8372 | 0.8228 | 0.8387 | 0.8380 | 0.8265
0.400 || 0.8337 | 0.8361 [ 0.8349 | 0.8419 | 0.8423 | 0.8361 | 0.8390 | 0.8393 | 0.8273 | 0.8299
0.500 || 0.8464 | 0.8396 | 0.8166 | 0.8321 | 0.8369 | 0.8445 | 0.8316 | 0.8317 | 0.8293 | 0.8369

08

‘¢ aoydery))

Table 5.2: Value of the mutual information after registration for various combinations of the values of parameters 3 and 4 when the correlation coefficient

was used as the similarity measure in the cost function. The value of mutual information before registration was 0.7634.
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Figure 5.4: Frequencies of acceptance of the changes proposed by the various operators when the

correlation coefficient was used as the similarity measure in the cost function.
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Figure 5.5: Frequencies of acceptance of the changes proposed by the exponential growth operator
for parameter g when the correlation coefficient was used as the similarity measure in the cost function.

The value of parameter r was fixed to 2.
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Figure 5.6: Frequencies of acceptance of the changes proposed by the exponential shrinkage operator
for parameter g when the correlation coefficient was used as the similarity measure in the cost function.

The value of parameter r was fixed to 2.
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(a) parameter s, and (b) parameter § when the correlation coefficient was used as the similarity measure
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Delormation operators H Frequencies of acceptance Tnterval

[xponential growth 0.12 0.00,0.12)
[ixponential shrinkage 0.14 [0.12,0.26)
[ixponential translation 0.26 0.26.0.52)
[oxponential polynomial 0.48 (0.52,1.00]

Table 5.3: Look up table of the interval for the probability density function of the deformation

operators when the correlation coefficient was used as the similarity measure in the cost function

Value of g | Frequencies of acceptance Interval

0.8 0.03 (0.00,0.03)
0.9 0.04 [0.03,0.07)
1.0 0.03 (0.07,0.10)
1.1 0.05 [0.10,0.15)
1.9 0.06 [0.15,0.21)

-
1.3 0.07 [0.21,0.28)
1.4 0.07 [0.28,0.35)
15 0.08 0.35,0.43)
1.6 0.09 [0.43,0.52)

—
1.7 0.10 [0.52,0.62)
1.8 0.10 [0.62,0.72)
1.9 0.14 [0.72,0.86)
2.0 0.14 [0.86,1.00]

Table 5.4: Look up table of the interval for the probability density function of parameter ¢ in the

exponential growth operator when the correlation coefficient was used as the similarity measure in the

cost function.
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Table 5.5: Look up table of the interval for the probability density function of parame

Value of ¢ ” Frequencies of acceptance Interval
0.8 0.02 [0.00,0.02)
0.9 0.02 [0.02,0.04)
1.0 0.02 [0.04,0,067
1.1 0.03 [0.06.0.09)
1.2 0.03 [0.09,0.12)
1.3 0.04 0.12,0.16)
1.4 0.08 [0.16,0.24)
1.5 0.07 [0.24,0.31)
1.6 0.11 (0.31,0.42)
1.7 0.09 [0.42,0.51)
1.8 0.14 [0.51,0.65)
1.9 0.18 [0.65,0.83)
2.0 0.17 [0.83,1.00]

ter g in the

exponential shrinkage operator when the correlation coefficient was used as the similarity measure in

the cost function.



5.4. Exploratory runs 85

E/a,]ue of s H Frequencies of acceptance Interval
0.6 0.01 ' [0,0(),().()F
0.7 0.02 [0.01,0.03)
0.8 0.02 [0.03,0.05)
0.9 0.02 [0.05,0.07)
1.0 0.03 [0.07,0.10)
1.1 0.04 [0.10,0.14)
1.2 0.04 [0.14,0.18)
1.3 0.06 [0.18,0.24)
1.4 0.07 10.24,0.31)
1.5 0.09 [0.31,0.40)
1.6 0.09 [0.40,0.49)

___£7___L7 0.11 [0.49,0.60)
1.8 0.13 [0.60,0.73)
1.9 0.13 [0.73,0.86)
2.0 0.14 [0.86,1.00)

Table 5.6: Look up table of the interval for the probability density function of parameter s in the

exponential translation operator when the correlation coefficient was used as the similarity measure in

the cost function.
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Value of ¢ in degree “ Frequencies of acceptance

[nterval

[0,18) 0.04 0.00,0.04)
[18,36) 0.04 0.04,0.08)
[36,54) 0.04 [0.08,0.12)
[54,72) 0.05 [0.12,0.17)
72,90) 0.06 0.17,0.23)
[90,108) 0.05 [0.23,0.28)

[108,126) 0.05 (0.28,0.33)
[126,144) 0.04 10.33,0.37)
[144,162) 0.04 0.37,0.41)
[162,180) 0.07 [041,0.48) |
[180,198) 0.05 [0.48,0.53)
[198,216) 0.05 0.53,0.58)
(216,234) 0.04 [0.58,0.62)
(2:34,252) 0.05 0.62,0.67)
252,270) 0.07 [0.67,0.74)
[270,288) 0.05 0.74,0.79)
[288,306) 0.05 (0.79,0.84)
(306,324) 0.05 [0.84,0.89)
[324,342) 0.05 0.89,0.94)
(342,360) 0.06 0.94,1.00]

Table 5.7: Look up table of the interval for the probability density function of parameter 0 in the

exponential translation operator when the correlation coeflicient was used as the similarity meagure in

the cost function.

L\/aluc of a “ Frequencies of acceptance I Inter valj
0.50 [0.00,0.50)

2 0.33 [0.50,0.83)
3 0.17 [0.83,1.00]

Table 5.8: Look up table of the interval for the probability density function of parameter o in the
exponential parabolic flow front operator when the correlation coefficient was used as t]e similarity

measure in the cost function.
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[7&1116 of w H Probability Interval
-1 0.59 [0.00,0.59)
+1 0.41 [0.59,1.00]

Table 5.9: Look up table of the interval for the probability density function of parameter w in the
exponential parabolic flow front operator when the corrclation coefficient was used as the similarity
) Drie 0 . Y <. Y

measure in the cost function.

Intervaﬂ

{f\/a‘lue of H Frequencies of acceptance

e
0.6 0.04 10.00,0.04) |
-
0.7 0.05 (0.04,0.00)
-
0.8 0.05 [0.09,0.14)
0.9 0.05 [014.0.19) |
1.0 0.05 0.19,0.24) |
1.1 0.06 [0.24,0.30)
1.2 0.06 [0.30.0.36)
1.3 0.06 [0.36,0.42)
1.4 0.06 (0.42.0.48)
15 0.08 0.48.0.56)
1.6 0.08 [0.56,0.64)
1.7 0.08 (0.64,0.72)
18| 0.08 (0.72,0.80)
1.9 0.10 0.80,0.90)
2.0 0.10 [0.90,1.00]

Table 5.10: Look up table of the interval for the probability density function of parameter ¢ in the

exponential parabolic flow front operator when the correlation coefficient was used as the similarit
1S Se St $ an ,y

measure in the cost function.
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Value of 0 in degree W[ﬁ'@([llﬂlciﬂh‘ of acceptance ! Interval

0,18) 0.05 (0.00,0.05) |
[18,36) 0.04 [0.05,0.09)
[36,54) 0.04 [0.09.0.13)
[54,72) 0.06 [0.13,0.19)
[72 90) 0.05 [0.19,0.2/1)
[90,108) 0.07 [0.24,0.31)

[108,126) | 0.04 [0.31,0.35)
(126,144) 0.05 [0.35,0.40)
144,162) 0.05 10.40,0.45)
162,180) 0.06 [0.45,0.51)
[180,198) 0.06 [0 51,0.57)
(198,216) 0.04 [0.57,0.61)
[216,234) 0.04 [0.61,0.65)
[234,252) 0.01 0.65,0.69) |
[252,270) 0.06 (0.69,0.75)
[270,288) 0.06 0.75,0.81)
[288,306) 0.04 [0.81,0.85)
[306,324) 0.05 [0.85,0.90)
[324,342) 0.05 [0.90,0.95)
1342, 360) 0.05 0.95,1.00] |

Table 5.11: Look up table of the interval for the probability density function of parameter g in the
exponential parabolic flow front operator when the correlation coefficient was used as the similarity

measure in the cost function.
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5.4.3 Exploratory runs for the cost function with the mutual infor-

mation as the similarity measure

In this section, we present the exploratory runs for the cost function with the mu-
tual information as the similarity measure, using the method described in section
5.4.1. First, we want to find the values of parameters 8 and v to be used in the
full runs. It turned out that the best match was obtained for values 8 = 0.001 and
4 = 1.000, both of which are extreme values in the list of values in section 5.4.1. So,
to ensure that the above pair of values indeed produced the best match, the range
of tried values was extended. We allowed parameter § to take values from the set
{0.0001, 0.0005,0.001, 0.005, 0.010, 0.050, 0.100, 0.500, 1.000} and parameter ~ to take
values from the set {0.001,0.005,0.010, 0.050,0.100, 0.500, 1.000, 1.500,2.000}. All pos-
sible combinations of the values for parameters 8 and v with the value of the mutual
information achieved each time for the registration are given in table 5.12. From this
table, we can see that the maximum value of the mutual information was again ob-
tained for 8 = 0.001 and y = 1.000. Next we refined the parameter values by exploring
the parameter space around this point. We run experiments allowing (3 to take values
from the set {0.0005, 0.0006, 0.0007,0.0008, 0.0009, 0.001, 0.002, 0.003, 0.004, 0.005} and
7 from the set {0.500, 0.600, 0.700, 0.800, 0.900, 1.000,1.100, 1.200, 1.300, 1.400, 1.500}.
All possible combinations of these values were used. The value of the mutual informa.
tion of the registration achieved each time is given in table 5.13. Based on this table, we
can see that 8 = 0.0007 and -y = 0.700 appear to be the optimal parameter values. As
in the case of correlation, the quality of registration does not seem to be too sensitive

to the values of these parameters, which produce comparable results for ranges of at

least one order of magnitude.

Next, we plot the distributions of the frequencies of acceptance of the changes proposed
by .the various operators as shown in figure 5.9. The normalised histograms of their
parameters are shown in figures 5.10-5.13. The look up table with the intervals assigned

to each operator and each parameter of it are listed in tables 5.14-5.22.
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B
0.0001 | 0.0005| 0.001 | 0005 | 0.010 | 0.050 | 0100 | 0.500 | 1.000

0.001 || 1.0458 | 1.0512 | 1.0473 | 1.0554 | 1.0453 | 1.0421 | 0.8907 | 0.7636 | 0.7635
0.005 || 1.0492 | 1.0528 | 1.0514 | 1.0444 | 1.0413 | 1.0370 | 0.8759 | 0.7636 | 0.7535
0.010 || 1.0561 | 1.0431 | 1.0446 | 1.0532 | 1.0439 | 1.0396 | 0.8700 | 0.7636 | 0.7635
0.050 || 1.0512 | 1.0548 | 1.0510 | 1.0596 | 1.0510 | 1.0373 | 0.8803 | 0.7635 | 0.7635
0.100 || 1.0516 | 1.0617 | 1.0456 | 1.0662 | 1.0518 | 1.0336 | 0.8718 | 0.7635 | 0.7635
0.500 || 1.0696 | 1.0652 | 1.0757 | 1.0727 | 1.0632 | 1.0443 | 0.8441 | 0.7634 | 0.7634
1.000 || 1.0767 | 1.0666 | 1.0776 | 1.0767 | 1.0660 | 1.0529 | 0.8728 | 0.7634 | 0.7634
1.500 || 1.0692 | 1.0703 | 1.0770 | 1.0767 | 1.0691 | 1.0529 | 0.8728 | 0.7634 | 0.7634
2.000 || 1.0692 | 1.0703 | 1.0773 | 1.0767 | 1.0691 | 1.0529 | 0.8728 | 0.7634 | 0.7634

Table 5.12: Value of the mutual information after registration for various combinations of the values
of parameters 3 and v when mutual information was used as the similarity measure in the cost function.

The value of mutual information before registration was 0.7634.
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Figure 5.9: Frequencies of acceptance of the changes proposed by the various operators when mutual

information was used as the similarity measure in the cost function.
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Figure 5.10: Frequencies of acceptance of the changes proposed by the exponential growth operator

for parameter g when mutual information was used as the similarity measure in the cost function. The

value of parameter r was fixed to 2.



B
" | 0.0005 | 0.0006 | 0.0007 | 0.0008 | 0.0009 | 0.001 | 0.002 | 0.003 | 0.004 | 0.005
0.500 || 1.0652 | 1.0686 | 1.0615 | 1.0729 | 1.0643 | 1.0757 | 1.0755 | 1.0647 | 1.0678 | 1.0727
0.600 || 1.0621 | 1.0645 | 1.0695 | 1.0732 | 1.0622 | 1.0633 | 1.0599 | 1.0658 | 1.0716 | 1.0705
0.700 || 1.0659 | 1.0771 | 1.0826 | 1.0706 | 1.0699 | 1.0678 | 1.0676 | 1.0684 | 1.0671 | 1.0706
0.800 || 1.0816 | 1.0682 | 1.0745 | 1.0713 | 1.0646 | 1.0661 | 1.0654 | 1.0658 | 1.0718 | 1.0778
0.900 || 1.0751 | 1.0686 | 1.0747 | 1.0722 | 1.0592 | 1.0695 | 1.0737 | 1.0612 | 1.0706 | 1.0776
1.000 || 1.0666 | 1.0763 | 1.0698 | 1.0691 | 1.0705 | 1.0776 | 1.0720 | 1.0684 | 1.0685 | 1.0767
1.100 || 1.0703 | 1.0696 | 1.0652 | 1.0691 | 1.0673 | 1.0766 | 1.0712 | 1.0733 | 1.0759 | 1.0767
1.200 || 1.0703 | 1.0696 | 1.0627 | 1.0691 | 1.0823 | 1.0783 | 1.0712 | 1.0664 | 1.0753 | 1.0767
1.300 || 1.0703 | 1.0708 | 1.0774 | 1.0668 | 1.0735 | 1.0773 | 1.0712 | 1.0664 | 1.0692 | 1.0767
1.400 || 1.0703 | 1.0708 | 1.0774 | 1.0668 | 1.0764 | 1.0745 | 1.0712 | 1.0664 | 1.0692 | 1.0767
1.500 || 1.0703 | 1.0708 | 1.0774 | 1.0668 | 1.0764 | 1.0770 | 1.0712 | 1.0664 | 1.0692 | 1.0767

Table 5.13: Value of the mutual information after registration for various combinations of the values of parameters 3 and v when mutual information was

used as the similarity measure in the cost function. The value of mutual information before registration was 0.7634.
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Figure 5.11: Frequencies of acceptance of the changes proposed by the exponential shrinkage operator

for parameter g when mutual information was used as the similarity measure in the cost function. The

value of parameter r was fixed to 2.
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Figure 5.12: Frequencies of acceptance of the changes proposed by the exponential translation opera-

tor: (a) parameter s, and (b) parameter § when mutual information was used as the similarity measure

in the cost function. The value of parameter d was fixed to 1.

Deformation operators

“ Frequencies of acceptance ’ Interval

Exponential growth 0.12 [0.00,0.12)
Exponential shrinkage 0.15 (0.12,0.27)
Exponential translation 0.23 [0.27,0.50)
Exponential polynomial 0.50 [0.50,1.00]

Table 5.14: Look up table of the interval for the probability density function of the deformation

operators when mutual information was used as the similarity measure in the cost function.
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information was used as the similarity measure in the cost function. The value of parameter b was fixed

to 1.
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LValue of g || Frequencies of acceptance Interval—l
0.8 0.02 [0.00,0.02)
0.9 0.02 [0.02,0.04)
1.0 0.02 [0.04,0.06)
1.1 0.02 (0.06,0.08)
1.2 0.07 [0.08,0.15)
1.3 0.05 [0.15,0.20)
1.4 0.07 [0.20,0.27)
1.5 0.07 (0.27,0.34)
1.6 0.10 [0.34,0.44)
1.7 0.12 [0.44,0.56)
1.8 0.12 [0.56,0.68)
1.9 0.15 [0.68,0.83)
2.0 : 0.17 [0.83,1.00]

Table 5.15: Look up table of the interval for the probability density function of parameter g in the

exponential growth operator when mutual information was used as the similarity measure in the cost

function.

Value of ¢ || Frequencies of acceptance Intervalj
0.8 0.02 [0.00,0.02)
0.9 0.01 [0.02,0.03)
1.0 0.02 [0.03,0.05)
1.1 0.04 (0.05,0.09)
1.2 0.03 [0.09,0.12)
1.3 0.06 [0.12,0.18)
14 0.05 [0.18,0.23)
1.5 0.09 [0.23,0.32)
1.6 0.11 [0.32,0.43)
1.7 0.09 [0.43,0.52)
1.8 0.10 [0.52,0.62)
1.9 0.13 [0.62,0.75)
2.0 0.25 [0.75,1.00]

Table 5.16: Look up table of the interval for the probability density function of parameter g in the

exponential shrinkage operator when mutual information was used as the similarity measure in the cost

function.
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‘ Frequencies of acceptance | Interval

lzalue of &

0.6 0.01 10.00,0.01) |
0.7 0.02 [0.01,0.03)
0.8 0.01 (0.03,0.04)
0.9 0.02 [0.04,0.06)
1.0 0.01 [0.06,0.07)
1.1 0.05 0.07,0.12) |
1.2 0.03 0.12,0.15)
13 0.07 (0.15,0.22)
14 0.05 [0.22,0.27)
15 0.11 (0.27,0.38)
1.6 0.10 [0.38.0.48)
1.7 0.10 [0.48,0.58)
1.8 0.12 [0.58,0.70)
1.9 0.15 [0.70,0.85)
9.0 0.15 [0.85,1.00)

Table 5.17: Look up table of the interval for the probability density function of parameter s in the

oxp(,)nenl,ial translation operator when mutual information was used as the similarity measure in the

cost function.
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1 Value of § in degree ” Frequencies of acceptance ’ ]ntmval]

[0,18) { 0.06 [0.00.0.06) |
[18,36) 0.04 [0.06.,0.10)
(36.,51) 0.05 [0.10,0.15)
[54,72) 0.05 0.15,0.20)
[72 90) 0.05 0.20,0.25)
[90,108) 0.07 10.25,0.32)
[108,126) 0.04 [0.32,0.36)
[126,144) 0.04 [0.36,0.40)
[114,162) 0.04 [0.40,0.14)
[162,180) 0.05 [0.44,0.49)
[180,198) 0.07 0.49,0.56)
[198,216) _ 0.05 [0.56,0.61)
(216,234) 0.03 [0.61,0.64)
[234,252) 0.04 [0.64,0.68)
252,270) 0.07 [0.68,0.75)
(270,288) 0.04 [0.75,0.79)
[288,306) 0.05 [0.79,0.84)
[306,324) 0.05 [0.84,0.89)
[324,342) 0.03 0.89,0.92)
342,360) 0.08 [0-92.1.00] |

Table 5.18: Look up table of the interval for the probability density function of parameter ¢ in (]

exponential translation operator when mutual information was used as the similarity measure in the

cost function.

Frequencies of acceptance ‘ Interval

[ Value of « ’

[ 0.48 [0.00,0.48)
2 0.32 10.48,0.80)
3 0.20 10.80,1.00]

Table 5.19: Look up table of the interval for the probability density function of parameter ¢ in the

exponential parabolic flow front operator when mutual information was used as the similarity measure

in the cost function.
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[Va‘lue of w H Probability Interval l

1 0.55 0.00,0.55)
+1 0.45 [0.55,1.00)

Table 5.20: Look up table of the interval for the probability density function of parameter w in the

exponential parabolic flow front operator when mutual information was used as the similarity measure

in the cost function.

Frequencies of acceptance ‘ Interval

F/alue of { |

0.6 0.03 (0.00,0.03)
07 0.05 [0.03,0.08)
08 0.06 [0.08,0.14)
0.0 0.05 [0.14.0.19)
1.0 0.05 [0.19,0.24)
11 0.05 [0.24,0.29)
1.2 0.07 [0.29,0.36)
1.3 0.07 [0.36,0.43)
o 0.08 [0.43,0.51)
1.5 0.09 [0.51,0.60)
1.6 0.07 [0.60,0.67)
1.7 0.07 [0.67,0.74)
1.8 0.09 [0.74,0.83)
L9 0.07 (0.83,0.90)
2.0 0.10 [0.90,1.00]

Table 5.21: Look up table of the interval for the probability density function of parameter ¢ in the

exponential parabolic flow front operator when mutual information was used as the similarity measure

in the cost function.



98 Chapter 5. Elastic image registration

LValno of # in degree “ Frequencies of acceptance , Interval

[0,18) 0.05 [0.00,0.05) |
(18,36) 0.05 [0.05,0.10)
[36,54) 0.04 [0.10,0.14)
54,72) 0.05 [0.14,0.19)
[72,90) 0.05 0.19,0.24)
90,108) 0.06 [0.24,0.30)

[108,126) : 0.05 [0.30,0.35)
[126,144) 0.04 [0.35,0.39)
[144,162) 0.05 [0.39,0.44)
(162,180) 0.06 [0.44,0.50)
[180,198) 0.06 0.50,0.56)
(198,216) 0.05 [0.56,0.61)
[216,234) 0.05 [0.61,0.66)
[234,252) 0.06 [0.66,0.72)
[252,270) 0.05 [0.72,0.77)
[270,288) 0.05 [0.77,0.82)
[288,306) 0.04 0.82,0.86)
(306,324) 0.04 (0.86,0.90)
[324,:342) 0.05 0.90,0.95)
[342,360] 0.05 0.95,1.00]

Table 5.22: Look up table of the interval for the probability density function of parameter 6 in the

exponential parabolic flow front operator when mutual information was used as the similarity measure

in the cost function.
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5.5 Results

5.5.1 Result of the registration with the correlation coefficient as the

similarity measure in the cost function

Here we use the parameter settings of section 5.4.2 to register the landslide images 25
times with a different seed each time for the random number generator. Figure 5.14
shows how the various components of the cost function change from one iteration step
to the next, for one of the runs (for seed number one) and figure 5.15 shows the same
graphs averaged over all 25 runs. On average, the value of the mutual information of
the two images after registration was increased by 20.79 £ 0.88% from its initial value.
Meanwhile, the value of the cost function at the end was reduced by about 84.0340.54%

from its original value.

An example result for seed number one of the registration process is shown in figure
5.16. In order to see how similar the registered image becomes with the reference
image, we take the absolute difference of these images before and after registration is
performed. We scale these difference images to have values in the range [0,255] by
using the minimum and maximum values of the pixels in both of them, so the grey
values we use for display have the same meaning in both images. How the similarity
hetween the two original images has improved can be judged by observing the increased
number of dark pixels in the difference image after registration, shown in figure 5.16(c)
in comparison with the difference image before registration shown in figure 5.16(b).
Distributions of the pixels of the difference image before and after registration, without
any scaling are shown in figure 5.17. From these histograms, we can see that after the
process of registration, most of the pixels have difference values less than 20. The value
of the sum of the absolute differences over all pixels before and after registration was

reduced by 53.60% in this example.

The amount of the terrain displacement may be assessed by looking at the histogram of
the values of the size of the total shift of each pixel as shown in figure 5.18(a), for seed
number one. From this histogram, we can see that most of the pixels did not have high

values of movement. In order to identify the locations in the image which underwent
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Figure 5.14: Cost function and its components based on the correlation function. (a) Cost function.
U. (b) Dissimilarity measure, U;. (¢) Pixel grid distortions, Uy, (d) Non-overlapping area, U, (Sced

number one. )

the most significant shifts, we threshold this histogram to keep the 2% most significant
shifts and plot the displacement vectors with their directions as shown in figure 5.18(D).
The corresponding figures for the remaining 24 runs are shown in Appendix A.1. We
also plot the histogram of the average displacement vectors, computed over all 25 runs,
in figure 5.19. For each pixel, we take 25 shift vectors and their components along the
two axes: (s, (4, J), sya (6, 7)), where s (4, 7) and sy,(é,j) ave the shifts along » and Yy
axis of pixel (4, ) in the k* h yun, respectively. Therefore, the average of the shift vector

in the 2 and y direction for each pixel is calculated as follows:

25

o 1
5.(i,7) = 21 Z Sek (4, J) (5.17)

25

. 1 o
Sy(i.7) = 57 > syk(i ) (5.18)

k=1

We plot these vectors, for the 2% most significant shifts as shown in figure 5.20 in
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random number generator based on the correlation function. (a) Cost function, U. (b) Dissimilarity
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blue colour. In order to see the dispersion of the shift vectors from their average

values, we calculate the standard deviation of the average shifts for each pixel over
) 07 vvmat clom s s . .

all 25 runs. We plot the 2% most significant vectors, identified from the value of

i, )2 + 3,(4,j)?, minus their corresponding standard deviation and plus their cor-

responding standard deviation. The standard deviations are computed using o, (4,j) =

\/ % Zfll(ﬂl\(”/) - g[l,'(li’ﬁj)){z and (T,U(/i’vj) = \/’2171 Ziil(‘sf/k(l.]) - gl/(la./))z So the

red colour in figure 5.20 shows vectors (3, (4, ) — 02 (4, 4), 3, (i, j) — 0,(i, j)) and the ma-

genga colour in figure 5.20 shows vectors (8, (i, J) +0.(i, 7). 8, (i. j)+0,(i,j)). How little
the arrows change is an indication of the consensus between the different runs. Figure
5.91 shows the 2% most significant shifts of the histograms of o, (i. j), 0, (i, j) and of the
angles formed by vectors (54(,7), 8y(4. 7)) and (8.(1, j) — 02 (i, j), §1/(i;‘j) —o0,(i,7)). as
well as (3.(i.7). 5,(i. 7)) and (52(1,7) +0.(2. ), 5y(1, 7) + 0y (3, 7)), in degrees, computed

using the formula:
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Figur(' 5.16: Results based on the correlation function. (a) Image dated 22/4/1998. (1) Image dated
27/5/1999. (c) Registered image. (d) Difference image before registration. (e) Difference image after

registration. (Seed number one.)

ool pini
COS = AHB‘ ()J))

where @ is the angle between vectors A and B and it is defined in the range [0°, 1807].
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Figure 5.17: Results based on the correlation function. (a) Histogram of the absolute difference of

the image before registration. (b) Histogram of the absolute difference of the image after registration.

(Seed number one.)

Figure 5.21 also shows the magnitude difference between vectors (5,(4, j), 5, (7, 7)) and
(526, )= (i ), 8y (i )~ 0y iy ), and vectors (55(i,5), 5, (i, 1)) and (56, §) +04(i, ),
5,(1,5) + oy (i,7)). The peaks of these histograms towards low values give an indication

of the consistency of the results between the different runs.

Another way to look for consensus between the different runs is to assign to each pixel
a number indicating the total number of significant shifts in its 15 x 15 neighbourhood.
To avoid the border effects, we normalise this number by the total number of pixels
inside the local window considered around it. For example, the pixel at the top left
corner of the image, which can only have a local window consisting of 8 x 8 pixels, is
given a value equal to the number of significant shifts found inside this window divided
by 64. Pixels away from the borders get values equal to the number of shifts inside
their local windows divided by 225. To create the consensus shift map we sum up all
such values produced for a pixel from all 25 runs. The values of the consensus shift
map are scaled in the range [0, 255] for visualisation purposes. This map is shown in
figure 5.22 as a grey image and as a landscape. The location where landslides have

been recorded are shown in the same figure as rectangles.

The above method may be modified as follows: to avoid the use of a threshold in the
size of each shift, we sum up all shifts inside the local window around each pixel, instead
of counting significant shift only. Then we sum up all total shift maps from the 25 runs

and scale the result to the range [0, 255]. This consensus total shift map is shown in
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figure 5.23.

In order to see whether the stopping criterion we used affected the result produced, we
repeated all 25 runs with the same seeds but now stopping them only when the cost
function changed by no more than 0.5% in the last 100,000 attempted updates, (instead
of 1%). The average change in mutual information now was 21.38 + 1.01% (instead of
20.7940.88%) and the average decrease in the cost function was 84.65+£0.52% (instead
of 84.03 4 0.54%). Figure 5.24 shows the histogram of the average shift vectors in this
case. Figure 5.25 shows the 2% most significant average vectors. From these results,
we can see that the reduction of the stopping criterion to 0.5% does not give a lot
of difference in the location of the most significant shifts. Figure 5.26(a) shows the
histogram of the relative angle formed by the average shift vector of each pixel in the
experiment with cost function threshold 1% with the average shift vector of the same
pixel obtained in the experiment with cost function threshold 0.5%. These angles are
measured in degrees in the range [0°,180°] and computed using formula (5.19). We
can see that these angles have insignificant values. The amount of difference of the
shift size for these two different stopping criteria is shown in figure 5.26(b). Figure 5.27
plots in two colours the two sets of significant shifts identified so their similarity may

be appreciated. Table 5.23 gives the statistics of both experiments.

@
o
=

4667295 -—

450 ol P> -
ge 1 4l

=% = -

» 350 - T s
300 > OK '
s
| 4666545-

e P
the 2% most

significant shift, e
i.e. at shift >= 2.26 1 3‘

a
=

number of pixel
—_ n n

o

o

t

- = (=151

IS
o
N

o
=

2

0.5

45 . 2. 2h
size of shift

(a)

3

35

1 4665795

A N

417133

417883
X

(b)

418633

Figure 5.18: Results based on the correlation function. (a) Histogram of the size of total shift of

each pixel during the registration process. (b) Vectors of the 2% most significant shifts. (Seed number

one.)
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Figure 5.19: Histogram of the size of total average shift of each pixel in all 25 runs during the

registration process based on the correlation function.
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Figure 5.20: Results based on the correlation function. The 2% most significant shifts,
(32(4, 5), 3y (4, 4)) (in blue colour); the 2% most significant shifts minus their standard deviations,
or ) b ’

(32(i, §)—0=(i,3), 5,(i,§)—0oy(i,5)) (in red colour) and the 2% most significant shifts plus their standard

deviations, (32 (i, ) + 0 (i,5),5y(i,J) + oy (i, j)) (in magenta colour).

Stopping | Number Successful Percentage Final Duration,

threshold of tries tries of success, (%) | mutual information (s)
1.0% 948,000 17,025 1.7657 0.9221 728
0.5% 1,408,000 19,515 1.3724 0.9267 835

Table 5.23: Results of the registration with the correlation coefficient as the similarity measure with

two different threshold values of the stopping criterion. (Values are averages over 25 runs.)
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Figure 5.21: Consistency of results for the 2% most significant shifts over the 25 runs when the simi-
larity measure in the cost function is based on the correlation function. (a) Histogram of the standard
deviation in z. (b) Histogram of the standard deviation in y. (c) Histogram of the angle between
vectors (3z(i,7), 5y (i, §)) and (32 (i, §) — 02(i, ), 5y(i, §) — 0y(4,5)). (d) Histogram of the angle between
vectors (34 (i,5), 5y(4,7)) and (32(4,4) + 02(4, ), 5y(i,5) + oy(i,5)). (e) Histogram of the magnitude
difference between vectors (54 (i, ), 5y (4, j)) and (5z(i,j) — 0=(4, 1), 8y(i,4) — 0y (4, 7)). (f) Histogram of

the magnitude difference between vectors (3z(i,7), 5y (4, 7)) and (3z(3,7) + 02(3,7), 5, (4, 5) + ay (i, 7).
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Figure 5.22: Results from 25 runs based on the correlation function. Average number of significant
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landslides. The map is displayed as a grey image in (a) and as a landscape in (b).
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Figure 5.23: Results from 25 runs based on the correlation function. The average total shift in
the vicinity of each pixel scaled in the range [0,255]. The boxes indicate the locations of recorded

landslides. The map is displayed as a grey image in (a) and as a landscape in (b).
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Figure 5.24: Histogram of the size of total average shift of each pixel in all 25 runs when the similarity
measure in the cost function is based on the correlation function and when the threshold of the cost

function used in the stopping criterion was reduced to 0.5%.
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Figure 5.25: Results based on the correlation function. The 2% most significant shifts,

(32(i, ), 5y(i,7)) (in blue colour); the 2% most significant shifts minus their standard deviations
(32(3,7) — 02 (4,5), 8y (i, ) — oy (4, 5)) (in red colour) and the 2% most significant shifts plus their stan-
dard deviations, (3z(4,7) + 0 (i,J), 8y (5, 5) + oy (4,5)) (in magenta colour), when the threshold of the

cost function used in the stopping criterion was reduced to 0.5%.
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Figure 5.26: Results based on the correlation function. (a) Histogram of the angle between vectors
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vectors (5z(i,4), 3y(i,7)) when the threshold of the cost function used in the stopping criterion was
reduced to 0.5%. (b) Histogram of the magnitude difference between vectors (5:(i, j), 5y(4,5)) when
the threshold of the cost function used in the stopping criterion was 1% and vectors (3z(1, ), 5y(i, 5))

when the threshold of the cost function used in the stopping criterion was reduced to 0.5%.

4667295  ~ Bidy 51 ]
- >
Fawt | =
g OK
46665451 | — 0.5 % stopping criterion |
— 1.0 % stopping criterion
-
~
‘.\ -~
P El &
4665795/ no ot W
417133 417883 418633
X
Figure 5.27: Results based on the correlation function. The 2% most significant shifts:

(52(4,7), 5y (4, j)) when the threshold of the cost function used in the stopping criterion was 1% and
(5(1, ), 5y (4 4)) when the threshold of the cost function used in the stopping criterion was reduced
to 0.5%. Although different colours are used for the two sets of results, it is not possible to see them,

because at the level of resolution of the plotter, the two sets of arrows coincide.
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5.5.2 Result of the registration with mutual information as the simi-

larity measure in the cost function

In this section, we use the parameter settings of section 5.4.3 to register the landslide
images as we did in section 5.5.1, but now our cost function is based on the mutual
information instead of the correlation function. Figure 5.28 shows how the various
components of the cost function change from one iteration step to the next, for one
of the runs (for seed number one) and figure 5.29 shows the same graphs averaged
over all 25 runs. On average, the value of the mutual information of the two images
after registration was increased by 58.86 + 0.86% from its initial value. Meanwhile,
the value of the cost function at the end was reduced by about 38.09 + 0.55% from
its original value. An example result for seed number one of the registration process
is shown in figure 5.30. The figure also shows the difference image before registration
and the difference image after registration. Distribution of the pixels of the difference
image before and after the process of registration is shown in figure 5.31. For this
example, the value of the sum of the absolute differences over all pixels before and
after registration was increased by 23.22%. This should not be surprising. Maximising
the mutual information between two grey images does not mean that we try to match
pixels with the same grey value as we do when we maximise the correlation between the
same images. So, in this case taking the absolute difference between the images before

and after registration is not even a relevant way to assess the quality of registration.

Figure 5.32(a) shows the histogram of the values of the size of the total shift of each
pixel, for seed number one. From this histogram, we can see that most of the pix-
els did not have high values of movement. In order to identify the locations in the
image which underwent the most significant shifts, we threshold this histogram to
keep the 2% most significant shifts and plot the displacement vectors with their di-
rections as shown in figure 5.32(b). The corresponding figures for the remaining’24
runs are shown in Appendix A.2. Figure 5.33 shows the histogram of the average
shift vectors. We plot the average of shift vectors, (5:(%,7),3,(i,7)) with the 2%
most significant shifts, over all 25 runs as shown in figure 5.34 in blue colour. Mean-

while, the 2% most significant vectors minus their corresponding standard deviation,
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Figure 5.28: Cost function and its components based on mutual information. (a) Cost function,
U. (b) Dissimilarity measure, Us. (¢) Pixel grid distortions, Ua. (d) Non-overlapping area, Us. (Sced

number one.)

(54 (1,§) — 00 (i, §). 5y (4,5) — oy (i, 7)) and the 2% most significant vectors plus their cor-
responding standard deviation, (3,(i,7) +04(4,7), 8y (i, j) + o, (i, j)) are shown in figure
5.34 in red and magenta colour, respectively. Figure 5.35 shows the 2% most signif-
icant shifts of the histograms of 0.(1.7), 0y(4,7) and of the angles formed by vectors
(3a(i.5). 5, (0.5)) and (32(8,5) = 02(6:7): 5y(0,9) — 0y, 5)), as well as (5.(4. ), 5,(i, )
and (5, (4, 5) + oo (iyJ)s 8y (4, 7) + oy (i, J)), in degrees. Figure 5.35 also shows the mag-
nitude difference between vectors (8(4,7),8y(i, 7)) and (8,(i,j) — o.(1,7),8,(i,7) —
gy(z',j)), and vectors (53;(’1'/,.]')»%(7:7.7‘)) and (8,(4,7) + U;l,(i,j),§y(i.j) + ay(’i,.j)). As
in the case of correlation, the peaks of these histograms towards low values give an

indication of the consistency of the results between the different runs.

Figure 5.36 shows the consensus shift map between 25 runs indicating the total number
of significant shifts in its 15 x 15 neighbourhood scaled in the range 10, 255] as a grey
image and as a landscape. Figure 5.37 shows the consensus shift map between 25 runs

for all total shifts inside the local window around each pixel scaled in the range {0, 255].
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In order to see whether the stopping criterion we used affected the result produced, we
repeated all 25 runs with the same seeds but now stopping them only when the cost
function changed not more than 0.5% in the last 100,000 attempted updates, instead
of 1%. The average change in mutual information now was 60.77 + 0.93% (instead of
58.86-+0.86%) and the average decrease in the cost function was 39.36+0.61% (instead
of 38.09+0.55%). Figure 5.38 shows the histogram of the average shift vectors. Figure
5.39 shows the 2% most significant average vectors. From these results, we can see that
the reduction of the stopping criterion to 0.5% does not make a lot of difference in the
location of the most significant shifts. The histogram of the relative angle formed by
the average shift vector of each pixel in the experiment with cost function threshold 1%
with the average shift vector of the same pixel obtained in the experiment with cost
function threshold 0.5% is shown in figure 5.40(a). The amount of difference of the shift
size for these two difference stopping criteria is shown in figure 5.40(b). We can see that

these angles and shift size have insignificant values. Figure 5.41 plots in two colours
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Figure 5.30: Results based on mutual information. (a) Image dated 22/4/1998. (b) Image dated
27/5/1999. (c) Registered image. (d) Difference image before registration. (e) Difference image after

registration. (Seed number one.)

the two sets of significant shifts identified so their similarity may be appreciated. Table

5.24 gives the statistics of both experiments.
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Figure 5.31: Results based on mutual information. (a) Histogram of the absolute difference of the

image before registration. (b) Histogram of the absolute difference of the image after registration.
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Figure 5.32: Results based on mutual information. (a) Histogram of the size of total shift of each

pixel during the registration process. (b) Vectors of the 2% most significant shifts. (Seed number one.)
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Figure 5.33: Histogram of the size of total average shift of each pixel in all 25 runs during the

registration process based on mutual information.
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Stopping | Number | Successful Percentage Final Duration, (s)
threshold | of tries tries of success, (%) | mutual information
1.0% 552,000 11,192 2.0127 1.2127 1580
0.5% 900,000 13,040 1.4320 1.2274 1841

Table 5.24: Results of the registration with mutual information as the similarity measure with two

different threshold values of the stopping criterion. (Values are averages over 25 runs.)
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Figure 5.34: Results based on mutual information. The 2% most significant shifts, (5. (4,7), 5y (4, §))
Sy \(Sz\t, ] ), Sy\1,
(in “blue colour); the 2% most significant shifts minus their standard deviations, (5.(i,7)
: S, Sz\?,, =
oa(iy 5), 8y (i, ) — oy(i,4)) (in red colour) and the 2% most significant shifts plus their standard devia-

tions, (3z(,7) + 0= (3, 4), 5y(i,7) + oy (i,7)) (in magenta colour).
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Figure 5.35: Consistency of results for the 2% most significant shifts over the 25 runs when the
similarity measure of the cost function is based on mutual information. (a) Histogram of the standard
deviation in z. (b) Histogram of the standard deviation in y. (c) Histogram of the angle between
vectors (54(4,7), 5y (i, 7)) and (8z(3, j) — 02(4,4), 5u(4,7) — 0y (4,5)). (d) Histogram of the angle between
vectors (5x(i,7), 5y (i,7)) and (82(i,7) + 0x(i,5), 3y (i,7) + 0y (i,7)). (e) Histogram of the magnitude
difference between vectors (5. (i, 5), 5y (3, )) and (5«(2, j) — 02(,7), 3y (4,5) — oy (i, 7)). (f) Histogram of

the magnitude difference between vectors (8x (4, 7), 5y(4,7)) and (5z(i,7) + 02(i,5), 5y (4, j) + oy (4, 1)).
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Figure 5.36: Results from 25 runs based on mutual information. Average number of significant shifts
in the vicinity of each pixel scaled in the range [0,255]. The boxes indicate the locations of recorded

landslides. The map is displayed as a grey image in (a) and as a landscape in (b).
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Figure 5.37: Results from 25 runs based on mutual information. The average total shift in the
vicinity of each pixel scaled in the range [0,255]. The boxes indicate the locations of recorded landslides.

The map is displayed as a grey image in (a) and as a landscape in (b).
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Figure 5.38: Histogram of the size of total average shift of each pixel in all 25 runs when the similarity
measure of the cost function is based on mutual information and when the threshold of the cost function

used in the stopping criterion was reduced to 0.5%.
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Figure 5.39: Results based on mutual information. The 2% most significant shifts, (82(i,5), 5y (i, §))
(in blue colour); the 2% most significant shifts minus their standard deviations, (82(4,7) —
02(i,5), 5y (i,7) — oy(4, 7)) (in red colour) and the 2% most significant shifts plus their standard devia-
tions, (5. (i, )+ 0z (i,5), 8y (3,7) + 0y (4, 7)) (in magenta colour), when the threshold of the cost function

used in the stopping criterion was reduced to 0.5%.
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Figure 5.40: Results based on mutual information. (a) Histogram of the angle between vectors
(52(i,§), 8y (4, 4)) when the threshold of the cost function used in the stopping criterion was 1% and
vectors (3z(i, j), 5y (i, j)) when the threshold of the cost function used in the stopping criterion was
reduced to 0.5%. (b) Histogram of the magnitude difference between vectors (5:(i, j), 8y (i,5)) when
the threshold of the cost function used in the stopping criterion was 1% and vectors (5z(i,7), 5y (i, j))

when the threshold of the cost function used in the stopping criterion was reduced to 0.5%.
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Figure 5.41: Results based on mutual information. The 2% most significant shifts: (32 (i, ), 5 (i, j))
when the threshold of the cost function used in the stopping criterion was 1% and (5.(i,5), 5,(4, ))
when the threshold of the cost function used in the stopping criterion was reduced to 0.5%. Although
different colours are used for the two sets of results, it is not possible to see them, because at the level

of resolution of the plotter, the two sets of arrows coincide.
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5.6 Discussion and Conclusions

We presented here a method of image registration to detect and quantify small size of
landslide movement which takes into account the local deformation of the image. Our
method was designed to imitate the way land locally deforms during a landslide. This
method was developed in two versions. One version using the correlation coefficient as

a similarity measure of the grey level values between two images and the other version

using mutual information for the same purpose.

In both versions, we can see that the exponential parabolic flow front operator
gave the highest percentage of acceptance during the exploratory runs. This

is because this operator imitates best what happens during a landslide.

Statistics of the runs of the two versions of our method are shown in table 5.25. We
can see that the mutual information-based method converges more slowly than the
correlation function-based one. Naturally, it produces a higher increase in the mutual
information than the correlation function-based method does. However, the real test
is the quality of the results. This may be assessed in two ways: either in terms of

consistency and repeatability of the results, or in comparison with ground information,
if that is available.

Table 5.26 shows in summary the statistics of the results for the 2% most significant
shifts for both cases, when the similarity measure of the cost function is based on the
correlation function and when it is based on the mutual information. From this ta-
ble, we can see that although the correlation function-based method frequently gives
smaller values of oy, nevertheless the statistics show that the mutual information-
based method gives more frequently small amounts of difference either between vectors
(506, 7),5,(i» 7)) and (36, )06, 1), (i, §)~03i, ) or between vectors (54(i ), 5, , 1)
and (34(3,7) + 02(3,4), 8y (i,5) + 0y (3, 5)) compared with the correlation function-based
method. The mutual information-based method also gives a narrower range of these
values. This means that the mutual information-based method produces more
self consistent results. Figure 5.42 shows the 2% most significant shifts for average
vectors, (3,(4,7),3y(4,4)) for registration based on the correlation function and also

based on the mutual information. From this figure, we can see that the 2% most sig-
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nificant shifts are less localised when we use the correlation function than

when we use the mutual information.

The second way to compare the two approaches is to check how close to reported
landslides the identified regions of significant shifts are located. As the process of
assessing the significance of the local shift produces noisy results (see figures 5.22(b),
5.23(bh), 5.36(b) and 5.37(b)), before we identify the maximum of such shifts, we smooth

the data using a Gaussian window, g(,y) defined by:

w2

o) = a0
where ¢ is the standard deviation. The size of the window is chosen so that when
the Gaussian is truncated the discontinuity is insignificant. We chose o = 3 and the
window was 15 x 15 in size. To avoid boundary effects the image was reflected about
its borders i all directions. Figures 5.43(a) and 5.43(b) are the smoothed versions
of figures 5.22(b) and 5.36(b), respectively, while figures 5.44(a) and 5.44(b) are the
smoothed version of figures 5.23(b) and 5.37(b), respectively. Figures 5.45 and 5.46
show all peaks in these landscapes numbered in order of significance. To assess the
quality of the result, we find the distance between the centres of the recorded landslide
areas from the nearest identified peaks in these shift maps. The results are shown
in tables 5.27 and 5.28, respectively. From these tables, we can see that the mutual
information-based method not only indicates that the significant total shifts
are nearer to the marked locations of the landslides (smaller distances), but
also that these are the strongest peaks (higher order peaks, e.g. 3 instead

of 6) in the shift maps.

In view of that, we conclude that the cost function based on mutual information
in conjunction with the average significant local shift is the most reliable
approach of all approaches investigated here. We use this method, therefore, for
three further pairs of sub-images of the landslide events in Caramanico. They are taken
from the 1995-1996 landslide events as shown in figures 3.16(a) and (b), the 1996-1997
landslide events as shown in figures 3.17(a) and (b), and the 1997-1998 landslide events

as shown in figures 3.18(a) and (b).
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Our algorithm may be used as a black box, i.e. a trained system with fixed paramecter
setting. Alternatively, it may be thought of as a system to be trained to learn the best
parameter values for a given pair of images. The percentage of the successful trials of
the various operators used in the adapted setting of parameters during the exploratory
runs, for every event, are summarised in table 5.29. Again, the exponential parabolic
flow front deformation operator was identified as the operator that most often produced

a deformation that reduced the cost function.

Figures 5.47, 5.49 and 5.51 show the average of shift vectors, (5.(4,7).5,(4,j)) with
the 2% most significant shifts over all 25 runs, the 2% most significant vectors minus
their corresponding standard deviation, (5,(4,j) — 0x(i.j). 5y(i.5) — oy (i, 7)) and the
2% most significant vectors plus their corresponding standard deviation, (3,.(i,j) +
0. (i, 5),8,(i,7) + o,(i,j)) for both fixed and adapted parameter settings of the 1995-

1996, 1996-1997 and 1997-1998 landslide events, respectively.

The results for all identified peaks from the significant shifts both with fixed and
adapted parameter settings are shown in figures 5.48, 5.50 and 5.52, respectively. The
nearest locations of the identified peaks from the reported landslide areas, marked by
rectangles in every case, are shown in tables 5.30, 5.33 and 5.36, respectively. Tables
5.31-5.32, 5.34-5.35, 5.37-5.38 give the performance of cach run in terms of consistency
of the results produced for the 1995-1996, 1996-1997 and 1997-1998 landslide events,
respectively. We may see that the consistency of the results between fixed parameters
and adaptation of the parameters is quite similar. From these results we conclude
that the fixed parameters produced sufficiently good results for one not do

bother with the adaptation of the parameters.

None of the methods, however, identified the points of highest movement exactly with
the reported locations of the reported landslides. Upon inquiring the suppliers of the
data, we were told that this was not surprising. The data concern mountainous arcas
with few reference points used to register the large images that covered the arca. They
expected that the large scale registration they performed was not very accurate, and it
could easily involve local misregistration of several pixels. Because of this information

and because of the consistency of the results obtained by the mutual information based
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method, we tend to conclude that the true locations of the landslides are where

we detected them, rather than where they were reported.

The range of values of movement within the boxes, indicating the locations of the re-
ported landslides, and around the identified corresponding locations were calculated
and compared with the reported values. In some cases, the size of the reported move-
ment was not given numerically. Only linguistic terms were used. (See section 3.1.2.)
Therefore, the size of movement in these areas was inferred by referring to the mean-
ing of the terms that were used in the other cases. Terms like “mudslide movement”,
“shallow earthflow” or “slow debris flow” were used in cases A,C, F,G, H and K. Only
in case A the movement was given as being of at least 10m. So, we assumed that the
movement in cases C, F,G, H and K was also of the same order of magnitude. Cases
B,I and J are rotational slides. For case B the size of the movement was given to
be about 80m to a few hundred meters. We assumed that the size of the movement
in cases I and J was of the same order of magnitude. The results are summarised in
table 5.39 for the 1998-1999 events and table 5.40 for the 1995-1996, 1996-1997 and
1997-1998 events. Overall, the amount of movements around the identified landslide
locations is in general agreement with the amount of reported movement. Only in three
cases where the movement was reported to be of a few hundred meters the results are
not consistent. From these results, we conclude that our algorithm can be used
to detect and quantify landslide movements with the value of few tens of

meters.

From the results of the identified peaks, we can see that there were other change areas
detected. This produced false alarms. Therefore, we calculated the false alarm rate by
dividing the number of false alarms with the number of alarms. The results are shown
in table 5.41 for the 1998-1999 events based on the significant shifts, table 5.42 for the
1998-1999 events based on the average shifts and table 5.43 for the 1995-1998 events.
In overall, the identified peaks produced an average value of 0.58 false alarm

rate.



124 Chapter 5. FElastic image registration

4667295F ~ 4 e
- > o
= < 0OK &
4666545 correlation coefficient s
. ; b e
— mutual information o
~
* o 517
4665705 N " thste 13
417133 417883 41 8‘633

X

Figure 5.42: The 2% most significant shifts: vectors (5z(i, ), 5, (4, 7)) based on the correlation coef-

ficient (in magenta colour) and vectors (8 (i, ), 8y (i, 7)) based on mutual information (in blue colour).

Similarity measure
Ak Correlation coefficient | Mutual information
Number of proposed changes 948,000 552,000
Number of accepted changes 17,025 11,192
Percentage of success, (%) 1.7657 2.0127
Final value of mutual information 0.9221 1.2127
(original value = 0.7634 )
Percentage of increasing the 20.79 58.86
value of mutual information, (%)
Final value of correlation coefficient 0.9780 0.7951
(original value = 0.8144 )
Percentage of increasing the 20.09 -2.3635
value of correlation coefficient, (%)
Percentage of reduction 84.03 38.09
value of the cost function, (%)

Duration, (s) 728 1580
Maximum amount of shift 3.0295 1.7761
Minimum amount of shift 0.0074 0.0065

Average amount of shift 0.4945 0.4141 : 2

Table 5.25: Results of the registration with the correlation coefficient and mutual information as the

similarity measure in the cost function. (Values are averages over 25 runs.)
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Similarity measure
Fyn Correlation coefficient | Mutual information
Mode of 0 (5z) 0.5500 0.5500
Mode of ay (5y) 0.4500 0.5500
Mode of 6(3,5 — o) 15 )
Mode of (3,5 + o) 15 15

Mode of shift (5,5 — o) 0.5500 0.4500

Mode of shift (5,5 + o) 0.8500 0.6000
T - [0.2839, 1.3371] 0.3477, 1.0532)

Range of 0z (0zmaz = Temin) 1.0532 0.7055
. - [0.2227, 1.5034] 0.3564, 1.1907]

Range of 0y (Cymaz = Tymin) 1.2807 0.8342
[6(3,5 — 7)min, 0(5,5 — 0)maz] [0.2416, 166.96] [1.055, 167.26]

Range of 0 (6(3,5 — 0)maz — 0(5,5 — 0)min) 166.72 166.21
[0(3,5+ 0)min, (5,5 + 0)max) [0.8879, 164.74] (0.2905, 159.38]

Range of 0 (6(3,5 + 0)maz — 0(5,5 + 0)min) 163.85 159.09
[shift (3,5 — 0')min, shift (5,5 — 0)mas] [0.0237, 1.6778) [0.0165, 1.4136)

Range of shift (shift(5, 5 — o) maz—shift (5,5 — 7)min) 1.6540 1.3970
[shift (3,5 + 0)min, shift (5,5 + 0)maz| [0.0536, 1.3024] [0.0116, 1.2782]

Range of shift (shift(, 5 + 0)maz—shift(5, 5 + 0)min) 1.2488 1.2666

Table 5.26: Results of the registration for the 2% most significant shifts with the correlation coefficient

and mutual information as the similarity measure in the cost function. (Values are averages over 25

runs.)
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Figure 5.43: The smoothed significant shifts taken from the results of 25 runs. (a) Results when the
correlation coefficient is used as the similarity measure in the cost function. (b) Results when mutual

information is used as the similarity measure in the cost function.

region

XTI
SR
Y
By
‘:\““:\‘\‘\‘\e_\\‘
R

4667295

> 418633 419633

4666545

4665795 417133 4665795 417133

(a)

Figure 5.44: The smoothed average shifts taken from the results of 25 runs. (a) Results when the
correlation coefficient is used as the similarity measure in the cost function. (b) Results when mutual

information is used as the similarity measure in the cost function.



5.6. Discussion and Conclusions 127

i! > ceniré of the landsides area el > cenire of the landslides area |
4667295| o the most significant shift | 4667295(1 o the most significant shift
- 02 -
| .
[ o1 >l dJd 1 0|®|d
> B K > K
4666545 4666545 -
05
| 08
" =i L
4665795 ¢ o 4665795 o8 03
Q7133 417883 418633 417133 417883 418633
X X
(a) (b)

Figure 5.45: Allidentified peaks from the significant shifts in 25 runs. (a) Results when the correlation
coofficient is used as the similarity measure in the cost function. (b) Results when mutual information

is used as the similarity measure in the cost function.
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Figure 5.46: Al identified peaks from the average total shifts in 25 runs. (a) Results when the
correlation coefficient is used as the similarity measure in the cost function. (b) Results when mutual

information is used as the similarity measure in the cost function.
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Landslide “ Measure of similarity | Nearest peak | Distance in pix(‘ls—]

Correlation function l 7.5300

! Mutual information 1 2.7346

) Correlation function | 10.6720

i Mutual information 1 8.2700
Correlation function 6 10.7510

& Mutual information 3 10.8827 ]

Table 5.27: Location of the nearest peaks to the landslide area based on the significant shifts. (Please

refer to figure 5.45.)

[ Landslide “ Measure ol similarity [ Nearest peak | Distance in pixels

Correlation function 1 4.6310
. Mutual information | 1.0760
Correlation function 1 10.5185
‘o Mutual information | 7.3795
Correlation function 6 8.5834
i Mutual information 3 10.8827

Table 5.28: Location of the nearest peaks to the landslide area based on the average shifts. (Please

refer to figure 5.46.)

Percentage of deformation operators
Jvents o . i i
Growth “ Shrinkage | Translation | Polynomial
1995-1996 14% 15% 24% 47%
1996-1997 14% 14% 24% 48%
1997-1998 14% 15% 24% 47%
Table 5.29: Percentage of the successful operators used for the adapted setting of parameter values

during the process of registration for every event during the exploratory runs.
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Figure 5.47: Results based on mutual information for the landslide images dated 17/6/1995 and
18/5/1996 with fixed parameter setting in (a) and with adapted parameter setting in (b). The 2%
most significant shifts, (5z(i,7),3y(4, 7)) (in blue colour); the 2% most significant shifts minus their
standard deviations, (3z(i,J) — 0= (%,7), 5y(%,7) — 0y (4,7)) (in red colour) and the 2% most significant

shifts plus their standard deviations, (52(i,7) + 02(4,7), 5y (i,5) + oy (i, 7)) (in magenta colour).
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Figure 5.48: All identified peaks from the significant shifts in 25 runs when mutual information

is used as the similarity measure in the cost function for the landslide images dated 17/6/1995 and

18/5/1996. (a) Results with fixed parameter setting. (b) Results with adapted parameter setting.

l Landslide || Parameter | Nearest peak | Distance in pixel?)

Fixed 1 17.5193
A Adapted 5 14.7054

Fixed 2 22.8988
B Adapted 5 16.1245

Fixed 1 8.3071
© Adapted 1 4.6098

Table 5.30: Location of the nearest peaks to the landslide areas based on the significant shifts for
the landslide images dated 17/6/1995 and 18/5/1996. (Please refer to figure 5.48.)
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Parameter
Evaluation
Fixed ~Adapted
Number of proposed changes 787500 520000
Number of accepted changes 12371 10975
Percentage of success, (%) 1.5434 2.0958
Final value of mutual information 1.1587 1.1384
(original value =0.7036)

Percentage of increasing the 64.6700 | 61.7950

value of mutual information, (%)

Final value of correlation coefficient 0.7590 0.7634

(original value =0.8188)

Percentage of increasing the -7.2991 | -6.7662

value of correlation coefficient, (%)

Percentage of reduction

value of the cost function, (%) 34.8480 | 33.7560
Duration, (s} 1746 1549
Maximum amount of shift 1.9573 1.9300
Minimum amount of shift 0.0026 0.0060
Average amount of shift 0.4200 0.3984

Table 5.31: Results of the registration when mutual information is used as the similarity measure in
the cost function with the fixed and adapted parameter setting for the landslide inages dated 17/6/1995

g Yo s ey OO 9 | N
and 18/5/1996. (Values are averages over 25 runs.)
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“valuation

Parameter

Fixed

Adapted

Mode of o, (5.)

0.5500

Mode of o, (5,) 0.5500 0.7500
Mode of (5,5 — o) 15 15
Mode of 0(5,5 + o) H 5

Mode of shift (5,5 — o) 0.8500 0.5500

Mode of shift (5,5 + o)

0.8500

0.5500

[(7.1:,,,,,1 s ”-’?mu‘r}

[0.3696, 1.2340]

(0.2979,1.4841)

Range of 0 (Cumaw — Camin) 0.8644 1.1862
P 02751, 1.5904] | [0.2391,1.2849)]
Range of oy (Oymaz = Ovamin) 1.3154 1.0458
(0(3,5 — 0)min, (5,5 — 0)maz] [1.7324, 158.8300] | [2.9781,157.2000]
Range of 0 (0(3,5 — 0 )maz — 0(5, 5 — 0)min) 157.1000 154.3200

[(}(;‘ S+ (T)min,. 0(;. it (7)11111.17]

[0.3903, 163.4800]

(1.1096,172.8900]

R.ELHgC of 0 (U(E, 5+ ﬂ)nm;x: — ()(ga Sher= U)rnm)

163.0900

171.4800

[H]]l“ (; S~ o)‘I'HHM Shiﬂ‘ (;7 8= 0)’““1"]

[0.0222, 1.3455]

0.0771,1.0526)

1.3232

0.9755

Range of shift (shift(, § — 0)maz—shift(5,5 — 0)min)

(0.0171, 1.8102
1.7930

[shift (5,3 + 0)min, shift (5,5 + 0)maz] [0.0208,1.3381]

Range of shift (shift(3, § + 0)max—shift(5,5 4 o) min) 1.3174

Table 5.32: Results of the registration for the 2% most significant shifts when mutual information is
used as the similarity measure in the cost function with the fixed and adapted parameter setting for

the landslide images dated 17/6/1995 and 18/5/1996. (Values are averages over 25 runs.)
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Figure 5.49: Results based on mutual information for the landslide images dated 18/5/1996 and
21/5/1997 with fixed parameter setting in (a) and with adapted parameter setting in (b). The 2%
most significant shifts, (5z(3,7),5y(4,j)) (in blue colour); the 2% most significant shifts minus their
standard deviations, (8z(i,J) — 0z (i, 7),5y(i,5) — 0y(4,5)) (in red colour) and the 2% most significant

shifts plus their standard deviations, (52(7, j) + 02 (4, 5), 5y(4, j) + oy (4, j)) (in magenta colour).
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Figure 5.50: Al identified peaks from the significant shifts in 25 runs when mutual information

is used as the similarity measure in the cost function for the landslide images dated 18/5/1996 and

21/5/1997. (a) Results with fixed parameter setting. (b) Results with adapted parameter setting.

r Landslide ” Parameter | Nearest peak | Distance in pixegl

Fixed 1 7.9796

Dand B ™ pted 1 10.9588
Fixed 1 15.5801

F Adapted 1 9.5006

Table 5.33: Location of the nearest peaks to the landslide areas based on the significant shifts for
the landslide images dated 18/5/1996 and 21/5/1997. (Please refer to figure 5.50.)
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Parameter
Evaluation -
Fixed | Adapted
Number of proposed changes 816000 892000
Number of accepted changes 12716 14073
Percentage of success, (%) 1.5440 1.5641

Final value of mutual information

(original value =0.5023) 1.2127 1.2141

Percentage of increasing the

value of mutual information, (%) 60.0470 | 60.2280

Final value of correlation coefficient

(original value =0.8561) 0.7528 0.7509

Percentage of increasing the

value of correlation coeflicient, (%) || -8.0183 | -8.2411

Percentage of reduction

value of the cost function, (%) 37.8480 | 40.5010

Duration, (s) 1795 1986
Maximum amount of shift 1.5948 1.6069
Minimum amount of shift 0.0046 0.0056

Average amount of shift 0.4152 0.0416

Table 5.34: Results of the registration when mutual information is used as the similarity measure in
the cost function with the fixed and adapted parameter setting for the landslide images dated 18/5/1996

and 21/5/1997. (Values are averages over 25 runs.)



136

Chapter 5. Elastic image reeistration
S (o]

Parameter

Mode of 0(5,5 4 o)

S Fixed Adapted
Mode of o, (5.) 0.4500 0.6500, 0.7500
Mode of oy, (5,) 0.5500 0.4500

Mode of 0(5,5 — o) 25 35
( 25 35

Mode of shift

0.1500, 0.3500

0.3500

(
Mode of shift (5,5 + o)

0.5500, 0.6500

0.2500, 0.2500

[(T.Jt,,, in? Ot man ]

[0.3362, 1.2230]

[0.2690, 1.0877]

Range of 0z (Ozmaz = Oryin )

0.8869

0.8186

[’71/““” ) U!/unu-]

[0.3441, 1.1030)

[0.24791, 1.0499]

Range of 0y (Oyman = Tymin)

0.7589

0.8019

[()(;, S — O'),,,i,, g ()(; 8§ — O’)m(u‘]

[2.0610, 154.5900]

[2.8526, 156.7600]

R.‘dllg(‘ of 0 (0(5, 8= 0'),,,”,_,- == ()(;1 Si= a)miu)

152.5300

153.9100

[(}(;, S+ (7),,“‘,, " ()(;3 S U)lu,u..r]

(0.1971, 168.0600]

[4.6760, 1633.6000]

Range of 0 (0(3,5 + 0)max — 0(5,5 + 0 )min)

167.8600

158.9300

[\Ill“ (§ gz U)I!Li!” shift ('§7 §= 0)”'“~"]

(0.0280, 1.4879)

[0.0105, 1.2486]

Range of shift (shift(5, 5 + ¢)mae—shift(5,5 + 0)min)

Range of shift (shift(5, 5 — 0 )mae—shift(5,5 — 0)min) 1.4600 1.2381
[shift (5,5 + 0 )min, shift (5,5 + 0 )maz] (0.0000, 1.1131] [0.0149, 0.9920)
11131 0.9771

Table 5.35: Results of the registration for the 2% most significant shifts when mutual information is
used as the similarity measure in the cost function with the fixed and adapted parameter setting for

the landslide images dated 18/5/1996 and 21/5/1997. (Values are averages over 25 runs.)
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Figure 5.51: Results based on mutual information for the landslide images dated 21/5/1997 and
22/4/1998 with fixed parameter setting in (a) and with adapted parameter setting in (b). The 2%
most significant shifts, (5z(i,7),3y(i,7)) (in blue colour); the 2% most significant shifts minus their
standard deviations, (3z(%,7) — 0=(i,7), 5y (4, J) — oy(i,5)) (in red colour) and the 2% most significant

shifts plus their standard deviations, (52(4,7) + 02(1,5), 5y(i,§) + oy (i,5)) (in magenta colour).
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Figure 5.52: Al identified peaks from the significant shifts in 25 runs when mutual information
is used as the similarity measure in the cost function for the landslide images dated 21 /5/1997 and

22/4/1998. (a) Results with fixed parameter setting. (b) Results with adapted parameter setting.

Landslide ” Parameter | Nearest peak | Distance in pixels
Fixed 2 7.0055
G Adapted 2 10.8128
Fixed 4 9.9359
H Adapted 5 14.9895
Fixed 2 9.1309
! Adapted 2 12.3723

Table 5.36: Location of the nearest peaks to the landslide areas based on the significant shifts for
the landslide images dated 21/5/1997 and 22/4/1998. (Please refer to figure 5.52.)
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Parameter
Evaluation —
Fixed Adapted
Number of proposed changes 788000 848000
Number of accepted changes 12174 13591
Percentage of success, (%) 1.5316 1.5833

Final value of mutual information

(original value =0.8283) 1.2544 1.2639

Percentage of increasing the

value of mutual information, (%) 51.4420 52.5860

Final value of correlation coeflicient

(original value =0.9010) 0.7905 0.7852

Percentage of increasing the

value ol correlation coefficient, (%) || -12.2710 | -12.8530

Percentage of reduction

value of the cost function, (%) 34.8460 | 38.3840
Duration, (s) 1718 1918
Maximuim amount of shift 2.3097 1.4074
Minimum amount of shift 0.0042 0.0080
Average amount of shift 0.4774 0.4084

Table 5.37: Results of the registration when mutual information is used as the similarity measure in
the cost Mnction with the fixed and adapted parameter setting for the landslide images dated 21/5/1997

and 22/4/1998. (Values are averages over 25 runs.)
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Chapter 5.

Elastic image registration

Mode of shilt (5,5 + )

Parameter
valuation Fixed Adapted
Mode of o, (5.) 0.5500 0.3500
Mode of o, (5,) 0.5500 0.6500
Mode of 0(5,5 — o) 25 45
Mode of 4(3, 5+ o) 25 5
Mode of shift (5,5 — o) 0.9500 0.6500
0.2500 0.1500, 0.8500, 0.9500

[0.3231, 1.5795)

[0.3442. 1.1283]

Range of oy (0,000 = Tysuin)

Range of 0w (74, — G ) 1.2563 0.7840
(G s o) [0.3753, 1.4573] (0.3523, LO031)
1.0820 0.6507

[()(; ; - U)miny (}(Cﬂ B (T)IH(L!L'}

{1.4374, 168.1200)

[2.7374, 163.9600]

R,?Ulg(,‘ of 0 (()(:’;7 5 — {7),”(1_’1' - 0(«;7 5= (T)nu‘u)

166.6800

161.2:300

(005,54 0 )min, 0(5, 5 + 0 )mace]

[2.7057, 156.6600)

[0.3759, 159.9000]

Range of 0 (0(5,5 + 0)mae — (5,5 + 0 )onin)

153.9600

159.5300

[shift (5,5 — 0 )min, shift (5.5 = 0)mazx)

[0.0285, 1.6598]

(00026, 1.0042)

Range of shift (shift(8, § — 0 )max—shilt{5, 5§ — 0 )nin)

1.6313

1.0016

[shift (3,8 4+ a)min, shilt (5,5 + 0)max)

(0.0196, 1.5149]

[0.0200. 1.2008)

Range of shift (shift(3.5 + ¢ )mar—shift(3, 5+ 0 )imin)

1.4952

1.1808

Table 5.38: Results of the registration for the 2% most significant shifts when mutual information is

used as the similarity measure in the cost function with the fixed and adapted parameter setting for

the landslide images dated 21/5/1997 and 22/4/1998. {Values are averages over 25 runs.)
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Inside box, (m) Nearest peak, (m) ]
Fovents Case Reported Correlation Mutual Correlation Mutual
size, (m) function information function information
L
J 80-300 3.43-43.29 4.73-40.89 10.24-90.89 1.97-42.41 X
1998-1999 ’»vl\' more than 10 || 7.74-20.92 4.65-20.09 10.65-48.88 | 3.93-32.05 v
L more than 10 | 6.33-22.62 8.93-27.18 10.23-28.86 | 15.74-28.60

L

Table 5.39: Comparison between the inferred or reported movement and the detected range of values

of the movement for 1998-1999 landslide events.

Inside box, (1) Nearest peak, (m) —‘
Events Case Reported Fixed Adapted Fixed Adapted
L’i size, (m) l parameters | parameters || parameters | parameters
A 10-200 2.20-25.61 3.14-24.76 0.85-58.72 1.52-22.50 Vv
1995-1996 B 80-300 1.74-20.83 1.57-25.01 0.56-44.18 1.97-22.50 X
C more than 10 || 3.68-10.87 | 5.32-20.91 1.97-32.35 | 6.30-25.16 || /
D 25 5.76-20.48 4.15-23.32 7.02-19.16 3.27-29.47 v
1996-1997 I 30 5.76-20.48 | 4.15-23.32 7.02-19.16 | 3.27-2947 || J
L& I more than 10 || 14.58-29.88 | 9.83-23.24 7.02-19.16 3.27-29.47 Vv J
G more than 10 || 23.61-42.22 | 23.61-42.22 || 17.40-38.37 | 4.94-25.36 v
1997-1998 H more than 10 3.43-20.01 3.43-20.01 1.26-24.76 6.14-15.69 v
I 80-300 0.30-42.22 0.30-42.22 5.97-38.36 4.94-32.83 X

Table 5.40: Comparison between the inferred or reported movement and the detected range of values

of the movement for 1995-1998 landslide events.
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‘ Events “ Measure of similarity | False alarm rate

Correlation function 0.57

1998-1999 )
Mutual Information 0.57

Table 5.41: The false alann rate based on the significant shifts for the 1998-1999 landslide events.

[ivents “ Measure of similarity | False alarm rate 1

Correlation function 0.63

1998-1999

Mutual Information 0.50

Table 5.42: The false alarin rate based on the average shifts for the 1998-1999 landslide events.

Parameter | IFalse alarm mte—’

Svents ]

Fixed 0.63

1995-1996
Adapted 0.50
Fixed 0.57

1996-1997
Adapted 0.70
[Fixed 0.50

1997-1998
Adapted 0.70

Table 5.43: The false alarm rate based on the significant shifts for the 1995-1998 landslide events.



Chapter 6

Conclusions and Futuré Work

This thesis examined some image processing technicques that may be used to detect
landslides of different sizes. A simple method of change detection based on local mu-
tual information was first implemented. It was shown to be inadequate to detect small
scale landslides. That is why a method based on elastic image registration was pro-
posed. This chapter provides a brief overview of the thesis in combination with its main
contributions. The limitations of our work are also stated, and possible directions for

future rescarch are suggested.

6.1 Summary and Conclusions

A brief literature survey on landslide detection and identification to date was presented
in Chapter 2. This included image enhancement, image differencing, image classifica-
tion and image registration. It was concluded that image differencing was the simplest
method. However, this method is not applicable when images taken from different
modalities are used. It was also concluded that, problems in detecting landslides with
size of less than one pixel might be overcome using an image registration method with

sub-pixel accuracy.

In Chapter 3, we proposed a simple method of change detection and identification.

Prior to detecting the changes, all identified sources of noise, i.e. cloud and snow pixels

143
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in the images were eliminated, by using a bright region detection method which first
had been proposed for the detection of microcalcifications in mammogram images. The
change detection method detected the changes by using a local similarity measure based
on mutual information and image thresholding. A binary change image was produced.
Landslides were identified as the largest connected regions in this image. This method
is simple and suitable to be used to detect large landslides using images from the same

or different modalitics. However, it is not appropriate for detecting small landslides.

In Chapter 4, a basic understanding of the process of registering two images and a lit-
erature survey on the latest algorithms for image registration methods were presented.
In summary, the image registration process starts from sclecting the corresponding
featurcs in both images. These are used to establish a transformation function. This
transformation function is then used to transform one image to the other. Image resam-
pling is used to identify new grey level values in the transformed image. A similarity
measure is used to control the quality of registration. The process of registration stops

when the quality of registration is acceptable.

The major contribution of this thesis was presented in Chapter 5. In this chapter, we
proposed a new method of landslide detection and quantification based on elastic image
registration. There are two versions of the method. One used the correlation function
as a measure of similarity and the other used the mutual information. Four deformation
operators were used to locally imitate the way land deforms during landslides. It was
concluded that the exponential polynomial operator was the most useful of all. This
is validated by the ground information, according to which, in almost all cases the

landslides were caused by rotational type of movement.

The quality of the results was assessed by checking the consistency and repeatabil-
ity of the results, repeating each experiment 25 times with different random number
generators. From the results, it was concluded that mutual information not only gave
consistent results for the 2% most significant shifts, but also gave more localised average
shift vectors. The second way to assess the quality of the results was to determine how
close the locations of the reported landslides were to those of the identified landslides.

The locations of the identified landslides were defined in two different ways using the
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produced shift map: One considered the average shift inside a 15 x 15 window around
cach pixel and the other used only the 2% most significant shifts. From the results,
we concluded that mutual information in conjunction with the average significant local
shift gave the best agreement with the reported locations of the landslides. This method
was then used to register three other pairs of images either using a fixed paranieter set-
ting or adapted parameter setting. From the results, we concluded that the adapted
parameters did not produce sufficiently better results than the fixed parameters, so it is
not necessary to bother with the adapted parameters. The size of movement inside the
identified landslide areas was compared with the movement inn the recorded landslides.
The sizes of the identified movements were consistent with the sizes of the recorded
landslides. However, in very few of the cases the position of the largest shift in the

transformed image coincided exactly with the locations of the reported landslides.

The study area corresponded to mountainous terrain. We were informed that the im-
ages we used were geocoded rather grossly being parts of much larger images. As a
consequence, the marked locations of the reported landslides might have been several
pixels off their true locations. In view of this information, and the fact that our algo-
rithm produced reasonably consistent results over the 25 separate runs, we are inclined
to trust the result of the algorithm more rather than the so called “ground truth”. It
is worth remembering that during each one of the 25 runs, a totally different sequence
of the deformation operators was involved, with different parameter values, all chosen

at randon.

The major contribution, therefore, of this thesis, is the development of an clastic image
registration algorithm which does not rely on any parametric model of image transfor-
mation, e.g. affine transform, and which can be used to register images with sub-pixel
accuracy even when the distortion suffered by one of them is totally inhomogeneous

and highly localised.

6.2 Future work

The main drawback of our algorithm is that it uses a greedy energy minimisation ap-

proach, which was designed to accept only image transformations that could reduce the
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value of the cost function. This type of greedy algorithim might get stuck to a local min-
imum, i.e. a state, the energy of which is far from being the global minimum, but which
still has energy less than any neighbouring state. However, the random invocation of
the various operators safeguards against such a situation, in particular as the algorithm
is repeated several times, and a consensus outcome is sought. Nevertheless, the best
way to avoid sub-optimal solutions is the use of a stochastic optimisation technique,

like a eenetic aleorithm or simulated annealing.
(=] O

Another drawback of the algorithm is its slowness. For registering two images of size
50 x 50 using the C programming language in a 8 x 900MHz/2MB cache Intel PIII
Xeons machine, 728s CPU time was required on average for the correlation function-
based method, 1709s for the mutual information-based method with fixed parameters
and 1817s for the mutual information-based method with adaptation of the parame-
ters. This drawback makes the use of the algorithm impractical. This problem will be
exacerbated if the greedy optimisation algorithm is replaced by a stochastic optimisa-
tion one. The only way to gain time is if the algorithm is implemented in parallel, so
that the values of several pixels are updated in one go. Alternatively, if memory is not
a problem, the various operators may be precomputed and stored, as masks of specific
shifts at specific locations, which are invoked ready made and imposed on the image
each time it has to be transformed. This clearly imposes limitations on the various
different values of the parameters of each operator that will be allowed, as one will
have to have such a pre-computed mask for each operator, for each combination of its
parameters.

Finally, the most significant drawback of this approach is that it does not include a
mechanism that allows the distinction between a landslide and any other change on the
surface of the Earth that caused the change in the appearance of the image. Such a
mechanism should probably involve higher level knowledge, multispectral information

and it should probably operate in conjuction with an expert system.



Appendix A

Results of individual runs

A.1 Correlation coefficient as the similarity measure in

the cost function
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Appendix A. Results of individual runs

Figure A.1:

is used as the similarity measure in the cost function. (c) Seed 4. (d) Seed 5. (e) Seed 6. (f) Seed 7.
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Figure A.l: (Continued.) Vectors of the 2% most significant shifts when the correlation coefficient
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Figure A.1: (Continued.) Vectors of the 2% most significant shifts when the correlation coefficient
is used as the similarity measure in the cost function. (s) Seed 20. (t) Seed 21. (u) Seed 22. (v) Seed

23. (w) Seed 24. (x) Seed 25.
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A.2 Mutual information as the similarity measure in the

cost function
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