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Abstract 

 

In pharmaceutical R & D, drug stereochemistry, and consequently the rotation of enantiomers, is 

very important. Because they act as chiral selectors in vivo, biomacromolecules have been 

extensively used as chiral selectors for the liquid chromatographic (LC) resolution of enantiomers 

and more latterly have also been employed in the newer separative technique, capillary 

electrophoresis (CE). However, at the outset of this research programme, this had generally been 

restricted to common easily accessible biomacromolecules such as plasma-binding proteins. It 

was clear that it be would be useful therefore to adapt LC and CE in such a way as would allow 

the use of a much wider range of biomacromolecules. Accordingly the general aim of this study 

was to develop LC and CE protocols involving biomacromolecules that would give rise to 

minimum consumption of the biomacromolecule. 

 

To study biomacromolecules in free solution CE, a number of experimental variables had to be 

established for both optimum chiral discrimination and for investigating biomacromolecule-ligand 

interactions. The typical and widely used biomacromolecule for chiral discrimination, bovine 

serum albumin (BSA) was used to study the variables of pH from pH 5.4 to 8.4, concentration of 

BSA form 0 to 60 µM and concentration of organic modifiers in the range 0 – 20 % v/v for chiral 

selectivity. This involved an investigation into some unusual artefacts such as ghost peaks and 

stepped baselines, but ultimately the outcome was a successful free solution CE protocol suitable 

for the rapid evaluation of chiral discrimination of other biomacromolecules. The conditions 

were: run buffer (30 µM protein, 67 mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v)), 

capillary CElect p150, 40 cm (35 cm to detector) x 50 µm i.d., temperature of ambient or 25 °C 

and an applied voltage of 10 kV.  The ability of other biomacromolecules, such as human serum 

albumin (HSA), lactoferrin and protamine, to resolve enantiomers was studied using this protocol 

including looking at the effect of the addition of modifiers to the buffer such as metal ions like 

manganese and zinc, competing ligands, e.g. warfarin and ibuprofen, and β-cyclodextrin. 

 

As well as using CE, miniaturisation of LC was also studied in view of the success of 

biomacromolecule-affinity chiral LC. Two different, but similar, microbore LC protocols were 

employed, i.e. using the protein in free solution or as a pseudo stationary phase. For the former, a 

Lichrosorb DIOL stationary phase, based on hydroxyl groups immobilised on silica, was chosen 

in order to minimise the adsorption of protein to the stationary phase. Using this protocol it was 

demonstrated that free solution microbore LC could be easily be carried out, therefore used to 

evaluate chiral discrimination and that the use of the system to study in vivo interactions was 

feasible. 
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The creation of a biomacromolecule pseudo stationary phase, as opposed to conventional chiral 

stationary phases where the protein is permanently bonded to the stationary phases, involves the 

biomacromolecule being adsorbed within the pores of the stationary phase. In this way the overall 

biomacromolecule structure should not be grossly distorted. Three stationary phases were 

evaluated, viz wide-pore Nucleosil silica, Nucleosil C8 and Lichrosorb DIOL, for optimum 

biomacromolecule loading and minimal biomacromolecule leakage when mobile phase was 

pumped through the column. The Nucleosil silica with adsorbed BSA proved the most successful, 

e.g. α of 3.6 and 4.0 for tryptophan and kynurenine respectively, and robust of the stationary 

phases with respect to demonstrating the chiral discrimination potential for this system. 

 

All the miniaturised systems evaluated were successful, to a greater or lesser degree, for the 

demonstration of chiral selectivity of biomacromolecules. While CE was better for minimisation 

of the consumption of the biomacromolecule, it was also important that the biomacromolecule LC 

systems could be operated in reduced dimensions since these systems have perhaps greater 

potential for exhibiting enantioselectivity and are more appropriate for the ever increasing need 

for the study of the interaction of ligands with the biomacromolecule in its ‘natural’ form. With 

the knowledge gained from this research programme it will now be possible to more easily carry 

out such studies with much smaller amounts of biomacromolecule, and, accordingly be able to 

work with biomacromolecules which hitherto it has not been possible to study because of limited 

availability. 

 
While some of the protocols have now been superseded by recent developments the system 

developed still has potential. The use of such small scale systems offers the potential to study 

chiral selectivity and drug-biomacromolecule binding of rare or expensive biomacromolecules. 
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Chapter 1 Introduction 

 

1.1 Preface 

 

The research programme described in this thesis involves the general area of the 

study of the interaction of analytes, usually drug molecules, with biopolymers in 

separative systems. Such systems have potential value in providing the basis for 

understanding of separative methods based on bioaffinity, particularly those 

involving the resolution of enantiomers.  Also they might prove useful in assessing, 

at least qualitatively, the ability of drugs to bind to biopolymers. It ought to be 

instructive then to consider the over-arching principles and key issues in areas such 

as chirality in order to set the scene for the rationale for the aims and objectives at the 

outset of the research programme.  

 

1.2 Chirality 

 

1.2.1 Overview of chirality 

 

Chirality is the property of molecules or objects whereby their respective mirror 

images cannot be superimposed. It is not necessary to go very far to find an excellent 

example of chirality. The hands of a human being are chiral.  As shown in Fig. 1, 

even though they appear identical they are non-superimposable. 
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Mirror

Plane

  

 

 

Fig. 1 Hands to give an easily recognisable representation of chirality 

in nature. No matter which way the lower mirror image hand is translated 

or rotated, it cannot be superimposed on the upper original hand 

 

Importantly, chirality such as this exists at the molecular level. 

 

 

1.2.2 Stereoisomers 

 

 

Stereoisomers are molecules which have atoms bonded in the same order or 

‘connectivities’ but do not have the same arrangement in space. Stereoisomers that 

have non-superimposable mirror images are termed enantiomers. 

 

Diastereoisomers are molecules which contain more than one chiral centre. For such 

molecules a number of stereoisomers are possible, for example, 2,3-dichloropentane 

has four stereoisomers, Fig. 2. 

 



- 3 - 

 

Fig. 2 Diastereoisomers of 1,1-dichloropentane  

 

From Fig. 2, 1 + 2 and 3 + 4 are enantiomers. However, 1 + 3 and 2 + 4 are not 

enantiomers, as they do not have non-superimposable mirror images. 

Diastereoisomers have similar chemical properties although not identical chemical 

properties of enantiomers. They have different physical properties and can be 

separated by fractional crystallisation and fractional distillation. From Fig 2, 1 + 2 

can be separated from 3 + 4 using these methods. 

 

1.2.3 Asymmetric carbon 

 

The most common source of chirality, especially in drug molecules, is the tetrahedral 

carbon centre. When there are four different groups attached then it is chiral and has 

two enantiomers, Fig. 3. Other terms used include stereogenic centre and chiral 

centre. 
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Fig. 3 Representation of enantiomers where a, b, c and d are different 

substituents. 

 

However, it is worth noting that chirality may also arise from steric overcrowding, as 

is the case for hexahelicene. From Fig 4, there is overcrowding indicated by the R 

and R’ groups. This will form two different chiral molecules depending on the 

orientation of the R and R’ and the plane of the molecule. 

 

Fig.4. Steric overcrowding leading to chiral molecules. The plane of the 

hexahelicene molecule will be conformationally locked if the R and R’ 

substituents are sterically too bulky to allow the ends of the molecule to 

slip past each other. 
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1.2.4 Properties of chiral compounds 

 

1.2.4.1 Achiral properties 

 

The physical properties, e.g. density, boiling point and melting point, are identical for 

both enantiomers. Where there are no interactions from chiral molecules during 

chemical reactions then both enantiomers will have the same reaction kinetics and 

thermodynamic profiles. 

 

1.2.4.2 Optical properties 

 

When chiral compounds contain an excess of one enantiomer [Mason 2002], a 

solution of the compound will rotate a plane of polarised light through an angle α, 

which is the observed rotation. When the amounts of each compound are equal, a 

racemate, then there is no rotation of polarised light. The specific rotation, [α], of a 

compound is shown in the following equation 5: - 

 

[ ]α α
=

100
cl  

Equation 5 Specific rotation 

 where 

  [α] = specific rotation 

  α = angle of rotation of the polarised light 

  c = concentration, g 100 ml-1 

  l = path length, dm 
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1.2.4.3 Chemical properties 

 

When reactions occur in chiral environments the enantiomers have different reaction 

kinetics and thermodynamic profiles. Where a reagent only interacts effectively with 

one of the enantiomers then it has chiral recognition properties. This is important in 

nature, which has many such chiral recognition reactions. The three-point interaction 

rule is an attempt to describe the nature of chiral recognition. 

 

1.2.5 Three point interaction rule 

 

The rule was proposed by Dalgliesh [Dalgliesh 1952] after studying optical 

resolution of aromatic amino acids using cellulose. He proposed that if an α-amino 

group and carboxyl group were simultaneously bonded, by hydrogen bonding, to 

cellulose then resolution could not occur. However when another part of the 

molecule was bonded to the cellulose, e.g. an aromatic group, then there will be a 

three-point attachment of the molecule, which is required for stereochemical 

specificity. The interactions between different groups can be from covalent bonding, 

ion-ion interactions, hydrogen bonding, steric repulsion and dipole-dipole 

interactions. 

 

1.2.6 Nomenclature of chiral molecules 

 

To differentiate between enantiomers three naming conventions have been adopted 

[Carey 1992]. These are Cahn-Ingold R,S [Cahn 1966] notational system, 

nomenclature assigned by the rotation of polarised light and the Fischer convention 

[Fischer 1891]. 
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1.2.6.1 Cahn-Ingold R,S notational system 

 

This system [Cahn 1966] allows the specific structure of each enantiomer to be 

determined. The substituents of the stereogenic centre have to be identified. The 

substituents are then assigned a rank based on the molecular mass of the bonded 

atoms from the lowest to the highest, e.g. carbon will have a higher rank compared to 

hydrogen. The molecule is orientated such that the lowest rank is pointing away from 

the vi ewer, Fig. 6. Of the remaining three substituents if the order of decreasing rank 

is clockwise then it is assigned as R otherwise it will be assigned as S for anti-

clockwise. 

b
a

c d

b
a

cd

clockwise (R)anti-clockwise (S)  

 

Fig. 6 Orientation of chiral molecules to determine the Cahn-Ingold 

notation, with a the lowest ranking group being furthest away from the 

viewer above the plane of the page. 
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1.2.6.2 Nomenclature assigned by the rotation of polar ised light 

 

When chiral molecules rotate polarised light, the light is a single wavelength and is 

typically 589 nm based on the sodium D-line standard, in a clockwise direction then 

they are assigned as (d) or (+) molecules. Similarly for anti-clockwise rotation they 

are assigned as (l) or (-) molecules. This notational system does not give structural 

information about the molecule, unlike the Cahn-Ingold notation. 

 

1.2.6.3 Fischer convention 

 

Emil Fischer introduced the convention in 1891 [Fischer 1891]. Configurations of 

chiral molecules could be related by reactions of known stereochemistry. Fischer 

projections are used for sugars and other carbohydrates. The simplest carbohydrate, 

glyceraldehydes, was chosen as the standard by which all others could be related. 

From their rotation of polarised light (+)-glyceraldehyde was designated D-

glyceraldehyde and (-)-glyceraldehyde was designated L-glyceraldehyde [Carey 

1992]. The configuration of the glyceraldehyde molecules is shown in Fig. 7. 

 

 

C

C

CH
2

OH

O H

C

C

CH
2

OH

O H

H HHOOH

 

           (R)-glyceraldehyde                (S)-glyceraldehyde 

 

Fig. 7 Glyceraldehyde enantiomers, set out with the most oxidised C 

atom at the top.  
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From the absolute configurations in Fig 7, D-glyceraldehyde has the R configuration 

and conversely L-glyceraldehyde has the S configuration. As it transpired from the 

studies of Bijvoet in 1951 [Bijvoet 1951 & Bijvoet 1955] the configurations were 

indeed as Fischer postulated. 

 

1.2.6.4 Determination of the absolute configuration of enantiomers 

 

The absolute configuration of enantiomers was not determined until 1951 by J.M. 

Bijvoet at the University of Utrecht. By using the x-ray analysis method of 

anomalous scattering he studied the salt of (+)-tartaric acid to determine the 

configuration. Once the configuration of (+)-tartaric acid was known then this was 

then related to glyceraldehyde so the configuration of many enantiomers could then 

be determined. 

 

1.2.7 Chirality and pharmaceuticals 

 

As biological systems are chiral in nature and since many drugs contain enantiomers 

so it is important to understand the pharmacokinetics and pharmacological profile of 

all the enantiomeric forms. Both enantiomers can exhibit several different effects 

ranging from beneficial activity to inactivity or even extreme toxicity. The case of the 

enantiomers of thalidomide has been well documented [The Insight Team 1979]. 

Thalidomide was employed as a sedative and anti-nausea drug between 1959 and 

1962. The R enantiomer was beneficial but the S enantiomer was held responsible 

for over 2000 cases of serious birth defects in children born to women who took 

thalidomide during pregnancy. It has since been established that the in vitro 

racemisation of thalidomide is far more complex [Agranat 2002, Knoche1 1994 & 

Knoche2 1994] than had originally been thought. 
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Where chiral compounds are used then it is important to know the amounts of 

enantiomers present. As enantiomers have the same physical properties then normal 

analytical techniques cannot be used. However in chiral environments enantiomers 

react differently, so in order to separate them a chiral recognition step has to be 

incorporated into the analytical procedure. With increased understanding of 

separating and the pharmacokinetics of enantiomers by the mid-90s many states were 

issuing regulations for chiral medicinal products [Rauws 1994]. 

 

1.2.8 Chiral agrochemicals 

 

Another area where single enantiomers are used is pest control. Previous generations 

of pesticides have not been species specific and have caused wider problems in the 

environment. Such pesticides include organochlorine compounds and 

organophosphates. It has been suggested that future agrochemicals could be single 

enantiomers and target a particular crop or pest through their stereochemistry 

[Massey 1994] and one such agrochemichemical which they studied was R-2-[4-

(trifluoromethyl-2-pyridyloxy)phenoxy]proprionate, Fig. 8.  

 

 

Fig.8 R-2-[4-(trifluoromethyl-2-pyridyloxy)phenoxy]proprionate, a 

novel chiral agrochemical. 

 

Therefore, as is the case for pharmaceuticals, the separation and quantitation of 

enantiomers are important. Chiral HPLC has been the analytical technique of choice 

to resolve enantiomers of such compounds including hexobarbital and 

chlorothalidone [Riering 1996], homologous malathion derivatives [Chilmonczyk 
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1998], organophosphorus pesticides [Ellington 2001] and fungicidal triazolyl 

alcohols [Spitzer 1999]. 

 

1.3 The use of biomacromolecules as chiral selectors 

 

Biomacromolecules such as proteins and polysaccharides are large biological 

molecules which are colloidal in nature. In general, they have complex structures 

with many points for interaction and so a broad spectrum of drug classes may bind to 

them while, at the same time, the binding can be quite selective. 

 

1.3.1 Proteins 

 

1.3.1.1 Amino acids 

 

Proteins are straight chain polymers of amino acids, Fig. 9, that perform a wide a 

wide variety of cellular functions ranging from the structure of cells to the 

controlling elements in living systems. The protein polymers fold into unique three 

dimensional structures. The shape of proteins can be defined into four distinct areas. 

 
R H

-
OOC NH

3
+

 

Fig. 9 Chemical structure of an α−amino acid, showing the ‘zwitterionic 

form’ with both the amino- and carboxylic acid groups ionised but with 

no net charge. Only the L form (shown) is found in higher organisms. 

 

There are several theories as to why amino acids only appear as the L enantiomer in 

nature [Dickerson 1969]. The L enantiomer is thermodynamically more stable in 

magnetic fields and UV light, so over a period there would be more of the L 

enantiomer compared to the D enantiomer. It could have been thermodynamically 
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favourable for the L enantiomers to react in the early stages of life thus leading to a 

gradual, but, over time, very marked enrichment [MacDermott 2002]. 

 

1.3.1.2 The peptide bond 

 

The peptide bond is formed by a condensation reaction between amine and 

carboxylic acid groups with the loss of a molecule of water. The amino acid 

monomer can have any number of side chains. Some amino acid side chains are 

shown in Table 10. With twenty different side chains for each monomer then there 

are a huge number of different possible polypeptides. The side chains have the most 

effect on the properties of the protein; for example, in regions where the side chains 

are hydrophobic they will adopt a structure to minimise water interactions and so 

form hydrophobic pockets. This arises from the change in entropy around a 

hydrophobic molecule. The water molecules form an ordered lattice so when the 

hydrophobic molecule is removed, the ordered lattice breaks down so there is an 

increase in entropy. Hydrophilic side chains are found on the surface of the protein 

[Kaliszan 1992]. 

 

Table 10 Structure of six common amino acid side chains  

 

Amino Acid Residues 

H  Me Me  
 

Glycine    Gly Leucine    Leu Phenylalanine    Phe 

S
H  N N H

H  

COOH  

Cysteine    Cys Histidine    His Aspartic Acid    Asp 
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1.3.1.3 Structure of proteins 

 

The primary structure is the amino acid sequence of the protein. The secondary 

structures are locally defined and can be patterned sub-structures of α-helices and β-

sheets or segments of the chain that have no discernable shape. Each turn of an α-

helix requires 3.6 amino acid subunits. Proline is unique in the side chain bonded to 

the α-carbon and the nitrogen to form a secondary rather than a primary amino 

group, Fig. 11. As a result the helical chain is slightly distorted around this amino 

acid. There can be many such secondary structures on a single protein. The tertiary 

structure is the overall shape of the single protein molecule and is defined by the 

interactions of the secondary structures to one another. The quaternary structure is 

the result of the formation of a protein complex from more than one protein 

molecule. 

COO
-

H
+

H
2

N

 

Fig. 11 Proline, the only secondary amine containing natural amino acid 

 

The four structures of the protein molecule are held together by a wide range of 

bonds and chemical interactions. The primary amino acid sequence is formed by 

peptide bonds. The secondary structure is formed by hydrogen bonding. The tertiary 

structure is formed by a variety of different bonds including hydrophobic 

interactions, hydrogen bonds, ionic interactions and disulphide bridges. A process 

called protein folding forms the quaternary structure. The mechanism of the protein 

folding remains essentially unresolved because are too many conformations that can 

occur to be evaluated [Peters 1977]. 
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1.3.2 Serum albumins 

 

Albumins are the main circulatory proteins in the blood plasma [Peters 1977]. A 

variety of ligands are reversibly bound to albumins so they can be transported around 

the body. This is especially important for hydrophobic molecules like fatty acids 

where solubility in aqueous plasma would be problematic. 

 

1.3.2.1 Structure of albumins 

 

Albumins contain approximately 580 residues with a number loops, usually between 

eight and ten, formed by disulphide bridges. The structure of Human Serum Albumin 

with possible drug binding sites has been suggested by Fehske [Fehske 1981]. This is 

shown is Fig. 12. 

 

 Fig. 12 The structure of human serum albumin and the possible location 

of drug binding sites [Fehske 1981]. 

 

The amino acid sequence of bovine serum albumin (BSA) used in this study has been 

solved [Peters 1977] and it has 576 residues and nine loops. BSA has a molecular 
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weight of 66000. Models have been used to predict the general structure of albumin 

based on physical and chemical measurements. The proposed structures are that of a 

prolate ellipsoid with dimensions 141 Å x 42 Å and a three-domain structure of 

spheres with approximate diameters of 38, 53 and 38 Å respectively. 

 

1.3.3 Binding sites 

 

As noted previously, a number of low molecular weight compounds can be reversibly 

bound to albumins. There are many potential sites of interaction for ligands on 

albumins, for example, there are areas of hydrophobic character, which would favour 

fatty acid binding, and there are hydrophilic areas on the surface of the albumin, 

which favour polar molecules. Where ligands favour a particular area then this is 

commonly referred to as a binding site. As albumins contain only L-amino acids then 

the binding sites will exhibit one stereoscopic orientation. Assuming that there are 

three points of interaction [Dalgleish 1952] at the binding site then enantiomers will 

exhibit different binding properties. The basis of the different pharmacological and 

toxicological profiles of proteins and in particular albumins is used to separate 

enantiomers. 

 

1.4 Capillary electrophoresis 

 

Capillary electrophoresis (CE) is still a relatively new analytical technique and in the 

early 1990s was rapidly gaining acceptance as a mainstream separating technique. 

Electoosmosis has been known for a number of years in thin-layer chromatographic 

systems. Columns with an internal diameter of less than 100 µm, have only been 

used experimentally since the early 1980s. These columns are generally referred to as 

capillaries. The first experiments were carried by Jorgensen [Jorgensen 1981] to 

resolve mixtures of fluorescamine labelled peptides and since then there has been an 

exponential growth in the number of publications including books [Camilleri 1993, 
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Grossman 1992 & Landers 1994] and a launch of a new journal in 1994, Journal of 

Capillary Electrophoresis, dedicated to CE. There is also a dedicated capillary 

electrophoresis website at www.ceandcec.com. By the end of the 1990s there were  

several commercial instruments from different manufacturers (Beckman, Dionex, 

Hewlett Packard, BioRad, Spectraphysics and Unicam) which allow full automation 

and the use of different detectors including UV, diode-array, conductivity and mass 

spectrometry. 

 

1.4.1 Basic instrumentation for capillary electrophoresis 

 

The instrumentation of CE is straightforward requiring a capillary, a high voltage 

power supply, detector and two buffer vials in which the capillary is placed. Most 

instruments have a safety feature to protect users from the high voltages used. A 

schematic diagram is shown in Fig. 13. The capillary used is made from fused silica 

and has typical dimensions of 20 - 100 cm length and 25 - 75 µm internal diameter. 

The capillary is coated with polyimide which provides flexibility and strength. 

Normally a small portion of the polyimide coating is removed, typically 5mm, to 

provide a window, this is typically 5 mm. The window part of the capillary provides 

a path, the internal diameter of the capillary, for UV light to pass through the 

capillary to the detector. The power supplies a typical voltage between 0 and 30 kV. 

With the high voltages used all instruments have a safety-locking device when the 

instrument is in use. Commercial instruments typically have an autosampler which 

allows many samples to be analysed during a single analytical run. 
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Fig. 13. Basic capillary electrophoresis instrument. Samples are usually 

injected onto the capillary by either applying positive pressure or by the 

use of an electric field. 

 

1.4.2 Theory of capillary electrophoresis 

  

1.4.2.1 Electroosmotic flow 

 

The electroosmotic flow (EOF) is the bulk flow of the buffer through a capillary 

when a voltage is applied and is only associated with CE. The EOF is pH dependent 

and is governed by the dissociation of the silanol groups as shown by equation 14. 

 

− ← → +− +SiOH SiO H  

Equation 14. Dissociation equilibrium of silanol groups at the capillary surface. 

 

The pKa of the silanol groups at the surface of the capillary wall is between 4 and 5 

so at pH 7 and above the silanol groups will be fully ionised. The cations within the 

buffer will then form a double layer to neutralise the excess negative charge, Fig. 15. 
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Fig. 15. Schematic representation of the electroosmotic flow. The electric 

double layer is formed by the negatively charged surface and nearby 

cations. The net flow of the bulk solution is produced by the 

predominance of cations in the double layer forming a net electroosmotic 

flow towards the cathode when an external field is applied. 

 

When the voltage is applied cations migrate with their solvation spheres towards the 

cathode and this results in the plug-like flow associated with CE. The benefit of a 

plug-like flow is that it reduces band broadening unlike the parabolic flow profile 

found in HPLC, Fig. 16. 

 

 

Fig. 16. Difference of the flow profiles in CE (plug-like) and HPLC 

(parabolic) with the force being applied all along the capillary and from 

one end of the capillary respectively. 
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To have reproducibility for the migration times of analytes the EOF needs to be 

constant. This is best achieved when the silanol groups are either completely ionised 

or completely unionised. To be fully ionised the pH has to be greater than 7 and 

unionised the pH has to be less than 2 so it is not practical to use buffers of pH 

between 2 and 7 as a slight difference in the pH can have dramatic effects on the 

silanol ionisation and hence on the EOF. Another method to prevent ionisation of the 

silanol groups is to react them with protecting groups like small alkyl groups. It is 

then possible to reduce the EOF when using buffers greater than pH 7. 

 

1.4.2.2 Separation of molecules using capillary electrophoresis 

 

The separation of molecules using CE is based on their mobility in an applied 

electric field and is proportional to the charge and inversely proportional to the size 

of the molecules and the viscosity of the buffer, Fig. 17. 

 

Fig. 17. Graphical representation for the separation of molecules under 

an applied electric field; with the EOF in the direction of the cathode 

being the overriding force and mobility of the ions being dependent on 

charge/mass the order of migration to the cathode is small positive ions > 

large positive ions > neutral molecules > large negative ions > small 

negative ions. 
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The electrophoretic mobility, the effective velocity of molecules, can be expressed as 

follows: - 

µ
πη

= =
v
E

q
r6  

Equation 18 Electrophoretic mobility 

  

where 

  µ  = electrophoretic mobility  

  v  = electrophoretic velocity 

  E  = electric field strength 

  q = charge of the ion 

  η = viscosity of the buffer 

  r = radius of the molecules. 

 

The EOF is generally sufficient to elute negatively charged ions towards the cathode 

where the detector is situated. Therefore, CE can be used to separate a variety of 

charged species with all components of the sample passing the detector at the 

cathode end of the capillary. Accordingly CE is a very versatile technique which has 

been used for a very wide range of analytes ranging from aromatic sulfonic-acids 

[Brumley 1992] to unsaturated fatty acids [Schmitz 1997] to enantiomeric acidic 

herbicides [Desiderio 1997] to DNA restriction fragments [Baba 1993]. 

 

1.4.3 The role of CE in separating enantiomers 

 

A number of techniques have been successfully used to separate a range of 

enantiomers and a great deal of experience has been gained, for example in HPLC, 

and there are books solely for chiral HPLC [Lough 1989 & Krstulovic 1989]. Some 

of the classes of chiral selector have been applied to use with CE and have shown 

reproducible results in the separation of enantiomers. 
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In the early 1990s, chiral CE is becoming widely used with reviews already being 

published [Snopeck 1992, Novotny 1994, Ward 1994 & Nishi 1995]. The most 

common form of chiral CE is to add chiral compounds to the run buffer. As the 

enantiomers complex with the additives at different rates and the resulting complexes 

will have different electrophoretic mobilities compared to the enantiomers then the 

effective mobilities of the enantiomers will be different and hence there will be a 

separation. Wren [Wren 1992] suggested the following equations for the enantiomers 

in free solution CE. 

 
 

  
  

  A + C AC
K

1

 
 

  
  

   + C C
K

B B
2

 

Equation 19 Association equilibria 

 where 

  A = enantiomer 1 

  B = enantiomer 2 

  C = chiral selector 

  K1 = equilibrium constant for enantiomer 1 and the  

    chiral selector 

  K2 = equilibrium constant for enantiomer 2 and the  

    chiral selector 

  AC = complex with enantiomer 1 

  BC = complex with enantiomer 2. 
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Assuming that the exchange of A between the free form and the complex is rapidly 

reversible then the apparent electrophoretic mobility of A, µa can be expressed as 

follows:- 

µ µ µa
A

A AC
AC

A AC
=

+
+

+
([ ])

([ ] [ ])
([ ])

([ ] [ ])1 2
 

 

Equation 20 Apparent electrophoretic mobility 

 where 

  µ1 = electrophoretic mobility of the enantiomer 

  µ2 = electrophoretic mobility of the complex. 

 

A similar equation can be given for enantiomer 2. Manipulating the equations for 

both enantiomers gives the apparent mobility between them:- 

 

µ µ µ
=

− −
+ + +

[ ]( )( )
[ ]( ) [ ]
C K K
C K K K K C

1 2 2 1

1 2 1 2
21  

 

Equation 21 Difference in electrophoretic mobilities of enantiomers in 

the presence of a chiral selector  

 

As the equation shows there will be an optimum concentration for the concentration 

of the chiral selector as at low concentrations and high concentrations µ will tend to 

zero. Thinking of this in qualitative terms, there will be very little scope for chiral 

discrimination if there is so little selector that both enantiomers are principally in 

their free form or so much selector that they are both very highly complexed. 
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1.4.4 Chiral selectors employed in capillary electrophoresis 

 

1.4.4.1 Cyclodextrins 

 

These are the most popular choice of chiral selector used. Cyclodextrins (CDs) are 

cyclic oligosaccharides which form 'bucket' shaped molecules; a graphical 

representation of the three dimensional structure and the hydrophobic cavity is 

shown in Fig. 22. When cyclodextrins are used under reverse-phase conditions the 

hydrophobic cavity can form inclusion complexes with the non-polar moieties of the 

enantiomers. The difference between competing enantiomers is determined by the 

interaction of the secondary hydroxyls on the edge of the cyclodextrin ring and the 

remaining ligands of the enantiomers. 

 

 

 

 

Fig. 22 Three dimensional structure of the cyclodextrin ring. 

Cyclodextrins (CDs) are cyclic oligosaccharides which form 'bucket' 

shaped molecules with a hydrophobic cavity 
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Fig. 23 Chemical structure of cyclodextrins. The cyclodextrins encounted 

for chiral separation n=1, 2 and 3. These represent 

α−,  β−, and  γ− cyclodextrins and are 6-, 7- and 8- ring structures 

respectively 

 

The cyclodextrin structure is shown in Fig. 23. They contain six, seven and eight 

glucopyranose units which give rise to α-, β- and γ-CDs, where n=1, 2 and 3 

respectively. 

 

The separation of enantiomers arises from complexation within the hydrophobic 

cavity of the CDs. Compounds separated in early work in this field included  

terbutaline and propranolol by β-CD [Fanali 1991] and mandelic acid enantiomers by 

γ-CD [Valko 1994]. 

 

Work has been carried out to alter the size of the CD by derivatisation and in some 

cases has led to increased separation compared to the underivatised CDs. There have 

been several types of derivatised CDs with examples such as heptakis (2,6-di-O-
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methyl)-β-CD to separate terbutaline and propranolol [Fanali 1991] and sulfobutyl 

ether β-CD in the separation of ephedrine, pseudoephedrine and related compounds 

[Tait 1994]. In the former case the nature of the interaction on the ‘rim’ of the 

cyclodextrin ‘bucket’ is modified while in the latter case the charge on the ‘base’ of 

the ‘bucket’ serves to open up a ‘window’ of migration between, say, a neutral free 

analyte and its charged complexed form.  

 

1.4.4.2 Chiral micellar electrokinetic capillary chromatography 

 

Instead of using sodium dodecyl sulphate (SDS) as the surfactant in micellar 

electrokinetic capillary chromatography (MECC), chiral surfactants have been 

utilised to form a chiral micellular pseudo stationary phase. There are many naturally 

occurring chiral surfactants from which analysts may choose. One example of a 

family of natural surfactants are bile salts such as sodium cholate, which along with 

sodium deoxycholate, has been used to separate the enantiomers of 3-hydroxy-1,4-

benzodiazepines [Michotte, 1995]. Another approach was used by Warner et al 

[Ward 1994] who used a chiral micelle polymer, poly(sodium N-undecylenyl-L-

valinate), as the chiral stationary phase. There were some advantages over 

conventional chiral MECC such as improved mass transfer rate and the elimination 

of the equilibrium between the monomer and micelle so there is no CMC and so the 

methodology can be used at lower concentrations. 

 

1.4.4.3 Biomacromolecules 

 

Biomacromolecules are another source of chiral selectors. With the amount of chiral 

selectors needed for CE being very small, expensive and exotic biomacromolecules 

can be tested and subsequently used successfully. Typical biomacromolecules 

include macrocyclic antibiotics, carbohydrates and proteins. The use of macrocyclic 

antibiotics was pioneered by Armstrong et al [Armstrong 1994 & Armstrong 1995] 
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who were able to separate a range of compounds with vancomycin and ristocetin A. 

These chiral selectors were particularly effective in that, as recognised by Armstrong, 

they had the structural complexity of proteins without the potential band-broadening 

problems that might arise from the large molecular mass and structural heterogeneity 

associated with proteins. 

 

As well as the cyclodextrins, non-cyclic oligosaccharides have also been used as 

buffer additives in chiral CE. Current research has been limited compared to the CDs 

but there are still some examples. Heparin is a naturally, polydisperse, polyionic 

glycosaminoglycan and has been used to achieve baseline separations of 

oxamniquine [Clark 1995], antimalarial and antihistamine drugs [Stalcup 1994]. 

Other carbohydrates used are maltooligosaccharides [Novotny 1994 & Verbeke 

1994] and linear dextrins [Kano 1995]. 

 

Other examples of buffer additives are copper-histidine complexes in the separation 

of Dansyl-amino acids [Gozel 1987] and the use of chiral crown ethers [Kuhn 1994]. 

 

1.4.4.4 Proteins 

 

Commercial protein chiral stationary phases for HPLC were first introduced into the 

UK in 1985 and by the early 1990s, proteins had been extensively used in chiral LC 

separations; examples of proteins used were bovine serum albumin (BSA) [Wainer 

1998], human serum albumin (HSA) [Loun 1994] and α1-acid glycoprotein (α1-

AGP) [Hermansson 1995]. However, their use as chiral selectors in CE has been 

modest with only a few papers having been published by the beginning of 1992. 

 

The separation of leucovorin enantiomers, Fig 24, to measure thermodynamic 

variables using BSA as a buffer additive was reported by Barker et al [Barker 1992]. 

They concluded that coating the capillary surface with poly(ethylene) glycol (PEG) 
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improved run time reproducibility because the PEG coating prevented the BSA 

adhering to the capillary wall. Ligands, run buffer modifiers, or both, needed to be 

charged for acceptable analysis times. They found the optimum pH to use for run 

time, peak shape and resolution to be 7.2. 
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Fig. 24 Chemical structure of Leucovorin 

 

Vespalec [Vespalec 1993] used a 10 mg ml-1 HSA in 10 mM acetic acid-TRIS 

buffer, pH 8, to separate enantiomers of kynurenine, tryptophan and 3-indole lactic 

acid. Arai [Arai 1994] investigated the experimental variables to separate the 

enantiomers of quinolone bactericidal reagents Ofloxacin and DR-3862 with BSA 

and HSA as the chiral selectors, Fig. 25. 

 

 

 

Fig. 25 Chemical structure of quinolone bactericidal reagents Ofloxacin 

and DR-3862. 
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A modification of proteins as buffer additives is to have a protein pseudo-stationary 

phase. A solution of the run buffer and protein is injected onto the capillary to a point 

close to, but not beyond, the detection window. The pH is adjusted such that when 

the voltage is applied the protein remains stationary or migrates towards the anode, 

that is away from the detector at the cathode. The advantage is the increased 

sensitivity as the high UV adsorbing proteins do not pass the detection window to 

interfere with the detection of analytes. While this is clearly an advantage, it 

introduces an extra element of complexity in that the pH must be optimal for both 

enatioselectivity and for keeping the protein band in position. Such “partial filling” 

strategies were pioneered by Tanaka and Terabe [Tanaka 1995, Tanaka 1997, 

Muijselaar 1998, Tanaka 1998 & Tanaka 2000] who used this type of system to 

concentrate up analyte bands as well as to allow higher concentrations of selector.   

 

Fig. 26 A representation of protein pseudo-stationary phases with the 

capillary almost “complete filled” with protein; also a higher protein 

concentration may be used in a narrower band.  
 

This method was successfully applied by Fanali [Fanali 1995] to separate derivatised 

tryptophan enantiomers using iron-free human transferrin. Tanaka [Tanaka 1995] 
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also applied the same technique to separate enantiomers with four different proteins, 

BSA, ovomucoid, α1-AGP and conalbumin. 

 

Ishihama [Ishihama 1994] studied ovomucoid with effects of changing the 

experimental variables of concentration of the run buffer, uncoated and coated 

capillaries, concentration of the chiral selector and organic modifiers. Successful 

separations occurred in the pH range of 4, but the peaks were severely tailed and it 

was suggested that the protein was binding to the capillary wall. Reproducibility was 

improved with coated capillaries as the binding of protein to the capillary wall was 

reduced. With increasing protein concentration the resolution was enhanced and the 

apparent mobilities of the enantiomers were decreased. The enhanced resolution can 

be explained by equation 21. With increasing concentration of protein there was 

enhanced resolution. However, the amount of chiral selector added was not sufficient 

to give the maximum resolution or to give a decrease in resolution. The addition of 

organic modifiers improved the peak shape but there was a decrease on the 

separation factor. 

 

Another application used to prevent proteins passing through the detection window 

was to use an immobilised  protein (on spherical silica microparticles) chiral 

stationary phase in protein capillary electrochromatography (CEC). Lloyd et al 

[Lloyd 1995] immobilised HSA onto 7 µm silica and then compared the HSA 

stationary phase with HSA in free solution. A number of enantiomers were separated 

with both techniques. Organic modifiers were added to both systems and it was 

observed that the greatest enantioselectivity was shown by 2-propanol and 

acetonitrile compared to 1-propanol. As there was a similarity between the 

electrically driven system of protein CEC and the pressure driven system of HPLC it 

was suggested that the electric field had a negligible effect on the immobilised 

protein. The separation efficiencies in protein CEC were found to be similar to 

protein chiral stationary phases (CSPs) used in HPLC. However, they were found to 
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be poor when compared to β-cyclodextrins and other chiral selectors used in free 

solution CE. While CEC seemed like an attractive technique in principle at the time, 

especially with analysts raised with a thorough understanding of packed beds as used 

in HPLC, it has since fallen out of favour because of some of the practical difficulties 

involved (frit preparation, organic solvents dissolving polyimide coating at the ends 

of the capillary, inconsistent chromatography of basic compounds, L Frame, PhD, 

University of Sunderland. 

 

1.4.5 The measurement of drug-protein binding constants by 

 chromatographic techniques 

 

As noted earlier, blood plasma proteins play a significant role in the transport and 

release of drugs around the body [Peters 1977]. As such, many studies have been 

undertaken to ascertain drug-protein binding and the affects of competing ligands on 

drug-protein binding. Such studies now play a very important part in screening 

strategies for pre-Development drug candidates and in safety studies with repect to 

co-administration with highly bound drugs and chromatographic techniques offer a 

practical way of obtaining such very important data in a very rapid, efficient and 

accurate manner. 

 

1.4.5.1 Drug-protein binding studies using high-performance liquid 

 chromatography (HPLC) 

 

Ashton et al [Ashton 1996] used HPLC to study the binding of indolocarbazole 

derivatives, which show anti-viral properties, to immobilised human serum albumin 

(HSA). They calculated the percentage of drug-protein binding from the retention 

times of the analytes when injected onto an immobilised HSA column. They found 

that all of the analytes were strongly bound to HSA and required a mobile phase 

containing 30% 2-propanol to obtain reasonable retention times. HPLC was also 
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used by Thaud et al [Thaud 1983] to study diazepam-HSA binding. The first HPLC 

method they used was the Hummel-Dreyer method [Thaud 1983] which required 

several eluents to cover a range of diazepam concentrations from 0.3 µM to 100 µM. 

The second method they described was the equilibrium saturation method. Like the 

previous method this required a combination of eluents to include mixtures of 0.4 

and 2.0 g l-1 HSA with 10 µM to 100 µM diazepam. A volume of buffer was injected 

and the resulting negative peak corresponded to the free-drug concentration of the 

mixture studied. They found that lower molar binding ratios could be determined 

with the Hummel-Dreyer method than the equilibrium saturation method. 

 

The technique of high performance frontal analysis has proved successful for the 

determination of binding constants of warfarin to HSA [Shibukawa 1996 & He 

1997]. The technique utilises columns which have stationary phases of small pore 

sizes. These columns effectively restrict large protein molecules to the mobile phase. 

When a drug-protein mixture is injected onto the column, the drug concentration in 

the pore becomes equal to the unbound drug concentration in the sample solution. 

The authors stated that the protein eluted first followed by the drug which was 

characterised by a trapezoidal peak having a plateau region, Fig. 27. The unbound 

drug concentration could then be determined by measuring the drug concentration in 

the plateau region. 

 

This method offers some advantages over conventional chromatography such as it 

allows a direct sample injection analysis using a simple procedure and the protein 

does not form a constituent part of the mobile phase. 
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Fig. 27. Stylised chromatogram depicting high-performance frontal 

analysis chromatography. The protein and protein-drug complex is eluted 

ahead of the free drug. 

 

1.4.5.2 Drug-protein binding studies using capillary electrophoresis 

 

In the early to mid-1990s, Capillary Electrophoresis was also being employed to 

measure drug-protein binding. Kraak [Kraak 1992] and Busch [Busch 1997] have 

compared different methods in order to study drug-protein binding in CE. 



The Hummel-Dreyer method utilises a run buffer containing the drug to be studied. 

An array of samples are then injected. The samples contain a fixed concentration of 

protein and variable concentrations of the drug. By comparing the peaks of the drug 

the binding constant of the drug to the protein can be calculated. 

 

The affinity capillary electrophoresis method uses the same procedure as the 

Hummel-Dreyer method. However, the binding constants are calculated in a different 

manner. Instead of comparing the peaks of the drug in the Hummel-Dreyer method 

the binding constants are calculated from the electrophoretic mobility of the protein 

when injected with the different concentrations of drug. 
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Rather than using only the drug as the buffer additive the vacancy peak method uses 

both the protein and drug as the buffer additives. A series of buffers are prepared 

with one of the additive concentrations being varied while the other buffer additive 

remains fixed. The capillary is filled with the run buffer. The sample in this method 

is run buffer without any drug or protein additives. A small amount of the sample is 

injected. The corresponding electropherogram, Fig. 28, will show two negative 

peaks. The second negative peak will be directly proportional to the free drug. 

 

 

Fig. 28 Stylised electropherogram showing the vacancy peak method. In 

this example the peaks are negative since the buffer contains the UV 

absorbing drug and protein and the sample is run buffer without any 

additives. 

 

Frontal analysis capillary electrophoresis uses analogous methodology as described 

for high performance frontal analysis in HPLC. In this method the capillary is filled 

with plain buffer, i.e. the buffer does not contain any protein or analytes of interest. 

The sample comprises of the protein, free-drug and protein-drug complex. After the 

sample has been injected an electropherogram will be produced which will have two 

visible plateaus, providing that the mobility of the free-drug differs significantly from 

the protein-drug complex. The first plateau region will be the protein and protein-

drug complex. The second plateau region will be the free drug. A representation of 
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the electropherogram is shown in Fig. 29. The free drug concentration can then be 

calculated by comparison to an injection of a sample of the drug substance. 

 

 

Fig. 29 Stylised electropherogramgram depicting frontal analysis 

capillary electrophoresis. The protein and protein-drug complex is eluted 

ahead of the free drug. 

  

The vacancy affinity capillary electrophoresis method. This method uses the same 

procedure as described in the vacancy peak method. That is, the capillary is filled 

with both protein and drug, the concentration of one compound remains fixed while 

the other is varied, an injection of plain run buffer is then injected. This method uses 

the shift in migration time of the negative peaks as a measure of drug-protein 

binding. 

 

1.5 Aims and Objectives 

 

Given that, at the outset of this research programme, the use of biomacromolecules 

as chiral selectors in LC and CE had been restricted to common easily accessible 

biomacromolecules such as plasma-binding proteins. It was clear that it be would be 

useful therefore to adapt LC and CE in such a way as would allow the use of a much 

wider range of biomacromolecules. Accordingly the general aim of this study was to 
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develop LC and CE protocols involving biomacromolecules that would give rise to 

minimum consumption of the biomacromolecule. 

 

The strategy was to fulfil this general aim by addressing some specific objectives 

which in the main, for CE, involved optimising conditions to allow screening of 

biomacromolecules as potential chiral selectors, and, for LC, involved attempting to 

prove the concept that chiral resolutions could be achieved on down-sized systems. 

For both LC and CE, a secondary consideration was to bear in mind the likely 

suitability of the systems being developed as vehicles for the in vitro evaluation of 

drug-biomacromolecule binding. 
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Chapter 2 Experimental 

 

2.1 Equipment for capillary electrophoresis 

 

Two capillary electrophoresis instruments were employed during this study. They 

were the CES I from Dionex (UK) Ltd. (Camberley, Surrey, UK) and the PACE 

2050 from Beckman Instruments Ltd. (Fullerton, CA, USA). The capillaries of 50 

µm i.d. (363 µm o.d.) were CElect P150 from Supelco, (Poole, Dorset, UK) and were 

cut to appropriate lengths. 

 

2.2 Equipment for liquid chromatography 

 

The HPLC system consisted of a Shimadzu LC-10AD pump from Dyson Instruments 

Ltd. (Hetton-le-Hole, UK), a Rheodyne 7520 microsample injector with 0.5 µl 

sample rotor from Supelco (Poole, UK), a Valco 0.5 µl 4 port injector from LC-

Packings (Amsterdam, Holland) and a model 200 detector from Linear Instruments 

(Freemont, CA, USA) with a UZ-LI-Mic flow cell from LC-Packings (Amsterdam, 

Holland). The detector was connected to a Shimadzu C-R5A Chromatopac integrator 

from Dyson Instruments Ltd. (Hetton-le-Hole, UK). 

 

The pH of the mobile phase buffers was adjusted using a model HI8417 

Microprocessor pH meter supplied by Hanna Instruments (Leighton Buzzaard, UK). 

The packing materials were (1) Lichrosorb DIOL (5 µm, 60 Å) and (2) Lichrosorb 

Diol (5 µm, 300 Å) supplied by Merck (Darmstadt, Germany) and (3) Nucleosil C8 

(5 µm, 300 Å) and (4) Nucleosil silica (5 µm, 300 Å) from Macherey Nagel 

(Duerren, Germany). 

 



- 37 - 

2.3 Materials 

 

Acetonitrile, tetrahydrofuran, methanol and propan-1-ol were of HPLC grade and 

were obtained from BDH (Lutterworth, Leics., UK). BDH were also the suppliers of 

orthophosphoric acid, disodium hydrogen phosphate and disodium tetraborate. 

Aldrich (Gillingham, Dorset, UK) was the source of digitoxin, N,N-

dimethyloctylamine, DL-β-indolelactic acid, tyrosine, DL-3-(α-acetyly-4-

chlorobenzyl)-4-hydroxycoumarin, and octanoic acid. Bovine serum albumin (BSA), 

kynurenine, tryptophan amide, suprofen, carprofen, protamine, nicardipine, 

lormetazepam, bepridil, 2-(4-chlorophenoxy)propionic acid, 2-(3-

chlorophenoxy)propionic acid, 2-(2-chlorophenoxy)propionic acid and warfarin were 

purchased from Sigma (Poole, Dorset, UK). May & Baker Ltd. (Dagenham, London, 

UK) were the suppliers of promethazine, pentobarbitone, hexabarbitone and 

quinalbarbitone. Fluka (Gillingham, Dorset, UK) supplied 4-chloro-DL-mandelic 

acid, 4-hydroxy-3-methoxymandelic acid and 3-hydroxymandelic acid. Leucovorin 

was from Acros (Hyde, Cheshire, UK), DL-4-hydroxymandelic acid from Lancaster 

Synthesis (Morecambe, UK), bupivocaine from Duncan Flockhart & Co. Ltd. 

(London, UK), thioridazine from Sandoz Products Ltd. (Horsforth, Leeds, UK) and 

naproxen from Secifarma (Milan, Italy). Lorazepam, oxazepam and temazepam were 

from Wyeth Laboratories (Maidenhead, Berkshire, UK). The three α-aryl alkanoic 

acids, 2-(4-methoxyphenyl) propionic acid,  2-(4-methylphenyl) propionic acid and 

2-(4-phenyl-3-fluorophenyl) propionic acid were gifts from Dr. Wang (University of 

Sunderland). Recombinant lactoferrin was a gift from Dr. David Small (Zeneca 

Biological). All deionised water was obtained from an Elgastat UHQPS system 

supplied by Elga Water Systems Equipment (High Wycombe, UK). All solutions 

were filtered through 0.2 µm HV filters from Millipore (Bedford, MA, USA) and 

degassed by sonication for 15 min using a model V300H ultrasonic bath supplied by 

Ultrawave Limited (Cardiff, UK). 
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2.3.1 Chemical structures of the analytes 
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2.4 Experimental for capillary electrophoresis 

 

2.4.1 Capillary electrophoresis instrument set-up 

 

2.4.1.1 Dionex CES I 

 

The Dionex CES I required three wash solutions in order to condition the capillary 

prior to analysis. The solutions were located in three 250 ml Duran flasks towards the 

back of the instrument. The three wash solutions were 0.05 M sodium hydroxide, 
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water and run buffer. The run buffer was 67 mM disodium hydrogen phosphate 

adjusted to pH 7.4 by orthophosphoric acid and sodium hydroxide as described in the 

literature [Kraak 1992]. All solutions were filtered and sonicated prior to use to 

minimise the possibility of any particulate matter blocking the capillary. There was 

no adequate method of controlling the capillary temperature. 

 

Samples were dissolved in run buffer and were placed in small 0.8 ml plastic vials. 

The vials were then lightly tapped to remove any air bubbles. The vials were then 

placed in the CES I carousel. The analysis schedule was programmed via the keypad 

on the CES I. The parameters that were set-up included capillary rinse times, voltage, 

injection mode (hydrodynamic pressure, gravity and electrokinetic), injection time 

and the run time for each analysis. Before the start of each analysis the interlocked 

guard had to be put in place. This was a safety feature to protect the user against the 

high voltages used in capillary electrophoresis. All the data was collected and 

analysed using the Dionex AI-450 software. 

 

2.4.1.2 Beckman PACE 2050 

 

The wash solutions and buffers were prepared as previously described. All samples, 

wash solutions and run buffers were placed in specific 3.5 ml glass vials. The vials 

were then covered with a rubber stopper. The vials were placed into two carousels on 

the PACE 2050. The outer carousel contained all the samples, wash solutions and 

run buffers while the inner carousel contained the run buffer and the waste vials. 

Unlike the Dionex CES I, the capillaries used with the Beckman PACE 2050 were 

housed in a cartridge. Coolant could then be circulated within the cartridge and 

control the capillary temperature. The operation and control was via a PC operating 

Beckman System Gold software. The software was also used to collect and analyse 

the data. 
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2.4.2 Investigation of the experimental variables 

 

2.4.2.1 Concentration of bovine serum albumin (BSA) 

 

The wash solutions and the disodium hydrogen phosphate buffer adjusted to pH 7.4 

were prepared as described previously. BSA was dissolved in the run buffer to give 

concentrations of 0, 15, 30, 45 and 60 µM BSA. The test compound was tryptophan 

dissolved in the BSA-run buffers. The capillary was conditioned with 0.05 M sodium 

hydroxide for 3 minutes, water for 3 minutes and run buffer for 3 minutes. A blank 

run was performed from the vial containing the BSA-run buffer for 20 minutes. The 

samples were injected by applying hydrodynamic pressure (0.5 psi) for 2 s. The 

separation voltage was 10 kV at ambient temperature using the Dionex CES I. 

 

2.4.2.2 The effect of pH of the run buffer 

 

The wash solutions and the disodium hydrogen phosphate buffers adjusted to pH 4.4, 

5.4, 6.4, 7.4 and 8.4 were prepared as described previously. BSA was dissolved in 

each of the run buffers at a concentration of 30 µM. The test compound was 

tryptophan dissolved in the BSA-run buffers. The capillary was conditioned with 

0.05 M sodium hydroxide for 3 minutes, water for 3 minutes and run buffer for 3 

minutes. A blank run was performed from the vial containing the BSA-run buffer for 

25 minutes. The samples were injected by applying hydrodynamic pressure (0.5 psi) 

for 2 s. The separation voltage was 10 kV at ambient temperature using the Dionex 

CES I. 

 



- 43 - 

2.4.2.3 Investigation of increasing the concentration of organic solvents to the 

run buffer 

 

The run buffer consisted of 67 mM disodium hydrogen phosphate adjusted to pH 7.4 

using orthophosphoric acid, 30 µM BSA, 0 – 20 %v/v organic solvent. The four 

organic solvents used for this study were methanol, propan-1-ol, tetrahydrofuran and 

acetonitrile. All solutions were filtered and sonicated as before. The separation 

voltage using the CES I was 10 kV at ambient temperature. The capillary was 

conditioned with 0.05 M sodium hydroxide for 3 minutes, water for 3 minutes and 

run buffer for 3 minutes. A blank run was performed from the vial containing the 

BSA-run buffer for 25 minutes. The samples were tryptophan and benzoin at a 

concentration of 1 mg ml-1. The samples were injected as solutions in the run buffer 

by applying hydrodynamic pressure (0.5 psi) for 2 s. The samples were monitored by 

UV at 254 for benzoin and 280 nm for tryptophan. Migration and peak areas were 

measured using the Dionex AI-450 software. Each sample was run in duplicate. 

 

The separations using the PACE 2050 were as the CES I except the temperature was 

constant at 25 ºC, the separation voltage was 8 kV and samples were injected by 

hydrodynamic pressure (0.5 psi) for 2 s. Migration times and peak areas were 

measured using the Beckman System Gold software. 

 

2.4.3 Enantioselectivity using a BSA coated capillary 

 

The BSA coated capillary was kindly supplied by H.Burt from the University of 

Leeds. The dimensions of the capillary were 50 cm × 75 µm. To maintain the 

polyamide-BSA coating the capillary was rinsed with distilled water and run buffer 

only. 
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The run buffer was 67 mM disodium hydrogen phosphate adjusted to pH 7.4 using 

orthophosphoric acid. The sample was tryptophan at a concentration of 1 mg ml-1 

dissolved in run buffer. The sample was injected by applying hydrodynamic pressure 

(0.5 psi) for 2 s. 

 

The PACE 2050 was used throughout this study. The separation voltage was 7 kV 

and the temperature was maintained at 25 ̊ C. Migration times and peak areas were 

measured using the Beckman System Gold software. 

 

2.4.4 Enantioselectivity of a range of compounds using BSA as the chiral 

selector and standard conditions 

 

The run buffer consisted of 67 mM disodium hydrogen phosphate adjusted to pH 7.4 

using orthophosphoric acid, 30 µM BSA and 2.5 %v/v organic solvent. A range of 

analytes were dissolved in the run buffer at a concentration of 1 mg ml-1 and injected 

by hydrodynamic pressure (0.5 psi) for 2 s. The capillary was conditioned with 0.05 

M sodium hydroxide for 3 minutes, water for 3 minutes and run buffer for 3 minutes. 

The final step was a 1 minute high pressure rinse of the protein-run buffer. 

 

The PACE 2050 was used throughout this study. The separation voltage was 8 kV 

and the temperature was maintained at 25 ̊C. Migration times and peak areas were 

measured using the Beckman System Gold software. 

 

2.4.5 Enantioselectivity of a range of compounds using standard conditions to 

screen other biomacromolecules 

 

The wash solutions of 0.05 M sodium hydroxide, water and 67 mM disodium 

hydrogen phosphate buffer adjusted to pH 7.4 were prepared as described previously. 

The run buffers were prepared by adding the test biomacromolecule to the 67 mM 
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disodium hydrogen phosphate, pH 7.4, with 2.5% v/v methanol. The 

biomacromolecules screened were human serum albumin (HSA), protamine and 

recombinant lactoferrin. The concentration used for the biomacromolecules was 2 

mg ml-1. 

 

A range of analytes were dissolved in the run buffer at a concentrations of 1 mg ml-1 

and injected by hydrodynamic pressure (0.5 psi) for 2 s. The capillary was 

conditioned with 0.05 M sodium hydroxide for 3 minutes, water for 3 minutes and 

run buffer for 3 minutes. The final step was a 1 minute high pressure rinse of the 

protein-run buffer. 

 

The PACE 2050 was used throughout this study. The separation voltage was 8 kV 

and the temperature was maintained at 25 ̊C. Migration times and peak areas were 

measured using the Beckman System Gold software. 

 

2.4.6 Investigation of enatioselectivity by adding modifiers to the run buffer 

 

2.4.6.1 β-Cyclodextrin 

 

The wash solutions of 0.05 M sodium hydroxide, water and 67 mM disodium 

hydrogen phosphate buffer adjusted to pH 7.4 were prepared as described previously. 

The run buffers were made up as follows, 67 mM disodium hydrogen phosphate, pH 

7.4, 30 µM HSA and β-cyclodextrin. The amounts of β-cyclodextrin added to the run 

buffers were 6, 12, 18, 24 and 30 µM. Samples were dissolved in the run buffer at a 

concentration of 0.5 mg ml-1 and injected by hydrodynamic pressure (0.5 psi) for 2 s. 

The capillary was conditioned with 0.05 M sodium hydroxide for 3 minutes, water 

for 3 minutes and run buffer for 3 minutes. The final step was a 1 minute high 

pressure rinse of the protein/β-cyclodextrin-run buffer. 
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The PACE 2050 was used throughout this study. The separation voltage was 8 kV 

and the temperature was maintained at 25 ̊C. Migration times and peak areas were 

measured using the Beckman System Gold software. 

 

2.4.6.2 Allosteric interactions 

 

The wash solutions of 0.05 M sodium hydroxide, water and 67 mM disodium 

hydrogen phosphate buffer adjusted to pH 7.4 were prepared as described previously. 

The run buffers were made up as follows, 67 mM phosphate, pH 7.4, 30 µM HSA 

and 3 µM modifier. The concentration of the modifiers were 3 µM so the ratio 

between HSA and modifier was 10 : 1. The modifiers were digitoxin, ibuprofen, 

warfarin, and lorazepam. Samples were dissolved in the run buffer at a concentration 

of 0.5 mg ml-1 and injected by hydrodynamic pressure (0.5 psi) for 2 s. The capillary 

was conditioned with 0.05 M sodium hydroxide for 3 minutes, water for 3 minutes 

and run buffer for 3 minutes. The final step was a 1 minute high pressure rinse of the 

protein/modifier-run buffer. 

 

The PACE 2050 was used throughout this study. The separation voltage was 8 kV 

and the temperature was maintained at 25 ̊ C. Migration times and peak areas were 

measured using the Beckman System Gold software. 

 

2.4.6.3 Metal salts 

 

The wash solutions of 0.05 M sodium hydroxide, water and 67 mM sodium borate 

adjusted to pH 7.4 were prepared as described previously. All the metal salts were 

insoluble in 67 mM disodium hydrogen phosphate buffer so the run buffer was 

changed to 67 mM sodium borate. The run buffers were made up as follows, 67 mM 

sodium borate, pH 7.4, 30 µM HSA and metal salt. The ratios of the metal salt to the 

protein were 1 : 1, 2 : 1 and 3 : 1. The metal salts were manganese phosphate, zinc 
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sulphate, manganese carbonate and nickel phosphate. Samples were dissolved in the 

run buffer at a concentration of 0.5 mg ml-1 and injected by hydrodynamic pressure 

(0.5 psi) for 2 s. The capillary was conditioned with 0.05 M sodium hydroxide for 3 

minutes, water for 3 minutes and run buffer for 3 minutes. The final step was a 1 

minute high pressure rinse of the protein/modifier-run buffer. 

 

The PACE 2050 was used throughout this study. The separation voltage was 8 kV 

and the temperature was maintained at 25 ̊C. Migration times and peak areas were 

measured using the Beckman System Gold software. 

 

2.5 Experimental for liquid chromatography 

 

2.5.1 BSA as a mobile phase additive in microbore LC 

 

Mobile phase buffers were made up by first preparing a stock solution of 67 mM 

disodium hydrogen phosphate which was adjusted to pH 7.4 using orthophosphoric 

acid. The 30 µM and 60 µM BSA mobile phases were prepared by dissolving 100 

mg and 200 mg BSA in 100ml of 67 mM disodium hydrogen phosphate, pH 7.4. 

Test analytes were dissolved in mobile phase. All solutions were filtered and 

sonicated prior to use. 

 

The column used for this study was 15 cm x 1 mm i.d. with a stationary phase of 

Lichrosorb DIOL with a 5 μm particle diameter and 60 Å pore size. Several steps 

were undertaken to condition the column prior to analysis. The column was supplied 

with a mobile phase of 50:50 acetonitrile – water and was flushed with propan-2-ol, 

water and 67 mM disodium hydrogen phosphate, pH 7.4, prior to the introduction of 

the BSA containing mobile phase. Analysis was undertaken after the BSA containing 

mobile phase had been detected. This was observed as an increase in absorbance 

followed by an absorbance plateau. 
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2.5.2 BSA as a mobile phase additive in capillary LC 

 

Mobile phase buffers were made up by first preparing a stock solution of 67 mM 

disodium hydrogen phosphate which was adjusted to pH 7.4 using orthophosphoric 

acid. The 60 µM BSA mobile phases were prepared by dissolving and 200 mg BSA 

in 100ml of 67 mM disodium hydrogen phosphate, pH 7.4. Test analytes were 

dissolved in mobile phase. All solutions were filtered and sonicated prior to use. 

 

The column used for this study was 15 cm x 320 µm i.d. with a stationary phase of 

Lichrosorb DIOL with a 5 μm particle diameter and 60 Å pore size. Several steps 

were undertaken to condition the column prior to analysis. The column was supplied 

with a mobile phase of 50:50 acetonitrile – water and was flushed with propan-2-ol, 

water and 67 mM disodium hydrogen phosphate, pH 7.4, prior to the introduction of 

the BSA containing mobile phase. The flow rate was set at 3 µl min-1. 

 

2.5.3 Adsorption of BSA 

 

Adsorption of BSA was carried out according to the method of Erlandsson et al 

[Erlandsson 1986]. Mobile phase buffers were 67 mM disodium hydrogen phosphate 

adjusted to pH 5.0 and 7.4 by orthophosphoric acid. The BSA containing mobile 

phase was 15 µM BSA dissolved in 67 mM disodium hydrogen phosphate pH 5.0. 

The test analytes were tryptophan and kynurenine. The test analytes were dissolved 

in 67 mM disodium hydrogen phosphate pH 7.4. All solutions were filtered and 

sonicated prior to use. 

 

The columns used in this study were 15 cm x 1 mm i.d. The three stationary phases 

were Lichrosorb DIOL, Nucleosil silica and Nucleosil C8. All three stationary phases 

were of 5 µm diameter and pore size of 300 Å. 
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2.5.3.1 Preparation of the pseudo-stationary phase 

 

The columns were equilibrated with propan-2-ol for 2 h, then equilibrated with water 

for 2 h and finally equilibrated with 67 mM disodium hydrogen phosphate, pH 5.0, 

for 2 h. A mobile phase of 15 µM BSA and 67 mM disodium hydrogen phosphate, 

pH 5.0, was pumped through the columns at a flow rate of 50 µl min-1 until BSA was 

detected at 280 nm. At this stage the pseudo-stationary phase was deemed to have 

formed. The columns were then equilibrated with 67 mM phosphate, pH 7.4, until a 

stable baseline was obtained. The test analytes were then injected. 
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Chapter 3 Optimisation of experimental variables using BSA in free-solution 

CE 

 

3.1 Introduction 

 

To make the most of protein affinity CE as a means of resolving enantiomers it 

would clearly be necessary to have a good understanding of the effect of 

experimental variables on enantioselectivity and migration times so that they could 

best be manipulated to get the optimum performance out of each protein that might 

be used. The optimum conditions would be expected to vary from protein to protein 

but at the same time it was thought that it might be useful to attempt to arrive at a set 

of standard conditions, employing as little as possible protein since some might be in 

short supply, that could be used to screen a range of proteins. These standard 

conditions would probably be non-optimal for most proteins but the reasoning was 

that if any given protein was going to be very useful as a broad spectrum chiral 

selector, then it would hopefully show good enantioselectivity even under non-

optimal conditions. The general aim then of this initial study was to explore the 

effect of experimental variables on protein affinity CE using bovine serum albumin 

(BSA) a protein the properties of which were relatively well known. The intention 

was that the information gained would serve as a useful platform from which to 

move on to study other proteins. 

 

3.2 Variables available for BSA affinity CE 

 

To use BSA for chiral discrimination as a buffer additive a number of experimental 

conditions had to be determined. The pH of the buffer would be expected to have a 

dramatic effect on the electrophoretic mobility of the BSA. Therefore, the pH would 

have to be adjusted so that the electrophoretic mobility of the BSA and BSA-

complex would be significantly different to the electrophoretic mobility of the 
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uncomplexed analyte, thereby opening up a large enough ‘window’ in which to 

obtain the chiral separation of the pair of enantiomers in the analyte. 

 

As a consequence of Equation 21 [Wren 1992] the concentration of BSA would be 

critical to achieve optimum chiral separations. The aim was to minimise the amount 

of BSA required for chiral separations. This would be critical for other chiral 

selectors that were only available in limited quantities or were prohibitively 

expensive. 

 

µ µ µ
=

− −
+ + +

[ ]( )( )
[ ]( ) [ ]
C K K
C K K K K C

1 2 2 1

1 2 1 2
21  

Equation 21 Difference in electrophoretic mobilities, µ, of 

enantiomers in the presence of a chiral selector. 

where  
µ = difference in electrophoretic mobilities of  
  enantiomers in the presence of a chiral selector  
µ1 = electrophoretic mobility of the enantiomer 

  µ2 = electrophoretic mobility of the complex 
  C = chiral selector 
  K1 = equilibrium constant for enantiomer 1 and the  
    chiral selector 
  K2 = equilibrium constant for enantiomer 2 and the  
    chiral selector 
 

There will be an optimum concentration of chiral selector; at high and 

low concentrations µ will tend to zero. Also, the greater the difference 

between the equilibrium constants K1 and K2 will lead to an increase in 

µ.  

 

Another variable that needed to be considered was the nature and amount of organic 

solvent to be added to the run buffer. Organic solvents denature proteins and alter 

their overall structure [Peters 1977]. Altering the structure of the protein could 

improve, or otherwise, the chiral discrimination properties. Another issue was that 
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many analytes of interest are hydrophobic and are very likely to precipitate in typical 

aqueous buffer solutions used in CE. Increasing proportion of the organic phase 

would improve the solubility of hydophobic analytes and prevent their precipitation. 

Organic solvents could also influence migration times in other ways such as 

competing for the analyte and could even affect any loss of protein through any 

adsorption on the capillary walls that might be taking place. A systematic study of 

organic modifiers such as methanol, propan-1-ol, acetonitrile and tetrahydrofuran in 

the concentration range 0 – 20 % v/v on chiral selectivity would therefore need to be 

undertaken.  

 

From the range of variables that could be altered then, it was decided to focus on the 

buffer pH, the chiral selector concentration and the concentration of organic solvent. 

At least initially the objective would be to study these individually changing one 

variable at a time. From these studies a set of standard conditions would then be 

employed to test a range of biomacromolecules for chiral discrimination. 

 

3.3 Optimisation of  pH 

 

The separation of tryptophan enantiomers by BSA has been characterised by many 

researchers using different chromatographic techniques. Allenmark et al [Allenmark 

1982] used tryptophan to study the effects of pH on resolution using BSA in liquid 

affinity chromatography. Tryptophan was also used to study resolution using BSA 

adsorbed silica stationary phase by Erlandsson et al [Erlandsson 1986]. Recently 

tryptophan been used to ascertain the applicability of BSA for the separation of 

enantiomers using capillary affinity gel electrophoresis [Birnbaum 1992]. Therefore 

tryptophan was an ideal test compound. 

 

From the range of pH in this study chiral separations were only observed at pH 7.4 

and 8.4. There were no chiral separations observed for pH 4.4, 5.4 and 6.4. This was 
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in agreement with literature results [Barker 1992 & Arai 1994]. The isoelectric point, 

pI, of BSA is between 4.7 and 4.9 [Tanaka 1995]. Below the pI BSA is positively 

charged, at around the pI value it is neutral and above the pI it is negatively charged. 

This is illustrated in Fig. 30. 

 

Fig. 30 Representation of the relative migration of BSA at different 

pH values. The window of separation can be maximised by changing the 

pH. For example, the window for the separation of cationic drugs would 

be greatest at a high pH. 

 

3.4 Optimisation of the concentration of BSA 

 

The effects of increasing the concentration of BSA on the resolution and the 

migration times of tryptophan enantiomers are illustrated in Figs. 31 and 32. The 

minimum concentration of BSA required for a baseline separation of the enantiomers 

was 30 µM, unfortunately this is difficult to visualise from the corresponding 

elctropherogram, Fig. 33. By further increasing the concentration there was an 

increase in resolution, Fig 31. There was a loss in peak shape of the second eluting 

enantiomer as illustrated in Figs 33 and 34 with concentrations of BSA of 30 µM and 

60 µM. 
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There are a number of reasons for the increase in resolution and migration times. As 

the concentration of the BSA is increased then this will affect the viscosity of the 

buffer. The electrophoretic mobility of a sample is inversely proportional to the 

viscosity of the run buffer, equation 18. 

 

µ
πη

= =
v
E

q
r6  

Equation 18 Electrophoretic mobilty 

 where 

  µ  = electrophoretic mobility  

  v  = electrophoretic velocity 

  E  = electric field strength 

  q = charge of the ion 

  η = viscosity of the buffer 

  r = radius of the molecules. 

 

Another explanation for the increased resolution and migration times is the binding 

of the sample to the protein. In the case of tryptophan it is known that the L 

enantiomer [McMenamy 1958] forms highly bound complexes with albumin 

compared to the D enantiomer. In this experiment the amount of tryptophan injected 

into the capillary remained constant so as the concentration of BSA increased there 

would be more BSA available to complex with the L enantiomer. Hence the 

migration time of the highly bound enantiomer would tend towards the migration 

time of the BSA, assuming that the contribution to the migration time of tryptophan 

was negligible compared to BSA when in the complexed form. Another consequence 

of increasing the concentration of BSA on the highly bound enantiomer was to 

increase the degree of tailing of the peak. 
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Fig. 31 Resolution of tryptophan enantiomers with increasing concentration of BSA 

in the run buffer. Conditions: run buffer, 67 mM phosphate (pH 7.4); capillary, 

CElect P150, 40 cm (35 cm to detector) x 50 µm i.d.; instrument, CES I; 

temperature, ambient; voltage 10 kV; detection wavelength, 280 nm. 
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Fig. 32 Migration times of tryptophan enantiomers with increasing concentration of 

BSA in the run buffer. Conditions: run buffer, 67 mM phosphate (pH 7.4); capillary, 

CElect P150, 40 cm (35 cm to detector) x 50 µm i.d.; instrument, CES I; 

temperature, ambient; voltage 10 kV; detection wavelength, 280 nm. 
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Fig. 33 CE of tryptophan enantiomers with 30 µM BSA. Conditions: run buffer, 67 

mM phosphate (pH 7.4); capillary, CElect P150, 40 cm (35 cm to detector) x 50 µm 

i.d.; instrument, CES I; temperature, ambient; voltage 10 kV; detection wavelength, 

280 nm. Baseline resolution of tryptophan enantiomers, unfortunately this is difficult 

to visualise from the electropherogram. 
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Fig. 34 CE of tryptophan enantiomers with 60 µM BSA. Conditions: run buffer, 67 

mM phosphate (pH 7.4); capillary, CElect P150, 40 cm (35 cm to detector) x 50 µm 

i.d.; instrument, CES I; temperature, ambient; voltage 10 kV; detection wavelength, 

280 nm. Baseline resolution of tryptophan enantiomers. The migration times of the 
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enantiomers were longer and the tailing of the second peak was increased compared 

to using a concentration of 30 µM BSA. 

3.5 Addition of organic solvent 

 

Albumins are resistant to relatively high concentrations of organic solvents and this 

is used commercially to precipitate albumins with 40 % ethanol [Peters 1977]. 

Therefore using small amounts of solvents should not denature BSA or decrease the 

degree of chiral discrimination. The test analytes have been separated using BSA 

before. Tryptophan and benzoin have been separated using BSA as a chiral selector 

in CE, Lloyd et al [Lloyd 1995]. 

 

The resolution of tryptophan and benzoin enantiomers significantly decreased with 

addition of the organic solvents. The decrease in resolution is illustrated graphically 

in Fig. 35 and Fig. 36. The decrease in resolution is known form LC, [Krstulovic 

1989] where the addition of 1 – 4 % propanol resulted in a decrease in selectivity.  

 

The loss of enantioselectivity can be explained by the organic solvents reducing the 

hydrophobic interactions between the protein and the analyte. The addition of the 

organic solvents would distort the structure of protein including the binding sites 

which would disrupt the three point interaction between the analyte and protein and 

so decrease the overall selectivity. 

 

The separation of tryptophan enantiomers showed a dramatic loss of resolution at the 

addition of small amounts of organic solvents, 2.5 % v/v and there was no baseline 

separation with 5 % v/v organic solvents. The effectiveness of eliminating 

enantioselectivity of tryptophan is propan-1-ol, tetrahydrofuran, acetonitrile and 

methanol. 
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Fig. 35 Resolution of tryptophan enantiomers with increasing organic additives. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 7.4) – organic additive 

(100-x : x, v/v); capillary, CElect P150, 40 cm (35 cm to detector) x 50 µm i.d.; 
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instrument, CES I; temperature, ambient; voltage 10 kV; detection wavelength, 280 

nm. 

 

 

 

 

 

 

Fig. 36 Resolution of benzoin enantiomers with increasing organic additives. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 7.4) – organic additive 

(100-x : x, v/v); capillary, CElect P150, 40 cm (35 cm to detector) x 50 µm i.d.; 
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instrument, CES I; temperature, ambient; voltage 10 kV; detection wavelength, 254 

nm. 

The graph for benzoin shows a general decrease in resolution but the observed peaks 

were relatively small so any errors were magnified hence the results appear erratic. 

Some chiral selectivity was observed at relatively high concentrations, 15 % v/v, of 

organic solvent when compared to the tryptophan graph. 

 

Lloyd et al [Lloyd 1997] reported similar findings with the addition of organic 

solvents to a human serum albumin (HSA) containing run buffer. They studied the 

effects on the enantiomeric separation of benzoin and promethazine enantiomers 

with methanol, 2-propanol, 1-propanol and acetonitrile. They noted that more 

organic modifier was required to eliminate enantioselectivity of promethazine 

compared to benzoin because promethazine had a binding constant to HSA of 

approximately an order of magnitude greater than benzoin. 

 
3.6  Enantioselectivity of a BSA coated capillary 
 

The main drawback of using proteins as chiral selectors in free solution CE had 

proved to be the significant adsorption at the detection window which masked the 

UV absorption of the analytes, Chapter 6. This is illustrated in Fig. 37 where a 

solution of a typical 30 µM concentration of BSA is flushed through a capillary to 

give an absorption of 0.12 AU. When the tryptophan enantiomers are injected into 

the BSA run buffer and the detector re-zeroed the corresponding adsorption of the 

enantiomer is 0.01, Fig. 32.  Therefore the adsorption of the protein is approximately 

100 times greater than the adsorbance of trytophan. To improve the overall 

sensitivity of the method then the detection window had ideally to remain free of the 

high UV absorbing protein. 
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Fig.37. The capillary fill method showing the BSA breakthrough Conditions: run 

buffer, 30 µM BSA, 67 mM phosphate (pH 7.4); capillary, CElect p150, 40 cm (35 
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cm to detector) x 50 µm i.d.; instrument, CES I; temperature, ambient; voltage 10 

kV; detection wavelength, 254 nm. 

One approach to circumvent this problem was to immobilise or coat the protein onto 

the capillary wall. A BSA coated capillary was donated by the University of Leeds 

for the evaluation of chiral selectivity. The BSA coated capillary would potentially 

offer two major benefits. The first would be to ensure that the detection window 

would remain free of the protein while the second was that the method would also 

significantly decrease the amount of BSA required providing that the amount used to 

coat the capillary was small and that the coated capillary could be extensively re-

used. 
 

The chiral analyte used to test the BSA-coated capillary was tryptophan. This has 

been resolved using BSA as a buffer additive in CE from earlier studies. 

Unfortunately, no enantiomer separations were observed, Fig. 38. It was thought that 

the typical amount of tryptophan injected in free solution CE was overloading the 

BSA at the capillary wall. Consequently the concentration of tryptophan was 

decreased such that it was just at the limits of detection where the signal to noise 

ratio was 5 : 1. However, still no chiral separations were observed for tryptophan 

using the immobilised BSA capillary. Decreasing the concentration of tryptophan did 

not change the migration of the tryptophan which proved that sample overload was 

not the reason for the lack of chiral selectivity of this method. 

 

There are a number of possible reasons why the BSA coated capillary did not resolve 

the tryptophan enantiomers. As described earlier BSA is a prolate ellipsoid with 

dimensions of 141 Å by 42 Å, so when compared to the capillary internal diameter of 

75 µm the BSA would not extend more than 0.2 µm from the capillary surface. 

Providing the tryptophan enantiomers were distributed evenly throughout the buffer 

solution then only a fraction would be available to interact with the coated BSA 
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phase. Another reason could be that the structure of the BSA was grossly distorted 

during the coating process thereby reducing the chiral selectivity. However, this was  
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Fig.38 CE of tryptophan enantiomers with the immobilised BSA capillary. 

Conditions: run buffer, 67mM phosphate (pH 7.4); capillary, BSA immobilised 

capillary, 37 cm (30 cm to detector) x 75 µm i.d.; instrument, PACE 2050; 

temperature, 25 °C; voltage 7 kV; detection wavelength, 254 nm. 

thought unlikely as BSA has been used successfully as a chiral stationary phase 

(CSP) in HPLC [Krstulovic 1989]. One final reason could be the overall stability of 

the BSA phase. As noted in the Experimental, Chapter 2, flushing the capillary with 

sodium hydroxide could lead to the disassociation of the BSA from the capillary 

wall. During the analysis undertaken at pH 7.4 there would be hydroxide ions in 

solution which would cause the BSA to dissociate from the capillary wall therefore 

decreasing the concentration of BSA available for chiral selectivity. 

 

This method did not offer any practical benefits for use as a CSP in CE. Studies 

using more conventional CSPs in capillary electochromatography would be more 

suitable. The amount of chiral selector available using a conventional CSP would be 

far greater than a chiral selector coated on the capillary wall. For a theoretical 

example of a 75 µm i.d. capillary packed with spheres of diameter 5 µm the surface 

area is approximately 12 times greater than for an open tubular 75 µm i.d. capillary, 

Fig. 39. 

 

 The surface area of a 5 µm length of 75 µm i.d. capillary: - 

  Surface area = 2πrh 

    = 2π x 37.5 x 5 

    = 1178.3 µm2 

 
The surface area the same capillary packed with 5 µm particles, assuming that 

the particles are cubic packed such that their effective volume approximates 

to a cube, can be calculated as: - 
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Number of particles = volume of the capillary / volume of the sphere 

   = (πr2h) / (diameter of sphere)3 

   = (π x 37.52 x 5) / 53 

   = 176.7 

 

Surface area of a = 4πr2 

particle 

   = 4π x 2.52 

   = 78.6 µm2 

 

Total surface area = surface area of capillary + total surface area of  

of packed capillary            all particles 

   = 1178.3 µm2 + (176.7 x 78.6 µm2) 

   = 15066.9 µm2 

 

Therefore the ratio between the surface area of a packed capillary to an open 

tubular capillary is: - 

Ratio of areas  = (15066.9 / 1178.3) 

= 12.7 

 
Fig.39. Theoretical calculation for the surface area ratio of a packed 
capillary to an open tubular capillary 

 
3.7 Conclusions  

 

As discussed, the findings of the adventure into the use of a BSA immobilised 

capillary did not suggest that there would be any significant benefit to be had from 

switching to this format; quite the contrary in fact. Of course, it would also have 

introduced the undesirable additional complication of having to perfect 



- 68 - 

immobilisation chemistry for every new protein tested. Similarly, protein affinity 

CEC was discounted on the grounds of the extra complication of not only having to 

address bonding chemistry but also having to perfect packing procedures and frit 

formation (L Frame, PhD, University of Sunderland). 

 
The work on the bonded capillary had done nothing to change the impression at the 

outset that the use of the protein as a buffer additive would be the most simple, 

versatile and easily accessible way of conducting electrophoretic protein affinity 

enantioseparations and certainly the most facile way of testing out a range of 

proteins, or even protein mixtures, for potential as chiral selectors. From the work on 

BSA and tryptophan it appeared that the best combination of variables for the run 

buffer to test BSA with a wide range of racemates were 67 mM phosphate (pH 7.4) – 

methanol (97.5 : 2.5, v/v) and a chiral selector concentration of 2 mg ml
-1

. The length 

of the capillary was instrument dependent, they were 40 cm for the Dionex CES I 

and 37 cm for the Beckman PACE 2050. The voltage was set to 10 kV.  
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Chapter 4 Evaluation of biomacromolecules for chiral discrimination in free 

solution capillary electrophoresis 

 

4.1 Introduction 

 

Protein affinity CE has been successfully applied to separate the enantiomers of 

tryptophan and benzoin, as described in Chapter 3. The protocol developed in 

Chapter 3 was designed such that it would easily lend itself to screen many chiral 

compounds against biomacromolecules of the analyst’s choice. At the time of the 

outset of this element of the practical work only a few enantiomers had been 

separated by protein affinity CE using BSA as the chiral selector. However, many 

more had been separated using BSA as a chiral stationary phase in HPLC [Barker 

1992]. Accordingly it was thought that it would be appropriate to use the CE protocol 

for a broader range of enantiomers than had previously been studied by CE. 

Similarly, another obvious aim was to apply the protocol to study chiral resolution by 

protein affinity CE for a range of other proteins. The use of proteins that had been 

used for chiral LC would allow an LC to CE comparison and those not studied by LC 

would hopefully illustrate the easier accessibility of CE. 

 
4.2 Results and discusion 
 
The enantiomers selected had already been successfully separated using a BSA-CSP 

e.g. leucovorin [Barker 1992], or were structurally related to enantiomers separated 

previously with this protocol, e.g. promethazine and the propionic acids. 
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Following on from studying protein affinity CE with BSA to screen a range of 

compounds for chiral selectivity, the protocol was easily modified to study chiral 

selectivity of other biomacromolecules. Human serum albumin (HSA) is structurally 

similar to BSA and performs identical functions in humans as BSA does in cattle. 

Consequently, it has been successfully used as a chiral stationary phase in HPLC so 

HSA ought to lend itself as a chiral selector in protein affinity CE. Two other 

biomacromolecules were used to test the applicability of protein affinity CE to 

ascertain chiral discrimination of potentially rare or novel biomacromolecules.  

These were human lactoferrin and protamine. 

 
4.3 Results for the separation of a range of compounds with BSA with the 

protein affinity CE protocol 
 

A summary of the results for resolving a range of enantiomers is shown in Table 40. 
 

Table 40 Resolution of enantiomers using BSA as the chiral selector and 

standard conditions 

 

Compound Migration 

time 1 

(min) 

Migration 

time 2 

(min) 

Resolution 

(arbitrary 

units) 

Electrophero-

gram 

Benzoin 21.3 21.6 1.2 41 

Thioridazine 15.8 16.5 0.67 42 

Bepridil 7.9 8.0 0.61 43 

Kynurenine 26.8 27.5 0.51 44 
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Table 40 Resolution of enantiomers using BSA as the chiral selector and 

standard conditions 

 
Compound Migration 

time 1 

(min) 

Migration 

time 2 

(min) 

Resolution 

(arbitrary 

units) 

Electrophero-

gram 

Leucovorin 36.1 37.5 1.12 45 

Ibuprofen 59.0 61.3 0.57 46 

2-(4-methylphenyl) 

propionic acid 

13.8 14.1 0.52 47 

Tryptophan amide 12.5 - - 48 

Hexabarbitone 19.0 - - 49 

N-acetyl-DL-

tryptophan 

52.0 - - 50 

Warfarin 49.0 - - 51 

Tyrosine 22.1 - - 52 

Suprofen ∞ - - Not shown 

Carprofen ∞ - - Not shown 

Quinalbarbitone ∞ - - Not shown 

Temazepam ∞ - - Not shown 

Oxazepam ∞ - - Not shown 

Lorazepam ∞ - - Not shown 
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Fig. 41 CE of benzoin enantiomers showing good selectivity but failure to obtain 

baseline resolution because of peak tailing. Conditions: run buffer, 30 µM BSA, 67 

mM phosphate (pH 7.4) – methanol (97.5 : 2.5,v/v); capillary, CElect p150, 40 cm 

(35 cm to detector) x 50 µm i.d.; instrument, CES I; temperature, ambient; voltage 

10 kV; detection wavelength, 254 nm. 
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Fig. 42 CE of thioridazine enantiomers; an example of resolution for a basic analyte. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 7.4) – methanol (97.5 : 

2.5, v/v); capillary, CElect p150, 40 cm (35 cm to detector) x 50 µm i.d.; instrument, 

CES I; temperature, ambient; voltage 10 kV; detection wavelength, 254 nm. 
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Fig. 43 CE of bepridil enantiomers showing good resolution inside 10 min; spiking 

on the apex of the first peak is the likely reason that the peak areas are not in a 50:50 

ratio Conditions: run buffer, 30 µM BSA, 67mM phosphate (pH 7.4) – methanol 

(97.5 : 2.5, v/v); capillary, CElect p150, 37 cm (30 cm to detector) x 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection wavelength, 

254 nm. 
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Fig. 44 CE of kynurenine enantiomers showing limited selectivity but good 

resolution because of the high efficiency and absence of peak tailing. Conditions: run 

buffer, 30 µM BSA, 67 mM phosphate (pH 7.4) – methanol (97.5 : 2.5,v/v); 

capillary, CElect p150, 37 cm (30 cm to detector) x 50 µm i.d.; instrument, PACE 

2050; temperature, 25 °C; voltage 10 kV; detection wavelength, 254 nm. 
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Fig. 45 CE of leucovorin enantiomers showing peak tailing for the second peak 

(similarly to tryptophan). Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 

7.4) – methanol (97.5 : 2.5,v/v); capillary, CElect p150, 37 cm (30 cm to detector) x 

50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection 

wavelength, 254 nm. 
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Fig. 46 CE of ibuprofen enantiomers showing the very characteristic trough before 

the resoled enantiomers. Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 

7.4) – methanol (97.5 : 2.5,v/v); capillary, CElect p150, 37 cm (30 cm to detector) x 

50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection 

wavelength, 254 nm. 
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Fig. 47 CE of 2-(4-methylphenyl) propionic acid enantiomers showing a similar 

trough as for ibuprofen and good resolution with limited selectivity because of the 

high efficiency and absence of tailing. Conditions: run buffer, 30 µM BSA, 67 mM 

phosphate (pH 7.4) – methanol (97.5 : 2.5,v/v); capillary, CElect p150, 37 cm (30 cm 

to detector) x 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 

kV; detection wavelength, 254 nm. 
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Fig. 48 CE of tryptophan amide enantiomers, suggesting that the tryptophan 

resolution is dependent on the presence of the free carboxylic acid (similarly the 

failure to resolve N-acetyltryptophan enantiomers suggests that the free amine is also 

needed). Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 7.4) – methanol 

(97.5 : 2.5, v/v); capillary, CElect p150, 40 cm (35 cm to detector) x 50 µm i.d.; 

instrument, CES I; temperature, ambient; voltage 10 kV; detection wavelength, 254 

nm. 
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Fig. 49 CE of hexabarbitone enantiomers showing lack of resolution. Conditions: run 

buffer, 30 µM BSA, 67 mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); 

capillary, CElect p150, 40 cm (35 cm to detector) x 50 µm i.d.; instrument, CES I; 

temperature, ambient; voltage 10 kV; detection wavelength, 254 nm. 
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Fig. 50 CE of N-acetyl-DL-tryptophan enantiomers showing longer migration time 

than DL-tryptophanamide but still no resolution. Conditions: run buffer, 30 µM 

BSA, 67 mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect 

p150, 40 cm (35 cm to detector) x 50 µm i.d.; instrument, CES I; temperature, 

ambient; voltage 10 kV; detection wavelength, 254 nm. 



 - 82 - 

 

 

 

 

 

 

 

Fig. 51 CE of warfarin enantiomers showing a small (compared to ibuprofen) trough 

ahead of the relatively wide peak. Conditions: run buffer, 30 µM BSA, 67 mM 

phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect p150, 40 cm (35 

cm to detector) x 50 µm i.d.; instrument, CES I; temperature, ambient; voltage 10 

kV; detection wavelength, 254 nm. 
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Fig. 52 CE of tyrosine enantiomers; the very good efficiency perhaps indicating a 

lack of interaction with the protein. Conditions: run buffer, 30 µM BSA, 67 mM 

phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect p150, 40 cm (35 

cm to detector) x 50 µm I.D.; instrument, CES I; temperature, ambient; voltage 10 

kV; detection wavelength, 254 nm. 
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4.4 Results for the separation of a range of compounds with HSA with the 

protein affinity CE protocol 

 

A summary of the enantiomers resolved by HSA by protein affinity CE is shown in 

Table 53. 

Table 53 Resolution of enantiomers using HSA as the chiral selector and 
standard conditions 
 

Compound Migration 

time 1 

(min) 

Migration 

time 2 

(min) 

Resolution 

(arbitrary 

units) 

Electrophero-

gram 

Bepridil 19.0 21.0 0.61 54 

Promethazine 13.2 14.2 0.51 55 

Tryptophan 12.2 14.0 0.42 56 

Thioridazine 20.8 23.2 0.26 57 

Kynurenine 23.8 24.2 0.30 58 

 
4.5 Results for the separation of a range of compounds with protamine and 

lactoferrin with the protein affinity CE protocol 

 
There was no chiral resolution of any of the enantiomers with the protein affinity CE 

protocol. Example electropherograms are shown for tryptophan with lactoferrin, Fig. 

59 and leucovorin with protamine, Fig. 60. It could not be determined whether there 

was any interaction between the protein and the enantiomers. The migration times of 

the enantiomers were longer in the presence of the protein although a more plausible 

explanation for this increase is due to the increased viscosity of the run buffer, 

equation 18. 
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µ
πη

= =
v
E

q
r6  

Equation 18 Electrophoretic Mobility 

  

where 

  µ  = electrophoretic mobility  

  v  = electrophoretic velocity 

  E  = electric field strength 

  q = charge of the ion 

  η = viscosity of the buffer 

  r = radius of the molecules. 
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Fig. 54 CE of bepridil enantiomers, showing considerably more retardation and 

greater resolution than with BSA. Conditions: run buffer, 30 µM HSA, 67 mM 

phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect p150, 37 cm (30 

cm to detector) x 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 

kV; detection wavelength, 254 nm. 
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Fig. 55 CE of promethazine enantiomers, showing good resolution and efficiency. 

The system peak at about 30 min is the EOF. Conditions: run buffer, 30 µM HSA, 67 

mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v; capillary, CElect p150, 37 cm 

(30 cm to detector) x 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; 

voltage 10 kV; detection wavelength, 254 nm. 
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Fig. 56 CE of tryptophan enantiomers, showing resolution but with both peaks fairly 

broad. Conditions: run buffer, 30 µM HSA, 67 mM phosphate (pH 7.4) – methanol 

(97.5 : 2.5, v/v); capillary, CElect p150, 37 cm (30 cm to detector) x 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection wavelength, 

280nm. 
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Fig. 57 CE of thioridazine enantiomers, showing good resolution with better peak 

shape than with BSA. Conditions: run buffer, 30 µM HSA, 67 mM phosphate (pH 

7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect p150, 37 cm (30 cm to detector) x 

50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection 

wavelength, 254 nm. 
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Fig. 58 CE of kynurenine enantiomers, showing limited selectivity but good 

resolution because of the high efficiency and absence of peak tailing as for with BSA 

and with very similar migration time to the BSA case. Conditions: run buffer, 30 µM 

HSA, 67 mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect 

p150, 37 cm (30 cm to detector) x 50 µm i.d.; instrument, PACE 2050; temperature, 

25 °C; voltage 10 kV; detection wavelength, 254 nm. 
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Fig. 59 CE of tryptophan enantiomers showing good peak shape but no resolution. 

Conditions: run buffer, 30 µM lactoferrin, 67 mM phosphate (pH 7.4) – methanol 

(97.5 : 2.5, v/v); capillary, CElect p150, 37 cm (30 cm to detector) x 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection wavelength, 

280 nm. 
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Fig. 60 CE of leucovorin enantiomers showing good peak shape but with no 

resolution. Conditions: run buffer, 30 µM protamine, 67 mM phosphate (pH 7.4) – 

methanol (97.5 : 2.5, v/v); capillary, CElect p150, 37 cm (30 cm to detector) x 50 µm 

i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection 

wavelength, 254 nm. 
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4.6 Discussion 

 

4.6.1   Evaluation of protein affinity CE 

 
The protocol developed in Chapter 3 was successfully applied to study the range of 

enantiomers with different biomacromolecules. Disappointingly, only a few 

enantiomers were resolved with HSA and BSA compared to comparable LC methods 

[Lloyd 1995] and none were resolved with either lactoferrin or protamine. In some 

cases, no peaks were observed at all e.g. temazepam and suprofen. On the whole, 

BSA was more successful as a chiral selector than HSA although in some cases when 

using HSA there were significant differences in migration times, e.g. Bepridil. While 

peak tailing seemed to be less of a problem when using HSA, in the case of 

tryptophan it was found that both peaks were broad, as opposed to the BSA case 

where only the second peak, L-tryptophan, was broad and tailed. Broadly speaking 

the situation in LC is that, because HSA does not offer striking advantages over the 

cheaper, first-used BSA as a chiral selector, HSA CSP tend now to be used more as 

tools for studying drug – protein binding [Wainer 1993] rather than for resolving 

enantiomers. In CE a similar situation would apply. BSA would be used for resolving 

enantiomers and, obviously, there would be more interest in studying binding to 

HSA than to BSA. 

 
By the time this study was complete and, more so, subsequent to this, other 

researchers had also reported limited success in separating enantiomers with proteins 

in free-solution CE, Table 61. Massolini [Massolini 1998] reported a surprising lack 

of chiral selectivity of β-lactoglobulin. An explanation for the lack of chiral 

selectivity is the concentration of biomacromolecule in the run buffer. The 
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concentration of BSA as a chiral stationary phase is in the region of millimolar 

[Ahmed 1997] compared to the micromolar range used with the protocol.  

 
Table 61 Review of chiral separations with proteins in free-solution CE 
 

Author Chiral selector Enantiomers 
 

Kilar [1995] iron-free human 
serum transferrin 

DL-Tryptophan methyl ester, DL-
Tryptophan ethyl ester, DL-Tryptophan 
butyl ester 
 

Amini [1997] α1-acid glycoprotein Dispyramide 
 

Massolini [1998] β-lactoglobulin No observed selectivity 
 

Beck [1996] Lamda-Carrageenan Tryptophanol, Propranolol 
 

Valtcheva [1993] Cellobiohydrolase I Propranolol, alprenolol, metaprolol, 
pindolol, labetolol 
 

Ferguson [1998] HSA Benzoin 
 

Lloyd [1997] HSA Benzoin 
 

Tanaka [1994] Avidin Vanilmandelic acid, Warfarin, Ibuprofen, 
Ketoprofen, Flurbiprofen, Folinic acid 
(leucovorin) 
 

Ohara [1995] HSA Verapamil 
 

Tanaka [1997] α1-acid glycoprotein Acebutolol, Arotinolol, Atropine, 
Bupivocaine, Chlorprenaline, 
Denopamine, Eperisone, Epinastine, 
Etilefrin, Fenoterol, Homatropine, 
Ketamine, Metanephrine, Metoprolol, 
Mexiletine, Nicardipine,Verapamil 
Oxyphencyclimine, Phenylephrine, 
Pindolol, Primaquine, Promethazine, 
Sulpiride, Terbutaline, Tolperisone, 
Trihexyphenidyl, Trimebutine, 
Trimetoquinol, Trimipramine  
 

Ahmed [1997] HSA Benzoin 
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Table 61 Review of chiral separations with proteins in free-solution CE 
 
Author Chiral selector Enantiomers 

 
Ishihama [1994] Ovomucoid Tolperisone, Benzoin, Eperisone, 

Chlorpheniramine 
 

Tanaka [1995] BSA 
 
 
Ovomucoid 
 
 
 
 
α1-acid glycoprotein 
 
Conalbumin 

Homochlorcyclizine, Oxyphencyclimine, 
Propranolol, Trimebutine, Epinastine 
 
Butitrolol, Pindolol, Arotinolol, 
Oxyphencyclimine, Tolperisone, 
Verapamil, Chlopheniramine, Primaquine, 
Trimebutine 
 
Chloprenaline 
 
Trimetoquinol 
 

 
Tellingly, the most successful of the protein affinity CE chiral resolutions shown in 

Table 54 are those in which high protein concentrations were used.  Concentrated 

solutions of proteins were in the capillary partial filling application, detailed in 

Chapter 1, for the resolution of a few enantiomers. These include α1-AGP in the 

range 100-1000 µM [Tanaka 1997] and Kilar [1995] who used 100-200 mg ml-1 

solution of iron-free human serum transferrin to separate tryptophan ester 

enantiomers. While increasing the concentration of the biomacromolecule would be 

beneficial there are associated difficulties such as increased migration as discussed in 

Chapter 3, an increased concentration of UV absorbing species in the run buffer and 

a greater amount of biomacromolecule required. 

 
The lack of chiral resolution using this protocol could be used advantageously to 

screen rare or novel biomacromolecules for chiral selectivity. As already 

demonstrated with the four biomacromolecules tested, only the ones which exhibit 

excellent chiral selectivity successfully resolved enantiomers. Therefore, the protocol 
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could be used initially to discriminate for highly promising chiral selectors before 

pursuing in-depth investigations which may be potentially be unrewarding. 

 
Similarly, the use of low protein concentrations as used in the protocol here could 

also be advantageous with respect to the study of drug – protein binding by CE.  In 

studying strongly binding species (which would be being sought if looking at drug – 

receptor protein binding), the use of a high concentration of protein with partial 

filling would almost certainly lead to the situation where the highly bound drug did 

not migrate past the detector. Also it has been found that when using partial filling 

with a smaller proportion of the capillary filled in order to reduce the total mass of 

selector in the capillary that the reproducibility was not so good as when using larger 

filled zones with lower concentrations of selector (Williams, University of 

Sunderland, B.Sc. Chemical & Pharmaceutical Science, final year project, 2001).  

 
4.6.2 Features of the electropherograms 
 
There were a number of features on some electropherograms observed during these 

studies. In cases where no peaks were observed at all could have been caused by the 

biomacromolecule masking the UV absorbance of the analyte or that the analyte had 

a long migration such that it did not pass the detector during the analytical run. Other 

features will be discussed in detail in Chapter 6. These are spontaneous peak markers 

and baselines shifts, e.g. Figs. 42, 49 and 50, and the electropherograms of ibuprofen 

which exhibit a dip in the baseline prior to a partial resolution of the enantiomers, 

Fig. 46. 
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Chapter 5 Addition of modifiers to the CE run buffer 

 

5.1 Introduction 

 

Using CE, protein affinity chiral separations may be obtained using small amounts of 

protein. Another aspect of the use of CE for protein affinity separations is that the 

method protocol can easily be modified to include the addition of other chemical 

entities to the run buffer. This readily provides a vehicle for the study of a wide range 

of variables on protein ligand interactions. Such studies could be used to probe the 

very nature of the drug-protein interactions and importantly might in principle 

provide a means of improving chiral selectivity.  
 

The addition of certain modifiers to the run buffer may improve the overall chiral 

selectivity of the system by slightly altering the tertiary structure of the protein so 

that the difference between the three-point interactions of the enantiomers [Dalgliesh 

1952] with the protein would be more pronounced. The modifiers used need not be 

restricted to those that might occur in nature. For example, the modifier β-

cyclodextrin, could improve the solubility of hydrophobic analytes to give an 

obvious practical benefit but also would give rise to a mixed chiral selector system. If 

the chiral selectors are complementary with respect to their breadth of spectrum then 

it is possible that the mixed system might give chiral separations for a wider range of 

compounds and in rare cases it might even be possible to observe synergistic effects. 

 

The addition of competing ligands to the system can be used to probe the different 

binding sites of the protein [Hage 1995, Noctor 1993 & Wainer 1993]. Such 

information can be used to ascertain, for example, the interaction of different drugs 

on the protein and to observe any potential preferential displacement of one 

enantiomer over the over. In this way the concentration of an unbound drug could be 

predicted in the presence of a competing ligand. 
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To use CE in this way almost as a model of in vivo behaviour would require 

extensive development and validation work to be carried out. The aim here was to 

only investigate the extent to which selected modifiers affected migration, selectivity, 

resolution and establish the levels of modifiers required to observe the effects.  

 

5.2 Addition of metal ions to protein affinity CE 

 

Metal
2+

 ions offer interesting possibilities when used to study protein affinity CE. 

They are known to bind to proteins and can therefore change the tertiary structure of 

the protein [Peters 1977]. This in turn can lead to a change in the chiral selectivity of 

the protein and potentially give improved separations. However, the addition of 

metal
2+

 ions to the normal buffer of 67 mM phosphate was not possible since this 

caused the precipitation of the inorganic salt. Consequently the make-up of the run 

buffer was changed to 67 mM borate which did not cause any inorganic salt 

precipitation.  

 

As already demonstrated, only small amounts of protein are consumed in protein 

affinity CE. It was therefore possible to study HSA, which was available in more 

limited quantities, rather than BSA. The test analytes, tryptophan and kynurenine 

enantiomers, had both been separated using HSA (Chapter 4). Since the buffer had 

been changed, injections of the test analytes were made without any metal ions 

present for comparison. 

 

The results for the addition of metal ions on the resolution of tryptophan enantiomers 

are shown in Table 62 and the corresponding electropherograms in Figures 63 – 65. 

 

Table 62  Selectivity of tryptophan enantiomers with the addition of metal ions. 
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Metal Ion 

 

t1 t2 Resolution 

None 

 

16.00 16.25 1.5 

Manganese 

 

15.94 16.08 0.33 

Zinc 

 

16.09 16.22 0.13 

 

The addition of the metal ions had only a small effect on the overall migration times 

of the tryptophan. Despite this, the resolution of the tryptophan enantiomers by HSA 

was reduced by the presence of the metal ions, the slight drop in selectivity being 

sufficient to bring about a loss of resolution. There was no significant change in 

efficiency. However, it would have been difficult to observe any improvement in 

efficiency, given that using borate buffer the efficiency was already good, the 

characteristic broadness of the peak of the second migrating enantiomer as seen with 

phosphate buffer not being observed. 
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Fig. 63 CE of tryptophan enantiomers using 67mM borate buffer. Conditions: run 

buffer. 30 µM HSA, 67 mM sodium borate (pH 7.4); capillary, CElect P150, 37 cm 

(30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 ºC; 

voltage 8 kV; detection wavelength, 280 nm. 
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Fig. 64 CE of tryptophan enantiomers in the presence of manganese. Conditions: run 

buffer. 30 µM HSA, 30 µM Mn
2+

, 67 mM sodium borate (pH 7.4); capillary, CElect 

P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 

25 ºC; voltage 8 kV; detection wavelength, 280 nm. 
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Fig. 65 CE of tryptophan enantiomers in the presence of zinc . Conditions: run 

buffer. 30 µM HSA, 30 µM Zn
2+

, 67 mM sodium borate (pH 7.4); capillary, CElect 

P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 

25 ºC; voltage 8 kV; detection wavelength, 280 nm. 
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The results for the addition of metal ions on the resolution of kynurenine 

enantiomers are shown in Table 66 and the corresponding electropherograms Figures 

67 – 69. 

 

Table 66  Selectivity of kynurenine enantiomers with the addition of metal ions. 

 

Metal Ion 

 

t1 t2 Resolution 

None 

 

15.93 16.20 1.6 

Manganese 

 

16.18 16.44 1.0 

Zinc 

 

16.20 16.32 0.1 

 

The results for kynurenine enantiomers were very similar to those for tryptophan in 

that there was little overall change in the migration times of the kynurenine 

enantiomers and there was a reduction in the resolution with the addition of both 

manganese and zinc. However, there was a clear difference in that there was a 

distinction between the effects of the two metals. Zinc caused the greatest decrease in 

resolution, perhaps because the zinc was bound more to the binding site of the 

protein compared to the manganese so preventing the kynurenine enantiomers from 

binding to the protein. When metal ions bind to HSA they do so to one major binding 

site [Peters 1977] so perhaps this is also the binding site for tryptophan and 

kynurenine. The migration data is not inconsistent with the original resolution being 

generated by the second migrating enantiomer being bound to the protein but this 

generating only a small increase in migration time compared the unbound first 

migrating enantiomer. In this way, when the second enantiomer cannot bind to the 
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protein because of the metal ions, resolution is lost by reduction of its migration 

time. The fact that the migration data was not exactly consistent with this scenario 

was probably down to the precision of the migration times relative to the minor 

changes in relative migration taking place. This could have been calculated by the 

relative migration of the EOF peak. Unfortunately, there were no such peaks in the 

electropherograms. 
  

Any direct interaction of the analytes with the metal ion would have been more likely 

to manifest itself in a significant change in migration time. Similarly the interaction 

of the metal with the specific binding site for the L-tryptophan while, being enough 

to reduce or eliminate enantioselectivity, was not so strong as to affect the 

electrophoretic mobility of the HSA. Different levels of metal ions could have been 

applied but lower levels might well have had a smaller effect that would have been 

difficult to measure and higher levels might simply have reduced the resolution to 

zero. It was possible that at different levels something very different might have been 

observed because of a change of mechanism. However it was thought that the 

chances of this were slim and so it was decided to proceed to other options which it 

was thought would have a greater chance of success.  Also it was difficult to 

envisage any possible useful analytical  application of the reduced resolution. It could 

be used to control situations where a method is not useful because of excessive chiral 

resolution leading to an excessive run time but this was not the case with HSA and 

there are simpler ways of doing this such as reducing the protein concentration. 

  

 
 

 

 



 - 105 - 

 

 

Fig. 67 CE of kynurenine enantiomers using 67mM borate buffer. Conditions: run 

buffer. 30 µM HSA, 67 mM sodium borate (pH 7.4); capillary, CElect P150, 37 cm 

(30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 ºC; 

voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 68 CE of kynurenine enantiomers in the presence of manganese . Conditions: 

run buffer. 30 µM HSA, 30 µM Mn
2+

, 67 mM sodium borate (pH 7.4); capillary, 

CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; 

temperature, 25 ºC; voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 69 CE of kynurenine enantiomers in the presence of zinc. Conditions: run buffer. 

30 µM HSA, 30 µM Zn
2+

, 67 mM sodium borate (pH 7.4); capillary, CElect P150, 

37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 ºC; 

voltage 8 kV; detection wavelength, 254 nm. 
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5.3 Addition of β-cyclodextrin to a protein affinity CE buffer 

 

5.3.1 Analysis of tryptophan enantiomers 

 

The protein affinity CE protocol for the resolution of tryptophan enantiomers had 

proved to be successful and was the obvious choice to use for studying the addition 

of β-cyclodextrin to the run buffer in an attempt to assess the possibilities for 

complementary or even synergistic chiral resolution. Interestingly there has been no 

mention of using β-cyclodextrins to separate tryptophan or tryptophan derivatives in 

the literature. The results are shown graphically in Fig. 70 for the effect on the 

migration times of the enantiomers and Fig. 71 for the effect on the resolution. The 

corresponding electropherograms are shown in Figs. 72-77. 

 

The addition of β-cyclodextrin to the run buffer gave rise to significant variation of 

the resolution and the overall migration times of the tryptophan enantiomers. 

Certainly the changes were significant enough to suggest that the cyclodextrin was 

having an influence, albeit not necessarily directly. However, there was no specific 

trend in either the migration times or the resolution. In all cases the tryptophan 

enantiomers were baseline resolved. Therefore it was concluded that the β-

cyclodextrin did not change the binding of the tryptophan to the BSA as was 

indicated by the peak shape of the second migrating enantiomer which was 

consistent throughout the range of β-cyclodextrin concentrations even though there 

was variability in resolution and migration times. Given this and the almost erratic 

nature of the changes in resolution, the results were considered to be not sufficiently 

encouraging to proceed to a full-scale optimisation exercise. With the benefit of 

hindsight gained from the increasing use of sulphated cyclodextrins in CE [Iwata 

2002, Aumatell 1994 & Christians 2000], it might have been better to have used a γ- 

sulphated (or amino) cyclodextrin, the γ to obtain a better interection with the 

tryptophan and the charged cyclodextrin to obtain a better separation window. 
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One observation from Figs. 73, 74 and 76 was that there was a stepped baseline. 

However, the stepped baseline always occurred after the two enantiomers had eluted 

and did not interfere with the experiment. Another feature of the stepped baseline 

was the apparently random nature of when it occured. This can be seen in the 

electropherograms in Figures 72, 75 and 77, which were run using similar 

conditions, but where no such stepped baseline was observed. The drop in baseline 

could have been caused by BSA depletion but importantly the level of BSA in the 

capillary, at least at the point of the detector was constant at the time of the elution of 

the enantiomers. 
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Fig. 70 Migration times of tryptophan enantiomers with the addition of β-

cyclodextrin. Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4); 

capillary, CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 

2050; temperature, 25 °C; voltage 8 kV; detection wavelength, 280 nm. 



 - 111 - 

 

 

 

 

β µ

 

0 5 10 15 20 25 30 35
-clyclodextrin concentration ( M)

0

0.1

0.2

0.3

0.4

0.5

Re
so

lu
tio

n

 

 

 

 

 

 

 

 

 

 

Fig. 71 Resolution of tryptophan enantiomers with the addition of β-cyclodextrin. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4); capillary, CElect 

P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 

25 °C; voltage 8 kV; detection wavelength, 280 nm. 
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Fig. 72 Resolution of tryptophan enantiomers. Conditions: run buffer, 30 µM BSA, 

67 mM phosphate (pH7.4); capillary, CElect P150, 37 cm (30 cm to detector) × 50 

µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 8 kV; detection 

wavelength, 280 nm. 



 - 113 - 

 

 

 

 

Fig. 73 Resolution of tryptophan enantiomers with 6 µM β-cyclodextrin. Conditions: 

run buffer, 30 µM BSA, 67 mM phosphate (pH7.4), 6 µM β-cyclodextrin; capillary, 

CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; 

temperature, 25 °C; voltage 8 kV; detection wavelength, 280 nm. 
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Fig. 74 Resolution of tryptophan enantiomers with 12 µM β-cyclodextrin. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4), 12 µM β-

cyclodextrin; capillary, CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 8 kV; detection wavelength, 

280 nm. 
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Fig. 75 Resolution of tryptophan enantiomers with 18 µM β-cyclodextrin. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4), 18 µM β-

cyclodextrin; capillary, CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 8 kV; detection wavelength, 

280 nm. 
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Fig. 76 Resolution of tryptophan enantiomers with 24 µM β-cyclodextrin. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4), 24 µM β-

cyclodextrin; capillary, CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 8 kV; detection wavelength, 

280 nm. 
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Fig. 77 Resolution of tryptophan enantiomers with 30 µM β-cyclodextrin. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4), 30 µM β-

cyclodextrin; capillary, CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 8 kV; detection wavelength, 

280 nm. 
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5.3.2 Analysis of ibuprofen enantiomers 

 

The same protocol was used to study ibuprofen enantiomers. The results are shown 

graphically in Fig. 78 for the effect on the migration times of the enantiomers and 

Fig. 79 for the effect on the resolution. The corresponding electropherograms are 

shown in Figs. 80-83. 

 

The addition of β-cyclodextrin to the run buffer for the study of ibuprofen 

enantiomers did have a dramatic effect on both the migration times and resolution of 

the enantiomers. As the concentration of the β-cyclodextrin increased to 30 µM the 

migration time was decreased by 50 % and the resolution decreased until no 

separations were observed at 30 µM β-cyclodextrin. 

 

Electropherograms of ibuprofen exhibited a void immediately before the main peaks. 

It was thought that the electrophoretic mobility of the ibuprofen-BSA complex was 

less than BSA and the rate of association and dissociation of the ibuprofen and BSA 

was high compared to the length of the experiment, therefore a void of BSA would 

develop in the run buffer; a fuller discussion is presented in Chapter 6. As illustrated 

from the electropherograms in Figs. 80 to 83 the void was still present. However, as 

illustrated by Fig. 84 the area of the void decreased with increasing concentration of 

β-cyclodextrin. 

 

Assuming that β-cyclodextrin does not alter the electrophoretic mobilities of either 

the BSA-ibuprofen complex or BSA then the area of the void can only be decreased 

by the changing of the rate of association and dissociation between ibuprofen and 

BSA. This would be the case where the ibuprofen would interact preferentially with 

β-cyclodextrin compared to BSA and this was observed as the β-cyclodextrin 

concentration increased. 
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However, the void was still present at a β-cyclodextrin concentration of 30 µM when 

no chiral separations were observed. This indicated that there was still binding 

between the ibuprofen and BSA so a degree of chiral selectivity could be expected. It 

can be hypothesised that there was no separation, even though there was still some 

ibuprofen-BSA interaction, because the decrease in the overall migration times 

allowed insufficient time for the differences in electrophoretic mobilities to be 

observed.  

 

The apparent increase in significance of an ibuprofen - β-cyclodextrin complex did 

not give rise to an alternative ibuprofen enantiomer resolution based on the β-

cyclodextrin association. Again hindsight with the benefit of the knowledge of more 

recent work suggests that a charged cyclodextrin known to resolve ibuprofen 

enantiomers might have been a better option to look for competition or enhancement 

of resolution. An amino cyclodextrin would probably have been suitable in this case 

to create a greater separation window given the relatively long retention time of the 

BSA-bound ibuprofen. 
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Fig. 78 Migration times of ibuprofen enantiomers with the addition of β-

cyclodextrin. Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4); 

capillary, CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 

2050; temperature, 25 °C; voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 79 Resolution of ibuprofen enantiomers with the addition of β-cyclodextrin. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH7.4); capillary, CElect 

P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 

25 °C; voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 80 CE of ibuprofen with 12 µM β-cyclodextrin. Conditions: run buffer, 30 µM 

BSA, 67 mM phosphate (pH7.4), 12 µM β-cyclodextrin; capillary, CElect P150, 37 

cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; 

voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 81 CE of ibuprofen with 18 µM β-cyclodextrin. Conditions: run buffer, 30 µM 

BSA, 67 mM phosphate (pH7.4), 18 µM β-cyclodextrin; capillary, CElect P150, 37 

cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; 

voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 82 CE of ibuprofen with 24 µM β-cyclodextrin. Conditions: run buffer, 30 µM 

BSA, 67 mM phosphate (pH7.4), 24 µM β-cyclodextrin; capillary, CElect P150, 37 

cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; 

voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 83 CE of ibuprofen with 30 µM β-cyclodextrin. Conditions: run buffer, 30 µM 

BSA, 67 mM phosphate (pH7.4), 30 µM β-cyclodextrin; capillary, CElect P150, 37 

cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; 

voltage 8 kV; detection wavelength, 254 nm. 
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Fig. 84 Area of the ibuprofen-BSA void.Conditions: run buffer, 30 µM BSA, 67 mM 

phosphate (pH7.4), x µM β-cyclodextrin; capillary, CElect P150, 37 cm (30 cm to 

detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 8 kV; 

detection wavelength, 254 nm. 
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5.4 Allosteric interactions 

 

5.4.1 Introduction 

 

There has been extensive research into the binding of ligands to proteins and a 

binding site theory has been developed to explain drug-ligand binding, displacement 

and allosteric effects [Fehske 1981]. Three major binding sites have been proposed 

for HSA based on the affinities of drug molecules to the different sites on HSA. The 

three sites exhibit affinity for digitoxin, warfarin and indole-diazepam. A summary 

of molecules that bind to the sites is summarised in Table 85. 

 

Table 85 Summary of molecules which bind to specific sites on HSA 

 

Binding site Indole-diazepam Warfarin Digitoxin 

Molecules which 

have a high 

affinity to the site 

Benzodiazepines 

 

Tryptophan 

 

Ibuprofen 

 

Warfarin 

 

Dicoumorol 

 

Digitoxin 

 

As already demonstrated, protein affinity CE can be utilised to probe the effects of 

different modifiers, e.g. organic solvents, on the chiral selectivity of proteins. Protein 

affinity CE should, therefore, be a good model for studying ligand-protein binding. 

This is of interest in itself but also it might be possible to induce enhanced chiral 

resolution e.g. as observed by Noctor and co-workers [Noctor 1993] by allosteric 

interactions. The protein will be in free solution so any conformational changes will 

be from ligand-protein interactions. This is in contrast to immobilised protein in 
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HPLC where the protein confirmation may be changed by chemically bonding it to a 

silica support. It has been possible to produce albumin phases for which the tertiary 

structure has not been greatly altered so that the CSP can be used to study binding 

[Ashton 1996, Thaud 1983, Shibukawa 1996 & He 1997]. However for AGP CSP 

the structure is often greatly distorted through cross-linking to produce better 

stability and enantioselectivity (TAG Noctor, personal communication).  

 

5.4.2 Discussion 

 

The results for the addition of competing ligands on the resolution of tryptophan 

enantiomers are shown in Table 86 and the corresponding electropherograms in 

Figures 87 to 90. 

 

Table 86 Selectivity of tryptophan enantiomers with the addition of 

competing ligands   

 

Competing Ligand Tryptophan 

Migration Time 1 

Tryptophan 

Migration Time 2 

Resolution 

Lorazepam 11.8 12.4 0.25 

Digitoxin 10.5 10.6 0.2  

Warfarin 8.5 - - 

Ibuprofen 8.4 - - 

 

It has already been reported that the addition of small amounts of competing ligands 

can have dramatic effects on chiral selectivity [Aubry 1994]. Consequently a 

competing ligand concentration less than the protein in the buffer ought to have a 

significant effects on the test anayte. Therefore any effects should be observed using 

a ratio of 10:1 for protein to competing ligand. This did have, and in some cases, had  
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Fig. 87 Resolution of tryptophan enantiomers with addition of lorazepam. 

Conditions: run buffer, 30 µM HSA, 67 mM phosphate (pH7.4), 3 µM lorazepam; 

capillary, CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 

2050; temperature, 25 °C; voltage 8 kV; detection wavelength, 280 nm. 
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Fig. 88 Resolution of tryptophan enantiomers with addition of digitoxin. Conditions: 

run buffer, 30 µM HSA, 67 mM phosphate (pH7.4), 3 µM digitoxin; capillary, 

CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; 

temperature, 25 °C; voltage 8 kV; detection wavelength, 280 nm. 
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Fig. 89 Resolution of tryptophan enantiomers with addition of warfarin. Conditions: 

run buffer, 30 µM HSA, 67 mM phosphate (pH7.4), 3 µM warfarin; capillary, CElect 

P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; temperature, 

25 °C; voltage 8 kV; detection wavelength, 280 nm. 
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Fig. 90 Resolution of tryptophan enantiomers with addition of ibuprofen. Conditions: 

run buffer, 30 µM HSA, 67 mM phosphate (pH7.4), 3 µM ibuprofen; capillary, 

CElect P150, 37 cm (30 cm to detector) × 50 µm i.d.; instrument, PACE 2050; 

temperature, 25 °C; voltage 8 kV; detection wavelength, 280 nm. 
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a dramatic effect on the separation and overall migration times of tryptophan 

enantiomers. The most significant effects were noticed with ibuprofen and warfarin 

and in both cases the resolution of tryptophan enantiomers was decisively eliminated 

and there was a reduction in the retention times. Ibuprofen is known to bind to the 

same site as tryptophan so it is clear from Fig. 90 that ibuprofen binds more strongly 

and displaces tryptophan from HSA. However, from the site binding theory warfarin 

binds to a different site compared to tryptophan so clearly there was more going on 

than direct competition. 

 

Therefore providing that there is no direct displacement of tryptophan then warfarin 

would alter the conformation of HSA when bound so preventing tryptophan binding 

to HSA and thus eliminating chiral selectivity and decreasing the migration times. 

 

The addition of lorazepam and digitoxin to the run buffer had little effect on the 

resolution or migration times of tryptophan. The benzodiazepine binds to the same 

bind site as tryptophan but in this case it would appear that it is the tryptophan that 

was bound more strongly to HSA. The binding of digitoxin at a different site 

compared to tryptophan appeared not to change the conformation of HSA to prevent 

binding of tryptophan since there is still a baseline separation of enantiomers. 

 

5.5 Conclusions 

 

Protein affinity CE had demonstrated the applicability of the technique to probe the 

effects of including additives in the run buffer. For the examples studied here  there 

were no improvements in chiral selectivity and while only a limited range of 

examples were studied there was sufficient evidence to suggest that cases where 

there were improvements in enantioselectivity would be difficult to find and 

therefore that the approach of manipulating additives might not be the best one with 

respect to the primary aim of identifying systems that would give rise to good broad 
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spectrum enantioselectivity by protein affinity CE. However it seemed that the 

technique could easily be adapted to show the competitive effects of ligands and this 

may be a more promising application area for the future.  Providing some technical 

difficulties can be overcome, then it may be useful as a tool to monitor the bio-

availability of drugs in vivo, especially in cases where several drugs are taken at the 

same time. In particular the use of low concentrations of proteins in CE would seem 

to be an ideal solution to the immobilisation difficulties encountered by Wainer’s 

group in working with transporter proteins in LC [Wainer 2003, Moaddel 2002 & 

2005]. 
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Chapter 6 Practical issues associated with protein affinity CE 

 

6.1 Artefacts associated with the Dionex CES I 

 

6.1.1 Capillary fill method 

 

Before commencing the optimisation of chiral separations using CE, conditions 

quoted in the literature were tested [Kraak 1992 & Barker 1992] using the Dionex 

CES I instrument and associated AI-450 software. Tryptophan was chosen as the test 

compound as the enantiomers have been successfully separated using BSA as the 

chiral selector in CE [Birnbaum 1992] and HPLC [Krstulovic 1989]. Early 

experiments to resolve tryptophan were unsuccessful as shown by Fig. 91 which 

shows a single peak. A feature of the electropherograms was an increase in the 

absorbance towards the end of the run which can be seen between 35 and 40 min in 

Fig. 91. By modifying the method to flush the capillary with the phosphate buffer 

followed by a blank run with one end of the capillary in a vial containing BSA 

phosphate buffer, the UV absorbance attained a maximum and then remained 

constant forming a plateau, Fig. 92. 

 

The experimental procedure to fill the capillary with the BSA containing run buffer 

was to rinse the capillary with 0.05 M sodium hydroxide, water and BSA free run 

buffer for three minutes each followed by a three minute pressure injection of the run 

buffer from a vial on the carousel. The capillary was not rinsed with the BSA 

containing run buffer because the capillary was easily blocked and the amount of 

BSA required was considered prohibitive. The amount of rinse solution required was 

approximately 100 ml and with a run buffer containing 30 µM BSA this would use 

200 mg of the protein. The samples were injected and the inlet was placed in a vial 

containing the BSA run buffer and the outlet placed in the fixed source vial, which 

contained phosphate run buffer.   
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Fig. 91 CE of tryptophan using a three minute pressure injection to load BSA 

onto the capillary; Unresolved tryptophan enantiomers at 23 min with an increase in 

the baseline starting at 37 min due to the BSA passing the detector. Conditions: run 

buffer, 30 µM BSA, 67mM phosphate (pH 7.4); capillary, CElect p150, 40 cm (35 

cm to detector) x 50 µm i.d.; instrument, CES I; temperature, ambient; voltage 10 

kV; detection wavelength, 280nm. 
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Fig. 92 The capillary fill method showing the BSA breakthrough starting at 17 min 

and plateauing out after 20 min. The capillary was rinsed with 0.05 M sodium 

hydroxide, water and 67 mM phosphate buffer. A blank run was performed from a 

vial containing BSA-phosphate buffer. Conditions: run buffer, 30 µM BSA, 67 mM 

phosphate (pH 7.4); capillary, CElect p150, 40 cm (35 cm to detector) x 50 µm i.d.; 

instrument, CES I; temperature, ambient; voltage 10kV; detection wavelength, 254 

nm. 
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The sample mixture of enantiomers was then applied which resulted in unresolved 

enantiomers and an increase in UV absorbance after 20 to 25 min. 

 

The increase in absorbance was thought to be BSA passing the detector given that it 

was the only UV absorbing species in the run buffer. The main question was whether 

there was a BSA breakthrough or an increase in the level of BSA. Experiments were 

undertaken to verify the presence of BSA passing the detector. The inlet vial was 

replaced with phosphate buffer and the procedure was repeated as before. There was 

no enantiomeric separation and there was an increase in UV absorbance after 25 min. 

It was concluded that BSA had not been injected into the capillary by the pressure 

injection method. BSA was only present in the capillary after a period of time when 

the inlet was placed in a vial with the BSA containing buffer. A sample of tryptophan 

was injected after the plateau had been established. This resulted in an enantiomeric 

separation, Fig. 93, and the baseline remained stable throughout the run. The 

experimental procedure was subsequently altered to include a 25 min run with the 

BSA-containing run buffer to ensure that the protein was present in the capillary 

prior to any sample injections. However, this revised procedure substantially 

increased the total analysis time, by 40 %, of the experiment. There were a number of 

reasons why the time required for the BSA to pass through the detector was relatively 

long. At the pH used, the electrophoretic mobility of the BSA was low, as discussed 

in Chapter 3. Also at the concentration used the BSA containing buffer had a high 

viscosity which would also lead to a decrease in the electrophoretic mobility of the 

BSA, Equation 18, [Camilleri 1983]. 

 

µ
πη

= =
v
E

q
r6  

Equation 18 Electrophoretic Mobility 
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where 

  µ  = electrophoretic mobility  

  v  = electrophoretic velocity 

  E  = electric field strength 

  q = charge of the ion 

  η = viscosity of the buffer 

  r = radius of the molecules. 

 

When these experiments were repeated using the PACE 2050 it was only necessary 

to rinse the capillary with the BSA containing buffer to achieve enantiomeric 

separations and no breakthrough of the BSA was observed. The time required to 

condition the capillary prior to injection was reduced from 34 min to 10 min. 

 

The high pressure rinse of the PACE 2050 was 20 psi compared to the 10 - 15 psi of 

the CES I. The difference between 15 and 20 psi had not been expected to make too 

much difference but it made a very marked difference in that it significantly 

decreased the time to condition capillary by 24 min. 

 

6.1.2 Reduction of the overall run time 

 

Performing a BSA run prior to injecting samples effectively doubled the time of 

analysis. Experiments were undertaken to ascertain the reproducibility between 

sample injections without rinsing the capillary. The capillary was filled with the BSA 

containing buffer as described previously. The test compound was tryptophan. The 

run time for each analysis was 40 min. The reproducibility of the system decreased 

rapidly after only three injections. The migration times of the enantiomers increased 

from 20 min to over 40 min and in one case the enantiomers were detected in a 

subsequent analysis. The increase in the migration times could have been due to 

protein building up on the surface of the capillary wall during the sequential analyses  
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Fig. 93 CE of tryptophan enantiomers following the BSA breakthrough. 

Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 7.4); capillary, CElect 
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p150, 40 cm (35 cm to detector) x 50 µm i.d.; instrument, CES I; temperature, 

ambient; voltage 10 kV; detection wavelength, 280 nm. 

which could have resulted in the tryptophan interacting with relatively stationary 

BSA on the wall compared to BSA in solution which would have increased the 

migration times. 

 

Clearly running samples without rinsing the capillary was unacceptable in terms of 

reproducibility so, despite the consequences for time and protein consumption, the 

capillary was rinsed with sodium hydroxide, water, phosphate buffer and the 

capillary fill method undertaken prior to any sample injection. 

 

6.1.3 Baseline anomalies 

 

The technique of filling the capillary with the run buffer for the CES I prior to 

injection and then applying the voltage sometimes produced two distinct phenomena 

in the baselines. They were a spontaneous marker peak, Fig. 94, and a baseline shift, 

Fig. 95. The phenomena were random and occurred using the same capillary and the 

same injection procedure. This can be demonstrated by comparing Fig. 93, which 

does not exhibit any phenomena, and Figs. 94 and 95. 

 

The phenomena were studied by Coyer et al [Colyer 1995]. They found that the 

phenomena depended on the physical geometries of the ends of the capillary. The 

appearance or disappearance of these phenomena could be observed using the same 

capillary. They demonstrated this by cutting small sections from the end of the 

capillary and running the same experimental conditions. They could not differentiate 

any features at the capillary tips between the active cut capillaries producing the 

phenomena or the passive cut capillaries which did not. They proposed that positive 

marker peaks and baseline shifts were caused by a slight increase in the buffer 
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concentration. Conversely negative marker peaks and baseline shifts were caused by 

a slight decrease in buffer concentration.  These theories can explain the 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 94 CE of hexabarbitone enantiomers showing a spontaneous peak marker. The 

spontaneous peak marker occurs at 17 min. Conditions: run buffer, 30 µM BSA, 67 
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mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect p150, 40 cm 

(35 cm to detector) x 50 µm i.d.; instrument, CES I; temperature, ambient; voltage 

10 kV; detection wavelength, 254 nm. 

 

 

 

 

 

 

 

 

 

 

Fig. 95 CE of N-acetyl-DL-tryptophan enantiomers showing both a spontaneous peak 

marker and a baseline shift. The baseline shift occurs between 16 and 18 min. The 
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spontaneous peak marker occurs between 19 and 20 min. Conditions: run buffer, 30 

µM BSA, 67 mM phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v); capillary, CElect 

p150, 40 cm (35 cm to detector) x 50 µm i.d.; instrument, CES I; temperature, 

ambient; voltage 10 kV; detection wavelength, 254 nm. 

spontaneous markers and the baseline shifts observed in some electropherograms of 

this study. 

 

6.1.4 Ibuprofen ghost peaks 

 

The electropherograms of ibuprofen were distinctive and unique compared to 

electropherograms of all the other compounds tested A dip in the baseline was 

observed immediately before the main peaks. A typical example of an 

electropherogram of a partial separation of ibuprofen enantiomers is shown in Fig. 

96. 

 

The run buffer contained BSA which was a relatively high UV absorbing species so 

any local variations in the BSA concentration would cause a change in the detector 

output. When the ibuprofen is injected there is an equal concentration of the BSA run 

buffer in the zones immediately in front and behind the ibuprofen. From the 

electropherograms of ibuprofen and the BSA capillary fill method the migration time 

of ibuprofen was longer compared to BSA and the electrophoretic mobility of the 

ibuprofen was less than for BSA. Ibuprofen is known to bind strongly to BSA [Peters 

1977] therefore assuming that the electrophoretic mobility of the ibuprofen-BSA 

complex was the same as BSA and the rate of association and dissociation of the 

ibuprofen and BSA was high compared to the length of the experiment then a void of 

BSA in the run buffer would develop. This can be graphically illustrated by Fig. 97. 

At the beginning of the analysis the concentration of the BSA is constant throughout 

the capillary and there is no separation of the ibuprofen enantiomers. As the analysis 

proceeds the concentration of BSA prior to the enantiomers decreases which is 
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shown by the lighter grey region in the illustration. Towards the end of the analysis 

the region of the lower BSA concentration prior to the ibuprofen enantiomers 

increases.  
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Fig. 96 CE of ibuprofen enantiomers showing the dip in the baseline. The dip in the 

baseline occurs between 40 and 50 min. Conditions: run buffer, 30 µM BSA, 67 mM 

phosphate (pH 7.4) – methanol (97.5 : 2.5,v/v; capillary, CElect p150, 37 cm (30 cm 

to detector) x 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 

kV; detection wavelength, 254 nm. 
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Fig. 97 The development of a region of low BSA concentration prior to the partial 

separation of ibuprofen enantiomers. At the beginning of the analysis the 

concentration of BSA was constant throughout the capillary. As the analysis 

proceeded a small region of low BSA concentration formed immediately before the 

ibuprofen enantiomers. Towards the end of the analysis the region of low BSA 

concentration had increased.  

Two measures were undertaken which it was hypothesised might reduce the 

magnitude of the dip. The first was to increase the overall concentration of the BSA 

in the run buffer. This might minimise the magnitude by increasing the overall 

concentration of BSA compared to ibuprofen. The second measure was to increase 

the concentration of BSA in the injection vial. This measure would increase the 

concentration of free BSA in the injection vial compared to the BSA-ibuprofen 

complex concentration. The increased free BSA concentration would cause a 

decrease the observed dip in the baseline.  

 

By increasing the overall BSA concentration from 30 to 60 µM there were no 

obvious changes in the magnitude of the dip. The concentration of ibuprofen used 

was 1 mg ml-1 in both experiments so the amount of the ibuprofen-BSA complex in 

both experiments would be approximately the same. Therefore the amount of BSA 

depleted from the zone prior to the ibuprofen enantiomers would be the same so the 

magnitude of the dip would also be the same and that was observed. Similarly the 

ibuprofen peak did not get larger, suggesting that there was no additional BSA 

complexing to the ibuprofen, so that the size of the peak relative to the dip was the 

same. The only change was that the background was at a higher level, albeit having 

been zeroed by the instrument. 

 

By increasing the concentration of BSA in the injection phase compared to the run 

buffer it was hoped to increase the proportion of BSA-ibuprofen complexes prior to 

the introduction to the run buffer so there would be less free ibuprofen to complex 
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with BSA from the run buffer so that there would be a reduction in the magnitude of 

the dip. However, as is indicated in Fig. 98, there was little effect. The concentration 

of BSA in the injection phase was 60 µM and the concentration of the ibuprofen was 

5 mM so that this was in excess of the BSA to the extent that to fully complex all the 

ibuprofen the protein concentration would have had to be increased by two orders of 

magnitude and this was not practical to do. 
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Fig. 98 CE of ibuprofen enantiomers injected with 60 µM BSA showing the dip in 

the baseline between 30 and 40 min. Conditions: run buffer, 30 µM BSA, 67 mM 

phosphate (pH 7.4) – methanol (97.5 : 2.5, v/v; capillary, CElect p150, 37 cm (30 cm 

to detector) x 50 µm i.d.; instrument, PACE 2050; temperature, 25 °C; voltage 10 

kV; detection wavelength, 254 nm. 
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There was also no corresponding increase in absorbance with the BSA where it was 

suspected that the overall volume of injected material was a fraction of the material 

in the section of capillary. The overall concentration of BSA at that point would tend 

towards the concentration of 30 µM and so would have little effect on the observed 

dip prior to the ibuprofen enantiomers. 

 

6.2 Artefacts associated with the PACE 2050 

 

6.2.1 The stepped baseline 

 

The pressure rinse of the PACE 2050 was sufficiently powerful to flush the capillary 

with the BSA-phosphate buffer. This eliminated the capillary fill method, which had 

to proceed a run using the Dionex CES I, and so the total analysis time had been 

decreased. The experimental procedure was subsequently altered to rinse the 

capillaries with 0.05 M NaOH, water, phosphate buffer and BSA-phosphate buffer 

prior to any injections. After injection both ends of the capillary were placed in vials 

containing the BSA-phosphate buffer and the separation voltage applied. After a 

period of time there was a decrease in absorbance followed by a lower constant 

absorbance; the electropherogram shown in Fig. 99 was a typical example. The effect 

was similar to the capillary fill method used for Dionex CES I only in reverse. Since 

BSA was the only UV absorbing species in the buffer then the BSA was being 

eliminated from the capillary. Experiments were undertaken to ascertain why the 

BSA was eliminated and steps were taken to prevent it. 

 

6.2.2 Buffer depletion 

 

One possibility was that the source vial was being exhausted of BSA. After rinsing 

the capillary with the BSA-phosphate buffer, vials containing new phosphate buffer 

were used as the inlet and outlet vials while the separation voltage was applied. 
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Fig. 99 CE of ibuprofen enantiomers showing the stepped baseline occurring about 

25 min. Conditions: run buffer, 30 µM BSA, 67 mM phosphate (pH 7.4) – methanol 

(97.5 : 2.5, v/v; capillary, CElect p150, 37 cm (30 cm to detector) x 50 µm i.d.; 

instrument, PACE 2050; temperature, 25 °C; voltage 10 kV; detection wavelength, 

254 nm. 
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However, the elimination of BSA still occurred. The UV absorbance of the buffers of 

the vials were measured before and after a run. There was no significant difference 

between the before and after measurements so there was still 30 µM in both buffer 

vials.   

 

The decrease in absorbance was not observed when using the Dionex CES I and the 

volume of the BSA-phosphate buffer vial was 0.6 ml compared to the 2.8 ml of the 

vials used in the Beckman PACE 2050 so buffer depletion was thought unlikely to be 

the cause. 

 

6.2.3 Siphoning 

 

Another possibility was that there was sufficient difference in the levels of the 

buffers that siphoning was taking place, which could prevent BSA from being 

transported through the capillary. When the levels of the buffer vials were altered to 

give all the high and low buffer level combinations available there was the same 

decrease in absorbance in all cases. Therefore it was inferred that another mechanism 

was causing the effect. 

 

6.2.4 Overload of BSA in the outlet vial 

 

The decrease in absorbance was never observed when using the methods for the 

Dionex CES I. The only major difference between the Dionex CES I and the 

Beckman PACE 2050 was the buffer in the outlet vial. The fixed outlet vial for the 

Dionex CES I contained phosphate buffer from the capillary rinse cycle. Experiments 

were undertaken to change the method so that the outlet vial contained only 

phosphate buffer. It was demonstrated that using the modified method the 

elimination of BSA from the capillary was prevented. This can be clearly shown by 

comparing electropherograms of ibuprofen. The stepped baseline was only observed 
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in Fig. 99 which had BSA-phosphate buffer in the outlet vial. The stepped baseline 

was not observed in Fig. 96 and Fig. 98 which had phosphate buffer in the outlet 

vial. 

 

The elimination of BSA from the capillary could be due to a combination of 

concentration and electrical effects. Before the separation voltage is applied the 

concentration of BSA in the capillary and the inlet and outlet vials is the same. When 

the separation voltage was applied the EOF was sufficient for the BSA to migrate 

from the inlet vial, through the capillary and into the outlet vial. After a period of 

time an excess of BSA would be present in the outlet vial compared to the inlet vial. 

A concentration gradient of BSA would develop from the outlet vial to the inlet vial. 

The concentration gradient would then form an equilibrium with the BSA migrating 

through the capillary. The flow of BSA would effectively stop through the capillary 

and this was observed by the step in the baseline. 

 

6.3 Conclusions 

 

As with any analytical technique there are some disadvantages of CE. These include 

apparent baseline irregularities for neutral markers [Kenndler-Blachkolm 1995] and 

adsorption of analytes to the capillary wall [Ermakov 1995]. On the whole on 

referencing more recent literature the mechanisms of these artefacts are generally 

well understood and even if they could not be eliminated then allowances could be 

made for them and accordingly using the CES I the capillary fill method was 

employed even though there was an increase in the overall analysis time and an 

outlet vial containing only phosphate buffer was employed with the PACE 2050.  
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Chapter 7 BSA as a mobile phase additive in microbore HPLC 

 

7.1 Introduction 

 

There had been interest in the use of protein affinity CE to develop methodologies 

for enantiomer separations and, to a lesser extent, to study protein-ligand binding. In 

enantiomer differentiation using CE, very small amounts of chiral selector are 

required. Accordingly, a much wider range of biomacromolecules may be used. Also 

it may be possible for chiral discrimination to take place in free solution. The 

biomacromolecular structure should therefore not be grossly distorted and the 

behaviour of the molecule should be similar to how it behaves in vivo. CE with 

biomacromolecules ought to be a better model of the pharmacological behaviour of 

drugs than HPLC. Despite these seeming advantages and a few success stories, 

protein affinity CE was in general not living up to expectations [Lloyd 1995]. 

 

Shortcomings of protein affinity CE had included failure to resolve the complete 

range of chiral analytes that may be resolved by HPLC using immobilised albumin 

stationary phases, broad negative peaks arising from analytes with long run times 

[this study], difficulty in the interpretation of data [this study and Lloyd 1995], and 

baseline shifts at variable times during analytical runs [Colyer 1995]. 

 

Since protein affinity HPLC using miniaturised columns and the protein as a mobile 

phase additive might offer the nominal advantages of CE alluded to above, it was 

decided to evaluate it using BSA as the chiral selector. 
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7.2 Results and discussion 

  

7.2.1 Mechanism of separation 

 
Under normal circumstances, the method for chiral resolution depends on adsorption 

of the analyte to the stationary phase followed by desorption by the protein. This is 

graphically illustrated in Fig. 100. 

 

 

Fig. 100 Graphical representation between the stationary phase, the 

protein and the analytes showing that only the analytes, represented by d 

and l, can adsorb onto the stationary phase. When the analytes are 

desorbed from the stationary phase they can bind to the protein molecules 

in the stationary phase. 

 

The pores of the stationary phase have a pore size of 60 Å and will be too small for 

the BSA protein, which being a prolate ellipsoid with dimensions 141 Å by 42 Å the 
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protein will not adsorb onto the stationary phase. However, the analytes are small 

enough to adsorb onto the stationary phase. Therefore the enantiomer which binds 

more strongly with the BSA will elute before the least bound enantiomer. 

 

7.2.2 Enantioselectivity of the method 

 

The selection of the stationary phase was critical for this method of using proteins as 

mobile phase additives. The functions of the stationary phase were twofold, the first 

was to reduce protein adsorption on the surface of the particles and the second was to 

allow the adsorption of the analytes. The stationary phase selected which closely 

matched the two required functions was Lichrosorb DIOL. The mobile phase was 

aqueous phosphate buffer which gave the best possibility to the analyte to adsorb 

onto the stationary phase. 

 

Of the compounds tested, tryptophan, Fig. 102 and kynurenine, Fig. 103, were 

resolved into their individual enantiomers, Table 101. It was observed that the 

resolution of tryptophan occurred only when the concentration of BSA was raised to 

60 µM. This was in contrast with CE results where tryptophan was resolved with a 

BSA concentration of 30 µM in the run buffer. 

 
Warfarin had a low k value so this method was not appropriate. Temazepam had a 

moderate k value and therefore a greater concentration would probably be required 

for chiral resolution. No peaks were observed for benzoin and thioridazine which 

were highly retained on the stationary phase. 
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Table 101 k values of analytes with BSA as a mobile phase additive 
 
Analyte 30 µM BSA 60 µM BSA 
 k1 k1 k2 
Tryptophan 1.42 1.00 1.36 

α=1.36 
Kynurenine - 0.67 1.20 

α=1.80 
Thioridazine 
 

- ∞ - 

Benzoin 
 

- ∞ - 

Temazepam 
 

- 2.00 - 

Warfarin 
 

- 0.63 - 
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Fig. 102 Resolution of tryptophan using free-solution BSA and microbore HPLC. 

Conditions: mobile phase, 67 mM phosphate (pH 7.4), 60 µM BSA; column, 

Lichrosorb DIOL, 5 µM particle diameter, 60 Å pore size 15 cm x 1 mm i.d.; flow 

rate, 50 µl min-1. 
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Fig. 103 Resolution of kynurenine using free-solution BSA and microbore HPLC. 

Conditions: mobile phase, 67 mM phosphate (pH 7.4), 60 µM BSA; column, 

Lichrosorb DIOL, 5 µM particle diameter, 60 Å pore size 15 cm x 1 mm i.d.; flow 

rate, 50 µl min-1. 
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7.2.3 Method practicalities 

 

Although this method provided chiral resolutions and, given the nature of the 

retention mechanism, had potential as a viable alternative for exploring potential 

drug-protein interactions, there were a few challenges which made the method 

difficult to use. For example, over a period of time it was observed that the 

enantioselectivity for the tryptophan separation deteriorated, Fig. 104. 

 

With the column being pumped with buffer / protein mobile phase it was possible 

that some of the protein would adsorb onto the stationary phase, at least outside of 

the pores including at the entrances to the pores. This would have the effect of 

blocking the pores and decrease the overall number of sites where the tryptophan 

could adsorb onto the stationary phase. Overall the tryptophan enantiomers would 

remain more in the mobile phase and as the mechanism for enantioselectivity was for 

the least bound enantiomer to adsorb onto the stationary phase then the 

enantioselectivity decreased.   

 

This method also suffered the same inherent problems relating to UV detection as 

was found for the corresponding CE method. This was more pronounced as the 

overall concentration of BSA was 60 µM compared to 30 µM of the CE method. 

With the mobile phase used and using a column of 1 mm i.d. there was always the 

possibility of some precipitation with the chromatographic system. Indeed this 

problem did manifest itself on several occasions, which was indicated by a general 

increase in the backpressure of the system.  
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Fig. 104 Selectivity of tryptophan enantiomers with the amount of mobile 

phase pumped through the column. Conditions: mobile phase, 67 mM phosphate (pH 

7.4), 60 µM BSA; column, Lichrosorb DIOL, 5 µM particle diameter, 60 Å pore size 

15 cm x 1 mm i.d.; flow rate, 50 µl min-1. 
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Fortunately it was discovered that the principal sites of the adsorption were the 

column frits and so the life of the column was extended by replacing the frits when 

the system backpressure limit was exceeded. 

 
7.3 BSA as a mobile phase additive in capillary LC 

 

Following the success of using BSA as a mobile phase additive in microbore LC it 

was an obvious choice to use the same methodology in capillary LC. This would 

have offered a greater saving in protein consumption. To perform a similar amount 

of analysis using a 0.3 mm i.d. capillary column compared to a 1 mm i.d. microbore 

column with equivalent flow rate would require approximately 10 % of the 

corresponding mobile phase. Unfortunately the method practicalities detailed earlier 

were such that no analysis was performed.  The major issue was the ease by which 

the column became blocked with only a small amount of the mobile phase being 

pumped through the column. Unlike the microbore columns it was impractical to 

clean the frits to perform any analysis. 

 

7.4 Conclusions 

 

Despite the practical problems, which were an inconvenience rather than a major 

limitation, this method offered the opportunity of studying enantioselectivity of 

proteins in free solution HPLC, i.e. with the in vivo tertiary structure preserved and 

without having to deal with the problems posed by the need to find suitable 

chemistry for bonding to the stationary phase. Importantly, with respect to proteins 

which might not be readily accessible, the amount of protein required was relatively 

small and when using a concentration of 60 µM of BSA and a flow rate of 
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50 µl min-1 the amount of BSA consumed during a 20 min run would be 

approximately 4 mg. Therefore, 2 g of BSA allowed a total analysis time of several 

days which would be more than adequate to study a range of compounds with this 

system.   

 

Provided the practical difficulties of using proteins as mobile phase additives in 

capillary LC could be overcome then the consumption of protein could be decreased 

further. For example, using the same mobile phase running at 3 µl min-1 would 

consume the equivalent of 0.25 mg BSA. Another development which could further 

reduce the amount of protein required is nanoscale high-performance liquid 

chromatography (nano-LC) [Chervet 1996 & Heron 2000]. Using columns of 0.1 

mm i.d. and a flowrate of 0.15 ml min-1 the amount of protein consumed in an 

equivalent 20 min run would be approximately 13 µg. Healy [Healy 2001] has 

reported a 1000 fold reduction in reagent consumption when using methyl-β-

cyclodextrin as a mobile phase additive to separate naproxen enantiomers using 

nano-LC compared to conventional LC. Therefore, with such technologies it would 

allow the use of rare and expensive biomacromolecules to study enantioselectivity 

and protein-ligand binding. 
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Chapter 8 BSA as a pseudo stationary phase in microbore HPLC 

 

8.1 Introduction 

 

While the first priority had been to study the use of BSA present in its free form in 

the mobile phase, there was still some merit in studying systems in which the BSA 

was incorporated into the stationary phase. These types of systems would offer two 

key advantages over using the protein as a mobile phase additive. Once the protein 

had loosely adsorbed onto the stationary phase then the mobile phase used for the 

analysis would be protein free thereby decreasing the amount of protein required 

significantly. Also when using a protein free mobile phase, practical issues such as 

high UV detector background and possible frit blockage would not arise. The aim 

therefore of this part of the research programme was to develop a reduced 

dimensions system where the BSA was adsorbed onto the stationary phase in such a 

way that the BSA did not bleed off the column after the BSA was removed from the 

mobile phase. 

 

A protocol for coating a stationary phase with protein had been reported for a 

conventional scale LC system using the ‘bare’ silica material, Nucleosil [Erlandsson 

1986]. However, since the protein was thought to be adsorbed through interaction of 

the amino-groups with the weakly acidic silica, it was decided to first investigate the 

use of a less polar material stationary phase in order to reduce the chance of 

distortion of the protein tertiary structure occurring. 
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8.2 Results and discussion 

 

8.2.1 Mechanism of separation 

 

In protein affinity LC using large pore sizes, the protein molecules are in the pores 

therefore the mode of chiral resolution is more typical of using a typical protein-

immobilised chiral stationary phase. There is generally little or no interaction with 

the stationary phase support and the interaction is with the protein. The enantiomer 

which binds more strongly to the protein will reside more on the stationary phase and 

will therefore elute after the least bound analyte which will proportionately reside 

more in the mobile phase. This is graphically represented in Fig. 105 where the l-

enantiomer is bound to the protein and the d-enantiomer is essentially in the mobile 

phase. 

 

Fig. 105 Simplified graphical representation of the equilibrium of the 

pseudo protein stationary phase and the analytes showing the protein 

adsorbed onto the stationary phase. 
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8.2.2 BSA as a pseudo stationary phase on a C8  stationary phase 

 

Using a very similar protocol to that which had been reported in the literature for 

Nucleosil, BSA was strongly adsorbed onto the wide pore C8 stationary phase, Fig. 

106. In order to improve the forming of the pseudo stationary phase the BSA was 

pumped through the column at pH 5.0. This was approximately at the pI of BSA and 

as the BSA would be neutral at this pH it would more easily adsorb into the 

hydrophobic pores. 

 

After adsorption at pH 5.0, the mobile phase pH was switched to 7.4 and there was 

no evidence, e.g. elevation of baseline, of significant desorption for some time. This 

made it possible to undertake more than enough HPLC than would be needed to 

evaluate it if it had been an unusual protein only available in small quantities.  

 

From earlier work using BSA as a chiral selector in CE a wide range of test analytes 

had been accumulated so it was therefore possible to screen a large number of these 

analytes using the LC protocol. Separations of the enantiomers of tryptophan and 

kynurenine were achieved on the BSA pseudo stationary phase, Fig. 107 and 108 

showing very good selectivity in both cases without the limitation of the previous 

method of background UV absorbance from the protein in the mobile phase. 

Particularly for kynurenine there was peak tailing of the more strongly bound 

enantiomer but this did not compromise the degree of resolution. However, a number 

of test analytes were retained with very high k even when some methanol was added 

to the mobile phase.  
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Fig. 106 Absorption of BSA onto the wide pore C8 stationary phase showing the 

breakthrough of surplus BSA after about 210 min. The volume of the BSA mobile 

phase required for the breakthrough was 10.5 ml. The concentration of the BSA in 

the mobile phase was 2 mg ml-1, therefore the amount of BSA adsorbed onto the 

column was 21 mg. Conditions: mobile phase, 67 mM phosphate (pH 5.0), 30 µM 

BSA; column, Nucleosil C8, 5 µM particle diameter, 300 Å pore size 15 cm x 1 mm 

i.d.; flow rate, 50 µl min-1. 
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Fig. 107 Resolution of tryptophan enantiomers with a BSA pseudo stationary phase, 

selectivity 3.0. Conditions: mobile phase, 67 mM phosphate (pH 7.4); column, 

Nucleosil C8, 5 µM particle diameter, 300 Å pore size 15 cm x 1 mm i.d.; flow rate, 

50 µl min-1. 
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Fig. 108 Resolution of kynurenine enantiomers with a BSA pseudo stationary phase, 

selectivity 2.8. Conditions: mobile phase, 67mM phosphate (pH 7.4); column, 

Nucleosil C8, 5 µM particle diameter, 300 Å pore size 15 cm x 1 mm i.d.; flow rate, 

50 µl min-1. 
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This would not be expected on, for example, a high density BSA-immobilised chiral 

stationary phase [Allenmark 1986 & Zhan 2000]. The logical conclusion then was 

that there was still a significant area of exposed C8 surface and that it was this that 

was giving rise to the excessive retention. 

 

8.3.3 BSA as a pseudo stationary phase on a DIOL stationary phase 

 

Since the C8 stationary phase appeared to be too hydrophobic, attempts were 

therefore made to use a more hydrophilic wide pore DIOL phase but very little, 4 mg 

BSA was retained in the pores, Fig. 109. This small amount of adsorbed BSA was 

insufficient to give either a chiral separation or even significant retention for either 

tryptophan or kynurenine. 

 

8.3.4 BSA as a pseudo stationary phase on Nucleosil silica 

 

Given that neither using wide pore C8 nor DIOL stationary phases had proved to be 

satisfactory supports for BSA, it was decided to revert to investigating the use of 

wide pore Nucleosil, Fig. 110, despite the aforementioned problem of the interaction 

of the amino-groups with the weakly acidic silica. More compounds were eluted than 

had been the case with C8 and, as had been observed when a similar system had been 

used on a conventional scale column [Erlandsson 1986]. Some chiral separation was 

achieved for the majority of the analytes in the test set, Table 111.  

 

The amount of BSA retained by the pores was 70 mg. This was greater than the BSA 

retained on the DIOL column, 4 mg, and the C8 column, 21 mg. However, this was  
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Fig. 109 Absorption of BSA onto the wide pore Lichrosorb DIOL stationary phase 

showing the breakthrough of surplus BSA after about 40 min. The volume of the 

BSA mobile phase required for the breakthrough was 2 ml. The concentration of the 

BSA in the mobile phase was 2 mg ml-1, therefore the amount of BSA adsorbed onto 

the column was 4 mg. Conditions: mobile phase, 67 mM phosphate (pH 5.0), 30 µM 

BSA; column, Lichrosorb DIOL, 5 µM particle diameter, 300 Å pore size 15 cm x 1 

mm i.d.; flow rate, 50 µl min-1. 
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Fig. 110 Absorption of BSA onto the wide pore Nucleosil silica stationary phase 

showing the breakthrough of surplus BSA after about 700 min. The volume of the 

BSA mobile phase required for the breakthrough was 35 ml. The concentration of the 

BSA in the mobile phase was 2 mg ml-1, therefore the amount of BSA adsorbed onto 

the column was 70 mg. Conditions: mobile phase, 67 mM phosphate (pH 5.0), 30 

µM BSA; column, Nucleosil silica, 5 µM particle diameter, 300 Å pore size 15 cm x 

1 mm i.d.; flow rate, 50 µl min-1. 
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significantly less than using BSA as a mobile phase additive where approximately 

100 mg of BSA was required to perform similar analyses. 

 

Unfortunately the stability of this system was such that it proved very difficult to 

remove BSA from the stationary phase. This clearly would be a problem in terms of 

developing a system for rapidly screening a large number of different proteins. Also, 

while the system proved suitable for exhibiting the enantioselectivity of the protein, 

it remains to be seen whether or not this was the same enantioselectivity as would be 

exhibited by the protein in vivo or whether it arose at least in part from distortion of 

the protein caused by its adsorption onto the acidic silica. 

 

Table 111 k values of analytes with BSA adsorbed on the Nucleosil silica 

 

Compound k1 k2 α  Chromato-

gram 

Tryptophan 0.8 2.7 3.6 112 

Kynurenine 0.7 2.8 4.0 113 

Benzoin 3.7 5.1 1.4 114 

Warfarin 7.0 8.5 1.2 115 

 

Conditions: mobile phase, 67 mM phosphate (pH 7.4); flow rate, 50 µl min-1; 

column, Nucleosil C8, 5 µm particle diameter, 300 Å pore size, coated with BSA, 15 

cm x 1 mm i.d. 
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Fig. 112 Resolution of tryptophan enantiomers with a BSA pseudo stationary phase, 

selectivity 3.6. Conditions: mobile phase, 67 mM phosphate (pH 7.4); column, 

Nucleosil silica, 5 µM particle diameter, 300 Å pore size 15 cm x 1 mm i.d.; flow 

rate, 50 µl min-1. 
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Fig. 113 Resolution of kynurenine enantiomers with a BSA pseudo stationary phase 

selectivity 4.0. Conditions: mobile phase, 67 mM phosphate (pH 7.4); column, 

Nucleosil silica, 5 µM particle diameter, 300 Å pore size 15 cm x 1 mm i.d.; flow 

rate, 50 µl min-1. 
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Fig. 114 Resolution of benzoin enantiomers with a BSA pseudo stationary phase, 

selectivity 1.4. The baseline noise is more apparent in this chromatogram because of 

poor efficiency and the weak chromaphore of benzoin. Therefore, there is only a 

partial resolution despite good selectivity. Conditions: mobile phase, 67 mM 

phosphate (pH 7.4); column, Nucleosil silica, 5 µM particle diameter, 300 Å pore 

size 15 cm x 1 mm i.d.; flow rate, 50 µl min-1. 
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Fig. 115 Marginal resolution of warfarin enantiomers with a BSA pseudo stationary 

phase as evidenced by the shoulder at 16 min on the tailing peak. The selectivity was 

1.2. Conditions: mobile phase, 67 mM phosphate (pH 7.4); column, Nucleosil silica, 

5 µM particle diameter, 300 Å pore size 15 cm x 1 mm i.d.; flow rate, 50 µl min-1. 



 - 178 - 

8.4 Conclusions 

 

Given the problems with the narrow pore DIOL and wide-pore C8 systems and the 

fact that the use of the Hummel-Dreyer method with a number of matrix experiments 

[Oravcova1 1996 & Oravcova2 1996] and the complexity of immobilised artificial 

membrane (IAM) phases [Ong 1996] had already been discounted, the Nucleosil 

system looked to have the most potential, certainly for generating good chiral 

resolution without consuming too much protein. However, in terms of being used as 

a model for studying drug-protein interactions, it would need to be evaluated with 

HSA and a large set of common drugs to determine whether the LC retention 

reflected known drug-HSA binding properties and some way would have to be found 

to quickly remove adsorbed protein before moving on to the study of another. 

Alternatively the C8 phase could be used if the set of test analytes could be restricted 

to polar compounds. Another perspective, bearing in mind the increasing more recent 

importance of screening for drug-protein interactions in drug candidate pre-

development screening [Moaddel 2002] is that the use of one column per protein 

need not necessarily be considered as extravagant. 
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Chapter 9 Conclusions 
 

The outcome of the research programme was that, happily, it was demonstrated that 

all of the systems studied could be set up, with greater or lesser degrees of difficulty, 

so that they could be used to screen biomacromolecules as chiral selectors or 

evaluate ligand-biomacromolecule interactions while consuming low amounts of 

biomacromolecule. Unfortunately though none of the systems constituted the ideal 

vehicle for such work, as each had their difficulties or disadvantages, Fig. 116. 
 

On balance, however, the system involving the coating of Nucleosil with the 

biomacromolecule appeared to have the most potential for progressing this work to 

further study unusual biomacromolecules that are only available in low amounts. Its 

ease of use and minimal consumption of biomacromolecule outweigh the possible (a) 

distortion of the tertiary structure, (b) interactions with the base silica, and (c) 

restriction of access to the biomacromolecule, all of which are an issue with respect 

to modelling in vivo drug-protein interactions but need not be a problem at all when 

it comes to use as a chiral selector. The latter point on restriction of access is an issue 

with HSA which is freely accessible in plasma but need not be a problem with, for 

example, membrane proteins so long as access was restricted in the same way as in 

vivo. 



 

Fig. 116 Advantages and disadvantages of each system 

 

System Advantages Disadvantages 

BSA as a mobile phase additive in capillary 

electrophoresis 

• Successful resolution of a range of 

enantiomers 

• Straightforward protocol to allow the 

rapid study of other biomacromolecules 

for chiral discrimination 

• UV detection of analytes is difficult due to 

the high UV absorbance of the 

biomacromolecule in the buffer 

• very difficult to establish whether or not 

there is any the effect of the electric field 

on the biomacromolecule-analyte 

interaction 

BSA coated capillary in capillary 

electrophoresis 

• no biomacromolecule in the buffer 

therefore analytes can be detected at lower 

levels compared to using the 

biomacromolecule in free solution 

• chiral separations not obtainable. 
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System Advantages Disadvantages 

BSA as a mobile phase additive in 

microbore LC using a Lichrosorb DIOL 

stationary phase 

• successful resolution of a small range of 

enantiomers 

• would act as a suitable model for in vivo 

interactions 

• UV detection of analytes is difficult due to 

the high UV absorbance of the 

biomacromolecule in the mobile phase 

• practical difficulties mainly due to 

blockages of the column frits, using this 

mobile phase  

BSA as a pseudo stationary phase in 

microbore LC using a Nucleosil C8 column 

• successful resolution of a small range of 

enantiomers 

• detection of analytes is easier due to the 

virtual elimination of the 

biomacromolecule from the mobile phase 

• very difficult to remove the 

biomacromolecule from stationary phase, 

therefore it prevents the use of the column 

with other biomacromolecules 

• not suitable for use as a model for in vivo 

interactions 
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System Advantages Disadvantages 

BSA as a pseudo- stationary phase in 

microbore LC using a Lichrosorb DIOL 

column 

• does not adsorb biomacromolecules to the 

same extent as the Nucleosil C8 column 

• chiral separations not obtainable 

BSA as a pseudo stationary phase in 

microbore LC using a Nucleosil silica 

column 

• successful resolution a greater range of 

enantiomers when compared to the 

Nucleosil C8 column 

• detection of analytes easier due to the 

virtual elimination of the 

biomacromolecule from the mobile phase 

• Difficult to analyse in vivo interactions 
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As alluded to earlier the issue of biomacromolecule consumption, this could be 

reduced further by a factor of 100 by scaling down to capillary LC by using columns 

with 100 µm i.d. In the not too distant past (ca 2003) very specialised equipment 

such as a flow splitter and a capillary Z-cell for the detector would be required to do 

this but a 10 fold reduction using 0.3 – 0.5 mm i.d. columns, might just be possible 

without too many experimental modifications. However, such specialised equipment 

tended to be difficult to manufacture or expensive to purchase. A novel approach 

would be to have two injection loops on the HPLC system (W.J.Lough, Exploitation 

of miniaturisation in Chiral Separations, 8th International Symposium on Chiral 

Discrimination, Edinburgh, 1996). For example, in Fig. 117 loop A could inject the 

exotic chiral selector while normal injections would be done through loop B. For a 

capillary column of 0.3 mm i.d., typical flow rates would be 3 to 6 µl min-1. 

Therefore, loop A of volume 1 ml would allow an analytical time of between 30 min 

and 1 h in which to inject test analytes from loop B.  

 

 

Fig. 117 A double loop HPLC system 
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Now in 2005, further miniaturisation than the scale employed in the studies reported 

here would be much easier because of the ready availability of a range of nano-LC 

systems such as those marketed in the UK by Dionex and Presearch. These systems 

come with appropriate fittings for work at nano-scale and options for obtaining 

focussing effects. 

 

The work carried out on the individual systems in this research programme suggested 

further directions that could be taken and some of these have already been 

mentioned: 

• prevention of the biomacromolecule masking the detection of analytes when used 

in free solution. 

• probe the allosteric interactions of different analytes with a range of different 

biomacromolecules which could be achieved, for example, by the immobilisation 

of the biomacromolecule within the capillary or by ensuring the analytes migrate 

through the detector before the biomacromolecule. 

• probe drug-protein binding properties on the most suitable system. 

• use the most suitable system for modelling in vivo interactions, for example, a 

widely used drug and the major blood proteins. 

Much progress is still being made into the field of drug-protein binding since the 

practical work was completed. Andre has reported the effects of salt modifiers on the 

displacement of progesterone by beta-estradiol on human serum albumin by 

biochromatogrpahy [ Andre 2003]. The stereoselective binding of 2,3-substituted 3-

hydroxypropionic acids was studied by HPLC and an immobilised human stationary 

phase [Andrisano 2000]. HPLC and an immobilised human serum albumin stationary 

phase also used to measure the reversible binding of valprolate [Bertucci 2002]. 

HPLC was also used to study the setereoselective binding of benzodiazepine and 

coumarin drugs to serum albumins of human and six other mammalian species [Fitos 

2002]. Immobilised-biomembrane affinity chromatography was used to study the 

binding properties of human facilitative glucose transporter GLUT 1 [Gottschalk 
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2002]. Review articles have also been published on the uses of HPLC and CE to 

study drug-protein / biopolymer interactions [Bertucci 2003], the use of the Hummel 

and Dreyer method to measure binding parameters of ligand-macromolecule 

interactions [Berger 2003] and the use of high-performance affinity chromatography 

as a powerful tool to study serum protein binding [Hage 2002].  
 

However, essentially, on the LC side it would now be possible to proceed to use the 

systems, as mentioned the ‘biomacromolecule-coated-on-Nucleosil’ system in 

particular, for a diverse range of applications.  
 

It is a different matter on the CE side. Since the last practical work in this research 

programme, much progress has been made in developing ‘partial filling’ protocols 

for CE. Tanaka has used the paratial filling technique to separate enantiomers with 

proteins as chiral selectors [Tanaka 1995] and the separation of basic drugs using α1-

acid glycoprotein [Tanaka 1997]. Brown used the same technique to study the 

binding of D-Ala-D-Ala terminus peptides to vancomycin [Brown 2004]. A review 

article has been written [Tanaka 2002] on the estimation of binding constants by 

capillary electrophoresis and this included the use of the partial filling technique.  
 

The partial filling protocol involves carefully filling the capillary with a 

biomacromolecule containing buffer to just short of the detection window. The 

analytical conditions are such that the analytes are able to migrate through the 

biomacromolecules and to the detector while the biomacromolecules remain 

stationary or migrate away from the detector, Fig. 26.  
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Fig. 26 A representation of protein pseudo-stationary phases with the 

capillary almost “complete filled” with protein; also a higher protein 

concentration may be used in a narrower band. 

 

Using partial filling, much greater concentration of biomacromolecule can be used as 

the biomacromolecule does not pass the detector flow cell and therefore, for any 

given biomacromolecule it would be possible to obtain more chiral separations than 

for conventional protein affinity CE as used in this research programme. Clearly 

there would be a need to assess whether using a lower volume of a higher 

concentration solution as in partial filling resulted in greater or lesser protein 

consumption. This aside it must also be noted that in partial filling it is not 

straightforward to develop a protocol such the protein remains in the capillary as far 

up to the detection window as possible without encroaching on it. 

 

In this context perhaps a more ‘user-friendly’ protocol that could be studied might be 

one involving a ‘pulse’ of protein solution. Preliminary work on such ‘pulse’ filling 

methods has been carried out at the University of Sunderland (BSc Chemical and 
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Pharmaceutical Science final year project, L.Williams, P Conjoyce and P.Wallis). 

Unlike the partial-filling protocol, this protocol involves injecting a concentrated 

plug of biomacromolecule into the capillary prior to the injection of the analytes. The 

experimental conditions are such that the analytes migrate through the plug of protein 

before UV detection. Unlike the partial filling protocol the biomacromolecule only 

fills a fraction of the capillary so the experimental conditions do not have to be as 

exact to prevent the biomacromolecule from being detected at the detector at the 

same time as the analyte of interest.In this way ligand-biomacromolecule studies 

could be carried out in a very rapid and simple manner. Again the only caveat would 

be that checks would need to be made that excessively long or concentrated ‘plugs’ 

were not needed in order to bring about a chiral separation or (for ligand-

biomacromolecule interaction studies) a measurable shift in migration.  
 

More recent developments such as this ‘pulse’ filling method would seem to 

supersede the work carried out in the research programme described in this thesis. 

However, it must be noted that quite a few variables need to be kept in check to 

perfect these newer methodologies so that they are far less reliable and reproducible 

than ‘complete’ or conventional capillary filling techniques. Therefore the CE 

protocol developed here could still be used advantageously compared to the more 

recent developments provided, for chiral resolution, the enatioselectivity was large 

enough to give resolution when using a dilute selector solution and, for studying 

ligand-protein interactions, the interactions are strong enough to bring about a change 

in migration time when using very dilute protein solutions as the buffer. Happily 

these provisos are not a restriction at all when screening for very good protein chiral 

selectors or for studying many types of drug-biomacromolecule interaction such as 

binding to DNA or receptor protein binding. 

 

Last but not least with respect to CE, it should be noted that for all these  systems a 

fundamental question remains unanswered, i.e. “Does the application of an electric 
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field disturb the ligand-biomacromolecule interaction?” There is no evidence that it 

does. Further it would be futile to assess this by an exhaustive comparison of in vivo 

data with ‘in-CE’ as there would always be other possible reasons to explain away 

any discrepancies. It would be only too easy to ignore this possibility of perturbation 

by the electric field. Indeed no mention of this has been made in the literature. 

 

One day someone will have to do a definitive experiment. Applying and electric field 

along an NMR flow cell would certainly be a technological challenge. The best bet 

therefore might be to carry out molecular modelling and to attempt to model an 

electric field. 
 

Having hopefully demonstated that the methods established in the research 

programme still offer some advantages when compared to more recent 

developments, the other important question that must be addressed when considering 

how the work sits in the context of current developments is whether or not there is 

still a need for chiral separations employing protein chiral selectors or for the study 

of drug – biomacromolecule interactions. The former was very much the main focus 

of the research programme with the latter being very much a side issue. However 

there is now a much greater need for the latter than the former. 
 

The field of chiral separations has advanced considerably since the mid-90’s to the 

point where most enantiomer separation problems may easily be solved and chiral 

method development in the pharmaceutical industry is dominated by automated 

screening systems employing primarily derivatised polysaccharide chiral stationary 

phases for LC [Anderson 2003]. However, proteins are still used when chiral LC 

separations are needed with a high proportion of aqueous buffer in the mobile phase 

e.g. for compatability with other coupled systems. Chiral CE using proteins is still 

used [Tanaka 2001] but cyclodextrins are more popular. Despite the speed with 

which method development may be carried out, and other advantages, chiral CE has 
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not supplanted chiral LC. CE though still offers better possibilities if  it were wished 

to carry out an enantiomeric impurity assay and a related substances assay in one 

system and protein chiral selectors could have a role in this. 
 

With respect to drug – biomolecule interactions there is definitely now a much 

greater need for studies of these (e.g. [Hage 2002] and the work of Wainer [Wainer 

1993 & 2003]) especially that much more screening is being carried out in the 

Discovery phase of pharmaceutical R&D rather than in Development  in order to 

prevent expensive late stage failures of drug candidates. It is in this sphere that the 

protocols developed in this programme are now more likely to find application.  The 

use of the microbore LC system adapted to nano-LC has much to commend it over 

the immobilsation and frontal analysis strategies employed by Wainer [Moaddel 

2005] in his studies of transporter proteins. 
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