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A STUDY OF EXACTNESS FOR DISCRETE GROUPS

by Sarah Janet Campbell

We recall the concepts of exactness for both C*-algebras and groups.
We explore some new properties linked or equivalent to exactness, including
Property A4, a second property we term Property O, and Hilbert space com-
pression [GK2, O, Yu]. We use geometric methods to show that a variety of
groups satisfy these properties. We then deduce that those groups are exact.

In particular we show that Properties O and A are equivalent. We show
that the integers, groups of subexponential growth, amenable groups and free
groups satisfy Property O by constructing a family of Ozawa kernels for each
case. To construct these families we exploit growth properties of the integers
and groups of subexponential growth, Falner’s criterion for amenable groups
and geometric properties of the Cayley graph for free groups. For each of
these groups we deduce that they are exact and have Property A. Finally
we turn to Hilbert space compression to prove our main theorem that groups
acting properly and cocompactly on CAT(0) cube complexes are exact and
have Property A.
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Chapter 1

Introduction

1.1 Introduction

A considerable part of recent pure mathematics rsearch has been centred on
the Baum Connes conjecture. The Baum Connes conjecture was formulated
in the early 80s by Paul Baum and Alain Connes. It conjectures a link be-
tween the K-theory of the reduced C*-algebra of a group and the K-homology
of the corresponding space of proper actions of that group. It has provoked a
lot of interest as it implies some other famous conjectures such as the Novikov
Conjecture. Furthermore it ties together ideas from seemingly different dis-
ciplines such as geometric group theory and analysis. Through work inspired
by the Baum Connes Conjecture, links have been made between many other
different properties and ideas both analytic and geometric. This is shown in

more detail on the diagram on the following page. In particular, this includes

o



work by Higson, Kasparov [HK], Yu [Yu] and others.

The aim of this thesis is to explore a property which strongly links many
of these ideas: exactness of a group. The importance of the property of
exactness can be visualised in the following diagram. Full arrows represent

proven facts. Dotted arrows represent conjectures.

| Groups of Finite Strong
? Asymptotic Novikov
% Dimension Conjecture
| 1
{ Uniform Coarse
| Property A |= Embedding Baum-Connes
i Property Conjecture
1 1
H 3
J |
‘ |
| 1‘
! | I
. I [
" | R Haagerup | Baum-Connes
L Amenable [ | Property | Conjecture

The top line of this diagram represents more geometric ideas which were
linked together in [Yu]. Yu introduced an equivalent property to exactness
called Property A. This property can be thought of as a weaker from of
Fglner’s condition which characterises amenable groups. It implies that the
group is uniformly embeddable in a Hilbert space which in turn implies that

the group satisfies the coarse Baum Connes Conjecture.



It is worth noting that although we know that exactness also directly
implies Hilbert Space embeddability, the converse is not known to be true.
However in [GK2], Guentner and Kaminker have introduced a new invariant
called the Hilbert space compression of a group. Roughly speaking, this
measures the amount of distortion that necessarily occurs when embedding
the group in a Hilbert space. This invariant is linked to exactness since they
showed that if it is strictly greater than 1/2, then the group is exact, i.e. its
reduced C*-algebra is exact. However the converse is not true, since there
exist exact groups for which the Hilbert space compression is less than 1/2.
For example the wreath product of Z with its own wreath product on itself,
denoted Z wr (Z wr Z), is amenable and hence exact yet its Hilbert space
compression is less than 1/2 [AGS, Cor 1.10].

The bottom row represents more analytic ideas. For example, amenable
groups have an invariant mean and are known to be exact. They also satisfy
the Haagerup property, namely that they admit a proper isometric action
on some affine Hilbert space. The Haagerup property links back to both the

Uniform embedding property and the Baum Connes Conjecture.

Exactness of a group was first defined as a property of the group’s C*-
algebra. However more recent research has shown that exactness can be
characterised by other criteria GK][O][Yu] which allow a more geometric ap-

proach.
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1.2 Aims and results of this thesis

Proving that groups are exact by analvtic methods is often a lengthy and
complex process. For example, even proving that a simple group such as the
integers is exact is non-trivial. Exactness for the integers was first proved by
Kirchberg and Wassermann by showing that the integers admit an amenable
action on their Stone-Cech compactification. Our aim is to use more geomet-
ric methods to show that a selection of groups satisfy one of several possible
properties which have recently been shown to be equivalent to exactness
[GK2}[O][Yu].

This thesis first explores some of these properties [GK2, O, Yu]. Yu
was the first to introduce a geometric property equivalent to exactness. He
introduced the now well known Property A which can be thought of as a
weaker form of Folner’s criterion. In the same paper [Yu], he showed that this
property is equivalent to uniform embedding into a Hilbert space and that it
implies both the Coarse Baum Connes and the strong Novikov conjectures.

The next property we study is due to Ozawa [O] and we term it Property
O. This property is also equivalent to exactness. [t asserts the existence of
a family of real valued functions (Ozawa kernels) on the group with certain
properties. The existence of families of Ozawa kernels has been used by
Guentner and Kaminker to prove a theorem relating asymptotic compression

and exactness [GK2, Thm 3.2]. However no explicit examples of families of

Ozawa kernels can be found in the literature.
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Another approach to exactness was recently developed by Guentner and
Kaminker. In [GK2] they studied the Hilbert space compression of a dis-
crete group, a real valued invariant which measures the distortion necessary
to embed the group into a Hilbert space. They showed that for a finitely
generated discrete group if the Hilbert space compression is strictly greater
than 1/2 then the group is exact, ie its reduced C*-algebra is exact. They
illustrated their approach by proving that the Hilbert space compression for

the free group of rank 2 is 1 thus giving a new proof that this group is exact.

In this thesis, after first studying these three properties we go on to show
that Properties A and O are equivalent. Although both are equivalent to
exactness and therefore equivalent to each other, it was unclear as to how
they were directly related. We prove the following theorem by showing that
the existence of a Property A type function implies the existence of a family

of Ozawa kernels and vice versa:
Theorem 1. Property A is equivalent to Pfoperty 0.

We then go on to use some of these properties in order to show that a
selection of groups are exact.

We start with an easy group to define and understand: the integers. This
is known to be an exact group, however proving this is non trivial and requires
the use of analytic concepts such as amenable actions and the Stone-Cech
compactification of a group. We will adopt a different strategy and use purely

geometric features of the group to construct a family of Ozawa kernels. By

12



doing this we prove the following theorem:

Theorem 2. The family of kernels uy constructed in section 5.1 forms a

famaly of Ozawa kernels for the integers Z and so they satisfiy property O.
As a corollary of this theorem, we can deduce
Corollary 1.2.1. Z is an exact group and therefore satisfies property A.

Our construction of a family of Ozawa kernels for the integers relies solely
on a growth property of the group. We are thus able to extend our result
to a far larger class of groups which have a similar characteristic: those with

subexponential growth. We prove the following:

Theorem 3. The family of kernels uy constructed in section 5.2 forms a
family of Ozawa kernels for groups of subexponential growth and so they

satisfy property O.
The following corollary immediately follows:

Corollary 1.2.2. Groups of subexponential growth are exact and therefore

satisfy property A.

The previous two examples rely on growth properties: a relationship be-
tween the volume and the surface of a ball of some radius n. However, in
both cases the sequence of balls of radius n forms a Fglner sequence. Roughly
speaking, Faolner sequences satisfy a property which relates the size of a set
to that of its intersection with another set. The existence of a Fglner se-

quence is a characteristic of a large class of groups called amenable groups.
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We adapt the previous constructions on balls of radius n to a construction

on Felner sets. This allows us to prove the following theorem:

Theorem 4. [C, Thm 2] The family of kernels uy constructed in section

5.3 forms o famaly of Ozawa kernels for amenable groups and so they satisfy

property O.
We can also deduce the following corollary

Corollary 1.2.3. [C, Cor 3.4] Amenable groups are ezact and therefore have

Yu's Property A.

Another well known example of exact groups is the class of free groups.
Although easy groups to define, showing that they are exact is complex. In
[KW, Cor 3.5], Kirchberg and Wassermann prove that these groups are exact
by showing that the reduced C*-algebra of the free group of rank 2 can be
embedded in that of Zy* 73, which in turn is embeddable in the Cuntz algebra
O.. This algebra is nuclear [Wa, p18, 2.1] and any nuclear algebra is exact
[Wa, Property 2.5.1.]. Since a subalgebra of an exact algebra is exact [Wa,
Prop 2.6}, this implies that the reduced C*-algebra of the Fy is exact, and
hence the group itself is exact. They then show that C~ (F,) C Fy, which
implies that free groups of rank n are exact. The reasoning is the same
for Fo, with countably many generators. Finally they show that F with
infinitely many free generators is exact by showing that subgroups generated

by countably many generators are exact and that the collection of these

14



forms a lattice under inclusion [KW, Thm 2.5]. This proof is very analytic in
nature. Our aim is to instead use purely geometric properties of the Cayley
graph to show that free groups satisfy Property O. This allows us to deduce
that these groups are exact.

Qur previous method of exploiting growth properties or subset properties
of the group does not work here, since free groups have rapid growth. How-
ever we are able to use some other geometric properties of the Cayley graph

of a free group to obtain the following theorem:

Theorem 5. [C, Thm 1] The family of kernels uy constructed in section 5./
forms a family of Ozawa kernels for free groups and so they satisfiy property

0.
We obtain the following corollary:

Corollary 1.2.4. [C, Cor 2.4] Free groups are exact and therefore have Yu’s

Property A.

1.2.1 Main result:

We next turn to a very different way of proving that a group is exact. Guent-
ner and Kaminker have shown that the free group of rank 2 is exact by using
Hilbert space compression which they introduced in [GK2]. They also use
geometric properties of the Cayley graph of the free group, in particular that

of unique edge paths and the median property in order to show that the



Hilbert space compression of a tree is 1. This shows that the free group of
rank 2 is exact.

We now come to the main result of this thesis. A tree is a CAT(0) cube
complex of dimension 1. Our aim is to extend Guentner and Kaminker’s
method to any finite dimensional CAT(0) cube complex. The class of groups
acting properly and cocompactly on CAT(0) cube complexes is large, and
includes free groups, finitely generated Coxeter groups, finitely generated
right angled Artin groups, finitely presented groups satisfying the B(4)-T(4)
cancellation properties and all those word-hyperbolic groups satisfying the
B(6) condition. Others are the infinite simple groups constructed by Burger
and Mozes.

Unlike free groups, a general CAT(0) cube complex does not have the
property of unique edge paths between two points, a property which was
used in Guentner and Kaminker’s proof involving Hilbert space compression.
Nonetheless we are able to construct an embedding with Hilbert space com-

pression 1 which generalises Guentner and Kaminker’s theorem as follows:

Theorem 6. [CN, Thm 12]
If G is a group acting properly and cocompactly on o C AT (0) cube complez

then G 1s exact and therefore has Yu's Property A.

16



Chapter 2

C*-algebras , groups and

exactness

In this chapter we will introduce the notions of C*-algebras and group C*-

algebras. We will explain what it means for each of them to be exact.

2.1 ("-algebras

We start by defining two different spaces which are characterised by the

existence of an inner product and a norm respectively.

Definition 2.1.1 (Hilbert space). A Hilbert space is an inner product
space which is a complete metric space with respect to the metric induced by
its inner product.

Definition 2.1.2 (Banach space). A Banach space is a normed space

17



which is o complete metric space with respect to the metric induced by its

norm.

Note that every Hilbert space is a Banach space but the converse is not
true. Every inner product defines a norm (by taking ||z]] =< z,z >/?), but
not every norm can define an inner product.

We will use the definition of a Banach space in a moment in order to
define a Banach algebra and from there a (*-algebra .

We will next define some algebras and relations which characterise C*-

algebras and then give a couple of well known examples.

Definition 2.1.3 (C-algebra). A C-algebra is a C vector space A with a

multiplication satisfying Va, b, c € A and any constant A € C:

alb+c¢) = ab+ac
(a+blc = ac+bc

a(Ab) = (Aa)b

In other words, a C-algebra is one which is both left and right distributive
with respect to its elements and associative with respect to any constant in
C. The simplest example of a C-algebra would be the real numbers.

Definition 2.1.4 (Banach algebra). A Banach algebra is an algebra A

18



over a field F' that has a norm relative to which A is a Banach space and
such that |jab]] < |lall ||b]] for all a,b € A.

An algebra over a field is a Banach algebra if there exists a norm for
which the algebra is a complete metric space with respect to the metric

induced by that norm. In addition the norm must satisfy the above condition

llabl] < |lall ||b]] for all a,b € A. The field is usually taken to be the complex

numbers.

Definition 2.1.5 (Star algebra). A star algebra is an algebra A with a *

operator such that for all a,b € A:

(@) = a
(Ao +pb)* = Xa* +b"
(ab)* = ba”

A star algebra is one for which we can find an operator satisfying the

above conditions. Such an operator is also denoted as a x operator.
Definition 2.1.6 (C*-algebra ). A C*-algebra A is a Banach algebra with
x-operation Ya € A such that || a [[*=]| a™a ||.

A couple of examples are as follows:

Example 1. If H ws a Hilbert Space and B(H) s the algebra of bounded

functions on H, then any closed star algebra of B(H) is a C*-algebra.

19



In fact any C*-algebra is a C*-subalgebra of B(H).

Example 2. If X is a compact Hausdorff space (a space such that any two
points have disjoint neighborhoods), then C(X) ={f: X — C|f continuous}

1s an abelian C*-algebra where:

(fg)(z) = flz)g(z)
) = flz)
I = suplf(z)l

Dually, by the Gelfand-Naimark theorem, any unital abelian C*-algebra
is isometrically isomorphic to C(X) for some uniquely determined (up to

homeomorphism) compact Hausdorff space X.

2.2 Group (*-algebras and exactness

Given a group &, it is possible to construct a C*-algebra associated to it and
a reduced C*-algebra which we will define in a moment. The C"-algebra of a
group is sometimes referred to as its full C*-algebra . Some properties of the
group are carried through to its associated full and/or reduced C*-algebra .
This is a powerful tool which allows us to use both analytic and group theory

methods to prove facts about the group and its full or reduced C*-algebra .

20



2.2.1 The reduced C"-algebra of a group

We first need a few definitions.

First recall that the Haar measure is a non-zero measure 4 on a sigma
ring S, generated by compact subsets of a topological, locally compact group
such that the measure is left or right invariant (u(zA) = p(A) forall z € G
and A € S or p(Az) = p(A) forall z € G and A € 9).

All the following statements refer to a locally compact group G equipped

with the Haar measure.

Definition 2.2.1. LY(G) is the space of integrable functions on G.

LYG) = {f:G—C|[] f(g) | dg < o).

Definition 2.2.2. L*(G) is the space of square integrable functions on G.

L2G)={f:G—C| [|fl9)]*dg < oc}.

If GG is a discrete countable group I with a counting measure, then these
integrals can be represented by a sum. In this case we write £'(T') in place

of LY(G) as shown in the next two definitions.

Definition 2.2.3. /1(T) is the space of summable functions on T.

NI = {f: T—=C|> | flg) < oo}

gel

21



Definition 2.2.4. ¢*(T') is the space of square summable functions on I

Py = {f: T—=C|> | fly) < oo}

gel

Remark 2.2.5. B(1*(T)) is the space of bounded operators on the space (*(I').

We can now define the reduced C*-algebra.

Consider the left regular representation of #*(I") on the Hilbert space /(")
which is defined by (Mg)n)(h) = n(g~th) where g,h € T', n € I*(T"). This
makes each element of /(") into a bounded operator on £*(I") and defines a

homomorphism between £!(T") and the bounded operators on #2(T').

Definition 2.2.6 (Reduced C*-algebra of I'). The closure of this repre-

sentation is the reduced C*-algebra of T.

2.2.2 The full C"-algebra of a group

We now need to define an important norm on elements of #*(T") called the
supremum norm. The C*-algebra of a group I' is obtained by completing the
space £1(I") in this norm.

Take any representation 7 of £1(I") on any Hilbert space. Then define the
norm of an element of £}(T") as the norm of its image in 7. It can be shown

that the supremum of all cyclic norms over all cyclic representations is finite



[D, p184]. This is a norm, also referred to as the maximal norm.
| fll= sup{]| 7(f) ||: 7 is a *-representation of £"(I")}

Definition 2.2.7 (C*-algebra of T'). The completion of £*(T') in this norm

Jforms the full C*-algebra of T.

In some cases the reduced C*-algebra of I' is the same as the full C*-
algebra of I'. For example, if (7 is an abelian group, then the reduced C*-

algebra of G is the same as the full C*-algebra of G.

We now need to define the property of exactness. This requires some
more technical concepts such as tensor products and C* norms. We will go
through them in the next couple of sections and then define exactness for

both C*-algebras and group C*-algebras.

2.2.3 The minimal norm on C*-algebras and the spatial
tensor product

Tensor products provide a way of combining C*-algebras . The minimal norm
allows us to define the spatial tensor product which is used in the definition
of exactness.

We will first define the algebraic tensor product which is the combination

of two vector spaces A, B to form a linear vector space with an additional

| \-]
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bilinear structure.

To obtain bilinearity, consider the vector space
CHA*E) = {Z Me, f)lA e C,e € E| f € F,only finitely many \ O}

Any element is uniquely determined by its finite set of non-zero complex
coefficients A.
Now construct a null space N consisting of finite linear combinations of

elements of the form

(ay + a9, b) — (a1,b) — (a9, b)
(@761 + b2> - (0‘7 bl\) - (a’? bQ)

Aa,b) — (Aa,b) and Aa,b) — (a, A\b)

where a,ay, a9 € A, b, by, by € Band A € C.

Definition 2.2.8 (Algebraic tensor product). The algebraic tensor prod-

uct is the quotient vector space A® B 1= C4*B) /N

The elements 7(a,b) € AOB, a € A, b € B (where 7 denotes the quotient

map of C4*B) onto AG B) are called elementary tensors,denoted a®b. They



have the following properties:

(a1+ag)®b = \a1®b+a2®b
Q@(b1+b2) = CL®51+U,®52

Ma®b) =da®b= a® A

The elements of A® B are finite sums of elementary tensors 3 ;| Aga,®by

where A € C.

Definition 2.2.9 (Algebraic representation). An algebraic representa-
tion of A B where A,B are C*-algebras, is a linear, multiplicative and

x-preserving map from A©® B to B(H) for some Hilbert space H.

To each pair of representations m;, me of C*-algebras A;, A; on Hilbert

spaces H;, Ha, there is a unique algebraic representation (WO, Prop T.5.1.}:
T oM A O A — B(H, ® Hy)

of the algebraic tensor product 4; © As as operators of the Hilbert space

H, ® H, satisfying:
(11 ® m){ay @ ag) = m(a1) @ malaz) € B(H1) © B(H2) € B(H; ®@ Ha)

If both 7 and 7y are injective, then m @ m is injective.

25



Definition 2.2.10 (Faithful). A fasthful representation is one that has ker-

nel 0.

Lemma 2.2.11. The tensor product representation m & m of two faithful

representations wy and wy 18 fasthful.

Suppose 7, and my are faithful representations of A; and A,. Since 7, &y
is injective, the norm on B(H; ® H») can be pulled back to define a norm
on A; ® Ay. This norm is independent of the representations used [WO,

Theorem T.5.15].

Definition 2.2.12 (Minimum norm). This is called the minimum or spa-

tial norm: || 2 [|;om = (71 © 2)(2) [|BrtoH) =l T lmn=| = |5

Definition 2.2.13 (Spatial tensor product). The spatial or minimal ten-
sor product of C*-algebras A, B 1is the completion of A B in || |lmin. It s

usually denoted AR B or A Qi B.

It can be shown [WO, Thm T.6.21], that for any C* norm || |z on

A0 B || 2 llmn<ll z |ls

We will use this norm to define exactness for C*-algebras as follows.



2.2.4 Exactness for C*-algebras

If A, B,C are C™-algebras, o, § are x-homomorphisms, then the sequence
A ~“a B -3 C

is exact if im(a)=ker(0)

A C*-algebra C is said to be exact if for any exact sequence
0 —=J—-B—=B/J—0

the operation of taking the cross product preserves exactness, in other

words the sequence
0 J®mmC—>B®mmC—+B/]®mmC’—> 0

is also exact.

We can now move on to exactness for groups.

2.2.5 Exactness for groups

We say that a group I' is exact if the operation of taking the reduced crossed

product with I' preserves exactness of short exact sequences of ['-C™*-algebras.

[\)
~1



In other words, I' is exact if and only if for every exact sequence of I'-C"-

algebras

0—B-—C—D—0

the sequence
0—CII,B)— CHI',C) — CX(T,D) — 0

of crossed product algebras is exact.
Kirchberg and Wasserman have shown that a discrete group I is exact if

and only if the reduced C*-algebra C*(T') is exact [KW, Thm 5.2].

Known examples of exact groups:

One large class of exact groups is that of amenable groups which amongst
others includes all abelian groups, groups of subexponential growth, Grig-
orchuk’s group and nilpotent groups. Other classes of exact groups include

free groups, word hyperbolic groups and Coxeter groups [GK, DJ, KW].



Chapter 3

Properties related to exactness

Proving that a specific group is exact using the definitions from the previous
chapter may require some powerful and complex analytic tools and theorems.
Further more recent work [O, GK2, Yu] has used them to produce alternative
more geometric properties of groups which are equivalent to or linked to
exactness. The three we will study in this chapter are Property 4, Property
O and Hilbert space compression.

The first alternative and most famous property was introduced in [Yu]

and is known as Property A.
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3.1 Property A

3.1.1 Yu’s Property A

In [Yu], Yu introduced a property for discrete metric spaces based on Fglner
type properties. He called it Property A and showed that it implies the
Hilbert space embeddability property [Yu, Thm 2.2] and the Coarse Baum
Connes conjecture [Yu, Thm 1.1].

Higson and Roe later proved that discreté groups whose underlying metric
space satisfies Property A act amenably on their Stone-Cech compactification
[HR, Thm 1.1]. In conjunction with a result of Anantharaman-Delaroche-

Renault [ADR, Chapter 6], this proves that Property A is also equivalent to

exactness.

The following definition of Property A is Definition 2.1 from [Yu]. We

will use the following notation: for a given metric space and any R > 0, then

Ap denotes {(z,y) € X x X|d(z,y) < R}.

Definition 3.1.1 (Property A). A discrete metric space X 1s said to have
property A if for any R > 0,e > 0 there exist S > 0 and a family (Ay)zex of
finate, nonempty subsets of X x N such that:

o (y.,n) e A, implies (x,y) € Ag

e for all (xy) € Ag,

1A A A)

Y <e¢
Az N Ay
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If a group acts properly and cocompactfy on a space which has Property
A4, then we say that the group has Property A and this implies that the group
is exact. Since it can be considered a metric space property, it allows us to
exploit geometric properties of the Cayley graph of the group. As an example,
in [DJ, Prop 1], Dranishnikov and Januszkiewicz construct a Property A
function for trees by exploiting some of their geometric characteristics such
as unique edge paths between any two vertices and the median property.
They thus show that trees have property A. Since the Cayley graph of any
free group is a tree, and any group acts properly and cocompactly on its

Cayley graph, we can deduce that free groups are exact.

3.1.2 Alternative definitions

As stated in the introduction, Property A is linked to many important con-
jectures such as the coarse Baum Connes conjecture and other geometric
properties such as uniform embeddability into a Hilbert space. As a result
it has been extensively studied and has been shown to have many equivalent

formulations.

Higson and Roe’s definition of Property A

One such alternative definition is found in.[HR, Lemma 3.5] and concerns
discrete metric spaces with bounded geometry. Recall that we say a metric
space X has bounded geometry if for every C' > 0 there exists /V such that

every ball of radius C' in X contains at most NV elements.
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Definition 3.1.2 (Property A, Higson-Roe). A discrete metric space Z
with bounded geometry has Property 4 if and only if there is a sequence of

maps a™ . Z — P(Z) such that

1. for every n there is some R > 0 with the property that for every z € Z,

supp (o) C {2 € Z|d(z,7) < R} and
2. for every K > 0, limy oo SUPy., yyex 107 —aplli = 0

The map a? belongs to-a sequence of probability maps over Z associated
to an element z and indexed by n. For any n, z we have >, a?(z) = 1.

The set supp(al) is the set of points 2’ in Z such that a2(2’) 0. If Z has
property A, then all such points must belong to the ball of radius R around
z. Note that since Z has bounded geometry there is a finite number of such
points.

We consider all pairs of points (z,w) in Z less than some distance K apart.
We calculate the norm of the function a} — a], and find its supremum over
all such pairs as n tends to infinity. If Z has Property A, then this must be

equal to 0 for any choice of K.
FEquivalence of Yu’s Property A and Higson’s and Roe’s definition

The equivalence of these two definitions is proved in [HR, lemma 3.5].

Proof. They first show that the above property implies that Z satisfies Yu's

Property A.



First assume there exist probability maps a? as above. Since Z has
bounded geometry there are a finite number of values a?(2’), 2/ € Z, each of
which lies between 0 and 1. So for each n we can assume by an approxima-
tion argument that they only take values in the range %, < i 3 for
some natural number M.

Next define A,(z) € Z x N by (2,7) € 4,(z) & L < a(2)).

The finite support condition from Yu’s definition is satisfied since the
support of a7 is finite.

Given 2’ € Z, let j» be the largest j such that ; § a?(z"). Then the size
Of An(z) 15 ZZ/EZ jzl.

Since al(2’) only takes values in ﬂ A ff N %, we also have ) ..., M/ =
> ezar(z)) =1. And so we have that 3+ 3 ., j» = 1 and |A,(z) = M.

We also have that |A,(2)Ady(w)| = MljaT —al|l: = [A.(2)] |la? — a1

Using the second hypothesis of Higson and Roe’s definition, we get

An(2)AA, (w)]
lim  sup —-n—(,—>———! = lim sup [l —a.li=0
=00 gl )< K | An(2)] T d(zw) <K

Higson and Roe had previously shown [HR, Lemma 3.4] that

=0

lim s [An(2) A A (w)] =0« lim sup [An(2) 24, ()]
i up x Y
=0 g z,w)< K [An(z) n A (LU) 0 gz w)< K ]An(z>§




Thus we have

lm sup A (2)AA, (w)] _0
Ul

n—=00 4, i< An(2) N Ap(w)]

Yu's second condition is satisfied and Z has Yu's Property A.
They then show that Yu’s Property A implies that their definition holds.

We set

The first support condition is satisfled since A, (z) are finite sets.

Consider [A,(z)AA,(w)]. We have

[An(2)AAn(w)] = DI 5) € A2} + D Hil(Z, 5) € An(w)}]

ZezZ 2eZ
— 2> {5l 5) € Anlz) N Ap(w)}]
ez

Now consider || a? |4, (2)] — a? |An(w)] [|1. We have

a2 | An(z)|=ag, [An(w)] o = D~ 1 {F:1(z',52) € An(2)H={7ul(2, Ju) € An(w)}]

2eZ

In both cases an element (2/, k) must belong to at least one of A, (z) or A,(w)
to affect the calculation. So we can disregard all elements which belong to
neither set. Elements belonging to both sets also do not affect the calculation

and can be disregarded.



Next we consider elements which belong to only one of the sets 4,(z), An(w).

3

Every such element contributes one to the size of |A,(2)AA, (w)|. However,

when calculating [la? [A,(2)] —al |An{w)] ||1, the calculation is based on the
total number of elements in A,(z) and A,(w). They need not be the same
element. Thus an element (2, k) could belong to just one of the two sets yet
not contribute to the sum if there exists some other different element (', k)
belonging to the other set.

So we have

laZ 1A, (2} — a

n
z i | w

[ An(w)] [ < [An(2) A4, (w))

and thus with the second condition of Yu's Property A, we get

. An(w)] ‘ An(2) A AL (w)]
lim  sup ]‘(LZ L‘)J - >‘H < lim  sup |4n(2) - \n\u” =0
N0 e )< K | [An(z)[ 1], 7m0 guj<i An(2)]
By [HR, Lemma 3.4], lim, oo SUPy(, 1)< x %))7‘ =1 and so
lim  sup {al —al]l =0
N0 Gz w) < K
as required. This concludes the proof. D

Higson and Roe’s definition is used in [DJ, Prop 1] to show that trees have
Property A. We adapt their construction later in this thesis to construct a

family of Ozawa kernels and show that free groups have Property O.
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Other equivalent versions of Property 4

Many different versions of Property A, including the two already mentioned
are cited in Proposition 3.2 in [Tu]. In total, six equivalent versions of Prop-
erty A are introduced.

We will cite them here and briefly state how to show they are equivalent.
A full proof can be found in [Tu, Prop 3.2}: Recall that Ag denotes the set

of all pairs of points which are at distance at most S apart.
Proposition 3.1.3. Let X be a discrete metric space with bounded geometry.
The following are equivalent:

1. X has Property A (as expressed in [Yu]): For any R > 0,e > 0 there
exist S > 0 and a family (Ap)zex of finite, nonempty subsets of X x N
such that:

o (y,n)c A, imples (z,y) € Ag
o for all (z,y) € Ag,

i(A: A A

o S«
(AN A,

2. ¥R >0, > 0,35 > 0,3(&,)ex such that

o supp(&:) C Bz, S)
o [ & llnn=1

o || & — & o< € whenever d(z,y) < R
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Definition 2 is actually equivalent to the definition used by Higson and
Roe [HR, Lemma 3.5].
Their definition uses sequences of probability functions. However these

are [* functions [HR, Def 2.1] as required in Tu’s definition.

We also need {, to be to a probability function on X. By definition
2, we know that ||(;]] = 1. We can suppose that (, are non negative.
Thus we have that [|(]] = > .y ¢! = 2,2 G = 1 and hence ¢, is a
probability function as required.

The support condition is immediately satisfied. All that remains is to
check that the final conditions concerning the norm of the differences
of the functions at two distinct points are equivalent. To do this, we
index ¢, by € and set (& = af. We then set ¢ = £ and the result follows.

The converse can be seen in a similar fashion where we set n = %

And so as seen earlier in [HR, Lemma 3.5], the two definitions are

equivalent.
3 VR >0,Ye > 0,359 > 0,3(Xe)zex, Xz € INX), such that

e supp (xz) C B(z,S)

Iz —xyll1/
o el < ¢ whenever d(z,y) < R.
”Xm”ﬂ(x)

Definitions 2 and 3 are equivalent. The fact that 2 implies 3 is obvious

since we can simply take x, = &. To see that 3 implies 2, take £, =



«R—:‘[—~— The support condition is immediately satisfied. We also have:
I

Xy Xy
5%"5 = f + - l
& =&l = || o~ Tl * Tl ~ Tl
Xz — X 1
- { ; Lt Xy < )
ezl !meu llxyllh
JXm“XyHl ; 1
< Py
Izl Pl XxH1 le”l
Xz — Xyl L | 1 _ Ixzlh
el “Xy’“! el Tl ol
HXz - ?\’yi ]Xw’l (Xa:”l |
Xzt ¢zt
24”/\’2_)@/”1
llxz11

Remark 3.1.4. The last step of the above calculation is obtained via

1
Xyl

the triangle inequality. |xzlli = Xz + Xy — Xull1 < lIXe — Xyl + |

Thas guves us i ”Xﬂc”l - X’ylr 1 [ < HXI - XyHl-

And so the required inequality is satisfied.
VR >0, > 0,38 > 0, 3(Ne)eex, nx € *(X) such that
o supp (1;) C B(z,5)

o || 7 llzpn=1

o | ny —my 2o < € whenever d(x,y) < R

Definitions 2 and 4 are equivalent. To see that definition 2 implies 4,

define n, = |6,/*/? and denote by [, the integral with counting measure
Y 15T Y X
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on X. Then the support condition is immediately satisfied and we also

have:

e~ 2o, = / ine — 1,2 < /{ 70 = 1) 112 + 3]

= /X .77:5 - 7773J - “ Ifzi - fgy! Hll(X) < fo - fy“ll(X)

To see the converse, assume that 7, is positive and define &, = 7n2.
The support condition is irnmediately satisfied. We get the desired

inequality from definition 2 as follows:

& —&ll = /mi—mfi:/ e — Myl (M + 1)
X X

< e = myllizexy 1me + mylleoo

1M = myllecoy (Inellizoo + Iy llizx)

< 2ne = nllex

Step 1 to 2 is obtained by using the Cauchy-Schwarz inequality |{f, g)| <
1 fll2llgllo. We can rewrite [(f,g)| as [, f * g. We then take f to be
1z — 1yl and g to be (n; +7,) to get the required inequality [, |7, —
Myl (e + 1) < 1w = myllizoy Ims + myllecx)- Finally, the last inequality

holds because |[7;|[z(x) = 1.

5 YR >0, > 0,35 > 0,3(()eex, G € P(X x N) such that



o supp ((;) C B(z,5) x N

o || & llpxm=1

o || G — G llppxxm< € whenever d(z,y) < R
Definition 4 is equivalent to definition 5. Definition 4 implies 5 since
we can take (;(z,.) to be ny(z) for any n € Nand z € X.
To see that 5 implies 4, let 7,(2) = ||z(2, .)|l2@vy. The support condi-
tion is satisfied. We can check the required inequality of definition 4 as
follows:

s = mllbee = D1 1G(z Mo — 1<z, o]

zeX

< D> gtz ) = ¢z )R

zeX

- ng - gy”%z()(xN)

6. VR >0.Ve > 0,25 >0,3¢ : X x X — R such that

e © is of positive type
e supp © C Ag
o |1 —lx,y)l <e whenever d(x,y) < R
Definitions 4 and 6 are equivalent. To show that 4 implies 6, let

wlz,y) = (Nz,7ny). In this case the support of ¢ is contained in Ass.
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In addition, when two points are less than distance R apart then

L= o(z,) = 3ine = mylib i) < 562

The proof to show that 6 implies 4 is fairly long, so we will just give a
very brief outline of the method. The full proof can be found in [Tu,
p.120].

Given ¢ and ¢, we define an operator dependent on ¢: (T,n)(z) =
Zyex olz,y)n(y). This operator can be shown to be bounded and
positive as well as satisfying several inequalities involving S and R

from definition 6.

We then construct an operator 7, via convolution products on ¢ in-
volving polynomials satisfying specific conditions. These conditions to-
gether with the properties of the operator (T,n)(z) allow us to deduce

that 7, satisfies all the required properties of definition 4.

3.1.3 Comments

Although these properties are expressed in different ways, they all share some

characteristics. They each admit a finite support condition: the set of points

for which the function is non zero must be finite. They also each admit some

condition on the norm of the difference of the function evaluated at a pair of

points less than some distance K apart.

It is worth noting that these definitions are all made on the assumption

that we are working with a discrete metric space with bounded geometry.
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However current research is expanding these concepts to non-discrete metric
spaces. In [DG], Dadarlat and Guentner introduce an idea of exactness
for general (not necessarily discrete) metric spaces. Any group which acts
properly and cocompactly on such a space is exact and has property A.
As a specific example, unpublished work by Claire Vatcher has shown that

unbounded R-trees which admit a geodesic ray have Property A.

We will now move on to another property introduced in [O] which we
term Property O. In the same paper, Ozawa shows that groups satisfying

Property O are exact.

3.2 Property O

3.2.1 Uniform Roe Algebra

Ozawa, defines Property O by using operators belonging to the Uniform Roe
Algebra which we will now introduce.
We start by defining finite width operators. To do this, consider the set

of A: T x I' — C satisfying:
1. 3M > 0 such that | A(s,t) |S M ¥s,t €D

3R > 0 such that A(s,¢) =0 if d(s,t) > R

[a)

These are simply functions which have a finite upper bound for all pairs

of elements of I and which take value zero if the two elements are at distance
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greater than some finite R apart. Note that these may be useful character-
istics when trying to construct operators or functions satisfying Property A4,
since these require finite support.

Each such A defines a bounded operator on £2(T") via matrix multipli-
cation. The bounded operator evaluated at s is the sum over all possible
r & I' of the product of the finite width operator evaluated at (s,r) with an

operator from £2(I") evaluated at r. Here we take £ € ¢*(T).

Ag(s) = > A(s,mE(r)

rel
These bounded operators are referred to as finite width operators.

Remark 3.2.1. The collection of finite wrdth operators 15 a »-subalgebra of

B(&(I')) [GK, p6]

We are now in a position to define the Uniform Roe Algebra [GK, p6]:

Definition 3.2.2 (Uniform Roe algebra). The Uniform Roe Algebra of
T, UC*(T) 1s the closure of the x-algebra 5f finite width operators. It is a
C*-algebra.

The reduced C*-algebra of a group is contained in the group’s Uniform
Roe Algebra. This can be seen as follows:

An element ¢ € I acts on #(T") by the left regular representation. The

action of ¢ € I on £*(I') can be represented by the matrix A defined by

Als,r)=11iff s = ¢r.



To see this, consider §;, the characteristic function of ¢. It takes value
1 if the element is ¢ and O otherwise. We associate every element ¢t € T to
6y € £*(I') which acts by convolution on £2(T).

Take 0; and d, and consider the convolution product.

Op * 5;:(5) = Z 57:(5"’_1)513(7')

rel

This is equal to 1 if t = sr™! (or equivalently s = ¢7) and p = r and 0
otherwise.

Now consider Ady(s) = > . A(s,7)0,(r) where A is the matrix defined
above as A(s,r) = 1iff s = tr.

Comparing d,(sr™) and A(s,7), both are equal to 1 if s =¢tr and p =r
and 0 otherwise. Hence the two are equivalent and the action of ¢ on £*(T)
is represented by the matrix A(s,r).

This means that ¢t € I' is acting as a finite width operator which belongs
to the Uniform Roe algebra of I'. Any element of the group ring is a linear
function of delta functions of group elements. Hence we have that the group
ring C[T'] € UC*(I"). The reduced C*-algebra , which is the closure of the
group ring will also be contained in the closure of the algebra of finite width

operators which is by definition UC*(T"). Hence we have C*(I') C UC*(I').

3.2.2 Property O

We will need the following definition in order to define Property O:
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Definition 3.2.3 (Positive kernel). A positive kernel is a function u: G x

G — R which has the property that for any set of A, \; € R,

k1]

Z AiAsulgi, g;) =0

4.7

In addition, u(g;, g;) = u(g;, g;). Equivalently, this means that the matrix

(g, g;)] € M, is positive for any n and g1, 92, ... g, € G.

Remark 3.2.4. In [GK, GK2, O], the authors call such a kernel positive
definite rather than positive. However since the general convention in the
literature 1s to call this type of kernel positive, that is the notation we will

adopt in this thesis.

In [O], Ozawa introduces the following property which we will call Prop-

erty O:

Definition 3.2.5 (Ozawa’s Property O). A discrete group G s said to
have Ozawa’s Property O if for any finite subset & C G and any € > 0, there

are a finite subset 7 C G and w: G x G — C such that
e 1 is a positive kernel
o u(s,t)#£0 onlyif st™t e F

o [l —u(s,t)j<eifst™tek



The second condition means that « is in fact a finite width kernel. To-
gether with the other two conditions, this means that the identity can be

approximated by finite width positive kernels.

We will use the following notation:
For any given pair (E, ¢) we will call a kernel satisfying the conditions of

Property O an Ozawa kernel.

A family of Ozawa kernels is one for which there exists an Ozawa kernel

for any pair (£, €).

hus a group has Property O if there exists a family of Ozawa kernels on

L i

the group.
We now need the following definition:

Definition 3.2.6 (Nuclear). A C*-algebra A is nuclear iff for any C*-

algebra B, || lmaz=|l |min on the algebraic tensor product A © B.
Ozawa proves the following theorem [O, Thm 3]:
Theorem 7. The following three statements are equivalent:
1. The reduced group C*-algebra C*(G) 1s ezact.
2. G has Property O.
3. The uniform Roe algebra UC*(G) 1s nuclear.

A brief outline of the proof is as follows:
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To show the first equivalence, Ozawa starts by showing that given a
Hilbert space H and any exact C*-algebra A of B(H) there exists a uni-
tal, positive, finite rank operator f satisfying ||f(z) —z|| < e for all € > 0 and
z € E where £ C A. He defines u(s,t) = (0;,0(05-1)0;). Using properties
from [GK, Thm 3.1], he shows that this function is an Ozawa kernel. Such
a function exists for any choice of £ and e. Thus there exists a family of
Ozawa kernels and G has Property O.

To show the second equivalence, Ozawa assumes that there ekists a net of
functions u; and sets E; which form a family of Ozawa kernels. He constructs

a set of Schur multipliers #; associated to each u;, and uses the fact that they

are positive contractions to prove that given a unital C*-algebra B,
UC™(G) @min B = UC™(G) @maz B

This shows that whenever there exists a family of Ozawa kernels, the Roe
algebra UC*((G) is nuclear.

Finally, to show the final equivalence, we need the following theorem:

3

Theorem 8. Any nuclear algebra 1s also exact [Wa, Property 2.5.1.].

Since any subalgebra of an exact algebra is exact[Wa, Prop 2.6], we have
that any subalgebra of a nuclear algebra must be exact. As seen earlier, the
reduced C*-algebra of the group is a closed subalgebra of the Roe algebra

[GK, p6] and so must be exact. This concludes the proof.



Since Kirchberg and Wasserman had previously shown that a discrete
group is exact if and only if its reduced C} algebra is exact [KW, Thm 5.2],
this shows that a discrete group I' is exact if and only if it satisfies Property

0.

Alternative definition

We can also think of Property O in an alternative way. Instead of considering
different sets £ and ¢ and finding a function for each case, we cén construct
a sequence of positive definite functions u, with the necessary support con-
dition which tends to 1 uniformly as n tends to infinity.

This is the version used by Guentner and Kaminker in [GK2, Prop 3.3]
in which they prove a theorem relating the property of Hilbert space com-

pression to exactness. It is formally defined below:

Proposition 3.2.7. Let I' be a finstely generated discrete group equipped with
word length and metric associated to a finite symmetric set of generators.

Then U is exact iff there exists a sequence of positive functions u, : I'x ' —

R satisfying:
1. For all C >0, u, — 1 uniformly on the strip s,t: d(s,t) < C.
2. For all n there exists R such that uy(s,t) = 0 if d(s,t) > R.

This is equivalent to our previous definition of Property O. The main
difference is that instead of letting F and F from Ozawa’s definition to be

any finite set, they only consider balls of radius C and R.
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Consider their first condition. Given any finite set £, they choose C
so that £ is contained in the ball of radius C'. By the definition of uniform
convergence, for all € > 0 there exists some N such thatifn > N, [1—u,| <€
when pairs of points are distance less than ¢ apart. We can pick any one of
these u, to be our Ozawa kernel.

The second condition is equivalent to the condition of the existence of a
finite set /' outside which the function has value zero. In this case F is the

ball of radius £ which is a finite set as required.

Left or right equivariance

In the above section, all the definitions and proofs consider a right handed
Cayley graph and right equivariance. Since by convention most literature
uses left handed Cayley graphs and left equivariance, we will adapt the defi-
nition accordingly for the remainder of this thesis. We consider a finitely pre-
sented group with a length function [ determined by a finite, symmetric set of
generators which determines an invariant metric. Instead of considering that
the length function ! determines a right invariant metric via d(s, t) = [(st™!)
we will use the left invariant metric via d(s,t) = {(s7'#).
Ozawa’s definition becomes:

Definition 3.2.8 (Ozawa’s Property O). A discrete group G is said to
have Ozawa’s Property O if for any finite subset E C G and any ¢ > 0, there

are a finite subset < G and u: G x G — C such that
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e u 15 a positive kernel
o u(s,t)#0 onlyif st e F

o [l —ulst)l<eifste E

Example with the Integers

This part provides an example to help us visualise what Ozawa kernels repre-
sent. The following diagram of Z x Z allows us to visualize the fequirements
of Property O.

Assume that we are given some ¢ > 0, and that we have a set F € Z such
that the largest absolute value of an element of E is C'. We have another set

F larger than F such that the largest absolute value of an element of F is R.

Now consider the following diagram of Z x Z:



The central diagonal line represents pairs of elements of Z which are
distance 0 apart. The inner shaded area Sg represents points which are
distance less than some C apart. The outer shaded area Sp (which contains
Sg) represents points which are distance less‘than some R > ( apart. Finally,
the non shaded area represents points which are distance greater than R
apart.

Then Sy contains all pairs s, ¢ such that s~* € F. Similarly, Sg contains
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all pairs s, ¢ such that s™t € E.

Any property O function u(s,t) : Z x Z -~ R must have the following
properties. In the shaded area Sg, u(s,#) must be e-close to 1. Qutside Sg,
u(s,t) must be 0. In the area belonging to S but not Sg, u(s,t) may take

any value.

Finally we look at Hilbert space compression, introduced by Guentner
and Kaminker in [GK2, Defn 2.2} and which is an invariant of the group
taking a value between 0 and 1. If this invariant is strictly greater than 1/2

then the group is exact. However the converse is not true.

3.3 Hilbert space compression

3.3.1 Original definition

In [GK2, Defn 2.2] Guentner and Kaminker introduce the concept of Hilbert
space compression. This concept is linked to that of uniform embeddabil-
ity. By embedding a space into a Hilbert space we may be able to deduce
properties of that space based on properties of the embedding.

In this case Guentner and Kaminker restrict their attention to embeddings

via Large-scale Lipschitz functions which we now define:

Definition 3.3.1 (Large-scale Lipschitz). A function f : X — Y is
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large-scale Lipschitz if there exist C > 0 and D > 0 such that

dy (f(z), fly)) < Cdx(z,y)+ D

These functions give us some control over the distortion of the embedding.
The distance of the images in the target space Y is linked to that of the
elements in the original space X. This ensures that points which are close
together in the original space are not mapped to points which are too far
apart in the target space.

We now define the compression of a large-scale Lipschitz function as fol-

lows:

Definition 3.3.2 (Compression). Following Gromou, the compression p(f)

of f € Liph(X,Y) is

pelr) = inf —dy(f(z), f(y))

dx(z.y)zr

This gives us information on how much distances in the original space are
compressed by the large scale Lipschitz functions. It looks at pairs of points
at least some distance r apart in X and finds the minimum distance of their
images in Y.

We are now ready to introduce Guentner and Kaminker’s notion of agymp-
totic and Hilbert space compression. The asymptotic compressicn is the

result of a calculation involving the compression of a general large scale Lip-



schitz map between any two metric spaces X and Y. The supremum of this
value over all possible large scale Lipschitz maps is termed the compression
of X in Y. When the target space Y is a Hilbert space, then it is called
Hilbert space compression. This is an invariant taking a value between 0 and
1 which roughly speaking measures the necessary distortion which occurs
when embedding the group into a Hilbert space via Large Scale Lipschitz

Maps. The formal definition is as follows [GK2, Defn 2.2]:

Definition 3.3.3 (Asymptotic and Hilbert space compression). Let

X be a metric space with an unbounded metric.

1. The asymptotic compression Ry of a large scale Lipschitz map [ €

Liph(X,Y) is

log pii{r
Ry = lim inf ——~gpf—\>
r—co  logr

where p3(r) = max{ps(r), 1}.

2. The compression of X in Y is

R(X,Y)=sup{Rs: f € Lip"(X,Y)}.

3. If Y is a Hilbert space, then the Hilbert space compression of X s

R(X)=R(XY).

This invariant is linked to the property of uniform embeddability. In
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particular, groups which are not uniformly embeddable in a Hilbert space
have Hilbert space compression 0 [GK2, Prop 3.1]. But this property is
also linked to exactness in the following way. Guentner and Kaminker show
that if the Hilbert space compression of a finitely generated discrete group is
strictly greater than 1/2, then there exists a family of Ozawa kernels for this
group and hence it has Property O and is exact. This is summarised in the

following theorem, [GK2, thm 3.2]:

Theorem 9. Let " be a finitely generated discrete group regarded as o metric
space via the word metric. If the Hilbert space compression of I is strictly

greater than 1/2 then I is ezact.

To show that a group I' is exact, it suffices to construct a large scale Lips-
chitz embedding of the group into a Hilbert space such that its Hilbert space
compression is strictly greater than 1/2. Guentner and Kaminker illustrate
this approach with the free group of rank 2, proving that its Hilbert space
compression is 1 [GK2, Prop 4.2]. We will look at this in more detail in a
later chapter and will adapt their construction to groups acting properly and

cocompactly on CAT(0) cube complexes.

It is important to note that having Hilbert space compression less than
or equal to 1/2 does not necessarily mean that the group is not exact. For
example, the group Z wr (Z wr Z), which is the wreath product of Z with its
own wreath product on itself, is amenable and hence exact, but its Hilbert

space compression lies between 0 and 1/2 [AGS, Cor 1.10]

1
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3.3.2 Alternative definition

The definition of Hilbert space compression for a finitely generated discrete
group is expressed slightly differently in [AGS, Defn 1.2]. Their definition
relies more noticeably on the concept of uniform embeddings which we will

now define:

Definition 3.3.4 (uniform embedding). Let (I',d) be a metric space. Let
H be a separable Hilbert space. A map f T — H is said to be a uniform

embedding of there exist non-decreasing functions py, ps - Ry — R such that
1opld(z,y)) < 1F(2) = fw)lln < p2ld(z,y)) for all z,y € R
2. lim, o pi(r) = 400 fori=1,2

The definition of Hilbert space compression in [AGS, Defn 1.2] is ex-

pressed as follows:

Definition 3.3.5 (Hilbert space compression). The Hilbert space com-
pression of a finitely generated discrete group G is the number R(G) which is
the supremum of all o > 0 for which there exists a uniform embedding of G

into a Hilbert space with py(r) = Cr® with a constant C' > 0 and linear p,.

It may not be immediately apparent that this definition is equivalent to
the one originally stated in [GK2, Defn 2.2].
Consider the case when pi(r) = r® Since this is the lower bound for

the embedding, we can substitute this into the definition for asymptotic
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compression. We get

log(r® 1
R; = lim inf Ob(/r ) = liminf o og(r)
r—c log(r) r—oc  log(r)

=

And so by definition, the Hilbert space compression is the supremum of

all such « as required.



Chapter 4

Equivalence of Property A and

Property O

Since both Property O and Property A are equivalent to exactness, they
are also equivalent to each other. However, it is possible to establish their

equivalence directly without needing to refer to exactness. We will now prove

the following theorem.

Theorem (1). Property A is equivalent to Property O.

4.0.3 Equivalent definitions of Property A

We first need some alternative definitions of Property A. As previously noted,
in [Tu, Prop 3.2], six equivalent versions of Property A are introduced. For

our purposes we will concentrate on definition 6 which we recall here.
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Proposition 4.0.6. Let X be a discrete metric space with bounded geometry.

The following are equivalent:
o X has Property A (as expressed in [Yu])
e YR >0,Ve>0,35 > 0,30 : X x X — R such that
— 15 of positive type

— supp © C Ag

— 11— (z,y)| < ¢ whenever d(z,y) < R

This definition of Property A is in a form very reminiscent of Property
O. It concerns a positive function, the support of which is contained in a
strip around the diagonal, and whose value is close to 1 on balls of radius R.
We will first show that the existence of a family of Ozawa kernels implies
the existence of a function satisfying the above definition. We will then prove

the converse, thus showing that the two properties are equivalent,.

4.0.4 Equivalence of Property A and Property O
We will now prove the following theorem:

Theorem (1). Property A is equivalent to Property O.

Proof.

Lemma 4.0.7. Property O implies Property A.
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Proof. Assume that a space X has property O. So for any finite subset

E C X and any € > 0, there are a finite subset F C X and u: X x X =R

such that
e 1 is a positive kernel
o u(z,y)#0onlyifr~lyeF
o [l —wulz,y)<eifztyekF

We will show that this implies the existence of a function ¢ which satisfies
Tu's definition of Property A.

We have that for any finite subset £ C X and any € > 0, [1 —u(z,y) <e¢
if z7'y € E. So in particular this is true for any ball of radius R and any
¢ > 0. Define up. to be the Ozawa kernel associated to the ball of radius B
and some ¢ > 0. Then given any R and ¢, take ¢(z,y) = ug.(x,y). Thisisa
positive kernel. We have as required that VR, Ve, Sug, (and hence o(z,y))
such that if d(z,y) < R, |1 — ¢(z,y)| < e Finally, if we take S to be the

radius of the ball containing F, then supp(y) C Ag as required. dJ
Lemma 4.0.8. Property A implies Property O.

Proof. Assume that a space X has property A. So VR > 0,Ve > 0,35 >

0,dp: X x X — R such that
e ¢ is of positive type

e supp @ C Ag



o |1 —o(z,y)| < e whenever d(z,y) < R

Let ¢g. be the function satisfying the above conditions for a particular
pair B, e. Given any finite subset £, there exists R such that £ is contained
in the ball of radius R. Now assume we want to find an Ozawa kernel for
some pair (E,¢). We enlarge E and consider the ball of radius R containing
it. Since the space has property A we know that there exists a gp..

Given any finite subset E and €, we take w(z,y) = ¢r.(z,y).

This is of positive type. By the definition of wnolz,y), forany 27ty € Bg,
[1 = (z,y)| < e andso for any x“ly‘é E C Bg, 1 —u(z,y)l <e

We take F' to be the ball of radius S.

Hence u(z,y) is an Ozawa kernel. Such a function exists for any pair
(E,¢) and thus there exists a family of Ozawa kernels and X has Property

O. £

Hence Property A also implies Property O and these properties are equiv-

alent for discrete metric spaces. O
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Chapter 5

Exactness and Property O

Although the existence of families of Ozawa kernels is well known and has
been used to prove the theorem relating Hilbert space compression and ex-
actness [GK2, Thm 3.2], there exists no explicit example of a family of Ozawa
kernels in the literature.

In this chapter we will construct an explicit family of Ozawa kernels for the
integers and then extend the construction to groups of subexponential growth
and on to the class of amenable groups. We will then give a construction for
free groups. In each case the Ozawa kernels constructed can be viewed as
weighted mass functions.

Constructing these families of Ozawa kernels shows that all these groups
satisfy Property O. As corollaries we deduce that these groups are both exact

and have Yu’s Property 4.

Parts of this chapter are to appear in the Bulletin of the London Mathe-
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matical Society [C]. The paper is included in the appendix of this thesis.

5.1 The Integers Z

We choose this group since it is simple to define and has a lot of properties
which we might be able to exploit. For instance it is an abelian group, has
low growth rate and is also amenable.

We will first recall Ozawa’s formal definition and then show that there

exists a family of Ozawa kernels for this group.

Definition 3.2.8 A discrete group G is said to have Ozawa’s Property
O if for any fimite subset B C G and any ¢ > 0, there are a finite subset

FCGandu: GxG - C such that
e u 1S a positive kernel
o u(z.y) #0 onlyifzlye F
o |l —ulz,y)| <eifz”lycE

Properties of Ozawa kernels

Finding a family of Ozawa kernels is complex. We will now briefly discuss
some ideas which may allow us to construct such a function.

First of all an Ozawa kernel must be positive. The function must satisfy



for any set of A\;, A; € R,
n
Z Ai/\ju(gi, g]) 2 0
]

Showing that a function is positive is non trivial and is the subject of much
research in the area of operational research. One type of positive function is
one which can be separated into a product of two functions, one dependent
only on ¢ and the other only on 7. In this case we have a sum of squares,
which is positive. This method is used in [NR, Technical Lemma] tovprove
that a particular distance function in CAT(0) cube complexes is negative
definite.

Secondly there must exist a finite set F' outside which the function has
value 0. One possible solution might be to define a function which uses the
characteristic function y(z) on some set. x(z) = 1 if z belongs to the set
and 0 otherwise. Given a function on two variables z,y we then obtain that
it takes the value 0 when neither z nor y belong to the set.

Finally there must be a finite set £ in which the function is € close to 1.
This may require some scaling of the function we choose. Note that the set
E must be contained in F. The main difficulty is obtaining a function which

will work for any possible pair (E, ¢).
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Ozawa kernels for the integers

Take Z and consider the function u, which counts the number of balls of a
given radius n containing both points = and y, scaled by the size of a ball
of radius n. The pair (E,¢) as given in the definition of Property O will
determine the value of n. We will now prove that each u,, is an Ozawa kernel
and that the set of all u, forms a family of Ozawa kernels.

We will denote a ball of radius n by B,.

Let uy(z,y) : Z x Z — R be the number of balls of radius n which contain
both z and v, scaled by the size of a ball of radius n. There are two other

ways of defining this function which will coine in useful.

A ball of radius n contains both z and y if and only if its centre is within
distance n of both x and y. Hence the function u,(z,y) is also the number of
vertices which are such centres. This is precisely the size of the intersection
of the ball of radius n centred at = and the one centred at y. Hence

lzB, M yB,
un(z,y) = T

I
1

Now consider the characteristic function of balls of radius n on Z:

1 if z € the ball of radius n centred at &

Xk772($> =
0 if z & the ball of radius n centred at &

The size of a ball of radius n in Z is 2n + 1. We can rewrite u,(z,y) as



follows
1

2n+1

D Xk (@)Xkn(y)

keZ

un(‘z) y) =

An element k € Z contributes to this sum if and only if both z and vy
are contained in the ball of radius n centred at k. (Otherwise one or both
of Xen(Z) or x5n(y) must be equal to 0 and thus the product would be 0.)
Hence this sum is equal to the total number of elements & € Z which are
the centres of a ball of radius n containing both = and y. This is precisely

uy(z,y) as previously described.

Remark 5.1.1. This sum is finite since although there are infinitely many

balls of radius n, there are only finitely many which contain both T and y.

We will now show that the set of functions u, forms a family of Ozawa

kernels.

Lemma 5.1.2. For any n, u, 5 a positive kernel.
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Proof. To see this, note that:

m 1 n
Z/\i/\jllln<ivi;$j> = Z/\i/\jzxk,n(ri)ka(xj)
$.9 2n + 1 > ~
1 n n ;
T ol Z (Z AiXen(z:) 3 /\ij,n(l‘j)>
" keZ \ i ;
n 2
! _
o= N Ai'/ﬂn :
2n+1 & (Z X (T ))

v

0

Lemma 5.1.3. For anyn, there ezists a finite subset F' such that u,(z,y) #
0 onlyifz~lye F.
Proof. Take F' to be the ball of radius n around the origin. If the distance

between two points 2 and y is strictly greater than 2n, (i.e. z ™'y is outside

F), then no ball of radius n can contain both points z and y. So u,(z,y) =0
as required. O
Lemma 5.1.4. Gien any finite set E and ¢ > 0, we can choose n so that
Un(z,y) is e—close to 1 on E.

Proof. We need to obtain a function wu,(z,y) such that on £, 1 —€ <

un(z,y) < 1+e

m
ty

F is a finite subset. So there exists some finite m such that if 27y
then 0 < d(z,y) < m.
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In Z, the size of the intersection of two balls of radius n around two points

z and y is either 0 or, if d(z,y) < 2n + 1, it is equal to 2n + 1 — d(z,y).

Soon E, we have 2n +1—m < |zB, NyB,| < 2n + 1.

So we get
™m
2n+1

So to ensure that u,(z,y) > 1 — ¢, we must choose n such that

m
< €
2n+1

So for any pair (F,€), we choose some n = N such that

1
N>——=
2¢ 2
And we take uy to be:
1 .
un(@y) = o > xen(E)xes ()
T T ez

™
L

This uy is an Ozawa kernel and such a uy exists for any pair (£, ¢). Thus

we have a new geometric proof of the following theorem:

Theorem (2). The family of kernels uy forms a fomily of Ozawa kernels

for the group Z and so Z satisfies property O.

63



The following corollary immediately follows:

Corollary (1.2.1). Z is an ezact group and therefore satisfies Property A.

5.2 Groups of Subexponential Growth

5.2.1 Expansion to groups of subexponential growth

Our previous set of functions for the integers forms a family of Ozawa kernels
because of its slow growth rate. As n increases, the size of the boundary of
a ball of radius n grows slowly compared to its volume.

Each function u, looks at the size of the intersection of two balls of radius
n which are a given distance m apart. As we increase n, this overlap gets
larger and larger. More importantly, it gets closer and closer to the size of
BTL

This is represented in the following diagram. We take two points z and
y distance m apart and consider the balls of radius n centred at each point.
Our function takes the size of the intersection, which is the shaded area of

the diagram, and scales it by the size of a ball of radius n.
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The difference between the size of the overlap and the size of a ball of
radius n is roughly represented by the non shaded area of the diagram. Since
the boundary is growing much more slowly than the volume, the size of the
non shaded area becomes negligeable in comparision to that of the shaded
area. Hence as n tends to infinity, the size of the intersection tends to the
size of B,. Thus our family of functions u, forms a sequence of functions
which tends to 1. This is what allowed us to prove that the set of functions
u, 1s a family of Ozawa kernels.

Since the growth property of the group Z is the only property our method
relies on, we now turn our attention to the more general case of groups of
subexponential growth.

A former method of proving that this class of groups is exact was to show
that the sequence of balls of radius n form a Fglner sequence which means
that groups of subexponential growth are amenable [BHV, Cor G.5.5]. (We
will say more about Fglner sequences in the next section regarding amenable
groups). It has been shown by Kirchberg and Wasserman that amenable
groups are exact [KW, p.174].

We will adopt a different method and exploit their growth property to
construct a family of Ozawa kernels, thus proving that they have Property
O. As a direct corollary of this theorem we can deduce that they are exact

and satisfy Yu's Property A.
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5.2.2 Background and definitions
We will first review the definition of groups of subexponential growth.

Definition 5.2.1 (Growth function). Let T be a group with generating set
A. Let B4(n) be the number of vertices in the closed ball of radius n about 1
in the Cayley graph of the group generated by A. The growth function of T

with respect to A is n — Ba(n).

Definition 5.2.2 (Subexponential growth). I' has subezponential growth

if Ba(n) < eY™ for alln € N,

Examples of groups of subexponential growth include finite groups, abelian

groups, nilpotent groups and Grigorchuk’s group.

5.2.3 Construction of a family of Ozawa kernels

We will now construct a family of Ozawa kernels to show that groups of
subexponential growth satisfy Property O.

We denote a ball of radius n by B, and the intersection of two balls of
radius n centred at z and y by B, N yB,.

We first need the following lemnma:
Lemma 5.2.3. If d is the distance between x and y, then |Bn_4 < |zB, N
y Bl

Proof. An element h € (G belongs to the intersection of the balls of radius n
centred at z and y only if d(x, k) and d(y, h) < n.
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Now consider the ball of radius n — d centred at y. An element g € G
belongs to this ball only if d(y,9) < n—d. So any such g also belongs to the
ball of radius n centred at y.

We also have that
dlz,g) <d(r,y)+dly,g) <d+n—-d=n

And so g also belongs to the ball of radius n centred at z.
Hence the ball of radius n — d centred at y is contained in the intersection

of the balls of radius n centred at z and y.

Since | By_g4| = |yBn_4|, we have that |B,_4 < |28, M yB,|

Now let G be a group of subexponential growth.

Consider the function

2B, M yBy

Un(2,y) = -
( EX

This is the scaled number of points in the intersection between two balls
of radius n centred at z and y respectively. Alternatively it can be regarded

as the scaled number of balls of radius n which contain both points z and y.
Lemma 5.2.4. For any n, u, 1S a positive kernel.

Proof. An element g € & belongs to the intersection z 5, M yB, only if

~J
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g € 2B, and g € yB,. This is equivalent to 27%g € B,, and y~lg € B,.
Again this is equivalent to 27! € B,g™! and y~! € B,g~! Since B, is
symmetric, B, = B;'. And so the condition becomes z € gB, and y € ¢B,.

So u, can be rewritten as

1 :
un(z,y) = BT > XomlZ)xgay)
n] 9sG
where for any k € G, xy(k) is 1 when k belongs to the ball of radius n

centred at g and 0 otherwise. Thus we have:

n n 1
D Nidjun(ziay) = /\i/\jﬁ D Xom(@)xgn(z5)
iJ i.J n

geG

S D D] SRRAER) pEVNCH)

' geG i 3

(i /\ng,n<$i>)

—

2

1
B,

' geG

!
[

3

(Y%
o

0

Lemma 5.2.5. For any n, there exists o finite subset F' such that u,(z,y) #
0onlyifz™lye F.

Proof. Take F' to be the ball of radius n around the origin. If the distance
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between two points z and y is strictly greater than 2n,(i.e. 7'y is outside

F7), no ball of radius n can contain both points z and y. So u,(z,y) =0 as

required. D

Lemma 5.2.6. Given any finite set E and ¢ > 0 we can choose n such that

Uy, 35 €e—close to 1 on E.

Proof. We showed earlier that |B, 45| < |[2B, NyB,|. In addition [zB, N
yB.| < Ba.

Hence
l’Bn-d(a:.y) J
| Byl

IB. |
< Unplz, < =

FE is a finite subset of (. So there exists a maximum distance m such
that if 27ty € £ then 0 < d(z,y) < m. This means that if 27!y € E, then
' Br—m| < | Bn-dtzy)| < |Bnl. And so on £,

} '

B,_
ol () < 1

%an

Since & is a group of subexponential growth, we have

e N =77l )
@V/E S un(x~”£/) S 1
n—m
Since lim ——=— = 1, for any pair (¢,m) and (and therefore any pair
n—o< @ﬁ .
(E,€)), there exists n = N such that |1 — uy(z,y)| < € as required. O
The function uy(z,y) = iﬁV‘%JIB__YJ 1s an Ozawa kernel. Such a uy exists

-~
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for any pair (E,¢) and we have a direct geometric proof of the following

theorem:

Theorem (3). The family of kernels uy forms a family of Ozawa kernels

for groups of subexponential growth and so they satisfy property O.
The following corcllary immediately follows:

Corollary (1.2.2). Groups of subexponential growth are exact and therefore

have Yu’s Property A.

5.3 Amenable groups

The integers and groups of subexponential growth are both examples of
amenable groups. Amenable groups form a well known example of exact
groups [KW, p.174].

One of the definitions of an amenable group is the existence of Fglner
sets which we will explain in further detail in the next section. These can be
viewed as a sequence of subsets of the group with a particular relationship
between the size of the intersection of two sets and the size of the set itself.
In the case of the integers or groups of subexponential growth, balls of radius
n actually form Fglner sets, and this fact can be used to deduce that these
groups are amenable and hence exact. We will now expand our previous
function and adapt it to general Folner sets rather than balls of radius n. In

doing so we will show that amenable groups admit a family of Ozawa kernels
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and so satisfy Property O. We deduce as a corollary that amenable groups

are exact and have Yu's Property A .

5.3.1 Definitions and properties of amenable groups

Amenability was first described as a measure theoretic property as follows:
Let ' be a locally compact group and L(I") be the Banach space of all

essentially bounded functions I' — R with respect to the Haar measure.

Definition 5.3.1 (Mean). A linear functional on L=(I") is called a mean
if it maps the constant function f(g) =1 to I and non-negatie functions to
non-negative numbers.
Definition 5.3.2. Let L, be the left action of g € I on f € L=(I'). (L, f)(h) =
flgh).

A mean is said to be left invariant if ;L(Lgf) = p(f) for all g € T and
fe LT

Similarly, a mean is right invariant if p(R,f) = p(f) for all g € I' and

f e Leo(I"), where R, is the right action .

Definition 5.3.3 (Amenable). A locally compact group is amenable if there

s a left (or right) invariant mean on L>(T).

Example 3. All finite groups and all abelian groups are amenable. Compact

groups are amenable as the Haar measure is an (unique) tnvariant mean.
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One source of interest in the notion of amenability is using it as a way
to classify groups. A large class of groups is that of groups which have
Kazhdan’s property T. A group G is said to have this property if every rep-
resentation of ¢ which almost has invariants also has a non trivial invariant
vector. For countable groups this is equivalent to property (FH) where every
isometric action of G on a Hilbert space has a fixed point [HV]. Discrete
infinite groups which are amenable do not have Kazhdan’s property T and
discrete infinite groups which have Kazhdan’s property T are nét amenable
[Wa, Rem 3.9]. These form two very large disparate classes of groups. Groups
which have neither property are the subject of much study.

The notion of amenability has been extended to many equivalent condi-

tions which are summarised in the following theorem [W, Thm 10.11(AC)].
Theorem 10. For a group G, the following are equivalent:

1. G is amenable.

e

There 45 a left-tnvariant mean on G.
3. G 1s not paradozical.

G satisfies the Invariant Extension Theorem: A G- wnvariant measure

B

on a subring of o Boolean algebra may be extended to o G-invariant

measure on the entire algebra.

Oy

G satisfies the Hahn-Banach Extension Property: Suppose

e (G 1s a group of linear operators on a real vector space V',
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e F is o G-invariant linear functional on 'V, a G-invariant subspace
of V;

o F(v) < plv) for allv € V,, where p is some real-valued function
on V' such that p(vy +ve) < p(vy) +plus) for vy, ve € V,, plaw) <

ap(v) fora>0,veV,, and p(g(v)) <plv) forge Gv V.

Then there is a G-invariant linear functional F on V' that extends F

and is domainated by p.

6. G satisfies Folner’s Condition: For any finite subset E of G and every

e > 0, there is another finite subset W of G such that for any g € F,

lgW A W|
WS

m
0

7. G satisfies Dizmier’s Condition: If f1, ..., fn € B(G) and g1, ..., gn
then for some h € G, Y fi(h) — fi(g;'h) <0

8. G satisfies the Markov-Kokutani Fized Point Theoremn: Let K be a
compact convez subset of a locally convex binear topological space X, and
suppose G acts on K in such a way that each transformation g : K — K
is continuous and affine g(az+(1—a)y) = ag(z)+(1—a)g(y) whenever
z,y € K and 0 < a < 1). Then there is some z in K that is fized by

each g € G.

For our purposes we will only consider definition 6 of amenablity: Folner’s
criterion. We will expand our previous function on balls of radius n to more

general Folner sets and show that amenable groups have Property O.

~1
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5.3.2 A family of Ozawa kernels for amenable groups

In this proof we will use the following version of Fglner's criterion:

Folner’s condition

Definition 5.3.4 (Fglner’s condition). An amenable group satisfies Falner’s

condition [W, Thm10.11(AC)]: for any finite subset E of G and every e > 0,

there is another finite subset W of G such that for any g € E, :,QVK%WE <€

This can be rewritten as follows:

GgW AW [ gWUW — gW N W
wi W]
B gW U W lgW N W
N 7

The maximum possible value of [gW U W/ is 2|/} and the minimum is
W1, Similarly, the maximum possible value of |gW N W1 is W] and the
minimum is 0.

lgWuw] . . o lgWnw] ’
So L | lies between 1 and 2, while L’i—W—J lies between O and 1. Since
[RAd PV

the difference between them is less than ¢ and we are dealing with bounded

, | gwrw] |
sets of real numbers, we have that |1 — £ ST < e
i [

[ |
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A family of Ozawa kernels

Consider the function
lzW nyW|
W

AN

un(z,) =

We will show that the set of all such functions forms a family of Ozawa

kernels.
Lemma 5.3.5. For any finite subset W, uw(z,y) is a positive kernel

Proof. An elementg & G belongs to the intersection tWNyW only if g € zW
and g € yW. This is equivalent to z7'g € W and y~'g € W. Again this is
equivalent to 271 € Wg~! and y™' € Wg~'. And so the condition becomes
zegWtandyegW i

S0 1 can be rewritten as

. 1
u(z,y) = Tl E .X_gvv-1($>xgvv-1(y>
i i QEG
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Thus:

TN

Z/\i/\ju(:ci.,xj) = Z/\ /\]Jw Zygw V(@) x w1 ()

125 ' geG
S 9] D SERSIRIES) pERASER)
[QCG z J
1 “ ’
= <Z/\i,\/gw/—l(9:i>>
JgEG i

l
§
0

Y

O

Lemma 5.3.6. Given any finite subset E and ¢ > 0, there exists a finite set

W and associated function uy (x,y) such that |1 —uw(z,y)l <eifz”lyc B

Proof. From Fglners Condition we have that for any ¢ € E there exists W

A1 h
such that !1 — %PW’] < €. So now let g be equal to 7'y and the condition

’ lo=tyWrw| | WryWw [ -
becomes !1 - w’%ﬁ';;_! = gl _ Iz il [} = |1 —uw(z,y)l < e Andso we
have as required that if 271y € E| then |1 — uw(z,y)| < e. O

Lemma 5.3.7. Guwen any pair (E|€) and associated W, uw (x,y), there exists

a finite set I such that uy(z,y) # 0 only if z ™'y € F

Proof. Since W is finite, it is contained within a ball of some diameter r.
Let F be the ball of radius r around the origin. If d(z,y) > 2r, ie z7 'y & F

there is no intersection between W and yW, so uw(z,y) = 0. O

82



Every uw is an Ozawa kernel and such a function exists for any pair

(E,€). Thus we have directly proved the following theorem:

Theorem (4). [C, Thm 2] The famaly of kernels uy forms a family of Ozawa

kernels for amenable groups and so they satisfy property O.
The following corollary immediately follows:

Corollary (1.2.3). [C, Cor 3.4] Amenable groups are exact and therefore

have Yu's Property A.

5.3.3 A variation on the family of Ozawa kernels for
amenable groups

Fglner’s condition can also be expressed in the following way which allows

us to create a variation on our previous family of functions:

Theorem 11. A group G is amenable if there exists a sequence {Gn} of

subsets of G such that Vg € G,

. 19GLAG]
”Erolc |Gl
This can be rewritten as follows:
l9Gn & Gr|  1gGa UG, — gGn N Gy
Gl a Gl
 19G. UG 196G N G
|Gl Gl
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The maximum possible value of |gG,, UG, is 2|/G,| and the minimum is

|G |. Similarly, the maximum possible value of of [¢G,, N G| is |G| and the
minimum is 0.

95 [9GA UG

. : G
T =l Jies between 1 and 2, while "‘JGJ”; G

el lies between 0 and 1. Since

the difference between them tends to 0 and we are dealing with bounded sets

: | NGal

of real numbers, we have that lim,, . QG&—" =1.
i
Consider the sequence of functions

un(z,y) = ———
i\ Y Gl
By a very similar method to the previous case, we can show that this sequence

forms a family of Ozawa kernels by proving the following three lemmas:

Lemma 5.3.8. For each n, u, is a positive kernel.

To do this we adopt the same method as in all previous constructions.
We rewrite u, as a sum over all elements of the group of a product of char-

acteristic functions on x and y and show that this is a sum of squares.

Lemma 5.3.9. Guven any finite subset E and € > 0 there exists a function

uy such that |1 —un(z,y)| <eifz7ly € E.

In this case we adopt a similar method to the case for groups of subex-

ponential growth since in both cases the limit of the sequence of functions as
n tends to infinity is 1.
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Lemma 5.3.10. For any N, there exists a finite set F' such that uy(z,y) # 0

only ifz ™y e F

We comment that any finite set Gy is contained in a ball of some finite
radius R and take F to be this ball.
Every uy is an Ozawa kernal and such a function exists for any pair

(E,¢). Thus we have directly proved the following theorem:

Theorem (4). [C, Thm 2] The family of kernels ux forms a famaly of Ozawa

kernels for amenable groups and so they satisfy property O.
The following corollary immediately follows:

Corollary (1.2.3). [C, Cor 3.4] Amenable groups are exact and therefore

have Yu's Property A.

In this proof and those for the integers, groups of subexponential groups
and as we will see in a moment, free groups, it is necessary at some point
to expand the set F to a ball of finite radius which contains it. As we saw
previously, Guentner and Kaminkner's alternative definition of Property O
only considers balls of finite radius, as does Tw’s equivalent definition of
Property A.

However this was not the case for the construction of the family of Ozawa
kernels {uy } for amenable groups. It is interesting to note that it is possible

to construct an Ozawa kernel where this enlarging of F is not necessary.
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5.4 Free groups

5.4.1 Definitions and properties

We will now move on to another well known class of exact groups: free
groups.

We will first recall the definition of a free group.

Definition 5.4.1 (Free group). A group is free if it has a set of generators

such that the only product of generators and their inverses that equal identity

1 1

are of the form aa™ or a”"a.

Remark 5.4.2. The rank of a free group is its number of generators. The
Cayley graph of a free group is a tree.

As an example, the following diagram represents part of the free group

VY
AAAAN

The growth rate of a free group is not sub-exponential. Given any free
g g Y

L
N

N

group, increasing the radius of a ball of radius n by a small amount induces a
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very large increase in the number of vertices on its boundary. As an example,
the number of vertices on the edges of the above diagram for the free group
of rank 2 increases rapidly as the distance from the central vertex increases.

Our functions up to this point relied oﬁ the fact that the boundary of
the set increased far more slowly than the volume. Since this is not the case
here, we will have to adopt a different approach.

In [DJ, Prop 1], it was shown that trees have Property A. To do so they
constructed a measure which relied on Dirac functions. We Wﬂi now adapt
this construction to obtain a family of Ozawa kernels and prove that free
groups satisfy Property O. Instead of looking at the size of the intersection
of ballg of radius n as we did for groups of subexponential growth, we will

consider the size of the overlap between rays of length n.

5.4.2 Construction of a family of Ozawa kernels for
free groups
Let T be the Cayley graph of a free group (a tree) and V' its set of vertices.
Let v : R — T be a geodesic ray in 7.
Let v, be the unique geodesic ray issuing from v and intersecting ~y along

a geodesic ray.

Let v be the initial ray of 7, of length n as represented in the following

diagram:



[1]

We will define our function u,(z,y) where z,y € V to be the size of the

overlap of the two n-length rays v and ~

o> scaled by n + 1, which is the

number of vertices on a ray of length n.

I~ ™ AT
[z /yf

tn,y) = il

We will show that the set of such functions forms a family of Ozawa

kernels.
Lemma 5.4.3. Given any n, u, 18 o positive kernel.
Proof. Define f,(x) and x,,(z) as follows:

1 if v separates o from

0 otherwise



And

. 1 if z is contained in the ball of radius n around v
Xv,n@‘> =
0 otherwise

Then we have
un(x7J = "—“‘_va fu y\Xvn( ')Xv,n(y>

The only vertices contributing to this sum are whose which are within
distance n of both z and y and which separate both z and y from ~y. This
is precisely the size of the intersection of the n-length rays v and ;.

We can now rearrange u, to show that this is a positive kernel.

k

Z/\i/\jun(%,l‘j) = Z/\z’\ qu(i ful ;) )Xo (Ti) Xon(25)
i 0] veV
k k
= Z <Z’\ fv x%,Xun(l Z :EJ XU”(1])>
veEV 1 J
2
= Z (Z/\ fu\$z /\vn(vbl>>
>0 |
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Lemma 5.4.4. For any n, there exists o finite set F such that u,(z,y) # 0

only if t™ly € F.

Proof. Let F' be the ball of radius n around the origin. If d(z,y) > 2n, ie
z7'y & F, there is no overlap between the n-length rays 4* and 7, and so

un(z,y) = 0. O

Lemma 5.4.5. Given any finite subset £ and ¢ > 0, there exists N such

that |1 —un(z,y) <eifz iy € E.

Proof. Since F is a finite subset, there exists some finite number m such that

if z7ty € F then d(z,y) < m.

n

Now if d(z,y) < m, then the minimum size of the overlap of v} and v

81— 2m.
And so we have
n — 2m n -1

< uplz,y) <
e,

Hence for all pairs z,y € E, lim,_. us(x,y) = 1.

™

And so Ve > 0, 2N such that Vo~ ly € E we have |1 —uy(z,y)| <e. O

Every uy is an Ozawa kernel and there exists such a function for any pair

(E,¢). Thus we have directly proved the following theorem:

Theorem (5). [C, Thm 1] The family of kernels uy forms a family of Ozawa

kernels for free groups and so they satisfy property O.

The following corollary immediately follows:

90



Corollary (1.2.4). [C, Cor 2.4] Free groups are exact and therefore have

Yu’s Property A.
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Chapter 6

Hilbert space compression and

CAT(0) cube complexes

We will now move on to a different approach to the problem of proving that
groups are exact. In this section we will use properties of Hilbert space com-
pression to prove that groups acting properly and cocompactly on CAT(0)
cube complexes are exact. The method relies on the following theorem from

Guentner and Kaminker [GK2, Thm 3.2]

Theorem (9). Let I be a finitely generated discrete group regarded as a
metric space via the word metric. If the Hilbert space compression of I 1s

greater than 1/2 then I' is exact.

Recall that Yu showed that Property A implies that the group is uniformly
embeddable in a Hilbert space. Since exactness is equivalent to Property A,

we know that if a group is exact then it is uniformly embeddable. The con-
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verse is not known to be true. However there are no known examples of
groups which are uniformly embeddable but not exact. Hilbert space com-
pression goes some way to linking uniform embeddability back to exactness.
It measures how much a space needs to be distorted in order to obtain a
uniform embedding into a Hilbert space. If this distortion is not too large
(i.e. the Hilbert space compression is strictly greater than 1/2), then the
group is exact. It is important to note that this is quite a strong condition
and that there do exist exact groups which do not have Hilbertvspace com-
pression greater than 1/2. For example, Z wr (Z wr Z), the wreath product
of 7 with its own wreath product on itself, is amenable and hence exact, but
its Hilbert space compression lies between 0 and 1/2 [AGS, Cor 1.10].
Guentner and Kaminker illustrate the Hilbert space compression ap-
proach with the example of the free group of rank 2. They construct a family
of functions on its Cayley graph and show that the Hilbert space compres-
sion is 1. They deduce that free groups are exact. We will first explain their

approach and then expand this method to obtain our main result:

Theorem (6). /CN, Thm 12.] If G is a group acting properly and cocom-
pactly on a CAT(0) cube complex then G is exact and therefore has Yu’'s

Property A.

Parts of this section were used in a joint paper with Dr G. Niblo [CN].
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6.1 Example: Free Groups

In [GK2, Proposition 4.2], Guentner and Kaminker show that the Free Group
of rank 2 is exact by constructing a family of large scale Lipschitz functions
from a tree to a Hilbert space whose asymptotic compression tends to 1. This

section will explain their approach.

They start off by considering the Cayley graph of the free group of rank
2, which is a tree. Call it X = (V| F') where V is the set of vertices and F is
the set of edges.

For any vertex s, consider the edges on the unique path from s to 1.
Starting from s, label these e; to e, where & is the distance from s to 1. Let
Je,(s) be the characteristic function on the set of edges. This means that
Oe;(s)(e) = 1 if the edge is ¢; and 0 otherwise.

The following diagram illustrates the labeling from s:

-
9
&
(4]
&
L
4]
[N
()
A
—

[

-]
e ©

9
]
®
®
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Then [|£(s)]| = (s, )% = \/d(5, 1)
For two points s, ¢ we have ||f(s) — f(£)|| = \/d(s, 1)

Recall that the Gromov compression of a function [ is

pi(r) = int_1£(5) = F(O]
So in this case, since || f(s) — f(¢)]| = /d(s,t) and 7 € R, we have

Vr < pplr) < Vr-+1

Now recall that the asymptotic compression of a function [ is

Ry = lim inf ng—m
r—00 logr
And so here we have:
1 log(r1/? log(r + )2 1
— < lim inf og(r’ ) < Ry < lim inf Os\” ) < =
27 r—co logr T—oc ogr 2

And hence Ry = 1/2. Recall that the Hilbert space compression R(X) =
sup{Rs : f € Lip'*(X, H)}. Thus they can conclude that when X is a tree,
R(X) > 1/2. However this is not enough to conclude that free groups are

exact since the Hilbert space compression needs to be strictly greater than

1/2.
They then weight their function to obtain a family of functions labeled
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by 0 < ¢ < 1/2 which have the desired asymptotic compression.

The new function is f, : Fy — (*(E) with

fe(s) =1%.,(s) + ... +1%0.,(s) + ... £ k%, (s)

They need to show that for each 0 < ¢ < 1/2, f. is both large scale

Lipschitz and satisfles Ry > 1/2 +¢.

Large scale Lipschitz

To show that it is large scale Lipschitz, it suffices to show that d(s,t) =1 =

[fe(s) = fe(t)|IP £ C ¥s,t € Fa.

Proof. Note that if d(s,t) = 1, then we have the following situation.

ek k-1 €2 er [
° Py @ e *—— @ 9
Er—-1 €x—2 er  [t]

And so we have:

Ifels) = P = P+ =1+ [ =G -1P +. .+ k= (k- DT
k
= 1+ [iF= (-1
=2
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They then show that > .~ [¢°—(i—1)¢]* is finite by the following calculation:

o0
ST - -y =
P

IN

To understand the second step of this calculation we must first recall the

general Cauchy Schwarz inequality:

It can be written explicitly in integral form:
b 2 b , 9
[ weme] < [ it )
@ a a

L
; 2
In this proof we need to deal with the expression (fi_l(:vé)’d;c> . By

setting ¥ (z) = (2°)" and 1q(z) = 1 we get ff[wzfl")szx = f;_l 1%dr = 1.

And so <f12_1 d:z:) < f V']* dz as required.

Since S_°°[i€ — (i — 1)9? is finite, then so is 1 + SF [+ — (i — 1)¢]* and

f. is large scale Lipschitz as required. . .



Hilbert space compression > 1/2 +¢

To show that Ry > 1/2 + ¢, it is sufficient to show that
Ifels) = f(B)]* = Cur'

where C, is some constant dependent only on e.

In that case we have

7. 1/2+4€
}%ﬁ > %%QL_E;i;__ﬂj‘::l/QAFS
logr

Proof. Take 2 points (s,t) such that d(s,t) > r. Assume that d(1,s) <
d(1,t). Now let §(r/2) be the smallest integer such that 4(r/2) > r/2.

From the structure of the tree, the edge ey./7) must belong to the section
[m, t] where m is the intersection of the path [s, 1] with the path [¢,1]. An

example of this is given in the following diagram:
g

1
E4/r/2

[v] ex
o~ o o .. ._../. di(s,t) =di(s,m) +di(m,t)=r

[t]

€1



And so

vV
fu—
)
-~
s
—
-
S~
[\N)
N
[\=]
o

1 fe(s) = ()1

2+l /2
B 2¢e +1 0

5
T~6+l

(26 + 1)22+1

tl

And so they obtain a family of large scale Lipschitz functions f. where
Ry >1/24¢eand 0 < e < 1/2. Hence the Hilbert space compression of Iy is

1 and they have a new proof of the following theorem:

Theorem 12. The free group of rank 2 is exact.

6.2 Groups acting properly and cocompactly
on C'AT(0) cube complexes

We will now adopt a similar method and construct a family of large scale
Lipschitz functions on a finite dimensional CAT(0) cube complex. We will
show that the asymptotic compression of this family of functions tends to 1,

thus proving the Hilbert space compression of a CAT(0) cube complex is 1.
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By using another theorem [GK2, Cor 2.13] which states that Hilbert space

compression is a quasi-isometry invariant, we will prove our main theorem:

Theorem (6). If G is a group acting properly and cocompactly on a finite

dimensional CAT(0) cube complex then G is exact and satisfies Yu’s Property
A

In this section we will first give some background information about
CAT(0) cube complexes and then give a proof of the main theorem. Al-
though this was joint work, the proof that the function we define is large
scale Lipschitz is principally the work of Dr Niblo, while the proof that its
compression is strictly greater than 1/2 is that of the author. The paper coau-
thored by the author and Dr G.Niblo [CN] can be found in the appendix of

this thesis.

6.2.1 CAT(0) cube complexes

We will review the definitions and properties of a CAT(0) cube complex.

Some of the following defintions can be found in [NR].

The cube complex

Definition 6.2.1 (Cube complex). A cube complex is a polyhedral com-
plex of cells isometric to o Buclidean cell. The gluing of these cells is by
wsometries. The dimension of a cube complex is the highest dimension of one

of uts cells.
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Definition 6.2.2 (CAT(0) cube complex). A CAT(0) cube complex is a
cube complex which is non positively curved.

This means that the following conditions on the link of C| k(' are sat-
isfied:

1. (no bigons) For each pair of vertices in 1kC' there is at most one edge

containing them.
2. (no triangles) Every edge cycle of length three in lkC' is contained in a
2-simplex of k(.
Example 4. Any tree is a I-dimensional CAT(0) cube complex.
Example 5. Euclidean space with vertices at the integer lattice points has
the structure of o CAT(0) cube complex.
The dimension n of a CAT(0) cube complex is that of its highest dimen-

sion cube.

Hyperplanes

Definition 6.2.3 (Midplane). The midplane of a cube s its intersection

with a codimension 1 coordinate hyperplane.

So every n-cube contains n midplanes each of which is an (n — 1)-cube,
and any m of which intersect in a (n — m)-cube.

Given any edge e in the C'AT(0) cube complex, there is a unique hyper-
plane which cuts e transversly in its midpoint. The hyperplane is obtained

by developing the midplanes in the cubes containing e.
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Example 6. In the case of a tree, the the hyperplane is the midpoint of the

edge €.
Example 7. In the case of euclidean space it is a geometric hyperplane.

Any hyperplane is isometrically embedded in the CAT(0) cube complex.
In addition, each hyperplane separates the C'AT(0) cube complex into two

half spaces.

- Lengths

The set of vertices of a CAT(0) cube complex X can be viewed as a discrete
metric space, where the metric dyi(s,?) is given by the length of a shortest
edge path between the vertices s and t. We will refer to this as the #' metric
on the vertices.

Alternatively we can measure the distance by restricting the path metric
on X to obtain the #2 metric on the vertices.

If X is finite dimensional these metrics are quasi-isometric, and we have
d(s,t) < di(s,t) < /nd(s,t) where d denotes the CAT(0) (geodesic) metric
on X and n is the dimension of the complex.

Sageev [S] observed that the shortest path in the 1-skeleton crosses any
hyperplane at most once, and since every edge crosses exactly one hyperplane,
the 7 distance between two vertices is the number of hyperplanes separating

them.
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Intervals and Medians

Definition 6.2.4 (Interval). An interval between two vertices s,t, denoted

[s,t], 1s the set of all vertices which lie on an edge geodesic from s to t.

Given any three vertices s, ¢, u, there exist three intervals [s, ], [s, u], [t, u].

These allow us to define the median.

Definition 6.2.5 (Median). The median of a triple s,t,u is a single point

m which is the intersection of the intervals [s,t], [s,ul, [t, u].

The median has the following important property: the intersection of the
hyperplanes which separate s from ¢ and those which separate s from wu are
precisely the hyperplanes which separate s from the median m.

In addition, the hyperplanes which separate ¢ from wu are precisely those
which separate ¢ from m and those which separate « from m.

This induces the following distance property:

di(t,u) = dy(t,m) +di(u,m) = di(s,t) + di(s,u) — 2d;(s,m)
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Normal Cube Paths

In a CAT(0) cube complex, a geodesic edge path may not be unique. For
instance consider the Euclidean plane with vertices at the integer lattice
points. In the following diagram, the dotted and dashed paths represent two

separate paths from s to ¢, both of which have the same edge length.

—— e @ e
L2

(-2

The only C'AT(0) cube complex where geodesic edge paths are unique is
a tree. We will now introduce the notion of a normal cube path which allows
us to mimic some of the properties of geodesic edge paths in trees.

Let X be a cube complex and H be the set of hyperplanes. Consider
two vertices s and ¢ and some path from s to t. The path starts at the
vertex s and then defines a sequence of vertices s, until it reaches the vertex

t. There are a finite number of hyperplanes separating s and ¢z. A path of
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minimal length between the two vertices must cross each hyperplane just
once. A normal cube path follows a greedy path. At each step ¢, as many
hyperplanes separating s and ¢ as possible must be crossed.

This is illustrated in the next diagram. We consider here the normal cube
path from s to t. We have labelled the hyperplanes from 1 to 7. Only those

hyperplanes which separate s from ¢ will be crossed: hs, hs, hy, hg and hs.

.......... b ho
.................. st
S =50
,,,,,,,,,,,,, O h5
R
hy hia h3 hy

Our starting point is at the vertex s which we denote by s3. The ﬁrst
step on the normal cube path will take us to the vertex s;. We need to cross
as many of the hypérplanes separating s from ¢ as possible. We can cross
hyperplanes 2 and 6, giving us the only possible vertex s;. We now move on
to step two on the normal cube path. Starting from s; we need to cross as

many of the hyperplanes separating s; from t. We can cross hyperplanes 3
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and 7, giving us the only possible vertex s;. Finally in step 3 we cross the
remaining hyperplane number 4, thus giving us the only possible vertex ss.

This vertex is also ¢ and marks the end of the normal cube path.

Note that the normal cube path from s to ¢ may not be the same as
that from 7 to s. For example, the following diagram illustrates the normal

cube path from ¢ to 5. We have left in the normal cube path from s to ¢ for

comparision.
So S3=1= 75O
N R R
51 6
,,,,,,,,,,,,,,,,,,, A hg
So=S8=08 gy | s
h1 ho h3 hy

The hyperplanes are crossed in a different order and at different stages
of the path. In this case the vertices defined by the normal cube path from
t to s differ to those defined by the normal cube path from s to t.

Note also that if a hyperplane to be crossed is adjacent to a vertex on
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the normal cube path, then it must by definition be crossed at the next step.

The rigorous definition of a normal cube path is as follows [CN, Def 4]:

Definition 6.2.6 (Normal cube path). A cube path is a sequence of cubes
C = {Cy,...CL}, each of dimension at least 1, such that each cube meets its
successor i a single vertex, v; = C;_y N C; and such that for 1 <1< n— 1,
C; 1s the (unique) cube of minimal dimension containing v; and v;.;. Note
that v; and vy, are diagonally opposite vertices of C;. We define vy to be the
verter of Cy which is diagonally opposite vy, and v, to be the vertez of Cp
deagonally opposite v,1. We call the v; vertices of the cube-path, with vy the
wnatial vertez and v, the terminal vertex. Given a cube path from s to t we
can construct edge paths from s to t which travel via the edges of the cubes
C; so every hyperplane separating s from t must intersect at least one of the
cubes C;. We say the cube path is normal of Cieq N u(Cy) = v; for each 4,

where u(Cy) 1s the union of all cubes which contain C; as a face (including

Cﬂi ZZS@/f)

It has been shown [NR2, Prop 3.3] that given two vertices s and ¢, there
is a unique normal cube path from s to t.

An important lemma, also from [NR2, Prop 5.2] which will be used later

: Iy
is as follows:

Lemma 6.2.7. Let s,t,vy be vertices of a CAT(0) cube complex with s and
t diagonally adjacent across some cube LEy. Let s = 59, 51,...,8, = v, t =

to, b1, ..., tn = u be the vertices of the (unique) normal cube paths from s to
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vy and from t to vy respectively. Let {C; |1 =1,...m} be the cubes on the
normal cube path from s to vy and {D; | j = 1,...n} be the cubes on the

normal cube path from t to vy. Then:

1. Each hyperplane separating s from v intersects exactly one of the cubes
C; and each hyperplane separating t from vy intersects exactly one of

the cubes D;.

2. For each 1 < min{m,n} there is a cube E; such that s; is diagonally

adjacent to t; across E; .

6.2.2 Proof of the main theorem

In the case of the free group of rank 2, the function used to find the Hilbert
space compression was defined according to the edges on the unique edge path
between s and 1. However this will not work in a CAT(0) cube complex
as edge paths between points are not unique. Instead, we will define our
function by using the hyperplanes crossed in the normal cube paths between
two vertices.

Let V be the set of vertices of a finite dimensional cube complex X and H
be the set of hyperplanes. Given a vertex s, we will consider the normal cube
path from s to a base point v. A finite number of hyperplanes are crossed
along this path. We will weight all hyperplanes according to the stage at
which they are crossed. If C = {Cy,C},...,Cy} is the unique normal cube

path from s to v, then the weighting of a hyperplane A relative to s is:
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wslh)=1+1

where h intersects the cube C;. If A does not intersect any of the cubes (ie
does not separate s from v), then ws(h) = 0. Note that several hyperplanes
can have the same weighting. Note also that when n is the dimension of
the CAT(0) cube complex, no more than n hyperplanes can share any given
weighting, since by definition any cube cont‘ains at most n hyperplanes.

Now for each 0 < ¢ < 1/2 we define

felh) = (wslh))"

heH

The support of this function is finite since the only hyperplanes contributing

to the sum are those which separate s from v.

As before, we need to show that for each 0 < ¢ < 1/2, f,. is both large

scale Lipschitz and satisfies Ry > 1/2 + e.

Large Scale Lipschitz

To show that f, is large scale Lipschitz it suffices to show that d(s,t) =1 =

[fe(s) = fB)? £ C Vs, t € Fa.
We now need the following technical lemma:

Lemma 6.2.8. Let s,t,v be vertices of the CAT(0) cube complex X with s
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and t diagonally opposite across some cube Ey. Let s = Sp,81,..., 8, = v,
t=tg,t1,...,tn = v be the vertices of the (unique) normal cube paths from
s to v and from t to v respectively. Let {C; | i =1,...m} be the cubes on
the normal cube path from s tov and {D; | 7 =1,...n} be the cubes on the
normal cube path from t tov. If h is a hyperplane in X which separates both

s and t from v and which intersects the cube C; then h also intersects one of

the cubes D;_1, Dy, Diyq.

Proof. Consider 2 vertices s,t distance 1 apart (or in other words at most
diagonally opposite some cube Fjy) and the normal cube paths from s and
t to the base point v. By lemma 6.2.7 the hyperplane A must intersect the
normal cube path from ¢ to v in one of the cubes D;.

In addition, since s = sy and t = ¢, are diagonally opposite across the
cube Ej this means that for each ¢ < min{m,n} s; is diagonally opposite to
t; across some cube F;.

Now h separates s,_1, s; and also separates t;_1,¢;. We want to show that
i—gl <L

Let k = min{z,j}. Assume first that h separates s;—; and sg soi =k < 7.

If i also separates f;_; and #; then h crosses Dy = D; as required.

Assume h does not separate t;_; from t,. By the minimality of &, h does
not separate ¢t from t,_;. But it must separate t from v and so it must also
separate t; from v.

Now we construct an edge path from ¢, to v as follows. First cross

over the cube Ej, from t; to s, then follow the path through the cubes
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Crr1, Crsa, ..., Cry to v. This gives an edge path from t; to v so it must
cross h.

However since h was crossed in the kth cube on the normal cube path
from s to v, none of the cubes Cyy1,...,C,, intersect h. Hence h must cross
Ey and so A is adjacent to ty. But as h separates ¢, from v and is adjacent
to g it must cross the first cube (Dy.;) on the normal cube path from #,.;
to v as required.

The case when % separates t,_; and f; so ¢ = & but does hot separate

8,1 and s is argued in exactly the same way reversing the roles of s and ¢,

C and D and so on. O

Thus when d(s,t) = 1, if a hyperplane A is crossed at stage i from s,
then it is crossed at one of the stages 4 or i = 1 from ¢. It follows that either
ws(h) = we(h) or we(h) = wi(h) £ 1.

Hence considering the set {hy,..., hn,} of hyperplanes which separate s
from v, we have:

m

- . , 12
> lws(ha) = wi(h)]

1=0

1 fe(s) = L)1
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Since X is a CAT(0) cube complex of dimension 7, at most n hyperplanes

can be crossed at each stage of the normal cube path from s to v. Hence at
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most n hyperplanes can have a given weight w,(h) = 7. And so we have:
er() fe() Sl +nZU _ 3_1\612

As noted in [GK2], 3°°[7° — (j — 1)) is finite and hence f. is large scale

Lipschitz as required.

Hilbert space compression > 1/2 + ¢

We will now show that the asymptotic compression Ry, is greater than 1/2.

As before, it suffices to show thas
| fe(s) — fe(t)HQ > CLpltee

where C is some constant dependant only on €.

Consider two points s, ¢t and let d(s,t) >.r. Assume that d(s,1) > d(¢, 1).
As before, let §(r/2) be the smallest integer greater than /2. There are at
least fi(r/2) hyperplanes which separate s from 1 but not ¢ from 1. We can
label these hyperplanes hi, ha, ..., Ay /o).

- The weight of each of these hyperplanes lies between 1 and 4(r/2). Recall
that the weight wy(h) of a hyperplane is determined by which cube it inter-
sects on the normal cube path {C},Cy, ..., ()} from s to 1. The dimension
of any cube must be less or equal to n. Hence there are at most n hyperplanes

which can intersect any one cube and thus at most n hyperplanes can share
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any particular weight.

Now write §(r/2) as kn + m for some integers m, k such that 0 < m <n
and k& > 0.

Then we have:

1£:5) = O 2 () s (o) 4o o) 2 (1% 2%+ b

We will now show that

: , 1, o
n(I 2%+ k) e mlk = 1) 2 —[1 42+ (r/2)”]
Lemma 6.2.9. For anyi > 1,
ni% > Z[((i—Un+ 1%+ + (in)>]
n

Proof. Since € < £ and n > 1 we have ni* > n*i%* = (in)*

On the other hand, since ¢ > 0 and in > ik for all £ < n we have

So

(]
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Lemma 6.2.10.
2e 1L % Lo
m(k+ 1) > - ((kn+1)* + ...+ (kn+m)™)
Proof. We have that
m(k + 1% > m*(k + 1)* = (mk +m)*

Looking at the RHS of the statement of the claim we have:

= ((kn+ 1%+ ..+ (kn+m)*) < —@(kn +m)*  (since (kn 4+ m) is the biggest term)
n n
1 2e .
< <ﬁ> (kn+m)*  (since UL 1)
n n
2
= (mk+ E—}BE
n
< (mk+m)* (since T 1)
n
And so
1
mik + 1% > (mk +m)™ > = ((kn + 1)* + ...+ (kn + m)*)
n
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Putting both claims together, we have that:

n:k126>—1—(12€+...+n25)

n
2e 1 ; 25,\ : Ze
nx 2% > = (n+1)%+ ...+ (2n)%)
n
nx k¥ > = (((k—1Ln+ 1%+ ...+ (kn)®)
9 1
m#(k+1)°> = ((lm L)% 4 (kn +m)*)
n
And so
2e 2e ; 2e 2e 1 1 2€ 2e w2
nxl*+n«2+ .  +n=k*+mk+1) >—<1 +2 +...+g(5)
n

And as proved in the case of the free group of rank 2 [GK2, Prop 4.2],

) ) 2e+1
242+ +4(r/2)%] > —————
L i ; ( / ) = (26-— 1)‘22“1

Hence, we have, as needed:



6.2.3 Conclusions

For each 0 < € < 1/2 we can construct a large scale Lipschitz embedding f. of
the finite dimensional CAT(0) cube complex whose asymptotic compression
is at least 1/2+¢. Since Hilbert space compression is the supremum of the
asymptotic compression over all possible large scale Lipschitz functions, we

have proved the following theorem:

Theorem 13. The Hilbert space compression of a finite dimensional CAT(0)

cube complex 1s 1.

Now let G be a group acting properly and cocompactly on a finite di-
mensional C'AT(0) cube complex X. By fixing a generating set of G, we
can regard (G as a metric space via the edge metric on the Cayley graph.
Thus G is quasi isometric to (X, d). Since Hilbert space compression is a

quasi-isometry invariant [GK2], we have

Corollary 6.2.11. Let G be regarded as a metric space via the word meltric
with respect to some finite generating set. If G acts properly and cocompactly

on a CAT(0) cube complex then G has Hilbert space compression 1.

And so we have:

Theorem (6). If G is a group acting properly and cocompactly on a C AT(0)

cube complex then G 1s exact and therefore has Yu's Property A.

The class of groups acting properly and cocompactly on CAT(0) cube

complexes is large, and includes free groups, finitely generated Coxeter groups,

116



finitely generated right angled Artin groups, finitely presented groups satis-
fying the B(4)-T(4) cancellation properties and all those word-hyperbolic
groups satisfying the B(6) condition. Others are the infinite simple groups

constructed by Burger and Mozes.
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Abstract

We show that the Hilbert Space compression of any (unbounded) finite di-
mensional CAT(0) cube complex is 1 and deduce that any finitely generated
group acting properly, co-compactly on a CAT(0) cube complex is exact, and
hence has Yu’s Property A. The class of groups covered by this theorem in-
cludes free groups, finitely generated Coxeter groups, finitely generated right
angled Artin groups, finitely presented groups satisfying the B(4)-T(4) small
cancellation condition and all those word-hyperbolic groups satisfying the
B(6) condition. Another family of examples is provided by certain canonical

surgeries defined by link diagrams.



Introduction

We say that a group I' is exact if the operation of taking the reduced crossed
product with I' preserves exactness of short exact sequences of I'-C*-algebras.

In other words, I' is exact if and only if for every exact sequence of I'-C*-

algebras

0—B—C—D—0

the sequence
0— CHI,B) — CX(I,C) — CX(I', D) — 0

of crossed product algebras is exact. Kirchberg and Wassermann [9] proved
that when ' is discrete, it is exact if and only if its reduced C*-algebra
C*(T") is exact. This means that the functor B — CX(I') ®mm B is exact, i.e.
preserves exactness of sequences of C*-algebras.

In [19] Yu introduced Pfoperty A, analagous to Folner’s criterion for

amenability, which for a finitely generated group is equivalent to exactness.

Definition A.0.12. A discrete metric space I 1s said to have Property A if
for any r > 0,e > 0, there-exist a family of finite subsets {Av}ier of I' x N

such that
o (v, 1) e A, forallyel,

LANAL AN Ay

R < e forally and ' € T satisfying d(~,~') < r, where,
N

for each finite set A.|A| is the number of elements in A;



e 3R > 0 such that if (z,m) € A, , (y,n) € A, for some v € I, then

dz,y) < R.

The authors would like to thank Jacek Brodzki who explained to us the
equivalence of Property A with exactness as follows: according to Higson
and Roe, [8], a finitely generated group has Property A if and only if it acts
amenably on its Stone-Cech compactification. By the theorem of Ozawa in
[14] this is equivalent to exactness for the group. Exactness should be thought
of as a weak form of amenability; the property was first made prominent by
the work of Kirchberg and Wassermann [9], and studied by several authors [1,
6,8, 14, 18, 19]. Examples of exact groups include groups of finite asymptotic
dimension, for example Gromovs word hyperbolic groups, discrete subgroups
of connected Lie groups and amenable groups. The class is closed under the
semi-direct product, [19].

By way of further motivation for the study of exactness we should point
out that groups with property A admit a uniform embedding into Hilbert
Space and satisfy the strong Novikov conjecture, and the coarse Baum Connes
conjecture [19]. In [7] Guentner and Kaminker introduced a numerical quasi-
isometry invariant of a finitely generated group, the values of which parametrize
the difference between the group being uniformly embeddable in a Hilbert
Space and the reduced C*-algebra of the group being exact.

Theorem (Guentner and Kaminker, see [6])  Let G be a discrete group.

If the Hilbert Space compression of G 1s strictly greater than 1/2 then G is

exact.



We will define Hilbert Space compression later, but note here that it is a
measure of the amount of distortion that is necessary when trying to embed
the group in a Hilbert Space via a large scale Lipschitz map. Guentner and
Kaminker illustrated their theorem by showing that the Hilbert Space com-
pression of a finite rank free group is 1 thus giving a new proof of exactness
for free groups. It should be noted that they did not construct an embed-
ding of the free group in a Hilbert Space with (asymptotic) compression 1,
but rather, thinking of the group as a tree via its Cayley graph,i produced a
family of large scale Lipschitz embeddings with asymptotic compression ar-
bitrarily close to 1. Those familiar with CAT(0) complexes would recognize
that the first of their embeddings (with asymptotic compression 1/2) can be
used without change to embed the vertex set of a CAT(0) cube complex into
a Hilbert Space with asymptotic compression 1/2 though this is not in itself
enough to establish exactness for a group acting on the cube complex. Guent-
ner and Kaminker showed that in the case of a tree the embedding can be
modified to obtain new embeddings with asymptotic compression arbitrarily
close to 1.

The main purpose of this note is to show how to adapt the construction
from [7] to the class of unbounded, finite dimensional CAT(0) cube com-
plexes. In the case of a tree one uses the fact that there is a unique edge
geodesic joining any two points in the tree; the same is of course not true
for CAT(0) cube complexes of dimension at least 2 so the embedding and

the argument need to be modified appropriately. In place of unique edge



geodesics we will use the normal cube paths originally introduced in [11] to
establish biautomaticity for groups acting freely and properly discontinuously
on CAT(0) cube complexes.

Theorem 10 Let X be an unbounded fintte dimensional CAT(0) cube
complex. The Hilbert space compression of X 1s 1.

In [6] it is shown that Hilbert Space compression is a quasi-isometry in-
variant so if a discrete group G acts freely and co-compactly on an unbounded
CAT(0) cube complex it follows that the group (regarded as a fnetric space
via the word length metric) has Hilbert Space compression 1. Since 1 > 1/2
we obtain:

Theorem 12 [f (G is a group acting properly and co-compactly on a
CAT(0) cube compler then G is exact and therefore has Yu’s Property A.

Note that if G acts properly on a bounded CAT(0) cube complex then G
is finite and therefore exact, so the hypothesis that the cube complex should
be unbounded (which is only inserted in Theorem 10 in order to ensure that
asymptotic compression can be defined) is not needed in Theorem 12.

The paper is organised as follows: In section A.1 we recall the definition of
a CAT(0) cube complex and, stating the definitions, show how to construct
a large scale Lipschitz embedding of such a complex in an associated Hilbert
Space, with asymptotic compression 1/2. In section A.2 we outline some
preliminary results concerning the existence and properties of normal cube
paths in a CAT(0) cube complex. The results in this section are taken from

[11]. In section A.3 we define a family of embeddings {f. | 0 < e < 1/2} of



the vertices of a cube complex X into the Hilbert Space of square summable
real valued functions on the set of hyperplanes of X. We also show that
these embeddings are large-scale Lipschitz. In section A.4 we show that
the compression of each map f. is 1/2 + ¢ and deduce that the Hilbert Space
compression of the metric space (X d,) is 1, where X(®) denotes the vertex
set of X and d; is the edge metric. In section A.5 we deduce the exactness
of groups acting properly and co-compactly on a CAT(0) cube complex.

The class of groups covered by this theorem includes free groﬁps, finitely
generated Coxeter groups [13], and finitely generated right angled Artin
groups (for which the Salvetti complex is a CAT(0) cube complex). A
rich class of interesting examples is furnished by Wise, [17], in which it is
shown that many small cancellation groups act properly and co-compactly on
CAT(0) cube complexes. The examples include every finitely presented group
satisfving the B(4)-T(4) small cancellation condition and all those word-
hyperbolic groups satisfying the B(6) condition. Finally many 3-manifolds
admit decompositions as CAT(0) cube complexes, so their fundamental groups
are also covered by the theorem, a family of examples is provided by certain
canonical surgeries defined by link diagrams (see [2] and [3]). Classical ex-
amples are furnished by groups acting simply transitively on buildings with
the structure of a product of trees.

The authors wish to thank Jacek Brodzki and Claire Vatcher for many

interesting and illuminating conversations during the course of this research.



A.1 CAT(0) cube complexes

A cube complex X is a metric polyhedral complex in which each cell is isomet-
ric to the Euclidean cube [—1/2,1/2]" and the gluing maps are isometries.
If there is a bound on the dimension of the cubes then the complex carries a

complete geodesic metric, [4].

A cube complex is non-positively curved if for any cube C' the following

conditions on the link of C, 1kC, are satisfied:

1. (no bigons) For each pair of vertices in 1kC' there is at most one edge

containing them.

2. (no triangles) Every edge cycle of length three in IkC' is contained in a

2-simplex of k(.

The following theorem of Gromov relates the combinatorics and the ge-

ometry of the complex.

Lemma A.1.1. (Gromov, [5]) A cube complex X is locally CAT(0) if and
only if it s non-positively curved, and it 1s CAT(0) if and only if it is non-

positwely curved and simply connected.

Any graph may be regarded as a 1-dimensional cube complex, and the
curvature conditions on the links are trivially satisfied. The graph is CAT(0)
if and only if it is a tree. Euclidean space also has the structure of a CAT(0)

cube complex with its vertices at the integer lattice points.



A midplane of a cube [—1/2,1/2|™ is its intersection with a codimension 1
coordinate hyperplane. So every n-cube contains n midplanes each of which
is an (n —1)-cube, and any m of which intersect in a (n —m)-cube. Given an
edge in a non-positively curved cube complex, there is a unique codimension 1
hyperplane in the complex which cuts the edge transversely in its midpoint.
This is obtained by developing the midplanes in the cubes containing the
edge. In the case of a tree the hyperplane is the midpoint of the edge, and
in the case of Euclidean spaée it is a geometric (codimension-1) ‘hyperplane.

In general a hyperplane is analogous to an immersed codimension 1 sub-
manifold in a Riemannian manifold and in a CAT(0) cube complex one can
show that the immersion is a local isometry. An application of the Cartan-
Hadamard theorem then shows that the hyperplane is isometrically embed-
ded. Furthermore any hyperplane in a CAT(0) cube complex separates it into
two components referred to as the half spaces associated with the hyperplane.
This is a consequence of the fact that the complex is simply connected. The
hyperplane gives rise to l-cocycle which is necessarily trivial, and hence the
hyperplane separates the space.

The set of vertices of a CAT(0) cube complex X can be viewed as a
discrete metric space, where the metric d;(u,v) is given by the length of a
shortest edge path between the vertices u and v. We will refer to this as
the ¢! metric on the vertices. Alternatively we can measure the distance
by restricting the path metric on X to obtain the % metric on the vertices.

If X is finite dimensional these metrics are quasi-isometric, and we have

|



d(u,v) < di(u,v) < /nd(u,v) where d denotes the CAT(0) (geodesic) metric
on X and n is the dimension of the complex.

Sageev [16] observed that the shortest path in the l-skeleton crosses any
hyperplane at most once, and since every edge crosses exactly one hyperplane,
the ¢* distance between two vertices is the number of hyperplanes separating
them.

Finally we will need the concept of a median. In any CAT(0) cube com-
plex there is a well defined notion of an interval; given any two vvertices U,V
the interval between them, denoted [u,v] consists of all the vertices which
lic on an edge geodesic from u to v. Given any three vertices u, v, w there
are three intervals [u, v}, [v,w], [w,u] and the intersection of these three in-
tervals is always a single point m known as the median of the triple u, v, w
(see [15] for details). It has the following important property: If we con-
sider the hyperplanes which separate the pair «,v and those which separate
the pair u, w the intersection of these two families consists of precisely the
hyperplanes which separate w and the median m. Furthermore the hyper-
planes which separate v from w are precisely those hyperplanes which sep-
arate m from v together with those which separate m from w so we have
di(v,w) = di(v,m)+di(m,w) = dy{v,u) + di (w,uw) — 2d, (m, ). We will use
this fact in section A.4.

In [10] it was shown how to use the hyperplane structure of a CAT(0) cube
complex X to obtain an ¢! embedding of the cube complex in the Hilbert

Space £%(H,R) of square summable (real valued) functions on the set H of



hyperplanes in X. An alternative description of the embedding, based on
the one used in [7] in the context of a tree, is as follows:

Choose a basepoint v in X and for each vertex w € X0 set H, = {h €
H | h separates v and w }. Define f, : H — R by f, = >_ 6§, where d
denotes the characteristic function of the singleton {h} C Hh .EHw

It is easy to see that the function f, is #* and therefore £? and since
the Hilbert Space is contractible (in fact uniquely geodesic) the map extends
to an embedding of X in ¢2(H,R). If X is a cube then this erﬁbedding is
isometric, however in the case of a tree (consisting of more than a single edge)
then it is not. For example let T be the tree consisting of two edges e, e;
both adjacent to a vertex v, and with the other two vertices labelled s,¢. The
tree has two hyperplanes, corresponding to the midpoints of the two edges,
so that #2(T,R) ~ Re, D Re,. The vertex v is not separated from itself by
either of the hyperplanes so we have f, = 0. The vertex s is only separated
from v by the hyperplane s so we have f, = 4., and similarly f; =4,,. Now
in the tree we have di(s,t) = da(s,t) = 2 however in the Hilbert Space we
have dy(fs, fi) =2 # V2 = d(fs, f), where we have used d; to denote the ¢!
metric and d to denote the Hilbert metric.

Although the embedding defined above is not necessarily an isometry it
is relatively easy to show that it is a large scale Lipshcitz map, and we can

measure the distortion of such a map in terms of its compression:

Definition A.1.2. 4 function [ : X — Y s large-scale Lipschitz if there

exist C > 0 and D > 0 such that dy (f(z), f(y)) < Cdx(x,y) +D. Following



Gromovu, the compression p(f) of f is given by ps(r) = nfy (2> dy (F(2), f1)).

Assuming that X is unbounded the asymptotic compression Ry 1s given by

log p3(r)
R; = liminf il A
r—co  logr

where pi(r) = max{ps(r), 1}.

In the case of the embedding of the vertices described above the map is
large scale Lipschitz with C' = 1, D = 0. The argument used by Guentner
and Kaminker [7] to compute the asymptotic compression of the embedding
of a tree goes through without change to our more general context to show
that the asymptotic compression is 1/2. (It should be noted here that we
are regarding the cube complex as a metric space via the ! metric not the
(geodesic) £ metric.)

In order to obtain large scale Lipschitz embeddings with agymptotic com-
pression close to 1 we need to adapt the e;ﬁbedding described above. The
idea, taken from [7] is to weight the functions d;, according to how far the hy-
perplane is from the basepoint. Whereas in the case of a tree the hyperplanes
which separate two vertices are linearly ordered in a higher dimensional cube
complex they are not and there are several partial orders one could use in
modifying the argument. It turns out that the appropriate ordering is fur-

nished by the normal cube paths introduced in [11] and we describe these

next.

10



A.2 Normal cube paths

Definition A.2.1. A cube path is a sequence of cubes C = {Cy,...C,}, each
of dimension at least 1, such that each cube meets its successor in o single
verter, v; = Ci_1 N Cy and such that for 1 < ¢ < n—1, C; is the (unique)
cube of minimal dimenston containing v; and v;y1. Note that v; and v, are
diagonally opposite vertices of C;. We define vy to be the vertex of Cy which
18 diagonally opposite vy, and v, to be the vertex of Cp diagonally opposite
VUn-1. We call the v;, vertices of the cube—pdth; with vy the z’m’tz’gl vertex and
up the termanal vertex. Given o cube path from w fo v we can construct
edge paths from u to v which travel via the edges of the cubes C; so every
hyperplane separating u from v must intersect at least one of the cubes C.
We say the cube path is normal if Cipy N st(C;) = v; for each 1, where st(C;)

is the union of all cubes which contain C; as a face (including C; itself).

In [11] it was shown that given any two vertices w,v there is a unique
normal cube path C = {Cy, ..., C,} from u to v. We will need the following

i

key facts about normal cube paths all of which may be found in [11].

Lemma A.2.2. Let s,t, vy be vertices of 'a CAT(0) cube complex with s

and t diagonally adjacent across some cube Ey. Let s = Sg,81,...,8m = V,
t =ty t1,. ...ty = u be the vertices of the (unique) normal cube paths from
s to vy and from t to vy respectwely. Let {C; |1 =1,...m} be the cubes on

the normal cube path from s to vy and {D; | j =1,...n} be the cubes on the

normal cube path from t to vy. Then:

11



1. Each hyperplane separating s from vy intersects exactly one of the cubes
C; and each hyperplane separating t from vy intersects exactly one of

the cubes D;.

2. For each t < min{m,n} there is a cube E; such that s; is diagonally

adjacent to t; across E; .
We will need the following technical lemma:

Lemma A.2.3. Let s, t,v be vertices of the CAT(0) cube complez X with s

and t diagonally opposite across some cube Fy. Let s = Sg,81,...,8m = VU,
t=ty,t1,...,tn = v be the vertices of the (unique) normal cube paths from
s to v and from t to v respectively. Let {C; |1 =1,... m} be the cubes on

the normal cube path from s tov and {D; | j =1,...n} be the cubes on the
normal cube path fromt towv. If h is a hyperplane in X which separates both

s and t from v and which intersects the cube C; then h also intersects one of

the cubes Di—l; Di, Di+1~

Proof. By lemma A.2.2 the hyperplane h can only (and must) intersect the
normal cube path from ¢ to v in one of the cubes D;, and the hypothesis that
s = sp and ¢t = ¢y are diagonally opposite across the cube Fjy ensures that for
each ¢ < min{m,n} s, is diagonally opposite to ¢; across some cube Ej.
Now h separates s;_1,s; and also separates £;_1,%;. let k = min{s, 7 }.
Assume first that h separates s,_; and s, so @ = k < 7; if A also separates

ty—1 and tg then h crosses Dy = D; as required. If on the other hand h

does not separate t;_; from fp then, since it does not separate ¢ from #;_4

12



by the minimality of &, but does separate ¢ from v, it must also separate
tg from v. Now we construct an edge path from %, to v as follows. First
cross over the cube £ from s to t; then follow a path through the cubes
Crs1, Crro, ..., Cpy to v, This gives an edge \path from t, to v so it must cross
h. However none of the cubes Cp.y, ..., ), intersect A so h must cross £y
and hence h is adjacent to £;. But as h separates ¢ from v and is adjacent to
tr it must cross the first cube (Dy.;) on the normal cube path from tz1 to
v as required. The case when h separates ty_1 and ¢ so 7 = k But does not
separate sy_1 and sy is argued in exactly the same way reversing the roles of

sand t, C and D and so on. O

From now on we fix a vertex v as a basepoint and for each vertex s
we define an integer-valued weight function w, on the set of hyperplanes as
follows. Let C = {Cp,...,Cy} be the unique normal cube path from s to
v. If the hyperplane h separates s and v then set wy(h) = ¢ + 1 where h

intersects the cube Cj, otherwise set w(h) = 0. Hence w, has finite support.

From Lemma A.2.3 we get:

Corollary A.2.4. If s and t are adjacent in X and h separates both s and

t from v then |wy(h) — ws(h)] < 1.

Proof. If the normal cube path from s to v is denoted by the cubes C; as
above and the normal cube path from ¢ to v is denoted by D; then / intersects
precisely the cubes C,,(n) and Dy, so by the lemma Dy, n) = Dy, (ny=1, and

I
-]

wi(h) = ws(h) or wy(h) = ws(h) £ 1 as required.

13



Note that in the statement of the corollary “adjacent” may be taken to
mean adjacent across the diagonal of any cube, however in our application

we will only need it to mean that s and ¢ are vertices of a common edge.

A.3 The large scale Lipschitz embeddings

As in the last section we fix a CAT(0) cube complex X (not necessarily
finite dimensional) and a base vertex v. We will show how to construct a
family (indexed by the interval (0,1/2)) of large scale Lipschitz embeddings
of the vertex set X9 into the Hilbert Space of #2 functions from the set H
of hyperplanes in X to R.

Foreach e € (0,1/2) define f.(s) = Z} w(h) 6. Asnoted before since the
s-weight of a hyvperplane is 0 unless thehlfl;/perplane is one of the finitely many
separating s from the basepoint v, this sum is always finite and therefore is
an element of /*(H,R).

In order to show that f. is a large scale Lipschitz map it suffices to show

that there is a constant C such that whenever d(s,t) = 1, || f.(s)— f.(t) [|*<

C.
Lemma A.3.1. For each e € (0,1/2) there is a constant C such that for any

vertices s,t € X O with dy(s,t) = 1 we have || f.(s) — f.(2) ||’< C.

Proof. Let hg be the hyperplane cutting the edge joining s, ¢. Assume, with-
out loss of generality that h separates ¢ from v but not s from v so that

di(s,v) +1 = di(t,v) and the set of hyperplanes separating ¢ from v is the

14




union of the set {A1, ..., Ay} of the hyperplanes separating s from v together
with h.

We need to compute

I F9)=£e0) IP= Dl () e () = 15D () () P (A)

Now according to corollary A.2.4 we have |w;(h;) —ws(h;)] < 1. Suppose
that for a particular hyperplane h; we have ws(h;) = k so that w(h;) takes
one of the values k — 1, &, k+1 and [w,(hy)¢ ~w,:(h;)°]* takes one of the values
I — (s 1), Tk = K2, [&° — (k — 1)

An elementary calculation of the first derivative shows that the function
X = [X¢— (X +1)7? is strictly increasing so we have [k¢ — (k + 1)¢? >
(kb — 1) —k? = [k — (k — 1)]® > 0 = [k* — k°]* hence we have [w;(h;)¢ —
we(hy))? < Jws(hy) — (ws(hs) + 1)¢]* and so

m

> lwah) — we(he)? <

1=1 %

[ws(ha)* = (ws(hi) + 1) (A-2)

-

Il
i

We can split the final sum as a double sum taken over all hyperplanes

with a given s-weight. Let .J denote the set of all s-weights.

—_
n




Since the cube complex has dimension n we can cross at most n hyper-
planes in any given cube so the number of hyperplanes with w(h) = 7 is at

most n for any j and

2 2 UG+ NT >l -G+ )P

7 wslhi)=]

Putting w; = j¢ and adding additional positive terms we see that

J=0
o0 oG 5
The series S [w; — w,;1,]° converges so putting C =n > |w; — w;.q]> we
2 1% j g p g Wy 741l
= =0
get || f.(s) — f:(t) |*< C and f. is large scale Lipschitz as required. d

A.4 Hilbert Space compression

While establishing that the map is large scale Lipschitz required us to show
that || fo(s) — f.(t) ||* is small for nearby vertices, to establish that the

s

embedding has large asymptotic compression requires us to show that ||
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f.(8) — folt) || is relatively large for points s,¢ which are sufficiently far

apart.

Specifically we will prove:

Lemma A.4.1. For any positive v and any ¢ € (0,1/2) there is a constant

C, such that || fu(s) — fu(2) [[2> Cur'*2e. Hence pj,(r) > v/Corl/2e

Proof. Let D = dy(s,t) > r and assume d(1,s) < d(1,1) so that, letting m
denote the median of the triple 1,s,¢, we have d(m,t) > d(m, 5) It follows
that d(m,t) > §(£) > #(%) where §(n) denotes the smallest integer greater
than n. Hence there are at least i(5) hyperplanes which separate ¢ from
1 but which do not separate s from 1. We will denote these hyperplanes
hi,ho, ..., hyz). Now consider the normal cube path Cy, Cy, ... Cy from ¢ to
1. As noted in lemma A.2.2 each of the hyperplanes h; must intersect exactly
one of the cubes Cj, and by definition w:(h;) = (j + 1). By relabelling if
necessary we may assume that the t-weight ipcreases (not necessarily strictly)
with the index 7 of the hyperplane, and given that the cube complex has
dimension n at most n of the hyperplanes can have the same t-weight, i.e.,
at most n of the hyperplanes have weight 1% and the others have weight at
‘least 2°; at most n of the remaining hyperplanes can have weight 2¢ and the
others have to have weight at least 3° and so on. RGACE;H that for each of these
hyperplanes ws(h;) = 0 by hypothesis so, writing §(5) = kn + m for some

integer 0 < m < n we have



| £.09)= Fu8) P2 wila) 4w ()™ 2 (L4242 (1),

We will now show that the RHS of this equation is greater than the

expression
S (e u D)
n 2
1
— _(125+ A_TLZE | (nfl)gé;. +<2n>25_<2n’71)26_}_
n

. 9 :
ni* > =[((i = )n +1)" + ...+ (in)*]
n
: 1 ;2 2e,2¢ fom 26
Since € < 5 and n > 1 we have ni*® > n"4*¢ = (in)

On the other hand, since € > 0 and in > ik for all k < n we have

1 . , 5 1
(= D+ 1P+ ()] < —(nlin)*) = (in)*
T n

. 1 ¢ .
ni% > ()% > Z[((i - Dn + 1)% + ..+ in®]
i
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Claim:

1
mk+1)% > = ((kn+ 1)+ ...+ (kn + m)*)
n

We have that

m(k + 1)25 > mze(k; -+ 1)26 = (mk + m)26

Looking at the RHS of the statement of the claim we have:

((kn+1*+ ...+ (kn+m)™) < T(/m +m)*  (since (kn + m) is the biggest term)

S

m\ 2¢ . ) ™m
< <—> (kn +m)*  (since— < 1)
n n

= (mk+ —)%*

< (mk+m)* (since— < 1)
n

And so |
1 , f
mk+1)% > (mk+m)* > = ((kn + 1)* + ...+ (kn + m)™)
n

Putting both claims together, we have that:
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m o (k+1)% >

n1% > (12€+...+n25)

n* 2% >

II—=3|—

(n+1%+ ...+ (2n)%)

nxk* > = (((k—1)n+ D*+ .+ (kn)*)

S| 3|

A+ (kn +'m)2€)

And so
nxl1%+n 2%+ rnxk*+mlk+ 1% > i<125—:»22€+..A+;;:(f)9€>
n 2
Hence,
| fels) = fe() [P 2 welh)® + .+ wi(hys))
> nxl1* 4+ pe2® + ok mk+ 1)
1, 5 5 T .9
> —(1F+2%+ . +i(=z))
> —( 1507

In [6] Cuentner and Kaminker showed that (1%€ + 22 + ...

Dot
poetl

so putting C, =

we obtain, as required,

—
n{22¢-13(2e+1)
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|| £(8) = f(2) P> Cur?ert

Now we obtain:

Lemma A.4.2. For each € the asymptotic compression of the map f. is at

least 1/2 + €.

Proof. We have

1 e 1 C’,.l/Z;e
RfézlilnillfMZliminfM-—:1/2+6 |
r—co logr r—00 log r ;

A.5 Exactness for groups acting properly and
co-compactly on a CAT(0) cube complex

The Hilbert Space compression of an unbounded metric space is defined to
be the supremum of the asymptotic compression of all possible large scale
Lipschitz maps from the metric space to a Hilbert Space so putting together

the results of sections A.3 and A4 we get

Theorem 14. The Hitbert Space compression of an unbounded finite dimen-

sional CAT(0) cube complex (X, d) s 1.

21



Proof. For each ¢ € (0,1/2) we have constructed a large scale Lipschitz
embedding f. of the metric space (X d;) into the Hilbert Space #2(H,R)
with compression at least 1/2 + ¢. Hence the Hilbert Space compression of
(X© d;) is 1. Since X is finite dimensional, of dimension n say, we have
d(s,t) < di(s.t) < /nd(s,t) so (X9 dp) is quasi-isometric to (X, d), and
since Hilbert Space compression is a quasi-isometry invariant we obtain the

result. O

Now suppose (G s a group acting properly and co-compactly on an un-
bounded CAT(0) cube complex X. Choose ‘a finite generating set for G and
regard GG as a metric space via the edge metric on the Cayley graph. Then

(# 1s quasi-isometric to (X, d). Again by quasi-isometry invariance we obtain

Corollary A.5.1. Let G be a finitely generated group regarded as a metric
space via the word metric with respect to some finite generating set. If G
acts properly and co-compactly on an unbounded CAT(0) cube compler then

G has Hilbert Space compression 1.

Finally since Guentner and Kaminker showed that a discrete group with

Hilbert Space compression strictly greater than 1/2 is exact we obtain:

Theorem 15. If G is a group acting pmpeﬂy and co-compactly on a CAT(0)

cube complex then G is exact and therefore has Yu’s Property A.

As noted in the introduction, if G acts properly on a bounded CAT(0)

cube complex then ' is finite and therefore exact, so the hypothesis that

[N]
[N]



the cube complex should be unbounded (which was only inserted in the
supporting results in order to ensure that .asymptotic compression can be

defined) would be superfluous here.
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Abstract

Using properties of their Cayley graphs, specific examples of Ozawa kernels
are constructed for both free and amenable groups, thus showing that these
groups satisfy Property O. It is deduced both that these groups are exact

and satisfy Yu's Property A.



B.1 Introduction

The property of exactness was first introduced as an analytic property of
C*-algebras. We say that a C*-algebra C' is exact if the operation of taking
the cross product with C preserves exactness of short exact sequences. In

other words, for any short exact sequence
0—J—B—=B/J—0

the sequence

00— J®mm C—B Qrmin C— B/J Emin ¢ —=0

is also exact.

We say that a group I is exact if the operation of taking the reduced
crossed product with ' preserves exactness of short exact sequences of I'-C*-
algebras. In other words, I' is exact if and only if for every exact sequence of
[-C*-algebras

0—B—C—D—190

the sequence
0 — (I B) — CUIL,C) — CX(IL, D) — 0

of crossed product algebras is exact. Following work by Kirchberg and



Wassermann, [KW], a discrete group is said to be exact if and only if its
reduced C”-algebra is exact. Exactness is linked to conjectures such as the
Novikov Conjecture and the Baum Connes conjecture and exact groups sat-
isfy the Coarse Baum Connes Conjecture. Examples of exact groups include
hyperbolic groups, groups with finite asymptotic dimension and groups act-
ing on finite dimensional CAT(0) cube complexes [CN].

More recent work has shown that when we regard the group as a metric
space in the word metric, the property of exactness can be defined by more
geometric means. In particular, Yu showed that exactness of a group is
equivalent to Property A, a measure theoretic property, and implies the
Uniform Embedding Property [Yu]. In [O], Ozawa introduced the following
property which we will call Property O and‘proved that for a discrete group

it is equivalent to exactness of its reduced C*-algebra:

Definition B.1.1. A discrete group G is said to have Ozawa’s Property O
iof for any finite subset E C G and any € > 0, there are a finite subset F C G

and uw: G x G — R such that
1. wu(z,y) is a positive definite kernel
2. u(z,y) £ 0 onlyif sy e F
31 —u(z,y)| <eifzlye E

We will call functions satisfying the conditions of Property O Ozawa

kernels.



This property has been used by Guentner and Kaminker to prove their
theorem relating asymptotic compression and exactness [GK]. No explicit
examples of Ozawa kernels can be found in the literature. The aim of this
note is to construct explicit Ozawa kernels for two classical cases of exact
groups, amenable groups and free groups by using geometric properties of
their Cayley graphs. In both cases the functions can be viewed as weighted
mass functions. This shows that amenable and free groups satisfy Property
O. This is sufficient for us to deduce both that their reduced C*—algebra is

exact and that they satisfy Yu's property A.

B.2 Free groups

Theorem 16. Free groups admit an Ozawa kernel and thus satisfy Property

0.

Proof. This construction is based on the proof that trees have Property A
[DJ].

Let T be the Cayley graph of a free group (a tree) and V' its set of vertices.
Let 5 : R — T be a geodesic ray in T. Let ~, be the unique geodesic ray
issuing from v € V and intersecting vy along a geodesic ray. Let ) be the
initial segment of v, of length n.

For any z,y € V, we define our function u,(z,y) to be the size of the



overlap of the n-length rays v anc Yy, scaled by n + 1.

ATy AT
Tz N i/y.!

We will now show that this family of functions can be used to define an

Ozawa kernel.

Lemma B.2.1. For any n, u, s o positive definite kernel.

Proof. Define f,(z) and x,.(z) as follows: ‘

) 1 if v separates z from the end of g
fb(x) -

0 otherwise
And

\ 1 if z is contained in the ball of radius n around v
/\/v,n(I) -
0 otherwise

Then we have

Un(l y = “va fU\y Xvnkr>/\u n( )

veV

The only vertices contributing to this sum are whose which are within

distance n of both z and y and which separate both z and y from the end of

n

~vy. This is precisely the size of the intersection of the n-length rays v and



r\/n

We can now rearrange u, to show that this is a positive definite kernel.

k k
ZAiAj'lbn(xi:xj> = Z/\z’/\jzfv(xi>fv(~rj)Xv,n(Ii)XuBﬂ(33]'>
L

%,J VEV

VeV

k
- Z (ZAifv(IJXu,n(%)) >0

veV 7

k k
- Z (Z /\ifv<xi)Xu‘n(Ii> Z /\jfv<xj)Xv.n(Ij)>

W .

O

Lemma B.2.2. For each n there exists a finite set F such that uy(z,y) # 0

only if x~ty € F.

Proof. Let F be the ball of radius n around the origin. If d{z,y) > 2n, ie
z7ly & F there is no overlap between the n-length rays 7 and v, and so

un(z,y) = 0. O

Lemma B.2.3. Given any finite subset E and ¢ > 0 there exvists N such

that |1 —uy(z,y)| <eifz ™'y € E.

Proof. Since E is a finite subset, there exists some nuwmber m such that if

7ty € E then d(z,y) < m.



Now if d(z,y) < m, then the minimum size of the overlap of 7} and 7,
is m — m whilst the maximum is n + 1.
And so we have

n—m . ‘ n+1
< uplz,y) <
= n( /J)_nﬂ—l

n+1

Hence limy, o un(x,y) =1
And so Ve > 0, 3N such that Vz~'y € E we have as required [l —
'LLN(\I;@/)\; < €. u
Hence uy is an Ozawa type kernel and free groups satisty Property O. [

The following corollary immediately follows:

Corollary B.2.4. Free groups are exact and satisfy Yu’s property A.



B.3 Amenable groups

We will first review the definition of an amenable group via Folner’s condition:

Definition B.3.1. If a group G is amenable, then there exists a Folner

sequence G, of finite subsets of G such that Vg € G,

lgGr & Gyl
lim Z———" =0
nle |Gl
This can be rewritten as follows:
‘an A Gﬂf - ’an UG, — an n an
(e a Gl
 9Ga UG [9Ga N Gy

The maximum possible value of |¢G, U G,| is 2|G,| and the minimum is
|G|. Similarly, the maximum possible value of of |¢G, N G| is |G| and the

minimum 18 0.

1gGnUGnl 1 . . o 19GnNnGal 1 -
So E=ntnl 2 lies between 1 and 2, while q—@—“—‘ lies between 0 and 1. Since
T | E

the difference between them tends to 0 and we are dealing with bounded sets

X TvlmGn
of real numbers, we have that lim, ... \QCZG i e
I ka3

We can now prove our next theorem:

Theorem 17. Amenable groups admit an Ozowa kernel and thus satisfy
Property O.

Proof. Consider the family of functions u,(z,y) = %”ﬁl‘

7



Lemma B.3.2. For each n, u, is a positive definite kernel.

Proof. An element g € G belongs to the intersection xG, N yG, only if
g € zG, and g € y(G,. This is equivalent to z7'g € G, and y~lg € G,.
Again this is equivalent to 27! € Ghg™! and y~' € Ghg~'. And so the
condition becomes z € gG;t and y € gG L
So taking x(z) to be the characteristic function, u, can be rewritten as
w(29) = 727 3 Yaor: (e 0

geqG

Thus:

> Ahulzs ) = ZA“\]'["E‘“_;ZXQG;‘*@)XQG;%IJ)
17 i i

geG

1 i I
Sl DL SERHSTER) SECER)
' g€ i

J

)
B ;; 2 (Z A%’XgG;‘i(Ii)) =0

tgeq 7

1
Lemma B.3.3. For each n, there exists a finite set F such that u,(x,y) # 0
only ifz™ 'y € F.

Proof. Consider the Cayley graph of (. Since G, is finite it is contained

within a ball of diameter . Let F' be the ball of radius » around the origin.



If d(z,y) > 2r, ie z71y ¢ F, there is no intersection between zG, and yG,

and so u, = 0 as required. ‘ T

Lemma B.3.4. Gwen any finite subset E and ¢ > 0 there exists a function
uy such that |1 —un(z,y)l <eifxlyc E.

‘QGnﬁGni

Proof. limy e =557 = 1. So for a given g, Ve > 0, there exists R such

T

] alemy
that if n > R, |1 — EG—G_\C"

| < e. Since this holds for any g € G, it holds in
particular for 7'y, Since E is a finite subset, there exists NV = max{R|g =

-1 ~1 GGl _ [2GnWGN
™!y € E} such that va™ly € E, }1———%—” = El—ﬁ—!—‘c—;—li =

O

1 —uy(z,y) <e

This function wy is an Ozawa kernel and thus amenable groups satisfy

Property O. V O
The following corollary immediately follows:

Corollary B.3.5. Amenable groups are exact and satisfy Yu’s property A.

B.3.1 Example: groups of subexponential growth

A good example of the above construction which clearly shows the impor-
tance of the geometry of the Cayley graph is that of groups of subexponential

growth which we define as follows:

Definition B.3.6. Let G be a group with generating set A. Let B4(n) be the

number of vertices in the closed ball of radius n about 1 in the Cayley graph



of the group generated by A. The growth function of G with respect to A is

n - 54(]’2,)
Definition B.3.7. G has subexponential growth if B4(n) < eY™ for alln € N.

Examples of groups of subexponential gréwth include finite groups, abelian
groups and nilpotent groups. All groups of subexponential growth are amenable
and so satisfy Folners condition. In fact, it can be shown that balls of radius
n in the Cayley graph of G are Folner sets [BHV].

In this case, the Ozawa kernel u{rt y) is simply the.size of the intersection
of the balls of radius n centred at z and y, scaled by the size of B,,. We choose
the radius n according to the given € and finite set £.

lzB, NyB,

uﬂ(z‘>y> - lB i

Alternatively we can regard the function as the number of balls of radius n

which contain both z and vy, scaled by the size of a ball of radius n.

. _ |{Bnl|B, contains both z and y.}|
’Mn(l'; y/ = iB ‘
H n;
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