
Effects of Interchannel Crosstalk in 
Multichannel Microphone Technique 

Hyun-Kook Lee 

Department of Music and Sound Recording 

School of Arts, Communication and Humanities 

University of Surrey 

February 2006 

Thesis submitted in fulfilment for the requirement of the degree of 

Doctor of Philosophy 

@ Hyun-Kook Lee 2006 



Effects of Interchannel Crosstalk in 

Multichannel Microphone Technique 

Hyun-Kook Lee 

Department of Sound Recording 

School of Performing Arts 

University of Surrey 



To my parents 



ABSTRACT 

Even though the significance of interchannel crosstalk in multichannel microphone technique has been an 
issue of much debate in the field of sound recording, any effects on the perception of reproduced phantom 
images have not been investigated systematically. There is consequently no experimental data to which 

sound engineers can refer when attempting to control interchannel crosstalk in the design and application 

of multichannel microphone technique. It was therefore necessary to investigate the effects of such 
interchannel crosstalk in both the perceptual and the physical domains. 

Extant multichannel microphone techniques were reviewed, concentrating on their crosstalk 

characteristics. Findings from concert hall and room acoustics studies relating to the effects of early 

reflections, which might be the basis for understanding the perceptual effects of interchannel crosstalk, 

were also studied. 

The effects of interchannel time and intensity relationship and sound source type on the perception of 

stereophonic phantom image attributes were first examined in the context of two-channel stereophonic 

reproduction. The perceptual attributes of phantom sources affected by interchannel crosstalk in three- 

channel microphone technique were then elicited, and the effects of interchannel time and intensity 

relationship, sound source type and acoustic condition on the perception of those attributes were 

investigated. The effects of interchannel crosstalk on sound quality preference were also examined in 

both controlled and practical manners. Finally, following objective measurements of experimental 

stimuli, relationships were established between the perceptual and objectively measured effects of 

interchannel crosstalk. 

It was found that the most salient perceptual effects of interchannel crosstalk were an increase in source 

width and a decrease in locatedness. The relationship between interchannel time and intensity 

differences involved in the crosstalk signal was significant for both effects. The type of sound source 

was significant only for the source width effect whereas the acoustic condition was significant only for 

the locatedness effect. The source width increase was mainly influenced by the middle frequencies of 

crosstalk signals in a region of the spectrum around 100OHz, at the onsets of the signal envelopes. The 

results of listener preference experiments suggested that the preference for interchannel crosstalk would 

depend on the spectral and temporal characteristics of sound source to be recorded rather than on the 

magnitude of interchannel crosstalk. 
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0 Introduction 

0 INTRODUCTION 

0.1 Background to the Research 

As multichannel stereophonic audio systems have become popular in recent years, a 

number of multichannel microphone techniques for classical music recording have 

been proposed corresponding to the requirement of the new reproduction 

configuration. The reproduction configuration that is most widely used for the 

current multichannel sound recording for classical music employs three front and two 

rear loudspeakers as recommended in ITU-R BS. 775-1 [1994] (see Figure 0.1). 

c 

LS E 

Figure 0.1 Reference loudspeaker arrangement with left (L), centre (C), right (R), 

left- surround (LS) and right-surround (RS) loudspeakers as recommended in ITU-R 

BS. 775-1 [1994] 
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Multichannel stereophony is able to overcome some of the limitations of conventional 

two-channel stereophony, by adding a centre channel providing a stable centre image 

and two rear channels delivering an enhanced sense of spatial impression. However, 

the addition of extra channels in multichannel microphone techniques gives rise to a 

question about the effect of interchannel crosstalk, which has been a debating issue 

between many recording engineers recently. The current three-channel or five- 

channel main microphone techniques, which are discussed in detail in Chapter 1, are 

designed so that phantom imaging of a sound source primarily relies on the time and 

intensity relationship between the signals from the two microphones covering the 

sector of the stereophonic recording angle in which the source lies. In those types of 

microphone techniques, therefore, there is the implicit assumption that signals from 

microphones other than the pair that is primarily responsible for phantom imaging can 

be treated as unwanted crosstalk. For instance, as illustrated in Figure 0.2, if a three- 

channel microphone array was used for recording a single sound source located in the 

right recording sector of the array, signals from the microphone pair of C and R, 

which cover the recording sector where the source lies, would be considered to be 

& wanted' while any signal from the contralateral microphone L would be regarded as 

t unwanted' crosstalk. The crosstalk channel would have certain time and intensity 

relationships to the wanted channels depending on the distance and angle between 

microphones in the array and therefore the presence of the crosstalk would be likely to 

affect certain aspects of the perception of the phantom image, even if the location of 

that phantom image could be determined solely by the wanted channels. 
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Figure 0.2 Conceptual illustration of interchannel crosstalk in a three-channel 

microphone array (real source shown at S) 

Based on the fact that each pair of microphones (C-L, C-R and L-R) in a three-channel 

microphone array would pick up the sound with different interchannel time and 

intensity relationships, Theile [2000] claimed that interchannel crosstalk in a three- 

channel microphone technique would result in the perception of triple phantom images, 

thus decreasing the focus and clarity of phantom image localisation. From this, he 

suggested that in order to achieve the optimum sound image quality, microphone 

techniques should be designed to reduce the intensity of interchannel crosstalk as 

much as possible. 

Theile's hypothesis concerning the perception of three separate images was questioned 

by Rumsey [2001]. Rumsey asserted that the listener would be likely to perceive a 

single fused phantom source whose 'size, stability and position are governed by the 

relevant intensity and time differences between the signals', and suggested a need for 

further experiments regarding the perceptual effect of interchannel crosstalk. In fact, 

there is no experimental evidence available to support the triple phantom image 

hypothesis. 
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Williams [2003] disagreed about the perceptual importance of interchannel crosstalk 

claimed by Theile. He argued that the interchannel crosstalk could be reduced to a 

great extent using directional microphones, and therefore it would not be particularly 

consequential. He seemed to suggest that in order to obtain a balanced and accurate 

localisation performance, it would be more important to link the recording angles of 

each stereophonic segment without overlap than to achieve the maximum suppression 

of interchannel crosstalk. 

0.2 Aims of the Research 

Despite the above debate, to date there seems to be no conclusive answer about the 

question of whether interchannel crosstalk in multichannel stereo microphone arrays 

matters or not. In fact, this topic seems to be largely dependent on the recording 

engineer's personal preference for the resulting sound quality since sound recording is 

an artistic achievement as well as a technical one. The primary problem, however, is 

that to date there is no clear information available about the specific influences that 

interchannel crosstalk has on the perception of the resulting reproduced sound, since 

no detailed research of which the author is aware has been conducted on this topic. 

There is therefore no experimental basis for discussing how interchannel crosstalk 

should be taken into consideration in the design of new multichannel microphone 

techniques or in the application of existing techniques. The more clearly the 

perceptual effects of interchannel crosstalk under various recording conditions are 

understood, the more flexible and successful the design and application of 
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multichannel microphone techniques will be. Based on this background, the current 

research was undertaken to provide in-depth experimental data on the perceptual 

effects of interchannel crosstalk. The specific aims of this research were to answer 

the following questions. 

What kinds of auditory attributes can be perceived, arising from interchannel 

crosstalk, and how audible are they? 

What variables in the recording environment affect the perception of crosstalk 

attributes ? 

0 How are any perceptual effects related to the physical characteristics of the 

crosstalk signal? 

0 How does interchannel crosstalk influence the subjective preference for perceived 

sound quality? 

0.3 Theoretical Basis for the Research 

Prior to conducting experiments, it was first necessary to understand the 

psychoacoustic principles of stereophonic phantom imaging as they became the 

theoretical basis for the creation of the experimental stimuli. It was also important to 

discuss existing multichannel microphone techniques with regard to the relationships 

between their crosstalk characteristics and the resulting localisation characteristics, 

since Theile [2000] originally proposed that interchannel crosstalk would primarily 

affect localisation accuracy. Then the concert hall and room acoustics research 
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conducted on the effects of acoustic reflection needed to be reviewed. Since 

interchannel. crosstalk and room reflections both represent secondary delayed signals 

and most of the reflection studies were conducted in the context of stereophonic 

reproduction, the perceptual attributes of reflection found in such acoustics research 

were expected to become the basis for formulating experimental hypotheses, which 

are presented in each corresponding experimental chapter. Moreover, the reflection 

studies show the relationships between perceived effects and various physical 

parameters, which became a useful basis for discussing the results of the current 

experiments. However, the difference between acoustic reflection and interchannel 

crosstalk in respect of such experimental parameters as the range of delay time and the 

type of sound source needed to be taken into consideration when discussing the results. 

0.4 General Overview of Experimental Methodology 

In order to achieve the above mentioned aims successfully, this research was 

conducted using a range of appropriate methods. The detailed method employed for 

each experiment will be described in each corresponding chapter, but this section 

briefly covers the type of specific technique used to collect data with respect to each 

research question. Firstly, the extraction of the perceptual attributes of interchannel 

crosstalk was achieved by analysing descriptive terms that were elicited from listeners. 

Secondly, the significances of the experimental variables were statistically analysed 

using the data obtained from a grading experiment. Thirdly, in order to examine the 

relationship between the physical parameters and perceived results, physical 
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measurements of the experimental stimuli were made using an appropriate objective 

model. Finally, when investigating the preference for interchannel crosstalk, subjects 

were asked to grade the magnitude of preference as well as describing the reasons for 

their judgments. Therefore, in summary, the current research involved both 

quantitative and qualitative approaches, incorporating both perceptual experiments 

and physical measurements, in order to obtain a suitably comprehensive understanding 

of the effects involved. 

0.5 Structure of the Thesis 

The remainder of this thesis is divided into six main chapters and three appendices. 

The outline of each part is as follows. 

Chapter 1 covers the psychoacoustic principles of stereophonic sound recording and 

reproduction. Firstly, the interchannel relationships required for specific phantom 

image locations in two-channel stereophonic reproduction are discussed, followed by 

the review of the design principles of two-channel microphone techniques. Then, the 

features of imaging characteristics in multichannel stereophonic reproduction are 

described, and the current multichannel microphone techniques are reviewed and 

discussed with regard to their crosstalk characteristics. 

Chapter 2 reviews the previous research relating to the perceptual effects of reflection 

that have been conducted in the context of concert hall and room acoustics. 
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Localisation, spatial impression and timbre are described as the main auditory 

attributes that are influenced by the addition of reflection, but only the first two 

attributes are considered in this review. The precedence effect is described as the 

law of auditory localisation in the presence of reflection. The physical parameters 

required for triggering this effect are discussed, and the cognitive aspects of this effect 

are examined. Then the conceptual properties of spatial impression are discussed 

and various perceptual paradigms are introduced. Finally, various objective 

parameters that can be used for the measurement of spatial impression are discussed. 

Chapter 3 describes subjective experiments that were conducted to obtain a useful 

experimental basis for investigating interchannel crosstalk. The first experiment was 

to elicit the perceptual attributes of phantom images in two-channel stereophonic 

reproduction and the second experiment was to grade the magnitudes of the effects of 

interchannel. time and intensity relationship and sound source type on the perception of 

those attributes. The experimental design including stimuli creation, experimental 

physical setup and subject selection is described. Then, for each experiment the 

listening test method is described and the results are discussed. The limitations of 

these experiments are also considered. 

Chapter 4 contains descriptions of a series of subjective experiments that were 

conducted to investigate the perceptual effects of interchannel crosstalk in 

multichannel microphone technique. The first experiment was designed to elicit the 

relevant attributes and select the most salient of these. The second experiment 

employed subjective gradings of the magnitudes of perceived effects for the selected 

8 



Introduction 

attributes. The third experiment examined the effect of interchannel crosstalk on the 

subjective preference using the controlled experimental stimuli from the previous 

experiments. Additionally, the preference for interchannel crosstalk was investigated 

using practical recordings made with two different microphone techniques having 

different interchannel crosstalk characteristics. This chapter first discusses the 

microphone technique and sound source chosen for the experiments, followed by the 

descriptions of stimuli creation process, experimental physical setup and subject 

selection. Then, for each experiment the listening test method is described and the 

results are discussed. 

Chapter 5 presents the results of objective measurements made in order to investigate 

the relationships between the perceived results obtained in the previous grading 

experiment and their physical causes. The principles of the objective model used for 

this measurement are summarised. Then, the measured results are compared with the 

perceived results for each independent variable and for each test attribute. Finally, 

the effects of frequency and envelope of source signal on the measured results are 

discussed. 

Appendix A describes a two-channel localisation experiment conducted in order to 

investigate the individual influence of interchannel time and intensity difference on 

the phantom image localisations of speech and various musical sources. The stimuli 

and experimental method are described. The results of the experiment are 

statistically analysed, and the psychoacoustic data obtained for all sound sources are 
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unified. Finally, a new interchannel time and intensity trade-off function is proposed, 

and the validity of this function is verified. 

Appendix B contains all the figures of the plots obtained from the measurements 

described in Chapter 5. 

0.6 Original Contributions 

40 Perceptual differences between monophonic source images and the corresponding 

two-channel stereophonic phantom images, which had not previously been 

investigated systematically, have been elicited in detail (Chapter 3). 

0 The effects of interchannel time and intensity relationship and sound source type 

on the perception of the above differences have been determined (Chapter 3). 

40 Perceptual attributes arising from interchannel crosstalk in three-channel 

microphone technique have been elicited (Chapter 4). 

0 Detailed analysis has been performed on the effects of interchannel time and 

intensity relationship in microphone technique, sound source type and acoustic 

condition on the perceived magnitudes of crosstalk attributes (Chapter 4). 

0 Dependency of the preference for interchannel crosstalk on the type of sound 

source has been suggested from a systematic subjective comparison between OCT 

and ICA-3 three-channel microphone techniques, which differ in their 

interchannel crosstalk characteristics (Chapter 4). 
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a Dependency of the s ource-width -increasing effect of interchannel crosstalk on the 

spectrum and signal envelope of the sound source has been proposed from 

objective measurements of experimental stimuli that were made using a 

perceptual model (Chapter 5). 

0A novel hypothesis on the mechanism of locatedness perception has been 

suggested based on the combination of the precedence effect and the localisation 

lag effect (Chapter 5). 

41 Original psychoacoustic values of interchannel time and intensity differences 

required for the localisation of phantom images at 10', 20' and 30' between 

loudspeakers in two-channel stereophonic reproduction have been obtained from 

localisation experiments using speech and various musical sound sources, which 

had not been used in previous experiments of a similar type (Appendix A). 

0 Novel interchannel time and intensity trade-off functions for the phantom image 

shifts of 10', 20' and 30' have been devised using the psychoacoustic values 

obtained in the above localisation experiments (Appendix A). 

0.7 Summary 

This chapter firstly presented the background to the research and determined the aims 

of the research. Then, the theoretical basis for this research and the general 

experimental methodology were overviewed. The structure of this thesis was 

outlined, and finally the original contributions of this research were summarised. 
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I Psychoacoustic principles of stereophonic recording and reproduction 

1 PSYCHOACOUSTIC PRINCIPLES OF 

STEREOPHONIC RECORDING AND REPRODUCTION 

This chapter is concerned with the psychoacoustic principles of stereophonic 

recording and reproduction. Since interchannel crosstalk is a property of 

multichannel stereophonic microphone technique, it will first be necessary to 

understand the basic theories of stereophonic phantom imaging, which become the 

basis for the design of stereophonic microphone technique, and to review the existing 

multichannel stereophonic microphone techniques concentrating on their crosstalk 

characteristics. Internationally the configuration of multichannel stereophonic 

reproduction systems are termed 'n-m' stereo, where n is the number of front channels 

and m is the number of rear (surround) channels [Rumsey 2001]. Therefore, the 

conventional two-channel stereophonic system is called '2-0' stereo whereas the five- 

channel system is called '3-2' stereo. In the scope of the current study, only the 

context of classical music recording is considered. Since it is not a usual trend to 

employ the sub-woofer channel in the multichannel recording and reproduction of 

classical music, the term '3-2' stereo will be used in this review rather than the popular 

tenn '5. F surround. In this chapter, the aspects of 2-0 and 3-2 stereo will be 

discussed in turn. For each, the principles of phantom image localisation will be 

covered first and then the microphone techniques designed on the basis of those 

principles will be reviewed. 
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1 Psychoacoustic principles of stereophonic recording and reproduction 

1.1 Phantom Imaging Principles for 2-0 Stereophonic 

Reproduction 

The psychoacoustic principles of phantom image localisation for conventional two- 

channel stereophonic reproduction have been extensively studied in the field of audio 

engineering since the beginning of stereophonic recording in the 1930s. These 

principles also become the basis for the design of stereophonic microphone techniques. 

Localisation in 2-0 stereophonic reproduction is basically governed by the 

interchannel relationship between the two loudspeaker signals and this should be 

distinguished from the interaural relationship between the ear input signals. The 

latter is formed depending on the former through acoustic crosstalk between the ears 

and this causes the localisation of phantom images to be limited within the spread of 

the two loudspeakers. 

1.1.1 Summing Localisation 

In 2-0 stereophonic reproduction, when both loudspeakers radiate coherent signals, the 

listener will perceive a single phantom image on the median plane between the two 

loudspeakers. If one of the signals is delayed or attenuated in a small range up to 

Llms or 15-18dB respectively, the position of the single image will be shifted from 

the middle toward the earlier or louder loudspeaker [Blauert 1997]. This effect is 

called 'summing localisation' and it becomes the basis for the phantom image 

localisation in stereophonic sound reproduction. If the delay time exceeds Llms, the 

13 
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phantom image will constantly appear at the earlier loudspeaker by virtue of the 

4precedence effect', which will be discussed in detail in the next chapter. 

Since 1940, a number of researchers carried out subjective experiments based on the 

summing localisation theory in order to investigate the independent influence of 

interchannel time difference (ICTD) or interchannel intensity difference (ICID) on the 

localisation of phantom image (e. g. de Boer [1940], Leakey [1959], Mertens [1965], 

Simonsen [1984], Wittek [2000]). The data from different researchers vary a lot and 

this seems to be due to the use of different experimental methods and different sound 

sources. Table 1.1 presents a summary of the psychoacoustic data obtained by 

several researchers who used natural sound sources, including the data obtained from 

the author's own localisation experiment described in Appendix A. It can be seen 

firstly that for both ICID and ICTD the values obtained by de Boer [1940] are much 

greater than the values obtained by the others. de Boer's reports do not indicate the 

values required for the full image shift. Simonsen [1984]'s data obtained using 

speech and maracas are arguably the most widely quoted data for the design of two- 

channel stereophonic microphone techniques, for example the design of Williams 

[1987]'s near-coincident microphone techniques is based on Simonsen's data. It 

appears that his ICU) values required for the image shifts of 10', 20' and 30' are 

approximately 2-3 dB lower than those of Wittek [2000] and the author [2004] (see 

Appendix A), which is considered to be significant, although there is no such obvious 

difference between their ICTD values. It is interesting to find that Wittek and the 

author's data are very similar to each other with regard to both ICID and ICTD. It is 

not totally clear why there is such a big difference between Simonsen's and Wittek's 

14 



liq 

I Psychoacoustic principles of stereophonic recording and reproduction 

or the author's data. However, considering that Simonsen's experiments used only 

two subjects, it seems unreasonable to apply these values directly without verification. 

Additionally, it appears that the psychoacoustic value required for the full phantom 

image shift in summing localisation is approximately double the value required for the 

full lateral displacement in binaural localisation. This difference in the influences of 

'interchannel' and 'interaural' cues is due to the acoustic crosstalk that inevitably 

arises in stereophonic loudspeaker reproduction. 

Researcher De Boer 
[1940] 

Simonsen 

[19841 
Wittek 
[20001 

Lee (author) 
[2004] 

Sound 

source 

Speech Speech 

maracas 
speech Speech 

various 
100 5dB 2.5dB 4.4dB 4. OdB 

ICED 20" lldB 5.5dB 8.8dB 8.4dB 

30' not indicated 15dB 18dB 17.1 dB 

100 0.7ms; 0.20ms 0.23ms 0.27ms 

ICTD 20' 1.7ms 0.44ms 0.45ms 0.50ms, 

30' not indicated 1.12ms Loms 1.1 ms, 
Table 1.1 Comparisons of interchannel intensity and time differences required for 

particular phantom image positions in stereophonic loudspeaker reproduction 

1.1.2 ICTD and ICID trading in summing localisation 

When summing localisation is effective, the direction of a stereophonic phantom 

image can be determined by a combination of ICTD and ICID. This becomes the 

basis for the design of near-coincident stereophonic microphone techniques such as 
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'ORTF and 'NOS', which will be discussed later. The most widely quoted example 

of ICTD - ICID trading-off might be the curves that were created by Williams [19871 

based on Simonsen's data. As can be seen in Figure 1.1, various combinations of 

ICTD and ICID can cause the phantom image to appear at different positions between 

loudspeakers in the conventional stereophonic arrangement. 

c 

2-1 

c 

C 
7E5 
C: 
c 
cz 

-C 2 
P 
C 

0 

Interchannel time difference (ms) 

Figure 1.1 Interchannel time and intensity trading in 2-0 stereophonic reproduction 

[after Williams 1987] 

It was proposed by Tlieile [2001] that the degree of phantom image shift (11J) could be 

calculated simply by the linear combination of ICTD and ICID, as shown below. If 

the phantom sound source is shifted due to certain ICID and additionally due to certain 

ICTD, the resulting shift is approximately the sum of both single shifts. 

T(AI, At) = T(Al) + T(At) 
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However, the above theory of simple linear combination would work only in a limited 

image shift region since stereophonic reproduction has a problem of angular distortion. 

Wittek and Tbeile [2002] pointed out that localisation curves of pure ICTD or ICID 

that have been introduced in the literature generally show linear progressions up to 

about 75% (22.5') of the shift region, and beyond 75% the curves tend to become 

exponential. A similar tendency was found from the localisation test that was 

conducted by this author using various types of natural sound sources (see Appendix 

A). This angular distortion problem seems to be related to Nfills [1958]'s finding. 

Mills carried out a subjective experiment to measure the smallest angular change of 

sound source that the listener could just detect, which is the so-called 'minimum 

audible angle (MAA)', using pure tones. The listeners were blindfolded and asked to 

discriminate the locations of two loudspeakers as the angle between them was varied 

gradually from 0'. As shown in Figure 1.2, the azimuth position of the centre axis 

of the loudspeaker pair was also varied from 0' to 75'. It was found that the MAA 

became larger as the loudspeaker pair moved away to the side of the listener. This 

result seems to suggest that in stereophonic reproduction the listener's sensitivity for 

localising a phantom source decreases as the direction of the source moves from the 

front to the side. 
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AA = 7' 

75' 

------------- 

Figure 1.2 Schematic diagram of minimum audible angles (MAA) between two 
loudspeakers measured directly in front of the listener and at 75" toward one side of 
the listener [Mills 1958] 

There is a report in the context of headphone reproduction that for an auditory image 

created with a combination of interaural time difference (I'ID) and interaural intensity 

difference (111D), the so-called 'time image' and 'intensity image' can be perceived 

separately [Whitworth and Jeffress 1961]. It is thought that a similar effect could be 

observed also in a stereophonic reproduction depending on the combination ratio 

between ICTD and ICID. If this is the case, this finding of imperfect time-intensity 

trading might support Theile [2001]'s hypothesis that multiple phantom images could 

be perceived due to interchannel crosstalk in multichannel microphone technique. 

1.2 2-0 Stereophonic Microphone Techniques 

The designs of conventional two-channel stereophonic nUcrophone techniques are 

based on the psychoacoustic principles of stereophonic localisation that were 

18 

MAA 
4 



1 Psychoacousticpilnciples of stereophonic recording and reproduction 

discussed in the above sections. Conventional two-channel microphone techniques 

can be divided into three main types by their design concepts: coincident pair 

technique, spaced pair technique and near-coincident pair technique. As mentioned 

briefly earlier, for the imaging of a sound source, the coincident pair technique 

primarily uses the ICID; the spaced pair technique uses the ICTD; and the near- 

coincident technique uses a combination of the ICTD and ICID. It will be logical to 

discuss the design principles and operational characteristics applied for these 

conventional techniques prior to discussing those for the recently developed 

multichannel microphone technqiues, since the latter is based on the former to a great 

extent. 

1.2.1 Stereophonic recording angle (SRA) 

The stereophonic recording angle (SRA) can be defined as the sector of the sound 

field in front of the microphone array that is localised at fully left or right between the 

two loudspeakers and becomes an important parameter for designing a stereophonic 

microphone technique [Williams 2004]. The SRA is not necessarily equal to the 

angle between the microphones, but is determined by the horizontal angle of sound 

field that produces the interchannel difference required for the full phantom image 

shift for a given microphone technique. This is controlled by the angle or distance 

between the microphones, or the combination of both depending on the type of design 

concept for the microphone technique. For instance, for a given sound source 

position, when the angle between two uni-directional microphones is increased, the 
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ICID that is produced for the sound source will be increased but the SRA will be 

decreased relatively. Similarly, when the distance between two onmi -directional 

microphones is decreased, the ICTD will be decreased but the SRA will be increased. 

However, since the value of ICTD or ICID required for a particular phantom image 

shift tends to vary depending on the source of data one relies upon, as shown in Table 

1.1, the calculation of the SRA would also be dependent on which psychoacoustic 

values are used, although Simonsen [1984]'s values have been most practically used 

to date. Based on Simonsen's data, Williams [1987] calculated the relationship 

between SRA and specific combinations of angle and distance between various 

directional microphones. The results obtained for cardioid microphones are shown in 

Figure 1.3 and these are the so-called 'Williams curves'. Wittek [2001) developed a 

tool for the design of two- or three-channel microphone technique called 'Image 

Assistant' (see Figure 1.4), which enables one to calculate the SRA as well as the 

localisation curve and angular signal relationship based on the microphone polar 

pattern and the angle and distance between microphones that are controlled by the user. 

The psychoacoustic principles for this model are based on the interchannel trading 

relationship proposed by Theile [20011 and the interchannel difference data obtained 

by Wittek [2000], and therefore the SRA based on this tool will differ from that based 

on the Williams curves. It is considered that the Image Assistant seems to provide a 

more flexible and precise way of calculating the SRA than the Williams curves since, 

with the former, combinations of virtually any microphone angles and distances 

together with various microphone polar patterns are possible. 
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Figure 1.3 SRA diagram for cardioid microphones [after Williams 1987] 
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Figure 1.4 Layout of the 'Image Assistant' tool [Courtesy of Wittek 2001 a] 

The SRA of a microphone array will be a crucial factor for the recording engineer to 

control the amount of space between the loudspeakers that is occupied by the phantom 

images in the reproduction. For example, as can be seen in Figure 1.5, when the 

SRA is greater than the extent of the sound source ensemble, the extent of the 

reproduced phantom sources will be narrower than that of the loudspeakers. On the 

other hand, when the SRA is smaller than the extent of the ensemble (see Figure 1.6), 

the sound sources that are located at the left and right limits of the SRA and outside 
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will be reproduced at fully left and right respectively. In this case a linear 

distribution of the phantom images becomes impossible even though the phantom 

images are created at the full stereophonic extent. 

Recording 

0 1-1 * EZI 

Reproduction 

zi 

06 

Figure 1.5 Stereophonic recording and reproduction in relation to the stereophonic 

recording angle; when the SRA is greater than the spread of the sound sources 

Recording Reproduction 

a 

6 
Figure 1.6 Stereophonic recording and reproduction in relation to the stereophonic 

recording angle; when the SRA is smaller than the spread of the sound sources 
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1.2.2 Coincident pair microphone technique 

Coincident pair microphone techniques consist of two directional microphones that are 

placed together, with the angle between the microphones usually being adjustable 

depending on the SRA that is desired. The phantom imaging of a coincident array is 

based on the summing localisation principle that converts pure ICID to low frequency 

(<70OHz) ITD [Clark et al 1958]. Due to the spacing between the microphones, little 

time difference information is encoded between the microphone channels. 

The microphone technique of this type that was first developed is the 'Blumlein' 

technique, which uses a pair of figure-8 microphones arrayed at a fixed lateral angle of 

90' as can be seen in Figure 1.7. 

Front quadrant 

In phase 

-45' A +45' 

Left quadrant 

Out-of-phase 

In phase 

(LIR reversed) 

Right quadrant 

Out-of-phase 

Figure 1.7 Configuration of the 'Blumlein' coincident pair technique 
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In this technique the maximum ICID is caused at ±45', where the off-axis of one 

microphone corresponds to the on-axis of the other microphone. The intensity of the 

sununed signals for any sound source located in the front quadrant of the array 

remains constant due to the identical cosine response over the whole pickup angle 

[Eargle 2001, Rumsey 2001]. The reversed polarity in the side quadrants results in 

out-of-phase information. The sound picked up in these regions, typically being 

reflections or reverberation, will suffer from a spatial ambiguity [Eargle 2001] and 

cancellation if the channels are summed to mono [Rumsey 2001]. The sound picked 

up by the rear quadrant is in-phase but the left - right polarity of the reproduced image 

will be opposite to that of the front quadrant. The localisation curve for this array, 

which is calculated based on the image assistant, is shown in Figure 1.8. The SRA 

for this array is 72', which means that this array may be required to be placed far away 

from the performance stage in order to achieve a linear distribution of phantom 

sources. It has to be noted that the SRA of a coincident array does not vary with the 

distance of sound source from the array. The Blun-flein array generally provides 

4 crisp' and 'accurate' phantom imaging in the reproduction [Rumsey 2001] as well as 

a 'good sense of acoustical space' [Eargle 2001]. 
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Figure 1.8 Localisation curve for the 'Blumlein' array, calculated using the Image 
Assistant [Wittek 2001 a]; the SRA is 72'. 

When a front-biased stereophonic image is desired, microphones of cardioid patterns 

can be used instead of figure-8 patterns. A cardioid-crossed coincident pair 

technique is normally called XY technique. The angle between the microphones for 

an XY array normally varies from 90' to 180' depending on the SRA desired for 

specific recording situations. For instance, when a fully wide phantom imaging of 

sound sources is desired, as the microphone array moves farther away from the sound 

sources, the angle between the microphones has to be increased to reduce the SRA. 

Examples of the lateral angles that are most popularly used for XY techniques are 90', 

131' and 180' (the so-called back-to-back). The SRAs calculated for the 

microphone arrays with these later angles using the image assistant model are 180', 

136' and 92' respectively. The polar pattern of microphone can also be changed to 

super-cardioid or hyper-cardioid with a corresponding lateral angle for the desired 

SRA. A practical example is a crossed pair of super-cardioids with a lateral angle of 

120' with the SRA of 98' [Eargle 20011. Similarly to the figure-8 pair technique, the 

cardiold-crossed pair techniques are advantageous for accurate phantom imaging 
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[Eargle 2001]. It also has a good monophonic compatibility as there is virtually no 

comb-filter effect that is caused by phase cancellation [Streicher and Everest 1998]. 

However, the cardioid-crossed pair techniques in general have a 'poor sense of 

acoustical space' [Dooley and Streicher 1982] due to the lack of interchannel time 

difference information and a poor frequency response of the central signal due to the 

wide angle between the microphones facing the off-axis [Rumsey 2001]. 

1.2.3 Spaced pair microphone technique 

Spaced pair microphone techniques have been widely used since they were first 

introduced in the 1930s [Steinberg and Snow 1934, cited in Snow 1953]. Two omni- 

directional microphones are most frequently used for a spaced array since they tend to 

provide a wider and flatter frequency response than uni-directional ones [Rumsey 

20011. 

For a spaced omni array ýthe amount of interchannel time or intensity differences 

resulting from a sound source at a particular lateral position largely depends on the 

distance of the source from the array. When the distance is very short (1-2m), both 

ICTD and ICID can be effective for the localisation. of phantom source. However, as 

the microphone array is moved away from the source, the ICID wifl become negligible 

and the localisation will be mainly governed by the ICTD. This means that the SRA 

also can vary to some extent depending on the distance between the microphone array 

and sound source. 
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The spacing between the microphones is taken into account for the linearity of 

phantom source distribution. According to the Image Assistant model, when the 

microphones are spaced about 40cm apart and sound sources are five metres distant 

from the array, the SRA becomes 98', which means that the phantom images for the 

sound sources located at greater than ±49' from the centre axis of the array will be 

localised at fully left or right (see Figure 1.9). However, if the microphone spacing 

is increased to lm with the identical source distance, the phantom images for the 

sound sources located at greater than only ±18' will come to be localised at fully left 

or right and this causes a perception of the so-called 'hole in the middle' effect (see 

Figure 1.9). This strong microphone spacing dependency of phantom image 

distribution in spaced onmi arrays is caused because the ICTD required for triggering 

the precedence effect is produced at smaller angle of sound source as the spacing 

between the microphones is increased. From the above, it might be important for 

recording engineers to consider the width of sound sources and the distance between 

the sound sources and microphone array when they decide the spacing between the 

microphones. Dooley and Streicher [1982] propose that the spacing between 

microphones need to be between 1/3 and 1/2 of the total width of the sound sources in 

order to achieve a satisfactory phantom image localisation. 
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Figure 1.9 Comparison of the localisation curves for the spaced omni arrays with 
different distances between microphones (d), calculated using the Image Assistant 
[Wittek 2001 a] 

It is widely accepted that accuracy of phantom image localisation for a spaced omni 

array is not as good as that for a corresponding coincident array. It is pointed out by 

Rumsey [2001] that this is particularly true for continuous sounds as the precedence 

effect is triggered mainly by transient sounds (A more detailed discussion on the 

characteristics of the precedence effect is presented in Section 2.2.1). Furthermore, 

spaced omni arrays tend to suffer from low frequency comb filtering due to the lack of 

phase coherence at low frequencies between the sound arriving at each microphone 

[Dooley and Streicher 1982]. However, the highly decorrelated signals caused by 

these arrays are claimed to provide a good sense of spatial impression to recordings 

and this makes spaced pair techniques suitable for ambience pickup in multichannel 

stereophonic recordings [Rumsey 20011. As the distance between the microphones 

for a spaced array is increased, there will be more decorrelated ambient sounds such as 

reflections and reverberation picked up by the array, thus increasing the spatial 

impression. 
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The hole-in-the-rniddle effect resulting from a large spacing between microphones can 

be avoided if an additional microphone is added for a central sound pickup. For 

example, the so-called 'Decca tree' technique uses three omni-directional 

microphones and is known to produce a solid centre image as well as good spatial 

impression. The operational principle of this technique will be discussed in s later 

section as it might be considered to be more useful for the purpose of multichannel 

stereophonic recording. 

In addition, for recordings of wide sources such as large scale orchestra and choir, 

spaced pair techniques are often used as outriggers in addition to coincident pair 

technqiues as main pickup, in order to provide a sufficient spatial impression as well 

as a more detailed imaging of the direct sounds located at the extremes of the stage 

[Eargle 2001]. 

1.2.4 Near-coincident pair microphone technique 

Near-coincident pair microphone techniques employ a pair of uni-directional 

microphones that are spaced closely and angled outward, thus having forms of both 

coincident and spaced pair techniques. Designs of these techniques rely on a 

combination of ICTD and ICED that can be traded-off for certain SRAs, although it 

would depend on which trading relationship is believed, and therefore it is possible to 

vary the distance and angle between microphones in various ways depending on the 

attributes of phantom images that are desired by recording engineers. As stated by 
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Rumsey [2001), near-coincident microphone techniques have their advantages in the 

compromise between an accurate phantom image localisation and a good sense of 

spatial impression since these attributes cannot be always conveyed simultaneously by 

a coincident or spaced pair technique alone. For instance, if the microphone distance 

was increased against the angle for a certain SRA, the resulting image would benefit 

more from a good sense of spatial impression rather than accurate imaging. On the 

other hand, if the angle between the microphones played a more important role than 

the distance in deciding the SRA, the image would be accurately localised but would 

not necessarily be spacious. 

A number of near-coincident arrays with fixed distances and angles have been used 

for many years. Arguably the near-coincident pair technique that has been most 

widely used to date is the 'ORTF (the Office de Radiodiffusion - Television 

Francaise) technique. As can be seen in Figure 1.10, the two cardioid microphones 

are spaced 17cm apart with the lateral angle of 110'. The SRA based on Wittek 

[2001a]'s image assistant model is about 102' whereas that based on the Williams 

curves [1987] is 95'. In this technique, signals from the two microphones are 

virtually phase coherent at low frequencies while minimal phase difference is 

produced only at the highest frequencies [Streicher and Everest 1998]. Therefore, 

the low frequency comb-filter effects, which tend to be caused from pure spaced 

techniques, are avoided and an 'open and airy' sound is produced [Streicher and 

Everest 1998]. Another popular exwnple of near-coincident techniques is the 'NOS' 

(Nederlande Omroep Stichting) technique, which uses cardioid microphones with the 

distance of 30cm and the lateral angle of 90'. The SRA for the NOS is 82', 
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according to Wittek [2001a]'s model. 

L 17cm R 

Figure 1.10 Configuration of 'ORTF' near-coincident array 

1.3 Phantom Imaging Principles for 3-2 Stereophonic 

Reproduction 

Phantom imaging principles for 3-2 stereophonic reproduction are mainly based on the 

summing localisation theory of 2-0 stereophonic reproduction, which was discussed 

earlier. However, the psychoacoustics involved in the 3-2 stereophonic reproduction 

are more complicated than those in the 2-0 one since the former deals with multiple 

sound sources generated from five different directions around the listener (see Figure 

Therefore, it can be expected that each of the front, side and rear reproduction 

segments has unique imaging characteristics. The imaging characteristics of 3-2 

stereophonic reproduction are an important basis for the designs and applications of 3- 

2 stereophonic microphone techniques. 
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1.3.1 Front image localisation 

Due to the addition of a centre loudspeaker in 3-2 stereophonic reproduction, the 

frontal listening area is divided into two stereophonic segments (i. e. the left (L) - 

centre (C) loudspeaker pair and the right (R) - centre (C) loudspeaker pair). 

Similarly to the operation of summing localisation in 2-0 stereophonic reproduction, if 

coherent signals are fed into the two loudspeakers in one segment, the localisation of a 

phantom source within the segment can be controlled by the relationship between 

ICTD and ICID. (This perfect separation of the two segments in terms of phantom 

imaging based on the individual interchannel relationship is virtually impossible in the 

reproduction of the signals recorded using multichannel microphone techniques due to 

the problem of interchannel crosstalk. ) When there is no ICTD or ICID, the phantom 

image will be localised at ±15' from the centre loudspeaker. Therefore, in 3-2 stereo 

the range of the maximum phantom image shift becomes 15'. Theile [2001 ] suggests 

that the degree of phantom image shift for a certain ICTD or ICED is decreased 

linearly with decreasing loudspeaker angle. For example, the ICTD and ICED 

required for the phantom image shifts of 10', 20' and 30' in 2-0 stereo, which were 

shown in Table 1.1, will be used for the shifts of 5', 10' and 15' respectively in 3-2 

stereo. This also suggests that the same SRAs of 2-0 stereophonic microphone arrays 

will still be effective even when the output signals of the arrays are reproduced from 

the L-C or R-C pair. Theile's hypothesis seems to be confirmed to some extent 

by the results of Martin et al [1999]'s experiments that were conducted to investigate 

the localisation behaviour in 3-2 stereophonic reproduction in an anechoic chamber 

using a speech signal, although determination of exact ICTD and ICID values for 
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localisation were not the main interest of this experiment. The experiment was 

designed for the subject to point to the locations of perceived phantom images that 

were created with varying ICTDs or ICIDs for a randon-Ay chosen pair of adjacent 

loudspeakers (L -C or R-Q. The ICTD was varied between Oms and 2ms in 

0.2ms intervals and the ICID was varied between OdB and 16dB in 2dB intervals. 

The resulting localisation plots are shown in Figure 1.11. It can be seen that in cases 

where the centre, channel is attenuated or delayed relative to the left or right channel 

(i. e. the phantom images are expected to be localised between 15' and 30'), the ICIDs 

and ICTDs required for the phantom image shifts of 5', 10' and 15' correspond 

roughly to Wittek [2000]'s or the author's data obtained for the image shifts of 10', 

20' and 30' in the conventional 2-0 stereophonic reproduction (see Table 1.1). 

However, this constant relationship does not seem to appear as obvious when the left 

or right channel is attenuated or delayed relative to the centre channel, especially in 

the case of ICTD. This might be explained by the following hypothesis. The centre 

loudspeaker is placed on the median plane, and therefore a signal radiated from it will 

cause no interaural time and intensity differences while that from the left or right 

loudspeaker will naturally cause certain interaural differences for the direction of the 

loudspeaker. Tberefore, when the centre channel is not attenuated or delayed relative 

to the left or right channel at all, the position of centre loudspeaker itself might 

become a confusing factor for creating interaural differences that are suitable for the 

operation of the summing localisation. 
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Figure 1.11 Comparison between localisation characteristics for the front images 

created using ICID and those created using ICTD, obtained from a subjective listening 

test using a speech source [after Martin et al 1999] 

It can also be seen from the above plots that the ranges of localisation errors for the 

images created using ICTD were generally greater than those created using ICID, and 

this seems to support the dominance of coincident pair microphone techniques relying 

on the ICID cue over spaced pair techniques relying on the ICTD cue with respect to 

the accuracy or certainty of phantom image localisation. It was also pointed out by 

Martin et al [1999] that the comb-filter effect that would result from three-channel 

spaced pair microphone arrays would be more obvious than that resulting from a two- 

channel spaced pair array, since the relative lack of head shadowing of the centre 

channel to the ears would increase the effect of interference between the signals 

radiated from adjacent loudspeakers. 
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1.3.2 Side image localisation 

For the front facing listener only one ear is toward each of the side loudspeaker pairs 

of L-LS or R-RS, and therefore in the localisation of side images there will be a lack 

of suitable interaural differences that are required for the summing localisation or 

precedence effect in the usual manner. In fact, the difficulty in achieving stable side 

image localisation has been proven in several studies. 

The result of Ratliffe [1974, cited in Theile and Plenge 1977]'s experiment carried out 

with a quadraphonic reproduction system showed that even small intensity differences 

between the front-left and rear-left loudspeakers could cause large angular shifts, and 

that the phantom sources tended to jump randon-Ay between the front and rear. 

Theile and Plenge [19771 conducted a similar experiment to Ratliffe's. They used a 

pair of loudspeakers splayed at a fixed angle of 60' and the centre of the pair was 

varied laterally anti-clockwise. It was found that as the loudspeaker pair was moved 

closer to the side of the listener, the localisation curve becarne steeper and the degree 

of uncertainty in localisation increased, as can be seen in Figure 1.12. These 

limitations of side image localisation were also confirmed in Martin et al [1999]'s 

experiments, which were described in the previous section. It was reported that the 

certainty of phantom image localisation in the side area of the standard 3-2 

stereophonic loudspeaker arrangement (30'- 120') was the worst in among all the sub- 

listening areas. It was further found that the degree of uncertainty in the side image 

localisation was greater with ICTD panning than with ICID. Martin et al note that 

side phantom images created using ICTDs suffer from noticeable comb-filter effects 
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since there is little intensity difference between the two signals arriving at each of the 

listener's ears. 
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Figure 1.12 Comparison of the localisation characteristics of the phantom images 

created from loudspeaker pairs having different lateral displacements of stereo-base 

centre [after Theile and Plenge 1977] 

The above findings might lead to a discussion about what kind of sound source the 

side listening area should be used for. It should be basically dependent on how much 

the localisation accuracy is required for a certain type of sound source. For example, 

ambient sounds created by reflections or reverberation would not be required to be 

accurately localised; rather they might benefit from less precise imaging, which is 

normally produced by decorrelated low frequency signals [Griesinger 1996]. 

Therefore, these kinds of sounds would be suitable to be reproduced from the side pair 

of loudspeakers. However, many recording engineers particularly for classical music 

might favour stable localisation of phantom images for direct sound sources and 

therefore such side imaging characteristics as the dramatic angular shift of phantom 
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image or low degree of localisation certainty might make side pairs of loudspeakers 

unsuitable for the reproduction of direct sounds. This issue is also related to the 

design and application of 3-2 stereophonic microphone techniques, which will be 

discussed in the later sections. 

1.3.3 Rear image localisation 

Martin et al [19991 found from their experiments (described in Section 1.3.1) that 

phantom images between the rear pair of loudspeakers were localised more stably than 

those for the front pairs. This is due to the fact that the rear pair of loudspeakers is 

symmetrical across the median plane while the other pairs of loudspeakers are not 

[Martin et al 1999]. This suggests that it would be acceptable to use the rear region 

for reproducing the phantom images of direct sounds, although it is usually used for 

reproducing ambient sound images. Another interesting result obtained from their 

experiments is that ICTD of only about 0.6ms was required for a phantom source to 

appear at fully one loudspeaker in the rear region. This value is approximately a half 

of the ICTD required for the same effect in the conventional 2-0 stereo. This seems 

to be due to the wider angle subtended by the rear loudspeakers. However, the wide 

angle between the rear loudspeakers might lead to the 'hole in the middle' effect, as 

the images tend to pull to the loudspeakers rapidly [Rumsey 20011. 
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1.4 3-2 Stereophonic Microphone Techniques 

In recent years, a number of novel 3-2 stereophonic microphone techniques have been 

proposed for surround sound recording and reproduction. Their design and 

operational principles are based on the principles of 2-0 stereophonic n-ftrophone 

techniques. However, 3-2 techniques are still being evaluated and developed as the 

psychoacoustics involved in surround sound have not been fully investigated yet, for 

example the effect of interchannel crosstalk. This section reviews the design 

concepts and operating characteristics of various 3-2 stereophonic microphone 

techniques. 

1.4.1 Design concepts 

Rumsey [2001] suggests a way of classifying the design concepts of current 

microphone techniques intended for 3-2 stereophonic reproduction, based upon the 

purpose of the rear channels. According to his classification, there are two main 

groups: those that use 'five-channel main microphone techniques' and those that use 

'techniques with front and rear separation'. Five-channel main microphone 

techniques consist of five microphones that are placed relatively close to one another, 

fornling a single array (normally a front triplet with two microphones further back). 

Each microphone signal is routed to one of the loudspeakers in 3/2 stereo 

reproduction: Left (L), Centre (C), Right (R), Left Surround (LS) and Right Surround 

(RS). Such microphone techniques attempt to provide both satisfying spatial 
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impression and continuous phantom imaging around the 360' in the horizontal plane 

simultaneously with a fixed pattern of microphone placement. However, due to the 

limitation of balanced phantom imaging in the side listening area, which was 

discussed in Section 1.3.2, linear 360' imaging seems difficult to realise. 

Furthermore, Theile [20011 points out that the creation of natural images requires 

much effort because of the complicated relationship between the psychoacoustic 

parameters involved. For example, accurate localisation will rely on the summing 

localisation and precedence effect across the various two-channel stereo segments (for 

example, between L&C, or R& RS in the 3/2 stereo configuration) due to the short 

distances between the microphones. The listening position and front-rear balance 

will therefore affect the performance of the technique [Rumsey 2001]. Furthermore, 

the fixed positions and polar patterns of the front and rear microphones would result in 

an inevitable compromise between the representation of optimised directional images 

and spatial impression. For example, the front triplet should be optimised not only 

with respect to the recording angle of direct sound from the front but also with respect 

to the balance of direct and indirect sound intensity in conjunction with the rear 

microphones [Theile 2001]. In addition, the position and directivity of the rear 

microphone array should not be decided exclusively for the characteristics of the 

arnbient sound, but also for the suppression of the direct sound due to the relatively 

short distance between the front and rear microphones. 

'Techniques with front and rear separation', on the other hand, use a 'frontal' main 

microphone array that is used primarily to image the direct sound from the front, 

together with a separate 'rear' microphone array that is intended to pick-up 
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decoffelated ambient sound to supply (primarily) the rear loudspeakers. Usually the 

frontal microphone array is a variation of a conventional stereo technique or the front 

triplet of a five-channel main microphone technique. Different rear microphone 

arrays can be combined with different front arrays depending on desired directional 

and ambience characteristics [Tbeile 2001]. The distance between the front and the 

rear arrays can vary depending on different recording situations. The further the rear 

array is from the recorded sources, the more early reflections, the higher the 

reverberant-to-direct ratio and the higher the density of reflections. However, 

according to Theile [2001], at least lOdB suppression of the direct sound is required in 

the rear channels versus the front channels. It is considered that 'techniques with 

front and rear separation' afford recording engineers more freedom to choose 'front' 

and 'rear' microphone techniques depending on the desired characteristics of frontal 

image and spatial impression than fixed five-channel main microphone arrays. 

Moreover, they would enable the engineer to subjectively balance the direct and 

ambient sounds using artistic and technical judgment. In this respect, microphone 

techniques with front and rear separation appear to be more practical in a wider range 

of recording applications. However, both groups in common tend to prefer a 

narrowly or widely spaced microphone configuration to a coincident one since the 

coincident technique does not provide a satisfying natural spatial impression due to the 

lack of decorrelated low frequency phase difference [Griesinger 19971. 
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1.4.2 Frontal main microphone techniques 

The 'Decca tree' technique shown in Figure 1.13 has been one of the most popular 

two-channel main microphone techniques. However, this technique also can be 

adopted for three-channel purposes due to the number of microphones used. It 

employs three widely spaced omni- directional microphones, thus relying on the 

precedence effect. The spaced pair of L and R produces sufficient time difference 

information and therefore provides a good sense of 'openness' [Theile 2001]. The 

centre microphone provides 'articulation' to the phantom image [Streicher and Everest 

19981 and prevents the hole in the middle, which would be likely to occur with the 

spaced pair itself. 

C 

L R 

Figurel. 13 'Decca tree' configuration with three spaced omni microphones 

However, the addition of the centre microphone without intensity reduction causes an 

imbalance in phantom image distribution. As can be seen in Figure 1.14, due to the 

large spacing between the L-R pair and C, sound sources located at up to ±45' are 

reproduced in the centre loudspeaker. Beyond this angle the phantom image rapidly 
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shifts toward the left or right loudspeaker. This means that the Decca tree essentially 

has three solid localisation areas owing to the strong precedence effect. Fukada et al 

[1997] suggests that when this technique is used for surround recording, cardioid 

microphones should be used instead of omnis because the latter could pick up too 

much ambient sound, thus causing exaggerated spatial impression when surround 

channels are added. 
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Figure 1.14 Localisation curve for the Decca Tree array, calculated using the Image 

Assistant [Wittek 2001 a] 

Klepko [1997] proposed a three-channel near-coincident technique (see Figure 1.15), 

which consists of three microphones placed in line with a distance of 17.5cm between 

each microphone. In order to avoid a strong centre phantom image, the outer channel 

employs a super-cardioid microphone, which has increased directivity, while the 

centre channel uses a cardioid microphone. However, despite the use of super- 

cardioids, this technique suffers from a high degree of interchannel crosstalk, in that 

the centre and left or right channels produce an intensity difference of only 1-8dB and 
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a time difference of less than 0.5ms [Theile 2001]. T'herefore, a huge overlap 

between the recording area L-C and R-C is inevitable as can be seen in Figure 1.16, 

The stereophonic recording angle (SRA) of this array is very wide (180') due to the 

small lateral angle and this may result in a narrow stereophonic image with a usual 

microphone distance from the stage. 

L ýýl 
7.5cm 

Figure 1.15 Near-coincident triplet with cardioid microphones, proposed by Klepko 

[19971 
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Figure 1.16 Localisation curve for Klepko [1997]'s three-channel near-coincident 

array, calculated using the Image Assistant [Wittek 2001 a] 

Williams and Le Du [1999,20001 proposed a microphone technique aiming to achieve 

balanced distribution of phantom images. This technique is based on the design 

method they called 'critical linking' which attempts to link the SRAs for the two 

nucrophone pairs of L-C and C-R without overlap as can be seen in Figure 1.17, 
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and the combination of distance and angle between microphones for achieving certain 

SRAs depends on the 'Williams curves', which were introduced in Section 1.2.1. 

The critical linking is achieved by using either 'electronic offset' or 'microphone 

position offset'. The electronic offset is achieved by varying the value of ICID or 

ICTD while the microphone position offset is achieved by changing the physical 

position of the microphones with respect to the time and intensity trading function. 

A benefit from using the critical linking technique is that it enables recording 

engineers to create microphone arrays with various distances and angles sharing the 

same SRA depending on the characteristics of recorded sound desired. Since the 

SRA is based on the time and intensity trading function, a more spaced microphone 

array will have a smaller angle between microphones. 

Critical linking point 

Left limit of the SRA Right limit of the SRA 

Figure 1.17 Critical linking of the stereophonic recording angles (SRAs) of 

microphone pair L-C and C-R [Willanis and Le Du 1999,20001 
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Hetin ann and Henkels [1998] developed a three-channel microphone technique they 

call 'ICA-3' (Ideal Cardioid Array) technique on the basis of the critical linking 

approach. The distance and angle between the microphones are based on the 

Williams curves and they can be varied depending on the SRA desired, as shown in 

Table 1.2. However, the angle between the outer microphones should always match 

the SRA. Therefore, in order to obtain the full spread of phantom images, the array 

can simply be placed so that the outer microphones face the edges of the recording 

stage and this feature might be convenient when recording engineers choose the SRAs 

suitable for particular microphone array placements. Figure 1.18 shows the 

localisation curve of an ICA-3 array with the SRA of 120'. According to this curve, 

critical linking appears to be achieved successfully in this technique. However, 

Theile [2001] claims that the phantom imaging for this array is compromised by a 

considerable amount of interchannel crosstalk due to the lack of sufficient channel 

separation. For example, according to the calculation using the Image Assistant 

[Wittek 2001a], when the sound source is located at the front of the array with 5m 

distance, the intensity difference between L and C is only 3dB greater than that 

between L and R, which means that the impact of localisation by the L-R pair cannot 

be neglected. 
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Stereophonic 

Recording Angle 
Horizontal Distance 
between L and R 

Vertical distance 
between L-R and C 

1000 126cm 29cm 
120' 92cm 27cm 
140' 68cm 24cm 
160' 49cm 21cm 
180" 35cm 17.5cm 

Table 1.2 Distances and angles for the microphones of the ICA-3 array, required for 

certain stereophonic recording angles (SRAs); the angle between left and right 
microphones match the SRA [Herrmann and Henkels 1998] 
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Figure 1.18 Localisation curve for Herrmann and Henkels [1998]'s ICA-3 array 

with the SRA of 120', calculated using the Image Assistant [Wittek 2001] 

Having firstly raised the issue of interchannel crosstalk, Theile [2001] proposed a 

three-channel microphone technique called 'OCT' (Optimal Cardioid Triangle). This 

technique attempts to reduce the amount of interchannel crosstalk as much as possible, 

particularly in the associated intensity of the stereophonic pair L-R, so that only the 

pairs of L-C and R-C become effective in localisation. In order to achieve this aim, 

the OCT configuration, shown in Figure 1.19, employs a cardioid microphone for the 

centre microphone and super-cardioid microphones for the outer microphones. The 
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outer microphones are oriented towards the sides in order to obtain maximum channel 

separation and owing to this feature the associated intensity of the unwanted phantom 

sources L-R is about lOdB lower compared to that of the wanted phantom sources L-C 

or R-C. This appears to be a clear improvement against the ICA-3. The spacing 

between L and C can be adjusted depending on the recording angle. ne relationship 

between the recording angle and distance d calculated using the Image Assistant 

[Wittek 2001 a] is shown in Figure 1.20. 

Figurel. 19 'OCT' frontal microphone array using super-cardioid microphones for L 

and R and cardioid microphone for C, proposed by Theile [2001]; spacing between L 

and R is adjustable depending on the stereophonic recording angle. 
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Figure 1.20 Stereophonic recording angle (SRA) of the OCT array for various 

distances between left and right microphones, calculated using the Image Assistant 

[Wittek 2001 a] 
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Figure 1.21 Localisation curve for Theile[2001]'s OCT array with the SRA of 118', 

calculated using the Image Assistant [Wittek 2001 a] 

Despite the crosstalk optimisation, however, it seems that the OCT is limited in 

providing a linear directional transition of phantom sources across L-C-R. As can be 

seen in Figure 1.21, there is an obvious overlap between the localisation curves for L- 

C and R-C around the centre region and this might be comparable with the linear 

transition for the ICA-3 shown in Figure 1.18. The reason for this nonlinearity is not 

explained in Theile's paper. 

1.4.3 Rear microphone techniques 

Theile [2001] suggests that in order to create a realistic image of enveloping 

atmosphere in sound recording and reproduction, a rear microphone array should 

employ four channels, with each pair covering each side of the recording space. This 

can be supported by Hiyama et al [2002]'s finding. They compared a number of 

different loudspeakers arrangements using band-passed noise signals in order to 
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investigate the number of loudspeakers required for the reproduction of realistic 

diffused sound field. The reference arrangement was 24 loudspeakers placed at 

every 15' making a circle and the number of loudspeaker used for the reproduction 

was reduced from 24 to 12,8,6,5,4,3 and 2. The spatial impression created from 

each arrangement was compared with the reference. It was found that at least six 

loudspeakers were required to obtain spatial impression similar to that created from 

the reference. However, it was also found that almost the same spatial impression 

could be perceived with only four loudspeakers when they were arranged at the 

positions similar to those of the left, right, left surround and right surround 

loudspeakers in the standard 3-2 arrangement. 

Theile [20011 proposed a four-channel rear microphone technique called 'IRT-Cross'. 

As can be seen in Figure 1.22, this technique employs four cardioid microphones 

arranged in a square. Due to the front-side facing cardioid microphones in the array, 

interchannel crosstalk from direct sounds can become considerable unless this array is 

placed far enough away from the front array. The spacing between the rnicrophones 

can be decided depending on the characteristics of spatial impression desired, although 

the range of 20-25cm is recommended by the author [Theile 2001]. For example, a 

closer spacing will provide a more balanced distribution of enveloping sources, while 

a wider spacing will provide a more diffused reverberation. However, extreme 

spacing of either too close or too wide will cause a 'loss of envelopment' [Theile 

20011. 
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LS 
(ý>RS 

Figure 1.22 'IRT-Cross' configuration [Tbeile 2001]; the distance d is in the range 
of 20cm and 25cm. 

The 'Hamasaki-Square' [Hamasaki et al 2000], shown in Figure 1.23, is another 

example of four-channel technique for ambience pick-up. It employs four figure-8 

microphones with the side of each microphone facing the front in order to reduce the 

amount of interchannel crosstalk from direct sounds as much as possible. It is 

suggested that the n-ýcrophones LS and RS are routed to loudspeakers LS and RS 

while the microphones L and R are routed to loudspeakers L and R or panned between 

L-LS and R-RS depending on the amount of desired spatial information in the front 

loudspeakers. The distance between each microphone that was originally suggested 

by the authors was lm, but later Hamasaki and Hiyama [2003] suggested the distance 

of 2-3m from subjective investigations. They measured interaural cross-correlation 

coefficients JACC) for the signals recorded using two ornni -directional microphones 

with various spacings in a reverberant sound field and reported that low frequency 

clecorrelation required for generating the most satisfying spatial impression was 

achieved at the distance in the range of 2-3m. This array is guided to be placed far 

beyond the critical distance, where the intensities of direct and reverberant sounds 

become the same, and at a high position in the recording space in order to obtain the 
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maximum R/D ratio (intensity of reverberation relative to direct sound) [Hamasaki et 

al 2000]. 

L 

Da 
d 

---------- 
LS 

R 

RS 
Figure 1.23 'Hamasaki-Square' configuration [Hamasaki et al 2000]; the distance d 
is in the range of 2-3m. 

Klepko [19971 proposed using a dummy-head binaural microphone in order to provide 

a 'continuous' lateral spatial impression. He affirms that the limitation of the 

loudspeaker reproduction of binaural signals caused due to acoustic crosstalk in the 

conventional two-channel reproduction can be naturally overcome when the signals 

are reproduced through the rear loudspeakers LS and RS. This is based on the fact 

that the rear loudspeakers are placed almost at the sides of the listener. In such case 

the listener's head will act as a diffracting barrier to high frequencies above lkHz, 

which carry the most effective HRTF cues. Klepko reported that 'continuous and 

clear' spatial images were perceived between ± 30" and ± 90' from the listening test 

using the durnmy head ri-ýicrophone coupled with the near-coincident front triplet 

introduced in the previous section. The distance between the front triplet and the 

dummy head used for his experiment was 124cm. However, with this distance the 
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interchannel crosstalk from the direct sound will have almost the same intensity and 

short delay time (about 0.38ms). This might become a critical problem with regard 

to achieving accurate localisation of the front image and it might be more reasonable 

to place the dummy head microphone further back from the front array and let it face 

the back in order to increase the R/D ratio. 

1.4.4 Five-channel main microphone techniques 

The 'critical linking' technique [Williams and Le Du 1999,2000], which was 

introduced in Section 1.4.2, can be applied for the design of a five-channel main 

microphone array. The SRA for each of the five stereophonic recording segments is 

linked without any overlap in order to enable phantom images around the full 360'. 

Similarly to the three-channel critical linking techniques, calculation of the SRA for 

each stereophonic segment is based on the Williams curves (see Section 1.2.1). In 

the design process the SRA for the front triplet is decided first depending on the 

distance of the microphone array from the recording stage and then the SRA for the 

rear pair LS-RS is detem-lined as desired. Finally the distance between the front 

triplet and the rear pair is decided depending on the necessary SRA for the side 

segments and the 'critical linking' between the front and rear segments is achieved 

using suitable electronic time or intensity offset. Figure 1.24 shows an example of 

the critical linking five-channel array. In this particular example, the SRA for the 

front triplet is 120' and that for both side and rear pair is 80". Williams [2003] states 

that an advantage of this technique is the flexibility for design since the SRA of each 
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segment can be decided flexibly depending on the type of recording sources, e. g. large 

orchestra requiring wider front SRA and small ensemble requiring narrower SRA. 

However, as Rumsey [20011 points out, it is doubtful if the Williams curves that were 

derived from a front two-channel based experiment can also be applied correctly for 

the calculation of SRA of the side or rear pairs of rnicrophones. In fact, as discussed 

in Section 1.3, the localisation of phantom image for the side and rear listening areas 

has different characteristics to that for the front. 

C 

L R 

Figure 1.24 'Critical linking' five-channel microphone array [Williams 2003] 

The 'ICA-5' technique developed by Henn ann and Henkels [1998] consists of the 

ICA-3 front triplet (see Section 1.4.2) and two rear cardioid microphones, as shown in 

Figure 1.25. This configuration also is designed to achieve the SRA of 360' using 

the critical linking technique. Calculation of the SRA for each stereophonic segment 

is again based on the Williams curves. The proposed SRA for the front triplet is 180' 

and that for the side or rear pair is 60". This is based on the authors' subjective 

judgment on the balanced phantom image distribution in the front listening area. 

However, even though the wide front SRA is the correct choice in terms of the 
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attempted 360* imaging, it would be likely to cause the frontal stereophonic images to 

become too narrow if the array was placed at usual distances from the recording stage. 

'I'herefore, in order to increase the width of the frontal stereophonic image, the array 

could be placed very close to the stage, but in this case the rear microphones would 

suffer from a high degree of interchannel crosstalk from the direct sound in the front. 

c 
7-7, 

Lb RS 

Figurel. 25 'ICA-5'five-channel microphone array [Herrmann and Henkels 1998] 

The 'OCT-Surround' technique [Theile 2001], shown in Figure 1.26, was adapted 

from the 'OCT' three-channel technique that was introduced in the earlier section. 

As can be seen in the figure, two additional cardioid microphones are added to the 

OCT front triplet for rear pick-up. This technique is optimised in order to obtain a 
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natural intensity balance between direct and indirect sounds without affecting the 

frontal image localisation. The rear microphones face backward in order to obtain 

the maximum suppression of interchannel crosstalk from the direct sound from the 

front, which becomes 13-25dB for the frontal sound arriving from 0' to 45'. For 

this sufficient intensity reduction of the direct sound, it is not crucial to increase the 

delay time between the front and rear channels [Theile 2001]. It is suggested by the 

author that the OCT-Surround technique is most suitable for the recording of a small 

ensemble or a soloist. This seems to be because the short distances between the 

microphones would not result in sufficient low frequency decorrelation that is required 

for creating satisfying spatial impression for larger scale sources. 

C 

Figure 1.26 'OCT-Sur-round' five-channel main microphone array; the distance d 

varies according to the relationship shown in Figure 1.20 
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I Psychoacoustic principles of stereophonic recording and reproduction 

1.4.5 Discussions on the issue of interchannel crosstalk 

There seems to be a strong disagreement between the viewpoints of Theile [2001] and 

Williams [2003] concerning the significance of interchannel crosstalk in multichannel 

microphone techniques for perceived sound quality. Theile claimed that the 

localisation quality would be decreased if interchannel crosstalk was not reduced 

enough in microphone technique design. However, Williams [20031 considered the 

linear attachment of SRAs for L-C and C-R (the critical linking) as a more crucial 

factor for improving the localisation quality than the suppression of interchannel 

crosstal. k. Both authors attempted to achieve the aim of balanced phantom imaging 

with their own novel concepts but it seems that no one has achieved the aim perfectly. 

For example, it was shown in Figure 1.18 that the ICA-3 array based on Williams' 

critical linking approach produced a continuous and balanced localisation across L-C- 

R, but the high degree of interchannel crosstalk in the array was claimed to be 

problematic by Theile [2001]. The OCT array [Theile 2001], on the other hand, is 

optimised for interchannel. crosstalk by maximising channel separation and therefore 

the interference of unnecessary interchannel relationship of the two-channel based 

stereophonic segments other than the segment that is desired for phantom image of the 

source is not considerable. Nevertheless, this technique does not seem to provide a 

continuous transition of phantom images around the central listening area since the 

localisation curves for L-C and C-R slightly overlap (Figure 1.21). This discussion 

seems to suggest that the effect of interchannel crosstalk might not necessarily be 

problematic regarding the linearity of localisation curve, but more importantly related 

to the perception o various auditory attributes depending on the interchannel time and 

56 



I Psychoacoustic principles of stereophonic recording and reproduction 

intensity relationship involved in the crosstalk signal. 

Several subjective experiments were conducted to compare the perceived auditory 

attribute qualities of the OCT and ICA-3, and they showed contradictory results. 

Wittek [2001b] compared the performances of different front microphone techniques. 

For each microphone technique, the phantom source image was compared with the 

monophonic source image of a single loudspeaker that was placed at the same position 

as the phantom image position. It was found that with regard to 'image focus' and 

6 sound colour' attributes, the phantom image created with the OCT was more similar 

to the monophonic image than that created by the ICA-3. From this result Wittek 

[2001b] suggested the superiority of the OCT technique in sound quality. This result 

certainly shows that the OCT provides a more precise localisation than the ICA-3. 

However, it might be questioned whether the preference of sound quality between two 

different techniques can be evaluated by the degree of similarity between the phantom 

image and the corresponding monophonic source image for each technique. The 

results of an experiment conducted by Heck and Riesebeck [2001, cited in Fukada 

2001] are somewhat contradictory to Wittek's results. They evaluated the attributes 

of 'breadth', 'localisation', 'depth', 'transparency' and 'spatial impression' of the 

OCT-Surround, ICA-5, Fukada-Tree and critical linking techniques. It was found 

that there was no perceivable difference between the OCT-Surround and INA-5 in 

localisation quality. Moreover, the INA-5 was ranked as the best sounding array in 

overall attributes while the OCT-Surround was ranked as the worst. This author also 

conducted a subjective listening test to make a comparison between the OCT and 

critical linking techniques in the preference of perceived sound quality using various 
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types of sound sources comprising string quartet, percussion ensemble, solo violin and 

solo piano. It was found that the preference was dependent on the type of sound 

source used. For instance, the ICA-3 was preferred over the OCT for the solo piano 

recording while the reverse was true for the solo violin. The detailed method and 

results of this test are presented in Chapter 4. 

The above results seem to suggest that interchannel crosstalk would not necessarily be 

an absolute parameter for decreasing the perceived sound quality. However, it is 

considered to be important for recording engineers to be aware of the perceptual 

effects of interchannel crosstalk on particular sound quality attributes and to be able to 

control the degree of interchannel crosstalk in microphone array design or application 

depending on the imaging characteristics required for the sound source to be recorded. 

To date, no experimental data have been provided on the perceived attributes of 

interchannel crosstalk and their relative weights. From direct comparisons between 

different microphone techniques, it will be difficult to judge the effect of interchannel 

crosstalk alone since such parameters as microphone spacing and the amount of 

reflections or reverberation will also have their effects on the perceived sound. 

Tberefore, further investigations that control the interchannel crosstalk as a single 

parameter are required and this is why the experiments described in Chapter 4 were 

carfied out. 

Additionally, for the microphone techniques with front and rear separation, it is 

considered that the interchannel crosstalk issue is most relevant to the front three 

channels only since the rear microphone arrays are usually placed at a distance that is 
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long enough for the direct sound to be decorrelated by reflections or reverberation. 

The rear channels in the five-channel main microphone techniques might suffer from 

considerable crosstalk due to the relatively short distances from the front channels. 

Furthermore, such techniques seem to be less practical in general applications than the 

techniques with front and rear separation due to the limitations mentioned in Section 

1.4.1. 

1.5 Summary 

This chapter described the psychoacoustic principles involved in 2-0 and 3-2 

stereophonic recording and reproduction. Firstly, the principles of phantom image 

localisation and the design and operational principles of microphone techniques for 2- 

0 stereo were reviewed. Then, the unique features of 3-2 stereophonic phantom 

imaging were discussed, followed by reviewing the design and operational principles 

of recent 3-2 stereophonic microphone techniques particularly with regard to 

interchannel crosstalk. 

To summarise, the summing localisation theory suggests that the individual spatial cue 

of interchannel time difference (ICTD) or interchannel intensity difference (ICID) can 

cause the phantom image to shift to particular positions between two loudspeakers in 

2-0 stereophonic reproduction, provided the ICTD is less than about 1.1 ins. Within the 

range the summing localisation operates, the ICTD and ICED can be traded for desired 

phantom image localisations. Coincident pair 2-0 microphone techniques rely on the 
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ICID cue while the spaced pair techniques largely rely on the ICTD cue. The near- 

coincident microphone technique uses both cues depending on the relevant trading 

ratio for a certain stereophonic recording angle (SRA). The SRA for a microphone 

array is an important parameter for providing a balanced phantom image distribution 

and creating the width of the stereophonic images between the loudspeakers. It is 

calculated depending on the trading relationship between ICTD and ICID. Phantom 

imaging principles for 3-2 stereophonic reproduction are mainly based on those for 2- 

0 stereo. However, there are unique imaging characteristics in the 3-2 stereo due to 

the increased number of channels and the arrangement of loudspeakers. In particular, 

the localisation of side phantom images is typically unstable or inaccurate. 'Mis 

characteristic becomes relevant in the designs of 3-2 stereophonic microphone 

techniques, which are divided into two groups: techniques with front and rear 

separation and five-channel main microphone techniques. For the former techniques, 

the interchannel. crosstalk is considered to be more relevant to the three-channel front 

techniques due to the small spacings between microphones rather than to the rear 

microphone techniques, which are normally placed further back in the recording space. 

The latter techniques, on the other hand, seem to suffer from interchannel crosstalk 

more seriously since the spacings between the five microphones are relatively small. 

However, such techniques are considered to be less practical than the other techniques 

in terms of flexibility. The representative novel front m icrophone techniques for 3-2 

reproduction are Williams and Le Du [19991's 'Critical Linking' and Thelle [2001]'s 

'OCT'. Both techniques share the goal of accurate and balanced localisation of 

phantom images. The former technique attempts to link between the SRAs for the 

two stereo-base segments L-C and C-R without overlap whereas the latter attempts to 
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reduce the interchannel crosstalk as much as possible. Even though there is a much 

debate with regard to the significance of interchannel crosstalk between the two 

authors, neither microphone technique seems to provide ideal phantom imaging 

characteristics. Furthermore, the results of several subjective comparisons show that 

there is no absolute winner. However, more importantly, to date no systematic 

experimental data have been provided on the perceptual attributes of interchannel 

crosstalk and their relative weights, which would be likely to be important for 

recording engineers to know in order to design and operate microphone techniques 

more appropriately for particular recording situations. 
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PERCEPTUAL AND PHYSICAL EFFECTS OF 

DELAYED SECONDARY SIGNALS 

The nature of interchannel crosstalk in multichannel microphone arrays, which takes 

the form of delayed and attenuated repetitions of a primary signal, could be compared 

well with the relationship of reflections to a direct sound in acoustics. For many 

years the effects of reflections on the perception of auditory attributes have been 

researched extensively in the field of room and concert hall acoustics. Studying the 

findings of those works could be the basis for understanding the perceptual effects of 

interchannel crosstalk in multichannel microphone technique. However, reflection in 

rooms typically has a much greater range of delay time than that of the interchannel 

crosstalk signals studied in this project. Furthermore, the direction of a reflection 

depends on the acoustic pattern of the environment, while that of interchannel 

crosstalk is determined by the placement of microphones, which is controllable. 

Therefore, it might be suggested that the context of concert hall studies does not 

directly correspond to that of this crosstalk study. However, most of the reflection 

experiments were simulated using stereophonic reproduction systems in anechoic 

chambers, for the purpose of controlling experimental variables. It is possible, 

therefore, to derive a useful hypothesis for the perceptual effects of interchannel 

crosstalk and also to map the relationship between those effects and physical 

parameters. 
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2.1 Perceptual Attributes of Reflection 

In general, the room or concert hall research has shown that the presence of one or 

more reflections would be mainly related to the perception of three categories of 

auditory attributes, which are 'localisation', 'spatial impression' and 6 tone colours' or 

'timbre'. Even though there has been a large amount of research conducted on 

aspects of localisation and spatial impression, it seems that the properties of tone 

colouration have not been fully examined. In the literature it is only generally 

explained that a change in timbre is likely to be caused by the interference between 

direct sound and its reflection producing a comb filter effect, typically when the delay 

time of the reflection is in the range between lOms and 50ms [Barron 1971, Haas 

1972]. That is, since the reflection lags in phase relative to the direct sound, there 

will be cancellation at certain frequencies where the two are 180' out of phase, and 

augmentation at other frequencies where the direct and the reflected sounds arrive in 

phase. Because it is a function of wave length, the comb filter effect will create 

notches in portions of the frequency spectrum at regularly spaced intervals. However, 

reports on the subjective effects of reflections on tone colouration do not seem to 

provide a clear answer as to which specific timbral attributes such colouration affects. 

For example, Haas [ 1972] reported that the addition of reflections provides timbral 

richness to the direct sound and considered this as a desirable effect, whereas Barron 

[1971] regarded the tone colouration as a negative effect of reflection causing the 

perceived sound to be sharp or shrill. Haas's finding was only for a speech source 

while Barron's report was related to musical sources such as violin. It is also stated 

in Barron [1971]'s paper that the tone colouration effect would become particularly 
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dominant with broad band sources, heavy instrumentation and percussion instruments. 

This suggests that the tone colouration effect would be dependent on the spectral and 

temporal characteristics of the sound source. More research seems to be required on 

this issue. Since the colouration effects have not been studied widely or documented 

in detail in the literature, this chapter will concentrate on aspects of localisation and 

spatial impression. 

2.2 Localisation 

This section covers various aspects of the precedence effect, which is a primary 

influence on localisation in an acoustic environment. Firstly, the lower and upper 

threshold of the precedence effect is discussed. Then the physical characteristics of 

sound sources that are required to trigger the precedence effect are reviewed. Finally, 

the cognitive aspect of this effect is introduced. 

2.2.1 Precedence Effect 

The precedence effect can be described as a psychoacoustic phenomenon that enables 

one to easily localise the accurate position of direct sound in a reflected environment. 

The presence of reflection could be a disturbing factor for localisation. However, 

when the precedence effect operates, the auditory image will be consistently locallsed 

at the position of the direct sound regardless of the interference of reflection. It has 

already been mentioned in Section 1.1 that when the interchannel time difference 
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between the original (direct) and delayed (reflection) signals radiated from 

loudspeakers arranged in the standard two-channel stereophonic configuration is 

greater than approximately Ims, the auditory image will be localised consistently at 

the position of the earlier loudspeaker, provided that both signals have equal intensity. 

This delay time is widely regarded as a lower boundary of the precedence effect 

[Blauert, 1997]. As the delay time increases beyond the lower boundary, the auditory 

image will be consistently localised at the earlier loudspeaker until the delay time 

exceeds the upper boundary. Above the upper boundary, which is typically called the 

i echo threshold', the reflection begins to be perceived as a separate sound source. 

The echo threshold varies widely depending on the type of sound source. Transient 

signals tend to have shorter echo thresholds than continuous signals. For example, 

the echo threshold for single clicks lies in the range between 2ms and lOms 

[Rosenzweig and Rosenblith 1950, Thurlow and Parks 1961]. The echo threshold for 

noise pulses lies around 15ms [Damaske 1971]. On the other hand, for continuous 

speech signals it varies from 32ms [Meyer and Schodder 1952, cited in Blauert 1997] 

to 50ms [Haas 1972]. 

It is important to note that even though only one image is perceived at the direction of 

the original sound source (or the leading loudspeaker), the precedence effect is not a 

total masking or elimination of reflection information. The literature shows that it is 

possible to distinguish between auditory images with and without reflections. For 

example, it was reported by Freyman et al [1991] that the former would have greater 

loudness and spatial extent than the latter. Perrott et al [1988] found that the image 

created by the leading and lagging sounds tended to be extended toward the lagging 
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source and eventually fill the space between both sources. Blauert [19971 also states 

that the contribution of a delayed signal on spatial distribution becomes gradually 

greater as the delay time is increased. 

2.2.2 Physical parameters for the precedence effect 

Rakerd and Hartmann [1985] investigated the effect of reflection azimuth on the 

operation of the precedence effect. Their experiment was carried out in an anechoic 

chamber and a single reflecting panel was used to change the acoustic condition of the 

room. Five different room conditions were simulated by placing the reflecting panel 

in different positions: empty-room condition, ceiling condition, floor condition and 

side-wall conditions (left and right walls). It was found that all five situations 

produced different localisation judgments and particularly the side reflections caused 

the greatest difficulty in localisation. Hartmann [1983] regards this dependence as a 

limitation of the precedence effect. This finding might be relevant to the effect of 

interchannel crosstalk in five-channel main microphone techniques. It can be 

suggested that since crosstalk signals in the rear channels of the array are reproduced 

through the rear loudspeakers that are placed at the sides of the listener, the rear 

channel crosstalk might disturb localisation to a higher degree than the front channel 

crosstalk. 

The temporal characteristics of a sound source play an important role for the operation 

of the precedence effect. The statements that are presented below explain Lhat the 
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transient element of a sound is the main factor to trigger the precedence effect, rather 

than the steady-state element. 

'The precedence effect can be demonstrated best when the sounds have some 

discontinuous or transient character Steady tones or continuous and uniform noises 

are obviously not suitable because there is no way to define precedence. Clicks, on 

the other hand, work quite well, and speech or piano music are reasonably 

satisfactory. ' [Wallach et al 1949] 

'In a realistic acoustic environment steady-state sounds do not provide reliable 

information about the location of a sound source. Reflectors of the sound wave have 

as much influence on the waveforms present at any two points in the space as the 

locus of the sound source. Thus transient wavefronts, especially if later echoes can 

be suppressed, provide the most reliable cue to the location of the sound source. ' [Yost 

et al 1971] 

Evidence supporting the above statements can be found in Rakerd and Hartmann 

[1986]'s report. Rakerd and Hartmann conducted a subjective experiment to 

investigate the effect of onset duration on the operation of precedence effect in room 

condition. The experiment was carried out in an anechoic room using 50OHz and 

2,00OHz sine tones. The stimulus was radiated from a single loudspeaker and a 

single reflection was produced using a single reflective panel. The delay time of the 

reflection was varied by changing the distance of the reflective panel. The onset 

duration of the stimulus was varied gradually from Oms. It was observed that the 
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precedence effect was triggered maximally when the onset was instantaneous. As the 

duration of the onset was increased, the accuracy in localisation decreased. The 

experimenters proposed that this was due to a 'misdirection' effect by localisation cues 

in the steady-state sound field. The maximum onset duration that was effective for 

triggering the precedence effect was 100ms. Rakerd and Hartmann presumed that 

this negative effect of ongoing sound on localisation would be related to the 

6 plausibility' of the ongoing cue. They asserted that the ongoing (steady-state) cue of 

a tone would be typically unreliable for localisation in a room, based on a 'plausibility 

hypothesis' (this will be discussed in detail in the next section). Additionally, they 

found that onset rate (sound pressure level/unit time) was also a critical factor for the 

precedence effect; a signal with a higher peak intensity per unit onset duration gave 

rise to a more accurate localisation performance. 

The 'Franssen effect' [1960, cited in Hartmann and Rackerd 1989] is a good example 

of the dominance of transient energy over steady-state energy for localisation in a 

room. Franssen conducted an experiment in an ordinary room with the standard 

stereophonic loudspeaker arrangement using low frequency sine tones (50OHz). As 

illustrated in Figure 2.1, a tone was sounded instantaneously at the left loudspeaker 

and decayed steadily to silence over 30ms. During the same period the signal at the 

right loudspeaker was increased steadily from zero to its peak and then maintained at 

the same intensity. It was found that the left loudspeaker was perceived to be still 

sounding. This is due to the illusion resulting from the persuasiveness in the 

instantaneous onset cue of the left signal [Hartmann 19931. 
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Figure 2.1 Illustration of the conditions for the Franssen effect 

It seems important to note that while the above described investigations using pure 

tone stimuli reported the dominance of transient sound over steady-state sound in 

localisation, some investigations using more complex stimuli presented contradictory 

results. From Tobias and Zerlin [ 1959] and Perrott and Baars [I 974]'s investigations 

using noise band signals, it was found that the ongoing cues became more effective for 

localisation than the onset transient cues as the duration of the signal increased. The 

onset transient cues lost their effect when the total signal duration exceeded 100ms. 

As Hartmann [1993] asserts, ongoing noise cannot be called a steady-state sound 

becuase it has too many random fluctuations. The high-frequency fluctuations can 

be described as a series of small transients that cause interaural time differences 

themselves, thus potentially triggering the precedence effect. This seems to suggest 

that for complex musical sound sources their temporal characteristics do not 

necessarily have to be discretely transient (e. g. percussion and piano) to be localised 

accurately. For example, when continuous stringed instruments were considered, the 

series of small transients caused by every bow or note change would be likely to 

contribute to the precedence effect. 
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Low frequency energy was also found to play a significant role in the precedence 

effect. Yost et al [1971] measured the effect of a single transient on the location of 

sound source using headphones. Two identical transient noise signals, one without a 

time delay and the other with some delay, were fed to the listeners' ears through 

headphones. The signals were low-pass filtered and high-pass filtered at various 

frequencies and the listeners were asked to discriminate the positions of the source as 

the filter cut-off frequency changed. The result showed that the listeners were better 

able to discriminate the position of the source when the signal contained energies 

below 1,50OHz than when frequencies below that were excluded [Yost et al 1971]. 

Banks and Green [19731 repeated the experiment that had been undertaken by Yost et 

al, using loudspeakers instead of headphones and obtained very similar results to Yost 

et al's. The only difference was the cut-off frequency value of the high-pass filtering, 

which was 200OHz. A comparison of the results of Yost et al and Bank and Green 

gives rise to the hypothesis that 'binaural' precedence and 'stereophonic' precedence 

have very similar behaviour. Yost et al [19711 explain the reason for the low 

frequency significance for localisation from a physiological standpoint; low frequency 

transients vibrate more space in the cochlear partition than high frequency ones and 

excite more fibres, thus producing more substantial positional displacement. 

Additionally, it was found by some researchers that reflection would not have to be an 

exact copy of the direct sound for triggering the precedence effect. Zurek [1980] 

found that uncorrelated white noise bursts showed the operation of the precedence 

effect. Blauert and Divenyi [1988] also reported that the precedence effect occured 

even when the frequency bands of direct sound and reflection did not overlap. It was 
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reported by Clifton et al [1994] that even though reflecting surfaces in a room 

absorbed low and high frequencies differentially, causing spectral distortion, 

reflections were still suppressed perceptually. 

2.2.3 Cognitive processes in the precedence effect 

The previous section reviewed some physical aspects of the precedence effect. 

However, there is experimental evidence that the precedence effect is not just a 'hard- 

wired' low-level process, but a high-level cognitive process. 

Firstly, it was reported by Clifton [1987] that the precedence effect would require a 

'build-up process'. In her experiment using two loudspeakers in an anechoic 

chamber, it was observed that when a single burst of pure tone was reproduced 

followed by a lagging version of the same signal with a delay time beyond its echo 

threshold, the listener initially heard both clicks separately. However, when the burst 

pair with the same delay time was repeated for a certain period of time, the perception 

of separate bursts halted triggering the precedence effect. This means that the echo 

threshold was raised gradually and the precedence effect built up during the ongoing 

stimulation supplying increasing information about the leading (direct) and lagging 

(reflected) sounds [Clifton et al 1994]. In a further investigation into the build-up 

process in the precedence effect that was conducted by Clifton and Freyman [1989] 

using the same experimental setup as Clifton [1987], it was found that the delay time 

between the clicks was one of the factors that would contribute to the build-up process. 
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When the delay time was shorter than 4ms, the perception of separate clicks 

disappeared in only 1-2 seconds; when the delay time was increased to 5-9ms it took 

5-6 seconds. From the above findings, it may be possible to derive a hypothesis that 

the precedence effect is triggered depending on musical performance. For instance, 

for a large scale orchestra piece, the stringed instruments tend to generate transient 

information constantly at note changes or in tremolo passages and this might trigger a 

build-up process, whereas the percussion instruments such as timpani tend to be 

played occasionally and therefore there would be insufficient time to build up the 

precedence effect. 

Secondly, it was also found in Clifton [1987] that the precedence effect could break 

down depending on changes in the acoustic condition. In the experiment click trains 

were presented through two loudspeakers, one leading the other by 5 ms. At the 

beginning of a click train (1 click/s), the listener localised a single click mainly at the 

leading loudspeaker. However, when the original and delayed clicks were spatially 

switched half way into the click train, most listeners heard two clicks from both 

loudspeakers for a few clicks. With repeated hearings, however, the precedence 

effect built up again as described above. This means that the sudden change in 

spatial location of the leading sound source caught the listener's selective attention 

and broke down the normal process of the precedence effect for a while, following an 

instance of a re-figuration in the set of stimuli [Blauert 19971. This phenomenon is 

often called the 'Clifton effect'. 
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Finally, Rakerd and Hartmann [19851 proposed the 'plausibility hypothesis' and this 

supports the cognitive aspect of the precedence effect. According to this hypothesis, 

a listener evaluates the reasonability or reliability of the ITD (interaural time 

difference) cue perceptually and weights it accordingly [Hartmann 1993]. In other 

words, the human brain uses some kind of rapid decision-making process in sound 

localisation. In Rakerd and Hartmann [1985]'s experiments conducted in a single 

reflected room with a 50OHz sine tone, it was found that listeners almost ignored the 

ITDs that were unreasonably large. This means that implausible ITD cues are 

excluded subconsciously in the process of localisation judgment. 

The importance of onset transient sound compared to ongoing steady-state sound in 

the precedence effect can now be explained by the plausibility hypothesis. It has 

been discussed that transient ITD cues trigger the precedence effect in a room with 

reflections [Rackerd and Hartmann 1985,1986, Wallach et al 1949, Yost et al 1971, 

Zurek 1980]. The plausibility hypothesis suggests that transient cue is plausible as it 

wins in a competition with reflections and its ITD becomes apparently detectable, but 

the steady-state ongoing cue is implausible because it conflicts with room effect. 

Hartmann and Rakerd [1989] point out that the steady-state cue can also be plausible 

in an anechoic room. They conducted an experiment regarding the Transsen effect', 

which has been described above, in a room with anechoic acoustics. The listeners' 

ability to detect transitions from one loudspeaker to another was investigated and it 

was found that in an anechoic room, the listeners could perfectly detect the transition 

from the transient source to the steady-state source, and thus the Franssen effect failed. 

73 



Perceptual and physical effects of delayed secondary signals 

2.3 Spatial Impression 

This section first defines various terminologies that are relevant to interpreting the 

concept of spatial impression (SI) and introduces the different paradigms of Sl 

perception that have been proposed so far. Then, the objective parameters that can be 

used for measuring SI are discussed in detail. Finally, reports on the subjective 

preference for Sl are reviewed. 

2.3.1 Conceptual properties of Sl 

2.3.1.1 Classification of terminologies 

In the past, spatial impression was often understood as a unidimensional attribute and 

the term was used to describe such spatial phenomena as 'source broadening' [Barron 

1971, Barron and Marshall 1981], 'spaciousness' [Blauert 1997], and 'listener 

envelopment' [Beranek 1996]. However, most research on spatial impression 

conducted after 1995 tends to agree with defining SI as a multidimensional 

characteristic of an auditory event having two distinct sub-dimensions of 'apparent or 

auditory source width' (ASW) and 'listener envelopment' (LEV) [Bradley and 

Soulodre 1995, Hidaka et al 1995, Morimoto 2002], although there is still a lack of 

common definitions for these terms. Blauert and Lindemann [1986] and Beranek 

[1996] used the term 'spaciousness' also as a generic term comprising ASW and LEV. 

Morimoto and Maekawa [1988] referred to spaciousness as ASW. However, it was 
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claimed by Griesinger [1997] that ASW and spaciousness should be distinguished 

because the former should describe 'the impression of a large and enveloping space', 

thus being possibly equated with LEV. He asserts that spaciousness or envelopment 

is included in SI, and therefore ASW is a different impression from SI. Despite the 

variety in the use of the terms that are shown above, the current studies will follow the 

trend that assumes ASW and LEV are the properties of SI. 

2.3.1.2 Paradigms of ASW and LEV perception 

ASW and LEV are described in various ways by different authors although the main 

concepts of the terms are broadly similar. The descriptions for ASW include the 

following: 

'The width of a sound image fused temporally and spatially with the direct sound 

image' [Morimoto and Maekawa 1988] 

'The apparent auditory width of the sound field created by a performing entity as 

perceived by a listener in the audience area of a concert hall' [Hidaka et al 1995] 

lbe apparent width of the sound source' [Soulodre, et al 2002] 

On the other hand, LEV is described as follows: 
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'The fullness of sound images around a listener' [Morimoto and Maekawa 19881 

'The subjective impression by a listener that (s)he is enveloped by the sound field, a 

condition that is primarily related to the reverberant sound field' [Hidaka et al 1995] 

'Listener's impression of the strength and directions from which the reverberant sound 

seems to arrive' [Beranek 1996] 

It can be conceptualised from the above descriptions that ASW is a source-related 

attribute whereas LEV is more of an environment-related attribute. It is generally 

accepted in the literature that ASW is mainly related to early lateral reflections, while 

LEV is a property of late reflections or reverberation [Kuhl 1978, Barron and Marshall 

1981, Bradley and Soulodre 1995, Hidaka et al 1995, Beranek 1996, and Okano et al 

1998]. Barron and Marshall [19811 proposed that the upper limit of delay time for 

early parts of reflections should be 80ms, in their experiment on spatial impression 

using musical sound sources of anechoic orchestral recordings. This was based on 

Schubert [1966, cited in Barron and Marshall 19911's threshold for the reflection to be 

perceived as a separate echo for a musical signal. Bradley and Soulodre [1995] 

conducted a similar type of experiment also with anechoic orchestral recordings, and 

used 80ms delay time as the threshold for dividing early and late parts of reflections. 

Okano et al [19981 also state that ASW is a property of reflections arriving within 

80ms of the arrival of the direct sound, while LEV is generated by a reverberant sound 

field beginning after 80ms. 
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However, Griesinger [1997] proposes a different paradigm for explaining the 

perception of ASW and LEV, based on complex psychoacoustics of human perception 

of sound events. He firstly separates the spatial perception into 'foreground' and 

'background' streams depending on different time divisions. Early reflections 

arriving within 50ms of the direct sound are interpreted as a foreground stream by the 

brain while reflections or reverberation arriving at the ears at least 120ms after the end 

of all foreground sound events are interpreted as a background stream. Griesinger 

[1997] asserts that the perception of the background stream is largely inhibited 

between 50ms and 120ms because this is perceptually the most insensitive region for 

spatial impression. According to his hypothesis, ASW is clearly distinguished from 

spatial impression (SI). Here Sl describes a perception of being in an enclosed space. 

Separation between ASW and LEV is not determined by a simple time division of the 

signal, but by the relationship between the onset time of the direct sound and the delay 

time of early reflections. That is, ASW is increased only by reflections arriving 

during the onset time of the direct sound. Therefore, for a certain delay time of early 

reflections, a source signal with a faster onset will have a smaller ASW, while one 

with a slower onset will have a greater ASW. Reflections arriving after the offset or 

during the sound segments increase SI, which can convey an impression of LEV or 

spaciousness. It has to be noted that according to Griesinger, LEV and spaciousness 

are considered to be similar impressions. For discrete sound sources such as speech, 

the reflections in the foreground stream arriving during the sound segments or after 

the end of the direct sound contribute to the perception of 'early spatial impression' 

(ESI), while reflections in the background stream contribute to the perception of 

'background spatial impression' (BSI). On the other hand, for continuous sound such 

77 



2 Perceptual and physical effects of delayed secondary signals 

as a continuous part of orchestral music, neither ESI nor BSI can be produced. The 

SI produced in this case is called 'continuous spatial impression' (CSI). According 

to Griesinger [1997]'s descriptions, ESI is an acoustic impression that is associated 

with the direct sound in the foreground stream. It does not convey LEV information. 

BSI is an acoustic impression of envelopment that surrounds the listener, which is 

separated from the direct sound and usually created by diffused reverberation in the 

background stream. Finally, CSI is an impression that is related to both foreground 

and background streams. Therefore, it can be understood that both ASW and ESI 

are properties of the foreground stream that are source-related, whereas BSI is a 

property of the background stream that is environment-related and conveys an 

impression of LEV. In addition, CSI can be related to both source and environment, 

and therefore can convey both ASW and LEV information. 

Although Griesinger's foreground-background paradigm introduced above is based on 

a complex psychoacoustic model of auditory perception and it seems that a number of 

detailed subjective investigations are still required to confirm the hypothesis, it 

introduces a unique and valuable concept which is the separation between source and 

environment perceptions depending on the temporal characteristics of the musical 

sound source. In particular, the introduction of the additional source-related attribute 

ESI to the conventional ASW suggests that auditory width perception can be 

multidimensional depending on the delay time of reflection and the envelope of the 

direct sound. From the viewpoint of the application of various musical sound 

sources having different characteristics in the measurement of perceived spatial effect, 

this seems to be more reasonable than the previously introduced methods that separate 
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ASW and LEV by dividing the early and late parts of reflections at a single value of 

80ms. Even though the value of Griesinger's paradigm is acknowledged here, the 

trend of including the ASW in the SI category will be continued below since it is a 

more common way of classifying those attributes. 

2.3.2 Objective parameters for Sl measurement 

Various ways in which SI could be measured objectively have been investigated by a 

large number of researchers in the field of concert hall acoustics. The objective 

parameters that could be used for SI measurement mainly include intensity and 

direction of reflection, frequency component of sound source, interaural cross- 

correlation and interaural fluctuation over time. The first two are related to the 

physical property of sound source, whereas the other two are related to the binaural 

relationship of ear input signals. 

2.3.2.1 Intensity and direction of reflection 

Barron and Marshall [19811 investigated the effect of a single early lateral reflection 

on the perceived spatial impression (as ASW). The experimental parameters 

included delay time, frequency spectrum, direction and intensity of the single 

reflection. They simulated sound fields in an anechoic chamber by reproducing a 

monophonic direct sound and discrete reflections derived from tape delay machines 
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through loudspeakers. The stimuli were anechoically made orchestral recordings. 

They found that the greatest spatial impression was observed for reflections arriving 

from the side of the listener (azimuth angles of 90'), while reflections arriving from 

directions in the median plane did not produce any increase in spatial impression. It 

is interesting to compare this finding with Rakerd and Hartmann [1985]'s finding, 

which showed that the side reflections were the most disturbing factor for localisation 

accuracy. This seems to suggest a conflicting relationship between localisation and 

spatial impression. 

It was also reported by Barron and Marshall that perceived spatial impression 

increased as the ratio of reflected sound intensity to total sound intensity within the 

80ms delay time became higher. They interpreted the detectable change of reflection 

intensity as being dependent on changes in spatial impression, and from this 

established the relationship between the magnitude of spatial impression and the ratio 

of early lateral reflection to direct sound intensity, which can be seen in Figure 2.2. 

This relationship suggests the significance of the intensity of early 'lateral' reflection 

on spatial impression. Based on these findings, Barron and Marshall proposed a 

physical measure for spatial impression named 'lateral fraction' (Lf ), and the equation 

is shown below. 

8OMS 80ms 
where r= sound intensity 

Lf = IrcosV / Er 
t=5? ns t=OMS (0 = azimuth angle of reflection from the lateral plane 
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Figure 2.2 Relationship between the magnitude of spatial impression and the ratio 
between the early lateral to direct sound intensity [after Barron and Marshall 198 1] 

While Barron and Marshall [1981]'s investigation was limited to early reflections 

arriving at the ears within 80ms of the direct sound, Bradley and Soulodre [1995] were 

interested in the effect of sound arriving beyond 80ms such as reverberation. They 

conducted a subjective experiment using a similar method to Barron and Marshall's, 

with an anechoically recorded orchestral recording and simulated early and late 

arriving sounds generated by loudspeakers in an anechoic space. The experimental 

variables included intensity and direction of reverberation signals generated by 

loudspeakers. They found that reverberant energy arriving after 80ms produced a 

sense of LEV. It was further found that the effect of reverberation on the LEV 

perception had a very similar tendency to the effect of early reflections on ASW 

perception that was shown by Barron and Marshall. That is, the magnitude of the 

perceived LEV is proportional to the intensity of lateral sound arriving beyond 80ms 

after the direct sound. From these findings, Bradley and Soulodre proposed a 

81 



2 Perceptual and physical effects of delayed secondary signals 

physical measure for LEV named 'late lateral energy fraction'. This measure is 

obtained using impulse response beyond 80ms after the direct sound, and defined in 

the equation shown below. 

LFýo =p2 (t) COS 
2 (a)dV f2 fo 

0p 
(t)dt 

where p(t) = room impulse response 

a= azimuth of angle of late reflection 

from the lateral plane 

2.3.2.2 Frequency components of sound source and reflection 

A number of investigations have been carried out with respect to the effect of 

frequency component on the perceived spatial impression. However, it is first 

necessary to distinguish the research that considered the frequency component of the 

sound source itself from those that dealt with the frequency component of the 

reflection signal. Examples of the former include the work of Morimoto and 

Maekawa [1988] and Hidaka et al [19951 and examples of the latter include the work 

of Barron and Marshall [1981] and Blauert and Lindemann [1986]. These are 

surnmarised and discussed in this section. 

Morimoto and Maekawa [1988] investigated the subjective effects of the low 

frequency components of sound sources and the interaural. cross-correlation coefficient 

(IACC) on spaciousness (in the form of ASW), using high-pass band limited white 

noise signals. The lower cut-off frequencies were 100,200,300,400 and 51OHz 

while the upper cut-off frequency was constantly 530OHz. The stimuli were 
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reproduced by three loudspeakers arranged at 0' and ±22.5' in an anechoic chamber, 

and their IACCs were varied by manipulating the ratio of lateral to frontal energy. In 

order to determine the independency of the effects of frequency components on ASW, 

the value of the IACC was kept constant while stimuli with different frequency ranges 

were tested by the subjects. The results showed that keeping the IACC equal, 

perceived ASW increased as the lower cut-off frequency decreased below 51 OHz, with 

a particularly remarkable magnitude of increase between I OOHz and 20OHz. The 

relationship between the IACC and lower cut-off frequency that was found by 

Morimoto, and Maekawa will be described in more detail in the next section. 

The significance of the intensity of low frequencies for the ASW increase was also 

reported by Hidaka et al [1995]. Based on Barron and Marshall [1981]'s 'lateral 

fraction' theory, which was introduced above, Hidaka et al investigated the effect of 

increased sound intensities of orchestral music at frequencies above or below 355Hz 

on ASW. The result showed that increases of the intensities at lower frequencies 

caused greater increases of ASW than those at higher frequencies. 

In Barron and Marshall [19811's subjective experiment described in the previous 

section, it was also investigated how the frequency components of lateral reflections 

affected the perception of spatial impression in concert halls. With the same 

experimental setup as described above, stimuli that were filtered into six octave band 

frequencies (125,250,500,1000,2000 and 400OHz) were compared. It was found 

that 'source broadening' (as increased ASW) was caused by middle frequencies 

around IOOOHz, while lower frequencies contributed to an increase of 'envelopment'. 
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However, it is not entirely clear from their paper what they meant by the term 

'envelopment' because it was described as 'the apparent area of the source is large' 

[Barron and Marshall 1981], which could also be interpreted as ASW increase. In 

fact, many writers tend to equate the envelopment perception found in this research 

with ASW perception. 

Blauert and Lindemann [1986] conducted an experiment to determine the effective 

frequency components of early lateral reflections for 'spaciousness' (as spatial 

impression). They simulated reflective and reverberant sound fields in an anechoic 

chamber using three loudspeakers placed at 0' and ±45' or ±90' from the listener 

position. The centre loudspeaker was used for generating the original sound, and the 

side loudspeakers for generating the delayed sounds. The sound source was 

anechoically recorded orchestral music. A total of 12 test signals having different 

bandwidth of delayed sounds were created for comparisons between different 

frequency components of delayed sounds in terms of spaciousness perception. The 

acoustically synthesised sound fields were recorded with the dummy head placed at 

the listener Position, and the binaural signals were presented to the subjects. 

According to their results, all frequency components of early lateral reflection 

contributed to spaciousness. Furthermore, it was reported that frequencies below 

3kHz produced the 'sense of feeling enveloped by the sound' and 'expanded depth', 

while the higher frequencies caused the ASW to be increased. However, the 

perception of listener envelopment with only a few early reflections seems to be 

somewhat unreasonable based on the notion that the perception of listener 

envelopment is produced by late reflections or reverberation rather than early 
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reflections [Hidaka et al 1995, Bradley and Soulodre 1995 and Okano et al 1998]. 

For the effect of the frequency component of sound source, it was commonly found 

from Morimoto and Maekawa [1988] and Hidaka et al [1995]'s research that the low 

frequencies caused greater increases of ASW than the higher frequencies. For the 

effect of the frequency component of reflection, Barron and Marshall's and Blauert 

and Lindemann's reports seem to suggest that different frequencies of reflection signal 

might produce different width increasing effects related to the source. For example, 

Barron and Marshall observed two different perceptual attributes of envelopment and 

source broadening for low and middle frequencies respectively, although both 

attributes were described to be related to the source. This suggests that at least two 

separate 'source-related' width attributes could be perceived for different frequencies. 

Blauert and Lindemann also reported that all frequencies were taken into account in 

the perception of spatial impression. These findings might suggest that different 

frequency components of the reflection signal would produce different source-related 

width attributes. In fact, there is no standard way of describing the perceptual effects 

of ASW, and therefore it is possible that researchers use the term ASW commonly for 

different source-related effects that are frequency dependent. Therefore, detailed 

subjective elicitation experiments are required in order to examine the effects of 

frequency components of early reflections on the perceptions of various source-related 

width attributes, and accordingly new terminologies need to be developed together 

with clear definitions. 
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2.3.2.3 Interaural cross-correlation 

The above sections discussed the effects of the physical properties of a sound source 

such as intensity, direction and frequency components on the perceived spatial 

impression. This section covers the effect of the relationship between the signals 

reaching the ears containing combinations of direct and reflected sounds on the 

perceived spatial impression. Over the years the 'interaural cross-correlation', which 

means the similarity between sound signals arTiving at each ear, has been confirmed 

by researchers as one of the important binaural parameters related to the magnitude of 

perceived spatial impression in a concert hall. In a concert hall the degree of 

interaural cross-correlation will largely depend on the temporal and spectral patterns 

of reflections. The relationship between each ear signal is calculated using the 

'interaural cross-correlation function' (IACF), which is defined in the following 

equation. 

t2 

IA CFt - 

fPL (t) PR(t + i-)dt]_ 

t2 t2 -1/2 

fPL2(t)dt fPR2(t)dt 
Itl 

11 

where P= binaural impulse response (sound pressure) 

L= left ear signal 

right ear signal 
I 

tl and t2 = period of time under measurement 

T= time offset between the two ear signals 

The value of IACF depends on the value of 1*, which varies in the same range of 

maximum interaural time difference, -lms to +Ims [Hidaka et al 1995]. The 

maximum absolute value of IACF over all frequencies obtained within this range of z, 

is called the I interaural cross-correlation coefficient' (IACQ and this is widely used as 

a standard measure for the calculation of interaural cross-correlation. The equation 
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for the IACC is shown below. 

IACCt = IIACF, (z-)ImAx, for 
-lms<-r<+lms 

The background for the relationship between IACC and spatial impression can be 

found from psychophysical experiments conducted into the subjective effect of the 

magnitude of interaural cross-correlation on spatial attributes. For example, 

Chernyak and Dubrovsky [1968] investigated the subjective effects of different 

magnitudes of IACC on the perceived 'position' and horizontal 'extent' of the auditory 

event, with two wideband noise signals reproduced over headphones. The results 

indicated that a single fused auditory event with relatively smaller extent was 

perceived when the signals were perfectly correlated (IACC = 1). However, as the 

degree of cross -correlation decreased, the extent of the auditory event appeared to be 

greater even though the position of the auditory event kept unchanged. Although it is 

not clear whether this finding of consistency in the position of auditory event can also 

be understood as highly accurate localisation, this result seems to suggest that 

localisation accuracy is not necessarily decreased by increasing ASW. 

Keet [1968] was the first to investigate the effect of the magnitude of interaural cross- 

correlation on the perception of spatial impression in a concert hall. He conducted a 

subjective experiment to judge the perceived ASW of the recordings made at various 

locations in a concert hall, using a near-coincident two-channel microphone technique. 

The sound source was a dry orchestral recording reproduced by a single loudspeaker. 

While the headphone and loudspeaker experiments mentioned earlier used 
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manipulation techniques for the variation of the IACC, the difference in the IACC 

values of the recordings in Keet's experiment was likely to be caused by the different 

reflection patterns encountered at each location in the hall where the microphones 

were placed. The results of the subjective experiment were compared to the IACC 

measured from the recordings of impulse response over the time period of 50ms, 

(IACC50), which were made in the same manner as those of the music signals. It was 

reported as a result that the values of IACC had a consistent and linear relationship 

with the subjective results. That is, the magnitude of perceived ASW increased as 

the IACC value was lowered. 

This linear relationship between a low value of IACC and great magnitude of ASW 

was observed by other researchers in the field of concert hall acoustics. In Morimoto 

and Maekawa [1988]'s experiment described in section 2.2.2.2, it was also reported 

that keeping the lower cut-off frequency constant, the perceived magnitude of ASW 

increased linearly as IACC decreased, as can be seen in Figure 2.3. It can also be 

seen from the figure that the magnitude of ASW change due to the IACC change is 

constantly maintained regardless of the changes in lower cut-off frequency. From 

this research Morimoto and Maekawa concluded that IACC and low frequency 

contents of sound source and reflections affected ASW independently. 
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Figure 2.3 Effects of IACC and lower cut-off frequency of sound on the perceived 
ASW [after Morimoto and Maekawa 1988] 

While Morimoto and Maekawa's results showed that there was no interaction between 

the IACC and low frequency contents of the stimulus, it was shown by Morimoto and 

lida [1995] that the effect of IACC on the perceived ASW depended on the sound 

pressure level (SPL) of stimulus. In Morimoto and lida's subjective experiment that 

was conducted in a simulated sound field created with three loudspeakers placed at 0' 

and ±45', an anechoically recorded orchestral sound source was taken as a direct 

sound and it was reproduced from the centre loudspeaker. A pair of simulated 

reflection signals was fed into the side loudspeakers. The value of IACC was altered 

from 0.4 to 0.9 by varying the ratio of the direct sound and reflections, and the SPL of 

each stimulus with different IACC that was presented to the subjects was changed 

from 50dBA to 8OdBA. The subjects were asked to grade the perceived ASW of the 

stimuli. The results generally indicated a similar pattern of IACC effect on ASW to 

those found in the above studies, in which the perceived ASW increased as the IACC 
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decreased. It was further shown that the increase in SPL also contributed to the 

increase of ASW. Interestingly, the change in the ASW due to the IACC change at 

the lowest SPL was very small while that at the highest SPL was dramatic. This 

result might be related to the effect of low frequency contents on ASW, which was 

discussed in section 2.3.2.2. The equal loudness contours that were devised by 

Fletcher and Munson [1933] show that with a higher SPL the ears perceive relatively 

more low and high frequencies compared to middle frequencies. Based on this, it 

can be presumed that the increase of the SPL of stimuli in Morimoto and Iida's 

experiment might have led to the perception of more low frequencies than the other 

frequency components, which might have been the main reason for the overall 

increase of ASW due to the SPL increase. This finding also suggests that the 

loudness equalisations of stimuli will be an important issue in the design of a 

subjective experiment investigating the perceived magnitudes of spatial impression. 

As discussed so far, it appears that there is a general agreement about the effect of 

decreasing IACC on the increase of the perceived spatial impression, although most of 

the experiments mentioned above were related to the aspect of ASW rather than LEV. 

However, there are reports showing that this relationship is determined by the 

frequency range of the source signals reaching the ears. Hidakaetal[1995] reported 

a study on the frequency bands that make IACC effective for quality evaluation of 

concert halls. Based on Okano et al [1994]'s 'equal ASW' contours that shows the 

relationship between six octave-band frequencies and the corresponding IACC to 

make the source perceived equaUy wide (as can be seen in Figure 2.4), Hidaka et al 

considered the three octave-band frequencies of 500,1000, and 200OHz to be the most 
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effective for measuring IACC. The lower frequency bands were excluded because 

the relative importance of IACC for ASW was small. The 400OHz band was also 

excluded because its intensity for a typical orchestral music was considered to be 

15dB lower than those of the 1000, and 200OHz bands, therefore having little effect on 

ASW [Hidaka et al 1995]. From this choice of the most sensitive frequency bands 

for IACC measurement, Hidaka et al proposed two objective measurements for spatial 

impression, IACCE3 and IACCL3, with each being the average of the IACCs for the 

three bands. The former is measured based on the impulse response from Oms to 

80ms, thus being related to ASW perception, whereas the latter is from 80ms to 750ms, 

thus being associated with LEV perception. 
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In addition, IACC measurement is also found to be closely related to the prediction of 

the subjective preference of sound quality. Ando and Kageyarna [1977] investigated 
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the relationship between the subjective preference and the magnitude of IACC of 

sound. In an anechoic chamber, a speech signal was reproduced by a loudspeaker 

placed at a central position in front of the listener. A simulated reflection was 

reproduced by a loudspeaker, and its direction was varied from the angle of 15' to 

180' with intervals of 15'. The listenerjudged preferences for the direct sound only 

and the sound with the reflection of each direction, and the magnitude of IACC for 

each sound was measured. It was first found that the sound with a reflection was 

always preferred to the sound without a reflection. It was further found that a sound 

with a smaller magnitude of IACC tended to have a higher degree of preference. 

According to the relationship between the IACC and the magnitude of ASW discussed 

earlier, this finding means that a sound having greater ASW is likely to be preferred to 

that having smaller ASW. In addition, the reflection angle at which the sound was 

most prefer-red was found to be 30'. It is interesting to note that this angle 

corresponds to the angles of the front-side loudspeakers in the standard 3-2 

stereophonic loudspeaker arrangement. From this, it could be suggested that, under 

the assumption made for the cur-rent study that either left or right channel signal 

generated from a frontal three-channel microphone technique becomes unwanted 

crosstalk, interchannel crosstalk might even be a positive factor for the preference of 

perceived sound quality. 

2.3.2.4 Limitation of the current IACC measurement technique 

Currently the most widely acknowledged IACC measure as a predictor of perceived 
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ASW is Hidaka et al [19951's IACCE3 that was introduced earlier. This technique 

uses a binaurally recorded impulse response as a source signal for measurement since 

in this way it is possible to analyse the temporal characteristics of sound easily. 

However, the use of an impulse response is claimed to have a serious limitation in 

predicting the perceived effects accurately because a transient impulse signal has 

different spectral and temporal characteristics to the more complex musical signal that 

is actually heard in the listening space [Griesinger 1997, Mason 2002]. Mason et al 

[2004] state that it is the spectral characteristics of the sound source as well as the 

pattern of reflections that determine the interaction between the direct and reflected 

sound, which affect IACC measurement. Therefore, the interaction between direct 

and reflected sound resulting from a transient impulse will be small compared to a 

more complex musical signal. In fact, Griesinger [1997] reported that the IACC 

measured with a musical signal had a lower value than that with the corresponding 

impulse response. Mason et al [2004] also reported that there was a great difference 

between the IACC measured with an impulse response and that with a complex and 

continuous tonal signal. They suggested that the more accurate objective judgment 

of spatial impression in a concert hall using the method of IACC measurement could 

be achieved with representative source signals having spectral and temporal 

characteristics similar to musical signals. 

Another arguable aspect of Hidaka et al's approach is the use of the specific time 

value of 80ms for dividing the attributes of ASW and LEV. This value seems to be 

simply based on Barron and Marshall [1981]'s value, which was originally taken from 

Schubert [1966]'s echo threshold for musical signals. However, it was discussed 
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earlier that the value for defining the boundary between the early and late parts of 

spatial impression could be assumed to vary depending on the echo threshold, which 

also depends on the type of sound source. For example, Haas [1972]'s echo 

threshold obtained for speech signal was 50ms, and many sources show that transient 

clicks generally have much shorter echo thresholds compared to continuous and 

complex signals [e. g. Rosenzweig and Rosenblith 1950, Thurlow and Parks 1961]. 

Therefore, it is debatable whether the division of a source signal at 80ms would 

accurately separate attributes of ASW and LEV in every case. 

Mason et al [2004] developed a new IACC measurement model to overcome the 

limitations of the conventional IACC measurement technique described above. 

Basically, this model is designed to measures the time-varying IACC of musical sound 

source instead of the transient impulse response, making it suitable for the applications 

of both concert hall and sound reproduction. For this reason, this model is 

considered to be useful for predicting the perceived effect of interchannel crosstalk in 

multichannel microphone technique in an objective way. The detailed working 

principles of this model are described in Chapter 5. 

2.3.2.5 Fluctuations in interaural time and intensity differences 

Another important objective parameter for the measurement of spatial impression is 

interaural fluctuation, which is based on the measurement of the magnitude of 

variations in interaural time difference (ITD) or interaural intensity difference 011D) 
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over time. Unlike the conventional IACC measurement, the measurement of 

interaural fluctuations over time is applied for continuous musical signals, thus being 

more suitable to be applied to the evaluation of sound quality in sound recording and 

reproduction [Mason 20021. This suggests that interaural fluctuations over time 

could be directly related to understanding the causes for the resulting effects of 

interchannel crosstalk in multichannel microphone technique. The research that has 

been conducted to investigate into the effect of ITD and IIID fluctuations is based on 

Blauert's finding of the phenomenon called 'localisation lag'. Blauert [1972] 

investigated the pattern of lateralisation affected by different rates of interaural 

fluctuation. A continuous train of pulse signals was presented to both ears using 

headphones and the interaural time and intensity difference between each channel 

were altered with various rates. It was found that the created sound images were 

perceived to be moving at low rates of the fluctuation and this phenomenon 

disappeared as the fluctuation rate increased. Grantham and Wightman [1978] 

further investigated the threshold of this effect using frequency modulated noise 

signals and found that the perception of movement was changed to that of increased 

width beyond the fluctuation rate of 20 Hz. Griesinger [1997] also investigated the 

same effect with a continuous band-limited pink noise and indicated that the threshold 

of the localisation lag was 3 Hz. He also reported that the source was perceived to be 

6stationary' in the presence of a 'surround', and this seems to suggest the effect of 

interaural fluctuation on the increase of spatial impression or ASW. 

Blauert and Lindemann [1986] investigated the effect of fluctuation in time or 

intensity difference on the perceived spaciousness (as ASW) individually, using a 
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band-limited impulsive signal. In their experiment, two simulated sound fields were 

considered. They were both created from the direct impulsive sound and simulated 

reflections in an anechoic chamber, but one was created with fluctuation in ITD only 

and the other with HD only. Two impulse responses were produced for each sound 

field and they were recorded with a dummy head. One of the binaural impulse 

responses for the sound field with either the ITD or HD fluctuation was then modified 

so that the fluctuation was removed, thus having identical signals at both channels. 

The original and manipulated signals were finally convolved with an anechoic 

orchestral recording. The subjects were asked to compare the difference in terms of 

the perceived spaciousness between the original and manipulated signals in headphone 

reproduction, and the results indicated that in the cases of both sound fields the 

original signals, which contained the fluctuations, were perceived to be more spacious 

(wider). 

The individual effect of ITD or IID fluctuation was further evaluated by Griesinger 

[1992] although the detailed experimental method was not indicated in his paper. 

From a subjective listening test conducted with 1/3 octave band noise signal 

modulated with 5 Hz fluctuation in either ITD only or ED only, it was reported that 

both the ITD and the IID fluctuations contributed to the creation of spatial impression 

with each having different localisation characteristics. That is, the latter provided a 

well localised sound image while the former produced a poorly localised image. 

The above results appear to suggest that the interaural fluctuations created by the 

interaction of a direct sound and reflections influence the increase of perceived 
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magnitude of ASW, and this was recently confirmed by the results of experiments 

conducted by Mason [2002] although his work was focused on the aspect of ITD 

fluctuation only. In his series of subjective elicitation experiments the effect of 

different frequencies and magnitudes of ITD fluctuations were investigated with both 

headphones and loudspeakers using frequency modulated noise stimuli. The 

perceived attributes of ITD fluctuations were analysed from the results of graphical 

elicitation tests. In terms of the effect of fluctuation frequency, it was found that in 

experiments with both headphones and loudspeakers the 'localisation lag' effect, 

which was introduced above, was observed as the frequency of the fluctuation rose. 

In terms of the fluctuation magnitude it was reported that with headphone listening 

mainly the perceived 'width', 'depth' and 'height' of the source were increased as the 

magnitude increased. On the other hand, with loudspeaker listening, the increase of 

the fluctuation magnitude was found to cause increases of perceived 'width' and 

tenvelopment'. These results suggest that the measurement of ITD fluctuation can 

be successfully related to the measurement of spatial impression. 

In an acoustical environment, these fluctuations are naturally produced by the 

interaction between a direct sound and reflections [Griesinger 1992]. In order to 

explain the creation of interaural fluctuations simply, Mason [2002] simulated the 

interaction of a direct sound and a single reflection in an acoustical environment by 

modelling a sound source 15 metres directly in front of a dummy head and a single 

side wall placed 5 metres away from the lateral plane of the dummy head. It is stated 

by Mason that if the direct sound in this model is a complex signal, the interaction that 

might result between the numerous frequency components of the direct and reflected 
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signals will produce changes in the interaural time and intensity differences of ear 

input signals over time. Figure 2.5 shows the examples of ITD and IID fluctuations 

that are measured in this particular model using a complex source signal consisting of 

three continuous sine tones of 480,500, and 520 Hz [Mason 2002]. The fluctuation 

patterns shown in these figures are repeated in the same manner over time. 
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Figure 2.5 Plots of the ITD and IID fluctuations over time measured for Mason's 

simulation model of an acoustical environment producing a single reflection, with a 

source signal consisting of three continuous sine tones of 480,500, and 520 Hz [after 

Mason 2002] 
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2 Perceptual and physical effects of delayed secondary signals 

fluctuation was maintained at 20 Hz, which was the frequency of spacing of the three 

sine tones (480,500, and 520 Hz). Furthermore, it was also found that there was no 

linear dependency of the magnitude of the fluctuation on the reflection pattern. 

These findings suggest that the properties of the sound source have a more significant 

effect on the characteristics of interaural fluctuation than the reflection pattern. From 

this, Mason [20021 moved on to the measurement of interaural fluctuation using 

musical source signals, which were anechoic recordings of a continuous cello note and 

a transient acoustic guitar chord. For simulating the interaction between the source 

and reflections in a room, the stimuli were convolved with the binaural impulse 

response of a room simulation. The duration of the source from the onset to the 

offset was 0.5 second for the cello note, and 2 seconds for the acoustic guitar. Figure 

2.6 and 2.7 show the plots of the ITD and IIID fluctuations over time for these stimuli. 

It can be firstly seen that the ITD fluctuations are more obvious and erratic than the 

III) fluctuations for both sources. It can be also observed that the erratic ITD 

fluctuations are not generated at the onset, but during the note and after the offset due 

to the reflections. This means that the spatial impression is not generated at the onset 

of a sound, but at the arrivals of reflections during the note and at the offset of a sound 

where the reflections and reverberation have maximum energies. This is supported 

by Griesinger [1996], asserting that a great magnitude of spatial impression is 

produced in the space between the notes of a musical sound source, where the energies 

of reflections are maximal and therefore the fluctuations in ITD and I[ID are 

particularly large. For the cello note, the erratic ITD fluctuations are generated 

continuously during the note and the reverberation. This is likely to be because the 

ongoing variations in frequency and intensity during the length of the note interacted 
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with reflections continuously. On the other hand, the acoustic guitar chord has a 

distinctive difference in fluctuating pattern between the source and the reverberation. 

The ITD fluctuations are relatively constant during the length of the chord, even 

thought there are some erratic fluctuations after the onset. This is likely to be 

because the ringing after the transient plucking of the acoustic guitar chord is 

relatively constant over the length of the chord. The fluctuations become much more 

erratic in the reverberation part. These findings suggest that the characteristics of 

interarual fluctuations are dependent on the temporal characteristics of a source. 
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Figure 2.6 ITD and IID fluctuations for cello note [courtesy of Mason 2002] 
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2 Perceptual and physical effects of delayed secondary signals 

From the above findings, the interaural fluctuation can be considered as a physical cue 

that is directly related to the properties of a complex musical source, such as 

frequency response, intensity and temporal characteristics of the musical performance, 

as well as the pattern of resulting reflections in an acoustical environment. Therefore, 

the measurement of interaural fluctuation of musical sound sources over time would 

be more effective for investigating the effect of reflection in a concert hall than the 

measurement of IACC using the response of a rather unrealistic impulsive sound 

source within a fixed time window. In fact, having claimed that the IACC has 

limitations as an objective measure for spatial impression created with complex 

musical source in a concert hall as mentioned in the above section, Griesinger [1997] 

proposes that the measurement of interaural fluctuation is a more suitable method for a 

more accurate prediction of the perceived spatial impression. Furthermore, the 

interaural fluctuation measure could also be suitable for evaluating perceived spatial 

impression in sound recording and reproduction. For example, coincident and 

spaced pair microphone techniques will differ in perceived source width due to the 

different magnitudes of interaural fluctuations created by each technique. Coincident 

techniques produce signals that are largely correlated at low frequencies and therefore 

the created ITD fluctuations will be minimal. On the other hand, spaced techniques 

will rMnimise the correlation between the resulting signals depending on the distance 

between the microphones, therefore increasing the magnitude of ITD fluctuations that 

are created. From this, it is considered that the interaural fluctuation over time could 

be a useful measure for understanding the perceptual effects of interchannel crosstalk 

that might be dependent on the interchannel relationship in multichannel microphone 

technique. 
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2 Perceptual and physical effects of delayed secondary signals 

2.3.2.6 Relationship between interaural fluctuation measurement and 

IACC measurement 

Griesinger [1992] noted that the IACC would be closely related to fluctuations in both 

intensity and phase of a signal in a certain pattern. Mason [2002] conducted an 

investigation into the relationship between interaural cross -correlation and fluctuations 

in interaural time and intensity difference over time using various stimuli. He firstly 

analysed the effect of varying magnitude of ITD and IIID fluctuation on the maximum 

IACC across the range of +/- lms. The stimulus signal consisted of a pair of 50OHz 

sine tones that were modulated either in frequency or amplitude at 5Hz. The 

magnitude of ITD or IID fluctuation was varied by creating different magnitudes of 

frequency or amplitude modulation and the IACC was measured for each vanation. 

The results showed that as the fluctuation in both ITD and HD increased, the 

maximum IACC value decreased. However, it was also found that a change in the 

IACC caused by a change in IID fluctuation was less than that caused by a similar 

change in ITD fluctuation. 

From this, Mason moved on to a further investigation using musical stimuli. He 

compared the characteristics between the IACC variation over time and the fluctuation 

in ITD or IID over time for the stimuli of a single cello note and a single acoustic 

guitar chord, which were shown in Figure 2.6 and 2.7. The measurement plots of the 

IACC over time for these sources are shown in Figure 2.8. It can be seen in general 

that for both sources the measurement of the ITD fluctuation is more similar to the 

measurement of the IACC than the measurement of the RD fluctuation. Even though 
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the cello source has erratic variations in both ITD and IACC, it is difficult to observe 

an obvious similarity between the two in terms of the pattern of variation. On the 

other hand, the acoustic guitar source appears to have more similarities between the 

ITD fluctuation and the IACC variation in that there are several peaks in the region of 

the early reflections and there are more erratic fluctuations in the region of the late 

reflections or reverberation. From these findings, Mason [2002] concluded that the 

frequency and envelope dependent interaural. fluctuations over time are the main 

factors that affect the interaural cross -correlation of a signal. This also suggests that 

frequency and envelope of a sound would be directly related to the width perception 

for the sounds with secondary delayed signals. 
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Figure 2.8 Plots of the reversed IACC (1-IACC) for single cello note and acoustic 

guitar chord, measured for different frequency bands of the signal [Courtesy of Mason 

2002] 
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2.4 Discussions 

Since early reflection in acoustic space and interchannel crosstalk in microphone 

technique are commonly in the form of secondary delayed signals, the findings from 

the reflection studies that have been reviewed in this chapter are considered to be 

useful for hypothesising the kinds of attributes interchannel crosstalk would affect and 

which physical cues would give rise to the perception of those attributes. 

It is firstly proposed that interchannel crosstalk would be a disturbing factor for 

phantom image localisation. Similarly to early reflections, however, if the 

precedence effect was triggered between the crosstalk and wanted signals in a three 

channel microphone array, interchannel crosstalk would be perceptually masked when 

localising the image. It has to be noted that early reflections in an acoustic 

environment typically have much longer delay times than interchannel crosstalk in a 

microphone array. Also, for near-coincident microphone techniques, the delay time 

of interchannel crosstalk is traded with its intensity. For example, the more 

coincident the microphone array is, the smaller intensity and shorter delay time the 

crosstalk signal will have. Therefore, even if the delay time of the crosstalk signal 

fell under the threshold for the precedence effect in highly coincident arrays, its small 

intensity might still lead to the localisation of an image at the desired position. 

However, the accuracy or easiness of localisation would depend on the temporal and 

spectral characteristics of sound source. Based on findings related to the precedence 

effect in acoustical envirom-nents, transient nature and low frequency components in a 

sound source are necessary for triggering the precedence effect. Such continuous 
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sound as a pure tone would therefore be difficult to localise. From this, it could be 

predicted that interchannel crosstalk would also affect the accuracy of phantom image 

localisation depending on the temporal and spectral characteristics of the sound source. 

However, since musical signals, which are most likely to be the sound sources in 

recordings using microphone techniques, have complex and unique characteristics in 

their spectra and envelopes, findings relating to the precedence effect obtained using 

pure tones or noise signals might be applied differently in the context of interchannel 

crosstalk. 

Secondly, it was reported by many authors that the addition of a reflection arriving 

within about 80ms after the direct sound would contribute to the perception of 

apparent source width (ASW). Griesinger [1997] proposed from a different viewpoint 

that only the reflection arriving within the onset time of the direct sound contributes to 

the increase of ASW. No matter which paradigm is believed, it can be predicted from 

the above that interchannel crosstalk might contribute to the increase of the perceived 

width of a phantom source image since it has a relatively small range of delay time, 

which is normally less than a few milliseconds. If this is the case, similarly to the 

case of reflection effects, the perception of ASW due to interchannel crosstalk would 

be affected by such physical parameters as the intensity of crosstalk signal and the 

frequency components of sound source. IACC and ITD fluctuations might also 

become useful parameters for measuring the source width increase caused due to 

interchannel crosstalk objectively. However, because the ratio between interchannel 

time and intensity differences in a crosstalk signal will vary as the microphone array 

configuration changes, crosstalk intensity should be taken into account together with 
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crosstalk delay time when the magnitude of crosstalk effect is considered. 

Finally, it is known that certain changes in timbral characteristics are caused by the 

addition of reflection due to the comb-filter effect. However, it is not entirely clear 

from the literature which specific timbral attributes are affected by reflections in 

which conditions. Therefore, it is difficult to make a precise prediction about the 

effect of interchannel crosstalk on timbral attributes using the information provided on 

reflection effects. However, based on the finding that the timbre changing effect of 

reflection becomes most obvious when the range of delay time is 10-50ms, [Barron 

1971, Haas 1972], it might be hypothesised that an interchannel crosstalk, which 

would typically have a delay time in the range of a few milliseconds, would cause a 

smaller degree of timbral change than a reflection. 

2.5 Summary 

This chapter reviewed the studies relating to the effects of delayed secondary signals 

that have been conducted in the context of concert haH or room acoustics for the 

purpose of obtaining a useful basis for understanding the effect of interchannel 

crosstalk in multichannel stereophonic recording and reproduction. To summarise, 

the perceptual effects of such delayed secondary signals are related to attributes in 

three main categories comprising localisation, spatial impression and tone colour. 

While the tone colouration effect is known to be caused by the comb filtering, there 

seems to be no conclusive experimental data available about which timbral attributes 
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are directly related to this effect. It is suggested that the tone colouration depends on 

the spectral and temporal characteristics of a sound source. 

Localisation of a sound in a reflective environment owes much to the precedence 

effect. When this effect operates, a reflection arriving at the listener's ears about Ims 

after the direct sound is perceptually suppressed and the auditory image is localised 

constantly at the position of the direct sound. However, this is effective only up to 

the delay time of the upper (echo) threshold, which varies depending on the type of 

sound source and the direction of reflection. Beyond the echo threshold the 

reflection is perceived as a separate source, which is likely to disturb accurate 

localisation. It is widely found that low frequency transient energy is essential for 

triggering the precedence effect. The precedence effect is also found to involve a 

cognitive process of human perception and the evidence for this includes the 

experimental findings on the build-up process, the Clifton effect and the plausibility 

hypothesis. 

The addition of reflections is also found to increase the perceived spatial impression. 

These days spatial impression (SI) is generally accepted to include at least two sub- 

attributes of apparent source width (ASW) and listener envelopment (LEV). A great 

deal of research has been carried out especially to develop parameters for objective 

measurement of SI. The objective parameters that have been mainly investigated 

include intensity and direction of reflection, frequency component of sound source, 

interarual cross -correlation coefficient JACC) and interaural fluctuation over time. 

The first two are related to the physical properties of source signals, whereas the last 
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two are related to the binaural relationship of ear input signals. The lateral fraction 

theory suggests that perceived ASW increases as the intensity of lateral reflection 

increases. With regard to the effect of frequency component on perceived ASW, 

reports from different researchers do not totally match and this seems to be due to the 

use of different sound sources or the lack of standard definitions for terminologies. It 

is generally found that the perceived ASW increases when the IACC decreases or the 

magnitude of interarual fluctuation increases. It is also found that the IACC and the 

interaural fluctuation are related to each other in that the latter is the main factor 

affecting the former. 
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3 PERCEPTUAL ATTRIBUTES OF PHANTOM IMAGES 

IN 2-0 STEREOPHONIC SOUND REPRODUCTION 

This chapter summarises subjective experiments carried out to examine the perceptual 

attributes of phantom images in 2-0 stereophonic sound reproduction. These 

experiments were designed from the following backgrounds. As Rumsey [2001] 

suggested, the perceived auditory attributes of phantom images created from the 

interference of interchannel crosstalk signals between the adjacent microphones in 

multichannel microphone arrays would be likely to depend on the combination of 

relevant time and intensity differences between the signals. It was found from the 

studies related to the localisation of phantom images in stereophonic reproduction, 

which were discussed in Chapter 1, that images created with pure interchannel time 

difference (ICTD) would be less easily or accurately localised than those with pure 

interchannel intensity difference (ICID) in general (i. e. spaced pair microphone 

techniques vs. coincident pair microphone techniques). To date, however, there seem 

to be no conclusive experimental results, of which the author is aware, which describe 

the specific kinds of attributes that can be perceived from stereophonic phantom 

images created with certain ICTD and ICID relationships. Neither is it clear how 

such attributes might be weighted perceptually. Therefore, it would be first 

necessary to understand the effect of ICTD and ICID on the perception of relevant 

attributes in two-channel format prior to the investigation of interchannel. crosstalk in 

multichannel format. Furthermore, research conducted to investigate the perceptual 

effects of reflections, which was covered in Chapter 2, has suggested that the spectral 

and temporal characteristics of sound sources would be significant for accurate 
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localisation and perceived source width. From this, it became also of interest to see 

how different types of sound sources affect the perception of phantom images in 

stereophonic reproduction. In this study, the perceptual effects of the ICTD - ICID 

relationship and the type of sound source were investigated by comparing 

stereophonic phantom source images with referential monophonic sources, which 

were intended to be localised at the same position as the stereophonic images. 

From the above backgrounds, the following research questions were formulated for 

investigation. 

" What are the perceptual attributes of 2-0 stereophonic phantom images? 

" Are the perceptions of these attributes significantly influenced by the type of 

panning method and the type of sound source? 

0 Do any of these attributes have correlations? 

3.1 Experimental Hypotheses 

In Section 2.2.1, it was mentioned that the auditory image created by the precedence 

effect, which operates in the perception of an original (direct) sound and its delayed 

(reflected) sound, would be perceived to be more spacious compared to that created by 

the original sound alone [Freyman et al 1991, Perrott et al 1988]. It was also stated 

by Blauert [19971 that the degree of such spatial distribution would become greater as 

the delay time increased. It was discussed in Chapter 2 that the magnitude of 
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perceived spatial impression could be determined by such objective measures as IACC 

and ITD fluctuations over time. As Mason [2002] states, in the context of 

stereophonic sound recording and reproduction, the magnitude of interaural 

fluctuations over time for the reproduced signals arriving at the ears could be 

determined by the combination ratio of ICTD and ICID. Furthermore, the comb- 

filter effect for the stereophonic signals, which would be likely to cause certain timbral 

differences between the stereophonic and monophonic images, might be dependent on 

the time and intensity relationship between the signals since it is a function of phase 

between two signals. From these, it was hypothesised that the perceived differences 

between stereophonic phantom source image and monophonic source would be 

perceived in both spatial and timbral attributes, and the magnitudes of those 

differences would significantly vary depending on the combination ratio of ICTD and 

ICID in the panning method used. 

In addition, the temporal characteristics of the sound source have been found to be 

significant for accurate localisation in the literature reviewed in Section 2.2.2. It was 

discussed in Section 2.3.2.2 that in the presence of reflection the spectral 

characteristics of sound source would be important for the perception of source width. 

The spectral characteristics of the sound source would also be closely related to the 

timbre of the source. Therefore, it was predicted that the perceptions of phantom 

image attributes would be significantly affected by the temporal and spectral 

characteristics of the sound sources used in the current experiments. 

III 



3 Perceptual attributes ofphantom images in 2-0 stereophonic sound reproduction 

3.2 Experimental Design 

3.2.1 General methodology 

This investigation was inspired by the Quantitative Descriptive Analysis (QDA) 

method, which was originally developed for the evaluation of sensory attributes of 

products. The original QDA basically consists of three stages: elicitation, grouping 

analysis and grading [Bech 1999]. Firstly, a group of qualified subjects are presented 

with stimuli and generate descriptive terms for the attributes of the product through 

discussion. Secondly, the elicited terms are grouped into a limited number of 

attributes through discussion based on the similarity of meaning. Finally, the stimuli 

are graded using the obtained scales. This method is particularly suitable for 

investigating undeveloped areas in that the subjects are actively involved in choosing 

the relevant attributes to be graded. As Kjeldsen [1998] and Berg and Rumsey 

[1999] point out, the use of 'provided' attribute scales has a significant limitation in 

this kind of sound quality evaluation in that the subjects would be restricted to respond 

only in the experimenter's own terms even if they found other relevant attributes for 

evaluation. To make this investigation more effective in terms of time, the original 

QDA was modified. Instead of undertaking the grouping analysis with all the 

subjects involved in the discussion, the elicited terms were interpreted and grouped by 

the experimenter through informal discussions with individual subjects on the 

meanings of the terms they used. Therefore, the whole investigation consisted of two 

subjective experiments, namely elicitation and grading phases. 
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3.2.2 Creation of stimuli 

For the experiments three types of sound source were chosen, comprising piano 

6staccato' note of C3 (fo = 130 Hz), trumpet 'sustain' note of B flat3 (fo = 228 Hz) and 

male speech dialogue. The piano and trumpet sources were chosen in order to 

examine the perceived effects that might change depending on the different temporal 

characteristics of musical instruments, i. e. transient and continuous characteristics 

(staccato vs. sustain). The short term extracted waveform for each sound source is 

shown in Figure 3.1. 

(a) Transient piano note 

(b) Continuous trumpet note 
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(c) Continuous male speech dialogue 

Figure 3.1 Short term extracts of waveforms for each sound source 

Single notes of those sources were used instead of musical extracts in order to limit 

the variables strictly within the experimental scope. The piano source was recorded 

using a single cardioid microphone placed about 30cm over the hammers for the 

desired note. The piano was completely covered with thick cloth in order to reduce 

unwanted acoustic effects as much as possible. The trumpet sources were recorded 

in a small overdub booth of Studio 3 of the University of Surrey, using a single 

cardioid microphone placed about Im away from the instrument. The recording 

space was acoustically isolated, had a very low reverberation time and was almost 

anechoic. In order to investigate the continuous nature of the trumpet strictly, the 

onset and offset transients of the trumpet source were removed by fading in and out 

the beginning and ending for one second each, making the total duration of the 

stimulus four seconds. The speech signal was chosen because it has a combination 

of both transient and continuous characteristics as well as a wide range of frequencies. 

The speech recording used was Danish male speech that was anechoically recorded for 

Bang and Olufsen's Archimedes project [Hansen and Munch 19911. Additionally, 

each sound source differs in spectral characteristics, as can be seen in Figure 3.2. 
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(a) Piano note C3 

(b) Trumpet note B3 

Figure 3.2 Long-term averaged frequency spectrum of each sound source 
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For each sound source, one monophonic stimulus and three stereophonic stimuli were 

created using three different panning methods of time, intensity and a combination of 

the two. The loudness of the stereophonic stimuli was naturally greater than that of 

the monophonic ones simply due to the number of loudspeakers used. Therefore, in 

order to enable the subject to judge differences other than loudness, the peak sound 

pressure levels of all stimuli were calibrated at 75dBA. From an informal test that 

had been conducted before the main experiments, it was recognised that the choice of 

panning angle had a very small effect on the perceived attributes. However, the test 

angle was fixed at 20" since this angle was considered to provide a reasonably 

balanced combination of ICTD and ICID. The interchannel time and intensity 

differences required for localising the sound image at 20' were calculated based on a 

combination function developed by the author using the psychoacoustic values that 

were obtained from a localisation experiment conducted using the same types of sound 

sources. The details of the localisation experiment and the development of the 

combination function are described in Appendix A. The composition of the test 

stimuli is shown in Table 3.1. 

Table 3.1 Composition of the test stimuli, showing interchannel time and intensity 

differences: a total of nine stimuli were produced using these different panning 

methods 

Time 

Panning 

Combination 

panning 

Intensity 

panning 

Speech 

Piano 0.5ms 0.25ms + 4dB 8dB 

Trumpet 
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3.2.3 Physical setup 

The experiment was conducted in an ITU-R [19941 BS. 1116-compliant listening room 

at the University of Surrey. The physical setup of the listening room is shown in 

Figure 3.3. Two Genelec 1032A loudspeakers L and R were set up at 60' from the 

listening position and 3m apart. The reference loudspeaker was placed at the 20' 

position so that its auditory image would appear at the same (or as similar as possible) 

direction as that of the phantom image created by L and R. An acoustically 

transparent curtain was used in order to hide the nature of the experiment from the 

listener. 

Figure 3.3 Physical setup of the listening room 

3.2.4 Subjects 

A total of eight subjects participated in the test. All were experienced in spatial 

listening, being selected from staff members, doctoral students and final year 

undergraduate students on the University of Surrey's Tonmeister course. For a 
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subjective experiment such as a preference test, a large number of naive subjects are 

often used. However, this was considered to be unsuitable for the current 

experiments since the nature of the listening test required subjects' critical listening 

skills to discriminate subtle differences between stimuli and therefore naive subjects 

would be likely to provide inconsistent data. 

3.3 Experiment Part 1: Elicitation of Perceptual Attributes 

3.3.1 Listening test method 

This experiment was designed such that the subjects were provided with two sound 

stimuli 'M and 'B' and asked to complete a statement written as 'Stimulus B is 

compared to stimulus M, using their own descriptive terms. The control interface 

was designed using Cycling 74's MAX-MSP software as shown in Figure 3.4. 

There were a total of nine trials and their presentation order was randomised for each 

subj ect. In every trial, stimulus 'B' represented the stereophonic stimulus and 

stimulus 'N was the corresponding monophonic stimulus. The stereophonic signals 

of stimulus A were fed into the loudspeakers L and R while the monophonic signal of 

stimulus B was fed into the reference loudspeaker. The stimulus pair of A and B was 

synchronised and looped so that the subjects were able to switch between them freely 

and to listen repeatedly. The subjects were allowed to spend as much time as they 

wanted in order to find all the audible differences. The natures of the stimuli were 

veiled to the listener. 
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How does B appear compared to A? 

AB 

K! e-ýx-t -tý ia ýl 

Figure 3.4 Layout of the control interface used for comparing mono and phantom 
images 

3.3.2 Results and discussions 

A number of descriptive terms were elicited from the subjects and the interpretation 

and grouping analysis of the terms were carried out by the author, with informal 

discussions with the individual subjects on the meanings of some unclear terms. The 

results are surnmarised in Tables 3.2 and 3.3. Firstly it was possible to separate the 

terms into two broad groups: spatial and timbral attributes. The individual terms 

were then separated into six sub-groups based on the similarity in meaning: source 

focus, source width, source distance, brightness, hardness and fullness. The 

definitions given for these attributes are listed in Table 3.4. The number in brackets 

that can be seen in Tables 3.2 and 3.3 represents the number of occurrences for each 

specific term. It is interesting to see from the tables that every sound source had the 

same types of perceived spatial and timbral attributes. However, for the spatial 

attributes, it appears that the total number of occurrences for each attribute varies 
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depending on the type of sound source. For example, for the trumpet source there 

was just one observation of the source width attribute whereas for speech and piano 

there were six or seven observations. This might be because the monophonic 

trumpet image was perceived to be fairly wide originally, making it difficult for the 

subjects to detect a difference from the stereophonic images. The source distance 

attribute appears to be the least dominant spatial attribute in general. For the timbral 

attributes, on the other hand, it appears that there is no obvious sound source 

dependency for any of attributes. It is also seen that hardness is the least salient 

attribute. 

The spatial differences are likely to be due to the difference in the degree of interaural 

cross-coffelation or fluctuation in interaural time and intensity differences. In 

Chapter 2 it was explained that the addition of one or more reflections would decrease 

the degree of interaural cross-correlation or increase that of fluctuations in ITD and 

IID, leading to increased spatial impression. Similarly, the degree of interarual cross- 

correlation for sounds radiated from two loudspeakers with a certain difference in time 

and intensity would be likely to be higher than that for a sound from a single 

loudspeaker. The explanation of timbral differences also seems to be found in the 

reflection studies. It was mentioned in Chapter 2 that the interference between a 

direct sound and its delayed reflection produces a comb-filter effect. Similarly, the 

summation of leading and lagging sounds in stereophonic reproduction is likely to 

cause comb-filtering when the ICTD and ICID are transmitted to the ears with 

acoustic crosstalk. 
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Spatial Attributes 
Sound source Group Descriptive terms 

Less localised (4) 

Less focused (2) 

Sourcefocus Less present (1) 

Less stable (1) 

SPEECH Less Coherent (1) 

Source width Wider (7) 

Source distance More distant (1) 

Further away (1) 

Harder to locate (2) 

Sourcefocus Less defined (2) 

Less focused (1) 

Source width Wider (6) 

PIANO More distant (1) 

Source distance Closer (1) 

More reverberant (2) 

Harder to locate (2) 

Sourcefocus Less focused (2) 

Less solid (1) 

TRUMPET More diffused (1) 

Source width Wider (1) 

More distant (1) 

Source distance Further away (1) 

Closer (1) 

Table 3.2 Summary of spatial attributes drawn from the elicited descriptive terms 

0. 
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Timbral Attributes 
Sound source Group Descriptive terms 

Less bright (2) 
More cloudy (1) 

Brightness Duller (1) 
Muddier (1) 

SPEECH Less breathy (1) 
Hardness Softer (1) 

Fuller (1) 
Fullness Bassier (1) 

Less bassy (1) 
Less body (1) 

Brighter (1) 
Duller (2) 

Brightness Less dark (1) 
Less bright (1) 
Less toppy (1) 

PLANO Less harsh (1) 

Hardness Softer (1) 
Less attack (2) 

Less bassy (1) 
Fullness Less punch (1) 

Bassier (1) 
Fuller (1) 

Brighter (3) 
TRUMPET Brightness Duller (1) 

More present (1) 
More nasal (1) 

Hardness Stronger (1) 
Harsher (1) 

Fullness Fuller (1) 
Less bassy (2) 

Table 3.3 Summary of timbral attributes drawn from the elicited descriptive terms 
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/ 

Sourcefocus The easiness of localisation of a sound source 
i. e. How easy is it to pinpoint the apparent location of a source? 

Source width The perceived width of a sound source itself 

i. e. Is one source perceived to be wider than the other? 
Source distance The perceived distance from the listener to a sound source 

i. e. Can the sources be discriminated in terms of their distances? 

Brightness The timbral characteristics of a sound depending on the level of 
high frequencies i. e. bright / dull 

Hardness The timbral characteristics of a sound depending on the level of 

mid-high frequencies (typically in the range of 2- 4kHz) i. e. 
hard / soft 

Fullness The timbral characteristics of a sound depending on the level of 
low frequencies i. e. full / thin 

Table 3.4 Definitions of the attributes that were grouped from the elicited su ective 

terms 

3.4 Experiment Part 2: Grading of the Magnitude of Perceptual 

Effect 

3.4.1 Listening test method 

Based on the attributes that were derived from the previous experiment, the 

magnitudes of the perceived differences between the stereophonic and the 

monophonic stimuli were graded. The listening test was designed so that for each 

sound source type the subjects compared each of the three stereophonic stimuli created 

using three different panning methods with the reference monophonic stimulus. The 

control interface used for this test is shown in Figure 3.5. In order to obtain 

sufficient data for statistical analysis, the trial for each type of sound source was 
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repeated twice with the order of stimulus presentation randomised. Therefore, there 

were six trials to be tested in total. For each trial the subjects were asked to grade the 

magnitudes of the perceived differences between the monophonic stimulus REF and 

each stereophonic stimulus A, B and C on an 11 -point continuous grading scale for 

each attribute, labelled from -5 to 5. 

REF ABc 

stop stop stop -top 

Figure 3.5 Layout of the control interface used in the grading test 

The choice of scale type was influenced by the following considerations. It was 

thought that using a semantic differential scale with word labels would not be 

appropriate for this experiment for the following two reasons. Firstly, the potentially 

nonlinear nature of the scale would not be ideal for parametric statistical analysis. 

Secondly, the meanings of the labels might be differently interpreted by different 

subjects. This is likely to be particularly true for an attribute such as source width 

because it would be difficult for subjects to define the meanings of such labels as 

'much wider' and 'slightly wider' in the same way. With this in rrund, using a 

continuous grading scale was considered to be a more appropriate method since the 

data would be potentially more reliable for parametric statistical analysis due to the 

linearity of the scale, although the data would need to be normalised before statistical 
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analysis. However, using a pure continuous grading scale without any labels, the 

subjects might have difficulties in maintaining consistency in testing through many 

trials individually. Therefore, numerical labels were added to a classical continuous 

rating scale as guidelines for helping subject consistency. 

This type of subjective experiment, for investigating fine perceptual differences, 

would typically carry a risk of psychological errors [Stone and Sidel 1993]. The list 

of such errors and their descriptions are presented in Table 3.5. In order to avoid 

contrast, convergence and anticipation errors, the presentation order of the 

stereophonic stimuli was randomised for each trial, and that of the trial was also 

arranged differently for each subject. Prior to the grading of the magnitude of 

perceived difference against the reference stimulus, the subjects were instructed to 

familianse themselves with the differences between the stereophonic stimuli first. 

This was in order to avoid central tendency and time-order errors. 
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Psychological error Description 

Central tendency error Subjects tend to use the midrange of a scale, avoiding the 
extremes, especially when they are unfamiliar with the 
stimuli or a test method. 

Time-order error Subjects tend to give the first product a higher score than 
expected. 

Contrast error The difference between two stimuli is exaggerated, 
occurring when a 'smaller' stimulus is followed by a 'larger' 

stimulus, and vice versa. 
Convergence error The difference between stimuli is underestimated, occurring 

when a few relatively small stimuli are compared with a 
distinctively larger stimulus. 

Anticipation error Occurs when the subjects can anticipate the pattern of 

systematic changes in a series of stimuli. 
Logical error Occurs when the subjects are not precisely instructed. The 

subject follows a logical but self-determined process in 

evaluating stimuli. 
Proximity error Adjacent characteristics tend to be rated more similar than 

those that are farther apart. Thus the correlations between 

adjacent pairs may be higher. 

Table 3.5 Potential psychological errors to be considered in subjective listening test 

and their descriptions, based on Stone and Sidel [1993] 

3.4.2 Statistical analysis 

The grading experiment was designed so that all conditions were tested within the 

same group of subjects. Therefore, a repeated measure ANOVA (RM ANOVA) test 

was performed for statistical analysis of the data obtained from the grading experiment. 

The independent variables were the panning method and the sound source, and the 

dependent variable was the grading data. Because of the nature of the scale used, it 

126 



3 Perceptual attributes ofphantom images in 2-0 stereophonic sound reproduction 

was predicted that each subject would use a different range of the scale. This 

problem of subject variability in use of the scale might cause inaccurate results from 

statistical analysis. Therefore, the original data were normalised based on the ITU-R 

BS. 1116 Recommendation [ 1994] and the equation used for this is shown below. 

Zi = Xi -XSi + XS where Zi normalised results 
Xi score of subject i 
Xsi = mean score of subject i in session s 

Xs = mean score of all subjects in session s 

There were a total of 144 observations, consisting of 16 observations for each of the 9 

'sound source type-panning method' combinations obtained from 8 subjects. The 

result of the RM ANOVA test for each attribute is presented in the following sections. 

In the presentation of the results, each independent variable is termed 'source' and 

'panning' for convenience. In order to interpret the results of the RM ANOVA test 

correctly, it was necessary to examine the 'assumption of sphericity' (equal variances 

of the differences between conditions) by using Mauchly's test of sphericity. An 

insignificant statistic of Mauchly's test (p>0.05) means that the variances of the data 

for each condition compared are not significantly different, and thus the assumption of 

sphericity is met. In this case, the 'sphericity assumed' significance value should be 

used as a result of the RM ANOVA. However, if Mauchly's test statistic is 

significant (p<0.05), the assumption of sphericity is violated and one of the corrected 

significance values should be used instead of the sphericity assumed one. The result 

of Mauchly's test for each attribute is presented in the following section. 
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3.4.3 Results 

3.4.3.1 Source focus 

Table 3.6 shows the results of the RM ANOVA test for the grading data obtained for 

the 'source focus' attribute. The significance value p for each condition 'sound 

source' and 'panning method' was determined according to the results of Mauchly's 

test of sphericity presented in Table 3.7, as explained in the above section. The 

results indicate that both sound source (p = 0.013) and panning method (p = 0.000) 

had highly significant effects on source focus difference between the stereophonic and 

monophonic images. The experimental effect size, which can be estimated from the 

Partial Eta Squared value, was greater for panning method (0.750) than for sound 

source (0.129). With respect to the interaction between each factor, it is shown that 

the effect was also significant (p = 0.016). 

hAf-nqi irs-' hAP: A. ql IPP: 1 

Partial Eta 
Source F Sig. Squared 
SOURCE Sphericity Assumed 4.684 

. 013 
. 129 

Greenhouse-Geisser 
. 4.684 . 013 . 129 

Huynh-Feldt 4.684 
. 013 

. 129 
Lower-bound 4.684 

. 
013 

. 129 
PANNING Sphericity Assumed 20.975 

. 000 
. 
750 

Greenhouse-Geisser 20.975 
. 000 

. 
750 

Huynh-Feldt 20.975 
. 000 

. 
750 

Lower-bound 20.975 
. 003 

. 
750 

SOURCE PANNING Sphericity Assumed 3.675 
. 016 . 344 

Greenhouse-Geisser 3.675 . 047 . 344 
Huynh-Feldt 3.675 

. 
026 

. 
344 

Lower-bound 3.675 . 097 . 344 

Table 3.6 Result table of repeated measure ANOVA test for the data obtained for 

'source focus' difference between stereophonic and monophonic stimuli 
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NAPAýi iron' NAFA5,1 IAP 1 

Approx. 
Within Subjects Effect Mauchly's W Chi-Square df Sia. 
SOURCE 4 . 299 7.240 2 

. 027 
PANNING 

. 640 2.682 2 
. 262 

SOURCE * PANNING 
. 061 1 15.151 9 

. 100 

Table 3.7 Result table of Mauchly's test of sphericity for the data obtained for 
6 source focus' difference between stereophonic and monophonic stimuli 

Figure 3.6 shows the mean values and 95% confidence intervals for each sound 

source and each panning method. It initially shows that the stereophonic images for 

every sound source and panning method were perceived to be 'less focused' than the 

monophonic image. From the plots of sound source, it can be seen that the speech 

source had the greatest effect, followed by piano and trumpet sources in order. It can 

also be seen from the plots of panning method that pure time panning caused the 

greatest difference and pure intensity panning the smallest difference. In addition, 

the magnitude of difference appears to decrease almost linearly as the panning method 

moves from time to intensity. Table 3.8 presents the results of pairwise comparisons 

between each sound source and between each panning method. From these results, it 

can be confirmed that the significance of the sound source effect was caused by the 

significant difference between speech and trumpet (p = 0.010). 

k A---. ., - -k AC ACI IDC 1 

Mean 
Difference 

(1) SOURCE (J) SOURCE (I-J) Sid. Error Sia. 
speech piano -. 419 . 

232 . 
228 

trumpet -, 707 
. 
232 . 

010 

piano speech . 
419 . 

232 . 
228 

trumpet -. 288 . 
232 . 

660 

speech . 
707 . 

232 . 
010 

piano . 
288 . 

232 1 . 
660 

Mean 
Difference 

PANNING (1) PANNING O-J) Stdo Error Sig. R. 
Time [71 -1.104 . 290 . 020 

Intensity -2.396 . 467 . 004 
Combi Time 1.104 . 290 . 020 

Intensity -1.292 . 330 . 017 
Intensity Time 2.396 . 467 . 004 

Combi 1.292 . 
330 . 

017 

Table 3.8 Result tables of pairwise comparisons between each sound source and 

between each panning method for 'source focus' attribute 
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Figure 3.6 Mean values and the associated 95% confidence intervals of the grading 
data of 'source focus' difference between stereophonic and monophonic stimuli by 

sound source and panning method 
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Figure 3.7 Interaction between panning method and sound source for source focus 

attribute 

Plots of the source*panning interaction are shown in Figure 3.7. In order to examine 

the significance of the sound source effect for each panning method shown in the plots, 

a paired samples T-test was carried out. The results shown in Table 3.9 indicate that 

for time panning the effect of the speech source was significantly greater compared to 

that of the piano or trumpet source. The effects of the piano and trumpet sources did 
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not have any significant difference for the time panning. For combination panning, 

there was no significant difference between any sound sources. Intensity panning 

gave rise to a significant difference between the piano source and the speech or 

trumpet source, while the difference between the speech and trumpet sources was 

insignificant. 

t Sia. (2-tailed) 
Time Speech*Piano _ 

-3.815 . 007 
Time Speech-Trumpet -4.074 . 005 
Time Trumpet*Piano -1.005 . 

348 
Combi Speech*Piano -1.664 . 140 
Combi Speech*Trumpet -1.615 . 150 
Combi Trumpet*Piano 

. 
818 

. 440 
Intensity Speech*Piano 1.521 . 172 
Intensity Speech*Trumpet -. 667 

. 
526 

Intensity Trumpet*Piano -3.487 . 010 

Table 3.9 Result table of paired samples T-test carried out for the interaction effect 

of sound source and panning method for source focus attribute 

3.4.3.2 Source width 

The results of the RM ANOVA test for the grading data obtained for the 'source width' 

attribute are shown in Table 3.10, and the results of Mauchly's test of sphericity are 

shown in Table 3.11. The results indicate that the effects of sound source (p = 0.009) 

and panning method (p = 0.000) on the source width difference between stereophonic 

and monophonic images were highly significant, although panning method had a 

greater experimental effect (Partial Eta Squared value = 0.742) than sound source 

(0.138). The source*panning interaction is shown tobe insignificant. 

131 



3 Perceptual attributes ofphantom images in 2-0 stereophonic sound reproduction 

KAanci ira' KAf: Aql ]Qg-- 1 

Partial Eta 
Source 

- 
F Sia. Squared 

SOURCE Sphericity Ass7m ed 5.037 
. 
009 

. 138 
Greenhouse-Geisser 5.037 

. 009 
. 138 

Huynh-Feldt 5.037 
. 009 

. 138 
Lower-bound 5.037 

. 
009 

. 138 
PANNING Sphericity Assumed 20.100 

. 
000 

. 
742 

Greenhouse-Geisser 20.100 
. 000 

. 
742 

Huynh-Feldt 20.100 
. 
000 

. 
742 

Lower-bound 20.100 
. 003 

. 
742 

SOURCE PANNING Sphericity Assumed 1.993 
. 123 

. 222 
Greenhouse-Geisser 1.993 

. 185 
. 222 

Huynh-Feldt 1.993 
. 174 

. 
222 

Lower-bound 1.993 
. 
201 

. 222 

Table 3.10 Result table of repeated measure ANOVA test for the data obtained for 

'source width' difference between stereophonic and monophonic stimuli 

Mp. qc; ijrp.: MFA. q[JRF: 

Approx. 
Within Subjects Effect Mauchly's W Chi-Square df I 
SOURC7 

. 
007 29.866 2 

. 
600 

PANNING 
. 
666 2.443 2 

. 
295 

SOURCE * PANNING 
. 
015 22.880 9 

. 
009 

Table 3.11 Result table of Mauchly's test of sphericity for the data obtained for 

'source width' difference between stereophonic and monophonic stimuli 

Figure 3.8 presents the mean values and 95% confidence intervals for each sound 

source and each panning method. It can be firstly seen that the stereophonic images 

were perceived to be 'wider' than the monophonic image for every sound source and 

panning method. Similarly to the results for the 'source focus' attribute shown above, 

the speech source appears to have the greatest effect and trumpet the smaRest effect. 

Also the magnitude of effect appears to increase linearly as the panning method moves 

from intensity to time. From the results of pairwise comparisons between each sound 

source shown in Table 3.12, it can be observed that the difference in the speech and 

piano pair was insignificant while that in the other pairs was significant. It can be 

also observed that every pair of panning methods had a significant difference. 
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Figure 3.8 Mean values and the associated 95% confidence intervals of the grading 
data of 'source width' difference between stereophonic and monophonic stimuli by 

sound source and panning method 

KA. --. - KAPAc: Zl IQP 1 

Mean 
Difference 

(1) SOURCE Q) SOURCE O-J) Std. Error Sig. 
Speech Piano . 103 . 234 1.000 

Trumpet . 688 . 234 . 014 
Piano Speech -. 103 . 234 1.00 

Trumpet . 585 . 234 . 045 
77ý-pel Speech -. 688 . 234 . 014 F 

Piano 1 -. 585 1 . 234 . 045 

hA--,,. - KACAQI IDC 1 

Mean 
Difference 

ý PANNING (J) PANNING O-J) Sidw Error slqý 
e Combi 1.201 . 

281 
ý011 Intensity 2.347 . 461 ý004 

Combi Time -1.201 . 281 . 011 
Intensity 1.146 . 346 . 039 

Intensity Time 2.347 461 . 004 
Combi -1.146 . 46 . 

039 

Table 3.12 Result tables of pairwise comparisons between each sound source and 

between each panning method for 'source width' attribute 

3.4.3.3 Source distance 

Table 3.13 shows the results of the RM ANOVA test for the grading data obtained for 

the 'source distance' attribute, and Table 3.14 shows the results of Mauchly's test of 

sphericity. There was no significant effect for either sound source (p = 0.510) or 

panning method (p = 0.417) and the source*panning interaction effect is also shown to 

be insignificant (p = 0.532). 
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KAPA., 'l IPP: 1 

Partial Eta 
Source F Sia. 
SOURCE Sphericity Assumed 

. 
681 

. 
510 

. 
021 

H 

Green house-Geisser 
. 681 

. 
510 

. 
021 

Huynh-Feldt 
. 
681 

. 
510 

. 
021 

Lower-bound 
. 
681 

. 
510 

. 
021 

PANNING Sphericity Assumed 
. 
930 

. 
417 

. 117 
Greenhouse-Geisser 

. 
930 

. 
395 

. 
117 

Huynh-Feldt 
. 
930 

. 408 
. 117 

Lower-bound 
. 930 

. 
367 

. 117 
SOURCE PANNING Sphericity Assumed 

. 
624 

. 
649 

. 
082 

Green house-Geisser 
. 
624 

. 
532 

. 
082 

Huynh-Feldt 
. 
624 

. 
570 

. 082 
Lower-bound 

. 
624 

. 455 
. 
082 

Table 3.13 Result table of repeated measure ANOVA test for the data obtained for 

4 source distance' difference between stereophonic and monophonic stimuli 

NA i-, qz ii rp: KA F A. q IIPF1 
1 

Approx. 
Within Subjects Effect Mauchly's W Chi-Square df Sig. 
SOURCE 

. 
978 

. 
134 2 

. 
935 

PANNING 
. 
625 2.820 2 

. 
244 

SOURCE * PANNING 
. 
026 19.790 9 

. 
024 

Table 3.14 Result table of Mauchly's test of sphericity for the data obtained for 

4 source distance' difference between stereophonic and monophonic stimuli 

Figure 3.9 shows the mean values and 95% confidence intervals for each sound 

source and each panning method. From the plots the magnitudes of the effects of 

both panning method and sound source do not appear to be considerable, although the 

stereophonic images appear to be 'more distant' than the monophonic image in all 

conditions. It is also indicated that none of the panning methods had significant 

differences between each other. 
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Figure 3.9 Mean values and the associated 95% confidence intervals of the grading 
data of 'source distance' difference between stereophonic and monophonic stimuli by 

sound source and panning method 

3.4.3.4 Brightness 

The results of the RM ANOVA test for the grading data obtained for the 'brightness' 

attribute are shown in Table 3.15, and the results of Mauchly's test of sphericity are 

shown in Table 3.16. The results indicate that sound source (p = 0.007) had a 

significant effect on the difference in brightness attribute while panning method did 

not (p = 0.419). However, the estimated effect size of sound source appears to be 

small (Partial Eta Squared value = 0.289). The source*panning interaction effect is 

shown to be insignificant (p = 0.667). 
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KA. - ,. * KAýAQI IMC- I 

Partial Eta 
Source F Sia. S uart q SOURCE Sphericity Assumed 14.596 

. 
000 2 89 

Greenhouse-Geisser 14.596 
. 007 

. 289 
Huynh-Feldt 14.596 

. 
007 

. 
289 

Lower-bound 14.596 
. 
007 

. 
289 

PANNING Sphericity Assumed 
. 
785 

. 
475 

. 101 
Greenhouse-Geisser 

. 
785 

. 
419 

. 101 
Huynh-Feldt 

. 
785 

. 
425 

. 101 
Lower-bound 

. 
785 

. 
405 

. 101 
SOURCE PANNING Sphericity Assumed 

. 
598 

. 
667 

. 
079 

Greenhouse-Geisser 
. 
598 

. 
579 

. 
079 

Huynh-Feldt 
. 
598 

. 639 
. 079 

Lower-bound 
. 
598 

. 465 
. 
079 

Table 3.15 Result table of repeated measure ANOVA test for the data obtained for 
'brightness' difference between stereophonic and monophonic stimuli 

Mp. 9,; ijrp: MFASHRF 1 

Approx. 
Within Subjects Effect Mauchly's W Chi-Square df Sig. 
SOURCE 

. 
000 52.273 2 

. 
000 

PANNING 
. 
252 8.276 2 

. 
016 

SOURCE * PANNING 
. 
077 13.888 9 

. 
143 

Table 3.16 Result table of Mauchly's test of sphericity for the data obtained for 

'brightness' difference between stereophonic and monophonic stimuli 

The mean values and 95% confidence intervals for each sound source and each 

panning method are shown in Figure 3.10. It can be seen that even though the 

stereophonic images were graded to be 'duller' than the monophonic image in general, 

the magnitudes of the grading differences appear to be negligible. The results of 

pairwise comparisons between each sound source shown in Table 3.17 indicate that 

the significant differences occurred between speech and piano and between trumpet 

and piano, which means that the significance of the sound source effect was caused by 

the piano source. 
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Figure 3.10 Mean values and the associated 95% confidence intervals of the grading 
data of 'brightness' difference between stereophonic and monophonic stimuli by 

sound source and panning method 

hApqqijrp: KAFAqIIAF I 

Mean 
Difference 

Ll RCE ýJ) SOURCE IL sou 
- 

(I -J) Std. Error Sic]. 
Sp; ech Piano . 689 . 001 . 000 

Trumpet -. 062 . 189 1.000 
Piano Speech -. 689 . 001 . 000 

Trumpet -. 751 . 189 . 016 
Speech 

- 062 . 189 1.000 
Piano 751 1 89 . 016 

EA- ý. - W-AIZI IDr 1 

Mean 
Difference 

ýýPANNING (J) PANNING O-J) Stda Error SIQ. 
e Combi -. 063 

. 
083 1.000 

Intensity 
. 187 . 

262 1.000 
Combi Speech 

. 
063 

. 
083 1.000 

Intensity 
. 
250 

. 
231 

. 
948 

Intensity Speech 187 . 
262 1.000 

C -. 250 
. 
231 

. 
948 

Table 3.17 Result tables of pairwise comparisons between each sound source and 
between each panning method for 'brightness' attribute 

3.4.3.5 Hardness 

The results of the RM ANOVA test for the grading data obtained for 'hardness' 

ashown in Table 3.19. Similarly to the results for the 'brightness' attribute, the 

difference between sound sources is found to be significant (p = 0.000) while that 

between panning methods is not (p = 0.210). However, the estimated effect size of 

sound source appears to be fairly small (Partial Eta Squared value = 0.240). The 

source*panning interaction effect is shown to be insignificant (p = 0.257). 
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Tests of Within-Subjects Effects 
KA, -. Pqijrp.: MFAOIIRF 1 

Partial Eta 
Source 

_ 
F Si Squared 

SOURCE Sp7e Cicity Tssumed 9.949 
. 
000 

. 
240 

Greenhouse-Geisser 9.949 
. 
000 

. 
240 

Huynh-Feldt 9.949 
. 
000 

. 
240 

Lower-bound 9.949 
. 
000 

. 
240 

PANNING Sphericity Assumed 1.750 
. 210 . 200 

Greenhouse-Geisser 1.750 
. 
220 

. 
200 

Huynh-Feldt 1.750 
. 
214 

. 
200 

Lower-bound 1.750 
. 
227 

. 
200 

SOURCE PANNING Sphericity Assumed 1.512 
. 
226 

. 178 
Greenhouse-Geisser 1.512 

. 
257 . 178 

Huynh-Feldt 1.512 
. 
251 . 178 

Lower-bound 1.512 
. 
259 . 178 j 

Table 3.18 Result table of repeated measure ANOVA test for the data obtained for 

'hardness' difference between stereophonic and monophonic stimuli 

Uomciiro' KAPAql IPP 1 

Approx. 
Within Subjects Effect Mauchly's W Chi-Square df Sig. 
SOURCE _ 

. 
986 

. 
082 2 

. 
960 

PANNING 
. 
670 2.402 2 

. 
301 

SOURCE * PANNING 
. 
003 32.334 9 

. 
000 

Table 3.19 Result table of Mauchly's test of sphericity for the data obtained for 

'hardness' difference between stereophonic and monophonic stimuli 

Figure 3.11 shows the mean values and 95% confidence intervals for each sound 

source and each panning method. It appears that the stereophonic images were 

graded to be 'softer' than the monophonic image, but the magnitudes of the 

differences appear to be very small. Similarly to the brightness attribute, significant 

differences appear to have occurred between speech and piano and between trumpet 

and piano as shown in Table 3.20, suggesting the dominant effect of piano source. 
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Figure 3.11 Mean values and the associated 95% confidence intervals of the grading 
data of 'hardness' difference between stereophonic and monophonic stimuli by sound 

source and panning method 

NAF-AqIIPP 1 

Mean 
Difference 

(1) SOURCE (J) SOURCE (I-J) Std* Error Sin. 
Speech Piano 

. 
604 

. 
001 

. 
000 

Trumpet -3.469E-1 8 . 001 1.000 
Piano Speech -. 604 

. 
001 

. 
000 

Trumpet -. 604 . 002 . 000 
Trumpet Speech 3.469E-1 8 

. 
001 1.000 

Piano 1 . 604 1 . 002 1 . 000 

RA. -. - RACAQ1 JDC I 

Mean 
Difference 

ýýPANNING (J) PANNING O-J) Std. Error Sio. 
fe Comb! 

. 083 . 126 1.000 
Intensity 

. 
333 . 223 . 

534 
Combi Time -. 083 . 126 1.000 

Intensity 
. 250 . 194 1 

Intensity Time -. 333 223 - 
5 
1 

Combi -. 250 1E 

Table 3.20 Result tables of pairwise comparisons between each sound source and 
between each panning method for 'hardness' attribute 

3.4.3.6 Fullness 

Table 3.21 shows the results of the RM ANOVA test for the grading data obtained for 

'fullness' attribute and Table 3.22 shows the results of Mauchly's test of sphericity. 

The results indicate that the effect of sound source was significant (p = 0.039) while 

that of panning method was not (p = 0.156). Nevertheless, similarly to the other 

timbral attributes described above, the estimated effect size of sound source appears to 

be negligible (Partial Eta Squared value = 0.089). It is also found that the interaction 

effect between sound source and panning method was insignificant (p = 0.203). 
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KAFA", tJRF: 1 
lPartial Eta : 

Source F Siq. S 
SOURCE Sphericity Assumed 3.427 

. 
039 

. 
098 

Greenhouse-Geisser 3.427 
. 
039 

. 
098 

Huynh-Feldt 3.427 
. 
039 

. 
098 

Lower-bound 3.427 
. 
039 

. 
098 

PANNING Sphericity Assumed 1.915 
. 
156 

. 
057 

Greenhouse-Geisser 1.915 
. 
156 

. 
057 

Huynh-Feldt 1.915 
. 
156 

. 
057 

Lower-bound 1.915 
. 
156 

. 
057 

SOURCE PANNING Sphericity Assumed 1.535 
. 
203 

. 
089 

Greenhouse-Geisser 1.535 
. 
203 

. 
089 

Huynh-Feldt 1.535 
. 
203 

. 
089 

Lower-bound 1.535 . 
203 

. 
089 

Table 3.21 Result table of repeated measure ANOVA test for the data obtained for 

'fullness' difference between stereophonic and monophonic stimuli 

KA-i irn - NAPA q11 PP 1 

Approx. 
Within Subjects Effect Mauchly's W Chi-Square df Sia. 
SOURCE 

. 
974 

. 
157 2 

. 
924 

PANNING 
. 
196 9.789 2 

. 
007 

SOURCE * PANNING 
. 
094 12.821 9 

. 
189 

Table 3.22 Result table of Mauchly's test of sphericity for the data obtained for 

'fullness' difference between stereophonic and monophonic stimuli 

Figure 3.12 shows the mean values and 95% confidence intervals for each sound 

source and each panning method. It can be seen that the stereophonic images were 

perceived to be 'fuller' than the monophonic image in all conditions. However, like 

the other timbral attributes, the magnitude of the effect does not appear to be 

considerable. Table 3.23 shows the results of pairwise comparisons between each 

sound source and it is indicated that the piano and trumpet pair was the only pair that 

had a significant difference. 
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Figure 3.12 Mean values and the associated 95% confidence intervals of the grading 
data of 'fullness' difference between stereophonic and monophonic stimuli by sound 
source and panning method 

Measure: MEASURE-1 &A. -. - hArAql Mr 1 

Mean 
Difference 

(I)SOURCE ýJ) SOURCE ýJ-Jý Std. Error sic, 
Speech Piano -. 083 . 169 1.000 

Trumpet 
. 335 . 169 . 156 

Piano Speech 
. 083 . 169 1.000 

Trumpet 
_418 . 169 . 048 

Trumpet Speech -. 335 _ 
. 169 . 156 

Piano -. 418 . 169 . 048 

Mean 
Ditterence 

ýýPANNING (J) PANNING (I -J) Stdý Error Sic. 
e C; ombi . 063 . 204 1.000 

Intensity 
. 312 . 257 

. 
789 

Combi Time -. 063 . 204 1.000 
Intensity 

. 250 . 083 060 
Intensity Time -. 312 . 257 

. 
789 

Combi -. 250 . 083 . 060 

Table 3.23 Result tables of pairwise comparisons between each sound source and 
between each panning method for 'fullness' attribute 

3.4.4 Discussions 

3.4.4.1 Discussion of the results for the individual attributes 

From the results presented in the previous section, it was found that the effect of sound 

source was statistically significant for all the attributes except source distance, while 

that of panning method was significant only for the source focus and the source width 
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attributes. The significance found in the sound source effect for the timbral attributes 

seems to be a natural result to some extent because each sound source has different 

spectral characteristics. However, the estimated size of the sound source effect was 

shown to be very small for every attribute, whereas that of the panning method effect 

for the source focus and the source width attribute was great. This means that the 

most dominant differences between the stimuli, for the source focus and source width 

attributes, were caused by using different panning methods. Considering that 

noticeable comb-filtering effects due to reflections in an acoustical space are usually 

caused when the delay time is in the range between 10 and 50ms as mentioned in 

Section 2.1, it is suggested that the small effect sizes for the timbral attributes seem to 

be due to the small range of ICTD (<< lms) involved in the signals. However, this 

result cannot be generalised since only a limited range of spectral characteristics in 

sound source was considered in this experiment; only low note piano and trumpet 

sources were used, for example. 

The results showed that the source focus and the source width attributes had similar 

patterns in the effects of both sound source and panning method, although the polarity 

of the scale used was opposite. For instance, the magnitude of panning method effect 

increased in the order of intensity, combination, and time panning (Intensity 

Combination < Time). This result suggests that when there is a greater ratio of time 

difference to intensity difference information involved in a two-channel stereophonic 

microphone technique, the perceived phantom image will be less focused and wider. 

This confirms the widely known, but mostly anecdotally reported, spatial 

characteristics of coincident, near-coincident, and spaced-omni techniques. 
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The result for the source width attribute might be explained by the effect of interaural 

fluctuations over time on the perceived width of a source. As described in Section 

2.3.2.4, Mason and Rumsey [20011 undertook research into interaural time difference 

(ITD) fluctuations as an objective measure related to auditory spatial perception in 

sound reproduction and they reported that the perceived source width increases as the 

magnitude of ITD fluctuations becomes greater. In the reproduction of conventional 

stereophonic recordings, the amount of interchannel time difference (ICTD) between 

each signal can determine the magnitude of ITD fluctuations. A larger ICTD will 

cause a higher degree of decorrelation between the interaural signals, therefore a 

greater magnitude of ITD fluctuations, which would also mean a smaller degree of 

interaural cross correlation (IACC) according to Mason [2002]. This explains why a 

spaced microphone technique would produce a wider phantom image than a 

coincident technique. Although fluctuation in BID would also be taken into account 

in the perception of source width to some extent, as mentioned in Section 2.3.2.4, ITD 

fluctuation tends to have a more dominant effect on the increase of perceived width. 

The results show that the effect of sound source type on the source focus attribute was 

significant. From the interaction between sound source and panning method it was 

further found that the significant difference between sound sources was mainly caused 

by the difference between the speech source and the piano or trumpet sources for time 

panning. Piano and trumpet sources did not give rise to a significant difference. 

This might initially look rather contradictory to the findings of classical literature 

relating to the precedence effect discussed in Chapter 2. That literature suggested 

that a more continuous sound would be more difficult to localise than a more transient 
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sound. However, in the context of the current experiment the task was not to 

compare the three different sound sources directly with each other, but to compare the 

stereophonic phantom images for those sources with the reference monophonic images 

for each. Therefore, assuming that the trumpet source was originally difficult to 

localise due to its continuous nature, it might have been that the difference between 

the monophonic and stereophonic sounds was hardly detected in terms of the source 

focus attribute. On the other hand, assuming that the speech source was originally 

easily localised. due to its ongoing transients, the difference between the monophonic 

and stereophonic sounds in respect of the source focus attribute would have been 

likely to be more distinctive. This might also be related to the 'plausibility 

hypothesis' proposed by Rakerd and Hartmann [1985], which was introduced in 

Section 2.2.3. That is, the continuous nature of the trumpet sound might have been 

recognised to be implausible for detecting necessary interaural time differences 

required for localisation of both monophonic and stereophonic images since it might 

have caused a strong interaction with room reflections, 

For the source width attribute, it was found that the perceived differences for the 

speech and piano sources were significantly greater than that for the trumpet source. 

This could be initially explained by the fact that the speech and piano signals have 

more dominant low frequency energies than the trumpet signal (see Figure 3.2), since 

some literature suggests that the low frequency components of sound sources are 

significant for the perceived source width as reviewed in Section 2.3.2.2. However, 

it can be seen from the results that the perception of the source width difference has a 

similar tendency to that of the source focus difference and this might suggest that 
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these two attributes are correlated. If this is the case, it could be considered that the 

plausibility hypothesis might also have been applied for the perception of source width, 

although this is an issue that requires further investigation. 

It is interesting to observe that the brightness and hardness attributes had similar sound 

source effects. It can be found that for both attributes the significance of the sound 

source effect was caused by the piano source regardless of the type of panning method 

(see Figures 3.10 and 3.11). This means that the stereophonic image became 

significantly duller or softer than the monophonic image when the piano source was 

used. This might be due to a comb-filtering effect occurred in the region of the upper 

harmonics. However, this result cannot be generalised because the piano source used 

in this experiment was only a single C3 note having spectral characteristics generated 

from a relatively low fundamental frequency. The result Might have differed if a 

piano note with a higher fundamental frequency had been used. 

3.4.4.2 Discussion of the relationships between the attributes 

It was observed in the results that some attributes had similar patterns in the effects of 

sound source and panning method, e. g. source focus - source width, and brightness - 

hardness. In order to identify the perceptual dimensions of the six attributes, a 

principal component analysis was carried out. Figure 3.13 displays the 'eigenvalue' 

for each component that was initially extracted. An eigenvalue conceptually 

represents the proportion of the total variance accounted for by a particular component, 
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and determines which components are retained in the analysis: only the components 

having an eigenvalue of greater than I are extracted. From the current analysis, 

therefore, only three effective components (component number 1,2, and 3) are finally 

extracted. 

Table 3.24 presents the rotated component matrix containing the partial correlation 

values of the six attribute tests on the three components extracted. It is shown that 

source focus and source width attributes essentially constitute the same perceptual 

dimension of Component 1; brightness and hardness attributes of Component 2; 

fullness and source distance attributes of Component 3. The interactions between 

each component based on the matrix are also shown in Figure 3.14. 
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4.0- 

c: 3.0- 
(D 

. 
0) 

ui 

2.0- 

1.0- 

0.0-- 
23456 

Component Number 

Figure 3.13 Display of the eigenvalues for the components initially extracted from 

principal component analysis 
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Comr)onent 
1 2 3 

source focus -. 966 -. 110 -. 087' 
source width . 

949 
. 
048 

. 
212 

brightness 
. 
051 

. 
902 -. 122 

hardness 
. 102 

. 
803 

. 319 
fullness 

. 177 -. 023 
. 811 

source distance -. 083 -. 136 1 -. 780 

Table 3.24 Table of the rotated component matrix obtained by principal component 

analysis 
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Figure 3.14 Component plots based on the rotated component matrix obtained by 

principal component analysis 
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This result is compared with the result of a bivariate correlation test, presented in 

Table 3.25. This directly indicates the relative strength of correlation between each 

attribute and each component. It can be found in the result that the source width and 

source focus attributes (Component 1) had a very strong negative correlation (r =- 

0.893); whereas brightness and hardness (Component 2) had a moderate correlation (r 

= 0.494). Correlation between fullness and source distance (Component 3) is shown 

to be weak (r =-0.341). From this it might be suggested that even though three 

hidden perceptual dimensions were discovered from principal component analysis, 

Components 23 might not be particularly relevant or directly interpretable. 

However, it can be strongly suggested that the subjects perceived source focus and 

source width attributes in the same dimension in the listening test. For example, a 

less easily localised source might have been perceived as a wider source, whereas a 

more easily localised source might have been perceived as a narrower source. 

source source source 
focus width distance brightness hardness fullness 

source focus R 1 -. 893 . 180 -. 143 -. 204 -. 239 
Sig. (2-tailed) . 000 . 130 . 232 . 085 . 043 

source width R -. 893 1 -. 271 . 058 . 211 . 306 
Sig. (2-tailed) 

. 000 . 021 . 628 . 075 . 009 

source distance R . 180 -. 271 1 -. 078 -. 240 -. 341 

Sig. (2-tailed) 
. 130 . 021 . 516 . 042 . 003 

brightness R -. 143 . 058 -. 078 1 . 494 -. 051 

Sig. (2-tailed) 
. 232 . 628 . 516 . 000 . 670 

hardness R -. 204 . 211 -. 240 . 494 1 . 253 

Sig. (2-tailed) 
. 085 . 075 . 042 . 000 . 032 

fullness R -. 239 306 - 341 -. 051 . 253 1 

Sig. (2-tailed) 
. 043 . 009 . 003 . 670 . 032 

Table 3.25 Result table of bivariate correlation test 
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3.4.4.3 Limitations 

The investigation described in this chapter was designed and conducted systematically 

but there are also a number of limitations that must be considered. 

The fundamental frequencies of the musical sound sources used for this investigation 

were limited to low frequencies and this limited the scope of the elicitation and 

grading experiments, especially for the timbral attributes. 

Single notes of musical sound sources were used and this certainly enabled the author 

to strictly control the variables of the temporal and spectral characteristics of sound. 

However, the musical stimuli were generally said by the subjects to be somewhat 

uncomfortable to listen to. Especially the continuous trumpet stimuli were found to 

be tiring when listened to repeatedly for a long period and this might have affected the 

subject's ability for consistent judgment. The piano stimuli were also found to be 

difficult to compare simultaneously because they were single transient hits. For these 

reasons, it was recognised that it could be more appropriate to use performance 

extracts of single instruments for the next investigation. 

In the course of instructing the subjects for the grading experiment, it was found that 

some subjects were not fully familiar with the definitions of some attributes because 

those attributes were not directly developed from the terms that those subjects had 

described individually. This is likely to be due to the lack of group discussion in the 

process of developing pooled subjective terms, which would have given each subject 
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the opportunity to familiarise themselves with the meanings of the terms that were 

elicited by other subjects. Therefore, extra verbal explanations on the definitions of 

the provided attributes were required in the instruction to avoid a logical error, which 

was described in Table 3.5. 

It was reported in Section 3.4.4.2 that the source focus and source width attributes 

were negatively correlated at a high level and this might be a natural result. However, 

it might also be that this strong correlation was caused by a proximity error (see Table 

3.5). That is, since the two attributes are conceptually adjacent, biases on the 

relationship between the attributes might have been involved in the subjects' gradings 

when they were graded in the same test. The results might have been different if the 

two attributes had been tested separately. 

3.5 Summary 

A series of subjective experiments were conducted in order to investigate the 

perceptual attributes of 2-0 stereophonic phantom images. There were three different 

sound sources: speech, transient piano hit and continuous trumpet note. The 

stereophonic stimuli were created by using three different panning methods: pure time 

panning, pure intensity panning and a combination of the two. Firstly, the subjects 

described the perceived differences between the stereophonic and the reference 

monophonic sounds using their own terms. The subjective terms were then separated 

into six attribute groups. Finally, the subjects graded the magnitudes of the perceived 
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differences between the stimuli on the attribute scales developed. The data obtained 

from the grading experiment were analysed using the RM ANOVA statistical model. 

The findings of this investigation are surnmarised below: 

41 Six common attributes were developed from the elicited terms for all sound 

source types. There were three spatial attributes, comprising source focus, 

source width and source distance, and three timbral attributes comprising 

brightness, hardness and fullness. 

41 Source focus and source width were perceptually the most dominant attributes of 

2-0 stereophonic images. 

The type of sound source had a significant effect on the difference between 

stereophonic and monophonic images for all attributes except source distance. 

The type of panning method had a significant effect only for the spatial attributes 

of source focus and source width. 

40 Source focus and source width were correlated at a high level. 
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PERCEPTUAL EFFECTS OF INTERCHANNEL 

CROSSTALK IN 3-2 STEREOPHONIC MICROPHONE 

TECHNIQUES 

This chapter describes a series of subjective experiments conducted to investigate the 

perceptual effects of interchannel crosstalk in 3-2 stereophonic microphone 

techniques. As introduced in chapter 0, interchannel crosstalk in the context of the 

current studies is defined as an extra signal to the primary signals that are responsible 

for the localisation of phantom image in the desired two-channel based stereophonic 

segment. For instance, if a three-channel microphone technique is to be used for 

recording a sound source located in the right stereophonic segment, the signals of the 

centre (C) and right (R) microphones are regarded as the signals primarily responsible 

for image localisation while the signal of the left microphone (L) is regarded as 

crosstalk. If it is assumed that the image localisation resulting from the interchannel 

relationship between the signals of C and R is not affected significantly by the 

crosstalk signal L, the perceptual effect of the crosstalk signal can be investigated by 

comparing the image created by C and R (crosstalk-off) with that created by L, C and 

R (crosstalk-on). The investigation described in this chapter is based on the above 

assumption. 

The primary research questions formulated for this investigation were as follows: 

0 What kind of auditory attributes are perceived when interchannel crosstalk is 

present in multichannel microphone techniques? 
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How audible are these attributes? 

0 Does the subjective grading for these attributes depend on the configuration of 

microphone array (combination ratio of interchannel time and intensity 

differences), the type of sound source, or acoustic condition? 

41 Does interchannel crosstalk have a significant effect on the subjective preference 

for perceived sound quality? 

In order to answer these questions, a series of listening experiments were designed 

and undertaken. The first two experiments were inspired by the QDA method, 

which was described in Section 3.2. The first experiment was conducted to elicit the 

perceptual attributes of interchannel crosstalk and examined the relative perceptual 

weights of those attributes and the second experiment investigated the significance of 

the effects of microphone array configuration, sound source type and acoustic 

condition. The results of these two experiments were of the main interests in the 

current research. However, as mentioned above, it was of additional interest to see 

the effects of interchannel crosstalk on subjective preference on perceived sound 

quality. Therefore, the third experiment examined the preference between the 

crosstalk-off and crosstalk-on stimuli, which were selected from the stimuli that were 

used for the elicitation and grading experiments. Finally, an additional experiment 

was carried out to further investigate the preference for interchannel crosstalk using 

practical recordings made with microphone techniques having different crosstalk 

characteristics. 
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4.1 Experimental Hypotheses 

The literature reviewed in Chapter 2 generally suggested that in the context of concert 

hall or room acoustics, the addition of delayed secondary signals to the original signal 

would influence the perception of localisation accuracy, spatial impression and tone 

colour of the auditory image. From the experiments described in the previous 

chapter, this was confirmed to be the case in the context of 2-0 stereophonic sound 

reproduction. Those experiments investigated the perceptual difference between 

monophonic source images and 2-0 stereophonic phantom images created with 

various ratios of interchannel time and intensity differences, using different types of 

sound source. It was shown that the differences were perceived in both spatial and 

timbral attributes comprising source focus, source width, source distance, brightness, 

hardness and fullness. It was predicted that similar differences would be perceived 

between two-channel phantom images with crosstalk off (CR) and three-channel 

images with crosstalk on (LCR) in three-channel microphone techniques, based on the 

similarity between the contexts of the two stereophonic experiments (i. e. comparison 

between one-channel and two- channel images vs. comparison between two-channel 

and three-channel images). The results from the previous experiment also showed 

that the panning method or sound source had a significant effect on the perceptual 

difference between stereophonic phantom image and monophonic source image 

depending on the type of perceptual attribute. From this, it was logical to 

hypothesise that the combination ratio of interchannel time and intensity differences 

involved in the crosstalk signal, and the type of sound source, would also affect the 

perceptual difference between crosstalk-off (CR) and crosstalk-on (LCR) images. 
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The acoustical characteristic of the recording environment was also predicted to be an 

important factor since such acoustic parameters as reflections and reverberation 

would be likely to affect the pattern of perception of the sound images as discussed in 

Chapter 2. Additionally, it was predicted that the subjective preference for sound 

images created with interchannel crosstalk would be dependent on the type of sound 

source since the specific attributes of sound images desired by recording engineers 

would be likely to vary depending on the temporal or spectral characteristics of sound 

sources. 

4.2 Designs of Elicitation and Grading Experiments 

This section describes the experimental design involved in the elicitation and grading 

experiments. This will include discussions on the choices of independent variables 

and the process of experimental stimuli creation. 

4.2.1 Choice of microphone technique 

Basic philosophy 

As discussed in Section 1.4.1, current 3-2 stereophonic microphone techniques can be 

divided into two main groups according to Rumsey [2001]'s classification: those that 

use five-channel main microphone arrays and those that use separate front and rear 

arrays. To recap briefly, the former consists of five microphones that are placed 

relatively close to each other and form a single array, pursuing the recreation of a 
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natural sound field of the recording space. With these techniques, interchannel 

crosstalk is likely be an issue not only between the front channels but also between the 

front and surround channels due to the relatively short distance between the front and 

rear microphones. The techniques in the other group, use frontal main microphone 

arrays that are used specifically for accurate pickup of direct sound so that sources can 

be easily localised on reproduction, together with separate rear microphone arrays that 

are designed to pick up decorrelated ambient sound to feed the surround loudspeakers. 

Different rear microphone arrays can be combined with different frontal arrays 

depending on the desired directional and ambience characteristics. For the 

techniques in this group interchannel crosstalk between the front and rear microphones 

would not be significant because of the sufficiently long distance between them. In 

this regard, it seems that techniques in this group give recording engineers more 

freedom to control the spatial impression and enables them to use their artistic and 

technical creativity more than the five-channel main microphone technique. For this 

reason, a technique with separate treatment of front and rear was chosen as the basis 

for the elicitation, grading and controlled preference experiments. 

4.2.1.2 Simulation of microphone technique 

If a microphone technique were operated in a practical recording venue, such 

uncontrolled acoustic artefacts as reflections and reverberation might lead to difficulty 

when analysing the factors that caused the resulting perceptual effects. In order to 

obtain data about the effects of interchannel crosstalk on phantom images in the 
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absence of room reflections the experiment included a simulation of recordings made 

in an anechoic condition, rather than using recordings made in a practical venue. 

For the anechoic experiment, only a three-channel frontal microphone technique was 

needed. Even though the primary aim of this research was to understand the effect 

of interchannel crosstalk in anechoic recording conditions, which enable one to obtain 

the controlled results, it was also of interest to see how the perception of this effect 

would differ in the context of different reverberant recording conditions. As 

discussed in the previous section, the purpose of the rear microphone array in the 

context of this experiment is to provide a diffuse ambience rather than a localisable 

image of the direct sound. The ambient sound picked up by a rear microphone array 

was simulated by using an artificial reverberator. 

4.2.1.3 Frontal microphone technique 

The frontal microphone technique chosen for these experiments was the so-called 

'critical linking' three-channel microphone technique, proposed by Williams and Le 

Du [1999] (detailed descriptions of this technique were presented in Section 1.4.2). 

The basic design concept of this technique airas to achieve a continuous distribution 

of phantom images across channels L, C and R by linldng the stereophonic recording 

angles (SRAs) of each stereophonic segment C-L and C-R without overlap. Within 

one segment, the psychoacoustic laws for localisation in conventional two-channel 

stereophonic reproduction such as summing localisation or the precedence effect are 

applied independently without considering the influence of the other segment. For 
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example, when a sound source is located at 45' to the right of the centre line, 

localisation of the phantom image should be governed by the summing localisation 

effect between C and R only, and in this case L can be regarded as crosstalk to the 

channels C and R. Ideally, L should not be taken into account in the localisation 

process since it is to be suppressed by the same effect or the precedence effect 

operating between C and L. It was shown in Figure 1.18 in Section 1.4.2 that the 

linear attachment of two separate recording segments could be successful for 

microphone techniques of critical linking type. 

However, from the reports on the perceptual effects of reflections that were reviewed 

in Chapter 2, it could be hypothesised that even though the position of the phantom 

image can be solely determined by C and R without the aid of L, the presence of L 

will influence the spatial or timbral quality of the image to some extent. This could 

also be supported by the results of the previous experiment indicating that the 

stereophonic phantom image created with certain time and intensity differences 

between two channels was perceived to have differences to the corresponding 

monophonic image in both spatial and timbral attributes. In this regard, it is logical 

to examine the effect of interchannel crosstalk by comparing the image that is created 

with the crosstalk channel tumed on (image fonned by contributions from LCR) and 

that with the crosstalk channel turned off (CR only). The critical linking technique 

supposedly enables one to create various array styles having different distances and 

angles between microphones while keeping the SRA across L, C and R constant. 

Therefore, the effect of the ratio of time to intensity differences between the crosstalk 
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signal and the other channels can be investigated by comparing different microphone 

arrays sharing the same SRA. 

Williams and Le Du provided various examples of critically linked microphone arrays. 

For the current experiment, four sample arrays were selected from the examples as 

shown in Figure 4.1. These particular arrays were chosen because the difference 

between each array in the distance and angle between microphones was considered to 

be large enough to provide four distinctive interchannel relationships for the crosstalk 

signals. The common SRA for these arrays was 180', the simulated direction of the 

sound source was 45' from the centre line of the array and the distance from the 

centre point of the array was five metres. The particular source direction was chosen 

because the interchannel relationship caused by a source located at that direction was 

considered to be a good compromise between the extreme interchannel relationships 

required for the hard-centre and fully-right images that can be created within the SRA 

of 90' for the C-R segment. 

The interchannel time and intensity differences between L and C and between R and 

C calculated for each array are shown in Table 4.1. As found by the authors 

mentioned in Table 1.1, e. g. Simonsen [1984], Wittek [2000], Lee [2004] (see 

Appendix A) , 
in a conventional 2-0 stereophonic reproduction the minimum 

interchannel time difference (ICTD) required for localising a phantom image at a 

fully one loudspeaker is 1.0-1. lms, provided that there is no interchannel intensity 

difference (ICID). On the other hand, the minimum ICID required for the same 

effect is in the range of 15-18dB, provided that there is no ICTD. Certain 
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combinations of relevant ICID and ICTD can also cause the same effect and they can 

be calculated based on the time-intensity trade-off curves of Williams [1987] (see 

Figure 1.1) or those of this author [2004] (see Figure A. 6 in Appendix A) depending 

on whose psychoacoustic values are believed. It was suggested by Thelle [2001] 

that this trading relationship could be applied constantly in three-channel application. 

That means that the ICTD and ICID relationship required for localising the phantom 

image at fully one side between L and R in a two-channel stereo would cause the 

phantom image to be localised at fully one side between C and L or C and R in a 

three-channel stereo. It appears that whatever trade-off curve is used, the combined 

ICTD and ICID values for C-L segment shown in Table 4.1 are more than enough to 

cause the full phantom image to be localised fully at C. This suggests that the 

crosstalk signal L would theoretically have no effect on determining the position of 

the phantom image. 

C to L 

delay 

C to L 

intensity 

C to R 

delay 

CtoR 

intensity 

Array 1 0.64ms - 20.5dB - 0.08ms 0.7dB 

Array 2 0.79ms - 12.8dB 0.06ms 0.6dB 

Array 3 

Array 4 

0.94ms 

1.09ms 
- 8. OdB 

- 4.6dB 

0.16ms 

0.21ms 

1.2dB 

1.4dB 

Table 4.1 Time and intensity differences between the centre channel and the left or 

right channel for each array: the simulated direction of sound source is 45' and the 

simulated distance of the sound source from the arrays is 5m. 
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Figure 4.1 Configuration of 'Critical linking' microphone arrays simulated for the 

elicitation and grading experiments 

4.2.2 Choice of sound source 

It was of interest to examine whether the effect of interchannel crosstalk depends on 

the type of sound source. Three types of natural sound source comprising cello, 

bongo and speech were chosen for this experiment due to their distinctive temporal 

and spectral characteristics, with the cello being relatively continuous and having a 

complex harmonic structure, the bongo having a strong transient nature, and the 
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speech having a fine mixture of transient and continuous sounds as well as a wide 

range of frequencies. The signal for each sound source was an anechoic mono 

recording of a performance excerpt taken from the Bang & Olufsen Archimedes 

project CD [Hansen and Munch 1991). From a psychophysical viewpoint, it might 

be claimed that the characteristics of natural sound sources are too complex to strictly 

analyse the effect of spectral or temporal characteristics of the sound. In fact, the 

use of pure sine tones or bandpass noise signals might allow a more controlled 

investigation of various aspects. However, results obtained with strictly controlled 

stimuli often lack ecological validity and might not be applicable to natural sound 

sources because the characteristics of the latter are more complex and invoke 

cognitive associations as well as basic perceptual responses. Therefore it was 

deemed to be more appropriate to use sound sources likely to be encountered in 

practical recording situations. The waveform and frequency analysis plots for each 

sound source are shown in Figures 4.2 and 4.3. The waveform shows temporal 

variations during specific 0.3 second extracts taken from the performance, which 

show representative temporal characteristics, and the frequency analysis is a plot of 

the average intensity by frequency over the whole performance. 
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(a) Cello source 

(b) Bongo source 

(c) Speech source 

Figure 4.2 Short term extracts of waveforms for each sound source 
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(a) Cello source 

(b) Bongo source 

(c) Speech source 

Figure 4.3 Long-term averaged frequency spectrum of each sound source 
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4.2.3 Acoustic conditions 

The acoustic conditions considered in this experiment comprised anechoic, 'room' 

and 'hall'. As mentioned above, the anechoic condition was of primary interest 

since it enabled the strict control of variables, and it was created naturally by using 

anechoically recorded sound sources. Simulations of recordings made in different 

acoustic conditions were also used in order to predict the behaviour of interchannel 

crosstalk in practical recording venues such as room and hall. In this simulation, the 

interchannel crosstalk signals and artificial reflections or reverberation could be 

controlled separately, which means that the effect of interchannel crosstalk was only 

imposed on the direct sound component. However, this is not possible in practical 

situations because the front microphone array would normally pick up reflections or 

reverberation at the same time. Therefore, what was intended in this simulation was 

to observe in a controlled manner how the reflections or reverberation with a 

reasonable mixing level would influence the effect of interchannel crosstalk 

perceptually. The detailed characteristics of the simulated room and hall conditions 

are described in the next section. 

4.2.4 Stimuli creation process 

A set of multichannel stimuli, involving 36 combinations of four microphone arrays, 

three sound sources and three acoustic conditions, was processed for the experiment. 

The process was carried out in Studio 3, a multichannel sound control room of the 
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University of Surrey's Department of Music and Sound Recording. The diagram for 

the stimuli creation process is shown in Figure 4.4. For the creation of the anechoic 

stimuli, monophonic signals of each anechoic sound source were first fed into three 

separate channels on a Sony Oxford-R3 digital console and they were processed in 

accordance with the time and intensity relationship of each microphone array shown 

in Table 4.1. The processed signal of each channel was then routed to each group 

output of L, C and R for the reproduction of three front channels. On the other hand, 

the room and hall stimuli were mixed for the reproduction of all five channels. The 

monophonic signal of the anechoic sound was sent to a Lexicon 480L reverberator 

through an auxiliary output of the mixer. The four purely ambient output signals 

generated from the reverberator were then routed to two group outputs for 

reproduction of the front channels L and R as well as those for the surround channels 

LS and RS, with the intensities of each signal kept the same, thus being mixed with 

the original anechoic sound signals in L and R. The basis for using the four outer 

channels for reproduction of the reverberation signals is as follows. As mentioned in 

Section 1.4.3, Hiyama et al [2002] investigated the number of loudspeakers required 

for the reproduction of the optimum spatial impression of a diffuse sound field. To 

recap, a reference loudspeaker arrangement consisting of 24 loudspeakers placed at 

every 15' making a circle was compared with various arrangements having a different 

number of loudspeakers (12,8,6,5,4,3 and 2) with regard to spatial impression. 

They found that at least four loudspeakers, which were arranged in similar positions 

to the BS. 775-1 recommendation, were required for listeners to perceive a similar 

spatial impression to the reference sound. For creating ambient sounds of room and 

hall, the presets of 'large room' and 'large hall' setup existing in the reverberator 
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were used. The details of the reverberator setup used for creating the room and hall 

ambient sounds are shown in Table 4.2. In general, the 'large room' set can be 

described as producing coloured and comb-filtered ambient sounds with slapping 

echoes. The 'large hall' creates an ambient sound that has a longer reverberation 

time and is more diffused without colouring the direct sound. 

Size RT Mid RT Low HF Cut-off Pre-delay 

Large Room 19M2 0.70s 0.70s 6.593kHz Oms 

Large Hall 37mý 2.19s 2.63s 2.862kHz 24ms 

Table 4.2 Parameters of the 'Lexicon 480L' reverberation setup used for simulations 

of room and hall (RT Mid = middle frequency reverb. time, RT Low = low frequency 

reverb. time) 

The mixing ratio of the direct sound and reverberation was up to the author's aesthetic 

judgment as an experienced balance engineer, aiming to compromise between 

maintaining the clarity of the direct sound and achieving sufficient listener 

envelopment. The signals from each group output were individually recorded to 

computer hard disk using a Protools hard disk recording interface and were eventually 

transformed as monophonic audio files. 
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Figure 4.4 Diagram of signal processing for stimuli creation 

4.2.5 Physical setup 

The experiments were conducted in an ITU-R BS. 1116-compliant [1994] listening 

room at the University of Surrey. In accordance with the ITU-R BS. 775-1 

recommendation [19931, five Genelec 1032A loudspeakers were set up at 0', 30' and 

1100, with a distance of 2m from the subject's seat. In order to avoid the effects of 

loudness difference on the sub ects' judgments, the peak sound pressure levels of all i 

stimuli were calibrated at 75dBA. The stimuli were played back through a Yamaha 

02R mixing console and controlled by a computer-based control interface placed in 

front of the listener's seat. 
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4.2.6 Test subjects 

Similarly to the case of the experiments described in the previous chapter, it was 

deemed to be more reasonable to employ experienced listeners for tests requiring fine 

perceptual distinctions, as suggested in ITU-R BS. 1116 rec. [19941. Therefore, a 

total of eight experienced subjects took part in the experiment. They were selected 

from staff members, research students and final year undergraduate students on the 

University of Surrey's Tomneister course. 

4.3 Experiment Part 1: Elicitation of Perceptual Attributes 

4.3.1 Listening test method 

This process used only six representative stimuli from the whole set of stimuli created. 

They were each anechoic sound source combined with microphone arrays 1 and 4, 

which were considered to have the most distinctive difference in perception of the 

resulting images. The reason for using only the anechoic stimuli was that they 

enabled the most focused listening to the effect of interchannel crosstalk without any 

artefacts of recording room acoustics. This test was designed to give the subject the 

freedom to control the playback of the stimuli. Figure 4.5 shows the control 

interface used for this test, which was written using MAX-MSP software. There 

were a total of six trial pages and the buttons A and B in each page presented the 

images of CR (crosstalk-off) and LCR (crosstalk-on) in random orders. The stimuli 
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pair A and B was synchronised and looped so that the subjects could switch between 

them freely and listen repeatedly. 

Figure 4.5 Layout of the control interface used for the pair-w1se comparison and 

elicitation of auditory attributes 

There were two tasks for the subjects to complete in this test, comprising: 

40 To define the global set of auditory attributes for the perceived differences 

between the images of CR and LCR. 

0 To grade the overall intensities of audibility for those attributes. 

The first task was given in order to understand the basic auditory percepts arising 

from interchannel crosstalk. As mentioned earlier, the subjects were provided with a 

list of potential attributes and asked to select the ones relevant to the perceived 

differences. Any additional differences perceived were also to be described using 

the subjects' own terms and they were unified into common terms by informal 

discussions between the subjects. The choice of the provided attributes was based 

on the results of the previous experiment. A number of other spatial or timbral 
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attributes were also available to choose from various elicitation experiments [Berg 

and Rumsey 1999, Zacharov and Koivuniemi 2001, Gabrielsson and Sjogen 19791. 

However, due to the similarity of the experimental contexts, the attributes perceived 

between monophonic and two-channel stereophonic attributes were found to form the 

most appropriate basis for evaluating the differences between two-channel (CR) and 

three-channel (LCR) stereophonic images. The definitions of the provided attributes 

are shown in Table 4.3. For the attribute meaning the ease of localisation, the term 

4 source focus' from the result of the previous two-channel experiment was replaced 

with 'locatedness' [Blauert 1997] since the semantic meaning of the former could 

well be confused with that of 'source width'. The 'source location' attribute was 

additionally included because a small degree of source location shift was noticed 

between the images of CR and LCR in the author's own informal listening test. 

The purpose of the second task was to limit the number of attributes to be graded in 

the next test. Grading all the elicited attributes was considered to be ineffective 

since minor attributes are likely to have small experimental effects. The 10-point 

scale shown in Figure 4.6 was used for the subjects to grade the audibility of the 

elicited attributes. The degree of audibility might vary for different stimuli, but the 

grading was to be related to the most audible one. 
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10 - Very audible 

9- 

8+ 

7 Audible 

6 

5 

4 Slightly audible 

3 

2 

1 Just audible 

Figure 4.6 Scale used for grading the audibility of each attribute elicited 

4.3.2 Results and discussions 

As a result of the elicitation test, a total of eleven attributes were elicited from the 

subjects comprising all seven of the provided attributes and four additional attributes. 

Table 4.4 shows the attributes that were elicited, the number of their occurrences, and 

their audibility indexes. The audibility index represents the average degree of 

audibility for each attribute, and it was obtained by dividing the sum of the audibility 

grading values obtained for each attribute by the number of subjects. 

According to the results shown in the table, 'source width' is the most audible 

attribute, having an audibility index of 6.5. The second most audible attribute is 

shown to be 'locatedness'. The audibility index is 4.7 and this value indicates that 

the attribute was more than 'slightly audible' according to the semantic labels on the 
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scale. The audibilitY indexes of all other attributes are shown to be lower than 4.0. 

This means that the differences for those attributes were in the range between just 

audible and slightly audible, which are considered to be minor effects. Therefore, 

the 'source width' and 'locatedness' attributes, which were graded above the 'slightly 

audible' level, were finally selected to be used for the next grading test. 

Source width The perceived width of a sound source itself 
i. e. is one source perceived to be wider than the other? 

Source distance The perceived distance from the listener to a sound source 
i. e. can the sources be discriminated in terms of their distances? 

Source location The perceived location of a sound source 
i. e. does the apparent location of the source appear to change? 

Locatedness The easiness of localisation of a sound source 
i. e. how easy is it to pinpoint the apparent location of a source? 

Brightness The timbral characteristics of a sound depending on the level of 
high frequencies i. e. bright / dull 

Hardness The timbral characteristics of a sound depending on the level of 

mid-high frequencies (especially in the range of 2- 4kHz) 

i. e. hard / soft 
Fullness The timbral characteristics of a sound depending on the level of 

low frequencies i. e. full / thin 
Table 4.3 Definitions of the auditory attributes provided for selection 
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Attribute Occurrences Audibility index 

Source width 7 6.5 
Locatedness 6 4.7 

Source location 6 3.6 
Fullness 5 3.5 

Source distance 7 3.1 
Hardness 3 2.3 

Brightness 5 1.4 
Diffuseness 1 1.3 
Naturalness 1 1.3 

Envelopment 1 0.7 
Phasiness 1 0.5 

Table 4.4 Attribute group, number of occurrences and audibility index obtained for 

the differences perceived between the images of CR and LCR with cello, bongo and 

speech sources 

4.4 Experiment Part 2: Grading of Perceptual Effect 

4.4.1 Listening test method 

The grading experiment was designed based on the result of the elicitation experiment 

and required subjects to grade the perceived difference between the images of CR and 

LCR. It was considered that the locatedness and source width attributes might have 

adjacent characteristics, and therefore a proximity error might be caused if they were 

graded simultaneously in the same session. In other words, they might be graded as 

unnecessarily correlated due to a possible biasing effect between each other. In fact, 

this might have been the case for the strong correlation between source width and 

source focus attributes that was found in the previous two-channel experiment. 
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Therefore, it was decided to test each attribute individually in order to avoid a 

psychological bias. To this end, the whole experiment was divided into two sub- 

tests: locatedness change test and source width change test. 

A total of 36 stimulus-pairs were created for comparison. In each attribute test, each 

subject was asked to compare the 36 stimulus pairs twice, and therefore a total of 72 

trial sets were produced. Grading all the 72 trials in one session might have caused 

experimental errors due to subject fatigue, so the 72 trials were distributed evenly into 

three separate sessions by the type of acoustic condition, each session thus containing 

24 trials. In order to avoid such psychological errors as contrast, convergence and 

anticipation errors, which were introduced in Section 3.3.1, the order of presentation 

for the trials was randomised for each session and for each subject. The orders of 

sessions and attribute tests were also arranged differently for each subject. 

This experiment used a 7-point continuous grading scale labelled from -30 to 30. 

The reason for using a continuous grading scale rather than a semantic differential 

scale was explained in detail in Section 3.3.1. The ends of the scale for the 

locatedness attribute were labelled as 'more located - less located', and those for the 

source width attribute were labelled as 'wider - narrower'. 

An example of the control interface used for the experiment is shown in Figure 4.7. 

As can be seen, a vertical slider was used for grading, without showing the value to 

the subjects. The graded value was saved automatically by clicking the 'next trial' 

button. The question presented to the subjects was as shown in the figure, but the 
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order of the crosstalk-off (CR) and crosstalk-on (LCR) images presented by the 

buttons 'A' and 'B' was randomised for each trial. Prior to the main grading tests a 

few familiarisation trials were provided to the subjects in order to encourage them to 

use consistent scale ranges and also avoid central tendency errors [Stone and Sidel 

1993]. Six representative stimuli comprising the extreme arrays of I and 4 

combined with three sound sources were selected for the familiarisation trials. 

Figure 4.7 Layout of the control interface used for the pairwise comparison and 

grading for source width attribute 

4.4.2 Statistical analysis 

A repeated measure ANOVA (RM ANOVA) was carried out for statistical analysis of 

the data obtained from the grading experiment, since all conditions were tested within 

the same group of subjects. The independent variables were the type of acoustic 

condition, the type of sound source and the type of microphone array. The 

dependent variable was the grading of the perceived magnitude of difference between 
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crosstalk-off and crosstalk-on sounds on a scale of -30 to 30. There were a total of 

576 observations, consisting of 16 observations for each of the 36 'acoustic condition 

- sound source type - microphone array type' combinations obtained from eight 

subjects. Prior to the RM ANOVA test, the original grading data were normalised 

based on the ITU-R BS. 1116 recommendation [1994] for the reason described in 

Section 3.3.2. Mauchly's test of sphericity was carried out for each attribute test in 

order to examine the assumption of sphericity. The results are shown in Tables 4.5 

and 4.6. Tables 4.7 and 4.8 show the results of the RM ANOVA for each attribute 

test. In the presentation of the results the independent variables are termed 

4 acoustic', 'source' and 'array'. As explained in detail in Section 3.3.2, the 'sphericity 

assumed' significance value in the RM ANOVA result can be used provided that the 

assumption of sphericity is met (p>0.05). However, if the assumption of sphericity 

is violated (p<0.05), one of the corrected significance values should be used instead. 

KA. ncii, o* KAPA!, 'I IPP: 1 

Er)silon 
Approx. Greenhous 

Within Sulo'ects Effe Mauchly's W Chi-Square df Sia. e-Geisser Huynh-Feldt Lower-bound 
ACOUSTIC 

. 
621 6.675 2 

. 
036 

. 
725 

. 
782 

. 
530 

SOURCE 
. 
802 3.084 2 

. 
214 

. 
835 

. 
927 

. 
500 

ARRAY 
. 
541 8.418 5 

. 
136 

. 
751 

. 
891 

. 
333 

ACOUSTIC * SOURC 
. 
365 13.505 9 

. 
144 . 

666 
. 
823 

. 
250 

ACOUSTIC * ARRAY 
. 
095 30.143 20 

. 
075 

. 
600 

. 
813 

. 
167 

SOURCE * ARRAY 
- 
019 50.972 20 

. 
000 

. 
444 

. 
549 

. 
167 

Table 4.5 Mauchly's test of sphericity for source width change 

Ecsilon 
Approx. Greenhous 

Within Subjects Effec Mauchly's W Chi-Square df Sia. e-Geisser Huvnh-Feldt Lower-bound 
ACOUSTIC . 893 1.582 2 . 453 . 903 1.000 . 500 
SOURCE . 827 2.651 2 . 266 . 853 . 951 . 500 
ARRAY . 071 36.232 5 . 000 . 442 . 468 . 333 
ACOUSTIC SOURCI . 449 10.736 9 . 298 . 723 . 915 . 250 
ACOUSTIC 022 48 742 20 . 000 . 372 . 440 . 167 
ARRAY . . 
SOURCE * ARRAY . 152 24.096 20 . 252 . 596 . 805 . 167 

Table 4.6 Mauchly's test of sphericity for locatedness change 
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Tests of Within-Subjects Effects 
Measureý MEASURE 1 

Type III Sum Partial Eta 
Source 

- 
of Squares df Mean Square IF Sia. Squared 

ACOUSTIC 7 TeCicity Assume 13.014 2 6.507 
. 
344 

. 
711 

. 
022 

Greenhouse-Geiss( 13.014 1.450 8.974 
. 
344 

. 
644 

. 
022 

Huynh-Feldt 13.014 1.565 8.317 
. 
344 

. 
660 

. 
022 

Lower-bound 13.014 1.000 13.014 
. 
344 

. 
566 

. 
022 

Error(ACOUSTIC) Sphericity Assumed 566.708 30 18.890 
Greenhouse-Geiss( 566.708 21.751 26.054 
Huynh-Feldt 566.708 23.471 24.146 
Lower-bound 566.708 15.000 37.781 

SOURCE Sphericity Assumec 495.003 2 247.502 6.733 
. 
004 

. 
310 

Greenhouse-Geissi 495.003 1.670 296.437 6.733 
. 
007 

. 
310 

Huynh-Feldt 495.003 1.854 266.956 6.733 
. 
005 

. 
310 

Lower-bound 495.003 1.000 495.003 6.733 
. 
020 

. 
310 

Error(SOURCE) Sphericity Assumec 1102.719 30 36.757 
Greenhouse-Geissi 1102.719 25.048 44.025 
Huynh-Feldt 1102.719 27.814 39.646 
Lower-bound 1102.719 15.000 73.515 

ARRAY Sphericity Assumec 17141.102 3 5713.701 156.563 
. 
000 

. 
913 

Greenhouse-Geissi 17141.102 2.254 7603.759 156.563 
'000 . 

913 
Huynh-Feldt 17141.102 2.673 6412.793 156.563 

. 
000 

. 
913 

Lower-bound 17141.102 1.000 17141.102 156.563 
. 
000 913 

Error(ARRAY) Sphericity Assumec 1642.259 45 36.495 
Greenhouse-Geiss( 1642.259 33.814 48.567 
Huynh-Feldt 1642.259 40.094 40,960 
Lower-bound 1642.259 15.000 109.484 

ACOUSTIC Sphericity Assumed 40.007 4 10.002 . 
531 

. 
714 

. 
034 

SOURCE Greenhouse-Geiss( 40.007 2.663 15.022 . 
531 

. 
643 

. 
034 

Huynh-Feldt 40.007 3.292 12.153 
. 
531 

. 
680 

. 
034 

Lower-bound 40.007 1.000 40.007 
. 
531 

. 
478 

. 
034 

Error(ACOUSTIC*SOU Sphericity Assumed 1130.771 60 18.846 
CE) Greenhouse-Geiss( 1130.771 39.948 28.306 

Huynh-Feldt 1130.771 49.3ý8 22.900 
Lower-bound 1130.771 15.000 75.385 

ACOUSTIC * ARRAY Sphericity Assumed 167.944 6 27.991 2.337 
. 
038 

. 
135 

Green house-Geiss( 167.944 3.602 46.626 2.337 
. 
073 

. 
135 

Huynh-Feldt 167.944 4.881 34.409 2.337 
. 
052 . 

135 
Lower-bound 167.944 1.000 167.944 2.337 

. 
147 

. 
135 

Error(ACOUSTIC*ARR, Sphericity Assumec 1078.111 90 11.979 
Y) Greenhouse-Geissi 1078.111 54.030 19.954 

Huynh-Feldt 1078.111 73.212 14.726 
Lower-bound 1078.111 15.000 71.874 

SOURCE * ARRAY Sphericity Assumec 630.788 6 105.131 8.097 
. 
000 

. 
351 

Greenhouse-Geiss 630.788 2.663 236.855 8.097 
. 
000 

. 
351 

Huynh-Feldt 630.788 3.292 191.621 8.097 
. 
000 

. 
351 

Lower-bound 630.788 1.000 630.788 8.097 
. 
012 1 

. 
351 

Error(SOURCE*ARRAý Sphericity Assumed 1168.601 90 12.984 
Greenhouse-Geiss( 1168.601 39.948 29.253 
Huynh-Feldt 1168.601 49.378 23.667 
Lower-bound 1168.601__, 

. 
15.000 77.907 

Table 4.7 Results of repeated measure ANOVA test for source width change 
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Measure: MFASURF 1 
Type III Sum Partial Eta 

Source of Squares df Mean Square F Sig. Squared 
ACOUSTIC Sphericity Assumea 634.292 -2 - 317.146 7.063 

. 
003 

. 
320 

Greenhouse-Geiss( 634.292 1.807 351.025 7.063 
. 
004 

. 
320 

Huynh-Feldt 634.292 2.000 317.146 7.063 
. 
003 

. 
320 

Lower-bound 634.292 1.000 634.292 7.063 
. 
018 

. 
320 

Error(ACOUSTIC) Sphericity Assumed 1347.042 30 44.901 
Greenhouse-Geiss( 1347.042 27.105 49.698 
Huynh-Feldt 1347.042 30.000 44.901 
Lower-bound 1347.042 15.000 89 

. 
803 

SOURCE Sphericity Assumed 24.385 2 12.193 
. 
457 

. 
637 

. 
030 

Greenhouse-Geiss( 24.385 1.706 14.296 
. 
457 

. 
608 

. 
030 

Huynh-Feldt 24.385 1.902 12.818 
. 
457 

. 
628 

. 
030 

Lower-bound 24.385 1.000 24.385 
. 
457 

. 
509 

. 
030 

Error(SOURCE) Sphericity Assumed 799.948 30 26.665 
Greenhouse-Geiss 799.948 25.586 31.265 
Huynh-Feldt 799.948 28.537 28.032 
Lower-bound 799.948 15.000 53.330 

ARRAY Sphericity Assumed 14067.505 3 4689.168 87.488 
. 
000 

. 
854 

Greenhouse-Geiss( 14067.505 1.325 10619.696 87.488 
. 
000 

. 
854 

Huynh-Feldt 14067.505 1.404 10022.507 87.488 
. 
000 

. 
854 

Lower-bound 14067.505 1,000 14067.505 87.488 
. 
000 

. 
854 

Error(ARRAY) Sphericity Assumed 2411.911 45 53.598 
Green ho use-Geiss( 2411.911 19.870 121.385 
Huynh-Feldt 2411.911 21.054 114.559 
Lower-bound 2411.911 15.000 160.794 

ACOUSTIC Sphericity Assumed 163.104 4 40.776 2.901 
. 
029 

. 
162 

SOURCE Green house-Geiss( 163.104 2.894 56.367 2.901 
. 
047 

. 
162 

Huynh-Feldt 163.104 3.659 44.576 2.901 
. 
034 

. 
162 

Lower-bound 163.104 1.000 163.104 2.901 
. 
109 

. 
162 

Error(ACOUSTIC*SOUF Sphericity Assumed 843.229 60 14.054 
CE) Greenhouse-Geiss( 843.229 43.404 19.428 

Huynh-Feldt 843.229 54.885 15.364 
Lower-bound 843.229 15,000 56.215 

ACOUSTIC * ARRAY Sphericity Assumed 297.583 6 49.597 3.113 
. 
008 

. 
172 

Green house-Geiss( 297.583 2.230 133.420 3.113 
. 
052 

. 
172 

Huynh-Feldt 297.583 2.638 112.805 3.113 
. 
043 

. 
172 

Lower-bound 297.583 1.000 297.583 3.113 
. 
098 

. 
172 

Error(ACOUSTIC*ARRA Sphericity Assumed 1433.750 90 15.931 
Y) Green ho use-Geiss( 1433.750 33.456 42.854 

Huynh-Feldt 1433.750 39.571 36.233 
Lower-bound 1433.750 15.000 95.583 

SOURCE * ARRAY Sphericity Assumed 146.698 6 24.450 2.123 
. 
058 

. 
124 

Greenhouse-Geiss 146.698 3.574 41,042 2.123 
. 
098 

. 
124 

Huynh-Feldt 146.698 4.830 30.371 2.123 
. 
074 

. 
124 

Lower-bound 146.698 1.000 146.698 2.123 
. 
166 

. 
124 

Error(SOURCE*ARRAY Sphericity Assumed 1036.302 90 11.514 
Greenhouse-Geiss( 1036.302 53.615 19.329 
Huynh-Feldt 1036.302 72.454 14.303 
Lower-bound 1036.302 15.000 69.087 

Table 4.8 Results of repeated measure ANOVA test for locatedness change 
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4.4.3 Results 

4.4.3.1 Source width change 

The results of the RM ANOVA test shown in Table 4.7 indicate that microphone 

array is the most significant factor in source width change (p = 0.000). The main 

effect of sound source is also highly significant (p = 0.004), but the effect size is 

small (0.310) compared to that of microphone array (0.913). On the other hand, 

acoustic condition does not have a significant effect (p = 0.644). With respect to the 

interactions between each factor, the largest effect is observed between source and 

microphone array (p = 0.000), followed by between acoustic condition and 

microphone array (p = 0.038). The acoustic*source interaction is shown to be 

insignificant (p = 0.714). 

Figure 4.8 shows the mean values and 95% confidence intervals for each microphone 

array. It can be seen that array 4 has the largest increase of source width when 

affected by the crosstalk signal, followed by array 3,2 and 1 in order. Also, there is 

no overlap of 95% confidence intervals between any pair of arrays, thus causing 

highly significant differences between all the arrays (see Table 4.9). 
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30.00- 

25.0(ý- 

Cl- 20.00-1 CD 
0 

CL 
15.00-1 

CD 
CD 

0 10.00- 
CD 

5.00- 

3.06 

10 15.17 

+ 9.51 

1.46 
0.00- - -I -- ---I -- -1 

array 1 array 2 array 3 

Microphone array 

array 4 

Figure 4.8 Mean value and associated 95% confidence intervals of the grade of 

source width difference between the crosstalk-off (CR) and crosstalk-on (LCR) 

images for each microphone array 

KA P-q ýý iirP.: hAPA. q IIPP1 

Mean 95% Confidence Interval for 
Difference Difference 

(1) ARRAY (J) ARRAY O-J) Std. Error Sin. Lower Bound UpperBound 
12 -1.597 

- 
. 461 . 

021 -2.996 -. 199 
3 -8.056 . 693 . 

000 -10.159 -5.952 
4 -13.715 . 

881 . 
000 -16.391 -11.039 

21 1.597 . 
461 . 

021 . 199 2.996 
3 -6.458 . 

714 
. 
000 -8.625 -4.292 

4 -12.118 . 
761 

. 
000 -14.429 -9.807 

31 8.056 . 
693 . 

000 5.952 10.159 
2 6.458 . 

714 
. 
000 4.292 8.625 

4 -5.660 . 
695 . 

000 -7.771 -3.549 
41 13.715 . 

881 . 
000 11.039 16.391 

2 12.118 . 
761 

. 
000 9.807 14.429 

3 5.660 . 
695 . 

000 3.549 7.771 

Table 4.9 Result of multiple pairwise comparison between each microphone array 
for source width change 

Figure 4.9 shows the mean values and 95% confidence intervals for each sound 

source. It appears that the speech source is outstanding compared to the cello and 

bongo sources. The multiple pairwise comparisons between each sound source 
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indicated in Table 4.10 confirm the significant difference between the speech and the 

other sources. The cello and bongo are shown to have the same effect (p = 1.000). 

30.00---- 

zý 
m 25.00- 
(0 
:3 

cl- 20.00- (D 
0 

CL 
=, 4 15.00- 
CD 
(D 
Z 
0 10.001 
CD 

6.71 6.58 
5.00- 

8.61 

O. OC)---V---- I --- U-- 
cello bongo speech 

Sound source 

Figure 4.9 Mean value and associated 95% confidence intervals of the grade of 

source width difference between the crosstalk-off (CR) and crosstalk-on images 

(LCR) for each sound source 

KAP, -icziir#2: KAP: AO, 1 IPP 1 

Mean 
Difference 

D5% Confidence Interval for 
Difference 

(I)SOURCE (J) SOURCE (I -J) Std. Error Sia. Lower Bound Ui: )r)er Bound 
Cello Bongo 

. 125 . 463 1.000 -1.122 1.372 
Speech -1.901 . 699 . 047 -3.784 -. 018 

Bongo Cello -. 125 . 463 1.000 -1.372 1.122 
Speech -2.026 . 

667 . 
025 -3.824 -. 22 

Speech Cello 1.901 . 699 . 047 . 018 3.784 
Bongo 2.026 . 667 . 025 . 228 3.824 

Table 4.10 Result of multiple pairwise comparison between each sound source for 

source width change 

The main effect of the acoustic condition on source width change is shown in Figure 

4.10. Adding multiple reflections and reverberation to an anechoic sound might 

have increased the source widths for both images of CR and LCR. The insignificant 
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main effect means that the magnitude of the individual increase was similar. This 

result suggests that the source widening effect of interchannel crosstalk is 

independent of the acoustic condition of recording space. 

30. O&----- 

3 
oF2 5.0 0- 

C 
c12 0.0 ü« 

0 

CD 
CD 
73 
010.00- CD 

* 7.42 * 7.39 0 7.09 
5.0 0-ý 

0.00 - ---- --------- - -- -1 -- F- 
anechoic room hall 

Acoustic condition 

Figure 4.10 Mean value and associated 95% confidence intervals of the grade of 
source width difference between the crosstalk-off (CR) and crosstalk-on images 

(LCR) for each acoustic condition 

The source*array interaction is shown in Figure 4.11. Even though this interaction 

effect was found to be significant, the order of microphone array in the magnitude of 

change was the same for all sound sources. Also, since the estimated effect size is 

only 0.351 (Partial Eta Squared), this interaction could possibly be ignored. The 

acoustic*array interaction was also found to be significant, but again the estimated 

effect size is shown to be very small (0.135), and the order of microphone array stays 

the same regardless of the acoustic condition (see Figure 4.12). Therefore, this 

interaction could be also ignored. The acoustic*source interaction was found to be 

insignificant. 
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30 
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-0 
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ARRAY 
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* 
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Figure 4.11 Interaction between microphone array and sound source 

3 

C) 

2 

-0 

-0 
Z3 
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CD 
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Y 

Figure 4.12 Interaction between microphone array and acoustic condition 

4.4.3.2 Locatedness change 

Taking an overview of the results of the RM ANOVA test indicated in Table 4.8, 

'microphone array' has the most significant effect on locatedness change (the 

significance value p is 0.000, and the estimated size of effect is 0.854). The main 

effect of 'acoustic condition' is shown to be significant (p = 0.003), but its 
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experimental effect (0.320) is much smaller than that of microphone array. 'Sound 

source' does not have a significant main effect (p = 0.637), which means that the 

magnitude of locatedness change was similar for all sound sources. The largest 

interaction effect is observed between acoustic and source (p = 0.029). The 

interaction effect between acoustic and array can be judged differently depending on 

which corrected significance value is used because sphericity is violated. That is, 

the Hyunh-Feldt value (0.043) indicates significance while the Greenhouse-Geisser 

value (0.052) does not. However, the small partial eta-squared values for 

acoustic*source (0.162) and acoustic*array (0.172) suggest that the experimental 

effects of those interactions are relatively minor regardless of the significance value. 

The source*array interaction is shown to be insignificant (p = 0.058). 

Figure 4.13 shows the mean value and associated 95% confidence intervals of the 

grade given for each microphone array. It can firstly be seen that the magnitude of 

locatedness change between CR and LCR increases as the array number increases 

from 1 to 4. This basically means that the most 'time-difference' based array gave 

rise to the greatest effect, whereas the most 'intensity-difference' based array gave 

rise to the smallest effect. It is interesting to note that the magnitude of locatedness 

change tends to increase almost linearly from array 2 to array 4. It can also be 

observed that there is no overlap between any pair of arrays in 95% confidence 

interval, which means that the differences between those four microphone arrays were 

clearly distinguished by the subjects. The significant difference between each array 

is confirmed by the result of the multiple pairwise comparison test shown In Table 

185 



4 Perceptual effects of interchannel crosstalk in 3-2 stereophonic microphone 
techniques 

4.11 (all p values are 0.000). This result suggests that the intensity and delay time of 

the crosstalk signal is a crucial factor governing the perception of locatedness. 

0.00- 
0.97 

0-2.60 

5.00- 

-8.60 CL -10.00- CD 
0 

CL -13.40 
15.0(ý 

CD 
CD 
:3 
o -20.0(ý CD 

-25. O& 

-30.0(3ý -I -- -II- I- 
array 1 array 2 array 3 array 4 

Microphone array 

Figure 4.13 Mean value and associated 95% confidence intervals of the grade of 
locatedness difference between the crosstalk-off (CR) and crosstalk-on images (LCR) 
for each microphone array 

KA--, --hAI: AQII DC I 

Mean 95% Confidence Interval for 
Difference Difference 

(I) ARRAY (J) ARRAY (I-J) Std. Error Sig. Lower Bound Upper Bound 
_ 12 1.625 . 267 . 000 . 755 2.495 

3 7.625 . 
766 . 000 5.300 9.950 

4 12.424 1.251 . 000 8.626 16.221 
21 -1.625 . 287 . 000 -2.495 -. 755 

3 6.000 . 677 . 000 3.944 8.056 
4 10.799 1.117 000 7.409 14.189 

31 -7.625 . 
766 . 000 -9.950 -5.300 

2 -6.000 . 677 . 000 -8.056 -3.944 
4 4.799 . 

727 . 000 2.590 7.007 
41 -12.424 1.251 . 000 -16.221 -8.626 

2 -10.799 1.117 . 000 -14.189 -7.409 
3 -4.799 . 

727 . 000 -7.007 -2.590 

Table 4.11 Result of multiple pairwise comparisons between each microphone array 

for locatedness change 

The plot for the effect of each acoustic condition is shown in Figure 4.14. Even 

though the graph shows a noticeable decreasing pattern in the magnitude of difference 
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as the microphone array changes from 1 to 4, there is a large overlap between each 

nearby condition in 95% confidence intervals, which might have led to the relatively 

small effect size (0.320). The result of a pairwise comparison test shown in Table 

4.12 indicates that the only significant difference is between the anechoic and hall 

conditions (p = 0.003). 

ýr. 
- m 5.00- 

-5.20 
-6.21- 

7.76 

a- -10. o(3- (D 

CL 
:: Z 15.00- 

(D 
CD 
:3 
r) -20.0(3m (D 

-25.031 

anechoic room hall 

Acoustic condition 

Figure 4.14 Mean value and associated 95% confidence intervals of the grade of 
locatedness difference between the crosstalk-off (CR) and crosstalk-on images (LCR) 

for each acoustic condition 

Mean 95% Confidence Interval for 
Diff Difference 

(1) ACOUSTIC (J) ACOUSTIC 
erence 

O-J) Std. Error Sig. Lower Bound_ Upper Bound 
Anechoic Hoom -1.542 . 

787 . 
207 -3.662 . 

579 
Hall -2.552 . 

614 . 
003 -4.206 -. 898 

Room Anechoic 1.542 . 
787 . 

207 -. 579 3.662 
Hall -1.010 . 

638 . 
402 -2.728 . 

707 

Hall Anechoic 2.552 . 
614 . 

003 - 
898 4.206 

Roc 1.010 . 
638 . 

402 - 707 2.728 

Table 4.12 Result of multiple pairwise comparison between each acoustic condition 

for locatedness change 
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The mean values and associated 95% confidence intervals of the normalised data for 

each sound source are shown in Figure 4.15. As can be seen, all sound sources have 

small differences in mean values and large overlaps in 95% confidence intervals. 

0.00- -- 

K 
- 933 5.00- 

cc =3 -6.10 # 
-6.49 0-6.58 

CL -1 0.0(ý 
CD 
0 

CL 
15.00, 

CD 
CD 

C) -20.00- 
CD 

-25.00- 

-30.00----- -- 
cello bongo speech 

Sound source 

Figure 4.15 Mean value and associated 95% confidence intervals of the grade of 
locatedness difference between the crosstalk-off (CR) and crosstalk-on images (LCR) 

for each sound source 

Figure 4.16 shows the interaction graph between acoustic condition and sound source. 

There are significant contrasts observed between the anechoic and hall conditions 

when cello is compared to bongo (p = 0.011), and when cello is compared to speech (p 

= 0.028). These contrasts mean that the difference between the cello and the bongo 

(or speech) in the anechoic condition is significantly bigger than the difference 

between them in the hall condition. A more detailed interaction can be found in the 

relationship between each sound source for each acoustic condition. For this 

investigation, a 'Paired-Samples T-test' was performed, and the result summary is 

shown in Table 4.13. Firstly, in the comparison between sound sources for the 
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anechoic condition, it can be seen that there are significant differences between ceHo 

and bongo (p = 0.007), and between cello and speech (p = 0.048), although the main 

effect of sound source is not significant (when acoustic and array are ignored). 

Bongo and speech do not have a significant difference. Figure 4.17 shows the 

acoustic*affay interaction graph. Arrays 3 and 4 have a significant difference when 

the room and hall conditions are compared. Also, arrays 2 and 3 are significantly 

different when the anechoic and hall conditions are compared. Nevertheless, this 

effect might be ignored since the order of microphone arrays is the same for all 

acoustic conditions, and the size of experimental effect is small. This result seems to 

suggest that the significance of the intensity of the crosstalk signal does not change 

regardless of the acoustic condition of recording space. The source*array interaction 

was found to be insignificant. 

u 

(2) 
Cl 
C- 
CU 

-C 0 

U) 
U) 
(D 

CD 
ca 
u 
0 

0 
(D 

CR 
cz 

anechoic room 

Acoustic condition 

SOURCE 
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bongo 

A 
speech 

hall 

Figure 4.16 Interaction between acoustic condition and sound source 
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t Siq. (2-tailed) 
Anechoic Cello - Bongo 2.750 

. 
007 

Anechoic Cello - Speech -. 631 
. 
529 

Anechoic Bongo - Speech -2.827 . 
005 

Room Cello - Bongo 
. 
662 

. 
509 

Room Cello - Speech -. 283 
. 
778 

Room Bongo - Speech -. 863 
. 
390 

Hall Cello - Bongo -1.376 . 
171 

Hall Cello - Speech -3.103 . 
002 

Hall Bongo - Speech -1.849 . 
067 

Table 4.13 Result table of paired samples T-test for acoustic condition and sound 

source 

(2) 
c3) 
C- 
Co 

U) 
cn 
(D 
c: 
-0 
(D 
Co 

-0 

2 

Acoustic condition 

ARRAY 

2 

A3 

*4 

Figure 4.17 Interaction between microphone array and acoustic condition 

4.4.4 Discussions 

4.4.4.1 Discussion of the results for the individual attributes 

The result showing that the type of microphone array had a significant effect suggests 

that the effect of interchannel crosstalk on source widening and locatedness 

190 

anechoic room hall 



4 Perceptual effects of interchannel crosstalk in 3-2 stereophonic microphone 
techniques 

decreasing becomes greater as a more spaced microphone technique is used, in other 

words as the ratio of time difference to intensity difference increases. It also 

suggests that this effect can be almost ignored when a more coincident type of 

microphone technique is used. Therefore, this leads to a discussion on the influence 

of interchannel time and intensity differences between L and C. The basis for this 

discussion might be found in the result of the previous two-channel investigation, 

showing that two-channel stereophonic images were perceived to be wider and more 

focused compared to the corresponding monophonic image and the magnitude of this 

effect became greater as the ratio of time difference to intensity difference was 

increased (see Section 3.3.4.1). This seems to hold true in the case of the current 

experimental conditions. Since the microphone technique used in this experiment 

was a near-coincident type, the ratio between the interchannel time difference (ICTD) 

and interchannel intensity difference (ICID) changes for each array style. That is, 

the ICTD between L and C in the arrays 1 to 4 increases from 0.5ms to 1.1 ms, while 

the corresponding interchannel intensity difference (ICID) decreases from 20.5dB to 

4.6dB (see Table 4.1). The decrease in the ICID between L and C means an 

increase in the intensity of the crosstalk signal. This suggests that the crosstalk 

signal L in the array 4 might not only have been most audible due to its greatest 

intensity but might also have caused the largest change in the magnitude of ITD 

fluctuations between the ear input signals of CR and LCR, thus leading to the largest 

source width and locatedness change. For the array 1, however, the ICID between L 

and C is 20.5dB and this is greater than the usual psychoacoustic values required for 

full phantom image shifts in two-channel stereophonic reproduction as indicated in 

Figure 1.1. This means that the effects of crosstalk L would have been barely 
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detectable regardless of the amount of ICTD. In fact, from the visual indications in 

Figure 4.8, the crosstalk effects for arrays I and 2 appear to be very small- compared 

to those for arrays 3 and 4. The above discussion might suggest that a more widely 

spaced three-channel microphone array will tend to give rise to a greater effect of 

interchannel crosstalk on source widening as it will always have greater ITD 

fluctuations and greater intensity of the crosstalk signal due to the nature of the near- 

coincident microphone technique design requiring a trade-off between interchannel 

time and intensity differences. Conversely, it might also suggest that in order to 

minimise the effects of interchannel crosstalk in the design of three-channel 

microphone techniques, one should pursue a more coincident style of microphone 

technique by shortening the delay time and increasing the intensity difference 

between channels. 

It was shown that the effect of sound source type was significant for source width 

increase due to interchannel crosstalk. In particular, the source width increase for the 

speech signal was found to be significantly greater than that for the cello or bongo 

source and this might be related to the frequency components of these sound sources. 

In section 2.3.2.2, it was discussed that the findings of reflection studies relating to the 

effects of frequency components on the perceived source width increase were 

contradictory. For example, Hidaka et al [1995] reported that for orchestral music 

sources, frequencies below 355Hz would become most significant for increasing 

perceived source width in a concert hall. Morimoto and Maekawa [1988] found that 

for a noise signal, frequencies of sound source above 51 OHz became less effective for 

source width increase than the lower frequencies and frequencies around 100 - 20OHz 
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resulted in an especially marked increase. These findings suggest the significance of 

low frequency energy on source width perception. However, Barron and Marshall 

[19811 found that for orchestral music sources, 'source broadening' was mainly 

governed by middle frequencies of the reflection around 1000 - 200OHz while 

'envelopment' was related to the lower frequencies, although it seems that both 

attributes were related to the source itself from the authors' definitions of the terms. 

Additionally, Blauert and Lindemann [19861 reported that all frequency components 

of reflection would contribute to the perception of source width. Despite this lack of 

definite results, it can be at least suggested from the above literature that the greater 

source width increasing effect of the speech source might have resulted from the broad 

frequency range and the rich frequency components of the source. The frequency 

spectrum of the cello and speech sources shown in Figure 4.3 clearly shows the 

dominance of speech over cello in terms of spectral richness. The speech source also 

has greater low frequency energy around I OOHz, which might support Morimoto and 

Maekawa's findings. 

In addition to this, the onset time of the speech source might also have been taken into 

account for the perception of source width. Figure 4.3 shows that the frequency 

spectrum of the bongo source is also reasonably rich although its low frequency 

energies around IOOHz appear to be weaker than those of the speech. However, due 

to its strong transient nature, the crosstalk signal for the bongo source would have 

produced a smaller degree of interaural fluctuations than that for the speech source 

during the onset and this might have caused the significant difference between the two 

sources in perceived source width. In other words, the interaction between the 
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wanted and crosstalk signals in the onset region was shorter for the bongo source than 

for the speech. In order to show this aspect visually, Figure 4.18 illustrates two 

cases of simulated interactions between leading and lagging signals for sound sources 

having different onset times with the same ongoing and decay times. As can be seen, 

when the delay time is constant, while the size of time region for the ongoing and 

offset interaural fluctuation is the same for both sources, that for the onset fluctuation 

differs depending on the onset time of the source. Therefore, source B, which is 

more transient, has a smaller magnitude of interaural fluctuation than source A. 

According to Griesinger [1996]'s hypothesis about the cognitive perception of spatial 

impression, which was introduced in Section 2.3.1.2, source width perception in a 

concert hall is related to the interaction between the direct and reflected signals in the 

onset region. Based on this, the difference between the bongo and speech sources in 

perceived source width is considered to be caused by the different magnitudes of 

interaural fluctuations in the onset regions. If this hypothesis is valid, it could be 

suggested that a certain trade-off relationship between the sPectral characteristics and 

temporal characteristics of sound source exists for the perception of source width. 
> 
U) 
4) 

j offsel fluctuation-w Time 

Figure 4.18 Interaction between leading and lagging signals for sound sources 

having different onset times with the same ongoing and offset times 
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It was shown that the type of sound source was not significant for the locatedness 

decreasing effect. Locatedness perception seems to be related to the precedence 

effect, which was discussed in Section 2.2.2. It has been reported by many authors 

that the precedence effect would mainly be triggered by transient sounds rather than 

continuous sounds. From this, one may presume that the continuous nature of the 

cello source would cause a greater locatedness decrease in the crosstalk-on image than 

the transient nature of the bongo source would. However, it should be noted that the 

ý11 above finding strictly only relates to pure tone signals. Rakerd and Hartmann [1986] 

pointed out that in the case of a complex signal such as noise, the precedence effect 

could also be operated by continuous sounds. Furthermore, Tobias and Zerlin [1959] 

found that for noise signals, the continuous part became more influential on 

localisation than the onset transient as the duration of the signal increased. The 

sound sources used in the experiments reported here have complex spectral and 

temporal characteristics as shown in Figures 4.2 and 4.3 and it is likely that all of 

them have sufficient transient information to retrigger the precedence effect. For 

example, the speech source has a fine structure of transients at every syllable, the cello 

source also has a continuous musical phrase containing ongoing fluctuations at every 

note or bow change and every hit in the bongo source contains a rapid onset transient. 

In addition, it was found that the perceived locatedness change was significantly 

smaller in the hall condition than in the anechoic condition. This is likely to be 

because the crosstalk was perceptually masked by the long reverberation from the 

previous sounds. This finding might suggest that the effect of crosstalk on 

locatedness change would become less audible in a more diffused recording space. 
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4.4.4.2 Discussion of the relationships among the attributes 

Table 4.14 shows the summary of significance values for each attribute. The main 

effect of microphone array was significant for both locatedness and source width 

changes. However, the significances of the sound source and acoustic condition 

effects were found to be opposite for each attribute. That is, the effect of sound 

source was signi cant for the source width change, but not for the locatedness change. 

In contrast, the effect of acoustic condition was significant for the locatedness change, 

but not for the source width change. For interaction effects also, only the 

acoustic*source interaction was significant for the locatedness change while it was 

the only insignificant interaction for the source width change. There is a tendency in 

the literature for source width and locatedness attributes to be regarded as negatively 

correlated. For example, in Berg and Rumsey's research [2002], 'source width' and 

'localisation', although a different term was used for the definition of 'locatedness', 

were found to be negatively correlated at a moderate level. The result of the 

previous investigation, as was discussed in Section 3.4.4.2, also showed that 'source 

width' and 'source focus' attributes in 2-0 stereophonic images had a strong negative 

correlation. 

Main Effect Interaction Effect 

Array Source Acoustic Array 

*Source 

Array 

*Acoustic 

Source 

*Acoustic 

Locatedness 0.000 0.637 0.003 0.058 0.052 0.029 

Source width 0.000 0.004 0.711 0.000 0.038 
1 

0.714 

Table 4.14 Summary of significance values of the main effects and interaction effects 
for locatedness and source width changes caused by interchannel crosstalk 
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However, the differences found in the significance levels between locatedness and 

source width for each factor shown in the above table led to a hypothesis that the 

correlation between those attributes depends on sound source and acoustic condition. 

Therefore, a set of bivariate correlation tests was carried out. Since the microphone 

array effects in both attributes have similar tendencies, the level of correlation was 

expected to be considerable when all the independent variables were included in the 

test. The result was in fact a moderate negative correlation (-0.670). This means 

that the ratio of interchannel time and intensity differences affects the changes in both 

attributes similarly. However, it was also predicted that if only one microphone 

array was considered, the correlation would be at a low level due to the different main 

effects of the sound source and acoustic condition. Therefore, individual correlation 

tests were also performed with each microphone array and the results confirmed the 

prediction as can be seen in Table 4.15. In general this result suggests that with 

respect to the effect of interchannel crosstalk in a microphone technique, a large 

source width increase resulting from interchannel crosstalk does not necessarily mean 

a large locatedness decrease nor vice versa. This finding might also lead to a 

discussion on the relationship between source width and locatedness perceptions in 

general. As mentioned above, it seems to be a widely accepted concept that a wider 

source is more difficult to localise. However, based on the above result, it might be 

suggested that the correlation between those two attributes is dependent on the type of 

sound source (This issue is further discussed in Chapter 5. ). 

Array 1 Array 2 Array 3 Array 4 

Correlation -0.280 -0.323 -0.169 -0.201 

Table 4.15 Correlation value between locatedness change and source width change 
by microphone array 
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4.5 Experiment Part 3: Preference for Interchannel Crosstalk 

4.5.1 Background 

From the previous experiment it was found that interchannel crosstalk had a 

significant effect on the increase in perceived source width and the decrease in 

perceived locatedness of the sound. It is asserted by Theile [2001] that interchannel 

crosstalk should be suppressed as much as possible in the design of multichannel 

microphone techniques as it is considered to be a negative factor for achieving 

balanced localisation of sound sources in the reproduction. If the aim of sound 

recording was only to capture a precisely localised sound image, then Theile's claim 

might be fully supported. However, in practice localisation is not the only criterion 

determining the perceived sound quality. Rather it is often found that the creation of 

sufficient spatial impression is more desirable than the achievement of accurate 

localisation [Mckinnie 20041. The popularity of spaced microphone techniques such 

as the Decca tree over the pure coincident technique such as the XY could be a good 

example of this. Furthermore, in the context of concert hall acoustics, the increase 

in source width caused by early reflections is found to be a positive factor for 

perceived sound quality as outlined in Section 2.3.2.3 [Schroeder et al 1974, Barron 

1971, Ando and Kageyama 1977, Barron and Marsha. H 1981, Blauert and Lindemann 

1986]. However, studies in concert hall acoustics typically consider much longer 

delay times of reflections (10ms < ... < 80ms) than those of crosstalk signals that 

might be encountered in general microphone techniques and therefore investigation in 

the context of sound recording and reproduction is required to confirm whether 
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interchannel crosstalk would also be a positive factor for the perceived sound quality. 

From this background, a pairwise comparison experiment was conducted to examine 

the subjective preference between crosstalk-on (LCR) and crosstalk-off images (CR). 

4.5.2 Stimuli selection 

This experiment used only 12 pairs of representative stimuli from the whole 36 pairs 

of stimuli used in the grading experiment. The results of the grading experiment 

showed that the differences between crosstalk-on and crosstalk-off images in arrays 1 

and 2 were not as obvious as those in arrays 3 and 4. From this, it was considered 

that it would be hard to distinguish the difference in preference for the stimuli of 

arrays I and 2. In addition, it was considered that the preference testing of the 

anechoic stimuli would be inappropriate from a practical point of view. Therefore, 

only the stimuli of arrays 3 and 4 with room and hall simulations were used for this 

experiment. 

4.5.3 Test subjects 

For the evaluation of the subjective preference of sound quality, normally a large 

number of naive listeners are used. However, for this particular preference test, the 

listeners' critical listening skills were crucial for distinguishing the fine perceptual 

differences resulted from interchannel crosstalk. Also, this whole study was focused 

on the viewpoints of classical music recording engineers about interchannel crosstalk. 
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Therefore, again the same subjects as in the previous elicitation and grading 

experiments, who are trained and experienced sound engineers, took part in this 

expenment. 

4.5.4 Listening test method 

The subjects were asked to test a total of 12 trials using the same control interface 

described in the grading experiment. Each trial presented two sounds A and B, 

which presented CR and LCR in random orders. The order of the presentation for 

the trials was randomised for each subject in order to avoid potential psychological 

errors. There were two tasks for the subjects to complete in this test. The first task 

was to judge which sound they preferred and to grade the preference on the scale 

shown on the provided answer sheet. The scale chosen for this experiment was a 

nine-point bipolar semantic scale, which was adopted from the hedonic acceptance 

scale [Stone and Sidel 1993]. The subjects were requested to circle the tenn that 

best reflected their attitude about the sound and the results were later transformed to 

numerical values for statistical analysis. It was considered in the design of the 

grading experiment that some semantic scales might not be ideal for parametric 

statistical analysis because of the psychological nonlinearity of the scale. However, 

this would not be the case for the hedonic scale as the psychological distances 

between each semantic label are equal [Stone and Sidel 1993], and therefore the 

numerically transfon-ned data could be directly used for parametric statistical analysis. 

The semantic labels that were used in the scale and their corresponding numerical 

values for statistical analysis are shown in Table 4.16. 

200 



4 Perceptual effects of interchannel crosstalk in 3-2 stereophonic microphone 
techniques 

The purpose of the second task was to understand the attributes that influenced 

preference and the priority among them. Table 4.17 shows the questionnaire used 

for this task. As can be seen, the subjects were given a list of the crosstalk attributes 

that were elicited in the experiment part 1. They were firstly asked to select the 

attributes that contributed to their choice of sound for each trial and then to rank them 

according to the degrees of the contributions. They were then asked to complete a 

statement written as 'The preferred sound is than the other' for each of the 

selected attributes by circling the relevant comparative words provided. If there 

were additional reasons for their choice of sound, the subjects were encouraged to 

describe them using their own words and also rank them. The data obtained from 

the second task were analysed so as to understand the relative perceptual weight of 

each of the preference attributes. 

Semantic labels Numerical 

values 
Prefer sound A Extremely 4 

Prefer sound A Very Much 3 

Prefer sound A Moderately 2 

Prefer sound A Slightly I 

Prefer Neither sound A nor B 0 

Prefer sound B Slightly -1 
Prefer sound B Moderately -2 
Prefer sound B Very Much -3 
Prefer sound B Extremely -4 

Table 4.16 Nine-point bipolar semantic scale used for the preference grading and the 

numerical values given for each label 
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Rank Attributes for preference The preferred sound is than the 

other. 
Source width Wider Narrower 

Locatedness More located Less located 

Source distance More distant Less distant 

Brightness Brighter Darker 

Hardness Harder Softer 

Fullness Fuller Thinner 

Describe additional attributes 

Table 4.17 Questionnaire used for preference test 

4.5.5 Results 

For the analysis of the grading data obtained, the number of the preference for each 

sound was investigated first in order to look at the general polarity of the preference. 

There were a total of 96 observations, consisting of 12 observations obtained from 8 

subjects. For this analysis, the semantic data were modified by giving a value of +1 

where the crosstalk-on image was preferred, -1 for the crosstalk-off image and 0 for 

no preference. The percentages for the frequencies of the numerical values were 

then analysed as shown in Figure 4.19. It can be seen that the crosstalk-off sounds 

(50) were preferred to the crosstalk-on sounds (36) more frequently, while in 10 cases 

there was no preference. This shows that the crosstalk-off sounds were not 

exclusively preferred to the crosstalk-on sounds. 
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Figure 4.19 Frequency percentages of preference choices for sounds with and 

without crosstalk 

In order to see the overall degrees of preference gradings for each crosstalk condition, 

the mean values and 95% confidence intervals of the grading data were obtained as 

shown in Figure 4.20. It can be seen that the degree of preference is very similar for 

both types of stimuli, being around the moderately prefer range. In order to examine 

the statistical significance of the difference between crosstalk-on and crosstalk-off 

sounds in the degree of preference, a nonparametric method was used since the 

number of observations for each case was different. Therefore, the Mann-Whitney 

U test was performed and the result shown in Table 4.18 confirmed that the 

difference was insignificant (p = 0.977). 
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Figure 4.20 Mean values and 95% confidence intervals for the grading values of 
crosstalk-off and crosstalk-on stimuli 

Test Statistics 

GRADE 
Mann-Whitney U 897.000 
Wilcoxon W 1563.000 
z -. 028 
Asymp. Sig. (2-tailed) 

. 
977 

Table 4.18 Result of the Mann-Whitney U test result for the preference grading data 

of crosstalk-off and crosstalk-on stimuli 

The effects of the independent variables on the preference were also analysed using a 

repeated measure ANOVA method. The summary of the results of the conducted 

RM ANOVA is shown in Table 4.19. It can be seen from the results that none of 

the effects of independent variables were significant. Also the interactions between 

each independent variable are shown to be insignificant. 
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Model F Sig. 

Acoustic 0.000 1.000 
Source 0.862 0.444 
Array 1.109 0.327 

Acoustic*Source 0.963 0.406 
Acoustic*Array 0.562 0.478 
Source*Array 3.245 0.0 

Table 4.19 Summary of the Repeated Measure ANOVA performed for the analysis of 
the preference gradings 

From the data obtained from the second task of the listening test, it was analysed what 

kinds of attributes of interchannel crosstalk contributed to the subjects' preference 

choice and how they were relatively weighted. Table 4.20 shows the result of the 

analysis. Firstly, it can be seen that all the provided attributes and two additional 

attributes were related to the subjects' preference. In order to examine the relative 

perceptual importance of these attributes, a weighting factor was calculated for each 

attribute using the equation below, as used in Neher [2004]. As the attributes had 

been ranked by the subjects in order of priority, a specific index was given to each 

rank number. The rank number 1 was assigned the rank index 1, the rank number 2 

the index 1/2, the rank number 3 the index 1/3, and so on. The calculation of the 

weighting factor was equated so that the maximum value became 1. 

(Sum of the number of occurrences) + (Sum of rank index) 

(Number of trials) x (Number of subjects) x2 
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Preference 

Attribute 

Occurrences Preference Polarity 

(occurrences) 

Weighting 

Factor 

Locatedness 60 More located (47) Less located (13) 0.57 

Source width 67 Wider (26) Narrower (41) 0.54 

Source distance 34 More distant (16) Less distant G 8) 0.27 

Brightness 26 Brighter (18) Darker (8) 0.21 

Fullness 19 Fuller (15) Thinner (4) 0.18 

Hardness 18 Harder (14) Softer (4) 0.13 

Naturalness 9 More natural (9) Less natural 
(0) 

0.06 

Phasiness 7 More Phasey (0) Less Phasey (7) 0.05 

Table 4.20 Group of attributes that contributed to the choice of sound and their 

relative weights 

4.5.6 Discussions 

4.5.6.1 Discussions on the results of the controlled experiment 

From Table 4.20, it can be seen that the weighting factors for the locatedness and 

source width attributes are 0.57 and 0.54 respectively, which are noticeably higher 

compared to the values for the other attributes. This means that the locatedness and 

source width attributes were the most important contributors to the choice of sound. 

It is worth pointing out that the relative weightings for the preference attributes have a 

similar tendency to those for the attribute audibility that were shown in Section 4.3; 

the source width and locatedness attributes have the most dominant effects while 

timbral attributes have weak weights. This might suggest that subjective preference 

for a sound is likely to be determined by the most dominant perceptual attribute of the 
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sound. However, from a different viewpoint, this could also mean that there might 

have been strong psychological biases in the subjects' judgments due to the 

perceptual dominance of certain attributes. In other words, the subjects might have 

initially paid more attention to the locatedness or source width attribute for its strong 

audibility and judged the preferences directly by their prejudices about how the 

attribute should be perceived, without considering the aspects of other relevant 

attributes. As mentioned earlier, it tends to be taken for granted that the locatedness 

and source width attributes always have a strong correlation, although the results of 

the correlation test of the previous experiment suggested that they would not 

necessarily do so. Some classical recording engineers tend to prefer a more easily 

localised and narrow sound while others prefer a less easily localised and wider sound. 

On the other hand, in the context of concert hall acoustics, a wider or more diffused 

sound is usually regarded to be preferable to a narrower sound by normal audiences. 

The results shown in Table 4.20 indicate that for the locatedness attribute, sounds 

were preferred largely because they were more located. It can also be seen that for 

the source width attribute, narrower sounds were more preferred to wider sounds. It 

is not so clear from these results which perceptual polarity was given to crosstalk-on 

or crosstalk-off sounds. However, based on the results of the previous experiments, 

it could be seen that crosstalk-on sounds were always perceived to be less located and 

wider compared to crosstalk-off sounds. Given that the subjects used in the current 

experiment were all experienced sound recording engineers, the possibility of bias 

that might have occurred during the listening test has to be acknowledged. It also 

has to be admitted that the result cannot be generalised since only a small number of 

subjects from a particular group was used for the experiment. 
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In general, the results obtained from this experiment seem to indicate that 

interchannel. crosstalk would not significantly decrease the subjective preference of 

sound quality and this seems to present a challenge to Theile [2001]'s negative 

viewpoint on the influence of interchannel crosstalk. However, it has to be admitted 

that this experiment considered only a limited range of single sound sources and the 

perspectives of only a small number of experienced listeners in a controlled manner. 

Therefore, these results would not provide a conclusive answer about the acceptability 

of interchannel crosstalk. 

4.5.6.2 Discussions on the limitations of the controlled experiment 

It was found from this experiment that the sound source type did not have a 

considerable effect on the subjective preference of interchannel crosstalk. Certainly, 

this experiment enabled the subjects to focus solely on the changes due to 

interchannel crosstalk and in this regard the obtained results could be validated. 

However, it seems that these results stand alone from a practical point of view since 

they were obtained from using controlled stimuli manipulated with the simulated 

interchannel relationships and acoustic conditions. That is, in this experiment such 

acoustical factors as reflections and reverberation were mixed in the stimuli with the 

same patterns regardless of the interchannel relationships of the simulated 

microphone arrays. However, this kind of control is not possible in practical 

recordings with microphone techniques due to the fact that the distance and angle 

between the front microphones would directly affect the interchannel decorrelation of 
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the reflected and reverberant sounds. In these respects, it is not clear whether the 

results of the controlled experiment would be able to represent what would actually 

happen in practical recording situations. It is deemed that in practical microphone 

techniques the subjective preference for interchannel crosstalk would strongly depend 

on the type of sound source and the acoustic condition of the recording space due to 

the interaction between these two factors. For instance, such instruments as trumpet 

and clarinet would have relatively poor locatedness when they were performed in a 

reflective space, due to their continuous characteristics interacting with reflections 

(see Section 2.2.3). In this case, the interchannel crosstalk, which would be likely to 

decrease perceived locatedness, might become a negative factor for preference. 

However, for such instruments as piano, which would not particularly require good 

locatedness of every single note, the interchannel crosstalk might not become a 

problematic factor. In addition, such percussive instruments as conga and bongo 

would be easily localised regardless of the existence of reflection due to their strong 

transient characteristics and therefore the source width increasing effect of 

interchannel. crosstalk might even provide a balanced locatedness and spatial 

impression to the images --of recorded sounds. 
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4.6 Experiment Part 4: Comparisons of Practical 3-2 
Stereophonic Microphone Techniques 

4.6.1 Background 

Based on the above discussions, an additional subjective experiment was carried out 

in order to provide supplementary findings about the practical implications of 

interchannel crosstalk. This kind of experiment using 'real world' recordings is 

typically limited when it comes to the question of controlling experimental variables 

other than interchannel crosstalk. That is, as mentioned above, the configuration of 

a microphone array would also be likely to contribute to the interchannel 

decorrelation of the reflected and reverberant sounds, which will have an effect on 

perceived spatial impression, and therefore it becomes difficult to distinguish between 

the effect of microphone configuration on front phantom imaging and that on spatial 

impression. Therefore, the interpretations of the causes for preference data obtained 

from a comparison between two different microphone techniques are likely to be 

somewhat arbitrary and indirect. If a microphone technique giving rise to stronger 

crosstalk was preferred to one giving rise to weaker crosstalk, then the crosstalk effect 

might be considered as either a positive or negligible factor for the perceived sound 

quality, depending on whether or not the crosstalk was the main contributor to the 

perceived sound quality. However, if a microphone technique with a weaker 

crosstalk was preferred to that with a stronger crosstalk, then it would be difficult to 

judge whether the preference was directly due to the crosstalk or not. Therefore, in 

the latter case, in order to find the main contributor for the preference, it would first 

be necessary to know if the subjective attributes resulting in the preference choice 
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matched any of those resulting from the crosstalk. If there were to be no match, the 

crosstalk effect could be disregarded. However, in the opposite case, it would be 

possible to regard the crosstalk only as a 'potential' negative factor since it would still 

not be clear if other types of variables produced similar attributes to those of the 

crosstalk and if they were actually the main contributor. For the above reasons, this 

experiment was designed for the subjects to describe the attributes that were most 

relevant to their preference choices as well as to grade the degrees of preferences. 

4.6.2 Choice of microphone technique 

The listening test was designed such that the subjects could compare recordings made 

with two different front microphone techniques, which differed in their crosstalk 

characteristics, in the presence of ambient sounds recorded with a common rear 

microphone technique. As mentioned earlier, interchannel. crosstalk between front 

and rear arrays that are placed far apart will be not large. Nevertheless, the rear 

technique was used in this experiment to create a listening environment of a type 

likely to be encountered in a practical 3-2 stereophonic classical music reproduction. 

The front microphone techniques chosen for this comparison were the 'OCT' [Theile 

2001] and 'ICA-3' [Heim ann and Henkels 19981, and the rear technique was the 

'Hamasaki-square' [Harnasaki et al 2000]. The detailed descriptions of these 

microphone techniques were presented in Sections 1.4.2 and 1.4.3. Briefly 

surnmarising, the OCT technique using a cardioid centre microphone and two super- 

cardioid side microphones has a better interchannel crosstalk rejection than the ICA-3 
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using three cardioid microphones, although they are based on their own unique design 

concepts for balanced phantom imaging. The Hamasaki-square technique attempts 

to produce natural spatial impression across the front and rear channels using four 

figure-8 microphones arranged in a square. As mentioned in Section 1.4.2, there are 

various configurations available for both techniques depending on the desired SRA or 

microphone spacing and angle. Using the Image Assistant model [Wittek 2001a], 

which was introduced in Section 1.2.1, it was attempted to match the stereophonic 

recording angles (SRAs) of the front microphone arrays for localising the phantom 

sources created with both techniques at similar positions between the loudspeakers. 

Also, the microphone spacings were matched as closely as possible during the process 

of the SRA matching in order to minimise the effect of microphone spacing in the 

comparison of the two techniques. This made it possible to separate the perception 

of the crosstalk effect from that of interchannel decorrelation of reflections due to 

microphone spacing to some extent. The resulting SRA was 132' and the 

configurations of the microphone arrays are shown in Figure 4.21. Basically, the 

ICA-3 had larger microphone spacings than the OCT array, whereas the latter had a 

wider lateral microphone angle (90') than the former (70'). The interchannel 

relationship between channels L (crosstalk) and C for each array, calculated under the 

assumption that the sound source is located at 45' of the centre line of each array 

with 5m distance from the centre base of the array, is as shown in Table 4.21. As 

can be seen, the OCT technique is superior to the ICA-3 technique in tenns of the 

reduction of interchannel crosstalk. 
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Figure 4.21 Configurations of the OCT and ICA-3 arrays having the same 
stereophonic recording angle (SRA) of 132' 

OCT ICA-3 

C to L Time difference 0.78ms 1.21ms 

C to L Intensity difference -I6.6dB -11.5dB 

Table 4.21 Interchannel relationship of crosstalk channel L against channel C for the 
OCT and ICA-3 microphone arrays used for the preference experiment; the simulated 
direction of sound source is 45' and the distance of the sound source from the arrays 
is 5m. 

4.6.3 Choice of sound source 

This experiment used a range of musical sound sources comprising performance 

excerpts of string quartet, solo percussion pair (conga and bongo), solo violin and 

solo piano. They were chosen for the variety of both musical contexts and physical 

characteristics (i. e. ensemble vs. solo, continuous vs. transient, and syllabic vs. wide 

source). The musicians were students of Music Department of the University of 

Surrey. 
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4.6.4 Recording setup 

The recordings were made in Studio I at the University of Surrey, which is primarily 

used for classical music performance and recording. The studio is 14.5m wide, 17m 

long and is 6.5m high. The reverberation time RT60 is approximately 1.5 seconds. 

Figure 4.22 shows the dimensions of the studio and the positions of the front and rear 

microphone arrays. 

OCT &IICA-3 Hamasakillsquare 

Cn 0 9rn 3m 

0 

5m 

r 17m 

Figure 4.22 Recording studio setup 

As can be seen in the above figure, the front and rear arrays were placed in the centre 

line of the studio. The front arrays, which were manipulated to have the same SRA, 

were placed 5m from the front wall and centred at the same location in order to create 

similar stereophonic sound stages. The distance between the front and rear arrays 

was 9m. The height of the front arrays was 2.2m while that of the rear array was 4m. 

It was recognised that using microphones of different models or manufacturers for 

each front array would be likely to cause differences in the timbral. qualities of each 
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array, which should be distinguished from the timbral differences caused due to the 

interchannel relationship of each array. Therefore, Schoeps CCM models of various 

polar patterns were exclusively used for this experiment, which are closely matched 

in terms of timbral quality. 

The placements of the sound sources varied. The string quartet was arranged in a 

normal concert configuration in front of the front arrays and placed about 2m away 

from the centre base of the arrays. The percussion pair and solo violin were placed 

at about 30' from the centre axis of the frontal arrays with 2.5m distance from the 

centre base of the arrays. The off-centre angle for the solo sources was 

approximately half of the SRA for C-R segments of the front arrays and therefore the 

corresponding phantom images were expected to be localised at approximately half 

way between the centre and right loudspeakers. The piano was placed on the centre 

axis of the arrays with about 3m distance from the centre base of the arrays. 

The microphone output signals were fed through a Sony Oxford R-3 digital console 

and recorded as ten discrete channels on Sony PCM-800 recorders at 16bit/48kHz, 

which were eventually mixed as five channels for each combination of front and rear 

arrays to be reproduced in 3-2 stereophonic system. The mixing ratio of the front 

and rear array signals was decided by the author's artistic and technical judgment as 

an experienced balance engineer, aiming to achieve a reasonable combination of the 

clarity of the direct sound and sufficient listener envelopment. 
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4.6.5 Test subjects 

This experiment was conducted using the same eight subjects selected from the 

previous experiments, who are all trained sound engineers. This number of subjects 

was probably too small to draw a general conclusion about the perceived sound 

quality, but was potentially representative of a population of trained recording 

engineers. Furthermore, the main purpose of this experiment was to evaluate the 

results of the previous controlled experiment in a practical manner and indirectly or 

informally map this subject group's preference patterns for interchannel crosstalk 

depending on the types and contexts of sound sources. 

4.6.6 Listening test method 

The listening test was conducted in the same listening condition as the previous 

experiments. The peak sound pressure levels of the recordings made with the two 

techniques were calibrated at 75dBA. There were a total of four trials to be tested. 

Subjects were asked to compare between the sounds recorded with the OCT and ICA- 

3 techniques for each sound source, which were arranged in random orders for each 

trial, using a control interface. The order of the trial was also randomised. The 

subjects' tasks were to grade the degree of preference on a nine-point hedonic scale, 

which was described in the previous experiment, and to describe the reasons for their 

preference choices using their own tenns. 
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4.6.7 Results and discussions 

For statistical analysis of the data obtained from the listening test, the semantic labels 

of the grading scale were first converted into numerical values in the same manner 

that was described in the previous controlled experiment (e. g. prefer Extremely = 4, 

Very much = 3, Moderately = 2, Slightly = 1, prefer Neither = 0). 

0 

CL 

CL 

4 
1- 4 

0- 

-1- * 

-2 

-3- 

-4- 

0 

String quartet Violin 
Conga & Bongo Piano 

Programme material 

Figure 4.23 Mean value and associated 95% confidence intervals of the preference 

grading for each programme material 

Figure 4.23 shows the plot of mean value and associated 95% confidence intervals 

for the preference gradings made for each programme material. The positive values 

in the grading scale represent the preference for the recording made with the OCT 

array and the negative values represent the preference for that with the ICA-3 array. 

It can be initially seen that for the string quartet and solo piano recordings, the ICA-3 

was preferred to the OCT while for the solo conga & bongo and solo violin 

recordings the OCT was preferred to the ICA-3. It appears that the ICA-3 was most 
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preferred for the piano recording while the OCT was most preferred for the violin 

recording. In order to examine the significance of the difference between the results 

for each programme item, a paired samples T-test was performed and the results are 

shown in Table 4.22. As can be seen, every pair of sound sources except the pair of 

6conga & bongo - violin' had a significant difference. 

t df Siq. (2-tailed) 
Pair 1 string quartet - 472 -4 4 . 011 

conga&bongo . 
Pair 2 string quartet - solo 474 -3 4 . 

025 
violin . 

Pair 3 string quartet - solo 3.207 4 . 033 
piano 

Pair 4 conga&bongo - solo 
- 612 4 . 

573 
violin . 

Pair 5 conga&bongo- solo 4.824 4 . 008 
piano 

Pair 6 solo violin - solo piano 10.156 4 . 001 

Table 4.22 Result table of paired samples T-test for each sound source 

As mentioned earlier, the ICA-3 array produces a stronger crosstalk than the OCT. 

Therefore, the fact that the ICA-3 was more preferred to the OCT for the recordings 

of the string quartet and piano sources suggests that the presence of interchannel 

crosstalk would have been either a positive or negligible factor for the perceived 

sound quality for those sound sources. 

Table 4.23 presents the list of the terms that were used by the subjects to describe the 

reasons for their preference choices. The number in brackets represents the number 

of occurrences for each specific description. As mentioned earlier, from this list of 
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descriptive terms, it is possible to examine whether or not the preference for the ICA- 

3 was due to the strong interchannel crosstalk. 

OCT ICA-3 

More comfortable (1) 
More pleasant tonal 
balance (1) 

String quartet Closer (1) 
More central (1) 
Less hard (1) 

Better locatedness (2) Brighter (1) 
Narrower (2) Fuller (1) 

Solo conga & bongo More focused (1) 
More clarity (1) 
More natural (1) 
Better locatedness (2) More pleasant stereo 
Narrower (2) image (1) 

Solo violin More stable (1) More pleasant tonal 
Slightly brighter (1) balance (1) 
Less phasey (1) 
Softer (1) 

Wider (2) 
Less localisable (1) 
Closer (1) 

Solo piano Better tonal balance (1) 
More natural (1) 
Softer (1) 
Fuller (1) 

Table 4.23 Summary of subjective terms that describe the reasons for preference 

choice of the OCT and ICA-3 microphone techniques 

It can be seen from the above table that for the string quartet there is no term that 

describes or alludes to any of the crosstalk attributes that were elicited previously. 
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This means that the preference choice was probably not directly due to the presence 

of interchannel crosstalk but to another physical factor such as microphone spacing 

and angle. In this case, interchannel crosstalk can be regarded as a negligible factor. 

For the piano source, however, a number of crosstalk-related attributes are included in 

the list of preference reasons (e. g. source width (wider), locatedness (less localisable), 

hardness (softer) and fullness (fuller)). Although it is still not entirely clear whether 

these attributes were perceived directly from the presence of crosstalk or from the 

larger microphone spacing that might have caused a greater signal decorrelation, at 

least it can be suggested that interchannel crosstalk could potentially be a positive 

factor for perceived sound quality for such a sound source as solo piano. A possible 

explanation for this result based on the descriptions shown in Table 4.23 is as follows. 

For the piano recording, easy localisation of the sound of each individual note would 

not have been a main factor for the sub ects to determine the perceived sound quality. j 

Rather, the subjects might have focused on an overall stereophonic image, which was 

perceived to be spatially wide and tonally full. 

The results also show that the OCT was preferred for the recordings of the solo 

percussion and solo violin. It is indicated in Table 4.23 that for both sources the 

reasons for choosing the OCT were directly related to the crosstalk attributes. That 

is, the OCT was preferred mainly because the resulting phantom source images were 

easier to localise and narrower than those created with the ICA-3. This suggests that 

it is highly possible that the stronger crosstalk in the ICA-3 array was a negative 

factor for the subjective preference of sound quality for those sound sources, although 

it is also possible that the microphone spacing was the main factor. 
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It is difficult to draw any general conclusion about the preference for interchannel 

crosstalk from the results presented here, for several reasons. Firstly, only a small 

number of subjects participated in the experiment. Secondly, preference for sound 

quality will depend partly on the type of subject. That is, the subjects used for this 

experiment were all trained sound engineers, but the results might have differed if 

naive subjects had been used since they would have different perspectives on the 

judgment of sound quality. Nevertheless, the results obtained from this experiment 

at least suggest that for sound engineers the effects of interchannel crosstalk on 

perceived sound quality are not always regarded negatively but can be regarded 

positively, depending on the characteristics desired for recordings of different types of 

sound source. For example, for recordings of such ensembles as string quartet and 

orchestra, sufficient spatial impression and natural blending of instruments in an 

overall stereophonic image might be more desired than precise localisation of each 

individual note or instrument. For the recording of such a wide solo instrument as a 

piano, localisation of each individual note might not be as important as a broad spatial 

impression in an overall stereophonic image. In these cases, the perceived quality of 

recorded sound could benefit from the presence of interchannel crosstalk. However, 

for recordings of narrow solo instruments, any decrease in locatedness caused due to 

interchannel crosstalk would become relatively more noticeable compared with a 

similar degree of decrease in locatedness for individual instruments in an ensemble 

and this might become a disturbing factor for listening. 
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4.7 Summary 

A series of subjective experiments were conducted in order to investigate the 

perceptual effect of interchannel crosstalk in multichannel microphone techniques, 

using trained sound engineers. Firstly, elicitation and grading experiments were 

conducted in order to investigate the types of audible attributes and their relative 

weights depending on various physical variables. The independent variables were 

microphone array type, sound source type and acoustic condition. The experimental 

stimuli were created by simulations of multichannel recordings made with the above 

variables. Subjects were asked to compare the perceptual differences between 

crosstalk-on and crosstalk-off sounds. The audible attributes of interchannel 

crosstalk were first elicited from the subjects and only the most dominant ones were 

selected. Then the magnitudes of the selected attributes were graded. The obtained 

grading data were statistically analysed using the repeated measure ANOVA method. 

Finally, the effect of interchannel crosstalk on subjective preference of perceived 

sound quality was investigated in both controlled and practical manners. The 

controlled preference experiment was conducted so that the controlled stimuli of 

crosstalk-off and crosstalk-on, which were used in the previous expenments, were 

compared for preference choice. The practical preference experiment involved 

various recordings of musical performances made with two different three-channel 

microphone techniques of OCT and ICA-3, which differ in the crosstalk 

characteristics. 
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The main findings obtained from the experiments are as follows. 

0 The audible attributes of interchannel crosstalk images elicited from the subjects 

were source width, locatedness, source direction, fullness, source distance, 

hardness, brightness, diffuseness, naturalness, envelopment and phasiness. 

41 Source width and locatedness were found to be the only attributes that were more 

than 'slightly audible'. 

0 In general, the interchannel crosstalk caused an increase in perceived source 

width and a decrease in locatedness. 

0 Statistically, the magnitudes of both source width increase and locatedness 

decrease significantly depended on the ratio of interchannel time and intensity 

differences in three-channel frontal microphone technique. For both attributes, 

an array employing a greater interchannel time difference (conversely, a greater 

intensity of crosstalk signal) caused a greater effect. 

0 Sound source type was a significant factor for the source width effect but not for 

the locatedness effect. In general, the sound source having a broader frequency 

range caused greater source width increase. 

0 Acoustic condition had a significant effect on the locatedness decrease, but not 

on the source width increase. The locatedness decreasing effect became less 

perceptible as the reverberation became more diffused. 

0 Interactions between microphone array type and sound source type, and between 

microphone array and acoustic condition were significant for the source width 

effect, but not for the locatedness effect. The experimental effects for these 

interactions were very small, thus can probably be ignored. 
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0 Interaction between sound source type and acoustic condition was significant for 

the locatedness changing effect, but not for the source width changing effect. 

The experimental effect for this interaction was very small, thus can probably be 

ignored. 

0 For each microphone array type, the source width and locatedness changing 

effects of interchannel crosstalk had a low correlation. 

0 There was no noticeable difference between the crosstalk-on and crosstalk-off 

sounds in the preferences graded by a group of trained sound engineers using the 

controlled stimuli. 

40 Microphone array type, sound source type and acoustic condition had no 

significant effects on the preference grading of the controlled stimuli. 

0 Locatedness and source width attributes were the most salient preference cues for 

the controlled stimuli. 

0 In the comparison between the OCT and ICA-3 microphone techniques, the ICA- 

3 was preferred to the OCT technique for the string quartet and solo piano 

recordings while the OCT was preferred to the ICA-3 for the solo violin and 

percussion recordings (i. e. the OCT had a greater reduction of interchannel 

crosstalk than the ICA-3). 
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5 OBJECTIVE MEASUREMENTS OF THE EFFECTS OF 

INTERCHANNEL CROSSTALK 

The series of experiments described in the previous chapter investigated the perceptual 

effect of interchannel crosstalk. The results showed that the most dominant 

perceptual effects of interchannel crosstalk were the increase in source width and the 

decrease in locatedness. The statistical analysis of the data obtained from the grading 

experiment indicated that the type of microphone array had a significant effect for 

both the source width and locatedness attributes. The effect of sound source type 

was significant only for the source width while that of acoustic condition was 

significant only for the locatedness attribute. 

This chapter discusses the objective measurements that were made to investigate the 

effect of interchannel crosstalk in a perceptual model, and to map the relationship 

between the perceived results and their physical causes. Firstly, the measurement 

model used in this investigation is introduced and the procedure of stimuli creation is 

described. Secondly, the results of the measurements are compared with those of the 

subjective experiment. Finally, the frequency and envelope dependencies of the 

measurements and their relationship with the perceived effect are discussed. 
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5.1 Measurement Model 

The measurement model that was chosen for the current studies was an IACC-based 

width and location prediction model that was developed by Mason et al [2005c]. 

This model was designed to overcome the limitations of the conventional IACC-based 

width measurement technique such as Hidaka et al [1995]'s using impulse response, 

which was discussed in Section 2.3.2.4. In this model, Mason et al attempted to 

develop the IACC into a more complete and practical source width prediction model 

by including a simulation of the binaural hearing system and taking into account the 

effect of physical properties of musical source signals on perceived width. 

This model is particularly suitable for the purpose of the current studies for the 

following reasons. Firstly, it divides the source signal into 22 frequency bands and 

measures them separately, so that the influence of different frequency components of 

the interchannel crosstalk signals on the measurement can be investigated. Secondly, 

the time-variant IACC measurement and the indication of loudness envelope for each 

frequency band enable one to examine the relationship between the temporal 

characteristics of the sound and the measurement. Finally, this model can provide a 

prediction of time variant source location as well as source width. The measurement 

of location change over time might well be related to locatedness perception. A 

block diagram of the main processing stages of this model is shown in Figure 5.1 and 

the basic aspect of each stage is surnmarised in the following sections. More detailed 

descriptions of the principles of this model can be found in Mason et al [2005c]. 
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Figure 5.1 Block diagram of the processing stages of the IACC-based width and 
location prediction model that was developed by Mason et al [2005c] 

5.1.1 Binaural input 

The limitations of using impulse response and the fixed time division value of 80ms 

for separating source-related and environment-related segments were discussed earlier. 

This model is designed to measure musical source signals and the source and 

environment related segments are separated based on perceptual grouping, which is a 

concept inspired by Griesinger [1996,1997]'s 'foreground-background' paradigm that 

was introduced in Section 2.3.1.2. Perceptual grouping is a simple division of a total 

input signal into segments containing physical parameters that are perceived to be a 

source-related attribute, and segments containing physical parameters that are 
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perceived to be an environment-related attribute [Mason et al 2004]. For example, 

reflections arriving before the end of direct sound will be considered to be source- 

related components while the reflections arriving after the end of the direct sound will 

be considered to be environment-related components. 

5.1.2 Filterbank 

In order to take into account the frequency dependency of perceived width, the 

binaural input signal is first divided into a number of frequency bands in the early 

stage of processing. This enables one to investigate the properties of the signal for 

different frequency ranges. 

5.1.3 Half-wave rectification and low-pass filtering 

This stage is included to simulate a physiological phenomenon in the binaural hearing 

system that is related to the perception of width. Mason et al [2004] found that in 

order to accurately predict the perceived width of high frequency stimuli, it is 

necessary to simulate the breakdown of phase-locking in the ear. The breakdown of 

phase-locking causes the fine temporal detail at higher frequencies to be lost and 

therefore the perceived width of high frequency stimuli to be dependent on the IACC 

of the signal envelope. This effect is simulated by passing the input signal through 

half-wave rectification and a 6th order Butterworth low-pass filter with a cut-off 

frequency of 1 kHz prior to the IACC measurement of the signal. 
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5.1.4 Windowing 

It is known that the IACC of musical signals varies over time and this can be 

perceived. In order to predict the perceived width of a musical signal with a time- 

variant IACC, the signal is divided into a number of time windows and the IACC is 

measured in each window. The length of each window used for the current model is 

50ms, although it may vary between 35ms and 80ms depending on whether the 

prediction should be made for the most critical listener or an average listener. 

5.1.5 Loudness measurement 

The effect of loudness on perceived width was investigated by Mason et al [2004 et 

al] with a number of narrow-band stimuli and it was found that the perceived width of 

a source signal had a loudness dependency. In order to take this into account in the 

prediction model, the sound pressure level (SPL) of the input signal in each time 

window for each frequency band is measured. The result is converted into the value 

of phons and sent to the processing stage of loudness and frequency compensation. 

5.1.6 Cross-correlation calculation 

The IACC is calculated using the IACF (interaural cross-correlation function) 

described in section 2.3.2.3. The common IACC is the maximum 'absolute' value of 

229 



5 Objective measurements of interchannel crosstalk 

IACF. In this model, however, the maximum value of IACF is taken because the 

positive and negative polarity of the value is considered to be related to different 

perceived effects. 

5.1.7 Loudness and frequency compensation 

It was mentioned above that the relationship between the perceived width and the 

measured IACC of a sound depends on the frequency and loudness of the sound. 

The dependencies on these physical factors of a sound should be taken into account in 

the measurement model; otherwise direct comparisons of the predicted widths will be 

possible only for the sound sources having identical characteristics of frequency and 

loudness [Mason 2004 et al]. Therefore, the differences in frequency and loudness 

are compensated in order to increase the accuracy and practicality of the prediction. 

5.1.8 Temporal smoothing 

Although it is known that the IACC of a sound varies over time, it is not clear how the 

variations are perceived temporally. Therefore, in order to model the temporal 

response of human hearing system to the varying width, Mason et al [2004] 

investigated subjective effects of the variations of IACC over time on width 

perception. It was found that decreases in the IACC appear to be perceived more 

rapidly than increases. This is simulated in this model by selecting the optimum 
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measurement window length, as described previously and using a complex state- 

dependent filter with a relatively fast onset and a slow offset. 

5.1.9 Detection of interaural intensity difference 

For each measurement window for each frequency band, the interaural intensity 

difference (11D) is detected by the measurement of the difference between the mean 

sound pressure levels in each channel. 

5.1.10 Detection of interaural time difference 

The value of time offset r that relates to the peak in the measured cross -correlation 

is the prediction of the interaural time difference (ITD). 

5.1.11 Combination of localisation cues 

The resulting data of the IID and ITD are combined using a trade-off equation based 

on subjective data from Damaschke et al [2000]. 
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5.1.12 Analysis and output 

The data for the width and location detections described above are integrated and the 

results are converted to angles based on data of from Kuhn [19771. Displays of the 

final outputs of width and location measurements are shown in Figure 5.2. 
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(b) Display of the result of location measurement 

Figure 5.2 Displays of the width and location measurements made using the model 

developed by Mason et al [2005c] 
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5.2 Stimuli Creation 

For the measurements, a set of binaural stimuli needed to be created first. For this, 

the stimuli used for the subjective experiments were reproduced in the same listening 

room that was used for the listening test and the created sound field was recorded 

using a dummy head placed in the listener position. The recorded binaural signals 

were converted into wave sound files so that they could be processed by the computer 

based software. The original stimuli were found to be too long to be processed. 

Therefore, selective excerpts of around 1.6 - 2.0 seconds were taken from the original 

stimuli and they were created as the new sound files for measurement. The selection 

of the excerpts was made so that they included representative temporal characteristics 

of the sound sources (e. g. note and bow changes for the cello, syllable changes for the 

speech, and ongoing hits for the bongo). Examples of the waveforms of the short 

anechoic stimuli created for each sound source are shown in Figures 5.3 to 5.5. 
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a 

(a) Cello 

(b) Bongo 

(c) Speech 

Figure 5.3 Waveforms of the binaural stimuli used for the objective measurement 
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5.3 General Overview of the Source Width and Location 

Measurements 

The plots in Figures B-1 to B. 9 (see Appendix B) show the source width 

measurements made in 22 different octave frequency bands for each experimental 

stimulus. It can firstly be observed that every frequency band exhibits a different 

pattern in the measured source width. Certain frequency bands have erratic 

variations in measurement, occasionally creating large peaks, which mean that there 

were rapid and great IACC changes. However, it can be seen that the predicted 

source widths of most of the frequency bands are crowded in the lower region of the 

plots, being measured relatively consistently in the range approximately between 20' 

and 40'. 

Figures B. 10 - B. 18 show the plots of the source location measurements. The 

variations of locations over time are measured depending on the fluctuations of ITD 

and ITD over time and the pattern of the fluctuations varies with different frequency 

bands. It can be seen from the figures that the average location of the source for all 

frequency bands is approximately in the range between 15' and 20'. 

Figures B. 19 - B. 27 show the high resolution plots produced for representing both 

source width and location measurements in the previous figures at once. Therefore, 

these plots can provide a more integrated visual comparison. The darker and lighter 

parts in the plots represent the relative loudness levels of the sound signal depending 

on the number of frequency bands crowded in a certain measurement region as well as 
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the sound pressure level in each band. For example, the source widths measured for 

single frequency bands are represented as the lightest parts, while those for the largest 

number of frequency bands are in the darkest parts. 

5.4 Comparisons between Measured Data and Perceived Data 

The results of the statistical analysis for the perceived data were presented in Section 

4.4. To recapitulate, the type of microphone array had a significant crosstalk effect 

on both source width and locatedness changes. On the other hand, the type of sound 

source was significant only for the source width change, while the type of acoustic 

condition was significant only for the locatedness change. In order to validate the 

usability of the current prediction model as a tool for analysing the physical factors 

causing the perceived effects, it is first necessary to compare the measured results with 

the perceived results and to discover whether the fonner can be used to predict the 

latter. If they do not match reasonably, it might be because the model does not 

implement all the aspect of complex cognitive aspects of spatial perception. Due to 

the nature of this model using time-varying measurement of IACC, there is no method 

of converting the magnitudes of measured differences between crosstalk-on stimuli 

and crosstalk-off stimuli into single numerical values for statistical analysis. 

Nonetheless, it is possible to measure the magnitudes of the visual changes indicated 

in the measured plots approximately, and compare the general trends between the 

statistical results and the measured results. 
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5.4.1 Difference between microphone arrays 

When comparing crosstalk-on stimuli (LCR) and crosstalk-off stimuli (CR) with 

respect to the magnitude of change in measured source width, it was expected that the 

LCR would appear to have a greater source width than the CR since the addition of the 

crosstalk signal would decrease the IACC. From the plots shown in Figures B. 1 - 

B. 9, it appears in every source type and acoustic condition that the source width 

measurements of CR and LCR have similar trends for microphone array 1, although 

there are some minor differences in the variation pattern of certain frequency bands. 

Microphone array 4, on the other hand, shows more obvious changes between CR and 

LCR in general. There are more frequency bands that produce large peaks in the 

LCR, and therefore the plot of LCR shows more erratic variations in source width 

measurement over time. This means that when the crosstalk signal has a higher ratio 

of time difference to intensity difference, it causes a higher degree of decorrelation, 

leading to the perception of a greater source width. According to Mason [2002] 

asserting the close relationship between the interaural fluctuations over time and the 

IACC, this can be also explained as a more time-difference-based crosstalk signal 

producing a larger magnitude of fluctuations in ITD over time. These measurement 

results agree well with the results of the statistical analysis showing a significant 

difference between microphone arrays. 

With regard to the source location changes between CR and LCR over time, 

microphone array 4 appears to have a greater magnitude of change than microphone 

array I for every source type and acoustic condition (see Figures B. 10 - B. 18). 
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Based on the principle of the model, this suggests that there was a greater magnitude 

of variation in interaural time and intensity differences over time with a stronger 

crosstalk signal. It can be also seen that the general magnitude of change between 

CR and LCR in location is similar to that in width. The variation in location over 

time might also be related to the decrease in locatedness, and if this is the case, the 

results also agree with the statistical results showing that the magnitude of decrease in 

locatedness due to crosstalk became greater with a more spaced microphone array. 

The above observations suggest that the effect of the ratio between interchannel time 

and intensity differences on the perceived crosstalk effect could be well predicted by 

the current measurement model. 

5.4.2 Difference between acoustic conditions 

It was shown above that array 4 has more obvious changes between CR and LCR than 

array 1 overall. However, from Figure B. 1 - B. 9 the magnitude of source width 

change between CR and LCR in array 4 appears to differ slightly with different 

acoustic conditions. However, the magnitude of difference between each acoustic 

condition appears to be minor compared to that between each microphone array, and 

the measured results do not seem to differ greatly from the statistical results which 

showed that the difference between each acoustic condition was statistically 

insignificant. 
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In respect of location predictions, it generally appears that the changes between CR 

and LCR for the anechoic stimuli are more obvious than those for the room or hall 

stimuli. This might be due to complex reflections and reverberation causing the 

interaural relationship of both crosstalk-off and crosstalk-on stimuli to become similar. 

However, the difference between the room and hall stimuli in the change between CR 

and LCR is relatively difficult to determine. The statistical results in Chapter 4 

indicated that the magnitude of the locatedness change between CR and LCR 

significantly decreases from the anechoic to the room conditions, and the room to the 

hall conditions. It seems apparent that these statistical results agree with the above 

mentioned visual indication of the measured results. 

However, the objective measurements designed to predict source width might not 

explain all aspects of the perceived effects. It is suggested that the relationship 

between the source width change and the acoustic condition is more related to certain 

psychoacoustic factors than to physical factors. It has been discussed earlier that the 

perception of reverberation is mainly related to the perception of LEV (Listener 

Envelopment) [Hidaka et al 1995, Bradley and Soulodre 
. 
19951. Also, based on 

Griesinger [1996,1997]'s hypothesis suggesting the separate perceptions of 

foreground and background streams, reverberation is related to the perception of BSI 

(Background Spatial Impression) rather than that of ASW (Apparent Source Width) 

and ESI (Early Spatial Impression). Therefore, the effect of source width increase 

that was perceived in the anechoic condition might have been more or less 

independent of the effect of reflections and reverberation in the room and hall 

conditions. 
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5.4.3 Difference between sound sources 

For comparison between the magnitudes of source width change for each sound source, 

two cases can be considered separately depending on the behaviour of predicted 

values in different frequency bands. The first is for source widths determined by the 

frequency bands in which predicted values vary erratically, and the second is for those 

determined by the frequency bands crowded in the lower region of the plots in which 

predicted values remain relatively consistent. With respect to the former case, the 

cello appears to have more obvious changes between CR and LCR than the bongo and 

speech. However, with respect to the latter case, it appears that the speech source 

gives rise to the most obvious change between CR and LCR. The cello does not 

seem to give rise to much difference between CR and LCR in this case. For example, 

it appears that most of the peaks for the cello source arise erratically in a single or a 

small number of frequency bands (Figures B. 1 - B. 3), while those for the speech 

source arise relatively regularly in a larger number of frequency bands (Figures B. 7 - 

B. 9). The differences between the cello and speech sources can be clearly observed 

also in the high time resolution plots. For the cello source (Figures B. 19 - B. 21), it 

can be seen that the predicted source width of the lighter parts in the LCR is much 

greater than those in the CR, while there is no noticeable change in the source width of 

the darker parts. However, for the speech source (Figures B. 25 - B. 27), although 

there are not such rapid and erratic variations as with the cello source, the colour of 

the parts where there are major source width changes is darker compared to the cello 

source. This means that the speech source has a larger number of frequency bands 

giving rise to source width changes compared to the cello source, thus having greater 
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loudness. This might suggest that the source width changes for the speech source 

would have been more audible than those for the cello due to the richness of frequency 

bands that gave rise to the changes. In this regard, the measurement results seem to 

agree with the perceptual results showing that the speech source had the greatest 

crosstalk effect on the change in source width. 

From a slightly different point of view, it might be further proposed that some kind of 

cognitive aspect was involved in the perception of source width change. That is, 

plausibility of the change in each frequency band might have been taken into account 

in the detection of audible changes. The 'plausibility hypothesis' of Rakerd and 

Hartmann [1986], which was introduced in Section 2.2.3, suggests that unreasonably 

large ITD cues produced by the interaction between direct sound and room reflections 

are ignored by the brain in the process of localisation and only plausible ITD cues are 

used. Similarly, the rapid and large variations in IACC (or rapid and large ITD 

fluctuations) shown in the measurement results would have been recognised as 

implausible cues by brain, and therefore disregarded in the process of source width 

perception. 

Based on the reflection studies that reported the frequency dependency of source 

width perception, it might also be questioned whether the actual frequency itself had 

an effect on the difference between the sound sources. For example, based on the 

reports of Morimoto and Maekawa [1988], Hidaka et al [1995] and Mason et al 

[2005b], the low frequency dominance of the speech source over the bongo or cello 

source could be claimed to be the main factor for the greater source width change. 
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However, it can be observed from Figures B. 28 - B. 60 that each sound source has 

similar patterns of source width changes for similar frequencies, and this suggests that 

the differences between sound sources were not simply dependent on the frequency 

components of the sources. This issue will be further discussed in Section 5.5. 

For the location measurements, it appears that the physical changes caused by the 

crosstalk signal are most obvious for the cello source as the patterns of the occasional 

large peaks for a number of frequency bands become more erratic in the LCR 

compared to the CR. Compared to the cello, the speech and bongo sources appear to 

have smaller changes between the CR and LCR in the patterns of location variation 

over time. That is, the major location changes are observed for a smaller number of 

frequency bands. This means that the cello produced a greater magnitude of 

interaural fluctuations over time compared to the speech and bongo, and this can be 

explained as follows. In terms of the temporal characteristics of the sound sources, 

the cello has a more continuous form than the speech and bongo, even though there 

are ongoing fluctuations in the envelope caused by note and bow changes. In 

addition, the cello has the slowest onset time for a new sound event, and the longest 

duration between each onset. Therefore, the cello has a higher potential for 

continuous interactions between the wanted signals (C and R) and the crosstalk signal 

(L) compared to the relatively more transient speech and bongo, thus having greater 

interaural fluctuations over time. The dominance of continuous sound over transient 

sound in the magnitude of interaural fluctuations over time was confirmed by Mason 

et al [2005a]. However, it is difficult to directly determine the correspondence 

between the measured results and the perceived results. This is because the physical 
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predictors of the locatedness attribute, unlike the source width attribute, have not been 

much researched yet, and therefore there is a lack of information about how the 

temporal variations of source location for certain frequency band signals would affect 

locatedness perception. That is, even if there were some measured differences 

between CR and LCR in the magnitude of source location change for certain 

frequency bands, perceptually this might not be important for locatedness change. 

5.4.4 Discussions 

From the above investigations, it generally appears that the current measurement 

model provides reasonable predictions about the perceptual effects of interchannel 

crosstalk on source width changes. It is apparent that the measured results strongly 

agree with the perceived results showing that the ratio of interchannel time and 

intensity differences in microphone arrays has a dominant effect on the magnitude of 

source width increase due to interchannel crosstalk. The effect of acoustic condition 

on the perceived source width increase does not seem to be explained fully by the 

visual indications of the measured plots, and it is proposed to be more related to the 

psychoacoustic effect of multiple reflections and reverberation with a wide range of 

delay times on the perceptions of different spatial impressions. The perceived effect 

of sound source type is also not directly predicted by the visual indications of the 

measured results. However, based on the hypothesis made in the above section, the 

measured results seem to match the perceived results reasonably well. 
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The location measurement results show that the ratio of time and intensity differences 

exhibited by the microphone array also has an obvious effect on the difference 

between crosstalk-off and crosstalk-on stimuli, which seems to match the perceived 

results. For the effects of acoustic condition and sound source type, on the other 

hand, it is not as easy to define the relationship between the measured data and the 

perceived data. However, as mentioned above, the objective predictors of the 

locatedness attribute have not been established yet, and therefore simple temporal 

variations in source location that are dependent on the fluctuations in ITD and ITD 

could not be directly applied for the prediction of the easiness of localisation. 

Therefore, further investigation needs to be conducted to understand the mechanism of 

locatedness perception. 

A possible hypothesis for the effect whereby interchannel crosstalk decreases the 

perception of locatedness could be proposed based on the combined effect of the 

temporal characteristics of source and the rate of ITD fluctuation. Firstly, the onset 

transient of each sound event, such as each note and syllable for complex musical 

source signals, would be responsible for operating the precedence effect, leading to an 

instantaneous localisation of the source. As shown in Mason et al [2005a], the 

magnitude of ITD fluctuation would be very small at the onset, and therefore there 

would be little variation in location. This could be considered to be when the 

localisation is the most accurate, leading to the locatedness being at the highest degree. 

During the ongoing part of the sound event, however, the role of precedence effect in 

accurate sound localisation would become less dominant as suggested in the literature, 

whereas the pattern of JTD fluctuation would become more erratic since the crosstalk 

244 



Objective measurements of interchannel crosstalk 

signal interacts with the wanted signals more, depending on the frequency bands 

involved. Here the degree of locatedness might be determined by the rate of ITD 

fluctuation. As discussed in Section 2.6, if the rate of the ITD fluctuation is low, the 

sound image will be perceived to be moving. However, this effect will disappear at 

higher rates and the image will be perceived to have an increased source width. This 

is based on the 'localisation lag' effect [Blauert 1972]. Since the spectral 

characteristics of the musical signals are complex, the fluctuation rate would be likely 

to vary randomly from low to high over time. From this, it can be considered that 

both the locatedness and source width attributes would be randomly perceived during 

the length of the ongoing part. The rate of variation between the locatedness and 

source width would be likely to be very high and this might be the reason for the high 

correlation between the locatedness and source width perceptions, which was shown 

in Chapter 4. It is further considered that the rate of ITD fluctuation would be likely 

to vary for different frequency bands, and if this is the case, the locatedness perception 

would be frequency-dependent. For example, the frequency bands fluctuating in ITD 

at low rates over the duration of the ongoing part would contribute to the perception of 

locatedness, while those at high rates would contribute to the perception of source 

width. However, the lengths of onset and ongoing parts of a sound are also 

considered to be important for locatedness. For example, it seems apparent that a 

series of transient hits of bongo sound will be highly located. A continuous speech 

sound having frequent and rapid syllable changes or a continuous cello sound having 

fast and strong note changes might have reasonably good locatedness as the 

precedence effect will be operated constantly. On the other hand, a cello or trumpet 

sound having a note that rises slowly and is sustained for a long duration is likely to 
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have poor locatedness. 

From the above discussion, it is considered to be hard to further attempt to establish 

the relationship between the perceived locatedness-changing effects of interchannel 

crosstalk and their physical causes by using the results of the location measurements 

obtained from the current model. The investigation into the perceptual mechanism of 

the locatedness attribute is considered to be a challenging research topic that is beyond 

the scope of this project and worthy of further research. Therefore, the following 

sections will discuss the aspects of source width measurements only. 

5.5 Influence of Frequency Components on Increase in Source 

Width 

It was shown from the visual indications of the measured plots that the pattern of 

source width change between CR and LCR varies depending on the frequency band 

concerned. In order to investigate the frequency dependency of the source-width- 

increasing effect of interchannel crosstalk, the pattern of each frequency band was 

analysed in detail for each sound source. Only the stimuli for microphone array 4 

were considered in this investigation because array 1 appeared to indicate no obvious 

changes between CR and LCR overall. 
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5.5.1 Cello 

From the observation of the measured differences between CR and LCR for each 

frequency band of the anechoic cello stimuli, it was possible to separate the frequency 

bands into four groups based on the variation patterns. The centre frequencies 

included in each goup are shown below. 

0 Group 1: 150,250,455, and 570Hz 

6 Group 2: 700,845,1000,1175, and 1375Hz 

0 Group 3: 1600,1860,2160,2510,2925,3425,4050,4850, and 5850Hz 

0 Group 4: 7000,8600, and 10750Hz 

Figure B. 28 shows the measurements made for the frequency bands of group 1. It 

can be firstly observed here that there is no great difference between CR and LCR. 

The source width measured over time is relatively constant in both CR and LCR. 

However, for the frequency bands of group 2, the changes between CR and LCR 

become obvious in that the LCR has a greater magnitude of source width and a more 

erratic pattern of variations than the CR (Figure B. 29). In comparison with the 

loudness plot of the source signal shown in the figure, it can also be observed that the 

peaks of the measured source width over time for each frequency band in the LCR 

appear to correspond to the peaks of the loudness envelope of the frequency band 

signal. The overall plots of the frequency bands also appear to be largely related to 

the envelope of the overall waveform shown in Figure 5.3. Figure B. 30 shows the 

measurements of the frequency bands of group 3. Even though there are obvious 

changes observed between CR and LCR for these frequency bands also, the patterns of 
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source width increase for them appear to be different from those for the lower 

frequency bands shown above. The changes are mainly due to the random and sharp 

peaks, and therefore no envelope dependency is found. On the other hand, the 

measurements of the highest frequency bands of group 4 shown in Figure B. 31 have 

similar trends to those of the lowest frequency bands. That is, the source width is 

mostly constant over time, and no obvious change between CR and LCR is observed. 

This is likely to be due to the simulation of the breakdown of phase locking that is 

included in the process of the current model. It was mentioned earlier that the human 

hearing system fails to detect fine temporal details at high frequencies due to the 

breakdown of phase locking, and the perceived width becomes dependent on the 

IACC of the signal envelope rather than the signal itself [Mason et al 2004]. From 

this, it is considered that the source widths of those higher frequency bands were 

determined by the envelope of the signal having relatively low frequencies. 

The measurements of group I for the room- and hall-reverberant stimuli reflect the 

effect of the reverberation signals on the increase in perceived width, as shown in 

Figures B. 32 and B. 36. It can be seen that the large peaks occur more continuously 

for the hall -reverberant stimuli compared to the room-reverberant stimuli, and this 

might be due to the longer decay tail of the hall reverberation causing large interaural 

fluctuations more continuously. However, it can be commonly seen in both cases 

that the measurements vary in regular patterns depending on the temporal 

characteristics of the source. In comparison between the measurements and the 

signal waveform, it can be seen that the large peaks occur at the dips of the signal 

envelope in general. This is likely to be because the decorrelated reverberation 
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signal caused large fluctuations in TTD and HD in the space between the notes or 

between the vibratos, and therefore decreased the IACC greatly. However, in terms 

of the magnitude of the overall predicted source width, it appears that there is no 

obvious difference between CR and LCR. This means that the crosstalk signal did 

not have much effect at the low frequencies where the reverberation had much effect 

on the width increase. However, for the measurements of group 2 frequency bands, 

the effect of reverberation decreases as shown in Figure B. 33 and B. 37. There are 

more obvious changes between CR and LCR for these frequencies and they appear to 

occur at the peaks of the loudness envelope for each frequency band. The 

measurements of group 3 frequency bands for the room-reverberant stimuli show a 

similar trend to those for the anechoic stimuli, having a large number of random and 

sharp peaks in. the LCR causing the differences from the CR (Figure B. 34 and B. 38). 

Similarly to group 1, group 4 shows some effects of reverberation at the dips of the 

envelope, but no obvious change in the magnitude of source width is observed 

between CR and LCR (Figure B. 35 and B. 39). 

5.5.2 Bongo 

For the measurements of the bongo stimuli, the frequency bands can be separated into 

four groups in the same manner as shown for the cello stimuli. Firstly, it can be seen 

from Figure B. 40 that the measurements of the frequency bands of group I for the 

anechoic bongo stimuli change regularly over time depending on the envelope of the 

signal in both CR and LCR. The peaks appear to occur at the offset of each transient 
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hit, and this is likely to be due to the influence of the decorrelated resonant sound 

during the decay. However, the differences between CR and LCR do not appear to 

be dominant for these frequencies. For the frequency bands of group 2, there are 

more noticeable differences between CR and LCR as can be observed in Figure B. 41. 

The LCR appears to have slightly greater widths in general and more large peaks than 

the CR. However, these differences seem to be relatively small compared to the 

differences observed at the same frequency bands of the cello stimuli. However, it is 

interesting to note that the measurement of each frequency band in the LCR appears to 

be related to the signal envelope. Whereas the peaks of the measurements for the 

lower frequency bands occur at the dips of the signal envelope, the peaks for these 

-frequency bands occur at the peaks of the signal envelope. Figure B. 42 indicates 

that the measurements change more randomly at the frequency bands of group 3, but 

the differences between CR and LCR are relatively small. The measurements for the 

highest frequency bands shown in Figure B. 43 (group 4) appear to be similar to those 

for the lowest bands in that the noticeable variations in the measurement occur at the 

dips of the signal envelope although their magnitudes are smaller. It can also be seen 

that the differences between CR and LCR are negligible. 

It can be generally observed from Figures B. 44 - B. 51 that the measurements of both 

the room- and hall-reverberant bongo stimuli have similar trends to those of the 

anechoic stimuli in terms of the position of temporal variation. For example, large 

variations for the group 1 frequencies occur at the dips of the signal envelope while 

those for the group 2 frequencies occur at the peaks. It is interesting that the hall and 

room reverberations do not show any noticeable difference in terms of the duration of 
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the large variations. This is contradictory to the case of the cello stimuli for the same 

groups of frequency bands, which show that the hall reverberation causes large peaks 

more continuously after the offset of a note than the room reverberation. A possible 

explanation for this is as follows. At low frequencies the onset transient energy of a 

bongo hit might have perceptually masked the energy of the long and diffused 

reverberation generated at the offset of the previous hit, thus resulting in a high 

interaural cross-correlation at every new hit regardless of the length of the 

reverberation signal. It can also be seen that the peaks for the reverberant stimuli at 

the low frequencies are greater than those for the anechoic stimuli, and this is likely to 

be due to the maximised effect of reverberation on decorrelating the ear signals after 

the end of the sound as pointed out by Griesinger [1996]. For the frequency bands of 

group 2, there appear to be fewer large and sharp peaks for the reverberant stimuli 

compared to the anechoic ones. However, the peaks are observed only for a couple 

of frequency bands and therefore their effects on the increase of perceived width do 

not seem to be great. The overall magnitudes of differences between CR and LCR 

do not appear to vary much between the anechoic and the reverberant conditions. 

5.5.3 Speech 

It was shown above that the frequency bands of the cello and bongo stimuli can be 

separated into four groups depending on the relationship between the signal envelope 

and the pattern of temporal variation in measurement as well as the magnitude of 

difference between CR and LCR. Even though the frequency bands of the speech 
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stimuli can also be separated into groups depending on the same principles, the 

number of groups and the range of frequencies belonging to each group differ from the 

cello and bongo. There are a total of three groups of frequency bands that show 

different trends in the measurements, as indicated below: 

0 Group 1: 150,250,455, and 570Hz 

0 Group 2: 700,845, and 100OHz 

0 Group 3: 1175,1375,1600,1860,2160,2510,2925,3425,4050,4850,5850, 

7000,8600, and 10750Hz 

The measurements made for the group I frequency bands of the anechoic speech 

stimuli are shown in Figure B. 52. It can be seen that for both CR and LCR, the 

measurements increase at the dips of the signal envelope, in other words in the space 

between each syllable. However, the difference between CR and LCR appears to be 

very small. For the frequency bands of group 2, as shown in Figure B. 53, there are 

more obvious differences in the measurements between CR and LCR for these 

frequency bands. The temporal variations in the measurements for the LCR appear 

to occur at the peaks of the signal envelopes of the corresponding frequency bands. 

Finally, Figure B. 54 indicates that the measurements made for the frequency bands of 

group 3 have more erratic temporal variations compared to those for the lower 

frequency bands. Due to the sharp and random peaks, none of the frequency bands 

appear to exhibit envelope-dependency. However, it is interesting to note that with 

all the frequency bands of this group considered together, there are certain temporal 

regions where the large peaks become crowded (e. g. in the region around 1.3 - 1.4 
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seconds), and the envelope of the crowded peaks appear to be related to the signal 

envelope. 

In general the measurements of the reverberant stimuli shown in Figures B. 55 - B. 60 

have similar trends to those of the anechoic stimuli described above. It is noticeable 

that the magnitudes of the large variations observed for the lowest frequency bands 

increase slightly as the reverberation becomes more decorrelated. However, there is 

no obvious change between CR and LCR in the magnitude of the measured width, 

which suggests that the crosstalk does not have much effect at these frequencies. 

5.5.4 Discussions 

The influence of frequency on the effect of interchannel crosstalk was investigated 

with respect to the source width attribute using the current measurement model. The 

main findings from this investigation are surnmarised and discussed below. 

Firstly, for the frequency bands up to 570Hz, the comparisons between the crosstalk- 

on and crosstalk-off stimuli of all source types in the measurements of source width 

showed no obvious differences. This suggests that the source width increasing effect 

of interchannel crosstalk is small at low frequencies. Even though the addition of 

room or hall reverberation caused large temporal variation in the measurements 

regularly at the offset of sound, there was no obvious change in the magnitude of 

difference between the crosstalk-on and crosstalk-off stimuli. 
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Secondly, at the middle frequencies, the crosstalk appeared to have the most obvious 

effect on the increase in the measured width. It was possible to separate the middle 

frequencies into two groups depending on the pattern of temporal variations in the 

measurements and the magnitude of the variations. For the anechoic cello and bongo 

sources, the lower-middle frequency bands of the crosstalk signal from 70OHz to 

1375Hz appeared to cause regular temporal variations in the measurements in that the 

width increase generally occurred at the onset or ongoing part of the signal envelope. 

A similar effect was observed for the anechoic speech source, but the upper threshold 

of the frequency bands was lower (100OHz). For the upper-middle frequency bands 

of the anechoic cello and bongo sources (160OHz - 500OHz), the measurements had 

rapid and random temporal variations with large peaks. For the anechoic speech 

source, the range of the frequency bands having a similar effect was greater compared 

to the cello and bongo sources, covering high frequencies up to 10750Hz. 

Finally, for the cello and bongo sources, the source width increasing effect of crosstalk 

was greatly diminished for the high frequency bands from 700OHz to 10750Hz. Also 

the patterns of the temporal variations in the measurements became very similar to 

those at the low frequencies. This is likely to be because the IACC was measured by 

the envelope of the signal rather the signal itself based on the process of the current 

model simulating the loss of fine temporal details in the measurement of IACC 

[Mason et al 20041. 

From the measurement results, it is interesting to compare the frequency-dependent 

patterns of the crosstalk signal and the acoustic reflections or reverberation. At the 
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low frequency bands, the addition of room or hall reverberation certainly increased the 

general predicted width of the stimuli compared to the anechoic condition while 

keeping the magnitude of the small difference between crosstalk-on and crosstalk-off 

measurements. This occurred at the offsets of the sound rather than the onsets; these 

are where the maximum interaural fluctuations are produced from the reflections and 

reverberation [Griesinger 1996]. However, at middle frequencies, the effect of 

reflections and reverberation disappeared dramatically whereas the effect of crosstalk 

became dominant. These findings seem to validate the dominant role of low 

frequency components of reflection and reverberation on width perception which was 

discussed in Chapter 2, but also give rise to a question of why the interchannel 

crosstalk did not have a similar pattern of frequency dependency. The crosstalk 

signal and the reverberation basically have different natures. Firstly, crosstalk is a 

single signal that is derived from the source itself while reverberation consists of 

multiple reflections that are indirect and decorrelated from the source. Secondly, the 

delay times of acoustic reflections are normally much longer than that of the crosstalk 

signal. This might suggest that the different characteristics of the crosstalk and the 

reflection or reverberation produce different perceptual attributes that cannot be 

simply defined as source width. According to Griesinger [1996], as discussed in 

detail in Section 2.3.1.2, the width perception caused by the low frequency energy of 

reflection or reverberation after the offset is related to ESI or BSI rather than source 

width. Griesinger [19971 hypothesises that source width is perceived only when the 

reflection arrives within the onset duration of the direct sound. From this point of 

view, the range of the delay time of the crosstalk signal used in the current studies (0.5 

- 1.1 ms) is small enough to contribute to the perception of source width. 

255 



Objective measurements of interchannel crosstalk 

It was also found that the source width increase caused by crosstalk at the lower- 

middle frequencies mainly occurred around the onsets of the signal envelope rather 

than the offsets, which is contradictory to the case of the effect of reflections and 

reverberation. This might also be due to the fact that the crosstalk signal arrives 

within the onset duration of the wanted signals. In other words, the dominance of the 

middle frequency effect seems to be due to the relationship between the pattern of 

interaural fluctuation and the delay time of the lagging signal. The range of delay 

times involved in the crosstalk signal corresponds to approximately the wavelength of 

signals around 1,000 Hz, and therefore strong interaural time and intensity fluctuation 

(thus low IACQ might have occurred at the middle frequencies. However, with 

reflections having longer delay times, the effect of interaural fluctuation on source 

width increase might have occurred at the lower frequencies. Based on this 

assumption, it might be generally suggested that the measured effect of the frequency 

component of the secondary signal on source width perception might be dependent on 

the range of delay time of the secondary signal. However, it is dubious that the low 

frequencies of the crosstalk signal, which did not cause any obvious measurement 

changes, would have had virtually no effects on the increase of perceived source width 

since a number of researchers including Morimoto and Maekawa [1988], FEdaka et al 

[ 1995] and Mason et al [2005b] have suggested that low frequencies would be 

important for the 'perception' of source width independent of the 'measurement' of 

IACC. It might be that different perceptual source-related attributes could be 

perceived dependent on the frequencies of secondary signal but independent of the 

IACC measured for those frequencies. However, the audibilities of those frequency- 

dependent attributes might be related to the magnitude of the measured IACCs. This 
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requires further investigation. 

It was observed from the results that the upper-middle frequencies generally had the 

greatest variations in width measurements among all frequency bands. However, as 

suggested earlier, it might be that these variations were implausible for perception as 

they are too rapid and large. In other words, the brain might use some kind of 

cognitive process (or rapid decision making process) for interpreting the width of a 

sound depending on the frequency band of the sound. If this is the case, the upper- 

middle frequency bands might have been cognitively excluded in the subject's width 

judgments in the perceptual experiments described in Chapter 4. 

The frequency dependency shown in the above measurement results might suggest 

that the perception of source width increase due to interchannel crosstalk is mainly a 

middle frequency phenomenon. However, a further subjective investigation would 

be required to confirm this. It might also be hypothesised from the measured results 

that different kinds of width attributes could be perceived for different frequencies. 

In other words, the source width attribute of the interchannel crosstalk effect might 

include perceptual sub-attributes depending on the frequency components of the 

crosstalk signal. If this is the case, new terminologies describing the detailed 

perceptual attributes will be required. For investigating these, a subjective elicitation 

experiment needs to be conducted, comparing crosstalk-on and crosstalk-off stimuli 

with the crosstalk signal band-pass filtered for various centre frequencies. This 

investigation can also be extended to a further investigation into the effect of 

frequency components of early reflections on source width perception. Although 
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there have already been a number of investigations conducted on this topic as 

introduced in Chapter 2, there seems to be no definite answer yet. This seems to be 

mainly because different researchers tend to use different terms for the same effect, or 

the same term for different effects, due to the lack of standard way of defining subtle 

perceptual attributes. 

5.6 Summary 

This chapter described the investigation into the objectively measured effects of 

interchannel crosstalk. The measurement model chosen for this investigation was an 

IACC-based width and location prediction model that was developed by Mason et al 

[2004]. This model was particularly useful for the current studies since it employs 

various frequency bands and loudness of complex and continuous musical signals. 

Firstly, the correspondences between the measured data and the perceived data were 

examined. For this, the measurements of the crosstalk-on stimuli and crosstalk-off 

stimuli were compared with respect to the independent variables, which were the type 

of microphone array, the type of sound source, and the acoustic condition. It was 

found that the measurements for the source width attribute matched the perceived data 

reasonably well. The temporal change of source location was also measured. The 

measured result showed a very similar trend to the statistical result of the locatedness 

attribute with respect to the type of microphone array, although it was difficult to 

judge the similarity between them for the other independent variables. However, the 

psychoacoustic and physical mechanism of the locatedness attribute has not been 
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established yet, and therefore the locatedness change might not be defined as the 

temporal change of measured location based on the simple interaural time and 

intensity relationship. A potential hypothesis on locatedness perception was 

proposed in Section 5.4.4. The influence of the frequency component and its 

relationship with the signal envelope were investigated with regard to the source width 

increasing effect of interchannel crosstalk. It was found that at low frequencies up to 

the centre frequency of 570Hz there was no obvious crosstalk effect although the 

addition of reflections and reverberation caused the general width of the stimuli to be 

increased at the offsets of the signal envelope regardless of the existence of crosstalk. 

At the middle frequencies up to around 100OHz, the source width increasing effect of 

crosstalk was most dominant, having a positive correlation with the onsets of the 

signal envelope. At the higher frequencies, the measurements became largely erratic 

and the envelope dependency disappeared. These results might suggest that the 

significance of low frequency energy on the increase of source width, which has been 

largely accepted in concert hall acoustics research, is dependent on the delay time of 

the reflected signal and its relationship with the onset duration of the direct signal. 

They also seem to suggest that the perception of increased source width due to 

interchannel crosstalk is mainly a middle frequency phenomenon. However, the 

frequency and envelope dependencies that were observed from this investigation seem 

to lead to a hypothesis that different frequencies cause different types of source width 

perception. To confirm the above findings, further subjective and objective 

investigations are required. 
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6 SUMMARY AND CONCLUSIONS 

This final chapter summarises the research and experimentation documented in this 

thesis and outlines the main conclusions resulting from the associated work. Further 

works that may be extended from the research described in this thesis are also 

discussed. 

6.1 Summary and Conclusions 

Chapter 0 

This opening chapter introduced the background and aims of the research described in 

this thesis. Interchannel crosstalk is an inevitable artefact in the design of 

multichannel microphone technique and its effects on perceived sound quality have 

been an issue of debate recently. However, to date no experimental data has been 

available on the perceptual effects of interchannel crosstalk and therefore there is 

consequently no experimental data to which sound engineers can refer when 

attempting to control interchannel crosstalk in the design and application of 

multichannel microphone technique. The current research was therefore undertaken 

in order to obtain a clearer understanding of the perceptual properties of interchannel 

crosstalk. The specific aims were as follows: 

0 To elicit perceptible auditory attributes of interchannel. crosstalk and weight their 

relative audibilities. 
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41 To analyse significances of the effects of such physical variables as microphone 

array configuration, sound source type and acoustic condition of recording space 

on the perception of interchannel crosstalk. 

0 To map the relationship between the perceptual effects of interchannel crosstalk 

and relevant physical cues. 

0 To examine the subjective preferences for sound images created with interchannel 

crosstalk. 

6.1.2 Chapter 1 

In chapter 1, the sunu-ning localisation theory, which fonns the basis for 2-0 

and 3-2 stereophonic phantom imaging, was reviewed. Particularly, the 

individual influence of the interchannel time difference (ICTD) cue or 

interchannel intensity difference (ICIID) cue on specific phantom image 

locations and the trade-off relationship between the two spatial cues, which 

becomes the basis for designing near-coincident multichannel microphone 

technique, were discussed. The concept of stereophonic recording angle 

(SRA) in stereophonic microphone technique was covered and the basic design 

and operational principles of conventional 2-0 stereophonic microphone 

techniques were briefly reviewed. The unique localisation characteristics of 

3-2 stereophonic reproduction were discussed, including the limitations in 

respect of side image localisation. Current 3-2 stereophonic microphone 

techniques were divided into those with front and rear separation and those 
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with five-channel main microphones. The design and operational principles 

of those microphone techniques were reviewed in detail and their 

characteristics with respect to interchannel crosstalk were discussed. From 

this, it was suggested that: 

41 For the microphone techniques with front and rear separation, which would be 

likely to prove more practical and flexible than the five-channel main microphone 

techniques in terms of controlling direct sound localisation and spatial impression 

separately, interchannel crosstalk would be a matter of importance only for the 

front arrays due to the typically large distance between the front and rear arrays. 

40 None of the current three-channel front microphone techniques seems to be 

perfectly optimised with regard to interchannel crosstalk. 

a Interchannel. crosstalk might not necessarily decrease the perceived sound quality. 

0 Interchannel crosstalk in three-channel microphone technique might not 

necessarily be problematic with regard to balanced phantom image distribution 

across L-C-R, but would primarily influence the perception of certain auditory 

attributes depending on the interchannel time and intensity relationship involved 

in the signal. 

6.1.3 Chapter 2 

Chapter 2 reviewed the literature related to the perceptual effects of reflections in 

concert halls and rooms since it was considered likely to act as a useful basis for 

understanding the perceptual effects of interchannel crosstalk in multichannel 
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recording and reproduction. The auditory attributes influenced by the addition of 

reflection were divided into three main categories: localisation, spatial impression and 

timbre, but this review was solely focused on the categories of localisation and spatial 

impression since the timbre-changing effects had not been studied widely or 

documented in detail in the literature. Various aspects of the precedence effect, 

which becomes the main psychoacoustic principle for accurate auditory localisation in 

reflective environment, were discussed. The effects of such physical cues as the 

onset transient and low frequency content on triggering the precedence effect were 

also considered. Additionally, it was noted that the precedence effect was not a 

simple low-level physiological phenomenon but involved a high-level cognitive 

process of human perception. The conceptual properties of spatial impression (SI) 

and different perceptual paradigms of apparent source width (ASW) and listener 

envelopment (LEV) were reviewed. Various physical parameters that had been 

considered for measuring SI in concert hall acoustics were discussed in detail, 

including intensity and direction of reflection, frequency component of sound source, 

interaural cross -correlation coefficient (IACC) and fluctuations in ITD and IEID. 

Additionally, the relationship between IACC and fluctuations in ITD and IIID was 

considered. From this review, it was hypothesised that: 

0 Since both reflection and interchannel crosstalk have the similar form of a 

delayed secondary signal and most of the reflection studies were conducted by 

means of simulation using a stereophonic reproduction system, the results of these 

studies might become the basis for hypothesising the perceptual effects of 

interchannel crosstalk in multichannel microphone technique 

0 Accuracy of phantom image localisation in multichannel microphone technique 
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would be affected by the presence of interchannel crosstalk depending on the 

temporal and spectral characteristics of the source signal. 

0 Interchannel. crosstalk would cause the perceived source width to be increased 

depending on such factors as intensity of crosstalk signal, frequency components 

of source signal, IACC and fluctuations in ITD and IIID over time. 

41 Interchannel crosstalk might affect various timbral attributes depending on the 

temporal and spectral characteristics of source signal. However, the perceived 

magnitudes of the tone colouration effects of interchannel crosstalk might be 

minor compared to those of reflections due to the relatively short delay time of 

crosstalk signal. 

6.1.4 Chapter 3 

Chapter 3 described subjective experiments that were undertaken to investigate the 

effects of interchannel time and intensity relationship and sound source type on the 

perception of phantom image attributes in 2-0 stereophonic reproduction using trained 

sound engineers. In the first experiment, the perceptual attributes of stereophonic 

phantom images were elicited through subjective comparisons between monophonic 

source images and the corresponding stereophonic phantom images. From this 

experiment it was concluded that: 

0 The perceptual attributes of 2-0 stereophonic phantom images elicited for piano, 

trumpet and speech sources comprised three spatial attributes (source focus, 

source width and source distance) and three timbral attributes (brightness, 
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hardness and fullness). 

In the second experiment, the perceived magnitudes of those attributes were graded 

for various interchannel time and intensity relationships and sound source types. The 

resulting data were statistically analysed and the correlation between each attribute 

was discussed. From this experiment, it was concluded that: 

0 The effect of sound source type was significant for all attributes except source 

distance. 

0 The effect of interchannel time and intensity relationship was significant only for 

source focus and source width attributes. 

0 Source focus and source width were correlated at a high level. 

6.1.5 Chapter 4 

Chapter 4 described a series of subjective experiments that were conducted to 

investigate the perceptual effects of interchannel crosstalk in 3-2 microphone 

technique using trained sound engineers. Firstly, the perceptual attributes of 

interchannel. crosstalk for the cello, bongo and speech sources were elicited 

through subjective comparisons between crosstalk-off (CR) and crosstalk-on 

(LCR) stimuh that were created using the interchannel relationships involved 

in various types of critical linking three-channel microphone arrays. Then, 

the relative perceptual weightings of those attributes were graded and the 

attributes that were perceptually most dominant were selected. From this 
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experiment, it was concluded that: 

0 The perceptual attributes of interchannel crosstalk that were elicited for cello, 

bongo and speech sources comprised source width, locatedness, source direction, 

fullness, source distance, hardness, brightness, diffuseness, naturalness, 

envelopment and phasiness. 

0 Source width and locatedness were the most dominant of these. 

The perceived magnitudes of the effects of microphone array type, sound 

source type and acoustic condition on the perceived magnitudes on the selected 

crosstalk attributes, which were source width and source locatedness, were 

graded and the resulting data were statistically analysed. Additionally, the 

correlation between the two attributes were analysed for each microphone array 

type. From this experiment, it was concluded that: 

0 Changes in microphone array type from a more coincident array to a more spaced 

array resulted in significant increases of perceived source width and significant 

decrease of perceived locatedness of phantom images. 

0 Sound source type was a significant factor for the source width increasing effect 

of interchannel crosstalk but not for the locatedness decreasing effect. The 

speech source, which had the broadest frequency range, caused the greatest 

increase in source width. 

0 Acoustic condition was a significant factor for the locatedness decreasing effect 

of interchannel crosstalk but not for the source width increasing effect. As the 

reverberation became more diffused, the locatedness decreasing effect became 

less perceptible. 
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0 For each microphone array type, the source width- and locatednes s -changing 

effects of interchannel crosstalk had a low correlation. 

The effect of interchannel crosstalk on sound quality preference was also 

investigated in both controlled and practical manners using trained sound 

engineers. Firstly, the crosstalk-on and -off stimuli that had been used for the 

previous experiments were compared for preference. Then, 'real world' 

recordings made with three-channel microphone techniques of OCT and ICA-3 

were compared for the musical sound sources of string quartet ensemble, solo 

percussions, solo violin and solo piano. From these experiments, it was 

concluded that: 

0 In the controlled experiment, there was no strong preference found on either 

crosstalk-on or crosstalk-off stimuli. 

0 Microphone array type, sound source type and acoustic condition had no 

significant effects on the preference grading of the controlled stimuli. 

0 Locatedness and source width attributes were the most salient preference cues for 

the controlled stimuli. 

0 From the results of the comparison between the recordings made with the OCT 

and ICA-3 microphone techniques, it was suggested that the preference for 

interchannel crosstalk would be likely to be dependent on the characteristics of 

the sound source. 
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6.1.6 Chapter 5 

The objective measurements of the effects of interchannel crosstalk, which were made 

for the controlled stimuli from the perceptual experiments described in Chapter 4 

using the IACC-based source width and location prediction model developed by 

Mason et al [2004], were described in chapter 5. Firstly, the correspondences 

between the perceived data and the measured data were investigated by comparing the 

statistical results presented in Chapter 4 and the visual indications in the measured 

plots. The influences of the independent variables of microphone array type, sound 

source type and acoustic condition on the perceived results were also discussed, based 

on the measured results. From this investigation, it was suggested that: 

0 Interchannel crosstalk of a more spaced microphone array would cause a higher 

degree of interaural decorrelation than that of a more coincident microphone array, 

thus leading to the perception of a greater source width. 

0 The source width increasing effect of interchannel crosstalk would be 

perceptually independent from the influence of diffused reverberation in the room 

and hall conditions since reverberation would be likely to contribute to a 

perception of listener envelopment (LEV) or background spatial impression (BSI). 

0 The source width increasing effect of interchannel crosstalk would be more 

perceivable for the sound sources that have more plausible variations in IACC 

over time. 

It was also investigated how the frequency components of interchannel crosstalk 

influenced on the measured source width. From this, it was concluded that: 
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41 At low frequencies up to around 570Hz, there was no obvious width change due 

to interchannel crosstalk. On the other hand, room and hall reverberation caused 

the measured widths of both crosstalk-on and crosstalk-off stimuli to be increased 

at the offsets of 'signal envelopes. However, this effect of reverberation 

disappeared at the higher frequencies. 

0 At low-middle frequencies up to around 100OHz, interchannel crosstalk caused 

obvious and regular width increases at the onsets of signal envelopes. 

0 At high-middle frequencies above around I OOOHz, interchannel crosstalk caused 

obvious but erratic width increases, which might have been implausible for 

perception. No envelope dependency was observed. 

0 At high frequencies above around 700OHz, the effect of interchannel crosstalk on 

width increase was minor. 

0 The frequency dependency of source width increasing effect of secondary signal 

n-dght be related to the delay time of the crosstalk signal. 

6.2 Further Work 

It was shown in Chapter 5 that the increase of width due to interchannel crosstalk, 

measured using an auditory model based on time-variant IACC, was produced by the 

middle frequencies of the crosstalk signal around 100OHz rather than the low 

frequencies. However, it needs to be determined whether the measured results would 

correspond to the perceptual results with regard to the source width increasing effects 

of other frequency components of crosstalk signal, since a number of authors reported 
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that the low frequencies caused a significant source width increase independently of 

IACC value [Morimoto and Maekawa 1988, Okano et al 1994 and Mason et al 2005]. 

As mentioned in Chapter 2, Barron and Marshall [1988] reported that different 

frequency components of the delayed secondary signal produced different auditory 

width attributes. For example, the low frequencies contributed to the perception of 

6 envelopment' while the middle frequencies broadened the 'source width'. However, 

in their paper the term envelopment was said to be related to the source. This might 

suggest that the different frequency components of the crosstalk signal could give rise 

to a multidimensional perception of various kinds of 'source-related' attributes, 

requiring a further subjective investigation. In fact, the term source width has been 

used for describing a single dimensional concept by most authors. However, there 

has been a lack of standard descriptions for this attribute and therefore it is possible 

that the generic term 'source width' has been used for describing different perceptual 

concepts. For this reason, it might be necessary to conduct a systematic elicitation 

experiment for creating standard descriptions for perceived source-related width 

attributes depending on the frequency components of secondary signal. This work 

will require a group of trained and critical listeners that are able to distinguish subtle 

spatial differences. 

Throughout the cur-rent research, locatedness has been recognised as one of the most 

salient attributes arising from interchannel crosstalk. However, the psychoacoustic 

and physical mechanism of locatedness perception has not been clearly known to date. 

Since locatedness is likely to be an important criterion that determines perceived 
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sound quality in sound recording, this issue needs further attention. In Section 5.4.4 

a novel hypothesis was proposed on the mechanism of locatedness perception. It was 

hypothesised that locatedness for complex and continuous musical sources would not 

only depend on the simple precedence effect but would also be affected by the rate of 

ITD fluctuations during the ongoing part of sound. In any validation experiment for 

this hypothesis, the use of musical sound sources might be unsuitable since it would 

be difficult to control the fluctuation rate correctly due to their complex temporal and 

spectral characteristics. Therefore, it might be more appropriate to employ such 

controlled stimuli as amplitude-modulated sinusoidal or frequency-modulated noise 

signals, similarly to Blauert [1972]'s or Grantham and Wightman [19781's approaches 

respectively. 
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Appendix A LOCALISATION OF NATURAL SOUND 

SOURCES IN 2-0 STEREOPHONIC SOUND 

REPRODUCTION 

This appendix describes a subjective experiment carried out to investigate the 

localisation characteristics of natural sound sources in 2-0 stereophonic reproduction 

and to develop a novel interchannel time and intensity trade-off function that can be 

used for the design of stereophonic microphone techniques. Since 1940, a number of 

stereophonic localisation experiments have been conducted to investigate the 

independent influence of interchannel time difference (ICTD) or interchannel intensity 

difference (ICID) on the position of a phantom image perceived between two 

loudspeakers. The data obtained from these kinds of experiments could become the 

basis for the design of stereophonic microphone techniques since the localisation of 

phantom images and the relevant stereophonic recording angle (SRA) rely on the 

interchannel relationship between the recorded signals. However, the results of those 

experiments are divergent depending on the type of sound source used (e. g. noise 

[Mertens 1965], wide-band speech [de Boer 1940, Leakey 1959, Wittek 2000], speech 

and maracas [Simonsen 1984]). Arguably, the localisation data that have been most 

widely quoted for microphone technique design are Simonsen [19841's, which were 

obtained using speech and maracas as sources. Williams [1987] used Simonsen's 

data for developing a ICTD-ICID trade-off relationship for the phantom image 

locations of 10', 20' and 30' and this relationship was used for the analysis of SRAs 

for existing stereophonic microphone techniques and the design of his own 

multichannel microphone technique. However, Simonsen's data differ largely in 
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ICID values from the data obtained by Wittek [2000] using a speech source. This 

seems to suggest that data obtained in a specific experimental condition might not be 

directly applied to localisation in a different condition. Even though sound 

recordings made with microphone techniques deal with musical sources in most cases, 

to date experimental data related to the localisation characteristics of musical sources 

have not been presented apart from those of Simonsen's using maracas. This seems 

to be due to the complex nature of musical sources making it difficult to control 

experimental variables. However, it seems more valid to use the data obtained with 

musical sources for the design of microphone techniques since they are most likely to 

be encountered in practical situations. From this background, it was decided to 

conduct the current localisation experiment using various musical sound sources as 

well as speech, which have different temporal and spectral characteristics. 

The current experiment investigated the independent influences of ICTD and ICID on 

the localisation of phantom images at the locations of 10', 20' and 300. Then, 

significances of the differences between the results obtained with different sound 

sources were statistically analysed. Finally, it was attempted to develop a trade-off 

function of ICTD and ICID. 
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A-11 Experimental Design 

A. 1.1 Test method 

In most localisation tests, the listener is presented with sound stimuli created with 

various interchannel differences in regular intervals and asked to judge the locations of 

the perceived phantom images. This type of method is useful if it is desired to obtain 

a continuous localisation curve and error bars for perceived angles. However, it was 

not deemed appropriate for the current listening test because the purpose of this 

experiment was to obtain useful values of ICTD and ICID required for specific 

phantom source locations of 10', 20' and 30', rather than perceived angles for certain 

interchannel values. Therefore, this test was designed so that the listener adjusted 

ICTD or ICID using a slider provided in a control interface to match the positions of 

the phantom images to those of the markers indicated at +10*, +20" and +30' between 

the loudspeakers. Time delay or intensity attenuation was applied only to the left 

channel so that the phantom image appeared only in the centre-right region. In this 

way it was expected to obtain more accurate values of ICTD and ICID that worked 

specifically for the desired angles. The position of the 30" marker was the centre 

axis of the loudspeaker. The listeners were allowed to listen to the stimuli repeatedly 

until they were completely sure about their decisions. The listeners were asked to 

face the front consistently while listening to the sounds. 

The control interface was developed using Cycling 74's 'MSP' software shown in 

Figure A. 1. The range of ICTD that could be applied on the left channel was from 0 
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to 5ms with the interval of O. lms. However, the scale shown in the slider was 

presented with the representative numbers of 0 to 50 in order to prevent the listener 

from being biased by their experience and knowledge about the influence of ICTD. 

The range of ICID scale was from 0 to -100, where 0 represents zero difference and - 

100 represents -c-dB, and the resulting values were later transformed into the 

corresponding decibel values. When the listener adjusted ICTD, ICID was 

maintained at 0, and vice versa. The order of the angles to be judged was 

randomised for each stimulus in order to avoid a psychological order effect. 

Sound 1 MIN ( 

Sound source 
PLAY 

selection 

Time Intensity 
difference difference 

Figure A. 1 Control interface for the localisation test developed using Cycling 74's 

MSP software 

A. 1.2 Sound stimuli 

Five sound stimuli were chosen for this experiment, comprising: 

0 Piano 'staccato' note of C3 (fo = 130Hz) 

0 Piano 'staccato' note of C6 (fo = 1046Hz) 

0 Trumpet 'sustain' note of Bflat3 (fo = 228Hz) 
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0 Trumpet 'sustain' note of Bflat. 5 (fo = 922Hz) 

0 Continuous speech 

The piano and trumpet were chosen in order to examine the effect of temporal 

characteristics of different musical instruments (i. e. transient vs. continuous). For 

each musical source, low and high notes were chosen and this was for investigating 

the effect of spectral characteristics. The speech source was included for its 

broadband frequency spectrum as well as complex temporal characteristics. Also, 

since a number of earlier localisation tests used speech sources, the use of a speech 

source in this test was considered to be a useful reference for a comparison between 

the results of the current test and the earlier tests. It was decided to use single notes 

instead of performance extracts in order to control the variables strictly. Ideally all 

the sound sources would have been recorded under an anechoic condition, but this was 

unavailable. Alternatively, the piano sources were recorded in a small recording 

booth of studio B at the Metropolis recording studios, using a single cardioid 

microphone (Schoeps CMC 5-U) placed about 30cm over the hammers for the desired 

notes. The piano was completely covered with thick cloth in order to reduce 

unwanted acoustic effects as much as possible. The trumpet sources were recorded 

in a small overdub booth of Studio 3 of the University of Surrey, using a single 

cardioid microphone (AKG 414 B-ULS) placed about lm away from the instrument. 

The recording space was acoustically isolated and had no audible reverberation. In 

order to investigate the continuous nature of the trumpet strictly, the onset and offset 

transients of the trumpet sources were removed by fading in and out the beginning and 

ending for one second each, and the total duration of the stimulus was four seconds. 
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The speech signal was chosen because it is a mixture of both transient and continuous 

natures with the wide range of frequencies. The speech recording used was Danish 

male speech that was anechoically recorded for the Bang and Olufsen's Archimedes 

project. An English speech recording was also available in the CD, but it was 

decided to use a foreign language rather than English in order to prevent the listener 

from paying attention to the language itself. 

A. 1.3 Physical setup 

The listening test was conducted in the ITU-R BS. 1116 listening room at the 

University of Surrey. Two Genelec 1032A loudspeakers were arranged in the 

standard configuration, with a distance of 2.4m between them. 

A. 1.4 Test subjects 

A total of five listeners took part in the test. All were critical and experienced 

listeners, including research staff and doctoral students at the Institute of Sound 

Recording of the University of Surrey. Because of the nature of the test requiring 

highly critical listening skill, it was decided to employ a relatively small number of 

experienced listeners rather than a large number of inexperienced listeners, and repeat 

the test three times for each listener in order to ensure a sufficient amount of data for 

analysis. 
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A. 2 Results and Discussions 

A. 2.1 Basic localisation characteristics 

Figure A. 2 shows the results of the localisation test using pure ICTD cue. The plots 

represent the median values and associated 25ffi and 75ffi percentile bars for the 

subjective data obtained. Firstly, all the subjects found that it was almost impossible 

to localise the high note trumpet. The low note trumpet, on the other hand, was 

reasonably localisable but the subjects still found it difficult to localise easily because 

the positions of phantom images randomly changed even with a very small head 

movement. For the transient piano sources, both low and high notes are relatively 

well localised. The localisation difficulty for the continuous trumpet notes with pure 

ICTD seems to confirm the literature reporting the importance of transient component 

in localisation relying on the time difference between two sounds [Rakerd and 

Hartmann 1985,1986, Wallach et al 1949, Zurek 1980]. This result might also be 

explained by Rakerd and Hartmann [1986]'s 'plausibility hypothesis', suggesting that 

the ongoing cue of a pure tone is unreliable (or implausible) for localisation. 
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Figure A. 2 Localisation by pure time difference: Median values and associated 25t" 

to 75thpercentile 

It appears that the low piano note was localised slightly more certainly than the high 

piano note. Bank and Green [1973] found that for transient noise signals, low 

frequency components below about 200OHz were essential for accurate localisation in 

stereophonic reproduction. Based on Yost etal [1971], this is because low frequency 

transients excite more space in the cochlear partition than high frequency ones and 

excite more fibres, thus producing more substantial positional displacement. The 
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high note piano used in this experiment has a complex tonal nature containing lower 

harmonics. However, the low note piano has richer low frequency components by its 

nature and this would have led to a better localisation certainty. 

The speech source appears to have the best localisation certainty in general. This 

seems to be due to the fact that the continuous speech source has consecutive 

transients at every syllable change as well as wide frequency range with the 

fundamental frequency of about I OOHz. 

Figure A. 3 shows the results of the localisation test using a pure ICID cue. The 

effect of transient characteristics appears to be less dominant in the case of ICID in 

that the continuous trumpets of both low and high notes were localised reasonably 

well. This seems to suggest that the continuous nature of a sound is plausible when 

ICID cue is used for localisation. In general, however, the results of the ICIID 

localisation have a similar tendency to the results of the ICTD localisation. That is, 

the speech and piano sources were more certainly localised than the trumpet sources. 
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Figure A. 3 Localisation by pure intensity difference: Median values and associated 
25th to 75thpercentile 

From the above results, it can be generally seen that the localisation using pure ICID 

was more stable than that using pure ICTD, which supports the literature. It is 

interesting to observe that for both ICTD and ICID pannings the size of the error bar 

becomes greater as the localisation angle moves from 10' to 30'. This seems to be 

related to the findings of the minimum audible angle (MAA) of Mills [1958]. Mills 

carried out a subjective experiment to measure the smallest angular change of sound 

source that the listener could just detect, which is the so-called 'minimum audible 
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angle (MAA)', using pure tones and it was found that the MAA became larger as the 

loudspeaker pair moved away to the side of the listener. In addition, it can also be 

observed from the results that the shift factors of ICTD or ICID required for the 

phantom source positions of 10' and 20" have almost constant relationships. 

However, the shift factor for 30' appears to be much greater that those for 10" and 20'. 

This phenomenon can also be observed in the classic localisation curves, being almost 

linear up to 75% of the shift region and becoming exponential as the angle increases 

further up to 100% [Wittek and Theile 2002]. The results of both Mills and the 

author seem to suggest that in stereophonic reproduction the listener's sensitivity for 

localising a phantom source decreases as the direction of the source moves from the 

front to the side. 

A. 2.2 Statistical analysis 

In order to examine the significance of the differences observed between the sound 

sources, the 'Friedman' test, which is a non-parametric statistical test, was carried out. 

The 'ANOVA' test, which is a parametric test, was not appropriate for this experiment 

since the panning angle scale (10', 20' and 301) had an ordinal nature and the 

homogeneity of variance required for the ANOVA test was not met in this case. The 

results of this test shown in Table A. 1 indicate that the differences between sound 

sources were not significant for both ICTD and ICID localisations (p > 0.05). 
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ICTD localisation ICID localisation 

N 36 45 
Chi-Square 3.765 5.721 

Df 3 4 
Asymp. Sig. 0.288 0.221 

Table A. 1 Effects of sound stimuli in time and intensity pannings, analysed using the 
Friedman test. 

Since there is no significant difference between sound sources, it is possible to 

combine the data for all sound sources. Table A. 2 shows the overall median values 

and associated 25th to 75h percentiles, and these data are plotted in Figure A. 4 and 

A. 5. It can be noted again in the unified plots that the localisation certainty tends to 

become worse as the angle increases. The increase of median value is almost 

constant up to 20' but becomes steep from 20" to 30". 

Panning 

method 

Angle 25h 

percentile 

median 75ýý 

percentile 

10 3.5 4.0 4.4 

Intensity 20 7.6 8.4 9.25 

(dB) 30 15.4 17.1 19.6 

10 0.22 0.27 0.32 

Time 20 0.41 0.50 0.72 

(ms) 30 0.75 1.1 1.36 

Table A. 2 Overall median values and 25th to 75thpercentiles 
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Figure A. 5 Plots of overall median values and 25"' to 75h percentiles for the ICED 
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The obtained results can be compared with others from similar experiments. As can 

be seen in Table A. 3, the differences among Simonsen, Wittek and the author's results 

are very small regarding the ICTD values. Regarding the ICID values, however, the 

author's results appear to be very different from Simonsen's while they are very 

similar to Wittek's. Generally Simonsen's ICID values are 2-3dB less than Wittek 

and the author's, and this is considered to be significant in that this range of intensity 

differences could cause noticeable angular shifts of phantom images. In fac t, 

Simonsen's values did not satisfy the supposed angular shifts in the informal listening 

test carried out in the ITU-R BS. 1116 listening room at the University of Surrey. 

The differences between the different authors' results seem to have resulted from the 

different experimental conditions, such as the acoustic condition of the listening room, 

the type of sound source used and the number of subjects. 

Researcher De Boer 

[19401 

Simonsen 

[1984] 

Wittek 

[20001 

Lee (author) 

[20041 

Sound 

source 

Speech Speech 

maracas 

speech Speech 

various 

100 5dB 2.5dB 4.4dB 4. OdB 

ICID 20' lIdB 5.5dB 8.8dB 8.4dB 

300 not indicated 15dB 18dB 17.1 dB 

100 0.7ms, 0.20ms; 0.23ms, 0.27ms 

ICTD 20' 1.7ms, 0.44ms, 0.45ms, 0.50ms 

30' not indicated 1.12ms Loms LIMS 

Table A. 3 Comparisons of psychoacoustic values required for the localisation of 10", 

20" and 30' angles 
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A-3 Development of a Time-intensity Trade-off Function 

A. 3.1 Method 

Using the unified localisation data obtained from the current experiment, it was 

attempted to develop ICTD-ICID trade-off functions for the phantom image locations 

of 10', 20' and 30'. The basic combination method used was based on Theile's 

hypothesis, which suggests that the degree of total angular shift of phantom image can 

be calculated simply by summing the angular shifts by individual time and intensity 

differences, provided the individual shift is linear. The simple equation for this 

hypothesis is shown below. 

T(Atq Al) = T(At) + T(Al) 

The unified data plots in Figure A. 4 and A. 5 show that the psychoacoustic values 

required for 10" and 20' shifts are almost linearly increased in both time and intensity 

pannings. In other words, the increasing factors of the 0' - 10' and 10" - 20" shift 

regions are almost constant and therefore it was possible to apply the above 

combination function in this case. In an informal listening test conducted by the 

author and two colleagues who are critical listeners, this combination function was 

found to be valid for the interchannel data of up to the 20" shift region. However, 

this function could not be directly applied for the 30" shift because the shift factor of 

the 20' - 30' region is much greater than those of the lower regions. For example, a 

simple combination of individual shifts by time and intensity such as 
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At(100) + AI(200) will not complete the desired 300 shift if AI(20") is based on the 00- 

20' region. Even if it is based on the region of 10'-30', there will be two different 

shift factors to be considered. Therefore, for the 30' shift, it was decided to divide 

the whole shift region into three effective regions and consider each separately as 

shown below. 

ü(30") =ü (V - 10") +ü(10" - 20") + 15(200 - 3011) 

Shift factors of ICTD and ICID required for each phantom image shift region were 

obtained by simplifying the results of the localisation experiments shown in Figures 

A. 4 and A. 5 within the error ranges of 25th to 75ffi percentiles in such a way that the 

shift regions up to 20' have constant shift factors, as shown in Table A. 4. 

Shift Region ICTD ICID 

00- 100 0.25ms 4dB 

10' - 200 0.25ms 4dB 

200-300 0.60ms 9dB 

Table A. 4 Phantom image shift factors of ICTD and ICID for the shift region regions 

of 0' - 10', 10' - 20' and 20" - 30' 

A. 3.2 Result 

Using the proposed shift factors shown in Table A. 4, various combinations of ICTD 

and ICID were calculated. Figure A. 6 shows the obtained combination curves for 
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each localisation angle. It can be seen that the curves for the 10" and 20" shifts are 

completely linear and the calculated curve for the 30" shift is almost linear. It is not 

clear how the small non-linearity in the middle region is caused, but the difference 

between the manipulated linear curve and the calculated curve does not seem to be 

significant. As a result, three linear ICTD-ICID trade-off functions were developed 

for 10', 20' and 30' shifts. The proposed linear trade-off curves could be 

advantageous to Williams [1987]'s trade-off curves shown in Figure A. 7 in that it 

would be much easier to calculate the required ICTD and ICID for trade-off with the 

linear curves. 
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Figure A. 6 Proposed ICTD and ICID trade-off curves for 10', 20" and 30" images, 

based on the psychoacoustic values obtained from the localisation test (see Table 

A. 2); Plots show the simplified median values and 25th to 75thpercentiles. 
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Figure A. 7 Williams' ICTD and ICID trade-off curves for 10', 20' and 30" images, 

based on the psychoacoustic values obtained by Simonsen [1984] [after Williams 

19871 

A. 3.3 Verification of the proposed combination function 

In order to verify the feasibility of the proposed combination functions, an additional 

subjective listening test was carried out with the identical subjects using the speech 

source in the same listening condition. A total of 17 test stimuli were created with 

various combinations of ICTD and ICID based on the proposed trade-off function, as 

listed in Table A. 5, and the subjects were asked to indicate the perceived locations of 

phantom images using reference markers placed with 5" intervals between the 

loudspeakers. Stimuli A to C were created aiming for 10" imaging, D to H for 20' 

and I to Q for 30". The stimuli were recorded onto computer hard disk and played 

back to the subjects in a random order. Each stimulus was 30 seconds long, which 

289 



AppendixA Localisation of natural sound sources in 2-0 stereophonic sound 
reproduction 

gave the subjects enough time for judgment. Two subjects repeated the test three 

times and three repeated twice. The result of the test is shown in Figures AS to 

A. 10. As can be seen, the phantom images did not always appear at the desired 

locations and this suggests that the proposed combination function is not perfect. 

However, it appears that the deviation between the median angles and the desired 

angles is normally within the range of 2'-3', and this is considered to be acceptable. 

Stimuli Combination Stimuli Combination 

A OdB+0.25ms i 2dB+0.97ms 

B 2dB+O. 13ms K 4dB+0.84ms 

c 4dB+Oms L 6dB+0.71ms 

D OdB+0.5ms M 8dB+0.58ms 

E 2dB+0.38ms N lOdB+0.45ms 

F 4dB+0.25ms 0 12dB+0.32ms 

G 6dB+O. 13ms p 14dB+0.19ms 

H 8dB+Oms Q 17dB+Oms 

I I OdB+1. Ims I 

Table A. 5 Sound stimuli of various time and intensity combinations, based on the 

linear combination functions :A-C for 10', D-H for 20' and I-Q for 30" 
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Figure A. 8 Data plots of perceived phantom image angles for the stimuli A, B and C 

indicated in Table A. 5: Median values and associated 25ffi to 75t" percentiles. 
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Figure A. 10 Data plots of perceived phantom image angles for the stimuli 1, J, K, L, 

M, N, 0, P and Q indicated in Table A. 5: Median values and associated 25th to 75th 

percentiles. 
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Appendix B PLOTS FROM OBJECTIVE MEASUREMENTS 
OF THE EFFECTS OF INTERCHANNEL 
CROSSTALK 
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Figure B. 1 Comparisons of the plots of width measurements for the 'cello' stimuli that 

were created in 'an echoic' condition 
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Figure B. 5 Comparisons of the plots of width measurements for the 'bongo' stimuli that 

were created in 'room' condition 
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that were created in 'anechoic' condition 
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Figure B. 19 Comparisons of the plots of width and location measurements for the 

cello stimuli that were created in 'anechoic' condition 
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Figure B. 20 Comparisons of the plots of width and location measurements for the 

cello stimuli that were created in 'room'condition 
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Figure B. 21 Comparisons of the plots of width and location measurements for the 

cello stimuli that were created in 'hall' condition 
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Figure B. 22 Comparisons of the plots of width and location measurements for the 

bongo stimuli that were created in 'anechoic' condition 

304 



Appendix B Plotsfrom objective measurements of the effects of interchannel 
crosstalk 

80 
60 
40 

0 

ý2C 

40 

ý60 

-80 
c 0.2 OA 0.6 O, B 1,2 

(a) Array 1: crosstalk-off (CR) 

so 60 

40 

20 
o 

0 

-20 

40 

-60 

-80 

80 
60 
40 

-20 

40 

430 

-80 
141.6 0 02 04 0,6 0E 

(b) Affay 1: crosstalk-on (LCR) 

80 
60 

10 
2D 

60 

8D 

1) Oý2 04 (IS 08 11214160 02 04 06 00 1 12 1A 16 

(c) Array 4: crosstalk-off (CR) (d) Array 4: crosstalk-on (LCR) 

Figure B. 23 Comparisons of the plots of width and location measurements for the 

bongo stimuli that were created in 'room' condition 
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Figure B. 24 Comparisons of the plots of width and location measurements for the 

bongo stimuli that were created in 'hall' condition 
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Figure B. 25 Comparisons of the plots of width and location measurements for the 
speech stimuli that were created in 'anechoic' condition 
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Glossary 

GLOSSARY 

ASW Apparent or Auditory Source Width. A spatial concept that was 
derived from concert hall acoustic research, which normally refers to the 
perceived width of sound image that is related to sound source. 

BSI Background Spatial Impression. A concept that was proposed by 
Griesinger [1997], which refers to the spatial perception that is associated with 
the reflections arriving in the foreground stream (see Section 2.3.1.2 for more 
information). 

41 CS1 Continuous Spatial Impression. A concept that was proposed by 
Griesinger [1997], which refers to the spatial perception that is associated with 

continuous sound (see Section 2.3.1.2 for more information). 

ESI Early Spatial Impression. A concept that was proposed by Griesinger 

[1997], which refers to the spatial perception that is associated with the 

reflections and reverberation arriving 120ms, after the end of all foreground sound 

events (see Section 2.3.1.2 for more information). 

0 IACC Interarual Cross -correlation Coefficient. The maximum absolute 

value of IACF over all frequencies in the range between -lms and Ims (see 

IACF). 

0 IACF Interaural Cross-correlation Function. A function that is used for 

calculate the similarity between the signals reaching each ear (see Section 2.3.2.3 

for more information). 

ICA-3 Ideal Cardioid Array - 3. A three-channel microphone technique 

using three cardioid microphones. This technique was proposed by Heiin ann 

and Henkels [1998], based on the 'critical linking' design concept [Williams and 

Le Du 1999,20001 (see Section 1.4.2 for more information). 
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Glossary 

ICID 'Interchannel' Intensity Difference. Phantom imaging of a coincident 
microphone technique relies on the intensity difference between two-channel 
signals. 

ICTD 'Interchannel' Time Difference. Phantom imaging of a spaced omni 
microphone technique relies on the time-of-arrival difference between two- 
channel signals. 

6 11D 'Interaural' Intensity Difference. For a non-median sound source, the 
ear-input signals will have a difference in intensity at frequencies above around 
lkHz due to the head-shadowing effect. 

0 ITD 'Interaural' Time Difference. For a non-median sound source, the ear- 
input signals will have a difference in time at frequencies below around I kHz. 

0 LEV Listener Envelopment. A spatial concept that was derived from concert 
hall acoustics research, which refers to the subjective impression of being 

surrounded by the reverberant sound field. 

MAA Minimum Audible Angle. Listener's ability to distinguish the 
directional change of the sound source decreases as the direction of the source 

moves from the front to the side. 

OCT Optimised Cardioid Triangle. A three-channel microphone technique 

proposed by Theile [2001] aiming to obtain the maximum reduction of 

interchannel crosstalk. This technique employs two super-cardioid microphones 

for the side channels and a cardioid microphone for the centre channel (see 

Section 1.4.2 for more information). 

0 Degree of phantom image shift in stereophonic reproduction. 

S1 Spatial Impression. A spatial concept that was derived from concert hall 

acoustics research, which is normally considered to include two sub-attributes of 

ASW and LEV (see ASW and LEV) - 
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Glossary 

SRA Stereophonic Recording Angle. The sector of the sound field in front 

of the microphone array that is localised at fully left or right between the two 

loudspeakers (See Section 1.2.1 for more information). 
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