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Summary 

This thesis presents a unique exploration strategy for a mobile robot moving in a two-dimensional 

plane. The task of the exploration algorithm is to move around autonomously in an unknown room 

environment of a limited size whilst building and using a 2D map to avoid obstacles and plan its next 

move. The strategy is not target-driven, rather seeking new unseen areas to view and explore. 

The novelty of the presented strategy is the use of a view-improvement technique along with an opti- 

mal viewpoint planning method for the calculation and selection of the next-best-viewpoint. Results 

for various environment situations are discussed, for a system with a limited field-of-view, with an 

application to a mobile robot with a single camera. 
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Chapter 1 

Introduction 

The science-fiction film industry has, through the years, depicted robots as humanoid machines ca- 

pable of carrying out a multitude of tasks, autonomously and without guidance from any human 

operator. The vast following of television series, feature films and books has inspired human imag- 

ination to idealise how a robot should be able to perform tasks which may aid us in our survival, 

help us with daily tasks like cleaning, reduce labour intensive jobs in the manufacturing industry, and 

even reduce the life-threatening jobs in times of war. 

Tasks we would prefer robots to perform, be it to improve our lifestyle or to develop our understand- 
ing and knowledge of our ever expanding world, have some things in common: 

" the ability to sense the world around 

" to interpret the data received by the senses 

" to act upon interpreted knowledge to perform the task at hand 

" and probably at some stage, to communicate the acquired knowledge or outcome of the task to 

humans 

In safe environments on Earth, tasks such as explore and collect information are relatively simple for 

humans to perform. However for more dangerous parts of the Earth such as the Chernobyl disaster 

site, it is necessary for robots to be employed to take on the role of a human. It is costly to send 

a man to Mars, but the same task is still needed. In these environments, it becomes impractical for 

human operators to define each and every move a mobile robot is to take in order to manoeuvre itself 

within the environment. The interpretation of the immediate environment by a human operator also 
delays the time taken for the robot to perform its task, and to move itself around the environment. 

1.1 Background and Issues 

The expanding area of mobile robotics encompasses a vast range of research areas for environments 
from indoor and outdoor terrestrial to the more extreme planetary, underwater, arctic and nuclear 



2 Chapter 1. Introduction 

fall-out etc. For such a diverse range of environments, emerging new hardware technologies to allow 

mobile robots to survive and carry out their tasks in difficult terrains and harsh environments. This 

incorporates research into the materials able to cope in extreme conditions of temperature and pres- 

sure variations as well as the basic requirement for the ability of the mobile robot to move around the 

environment. See for example [Patel et al., 2002] who compare the ability for wheeled and tracked 

vehicles to traverse the Mars landscape. To find solutions to some of these problem environments, 

recent research has focused on biologically inspired systems ([Trullier et al., 1997] presents a review 

of such systems) to achieve specific tasks which in turn has expanded the research area further into 

emergent behaviour from multiple agents ([Polesel et al., 2000] consider robot football) as well as 

cooperative robots ([Chaimowicz et al., 2003] consider hybrid systems in a collaborative robot sys- 

tem). This work will focus on single robot systems, although the algorithms described could be 

considered for multiple agent systems. 

The ability for a robot to autonomously explore an environment is an area of research that has 

recently not received a lot of attention. Several algorithms exist for the interim stages of explo- 

ration: environment data acquisition, storage and interpretation, and point-to-point navigation. Sev- 

eral algorithms exist that can map the environment from the directions of a human operator, e. g. 

[Huang and Beevers, 2005]. However, none exist which start with no explicit knowledge of the num- 
ber, position, or size of the obstacles in its environment, or the size of the environment itself, and 

enable a mobile agent to safely and more intelligently explore the environment without any human 

operator input during its execution. This problem is addressed in this thesis. 

Mobile robotic exploration research began with Victor Klee's "Art Gallery Question" in 1973. His- 

torically, Väclav Chvätal responded with his "Art Gallery Theorem" in 1975, and later Stephen 

Fisk published a short proof of Chvätal's Theorem in 1978 (a full discussion can be found in 

[O'Rourke, 1994]). This geometric problem was extended to encompass the problem of moving a 

point-sized object around a two-dimensional environment. We take for granted the processing speeds 

available to us today, but this was a severe limitation on what could be achieved at that time. The 

problem of moving an object around an environment originally split into two main areas of research: 
for a priori known, and a priori unknown environments. For unknown environments, exhaustive ex- 

ploration algorithms were developed where each portion of the environment was necessarily visited 
in order to build up information of what obstacles existed. The sensors used on mobile robots at 

that time were mainly tactile sensors, which only allow an obstacle to be detected when the robot 

collides with it. Extensive studies have been performed about the problem of moving a robot through 

environments that are initially fully known. Such optimal methods to move a robot from a starting 

position to an identified target position using say shortest route, or minimum number of steps are 
discussed in section 1.1.1. A basic extension to these problems take the size and shape of the robot 
into account, and solutions can still be found geometrically. 

As mobile robots became more affordable and widely available, the research area has developed for a 

mobile platform capable of interacting with a real-world environment. This opened up a new area of 

research into the analysis of the errors encountered when dealing with real world situations. Errors 
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in the positions of obstacles, and in the position of the robot as it moves, were found to be related, 
[Ayache and Faugeras, 1989], and could be constructively used to reduce the error in the information 

of not only the positions of the obstacles in the scene but the position of the robot in relation to them. 

Before the processing power of computers on-board a robot platform became more powerful in terms 

of processing speed, the sensor data captured by the robot's sensors would be stored and processed 

after the end of the acquisition stage. Nowadays the processing of the data and its interpretation can 
be done during the acquisition stages, and algorithms to simultaneously map the environment and 

correct for the position of the robot (simultaneous localisation and mapping, SLAM) have become 

a large area for research to this day (a survey of current approaches is presented by [Thrun, 2002]). 

The ability for a robot to incrementally build a map of its environment also allows decisions to be 

made about where the robot should move to next, based on current world information. This is an 

essential part of a system for autonomous exploration in unknown environments. 

[Brooks, 1991] questioned the need for a representation of the information acquired from the scene, 

and proposed that by separating the goal of a system from the lower level procedures, such as obstacle 

avoidance, a simple yet intelligent system can be acheived. Brooks discussed the use of implicit 

versus explicit knowledge (where explicit means to represent the information in a specific form and 
implicit is to represent information in an abstract form, where the information is learnt without a 
known structure). 

The state of the art techniques used for the interim stages of robot exploration are discussed below. 

The early work of navigation in a priori known and unknown terrains is considered first, followed 

by sensor placement strategies and behaviour based approaches to systems that have the ability to 

explore environments. The problem of SLAM is discussed followed by currently used exploration 
techniques. The problem addressed in this thesis will then be considered followed by the research 

approach taken to solve this problem; followed by an outline of the thesis layout along with terms 

that are frequently used throughout this work. 

1.1.1 Navigation in known terrains 

In an environment where the positions of obstacles in relation to the position of the robot are 
known, several methods to find a safe path for a robot to safely traverse, or navigate, have been 

proposed. One method is a Voronoi Graph, a connected line graph where each line is defined by the 

equal distances to the nearest obstacles, as used by [Kirkpatrick, 1979], [O'Dunlaing and Yap, 1985] 

and [Nagatini and Choset, 1999]. The safe path for the robot to take between obstacles is chosen 
from the Voronoi graph and the derived path is piecewise linear. As a complement to the Voronoi 

graph, [Guibas and Stolfi, 19851 use a Delaunay triangulation of the obstacle map and restrict the 

robot motion to the direct paths between triangle centres. This has a similar effect to the Voronoi 

graph by keeping the robot as far away from the obstacles as possible. [Briggs and Donald, 2000], 
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[Oommen et al., 1987] and [Rao et al., 1991 ] calculate the visibility of regions within the scene to 

construct a visibility graph (where respective graph points are visible from each other). These meth- 

ods all reduce the calculation of the "best" path to a search algorithm such as depth-first, best first, 

A* (see [Russell and Norvig, 1995] for a description of these search algorithms), and more recently a 

dynamic-A* algorithm, D* [Stentz, 1995]. The above provide piecewise linear paths for navigation. 

To increase the overall speed of navigating through an environment, [Connolly et al., 1990] intro- 

duce the use of harmonic functionsl to plan smooth paths, whereas [Khatib, 1986] discuss a local 

approach to using potential fields. Although it is possible to plan smooth paths through known obsta- 

cles, with the overall effect to increase the speed and improve the fluidity of movement through the 

scene, the more simple piecewise approach is adopted in the work presented in this thesis. This basic 

approach allows the evaluation of the environment to occur at the end of each piecewise motion, 

without consideration for the overall direction of the navigation. 

Where Voronoi graphs are used for path-planning, the robot is kept as far away from obstacles as 

possible, therefore the risk of hitting an obstacle is minimised in the presence of errors in the obstacle 

position. Adding an element of uncertainty into the environment develops the path-planning problem 

from an off-line search problem to a problem that must be solved during the path-planning operation, 

since it cannot be assumed that the obstacles are in exactly the same position. 

A basic extension to the point-sized navigation problems described above take the size and shape 

of the robot into account. The solution to these problems can still be found geometrically, and was 

studied by [Lozano-Pdrez, 1983] who, in order to find a safe route for a given shape in a given 

environment, create an N-dimensional grid, the configuration space, for the N degrees of freedom, to 

navigate from the start to a given target position. [Brooks, 1983] considers the alternative approach 
by considering the space between the obstacles in a free-space approach. 

The above algorithms, although useful for navigation through a terrain, do not answer the question 

of how to explore an unknown scene. The voronoi diagram approach and its partner, the triangular 

mesh, and its use for coding information gathered from the scene is discussed in Chapter 4. 

1.1.2 Navigation in unknown terrains 

With no a priori information of the environment, several researchers have considered the simpler 

problem of a terrain with only polygonal obstacles that can be fully circumnavigated. Two basic al- 

gorithms are presented by [Lumelsky and Stepanov, 1987] for a robot with a tactile sensor, to move 
from a start position towards a target position. In the event of hitting an obstacle, the robot circum- 

navigates it and then once past it, continues to seek its target. 

This algorithm however, requires the robot to hit an obstacle in order to detect it. This is not al- 

ways desirable. Other methods that do not require the robot to hit anything have been proposed. 

[Rao and Iyengar, 1990] propose a method which uses a visibility graph in two and three dimensions 

'Solutions to Laplace's equations are harmonic functions. 
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to learn the environment in order to use sensorless navigation, as in a priori known environments. 
[Oommen et al., 1987] incrementally learns the visibility graph by choosing an arbitrary target po- 

sition on successive moves. On reaching the edge of an obstacle, the robot makes an exploratory 

trip to either end of the edge and at each vertex gathers information of other obstacles. The robot 

then circumnavigates the obstacles until it can leave it whilst heading towards the destination. This 

solution is not optimal since the exploratory trips may not yield any new information, however the 

idea does move away from the traditional target-seeking navigation. 

To increase the amount of new information learnt by exploratory motion, partial maps can be in- 

crementally learnt, as shown by [Foux et al., 1993] using a 360° laser range finder to provide the 

distance information to the nearest obstacle. [Nagatini and Choset, 1999] use 16 sonar range sensors 

to construct a Voronoi graph of the local area and then use this graph to sequentially explore all nodes 
in the graph. Rather than using retracted graphs e. g. Voronoi graph, [Lorigo et al., 1997] use the orig- 
inal free space with the `ground plane constraint' and uses ̀ repellent-functions' to move away from 

all obstacles in the current field of view, thus reducing the likelihood of hitting an obstacle. 

Although these navigation algorithms do solve the problem of navigating a robot through an un- 
known environment, they are all oriented towards exhaustive or target-oriented exploration. None 

are optimal for applications such as reconstruction and recognition of objects or exploration of an 

environment. Since a `best' path through the terrain may not acquire the `best' images for successful 

object reconstruction, these algorithms are not suited to navigation for global map building, although 

they could be useful for local navigation. When navigating through an environment is not the only 

purpose of the system, but also required is to expand the amount of information of the surrounding 

obstacles, methods to calculate a position for the next sensor position are useful. 

1.1.3 Sensor placement 

Sensor placement algorithms for various tasks such as object identification and reconstruction were 
developed during the 1990s. [Arbel and Ferne, 1999] discuss an off-line approach to identify objects, 

where the placement of the sensor is calculated to minimise the view ambiguity using entropy maps 
(which encodes the discriminating properties of an object as a function of the viewing position). 
This method is computationally expensive and could not be run in real-time. [Lacroix et al., 1992] 

incorporate visibility constraints and a time cost into their `best' orientation calculation of the object 

to minimise the ambiguity from an object's aspect table, in which views of the object from 236 

directions at 20 distances are stored. This aspect table is used to determine the next-best-view, 
however this method suffered from a large set-up time. [Cameron and Durrant-Whyte, 1990] also 

minimise the ambiguity of the identification of an object by generating probabilistic membership 
functions from acquired data of objects through sensor locations. The greatest difference between 

object membership is then represented as a utility function which is maximised (with constraints such 

as field of view) to provide the 'optimal' sensor location. These algorithms would be useful if the 

characteristics of obstacles in the environments are known, but is not so useful when the appearance 
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of obstacles in the environment are not known prior to exploration, as is the case considered in this 

thesis. 

For the purpose of exploration, a good sensor placement would be one which allows a large amount of 

new data to be acquired. Without knowing where this data will be this is difficult to calculate. Rather 

than just constraining the sensor placement e. g. with field of view, more than one set of acquired 

data could be fused to reduce the uncertainty of a choice, or to weight the decision of a direction to 

move. Several proposals for `optimal' sensor placement use more than one set of acquired data and 

the following describes how they can be fused together to provide a single output decision. 

[Briggs and Donald, 2000], and [Lorigo et al., 1997] have both used more than one set of data to 

make decisions. An experimental study of voting schemes by [Pirjanian et al., 1997] with various 

inputs demonstrate how with several modules all working towards the same goal, e. g. to track a 

moving object, with the same acquired data, modules that fail can be compensated for by other 

modules. This allows the failed module another opportunity to e. g. find the object in the scene. 

Later, [Pirjanian and Christensen, 1997] show how simple functions (fast forward, move to target, 

avoid obstacle) can be combined by weighting or lexicographic2 methods, to allow the robot to 

make a decision of where to move next. A behaviour based outdoor navigation example is given by 

[Langer et al., 1994] who use a local map of the robot to explore a terrain. The behaviours of the 

system (obstacle avoidance, target seeking, drive straight, maintain turn) are fused by an arbiter that 

weights votes (a set of pre-defined are directions for motion) from each behaviour. [Brooks, 1986] 

describes a layered behavioural approach, from basic object avoidance to reasoning about the be- 

haviour of objects using a priority measure to influence the overall system behaviour. 

In order to review the knowledge of the system for navigation, sensor placement, etc. the positions 

of obstacle features in relation to the position of the robot need to be stored. Errors in the position of 

the sensors at the obstacle detection stage lead to errors in the global position of scene features. By 

simultaneously updating the position of the robot and adding information of obstacle features in the 

a global map these errors can be reduced. 

1.1.4 Simultaneous localisation and mapping, SLAM 

Also known as concurrent mapping and localisation, CML, research in this area demonstrates the 

requirement for positions of features in the scene to be mapped at the same time as calculating the 

position of the robot in relation to these features. In the earlier stages of mapping algorithms using 

sonar and vision sensors on large experimental areas, it was noticed that long straight walls were 

not being stored as such. As a mobile robot moves, errors in the odometry information arising from 

wheel slippage, non-uniform floor surface, and poorly calibrated tick-information causes the posi- 
tion information provided by the odometry to increasingly deviate from its true position. Features 

2Lexicographic fusion ranks the importance of the objective and eliminates entries until a unique solution exists or all 
problems are solved 
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detected from these positions would be built into the map relative to the position of the robot, hence 

the positions of features would also drift away from their true position. Algorithms have been devel- 

oped to correct for this motion drift such as [Davison and Murray, 2002] and [Newman et al., 2003] 

who store correlations between each feature and robot position. 

The above algorithms map features in the scene that are useful to the localisation calculation, e. g. 

recognisable from different sensor placements, distinguishable from other close-by obstacle features. 

When all obstacles around the robot need to be mapped, those features which are useful for localisa- 

tion should be labelled as such, so as not to reduce the impact of the error reduction by using features 

that are mainly useful to the robot for obstacle avoidance. 

1.1.5 Exploration 

The incremental process of building maps and reacting to changes in the environment enables the 

possibility for the robot to explore its environment on-board in real-time. Algorithms to traverse an 

environment which is incrementally built as the robot moves have been developed from simple me- 

thodical and thorough methods, to those which are slightly more optimal. Examples of the methodi- 

cal methods include the popular Lawnmower algorithm discussed by [Arkin et al., 1993]. Other sim- 
ilar algorithms, discussed by [Sim and Dudek, 2003], include the seed-spreader and random walks. 
An example of a more optimal approach is the octree method described by [Connolly, 1985]. This 

method hierarchically splits the area around an object into regions in order to ensure all of the object 
has been viewed. 

A non-exhaustive exploration algorithm was developed by [Grabowski et al., 2003] for which an Oc- 

cupancy grid of the seen areas are stored, where the boundary between the known and unknown 

areas forms a frontier for the exploration algorithm to key into. [Yamauchi, 1997] also considers 

these frontiers as a basis for exploration which does offer some solution of how to expand the knowl- 

edge of the environment but does not cover the problem of which frontier to choose when more 

than one option is available (however [Youngblood et al., 2000] selects frontiers by moving the robot 
in increasing sized concentric circles until all frontiers are removed). An occlusion boundary is 

used by [Kutulakos et al., 1994a] to incrementally build models by purposively rotating the object 
(on a turntable) to allow previously unseen areas to come into view, or by arbitrarily adjusting the 

viewpoint by a small amount to recover the shape information, as in [Kutulakos and Dyer, 1994]. 

[Kutulakos et al., 1994b] also showed how to incrementally explore an unknown object with either a 
laser or a camera. The point on the object to view was either the occlusion boundary or the visible 

rim for the range sensor and camera respectively. With larger scenes where the sensor must move 
between objects, or when the scene is too large to be placed on a turntable, these algorithms cannot 
be applied directly to larger scenes. 

Other methods to expand the knowledge of the environment include wall-following, for example 
[Lee and Recce, 1994], where sonar sensor readings are used to follow the wall of an indoor envi- 

ronment whilst building a map. [Althaus and Christensen, 2003] describes a method for domestic 



$ Chapter 1. Introduction 

robots, where the robot follows a human operator around the environment whilst building a map. 
Another strategy is for the operator to specify a set of way-markers or landmarks for the robot to navi- 

gate between, e. g. [Deng et al., 1996], [Lazanas and Latombe, 1992]. [Cartwright and Collett, 1983] 

discussed the navigating behaviours of bees. In their seminal work, they show how bees learn land- 

marks by storing an unprocessed two-dimensional snapshot of the current location which is matched 

to stored snapshot landmarks. The difference between the current snapshot and stored snapshots 
drive the bee toward the right location. 

Where the size or accessibility of the scene is not known, and information of only the local envi- 

ronment has been gathered, the question for an exploration algorithm is not only "what should I do 

next? ", but "what then? ". When the answer to the second question depends so greatly upon the out- 

come of the first, no simple exhaustive exploration or information-decision algorithm can suffice. In 

addition to this, when faced with many options of next potential moves, how can it be determined 

which move may yield the highest reward: to discover new unseen areas yet to be explored. 

1.2 Problem Statement 

Several SLAM algorithms exist that can build up a map of the environment which the robot can then 

use to correct its position within the map. However, the map built only contains key world feature 

elements that the robot will find useful to correct its position, and not necessarily the positions of 

obstacles in the scene. Several algorithms exist that can build up a model of the environment from 

controlled motion of a camera, e. g. on a mobile robot. Motion models for traversing known or 

unknown environments are usually destination driven, where a specific target location exists. The 

localisation problem is one which must be dealt with in order for the map not to drift and bend. Map 

building is necessary so that the robot knows where it is, where it has been, and what it has seen, in 

order to anticipate obstacles, should it need to traverse the area again. 

Although algorithms exist to map a priori unknown scenes, none are capable of environment map- 

ping without either the aid of a human operator at some point during the execution phase, or those 

that randomly visit different or already visited areas of the scene. Some exploration algorithms ex- 
ist to methodically cover the entire area. The problem of exploring an area in an optimal way and 
building an accurate map has still not been solved. To operate autonomously, an algorithm needs to 
decide where the sensor can and should move next, for which sensor position planning can be used. 
Techniques have been developed for known objects, or unknown objects of a limited size. Where the 

scene is not a priori known, or the sensor must move between the objects to view the area entirely 
these techniques can not be applied directly. 
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1.3 Aim 

The aim of the research presented in this thesis is to develop an exploration algorithm to build up 
information about an environment which will enable a mobile agent to autonomously move around 

an a priori unknown environment using a more intelligent approach. 

Whilst exploring an environment, some method of keeping track of what has been detected by the 

robot's input system will be required. Several methods exist to provide information about the world 

around us from the perspective of a camera. Many of these techniques are run off-line, after the cam- 

era has left the filming arena. However, for a robot to explore an environment without unnecessarily 

repeating the areas it visits, some form of map must be built as the exploration continues, in real-time 

and at run-time. 

As the map is incrementally built, the robot must be able to make a decision on its next motion 

command. By analysing the current knowledge of the world, for example which obstacles and areas 

have been seen and which obstacles and area should be viewed next, an exploration algorithm capable 

of visiting the majority of the scene area and viewing the majority of obstacles in the scene will 
be developed. A sensor placement strategy which allows an optimum amount of information to be 

gathered from a well chosen position would be advantageous to reduce the number of sensor locations 

to explore the scene. 

In summary, the following will be developed: 

1. An exploration algorithm which maximises the improvement in knowledge of the environment. 

2. An optimal strategy for the next-best-viewpoint calculation. 

3. A map building algorithm able to store information about the environment to provide the ex- 
ploration algorithm the information it requires using vision. 

1.4 Thesis Overview 

To achieve the aim of developing a mobile robot system to autonomously explore its environment, 

a modular framework has been developed and the layout of the system is shown in Figure 1.1. The 

robot platform for which this framework has been developed for, is fitted with a single camera, on- 
board processing capabilities and basic movement software. The robot platform is discussed in more 
detail in Section 2.2. Figure 1.1 describes how features extracted from each image are used to build 

up a map of the world. This map, along with a current image, is used to re-calculate the position 

of the robot. The built map is evaluated to retrieve information about the scene obstacles which are 

used to select the next best viewpoint for a given obstacle. The choice of obstacle is based on a 

view-improvement calculation to enable autonomous exploration. When the robot moves to the new 

position, new images are grabbed and the process repeats. A more detailed explanation of the system 
follows. 
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Figure 1.1: Autonomous Exploration System Diagram. 

Scenes considered in this thesis consist of obstacles gathered from office-type environments, which 

are generally made up of box-like objects e. g. filing cabinets, bookshelves, boxes etc. A further 

simplification has been assumed: that the robot will only travel on a two-dimensional flat surface. 

Although this does reduce the direct usability of the system in other environments, by simplifying 

the scene feature extraction to a basic level, it allows the basic information about the location of 

obstacles to be attained. Other, perhaps more sophisticated, techniques to extract the location of 

obstacles could be used in place of this first module, whether they use vision or other sensors. The 

key to the remaining part of the system is that obstacle location information is acquired from the 

scene and stored for later interpretation and use. 

Input data consists of colour Red-Green-Blue (RGB) image sequences and odometry information 

provided by the tick-encoders on the robot wheels as the robot travels through the scene. Features 

that can be easily extracted from images gathered in these scenes, which are the key element to 

these obstacle's representation in 2D, are the vertical edges found on the exterior of the objects. 
The input to the system framework is therefore based on vertical edges that define potential obstacle 
boundaries that are detected in each image. Being stable image features they reduce the processing 

of information and their position can be accurately computed from the image. The position of these 

edges in the image are projected from the camera centre into the robot's world, which is incrementally 

built as the robot moves. The intersection of two projection lines from a feature in two images is 

defined as the position of this feature in the world. The problem of finding corresponding features in 

two images is well known, and is overcome in this system by gathering evidence of feature positions 
in an accumulator grid that produces robust information about object boundary locations of potential 

obstacles. During the map building process, the world map features are used to estimate the position 

and orientation (pose) of the robot. An initial estimate of the position is obtained from a simple 

model of the robots motion using the odometry information. The discrepancy between detected 

image features and the projection of existing world map features onto the image is then minimised 
to provide a better estimate of the robot's position. 
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Obstacle locations that are detected many times are extracted from the accumulator grid and stored 
in a world map. This map is maintained in a graph where nodes represent the scene features and 
links between these features define barriers or obstacles. Initially, obstacles are formed on all links 

between the nodes in the map. Chapter 2 introduces the framework for building the map from the 

acquisition of each image. The feature extraction is discussed and the transformation from one- 
dimensional image features to a two-dimensional world frame is given. Preliminary results are given 

to establish the process of building the map. 

From the world map, positions of obstacle boundaries are used as input to a next-best-viewpoint 

planning strategy. This algorithm allows the robot to plan its next best view-point given the current 
knowledge of the surrounding area whilst avoiding known obstacles. Using a set distance to travel, 

the optimal next position is calculated such that the viewing angle at the hypothesised position will 
be maximised. Chapter 3 introduces the next-best-viewpoint calculation which is developed from the 

case with one corner to view around, one opening to view through, to N openings to view. Errors 

in the positions of the corners and the robot are considered. An example exploration of a synthetic 

scene using a human operator's selection of the openings to view is discussed. 

Chapter 4 addresses the question of how to choose an opening by evaluating the world map. Can- 

didate openings are selected from the current list of obstacles. Given this set of obstacles and their 

corresponding next-best-viewpoints, the improvement that would be made to the world map from 

data gathered at hypothesised positions is used to select which candidate to view. Using successive 

obstacle selections, a set of algorithms to explore an unknown scene is presented. Three improve- 

ment measures are considered and example explorations, within a synthetic environment, for each of 

the measures are considered. The synthetic scene map used in this and the following chapter is used 
in a similar way to a look-up table, where the extremal boundaries of obstacles which are visible from 

a given viewpoint (taking occlusions by other obstacles into account) are added to the world map. 
This replaces the image acquisition and processing system that would provide the same information 

after the back-projection calculation, accumulator grid and world feature selection described above. 

By merging the view-improvement measures together with an obstacle importance measure which 

considers areas that are new to the world map more important than the areas that have already been 

explored (to instill a pioneering aspect to the exploration), Chapter 5 considers the synthetic scene 

exploration of three environments. Each of these environments highlights the use of the exploration 

algorithm and demonstrates the ability of the view-improvement approach to enable successful au- 

tonomous exploration. 

1.5 Contributions to Research Field 

A unique exploration algorithm has been developed which incorporates knowledge of the environ- 

ment in a targeted way to develop a more intelligent approach. This algorithm has been applied to 

the motion of an autonomous agent discovering an initially unknown environment and building an 
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internal map as it traverses the area. This approach is not target driven, rather seeking new areas to 

view and explore. 

In the development of this strategy, a novel planning algorithm which provides for optimal viewing 

angles and maximises the opportunity to discover uncharted areas during the exploration has been 

developed. 

As information is collected, an internal map is constructed based upon information accumulated in 

an occupancy grid based upon visual data. The novelty of this approach is that features of high 

confidence are extracted from this grid and this greatly reduces the computational overhead when 

querying the map. Errors in the locations of significant features are shown to reduce over time. 

1.6 Glossary of Terms and Abbreviations 

Exploration To visit areas of the scene that are not well known. 

Autonomous No input from a human operator during program execution. 

Navigation To get from a start position to a given target position. 

World Map Collection of world feature points which are connected within a triangular mesh. 

World Feature Point A reconstructed scene feature, stored in the world map. 

World Element A world feature point, stored with an estimate of the error on its position, a confi- 
dence of the feature existing (C f), and a list of camera positions from which is was viewed. 

Image Feature Point An extracted feature point on an image. 

Obstacle A non-traversable barrier to the robot (e. g. a cardboard box); in this work, an obstacle is 

detected in an image by the vertical edges on the obstacles boundary (e. g. the corners of the 

cardboard box). 

Opening A traversable virtual barrier (e. g. a doorway); a gap between obstacles. 

WCF - World Co-ordinate Frame. 
P- position of camera in the WCF 

op - error on the camera position P 

a- rotation of the camera, WCF, with respect to the x-axis 

p- position of world element in the WCF 

p' - image feature point in the camera's image co-ordinate frame 

vp - error on the image feature position p' 
M- linear camera model projection matrix 
fi - rotation matrix of camera position 
T- translation matrix of camera position (WCF) 
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K- camera's intrinsic paramters 
C,,,. - confidence of the match between an image feature detected in two images 

g- image pixel gradient value (RGB) 

CJ - confidence of the existence of a world feature 
is - back-projection line from the image feature to the world feature 

C- position of an obstacle corner feature (WCF) 

0- angle to rotate to move to the next-best-viewing position 

ve - error on the 0 calculation 

r- distance to move to the next-best-viewing position 
R- distance from current robot position P to corner position C 

y- angle between the horizontal x-axis and the obstacle corner C (WCF) 
0- angle between the current position, the corner and the next-best-viewing position 

v- viewing angle from the next-best-viewing position to the corner in question 
Jl - utility function for the next-best-viewing position for one corner 
J2 - utility function for the next-best-viewing position for one opening 
Co - confidence of the existence of an obstacle in the world map 

w- viewline vector from the camera to a position in the world map; used to specify the 

direction from the camera position to obstacle- or area-view histogram cells 
Io - the improvement in the view of an obstacle from a potential next view position com- 

pared to previous viewing positions of the obstacle 
Ia, - the improvement in the view of the area from a potential next view position compared 

to previous viewing positions of the area 
Ir - similarity in a potential next view position compared to previous viewing positions 
O1 - importance measure of an obstacle 
IJ - joint improvement measure; a combination of Io, Ia,, Ip and Oi 
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This chapter introduces the method used for the construction of a two-dimensional map of scene 

obstacles. Position information of obstacles are inferred from camera data acquired from a mobile 

robot, and a robust reconstruction of the locations of scene obstacles using an accumulator grid 

is generated. The novelty of this method lies in the probabilistic approach to adding data into an 

accumulator and the extraction of confident features for storage in a world map. The main goal 

is to provide a representation of the obstacles in the environment to enable interpretation of the 

reconstructed world for exploration. 

2.1 Introduction 

In order for a mobile robot system to move within an environment, the positions of obstacles that 

restrict the motion of the robot need to be known. The construction of obstacle maps are therefore 

necessary when more than just the current local obstacle locations are needed, such as the case for 

reactive systems. Map building is approached in many ways depending on the source of data and the 

requirement of the maps usage once built. 

15 
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Sensors to acquire data from a scene are grouped into two categories, active and passive. Passive sen- 

sors (e. g. vision or infra-red cameras) rely on the environment to provide a medium for observation, 

whereas active sensors (usually depth sensors e. g. laser or sonar range scanners) emits energy into the 

environment, and by observation or timing measurements, infer scene structure. The readings taken 
from time-of-flight scanners can be prone to errors because there is usually no verification of whether 
the received signal is the same as the signal sent. Repeating sensor readings and pulsed chirping can 

combat this problem. These sensors, however, give only the depth and direction information of ob- 

stacles in the scene. Vision systems can provide more information such as the position of edge data 

and colour. In this chapter, the data source for the map building process are colour images, captured 
from a single camera on-board the mobile robot described below. 

Vertical edges, which are a boundary between two regions with relatively distinct colour- or gray- 
level values can be extracted from an image using simple edge detection techniques. A standard 

approach is to convolve the image with a small mask to numerically estimate the gradient of the pixel 
values across the image. The Sobel and Canny methods ([Petrou and Bosdogianni, 1999], p306) 
are examples of widely used edge detectors. These methods usually incorporate a smoothing stage 
and use a non-maxima suppression ([Faugeras, 1993], p112) post-processing stage after the gradient 
calculation in order to reduce the effect of noise. Maxima in the calculated gradient values determine 

the pixel position of edge features. 

Given the pixel position of obstacle boundaries, the position of the corresponding world features 

can be estimated using a series of transformations that model the camera and its position in the 

world. A camera model defines how a 3D feature in the scene is mapped onto its respective 2D 
feature in the image. Several camera models have been proposed in the literature, from standard 
projective models e. g. [Wan and Xu, 1996], and extensions to the static model for zoom lenses e. g. 
[Willson and Shafer, 1993] and outdoor systems e. g. [Collins and Tsin, 1998]. A good summary of 
widely used camera models and calibration techniques can be found in [Lewin et al., 1998]. The 
inverse of these transformations is used to calculate the projected line that connects both the image 
feature and the scene feature. The intersection of two projected lines of the same scene features from 
different camera positions defines the location of that feature in the scene. The problem of finding the 
same scene feature in pairs of images is a well researched problem in the stereo-vision community. 
Techniques including epipolar geometry and the tri-focal tensor, [Faugeras, 1993], which enables 
good matches to be found, or wrong matches to be excluded from consideration, are well used. The 

main advantage of using the epipolar constraint is that it limits the location of corresponding edge 
matches. 

Ideally the intersection of two projected lines provides an exact position for the obstacle location in 
the scene. However, errors in the estimation of the camera position, image discretisation effects and 
incorrect matching of features between two images mean that this exact ideal can never be achieved. 
The performance of vision systems can vary with changes in light conditions and with changes to 
the viewed object position and orientation. Repeating measurements of features in the scene can 
improve the accuracy of the reconstructed feature location by confirming information on the posi- 
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tion. The same feature being detected several times also increases the confidence that the feature 

match correctly represents a scene feature. This accuracy improvement and confidence enhance- 

ment can be achieved over time by accumulating the detected obstacle locations in a 2D grid where 

each cell represents an area in the scene. A common method used in sonar and laser systems is 

to store the information in a two-dimensional grid where each cell encodes the probability of the 

corresponding scene area being occupied by an obstacle. Such a data structure is called an Occu- 

pancy grid. This technique is used by [Borenstein and Koren, 1988], [Borenstein and Koren, 1989], 

[Borenstein and Koren, 1991], [Ulrich and Borenstein, 2000], and [Schiele and Crowley, 1994], to 

name a few. Each cell is initialised with a value of 0.5 to signify that there is an equal chance of 
the cell being occupied or empty. As data is added to the grid, this value increases when an obstacle 
is detected, or decreases if the cell is found empty. This works well for sonar and laser systems where 

a large amount of data from repeated readings are added into the grid. 

It is essential in exploration of an unknown environment that data is processed as it is received, since 

the navigation must be able to react to additions or alterations of the known parts of the environment. 
As new features are discovered they should be added into the description of the world, therefore an 
incremental algorithm is required. Previously viewed features should be updated when viewed again. 
The map will be analysed by the algorithms discussed in future chapters to facilitate exploration and 

obstacle avoidance. 

The robot mapping problem also incorporates the problem relating to the precision to which the 

position of the robot is known at the time of adding data into the map. If the position of the robot 
is accurately known, then the main consideration of error is on the positions of the features being 

mapped. Odometry information calculated from the robot's wheel encoders provides an estimate of 
how the robot has moved, which can be used to estimate the global pose of the robot. However the 

odometry information has an error associated with it, proportional to the distance that the robot moves 

and rotates. The error on the estimated position will therefore increase over time, corresponding to a 
drift in the robot's position. This drift in position in turn means the positions of features added to the 

map will increasingly shift from their true position. 

In order to correct for the drift in the robot's position, an area of research referred to as simultaneous 
localisation and mapping, SLAM, or continuous mapping and localisation, CML, has received much 

recent attention. In the literature, the most popular approach undertaken to solve this SLAM problem 
is a method which enables the calculation of correlations between each feature in the map and the 

current robot position. As the robot moves and gathers more data, the state of the world is updated 

along with the correlation between the feature positions. This is implemented in a Kalman Filter, a 

recursive process of prediction-correction (see [Bar-Shalom and Li, 1993], Chapter 5) using a model 
of the camera motion to predict its next position, and the measurements from the world feature lo- 

cations to update and correct this prediction. A comparison of the various probabilistic techniques 

of robot mapping, covering the Kalman Filter and Occupancy grids, can be found in [Thrun, 2002]. 
[Dissanayake et al., 2001] use a Kalman Filter with a robot and all feature positions in the state vec- 
tor. A motion model of their long wheel-base van is used to predict the van position, and shows that 
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the correlation between features in the environment is of paramount importance in solving the SLAM 

problem. [Davison and Murray, 2002], [Folkesson and Christensen, 2003], [Laubach et al., 1999], 

[Newman et al., 2003], to name but a few, focus on the SLAM/CML problem in this way. The 
SLAM problem is not yet fully solved and is still an ongoing research area. 

Other optimization tools can be used to match the robot's current findings to that which best match 
the position of the robot in the known world. This is used by [Yamauchi et al., 1998] with an Oc- 

cupancy grid approach. The position of the robot is calculated from the global world without an 
estimate of the current position. Their approach can work well in environments where different robot 
positions can be completely distinguishable from one another, but does not perform well in envi- 
ronments where many obstacles appear similar or patterns in obstacle configurations are detected. 
This global method is useful if the robot moves a large distance between position correction calcula- 
tions. However, it may be computationally quicker if there already exists an estimate of the position 
which only needs to be improved, since just a local (rather than global) search could be considered. 
[Duckett and Nehmzow, 1997] also use an Occupancy grid for localisation, where initial guesses of 
locations are calculated followed by arbitrary moves in order to limit the positions that are valid. 

As the robot moves and position errors are accumulated, the matching of image features to world 
features is key to the position estimation method presented in this chapter. Subsequent chapters 
discuss the need to view new areas of the environment in order to explore the uncharted areas and 
expand the information of the scene obstacle locations. It is of course necessary to maintain visible 
confirmation of known features for the position estimation to calculate a good position estimate. The 
trade-off between maintaining an accurate estimate of the current position and viewing new areas 
is not established in this work, but must be considered before the system can be used in real-world 
situations. 

In this chapter, the problem of incrementally building a map of obstacles in a scene is addressed. 
Initially a tele-operated robot is considered, but this is not central to the method, and all the tech- 
niques are equally applicable to an autonomous vehicle. The camera model is considered first, and 
it is shown how the inverse of the model is used along with a probabilistic error model to insert 
the location of obstacles into an accumulator. To validate the map building process, results of an 
incrementally built map are shown. These results demonstrate the possibilities of building human- 

and machine-interpretable static obstacle maps. The results show a reduction in errors on feature 

positions over time. The navigation algorithms that completely replace the operator are presented in 

subsequent chapters. A calculation for the position of the camera is then presented. This method 
triangulates the camera position from positions of three image features on the current image to their 
corresponding world map feature positions. 
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2.2 Mobile Robot Testbed 

The algorithms described in this chapter are tested with a Pioneer P2-DX robot from ActivMe- 

dia [http: //www. activmedia. com, 2000]. The robot is circular with 50 cm radius and is'40 cm high. 

Steering is by a two wheel differential motor, with an additional caster wheel to stabilise the base. 

The robot is fully, equipped with on-board processing, power supply, and a single colour RGB camera 

capable of pan-tilt-zoom (only the pan is used in this work)...., }'. 
.: rt 

Software libraries supplied with the robot enable the global position and orientation of the robot 
base to be inferred from the wheel tick encoders. Using the supplied software, the distance actually 

travelled per wheel tick is initially calibrated for the floor surface on which the robot is to be used. 
This reduces the error on this odometry information, however position estimation software is also 

needed to further improve the accuracy of the position; errors on the angle the base rotates has 

a greater effect on the global position error than translational errors, however the position error 

encountered on the trials carried out in this work did not dramatically effect the results. 

The robot base is equipped with on-board power supply, capable of powering the base, camera and 

on-board processing for more than an hour without needing to recharge. When the power is running 
low an alarm sounds, allowing the operator to pause the experiments and hot-swap batteries. 

2.3 Obstacle Detection 

An image is a rich source of data but its interpretation in terms of scene elements is complicated and 
difficult. The general scene interpretation problem has proven intractable despite nearly fifty years 

of intensive research. Therefore in order to progress exploration a restricted, but fairly common, 

sub-class of scenes which are representative of indoor, man-made office or laboratory environments 
is assumed. Typically these involve floors, which are level horizontal planes, and solid obstacles 

which are walls, doors, or office furniture. These objects are delineated by a plethora of straight hor- 

izontal or straight vertical edge structures. By restricting attention to these scenes enables the use of 

relatively simple feature extractors which can be implemented to achieve near real-time performance. 

Vertical edges in the local vicinity of the-robot define the location of obstacles that will immediately 

influence the path of the exploration. Other more distant vertical edges in an image will form ob- 

stacles in the global scene but do not affect the immediate path of the robot. In addition, errors on 

the location of reconstructed features increase as the feature's distance from the camera increases 

(discussed further in Section 2.5.1) and hence local edges provide the most accurate information. 

To reduce the computational overhead of finding all vertical edges in each image, only edges that 
intersect the central horizontal scan line are considered. Figure 2.1 is a typical office environment 

and Figure 2.2 is an example image acquired by the mobile robot's vision system. 

Vertical edges which are a boundary between two regions with relatively distinct colour- or gray- 
level values can be extracted from an image using simple edge detection techniques. A standard 
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Figure 2.1: Office scene set-up with Figure 2.2: Example image with horizontal scan line 

mobile robot and detected vertical edge features highlighted. 

approach is to convolve the image with a small mask to numerically estimate the gradient of the 

pixel values across the image. The mask of Figure 2.3 is an extension of the Sobel mask, see 

[Petrou and Bosdogianni, 19991, p296, for a derivation of the numbers in the mask. 

This vertical gradient mask is convolved with the central scan lines of each image. This provides a 

first-order edge-gradient value g at each pixel location, where g is the red-green-blue vector of the 

colour level derivative. Maxima in these calculated edge-gradients define candidate vertical obstacle 

boundaries. Using nonmaxima-suppression ([Faugeras, 1993]. pll2) any sub-maximal edges are 

ignored, providing sparse image data. The pixel position of obstacle boundaries in an image provides 

the direction information for each feature from the camera into the scene via a model of the camera. 

i 1 0 -1 -1 
2 2 0 -2 -2 
2 2 0 -2 -2 
2 2 0 -2 -2 

1 1 0 -1 -1 

Figure 2.3: Vertical gradient mask which is convolved with the central scan lines of each image to 

detect vertical edge features. 

The central horizontal scan line and the detected vertical edges are highlighted in Figure 2.2. In the 

majority of images acquired by the robot's camera, immediate obstacles to the robot can be found 

at this height in each image. In this work, only one of the interlaced fields and five scan lines are 

considered. 

2.4 Linear Camera Model 

A camera model defines the mapping of a scene feature onto its respective image feature. The vertical 

edges of obstacles in the scene are defined by their position in the horizontal scene plane (2D). Image 
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features are defined by their position in the horizontal image plane (1D) across the horizontal scan 
line. The camera model is therefore simplified from the standard three-dimensional scene frame with 
image feature positions in two dimensions, to a 2D scene frame with 1D image features. This is 

adequate for the system being presented here. 

pi 

Y 

Scene Plane x 

X; 

age Scan Line 

Figure 2.4: Plan view of the scene. Camera model to define the transformation of scene feature pi 
in (x, y) scene co-ordinate frame to the feature pi' on the Image Scan Line. The image feature pt' is 

defined as a number of pixels, Xi', from the image's principal point, Uo. f defines the focal length 

of the camera lens. The green circle in the Scene Plane depicts the robot position with offset camera; 

a is the camera angle. 

Figure 2.4 shows a two-dimensional plan view of a three-dimensional scene. The scene point is 

defined in homogeneous coordinates ([Gonzalez and Woods, 1992], p57) by pi = [xi, y,, 11T and is 

mapped onto the image point pig = [Xi/, 11 T by a projection M of the form 

Pi' a Mp; (2.1) 

Since any scene point along the line p; pi can be mapped onto the image point pj by the projection 
M, Mpi'is only proportional to pi. 

Motion of the camera is defined by a rotation matrix R and a translation T with respect to the scene 
(extrinsic parameters), defined in a right-handed co-ordinate frame where 

cosin 

a- cos a 
and T= 

tX 
(2.2) R= 

sa sin a ty 

where a is measured in the anti-clockwise direction from the x-axis, as shown in Figure 2.4. 

The projection M can be related to a model of the camera's intrinsic parameters K and the camera 
position and orientation by a series of linear transformations which, assuming no lens distortion, 
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define the camera model ([Gonzalez and Woods, 1992], pp56-68; [Faugeras, 1993], Chapter 3) 

M= K[RIT] (2.3) 

As well as external transformations, the camera model includes intrinsic parameters of the camera: 

the focal length f, the image coordinate of the principal point Uo, and the pixel size K. These 

intrinsic parameters are specific for a given camera, and change according to the camera lens and 

CCD (Charge Couple Device) array. These parameters are represented by the matrix K, where 

K= 
[Ku O0ý 

(2.4) 

which is simplified from three to just two unknown parameters, Ku f and Up. Estimates of these 

two parameters can be calculated by perfonning a calibration using known scene features and their 

corresponding image feature locations. 

2.4.1 Camera calibration 

A dual-plane calibration chart is used for the calibration to provide several 2D known scene features 

in the scene which can easily be detected and matched to their respective ID features in the image. 

To calculate the intrinsic parameters Ku f and UO, the following equation needs to be solved. 

1x 
u_ Ku f Uo sin a- cos a tx 

pit ) 25 
w01 cos a sin a ty 

y 
1 

Along the image scan line, each pixel feature position X', is calculated by 

Xf=w=U,, +KufAl (2.6) 

where A11 = X; sin a-Y cos a+t.,, and A2i = Xi cos a+Y sin a+t, and Ai = AN/AN 

For a fixed camera position, each image feature to scene feature match defines a row in a system of 

equations in the form 

1 Ai xi' 
Uo= 

1 An Xn 

(2.7) 

for n image-world feature matches, where Uo* and K* are the estimated values for Uo and Ku f 

respectively. 

Errors such as incorrect image to scene feature matches and inaccuracy in known scene feature 

locations (human operator using a tape measure) can lead to calculations of the two parameters K* 

and Uo* which are far from correct. These estimates are known as outliers. Such outliers affect the 
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mean value if they are considered in its calculation. A better estimate of the mean can be calculated 
by recognising these values as outliers and not including them in the mean value calculation. 

A fast and efficient tool, the mean-shift algorithm, can be used to calculate the robust mean of an 
N-dimensional problem. This algorithm is presented by [Comaniciu and Meer, 1999]. To simplify 

this algorithm, the values of Kj* and U0 are normalised to the same range of values so that they can 
be used as input for a two-dimensional mean-shift algorithm. The algorithm begins with a solution 
for Ku f and Uo being selected at random from the set of values calculated from equation [2.7]. The 

statistical mean is calculated for these selected values and all the other values for Kj f and Uo within 

a set distance from the selected point. By normalising the two values to the same range, the same 

maximum distance from the mean can be used for both values. This set distance is selected by the 

operator as a nominal value, and depends upon the required accuracy of the final mean value as well 

as the distribution of the points. A new hypothesised mean is "shifted" to that solution. The points 

that fall within the set distance are then used to calculate the next mean hypothesis. This is repeated 

until the mean value converges, as shown by [Comaniciu and Meer, 1997]. 

The intrinsic parameters can fluctuate as the camera lens temperature changes, which happens when 

the camera is first turned on. Once the lens of the camera has stabilised at room temperature the 

intrinsic parameters can be assumed constant. Here, it has been assumed that no lens distortion 

affects the linear camera model. This can hold for good quality camera lenses, but for cheaper lenses 

it will not be the case. The lens distortion affects the outer edges of the image more than the centre. 
In this work, the outer eight pixels (on each side of the image) are ignored. 

2.4.2 Back projection 

Once the intrinsic camera parameters are known the camera model is complete. Each image feature 

constrains the location of a scene feature to a 1D line in the 2D world plane from the camera centre 
through the world feature and beyond. The position of detected image features can therefore be 

projected from the camera centre to estimate the location of world features. 

This back-projection can be achieved by inverting the equations of image formation. According to 

equation [2.1], features in the 2D world can therefore be determined from image features by 

Pi a M-1Pi' (2.8) 

In order to obtain a practical realisation of this equation, the back-projection of pixels in world 

coordinates is considered. 

M-1 = [RTC - T]K-1 (2.9) 

This equation is simplified such that the world coordinates of pi' are given by [X 4T and the 

projection matrix only contains extrinsic parameters. Using pi' in a homogeneous form [Xi, 1)T 

P; oc [RTI - T] 
[i/Ku! ] (P1' 

- 
[Uo]) 

(2.10) 
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The proportionality is removed by including a scale factor c. This equation can be interpreted as a 

straight line passing through the camera centre and the position of the feature in the image and in the 

world. In practise the world coordinates of pi' cannot be calculated, but a point on the line can be 

determined. If c= : 3, for example, then 

pi 
II Iýj 

f 
Uo 

LI 

(Pi 

1 

This equation has the same geometric interpretation as equation [2.101 in that both define a back- 

projected line from the camera position through the point p;. 

This model is only applicable to the restricted motion of a camera moving along the horizontal ground 

plane, and considering features across only the central scan lines of each image. If this limitation 

was removed so that either the camera was able to move over non-level floors, or that the features can 
be detected across the entire image, more than just one dimension would need to be considered. i. e. 

the extrinsic camera parameters would have to be represented in three-dimensions. and the intrinsic 

camera parameters would have to be represented in two-dimensions. The simplification assumed 
here, however, is adequate for the environments considered in this thesis. 

2.5 Evidence Gathering and World Feature Detection 

The hack-projected line equations provide an exact algebraic solution to the direction of the feature 

position in the world. This ideal solution is not accurate because of two main error sources: the 

position of the cameras and the error in locating features in the image. 

A 

error in position 

ditümncr in colour 
gradient value 

a 

Figure 2.5: Two scene features A and B are detected at two camera locations a and h; intersections 

of the hack-projected lines that correctly define the feature locations A and B. and an incorrectly 

matched feature at C. 
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Consider the situation of Figure 2.5 in which two scene features A and B are detected in the images 

acquired at two camera positions a and b. The two back-projected lines from each camera intersect 

at four locations: at the correct locations of A and B (lines aA-bA and aB-bB respectively), and at 

two incorrect locations (lines aB-bA at C, and aA-bB which is out of the range of the figure). 
ts 

Each of these four intersections define potential obstacle locations in the world. The lighter shaded 

error ellipses in Figure 2.5 at A, B, and C indicate the size and shape of the error covariance estimate 

of these world feature positions. Since the magnitude of the position error may not be indicative 

of the correctness of the match, some other measure must be used to indicate the confidence of the 

match. In Section 2.3 the gradient of a pixel, g, was used to identify a vertical edge in an image. This 

information can be used here to measure the similarity of the detected edge features by calculating 

the magnitude of the distance between the two edge gradient vectors. The darker shaded circles in 

Figure 2.5 indicate the value of Igi - g1_1I for the hypothesised feature locations (A, B, and Q. To 

measure the confidence of the edge match between images i and i-1, the following is used. 

(2.12) Cm 
1+Igi-g1-1I 

As the RGB values of the two vertical edge gradients converge, the confidence of the feature match 

tends towards 1.0. This confidence measure reduces the impact of the feature location confidence 

calculated using the error model discussed below. A drawback of this approach however is that a low 

confidence weighting is given to the same obstacle boundary seen with very different backgrounds 

(since their edge gradient values would be very different). Another consideration is that lighting 

conditions may vary whilst image data is collected from the environment. Although this may change 

the effectiveness of a particular threshold for global feature extraction, the comparative measure of 

equation [2.12] is calculated with a short time difference and will therefore not be affected by changes 
in lighting conditions which vary over a large amount of time. 

As well as the locations of features found from incorrect feature matches, some vertical edge fea- 

tures, such as shadows, may be added into the world map alongside real obstacle features. To allow 

such transient artefacts to be distinguishable from stable real obstacles, points in the accumulator 

are labelled with a confidence value, Cf, that measures their certainty of being real scene obstacle 
features; Cj is calculated from the number of votes V accumulated for the scene feature and the 

number of times S that the relevant scene area is viewed. The values of S and V are accumulated 

throughout the robot's motion from each viewpoint. 

Cf=1- 72- (2.13) 

Figure 2.6 shows a plot of Cj against V and S where S>V. As the number of votes accumulated 
for a feature increases and S=V, which is true if the feature is detected at every opportunity, the 

confidence of Cf increases (as shown by the darkening colour of the figure along the line of S= V). 

This is important to note since a feature detected three times from three opportunities should not be 

considered as confident as a feature detected ten times from ten opportunities. V/S is the fraction 

of opportunities that the feature has been seen, but does not have the required properties of equation 
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Figure 2.6: Confidence measure of a feature existing in the scene, C f, from the number of votes V 

of the scene feature and the number of times S that the scene area is seen, where S>V. 

[2.13]. When V«S, the confidence value is negative (not plotted in the figure). A threshold of 

Cf >0 can be used to select features that should be inserted into the world map. When V=S=1. 

Cf =0 so the same threshold applies, since features detected once during a single view of the area 

should be ignored. 

2.5.1 Back-projected line error model 

The intersections of back-projection lines, as shown previously in Figure 2.5, indicate the approx- 

imate position of the feature in the world. By taking into account the errors on the position of the 

cameras and on the image feature locations, this approximate position can be better represented. The 

intersections of back-projection lines that estimate the position of features in the scene are accu- 

mulated in a two-dimensional grid to build up information of the feature locations over time. This 

two-dimensional grid represents the entire 2D area of the scene, such that each cell covers a specific 

region of the scene area. 

Figure 2.7 shows the situation of the two camera positions and one of the back-projection line in- 

tersections of Figure 2.5. An indication of the camera position error, up is shown in pink. running 

parallel to the back-projection line of camera b. An indication of the image feature position error. a, j 

is shown in red. 

The position error ellipse shown in Figure 2.7 shows an approximate area in which the position of 

the back-projected feature may exist. For clarity. errors from camera position a are not shown. Using 
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ti 
UP 

Figure 2.7: An indication of the error on the position of a back-projected feature that stem from 

errors on the camera positions and image feature positions; the position error of the robot op and 

angular error on the image feature position vi indicate the area in which the obstacle feature may 

exist. 

the information of both errors from both cameras, a distribution at the location of the reconstructed 

feature is added to the accumulator. This has the effect of spreading out the impact of a single cell 

being updated, and increasing the chance of scene feature position calculations from multiple views 

being accumulated in the same grid cell. 

The probabilistic evidence of a world feature existing at any location within the accumulator is cal- 

culated from the error distribution on the position and orientation of the back-projected lines that 

intersect at the location of the hypothesised world feature. Figure 2.8 describes the error distribution 

adopted for an image feature pi' from its corresponding back-projected line li. Within the region 

of the back-projection lines intersection shown in Figure 2.7, an estimate of the probability of the 

feature point existing at each accumulator cell centre p; is calculated. This calculation uses the point 

x (the foot of the normal vector between the cell centre pi, and the projected line l i) and lengths d1 

and d2, which are all calculated geometrically. Figure 2.8 shows one such example, where a possible 

pi is at the centre point of the shaded accumulator cell. 

cri, is the uncertainty in the position of the camera which can been estimated from a series of motion 

tests against ground-truth data, but should be taken from the estimate provided by the position esti- 

mation module discussed later in Section 2.7. a is the angular uncertainty of the detected feature 

in the image and, because the edge detection is not to sub-pixel accuracy, is taken to be the width of 

one pixel. The error on the camera angle will also effect the direction of the back-projection lines. 

This error should be added to the pixel position error Q, j. 

In Figure 2.8, the line [x, pti] is perpendicular to the back-projected line Ii. The error distribution a1 
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cri, 
ý 

Figure 2.8: Position error distribution being added into 2D accumulator for image point p, ' from 

camera position P along back-projection line I. The probability of the obstacle feature point existing 

at accumulator cell centre e. g. p;, is calculated using the lengths d1 and d9 (defined from : z) for each 

accumulator cell centre: the position error of the robot aj' and angular error on the image feature 

position a define the area of accumulator cells in which the obstacle feature. p;, may exist. 

of the line Ix, fir] can therefore he written as 

on - 
(d2 taii(Q i))l + Q2 1 (2.14) 

Assuming a Gaussian probability profile perpendicular to I;, the probability P(p; ) that the world 

feature exists at location p;, is given by 

dý 1 
P(I), ) 

I 
('a 

27 
11 2c. z (2.15) 

As the distance frone the camera to the feature point increases, the width of the error distribution on 

the line [x, p; ] increases. At the intersection of each pair of back-projected lines from two camera 

positions, as described in Figure 2.5, and to an area of 2. Fa, around the intersection, the probability 

P(pi) is calculated from the first back-projected line. This is multiplied with the probability P(J) 

for the 'matching' hack-projected line from the second camera position and added to the accumulator 

at each p;, weighted by the edge-gradient match confidence C,,, from equation [2.121. 

Each pair of hack-projected line distributions added to the accumulator potentially define the loca- 

tion of a world feature. Over time. the accumulated distributions of detected feature locations form 

peaks in the accumulator grid at the best position for the feature. A threshold is applied to the ac- 

cunmulator to extract these locations of peak values in the accumulated distributions after each set 

of information from a pair of images has been added. The peaks are extracted using a non-maxima 

suppression method (the same technique as was used to extract peaks from the edge gradient values 

in Section 2.3). The error covariance is estimated from the accumulated distributions. 
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2.5.2 Adding points to the world map 

Obstacle features extracted from the accumulator are added into the world map for analysis by the 

exploration algorithm described in future chapters. A feature extracted from the accumulator may 

already be represented by a feature in the world map. Some mechanism is needed to test whether 

an extracted peak represents a new obstacle feature or one that already exists in the world map. 
For a normal distribution, the Bhattacharyya distance (described in [Fukunaga, 1990], p99), from 

[Bhattacharyya, 1948] is given by 

IEI+E21 1 
(u2 - 1_11)T 

[21 2 E2j 
(P2 - /ti) +2 In -- 

2 (2.16) 8 IEiI I E21 

This distance is a measure of similarity of two normal distributions with mean positions p and /22 

and error covariances E1 and E2 respectively. The first term gives the class separability of the mean 
difference, while the second term gives the class separability due to the covariance difference. 

The maximum Bhattacharyya distance between a current peak and previously stored obstacle features 

is calculated, and if greater than a set threshold, the stored feature position and error covariance is 

updated (by multiplying the two probability density functions). This threshold is calculated as the 
Bhattacharyya distance of a typical world feature match for hand-matched features, and set after a 

series of test runs. 

2.6 Results 

Using the methods described in this chapter, an example image sequence acquired from the mobile 

robot described in Section 2.2 is considered. 

Prior to the experiment, the robot is given no information about the position, size or quantity of 

obstacles in the environment. In this experiment the accumulator cell size is set to 25mm x 25mm, 

whereas [Borenstein and Koren, 1989] use a 100mm x 100mm cell size for their Occupancy grid. 
Borenstein uses sonar for the input data for map building which is less accurate than vision senors 

and since only one cell is added to for each positive obstacle detection rather than a distribution of 

values across cells as in this work, a larger cell area is appropriate. A distance of 100mm is travelled 
between each image. 

Figure 2.9 shows `snapshots' of the obstacle position information after a number of frames. The left 

column shows the images acquired by the robot's on-board vision system. Highlighted on the images 

are the edges found by the vertical edge detector. 

Using the methods described earlier, each vertical edge is back-projected and line intersections incor- 

porating the error-model of Section 2.5.1 are added to the accumulator (shown in the centre column). 
The image edge features which have been accumulated and exceed the accumulator threshold and are 
therefore ready to be added into the world map are highlighted on the accumulator at each stage. The 
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world map of extracted scene features is shown in the right column. Extracted features are shown by 

a centre point and their computed covariance. The right column also shows in solid lines the ground 

truth map of the room's layout and the straight line motions that the robot makes. 

Subsequent accumulator states are shown along with the maps created after the peaks found in the 

grid are added into the map. The world feature positions are displayed by their error covariances 

(drawn to 2.5v to make them easily visible). The grey-level of these ellipses are graded according to 

Cf, the confidence that the feature is in the world. Darker ellipses indicate a higher confidence. 

At the start of the sequence, error distributions on the world feature positions are added to the ac- 

cumulator. A threshold is set to ensure that until enough evidence of a feature's presence is accu- 

mulated, then that feature's information is not added into the world map. This means that at the 

beginning of the map building process no information is transferred from the accumulator and added 

into the world map. This is a major strength of the Occupancy grid mechanism. It can be seen in each 

of the the grids of Figure 2.9 that spurious data is accumulated in the grid due to incorrect random 

feature associations. This is to be expected since all possible back-projected trajectory matches are 

added into the accumulator. However, it is not necessary to use computationally expensive matching 

procedures, since the accumulator grid only builds up strong peaks where features are consistently 

found. 

Figure 2.9(a) shows four correctly accumulated distributions, of which three have peaks highlighted. 

These three peaks are added into the world map. They are all new peaks since they are the first to be 

added into the world map. The fourth accumulated distribution, the near corner of the drawers, does 

not have a peak high enough to pass the threshold so is not added into the world map at this stage. 

In 2.9(b) the near drawer corner feature point has been viewed again and is added into the world 

map. Until the camera re-views a region of the scene, the distributions at that part of the accumulator 

remain in the accumulator but are not transferred into the world map. 

As the robot moves across the scene, a peak in the accumulator becomes strongest where the rotating 

distributions intersect, resulting in a much localised peak. This improves the accuracy of localisation 

in the scene. As the sequence continues, it can clearly be seen how the robot builds up its world map 

from image features using the accumulator, as shown in Figure 2.9(d). 

The two most frequently seen features have been traced by hand through the map building process. 

Figure 2.10 shows the area of the error covariance to 2.5Q of these two most frequently seen features. 

It can be seen that these two error covariance estimates substantially decreases over time. This relates 

to the sharpness of the peak in the accumulator. 

For the purpose of these results, no correction of the position of the robot is done; odometry readings 

alone are used to back-project the world features. Due to the errors associated with odometry read- 
ings, there is a shift in the positions of features from their true position, which increases as the robot 

moves further from its starting position. 

This chapter has discussed the incremental map building algorithm using a mobile robot with a single 
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Figure 2.9: Example Robot Sequence. Ist column: current image with vertical edges detected. 2nd 

column: 21) accumulator with current peaks shown. 3rd column: ground truth map, overlaid with 
feature estimates and robot position (moving horizontally). 

(a) System Snapshot at Frame 6 

(c) System Snapshot at Frame 13 
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Figure 2.10: Feature position error covariance areas of two features during the map building example 

of Figure 2.9. 

camera. It was assumed that the position information of the camera to enable the world feature points 

to be accumulated over time was accurate. Knowing that this is not the case in real systems due to 

errors in the robot's odometry information, a calculation for the robot position using features that 

already exist in the world map is now considered. These features are matched to the image features 

detected in an image, thus providing a separate calculation of the camera position. 

2.7 Position Estimation 

Odometry information calculated from the robot's wheel encoders provides an estimate of how the 

robot has moved, which can be used to estimate the global pose of the robot. However the odometry 
information has an error associated with it, proportional to the distance that the robot moves and 

rotates. The error on the estimated position will therefore increase over time, corresponding to a drift 

in the robot's position. This drift in position in turn means the positions of features added to the map 

will increasingly shift from their true position. 

To correct for these errors, the camera position can be estimated by matching features in the world 

map to image features detected at each position. By projecting the world map features onto the 
image plane at a position estimated from the odometry information, the image features that should 
be detected can be predicted. If the position of the camera is error-free, the predicted image feature 

positions would exactly match those which are actually detected. However, if the camera position is 

not exactly known, the predicted and detected features will not exactly match. If the predicted and 
detected image features can be matched using their edge gradient values, the position and orientation 
of the camera can be computed using three pairs of world-image feature matches. 

An algorithm to calculate the robot's pose using the vision system is presented. The odometry infor- 

mation is used to make an initial estimate of the robot's position. Features in the world are projected 
onto the image plane at this estimated position. Three image to world feature matches are required in 
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order to calculate the pose of the robot, minimising the discrepancy between detected image features 

and projected world features on the image plane. This pose calculation is done in two stages: the 
first calculates the orientation, and the second uses this orientation to calculate the position. 

2.7.1 Camera heading calculation, a 

Given the pixel co-ordinates and corresponding world positions of three features in the current image, 

the position and orientation of the camera can be found using a two stage process. The first stage is 

to calculate the orientation of the camera. For this, three world-image feature pairs are required. 

Figure 2.11 shows three world feature points stored in the world map, pl, p2, and p3. The projection 
lines from the world points through the respective image features pl1, p2', and p3' intersect at the 

position of the camera. The orientation of the camera using three pixel-world point pairs can be 

Ps 

Figure 2.11: Three world feature points pi, with corresponding image features pig. The green circle 
depicts the robot position, with offset camera at position [txty]T and orientation a. 

calculated using the camera model given in the previous chapter 

Pig = K[RIT]Pi (2.17) 

P21 = K[RIT]P2 (2.18) 

Pay = K[RIT]P3 (2.19) 

Subtracting pi' from the other two points gives the following two equations, which eliminates the 

translation component T. 

1u2 ul 
- wl 

= KR[P2 - Pi] (2.20) 
w2 

u3 ul 

L- = KR[P3 - P1] (2.21) 
w3 wl 
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where the pixel pi = [ui wi]T is a normalised homogeneous co-ordinate of the pixel co-ordinate 

along the horizontal scan line, Xi' = u2/w. pi = [xi y2]T is the world point in two dimensions. 

these equations can be re-written such that 

ri 
W2 

X2= 
wl 

r"I 
+ KR 

ßx2 
(2.22) 

1 ßy2 

W2 
X3= 

Wi 
X1+ 

KR 
Ax3 

(2.23) 
11 ßy3 

where 

Axe = X2 -X9 42 = Y2 - Yl (2.24) 

0x3 = X3 - Xl 9 
43 = Y3 - VI (2.25) 

By simplifying 

tuutut K-1 
X_ 77 X=X=k 

1O1111 
(2.26) 

Using ki, the two equation 

kl 
_ 

k2 
wl 

1 
W2 

1 

[kl] 
_ 

k3 
wl 

1 
W3 

1 

is can be re-written such that 

-R 
Axe 

Dye 
(2.27) 

-R [z31 
y(2.28) 

[sin a -cos a With R=, equations [2.27] and [2.28] are expanded and simplified to 
Lcos a sin a 

w1k1 = k2w1 + (k2Ly2 -Axe) sin a+ (k21\x2 + Lye) cos a (2.29) 

w1k1 = k3w1 + (k3iy3 - Lx3) sin a+ (k3/x3 + Ly3) COS a (2.30) 

This can be expressed in matrix form such that 

1- k2 k2Ay2 - Axe k2/x2 + Ay2 sin a 'w1 = (2.31) 
k1 - k3 k3fy3 - 0x3 k30x3 + Ly3 COS a 

wl 
S1 

_ 

[Qii Q12 [Sinai 

(2.32 [S2] 
Q21 Q22 

[cos 

a) 

Defining H= Sl/S2, the solution for a is such that 

a=tan'1 
(Q12-HQ221 

HQ21 - Qii l (2.33) 
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T 
2.7.2 Camera position calculation, 

[t, 
tVI 

With the orientation of the camera known, the location of the camera can be calculated from two 

world points and their corresponding pixel information 

Pi' = K[RIT]Pi (2.34) 

P21 = K[RIT]P2 (2.35) 

Again using the equation [2.26] for ki, these calculations can be rearranged and expanded such that 

for two world-pixel point pairs 

kl cos a(xi - tý) + kl sin a(yl - ty) = (x1 - t., ) sin a- (yl - ty) cos a (2.36) 

k2 cos a(x2 - tx) + k2 sin a(y2 - ty) = (x2 - tx) sin a- (y2 - ty) cos a (2.37) 

Which can be expressed in matrix form 

kl (xl cos a+ yl sin a) - xl sin a+ yi cos a kl cos a- sin a kl sin a+ cos a tx 

k2(x2cosa+y2 sin a)-x2sina+y2cosa k2cosa-sing k2sina+cosa ty 
(2.38) 

And this can be re-written such that 

-x, + klyl klxl + yl sin a_ 
[ki 11 f cos a sin a tx 

(2.39) 
-x2 + k2y2 k2x2 + y2 COS a k2 1- sin a cos a ty 

and this is rearranged to find a solution for the position of the camera 

tx cos a sin a k1 1 -xi + kl yl klxl + yl sin a (2.40) 
ty - sin a cos a k2 1 -x2 + k2y2 k2x2 + V2 cos a 

With N>3 world point and corresponding image pixel pairs, it is possible to calculate NC3 position 

and orientations for the camera. These solutions are not independent. The mean shift algorithm de- 

scribed in the calibration section can be used to get the best estimate of the position and orientations. 

Using the odometry information as a first estimate of the current position of the robot, the above 

calculations can be used to update the position of the robot. A position estimation calculation can 

therefore be implemented without the use of a Kalman Filter. 

2.8 Conclusions 

In this chapter, a map building framework for a mobile robot with a single camera has been presented. 
The novelty of the method lies in a probabilistic approach to the accumulator and better localisation 
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of feature points. Vision information is used to gather evidence of the existence of features in the 

environment without requiring the positive matching of features. Located features are accurate and 

robust to errors. The accumulator effectively reduces the covariance of the estimates by integrating 

vision data over time. 

In the next chapter an algorithm to calculate the next-best-viewpoint given an obstacle in the world 

map is introduced. This is the first step towards an autonomous exploration algorithm: evaluating the 

incrementally built world map for exploration purposes. 
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In the previous chapter a map building framework for a moving camera in a static scene was intro- 

duced. The obstacle location map was incrementally built as the robot moved through the scene. 

Traversable openings are formed between obstacle feature pairs. This chapter considers the calcu- 

lation for the next-best-viewpoint for a camera through an opening to effect both exploration and 

environment model construction. A utility function is developed for the best-view around one cor- 

ner of an obstacle and extended for the best-view through an opening formed by two such corners. 

An example exploration of a two-dimensional map is shown, and a measure of the stability of the 

next-best-viewpoint calculation is discussed. 

3.1 Introduction 

Exploration algorithms have been developed to explore an unknown environment using methods 

such as the lawnmower, [Arkin et al., 1993], and wall-following, [Duckett and Nehmzow, 1997], al- 

gorithms (discussed in more detail in Chapter 1). Such exhaustive methods are not efficient. Where 

the location of obstacles in the environment are not fully known and for the purposes of exploration, 

37 



38 Chapter 3. Viewpoint Planning Strategy 

the best point from which to view the unknown parts of the scene needs to be calculated. This im- 

plies, within a certain range of movement, an algorithm to guide the robot to an optimal viewpoint is 

required. 

It is unlikely for a single viewing position to allow the entire environment to be viewed all at once, 
but a series of optimal viewpoints each providing new information could lead to an exploration of 

a complex scene. Generally the goal of a next-best-view system is for model reconstruction, such 

that each viewpoint improves the knowledge of the object or the scene. For example the repeated 

readings of previously modelled features, or acquiring data of previously unseen features. 

Considering an object being viewed by a sensor (camera, LRF or sonar), there are an infinite number 

of sensor positions from which the object can be viewed. An important question is "Where is the 
`best' or `optimal' position to view the object from? " The answer to this question depends upon the 

purpose of the system. To restrict the regions for the sensor to be located, [Cowan and Kovesi, 1988] 

showed how allowable sensor regions could be calculated from the sensor constraints such as field- 

of-view, resolution and focus. Later, [Nelson and Khosla, 1994] used such constraints to track a 

moving object dynamically in a scene. However, neither of these algorithms calculate the next view 
for the sensor. Instead they calculate the regions where the sensor could be placed. The viewpoint 

adjustment problem is tackled by [Kutulakos and Dyer, 1994], which requires a camera to be moved 
to provide a view of a specified region given the occlusions of that region, but is not optimal. 

Where the size of the object or the environment is known, previous research has focused on splitting 
the object or environment into regions to enable a calculation of improvement for that sensor location, 

and the best location is chosen as the next-best-move. By segmenting the object into equal regions 

and using these regions to find the next view, [Connolly, 1985] used an oct-tree to describe the envi- 

ronment surrounding an object, rather than the object itself, where the depth of the tree showed the 
least viewed area. [Mauer and Bajcsy, 1993] however realised that the occlusion boundary could be 

used to define the next-viewpoint. They used a histogram method to represent the number of poly- 
gons visible from each viewpoint, whereas [Whaite and Ferrie, 1991] used a local improvement map 
to define the next sensor placement. Although these algorithms do successfully improve the knowl- 

edge of the scene, they do not guarantee a completely optimal viewing position. Chapter 4 uses the 
idea of splitting the environment into regions to measure the improvement of the viewing position 
calculated in this chapter. The calculation of the next-best-viewpoint is considered separately from 

the anticipated improvement. Instead, only the viewing angle of the opening is optimised. 

The corners of obstacles which form occlusions to regions of interest in the scene have previously 
been considered for use with navigation algorithms to direct the motion of a mobile robot such as 
[Murray et al., 1996]. Murray uses the corners of obstacles to steer a mobile robot such that a single 
corner with a set distance constraint is used to provide a safe navigation as shown in Figure 3.1. The 

work described in this chapter is intended to find an optimal viewing solution using corners rather 
than just moving around them. 

Another problem requiring the calculation of sensor placements is the well known Art Gallery Prob- 
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Figure 3.1: Navigation using corners, [Murray et al., 19%9. Figure 3. To navigate, the robot main- 

tains a fixed distance away from the corner. 

lem, [Chvätal, 1975]. The minimum number of positions is to he calculated from which the entire 

scene will he visible. This also requires the knowledge of the scene to he very precise, and does not 

account for the situation of an unknown environment. 

The problem addressed in this chapter is not just that the occlusions of a shape or a scene should he 

removed. hut that the next view of a scene portion should he calculated such that the most amount 

of information can he attained about that portion of' the scene to discover whether the area warrants 

further exploration. The size or shape of the occluded region is unknown, in fact there may he no 

occluded region. It is therefore impossible to calculate the position of the camera that would allow 

for the unseen region to he viewable. In order to achieve an efficient exploration, new information 

about the scene should he used as it is acquired. 

The obstacle ºnap constructed using the algorithms described in Chapter 2 provides the location 

of obstacle boundaries in the scene. The camera on the robot should he movrd to it position that 

will improve the view through openings, with the intention of gaining the greatest amount of new 

inforºnation through the opening. By fixing, the distance to travel, this problem can he quantified by 

a utility function for a given opening and maximised providing the hest view through the opening. 

In section 3 
.2 the simplest problem of one corner heing visible is considered. A utility function 

is proposed to indicate the next-hest-viewing position tin the camcr. a. This, is Then extended to file 

situation with an opening formed by two corners in section i. i, and finally generalised to any number 

cif openings. Section 3.5 demonstrates the proposed algorithnº with an example exploration of an 

initially unknown maze, and section 3.6 presents an error analysis oil the niariniised utility functions. 

For the next-best-view calculations that follow, r- li i. e. the Camera can not move past the Corner 

or through the opening heing considered. The next-hest-view is to calculate the best view through an 

opening or around a corner for the purposes of' exploration. 
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3.2 The One Corner Case 

Consider a robot at a position P with a heading PH and a wall ABC in its vicinity. If a linear 

move of distance r is executed, what will be the best direction to move in so as to give the best view 

around the corner C? Figure 3.2(a) shows the situation with a corner C in the robots vicinity. The 

robot moves from P by a distance r to a point on the circle TP'QH where P' is the position of the 

next-best-view. The rotation of the robot 0= LHPH' is to be calculated and the robot to move by a 
distance r in order to maximise the view around the corner C. Consider the corner C and the general 

C 

(b) Optimal solution for one corner case. 

Figure 3.2: Viewpoint planning for one comer. An obstacle ABC forms one corner at C in the 

vicinity of the robot at P. The direction to move is defined by 0, using a fixed distance r. P' is the 

position at which the viewing angle vl is optimised. 

point P' on the circle TP'Q in Figure 3.2(a). As the point P' moves around this circle, the line CP' 

will oscillate between CT and CQ, which are both tangential to the motion circle. The point Q is 

clearly the optimal location to give the best view around the corner C, shown in Figure 3.2(b). 

With reference to the optimal solution of Figure 3.2(b), let 

LHPC =, y and LPCQ = ?p 

Since LPQC is a right angle, 

LQPC = 7r/2 -, o 

7= e+7r/2-o 
==ý* y-e=7r/2- 

(a) One corner case. 
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Taking the cosine of each side, 

cos(y - B) = cos(ir/2 - V)) 

= sin 0 

= cos(y - B) =R (3.1) 

This is therefore the optimal solution, where R is the distance from the robot to the corner and r is 

the move distance. The value of R can be calculated from the Euclidean distance from P to C. 

As r -> R, 0 --p -y and the robot moves directly towards the corner. However, as r -º I BCI, then 

sin 7P = 
BC 

= sin(LBPC). Hence the robot moves parallel to the wall with CQ perpendicular to 

the wall. 

Having determined the optimal solution, a utility function will now be defined that this solution 

maximises. 

3.2.1 The utility function for the one corner case 

Suppose the robot moves from P to P with the new heading H. The viewing angle vi is given by 

LH'P'C, where the original viewing angle was LHPC. 

v1=LH'P'C=, O +LP'PC 

However 

LHPC=ry LP'PC=ry-0 

Therefore the viewing angle vl can be defined as 

vi ="'+y-B (3.2) 

'y is a constant value for a given corner and robot position, whereas 0 is a function of 0. The angle 'O 

must therefore be maximised by the choice of 0 to maximise the viewing angle vl. 

From the triangle PP'C in Figure 3.3, where Pa is perpendicular to PC, 'O can be defined as 

P'a 
tan Vi = 

aC 

where 

P'a =r sin(y - 0) 

and 

aC =R- Pa 

=R-r cos(ry - B) 
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C 

P 

I 

Figure 3.3: Triangle PP'C: generating the utility function for one corner. 

the angle ip can therefore be defined by 

rsin(ry-0) Jl = tan =R-r cos B 

rsin0 
= where 0 =-y-O R-rcos0 

(3.3) 

This provides an equation for ?i as a function of 0 which needs to be maximised to ensure that this is 

a solution for the maximum value of vl. 

3.2.2 The optimal solution of the utility function 

To find a solution to the maximum value of the utility function of equation [3.3], it is differentiated 

with respect to 0. 

2 dO 
_ 

(R -r cos -o)r cos 0-r sin ct r sin c5 
s' d¢ (R -r cos 0)2 

_ 
Rr cos 0- r2 (cos2 0+ sine 0) 

(R -, r cos 4)2 

s c2 
dpi 

- 
Rr cos 0- r2 

d¢ (R-- r cos 4)2 
(3.4) 
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To devise an alternative equation for sec 2 jp, the standard equation [sect x=1+ tan 2 x] and the 

solution of equation [3.3] is used to show 

2 r2 sin2 0 
sec =1+ (R -r cos q)2 

_ 
(R -r cos 0)2 + r2 sin2 0 

(R -r cos O)2 

_ 
R2 - 2Rr cos 0+ r2 cos2 0+ r2 sin2 0 

(R -r cos 0)2 

sect _ 
R2 - 2Rr cos 0+ r2 (3.5) 

(R -r cos cß)2 

Equation [3.5] can then be substituted into the differential equation [3.4] to find a solution to the 

derivative of the utility function. 

R2-2Rrcoso+r2d Rrcos0-r2 
(R -r cos ¢)2 do (R -r cos q)2 

do 
_ 

Rr cos q5 - r2 
=0 fora maximum (3.6) 

do R2 + r2 - 2Rr cos 

Setting the final differential equation [3.6] to zero provides the optimal solution, 

Rr cos q5 - r2 =0 

cos =R (3.7) 

This is the same optimal solution as shown previously in equation [3.1]. 

If this maximum solution [3.7] is substituted into the utility function of equation [3.3] an alternative 

equation for tan can be found. 

tan? _ 
rsin¢ 

R-r cos q5 
ý. 2 

1-77 

R 
r tan? _ R2 - r2 

(3.8) 

This equation can be expressed as a triangle of Figure 3.4 with the third side calculated from Pythago- 

ras' theorem. 

By considering the viewing angle vl derived in equation [3.2] as vl =0+0, and combined with 
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R 

r 

W 
R 

Figure 3.4: Triangle of optimal solution for the one comer case, equation [3.8]. 

this optimal solution, 

cost') = COSN' + 0) 

= cos & cos 0- sin sin 0 
R-rrr r2 

=R RRF R2 

_rR -r 
_rR 

-r 
RR 

=0 

This implies that 'y = it/2, which confirms that the optimal location for the next-best-viewpoint for 

the camera is at the tangent of the motion circle with the corner, and was found by using the utility 
function given in equation [3.3]. 

3.3 The Two Corner Case 

Consider a robot located at point P with heading PH and two walls in the vicinity forming an 

opening between them. The point P' on the motion circle of radius r is to be determined, which 

maximises the viewing angle v2 through the aperture. 

Figure 3.5 shows the situation of the robot at P with the two corners Cl and C2. The robot moves 
from P by a distance r to a point P' so that the viewing angle through the opening is a maximum. 
The rotation of the robot 0 is to be calculated and the robot to move by a distance r to provide the 

next-best-view position. 

3.3.1 The utility function of the two corner case 

From Figure 3.5 an expression for the viewing angle at P' can be determined. From triangle C1 PP', 

LP'PC1 = ryl -B 
LPP'Cl = ir -, 01 - (7i - e) (3.9) 
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Figure 3.5: Viewpoint planning for two corners that form an opening between them. Two obstacles 

that form corners Cl and C2 in the vicinity of the robot at P. The direction to move is defined by 0, 

using a fixed distance r. P' is the position at which the viewing angle v2 is optimised. 

From triangle C2PP', 

LP'PC2 = 72 -e 
LPP'C2 = Ir-1/i2-(72-8) (3.10) 

The difference between the two angles of [3.9] and [3.10] is the new viewing angle through the 

aperture, C1P'C2. The corners are numbered in a clockwise direction. 

V2 = LPP'C2 - LPP'C1 

= [7r-I12-(72-e))-[ir-1P1-(71-©» 

= (01-b2)+(11-72) (3.11) 

(fyl - rye) was the viewing angle at the robot position P and is fixed for the situation. Therefore if 
(01 - 02) is maximised, the maximum view through the aperture at P' can be found. Following 
from the one corner case, the utility function for an opening is taken to be 

J2 = tan(Ol - I'2) (3.12) 

Again, this utility function is differentiated to find a maximum for the function. 
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3.3.2 The optimal solution of the utility function 

To find the maximum of the utility function of equation [3.12], this is differentiated with respect to 

0. 

e2 = --02(01- 7P2) 
(d? Pl 

d- 

del 
/ 

(3.13) 

= sec2(ýGl - ý'2) cos2 lp1 cost b2 
(sec t ßi2 sect 1 

del 
-sect ýGl sec2 V)2 

dO 
I (3.14) 

From the one corner case at [3.4] 

sec2 
dO Rr cos ¢- r2 

(3.15) 
d(6 (R -r cos 0)2 ý2 

such that 

(1 = Rlrcosg1 - r2 e1 = Rl - rcos01 

(2 = R2r cos 02 - r2 e2 = R2 -r cos q52 

The differential equation can be re-written as 

dJ2 
_ sec 2(7G1 

- VG2) cost, G1 cost ? G2 ̀ 
rC1 eC2 02 

- 
r(2 e222 V1) 

(3.16) 

-r 
sect(&1 - '02) cost til cost &2 2z2 

ý12ý22 
ýý1ý2 sec 2- (g12 sec t) (3.17) 

But previously from equation [3.5], it was shown that 

sect o=1+ r2 sin2 0 

e2 

42 sect li = 42 + r2 sin2 
z2 sect, i = R2 + r2 - 2Rr cos 0 

The differential therefore becomes 

d1 r sec2(1 -'2) cost '1 cost '2 
de - e12 22 

(C'1 [R22 + r2 - 2R2r cos 02] - S2[R12 + r2 - 2Rlr cos 01]) (3.18) 

For the maximum viewing through the aperture, de = 0. This can happen if either V1 or '2 becomes 
2. However in general this cannot happen (see the one corner case). Or that 

(1[R22 + r2 - 2R2r cos 021 = ý2[R12 + r2 - 2R1r cos 01] (3.19) 

ftkký 
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The Case for Equidistant Corners 

If Rl = R2 = R, both corners will be equidistant. The optimal solution [3.19] then becomes 

47 

(r -R cos ¢1) (R2 + r2 - 2Rr cos 02) = (r -R cos 02) (R2 + r2 - 2Rr cos ¢1) (3.20) 

Expanding the brackets and simplifying gives us 

R(R2 - r2)(COS 01 -COS ail) =0 (3.21) 

For r<R, such that the robot will not pass either of the corners, the maximum solution becomes 

cos 01 - cos 02 =0 (3.22) 

By substituting 

71-8 = 
71272+'71272-8 (3.23) 

^12 -0_ -'Y1 2 
72 + 71 2 '12 

-0 (3.24) 

and using 

µ= 
71 + '71 

2 
'Y2 

and w=_ 272 
9 

the optimal solution of [3.22] can be re-written such that 

cos O1-cos 02 = cos(µ + w) -cos(-µ + w) 

_ -[cos(p-w) -cos(p+w)] 

_ -2 sin(p) sin(w) =0 (3.25) 

When equal to zero there are two solutions 

0= I/I + 'Y2 (3.26) 

or 0= ir + 71 + 72 (3.27) 

The solution [3.26] is clearly the maximum. It corresponds to the robot moving directly towards the 

middle of the opening. When the corners are equidistant, this makes sense. 

The Case for Non-Equidistant Corners 

However when RI R2, the general case, the optimal solution of equation [3.19] 

(Rl r cos o1 - r2) (R22 + r2 - 2R2r cos 02) 
_ 

(R2r cos 02 - r2) (R12 + r2 - 2Rl r cos 01) 
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with the brackets expanded and simplified, becomes 
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r(R12 - R22) - r2(Rl cos ¢1 - R2 cos 02) - R1R2(Rl cos ¢2 - R2 cos ¢1) =0 (3.28) 

Taking the first set of brackets and using p and w from above, 

Rl cos(7i - 9) - R2 cos(ry2 - 0) = Rl cos(µ + w) - R2 cos(-µ + w) 

= Rl cos(µ + w) - R2 cos(µ - w) 

= Rl (cos µcos w- sin µ sin w) 

-R2 cos (cos A cos w+ sin µ sin w) 

= (R1 - R2) cos /c cos w- (R1 + R2) sin µ sines (3.29) 

Using this again for the second set of brackets, 

Rl cos 02 - R2 cos ¢1 = (Ri - R2) cos It cos w+ (R1 + R2) sin µ sin w (3.30) 

Substituting both into [3.28] and expanding and simplifying 

r(R12 - R22) - (R1R2 + r2)(RI - R2) cos µ cos w- 

(R2R2 - r2) (Rl + R2) sin µ sin w=0 

By dividing throughout by r(R12 - R22), this equation is simplified to give 

1 =pcosw+gsinw 

Where 

R1R2 + r2 
cos µ and q= 

R1R2 - r2 
sin µ (3.31) 

r(Ri + R2) r(Ri - R2) 

This can be represented by the triangle of Figure 3.6. Dividing throughout by p2 ý- q2 gives 

E 
p2+g-2 

9 
S 

P 

Figure 3.6: Representation of solution for utility function with one opening formed by comers 

equidistant from the robot position (equation [3.31]). 

1_ p 
cos w+q sin w 

p2 + q2 p2 + q2 p2 + q2 
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From Figure 3.6 it can be seen that 

cos 
p 

sin b= q 
and tanb= q 

p2 + q2 p2 + q2 p 

The second optimal solution can therefore be simplified to yield the utility function, as 

1 
= cos(w - 8) 

p2 + q2 

This can be rearranged for 0 such that 

0= 
(-Y1±Y2) 

- tan1 
1ý) - cos1 (3.32) 

p2 -+q 2 

In this case the robot does not head directly towards the centre of the opening, but the direction 

depends upon the values of R1, R2, -fl, and rye. How these values effect the value of 0 is considered 
in more detail in section 3.5. 

3.4 The N Corner Case 

The utility function described above only deals with the case of one or two corners. It is unlikely 
that a robot would be able to navigate through a scene without encountering a space where more than 

just one corner or one opening is obstructing its path. Therefore the utility function described above 

must be generalised to accommodate any number of openings. 

With only a single comer the next-best-viewpoint is at the tangent of the motion boundary with 

the comer line. When faced with one opening and equidistant corners, the movement of the robot 
is predictably towards the centre of the opening. However with two non-equidistant corners, the 
direction of motion depends upon the distance to be travelled, as well as the distance to the corners 

of the openings. 

Consider a robot P with the heading PH with several walls in the vicinity forming N/2 openings 
between them. The point P' on the motion circle of radius r that maximises the viewing angle 

through all of the apertures is to be determined. 

An N corner case can be generalised using 
N 

JN = tan(02i-1 -'2a) (3.33) 

3.5 Viewpoint Planning Strategy Validation 

The viewpoint planning functions summarised above are shown to be maximised by the utility func- 

tions for any number of openings and corners. Examples of the utility function for one opening of 

equation [3.12] are given in Figure 3.7(a). 
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Figure 3.7: Utility function of one opening for increasing values of r. ryl = 800, 'y2 = 50°, R1=10 m, 

and R2=15 m. 

This utility function is characterised by the curves in Figure 3.7(a), but as the value of r is increased 

towards the values for R1 or R2, the utility function breaks into two tangential spikes reflecting the 

utility function definition. These spikes are located towards 'yl and 'y2 corresponding to the direction 

towards each corner. For such cases, the utility function for equidistant corners should be used. 

3.5.1 Approach to openings 

Figure 3.8: How the approach towards an opening varies with increasing r. 

Further analysis of the tangential characteristic shows that the two spikes have an identical magnitude 

when RI = R2. Taking the maximum of the utility function as usual, Figure 3.8 shows the motion 
trajectory towards an opening with increasing r. The dotted trajectories show the smaller of the two 

tangential spikes. As the robot is allowed to move closer to the first corner (r R1), the trajectory 
is directed towards the other, i. e. not directing the robot towards the corner it would be able to reach. 

Figures 3.9(a)-3.9(c) show the robot's approach to the opening formed by the two corners Cl and 
C2 using the next-best-view calculation. It can clearly be seen that the calculated next position is 
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(c) r=2m 

Figure 3.9: Moving towards opening with r fixed at 0.75m, 1.25m, and 2m respectively. Two utility 

calculations are considered: for two separate corners, and as one opening. 

<r One Opening Utility Funroon 

p 

J(B) 

0 90 180 270 960 
0 

Figure 3.10: Utility curve for one opening, with Figure 3.11: Utility curve for corners, with cor- 

corner positions identical to Figure 3.11. ner positions identical to Figure 3.10. 

not towards the centre of the opening until r is similar to Ri & R2. As the distance to move (r) is 

increased, from Figure 3.9(a)-3.9(c), the trajectory towards the opening is very similar. 

The trajectories for C1 and C2 being used in the next-best-view calculation as an opening, in compar- 

ison to the next-best-view around corner C, and the next-best-view around corner C2 is also similar. 

Figures 3.10 and 3.11 show the utility curves for these two cases respectively. Not only are the tra- 

jectories almost identical but the utility curve for one opening and the summed curve for the two 

corners are very similar also. 

(h) r=1.25m (a) r=0.75m 
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3.5.2 Symmetric motion 
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Again considering Figure 3.2(a), the computation of 0 in equation [3.11 is independent of the wall 

orientation. If the wall is on the left of the corner as shown in Figure 3.2(a), the robot's trajectory is 

planned towards the tangent of the motion circle Q. Here T is the minimum of the utility function. 

It follows that if the wall is oriented to the right of the corner, the maximum viewing angle would be 

at T and the minimum at Q. Therefore utility function is inverted for a corner with the opening on 

the left. 

D 

cr10m, .... _ 
C 

c Q 

rsm ... 
... 0 

o-zm 

c PL 

C 

"R 

PL-robot position for left oriented opening 
PR-position for right oriented opening 
C is the single corner, with the dummy cor- 

ner D, the opening DC or CD is formed for 

PL and PR respectively. 

Figure 3.12: Testing the symmetry of the next-best-view calculation with differing wall orientation. 

r is varied to display the characteristic of the utility function used for two separate corners (C) and 
for one opening (0). 

Figure 3.5.2 shows tests carried out for complementary comer orientations (C) as r is increased. 

Also shown is the trajectory when another comer D is introduced so that the corner becomes an 

opening, 0. When considered as an opening the robot is directed more towards the opening itself, 

whereas with only the comer C, a wider berth is given. If the enclosing wall (marked with asterisks) 

was nearer to the robot, the single comer trajectory could lead the robot into the wall. However the 

corner trajectory does provide a greater viewing angle around the considered comer than the opening 
trajectory (since the second corner constrains the opening's utility function). Therefore if the next- 
best-view algorithm was being applied to an environment with narrow corridors and only a single 

corner was available for the next-best-view calculation, an extra comer could be added to constrain 
the motion of the robot but still acquire an optimal view. 

t 

4 

} 

Z 
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3.5.3 Moving around corners 

53 

The idea of using corners for navigation was previously introduced, particularly Figure 3.1. The 

utility function can also be applied to this technique. Figures 3.13(a)-3.14 shows a series of next- 

r--1.5m 

(a) r-1.5m (b) r--2m 

r -2m 

Figure 3.13: Using a fixed distance to travel, r, sequential moves are shown from a starting position 

around corners and through an opening. The corner/opening which is used to calculate the motion 

trajectory are shown by dashed lines. 

best-view choices using the corresponding one corner, one opening and N corner utility function of 

equations [3.7], [3.32], [3.33] for a set distance to move, r, equal to 1.5m, 2m, and 2.5m respectively. 

The dotted lines in each diagram identify which corner, or which opening, is used for a given robot 

position. For example in Figure 3.13(a), moves 0-7 use the first corner, moves 8-11 use both corners 

as an opening, move 11 uses the second corner, moves 13 and 14 use the second and third corners 

with views around both corners etc. A single corner is used for the calculation when only one corner 
is within visibility of the robot's position and two corners are selected for use as an opening in a 

similar way. Once the robot's position is past the opening, i. e. the path of the robot would intersect 

the threshold of the opening, the opening is no longer considered for use. This corner selection 

method is also applied in the exploration techniques discussed in the following chapter. 

The trajectories computed here follow a similar pattern as that of [Murray et at., 1996] but for com- 

pletely different reasons. Murray used corners as fixing points and the robot trajectory was planned 

to keep a set distance from the comer, i. e. it moves on a circle of set radius. In the presented method, 

the corners are used to calculate the best-view of an occluded region. 

Comparisons for increasing r for a given single corner scenario are shown in Figure 3.15. As the 

given distance to move, r increases, the optimum next-best-view position is directed more towards 

the corner. Throughout this chapter, the value of r is assumed constant. As shown here, varying the 

value of r displays different motion characteristics, which could be varied with changes to the local 

environment. The value for r used during the exploration in subsequent chapters is limited to three 
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r=4.5m 

r=4m 

r3.5m 
r3 

r-2.5m 
r-2m 
r--1.5m 

r-23m 

Figure 3.14: Using fixed distance r=2.5m, se- Figure 3.15: For a given corner, the value of r is 

quential moves are shown for the robot's motion varied, showing the effect of the choice of r on 

around corners and through an opening. the robot's trajectory. 

choices. This coarse selection method is adequate for the environments shown, but it may be possible 

to choose the value of r dynamically (depending on the local environment). 

3.5.4 Example exploration 

The proposed strategy has been shown to operate under several situations. It can also be used to 

explore an unknown environment, using only information of the positions of obstacle comers that 

occlude regions, and the obstacle's wall orientation for any single corners. A pre-set allowable 
distance to move, r, is constant throughout the exploration. 

Figure 3.16 shows a sample scene where the robot starts in the bottom left corner at position 0. The 

bold lines are the positions of obstacles, the blue shaded regions show inaccessible areas. The comers 

used for the exploration are given to the exploration algorithm by the human operator. As before, the 

corners chosen are those which are visible to the robot and where the threshold of the opening has not 
been past. The viewing angle v, is shown at each move for the chosen opening. This example shows 
how 99.8% of the available area has been viewed in 30 moves (the robots field-of-view constraint is 

ignored in this example). The small yellow area shows the area of the scene that was not visible to 

the robot during its exploration. Moves 0 to 10 inclusive each only using a single opening and it can 
be seen that the robot moves safely through the first few openings. At moves 11 & 12, two and three 

openings are used respectively. 

At move 12, the next-best-view algorithm is provided with three openings (a, b and c) where c 

occludes the largest area. The openings a and b do not occlude regions but have not yet been crossed 

and therefore are still included as candidate opening options. The utility function for the openings 

a, b and c are shown in figures 3.17 to 3.18 respectively. It is obvious that when these are summed, 
the utility function of Figure 3.18 will clearly dominate the other two. Thus exploration proceeds 
through the narrow corridor straight ahead. 
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Figure 3.16: Example exploration of unknown 

environment with fixed distance to move, r=2m. 
Robot starts at position 0; the opening/corner to 

view through/around is selected by the operator. 
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Figure 3.18: Utility curve at move 12 for high- 

lighted opening hin Figure 3.16. 
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Figure 3.17: Utility curve at move 12 for 

highlighted opening a in Figure 3.16. 
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Figure 3.19: Utility curve at move 12 for high- 

lighted opening c in Figure 3.16. 

At move 19, the choice of openings, again, require a distinct direction decision to he made. By again 

summing the utility functions for the two visible openings, the wider opening at e would yield a 

greater total viewing angle. However this would mean that the robot would be viewing areas already 

seen. In this case, the information for opening c was ignored by the operator in order to show the 

full exploration of the scene, rather than the circumnavigation of an obstacle. The following chapter 

discusses the automatic choice of openings to be used by the next-best-view algorithm. Again at 

move 25, where the area to the right of the map has already been seen fron moves 12 through 16, 

the opening for the previously seen area is ignored. 
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3.6 Error Analysis on the Next-Best-View Calculation 

All the examples shown so far in this chapter have assumed error-free data for the next-best-view 

position. The viewpoint planning strategy is used to calculate the direction Owhich the robot should 

move in order to reach the best viewing position given a fixed distance to travel. 
, 
Since the calculation 

of 0 depends upon the values of R1, R2, 'yt and y2 (the distances and angles to the comers), any errors 

in these values will affect the direction calculation. Recall that 

(71 2 72) 
- tan-1 

() 
- COS-' 

(v_A1 

where p=lcos ti q=msinµ p= 
('') 

(3.34) 
RR r2 m= 

R R'+r2 A=p2+g2 
r Rl - R2 r(R1 + R2 

The values of R1, R2, ryl and 72 will be affected by small changes to the positions of the robot and of 

the corners. The problem with errors only on the camera position will be considered first, and then 

with errors on the positions of the corners. 

3.6.1 Errors on camera position 

Initially let us consider errors in the camera position (PP, PP) and view orientation (Ph) only. The 

position measurements of the robot are taken from the position estimation module discussed in Sec- 

tion 2.7, and are assumed to have a zero-mean Gaussian error with a diagonal covariance matrix such 
that 

P, 4p., 00 

cov(L) = cov PV =0 ore 0 
Ph 00 QPh2 

(3.35) 

where apx, opy, and aph are the standard deviations of the camera's x and y position and orientation 
in a world co-ordinate frame. 

The variance of 0 can be estimated from a series of Jacobian matrix calculations, where S are the 

parameters of the equation for 0 and L is the position of the camera. 

vet 
T 

aS cov(S) 8S where S=[ -Y1 'Y2 Ri R2 1T (3.36) = 190 90 

OST 
cov(S) _ 

ýLcov(L) 5L 
where L=[ Px pý ph IT (3.37) 

The co-ordinate system of Figure 3.20 is defined to allow the values of R1, R2, ryl, and 'y2 to be 

expressed in terms of the camera pose and the corner positions. 

Here the errors are assumed linear and local to the point being considered i. e. the robot or corner 

position is within two to three standard deviations from the estimated point position (and orientation 
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x= Cx - Px 

--ma 
Y= Cy - Py 

R= X2+Y2 

X 
y=h- tan-1 7 

Figure 3.20: Co-ordinate system used for the error analysis on the next-best-view calculation of 0. 

Shown is the robot position at P with original heading H, and one corner C in the vicinity. 

in the case of the camera). The variance of 0 can be estimated given errors on the position and 

orientation of the robot, o3 , 4P2 2 
a, or Ph such that 

aB2 - ý2 + VPS 
(! 2a-, L YGYRXRX 

P 

(3.38) 
VrGý ýR YR 

2)2] y R1 + R2 - xl - 

where Ga,, Gb, Ra, and Rb are the derivatives of 0 with respect to ryl, y2, R1, and R2 respectively. 
Full calculations for this derivation and quantities in equation [3.38] can be found in Appendix A. 

3.6.2 Stability test of 0 calculation with errors on camera position 

For the environment situation with two corners forming an opening shown in Figure 3.21, the camera 

position was varied over this test area. The value of 0 for positions across the test area are shown 
in Figure 3.22(a), where 0 is measured from the horizontal axis, and it can be seen that positions 

to the far right of the test area yield a higher rotation value to direct the camera back towards the 

opening. The corresponding estimated variance of these 0 calculations, using [3.38], is plotted in 

Figure 3.22(b) with input error values of Upx =0.03m and apy =0.03m. O 'Ph is set to zero since this 

just adds to the total error (see equation [3.38]). It can be seen that the error of 0 is stable over the 

majority of the test area for any position of P. However, as the position of the robot approaches the 

comers, the calculation of Qe becomes large. The areas within the regions of Rl <r and R2 <r are 

not considered since they are not defined for the calculation of 0. Figure 3.22(c) shows a portion of 

the area away from the corners. It is clear that the error gradually increases as the starting position 

of the camera is closer to the corner. 
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Figure 3.21: Test area for error analysis. Corner positions Cl and C2 are fixed at the positions shown; 

the robot position P is varied across the test area. 
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(a) Calculation of the next-best-view orientation H. 
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Figure 3.22: Values of 0 and Qo calculated for robot positions across the test area of Figure 3.21 of 

one opening formed by two corners. co is calculated for position errors on the robot only. 
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(h) Qo for errors on robot position. 
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3.6.3 Errors on corner positions 
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Let us now also consider errors on the corner positions. The corner positions are taken from the 

map building module which have estimated errors associated with them. For the purpose of these 

calculations the errors are also assumed to be zero-mean Gaussian with a diagonal covariance matrix. 
The same co-ordinate frame is used (Figure 3.20), so that the same definitions for R1, R2, ryl, and -y2 

exist. 

With the addition of errors on the corner positions, the covariance matrix of ryl, rye, Rl and R2 with 

respect to P, Pu, Ph, Pc,., Pc,,,, Pc2y and PC2 
,, 

is calculated from 

2 00 190 
T 

CO aScov(S) äS where S=[ '11 'Y2 Ri R2 IT (3.39) 

T 
cov(S) = 

amcov(M) as 
where Al =[ Px P, Ph PCIx PCIy PCzy PC2y )T 

(3.40) 

where S are the parameters of the equation for 0 and M is the position of the camera and the two 

corners which define the opening. 

The variance of 0 is estimated given errors on the position and orientation of the robot in addition to 

errors on the corner positions that form the opening (4 ,4, Q2 (72 
is , 

Or2 , O'2 and o, 2 

Qe2 ý2 + vp Ph 
GY 

_R 

GY 
{--R 2" 2 

'Ra. X1 
Ri -RX2 -) + 

C1 

2 1 / 

(YiCa 
`ate yatl 

) 

Q2 
(X1Gg 

clv Rl +YR 
12 

+ ore J= 
(Y G 

R _ 
X2Rnl2 

R2 l 2 (X GYR2 + 0C2y k+R 

(3.41) 

3.6.4 Stability test of 0 calculation with errors on robot and corner positions 

For the same setup as Figure 3.21, the calculation of vet is again stable over the majority of the test 

area but is unstable near the corners. This test is shown in Figure 3.23 where C2 (the right-hand 
corner) is set to have an error of 30mm in both x and y directions, but no error on C1. Instability also 
occurs when Rl R2. The error calculation across the majority of the test area is not affected by the 
added errors on the second corner, except for the region around that corner. 

3.7 Conclusions 

This chapter has focused on a viewpoint planning strategy to calculate the position that yields a 
maximum view through any number of openings or corners for a specified fixed distance to travel. 
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Figure 3.23: Values of B and o() calculated for robot positions across the test area of Figure 3.21 of 

one opening formed by two corners at (-2,13) and (6,13). a0 is calculated for position errors on the 

robot and one corner. 

The algorithm for an ideal world with no errors was introduced and it was shown how the algorithm 

could be used in many situations from the exploration shown in section 3.5. This showed that for 

a given distance to move with corner information given, the algorithm could be used to explore 

an entire unknown area. This algorithm requires the visible corner positions to be read into the 

algorithm along with the correct opening orientations of the corners. Errors were introduced into the 

input data to show how the next-best-view calculation for one opening would be affected. A linear 

approximation of the errors was taken on the calculation of 0, and the algorithm was shown to be 

robust for the general condition of the initial camera position not being too close to the corners. 

A piecewise linear motion is adopted by the strategy to reduce motion errors incurred by curvilinear 

or cyclical motion. This motion allows the map to be incrementally built during the motion. The 

world is assessed at the end of each linear piece move, thus reducing the computational requirements. 

The assumption made during each motion section is that unless a new feature is detected in the scene 

that creates an obstacle across the motion trajectory, then this information of a new obstacle being 

present in the world is only used at the end of the motion to calculate the following next-hest-view. 

In summary, the robot moves in a straight line to a position where the robot will gain the largest 

viewing angle around a corner, or through an opening of two corners and so on. 

With a technique to find the useful corners in a current field-of-view (where useful corners are those 

which occlude regions that have not previously been seen), the strategy developed in this chapter will 

enable an exploration through a two-dimensional environment a priori unknown to the viewpoint 

planning algorithm. The next chapter considers a set of methods to enable automatic selection of the 

obstacle corners to use as input to the next-best-view algorithm presented in this chapter. 

_g _8 
-4 
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Obstacle Selection for Exploration 
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In the previous chapter, a next-best-view algorithm was discussed. Given the position of an opening 

relative to the position of the camera, the algorithm calculates the position that provides the maxi- 

mum aperture view through the opening. This chapter addresses the question of how to choose an 

opening. Candidate openings are selected from the current obstacle list. Given a set of obstacles and 

their corresponding next-best-viewpoints, the improvement that would be made to the world map 

from data gathered at each hypothesised position is used to select which candidate to view. Using 

successive obstacle selections, a set of algorithms to explore an unknown scene is presented. 

4.1 Introduction 

To solve the problem of autonomous exploration, many researchers have concentrated on exhaus- 

tive exploration techniques such as a raster scan where every part of the environment is physically 

visited by the robot, e. g. the Lawnmower algorithm (discussed by [Arkin et al., 19931). Other meth- 

ods include: wall-hugging, involving the use of a side wall to guide the robot past straight obsta- 

cles ([Albers et al., 1999]), circumnavigation algorithms which utilise a wall-hugging algorithm to 
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move around obstacles that intersect the path of a raster scan algorithm ([Kutulakos et al., 1993], 

[Lorigo et al., 1997]). Human operators can also decide where a robot should visit, either using a 

series of way-markers (a series of positions that the robot should visit) as in [Newman et al., 2003], 

or by defining target positions on- or off-line to aid navigation such as [Burgard et al., 2000]. An 

even less intelligent algorithm is for the robot to follow the path defined by a human walking in front 

of the robot ([Althaus and Christensen, 2003]) and the built map is then used for navigating around 

the known environment. An exploratory algorithm which is not based on an exhaustive technique has 

been developed by [Grabowski et al., 2003]. In this method an Occupancy grid of the seen areas is 

stored and the boundary between the known and unknown areas forms a frontier for the exploration 

algorithm to key into. This frontier-based exploration offers a solution to the problem of how to ex- 

pand the knowledge of the environment. However, they do not discuss how to choose a frontier when 

more than one option is available. [Youngblood et al., 2000] also uses a frontier-based approach to 

the autonomous exploration problem. Their method for frontier selection is to move the robot in 

increasing concentric circles until all the frontiers are removed. 

This thesis addresses the issue of no target position being provided and no prior knowledge of the 

scene. The robot is to explore a completely unknown environment. The shape and size of the scene 
is not known, and there is no assumption that all internal areas are visible or accessible. There are no 

way-markers to guide the robot, and once the exploration starts, human intervention is not possible. 
Using a vision system with limited field-of-view, the proposed algorithm must select which direction 

to move and view, based solely on current knowledge of the scene. The only restriction placed upon 

the exploration algorithm is that only a limited area can be explored. If the vision system detects 

features outside of this area they are ignored. 

The robot is to explore in an intelligent way, ideally like a human might. For example, you arrive 

at a hotel in a city that you've never visited before. You have no map or guide to help you and 

therefore no knowledge of where the interesting areas are. You decide to explore the immediate area 

of the hotel by setting a target of exploring the area within one square mile. On leaving the hotel you 

take a quick scan of the hotel's surrounding buildings and then select an area to head towards. This 

direction may lead to a new area to explore further, or it may lead to a dead-end. 

From an initial scan of the environment at a starting position, a representation of the scene is incre- 

mentally built using the algorithms described in Chapter 2. To gain more knowledge of the scene, a 

calculation of the improvement of the view of detected obstacles allows the next move to be selected. 
The vision system cannot differentiate between obstacles in the scene and openings which can be 

traversed. A confidence measure of whether world obstacles represent scene obstacles is maintained 

using the visibility constraint described by [Manessis, 2001]. When the view of a barrier reveals new 

areas (within the restricted area), these are also explored. In this chapter a map building algorithm 
that can successfully maintain information of world feature points such as those discussed in Chapter 

2 is assumed. Errors in this part of the system will be important for the effectiveness of the explo- 

ration and will need to be addressed for the exploration to be useful in a real system. In this chapter 
however, attention is drawn to the exploration algorithm itself. 
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In this chapter ,a strategy for exploration is presented, where each move is evaluated separately. Each 

robot position provides new information about the scene: either the discovery of new scene features, 

or an update of information of the already known scene features. This chapter develops an exploration 

strategy that maximises the amount of new information obtained from each new viewpoint. Initially 

considered is how the world map features are connected to represent obstacles in the scene. Using 

this obstacle representation, the quantisation of information about where an obstacle has been viewed 
from is reviewed. Considered next is'a method to store the information of those areas of the scene 

that have been viewed, so that even when no features are detected in the scene,. information of the 

viewed area is stored. Finally, as a third element, a method to push the robot away from previously 

visited positions (a similarity measure) is considered. 

Each of these three methods provides a quantised evaluation of the view of an obstacle from its cor- 

responding next-best-viewpoint, discussed in the previous chapter. By selecting the next viewpoint 

as the best from the choice of quantised evaluations at each robot position, an exploration of an 

unknown environment can proceed. 

4.2 Internal Storage of the World Information 

Many map building algorithms such as [Davison and Murray, 2002] store position information of 

scene features with no connections between the neighbouring features. Feature positions on their 

own do not provide all the information necessary for an algorithm to determine which areas are safe 

to navigate through, i. e. whether the area between two features creates an obstacle to the robot, or 

a traversable opening. A triangulation of the detected scene features in two dimensions generates a 

simple non-overlapping structure suitable for encoding this information. 

Obstacle features detected from the scene are stored in a two-dimensional world map. When new 
features are added into this map, a triangular mesh is maintained such that each feature is connected 

to other features by non-intersecting connecting lines. Connecting lines (construction-lines) between 

world map features either represent real obstacles in the scene or are constructed solely to maintain 

the triangular structure of the mesh. When the mesh is initially constructed, all construction-lines are 

assumed to be obstacles to the robot. The next section discusses how these obstacles are distinguished 

from traversable openings. 

Figure 4.1 shows an example triangular mesh construction. Figure 4.1(a) shows a triangulation with 
the robot at the position shown by the green circle, and the viewing region indicated by the dashed 

green lines. Figure 4.1(b) shows the mesh after a new feature has been inserted into the mesh. When a 

new feature is to be added into the mesh, the triangle which surrounds the position of the new feature 

is found. The new feature is connected to this triangle's features with three construction lines, shown 
in Figure 4.1(b) as black lines, and these new lines become part of the triangulation. 
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Figure 4.1: Example triangulation of world map features. Camera position shown in green; scene 

features in red, construction-lines in grey. 

4.2.1 Confidence of world obstacles 

A constraint for an environment described by [Manessis, 20011 states that a line frone the camera to 

a scene feature cannot he intersected by a scene obstacle. Figure 4.1 shows a robot position and its 

current view of two world features. Lines from the camera to these two features (shown in the Figure 

by green dashed lines), the visibility lines, intersect three construction lines. The visibility con- 

straint is violated for both features and the intersected construction lines therefore cannot represent 

environment obstacles. 

The visibility constraint described by [Manessis, 20011 considered only a binary solution, either 

construction lines are obstacles, or they are not. Since the model of the environment used in this 

work includes features which are uncertain (termed in equation [2.131 by Cf). a formulation for the 

visibility violations that encompasses this uncertainty is required. The more often a construction 

line is intersected by visibility lines and the higher the confidence of the world feature's existence 

that forms the visibility lines, the less likely the construction line is to be an obstacle. Using basic 

probability theory, and the assumption that each feature's confidence is independent, a confidence 

measure of a construction line being a real obstacle, C0, can be calculated using the N visibility 

constraint violations and the corresponding feature confidences C1. 

N 

ý'ýý ýl Cf; ) (4.1) 

The path of the robot is deemed feasible if it does not intersect any construction line labelled with 
C, > 0.7. When first created, each construction line has a C, = 1. until the obstacle violates a 

visibility constraint. 
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4.2.2 Inserting the correct obstacle 

07 

When a new feature is added into the triangulation, construction lines are created between that feature 

and all adjacent features. However, lines added in this way may not necessarily represent an environ- 

ment obstacle i. e. two vertices detected on a scene obstacle may he added to the mesh without their 

connecting obstacle line, rather the line's quadrilateral pair. 
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(a) Incorrect line l inserted into the tri- 

angulation 

(b) Correct line I' swapped into the tri- 

angulation 

Figure 4.2: Evaluation of obstacles in the world map: testing construction-line's quadrilateral pair. 

To illustrate this, Figure 4.2 shows an example of two world features A and B that have been added 

into the triangulation. The triangulation in Figure 4.2(a) is initially calculated. To represent the scene 

correctly however, A and B should be connected by a construction line and labelled as an obstacle, 

as in Figure 4.2(b). In Figure 4.2(a) a path between A and B is a valid path. To overcome this 

problem, after each set of new feature data is added to the world map, the triangulated mesh of world 

obstacles is evaluated. Evaluation is done by trying alternative diagonals of each quadrilateral in the 

world map mesh using the value of C0� equation [4.1], to identify the line which is the more likely 

obstacle. This is all done before any analysis of the world map for exploration is carried out. 

4.3 View-Improvement 

Obstacles in the world map potentially occlude unseen features in the environment. Construction 

lines may correctly represent real obstacles, or they may he currently labelled as such but only be- 

cause thus far they have only been viewed from positions where features they occlude have not yet 

become visible. Figure 4.3(a) shows the robot at position P with its camera's view direction and 

field-of-view. When first added into the triangulation the construction line l will he labelled as an 

obstacle since the features A and B have not yet been viewed. When the robot moves to position /'' 

in Figure 4.3(b), A and B are visible. The visibility lines vi and v2 intersect the construction line 1, 

the confidence measure Co is then recalculated. 

When selecting a position to move to, knowing that when viewing a construction line from different 
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(a) From position P, A and B are oc- (b) A and B are detected from P' 

eluded from view. 

(c) A long obstacle 1. viewed from 

two camera positions with the same 

orientation. 

Figure 4.3: Obstacles viewed from different camera view orientations. 

positions a new scene features may become visible, is a useful piece of information. By storing in- 

formation from the positions a construction line has been viewed from, a change in viewing positions 

and therefore an improvement of a viewing position can be calculated for a potential viewpoint. 

Figure 4.3(c) shows an example for a long construction line 1. The new information obtained by 

moving from P to P could be achieved without moving the robot but by instead altering the ori- 

entation of the camera. The calculation of the view improvement for an obstacle therefore needs to 

incorporate the angle from which it was seen. 

In the next three sections, three factors that can be used to quantify the likely improvement in knowl- 

edge of the environment due to a change in viewpoint will be considered. 

4.3.1 Obstacle-view improvement 

An entire obstacle may not be visible from a given viewpoint. Figure 4.4 shows two example views 

of an obstacle l; in each case, only the portion Is is visible from the position P. 

In order to calculate a difference in the view compared to all previous views it is necessary to store 
information about previous views. As indicated in Figure 4.4, the entire length of an obstacle may 

not be visible from each viewpoint. It is therefore necessary to somehow store the information of 

which portions of each obstacle have been viewed. 

Figure 4.4(a) shows the obstacle viewed from one orientation, and Figure 4.4(b) from another. As 

an example, assume that the centre of the obstacle length has been viewed from both orientations. It 

is possible that different information could have been acquired from behind the obstacle from each 
of these viewpoints. It is therefore not enough to just store information that a portion of an obstacle 
has been viewed, but also the angle from which that portion of the obstacle was viewed from. It 

should be noted that as each portion of an obstacle length is considered (from a given viewpoint), the 
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(a) The portion is o the obstacle l is visible from 

P, with viewed-from angles ranging from ýi to l; 2. 

(b) The portion l. s of the obstacle 1 is visible from 

P. with viewed-front angles ranging, from to 0. 
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Figure 4.4: Viewing a long obstacle from different orientations. Only a portion of the obstacle is 

visible from each view. From a given viewpoint, each visible part of the obstacle is viewed frone a 

slightly different angle (measured from the normal to the obstacle). 

anale from which that portion of the obstacle was viewed fron changes. In Figure 4.4(a), the angle 

from which the obstacle is viewed from increases from ýi to ýC, z, with reference to the normal of the 

obstacle direction. 

To encapsulate the information about which portions of each obstacle have been viewed and which 

angle they were viewed from, aID histogram is stored with each obstacle that represents each portion 

of the obstacle along it's length. Figure 4.5 shows such a histogram for an obstacle I with N equal 

sized bins, and normal vector n. 

Figure 4.5: ID histogram for obstacle / with nine histogram hins. Angles from which the obstacle 
is viewed are stored in each visible histogram cell. Shown is an example viewlinc vector w tromp /', 

and the storage of the angle ý at cell 1[i]. 
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From each camera viewpoint, each obstacle visible from that viewpoint is updated with the new view 

information. However, only the histogram bins that represent the visible portions of each obstacle 

are updated. For a visible histogram bin l [i], the viewline vector w is calculated from P to the centre 

of that histogram bin. The angle between this viewline vector w; and the normal to the obstacle n is 

calculated (ý) and stored in the obstacle's histogram bin at l [i]. 

The improvement of a potential new view compared to all previous views can be calculated using 

the accumulative difference in all previously stored views p< PT, where PT is the number of views 

stored in a given histogram bin and N is the number of bins stored with a given obstacle. The 

obstacle-view improvement Io for an obstacle viewed from position X is defined as 
N PT 

Io =EH (n. wix - n. wjp) 
i=1 p=1 

(4.2) 

where wix is the viewline vector from X to the centre of the histogram bin 1[i]. The more histogram 

bins of an obstacle that are seen, and the larger the difference in the stored angles, the larger the 

improvement for a new view. That is to say, that an obstacle viewed from the same angle but different 

positions does not improve the view for the obstacle as much as viewing the obstacle from the same 

position with a different view orientation. 

4.3.2 Area-view improvement 

The detection of features and their subsequent triangulation and identification of obstacles and open- 
ings greatly informs the robot exploration algorithm. When, however, no features are detected, the 

information that a section of the environment was viewed and that no features were detected is also 

useful. The storage of this information and its use to calculate an improvment of a potential new 

view is considered in this section. 

A simple way to store the seen parts of the world is as a discrete grid of equal-sized bins forming a 
2D histogram, as seen in Figure 4.6, where the area a of the scene able to be explored is split into 

equal sized bins. 

In the same vein to the obstacle-view improvement introduced in the previous section, the number 

of times a portion of the area has been viewed does not encapsulate all the available and useful 
information. Instead, stored in each histogram bin is the angle from which that portion of the area 

was viewed from. For each visible histogram bin a[i, j] from a given viewing position, the viewed 
angle C is calculated using the viewline vector w and the normal to the centre of the histogram bin 

n and stored in the area histogram at a[i, j]. When the area is viewed from another position and 

orientation P', the accumulative difference in all previously stored views p< PT (where PT is the 

number of views stored in a given histogram bin) can be calculated. The area-view improvement Ia 

for the visible area viewed from position X is defined as 
PIr 

Ia =EJ (n. w'(i, j)x -n. w(i, j)p) (4.3) 
Q P=1 
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Figure 4.6: 2D histogram for scene area, a. Angles from which each area portion is viewed are stored 

in each visible histogram cell. Shown is an example viewline vector w from P, and the storage of 

the angle ý at cell a[i, j]. A second example viewline vector w' from P is also shown. 

The larger the viewed area and the greater the difference in the stored angles in the area's histogram, 

the larger the improvement for a new view. When new features are added into the world map. the 

parts of the area that have been seen may change. After each set of new features has been added to 

the world map, the seen histogram is evaluated before the the area-view improvement is calculated. 

4.3.3 Similarity in view position 

Similar viewing positions provide little new information about the world map. Viewing the same 

features from a very similar position can improve the accuracy of the feature positions or the robot 

position. However, to aid the pioneering characteristic of an exploratory robot, a measure of position- 

similarity is used to deter a viewing position from being re-visited. Figure 4.7 shows (he robot 

ä 

a.. ý' Pý 
d 

N 

Figure 4.7: Similarity in view position and orientation. From the camera position P with orientation 

a (also shown is field-of-view), the similarity for the position I" and orientation er' is calculated using 

the distance between the two positions d and the difference in orientation angles using equation 14.41. 

position P and a candidate position P with viewing directions cY and cr' respectively. The distance 

between the camera positions, labelled d, and the view orientations with respect to the horizontal 
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axis, labelled a, are used to calculate the similarity in position between P and all previous positions 
(p 5 Pr) where d<D (typically D= 3r). 

Pr 

In =E (I cos(Dap)I +dn) 
P=1 

(4.4) 

The more positions that have previously been visited within the radius D and the more similar 
the viewing directions from those positions, the larger the similarity in position will be. Since 

cos(7r) = 0, viewing directions opposite to a potential viewing direction do not greatly contribute to 

this calculation. This similarity is a cost to the exploration algorithm, hence the minimum position- 

similarity should be favoured. 

4.4 Exploration using View-Improvement Calculations 

In this chapter, three methods to calculate the improvement of a new view of a scene have been con- 
sidered: using information from the previously viewed regions of obstacles, scene area, and visited 
positions. In this section, using each of these improvement measures separately, the explorations of 

an unknown environment are shown. 

The exploration algorithm starts with an initial scan of the environment, which is identical for each 
method of exploration. No information of the position or number of obstacles in the scene is known 

prior to the exploration. The robot builds up the map relative to its starting position of (0,0). An 
initial scan of the environment (16 views at 24° intervals) is done to build up a representation of the 
local area. Since the camera is offset from the centre of the robot, as the robot rotates on its (0,0) 

position, sideways movement of the camera is achieved during this scan, therefore mapping of fea- 
tures using back-projection as discussed in section 2.4.2 is possible. Neighbouring scene features are 
assumed to be obstacles until the construction line that defines the hypothesised obstacle boundary 
is violated by visibility constraints of other obstacles. 

The exploration algorithm presented here does not have a pre-set criteria for when the exploration 
will automatically terminate. Several simple options are available e. g. time, distance travelled, bat- 
tery power, etc. as well as scene feedback mechanisms such as the percentage of the area that has 
been viewed (which requires an estimate of the total area size), or a measure of the amount of new 
information being added to the map. The explorations presented in this and the next chapter were 
terminated by the operator when enough of the algorithm's behaviour had been displayed. 

Figure 4.8 shows the map being built from the test scene of Figure 4.8(a). There are five internal 

obstacles, the length and position of which are randomly added to the scene, of area 9m xl Om. 
Sixteen equal length obstacles are placed around the exterior of the environment. As new scene 
features are detected they are added into the world map representation, and the confidence of each 
construction line being an obstacle, Co, is recalculated using the visibility lines from the new view. 
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Figure 4.8: Initial moves in the basic map scene: Features visible from each camera position (shown 

in green) are added into the world map. Features detected from the most recent camera position are 

shown in pink. Correctly detected obstacles highlighted in red. All construction lines displayed to 

grey-level of C, with C, =1 drawn in black (for clockwise line orientation): counter-clockwise 

orientated lines drawn to blue-level. 

Previous robot view position and orientations are shown. The current view position has the field-of- 

view region and visible features highlighted. The construction lines are drawn to a grey-level value 

to represent their Co value. The construction line histograms are actually drawn as two lines slightly 

offset from each other in order to display each side of the line's view histogram. The clockwise line 

orientation with respect to the origin is shown in grey-level, and the counter-clockwise orientation 

line is shown in varying blue-level. When the construction line has been seen from both sides. both 

of these line histograms are shown. If the construction line has a very high C� value and has been at 

least partially seen, it is highlighted in red (the algorithm does not receive this information). 

For example, Figure 4.8(b) shows the view from the camera position at the fourth step of initial the 

scan. Three scene features are detected from this view and are added into the world map. After the 

features are added to the world map, the obstacle confidence, (',,, of each construction line within 

the triangular mesh is evaluated. The values of these obstacle confidences is displayed in grey-level, 
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with Co =1 drawn in black and Co =0 drawn in white. Figure 4.8(b) shows one correctly detected 

obstacle (highlighted in red), and three (incorrectly) hypothesised obstacles (drawn in black), These 

three hypothesised obstacles are constructed between detected scene features, but do not correctly 

represent the scene obstacle locations. As the exploration continues, these obstacles should disappear 

when other scene features are viewed through them. 

After the initial scan, three of the five internal and five of the sixteen external obstacles have been 

found. The fourteen obstacles with Co > 0.7 (eight which are correctly labelled and the six po- 

tentially visible others) are initially considered for further viewing. Positions providing the next- 

best-viewpoint are calculated and, if still visible from the hypothesised position, the improvement 

measure (10, Ia,, or 4, ) is calculated. The obstacle with the maximum improvement determines the 

next move. 

The exploration of this test scene using each of the three improvement measures in turn, will now 

be considered. For the exploration descriptions that follow, it should be noted that three options of 

distance to move (r in Figure 3.5) are used to calculate three next viewpoints for a given obstacle: 

0mm (rotation only), 400mm and 1200mm. This allows the robot to not traverse if it has found a 

good position to view several obstacles from, or to quickly move to a new area if the current position 

does not allow for good viewpoint possibilities. For each viewpoint calculated, if the obstacle is 

viewable from the new position by a number of orientations, options for view orientation are also 

calculated. 

4.4.1 Exploration of a basic map using the obstacle-view improvement 

Figure 4.9 shows the first few moves of the exploration algorithm using the maximum improvement 

of the view of obstacles in the world map (following the set of viewing positions shown in Figure 

4.8). Each row shows one snapshot of the exploration. The left column shows the world map with 

the construction line histograms (only the number of entries in the line's histogram are shown). The 

next viewpoint selected is highlighted by the field-of-view lines of the camera and the obstacle used 

to calculate that viewpoint is highlighted by circles at the ends of the obstacle. The second column 

shows the updated obstacle map after the move, after all update calculations of the obstacles have 

been made. Previous robot position and view orientations are also shown. The third column, for 

reference, shows the new position of the robot within the scene. 

The initial moves using the obstacle-view improvement select the longer construction lines at new 

view orientations of different obstacles in turn. The second move finds two new obstacles, one correct 

obstacle on the right external wall and one construction line. After each move, all obstacles have their 

confidence measures, Co, recalculated. Since the obstacle chosen for move two now intersects the 

visibility lines from the new position, it will no longer be labelled as an obstacle. It therefore will 

not be considered for future choices of view improvement. Since two new obstacles are added into 

the world map, the number of obstacles to consider for view improvement does not decrease. 
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Figure 4.9: Obstacle-view improvement: moves 1-4. (i) next move on obstacle histogram neap, 

selected obstacle highlighted with corner circles, (ii) obstacle map, (iii) position in scene. 
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IFigure 4.10 shows the world map information after 30 moves. All five of the scene obstacles have 

been viewed, hut only ten of the sixteen external obstacles. Also shown in this figure is the seen area 

histogram (showing only the number of entries in the histogram). From this 2D histogram it can be 

seen that a large proportion of the area occluded by the long obstacle has not been explored. In fact 

only a relatively small area has actually been traversed by this exploration algorithm. 

ý_ 7 

3 

Figure 4.10: Obstacle-view improvement: after move 30. (i) obstacle histograms. (ii) obstacle map, 

(iii) seen areas. 

The obstacle-view improvement strategy chooses the obstacle that will yield the best improvement 

from a limited choice of position and view orientations. The best accumulative improvement is 

usually from a position which will allow the entire obstacle to be viewed. As the viewing angle 

improvement is at a maximum when greater than 90°, for a long obstacle this sways the choice of 

position to he close to the obstacle to enable the entire length to be seen. This is apparent in each of 

the view positions in Figures 4.9 and 4.10. This position preference leads to the subsequent position 

options being rather limited because only a portion of the motion radius is able to be reached without 

the path intersecting an obstacle. 

Figure 4.1 1 shows the moves 31-36. The construction line histograms after the selected obstacle 

for the next-best-viewpoint are shown in the first and third rows; the obstacle map after the move is 

shown in the second and fourth rows. Move 31 moves the robot to a position where previously seen 

features are able to be viewed, the two incorrectly labelled obstacles are intersected by the visibility 

lines of the viewing position. These two obstacles being removed actually increases the number of 

options for new positions because more obstacles are now visible from the current robot position. 

However, after a few more moves, the algorithm does not select any of the new obstacles that would 

pull the position towards the unseen regions of the scene. 
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Figure 4.11: Obstacle-view improvement: moves 31-36. (i) obstacle histograms. (ii) obstacle map. 
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4.4.2 Exploration of a basic map using the area-view improvement 

Figure 4.12 shows the first few moves of the exploration algorithm using the maximum view im- 

provement of the world map area after the set of viewing positions of Figure 4.8. Each row shows 

one snapshot of the exploration. Using the same layout as Figure 4.9, the first column shows the 

world map with the construction line histograms (which are not used in this exploration), and the 

third column shows the area histogram which is used to calculate the area-view improvement for 

each potential position (only the number of entries in the area histogram are shown). 

The initial moves using the area-view improvement select the obstacles that are a good distance 

away from the starting position, providing a large viewable area. Once the robot moves away from 

the starting position, an area-view improvement is possible in every direction. Although no new areas 

are detected during the first four moves, the majority of the initially seen area from the first scan has 

been viewed for a second time without any overlap, which shows us that the maximum area has been 

selected along with good views of the selected obstacles. 

Figure 4.13 shows the moves 43-46, again showing the next move on the obstacle histogram map, the 

obstacle map and the area-view histogram. Similarly to the obstacle-view improvement exploration 

shown previously, the robot does not travel very far away from its starting position, but has again 

seen all of the internal obstacles and has detected all but five of the sixteen boundary obstacles. 
Interesting behaviour is displayed in moves 44-46, where the robot moves a distance away from 

previously visited positions to view the large and previously unseen area in the top right comer of 

the scene. However, once the area has been seen from these three positions, the view improvement 

of that area decreases. The bottom left of the scene has been seen several times, but becomes more 
interesting from this new position than the newer area in the top right corner. The robot then moves 

away from this new area into the more familiar region. 

Figure 4.14 shows the exploration after 129 moves. Although the majority of the area has been seen 

many times from many different orientations, some of the area remains totally unseen. An interesting 

characteristic of the area-view improvement exploration is the robot positions which are chosen such 

that when a new position is visited, a scan of the local area (similar to the initial scan) is selected. 
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Figure 4.12: Area-view improvement: moves 1-4. (i) next move on obstacle histogram map, selected 

obstacle highlighted with corner circles, (ii) obstacle map, (iii) areas seen. 
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Figure 4.13: Area-view improvement: moves 43-46. (i) next move on obstacle histogram map, 

selected obstacle highlighted with corner circles, (ii) obstacle map, (iii) areas seen. 
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Figure 4.14: Area-view improvement: moves 129. (i) next move on obstacle histogram map, selected 

obstacle highlighted with corner circles, (ii) obstacle map, (iii) areas seen. 

4.4.3 Exploration of a basic map using the position-similarity 

Figure 4.15 shows the first few moves of the exploration algorithm using the minimum similarity of 

the previously visited viewpoints in the world map (after the set of initial viewing positions of Figure 

4.8). Each row shows one snapshot of the exploration. 

This exploration technique uses no measure of improvement for the view of an obstacle or the amount 

of area that will be seen from the new position. After the first four moves, the robot has travelled it 

good distance into the region of the scene viewed from the initial scan moves. It is important to note 

that the robot will never move into a region of the scene that has not previously been viewed, this is 

explicit in the algorithm because the unseen areas lay behind obstacles and a path cannot he planned 

through any obstacle. All five of the internal obstacles have been detected, but only six of the sixteen 

external obstacles have been viewed. 
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Figure 4.15: Minimum position-similarity: moves 1-4. (i) next move on obstacle histogram map. 

selected obstacle highlighted with corner circles, (ii) obstacle map, (iii) areas seen. 
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Figure 4.16: Minimum position-similarity: moves 19-21.23. (i) next move on obstacle histogram 

map, selected obstacle highlighted with corner circles, (ii) obstacle map, (iii) areas seen. 



84 Chapter 4. Obstacle Selection for Exploration 

Figure 4.16 shows the exploration after 19 moves. At moves 19 to 21 the robot is in positions 

with view orientations such that the area behind the long scene obstacle is visible. as several scene 

obstacles are detected from those positions. Although the new areas and obstacles have been seen 

along the left wall, the choice of next positions does not move the robot down the long corridor. 

instead the next position is chosen towards the previously visited positions in the centre of the scene. 
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Figure 4.17: Minimum position-similarity: moves 49 & 141 (i) next move on obstacle histogram 

map, selected obstacle highlighted with corner circles, (ii) obstacle map, (iii) areas seen. 

Figure 4.17 shows the exploration after 49 and 141 moves, where the majority of the scene has been 

visited by the robot and over 80%, of the area has been seen at least once. Up to the 49 moves, the 

path of the robot does not often intersect itself. During the next 92 moves however, the path does 

intersect itself frequently, until the robot escapes the central region and moves down the corridor to 

the left of the scene. This exploration algorithm does allow the entire scene to be seen, although not 

methodically, and by doing so actually views both sides of each obstacle. 

4.5 Review of the Obstacle Selection Explorations 

The exploration of a basic scene with five interior and sixteen exterior obstacles using three methods: 

maximum obstacle view improvement, maximum area-view improvement and minimum position- 

ý., ý. 
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similarity have been considered. The demonstrated explorations are first reviewed briefly. A com- 

parison of the three methods using the percentage of the area and obstacles seen against the distance 

travelled is then discussed. 

The `obstacle-view' improvement exploration of section 4.4.1 demonstrated how the obstacle-view 

histograms can successfully be used to view obstacles from different viewing orientations (with re- 

spect to the obstacle) without the robot having to move large distances. The preferred pose relative 

to the chosen obstacle was generally quite close to the obstacle, to be in a position where the entire 

obstacle is visible. This then restricted the following choice of obstacle views which led to only local 

exploration. A complementary algorithm that would pull the robot away from the obstacles should 

provide a wider choice of subsequent moves. 

The `area-view' improvement exploration of section 4.4.2 showed the choice of robot positions that 

allowed the majority of the area to be seen quickly, which also forces the robot into the exploration 

of most areas within the scene. The chosen exploration path for the robot, in which the area of 

the scene was covered using a large step then several viewing direction choices, was similar to the 

original scan used prior to the exploration algorithm. It is interesting to note the behaviour of the 

area-view exploration over many moves such that the exploration does continue to visit new areas of 

the scene. Unlike the obstacle-view improvement exploration, the robot positions during the area- 

view improvement exploration were nearer to the centre of open space. The view scan from each 

new robot position seems a little excessive, in that the local obstacles are scanned numerous times. 

A complementary algorithm that drives the robot away from positions that have already been visited 

should counter-balance this. 

The minimum `position-similarity' exploration of section 4.4.3 showed a different approach to the 

other two explorations where the information received from the scene was not used to improve the 

world knowledge. This approach steered the robot into new areas not previously visited by the robot 

but that had already been viewed. The main strength of this algorithm over the other two is the 

likelihood for the robot to visit all areas of the scene. 

Figure 4.18 shows three plots of the percentage of the area and obstacles seen against the distance 

and rotation travelled for the three explorations described above. The distance travelled is calculated 
in centimetres from the distance travelled by one of the wheels. Since the robot has differential wheel 

drive, both wheels should travel the same distance. 

Each exploration begins with the identical initial move, after which 40% of the total area has already 

been seen. For each of the graphs the percentage of the area and obstacles that have been viewed 
during the exploration of the scene increases quite rapidly but then plateaus off once the majority of 

the scene has been visited. The obstacle-view exploration graph shows the percentage of the obstacles 

and the area seen grow at a similar rate, perhaps with the amount of area seen being slightly higher 

than the number of obstacles detected. The other two graphs however show how the amount of the 

area that is seen lags behind the number of obstacles detected. 
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I-irure 4.18: Analysis of basic map exploration using area- and obstacle-view improvement and 

position-similarity measures: percentage of obstacles and areas seen versus total distance travelled. 

The obstacle-view exploration of the basic scene does not successfully view all areas or all obstacles 

in the scene, however after 30 moves, 4000cm have been travelled with over 70% of the obstacles 

and area seen. After 4000cm during the area-view exploration have been travelled, 75% of the area 

and obstacles have been viewed, compared to 70% and 80%% of the area and obstacles respectively 

during the position-similarity exploration. 90% of the area and the obstacles have been detected 

after 10,000cm during the area-view exploration, and after 8000cm during the position-similarity 

exploration. Since both of these explorations demonstrated the characteristic of choosing to move 

the larger of the distance choices, this makes sense. 

4.6 Conclusions 
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In this chapter an exploration strategy for a vision system with limited field-of-view using three 

mcthods: maximum obstacle-view improvement, maximum area-view improvement and minimum 
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4.6. Conclusions 

position-similarity has been presented. 

87 

Each of the methods use the same algorithm to provide a selection of viewing positions calculated 

using the next-best-view position of each obstacle, from Chapter 3. From the choice of viewing po- 

sitions, the obstacle-view improvement, area-view improvement or position-similarity is calculated 

and the maximum improvement (or minimum similarity) is chosen for the next move. The example 

explorations shown have highlighted the advantages of each method and how they complement each 

other. Each of the three methods are missing one common factor, that each obstacle in the world map 

is considered equal i. e. there is no obstacle priority. This means that one obstacle may be viewed 

repeatedly whereas, should another obstacle be selected, new areas may be explored. Figure 4.16 

and Figure 4.13 showed the situations where new features were detected but the new area was not 

explored further. 

The next chapter uses all three methods described here, together with an obstacle priority measure in 

a joint improvement cost function to explore an unknown environment. 
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In the previous chapter, three methods for exploration driven by: maximising the view of an obstacle 

using a measure of obstacle-view and area-view, and minimising the position-similarity were dis- 

cussed. Each technique was considered separately in an example of a basic scene to highlight the 

functionality and use of each algorithm. The advantages and disadvantages of each were discussed. 

This chapter shows ajoint-improvement technique for exploration by using an amalgamation of these 

three techniques. A variety of environments are shown in order to demonstrate the autonomous ex- 

ploration algorithm and its ability to successfully explore and build up knowledge of an unknown 

scene, without the use of pre-planned actions for specific scenarios. 

5.1 Introduction 

An algorithm designed to autonomously explore an unknown environment which has no restriction 

to the configuration of obstacles within the environment must he able to function in the wide va- 

riety of situations that it may encounter during its exploration. Such situations may include: wide 

89 



90 Chapter 5. Autonomous Exploration 

open spaces with little restriction on movement, small spaces with numerous features and limited 

movement ability, narrow corridors, dead ends, and many others. Some researchers have focused on 
"hard-coding" an exploration algorithm with a limited set of options about how to handle a given set 

of situations, e. g. wall-hugging in narrow corridors, [Nehmzow and Owen, 2000]. Such techniques 

are limited by design since they do not allow a robot to handle any non-programmed events, and 

are also susceptible to errors in the classification of the particular section of the environment. The 

aim of this chapter is to use together the tools developed in the previous chapter to allow efficient 

exploration of an unknown environment without hard-coding special situations. 

Considered in this chapter is the joining of the information from the three separate algorithms dis- 

cussed in the previous chapter: an area-view improvement, an obstacle-view improvement, and a 

position-similarity measure. With these three measures combined, their respective disadvantages 

should be counter-acted and their advantages together should lead to an efficient exploration. All 

three of the measures, however, shared a common disadvantage, that of treating newly discovered 

areas and obstacles in the same manner as older obstacles. This does not encourage a pioneering 
instinct. In this chapter, a measure of importance of obstacles which can encourage this pioneering 
aspect for a successful exploration algorithm is considered. 

Three environments will be considered: the first is the basic scene example considered in the previous 
chapter and is shown here to demonstrate the workings of the algorithm in comparison to those meth- 
ods discussed previously; the second scene is one engineered to provide one example of a difficult 

scene for an exploration process, where the majority of the scene area is known prior to exploration. 
The interesting point in this case is whether the exploration algorithm can find the unknown area 
without it being pre-planned that the entire area must be exhaustively searched, or knowing that the 

entire area is accessible. It is interesting to see how the algorithm deals with a large open space where 
no new parts of the scene are discovered for some time. The third environment is a map engineered 
to display another specific characteristic: a long corridor with a dead end. The exploration algorithm 
presented here does not hard-code these scenarios. How they are handled with the joint-improvement 

utility function with obstacle-importance will be discussed. 

5.2 Joint-Improvement Utility Function 

In the previous chapter, three methods that measure the improvement of a new position during explo- 
ration were presented. Two of these methods measured the angular view improvement of an obstacle 
chosen for view and the predicted area to be visible. The third was a measure of the similarity to 
the previously visited positions. It was noted that most of the disadvantages of each of the methods 
could have been counter-balanced by one of the other improvement measures. By joining all three 
measures together into one utility function, a simple calculation can measure the best choice of the 

next-best-viewpoint options. 

The area-view (IQ) and obstacle-view (I, ) improvement measures increase for an improvement of 
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knowledge of the scene. The position-similarity measure (In) decreases for a preferred destination 

position. These three measures are normalised to values between zero and one, which allows them to 

be considered equally by an additive joint-improvement function. The original values are divided by 

their respective maximum values (chosen after a number of test runs) which in the case of the area- 

obstacle-view improvements depend upon the resolution of their respective bin sizes. The normalised 

values I, Ia, and Ip are added together to provide a joint-improvement measure Ii given by 

Ij=max(Io+Ia+(1-4)) (5.1) 

From the choice of the next-best-view positions for each obstacle in the robot's vicinity, the obstacle 

which yields the highest joint-improvement, Ij, is selected. The move to the position which provides 

this improvement is passed through the system for execution. 

5.2.1 Obstacle importance 

One common problem discovered in the previous chapter was the lack of a pioneering aspect; when a 

new area is discovered, the new obstacles that encompass the new area were only as interesting as the 

obstacles that have already been seen before. If the view improvements are the same, no preference 
is shown to the newer obstacles. 

An obstacle should be deemed especially interesting to the exploration algorithm if it has not been 

seen many times before. To simply rate each obstacle for its interest to the selection algorithm an 

obstacle-importance Oi is used. O;, is initially set to a nominal value for all obstacles when first 

added into the world map, and increased or decreased according to its importance to the exploration 

algorithm. Before a move is executed, the portion of the scene that should be acquired from the next 

viewing position can be predicted. The actual information received from the new position can be 

compared to that which was predicted and used to feed back the success of the data acquisition to 

provide successive move calculations with useful information. 

A measure of the information that should be acquired from a move is the area that is anticipated to 

be viewable. Figure 5.1 shows an example where the predicted area is not the same as the actual 

viewable area. When the scene has only been seen from P and the features B and C have not yet 
been detected, the obstacle AD will exist. Later, when the scene is viewed from P' (for example 

when obstacle AD is selected for view) scene features B and C become visible and will be added 

to the world map. The expected area from P' would have been that up to obstacle AD, whereas the 

actual area, once features B and C have been added, is the quadrilateral ABCD over and above that 

which was expected. In this example, the new obstacles that surround the new available area (AB, 

BC, and CD) become very important to the pioneering requirement of the exploration algorithm 

and should be prioritised. 

A plausible heuristic is that the more times an obstacle is viewed, the less likely that that obstacle is 

to occlude features yet to be discovered. An obstacle that has been viewed five times is less likely to 
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Figure 5.1: Obstacle Importance: predicted versus actual area. When only viewed from P. obstacle 

Al) exists (since F3 and C are yet to be detected). The predicted area from P' is therefore P'AD. 

Instead features B and C are discovered, so the actual viewed area is P'ABCD. 

be incorrectly labelled than one that has only been viewed once (assuming that the view angles are 

not identical). With this in mind, as obstacles are selected for view by the exploration algorithm they 

become less interesting as they are less likely to reveal unseen occluded features. The value of O; 

is reduced by a factor of IO if more than 70% of the obstacle is seen from the new position. Oi is 

multiplied by a factor equivalent to the difference in the area which was expected to be viewed and 

the area that was actually viewed, when new obstacles are discovered (in the example of Figure 5.1. 

this would he area AB('D). 

Obstacle histograms are re-assessed at each evaluation step to keep the portions updated with new 

information that may change future motion decisions. In the same vein, the area histogram is also 

re-assessed at each evaluation step. This is important since it is possible for new features to be 

detected which contradict the information that a portion of the area has been seen. In this case, areas 

that were previously labelled as seen will be changed, since they have not actually been viewed. This 

updated histogram information is then used to specify which obstacles are more interesting for future 

exploration. 

As the scene features of already known world features are updated, their positions are likely to 

change. In such cases, the area expected to be viewed will alter, not because the obstacle is new 

but because it has been updated. The greater the change in position of either obstacle end point, the 

greater will be the difference between the area expected to be updated and the area that is actually 

updated. This will therefore also be taken into account during obstacle selection. 
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The rear-side of previously known obstacles are labelled with separate obstacle-importance. Al- 

though obstacles that have already been viewed from one side are unlikely to be re-labelled as non- 
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obstacles when viewed from the other side, the importance of an obstacle relates to the number of 

times it has been viewed and the circumstances under which it was discovered and updated. To say 

that since an obstacle had been viewed from one side makes it less interesting when viewed from 

the other side would be incorrect. For example, if both sides of an obstacle shared their importance 

value, an incorrectly labelled obstacle that had only been seen many times from one side (hut only 

labelled as an obstacle because no other features were visible through it) may not he considered for 

subsequent view selection from its rear side, even though this may lead to the discovery that this 

obstacle is actually an opening. 

Let us first consider the exploration of the basic scene from the previous chapter using the joint- 

improvement utility function with obstacle-importance to select the next obstacle to view. 

5.3 Basic Scene 

Figure 5.2(a) shows the scene map of the basic scene used in the previous chapter, (figure 4.8(a)). 

This scene is constructed of sixteen external obstacles of similar length and five internal obstacles of 

random position, length, and orientation. The system begins with no knowledge of the number, size. 

position, or orientation of the obstacles in the scene. The exploration begins with fifteen rotations 

to cover 360°. Figure 5.2(b) shows the obstacle map after these rotations. The single improvement 

methods in Chapter 4 each started in this position with this same knowledge of the scene. All obsta- 

cles at this stage have an obstacle-importance of 100, and therefore will be selected for view based 

only on their joint-improvement. 

(a) Basic scene (b) Initial move xvi (c) Obstacle histograms (il) Area hislogrant 

Figure 5.2: Basic scene exploration: last initial move. Correctly detected obstacles highlighted in 

red, current and previous view directions shown in green. 

5.3.1 Exploration 

Figure 5.3 shows the first few moves selected by the exploration al ; orithm. Dach column shows one 

snapshot of the exploration. It can be seen in move 4 that the obstacle selected by the exploration 

algorithm (shown on the line histogram map by circles at each of the hypothesised obstacle's feature 
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points) was occluding an unseen scene feature, C. A new hypothesised obstacle is created (LI) with 

Ulis new feature. I>uc to its high obstacle-importance, its joint-improvement value will he consid- 

erably higher than for any other obstacle. The best joint-improvement from the position options for 

that obstacle is selected for view in move 5 where three new scene features are discovered. Again a 

newly constructed hypothesised obstacle (1,2) is selected for view in move 6. 

These moves are an exciting example of how the obstacle-importance measure is used alongside the 

improvement measures to rapidly and repeatedly discover new areas of the scene. 
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Tipure S. 3: Basic scene exploration: moves 4-6. (row i) next move on obstacle histogram map, se- 
Iccled obstacle highlighted by corner circles, (ii) obstacle map after move, (iii) seen areas after move. 
As new scene features are discovered, new hypothesised obstacles are constructed and prioritised. 



5.3. Basic Scene 95 

The exploration proceeds in Figure 5.4 as the first obstacle is navigated around revealing a huge ; irca 

of unexplored territory. This section of the exploration is dominated by large obstacle-innportance 

values which pulls the robot position around into the new area. At this stage the obstacle-view, area- 

view and position-similarity are all very strong. Combined with a (arge ohstacle-importance, the 

exploration selects views of large areas and those which encompass the entire length cif obstaclcs and 

at positions well away from previously visited positions. 
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Figure 5.4: Basic scene exploration: moves I 1-13: large obstacle-importance influences the choice 

of obstacles to view. Area-view and position-similarity also play a part in this choice; obstacle 
histograms with defined clockwise obstacles shown in grey-level and anti-clockwise obstacles shown 
in blue-level; if both sides of an obstacle are viewed, both grey and blue lines are drawn. 
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Figure 5.5 shows the chosen obstacle for view, for moves 24-32. The robot has reached the far side 

of the scene and has viewed over 75`X of the area. The long obstacle which fences off the far left 

side of the scene has been navigated around and a portion of the area behind the obstacle has been 

viewed and entered into. This limits the choice for the next move to those which provide motion 

direction within only 20)°-100°, with a larger move distance, and to the very local obstacles. Unless 

the far end of the long obstacle is viewed, the incorrect hypothesis of the short obstacle selected for 

view within moves 24 and 26 will remain. This view is not chosen (even if available from the limited 

move options) and the surrounding local obstacles are considered instead, leaving the unseen area to 

the left of the long obstacle (Area A) not viewed. 

JI 

Area A/ 

ýf/ýý 

1` 

Y `ýi 

Figure 5.5: Basic scene exploration: moves 24-32: next move on obstacle histogram map. Limited 

choice of next positions. Area A remains unseen. 
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The exploration algorithm does not use information of the portions of a scene which have not been 

seen, as no assumptions to the size or shape of the environment are made, or that all areas of a scene 

are accessible. This has the advantage that a portion of the scene is not repeatedly and exhaustively 

viewed with no view available, but has the disadvantage that a portion of the scene may he missed, 

as in this case. (This portion of the scene is discovered later in the exploration. ) 

Figure 5.6: Basic scene exploration: moves 38-40: next move on obstacle histogram map. with 

selected obstacle highlighted with corner circles. Using position improvement to view new areas 

Moves 38-40 take the robot to view the small unseen area at the bottom right of the scene. Be- 

tween moves 40-45, the joint-improvement steadily decreases, and appears to be using the position- 

similarity alone to direct the robot towards the newly seen bottom right region. 
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Figure 5.7 shows the last new areas being discovered between moves 45-50. The position-similarity 

measure has pushed the position towards the bottom of the scene. At move 46 the only visible 

remaining incorrectly hypothesised obstacle is viewed and reveals the unseen area in the bottom left 

corner of the scene. The joint-improvement values for subsequent moves are controlled by the huge 

obstacle- iinportance values of the new obstacles, keeping the pioneering interest of the exploration 

towards this new region. Moves 47-50 reveal the remaining unseen areas. After 50 moves, 7500cm 

have been travelled, 100% of the area has been viewed, and every obstacle detected. Moves 50-100. 

Figure 5.8, shows the robot travelling up the long corridor to the left of the scene. 

; 7i 

Figure 5.7: Basic scene exploration moves 45-50: remaining unseen areas discovered. 

Figure 5.8: Basic scene exploration: moves 88,100,120. 
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5.3.2 Analysis 

Figure 5.9 shows the percentage of the area and the number of obstacles seen as the robot travels 

through the scene. The percentage of obstacles detected and the percentage of the area seen follow 

closely as the exploration continues. After just twenty moves over 75% of both the obstacles and the 

area have been seen, and after 50 moves all of the obstacles and the area of the basic scene have been 

viewed. 

In the second graph, the value of the joint-improvement function is shown against the same distance 

measure as the percentage graph, which enables us to re-trace the exploration with the values of the 

joint-improvement function at each step. The spikes in this function correspond to moves where new 

area or obstacles have been detected. At the start of the exploration, after some new unseen area is 

discovered, the value of the joint improvement function is extremely high. This remains the case 

whilst new areas and obstacles are discovered. At moves 26-36 and moves 40-50 the robot moves 

across the scene without detecting any new area or obstacles. The maximum joint-improvement 

values during these moves gradually decrease. 

Move 50 is the last move where new area is discovered. After this point, the joint improvement value 
decreases to zero as the robot's exploration is allowed to continue. As each obstacle with a high 

obstacle-importance value is chosen for view its obstacle importance decreases, the chosen value for 

the maximum joint-improvement will therefore decrease over time. 

From move 50-100 the robot travels up the long corridor to the left of the scene. Once the robot 

reaches the top of the corridor an obstacle previously not well seen becomes visible. Again at move 
120 a large, spike appears in the joint improvement value, due to an obstacle-importance left behind 

from the earlier exploration moves. The joint-improvement however is only in the order of 1x 101 

compared to the previous values at 1x 1012. After 120 moves all three improvement measures 
decrease. Since no further new areas are available to explore, the obstacle-importance plays no part 
in the obstacle selection choice and the joint-improvement falls to zero. 

The exploration of this basic scene using the obstacle-view improvement was shown in the previous 

chapter. During that exploration, the chosen robot positions were those which were close to the 

obstacle and views along the obstacle so that the entire obstacle was visible. After thirty moves 

and 4000cm travelled in the obstacle-view exploration, over 70% of the obstacles and area had been 

seen, compared to over 80% for the joint improvement exploration after travelling a similar distance. 

The path of the robot at the beginning of the obstacle-view exploration is similar to that of the joint 

exploration in that the robot is moved away from the starting point and acquires information of the 
lengths of obstacles it is able to view. However the path of the joint-improvement exploration is 

much more direct towards the new discovered area and does not back-track upon itself as often. 

The area-view improvement exploration of the previous chapter showed that the chosen robot po- 

sitions were such that a larger area would be visible, in the centre of the spaces of the scene. This 

behaviour is also displayed in this exploration. After 50 moves and 4300cm travelled in the area- 
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view exploration, 75ý/, of the obstacles and 801h% of the scene area had been viewed; after 50 moves 

and 7500cm travelled in the joint-improvement exploration, 100% of the obstacles and the area had 

been viewed. Before the area-view exploration had viewed all of the area and obstacles, a total of 

10,000cm had been travelled. 
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(a) Percentage of obstacles and areas seen versus total distance travelled. 

Figure 5.9: Analysis of basic map exploration using joint improvement measure. 

The path of the robot for the area-view exploration was noted to be characteristic of one large step 

followed by several rotations, although this was not apparent in the joint improvement exploration. 

The position-similarity exploration of the previous chapter showed that the chosen robot path was 

irregular and generally didn't intersect itself, which is a characteristic also displayed in the joint- 

improvement exploration. After 50 moves and 3300cm travelled, 90% of the obstacles and 94% of 

the area had been viewed using the position-similarity exploration. This compares to 100% of both 

obstacles and the area which had been viewed after travelling that distance in the joint-improvement 

exploration. 
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(h) Joint-improvetncnt during exploration. 
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In this basic scene example. the joint-improvement exploration performs heller than each of the 

three techniques alone. Along with the obstacle improvement nicasure a sensible exploration pith is 

constructed. Two structured environments to display certain characteristics of the joint-inuprovenient 

exploration algorithm will now he considered. 

5.4 Hidden Room 

The previous scene map showed the general workings of the exploration algorithni and how a map 

can be successfully explored using the joint-improvement utility function with next-hest-view move- 

ment options. A scene where the majority of the area and obstacles can be seen from the starting 

point, but contains a room whose entrance is hidden from view. Figure 5.10 will now he considered. 

For the robot to find the entrance to the room, it must travel up to the top of the scene and look 

towards the entrance at an angle such that the interior of the room becomes visible. The obstacle 

map after the initial move is shown, also the area-view histogram. 

L 
Figure 5.10: Hidden Room Exploration: Scene Map, Initial Move and Areas Seen. Most of' the 

obstacles and the area is seen frone the initial scan: entrance is hidden from initial view. 

After this initial move, all of the construction lines labelled as obstacles have the same obstacle- 

importance, so are considered equally. The choice of move therefore is due only to improvement in 

obstacle- and area-view and position-similarity. 

5.4.1 Exploration 

Figure 5.1 1 shows the beginning of the exploration with move numbers 4,0.8 and 10. While no new 

obstacles are detected each obstacle has the same importance (0, ). The initial moves show the robot 

moving without an overall direction around the central area. It appears that each obstacle around 

the exterior of the known space are selected in turn, where a good sized area and large change in 

position is calculated. No new area or new obstacle features are discovered for some time. The joint 

improvement slowly decreases as each obstacle is viewed numerous times. A similar behaviour to 
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that of the position-similarity exploration shown in the previous chapter (Figure 4.15) is prominent 

(luring these first few moves. 

j 

1 

figure 5.11: Hidden room exploration: up to move 10. 

After 32 similar moves where the entrance to the hidden room is not seen and thus no new information 

of the scene has been discovered, the robot is close to the top of the scene and therefore in a position 

that the unseen area above the hidden room can be viewed. At move 33, shown in Figure 5.12, the 

robot detects the new area above the room and seeks out the new area by moving to the best-viewpoint 

for the newly detected obstacles. Once the room entrance is labelled as an opening, because it violates 

several visibility constraints, the robot moves inside the room. After several moves inside the room 

the obstacle-importance for the obstacles making up the room will decrease as well as the obstacle- 

and area-view improvement. Hence, the robot is pushed away from previously visited positions and 

exits the room. Upon leaving the room, the previously marked important obstacles are viewed further 

and the remaining unseen area of the scene is viewed. 
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Figure 5.12: Hidden room exploration: obstacle map with robot path for selected moves 33--06. 

Move 33 selects the obstacle L3 to view, allowing new features to he detected. Subsequent hyhothr- 

sised obstacles selected yield further information about the scene. After just (it moves the entire area 

has been viewed and all obstacles discovered. 
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5.4.2 Analysis 

Figure 5.1.1 shows the percentage of the area and the obstacles seen as the robot explores the envi- 

ronmcnt. After the initial move the majority of the area and obstacles have already been viewed. For 

the first 30 moves the robot meanders around the large space it is able to move around in freely, dur- 

ing this time the joint-improvement value steadily decreases. At move 33, when the area above the 

hidden room is discovered, the joint-improvement value dramatically increases, and the exploration 

continues into the area above and inside the hidden room. 
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(h) Joint-improvement during exploration. 

Figure 5.13: Analysis of hidden room exploration using joint improvement measure. 
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5.5 Complex Scene with Dead-End 
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In the previous example environments, the scene feature points that could he detected from the rohot's 

position with limited field-of-view were quite sparsely situated. This next scene is more complex. 

with some scene feature points being quite close together and smaller than the radius of the robot. The 

obstacle selection algorithm does not filter out small obstacles from its available options, all obstacles 

are considered. The obstacle- and area-view improvement values. however, will he relatively small 

in comparison to the values for longer obstacles. 

Area 5 

Area4 

Area 3 

Area I 
Area 2 

.. -ý 

ýt---- 

Figure 5.14: Complex room exploration: scene map, move I. 

In contrast to the previous example scene where the majority of the scene area is discovered prior 

to the obstacle selection algorithm at the start of the exploration, the example scene of Figure 5.14 

shows the robot starting position being almost completely surrounded by obstacles of various lengths, 

labelled as Area 1. After the initial scan, only 10%, of the scene area is discovered. This initial 

obstacle configuration was designed so that none of the sixteen external obstacles can he seen. The 

long obstacle at the bottom of the scene is placed to occlude the majority of two external obstacles, 

leaving only a small area behind this long obstacle that will begin unseen. The large area. Area 2, to 

the bottom right of the scene is occupied by two other obstacles, one very close to an external obstacle 

so that the robot is unable to navigate around it and also greatly restricts the view along the right-hand 

wall. The second smaller obstacle in Area 2, is positioned such that it can he circumnavigated by the 

robot, however once round this obstacle there is not much room to manoeuvre due to the exterior of 

the long corridor restricting the area. This scene has also been designed to highlight the long corridor 

and dead-end situation, Area 4. The robot can enter the corridor from the left side of the scene but 

must re-cover the area which has already been visited to come back out again. 

5.5.1 Exploration 

The first move of the exploration is shown in Figure 5.14, where the robot moves away from the 

starting position. The exploration continues in Figure 5.15. where after 13 moves the robot is still 
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inside Area I and has not discovered that one of the obstacles is incorrectly labelled. The behaviour of 

the robot in this case is similar to that of the hidden room example of Figure 5.11 where no new areas 

are discovered and the area- and obstacle-view improvement calculations become less prominent than 

the position-similarity; the obstacles appear to he selected in-turn from the longer obstacles to the 

shorter. Here, longer obstacles are selected before shorter obstacles due to the area- and obstacle-view 

improvement values generally being larger because of a greater number of histogram bins for long 

obstacles. In confined spaces, the obstacles being selected do not tend to be those that are viewed 

after moving large distances, in comparison to the previous exploration where several successive 

large distance moves were taken. Instead the strategy of one large distance move followed by several 

rotations is apparent. 

{-r I. 1. 
yý 

Figure 5.15: Complex room exploration: moves 13,14 & 18. The obstacles appear to be selected in 

turn, with one large move followed by several smaller moves and rotations. 

Figure 5.16 shows the last obstacle selection move which does not enable the robot to view any new 

area. Up to this point the selection algorithm has not chosen the incorrectly labelled obstacle to view 

since the viewing angle from the initial move scan is not significantly different from the available 

move options, most likely to he due to the confined space that the robot would have to move into in 

order to view this obstacle from the correct angle and the limited valid path required to access the 

next position. 

The robot leaves the enclosed area upon discovering obstacles behind the previously incorrectly 

labelled obstacle, Figure 5.17. It should be noted that each of the newly discovered obstacles are 

now labelled with the same value of obstacle-importance, the unanticipated new area, Area A. This 

large obstacle-importance value will affect each of the new obstacles such that they are more likely 

to he chosen by the obstacle-selection algorithm than the obstacles that make up the interior of the 
initial enclosing obstacles. 

In move 25 the rear side of an Area I obstacle is selected and viewed from outside the initially 

enclosed area. For a purely pioneering exploration algorithm, where the only goal is to discover 

uncharted areas, this obstacle, 1.4, should he removed from the interesting obstacle list, since no new 

unseen area will be exposed by looking through it at any angle since the area behind it is already 
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7 

Figure 5.16: Complex room exploration: move 22. The last move inside enclosing room. 
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known. The exploration presented in this thesis, however, aims to not only be pioneering i. e. search 

for and explore new areas, but also to enable the update of information of previously found feature 

positions. Therefore the ability to select this rear-side of the obstacle 1.4 is important. In a real-world 

situation, obstacles will not be able to be fully represented by a single line, as all obstacles will have 

some depth. By allowing the rear side of obstacles to be selected for view, this will allow for the rear 

side of the 3D obstacle to be viewed and its other points to he added to the world snap accordingly. 

Moves 26-29 show, again, that obstacles appear to be selected in turn. At move 29 a new area to 

the bottom left of the scene (shaded region Area B) is discovered. Since the unanticipated area 

discovered (Area B) is relatively small compared to that from move 23 (Area A). the newly added 

obstacles are not immediately considered for further exploration. This holds some advantage over 

other methods that could be used to prioritise obstacles. 

For example, one might consider ranking obstacles for selection in a list. As new obstacles are 

discovered they are pushed to the very top of the list, such that older obstacles are considered less 

important. However this does not account for the case of a minor adjustment being made to the world 

map. In this case a relatively unimportant new obstacle would be ranked higher than a much snore 

interesting one. The strategy employed here does not encounter this problem. 
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Figure 5.17: Complex room exploration: moves 23-34. Exploration lead by obstacle-importance; 

differing sizes of areas discovered which affect the obstacle's importance measures which overpower 

the ºihtitaclc selection algorithm. 
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This selection method allows the algorithm to consider these previously discovered obstacles to he 

rated more highly because they were found at a more prominent area. This allows for obstacles that 

are discovered behind a very small new area to not be rated higher than those which have enabled a 

much larger area to be explored. In move 32 a large area is discovered (shaded region Area (') and 

the new obstacles that surround this new area are all labelled with a very large obstacle-iinponancc. 

The exploration continues in Figure 5.18 as the robot enters Area 2. As the robot moves up the 

right hand side of the scene, an obstacle in the bottom right corner is not detected, which could h 

hazardous as a path could be planned into it. This is a downfall of' the limited field-of-view sensors 

compared to 360° scanners. In this example exploration a path is not planned through the undetected 

obstacle; however, if such a path was chosen and executed the path would not h able to he completed. 

In this case the restricted motion would be recorded and the desired view would not he obtained. but 

the algorithm would proceed, nevertheless. 

It should be noted that the obstacle selected in Figure 5.18 at move 40 was that which was previously 

labelled an obstacle, marked with an asterisk and not, as it would appear. the rear-side of the already 

detected obstacle, which was not thought visible from the start of the move. This obstacle was 

selected because of its extremely high obstacle-importance and reasonable joint-improvement. 

Q 

Figure 5.18: Complex room exploration: moves 35-40; moving through the scene an obstacle is 

initially not detected. The obstacle marked * is selected for view in move 40. 
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Figure 5. I9 shows a sununary of' some of the moves as the robot back-tracks across the scene. The 

ohstaclc that was previously undetected in Figure 5.18 is now discovered when an exterior obstacle 

is selected for view. The large area improvement from viewing across the scene from the opposite 

direction is in fact not achieved due to the obstacle being detected and the area is much smaller than 

that which was anticipated. The area is updated once an obstacle is detected and is added into the 

world map, so that the area is correctly labelled as unseen. The measure of obstacle-importance is 

added tu the newly discovered obstacles in the same way as it would be if the area had been expanded, 

as it is still new information and the new obstacles should be explored further. 

At move 91 an obstacle at the bottom of the scene is selected, which for the first time is viewed from 

. in angle such that the previously occluded exterior obstacle can be detected. The new area behind 

this obstacle is viewed further and shows that even very narrow openings can be viewed. The options 

for viewing positions of these newly discovered obstacles are limited since the robot is not able to 

travel into the new area; the new obstacles are not selected immediately, but are selected once the 

option for a good view of the obstacle through the opening can be achieved, three moves later. 

F. -. -. -l 

-inure 5.19: Complex room exploration: moves 54,61,70: The missed obstacle is detected and the 

new obstacles added into the world map restrict the expected viewable area are added with a high 

obstacle-importance. Moves 78,81, & 84: a small area at the bottom of the scene is detected. 
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The exploration continues in Figure 5.20 where the path of the robot has been led up and over the 

initial enclosing area, as the remainder of the scene begins to be explored. A new area to the left of 

Area I is discovered, and upon further investigation the robot travels clown into the area but ºkx"s not 

actually view all the available area; a small section of the viewable area is missed. Other researchers 

(e. g. [Pito, 1996]) have written algorithms to calculate a position from which to view an area. taking 

into account occlusions from known obstacles; however, no such analysis of the area is carried out 

in this research as it is not assumed that the entire area will be visible. Therefore if an algorithm was 

in place to select views for a given area it may lead the robot off the path of pioneering exploration. 

Up to this point, move 130,65% of the area and 73% of the obstacles have been seen. 

A 

Figure 5.20: Complex room exploration: moves 124,125,130. New area to left of Area I is discov- 

ered and partially explored, missing a small occluded area. 

As the robot exits from the limited area to the left of Area 1, the previously labelled obstacles are 

selected for view which allow both the corridor, Area 4, and above the corridor, Area 5 to he viewed. 
The selected obstacles inside the corridor pull the robot position towards the top of the scene. 

Figure 5.21: Complex room exploration: moves 147-149. New areas, Area 4&5, are discovered 

and initially viewed. 
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As the robot moves towards the top of the scene and its view direction is towards the end of the 

corridor, to get the best view of the obstacles that make up the corridor the robot has to travel inside 

the corridor. In Figure 5.22 however, the selected robot path is not to enter the corridor, but to view 

the new and larger area above the corridor. This is purely because of the magnitude of the obstacle- 

importance for those obstacles that surround Area 5. 
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Figure 5.22: Complex room exploration: moves 157-159. Rather than entering the corridor which 
has just been discovered, the new area above the corridor is detected and chosen for exploration. 

The robot travels around Area 5 for thirty moves until the position of the robot allows for the next- 

viewing position to again allow the interior of the corridor, Area 4, to be visible. Figure 5.23 shows 

the robot entering the corridor. As the robot enters the corridor and moves towards the dead-end, the 

first set of moves will add viewing orientations into obstacle's histograms from only one side. As the 

robot proceeds down the corridor the angles added into the obstacle's histograms will be significantly 
different if the viewing angle is chosen to view towards the exit of the corridor. This is useful since 
it enables the map building algorithm to keep track of the position of the robot with respect to scene 
features it already knows about. After several moves inside the corridor, the robot is at the end of the 

corridor, at the dead-end. 
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The last snapshot of Figure 5.23 is the area-view histogram. which shows that the majority of the 

scene area has been viewed at least once except for a few small areas to the bottom left and one to 

the right of the scene. 

The exploration continues inside the corridor. When obstacles are selected for view their obstacle- 

importance is divided by a factor of ten. This makes those obstacles less important to the selection 

algorithm. Of course if all available obstacles have a very low importance value, then the maxiimiin 

joint-improvement function will have a very low value. As the selection algorithm is limited by the 

number of choices of moves available to it, the robot's path can be non-direct. This is clear in Figure 

5.24 as the robot struggles to exit the corridor. 

wý R 
ý 

ý. 
ý 

ý{', f 

Figure 5.23: Complex room exploration: moves 192-194.202-204,206, & 207 (obstacle neap and 

seen areas histogram): Robot travelling down the corridor towards the dead end. 
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I, iyure 5.24 shows the final steps of the exploration for the complex scene. Moves 290-2 shows 

the robot exiting the corridor (one hundred moves after entering it); moves 316-20 shows the robot 

moving hack across the scene, using areas of the scene that have not yet been visited (since the joint- 

improvement measure will he higher for these regions). Moves 321-3 shows the obstacle selection 

algorithm finding obstacles with left-over obstacle-importance and discovers a small new area to the 

right ofthe scene (in Area 2) which was previously missed. 

r- 

Figure 5.24: Complex room exploration: moves 290-2 as the robot exits the corridor, 316-7 as the 

robot moves hack across the scene and detects a new area & 320-3 as the robot views the new area. 
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5.5.2 Analysis 

Figure 5.25(a) shows a graph of the distance travelled by the robot during the exploration against 

the percentage of the area and obstacles that have been seen. It can be seen that after the initial 

move (of 15 rotations), only 10% of the area has been seen and 33% of the. obstacles. However 

as the exploration continues these percentages come together until after 320 moves when all of the 

obstacles have been defected and 99.9% of the area has been seen. 

Figure 5.25(b) shows the distance travelled against the value of the joint-improvement function. 

During the initial moves inside the confined space of Area 1, the obstacles being selected do not tend 

to be those that are viewed after moving large distances in comparison to the previous exploration 

(hidden room) where several successive large distance moves were taken. Instead the strategy of one 

large distance move followed by several rotations is apparent. 

After 200 moves when the robot is inside the corridor (Area 4), the value of the Joint Improvement 

steadily decreases towards zero. The robot spends a long time'inside the corridor since the distance 

that the robot can travel in one step is small compared to. the length of the corridor,,. some other 

measure would be required to push the robot away from the end of the corridor in successive moves 

to get the robot out of the corridor. Once the robot exits the corridor the value returns to a normal 

magnitude (When compared to the other exploration's joint-improvement function values once the 

majority of the area has been discovered). 

Figure 5.25(c) shows the normalised values of the area-view improvement, IQ, obstacle-view im- 

provement, Io, and the position-similarity measure, 1-I, for the exploration of the complex room. 
It can be seen that during the early stages of the exploration where a lot of new area and new obsta- 

cles are detected, that all three of the improvement measures are quite high. From moves 220-300 

when the robot is inside the corridor, all the values drop off considerably. with the area-view and 

obstacle-view improvements being almost zero. Apart from this small section of the exploration, the 

position-similarity measure remains quite high. However, as"expected, the 
öbstacle-view 

and area- 

view improvement values drop off to very small quantities towards the end of the exploration, 'as little 

new information about the environment is discovered, duringjwhich time the joint-improvement value 
is driven mainly by the position-similarity measure. -j: if }{ } 
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(a) Percentage of 'obstacles and areas seen versus total distance travelled. 
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(h) Joint -improvement versus total distance travelled. 
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(c) Obstacle-view, area-view and position-similarity values versus total distance travelled. 

Figure 5.25: Analysis ofcomplex room exploration using joint improvement measure. 
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5.6 Conclusions 

This chapter has reviewed the amalgamation of three improvement measures along with an obsta- 

cle improvement measure to form a joint-improvement function that has been shown to successfully 

explore unknown environments. Using all three measures (obstacle-view improvement, area-view 
improvement and position-similarity along with the obstacle-importance, the behaviours of the in- 

dividual improvements complement each other well. The obstacle-view improvement alone did not 

allow the robot to move. The area-view improvement moved in sequences of a large step followed 

by a series of scans. The position-similarity randomly walked around the scene in a similar fashion 

to the well known lawn-mower algorithms. Used together a sensible exploration is achieved without 

navigation algorithms for specific scenarios being hard-coded. 
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Chapter 6 

Discussion 

A new approach to the unknown environment exploration problem has been presented. The goal of 

the system was to maximise the improvement in knowledge of the environment as an autonomous 

agent moves about the area. From no prior knowledge of the environment, a world map represen- 
tation is built up incrementally using selected viewing positions calculated using a next-best-view 

technique. The next move is chosen from a set of options to maximise the improvement on all pre- 

vious views of obstacles. The presented strategy was shown to successfully explore a number of 

environments, [Gartshore and Palmer, 2005], [Gartshore et al., 2005]. 

A new viewpoint planning algorithm was presented to calculate the position for the next-best-view, 

and was shown to optimise the viewing angle through an opening, and around a corner, for a given 
distance to move. 

The incremental map building was shown to use an accumulator grid technique to gather evidence 

of features during the robot's motion, [Gartshore et al., 2002]. Features with a high confidence are 

added to a world map representation, and errors in the position of these features were shown to reduce 

over time. 

6.1 Review of the Method Approach 

A view-improvement strategy as been introduced, as the initial step towards the aim of maximising 
the knowledge of an unknown environment. Three improvement measures were presented where a 
limited field-of-view was imposed: obstacle-view improvement, area-view improvement and position- 
similarity. Each of these techniques displayed promising characteristics for an autonomous explo- 
ration, however they did not appear to handle a variety of situations well. Also considered were the 
three measures combined in a joint improvement function, and along with an importance value for 

recently discovered obstacles a successful exploration algorithm was achieved. 

The exploration algorithm is repeatable since there is no random calculation, there is always a de- 
ciding choice. This however is partly based on which obstacle was discovered first rather than which 

119 



120 Chapter 6. Discussion 

can be predicted to provide more new information, since this cannot be calculated. It would be pos- 

sible to use an estimate of the area behind an obstacle as a prediction to the likelihood of the obstacle 

allowing more information of the unexplored environment to be discovered. This, however, may 

hamper the algorithm in the case of a dead end-where it may assume that one of the obstacles must 

at some point allow the unseen area behind to be viewed, without being able to retreat as they become 

less interesting when no new information is provided. 
Another addition to the strategy could be to evaluate the viewed area at a pre-defined stage in the 

exploration process, say after 50 moves. The areas which had at this point not yet once been viewed 

could be targeted. However, not only would this alter the approach to the exploration problem to 

more of a target-oriented problem, the question of which area to explore first would still need to be 

considered. Throughout this work no assumption was made that all of the environment area would 
be able to be traversed or viewed. The target-oriented nature of such an extension would contradict 

that assumption. 

The next-best-view algorithm developed an optimal approach to the problem of calculating the best 

view around a corner and through an opening. This calculation was shown to be a useful tool to 

traverse an environment based on seeking the greatest amount of new information for a limited dis- 

tance for a robot to move. During the exploration of an unknown environment, the next-best-view 

calculation for each obstacle in the agent's vicinity provided a limited choice of next moves with their 

corresponding view-improvement for comparison, where the obstacle with the highest improvement 

was selected for view. The first 20 moves of each exploration of the environments were very suc- 

cessful in seeking out the incorrectly labelled obstacles, allowing uncharted areas to be discovered. 

However, for some of the situations shown, e. g. the confined space of the corridor with dead-end pre- 

sented in Figure 5.14, this meant that the overall path of the agent was not what may be considered 

as sensible behaviour. This is discussed in the future work section. 

Also discussed was the problem of constructing a map of the obstacles to the robot in two-dimensions. 
The position information of obstacles in the environment was used by the exploration algorithm, 

where the confidence of obstacle features existing in the environment allowed the confidence of the 

map's construction lines being obstacles to be inferred. Due to the modular nature of the approach to 

exploration developed in this work, any map building algorithm that provides position and confidence 
information of obstacle features relative to a world reference frame could be used. 

6.2 Extensions for Future Research 

The view-improvement exploration and next-best-view strategies presented in this thesis have only 
been tested on scenarios for a simulated agent. Although theoretical analysis of the error in the 

calculation of the next-best-viewpoint has been carried out, the full impact of this cannot be fully 

known until a real-world system has been employed to test it. 

The environments considered for analysis with the view-improvement exploration were constructed 
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from straight thin obstacles. Inevitably obstacles detected in real-world experiments will be more 
detailed, perhaps with several features on the obstacle surface, and obstacles which are not straight 
flat walls. In these environments, the map being built may be too detailed for the purposes of explo- 

ration. Perhaps it is unnecessary to maintain all the knowledge about the world obstacles in the map 

queried for exploration decisions, such that a hierarchical structure of maps required for exploration, 

obstacle avoidance and environment modelling could be considered. 

For the exploration algorithm in its current state, a factor when errors are involved will be the cal- 

culation of the predicted and acquired view area for the obstacle importance measure introduced in 

section 5.2.1. The current approach requires the predicted and acquired areas for a given obstacle 

to be identical, this of course will not be the case for a real system as the position of features that 

define the obstacle will alter with most view updates due to errors in the pose of the robot and feature 

position calculations. One simple approach would be to consider the percentage of the difference in 

predicted and acquired view areas, allowing for a given acceptable difference. A more robust solution 
however would be to feed the information about the shift in the obstacle's feature positions through 

to the calculation of the obstacle importance so that the calculation of the area could incorporate this 
feature position update in the predicted area calculation. For example: for the case of feature posi- 

tions being updated but no new features added to the world map, the predicted and acquired areas 

should be the same; for the case of new features being added to the world map as well as already 

mapped feature positions being updated, the predicted area would reflect the view area of the updated 
known features as well as the true newly acquired area. 

Map building algorithms designed for real-world environments must take the effects of errors in the 

position of the robot and the subsequently added world features into account. Although considered 
in this work, the effects of such errors was not fully evaluated. The Kalman Filter is a tool often used 

to estimate the world feature positions and to store information of the errors involved in the mapped 
data. For the system presented in this work to be useful as a real-world system, the map building 

module could be replaced by other well tested approaches. 

The exploration strategy is restricted to choosing the best view-improvement from a limited set of 

options. For situations when the robot is free to move with several obstacle view-improvements 

to choose from, the exploration proceeds nicely. However, when the choice of obstacles is limited 

e. g. in a long corridor with dead end, the improvement of knowledge dramatically reduces given 

the limited distance to travel on a given move. For exploration approaches where time or energy 

are major factors, the exploration could be improved by extending the next-best-view calculation to 
incorporate the cost of moving against the expected improvement. For situations when the number 

of move decisions are limited because of many surrounding obstacles limiting the valid paths, this 

problem could be alleviated by the next-best-viewpoint calculation incorporating a variable distance 

for the robot to move. 

The restriction placed upon this work that the robot travels on the horizontal ground plane rather 
limits the choice of environments that this work could be directly applied to. For the system to be 
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employed in a variety of real-world scenarios, this assumption would need to be removed. There 

remains a choice for mapping the environment in a simplified three-dimensional view, such as 2.5- 

dimensions where different heights of obstacles are considered, or whether a fully three-dimensional 

map would be needed. 

Another extension to the work presented in this thesis could be to consider obstacles that disappear 

after a period of time, e. g. a parked car which then moves after a number of hours. With the current 

algorithm, if an obstacle, 1, is removed and features previously occluded by this obstacle become 

visible, the confidence of obstacle l will decrease. Similarly, when obstacle features are not detected 

at a position from which they should be visible, the confidence of those obstacle features existing will 

also decrease. A simple solution to deal with such obstacles would be to remove obstacle features 

from the world mesh once they fall below a given threshold. This design feature would need to 
be more thoroughly evaluated depending upon the possible situations being considered. With the 

parked car example, it may be more sensible to continue considering the empty parking space as an 

obstacle even when no car exists in the space, in order to aid exploration of new areas - otherwise 
the repeatedly empty car space and newly occupied car space may become more interesting to the 

algorithm than the exploration of uncharted areas. 



Appendix A 

Error Analysis on Next-Best-View 

Calculation 

The viewpoint planning strategy is used to calculate the direction 0 which the robot should move in 

order to reach the best viewing position given a fixed distance to travel. Since the calculation of 0 

depends upon the values of R1, R2, ryl and 72 (the distances and angles to the corners), any errors in 

these values will affect the direction calculation. Recall that 

e= 
(71 2 72 

J- 
tan-' 

p 

where p=l cos it q=m sin p p=( 2) 

(A. 1) 
1= RR r2 m= 

R R+ r2 A= p2+ q2 rRl-R2 rRi+R2 
The values of R1, R2, ryl and -Y2 will be affected by small changes to the positions of the robot and 

of the corners. 

A co-ordinate system is defined to allow the values of R1, R2, -yl, and 72 to be expressed in terms 

of the robot position, robot orientation, and the corner positions and is shown in figure A. I. Here 

we assume that the errors are linear and local to the point being considered i. e. the robot or corner 

position is within two to three standard deviations from the estimated point position (and orientation 
in the case of the camera). We will first consider the problem with errors on the camera position 

alone, and then with errors on the positions of the corners. 

A. 1 Calculation of Variance of 0 given Errors on Camera Position 

Initially let us consider errors in the camera position (PP, PP) and view orientation (Ph) only, The 

position measurements of the robot are taken from the position estimation module discussed in chap- 

ter 2.7, and are assumed to have a zero-mean Gaussian error with a diagonal covariance matrix such 
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Y 

L, 
x 

X= Cx - Px 

I 
Y= Cy - Py 

R= X2 +Y2 

Figure A. 1: Co-ordinate system used for 

the error analysis on the next-best-view cal- 

culation of 0. Shown is the robot position at 
P with original heading II, and one corner 
C in the vicinity. 

that 

y=h- tan-1 
(`Y1 
\YJ 

PP 200 

0 cov(L) = cov P, =0 opy 
Ph 00 Qph2 

(A. 2) 

where apx, opy, and aph are the standard deviations of the robots x and y position and orientation 
in a world co-ordinate frame. 

The variance of 0, cro 2, can be calculated from a series of Jacobian matrix calculations, where S are 

the parameters of the equation for 0 and L is the position of the camera. 

0T 
where S= (ry1 -t2 Ri R2 IT (A. 3) °©ý TScov(S) as 

T 
cov(S) = 

OLcov(L) OL 
where L=[ Px PP Ph IT (A. 4) 

We first need to calculate cov(S) from the Jacobian error matrix of OS/OL where 
&-Y, D'il O'YI 

OP1 Op-, OPh 

072 Orz O2 
as 0P1 OPy 0Ph 

_ ORI 0RI 0Rl 
0P1 UPy op, 
0R2 0R2 OR2 
OPx UPy 0Ph 

Appendix A. Error Analysis on Next-Best-View Calculation 



f 

A. 1. Calculation of Variance of 0 given Errors on Camera Position 125 

These partial derivatives are calculated such that 

aPx -1+ Y 
Y 

_ X2+Y2 

a, y -1 x 
Cpy -1+X Y2 

-x X2 + Y2 

ary 
=1 äPh 

By introducing the following notation: 

i=X12+Y12 Vx=cPy2 

7=X22+Y22 Vv-t7P3I2 

Vh = o'Ph2 

P-2 [X 2+ Y2] -1.2X. -1 

_ -X 
X +Y 

ap 
= 

1[X2+Y2]-4.2Y. 
-1 

v 

-Y 
X' +Y 

aR 
äPh 

we can calculate the covariance matrix cov(S) using equation [A. 4] giving us 

1 

X Y VP, 0 0 Yi 
i 

Yz 
7 ýX., ý 

ý+ 
ei 

z1 Y, - 
cov S i) 

- 
i2 

_Xi -Y, 0 
0 Vp 0 

v 
=ý 

i 
_ý 

ý Vi V7 
`X %/t: 0 0 Vp,, 1 1 0 0 

Yl p -X vpv 
Vp i 4 

Y2Vpx -X2Vp, 
b YY Y 

S9 
X 

V1 

X 
V7 

_ý Xj VP -Y1 VP 
P 

VPh 

0 
-1 =2 

19 

-X 0 
11 0 Q 

VppY12t Vp X12 
+Vph 

Vpp YjY2-J-Vpy XI Xa 

_ 
il 

+Vph 

X lY1 (Vpy -Vpx ) 

t1 

-VppX2Yi+Vp XIY2 

i , r3 

VpxY22+VP X22 
ý'+Vph 

-Vppf 1Yz+VppX2Yi 

3vt 
X2Y2(VP -VPx) 

iV 

VP=X12+VPVYI2 
-- 

VPxX1X2+Vr VF,, X22+Vly, Y22 

(A. 5) 

where -- is used in place of the diagonally symmetric counterpart, and is just used for clarity. 

Now that we have cov(S), we now differentiate 0 with respect to ryl, 12, Rl and R2 to calculate the 

variance of 0. Using the definition of 0 from equation [A. 1], we split the equation of 0 into three 
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parts: ( ), tan-' (p), 
and cos-1 

(3) 
which can be differentiated separately. The latter two 

are simplified further so that the 'chain rule' can be applied. 

a 'v1 + 12 1a 71 + y2 T51.2 t, Z 2 q- 2 a,, ý ?1 Using u-p V-U tan u 

Using v= /p2 +q, cos-1 v) 

p, 1, q, and m are used to simplify the calculation 

workings, their derivatives are 

01 

=2 -1+ 

1-v 1-A 

of 0. Since they are used repeatedly throughout the 

PIZ 
= -lsinp 

4= 
cos it 

8l 
- 

R2r(Ri + R2) - r(R1R2 + r2) 
r (R1 + R2)2 

_ 
R22 - r2 

r(R1 + R2)2 

C91 Rtr(Ri + R2) - r(R1R2 + r2) 
CW2 ) r2(R1 + R22 

Al 
=m cos µ 

AE 
= sin µ 

am R2r(Ri - R2) - r(R1R2 - r2) 
_- 

r2(Rl - 
R2)2 

-(R22 - r2) 
- 

r(Ri - R2)2 

am 
_ 

Rlr(R1- R2) + r(R1R2 - r2) 
- r2(Rl - R2)2 

_ 
R12-r2 

_ 
R12-r2 

r(Ri + R2)2 r(Ri - R2)2 

With these simplified derivatives, the following base derivatives are formed. 

Do 
_1 -1 sin µ. 7t,,, 2 

ýa 
=m cos µ. 

i 
&Y11,2 2 

-6 . =2 sin µ 

R22 - r2 
=cosµ. r-1+R 
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R22 - r2 

r(R-1 + R2)2 COS 

Ri 2_ 2r4= 
COS µ. 

r R+ R2)2 

R12-r2 
= 

r(R 
cos 
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= Zcosµ 

-(R22 - r2) 
=sin µ. 

r(Rl - R2)2 

-(R22 - r2) 
= sinµ 

r(RI - R2)2 

aa R12 - r2 
= sin µ. 2 r(Rl - R2)2 

R12 - r2 
=2 sin µ 

r(RI - R2) 
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We can now differentiate u to be used with the chain rule for the tan-1 term. 
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=2 c08µ +2 sin µJ 

ý2 
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Also v for the co-9-1 term. 
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ß'Y2 2A 

(2p 
"2 sin µ+ 2q 2 

cos µ 

=- cos-1 
1=-1 -1 (l2 sin p cos µ- m2 cos µ sin µ) 
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We can now bring together each section of the derivative of 0 with respect to yl, y2, RI and R2 

(using G and R to represent these derivatives). 

Ga - 
00 

-1 
Im 

+ sing cos p (12 - m2) Oryl 2 2A 2, \V, -\ --l 
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00 

=1 
im sin µ cob JL 2 2) G6 

012 2+ 2A 2aA-1-m 
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RQ = 
00 

=a sin cos +ml äR1 it µ 
[(RI 

- R2)2 (RI + R2)2J 

a ! costµ msill 2E1 
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where a= 
rA 

= 
rA 

We can then write the Jacobian matrix multiplication for the variance of 0 as 

G. 
Vo =( Ga Gb Ra Rb )" cov(S) 

Gb 
RQ 
Rb 

Such that 

- Ye = YPx 
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(A. 6) 

(A. 7) 
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And simplified to provide our solution for the variance of 0 given errors on the position and orienta- 
tion of the robot, Vp1, Vp,,, Vp,,. 

VO = VPh+ 

a 
Vpx 

(GYl 
+ GbY2 

- -R ýX R ýX 
)1+ 

(A. 8) i3 vZ - V7 

V +ý --t 
)2] 

3i3 

And G0, Gb, Ra, and Rb are the derivatives of 0 with respect to yl, 'y2, R1, and R2 respectively. 

When RI = R2, 

0_ 'Yi +Y2 
(A. 9) 2 

therefore 

Ga = Gb = 1/2 Ra = Rb =0 (A. 10) 

and the solution simplifies to 

2 \2 V9 
- 

VPh -I VPx 
2i 

ý- 
2j / 

-I- Vpy 
21 -} 

2ý2 
I (A. 11) 

A. 2 Calculation of Variance of 0 given Errors on Corner Positions 

The same co-ordinate frame is used from figure A. 1, so that the same definitions for R1, R2, 'yl and 
y2 exist. 

With the addition of errors on the comer positions, the covariance matrix of ryl, y2, Rl and R2 with 
respect to PP, Py, Ph, PC,., Poly , Pc,. and Pc,,, is calculated from 

oo2 aScov(S) 
T 

LS where S=[ yi 'Y2 Ri R2 ]T (A. 12) 

T 

cov(S) _ý cov(1ý1) 1S where M=[ Py P Ph PCly PCly CPP y ]T 
2x C21, 

(A. 13) 

Using the same definitions for R and -y of figure A. 1, 
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aCx =1 
-} 

XY 

ýC = [X2 +Y2J'j " 2X "1 
pis x 

_ -Y _x X2+Y2 X2 +Y' 

19-1 -1 -x OR 
C1+ X' Y2 ýC - [, ý'2+ Y2)' " 2Y "1 

vs v 

x_Y 
X2+y2 

Again we assume independent errors on the input information 

Vpx 0 0 0 0 0 0 

0 Vp� 0 0 0 0 0 

0 0 Vph 0 0 0 0 

cov(M) = 0 0 0 VC, 
= 

0 0 0 
0 0 0 0 VC, 0 0 

0 0 0 0 0 Vc2 0 

0 0 0 0 0 0 VC2V 

(A. 14) 

Where Va, = 042 



132 Appendix A. Error Analysis on Next-Best-View Calculation 

The covariance matrix of -tl, rye, R1 and R2 with respect to PP, Ps,, Ph Pc,. Pc,,, Pc2x Pct,, is 

COV(S) = COV(SI)COV(M1)COV(Si)T 

where 
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Which is equal to the covariance matrix of A. 4 in addition to 
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(A. 15) 

where -- is again used for clarity in place of the diagonally symmetric counterpart. 
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We can now formulate variance of 0 for robot and corner errors using A. 6 such that 
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We therefore find our solution for the variance of 0 given errors on the postition and orientation of 

the robot in addition to errors on the corner positions that form the opening (Vp,, Vp,, Vph, Vpc,,, 

Vpcly , 
Vpc2w and Vp0Zy . 

V VB = Vph+ 
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Again when Rl = R2,0 is defined in equation A. 9 such that 
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