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Abstract

Safe and simultaneous arrival of constant speed, constant altitude UAVs on target is

solved by design of paths of equal lengths. The starting point of the solution is the

well-known Dubins path which is composed of circular arcs and line segments, thus

requiring only one simple manoeuvre - constant rate turn. An explicit bound can

be imposed on the rate during the design and the resulting paths are the minimum

time solution of the problem. However, transition between arc and line segment

entails discontinuous changes in lateral accelerations (latax), making this approach

impractical for real fixed wing UAVs. Therefore, the Dubins solution is replaced with

clothoid and also a novel one, based on quintic Pythagorean Hodograph (PH) curves,

whose latax demand is continuous. The clothoid solution is direct as in the case of

the Dubins path. The PH path is chosen for its rational functional form. The clothoid

and the PH paths are designed to have lengths close to the lengths of the Dubins

paths to stay close to the minimum time solution.

To derive the clothoid and the PH paths that way, the Dubins solution is first inter-

preted in terms of Differential Geometry of curves using the path length and curva-

ture as the key parameters. The curvature of a Dubins path is a piecewise constant

and discontinuous function of its path length, which is a differential geometric ex-

pression of the discontinuous latax demand involved in transitions between the arc

and the line segment. By contrast, the curvature of the PH path is a fifth order

polynomial of its path length. This is not only continuous, also has enough design pa-

rameters (polynomial coefficients) to meet the latax (curvature) constraints (bounds)

and to make the PH solution close to the minimum time one. The offset curves of the

PH path are used to design a safety region along each path.

The solution is simplified by dividing path planning into two phases. The first phase

produces flyable paths while the second phase produces safe paths. Three types of

paths are used: Dubins, clothoid and Pythagorean Hodograph (PH). The paths are

produced both in 2D and 3D. In two dimensions, the Dubins path is generated using

Euclidean and Differential geometric principles. It is shown that the principles of

Differential geometry are convenient to generalize the path with the curvature. Due

to the lack of curvature continuity of the Dubins path, paths with curvature conti-

nuity are considered. In this respect, initially the solution with the Dubins path is



extended to produce clothoid path. Latter the PH path is produced using interpo-

lation technique. Flyable paths in three dimensions are produced with the spatial

Dubins and PH paths.

In the second phase, the flyable paths are tuned for simultaneous arrival on target.

The simultaneous arrival is achieved by producing the paths of equal lengths. Two

safety conditions: (i) minimum separation distance and (ii) non-intersection of paths

at equal distance are defined to maneuver in free space. In a cluttered space, an ad-

ditional condition, threat detection and avoidance is defined to produce safe paths.

The tuning is achieved by increasing the curvature of the paths and by creating an

intermediate way-point. Instead of imposing safety constraints, the flyable paths are

tested for meeting the constraints. The path is replanned either by creating a new

way-point or by increasing the curvature between the way-points under considera-

tion. The path lengths are made equal to that of a reference path.
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CHAPTER

1

Introduction

THe momentum is increasing to consider using UAVs in a wide range of applica-

tions like weather and atmospheric research, reconnaissance and surveillance,

conventional combat roles and innovative roles that were not previously pos-

sible (e.g., dull, dirty, and dangerous missions), such as operations in chemical and

biological weapons environments and operations that require micro air vehicles [1].

The forecast applications of unmanned aerial vehicles in the military accelerate the

growth of UAV markets in commercial and academic sectors by increasing research

opportunities [2]. Autonomous vehicles on land, on air, in space or in water - together

called Autonomous Systems will play a major role in near future.

Advances in avionics, GPS-based navigation, and flight control techniques fuelled the

use of Unmanned Aerial Vehicles (UAVs) in commercial and military applications.

Unmanned Air Vehicles of the future will be more autonomous than the remotely

piloted reconnaissance platforms in use today. One of the open issues in their de-

velopment is path planning. A path planning algorithm produces one or more safe

flyable paths for UAVs. The path has to be of minimal length, subject to the stealthy

constraint. As the UAV has limited range, the time spent surveying should be mini-

mized, so the path length should always be a factor in the algorithm. Also, the path

should be feasible for the aircraft to follow. The trajectory has to meet the speed and

turn limits of the UAVs. The path-planning algorithm must be compatible with the

cooperative nature envisioned for the UAV. Finally, path-planning algorithms are ex-

pected to be coded in software that runs on an airborne processor. Thus, they must

1



1. INTRODUCTION

be computationally efficient and real-time, enabling the UAV to re-plan its trajectory

if needed.

1.1 Path planning - An overview

Any autonomous vehicle, in fact any autonomous system involving mobility needs

path-planning. Path-planning is widely documented in ground robotics and manip-

ulator systems. However, the technological advances in the field of robotics extend

its horizon: on land - Unmanned Ground Robot, in water - Unmanned Underwater

Robot, in Air - Unmanned Aerial Robot. In all these applications, path planning

has an integral part and plays an important role. This is understood from vari-

ous references, for example, [3, 4] in ground robotics, [5, 6, 7, 8] on aerial vehicles,

[9, 10, 11, 12] in underwater vehicles, and [13, 14] in space. The classic example of

two-dimensional case of path planning is that of a mobile robot. In fact, the idea of

the path-planning was originated from the field of robotics.

Early approaches to solving path planning problem were focused on (i) road map

methods such as: Visibility graph, Voronoi diagram, (ii) cell decomposition and (iii)

potential field method. The road map methods work on configuration space, where

the robot shrinks to a point while the workspace grows. The start and goal points are

connected by a network of lines. A* algorithm [15] is used to find the shortest path.

In the cell decomposition method, the space is divided into small regions, called cells.

A connectivity graph is created among the free cells, which connect the start and

goal nodes. The potential field method is based on the principles of electric potential

theory that like fields repulse each other while the unlike fields attract each other. In

this manner, a potential field is produced to attract the robot to the goal. One of the

problems in this approach is local minima, which may be produced in the positions

of obstacles. A detailed work on these methods can be found in the book by Latombe

[16]. An important observation is that all these approaches produce only a route to

reach the goal point. But, a route may not be flyable, driveable or maneuverable.

A flyable path meets the kinematic constraints and the imposed dynamics of the

robot. Therefore, the attention turned towards the development of paths which can

be driveable, flyable and maneuverable.

Dubins [17] showed in his work that the shortest path between two vectors in a

plane and meets minimum bound on turning radius is a composite path formed by

the segments of line and circular arcs. This paper got a wide-spread attention by the

research community and is extensively cited in ground robotic works [16, 18, 19, 20]

2



1.1 Path planning - An overview

and airborne problems [21, 22, 23, 24]. Later the real time incident - parking of a car

motivates the development of the shortest path for vehicle which can move forward

and backward. Reeds and Shepp [25] developed the shortest path for a vehicle which

can move both forward and backward. Laumond [26] addresses the path planning for

car-like vehicles using composite path made of circular and clothoid arcs. B-splines

[27], quintic polynomials [28], polar splines [29], clothoid [30], cubic spirals [31], G2

splines [32] have been used for path planning of mobile robots. Robot path planning

using the Voronoi diagram has been studied widely since the mid-1980s [33], and in

late 1990s, the focus on coordinated path planning of multiple robots began. Though,

much of the work done on path planning is carried out in ground robotics, the ap-

proaches could not directly be applied to the Unmanned Aerial Vehicles. Because,

the path of a UAV is limited by the high-G turns and also that it has a threshold

speed below which it can not fly.

Optimization techniques such as probabilistic methods, mixed integer linear pro-

gramming, and genetic programming are applied to path planning of UAVs. These

techniques produce paths by optimizing certain cost function. The cost functions

differ based on the applications such as minimum time arrival, optimizing fuel con-

sumption and coordinated attack. They are mostly the search algorithms. Probabilis-

tic Road Maps (PRMs) [34, 35] connect the starting point to the goal point by adding

successive trajectory to a pre-computed route. In another approach called Rapidly-

exploring Random Trees (RRTs) [36, 37], extends a tree of trajectory segments from

the start point to the goal point. The every successive trajectory in the tree is selected

randomly by connecting to a closest point in the existing tree. The potential field al-

gorithm [38] solves the path planning by generating an attractive field towards the

goal point and repulsive field at the obstacles. These approaches are randomized

path planning approaches mainly involved search algorithms. They result in a route

planning. But the route cannot always be flyable.

In another approach [39, 40], a Dijkstra- like method is suggested for solving a

continuous-space shortest path problem in 2D plane by optimization. An analytical

and discrete optimization approaches is used for optimal risk path generation in two-

dimensional space with constant Radar Cross Section, arbitrary number of sensors

and a constraint on path length [8]. Probabilistic method is applied to path planning

considering positional uncertainty of threat regions [41]. The final path is refined

with circular arcs at the points of line joining. Use of Mixed Integer Linear Program-

ming (MILP) for path planning applications can be found in [42, 43, 44, 45]. MILP is

an application of the operational research method, called Linear Programming with

integer or binary constraints. These constraints are used for logical decisions such

3



1. INTRODUCTION

as turn left, move up. This method produces safe route for UAVs. But, the route

has to be smoothed further to make it flyable. Also, the optimization methods are

associated with high computational time. Accomplishing the mission objectives with

physical and functional limitations of UAVs further increase the complexity of solu-

tion to path planning problem [46, 47]. An overview of coordinated control of UAVs

and their complexities can be found in [48].

Another widespread approach is the use of Voronoi diagram. Voronoi diagram is

used to produce polygonal paths connecting start and goal locations for each UAV by

minimizing radar detection. Latter the path is refined by adding fillets of minimum

turning radius. The simultaneous arrival is coordinated by a high level manager

based on the sensitivity function (cost vs time of arrival) sent by each UAV [49]. Sim-

ilar approach is adopted in [50] where an analogy of a chain connected by sequences

of spring-mass-damper system to the UAV path is used. The ends of the chain are

located at the initial and final configurations. The threats induce a repulsive force

which cause the masses in the chain to move away from the threats. However, this

method involves complexity in solving ODEs with curvature constraints. Also, ac-

cumulation of only a few masses around the threat location will lead to coarse path

resolution which is undesirable. The above approach is extended by replacing the

spring-damper system with rigid links between masses to eliminate sharp corners

[51]. However, this method does not guarantee that the resultant path is flyable by

an UAV. Later in [52], the Voronoi path is interpolated with a series of cubic splines

assigning a cost to each obstacle/threat position.

The Voronoi diagram produces route for each UAV and the routes are refined to make

them flyable. Also, in the optimization approaches, the final outcome is a route plan-

ning, satisfying certain constraints. If the route is refined by adding fillets, the result-

ing path is a series of lines and arcs, which is a subset of Dubins path [17]. The op-

timization methods, randomized search approaches, and Voronoi diagram approach

use an exhaustive search and computational methods which result in route planning.

The route planning does not consider the kinematic constraints of the path. Also, re-

active behavior of the UAV needs a flyable path at any point of its flight. In such

situation the route planning would be a handicap. For this reason it appeared rea-

sonable to attempt to use the curves directly in path planning. In this manner, planar

and spatial Dubins path [22, 53], Pythagorean Hodograph [54, 55] and 2D clothoid

[56] are used to solve the problem of simultaneous arrival on target. In contrast to

other approaches, this approach divides the path planning into two phases: (i) pro-

ducing flyable paths and (ii) producing safe, flyable (feasible) paths. In the first phase

a flyable path is produced which satisfies the kinematic and dynamic constraints of
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the UAVs. The flyable path connects the way-points, thus produces sequence of fly-

able paths. This path is also useful in reactive path planning, where the UAV needs

to take an evasive maneuver during conflicts. In the second phase, the flyable paths

are tuned to achieve the mission.

1.2 Coordinated Guidance

While employing a group of UAVs for a mission, it is important for UAVs to coop-

erate among themselves and obey the constraints of environment. The coordination

or cooperation is established either by a preplanned course of actions or set by com-

munication and feedback. In this context, path planning for a swarm of UAVs can

be considered as a part of coordinated guidance and control. Figure (1.1) shows a

schematic sketch of various levels in hierarchial character of coordinated closed-loop

guidance and control of multiple UAVs. The mission objective and task allocation of

a group of UAVs are decided in layer 1, which is high-level planning. In practice, the

mission or tasks are defined by a human operator, interacting with the co-operative

controller in layer 2. The decision making in the layer 1 results in generation of co-

operative trajectories in layer 2. The layer 2 produces coordinated trajectories for

a swarm of UAVs, under which a reference trajectories are produced for each UAV.

This is called cooperative path plan. Each ith reference trajectory (guidance demand)

generated in Layer 2 is followed by the individual controller of the ith UAV in Layer 3.

Thus, the overall controller is obtained by co-operation decided on level 1, and defined

by the trajectory tracking requirements in level 2. Here we are interested in Layer 2,

where the path planner produces feasible paths/trajectories for the UAVs.

1.2.1 Coordinated Path Planning of Multiple UAVs

A path-planner connects points of interests by a path for an autonomous vehicle. In

general, an autonomous vehicle can either be on land, in water, in air or in space.

In this work, only Unmanned Aerial Vehicles are considered. Generally, the points

of interests are predefined or can be generated by sensor feedback or obtained from

a Voronoi diagram. So, the input to the path planner is a set of points or poses. A

pose or configuration is a set of position and orientation variables. The outcome of

the path planner is a path connecting the input data. Therefore, it is worthwhile to

consider the path planner as a black-box with set of points as input and with path

as an output. Figure (1.2) illustrates the black diagram approach to path planning.

For every set of inputs (a set of way-points/poses), it produces a feasible path con-
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Figure 1.1: Hierarchical character of co-operative controller of multiple UAVs

sidering the uncertainties, constraints and feedback. As the properties of the path

influence the motion of the vehicle, it is necessary to discuss the characteristics of

the path. Any autonomous vehicle needs a path to move from one location to an-

other. Once the path is produced, it is necessary to ensure the path is safe to fly and

also it guarantees the UAVs accomplish their mission. Basically, a plan is needed

to achieve the mission safely. Here a question arises: How and When to plan. One

way is to integrate the path generation with the planning. This approach is similar

to the route planning by optimization methods discussed in section (1.1). But, this

approach needs further refinement to produce flyable paths and also this method is

computationally intensive. Another possibility is to separate the two processes: path

generation and planning. Now two possibilities arise: when to plan - either before

or after the path generation. This question is answered in section 1.4. This section

defines the path planning. In general, path planning algorithm produces a feasible

path for a UAV to fly from one location to another. The initial and final locations are

characterized with poses, also called configurations. A pose is a set of position and

orientation variable. For example P (x, y, z, θ, φ) is a pose P , where (x, y, z) is position

coordinate, and (θ, φ) is orientation (The position coordinates are assumed to lie at

the centre of a sphere of minimum turning radius. The direction of the tangent vec-

tor is specified in spherical coordinates, which reduce the number of input variables
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Path planner

Set of waypoints Feasible path

Uncertainties &
Sensors’ feedback

Constraints

Figure 1.2: A block diagram approach to path planing

Figure 1.3: UAVs have to fly from one location to another either independently or
in coordination with one another. The starting and finishing locations,
respectively, are called as base and target. However, the locations can be
any two way-points
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to the path planner). The operating environment of the UAVs may be clutter-free

(figure 1.3) or cluttered (figure 5.1). The path planning produces one or more feasible

path(s) connecting two or more poses/configurations. The feasible path is (i) flyable,

that is it meets the kinematic constraints and (ii) safe to fly, that is it guarantees the

safety of the UAVs while achieving the mission.

Mathematically, a path can be characterized by a curve. Therefore it can be argued

that geometrically, the path planning can be considered as geometric evolution of

curve. The path planning connects an initial pose Ps(xs, ys, zs, φs, θs), to a final pose

Pf (xf , yf , zf , φf , θf ) by a feasible path r(t), which satisfies maximum curvatures bound

κmax, maximum torsion bound τmax, and constraint
∐

. The values of κmax and τmax

define the kinematic limits of the UAV in space. Also, these are the only two parame-

ters which determine a curve in space. In two dimensions, only curvature determines

the curve [[57], [58]]. A curve satisfying the curvature constraints imposed by the dy-

namics of the UAV is called flyable path. The importance of curvatures is discussed

in appendix A. A feasible path is both flyable (meets kinematic and dynamic con-

straints) and safe to fly (no collisions). The safety constraints is represented by
∐

.

The safety constraints are discussed in chapter 4.

Ps(xs, ys, φs, θs)
r(t)−→ Pf (xf , yf , zf , φf , θf ),

|κ(t)| < κmax, |τ(t)| < τmax, and
∐ (1.2.1)

where t is a parameter.

Extending the above equation (3.0.1) for a group of N UAVs

Psi(xsi, ysi, zsi, φsi, θsi)
ri(t)−→ Pfi(xfi, yfi, zfi, φfi, θfi),

|κi(t)| < κi,max, |τi(t)| < τi,max, and
∐ (1.2.2)

where the suffix i represents the ith UAV, i = 1 . . . N .

The path ri(t) in equations (1.2.1, and 1.2.2) is either a single polynomial curve or

a composite curve and its properties change with t. Such a path is useful in pre-

dicting the future position and attitude of the UAVs. Also, it helps the path planner

to consider the kinematic limits at the early phase of the path planning. Besides,

the dynamics can be estimated by coupling the kinematic parameters with inertial

properties of the UAVs.
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1.3 Problem Statement

Consider N UAVs deployed for simultaneous arrival on target. All the UAVs leave the

base at time tbase and have to reach the target at the time ttarget, where tbase < ttarget.

The base and target can be connected through a set of way-points. The problem

is simplified by taking the base and the target as two successive way-points. The

poses of each UAV at the base and the target are predefined. Figure (1.4) shows the

schematic of the mission. The UAVs are assumed to have equal kinematic and dy-

namic capabilities and flying at equal speed in a free space. Each UAV is assumed to

lie at the centre of two concentric spheres. The inner sphere is called safety sphere

with radius Rs, while the outer one is called com-sphere of radius Rr, which repre-

sents the sensor range such that Rr À Rs > (1/κmax). For any two paths, if the in-

tersection of safety-spheres is empty, the paths are safe to fly. Otherwise, the path(s)

has to be replanned or adjusted to avoid inter-collision of UAVs. However, this safety

criterion can be extended to obstacle or threat avoidance. Let the configurations of ith

UAV at the base and target respectively be

Pi(xsi, ysi, zsi, φsi, θsi) and Pf (xfi, yfi, zfi, φfi, θfi). With the k number of constraints,

the problem is formulated as:

Psi(xsi, ysi, zsi, φsi, θsi)
ri(t)−→ Pfi(xfi, yfi, zfi, φfi, θfi),

|κi(t)| < κi,max, |τi(t)| < τi,max and
∐

k

(1.3.1)

1.4 Solution Approach

The simultaneous arrival can be achieved by producing paths equal in length for con-

stant speed UAVs or the paths of unequal lengths for variable speed UAVs. With

the constant speed UAVs, the simultaneous arrival is achieved with constant speed

profile, while the variable speed UAVs use variable speed profile. In this thesis, only

constant speed UAVs are considered. As all the UAVs are flying at same constant

speed, producing paths of equal length ensures the simultaneous arrival. Accord-

ingly, the equation (1.3.1) changes into:

Psi(xsi, ysi, zsi, φsi, θsi)
ri(t)−→ Pfi(xfi, yfi, zfi, φfi, θfi),

|κi(t)| < κi,max, |τi(t)| < τi,max, si(t) = sj(t) and
∐

k

(1.4.1)

where si(t) and sj(t) are the path lengths of ith for jth UAVs, and i, j = 1 . . . N .
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Base

Target

Intermediate
Base/ Waypoints

Figure 1.4: Schematic figure showing Problem formulation. Each UAV is assumed to
be surrounded by two concentric circles: inner one is called safety-circle
and the outer is called com-circle. The path planning can be between any
two way-points
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The path-length s(t) of the path r(t) = {x(t), y(t), z(t)} is:

s(t) =
∫ t2

t1

√
ẋ(t)2 + ẏ(t)2 + ż(t)2dt, t ∈ [t1, t2] (1.4.2)

where ẋ(t) = dx
dt , ż(t) = dz

dt and ẏ(t) = dy
dt are hodographs.

The equation (1.4.1) can be solved by optimization techniques. But it will be compu-

tationally intensive. And also the resultant path need not be an optimal one. Consid-

ering these difficulties, the solution is divided into two phases: (i) Producing flyable

paths and (ii) Producing safe flyable (feasible) paths of same lengths. A flyable path

meets the kinematic constraints of the UAV. A safe flyable path is a flyable path

that guarantees the safety of the UAV. In the first phase, a flyable path is produced,

which is a polynomial curve may single or composite. In the second phase, the flyable

paths are tuned to produce feasible paths of equal lengths. In short, the solution

involves first the generation of flyable paths and is followed by planning of flyable

paths. Therefore it is convenient to write:

PATH + PLANNING −→ PATH PLANNING

First, the flyable path is produced for each UAV. Three types of paths are studied

here: (i) Dubins path, (ii) Pythagorean Hodograph (PH) path and (iii) clothoid path.

The Dubins and Clothid are produced as composite paths, while the PH is a single

path.

Psi(xsi, ysi, zsi, φsi, θsi)
ri(t)−→ Pfi(xfi, yfi, zfi, φfi, θfi),

|κi(t)| < κi,max |τi(t)| < τi,max

(1.4.3)

In the second phase of the path planning, the flyable paths are tuned to meet the

safety conditions by satisfying the equation (1.3.1). Finally, the safe paths are made

equal in length by satisfying equation (1.4.1) for simultaneous arrival on target.

1.5 Thesis contributions

☞ This thesis focusses on path planning of multiple UAVs for simultaneous arrival

on target (mission). The solution to path planning divided into two phases.

In the first phase, the paths are produced to meet the curvature constraints,

called flyable paths. In the second phase, the flyable paths are tuned to meet

the mission. In contrast to the existing approaches, this approach uses the

flyable path directly into the path planning. This is advantageous in producing

the flyable path between any two way-points or poses obtained by feedback or

11
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commanded by the mission planner. Also, it needs a set of points as an input to

produce the paths. Hence it is not computationally intensive.

☞ The flyable paths are produced using Dubins, clothoid - composite curves and

Pythagorean Hodograph - single curve. The Dubins path is generated using the

principles of Euclidean and Differential geometries. It is shown that the results

obtained by both methods are equivalent. However, the differential geometry is

advantageous in generalizing the paths as it has only maximum of two param-

eters to define the path: curvature and torsion in 3D and only curvature in 2D.

The PH path is produced by curvature optimization which is done by increasing

the length of the boundary tangent vectors.

☞ Also, the flyable paths are generated in three dimensions. The principles used

in producing 2D Dubins path by differential geometry are extended into three

dimensional Dubins path. The 3D path is obtained by an initial rotation and is

followed by 2D Dubins path in a common intersecting plane connecting the ini-

tial and final poses. The spatial PH path is developed for curvature continuity.

The multiple constraints are met by increasing the boundary tangent vectors.

☞ Throughout the thesis, the fundamental principle - curvatures determine a path

and its properties is used. This principle is used to produce the flyable path and

also to tune the path to meet the various constraints.

☞ In a free space maneuver, two safety conditions are defined to avoid inter-

collision avoidance. Two approaches are defined for path planning in cluttered

space. The threat detection and avoidance involves the detection by intersec-

tion of path with threat regions and is avoided by replanning the path either by

increasing the curvature or by creating an intermediate way-point.

☞ The simultaneous arrival on target is solved by producing paths of equal lengths.

However, the proposed method can also be applied to variable speed UAVs. Be-

cause, this approach is based on paths connecting the any set of poses.

1.6 Disseminations, presentations from this thesis

1.6.1 Conference papers

1. M.Shanmugavel and A.Tsourdos and R.Żbikowski and B.A.White. Path Plan-

ning of Multiple UAVs Using Dubins Sets. AIAA Guidance, Navigation, and

Control Conference and Exhibit, San Francisco, California, Aug. 15− 18, 2005.
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2. Madhavan Shanmugavel, A.Tsourdos, R.Żbikowski, and B.A.White. Path plan-

ning of multiple UAVs in an environment of restricted regions, IMECE2005-

79682. Proceedings of IMECE2005, ASME International Mechanical Engineer-

ing Congress and Exposition November 5 − 11, 2005, Orlando, Florida, USA,

2005.

3. Madhavan Shanmugavel, A.Tsourdos, R.Żbikowski, B.A.White, C.A.Rabbath,

and N.Lechevin. A solution to simultaneous arrival of multiple UAVs using

Pythagorean Hodograph curves. American Control Conference, Minneapolis,

June 14− 16, 2006.

4. Madhavan Shanmugavel, Antonios Tsourdos, Rafał Żbikowski, and Brian.A.White.

3D Dubins Sets Based Coordinated Path Planning for Swarm of UAVs, AIAA-

2006-6211. AIAA Guidance, Navigation, and Control Conference and Exhibit,

Keystone, Colorado, August 21− 24, 2006.

5. Madhavan Shanmugavel, A.Tsourdos, R.Żbikowski, and B.A.White. Path plan-

ning of multiple UAVs with Clothoid curves. IFAC ACA 2007 (accepted).

6. Madhavan Shanmugavel, A.Tsourdos, R.Żbikowski, and B.A.White. 3D path

planning for multiple UAVs using Pythagorean Hodograph curves. AIAA GNC

2007 (accepted).

7. Antonios Tsourdos, Brian White, Rafał Żbikowski, Peter Silson, Suresh Jeyara-

man and Madhavan Shanmugavel A Formal Model Approach for the Analysis

and Validation of the Cooperative Path Planning of a UAV Team. IEE Seminar

on Autonomous Agents in Control. p. 67− 73, 2005 .

8. Nelson Gonçalves, Madhavan Shanmugavel, João Sequeira, Antonios Tsour-

dos, Brian White, and M.Isabel Ribeiro, Indoor active surveillance. 13th IEEE

International Conference on Methods and Models in Automation and Robotics.

Szczecin, Poland on 2730, August 2007 (accepted).

1.6.2 Journal paper

1. Madhavan Shanmugavel, A.Tsourdos, R.Żbikowski, B.A.White. Differential Ge-

ometric Path Planning of Multiple UAVs. ASME JDME 2007 (accepted).

1.7 Organization of the thesis

The thesis is divided into three major parts: (i) Producing flyable paths, (ii) Planning

to meet the mission objective and (iii) simulations, results and conclusions. It is

divided into eight chapters.
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Chapter 2 deals with producing flyable paths in two dimensions. Three types of

paths are considered. The chapter begins with the design of Dubins path, because,

this is the shortest path between two poses in 2D and also it is simple. The Du-

bins path is produced using the principles of Euclidean and Differential geometries.

Besides, the equivalence of results from both approaches, it is shown that the differ-

ential geometric principles are advantageous in generalization of the path. The lack

of curvature continuity of the Dubins path motivates the use of other paths. In this

respect, a single path - Pythagorean Hodograph and a composite path - clothoid and

line segment are considered. The circular arcs in 2D Dubins path are approximated

with clothoid segments to produce a smooth path. The last part is dealt with the

Pythagorean Hodograph (PH) curve known for its rational properties. A procedure is

established to derive a PH path of curvature continuity.

Chapter 3 discusses three dimensional path planning. It extends the principles used

in chapter 2. The Dubins path is produced in 3D using the principles of differential

geometry. The clothoid path is not discussed as the design is similar to that the

3D Dubins path. PH path is developed in 3D for the use in path planning. The

composite versions of Dubins path is generated by finding the common intersecting

plane between the initial and final poses with an initial rotation at the start pose.

The spatial PH path is developed with quaternion and the curvature and torsion are

met by increasing the tangent vectors at the initial and final poses.

Chapter 4 discusses the solution to the simultaneous arrival on target. The previ-

ous two chapters discuss how to produce flyable paths. This first part of this chapter

details the various constraints of path planning. The curvature constraint which

defines the kinematics of the UAV and the safety constraints for inter-collision avoid-

ance are discussed. The flyable paths are tested for safety conditions. A solution is

achieved by increasing the lengths to that of a reference path.

Chapter 5 describes algorithms for detecting and avoiding the threats or obstacles.

Detection precedes avoidance. The region of known threat is detected by testing

whether the path intersects the boundary of the threat region. This is simply imple-

mented by testing whether the path is inclusive of the region. In the case of unknown

threat region, it is necessary to locate the threat. This needs the relative distance of

the threat region with respect to the UAVs. However, the measurement is not nec-

essary unless UAVs has to conduct mapping. As the mission is the simultaneous

arrival on target, the UAVs have to detect and avoid the threat rather than mapping.

In this respect, the com-circle discussed in the chapter 1 is used to detect the threat

and the safety circle is used to test and avoid the threat region. The PH path uses its
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offset path in 2D and tubes in 3D to define the safety region (circular in shape). This

chapter describes the threat avoidance with an example of entry into the restrictive

regions.

Chapter 6 describes the simulation results in two dimensions. It is assumed that

the UAVs are flying at constant altitude. The simulation results of composite paths,

Dubins and Clothoid and the PH path are discussed in this chapter. The rings around

the PH paths are generated to visualize the use of offset paths defining safety.

Chapter 7 discusses the simulation results of the Dubins and PH paths. The clothoid

path is not discussed as it is similar to that of the Dubins path. The tube around the

paths are generated to visualize the use of canal surfaces defining safety.

Chapter 8 discusses the conclusions and future work. As every research does not

have an end, there is always a scope of further work.
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CHAPTER

2

Producing flyable paths -2D

FLyable paths satisfy maximum curvature bound of the UAVs. In this chapter

UAVs flying at constant altitude are considered. The constant altitude flight

have coplanar trajectory. Therefore, two dimensional paths can handle this

situation. A flyable path may be a single or a composite path. Three types of flyable

paths are studied. Firstly the Dubins path which is the shortest path is studied

and is followed by Dubins-like path but with Clothoid arcs. Finally, the Pythagorean

Hodograph which is a single path known for its rational properties. A simple case

of producing path between two poses is considered. This can be extended into any

number of way-points/poses. The pose in 2D composes the position coordinates (x, y),

and orientation θ. The general equation of producing flyable paths (equation 1.4.3)

reduces into:

Ps(xs, ys, θs)
r(t)−→ Pf (xf , yf , θf ), |κ(t)| < κmax (2.0.1)

2.1 Producing Flyable Paths - Dubins

Motion in a plane composes rectilinear and turning or angular motions. A straight

line provides the shortest distance for the rectilinear motion and the circular arc pro-

vides the shortest distance for an angular motion. Also, the arc provides the constant

turning radius, which satisfies the maximum curvature constraint. This is the basic

idea of Dubins path [17]. The Dubins path is the shortest path between two vectors

in a plane and the path meets the minimum bound on turning radius. The Dubins
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path provides the shortest path for forward moving vehicle. The Dubins path is a

composite path formed either by two circular arcs connected by a common tangent

or three consecutive tangential circular arcs, or a subset of either of these two. The

first path is CLC path and the second one is CCC path and the last one is either a

CL, LC or CC, where ’C’ stands for Circular segment and ’L’ stands for Line segment.

Combining these two curves, obviously forms the shortest path between two poses. In

this work, we focus on Dubins path of CLC type. Here, two approaches of producing

the Dubins path are studied. In the first approach, principles of Euclidean geometry

are used and in the second, principles of differential geometry are used. From this

point, Dubins path connotes the CLC path.

C L C

CCC

Figure 2.1: Dubins - CLC & CCC paths

2.1.1 Producing Dubins Path using principles of Euclidean Geome-
try

In Euclidean geometry, the Dubins path is produced by drawing common tangents

between two circular arcs. The common tangents connect the arcs externally and

internally (diagonally), respectively called external and internal tangents. Here the

Dubins path produced by an external tangent is explained. The case of internal tan-

gent is analogous. Following are the procedures to produce a Dubins path geometri-

cally. Refer figure (2.1.1). Consider the following input parameters.

i) Initial pose: Ps(xs, ys, θs)

ii) Final pose: Pf (xf , yf , θf )

iii) Initial turning radius: ρs(= 1
κs

) and

iv) Final turning radius: ρf (= 1
κf

)
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Figure 2.2: Dubins - Design of CLC path

1. Find the centres of turning circles Os(xcs, ycs) and Of (xcf , ycf ):

(xcs, ycs) = (xs ± ρs cos(θs ± π/2), ys ± ρs sin(θs ± π/2)) (2.1.1a)

(xcf , ycf ) = (xf ± ρf cos(θf ± π/2), yf ± ρf sin(θf ± π/2)) (2.1.1b)

where Os and Of are called primary circles represented by Cs and Cf respec-

tively.

2. Draw a secondary circle of radius |ρf − ρs| at Of for ρs ≤ ρf .

3. Connect the centres Os and Of forms a line c, called centre line, where |c| =√
(xcs − xcf )2 + (ycs − ycf )2.

4. Draw a perpendicular to c at Of , which intersects the secondary circle at T ′ and

the primary circle Cf at TEN , called tangent entry point.

5. Connect the points Os and T ′.

6. Draw a line from Os parallel to OfTEN which meets the Cs at TEX , called tan-

gent exit point.

7. Draw a line by connecting the points TEX and TEN which is parallel to the line

OsT
′.

8. Connect the points Ps and TEX by an arc of radius ρs and TEN and Pf by an arc

of radius ρf .

9. The composite path formed by the starting arc PsTEX , followed by the external

tangent line TEXTEN and the ending arc TENPf .

Calculations:
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From figure (2.1.1), the triangle 4OsOfT ′ is a right angled triangle with hypotenuse

OsOf and the other two sides are OfT ′ and OsT
′, where ||OsT

′|| = |ρf − ρs|.
The included angle between OsOf and OsT

′ is φe.

φe = arcsin

(
ρf − ρs

|c|

)
(2.1.2)

The slope of the line c is ψ.

ψ = arctan

(
ycf − ycs

xcf − xcs

)
(2.1.3)

The angles φex = ∠(XOsTEX and φen = ∠(XOfTEN are calculated from the table

(2.1.1).

Table 2.1: Calculation of tangent exit and entry points

Start-Turn Finish-Turn φe φex φen

Right Right arcsin
(ρf−ρs

c

)
φe + π

2 + ψ φe + π
2 + ψ

Left Left arcsin
(ρf−ρs

c

)
φe − π

2 + ψ φe − π
2 + ψ

The values of φex and φen, the tangent exit and entry points are calculated as:

TEX =
(
xcs + ρs cos(φex), ycs + ρs sin(φex)

)
(2.1.4a)

TEN =
(
xcf + ρf cos(φen), ycf + ρf sin(φen)

)
(2.1.4b)

All the angles are assumed positive in counterclockwise direction. The path is also

called RSR path owing to its Right turns at the ends. A similar procedure can be

adopted to LSL path by drawing the secondary circle of radius |ρs − ρf |, where ’L’

represents Left turn. The other two Dubins paths with internal tangents are RSL

and LSR. These paths can be produced with secondary circle of radius |ρs + ρf |.
It is worth pointing out that the calculation of the tangent exit and entry points TEX

and TEN is cental in producing the Dubins path.

For a given pose, there are two circles tangent to it. Referring to the figure (2.3), the

pose P have a right turn R on the arc C1 and a left turn L on the arc C2. If either θs

or θf is a free variable, a set of eight paths can be produced (figure 2.1.1). If both the

orientations are free variables, a set of sixteen paths can be produced. The shortest

path can be selected from the set of available paths.
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2. PRODUCING FLYABLE PATHS -2D

P

L

R

C
1

C
2

Figure 2.3: Tangent Circles. For a given pose, there are two possible turns: Left and
Right turn. Thus for a set of poses four possible turns are possible. This
forms a set of Dubins path or simply called Dubins set

Figure 2.4: Dubins paths with θf as a free variable. The path starts with either
clockwise or counter clockwise direction. But it finishes with eight possi-
ble turns, hence a set of eight paths is produced
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2.1 Producing Flyable Paths - Dubins

2.1.2 Existence of Dubins paths

Before calculating the path, it is important to know whether there exists a path be-

tween two poses. This saves the computational time. From the section (2.1.1) it is

apparent that the existence of the Dubins path between two poses is determined by

the existence of common tangents between the turning arcs. The common external

tangent determines the existence of RSR and LSL paths, while the existence of RSL

and LSR paths are determined by the common internal tangent.

The external tangent vanishes when the primary circles are inclusive of each other.

The internal tangent vanishes when the primary circles intersect with each other.

Both the conditions are determined by the central distance c and the turning radii

ρs and ρf . But the centres of the primary circles are fixed by the radii of the arcs.

Hence, the existence of the Dubins path for a pair of poses is simply a function of

their turning radii.

External tangent : (c + ρs) > ρf , ρf > ρs (2.1.5a)

Internal tangent : c > (ρs + ρf ), ρf > ρs (2.1.5b)

2.1.3 Length of the Dubins paths

The Dubins path is a composite path of two circular arcs and a straight line. Hence

the path length is the sum of the lengths of individual path segments. Since the

length of the common tangent connecting the arcs are decided by radii of the arcs,

the length is also the function of the turning radii. Hence, the length of the path can

be varied by changing the radii (curvatures). Also, any two paths can be made equal

in length by simply varying the curvature of the arcs.

LDubins = Larc,start + Ltangent + Larc,finish (2.1.6a)

LCLC = ρsαs + Lt + ρfαf (2.1.6b)

LDubins = f(ρs, ρf ) (2.1.6c)

where LDubins is length of the Dubins path, αs and αf are the included angles, αs =

φex, αf = φen and Lt = ||TEXTEN ||.

2.1.4 Producing Dubins Path using principles of Differential Geom-
etry

The basic idea of using the principles of differential geometry is that the path can

be determined by curvature in two dimensions and by curvature and torsion in three
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2. PRODUCING FLYABLE PATHS -2D

dimensions. Also, the path is coordinate independent. The turning and twisting of

the path is given by a moving trihedron called Frenet-Serret frame along the path.

The Frenet-Serret frame is formed by tangent, normal and binormal unit vectors

perpendicular to one another. Refer the appendix A for details.

For a two dimensional manoeuvre, the initial and final tangent vectors are coplanar,

hence the initial and final turning circles and the connecting tangent lie in the plane.

A 2D Dubins path is shown in figure (2.5). The sign of the initial and final manoeu-
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a
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f

Figure 2.5: Dubins Arc Geometry

vre can be determined by designating either a left or right turn. Viewed from each

position, a positive or negative rotation will define the sign of the curvature for each

manoeuvre. Also, from the figure, we have:

rs = es

(
0
±1
κs

)

es =
[

ts ns

]
(2.1.7)

where κs is the curvature of the initial manoeuvre and:

rf = ef


 0

±1
κf




ef =
[

tf nf

]
(2.1.8)

where κf is the curvature of the final manoeuvre. The initial and final manoeuvre

vectors ts and tf are related by:

tf = R(θ)ts (2.1.9)
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2.1 Producing Flyable Paths - Dubins

where R(θ) is the rotation matrix required to change the axis set from initial to final

axes, see also (2.1.19) below. Hence, we have:

cos(θ) = t′f ts (2.1.10)

The connecting vectors as, af and ac form an orthogonal set of vectors. In order to

determine the vectors, first define the connecting vector ac as:

tc = R(θs)ts (2.1.11)

where tc is the basis vector defining the connecting vector. If the position of the final

point pf relative to the start position ps is measured in start axes es, we have:

pf − ps = esp

p =

(
pt

pn

)
(2.1.12)

Hence, the vector sum for the position vector in start axes is given by:

p = rs − as + ac + af − rf

p− rs + rf = −as + ac + af (2.1.13)

The left hand side of this equation represents the vector connecting the centres of the

turn circles. Hence:

ctc = −as + ac + af (2.1.14)

where c is the length of the centre vector. The remaining connecting vectors as, af

and ac can be written in terms of the start basis vectors, as:

as = R(θs)′
(

0
±1
κs

)

af = R(θs)′


 0

±1
κf




ac = R(θs)′
(

a

0

)
(2.1.15)

The centre vector equation (3.3.9), now becomes:

ctc = −R(θs)′
(

0
±1
κs

)
+ R(θs)′

(
a

0

)
+ R(θs)′


 0

±1
κf




= R(θs)′


 a

±1
κf
− ±1

κs
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2. PRODUCING FLYABLE PATHS -2D

This is a rotation equation, hence the right hand vector must have the same magni-

tude as the left, to give: ∣∣∣∣∣∣
1
c


 a

±1
κf
− ±1

κs




∣∣∣∣∣∣
= 1 (2.1.16)

or:
(a

c

)2
+

1
c2

(±1
κf

− ±1
κs

)2

= 1

(a

c

)2
= 1− 1

c2

(±1
κf

− ±1
κs

)2

(2.1.17)

This can be used to test for a feasible solution, by:

1− 1
c2

(±1
κf

− ±1
κs

)2

> 0 (2.1.18)

In order to compute the rotation angle θs, the equation can be written in the form:

tc = R(θs)′




√
c2−

(
±1
κf
−±1

κs

)2

c
(±1

κf
−±1

κs
)

c




R(θs) =

(
cos(θs) − sin(θs)

sin(θs) cos(θs)

)
(2.1.19)

Solving for θs gives: (
cos(θs)

sin(θs)

)
= R(c, κs, κf )tc (2.1.20)

where:

R(c, κs, κf ) =
1
c




√
c2 −

(
±1
κf

− ±1
κs

)2
−

(
±1
κf

− ±1
κs

)

(
±1
κf

− ±1
κs

) √
c2 −

(
±1
κf

− ±1
κs

)2


 (2.1.21)

The final angle θf can then be determined using:

θ = θs + θf

θf = θ − θs (2.1.22)

The path length of the CLC path is calculated by summation of arc lengths and con-

necting tangent length.

L = Larc,start + Ltangent + Larc,finish

=
θs

κs
+ a +

θf

κf
(2.1.23)
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2.2 Paths of continuous curvature

The important point to note here is that the results obtained from both the ap-

proaches are equivalent. The equation of path length (2.1.23) is analogous to (2.1.6b),

and the condition for existence of the Dubins path (2.1.18) is analogous to (2.1.5a) and

(2.1.5b). However, as stated in the beginning of this section the method derived by

differential geometry is simple and easy to generalize, e.g. to polynomial curve such

as Pythagorean Hodograph curve.

2.2 Paths of continuous curvature

The Dubins path is simple to produce and easy to implement because it composes of

arcs and their tangents of low order polynomials. The line and arc are connected tan-

gentially. This holds good as long as there is no change in the direction of motion. A

change in direction induces lateral acceleration which acts in a direction perpendicu-

lar to that of the linear acceleration, acting along the tangent. This can not be directly

handled by the Dubins path unless the UAV reduced its speed while approaching the

arc from the line and vice-versa. Otherwise, a sudden change in acceleration will

occur, which is not desirable. However, the piecewise smooth motion of the Dubins

path may be used possibly for a rotorcraft, but not for a fixed wing UAV. Hence, it

is important for the UAVs to have paths which provide smooth motion. A smooth

motion has a continuous acceleration profile.

From the principles of physics, in time domain, the second derivative of a curve repre-

sents acceleration. Hence, a smooth motion in a plane requires at least non-vanishing

first and second derivatives. By the principles of differential geometry, a path in

plane is completely determined by its curvature. Also, it is proportional to the lateral

acceleration of a moving vehicle. Thus, a smooth acceleration profile can be gener-

ated from a path of continuous curvature without any sudden reversal or jump. The

curvature κ(t) of a curve, r(t) = (x(t), y(t)) with t as a parameter is

κ(t) =
ṙ × r̈

|ṙ|3 (2.2.1)

κ(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

(
√

ẋ2 + ẏ2)3
(2.2.2)

where ẋ = dx
dt , ẏ = dy

dt , ẍ = d2x
dt2

and ÿ = d2y
dt2

.

From the equation (A.2.1), the curvature is a function of first two derivatives of a

curve, so the path needs to be at least twice continuously differentiable, that is C2

continuity.

In the Dubins path, the arc has a constant curvature, thus provides C2 continuity and
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2. PRODUCING FLYABLE PATHS -2D

the line has zero continuity, thus provides C1 continuity.1 Hence the point joining the

arc and the line could not provide the curvature continuity. The curvature profile of

the Dubins path of CLC and CCC types are shown in figure (2.6). The CLC path has

a transition from a constant curvature to zero curvature and vice-versa, while the

CCC path has a jump from a positive to a negative curvature and vice-versa. Both

profiles cause an abrupt change in acceleration which is undesirable in practice. A

Curvature

Path length
(0,0)

CLC

Curvature

Path length
(0,0)

CCC

Figure 2.6: Curvature profiles of Dubins paths

path of curvature continuity can be produced either by a single curve of C2 continuity

or by a composite path formed by joining pieces of curves of curvature continuities. To

begin with, the arcs in the 2D Dubins path are replaced with the clothoid arcs, thus

producing a composite path is discussed in the following section (2.3). This follows

design of flyable path using Pythagorean Hodograph (PH) in the section (2.4).

1C2 represents continuity upto second derivative and C1 represents continuity upto first derivative
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2.3 Producing flyable path - Clothoid

2.3 Producing flyable path - Clothoid

A clothoid path has a property that its curvature varies linearly with the path length.

Its curvature profile is shown in figure (2.7). In this section a flyable path is produced

with the clothoid and the line segments. The clothoid path is generated with the

zero curvature at the point of joining with the line segment. Differential geometric

principles are used to produce the path. The principles employed in producing the

flyable composite clothoid path is same as that of the Dubins path in section (2.1.4).

The only difference is that the clothoid segment is produced by calculating Fresnel

integrals which is discussed below. The circular arcs are replaced with the clothoid

arcs. The curvature profile of the path is shown in figure (2.7). Note the curvature

varies from a maximum to zero for a clothoid path and remains zero for the straight

line segment and increases from zero to maximum for the final clothoid segment.

The linear variation of curvature with path length of the clothoid enable a smooth

transition to and from the line segment. For a clothoid arc, the arc angle varying

Curvature

Path length
(0,0)

Clothoid-Line-Clothoid

Figure 2.7: Curvature profile of a clothoid. Notice the difference with respect the
curvature profile of the Dubins path in figure (2.6). Dubins path has
a step variation in the curvature profile while the clothoid has a ramp
variation

along the trajectory is given by:

θ(t) =
∫ t

0
κ

τ

s
dτ

=
κ

2s
t2 (2.3.1)

where κ is the curvature at arc length s and t is the arc length variable, such that

s = |~v|t, where ~v| is the velocity. The position vector of the end point is given by the x
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2. PRODUCING FLYABLE PATHS -2D

and y positions. These are obtained by integration:

x(s) =
∫ s

0
cos(θ)dt

y(s) =
∫ s

0
sin(θ)dt (2.3.2)

The angle θt through which the trajectory moves over the total arc length s is θt = κ s
2 .

Hence:

x(s) =
∫ s

0
cos

( κ

2s
t2

)
dt

y(s) =
∫ s

0
sin

( κ

2s
t2

)
dt (2.3.3)

These integrals are scaled Fresnel Integrals and are given by:

C(s) =
∫ s

0
cos

( κ

2s
t2

)
dt

S(s) =
∫ s

0
sin

( κ

2s
t2

)
dt (2.3.4)

Hence:

x(s) = C(s)

y(s) = S(s) (2.3.5)

The integrals can be evaluated more easily by a change of variable, given by:

t̄ =
√

κ

2s
t

Hence:

dt =

√
2s

κ
dt̄ (2.3.6)

and the integrals can be rewritten in the form:

C(s) =

√
2s
κ

∫ s̄

0
cos((̄t)2)dt̄ (2.3.7a)

S(s) =

√
2s
κ

∫ s̄

0
sin((̄t)2)dt̄ (2.3.7b)

Reconstructing this from the radius vector vr and the connecting vector va, we have:

p = vr + va

= ρtr + αta (2.3.8)
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2.3 Producing flyable path - Clothoid

where ρ and α are the lengths of the two vectors. As both tr and ta are basis vectors,

they are of unit length. From figure (2.8), we have:

tr =

(
0

1

)

ta =

(
sin(θ)

− cos(θ)

)
(2.3.9)

Hence, we have:

p =

(
C(s)

S(s)

)

= ρ

(
0

1

)
+ α

(
sin(θ)

− cos(θ)

)
(2.3.10)

This gives:

α =
C(s)
sin(θ)

ρ =
(
S(s) +

1
tan(θ)

C(s)
)

(2.3.11)

for θ > 0.

Now:

θt =
κ

2
s (2.3.12)

Converting to angles using θt = κ
2s,

α =
C

(
2θt
κ

)

sin(θt)

ρ =
[
S

(
2θt

κ

)
+

1
tan(θt)

C
(

2θt

κ

)]
(2.3.13)

where

C(θt) =
2
κ

√
θt

∫ √
θt

0
cos((̄t)2)dt̄ (2.3.14a)

S(θt) =
2
κ

√
θt

∫ √
θt

0
sin((̄t)2)dt̄ (2.3.14b)

This implies that there is no closed form solution to the clothoid trajectory. In order

to compute a solution, the tangent and normal vectors have to be computed.

For a two dimensional manoeuvre, the initial and final tangent vectors are coplanar

and the straight line manoeuvre is not uniquely defined for this case and must be
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Figure 2.8: Path with clothoid Arc Geometry

calculated. The 2D Clothoid arc is shown in figure (2.8). The derivation is similar to

that of 2D Dubins path, but the circular arc is replaced with the clothoid arcs. How-

ever, the derivation is repeated here for convenience. The figure shows two circles of

radius ρ and τ . Also, from the figure, the sign of the manoeuvre can be determined

by considering the centre line between the two positions. Viewed from each position

a positive or negative rotation from the tangent vector to the centre vector will define

the sign of the curvature for each manoeuvre. Also, from the figure, we have:

ri = ei

(
0

±ρs

)

ei =
[

ti ni

]
(2.3.15)

where ρs is the radius of the initial manoeuvre.

Similarly:

rf = ef

(
0

±ρf

)

ef =
[

tf nf

]
(2.3.16)

where ρf is the radius of the final manoeuvre. The Frenet basis vectors are related

by:

ef = R(θ)es (2.3.17)
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2.3 Producing flyable path - Clothoid

where R(θ) is the rotation matrix required to change the axis set from start to finish

axes. Hence, we have:

R(θ) = ese
′
f (2.3.18)

The connecting vectors as, af and ac form an orthogonal set of vectors. In order to

determine the vectors, first define the connecting vector ac in both initial and final

axes, as:

ec = R(θs)es

ef = R(θf )ec (2.3.19)

where ec is the basis set defining the connecting vector. Hence, the total rotation

matrix R(θ) is given by:

R(θ) = R(θf )R(θs) (2.3.20)

If the position of the final point pf relative to the start position ps is measured in

start axes es, we have:

pf − ps = esp

p =

(
pt

pn

)
(2.3.21)

Hence, the vector sum for the position vector in start axes is given by:

p = ρs −αs + ac + αf − ρf

p− ρs + ρf = −αs + ac + αf (2.3.22)

The left hand side of this equation represents the vector connecting the centres of the

turn circles. Hence:

c = −αs + ac + αf (2.3.23)

The centre vector c can be written in start axes, to give:

c = ctc

= ect

(
c

0

)

ect =
[

tc nc

]
(2.3.24)

where ect is the basis vector set of the centre vector.
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The remaining connecting vectors αs, αf and ac can be written in terms of the start

basis vectors, as:

αs = R(θs)′
(

0

±ρs

)

αf = R(θs)′
(

0

±ρf

)

ac = R(θs)′
(

a

0

)
(2.3.25)

The centre vector equation (2.3.23), now becomes:

ctct = −R(θs)′
(

0

±ρs

)
+ R(θs)′

(
a

0

)
+ R(θs)′

(
0

±ρf

)

= R(θs)′
(

a

±ρf −±ρs

)
(2.3.26)

Normalizing the centre vector to unit magnitude, gives:

tct = R(θs)′
1
c

(
a

±ρf −±ρs

)
(2.3.27)

This is a rotation equation, that represents the rotation of a unit vector. Hence, the

right hand vector must have unit magnitude, to give:
∣∣∣∣∣
1
c

(
a

±ρf −±ρs

)∣∣∣∣∣ = 1 (2.3.28)

or:
(a

c

)2
+

1
c2

(±ρf −±ρs)
2 = 1

(a

c

)2
= 1− 1

c2
(±ρf −±ρs)

2 (2.3.29)

This can be used to test for a feasible solution, by:

1− 1
c2

(±ρf −±ρs)
2 > 0 (2.3.30)

In order to compute the rotation angle θs, the equation can be written in the form:

tct = R(θs)′
1
c

(
β

γ

)

R(θs) =

(
cos(θs) − sin(θs)

sin(θs) cos(θs)

)
(2.3.31)

32



2.3 Producing flyable path - Clothoid

where β =
√

c2 − (±ρf −±ρs)
2 and γ = (±ρf −±ρs.

Expanding this and solving for θs gives:

cos(θs)

√
c2 − (±ρf −±ρs)

2

c
+ sin(θs)

(±ρf −±ρs)
c

= tct1

− sin(θs)

√
c2 − (±ρf −±ρs)

2

c
+ cos(θs)

(±ρf −±ρs)
c

= tct2 (2.3.32)

or:

1
c




√
c2 − (±ρf −±ρs)

2 (±ρf −±ρs)

−(±ρf −±ρs)
√

c2 − (±ρf −±ρs)
2




(
cos(θs)

sin(θs)

)
= tct (2.3.33)

Solving for θs gives: (
cos(θs)

sin(θs)

)
=

1
c

(
β −γ

γ β

)
tct

Hence:

θs = tan−1(sin(θs), cos(θs)) (2.3.34)

The final angle θf can then be determined using:

θ = θs + θf

θf = θ − θf (2.3.35)

An alternate solution is:

R(θs)tct =
(

1
c

)(
β

γ

)
(2.3.36)

Expanding this gives:
(

cos(θs)

sin(θs)

)
=

1
∆

(
tct1 tct2

−tct2 tct1

)(
1
c

)(
β

γ

)

∆ = t2ct1 + t2ct2

= 1 (2.3.37)

The related Fresnel Integrals are given by:

C(s) =
∫ sf

0
cos(s2)ds (2.3.38a)

S(s) =
∫ sf

0
cos(s2)ds (2.3.38b)
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Series expansions are given by:

C(s) =
∞∑

n=0

(−1)n

(2n + 1)!(4n + 3)
s4n+3 (2.3.39a)

S(s) =
∞∑

n=0

(−1)n

(2n)!(4n + 1)
s4n+1 (2.3.39b)

2.4 Producing Flyable Path - Pythagorean Hodograph

Pythagorean Hodograph (PH) was first introduced by Farouki [59]. This is a poly-

nomial curve known for its rational properties. As the name implies, the PH path

has its hodograph satisfy pythagorean condition. The first derivative of a curve is its

hodograph. The Pythagorean condition is that the sum of the squares of the sides

of right angle triangle is equal to the square of its hypotenuse. In time domain, the

hodograph is called velocity vector which is always parallel to the tangent of the path.

However, the derivation of the PH path arose from the definition of path length. The

length of curve r(t) with parameter t is:

s(t) =
∫ t2

t1

||ṙ(t)||dt (2.4.1a)

=
∫ t2

t1

√
ẋ(t)2 + ẏ(t)2dt (2.4.1b)

where t ∈ [t1, t2] and ẋ(t) = dx
dt and ẏ(t) = dy

dt are hodographs.

The calculation of path length requires solution to the integral in equation (2.4.1).

The presence of square root term in the equation may not result in closed form solu-

tion. This requires numerical approximation which is less desirable in practice. To

rectify this problem a perfect solution to the path length is required. Here comes

the Pythagorean Hodograph. Note that the term inside the square root of equation

(2.4.1) is the sum of the square of the hodographs. If it is possible to represent the

term inside the square root as a perfect square, say σ(t)2, then the solution to the

path length will be an integral of a polynomial equation σ(t).

σ(t)2 = ẋ(t)2 + ẏ(t)2 (2.4.2)

s(t) =
∫ t2

t1

|σ(t)|dt (2.4.3)

This is equivalent to satisfying the Pythagorean law of right angle triangle taking

polynomials σ(t) as hypotenuse, ẋ(t) and ẏ(t) as two other sides. A polynomial curve

whose hodographs meet the condition (equation 2.4.2) is called Pythagorean Hodo-

graph. The PH path is designed by selecting the suitable polynomials u(t), v(t), and
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2.4 Producing Flyable Path - Pythagorean Hodograph

w(t) so that the hodographs ẋ(t) and ẏ(t) meet the condition (equation 2.4.2). Now,

the problem is reduced to finding the coefficients of the polynomials u(t), v(t), &w(t).

The advantage of this idea is not only elimination of radical form in the equation

(2.4.1), but also equal distribution of points on the path. In other words, there is an

equal increment of path length for an equal increment of the parameter t.

ẋ(t) = w(t)[u(t)2 − v(t)2] (2.4.4)

ẏ(t) = 2w(t)u(t)v(t) (2.4.5)

=⇒
√

ẋ(t)2 + ẏ(t)2 = w(t)[u(t)2 + v(t)2]

= |σ(t)|

where u(t) and v(t) are relatively prime polynomials, w(t) = 1, and σ(t) is a polyno-

mial of degree (n− 1).

The parametric speed ṡ and the curvature κ and the offset curve at a distance ±d of

the PH curve are:

ṡ(t) = |σ(t)| (2.4.6)

κ =
2(u(t)v̇(t)− u̇(t)v(t))
w(t)(u(t)2 + v(t)2)

(2.4.7)

rd(t) = r(t)± dN(t) (2.4.8)

where ṡ(t) = ds
dt and N(t) is unit normal to the curve r(t).

From above three equations, the parametric speed of the PH curve is simply a root-

finding problem of a polynomial. The curvature is in rational form. Also, the offset

curves of the PH curve can be represented exactly by rational parametric curves of

order (2n− 1). The offset curve can be used to define a safety region or sensor range

or uncertainty along the path. The offset curve self-intersects when the path is too

convex or too concave. However, the self-intersection can be eliminated by choosing

the value of offset distance less than the local radius of curvature [60]. Figure (2.9)

shows a comparative visualization of a smooth PH path and a Dubins path for same

maximum bound on curvature. It is evident from this figure that the curvature con-

tinuity of the PH path is achieved with the sacrifice on the path length. The length

of the PH path is greater than that of the Dubins path. However, the PH path pos-

sesses the rational offset which shown as the dotted circular tube around the path.

Though it has equal offset distance, at the point of higher curvature value it tends to

diminishes. This is evident from the middle portion of the path.
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2. PRODUCING FLYABLE PATHS -2D
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Figure 2.9: A visual comparison of Dubins path with PH path. The Dubins path
(-.) is the shortest path between the poses Pi and Pf . But it lacks the
curvature continuity. On the other hand the PH path (-) has continuity
but has more length for the same curvature bound. This is a tradeoff

2.4.1 Flyable path -PH

The minimum order of polynomial which exhibits the PH behavior is three, called

cubic PH. However, the lowest order of the PH path which has a point of inflexion

is five [59]. The presence of inflexion point allows the path to have more flexibility

so that the path can easily be manipulated. Hence, the quintic PH curve is used for

path planning. From now on, a PH path denotes a quintic PH curve. The initial and

final positions respectively are (xs, ys) and (xf , yf ) and corresponding orientations

(tangential directions) are θs and θf . These are boundary values.

The PH path is represented in Bézier form for numerical stability. The general equa-

tion for nth order polynomial in Bézier form is:

r(t) =
n∑

k=0

bk

(
n

k

)
tk(1− t)(n−k), t ∈ [0 1] (2.4.9)

where bk = (xk, yk) k = 1 . . . n are control points,
(
n
k

)
= n!

k!(n−k)! , and r(t)|(t=0) &

r(t)|t=1 respectively represent starting and ending points of the path.
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2.4 Producing Flyable Path - Pythagorean Hodograph

The rth derivative of nth order Bézier curve is:

drr(t)
dtr

) =
n!

(n− r)!

n−r∑

j=0

∆rbj

(
n− r

j

)
tj(1− t)(n−r−j) (2.4.10)

where ∆rbi =
∑r

j=0

(
r
j

)
(−1)r−jbi+j , ∆bj = bj+1 − bj and ∆0bj = bj

For a quintic path, n = 5. Hence the equation (2.4.9) becomes:

r(t) =
5∑

k=0

bk

(
5
k

)
tk(1− t)(5−k) (2.4.11)

r(t) = b0(1−t)5 +5b1t(1−t)4+10b2t
2(1−t)3 +10b3t

3(1−t)2 +5b4t
4(1−t)+b5t

5 (2.4.12)

From equation (2.4.10), the first derivative of the path r(t) is:

dr(t)
dt

= 5
4∑

j=0

(
4
j

)
∆1bjt

j(1− t)4−j (2.4.13)

dr(t)
dt

= 5(b1−b0)(1− t)4 +20(b2−b1)t(1− t)3 +30(b4−b3)t3(1− t)+5(b5−b4)t4 (2.4.14)

Now comes the interpolation. As the position and direction at initial and final loca-

tions are known, first order Hermite interpolation is used. Substituting the position

coordinates at t = 0 and at t = 1 in equation (2.4.10), and from the first derivative of

the path, the control points b0, b1, b5 & b4 are calculated as below:

b0 = (xs, ys) (2.4.15a)

b5 = (xf , yf ) (2.4.15b)

d0 = (cos(θs), sin(θs)) (2.4.15c)

d5 = (cos(θf ), sin(θf )) (2.4.15d)

b1 = b0 + (1/5) ∗ d0 (2.4.15e)

b4 = b5 − (1/5) ∗ d5 (2.4.15f)

Thus, the control points (b0, b1, b4, b5) in the equation (2.4.15) are fixed by the poses.

Now the problem is reduced to finding the control points b2 and b3 so that the equa-

tion (2.4.9) satisfies the PH condition (2.4.2). This results in four solutions [61]. A

minimum energy curve [62] which has smooth variation of curvature is used for path

planning. As an original development, the PH curve provides only the tangent con-

tinuity. Or in other words, the initial development of the curve is based on tangent

continuity at the end points. For a flyable path, the tangent continuity is not enough.

Hence to have curvature continuity, it needs further refinement. One approach found
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2. PRODUCING FLYABLE PATHS -2D

Figure 2.10: Evolution of a PH path from the tangent continuity into curvature con-
tinuity. The initial PH path has tangent continuity. The flyable path
has curvature continuity. The final path has more curvature than the
previous two showing the flexibility of the path

in [63] achieves the curvature continuity by increasing the length of the boundary

vectors. The length of the tangent vectors are increased by approximating the term
∂κ
∂ct

, where ct is the magnitude of the tangent vector. However, there is no closed form

solution. Here, the length of the tangent vectors are increased directly by modifying

the equations (2.4.15c) and (2.4.15d) into:

d0 = c0(cos(θs), sin(θs)) (2.4.16a)

d5 = c5(cos(θf ), sin(θf )) (2.4.16b)

where c0 ∈ [1,∞] and c5 ∈ [1,∞].

Increasing the values of c0 and c5 will increase the length of tangent vectors
−−−→|b0b1| and

−−−→|b5b4| and in turn b2 and b3 are changed to meet the PH condition. As there is no closed

form solution available, an iterative method is sought to arrive at the flyable PH path

with the path length close to that of the Dubins path. Thus the curvature constraint

is met and a flyable path is produced. The figure (2.10) shows the flexibility and

evolution of the PH path from curvature continuity from the tangent continuity. The

initial PH path does have only tangent continuity. The control points Pi1 and Pf1 are

shifted respectively to Pi2 and Pf2 by increasing the length of the boundary tangent

vectors
−−−→
PiPi1 and

−−−−→
PfPf1. This results in flyable path which meets the maximum cur-
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2.5 Summary

vature bound. Again shifting of the control points to Pi3 and Pf3 shows the flexibility

of the PH path.

2.5 Summary

This chapter describes how to produce paths for two-dimensional maneuver. Three

types of path are discussed. The Dubins path is derived both using the principles of

Euclidean and Differential geometries. Also, it is shown that the results obtained by

both the principles are equivalent. A path in 2D is determined only by its curvature

profile. It is shown that with principles of differential geometry, it will be easy to

generalize the path for applications such as path tracking and trajectory generation.

Later in the section (2.2), the importance of curvature continuity is explained. Also,

the limitation of the Dubins path due to the lack of curvature continuity is explained

with the curvature profile.

The latter part of the chapter deals with generation of continuous curvature paths.

A single path - Pythagorean Hodograph and a composite path - clothoid with line

segments are discussed. Fundamentals properties and the generation of the PH path

by first order hermite interpolation are described in section (2.4). The last section

(2.3) explains how to produce the composite path - clothoid with line segment. It is

important to note that the derivation of Clothoid-composite path is similar to that

of Dubins path. In fact, the clothoid path is formed by approximation of the Dubins

path.
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CHAPTER

3

Producing flyable path - 3D

THe real time operation of the UAVs occurs in a three dimensional space. There-

fore, it is important to have three dimensional trajectories for path planning.

In this chapter, UAVs flying in three dimensional space are considered. The

condition of constant altitude flight is relaxed such that the initial and final poses do

not lie in a plane. Two paths are studied for 3D maneuvers: (i) Dubins and (ii) PH.

The flyable paths need to meet the curvature and torsion constraints. A similar

concept employed in designing 2D Dubins trajectories in the previous chapter are

extended for 3D maneuver. However, the solution involves finding a common inter-

secting plane for a smooth motion. The spatial PH path is obtained by first order

Hermite interpolation. The resulting path is made flyable increasing the lengths of

boundary tangent vectors. A three dimensional flyable path is produced by solving

the equation (3.0.1). It is repeated here for the convenience.

Ps(xs, ys, φs, θs)
r(t)−→ Pf (xf , yf , zf , φf , θf ), |κ(t)| < κmax, |τ(t)| < τmax (3.0.1)

where κ(t) is the curvature and τ(t) is the torsion.

One of the classical paths used for aircraft maneuver is circular helix, whose projec-

tion on X − Y plane is a circle. The path can be visualized as wound on the surface

of a cylinder, stand vertically in X − Y plane. An important property of this curve is

that the ratio of its curvature to torsion is constant. Comparing with the Dubins and

PH path, the path length of the helix will be more for any two poses owing to spiral in

nature. In contrast, a 3D Dubins path is produced with an initial maneuver followed

by a 2D Dubins maneuver in the common intersecting plane between the two poses.
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3.1 Dubins Path-3D

The PH path is produced by interpolation. Both the paths would have path length

less that of a helix for the same poses.

3.1 Dubins Path-3D

The design and derivation of Dubins path in 2D is shown in section (2.1) The Dubins

path has two circular maneuvers and a straight line maneuver, where all three ma-

neuvers are in the same plane. Hence it is easy to find a common tangent between

the initial and final poses. The same approach can be extended only into a part of

the solution to a three dimensional space maneuver, because a general maneuver in

3D cannot be confined into a single plane. For the 2D manoeuver, the tangent and

normal vectors of the start and finish configurations are co-planar. But for a 3D ma-

noeuver, the tangent and normal vectors may not lie in the same plane. Hence the

path generation in 3D space is not simple as the case with 2D. Hence, the Frenet-

Serret frame of unit tangent, unit normal and unit binormal vectors (see appendix A)

are used to define the path.

3.2 Extension of 2D Dubins to 3D manoeuver

The theory behind the construction of a Dubins arc consisting of a circular arc at

either end of a straight line arc, that connects two points in space with prescribed

pose follows. In order to perform such a manoeuvre, two planes have to be defined.

The first is the start manoeuvre plane, which contains the tangent vector ts and the

normal vector ns. These are completed by defining a right handed set to give the

binormal vector bs. This triple is
[

ts ns bs

]
. The second manoeuvre plane is the

finish manoeuvre plane defined by the triple
[

tf nf bf

]
. Both of these frames

are known as Frenet frames from the principles of differential geometry.

The manoeuvre from the start position and pose to the finish position and pose will

consist of an initial circular manoeuvre in the start manoeuvre plane, followed by

a straight manoeuvre along the line that is the intersection of the two manoeuvre

planes and a final circular manoeuvre in the finish manoeuvre plane. This follows as

the straight line manoeuvre must be a tangent to both the initial and final circular

manoeuvre, and hence the straight manoeuvre must lie in both manoeuvre planes.

The only common line between the planes is the intersection line. Figure (3.1) shows

the 3D Dubins path. The initial configuration is Pi and the final configuration is Pf .

The UAV flies from Pi to Pf . First, it makes an initial maneuver at Ps. It is fol-
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3. PRODUCING FLYABLE PATH - 3D

lowed by a 2D Dubins maneuver in a plane formed by the final tangent vector with

the initial position. The calculation starts with finding a coplanar connecting the fi-

nal tangent vector and initial position, which is used for 2D Dubins maneuver and

is followed by an initial rotational maneuver at starting pose to connect the first 2D

maneuver. To define the Dubins manoeuvre, the start manoeuvre circle with defined

curvature τs, and the finish manoeuvre circle with defined curvature τf , must be con-

nected by the straight line manoeuvre. The geometry that defines such a manoeuvre

is given in the previous chapter 2. However, this is repeated in the next section for

convenience.

3.3 Dubins arc for the 2D coplanar manoeuvre

For a two dimensional manoeuvre, the initial and final tangent vectors are coplanar

and the straight line manoeuvre is not uniquely defined for this case and must be

calculated. The 2D Dubins arc is shown in (3.2). The sign of the manoeuvre can be

determined by considering the centre line between the two positions. Viewed from

each position a positive or negative rotation from the tangent vector to the centre

vector will define the sign of the curvature for each manoeuvre. Also, from the figure

(3.2), we have:

ri = ei

(
0
±1
τs

)

ei =
[

ti ni

]
(3.3.1)

where, τi is the curvature of the initial manoeuvre.

Similarly:

rf = ef


 0

±1
τf




ef =
[

tf nf

]
(3.3.2)

where τf is the curvature of the final manoeuvre.

The Frenet basis vectors are related by:

ef = R(θ)es (3.3.3)

where R(θ) is the rotation matrix required to change the axis set from start to finish

axes.
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3.3 Dubins arc for the 2D coplanar manoeuvre
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Figure 3.1: 3D Dubins Manoeuver of UAV
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Hence, we have:

R(θ) = ese
′
f (3.3.4)

The connecting vectors as, af and ac form an orthogonal set of vectors. In order to

determine the vectors, first define the connecting vector ac in both initial and final

axes, as:

ec = R(θs)es

ef = R(θf )ec (3.3.5)

where ec is the basis set defining the connecting vector.

Hence, the total rotation matrix R(θ) is given by:

R(θ) = R(θf )R(θs) (3.3.6)

If the position of the end point pf relative to the initial position ps is measured in

start axes es, we have:

pf − ps = esp

p =

(
pt

pn

)
(3.3.7)

Hence, the vector sum for the position vector in start axes is given by:

p = rs − as + ac + af − rf

p− rs + rf = −as + ac + af (3.3.8)
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3.3 Dubins arc for the 2D coplanar manoeuvre

The left hand side of this equation represents the vector connecting the centres of the

turn circles. Hence:

c = −as + ac + af (3.3.9)

The centre vector c can be written in start axes, to give:

c = ctc

= ect

(
c

0

)

ect =
[

tc nc

]
(3.3.10)

where etc is the basis vector set of the centre vector.

The remaining connecting vectors as, af and ac can be written in terms of the start

basis vectors, as:

as = R(θs)′
(

0
±1
τs

)

af = R(θs)′


 0

±1
τf




ac = R(θs)′
(

a

0

)
(3.3.11)

The centre vector equation (3.3.9), now becomes:

ctct = −R(θs)′
(

0
±1
τs

)
+ R(θs)′

(
a

0

)
+ R(θs)′


 0

±1
τf




= R(θs)′


 a

±1
τf
− ±1

τs


 (3.3.12)

Normalizing the centre vector to unit magnitude, gives:

tct = R(θs)′
1
c


 a

±1
τf
− ±1

τs


 (3.3.13)

This is a rotation equation, that represents the rotation of a unit vector. Hence, the

right hand vector must have unit magnitude, to give:
∣∣∣∣∣∣
1
c


 a

±1
τf
− ±1

τs




∣∣∣∣∣∣
= 1 (3.3.14)
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3. PRODUCING FLYABLE PATH - 3D

or:
(a

c

)2
+

1
c2

(±1
τf

− ±1
τs

)2

= 1

(a

c

)2
= 1− 1

c2

(±1
τf

− ±1
τs

)2

(3.3.15)

This can be used to test for a feasible solution, by:

1− 1
c2

(±1
τf

− ±1
τs

)2

> 0 (3.3.16)

In order to compute the rotation angle θs, the equation can be written in the form:

tct = R(θs)′




√
c2−

(
±1
τf
−±1

τs

)2

c
(±1

τf
−±1

τs
)

c




R(θs) =

(
cos(θs) − sin(θs)

sin(θs) cos(θs)

)
(3.3.17)

Expanding this gives:

cos(θs)

√
c2 −

(
±1
τf
− ±1

τs

)2

c
+ sin(θs)

(±1
τf
− ±1

τs
)

c
= tct1

− sin(θs)

√
c2 −

(
±1
τf
− ±1

τs

)2

c
+ cos(θs)

(±1
τf
− ±1

τs
)

c
= tct2 (3.3.18)

or:

1
c




√
c2 −

(
±1
τf
− ±1

τs

)2
(±1

τf
− ±1

τs
)

−(±1
τf
− ±1

τs
)

√
c2 −

(
±1
τf
− ±1

τs

)2




(
cos(θs)

sin(θs)

)
= tct (3.3.19)

Solving for θs gives:

(
cos(θs)

sin(θs)

)
=

1
c




√
c2 −

(
±1
τf
− ±1

τs

)2
−(±1

τf
− ±1

τs
)

(±1
τf
− ±1

τs
)

√
c2 −

(
±1
τf
− ±1

τs

)2


 tct (3.3.20)

Hence:

θs = tan−1(sin(θs), cos(θs)) (3.3.21)

The final angle θf can then be determined using:

θ = θs + θf

θf = θ − θf (3.3.22)
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3.4 Composite Dubins arc for the 3D manoeuvre

An alternate solution is:

R(θs)tct =




√
c2−

(
±1
τf
−±1

τs

)2

c
(±1

τf
−±1

τs
)

c


 (3.3.23)

Expanding this gives:

(
cos(θs)

sin(θs)

)
=

1
∆

(
tct1 tct2

−tct2 tct1

)



√
c2−

(
±1
τf
−±1

τs

)2

c
(±1

τf
−±1

τs
)

c




∆ = t2ct1 + t2ct2

= 1 (3.3.24)

3.4 Composite Dubins arc for the 3D manoeuvre

In order to produce a navigation solution for 3D an additional manoeuvre is required.

This manoeuvre will take the UAV into a manoeuvre plane defined by the target

tangent vector and the sightline vector. This is shown in figure (3.1).

For the three dimensional plane manoeuvre, the start and finish manoeuvre plane

are not coincident, which implies that the start and finish binormal vectors are not

parallel. Hence the intersection of the start and finish manoeuvre planes is a line,

Hence the straight line manoeuvre is uniquely defined for this case. It is a function

of the position of the manoeuvre planes, which are not known. The sign of the ma-

noeuvre can be determined by considering the centre line between the two positions.

Viewed from each position a positive or negative rotation from the tangent vector to

the centre vector will define the sign of the curvature for each manoeuvre. The start

manoeuvre and the finish manoeuvre plane is obtained by rotation about the tangent

vector t. So, we have:

[
tms nms bms

]
=

[
ts ns bs

]
Rs

[
tmf nmf bmf

]
=

[
tf nf bf

]
Rf (3.4.1)
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3. PRODUCING FLYABLE PATH - 3D

where:

Rs =




1 0 0

0 cos(θs) − sin(θs)

0 sin(θs) cos(θs)




Rf =




1 0 0

0 cos(θf ) − sin(θf )

0 sin(θf ) cos(θf )




(3.4.2)

and where θs and θf are the rotation angles for the start and finish manoeuvre planes.

The radius vectors can then be defined in the manoeuvre planes as:

rs =
[

tms nms bms

]



0
±1
τs

0


 (3.4.3)

and, similarly:

rf =
[

tmf nmf bmf

]

 0

±1
τf


 (3.4.4)

The Frenet basis vectors are related by:

[
tf nf bf

]
=

[
ts ns ts

]
R (3.4.5)

where R is the rotation matrix required to change the axis set from start to finish

axes.

Hence, we have:

R =
(

tf nf bf

)
·
(

ts ns bs

)
(3.4.6)

giving

R =




tf · ts tf · ns tf · bs

nf · ts nf · ns nf · bs

bf · ts bf · ns bf · bs


 (3.4.7)

The connecting vectors as, af and ac form an orthogonal set of vectors. The connect-

ing vectors as and af are normal to the vector ac, but are not parallel. Each vector

lies in the appropriate manoeuvre plane, which are not coincident. The internal con-

necting vector ac is common to both manoeuvre planes. It can be thus written in the
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3.4 Composite Dubins arc for the 3D manoeuvre

form:

ac = a
[

tms nms bms

]
αs

= a
[

tmf nmf bmf

]
αf

αs =




αts

αns

αbs




αf =




αtf

αnf

αbf


 (3.4.8)

The Frenet frame for both manoeuvre planes can be related by
[

tf nf bf

]
=

[
ts ns bs

]
R

[
tmf nmf bmf

]
=

[
tf nf bf

]
Rf

[
tms nms bms

]
=

[
ts ns bs

]
Rs (3.4.9)

Hence:
[

tms nms bms

]
R′

s =
[

ts ns bs

]

[
tmf nmf bmf

]
R′

f =
[

tf nf bf

]

=
[

ts ns bs

]
R

=
[

tms nms bms

]
R′

sR (3.4.10)

and so: [
tmf nmf bmf

]
=

[
tms nms bms

]
R′

sRRf (3.4.11)

This implies:

αs = R′
sRRfαf

αf = R′
fRRsαs (3.4.12)

The radius vectors rs and rf can also be described in start manoeuvre axes, to give:

rs =
[

tms nms bms

]



0
±1
τs

0




rf =
[

tms nms bms

]
R′

sRRf




0
±1
τf

0


 (3.4.13)
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Now, the vectors as and af lie in the manoeuvre planes and are normal to the con-

necting vector ac. These can also be defined in start manoeuvre axes, in the form:

as =
±1
τs

[
tms nms bms

]
βs

af =
±1
τf

[
tmf nmf bmf

]
βf

=
±1
τf

[
tms nms bms

]
R′

sRRfβf (3.4.14)

where, to ensure that the connection vectors lie in the manoeuvre plane, and are

normal to the internal connection vector ac, we have:

βs =
1
bs



−αns

αts

0




βf =
1
bf



−αnf

αtf

0




bs =
√

α2
ns + α2

ts

bf =
√

α2
nf + α2

tf

βsαs = 0

βfαf = 0 (3.4.15)

The position of the finish point pf relative to the start position ps is measured in start

plane axes [ ts ns bs ], so that:

pf − ps =
[

ts ns bs

]
p

=
[

tms nms bms

]
R′

sp

pm = R′
sp

p =




pt

pn

pb


 (3.4.16)

then, the vector sum for the position vector is given by:

p = −rs + as + ac − af + rf

p + rs − rf = as + ac − af (3.4.17)

Re-writing this in the start manoeuvre axes, gives:

R′
sp + rs −R′

sRR′
frf = as + ac −R′

sRRfaf (3.4.18)
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3.5 Path Length - Dubins 3D

Re-writing this in the start plane axes, gives:

p + Rsrs −RR′
frf = Rsas + Rsac −RRfaf (3.4.19)

3.5 Path Length - Dubins 3D

As the Dubins path in 3D forms a composite path of four segments, the path length

is the sum of the length of these segments and is given by:

Length of Dubins path:

L = Li + Ls + Lt + Lf

= αi
κs

+ αs
κs

+
√

(∆X)2 + (∆Y )2 + αf

κf
(3.5.1)

where Li, Ls, Lt and Lf are the lengths of initial arc, start arc, tangent line and the

final arc respectively. ∆X and ∆Y are difference of x and y coordinates of tangent

vectors respectively and αi, α and κ are the included angle of the arc and its curvature

respectively. The suffix i, s and f respectively represent the initial, start and end

turns. It is apparent from the equation that the length of the Dubins path is simple

and is not computationally intensive.

Application to a swarm of moving vehicles requires that their path length shall be

controlled. That is the length of paths shall be adjustable. This condition can be met

by Dubins path. Consider the equation 3.5.1. In this equation, the values of ∆X and

∆Y are fixed by the curvature κ of the circular arcs (refer section 2.1). Hence, the

length of the Dubins path is completely determined by the curvature of circular arcs.

Thus by simply varying the curvature of the turn, we can easily control the length of

the path.

3.6 Pythagorean Hodograph Path-3D

A Pythagorean Hodograph is a polynomial curve first introduced by Farouki [59],

[64], and [65]. Here we give a brief introduction of the PH path. Here a fifth order

PH curve is used as this is the lowest order curve which has inflexion points that

can provide sufficient flexibility [59]. The PH path provides exact calculation of path

length, it’s curvature and the offset curve are rational. Substituting an appropriate

polynomial σ(t) such that σ(t)2 = ẋ(t)2 + ẏ(t)2 + ż(t)2 in the equation (3.6.1) produces

a path length s(t) and speed ṡ(t) which are reduced to an integral of the polynomial

σ(t) and the polynomial itself respectively. The canal tube around the path is also
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3. PRODUCING FLYABLE PATH - 3D

rational which is used to define the safety region around each UAV. The basics of the

PH curve is given in appendix B.

The path-length s(t) of the curve r(t) = {x(t), y(t), z(t)} is:

s(t) =
∫ t2

t1

√
ẋ(t)2 + ẏ(t)2 + ż(t)2dt t ∈ [t1, t2] (3.6.1)

The term inside the square root in equation (3.6.1) is the sum of the squares of the

hodographs. If x(t), y(t), and z(t) are polynomial functions of t and we could make

this term a perfect square, then the path-length would simply be an integral of a

polynomial σ(t):

σ(t)2 = ẋ(t)2 + ẏ(t)2 + ż(t)2 (3.6.2)

s(t) =
∫ t2

t1

|σ(t)|dt (3.6.3)

For any polynomial curve, if its hodographs meet the Pythagorean condition, the

curve is called a Pythagorean Hodograph curve. Now, for a polynomial curve, i.e.

when x(t), y(t) and z(t) are polynomials, a useful PH path is designed by selecting

suitable polynomials for the hodographs, ẋ(t), ẏ(t), and ż(t). The main advantages

of this formulation are (i) Calculation of path length without any approximation,

(ii) Equal increment of distance traveled along the curve for equal increment of the

parameter t, (iii) Rational parametric speed, and (iv) Rational intrinsic properties

(curvature, torsion and canal surface).

3.6.1 Spatial PH Curve

Consider a polynomial space curve r(t) = (x(t), y(t), z(t)) represented in pure quater-

nion form: r(t) = (x(t)i + y(t)j + z(t)k). The curve r(t) is a PH curve only if

dr

dt
= Q(t)iQ∗(t) (3.6.4)

for some quaternion polynomial Q(t) = u(t) + iv(t) + jp(t) + kq(t). The hodographs of

r(t) satisfies:

ẋ(t) = u(t)2 + v(t)2 − p(t)2 − q(t)2 (3.6.5a)

ẏ(t) = 2(u(t)q(t) + v(t)p(t)) (3.6.5b)

ż(t) = 2(v(t)q(t)− u(t)p(t)) (3.6.5c)

σ(t) = u(t)2 + v(t)2 + p(t)2 + q(t)2 (3.6.5d)
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3.7 Design of Flyable Path using PH curve

These equations provide sufficient and necessary conditions for a polynomial space

curve to be PH. The quaternion Q(t) in Bézier form is:

Q(t) =
2∑

i=0

Qi

(
2
i

)
ti(1− t)2−i; t ∈ [0, 1] (3.6.6)

The coefficients Q0, Q1 and Q2 have to be found out by Hermite interpolation as

explained in references [[64], [65]]. The length of the curve s(t) is:

s(t) =
∫ t2

t1

|Q(t)|2dt (3.6.7)

A PH curve designed by (3.6.6) is obtained by interpolating for positions and direc-

tions. This is not a smooth path. Hence the path has to be smoothed for curvature

continuity.

3.7 Design of Flyable Path using PH curve

The equation (3.6.6) is quintic polynomial designed by interpolating the free vectors

at the boundaries. The free vectors have positions (x, y, z) and direction (φ, θ) in

space. A curve interpolating two such vectors is called Hermite interpolation. The

resulting curve will have tangent continuity. For real time application, it is essential

to have curvature continuity as the curvature is proportional to lateral dynamics

of a moving vehicle. In order to have curvature continuity we impose maximum

curvature bound. Let κmax is the maximum curvature. In addition to the positions

and curvature we interpolate for curvature at the end points. As no closed form

solution exists for curvature interpolation an iterative process is adopted to meet the

curvature constraint. The PH curve is represented in fifth order Bernstein-Bézier

polynomial.

r(t) =
5∑

k=0

bk

(
5
k

)
(1− t)(5−k)tk; t ∈ [0, 1] (3.7.1)

where bk = (xk, yk, zk) are control points, whose vertices define the control polygon or

Bézier polygon and k = 0 . . . 5. The initial and final configurations are Ps(xs, ys, zs, φs, θs)

and Pf (xf , yf , zf , φf , θf ) respectively. The four control points of the Bézier polygons
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3. PRODUCING FLYABLE PATH - 3D

are calculated by first order Hermite interpolation as follows:

b0 = (xs, ys, zs) (3.7.2a)

b5 = (xf , yf , zf ) (3.7.2b)

d0 = m0(cos(φs) cos(θs), cos(φs) sin(θs), sin(φs)) (3.7.2c)

d5 = m5(cos(φs) cos(θs), cos(φs) sin(θs), sin(φs)) (3.7.2d)

b1 = b0 + 1
5d0 (3.7.2e)

b4 = b5 − 1
5d5 (3.7.2f)

where (xs, ys, zs) is initial position, (xf , yf , zf ) is final position, (φs, θs) is initial ori-

entation and (φf , θf ) is final orientation. The positive constants m0 and m5 play a

crucial role in path planning. The constants increase the length of the control vectors
~b0b1 and ~b4b5 which in turn fix the control points b2 and b3 satisfying the PH condition

(3.6.5). This changes the curvature and torsion of the path with corresponding change

in shape. From (3.7.2), the control points (b0, b1, b4, b5) are fixed. Now the problem is

reduced to finding the control points, b2 and b3. This is found out by (3.6.6).

3.7.1 Design of flyable path

The path resulted from above interpolation is tangent continuous. This path is fur-

ther required to be interpolated for curvature to make it flyable path. The rth deriva-

tive of the path is:

drr(t)
dtr

=
5!

(5− r)!

5−r∑

j=0

∆rBj

(
5− r

j

)
tj(1− t)5−r−j

j = 0, 1, · · · 5
(3.7.3)

where ∆rbi =
∑r

j=0

(
r
j

)
(−1)r−jbi+j , ∆0Bj = Bj and ∆rBj = ∆k−1Bj+1 −∆k−1Bj , k =

1, 2, · · · (5− r)

Using the equation (3.7.3) the values of derivatives of the curve at the boundary

points are:

ṙ(t)t=0 = 5B01 (3.7.4a)

ṙ(t)t=1 = 5B54 (3.7.4b)

r̈(t)t=0 = 20(B12 + B01) (3.7.4c)

r̈(t)t=1 = 20(B54 + B34) (3.7.4d)
...
r (t)t=0 = 120(B03 − 3B12) (3.7.4e)
...
r (t)t=1 = 60(B52 − 3B43) (3.7.4f)
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3.7 Design of Flyable Path using PH curve

where Bij = Bj −Bi

[
ṙ(t) r̈(t)

...
r (t)

]
t=0

=
[
5B01 20(B12 + B01) 120(B03 − 3B12)

]
(3.7.5)

[
ṙ(t) r̈(t)

...
r (t)

]
t=1

=
[
5B54 20(B54 + B34) 60(B52 − 3B43)

]
(3.7.6)

where the square brackets in the above equations represents determinants.

Using equation (3.7.4) in (A.2.1)

|ṙ(t)× r̈(t)|t=0 = |5B01 × 20B12|
= 100|(B1 −B0)× (B2 −B1)| (3.7.7)

= 100A0 (3.7.8)

ṙ(t)t=0 = 5(B1 −B0) (3.7.9)

|κ(t)|t=0 =
4
5

A0

||B01||3 (3.7.10)

where A0 is the area of triangle formed by the control points B0, B1 and B2.

Similarly the curvature at the end point that is t = 1 is:

|ṙ(t)× r̈(t)|t=1 = |5B34 × 20B45|
= 100|(B4 −B3)× (B5 −B4)| (3.7.11)

= 100A1 (3.7.12)

ṙ(t)t=1 = 5(B5 −B4) (3.7.13)

|κ(t)|t=1 =
4
5

A1

||B45||3 (3.7.14)

where A1 is the area of triangle formed by the control points B5, B4 and B3.

For the maximum curvature κmax, the boundary curvature has to satisfy:

κmax <=
4
5

A0

||B01||3 (3.7.15a)

κmax <=
4
5

A1

||B45||3 (3.7.15b)

Using equations (3.7.4) and (3.7.5) in (A.2.2), the values of torsion at the boundary

points becomes:

|τ(t)t=0| =

[
5B01 20(B12 + B01) 120(B03 − 3B12)

]

|5B01 × 20B12|2 (3.7.16)

|τ(t)t=1| =

[
5B54 20(B54 + B34) 60(B52 − 3B43)

]

|5B34 × 20B45|2 (3.7.17)
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3. PRODUCING FLYABLE PATH - 3D

Substituting equations (3.7.8) and (3.7.12) in the equation (3.7.16), the maximum

torsion τmaxat the boundary points have to satisfy:

|τ(t)t=0| <=

[
5B01 20(B12 + B01) 120(B03 − 3B12)

]

A2
0

(3.7.18a)

|τ(t)t=1| <=

[
5B54 20(B54 + B34) 60(B52 − 3B43)

]

A2
1

(3.7.18b)

where A0 is the area of triangle formed by the control points B0, B1 and B2 and A1 is

the area of triangle formed by the control points B5, B4 and B3.

Thus a flyable path is designed by interpolating the positions, directions and curva-

ture at the end points. The PH path is optimized for the maximum curvature bound

(3.7.15). A similar procedure is adopted for the torque optimization. However, the

resulting form (3.7.18) can not be interpreted in simple geometrical form as (3.7.15).

Hence an iterative procedure is adopted to arrive at an optimal value of the torque.

In both cases, the length of the tangent vectors are increased till the path meets the

maximum bound on curvature and torque in equations (3.7.18 & 3.7.15). To achieve

this, the boundary tangent vector equations are increased by increasing the values of

m0, and m5.

d0 = m0(cos(φs) cos(θs), cos(φs) sin(θs), sin(φs)) (3.7.19a)

d5 = m5(cos(φf ) cos(θf ), cos(φf ) sin(θf ), sin(φf )) (3.7.19b)

where m0 ∈ [1,∞] and m5 ∈ [1,∞].

3.8 Summary

This chapter discusses the method of producing flyable paths in three dimensions.

The Dubins path is produced by finding a common intersecting plane which provides

a maneuver plane where the 2D Dubins path is produced. Another maneuver plane

is produced with an initial rotation which contains an arc that connects the Dubins

path tangentially. As the procedure to derive the 3D composite path with Clothoid

is similar, it is omitted. The flyable PH paths are produced by optimizing the paths

of tangent continuity into curvature continuity. This is achieved by increasing the

lengths of boundary tangent vectors.
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CHAPTER

4 Solution to Simultaneous Ar-
rival

THis chapter discusses the solution to the problem of simultaneous arrival on

target. The solution involves how to accomplish the mission by satisfying var-

ious constraints. In free space, the main constraints are the maximum bound

on the curvatures and safety constraints to avoid inter-collision of UAVs. The threat

avoidance in a cluttered environment is discussed in the next chapter. The curvature

constraint is solved in the first phase of the path planning where the path of max-

imum bound on curvatures is produced. The second phase is discussed to produce

feasible path.

4.1 Flyable Paths

A path satisfying the maximum curvature constraint is a flyable path. As the curva-

ture is proportional to the lateral force acting on the UAV, it is necessary for a path to

meet the maximum curvature bound of the UAV. Thus, at any point on the path the

curvature shall not be greater than the maximum curvature bound allowed for each

UAV. As seen in earlier chapters, the Dubins path provides the path of maximum cur-

vature bound and it is limited to use in rotorcraft. This is due to the hovering ability

of rotorcraft. Hence, the possibility of approximating the Dubins path is sought. In

this respect, two types of paths: PH and clothoid paths are used to provide short-

est path solution with curvature continuity. These paths can be used for both the
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4. SOLUTION TO SIMULTANEOUS ARRIVAL

rotorcraft and fixed-wing UAVs.

|κi| < κmax (4.1.1)

where κi the curvature of ith path and κmax is the maximum curvature of the path.

4.2 Feasible Paths

A feasible path is both flyable and safe. The flyable path satisfy the principal con-

straint, maximum bound on curvature. However, this path does not guarantee safety

to the UAVs. Because, the flyable path does not consider the safety during its design.

Hence the flyable paths needs to satisfy additional constraints to ensure the safety of

the UAVs. Two safety conditions are defined here for inter-collision avoidance in free

space. They are: (i) Minimum separation distance and (ii) Non-intersection of paths

at equal lengths.

4.2.1 Minimum Separation Distance

The minimum separation distance dsep between any two UAVs should at least be

equal to the sum of corresponding radii of the safety circles. For homogeneous UAVs

this will be two times the radius of the safety circle. Refer figure (4.2.1). The separa-

tion between two UAVs is measured by calculating the Euclidean distance between

two points on two different paths. The separation distance between kth path and

lth path at a particular length or time is dsep =
√

(zl − zk)2 + (yl − yk)2 + (xl − xk)2,

where (xk, yk, zk) is the point on kth path and (xl, yl, zl) is the point on lth path at that

instant or length. The two 2D case is reduced into: dsep =
√

(yl − yk)2 + (xl − xk)2.

This value should be greater than or equal to 2Rs. It is important to note here that at

the points of failure of this condition, the lengths of the paths from their correspond-

ing starting pose Ps(xs, ys, zs) may differ. This is important in deciding the collision

avoidance in the case of constant speed flights. This is explained in detail in the

section below.

In general, the minimum separation distance between two paths has to meet the

following equation:

dsep,k,l ≥ Rs,k + Rs,l (4.2.1)

where, dsep,k,l is the separation distance between the kth and lth path, Rs,k is the safety

radius of kth path and Rs,l is the safety radius of lth path.

For homogenous UAVs, the above equation (4.2.1) is reduces into:

dsep ≥ 2Rs (4.2.2)
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4.2 Feasible Paths

For a 2D PH path, the minimum separation distance can be represented by an offset

path. The offset path at an offset distance d is given by:

rd(t) = r(t)± dN(t) (4.2.3)

where r(t) is the PH path and rd(t) is its offset path and N(t) is the normal vector to

r(t).

Similarly, for a spatial PH path, the canal surface or tube rs(t) of radius equal to

the minimum separation distance provides a safety margin. The equation of canal

surface is:

rs(t) = r(t) + N(t) cos(θ) + B(t) sin(φ) (4.2.4)

where N(t) is the normal vector and B(t) is the binormal vector, which can be analyt-

ically computed from curve parameterization.

4.2.2 Non-intersection of Paths at Equal Length

Suppose two flyable paths failed to meet the minimum separation distance condition.

For constant speed flights, still there is a possibility of no collision. Because, as the

UAVs are flying at constant speed at the same time from their initial pose, they

traverse equal distance in equal increment of time. Therefore there is a possibility of

no collision occurs even if two flyable paths intersect with each other. Consider two

paths k and l intersect at a point X. The path length of kth path from its start pose

to X is Lk,int and the path length of lth path from its start pose to X is Ll,int. The

difference of lengths at the point of intersection is dint = |Lk,int − Ll,int|. This value

must be at least equal to the sum of radii of safety circles of corresponding UAVs.

This shows the possibility of no-collision even if the paths fail to meet the minimum

separation distance. Hence the condition minimum-separation-distance, is necessary

but not sufficient.

dint,k,l ≥ RX
s,k + RX

s,l (4.2.5)

where, dint,k,l is the difference in lengths of kth and lth paths at the intersection point

X, RX
s,k is the safety radius of kth path at X and RX

s,l is the safety radius of lth path at

X.

For homogenous UAVs, the above equation (4.2.5) is reduces into:

dint ≥ 2Rs (4.2.6)

Figure (4.2.1) shows the schematic of both safety constraints. In two dimensional

maneuver, the collision avoidance is tested by a moving safety circle along the path
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Path k

Path l

Base

Target

at the point of Intersection, I

No overlapping of safety circles

meeting Minimum Sseparation Distance

and at equal distance/length

I Non-intersection of Safety Circles

Figure 4.1: Safe Flight Path explains producing safe flight path by testing the con-
ditions: (i) Minimum separation distance and (ii) Non-intersection at
equal distance

and in the case of three dimensional maneuver the safety circle is replaced with a

safety sphere. This is simulated with offset curves in the case of 2D PH paths and

with canal surface in the case of 3D PH path. The non-overlapping of safety circles of

any two paths meet the safety constraints. If the flyable paths meet (4.2.1), the paths

are safe to fly and there is no need to replan the path. On failure of this condition,

the second condition (4.2.5) is tested for the paths. In the event of failure of both

conditions, the replanning is done.

In the presence of stationary threats (refer section 5.1), the threats are detected by

intersection of path with the threat region. If the locations of the threat regions are

known, it is enough to test for intersection of the threat boundary with the safety

circle (equation (4.2.7)). If the intersection is not empty, the replanning can be done
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by increasing the curvature of the path or by creating intermediate way points.

Oobs

⋂
ORs (4.2.7)

In the case of Dubins and Clothoid paths, three possibilities are possible: (i) The

radius of curvature can be increased to meet the condition or (ii) the next shortest

path can be selected from the sets or (iii) a new path can be planned from the point

of failure. In the case of the PH path, two possibilities are possible: (i) the radius of

curvature is increased by increasing the lengths of the boundary tangent vectors to

meet the conditions (refer sections 2.4, and 3.7.1).

There are minimum two conditions are to be tested for every two paths in a flock of

UAVs. For a group of N UAVs, taking r UAVs at a time, the safety conditions have to

be tested for nu times, where nu is given by:

nu = 2
N !

r!(N − r)!
(4.2.8)

It is important to note here that the safety conditions are not imposed on the flyable

paths. In contrast, the flyable paths are tested to meet these conditions. Thus, the

use of search methods are minimized in producing the paths of equal lengths. In the

event of failure of these conditions, replanning is done by increasing the curvature of

the flyable paths or by creating new way-points.

4.3 Paths of Equal Length

As defined in section (1.4), the problem of simultaneous arrival on target is planned

to be solved by producing the paths equal lengths. The safe flyable paths that is

the feasible paths obtained by satisfying the conditions (4.2.5, 4.2.1, and 4.1.1) may

not be equal in lengths. Hence it is essential to make the all the paths to have equal

length by adjusting the lengths of each path. The paths of equal length are generated

by increasing the length of shorter path to the length of the longest one in the set of

N paths, where N is the number of UAVs. The lengths of the feasible paths are

calculated using (2.1.6b) or (2.1.23) for Dubins path. The path length of the PH path

is calculated using (3.6.3). For N number of UAVs, with the length of each path Li,

the set of path lengths L is:

L = {Li}, i = 1, . . . , N (4.3.1)
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4. SOLUTION TO SIMULTANEOUS ARRIVAL

4.3.1 Reference Path

The longest path is called as the reference path. This is the longest path from the set

of paths in the equation (4.3.1). The length of the reference path is:

Lref = max(L) (4.3.2)

where Lref represents the length of the reference path.

4.3.2 Equal path lengths

The path lengths of (N − 1) UAVs are increased to the length of the reference path.

Lengths of the Dubins paths are increased by increasing the turn radii (equation

(2.1.6c)), while that of the PH path is done by increasing the length of boundary

tangent vectors (equations (2.4.16a & 3.7.19a)) and (equations (2.4.16b & 3.7.19b)).

This condition is implemented as:

find κ, such that Li − Lref = 0, i = 1, . . . N − 1 (4.3.3)

4.4 Algorithm - free space

The algorithm in this section details the generation of paths of equal lengths by in-

creasing the radius of curvatures of the path. Other methods like replanning from

the point of failure of safety conditions and choose the next shortest path from the

set of paths can also be implemented in the same way. Also the solution is possible

by creating an intermediate way-point.

(i) Produce flyable paths for each UAV.

(ii) Change the course of the path to meet the safety constraints.

(iii) Calculate the length of the paths.

(iv) Find the reference path.

(v) Increase the length of the shorter paths to the length of the reference path. This

results in paths of equal length.

(vi) Check again for the paths meeting the safety constraints.

(vii) If not increase the length of the curvature to meet the safety conditions and

produce the paths of equal lengths.
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4.5 Summary

4.5 Summary

This chapter discusses a solution approach to the simultaneous arrival on target by

multiple UAVs. The curvature constraint, and safety constraints are discussed to

produce feasible paths. The flyable paths are produced by the first phase of the path

planning. The second phase of producing feasible paths relies on curvatures of the

paths. The end-point curvatures of the paths are increased to meet the constraints.

This is continued to produce the paths of equal lengths. However, another approach

is also possible to produce a feasible path which is done by creating an intermediate

way-point. This is method is discussed in the following chapter.
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CHAPTER

5 Path Planning in cluttered
environment

PAth planning in a cluttered environment is described here. Obstacle avoidance

methods are studied by many researchers in the robotic community like poten-

tial field function [[66], ] and Voronoi diagram [[67], [68], [51] and [50]]. Yang

and Zhao [69]describes a path planning in the midst of known obstacles and conflicts.

They used A∗ algorithm for path planning. But the path produced by the algorithm is

not flyable as it consists of series of straight lines. The resultant path is not flyable as

it does not satisfy the maximum curvature bound. Richards [45] uses Mixed Integer

Linear Programming to solve the collision avoidance problems. The resulting path

from these approaches does not provide a flyable path. Taking this point as initiation

and in contrast to these approaches, flyable paths are used here to solve the problem

of collision avoidance. Hence, the problem is reduced to solving the equation (1.3.1).

The equation is repeated here for convenience.

Psi(xsi, ysi, zsi, φsi, θsi)
ri(t)−→ Pfi(xfi, yfi, zfi, φfi, θfi), |κi(t)| < κi,max, |τi(t)| < τi,max,

∐

k

(5.0.1)

A schematic cluttered environment is shown in figure (5.1). The threat regions are

is modeled as rectangular boxes. The regions are assumed stationary and their posi-

tions are known. The threat regions are called as restricted regions. The mission is:

simultaneous arrival on target avoiding the threats and also inter-collision avoidance

of UAVs. The UAVs set off from the base and have to reach the target
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BASE

TARGET
Restricted
Regions

Figure 5.1: UAVs in cluttered environment: The restricted regions are the threats
which are assumed stationary. The UAVs have to set off from the base
and has to reach the target at the same time. The solution approach is by
generating the paths of equal lengths. The paths must be flyable and also
have to meet the inter-collision avoidance of UAVs and avoid the threat
regions

5.1 Threat Detection and Avoidance

First lets define the threat region. The threat region is assumed known a priori. The

boundary of the region is fixed and is simplified with rectangular in shape. Before

avoiding the threats, it is necessary to detect it. In practice the threat is detected by

sensor. The sensor is modeled with range. It is the distance at which a sensor can

detect a threat. Once a threat is detected, the UAV has to replan the path either by

varying the curvature between two way-points under consideration or replan is done

with an intermediate way-point.

5.1.1 Safety-Region Inclusion

For a threat with known region, it is enough to verify whether the path passes

through the threat region. Or in other words, if any part of the path is contained

in the threat region. If the intersection of the safety circle with the threat region is

empty, then the flyable path is safe to fly. Otherwise, the flyable path needs to be

changed for safe flight paths. Representing the restricted region by X and the safety
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5. PATH PLANNING IN CLUTTERED ENVIRONMENT

circle by CRs , the condition for testing the safety of the UAV is:

X
⋂

CRs (5.1.1)

This method works on the idea that safety is ensured when no point of the path is

inclusive of a restricted zone. The idea behind this approach is that if there is an

intersection, the UAV has to take a reactive approach to avoid or attack the threat.

The restricted region is defined by a set X whose values lie in <.

X = {x ∈ [a b] & y ∈ [c d]; a, b, d ∈ <} (5.1.2)

The Dubins and clothoid paths are tested for their safety circles intersect with the

flyable path. The turning radii of these paths are increased to achieve the threat

avoidance. In the case of the PH path, the offset path is used. If any point To on

offset-path ro falls in the set X, there is an intersection. The safety of UAVs is ensured

when the resulting set is empty.

X
⋂

To = ∅ (5.1.3)

where To is any point on offset-path. Though the offset path is used in this method,

sometimes, the offset path intersects with each other due to large curvature. As

a matter of precaution, the safety-circles are used to test the intersection with the

threat regions. A safe flight path is ensured by satisfying the condition (5.1.3) and

is verified iteratively for an empty set. If a non-empty set results, the values c0 and

c5 in equation (2.4.16) are adjusted until the path meets the safety constraints. The

figure (5.1.1) shows the approach.

5.1.2 Safety Distance

For a threat region of unknown boundary, the distance between the threat and the

UAV needs to be measured to fly safely away from the threat region. This can be

measured in the direction of heading and the normal vectors of the flyable path using

sensors. Refer figure (5.3). For a path r(t) the distance to the threat region can be

measured along normal vectors, N . For any point q on the boundary of the restricted

region, the shortest distance between r(t) and q can be calculated by solving the

equation (5.1.4). (
r(t)− q

)
· ṙ(t) = 0 (5.1.4)

where ṙ(t) is tangent. This method is computationally intensive for the paths of

higher order polynomial like PH path which is of fifth order. Hence numerical ap-

proach is used to measure the distance. Once the threat is detected, the replanning

66



5.2 Replanning the path

Restricted
Zone

r(t)

Intersection
Points

Figure 5.2: The threats are identified by intersection of path with threat boundary.
This is applicable for the known threat region, because for a known re-
gion it is simple enough to know whether the path touches the boundary.
If the intersection is non-empty, either the curvature of the path will be
varied to avoid the collision or the flight-path will be replanned either by
varying the curvature between two way-points or by creating an interme-
diate way-point, through which the path will be replanned

is carried out to avoid or destroy the threat. The threats are avoided either by: (i)

increasing the curvature of the path between two way-points or (ii) creating an in-

termediate way-point and connecting the final way-point through the intermediate

way-point.

5.2 Replanning the path

Once the threat region is detected it is necessary to replan the path either to avoid

the threat or to destroy the threat. Two approaches are used to replan the path: (i)

Increasing the curvature of the path, (ii) Creating an intermediate way-point. The

first approach is based on the fact that the curvatures determine the path. In the case

of 2D Dubins and Clothoid composite paths, the start and finish radii are increased to

meet the safety conditions (refer equation 2.1.6c). A safe 2D PH path is produced by

increasing the boundary curvatures (refer equations (2.4.16a & 3.7.19a) and (2.4.16b

&3.7.19b)). The offset PH path is used to represent the safety boundary on either

side of the flight path. While the 3D paths are tested for intersection with the safety

tubes. The intersection points are calculated numerically.
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Restricted
Zone

r(t)

Normal
vectors

Figure 5.3: Calculation of safety margin using normal vectors. The distance between
a point on the threat region and the flyable path is measure using the
equation (5.1.4)

Figure (5.2) shows the paths of two UAVs in a cluttered environment. The flights

path are intersecting at a point. Also the path of UAV2 is identified that it intersects

with the threat region. This is identified by using the equation (5.1.3). The boundary

curvatures are varied till the flight path avoids the threat region. Figure (5.2) shows

the new safe, and flyable path after increasing the curvatures. The increase of

curvature till the path avoids the threat is applicable for space not densely populated

with threats. In the case of space of densely populated threats and pop-up threats

it is necessary to create an intermediate way-point to take an evasive action. A safe

flyable path is created by replanning the flyable path through the intermediate way-

point. An intermediate point is created by simply calculating the area of triangle it

forms with the UAV’s current location and next way-point or target. In the case of

constant altitude flights (considered in this thesis), intermediate new way-point can

either be on the left or on the right side of the flyable path. Thus, two triangles can

be formed with these points. The intermediate point with minimum are of triangle

is chosen for replanning. The distance of the intermediate way-point is selected such

that it must be at least at a distance of radius of safety-circle from the maximum

edge of the boundary of the threat region. In the case of unknown threat it will be

decided based on the sensor output. In this thesis, path planning with known threats

are studied. Figure (5.2) shows the details, where the UAV2 takes an evasive action

by creating an intermediate way-point, through which the flyable path is replanned.
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Figure 5.4: Two UAVs are flying from a base to a target in a cluttered environ-
ment. Two flight-paths intersect with each other and the UAV2 is passing
through the threat or restricted region. The collision with the threat is
detected by identifying the intersection of path with the threat region
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Figure 5.5: The collision or threat avoidance is achieved by varying the curvature of
the path. Here the turning radii of the Dubins path is varied to avoid the
threats
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Figure 5.6: The collision or threat avoidance is achieved by creating an intermediate
way-point though which the path is replanned to avoid the threats

5.3 Algorithm - Cluttered space

The previous chapter gives the algorithm for the simultaneous arrival in free space

by increasing the radius of curvature. However, this approach can be used for clut-

tered environment, creating an intermediate way-point would produce an effective

solution. Other methods like replanning from the point of failure of safety conditions

and choose the next shortest path from the set of paths can also be implemented in

the same way.

(i) Produce flyable paths for each UAV.

(ii) Change the course of the path to meet the safety constraints by creating inter-

mediate way-points.

(iii) Calculate the length of the paths.

(iv) Find the reference path.

(v) Increase the length of the shorter paths to the length of the reference path. This

results in paths of equal length.

(vi) Check again for the paths meeting the safety constraints.

(vii) If not adjust the position of new way-point and increase the curvature to meet

the safety conditions to produce the paths of equal lengths.

70



5.4 Summary

5.4 Summary

This chapter discusses the path planning in an environment of threats. Two methods

are explained: detection by intersection and by measuring the distance. The threats

are avoided by replanning the flyable path. The replanning is done either by increas-

ing the curvature of the path or by creating an intermediate way-point. Both these

approaches are illustrated with simulation results.

71



CHAPTER

6

Simulations and Results - 2D

IN this chapter, the simulations are conducted for constant speed UAVs flying at

constant altitude. Therefore, only two dimensional maneuvers are considered.

The proposed approach in solving simultaneous arrival problem is simulated

using the Dubins, Clothoid and the PH paths. The initial and final poses are chosen

randomly. The path planning using Dubins and Clothoid paths are simulated in free

space while the PH paths are simulated both in free space and cluttered space. The

path planning with the Dubins path in cluttered space is discussed in the previous

chapter.

6.1 Simulations and Results - Dubins

Five UAVs are considered for simulation. The initial and final configurations are

chosen randomly. The minimum turning radius is chosen as 1.2 units. The radius of

safety circle is chosen as 2.5 units.

The shortest path of each UAV is calculated from the set of eight CLC paths. Thus,

a set of five shortest paths formed for five UAVs. Figure (6.1) shows the shortest

paths of the UAVs. The UAVs 1 to 5 follow the paths: {LSR,LSL, RSR, LSL, RSL}
respectively. All arcs are of minimum turning radius. The lengths of paths are differ-

ent from each other. The reference path is found out by using equation (4.3.2). The

longest path from the set of shortest paths is the reference path. The path of UAV5

is the reference path as this is the longest in the set.
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UAV2:

(18 6 3 1.2 1.2),(32 39 113 1.2 1.2), 36.12

UAV3:

(28 6 74 1.2 1.2),(42 39 202 1.2 1.2), 35.94

UAV4:

(38 6 39 1.2 1.2),(12 39 313 1.2 1.2), 42.70

UAV5:

(48 6 234 1.2 1.2),(2 39 210 1.2 1.2), 57.70

Ref. path: RSL, UAV5

Figure 6.1: Shortest flyable paths of UAVs - Dubins 2D

The bisection method is used to calculate the optimal radius of curvature of the

shorter paths. This is because the solution to the equation of path-length, (equation

2.4.1) or (equation 2.1.23) is not unique and also the solution may have complex roots.

The optimal radii of paths of UAV1, UAV2, UAV3 and UAV4 are {9.82, 4.38, 9.86, 14.42}
units respectively. Figure (6.1) shows the paths of equal length. From the figure, it

can be observed that the route of paths are not the same as that of shortest CLC

paths of UAVs. The routes are: {LSL LSL RSL LSL}. The route of UAV1 and UAV3

are changed from {LSR} to {LSL} and {RSR} to {RSL} respectively. This is because,

the original routes designed with minimum turning radii did not meet the condition

of existence of paths (equation 2.1.5a) and (equation 2.1.5b) with modified radius of

curvature. So, the next shortest path from the set of CLC paths was selected for find-

ing optimal radius to produce the path of length equal to the reference path. For any

two paths, the safe flight-path is ensured as follows: By equation (4.2.2), the mini-

mum separation of path should be greater than two times the radius of safety circle.

The minimum separation distance is verified by calculating the Euclidean distance

between the paths. From these values, the maximum and minimum separation is

found out. The paths are safe to fly if they meet the condition. If the condition is not

met at any point, the next condition (equation 4.2.6) is verified. i.e., non-intersection
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Figure 6.2: Paths of equal length -Dubins 2D

of paths at equal distance. The length of each path to that point is calculated. If the

difference between the lengths is greater than twice the radius of safety circle, the

path is safe to fly. Otherwise, the path route must be changed with next shortest path

from the set of CLC paths.

Figure (6.1) shows the coupling of paths for UAV1 with other UAVs. The first fig-

ure(top left corner) shows two intersection of paths of UAV1 with UAV2. The mini-

mum distance between the paths is 5.1 units. This is just meeting the condition of

minimum separation. As the path increment is uniform with constant speed of UAVs,

the UAV1 and UAV2 are safe to fly in the paths: {LSL} and{LSL} respectively. The

remaining paths UAV1 and UAV3, UAV1 and UAV4, UAV1 and UAV5 are providing

safe flight paths as they are meeting the minimum separation distance at all points

along the paths. Figure (6.1) shows the coupling of paths of UAV2 with UAV3, UAV4

and UAV5 and UAV3 with UAV4 (along row). The first two paths are meeting the

minimum separation condition. Hence, they are safe paths. The path of UAV2 tra-

verse the path of UAV5. Hence the UAV2 and UAV5 are not meeting the minimum

separation. The minimum distance is 1 unit, four units less than minimum distance.

The next condition, non-intersection at equal length is verified for these paths. The
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Figure 6.3: Separation distance for paths of first four combinations - Dubins 2D

length of path of UAV2 to the point of minimum distance is 13.1 units and that of

UAV5 is 20.71 units.The difference between the lengths is greater than two times the

radius of safety circle. This meets the condition for non-collision of UAVs. Hence

the paths are safe to fly. The coupling paths of UAV3 with UAV4 well separated at

corresponding points on the paths. The minimum distance between them is 10 units.

Hence providing the safe flight-path. The figure (6.1) shows the coupling paths of

UAV3 with UAV5 and UAV4 with UAV5. The paths are well separated meeting the

minimum separation distance along the path. The paths are providing safe flight-

paths to UAV4 and UAV5. Thus paths are flyable, safe and of equal in length, thus

provides the simultaneous arrival to the UAVs.

6.2 Simulations and Results - Clothoid

The proposed solution to the path planning is simulated with a group of three UAVs,

flying at a constant speed and at constant altitude. The UAVs are named as UAV1,

UAV2, and UAV3. The initial and final configurations Ps, Pf , respectively, of the

UAVs are pre-defined. All the UAVs are leaving the base at the same time. The

maximum curvatures, κmax of the UAVs are taken as ±1
4 . Hence the path shall have
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Figure 6.4: Separation distance for paths of second four combinations - Dubins 2D

to have the curvature not exceeding this value. Figure (6.2) shows the initial paths

generated with the maximum curvature bound of the UAVs. These are the flyable

paths. The paths are verified for safe flights using the condition (4.2.2) for minimum

separation distance. The paths failed at two intersecting points as shown in the

figure. Hence the second condition (4.2.6) is used to verify the non-intersection of

paths at equal length. In this particular case, the paths meet the safety constraints.

Now, the length of the shorter paths are to be increased to that of the reference path

using the equation (4.3.2). The path length of UAV1 longer than that of UAV2 and

UAV3. Hence path of UAV1 is the reference path. The path-lengths of UAV2 and

UAV3 are increased to that of UAV1 by decreasing the curvature of their Clothoid

segments.

Figure (6.2) shows the paths of individual UAVs together. The safety conditions are

tested for the paths using the equations (4.2.2) and (4.2.6). The point of intersections

are found by the iterative search. The difference in the lengths of paths of UAV2 and

UAV3 from their initial points differ by more than the two times the radius of safety

circle. Thus generated the flyable and safe flight paths of equal lengths.
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Figure 6.7: Paths of equal lengths - Clothoid 2D

6.3 Simulations and Results - PH

Three UAVs are considered in this case. The UAVs are named as UAV1, UAV2 and

UAV3 and are flying at constant speed and at constant altitude. The initial and final

configurations of the UAVs are well-defined. All the UAVs are leaving the base at the

same time. The figures (6.3), (6.3) and (6.3) show the paths of individual UAVs. The

central path (solid line) shows the flight path. The dashed path on either side of the

flight-path shows offset paths with circular rings. The offset paths are generated at

a distance of radius of the safety circle. Hence the circular rings have the diameter

of the safety circle. The important points to be considered from the figures are: (a)

The paths have curvature continuity, thus providing smoothness. (b) Each path has

different route or trace. The maximum curvature of the UAV is κmax is taken as

±1
3 . Hence the path shall have to have the curvature not exceeding this value. The

maximum and minimum curvatures of the paths are (0.1142,−0.3000), (0.3263, 0.002)

and (0.2718, 0.0055) respectively. The path of UAV2 is the reference path. The length

of UAV1 and UAV3 are increased to that of UAV2 by the procedure using the equation

(2.4.16). The figure (6.3) shows the paths of individual UAVs together. The start

and finish points are shown with the tangent circles, which define the maximum

curvature of the UAVs. The safety conditions are tested for the three paths using the
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Figure 6.8: Dubins and PH Paths of UAV1

Figure 6.9: Dubins and PH Paths of UAV2
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Figure 6.10: Dubins and PH Paths of UAV3
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equation (4.2.8). Taking any two UAVs at time, the total number of times the safe

flight paths are to be tested are six.

The figures (6.3) and (6.3) are the paths of all UAVs with their offset paths. The UAV1

is not intersecting with other paths. The paths of UAV2 and UAV3 are intersecting

at two points. The point of intersections of paths of UAV2 and UAV3 are found by

the iterative search. The difference in the lengths of paths of UAV2 and UAV3 from

their initial points are 8.381 and 7.321 respectively. The values are greater than the

diameter of the safety circle. This ensures the safe flight paths.

Flight path

Path lengths: 38.225 units

Tangent circles

Figure 6.14: PH paths of equal lengths
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Figure 6.15: PH Paths of UAVs, equal lengths with offset paths and safety rings
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Figure 6.16: PH Paths of UAVs, equal lengths elevated at constant altitude

6.4 Path planning in cluttered space

Two UAVs are considered for simulation. The UAVs are assumed to be homogenous

in their physical capabilities. The UAVs are flying at constant speeds at constant alti-

tudes. Figure (6.17) shows the PH paths of the UAVs prior to curvature optimization.

Pi and Pf are the initial and final configuration respectively. The patches observed

on the figure are the restricted zones. It is seen that the UAVs are flying over the re-

stricted zones. The crossing of the paths on the tangent circles (whose radius is taken

as 3 units) shows that the paths are not meeting the constraint of the maximum cur-

vature bound. Thus it is required that the paths are to be optimized for safe flight

path following optimization for their curvature. The path lengths of UAV1 is: 35.96

units and that of UAV2 is 35.92 units. Figure (6.18) shows the UAV paths optimized

for their curvatures. The tangent circles are not crossed by the paths. However, the

paths do not satisfy the safe flight path with minimum safety margin greater than

3 units. The path of UAV1 is directly passing over the restricted zone and the path

of UAV2 is not meeting the minimum safety margin. Both the paths need further

change in their curvature and in turn their lengths. The path length are: UAV1 40.69

units and UAV2 37.13 units. Figure (6.19) shows that each UAV is provided with the

safety margin. The offset curves (dashed lines) with a offset distance of ±3.01 unit

ensure the safety of UAVs. The path-length of UAV1 is 42.57 units and that of UAV2

is 41.12 units. The paths are not of equal lengths. The path-length of UAV1 is greater

than that of UAV2. So, path of UAV1 is the reference path. The path length of UAV2
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Figure 6.17: Initial paths (only tangent continuity) - PH 2D in cluttered space
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Figure 6.18: Flyable paths - PH 2D in cluttered space
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has to be increased to that of UAV1 for generating paths of equal length for simulta-

neous arrival. Figure (6.20) shows the paths of UAV1 and UAV2 having equal path

length of 42.57 units. Thus, achieving the mission objective of simultaneous arrival

to the target in an environment with restricted zones.
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Figure 6.19: Feasible (safe and flyable) paths - PH 2D in cluttered space
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Figure 6.20: Paths of equal lengths - PH 2D in cluttered space
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6.5 Summary

This chapter concludes with the simulation results for two dimensional path planning

in a free space. Simultaneous arrival on target is achieved by producing the path of

equal lengths for all UAVs. Three types of path: Dubins, Clothoid - composite paths

and the PH path - single path are used. The safety conditions, minimum separation

distance and non-intersection at equal lengths are tested for all paths.
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CHAPTER

7

Simulations and Results - 3D

THis chapter gives the simulation results of 3D path planning with the Dubins,

and PH paths. The UAVs are assumed flying in free space and at constant

speed and at constant altitude. The initial and final poses are chosen ran-

domly. The safety constraints are satisfied by increasing the curvature of the paths.

In 2D simulations, a safety circle of radius Rs is used for testing safety conditions.

Here the safety circle becomes a safety sphere of radius Rs. All the UAVs are leaving

the base at the same time.

7.1 Simulations and Results - Dubins

Three UAVs are considered for simulation. The minimum turning radius is chosen

as 5. The initial and final poses are
(
[0, 0, 0], [0, 10, 0] & [51, 18, 51], [0,−10, 30]

)

(
[4, 7, 5], [0,−10, 0] & [61, 18, 51], [0, 70, 30]

)

(
[15, 0, 5], [0,−28, 0] & [61, 45, 51], [0, 10, 30]

)

The radius of safety sphere Rs is 3. The minimum separation distance is 6 units.

The flyable paths for each UAV is generated using the principle explained in the

section 3.2. The length of the flight path of each UAV is calculated using the equation

(3.5.1). Figure (7.1) shows the flyable paths of each UAV. The flight path 1, 2 and 3
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7. SIMULATIONS AND RESULTS - 3D

respectively corresponds to that of UAV1, UAV2 and UAV3. The length of each path

is 76.27, 79.57,and 79.91 respectively. The length and trace of each path are different

from one another. The path of UAV3 is the reference path found out by equation
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Figure 7.1: Flyable Paths of UAVs - Dubins 3D

(4.3.2). Therefore, the path lengths of UAV1 and UAV2 have to be increased to that

of UAV3. The turning radii of the UAV1 and UAV2 are increased to equalize their

length with that of UAV3. As there is no direct relation exists between the path

length and turning radius, iterative method is sought to find the optimal curvature

of the paths. Also, the solution to the equation of path-length (3.5.1) is not unique and
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Figure 7.2: Path of equal lengths - Dubins 3D
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also may result in complex roots. The new curvatures of UAV1 and UAV2 are 0.0759

and 0.1074 respectively. Figures (7.2) shows the paths of equal length. Figures (7.4),

(7.6) and (7.5) show each two flight paths separately which are equal in length. Thus

the flyable paths of equal lengths are produced. Now these paths are to be verified

against the safety conditions. For any two paths, the safe flight-path is ensured as
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Figure 7.3: Flight path with safety tubes - Dubins 3D

follows: minimum separation of path should be greater than two times the radius of

safety sphere (equation 4.2.2). The minimum separation distance is the Euclidean

distance between the paths. This distance is measured numerically and validated

against 2Rs. The paths are safe to fly if they meet the condition. If the condition is

not met at any point, the next condition, non-intersection of paths at equal length

(equation 4.2.6) is to be validated. The length of each path to that point is calculated.
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7.1 Simulations and Results - Dubins

If the difference between the lengths is greater than twice the radius of safety circle,

the path is safe to fly. Otherwise, the path route must be changed either by further

increasing the radius of turn or by replanning the path from the point of failure. Here

the first method is adopted. The minimum separation distance between the paths
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Figure 7.4: Paths of equal lengths - UAV1 & UAV2 - Dubins 3D

1 & 2, 2 & 3 and 1 & 3 respectively are: 5.47, 9.6, and 13.1. The these values shows

the UAV1 fails to meet the minimum separation distance. Hence the flight path of

UAV1 have to be tested for non-intersection at equal length. The path length of each

path from the starting pose to the point of failure is calculated. The difference in

path length of UAV1 & UAV2, UAV2 & UAV3 and UAV3 & UAV1 respectively from

the initial pose to the point of intersection are 6.863, 6.541, and 15.48. The values are

greater than the minimum separation distance (= 2Rs). Hence the flight paths are

safe to fly. The figures (7.4, 7.6 and 7.5) shows the flight paths of set of UAV1 & UAV2,

UAV2 & UAV3 and UAV3 & UAV1 respectively. The intersection of paths can easily

visualized in the figure (7.7). All the paths with the safety tube around them is shown

in the figure (7.3).
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7.2 Simulations and Results - PH

7.2 Simulations and Results - PH

Two UAVs are considered for the simulation. The UAVs are named as UAV1, and

UAV2. The initial and final poses of the UAVs are pre-defined. The maximum cur-

vatures, κmax and τmax of the UAV are taken as ±1
3 . The output from the original

PH solution provides only tangent continuous path (Refer section 3.6.1). The fig-

ures (7.2), and (7.2) show the curvature and torque variation of the paths initially

generated using (3.6.6). These are tangent continuous paths, called as initial paths.

The paths do not meet the maximum curvature bounds at the boundary points.
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Figure 7.8: Curvature and Torsion variation with respect to path-length, Initial path
-UAV1. Note down that the maximum curvature bounds do not meet at
the boundary points

The paths are optimized for curvature bounds by increasing the positive constants

in equations (3.7.2c) and (3.7.2d) till the conditions (3.7.15) and (3.7.18). The fig-

ures (7.2), and (7.2)show the paths which meets the curvatures bound. These paths

are flyable by the UAVs. The central path (solid line) shows the flight path. The

tube around the path designed by equation (4.2.4). The tubes have radius equal to

that of safety-sphere. The important points to be considered from the figures are:

(a) The paths have curvature continuity, thus providing smoothness. (b) Each path

has different route or trace. The curvatures variations with path-length of flyable
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Figure 7.9: Curvature and Torsion variation with respect to path-length, Initial path
-UAV2. Note down that the maximum curvature bounds do not meet at
the boundary points

paths are shown in figures (7.2) and (7.2). The path meets the maximum curvatures

bound at all points on the path. The path length of UAV1 longer than that of UAV2.

Hence path of UAV1 is the reference path. The length of UAV2 is increased to that

of UAV1 by the procedure explained in section (3.7). The figure (7.2) shows the paths

of individual UAVs together. The safety conditions are tested for the paths using the

equations (4.2.2) and (4.2.6). The paths are shown with the tubes. The UAV1 is in-

tersecting with that of UAV2 at two points. The point of intersections are found by

the iterative search. The difference in the lengths of paths of UAV2 and UAV3 from

their initial points differ by more than the two times the radius of safety sphere.

This ensure the safe flight paths. Thus paths of equal lengths for a group of UAVs in

achieving simultaneous arrival to a target is accomplished.

7.3 Summary

This chapter shows the simulation results of the 3D Dubins and PH paths. The

clothoid paths are similar to that of the Dubins paths except that the circular arcs are

replaced with clothoid arcs. The solution approach described in chapter 4 is applied

to the path planning.
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Figure 7.10: The path meets the maximum curvature bounds of the UAV

Figure 7.11: The path meets the maximum curvature bounds of the UAV
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Path of UAV2-optimized for curvatures, ’..’-Path of UAV2-optimized for
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CHAPTER

8

Conclusions and Future Work

8.1 Discussions and Conclusions

ASafe and simultaneous arrival of UAVs are planned using the Dubins, Clothoid,

and Pythagorean Hodograph paths. The safe paths are ensured by meeting

three constraints: (i) curvature constraint, (ii) minimum separation distance

and

(iii) non-intersection of paths at equal lengths. The simultaneous arrival is ensured

by design of paths of equal length. The boundary curvature of the paths are increased

to meet the mission objective. The simulation results are shown between two way-

points called base and target. However, the principles can be extended to any set of

way-points.

The main theme of this thesis is to show that by simply varying the curvature of a

path, it is possible to accomplish multiple objectives (e.g. shortest path, simultaneous

arrival, safe flight). Three different type of paths are considered for the path plan-

ning: two composite paths: (i) Dubins and (ii) Clothoid paths and a single path: (iii)

Pythagorean Hodograph path. The curvature discontinuity of the Dubins path limits

its use to rotor-craft while the clothoid and PH paths provide curvature continuity

can be used for both fixed-wing UAVs and rotor-craft.

The Dubins path are designed by principles of Euclidean and Differential geometries.

It is shown that the existence and length of the Dubins path is simply a function of

curvatures of turning circles. The advantage of differential geometry principles in
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designing the Dubins and clothoid paths is demonstrated. A procedure is established

to change the PH path of tangent continuity into the path of curvature continuity. In

Dubins and PH cases, the curvature of the path is tuned to meet the path planning

objectives.

The proposed methods are simulated in both two-dimensional and three-dimensional

environments. The two dimensional case are shown in free-space and cluttered

spaces. Three dimensional case is simulated with free-space.

The three main issues, convergence, computational time and scalability, in the mul-

tiple UAV path planning were discussed in this thesis. For the Dubins and Clothoid

paths, there is always a solution as long as the turning circles obey the conditions

(2.1.5a) and (2.1.5b) or (2.1.18). For the case of the PH path, the solution exists once

the minimum energy path is available. The path length of the PH path is controlled

by maintaining the path length close to that of the Dubins. This also can be achieved

by using composite PH paths with curvature continuity at the end points. The sim-

plicity of the proposed algorithms ensure that the computational time required for

the coordinated guidance is implementable onboard. Finally as it is shown in equa-

tion (4.2.8), the proposed algorithms are easily scalable and thus implementable to

swarms of large numbers of UAVs.

8.2 Future Work

There are two occasions, where iterative procedure is used in this thesis: (i) increas-

ing the curvature to multiple constraints and (ii) finding the intersection points in

threat avoidance. Elimination of iterative process can improve the efficiency of the

path planner. This can be achieved by developing an analytical solution between the

curvature and the regions of threat locations. The same idea is applied to intersection

algorithm.

This thesis shows the path planning using the Dubins, Clothoid and PH paths sep-

arately. However, path planning can be achieved with the combination of all three

paths. This would be an interesting area of further research.

The development of path planning with threat regions in three dimensional space

is another area of future research work. This will be useful in path planning of

spacecraft.

The interesting point of using the PH path is its rational properties. The offset path

of these curves can be used to generate the safety bounds of the flight path and also
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8. CONCLUSIONS AND FUTURE WORK

used to represent the uncertainties. Also, these offset paths can be used for formation

flying. These areas can further be explored for future research.

Currently an iterative method is employed to obtain the continuous curvature PH

path from the tangent continuity PH path (refer section 2.4). There is a scope for

future work to improve the efficiency of the PH path planning by finding an closed

form solution to optimize for curvature continuity.
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APPENDIX

A

Differential geometry

DIfferential geometry deals with geometry with the application of calculus to

geometrical objects. In general, a curve r(t) is defined as a vector valued

function in <n space. The parameter t varies over a < number line. Mathe-

matically, this is a continuous mapping r : I → <n , where I ∈ [a b] and t ∈ I. For

example, a curve r(t) in 3D is represented as r : I → <3 , where r(t) = (x(t), y(t), z(t)).

Thus a curve r(t) can be considered as a position vector in Euclidean space. If the pa-

rameter t is considered as time, the velocity and acceleration profiles can simply be

found out by the application of calculus. The geometric properties of the curve/path

per se can be studied by unit speed parametrization as follows:

The arc length s(t) of the curve r(t) is:

s(t) =
∫ s2

s1

√
ẋ2 + ẏ2 + ż2dt (A.0.1)

The unit speed parametrization such that the parametric speed ṡ = ds
dt , of the path is

unity. This is an ideal concept. This is explained as follows: Consider a vehicle starts

moving at time t1 and stops at time t2. The path length at time t1 is s1 and at time t2

is s2. A path of unit speed parametrization have (t2 − t1 = s2 − s1. This means that

the time traveled is equal to the distance traveled. Mathematically,

|dr

ds
| =

|dr
dt |
|ds
dt |

= 1 (A.0.2)

The physical significance of differential geometry of the curve is as follows. Taking t

as time, the first derivative is the tangent vector and it defines velocity. The direction
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A. DIFFERENTIAL GEOMETRY

of (heading)velocity is specified by unit tangent vector, T and the speed is given by

its modulus |T |. The second derivative is the acceleration vector and this has two

components, one is along the tangent and other is normal to the tangent. The tan-

gential acceleration is given by second derivative of velocity vector and its direction is

along the direction of heading velocity. The direction of normal acceleration is given

by a unit normal vector, N and its magnitude is equal to the centripetal accelera-

tion given by κ|v|2, where κ is the curvature and v is velocity. Thus the curvature

is proportional to the lateral acceleration and hence the lateral force induced while

the vehicle is turning. Taking the path-length as a parameter, the rate of change of

tangent vector with respect to the arc length defines the tangent vector.

The cross product of the unit vectors, T and N produces a third unit vector, called

Bi-normal B which is orthogonal to T and N . Thus the orthogonal triad (T, N, B)

forms a moving frame on the curve. The plane spanned by the vectors, T and N is

the Osculating plane. The vectors, N and B form the Normal plane and the vectors,

B and T form the Rectifying plane. These three planes are orthogonal to each other.

A continuous sequence of this triad represents orientation of the curve in space. The

curvature and torsion (κ&τ) completely specify a path in space.

Unit Tangent Vector, T =
ṙ(t)
|ṙ(t)| (A.0.3)

Unit Binormal Vector, B =
ṙ(t)× r̈(t)
|ṙ(t)× r̈(t)| (A.0.4)

Unit Normal Vector, N = B × T (A.0.5)

The curvature profile at a point P is defined by the relation

κ =
dθ

ds
(A.0.6)

where s is the path length and θ is the angle subtended by the tangent with the

x-axis.

But,dθ
ds =

dθ
dt
ds
dt

. Hence, the equation (A.0.6) becomes

ω = vκ (A.0.7)

where ω(= dθ
dt ) is the angular velocity and v(v = ds

dt ) is the linear velocity and t is the

parameter, time.
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A.1 Frenet Serret equations
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Figure A.1: Curve with Frenet-Serret Frame T is unit tangent, N is unit normal
and B unit binormal, {T, N, B} is the Frenet-Serret frame. r(t) is the
equation of the path. P is the position vector of a point on the path.
{ex, ey, ez} is the unit vectors, s(t) is the path length

A.1 Frenet Serret equations

The FS equations describe the rate of change of the curve with respect to the change

of arc-length. The FS equations are:

T ′ = κ(s)N (A.1.1)

N ′ = −κ(s)T + τ(s)B (A.1.2)

B′ = −τ(s)N (A.1.3)

In matrix form:



T′

N′

B′


 =




0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0







T

N

B


 (A.1.4)

where the prime represents the derivative with respect to s and

Curvature, κ(s) = ||r′(s)× r′′(s)|| (A.1.5)

Torsion, τ(s) =
[r′(s) · r′′(s)× r′′′(s)]

κ2(s)
(A.1.6)
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The time-rate of change of the FS vectors in matrix form is:



Ṫ

Ṅ

Ḃ


 = ṡ




0 κ(t) 0

−κ(t) 0 τ(t)

0 −τ(t) 0







T

N

B


 (A.1.7)

where ṡ = ds
dt is the speed (parametric speed) and t is a parameter.

Curvature, κ(t) =
||ṙ(t)× r̈(t)||
||ṙ(t)||3 (A.1.8)

Torsion, τ(t) =
ṙ(t) · r̈(t)× ...

r (t)
||ṙ(t)× r̈(t)||2 (A.1.9)

A.2 Importance of Curvature and Torsion

Mathematically, a flyable path is a regular curve which captures both the geometric

(locus of points) and kinematic (motion) aspects. A regular curve r is a mapping

r : [a, b] → R at least trice continuously differentiable, r ∈ C3 and satisfying the

regularity condition dr
dt 6= 0 for all t ∈ [a, b]. Regularity means that the point moving

along the curve is not allowed to stop, a natural requirement for fixed-wing UAVs.

However, considering the kinematic constraints, it is important for the path to have

curvature continuity.

By the principles of differential geometry [58], [57], the curvature and torsion are

fundamental properties of a path, by which a curve is completely determined in space.

In two dimension, only curvature is enough. Apart from the geometric insights, these

two properties play an important role in mechanics of a moving vehicle. The physical

significance of these properties are that the curvature is proportional to the lateral

acceleration and is measured by rate of change of tangent vector, while the torsion is

proportional to the angular momentum and is measured by rate of change of tangent

plane.

κ(t) =
ṙ× r̈
|ṙ|3 (A.2.1)

τ(t) =
det{ṙ, r̈, ...r }
|ṙ× r̈|3 (A.2.2)

From the equation (A.2.1), the curvature and torsion respectively are the function of

first two and three derivatives of the path. Hence, it is necessary to have a path of

minimal order enough to satisfy curvature constraints and additional flexibility to

negotiate with safety constraints.
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B

Pythagorean Hodograph

PYthagorean Hodograph is known for its rational properties. Consider a path

r(t) = (x(t), y(t)) and its length is s(t).

s(t) =
∫ t2

t1

√
ẋ2 + ẏ2dt (B.0.1)

where ẋ = dx
dt , ẏ = dy

dt and t ∈ [t1t2]

The parametric speed is ṡ = ds
dt . If ṡ = ṙ, this is called unit speed parametrization.

To calculate the path length exactly, that is without any approximation, the equation

(B.0.1) should have closed form solution. But this is not easy to obtain even for simple

polynomials except straight line [70].

The derivatives ẋ and ẏ are called hodographs. The path length is the function of

the hodographs. To arrive at a simple solution without any approximation, the term

inside the square-root term should be a square of some polynomial σ(t). Or in other

words, if a polynomial σ(t) is selected such that:

σ(t)2 = x(t)2 + y(t)2 (B.0.2)

Such formulation eliminate the approximation in calculation of path length. Also, it

results in rational properties of the path. Using the basic algebraic formulae (a+b)2 =

a2+b2+2ab, and (a2−b2) = (a+b)(a−b), assign the hodographs with these polynomials

u(t), v(t), and w(t) such that:

ẋ(t) = [u(t)2 − v(t)2]w(t) (B.0.3a)

ẏ(t) = 2u(t)v(t)w(t) (B.0.3b)
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This implies:

σ(t) = [u(t)2 + v(t)2]w(t) (B.0.4)

Taking w(t) = 1 and GCD(u(t), v(t)) = 1 gives a regular PH path, that is GCD(ẋ, ẏ) =

1 of odd degree.

Such a formulation results that the path length and parametric speed is just a poly-

nomial. And also the offset path, curvature and torsion all become rational.

s(t) =
∫ 1
0 w(t)[u(t)2 + v(t)2]dt, t ∈ [0 1] (B.0.5)

T = u(t)2−v(t)2, 2u(t)v(t)
u(t)2+v(t)2

(B.0.6)

N = 2u(t)v(t), v(t)2−u(t)2

u(t)2+v(t)2
(B.0.7)

κ = 2(u(t)v̇(t)−v(t)u̇(t))
w(t)(u(t)2+v(t)2)2

(B.0.8)
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C

Quaternion

QUaternion is introduced by Hamilton in 1843, can be considered as hyper-

complex number or rank 4. A quaternion q is a combination of a scalar part

qs and a vector part ~qv such that q = qs + ~qv, where ~qv = iq1 + jq2 + kq3 and

the triad {i, j, k} a standard orthonormal basis in <3. The triad follows the rule:

i2 = j2 = k2 = ijk = −1 and the other rules are similar to that of complex number.

C.1 Properties of quaternion

Consider two quaternions: p = ps + ~pv and q = qs + ~qv.

Addition, subtraction, conjugate and magnitude respectively are:

p + q = (ps + qs) + (~pv + ~qv) (C.1.1)

p− q = (ps − qs) + (~pv − ~qv) (C.1.2)

q∗ = qs − ~qv (C.1.3)

|q|2 = q ∗ q = qq∗ = q2
s + |~qv|2 (C.1.4)

(pq)∗ = q ∗ p∗ (C.1.5)

Unit quaternion is a quaternion with |q| = 1 and norm of a quaternion is:

N(q) = qs − ~qv (C.1.6)

109



C. QUATERNION

Multiplication: Non-commutative

pq = psqs − ~pv. ~qv + p0 ~qv + q0 ~pv + ~pv × ~qv (C.1.7)

where the first term in RHS is a scalar and the remaining terms form a vector.
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