

This work has been submitted to ChesterRep – the University of Chester’s
online research repository

http://chesterrep.openrepository.com

Author(s): Sophy Margaret Thomas

Title: Numerical analysis of some integral equations with singularities

Date: April 2006

Originally published as: University of Liverpool PhD thesis

Example citation: Thomas, S. M. (2006). Numerical analysis of some integral
equations with singularities. (Unpublished doctoral dissertation). University of
Liverpool, United Kingdom.

Version of item: Submitted version

Available at: http://hdl.handle.net/10034/70394

Numerical Analysis of some Integral Equations

with Singularities

Thesis submitted in accordance with the requirements

of the University of Liverpool for the degree of

Doctor in Philosophy by Sophy Margaret Thomas

April 2006

Declaration

No part of the work referred to in this thesis has been submitted in support of

an application for another degree or qualification of this or any other institution

of learning. However some parts of the material contained herein have been

previously published.

Acknowledgements

I would like to thank my supervisor, Professor Neville J. Ford, University of

Chester, for his help and advice during this project, also Dr. John T. Edwards,

Head of Mathematics, University of Chester, for his helpful suggestions, and

friends and colleagues at Chester for their support and encouragement.

I would also like to thank Dr. Pedro Lima and Dr. Teresa Diogo of Instituto

Superior Tecnico, Lisbon for useful advice, and Professor Ernst Weniger of Uni-

versität Regensburg for a most informative discussion regarding extrapolation,

at the Algorithms for Approximation V conference at Chester, July 2005.

This work is supported by a College Bursary from the University of Chester.

1

Abstract

In this thesis we consider new approaches to the numerical solution of a class

of Volterra integral equations, which contain a kernel with singularity of non-

standard type. The kernel is singular in both arguments at the origin, resulting

in multiple solutions, one of which is differentiable at the origin.

We consider numerical methods to approximate any of the (infinitely many)

solutions of the equation. We go on to show that the use of product integration

over a short primary interval, combined with the careful use of extrapolation

to improve the order, may be linked to any suitable standard method away

from the origin. The resulting split-interval algorithm is shown to be reliable

and flexible, capable of achieving good accuracy, with convergence to the one

particular smooth solution.

2

Contents

1 Introduction 7

1.1 Rationale . 7

1.2 Derivation . 10

1.3 Computation . 13

2 Integral Equations 14

2.1 Classification . 15

2.2 Existence and Uniqueness of Solutions 16

2.3 Solution methods . 21

2.3.1 The Convolution Equation 23

3 A Class of Integral Equations with Weak Singularity 25

3.1 Rationale . 25

3.2 The Fredholm Alternative . 26

3.3 Structure and Behaviour of Solutions 28

3.3.1 Existence and Uniqueness for μ > 1 28

3.3.2 The Han Solution . 29

3.3.3 Re-assessment of the solution 30

3.3.4 Smoothness of the C1 solution 37

3.4 Further Implications . 38

3.5 Stability . 40

3.6 The alternative equation . 41

3

3.6.1 Additional Results . 43

3.7 Transformation . 45

3.8 Reprise . 47

4 Numerical Methods of Solution of Volterra Integral Equations. 48

4.1 Preliminary . 48

4.2 Basic Methods of Quadrature . 50

4.3 Newton-Cotes Methods . 51

4.4 Gregory methods . 54

4.5 Runge-Kutta Methods . 55

4.5.1 RK methods for Volterra integral equations 57

4.6 Gaussian Quadrature . 58

4.6.1 Gauss-Legendre methods 59

4.7 Linear Multstep Methods . 61

4.7.1 BDF . 65

4.8 Product Integration . 67

4.9 Hermite Interpolation . 69

4.10 Extrapolation Methods . 71

5 Existing Algorithms 76

5.1 Approximation methods . 76

5.1.1 Product Euler . 76

5.1.2 Product Trapezoidal . 78

5.1.3 Hermite-type Collocation 78

5.2 Recent work . 79

5.3 Perspective . 80

6 A Split-interval Scheme 82

6.1 An Algorithm for Singularity . 82

6.1.1 Primary interval . 84

4

6.1.2 Convergence Acceleration 86

6.1.3 Secondary schemes . 89

6.2 Construction of the split-interval algorithm 91

6.3 Error analysis . 93

6.3.1 Second interval . 93

6.3.2 First interval . 98

6.3.3 Propagated error . 99

6.3.4 Combined Error . 100

6.3.5 The effect of extrapolation 101

6.3.6 Summary . 102

6.4 Product Trapezoidal Rule . 103

6.4.1 Lyness and Ninham . 103

6.4.2 de Hoog and Weiss . 108

7 Numerical Results 113

7.1 Test Equations . 114

7.2 Secondary Methods . 115

7.2.1 Basic Methods . 116

7.2.2 Newton-Cotes . 120

7.2.3 Runge-Kutta . 121

7.2.4 Linear Multistep schemes 127

7.3 Primary Methods . 129

7.3.1 Product Euler . 130

7.3.2 Product Trapezoidal . 130

7.3.3 Hermite-type collocation 132

7.3.4 Comparison of primary methods 133

7.4 Extrapolation . 134

7.4.1 Modified Richardson . 134

7.4.2 E-algorithm . 135

5

7.5 The Split-interval scheme . 136

7.6 Summary . 144

8 Conclusions 146

8.0.1 Theoretical Conclusions 147

8.0.2 Numerical Approximation 148

8.0.3 Combined Scheme . 151

8.0.4 Further work . 151

A Error analysis 152

A.1 Second interval: An Alternative Approach 152

B Tabulated Results 158

B.1 Secondary Methods . 158

C Runge-Kutta Methods 162

C.1 RK standard methods . 162

C.2 Radau I . 162

C.3 Radau IA . 163

C.4 Radau IIA . 163

C.5 Lobatto IIIC . 164

C.6 Gauss-Legendre . 164

D A VLM Method 165

E Smoothness Properties 167

F Glossary of Terms 169

6

Chapter 1

Introduction

1.1 Rationale

This thesis is concerned with a certain class of Volterra integral equations with

a non-standard singularity of the kernel. In particular, we are interested in the

linear equation

u(t) = g(t) +

∫ t

0

sμ−1

tμ
u(s) ds, (1.1)

where we find that the kernel is singular in both arguments.

Equation (1.1) results from a heat conduction problem with non-standard

boundary conditions, providing a focus of analytical and numerical development

at Instituto Superior Tecnico, Lisbon, and University of Chester, UK, in collab-

oration. The class of equations includes notably the presence of a singularity in

the kernel, of an unusual type, and one which does not conform with the subject

as presented by the classical texts.

Our objectives are:

1. to consider the theoretical approach in the context of integral equations,

2. to develop a reliable and accurate means of numerical solution for the case

when μ < 1, by separation of the interval of integration into a region close

7

to the origin, which addresses the singularity, and the remaining extent of

the domain, which can be approximated by standard methods.

The main contribution of this thesis is the development of a split-interval

approach, which uses extrapolation procedures to raise the order of the primary

(first interval) method to match that of the secondary.

Motivation

The numerical solution of equations of the type (1.1) is found for the case μ > 1

in [26] and [64] by means of (a) product integration methods and (b) Hermite

collocation, with the expected convergence towards a unique solution. When

0 < μ < 1 there is a family of non-smooth solutions, and a single smooth solution,

provided the input function g is smooth. Numerical approximation based on the

product Euler scheme [44] converges to the smooth solution, but with poor order

of convergence, and extrapolation (convergence acceleration) is used to improve

the quality of the results. This requires the computation of many trajectories at

progressively reduced stepsize, and a more efficient use of computational time is

sought which can provide better quality of results.

Singular integral equations

Singularity of the kernel is not a recent phenomenon: probably the earliest inte-

gral equation is the Abel equation,

g(t) =

∫ t

0

y(s)√
t− s

ds,

which we now classify as a Volterra equation of the first kind, (y being the

unknown function for which a solution is required). The classical theory on

singular integral equations relates to such kernels with weak singularity of the

form (t − s)−α, 0 < α < 1, leading to a class of equations which are soluble by

use of the Laplace transform. However, equations such as (1.1) do not conform

to this pattern, and different treatment is required.

8

General considerations

The environment of equation (1.1) is straightforward: we are looking at a single

equation rather than a system, of linear type, in two dimensions; the variables,

dependent and independent, belong to the set of real numbers R, with the inde-

pendent variable representing time. The integration process is in the main that

of the Riemann integral, with reference to the Lebesgue integral when specifically

required. We will use the ideas of functional analysis for the more generalised

aspects of our discussion.

This class of equations causes us to examine wide-ranging issues, commencing

with careful assessment of theorems regarding the existence and uniqueness of

solutions, before pursuing the question of applying various numerical methods

of solution. We examine the problem in relation to a single equation, linear in

form, although much of the theoretical argument can be extended to the non-

linear case, to complex values, and to systems of integral equations.

The solution behaviour of this class of equations depends on the value of a

parameter μ > 0. When 0 < μ < 1, there is a family of solutions, only one

of which is of continuity order m ≥ 1. Previous studies have concentrated on

the single smooth solution, whereas our investigation extends to the family of

solutions for any given forcing function. We will demonstrate that, once away

from the origin, any one of the family of solutions may be uniquely defined as a

trajectory whose value is given at some point t = t1, t1 �= 0. This line of enquiry

provides insight into our construction of the split-interval method introduced in

chapter 6. Existing approximation methods, as described in [26], [43], [44] or [64]

are necessarily restricted in order to overcome the singularity at the origin, but

we shall be seeking a neater and more economical approach which may be linked

up away from the singularity. A primary aim is to provide a means of solution

which allows more flexibility than product integration will allow. Questions

of convergence, consistency and stability will be considered, and the effect of

9

changing the length of the initial interval, and the parameter μ over 0 < μ < 1.

The numerical approximation rules which we have selected to apply in this

context can be separated into two categories. The first set of schemes is chosen for

their potential ability to commence at the origin; the second is a set of standard

methods which are well understood in the context of ODE solution, which we

apply away from the origin in order to assess whether the order of convergence

or any other known characteristics of the method are affected by application to

a test equation within the class of equations. The combined scheme employs a

carefully constructed acceleration process to improve the quality of the results.

1.2 Derivation

The class of equations which is the topic of this thesis derives originally from a

paper by Bartosevich (1975) [9] in which he describes a problem concerning the

temperature distribution in two conductors of different lengths and thermal diffu-

sivities. There are certain non-standard boundary conditions attached, resulting

in a system of four Volterra-type integral equations with unbounded lower limit.

A further transformation yields a representation in operator form, which allows

solution by means of operator series. The text of this document is brief, and

apart from the concern with the two heat conductors of different diffusivities, we

know nothing of the background to which the problem relates. The references

consist of two standard texts. This is followed by a further work [10], in which

the expansion by means of Watson operators is obtained. The next publication

in sequence - also originating in the (then) USSR - is that of Sub-Sizhonenko [63]

(1979). The commencement of [63] postulates a single equation in terms of an

integral operator, which is a simplified form of one of the Volterra-type equations

in [9].

10

We take as our starting point the equation of Sub-Sizhonenko:

1√
π

∫ ∞

1/x

(xs)−1(log(xs))−1/2f(s) ds+
1

x
f(1/x) = g(x) (1.2)

where g(x) ∈ L2(0,∞). The method of expansion with respect to orthogonal

Watson operators suggested by Bartosevich is used to obtain the explicit form

of the solution of (1.2) as:

f(x) =
d

dx

∫ 1/x

0

{∫ ∞

− log xs

erfc(t1/2)dt− erfc((− log(xs))1/2)

}
g(s)

s
ds+

g(1/x)

2x
,

where f ∈ L2[0,∞]. The term erfc(x) has the usual definition of the comple-

mentary error function,

erfc(x) =
2√
π

∫ ∞

x

e−t2dt.

Rooney [56] extends the solution space to Lμ,p, (μ > 0, 1 ≤ p < ∞) of the

Mellin transform space, and provides a simplified solution structure to equation

(1.2) as

f(x) =

∫ ∞

x

[
(t/x)erfc((log(t/x))1/2) − π−1/2(log(t/x))−1/2

]
h(t)dt/t+ h(x),

(x > 0).

This result is further developed by Lamb [40], who applies a spectral approach

to generalised fractional operators in the (complex) Banach space. Up to this

time, the methods employed have been highly theoretical, and the equations and

their solution formulae unsuited to numerical methods of approximation owing

to the singularity of the integrand in each case at the lower limit of integration,

and the unbounded upper integration limits.

Tang et al. [64] introduce the substitution F (t) = f(1/t) and H(t) = h(1/t)

into equation (1.2), leading to a standard form of the Volterra integral equation

F (t) +
1√
π

∫ t

0

1√
log(t/s)

.
1

s
F (s) ds = H(t), (t > 0).

11

However, the transformation leads to a further difficulty, in that F (0) is

unbounded, except for certain cases of f(t). A further substitution, introducing

the arbitrary parameter μ > 0,

y(t) := t−μF (t), g1(t) := t−μH(t),

leads to the equation form

y(t) +

∫ t

0

1√
π

1√
log(t/s)

(s
t

)μ

.
1

s
ds = g1(t). (1.3)

We point out that the value of μ is entirely arbitrary in this context, the term

t−μ being a device to remove the limitations on the forcing function.

The derivation and theoretical background of equation (1.3) are given fully

in [44] and the references cited therein.

The first use of product integration formulae in this context is applied to the

problem of equation (1.3) above. The product Euler and product trapezoidal

methods are applied for the case when μ > 1, with the restriction on the input

function that f ∈ Cm[0, T], where m = 1 for the product Euler and m = 2 for

the product trapezoidal scheme, with convergence orders 1 and 2 respectively.

In 1991 Diogo et al. [26] obtain a solution approximation for equation (1.3)

when μ > 1 by means of Hermite-type collocation. They show that there is a

unique solution to this equation with continuity properties similar to those of

the input function g. Further, equation (1.3) is shown in [26] to be analogous to

y(t) −
∫ t

0

sμ−1

tμ
y(s)ds = g2(t) (1.4)

in the sense that the solution of (1.4) is the same as the solution of equation

(1.3) when the input functions g1 and g2satisfy the following relationship

g1(t) = −
∫ t

0

1√
π

1√
log(t/s)

sμ−1

tμ
g2(s) ds+ g2(t).

Our interest is mainly with the simplified form, equation (1.4) (identified with

(1.1)), together with the related equation (1.3).

12

Han (1994) [32] obtains solution formulae for these equations, by means of the

related ODE. The cases when μ > 1, μ = 1 and μ < 1 are dealt with separately:

the existence of multiple solutions, one particular with at least C1 continuity is

now evident. The theory is extended to include generalised forms of the kernel.

These formulae are given in full in Chapter 3.

Lima and Diogo (1997) [43] define an associated equation in which

v(t) := tβu(t) (1.5)

g(t) := tβg(t) (1.6)

for the case when μ > 1. Existence and uniqueness of solutions to this are dis-

cussed, and the Product Euler method then applied to the transformed equation.

The results have a low order of convergence, which is improved by Richardson’s

extrapolation. The device (1.5/1.6) enables g(t) to take the form t−αf(t), α > 0.

A further paper by Lima and Diogo [44] opens up the consideration of numer-

ical methods applied to equation (1.4) when μ < 1. The proofs are realised by

dividing the structure of the solution into two parts, separating g(t) into its value

g(0) at the origin, and the residual part g1(t) which passes through the origin.

Since the integral equation is linear, the separate solutions may be combined

to give the solution of the original equation. This paper and its predecessors

provide the foundation for the present investigation.

1.3 Computation

All computer programs for the numerical methods described in this thesis have

been written and implemented by the author, using Matlab sv6.5, on a system

with Intel Celeron Pentium II processor, and 256 Mb of RAM.

13

Chapter 2

Integral Equations

Our objective in this chapter is to summarise the existing theory on integral

equations, to establish the classifications, to find the criteria for existence and

uniqueness of solutions for the Volterra equation, and, where possible, the means

of obtaining an analytic solution. The principal sources are Linz [46], Kreyszig

[38], Riesz and Sz.Nagy [55], Atkinson [5], Hochstadt [33] and Smithies [61].

The application of integral equations to a wide range of physical problems

is well-established, the integral equation allowing greater flexibility than the dif-

ferential equation, both in structure (for example, the renewal equation), and

tolerance of input functions such as the ‘step’ function, usually described as gen-

eralized functions. The study of integral equations developed in parallel with

that of functional analysis, and the availability of such techniques as normed

spaces, measure theory and the Laplace transform, created a comprehensive and

adaptable theoretical basis. The background is well-documented, and we do not

propose to go into the detail. (see e.g Bernkopf [11]).

The development of integral equations was occurring, more or less simulta-

neously, with two distinct schools of thought. These have resolved into what we

now consider to be main two main classes of integral equation: the Fredholm

equation (FIE), and the Volterra equation (VIE).

14

2.1 Classification

Let K(t, s, φ) be a known expression (the ‘kernel’), and ψ(t) also known (the

input term), then we define the Volterra equation of the second kind to be an

equation of the form

φ(t) = ψ(t) +

∫ t

a

K(t, s, φ(s))ds, (2.1)

where φ is the unknown function for which a solution is required. The upper limit

of integration is variable, and we can usually take the lower limit as zero. If the

unknown function does not appear outside the integrand, then the equation is a

Volterra equation of the first kind. We make the following further distinctions:

a.) if K(t, s, φ(s)) = K(t, s)φ(s), then the equation is termed linear

b.) if K(t, s) = α(t)β(s) or if K(t, s) =
∑

i αi(t)βi(s) then the equation is

termed separable or degenerate

Further clarification will be made at the appropriate stage.

We define the Fredholm integral equation of the second kind

φ(t) = ψ(t) +

∫ b

a

K(t, s, φ(s))ds, (2.2)

with similar description as the Volterra equation, the only difference being that

the limits of integration are now fixed. However, the behaviour and treatment

of the two is very different, and we shall see that when we require a generalized

approach, we find the abstract methods of functional analysis more convenient.

We shall in particular be considering the class of linear Volterra integral

equations of the second kind, and the methods we describe in this chapter relate

to such equations, except where specifically stated. We draw on the standard

methods as described in e.g. [46] and [33], paying particular attention to the

conditions, and for now leave aside the implications of the functional analysis

approach.

15

2.2 Existence and Uniqueness of Solutions

The ideal case for the solution of any time-based equation is that there is one

and only one solution, which may be expressed as a function, or evaluated nu-

merically to satisfy the discretized equation. The usual result of solving an ODE

includes the arbitrary constant of integration, and the unique solution is de-

fined by initial or alternatively boundary values - the initial (IV) (or boundary

(BV)) value problem. The constraints placed on an IV problem for a unique

solution to exist might be expected to have an exact parallel for the VIE if it

is considered as another means of representation of the IV problem. However,

the smoothing properties of the integration process, together with the defini-

tion of certain function spaces, notably L2[a, b], have enabled the restrictions to

be eased, and the proofs amended accordingly. We take the usual definition of

L2[a, b] as the vector space of all continuous real-valued functions f on [a, b], with

norm ‖ f ‖=
[∫ b

a
| f(x) |2 dx

]1/2
.

The standard theoretical approach in dealing with the issue of existence and

uniqueness of solutions involves restraints on the kernel K(t, s) as well as on the

forcing function ψ. The limiting factor may be one of continuity order, or the less

restrictive Banach space L2[a, b], or a Lipschitz condition. We introduce several

basic theorems at this early stage, and in Chapter 3 we shall see that certain

kernels do not satisfy such requirements, and therefore merit careful attention.

Continuity Conditions

The usual starting point is that, for the linear case, K(t, s) is required to be

continuous. This implies no more than C0 continuity, on the triangle 0 ≤ s ≤

t ≤ T , T < ∞, over the interval [0, T] which leads to the basic proof, the

method of successive approximations, using the contraction mapping argument

(see e.g. [38], [46], [33]). This leads to a unique continuous solution. However,

as demonstrated in e.g. [46], there may be other non-continuous solutions. The

16

proof, together with the conditions on g and K can be extended to the Cm case.

L2[a, b] Conditions

If we now take those texts which base their proofs on the existence of an L2[a, b]

solution, we find that the kernel K(t, s) is required to be square-integrable, i.e.

to satisfy ∫ b

a

∫ b

a

| K(t, s) |2 dsdt ≤ N2 <∞,

and we see (e.g. in Smithies [61]) that again we have the existence of a solution,

this time in L2[a, b], but not necessarily its uniqueness. We note also (see [61])

that ‘a continuous kernel is also, a fortiori, an L2 kernel’ (the implication being

again that this applies over the compact interval [a, b]).

The Lipschitz Condition

There is, however, a further condition, which if applicable to the kernel, results

in the equation having one and only one solution, of appropriate continuity order

if the continuity conditions apply, or in L2[a, b] if that is the relevant function

space. This is the Lipschitz condition, applied to the third argument of the

kernel, as

| K(t, s, φ1) −K(t, s, φ2) |≤ L | φ1 − φ2 |,

where the constant L represents a bound on the partial derivative δK/δy. Where

K(t, s, y) is non-linear in y, the Lipschitz condition must be included specifically

for the unique solution to exist, and is applied on a local basis in this context.

If the kernel is linear in y, and K(t, s) is continuous and therefore bounded

on the interval of integration, the Lipschitz condition will clearly hold, and is

used in the proof - even though not necessarily stated as an a priori condition

of the theorem. For a linear kernel, if K(t, s) is not bounded, then the Lipschitz

condition also fails.

17

If the space involved is L2[a, b], then the inequality is as defined above, but

taking the appropriate norm in place of the modulus. When the problem exists

in the form of a system of equations, the Lipschitz constant is represented by a

bound on the appropriate norm of the Jacobian matrix ‖ J ‖.

Theorems on Existence and Uniqueness

The main theorem is given by Linz [46] as follows:

Theorem 2.2.1 If k(t, s) is continuous in 0 ≤ s ≤ t ≤ T and ψ(t) is continuous

in 0 ≤ t ≤ T then the integral equation (2.1) possesses a unique continuous

solution for 0 ≤ t ≤ T .

This theorem depends on a contraction mapping argument, which may be ex-

tended to include the case for which the kernel is square-integrable, and the input

function ψ ∈ L2[0, T]. We find this developed by Hochstadt [33] (Theorem 6):

Theorem 2.2.2 Let ψ(t) ∈ L2[0, 1] and suppose k(t, s) is such that

∫ 1

0

∫ 1

0

∣∣∣∣k(t, s)

∣∣∣∣
2

ds dt <∞,

then

φ(t) − λ

∫ t

0

k(t, s)φ(s)ds = ψ(t)

has a unique solution for all λ ∈ L2[0, 1].

There are two points of particular note here:

1. Hochstadt derives his results primarily for the Fredholm equation; the

transfer to the Volterra equation is straightforward, if we take the limits

as [a, b] and then define k(t, s) = 0 for s > t ([33] p.31);

2. further, again arising from the Fredholm structure, we find the parameter λ

before the integral: the result for the Fredholm equation involves a restric-

tion on the range of values of λ, but for the Volterra equation there is no

18

such restriction, if the continuity requirements are defined as in Theorem

2.2.1.

These two theorems provide the fundamental basis for existence and uniqueness

of solutions. However, even at this early stage we find a point of principle which

has important implications in our next chapter. In Theorem 2.2.1 we are told

that there is a unique continuous solution: it is made clear subsequently by

Linz that there may exist other non-continuous solutions. Hochstadt is more

explicit, and states that “. . . the space in which one chooses to work is significant

in determining the resultant theory . . . ”. Hence by defining the space in which

certain solutions are admissible, the existence and uniqueness theorems hold, but

this does not preclude further solutions occurring outside that space.

The issue for the numerical analyst in such a case is to identify whether an

approximation method converges to a unique solution trajectory in the defined

space, or to one of the other nonunique trajectories, and what would be the

significance of such behaviour.

There is a lifting of these constraints for a class of equations which is weakly

singular, and which has been found to have unique solutions: these are equations

with kernels of the form k(t, s) = p(t, s)(t − s)−α, where p(t, s) is smooth, and

−1 < α < 0, sometimes known as Abel-type equations. The classical theory

developed for the solution of singular equations relates to this structure, which

enables the use of the Laplace Transfoms.

The constraints on the Volterra equation are a major issue in our investiga-

tion, and in our next chapter we will consider a class of equations which do not

comply with the conditions attached to the kernel, nor are they of Abel type, so

a careful inspection of the wording is essential.

19

The Fredholm Alternative

Finally, we have a theorem which is not just a framework for the uniqueness

of the solution, but gives insight on the case where a family of solutions exists.

This is given in various forms, depending on the context of writing. We take the

theorem as stated by Atkinson [5], in the general form of functional operators:

Theorem 2.2.3 The Fredholm Alternative (in: Atkinson [5])

Let X be a Banach space, and let K : X → X be compact. Then the equation

(Λ−K)x = y,Λ �= ∅, has a unique solution x ∈ X if and only if the homogeneous

equation (Λ − K)z = 0 has only the trivial solution z = 0. In such a case, the

operator Λ − K : X → X has a bounded inverse (Λ − X)−1, (Λ := λI, I being

the identity operator).

If we take this a step further, to the case for which the associated homogeneous

equation has non-zero forms of solution, we have the superposition of the partic-

ular solution together with solutions to the homogeneous equation providing the

full solution set of the equation. This is made clear in the theorem as presented

by Riesz and Sz.-Nagy [55], including the complex case:

Theorem 2.2.4 The Fredholm Alternative (in: Riesz and Sz.-Nagy [55])

Either the integral equations

f −Kf = g (a); f ′ −K∗f ′ = g′ (b)

with kernels K(x, y), K∗(x, y) = K(y, x), have unique solutions f, f ′, whatever

be the given functions g, g′, and in particular have the unique solutions f =

0, f ′ = 0 when g = 0, g′ = 0, or the homogeneous equations

ϕ−Kϕ = 0 (c); ϕ′ −K∗ϕ′ = 0 (d)

also have non-zero solutions, and the number n of linearly independent solutions

is finite and the same for the two homogeneous equations.

20

In the second case, a necessary and sufficient condition that equations (c) and

(d) have solutions is that g be orthogonal to all the solutions ϕ of (c) and that g′

be orthogonal to all the solutions ϕ′ of (d).

This topic will have a considerable bearing on our treatment of the class

of equations in question. No doubt, originally the Fredholm alternative was

considered in the context of the Fredholm equations, with fixed limits on the

integration. Later representations, however, such as the two forms of the theorem

quoted above, are general results, applied in the context of functional analysis.

Since we are considering a class of Volterra integral equations, we are able to take

the view that these may be considered as special cases of the Fredholm class of

equations, with the limits fixed as 0 ≤ a ≤ s ≤ b, and further that K(t, s) = 0

for s > t. The discontinuity created in the kernel is acceptable if we consider the

solution u ∈ �L2[a, b].

Remark 1 The preceding discussion demonstrates the extreme care which we

have to take in considering the use of the word ‘unique’ in the description of

solution(s) of a VIE. The phrase most commonly used in the texts is that ‘there

is a unique solution ∈ Cm ’, and we have to consider that this may not necessarily

preclude the existence of further solutions outside Cm. A major feature of the

Fredholm alternative is that it takes account of the further solutions which exist

when L(y) �= 0.

2.3 Solution methods

A means of obtaining the analytic solution(s) of a VIE is only available in a

restricted number of cases. (See e.g. [46]). We first introduce the definition of

the resolvent kernel:

21

Definition 2.3.1 Resolvent kernel:

Let k0 = k(t, s), kn(t, s) =
∫ t

s
k(t, τ)kn−1(t, τ)dτ . Obtaining the successive

terms kn by iteration, the resolvent kernel is R(t, s) where

R(t, s) =
∞∑

n=0

kn(t, s).

Again, k(t, s) is required to be continuous [46] or in L2[a, b] [33], depending on

the space in which we are working. This leads to the following solution formula:

Theorem 2.3.1 If k(t, s) and ψ(t) are continuous, then the unique continuous

solution of equation (2.1) is given as

φ(t) = ψ(t) +

∫ t

0

R(t, s)ψ(s)ds.

Degenerate kernels

Re-stating the case for which the kernel is separable, the VIE is of the structure

φ(t) = ψ(t) +

∫ t

0

m∑
i=1

Pi(t)Qi(s, φ(s))ds. (2.3)

For the linear case, K(t, s, φ) = k(t, s)φ(s) where

k(t, s) =
m∑

i=1

Pi(t)Qi(s)

this is called a degenerate kernel of rank m. We find that this is equivalent to

the system of ordinary differential equations

x′i(t) =

m∑
j=1

Pj(t)Qi(t)xj(t) +Qi(t)g(t),

whose solutions xi(t) are characterised by xi = 0, i = 1, . . . , m.

The solution of equation (2.3) is then found from the formula

φ(t) = ψ(t) +
m∑

i=1

xi(t)Pi(t).

22

2.3.1 The Convolution Equation

The classical theory concerning weakly singular Volterra equations relates to

those with a convolution kernel, where we define the convolution a ∗ b as

a ∗ b =

∫ t

0

a(t− s)b(s)ds,

and the Volterra convolution equation

φ(t) = ψ(t) +

∫ t

0

k(t− s)φ(s)ds.

The solution of such an equation is readily obtained using the Laplace trans-

form, defined as

L(f)(w) =

∫ ∞

0

e−wtf(t)dt,

subject to certain restraints on the domain of w. The convolution theorem then

states that

L(a ∗ b) = L(a).L(b),

which is equivalent to the statement that the Laplace transform of a convolu-

tion of two functions is equal to the product of the Laplace transforms of those

functions. We are now able to write the convolution equation in the form

φ = ψ + k ∗ φ,

and applying the transform to both sides yields

L(φ) = L(ψ) + L(k).L(φ)

which we can re-arrange to give

L(φ) =
L(ψ)

1 − L(k)
= L(ψ)

(
1 +

L(k)

1 − L(k)

)
.

If the expression on the right hand side is a known transform, or can be put into

a linear combination of such, then the inverse transform can be readily obtained,

23

from known tables, solving for φ; otherwise it is possible, though less convenient,

to use the inverse formula

L−1(φ)(t) =
1

2πi

∫ α+i∞

α−i∞
ewtu(w)dw.

This idea can be extended to the resolvent kernel formula for the solution of the

linear convolution equation, so that if the resolvent is known, or can be found,

we may use the resolvent equation

R(t) = k(t) +

∫ t

0

k(t− s)R(s)ds.

This can then be solved using the formula

φ = ψ + L−1

(
L(k)

1 − L(k)

)
∗ ψ.

We note that the expression on the right does not exist when L(k)=1: this

and other aspects of the Paley-Wiener theory as applicable to integral equations

is dealt with in some depth by Gripenberg, Londen and Staffans [30]. The

conditions on the convolution terms are such that these may be weakly singular,

but integrable. This allows the use of the convolution method where kernels of

the type (t−s)−β are involved, 0 < β < 1, as well as the case where the equation

is a non-singular difference equation.

The above is a brief summary of the way in which the Laplace transform can

be used for such equations. For a fuller description and proofs we refer to Linz

[46], from which the above is drawn, and as a main reference on this subject

Churchill [17].

24

Chapter 3

A Class of Integral Equations

with Weak Singularity

3.1 Rationale

The aim of this thesis is to explore the theoretical background of, and to further

develop the numerical means of solution for a certain class of Volterra integral

equations, with weak singularity at the origin.

The class of equations, introduced in Chapter 1, is typified by kernels of the

form

K1(t, s, u) = k(t, s, u)
sμ−1

tμ

K2(t, s, u) = k(t, s, u)
1√
π

1√
log(t/s)

sμ−1

tμ

where k(t, s, u) has “well-behaved” characteristics on the triangular domain 0 ≤

s ≤ t ≤ T . The discussion which follows will pursue the simplest possible case,

where k(t, s, u) is linear in u, and k(t, s) = 1. Thus the VIE which is the subject

matter of our investigation reduces to

u(t) = g(t) +

∫ t

0

sμ−1

tμ
u(s)ds. (3.1)

25

This equation derives originally from a problem in heat conduction, and the

background has been described in Chapter 1. We now look at the problem

in detail, to find why such an apparently innocuous equation cannot be dealt

with by the usual methods applicable to integral equations. We find that the

conditions appropriate to the various proofs and solution derivations described

in the previous chapter are not met in this case: the kernel does not comply with

any continuity order, is not in L2[0, b], nor can a Lipschitz constant be obtained,

for any interval which includes the origin. The underlying implication of this

aspect is the topic of this chapter.

The structure of solutions to this equation depends on the value of the ex-

ponent μ, and three separate categories can be identified, depending on whether

0 < μ < 1, μ = 1, or μ > 1. The case when μ > 1 is the most amenable: the

integrand is non-singular (except at t = 0), and we are able to show that equa-

tion (3.1) has a unique solution, provided that the input function g has certain

constraints in place. When μ = 1, the uniqueness breaks down, and we have a

set of parallel solutions, while when μ < 1, there is a family of solutions, one of

which retains certain smoothness properties, the remainder having infinite gra-

dient at the origin. This is the situation in which we are most interested, and in

this chapter we will summarize the previous work, and introduce a new approach

to describe and develop the theoretical understanding of equation (3.1) before

we go on to consider numerical means of solution.

3.2 The Fredholm Alternative

The Fredholm Alternative is a theorem based on a functional analysis approach,

which provides further insight into the qualitative behaviour of solutions to equa-

tions, which are now considered as integral operators. It goes further than the

classical methods, in that we are offered an understanding of the case where

multiple solutions are known to exist.

26

The equation in which we are interested cannot be described as compact, (see

e.g. the condition (8.1-3) and related theorems in [55]), but we will examine this

equation in the light of the Fredholm alternative, and see whether the results are

relevant, even if the conditions are absent.

We are clearly in the second option of the alternative, as given in Chapter 2.

Only the real part of the theorem is required, and it is obvious (by substitution)

that the homogeneous equation

L(u) = u(t) −
∫ t

0

sμ−1

tμ
u(s)ds = 0

has solutions of the form c0t
1−μ where c0 is an arbitrary constant. A brief in-

spection shows that any other solution for L(u) = 0 is not possible. Hence we

have a family of solutions, linearly dependent on each other, but only one such

family. This result is consistent with the second part of the Fredholm alterna-

tive, provided that for the non-homogeneous equation, the input function is not

a linear dependent of this family.

The intriguing nature of equation (3.1) is apparent when we consider the

comparison with a Fredholm equation: the Fredholm alternative then relates to

the homogeneous equation (λI − F)x = 0, where F is the Fredhom integral

operator, I the identity operator, and λ is defined as an eigenvalue: a unique

solution to the Fredholm equation exists for values of λ for which there is no

‘general’ solution of this type (see e.g. [5]). This aspect is usually irrelevant

to a Volterra equation for which the kernel is compact: λ is not restricted. If

we return to equation (3.1), defining the integral operator as G(u), we find that

for any value of λ other than unity, there are no solutions to the homogeneous

equation (λI − G)u = 0, and the value λ = 1 (identified with equation (3.1)) is

the only case for which multiple solutions to equation (λI − G)u = g, exist.

27

3.3 Structure and Behaviour of Solutions

3.3.1 Existence and Uniqueness for μ > 1

The existence and uniqueness of the solution to the related equation

y(t) = f(t) +

∫ t

0

K2(t, s, y)ds

is dealt with by Tang et al. [64] for μ > 1. We follow the same reasoning for

equation (1.1), as follows:

Theorem 3.3.1 If g(t) ∈ Cm[0, T] and μ > 1 then the equation

u(t) = g(t) +

∫ t

0

sμ−1

tμ
u(s)ds

possesses a unique solution u ∈ Cm[0, T].

Proof

Choose an arbitrary function v ∈ Cm[0, T]. Define u = S(v) such that

u(t) = g(t) +

∫ t

0

sμ−1

tμ
v(s)ds.

Setting s = λt, ds = t dλ,∫ t

0

sμ−1

tμ
v(s)ds =

∫ 1

0

λμ−1v(λt)dλ.

Since v, g ∈ Cm[0, T]

u(j)(t) = g(j)(t) +

∫ 1

0

λμ−1+jv(j)(λt)dλ (3.2)

where 0 ≤ j ≤ m and u(j) := dju/dtj.

If u1 = S(v1) and u2 = S(v2), then from (3.2)

|u(j)
1 − u

(j)
2 | ≤

∫ 1

0

λμ−1+j |v(j)
1 (λt) − v

(j)
2 (λt)|dλ

≤
∫ 1

0

λμ−1dλ ‖ v1 − v2 ‖m

28

where

‖ φ ‖m:= max

∣∣∣∣djφ

dtj

∣∣∣∣ , 0 ≤ j ≤ m, 0 ≤ t ≤ T

so that

‖ u1 − u2 ‖m≤
1

μ
‖ v1 − v2 ‖m .

If μ > 1, this is a contraction mapping, and we have a unique solution u ∈

Cm[0, T]. �
For a more informative result, and extending to the case when μ ≤ 1, we

shall require the solution formula given by Han [32].

3.3.2 The Han Solution

We re-state equation (1.1) for which we consider solutions in this section:

u(t) = g(t) +

∫ t

0

sμ−1

tμ
u(s)ds. (3.3)

The solution obtained by Han was derived using the conversion from VIE to

ODE and in Lemma 2.1 of [32] the solution was formulated as follows:

For μ > 1, g ∈ Cm[0, T], (m ≥ 0), there is a unique solution u(t) ∈

Cm[0, T] ,

u(t) = g(t) + t1−μ

∫ t

0

sμ−2g(s)ds.

For μ = 1, g ∈ C1[0, T], g(0) = 0,

u(t) = c0 + g(t) +

∫ t

0

s−1g(s)ds.

For μ < 1, g ∈ C1[0, T],

u(t) = c0t
1−μ + g(t) +

1

μ− 1
g(0) +

∫ t

0

sμ−2

tμ−1
[g(s) − g(0)]ds. (3.4)

In this section we examine this result, using methods applicable to integral

equations, to see whether the conversion to ODE has properly represented the

solution set. We take as the underlying hypothesis the premise that in accordance

with the theorems stated in Chapter 2 on existence and uniqueness of solutions,

29

together with the Fredholm alternative, we may expect to obtain solutions of

equation (3.3), and hence owing to the connection of equation (1.3), as in the

following two statements:

Theorem 3.3.2 Let g ∈ Cm[0, T], m ≥ 1, then there is a single solution of (3.3),

u0 ∈ Cm[0, T], together with a family of solutions which inclue a further term

linearly independent of the smooth solution u0, non-differentiable when μ < 1.

Conjecture 3.3.3 Let g ∈ L2[0, T], then there is a single solution of (3.3),

u0 ∈ L2[0, T], together with a family of solutions which inclue a further term

linearly independent of the smooth solution u0, non-differentiable when μ < 1.

Remark 2 The theorem above is fully supported in this section. The conjecture

which follows we believe to be also valid, as the functional analysis approach can

be expected to take the L2[0, T] space into account; however, rigorous proof is not

at present available.

3.3.3 Re-assessment of the solution

We quote from Polyanin and Manzhirov [51], that

“The general solution of a Linear Non-homogenous Integral Equation is the

sum of the general solution Y = Y (x) of the corresponding homogeneous equa-

tion L[y] = 0, and an arbitrary particular solution y = y(x) of the non-homogeneous

equation L[y] = g(x), i.e. y = Y + y.” This is the practical application of the

Fredholm Alternative, which we have given abstractly in section (2.2).

We consider the structure of the formula (3.4). Taking the terms in order,

1. c0t
1−μ will be shown to be the complementary solution, i.e. the general

solution of the assocated homogeneous equation L(u) = 0, and

u(t) = g(t) +

∫ t

0

sμ−2

tμ−1
g(s)ds (3.5)

30

a particular solution. See item 4. We note that the complementary solution

will be orthogonal to the particular solution derived below, provided g �∈{
φ : φ(t) = k t1−μ

}
, k arbitrary.

2. g is the input function.

3. The third term could be considered superfluous, as it cancels out against

the second term of the integrand. However, if we retain it in place, and

subtract out the lower limit of the integrand, this yields the y(0) value as

g(0) + 1
μ−1

g(0) - enabling us to define the integral term at the lower limit

as zero. This gives y(0) = g(0) μ
μ−1

, tying in with the Han result [32] (2.5).

4. While the conditions justifying the use of a resolvent kernel are not present,

if we follow the usual procedure for finding such a kernel the result obtained

is the form identical to the kernel in the Han solution: H(t, s) = sµ−2

tµ−1 .

We justify the above in the Lemmas and the Remark which follow.

Lemma 3.3.4 The solution of the homogeneous equation L[u] = 0 corresponding

to equation (3.1), is u = c0t
1−μ, where c0 is an arbitrary constant.

Proof

We take the homogeneous equation L(u) = 0,

u(t) −
∫ t

0

sμ−1

tμ
u(s)ds = 0.

Substitution of the term u(t) = c0t
1−μ demonstrates that this is indeed the

solution of the homogeneous equation. Alternatively, differentiating,

u′(t) =
−μ
tμ+1

∫ t

0

sμ−1u(s)ds+
1

t
u(t)

which leads to
du

dt
=
u

t
(1 − μ)

31

and integration gives the solution of L(u) = 0 as

u(t) = c0t
1−μ.

�
The particular solution will depend on the term g(t).

Lemma 3.3.5 There is a particular solution to (3.3) with the kernel sμ−2/tμ−1.

Proof

We take the result from [51] (p.119), changing the use of μ to κ, to avoid confu-

sion.

For a Volterra equation where the structure is of the form

y(x) + A

∫ x

a

xλtκy(t)dt = f(x),

the solution is given as

y(x) = f(x) −
∫ x

a

Q(x, t)f(t)dt

where

Q(x, t) = Axλtκexp

{
A

λ+ κ+ 1
(tλ+κ+1 − xλ+κ+1)

}

for λ+ κ + 1 �= 0 and

Q(x, t) = Axλ−Atκ+A

if λ+ κ+ 1 = 0, which applies in the case of equation (1.1).

Applying the above to equation (1.1), with A = −1, κ = μ− 1, λ = −μ, and

using t and s as the time variables, this gives the solution form as

y(t) = g(t) +

∫ t

0

Q(t, s)g(s)ds

where Q(t, s) = +t−μ+1sμ−2 concluding the Lemma. �
Note that the kernel Q(t, s) of the solution is identical to the resolvent form

R(t, s) developed below.

32

To construct R(t, s), we bear in mind that the customary constraints do not

apply at the origin - however, we require a formula which can yield a solution for

t ∈ [0, T], so provided we can specify the value at t = 0, let us for this purpose

temporarily suspend the restriction, and follow the usual procedure:

Remark 3 If suitable conditions were in place, then the resolvent kernel would

take the form R = sµ−2

tµ−1 .

Proof

The proof is obtained by creating a Neumann series, by induction. We follow

the notation of Linz [46].

K0 =
sμ−1

tμ

K1 =

∫ t

s

τμ−1

tμ
sμ−1

τμ
dτ

=
sμ−1

tμ
(log t− log s)

K2 =

∫ t

s

τμ−1

tμ
sμ−1

τμ
(log τ − log s)dτ

=
sμ−1

tμ
(log t− log s)2

2
.

Now take the case for Kr+1 : r ∈ Z. Assume that

Kr =
sμ−1

tμ
1

r!
(log t− log s)r

Kr+1 =

∫ t

s

τμ−1

tμ
sμ−1

τμ

1

r!
(log τ − log s)r

=
sμ−1

tμ

∫ t

s

(log τ − log s)r

τ
dτ.

Using the substitution v = log τ − log s,

Kr+1 =
sμ−1

tμ
1

(r + 1)!
(log t− log s)r+1.

33

We have shown that this is so for r = 0, 1, hence true for all r ∈ Z, which

completes the induction. The resolvent kernel is then formally obtained by sum-

mation

R(t, s) =
∞∑
i=1

Ki(t, s)

=
sμ−1

tμ

{
1 + log

t

s
+

1

2!

(
log

t

s

)2

+
1

3!
(log

t

s
)3 + ...

}

=
sμ−1

tμ
exp

{
log

t

s

}

=
sμ−2

tμ−1
.

This completes the proof. �
We note that this is identical to Q(t, s) obtained by Lemma 2, and also the

form of resolvent identified by Brunner and Van der Houwen [14] (p.39) for the

class of VIE’s whose kernels are separable.

So we have been able to verify that the ODE solution for μ < 1 holds good

when examined in the context of integral equation treatment, consisting of a

single smooth solution, together with a family of non-smooth solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

mu = 0.4

h = 1/640

epsilon=0.4

T = 1

c=0, 1, −1, 2, −2

Multiple solutions

t

u(
t)

Figure 3.1: μ < 1

34

Case 1: μ ∈ (0, 1)

So far, we have not stipulated a range of values for μ, apart from the assumption

that μ > 0. In the foregoing arguments, we have looked at the most intricate of

the three solution formulae, which applies to the situation when 0 < μ < 1, and

all elements of this formula have now been accounted for.

Case 2: μ ∈ (1,∞)

The solution for μ > 1 may be built up in the same way, with the homogeneous

equation L(u) = 0 having solutions c0t
1−μ, and the particular solution with the

same resolvent structure u(t) = g(t) + t1−μ
∫ t

0
sμ−2g(s)ds.

We note that for 1 < μ < 2 this form of solution still has a weak singularity

in the integrand, so subtracting out as before,

u(t) = g(t) +
g(0)

μ− 1
+

∫ t

0

sμ−2

tμ−1
[g(s) − g(0)]ds,

where the integral is zero at the lower limit.

The general solution is again

u(t) = c0t
1−μ + g(t) +

g(0)

μ− 1
+

∫ t

0

sμ−2

tμ−1
[g(s) − g(0)]ds,

where the first term gives a family of solutions for arbitrary c0. The term c0t
1−μ is

now unbounded at the origin, as well as having an unbounded derivative. So for

each μ > 1 there exists a family of solutions converging asymptotically towards

the smooth solution.

Remark 4 This extends the solution set for μ > 1 to include solutions un-

bounded at the origin. If the problem to be modelled is a physical one, with an

initial value implication, these solutions are not relevant. In the wider sense of

mathematical abstraction, they are an intrinsic feature of the solution set.

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

mu = 1.5

h = 1/ 40

epsilon= 0.4

T = 1

A VIE with weak singularity: mu > 1

Figure 3.2: μ > 1

Case 3: μ = 1

Finally, we examine the case when μ = 1. The equation now reduces to

u(t) = g(t) + t−1

∫ t

0

u(s)ds (3.6)

where the solution derived by Han, in order to be meaningful, required that

g(0) = 0. However, here we find that the homogeneous equation L(u) = 0

yields solution u(t) = k, where k is an arbitrary constant. Dealing formally with

equation (3.6), as for the case when μ < 1, we obtain a resolvent kernel,

R(t, s) =
1

t

{
1 + log(t/s) + (log(t/s))2 + . . .

}
=

1

t
elog(t/s) =

1

s
,

giving the general solution

u(t) = k + g(t) +

∫ t

0

s−1g(s)ds

for an arbitrary constant k, subject to g(0) = 0, and the Han solution is again

confirmed, giving a family of parallel solutions.

The restriction that g(0) = 0 is necessary for the existence of an initial value,

u(0). However, if g(0) is non-zero, solutions may exist away from the origin. As

36

before, we subtract out the singularity at the lower limit of integration, to obtain

a family of solutions all of which are unbounded at the origin:

u(t) = k + g(t) + g(0) log t+

∫ t

0

s−1(g(s) − g(0))ds.

3.3.4 Smoothness of the C1 solution

We are now in a position to establish the behaviour of the C1 solution, in par-

ticular its differentiability for all positive values of μ. This is an extension of

the result in Theorem (3.3.1), but we are now able to use the solution formula

obtained by Han, and corroborated in the preceding section. We re-state the so-

lution, in its fundamental form, i.e. taking c0 = 0 to give the particular solution

we require:

u(t) = g(t) +
g(0)

μ− 1
+

∫ t

0

sμ−2

tμ−1
[g(s) − g(0)] ds.

Making the substitution s = tτ , we give the following result from Han [32]:

Theorem 3.3.6 Regularity of the C1 solution (Han)

When μ > 1 for any g ∈ Cm[0, T] (m ≥ 0 an integer), the integral equation

(3.3) has a unique solution u, u ∈ Cm[0, T] and ‖u‖m ≤ a‖g‖m for some constant

a.

When 0 < μ ≤ 1, for any g ∈ Cm[0, T] (m ≥ 1 an integer), with g(0) = 0

if μ = 1, the integral equation (3.3) has a family of solutions depending on a

parameter. Out of the family of solutions, there is one particular solution u with

C1 continuity. Such a solution is unique, and ‖u‖m ≤ a‖g‖m for some constant

a.

Proof The existence of a family of solutions, one of which has C1 continuity,

has been explored in the earlier part of this chapter. Alternatively, the method

of Han is to be found in [32].

37

For the regularity estimate, using the substitution above, we obtain

u(t) = g(t) +

∫ 1

0

τμ−2g(tτ)dτ, μ ≥ 1,

u(t) = g(t) +
g(0)

μ− 1
+

∫ 1

0

τμ−2[g(tτ) − g(0)]dτ, 0 < μ < 1

for the C1 solution. The regularity property now follows, and we note that this

form of the equation is found to be compact.

�

3.4 Further Implications

Uniqueness of trajectory at t = α

It may seem obvious that at some point, t = α say, if the value of the solution

u(α) is given, this will uniquely define the trajectory uc(t) passing through this

point. This is addressed in more detail in [20], but we can take the simpler proof

of reductio ad absurdum.

Suppose there are two separate trajectories, u1 and u2, with identical input

functions g, both of which pass through the same point,

u1(t) = g(t) +

∫ t

0

sμ−1

tμ
u1(s)ds,

u2(t) = g(t) +

∫ t

0

sμ−1

tμ
u2(s)ds.

At t = α, these are equal, so that

u1(α) − u2(α) =

∫ α

0

sμ−1

αμ
[u1(s) − u2(s)]ds = 0.

Since s is allowed to vary from 0 to α, the only possibility is that u1(t) ≡ u2(t)

for all t, and hence there is one and only one trajectory satisfying a given value

of u(α).

Alternatively, we take the solution formula, where different trajectories are

identified by the constant c0 in the term c0t
1−μ, so that there is precisely one

38

solution uc(t) for each value of c0. The reasoning applies equally to the case

μ > 1. Hence for all μ > 0 if a numerical method is applied, commencing at

some positive value of t = t1, based on an approximate solution at t = α, or on

data readings, it is possible that one (and only one) of the adjacent trajectories

may be followed.

The uniqueness of the smooth solution is assured in Theorem 3.3.7. The

only multiple solutions which can exist have been shown (p.27) to take the form

c0t
1−μ, and the uniqueness of a particular solution away from the origin is shown

in subsection (6.3.1).

If the forcing function g is given, then this trajectory is uniquely defined by

u(t1) = c0t
1−μ
1 + g(t1) +

g(0)

μ− 1
+ t1−μ

1

∫ t1

0

sμ−2(g(s) − g(0))ds,

i.e.

c0 = tμ−1
1

[
u(t1) − g(t1) −

g(0)

μ− 1

]
−
∫ t1

0

sμ−2(g(s) − g(0))ds.

This is an alternative definition for c0 to the one given by Han, and links a

specific trajectory with a specific value of the function u away from the origin.

Without loss of generality, we could take t1 = 1, to give

c0 = u(1) − g(1) − g(0)

μ− 1
−
∫ 1

0

sμ−2(g(s) − g(0))ds.

Having identified a specific value of c0 with a given solution value at t1 = 1,

we must take account of the overall context as to how the problem is postulated.

If the question is one of initial value significance at t0 = 0, and we restrict

the solution set to u : u ∈ Cm, then the further solutions for μ > 1 are irrelevant,

as are those for μ = 1 when g(0) �= 0. However, if we lift this restriction, and

extend the consideration to the full solution set, we must take account of the

behavioural pattern described above.

39

3.5 Stability

u(t) = g(t) + t−μ

∫ t

0

sμ−1u(s) ds. (3.7)

The stability properties of the equation (3.7) must be considered in the context

of the multiple solutions. We recall that out of the multiple solutions which exist

for each input function g, one and only one is the ‘smooth’ solution, and when

g(t) ∈ Cm[0, T], for some non-zero integer m, the single smooth solution u0(t),

which we will call the fundamental solution, is also in Cm[0, T] (see Theorem

3.4.7). The infinite set of solutions are of the form uc(t) = u0(t) + c0t
1−μ. We

will develop the stability of equation (1.1) in relation to a small change in the

input function g by first considering the response of the smooth solution.

Let Δg be some small perturbation to the input function g, and let Δu0 be

the corresponding change in the fundamental solution. We then have

u0(t) + Δu0(t) = g(t) + Δg(t) + t−μ

∫ t

0

sμ−1{u0(s) + Δu0(s)}ds,

and subtracting equation (3.7) with u = u0 gives

Δu0(t) = Δg(t) + t−μ

∫ t

0

sμ−1Δu0(s)ds,

which taking the norm ‖ . ‖= maxt∈[0,T] |u(t)| gives the inequality

‖ Δu0(t) ‖ ≤ ‖ Δg(t) ‖ + ‖ Δu0(t) ‖ t−μ

∫ t

0

sμ−1ds

= ‖ Δg(t) ‖ + ‖ Δu0(t) ‖
1

μ
,

and we can bound the resulting change in the solution by

‖ Δu0(t) ‖≤
∣∣∣∣ μ

μ− 1

∣∣∣∣ ‖ Δg(t) ‖ .

The behaviour of the set of non-smooth solutions depends on the exponential

term, and as this forms the solution to the related homogeneous equation, which

is unaffected by the change in g, the new fundamental solution will also have its

40

infinite set of related non-smooth solutions now defined by the arbitrary constant

d,

ud(t) + Δud(t) = u0(t) + Δu0(t) + d t1−μ.

This gives us a restricted interpretation of the stability of the solution set result-

ing from a small perturbation to the input function.

3.6 The alternative equation

We finish this chapter with some thoughts on the earlier equation described in

section (1.1), to confirm and consolidate the way in which the two equations are

related. We now re-state equation (1.3) as follows:

y(t) +

∫ t

0

p(t, s)y(s)ds = g1(t), (3.8)

p(t, s) :=
1√
π

1√
log(t/s)

sμ−1

tμ
,

for 0 ≤ s ≤ t ≤ T and μ > 0. We open this section with the result obtained by

Diogo et al. [26] (Lemma 2) that it is possible to show that this is equivalent to

equation (3.1), in the following way:

Lemma 3.6.1 (Diogo, McKee and Tang)

Equation (3.8) can be transformed into the equivalent equation

u(t) = g2(t) +

∫ t

0

sμ−1

tμ
u(s)ds

where

g2(t) := −
∫ t

0

p(t, s)g1(s)ds+ g1(t).

Proof

Consider

y(s) +

∫ t

0

p(s, λ)y(λ)dλ = g2(λ).

41

Multiplying both sides by p(t, s), and integrating with respect to λ, then reversing

the order of integration yields∫ t

0

p(t, s)y(s)ds+

∫ t

0

y(λ)

∫ t

λ

p(t, s)p(s, λ)ds dλ =

∫ t

0

p(t, s)g1(s)ds. (3.9)

We have used Dirichlet’s formula, as given in [26], which states that∫ t

0

∫ s

0

φ(s, λ)dλ ds =

∫ t

0

∫ t

s

φ(s, λ)ds dλ.

Combining (3.9) and (3.8) gives the required result.

We expand on the proof as follows. The first term in (3.9) is equal to

g1(t) − y(t), from (3.8), and the final term is equal to g1(t) − g2(t), by defini-

tion. We now consider the middle term I, where

I =

∫ t

0

y(λ)

∫ t

λ

1

π

1√
(log(t/s)

1√
log(s/λ)

sμ−1

tμ
λμ−1

sμ
ds dλ.

We need two substitutions, and for clarity will take these separately.

(1). Let log t− log s = τ , so that −(1/s)ds = dτ , and t/s = eτ .

I =

∫ t

0

y(λ)
λμ−1

πtμ

{∫ 0

log t/λ

1√
τ

−dτ√
(log(t/λ) − τ)

}
dλ.

(2). Now let τ = sin2 θ log(t/λ), so that dτ = 2 sin θ cos θ log(t/λ)dθ, to give

I =

∫ t

0

y(λ)
λμ−1

πtμ

{∫ 0

sin−1 1

−2 sin θ cos θ log(t/λ)dθ√
log(t/λ) sin θ

√
log(t/λ) cos θ

}
dλ,

I =

∫ t

0

y(λ)
λμ−1

πtμ

[
− 2θ

]0

π/2

dλ,

=

∫ t

0

y(λ)
λμ−1

tμ
dλ,

or reverting back to the variable of integration s,

I =

∫ t

0

sμ−1

tμ
y(s) ds.

Now we recall that the first and third terms of (3.9) are realised, and we have

derived the required equation

y(t) = g2(t) +

∫ t

0

sμ−1

tμ
y(s)ds,

where g1 and g2 are related as above.

42

3.6.1 Additional Results

The assumption was made in [64] that
∫ t

0
p(t, s)ds = 1/

√
μ, which is derived in

an attenuated form by Rooney [56]. In the following lemma we show that this is

so, and use the method to provide two further results. We take the definition of

the gamma function in the form

Γ(z) =

∫ ∞

0

xz−1e−xdx,

and the result that Γ(1
2
) =

√
π. (See e.g. [1]).

Lemma 3.6.2 If p(t,s) is as defined in (2) above, then
∫ t

0
p(t, s)ds = 1/

√
μ.

Let log(t/s) = v, so that −(1/s)ds = dv, and (t/s) = ev.∫ t

0

p(t, s)ds =
1√
π

∫ 0

∞
−v−1/2e−μvdv

=
1√
π

∫ ∞

0

v−1/2e−μvdv. (3.10)

Using the definition of the gamma function, if we allow the variables to be

z = 1/2 and x = μv, so that dx = μ dv,

Γ(1
2
) =

∫ ∞

0

(μv)−1/2e−μvμ dv,

=
√
μ
√
π

∫ t

0

p(t, s)ds,

comparing with (3.10) above. But Γ(1
2
) =

√
π, so that

∫ t

0

p(t, s)ds =
1√
μ
.

Corollary 3.6.3 The only solutions of the homogeneous equation

y(t) +

∫ t

0

p(t, s)y(s)ds = 0

of the form c0t
α is for α = 1 − μ.

43

Let I2 =
∫ t

0
p(t, s)y(s)ds, and assume that a solution y(t) = c0t

α exists. Using

the same substitutions as before,

I2 =
1√
π

∫ 0

∞
−v−1/2e−(μ+α)vc0t

αdv,

=
c0t

α

√
π

∫ ∞

0

v−1/2e−(μ+α)vdv.

Now substituting x = (μ+ α)v in the gamma function evaluated at z = 1
2
,

Γ(1
2
) =

∫ ∞

0

[(μ+ α)v]−1/2e−(μ+α)v(μ+ α)dv

so that

Γ(1
2
)(μ+ α)−1/2 =

∫ ∞

0

u−1/2e−(μ+α)vdv

Hence,

I2 =
ktα√
π

(μ+ α)−1/2Γ(1
2
)

= ktα(μ+ α)−1/2.

Setting this into the homogenous equation, we need to know if there are values

of tα which satisfy

ktα + ktα(μ+ α)−1/2 = 0.

Clearly, there is the trivial solution t ≡ 0, but also possible solutions in R when

the negative root is taken, and (μ+α)1/2 = −1. Hence, α = 1−μ yields solutions

to the homogeneous equation of the form kt1−μ.

Corollary 3.6.4 If g(t) = Btβ in equation (3.8) above, then for any given μ > 0,

there is a unique smooth solution of the form Atβ for μ+ β ≥ 0.

The process is as for the homogeneous equation above. We assume a solution

Atβ , and let

44

I3 =

∫ t

0

1√
π

1√
log(t/s)

sμ−1

tμ
Asβds,

=
A√
π

∫ ∞

0

v−1/2e−(μ+β)vtβdv,

=
Atβ√
π

(μ+ β)−1/2Γ(1
2
)

= Atβ(μ+ β)−1/2,

so that

I3 = Atβ(μ+ β)−1/2.

Returning to the main equation, and substituting for the assumed solution and

the integral term,

Atβ + Atβ(μ+ β)−1/2 = Btβ ,

and the solution is valid for a unique value of A when B is given,

A = B
(μ+ β)1/2

(1 + (μ+ β)1/2)
.

�

3.7 Transformation

No single transformation enables us to deal with all aspects of equation (1.1);

however there are possible substitutions which enable better understanding of

its behaviour, one of which has already been mentioned.

1. The elementary shift of origin τ = t + a, σ = s + a for some a > 0 does

not improve the situation analytically: the lower limit of integration, and

the singularity, are still in place at t = −a; we shall, however, find this a

convenient device when considering the convergence analysis in chapter 6.

2. Let λ = s/t, ds = t dλ, so that equation (3.1) becomes

u(t) = g(t) +

∫ 1

0

λμ−1u(tλ)dλ,

45

a Fredholm-type equivalent which we have seen in section (3.2).

3. Let sμ = x, and tμ = w, so that μsμ−1ds = dx, hence equation (3.1) is

transformed into

u(w1/μ) = g(w1/μ) + (μw)−1

∫ w

0

u(x1/μ)dx.

This has interesting possibilities for numerical approximation, in that ap-

plying the uniform grid T to the discrete version of the transformed equa-

tion, we may obtain a stepsize h which performs well close to the origin.

However, for t > 1, the solution will grow exponentially.

4. Finally, there is the logarithmic substitution σ = log s, τ = log t, dσ =

(1/s)ds. The transformed equation becomes

u(eτ) = g(eτ) +

∫ τ

−∞
eμ(σ−τ)u(eσ)dσ.

We can separate the interval of integration, and let v(τ) = u(eτ) to give

v(τ) = g(τ) +

∫ τ

0

e−μ(τ−σ)v(σ)dσ,

g(eτ) = g(eτ) +

∫ 0

−∞
e−μ(τ−σ)v(σ)dσ,

where g now includes the relevant information defining the initial trajectory

over the interval [−∞, 0], or in the original coordinates the interval [0, 1].

The transformed equation is a convolution equation in powers of e, which

is the subject of the paper [21]. The classical Paley-Wiener theory, and

the related Lubich method for the discrete case, are extended to include

an exponential type resolvent, hence allowing the use of Laplace transform

techniques. We refer the interested reader to [21] and references cited

therein.

46

3.8 Reprise

In this chapter we have reached certain conclusions regarding the behavioural

pattern of equation (3.1). We believe that the foregoing sections 3.1 - 3.6 establish

a unified approach in our dealings with this class of equations, based on the theory

of integral equations and the related methods of functional analysis, which we

feel is appropriate in this context. Although the sufficient conditions attached to

the standard theorems on existence and uniqueness are not present, we find that

the solution set is compatible with the results of those theorems, provided the

specific detail of admissible function spaces is taken into account. In particular,

it conforms to the postulates of the Fredholm alternative. We have a unique

solution within the appropriate space (Cm[0, T] or L2[0, T]), and a family of

solutions orthogonal to this, arising from the homogeneous equation Lu = 0.

We find an analogy in the frequently-cited case (see e.g [46]) of the equation

φ(t) −
∫ t

0

st−sφ(s)ds = 0,

which has the general solution

φ(t) = ctt−1,

singular at the origin, although the analogy is not complete, since the kernel

function in this case is “well-behaved”. We have used methods directly applica-

ble to integral equations, to confirm and extend results previously obtained, in

particular to functions φ, ψ ∈ L2[a, b].

Section 3.7 provides a more detailed aspect on the connection between the

two linked equations in which we are interested, and finally in section 3.8 we

assemble the several possible ways in which equation (3.1) could be amended to

find a more accommodating means of approach.

47

Chapter 4

Numerical Methods of Solution

of Volterra Integral Equations.

4.1 Preliminary

In this chapter, we will look at the various means of finding numerical solutions

of second-kind VIE’s,

u(t) = g(t) +

∫ t

0

K(t, s)u(s)ds. (4.1)

This is not intended to be a complete picture of all possible methods, but

rather an overview of the general structures involved, supported by detailed

examples. The material is drawn from the standard literature, in particular

Brunner and van der Houwen [14], Butcher [16], Evans [28], Hairer, Norsett

and Wanner [31], Iserles [35], Lambert [41], and Linz [46]. We concentrate on

the constructional technique, and refer to the standard texts for the relevant

convergence proofs. We look to identify ways of dealing with a kernel which is

singular at the origin, and to provide the algorithms to support the split-interval

scheme developed in Chapter 6, and the programs used to obtain the results in

Chapter 7.

To a great extent, methods for VIE’s are developed from their counterparts in

48

the solution of ODE’s: such methods may be based on quadrature rules, the linear

multistep process, collocation or spline methods, sometimes in combination in

the context of the VIE. We shall assume throughout this chapter that the forcing

function, g, is non-singular and continuous on the interval [0, T] for some finite

T.

Before considering how the quadrature is achieved, we state some basic ideas

and define the terms which will be used throughout. The horizontal axis, instead

of representing a continuum, is treated as a mesh of points, tn, n = 0...N . Unless

stated otherwise, this will form a uniform grid T of width h, containing N

abscissae, such that:

0 ≤ ti ≤ T , ti+1 − ti = h, N = T
h

+ 1.

The term u(t) will be reserved for the analytic form of solution of the equation.

Define u(tn) as the value of the analytic solution at t = tn, and ũ(tn) as the

numerical evaluation of the solution at t = tn. We define a general scheme of

numerical approximation as Q(w, h) such that

ũ(tn) = g(tn) + h
n∑

j=0

wjK(tn, tj, ũn(tj)), (4.2)

where the wj are appropriate weights as designated or calculated for the method.

Methods of solution for the ODE are widely available and there is a consid-

erable range of texts available. We now consider how these are developed for the

integral equation, drawing on the texts by Linz [46] and Brunner and van der

Houwen [14].

The approximation is based on construction of the composite rule at each

step, with the quadrature over 0 ≤ tj ≤ tn replacing the integration of s over

[0, t]. Hence the rule for any single-step method is invoked n times to achieve

the increment of quadrature to advance the solution from ũ(tn−1) to ũ(tn). The

application of a single-step quadrature rule to the Volterra equation is essentially

a triangular implicit system of equations, which allows solution to be evaluated

for each step in turn. This is in contrast to the Fredholm equation (2.2), where

49

both limits of integration are fixed: the discretization then results in a fully

implicit system of equations, which have to be solved simultaneously.

Returning to the Volterra equation, if the rule required is one of simple

quadrature, such as the trapezoidal, then the same formula (in terms of the

weights) is applied over the first n− 1 steps (for which the solution is known) as

for the final ‘new’ solution value. If, however, the scheme is of greater complex-

ity, or if a multistep method is used, then a suitable quadrature rule Q0(wj , h) is

used for calculation of the discrete kernel K(tn, tj , ũj) over the first n− 1 terms,

with the designated scheme Q1(h) used to evaluate the new approximation ũ(tn).

By ‘suitable’ we imply a method of similar convergence order, and compatible

with Q1. The quadrature Q0(wnj, h), j = 0, . . . , n − 1 is usually referred to as

the ‘tail’ or ‘lag’ expression.

It is probable that Q1(h) will not be a straightforward question of weighted

values at the interval endpoints tn−1 and tn: in the case of a linear multistep

method, further values are taken at tn∓k for a k-step rule, and the Runge-Kutta

class of methods use nodes (or abscissae), which are values of t internal to the

grid T .

4.2 Basic Methods of Quadrature

The simplest form of quadrature is the rectangle rule, otherwise known as Euler’s

method, where the VIE solution is given by

ũ(tn) = g(tn) +

n−1∑
j=0

hK(tn, tj)ũ(tj), (4.3)

which is a scheme explicit in ũ(tn); to apply the Backward Euler method, the

summation is over K(tn, tj)ũ(tj), j = 1, . . . , n, which is now triangularly implicit.

If we include the trapezium rule, also triangularly implicit, these three may

50

be combined using the θ convention, in the form defined by e.g. [8]

ũ(tn) = g(tn) +
n−1∑
j=0

h [(1 − θ)K(tn, tj−1)ũ(tj−1) + θK(tn, tj)ũ(tj)] , (4.4)

which allows us to consider the Euler, Backward Euler, and Trapezium Rules

taking θ =0, 1 or 0.5. Convergence for the Euler and Backward Euler methods

is of order 1, and for the trapezium rule order 2. We note that explicit schemes

such as the forward Euler are less stable than the implicit counterpart, and in

general a θ-method of quadradure “ ... is A-stable if and only if 0 ≤ θ ≤ 1
2
.”

(Iserles [35] p.59.)

4.3 Newton-Cotes Methods

Developing from the trapezoidal rule, which is a linear approximation between

two points, the Newton-Cotes methods employ approximating polynomials of

degree m− 1, taken over m points.

We introduce the Lagrange polynomials, �n,j, defined by

�n,j(x) =

n∏
i=0
i�=j

(x− xi)

(xj − xi)
.

If aj = hwj where the {wj} are the weights in the discretisation 4.2, the

coefficients {aj} are found by integrating �n,j between the limits x0 and xn, on a

uniform grid of points xi = x0 + ih, i = 1 . . . n. The linear case (n = 1) yields

the trapezium rule, and the quadratic (n = 2) Simpson’s rule.

Further weights are given in the table below, for closed Newton-Cotes schemes,

i.e. where the end points of the interval occur at grid points. If they do not coin-

cide, the method is termed ‘open’, and a different set of weights must be applied

([14] p. 57) Here, the trivial first case corresponds to the mid-point rule. The

construction of these schemes, and the remainder term of the expansion in each

case, is shown in [14] and [28], and a more extensive list up to the 11-point closed

51

rule, and 9-point open rule, is given in [1]. The closed m-point construction has

error of order hm+1 when m is odd, or hm when m is even.

Weights for

Newton-Cotes methods [12]

m w0 w1 w2 w3 w4 w5 w6

2 1
2

1
2

3 1
3

4
3

1
3

4 3
8

9
8

9
8

3
8

5 14
45

64
45

24
45

64
45

14
45

6 95
288

375
288

250
288

250
288

375
288

95
288

7 41
240

216
240

27
240

272
240

27
240

216
240

41
240

This class of methods however has a difficulty: it can be seen that the value

of the weights is successively increasing, as the system is extended to include

each extra step, and from the 8-point scheme contain negative values. There

is a requirement for a sequence of formulae to be convergent in the sense that∑n
j=0 |wn,j| < K for all n ∈ N , but this has been shown to be invalid for Newton-

Cotes schemes (references cited in [14]). The trapezium rule is known for its

stability and reliability. Simpson’s rule however does not have A-stability, but

is included by Linz [46], Evans [28] and Brunner and van der Houwen [14] as

acceptable for the solution of a Volterra equation, provided the construction is

carried out according to the following considerations.

Starting Values and Intermediate Values

When m = 2, we have the trapezoidal rule, and given the initial value of the

solution, the VIE scheme is triangularly implicit, and the subsequent values are

obtained immediately. However, if we consider the 3-point Simpson’s rule in the

VIE context, a further solution value is necessary, and m−2 values for the general

case. These starting values can be arrived at in various ways: it is possible to use

52

the trapezoidal rule over the first step, Simpson’s for the second, and so on up

to the requisite number of values, this may be combined with subdivision of the

steplength to achieve the necessary convergence; alternatively, a block-by-block

process can be applied to solve for the first m− 1 values simultaneously.

This is linked to the further issue when implementing the Newton-Cotes for-

mulae which is first demonstrated at this stage. When Simpson’s rule is used for

quadrature, the process takes place over multiples of 2 steps: we recall the usual

formula ∫ t2

t0

f(x)dx = (h/3)[f(x0) + 4f(x1) + f(x2)] +O(h5)

which is based on approximation at three points. When used directly for quadra-

ture of an integral over n points this is implemented over a pair of steps at a

time to give ∫ tn

t0

f(x)dx = h
n∑

i=0

wif(xi) +O(h4),

where {wi} = {1
3
, 4

3
, 2

3
, . . . 4

3
, 1

3
} with n taken to be odd, and an even number of

steps. When used as a VIE method, we have to increment by one step at a time,

and consider quadrature of the alternate steps when i is odd. This may be done

using the trapezoidal rule, the 3/8 rule, or a 2-stage block-by-block method [46].

The higher order methods require additional treatment at the intervening m− 2

(non-multiplicative) lines, for an m− 1 step method. Such incremental changes

are best installed at the end of each relevant line, in order to comply with the

repetition factor constraint, where

Definition 4.3.1 Repetition factor

A VIE quadrature method with weights {wij} is said to have a repetition factor

of ρ if ρ is the smallest integer such that

wn+ρ,i = wn,i, n = 0, 1, . . . n− k,

where k is an integer independent of n.

53

This definition is taken from Linz [46], followed by proof that methods with

repetition factor 1 such as the trapezoidal, fourth order Gregory and Simpson’s

method 2 (which uses the 3/8 rule over the final three points) are stable, while

those with repetition factor of 2 or greater can have unstable properties due

to the accumulated starting error. For a more detailed exposition we refer to

McKee and Brunner [49], in which we find specific reference to Simpson’s rule,

supplemented by the 3/8 rule at the beginning or end of each alternate row, the

latter having repetition factor of 1, this being the preferred scheme. However, the

inconvenience of this hybrid construction renders such schemes not impossible,

but certainly less than ideal in the VIE context. The block-by-block approach

might be taken, or another option is to use the linear multistep analogy of the

appropriate rule, which increments one step at a time.

4.4 Gregory methods

Although not featuring prominently in the current texts on Volterra equations,

the derivation of the Gregory methods is of interest, and raises issues which we

consider again in the following chapter, in developing the product trapezoidal

rule commencing at the origin.

We return again to the classic trapezoidal rule, where order 2 is obtained by

means of the simple weighting pair [1
2
, 1

2
] at the endpoints of each step in the

quadrature, repeated over the region of integration. This scheme has a well-

known error formula in the Euler-McLaurin expansion (see e.g. [19]), given in

its theoretical form for h = (b− a)/n and assuming f(x) ∈ C2k+1[a, b] by

h
[

1
2
f(a) + f(a+ h) + · · · + f(a+ (n− 1)h) + 1

2
f(b)

]
=

∫ b

a

f(x)dx+
B2

2!
h2[f ′(b) − f ′(a)] +

B4

4!
h4[f ′′′(b) − f ′′′(a)] + . . .

+
B2k

2k!
h2k[f (2k−1)(b) − f (2k−1)(a)] + h2k+1

∫ b

a

Ckf
(2k+1)(x)dx, (4.5)

54

where the B2k are the Bernouilli numbers, defined by the generating formula

B(t) =
t

et − 1
=

∞∑
i=0

Bi(t)

i!
ti,

the coefficients of odd powers being zeros.

When the Euler-McLaurin expansion is expressed in terms of differences, it

is possible to exploit the error terms to derive higher order methods of order

2p, p = 2, 3, . . . ; we find, however, that this does not continue indefinitely,

as the expansion does not converge for higher Bernouilli numbers. Allowing

f0 = f(a), fi = f(a+ ih), i = 1, . . . , n− 1, fn = f(b), Gregory methods of order

4, 6 and possibly higher are available, and we have

∫ b

a

f(x)dx =
h

2
(f0+2f1+· · ·+2fn−1+fn)− h

12
(
fn−�f0)−

h

24
(
2fn−�2f0)

− 19h

720
(
3fn −�3f0) + · · · +Rp,

(see [28], [6] or [57]), where Rp represents the remainder term in (4.5) above such

that Rp = 0(h2k+1) if f ∈ C2k+1[a, b], and Rp = 0(h2k+2) if f ∈ C2k+2[a, b] [6].

Collecting terms in fn, fn−1 and fn−2 we obtain the final three weights

wn−i, i = 0, 1, 2 for the quadrature as [3/8, 7/6, 23/24], and the first three wi

reflect the same values; intervening weights wi, i = 3 : n − 3 are unity, as with

the composite trapezoidal. The disadvantage of such a scheme is that it requires

four starting values (in addition to the initial value) before the rule can be ap-

plied, more for the higher order Gregory rules, and it may be this which limits

their usefulness. Baker wrote in 1977 that “Gregory’s formula may yet be a

useful method”. [6]

4.5 Runge-Kutta Methods

The foregoing methods compute the quadrature of the integral term using a

grid of uniformly spaced points which define the step structure, ti = a + ih, i =

55

0, 1, . . . , N . The evaluation takes place at these grid values. The accuracy may be

improved considerably by taking intermediate values (abscissae or nodes) along

the t-axis, and for an m-stage method evaluating m approximation function

values, which are then combined with suitable weighting into the solution value

for the step. There are four issues for consideration:

• The number of intermediate node values, which will also define the number

m of approximation stages required;

• How are the nodes {cj} to be defined;

• Choice of weights {aij} for the approximation stages;

• Choice of weights {bi} for the final combination.

We can summarise this in the Butcher array, also known as the RK tableau, as

shown by e.g. Iserles [35].

c A

bT

where c = {cj} is the node spacing, b = {bi} is the final weighting, and A =

{ai,j} is the matrix of intermediate weight values (i, j = 1 . . . s).

We give the formula for solution of the ordinary differential equation y′(t) =

f(t, y) as shown in e.g. [16] or [35]:

Yi = yn−1 + h

s∑
j=0

aijf(t+ cjh, Yj) i=1,. . . , s,

yn = yn−1 + h
s∑

i=0

bif(t+ cih, Yi) n=1, . . . , N-1,

where {Yi} are the intermediate solutions, and yn is the current step approxima-

tion. The many ways in which this may be constructed give us a wide choice of

methods at our disposal. Explicit RK schemes are represented by the lower tri-

angular matrix A where aij = 0, j ≥ i, exemplified by the classical RK method

56

(see e.g. [35]):

0

1
2

1
2

1 −1 2

1
6

2
3

1
6

.

To achieve the necessary order of convergence, the values of the aij have to satisfy

certain conditions (see e.g. [14], [31]).

The ERK scheme above is 3-stage, and of order 3, and such methods with

m stages may be constructed of order m for m ≤ 5, but thereafter the order

ceases to match the number of stages (the Butcher barrier), and further stages

are needed in order to achieve a given order of accuracy. (e.g. Theorem 3.1 in

[31]). We must look at the implicit Runge-Kutta methods to find the real benefit

in terms of accuracy which is expected from this approach. For a m-stage IRK

method, we can achieve accuracy of order 2m for each m ≥ 2.

4.5.1 RK methods for Volterra integral equations

The implementation of a Runge-Kutta structure for solution of the Volterra

integral equation is given in detail by Brunner and van der Houwen [14], and

may be achieved in several different ways. The RK tableau is extended to include

two further sets of parameters, d = {dji} and e = {ej}, which are required to

construct methods of Beltukov or BVRK type. However, when the requirement

is for PVRK or Pouzet-type methods, we find that the {dji} = cj , where {cj} are

as defined above, and {ej} = 1 for all j. So the structure of the PVRK scheme

derives directly from its ODE counterpart.

We have a further aspect to consider: as each step is implemented, the effect of

the previous evaluations needs to be included to form a ‘tail’or ‘lag’ term F̃ which

may be constructed either from straightforward quadrature weight schemes, to

give a mixed VRK method, or by re-utilising the terms from the intermediate

stages to give an extended VRK method.

57

In chapter 7 we will consider applying PVRK schemes, with the extended lag

term, which we construct below for an m-stage method, as in [14]:

Yn,j = F̃n(tn + cjh) + h

m∑
i=1

ajik(tn + cjh, tn + cih, Yn,i), (4.6)

j = 1 . . .m,

yn+1 = F̃n(tn + h) + h

m∑
j=1

bjk(tn + h, tn + cjh, Yn,j), (4.7)

n = 0 . . . N − 1,

F̃n(tn) = g(tn) + h
n−1∑
l=0

m∑
j=1

bjk(tn + h, tl + cjh, Yl,j). (4.8)

In constructing such methods, we find that values of the abscissae in the

second argument of the kernel of the Volterra equation are required to exceed

those in the first, during the implicit evaluation of the m equations involved

at the intermediate phase. This challenges the basic definition of the Volterra

equation, in which the process of integration occurs over the triangle 0 ≤ s ≤

t, 0 ≤ t ≤ T . We find that we are justified in allowing this, as demonstrated

by Baker [8], who defines a smooth extension of the kernel

Kext(t, s, y) :=

⎧⎨
⎩ K(t, s, y), 0 ≤ s ≤ t

Knew(t, s, y), s > t

for the purposes of completing an implicit RK scheme.

More sophisticated schemes within the Runge-Kutta hierarchy are available,

in particular if an element of error control is employed. We mention in particular

the schemes of Fehlberg, also Verner, and Dormand and Prince, (see e.g. [16])

which are outside the scope of this investigation.

4.6 Gaussian Quadrature

Gaussian methods are based on polynomial collocation at carefully chosen nodes

for which a system of implicit equations is solved at each step. The particular

58

Table 4.1: Gaussian Quadrature Structure [12]

Gaussian Quadrature Structure

Method Integral type g(x) Interval

Gauss-Legendre
∫ 1

−1
f(x)dx 1 (−1, 1)

Gauss-Chebyshev
∫ 1

−1
f(x)dx√

1−x2

1√
1−x2 (−1, 1)

Gauss-Laguerre
∫∞
0
xqe−xf(x)dx xqe−x (0,∞)

Gauss-Hermite
∫∞
−∞ e−x2

f(x)dx e−x2
(−∞,∞)

method used depends on the choice of these nodes, decided by the type of inte-

grand under consideration. The particular class of Gaussian methods best suited

to our needs is based on the Legendre polynomials, to yield the Gauss-Legendre

schemes. By this means,we are able to construct a scheme of order 2m with

uniquely defined elements in the Butcher array for each an m-stage method.

4.6.1 Gauss-Legendre methods

The choice of nodes is based on the roots of the Legendre polynomials Pn(x).

(The following detail is widely available, see e.g. [54].) These may be defined as

the (orthogonal) polynomials satisfying the differential equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0,

59

or alternatively by the generating function

(1 − 2xt− t2)−1/2 =

∞∑
n=0

Pn(x)tn, |t| < 1, |x| ≤ 1.

One (of several) recurrence formulae gives

(n+ 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x),

so given that P0(x) = 1, P1(x) = x, we see that P2(x) = (3x2 − 1)/2, and

P3(x) = (5x3 − 3x)/2, which we utilise in the 2-stage and 3-stage schemes in

chapter 7. With the nodes chosen as the roots of the m-degree polynomial, we

find the order attained can be extremely good - for an m-stage GL method, the

order is 2m; the appropriate choice of the intermediate weights {aij} is critical,

and the order can only be achieved by a unique combination of the {aij}, {bi}

and {cj}.

With the cj determined, we now construct the bi and aij , using the Lagrange

polynomials �m,i of degree m, with the interpolation points at the nodes ci. Thus

to complete the array we have:

bi =

∫ 1

0

�m,i(τ)dτ, aij =

∫ ci

0

�m,i(τ)dτ.

The related proof depends on the following ‘simplifying assumptions’ (see

[31] and references cited therein, and [14] for the indvidual listing):

B(p) :
s∑

k=1

bic
r−1
i =

1

r
, r = 1, . . . , p, (4.9)

C(η) :
m∑

j=1

aijc
r−1
j =

cri
r
, i = 1, . . . , m, r = 1, . . . , η, (4.10)

D(ζ) :

m∑
i=1

bic
r−1
i a ij =

bj
r

(1 − crj), j = 1, . . . , ν, r = 1, . . . , η.(4.11)

The proof (by Butcher (1964)) is shown in [31], based on the ‘tree’ notation

defined in [15] or [16]. By letting p = 2ν, η = ν and ζ = ν, conditions B and C

provide 2m + m2 equations which enables the unique set of values determining

the m-stage Butcher array, and D is now implied combining B and C.

60

It is possible to construct the rules for m > 3, which are, however, consid-

erably more expensive in computational terms (the 4-stage method is shown in

[31]). While Gaussian methods are given separate and special attention in the

texts owing to the quality of their approximation capability, their construction

is still in the format of the Butcher array, and we find that the application of the

Gauss-Legendre scheme to a specific problem (in this case, a Volterra equation)

follows the same pattern as that described for Runge-Kutta methods.

4.7 Linear Multstep Methods

The linear multistep (LM) method applied to the ODE y′ = f(t, y), y(0) = y0

is usually given in the form of the difference equation over a uniform grid:

k∑
i=0

αiyn−i = h

k∑
i=0

βif(tn−i, yn−i),

where the number of steps k and choice of αi, βi determines the particular type

of LM method involved. The simpler schemes are based on the supposition that

the approximation is obtained from

yn = yn−1 + h

k∑
i=0

βif(tn−i, yn−i),

so that α0 = 1 and α1 = −1, the summation takes place over k previous values

of the solution, and the βi depend on the interpolating polynomial. Even though

Lagrange polynomials are again used as the approximating functions, the coef-

ficients βi do not reflect the Newton-Cotes weights, being obtained less directly

for the multistep process. We define a set of intermediate values γi, i = 0, . . . , k

where

γi =

∫ tn+1

tn

�i(t)dt,

�i being the Lagrange polynomial of degree i located at the points tn−i. When

the integrals are evaluated, apart from a single term h, all other terms in n and h

61

vanish, and a numerical fraction emerges, the value of γi. The process is lengthy

for i ≥ 3, and it is quicker and easier to use the equivalent formula, the explicit

case being given as

γi =

∫ 1

0

(−1)i

⎛
⎝ −s

i

⎞
⎠ ds.

It is now most convenient to represent the approximation process in terms of

backward differences, the coefficients being the appropriate γi, hence if
 is the

usual backward difference operator, we have

yn = yn−1 + h[γ0
0 +γ1
1 γ2
2 + . . .]fn−1

for an explicit scheme, or the same formula concluded with fn if implicit. Setting

the appropriate values of γi, and collecting terms in fn−1, fn−2, . . . yields the LM

method required.

To illustrate this, we take the 3-step explicit method to obtain γ0 = 1, γ1 =

1/2, γ2 = 5/12, γ3 = 3/8 and hence

yn = yn−1 + h
[
fn−1 +

1

2
(fn−1 − fn−2) +

5

12
(fn−1 − 2fn−2 + fn−3)

+
3

8
(fn−1 − 3fn−2 + 3fn−3 + fn−4)

]
= yn−1 + h

[55

24
fn−1 −

59

24
fn−2 +

37

24
fn−3 −

9

24
fn−4

]
. (4.12)

Better quality results are, as usual obtained using implicit methods, and the

interval of integration of the interpolating polynomial now includes the new point

being approximated. The shortcut formula only needs a single adjustment, to

give

γi =

∫ 1

0

(−1)i

⎛
⎝ −s + 1

i

⎞
⎠ ds,

where the γi are the coefficients of the backward differences for the implicit

methods. Setting these coefficients in the formula based on fn, we obtain the

corresponding LM coefficients βi

The following are the main categories of basic schemes of this type:

62

Scheme Property

Adams-Bashforth α1 = −α0 = 1, β0 = 0 (explicit)

Adams-Moulton α1 = −α0 = 1, β0 �= 0 (implicit)

Milne-Simpson, Nystrom α2 = −α0 = 1,

Backward differentiation formulae β0 �= 0, βi = 0, i = 1 . . . k.

Associated with these formulae, we define the characteristic equation

ρ(z) = hσ(z),

where ρ and σ are the first and second characteristic polymomials in z,

ρ(z) =
k∑

i=0

αizk−i, σ(z) =
k∑

i=0

βizk−i.

For such methods to be stable, we have the requirement that the strong root

condition applies to the first polynomial ρ(z): the roots must lie within or on

the unit circle, and any roots on the unit circle must be simple.

More intricate schemes are developed combining the Adams-Bashforth (AB)

with the Adams-Moulton (AM) to construct predictor-corrector methods, where

an initial solution is predicted by the AB, and fed back into the AM formula, with

a considerable improvement in accuracy; a repetition of the feedback produces

even better results, and there are numerous ways in which this can be achieved.

Except for the backward differentiation scheme, the LM methods do not figure

strongly in the literature on numerical means of solution of the Volterra equation.

We find various reasons why this is so: there is the computational cost involved -

we shall describe the ways of constructing the Volterra analogy of a LM scheme,

and further there are questions of order and of stability. We define the Dahlquist

first and second barriers in the form of theorems:

63

Theorem 4.7.1 (Dahlquist first barrier)

For a k-step linear multistep method of order p,

p ≤ k + 2 if k even,

p ≤ k + 1 if k odd,

p ≤ k if βk/αk ≤ 0 (in particular for the explicit case). [31].

Theorem 4.7.2 (Dahlquist second barrier)

The highest order of an A-stable LM method is 2. [35].

If we are prepared to accept these limitations, we must consider the con-

struction of the VLM (Volterra linear multistep) scheme. We recall that to solve

each step of a discrete VIE, we apply the appropriate method to solve that step,

together with the lag terms which precede it. It is certainly possible to use the

difference equation over the precursive terms, but each time we need the starting

scheme over k − 1 steps. There are two further possibilities: one is to use the

rather intricate implementation offerred by Brunner and van der Houwen [14],

as shown in equation (4.13) for a k-step method with n = T/h:

k∑
i=0

αiyn−i +

k∑
i=0

k∑
j=−k

βi,jF̃n−i(tn+j) = h

k∑
i=0

k∑
j=−k

γi,jkn−i(tn+j), (4.13)

where the lag terms consist of the quadrature

F̃n(t) = g(t) + h

n∑
i=0

wn,
k
(t),

kn(t) = k(t, tn, yn).

The alternative is to make use of the property of certain methods, which are

defined as (ρ, σ)-reducible. The significance of this is, that we are able to find

suitable quadrature weights which can replace the LM-recurrence scheme over

the lag terms as the means of approximating the integral.

64

4.7.1 BDF

These formulae come within the general definition of linear multistep methods,

however their construction, and behaviour, are somewhat different. All the co-

efficients βi, i = 1, . . . , k are zero, and the only evaluation of f(tn, yn) is at the

current point to be approximated. The values of the αi are obtained by differ-

entiation of the interpolating Lagrange polynomial, to yield a class of methods

known for their good stability properties. The order of these methods corre-

sponds directly to the number of steps used, and we obtain the following set of

rules up to order 4 ([3]):

BDF coefficients

p k β0 α0 α1 α2 α3 α4

1 1 1 1 -1

2 2 2
3

1 −4
3

1
3

3 3 6
11

1 −18
11

9
11

−2
11

4 4 12
25

1 −48
25

36
25

−16
25

3
25

We have mentioned the idea of (ρ, σ)-reducible formulae, and for this class

of methods, in the particular context of the Volterra equation, a substantial

amount of work has been done by P.H.M. Wolkenfelt [71], who introduced the

following notation. The matrix of weights {wnj} is treated as a composite of three

elements, S, Σ and Ω, where S gives the weights for the starting procedure, Σ the

initial weights for each step calculation, and Ω the diagonally implicit triangular

matrix for completion of each step:⎡
⎣ S

Σ Ω

⎤
⎦ .

65

A means of constructing the relevant weights for the 2-step method with the

trapezoidal as the starting rule is given in [71] and [14] by the following formulae:

S : = {1
2
, 1

2
},

Σ : wnj = 3
4
(1 − (1

3
)n), n ≥ 1, j = 0, 1,

Ω : wnj = 1 − (1
3
)n−j+1, n− j ≥ 0, j ≥ 2.

From this (essentially a discrete convolution expression) we can obtain the weights

required, but an explicit (i.e. directly applicable) formula is only available for

the 2-step method. A means of developing the weights for k ≥ 3 is shown by

Wolkenfeldt, but involves rather detailed computation.

Stability of BDF methods

The BDF formulae were originally developed in response to the need for solution

of so-called ‘stiff’ ordinary differential equations, notably by Gear (1971) (cited

in e.g. [31]). We can therefore expect useful stability properties, but there is an

upper limit to the number of steps, and hence the order which can be achieved.

The following approach is based on Hairer, Norsett and Wanner [31].

Using the backward difference representation, the formula is given as

k∑
j=1

1

j

j yn+1 = hfn+1,

so the first characteristic polynomial is

ρ(z) =

k∑
j=1

1

j
zk−j(z − 1)j.

For convenience, we let w = 1/(1 − z) and consider the polynomial

p(w) = (1 − w)kρ

(
1

(1 − w)

)
=

k∑
j=1

wj

j
,

which is the partial sum of − log(1 − w).

66

This leads to the BDF equivalent of the strong root condition, that the k-step

formula is stable if and only if all roots of the polynomial p(w) lie outside the

unit circle w : |w − 1| ≤ 1, with only simple roots occurring on the perimeter.

For k ≤ 6 this condition holds, but not for higher values of k, and hence we have

Theorem 4.7.3 A k-step BDF method is stable for k ≤ 6, and unstable for

k ≥ 7.

This also restricts the possible order attainable for the ODE to six, but for

the reasons described earlier, the 2-step scheme is most useful for the Volterra

equation, when the stability consideration is of greater importance than the order

of convergence.

4.8 Product Integration

Finally, we consider a class of methods which is particularly suitable for the

case in which the interval of integration includes a singularity, as evaluation

of the function at the unbounded term is replaced by means of a weighting

function, which includes the analytic integral over the step. Product integration

is considered in [14], [39], and in more detail by Linz [46] and Atkinson [5] .

The integrand is separated into its well-behaved and singular parts. Suppose

that the integral term of a Volterra integral equation is

I =

∫ t

0

p(t, s) q(t, s) y(s) ds,

where p(t, s) is smooth but q(t, s) is integrable, but weakly singular. The numer-

ical approximation may be given as∫ t

0

p(t, s)q(t, s)y(s)ds ≈
n−1∑
i=0

{
p(tn, ti)y(ti)

∫ ti+1

ti

q(tn, s)ds
}
,

and the problem reduces to the non-singular form

I ≈
n−1∑
i=0

wn,i p(tn, ti) y(ti)

67

where

wn,i =

∫ ti+1

ti

q(tn, s) ds.

This is the product Euler rule, which is found to be at best of order O(h),

although this may not always be achieved, as we shall see in chapter 7.

The generalised form of the product integration rules is obtained by treating

the weight function w := {w(n, i)} as integration of the product of the singular

term and the appropriate Lagrange polynomial.

Define the space Sr as follows:

Sr := {y : y(t) =

r∑
i=1

�n,r yn−i+1},

where the �n,r are Lagrange polynomials of degree r, evaluated at the points

tn+1−i, i = 0, . . . , r such that

�n,r =
∏
j �=k

j,k=1:r

{ t− tn+1−k

tn+1−j − tn+1−k

}
.

The specific cases we are interested in are the product Euler scheme described

above, for which �n,1 = 1 for all n, and the product trapezoidal, where

�n,1 =
t− tn

tn−1 − tn

�n,2 =
t− tn−1

tn − tn−1
t ∈ [tn−1, tn].

Further product integration schemes are obtained using the appropriate Newton-

Cotes structure (product Simpson, etc) to extend the number of points and the

order of the method accordingly. As in section (4.3), attention must be given

to the starting procedures, and the final step calculations on intermediate rows.

Linz [46] suggests the use of block-by-block methods to avoid the potential weak-

ness of employing lower-order methods to complete the procedure.

When we apply the product trapezoidal method to the integrand of a Volterra

68

integral equation, this yields the algorithm as given by Linz [46]:

K(t, s, f(s)) ≈ s− tn−1

h
p(t, tn, f(tn)) +

tn − s

h
p(t, tn−1, f(tn−1),

s ∈ [tn−1, tn],

so that

∫ tn

0

q(tn, s)p(tn, s, f(s))ds ≈ αn,1p(tn, t0, f(to))+

+
n−1∑
i=1

(αn,i+1 + βn,i)p(tn, ti, f(ti)) + βn,np(tn, tn, f(tn))

where

αn,i+1 =
1

h

∫ ti+1

ti

(ti+1 − s)p(tn, s)ds,

βn,i+1 =
1

h

∫ ti+1

ti

(s− tj)p(tn, s)ds

In chapter 6 we develop the convergence proof relating to the product trapezoidal

and higher order product methods for a VIE with the type of singularity under

consideration.

4.9 Hermite Interpolation

This method is essentially a collocation method, being based on the third order

spline polynomials of Hermite. We follow the construction developed in [26] for

the case when μ > 1. The scheme is based on that given by Prenter [53], using

the notation based on that source.

Let ΠN denote a uniform mesh tn = nh, 0 ≤ n ≤ N, h = T/N and S3 be the

space of piecewise cubic Hermite polynomials

S3 := {u : u(t) = φ1n(t)un + φ2n(t)un+1 + ψ1n(t)un + ψ2n(t)un+1

t ∈ [tn, tn+1], 0 ≤ n ≤ N − 1},

69

where uj = u(tj), u
′
j = u′(tj), j = n, n + 1, and

φ1n(t) = (t− tn+1)
2[h+ 2(t− tn)]/h3, (4.14)

φ2n(t) = (t− tn)2[h + 2(tn+1 − t)]/h3, (4.15)

ψ1n(t) = (t− tn)(t− tn+1)
2/h2, (4.16)

ψ2n(t) = (t− tn)2(t− tn+1)/h2. (4.17)

Definition 4.9.1 Let f ∈ Cm[0, T], m > 1 be a given function. Then p(t) ∈ S3

is the Hermite cubic interpolant to f if

p(tn) = f(tn), p′(tn) = f ′(tn), 0 ≤ n ≤ N.

Lemma 4.9.1 (Prenter, 1975)

Assume f ∈ C4[0, T]. Then

‖f (λ) − p(λ)‖∞ = O(h4−λ), λ = 0, 1.

�

We need to construct an approximate solution un of equation (4.1) which satisfies

u(tn) −
∫ tn

0

k1(tn, s)u(s) ds = g(tn), (4.18)

u′(tn) −
∫ tn

0

k2(tn, s)u(s) ds = g′(tn), (4.19)

(4.19) being obtained by making the substitution λ = s/t in (4.18) and differ-

entiating with respect to t. We can now take the piecewise approximations of

equations (4.18) and (4.19) as

u(tn) −
n−1∑
i=0

∫ tn+1

tn

k1(tn, s)u(s) ds = g(tn),

u′(tn)) −
n−1∑
i=0

∫ tn+1

tn

k2(tn, s)u
′(s) ds = g′(tn).

70

Using the change of variable s = ti + νh, 0 ≤ i ≤ n− 1 we obtain

u(tn) −
n−1∑
i=0

h

∫ 1

0

k1(tn, ti + νh)u(ti + νh) dν = g(tn),

u′(tn) −
n−1∑
i=0

h

∫ 1

0

k2(tn, ti + νh)u′(ti + νh) dν = g′(tn),

where

u(ti + νh) = l1(ν)ui + l2(ν)ui+1 + d1(ν)hu′i + d2(ν)hu′i+1,

0 ≤ ν ≤ 1

u′(ti + νh) =
1

h
l′1(ν)ui + l′2(ν)ui+1 + d′1(ν)hu′i + d′2(ν)hu′i+1,

0 ≤ ν ≤ 1

The four polynomials l1, l2, d1 and d2 are obtained setting the appropriate values

in equations (4.14)-(4.17) above, to yield

l1(ν) = 2ν3 − 3ν2 + 1,

l2(ν) = −2ν3 + 3ν2,

d1(ν) = ν3 − 2ν2 + ν,

d2(ν) = ν3 − ν2.

We are now in a position to construct the recursive algorithm, as a pair of

simultaneous equations to be solved for the two unknowns, un and hu′n. The

detail of this for equation (1.1) is shown in Chapter 5.

4.10 Extrapolation Methods

We are interested in the methods of extrapolation in the specific sense of conver-

gence acceleration. That is, not as methods of numerical approximation which

can work independently, but as a means of improving the convergence of the

numerical results of some scheme, arbitrary for the time being, for which the

71

order of convenrgence is inadequate. This section is drawn from the references

Brezinski and Redivo-Zaglia [13] and Weniger [68], and we refer the interested

reader to these for more information on this subject.

What follows is a brief summary of the way in which these processes are

constructed, following four well-known schemes, which will enable us to justify

the method we use in chapter 6.

There are three means by which such methods may be constructed: the

first, and original format is as the ratio of determinants, the structure of the

determinants defining the method used. While this is closest to the fundamental

derivation of the method, it can quickly lead to excessive computer operations,

with cumulative rounding errors; secondly, for methods which may be applied

directly, a straightforward algebraic construction can be used; and thirdly, there

is the iterative process.

Richardson

Probably the best known scheme, usually the introductory text book method.

We include in this the Romberg formula (occasionally the two names are used

interchangeably), which is a basic extrapolation applied to the trapezoidal rule.

The process of extrapolation is developed in columnar form, each column showing

a better convergence order than the previous.

Let us suppose we have a set {Sn} of solution approximations to a given

problem, evaluated at hn, n = 1, 2, . . . ; let S be the true solution, and assume

that this is the limiting case, as hn → 0, and {xn} be a subsidary sequence, for

our purposes such that {xn} ≡ {hn} . We consider {Sn} to be of the form

Sn = S + a1xn + a2x
2
n + · · · + akx

k
n.

In determinant form, the Richardson scheme is defined to be the transformation

72

T where

T =

Sn . . . Sn+k

xn . . . xn+k

...
...

xk
n . . . xk

n+k

1 . . . 1

xn . . . xn+k

...
...

xk
n . . . xk

n+k

.

This can also be represented as the recursive formula

T
(n)
k =

xn+kT
(n)
k−1 − xnT

(n+1)
k−1

xn+k − xn
.

Thirdly, the algebraic solution of the system of equations

Sn+i = T
(n)
k + a1xn+i + · · · + akx

k
n+i

yields the same result. [13].

Aitken/Shanks

The original form of this transformation is known as the Aitken Δ2 process,

based on the forward differences ΔSn = Sn+1 − Sn, defined in its numerically

stable form by the transformation Tn where

Tn = Sn − (Sn+1 − Sn)2

(Sn+2 − 2Sn+1 + Sn)
, n = 0, 1, . . .

73

This is generalised by Shanks in the determinantal form

ek(Sn) =

Sn . . . Sn+k

ΔSn . . . ΔSn+k

...
...

ΔSn+k−1 . . . ΔSn+2k−1

1 . . . 1

ΔSn . . . ΔSn+k

...
...

ΔSn+k−1 . . . ΔSn+2k−1

,

and the recursive form is given by the ε-algorithm of Wynn,

εn−1 = 0, εn0 = Sn, n = 0, 1, . . .

εnk+1 = εn+1
k−1 +

1

εn+1
k − εnk

, k, n = 0, 1, . . .

This process does not assume dependence on a subsequence such as that used in

the Richardson method, and is directly applicable to the case where the expansion

is in the form of the differences ΔSn. [13].

E-algorithm

This is the most general process for the situation in which an expansion in the

form of a subsequence {xn} is known. The structure of the sequences Sn is now

taken to be of the form

Sn = S + a1g1(n) + · · · + akgk(n),

74

and the transformation is given in its determinantal structure by

E
(n)
k =

Sn . . . Sn+k

g1(n) . . . g1(n + k)
...

...

gk(n) . . . gk(n+ k)

1 . . . 1

g1(n) . . . g1(n + k)
...

...

gk(n) . . . gk(n+ k)

.

The resulting iterative formula consists of the main rule:

E
(n)
k = En

k−1 −
E

(n+1)
k−1 − En

k−1

g
(n+1)
k−1,k − g

(n)
k−1,k

,

and the subsidiary rule

g
(n)
k,i = g

(n)
k−1,i −

g
(n+1)
k−1,i − g

(n)
k−1,i

g
(n+1)
k−1,k − g

(n)
k−1,k

.g
(n)
k−1,k,

where the starting values are now

E
(n)
0 = Sn, n = 0, 1, . . . ,

g
(n)
0,i = gi(n), n = 0, 1, . . . , i = 1, 2,

We have shown the construction of these methods, and refer to the texts cited

above for the underlying theory and related proofs.

75

Chapter 5

Existing Algorithms

There are three main algorithms which have been used to obtain a numerical

approximation to the solution of (1.1), which we now discuss in detail.

5.1 Approximation methods

5.1.1 Product Euler

We recall the product Euler rule from section (4.8) as

∫ t

0

p(t, s)q(t, s)y(s)ds ≈
n−1∑
i=0

{
p(tn, ti)y(ti)

∫ ti+1

ti

q(tn, s)ds
}
.

In [64] the earlier form of equation (1.1), with the kernel

K(t, s) =
1√
π

1√
log(t/s)

sμ−1

tμ

(cf. eq. (1.3)) is to be approximated, for the case when μ > 1. The schemes for

the product Euler and product trapezoidal (see below) are applied, and conver-

gence O(h1) is shown to hold for the product Euler.

The process used in [43] for μ > 1 and [44] for μ < 1 in the approximation

of equation (1.1) is implemented by setting q(tn, ti) = tμ−1
i to obtain the weights

76

for the discretisation wi = (tμi+1 − tμi)/μ, resulting in the explicit formula

ũ(tn) = g(tn) + t−μ
n

n−1∑
i=0

wiũi. (5.1)

In [43], they further require the input function g to contain an algebraic sin-

gularity. The equation is transformed by a factor of tβ, and proof of convergence

O(h1) is again given. Richardson extrapolation (in its standard format) is used

to accelerate the convergence, but aspects of the results indicate that the error

expansion requires more detailed investigation.

The extension to the case when 0 < μ < 1, and a considerably refined con-

vergence proof, together with the asymptotic error expansion for specific ranges

of μ is found in [44]. The product Euler scheme is now supported by the more

powerful extrapolation process known as the E-algorithm of Brezinski (described

in section 4.10).

The main result, which we use in the following chapter, is given as follows:

Theorem 5.1.1 Lima/Diogo

Consider equation (1.1) with g ∈ C2[0, T] and g′(0) �= 0. If 0 < μ < 1 then

the approximate solution ũ(tn) defined by (5.1) satisfies the error estimate

u(tn) − ũ(tn) = Cμt
1−μ
n hμ +O(h),

where Cμ does not depend on h.

The case where g is non-smooth is placed in a separate corollary.

They further find that the error expansion when 1 < μ < 2 also has terms

in hμ. Here, the leading error term is, as expected, O(h), but if extrapolation is

required for μ occurring in this range, then the full expansion is required.

The special cases when μ = 1 and μ = 2 include a logarithmic term in the

error expansion.

77

5.1.2 Product Trapezoidal

This scheme is used in [64] for the approximation of equation (1.3), taking μ > 1.

The scheme is implemented in the usual way (see section (4.8)):

u(tn) +

n−2∑
i=0

∫ ti+1

ti

K(tn, s)u(s)ds+

∫ tn

tn−1

K(tn, s)�1,n−1(s)u(tn−1)ds+

∫ tn

tn−1

K(tn, s)�2,n−1(s)u(tn)ds = g(tn),

where K(t, s) is as given by (5.1.1), and �i,n, i = 1, 2 are the linear Lagrange

interpolants

�1,n = (t− tn+1)/(tn − tn+1),

�2,n = (t− tn)/(tn+1 − tn).

The expected convergence O(h2) is shown, however this is not directly rele-

vant for our purposes.

5.1.3 Hermite-type Collocation

The scheme described in section (4.9) is developed in [26] for the solution of

equation (1.1) with μ > 1, setting

k1(t, s) =
sμ−1

tμ
and k2(t, s) =

sμ

tμ+1
.

In the discretisation, the kernels k1 and k2 are represented by

k1(tn, ti + νh) =

(
ν + i

n

)μ
1

ti + νh
,

k2(tn, ti + νh) =

(
ν + i

n

)μ+1
1

ti + νh
.

78

Define for r = 1, 2

L0,r(n, i) :=
1

nμ

∫ 1

0

(ν + i)μ−1lk(ν) dν,

L1,r(n, i) :=
1

nμ+1

∫ 1

0

(ν + i)μl′k(ν) dν,

D0,r(n, i) :=
1

nμ

∫ 1

0

(ν + i)μ−1dk(ν) dν,

D1,r(n, i) :=
1

nμ+1

∫ 1

0

(ν + i)μd′k(ν) dν,

and our pair of simultaneous equations is

un − L0,2(n, n− 1)un −D0,2(n, n− 1)hu′n =

L0,1(n, n− 1)un−1 +D0,1(n, n− 1)hu′n−1 +
n−2∑
i=0

[
L0,1(n, i)ui+

L0,2(n, i)ui+1D0,1(n, i)hu
′
i +D0,2(n, i)hu

′
i+1

]
+ gn,

hu′n − L1,2(n, n− 1)un −D1,2(n, n− 1)hu′n =

L1,1(n, n− 1)un−1 +D1,1(n, n− 1)hu′n−1 +

n−2∑
i=0

[L1,1(n, i)ui+

L1,2(n, i)ui+1 +D1,1(n, i)hu
′
i +D1,2(n, i)hu′i+1] + g′n,

where gn = g(tn) and g′n = g′(tn). This simultaneous pair has to be solved at

each step, so the method is expensive in terms of computer operations, but the

results are a good order of accuracy, and can be justified on that account.

The application of this method to the solution of equation (1.1) is shown in

detail in chapter 7. The convergence result for μ > 1 is found in [26].

5.2 Recent work

A further development in the use of the higher order product integration is to

be found in [24]: the product trapezoidal rule is applied to equation (1.1), and

79

the use of graded meshes is employed to improve the quality of the results.

Convergence of order p : p = μ+α+1 is obtained experimentally, for nonsmooth

g(t) := tαg(t), and possibly order 2 might be attainable, if the appropriate mesh

grading is applied.

In [25], with μ < 1, the integration term in (1.1) is separated into two in-

tervals, in a sense anticipating the work of the following chapter: however, the

first integral is assumed to be known exactly, for a chosen member of the family

of solutions, and the product Euler rule is applied away from the origin. Con-

vergence of order one is obtained, but if the initial interval ε is less than h, and

expressed as a power of h: ε = hθ, 0 < θ < 1, the error is found to be O(h1−θ).

A further paper [20] shows the uniqueness of a specific trajectory away from

the origin, and standard numerical methods (Euler, backward Euler and trape-

zoidal rules) when used away from the origin, are shown to converge to the

particular solution uc(t) defined by the given point (r, uc(r)), where r �= 0.

Analytically, the development of series solutions for various input functions

g is shown by Poole [52].

5.3 Perspective

So far, the methods for μ < 1 consist of the low order product Euler rule, which

with the use of extrapolation would require many trajectories to obtain any

required level of convergence, or suitable accuracy, also the product trapezoidal,

with only preliminary evidence of convergence order 1 + μ. From the above, it

would seem that there is a need for a reliable means of solution of (1.1) which

is able to commence at the origin, but provide good quality results with better

convergence order and better use of computational time than has hitherto been

the case. The concept of separation of the interval of integration is one way of

80

achieving this: the use of a lower order method commencing at the origin may

be combined with extrapolation, and then the (smooth) part of the integral may

be implemented by any of the standard methods available.

The way in which this achieved, the selection of primary and secondary meth-

ods, and the manner in which extrapolation needs to be used to produce the final

convergence result necessary is the subject of the next chapter.

81

Chapter 6

A Split-interval Scheme

6.1 An Algorithm for Singularity

The idea of separating the approximation into two processes is not competely

new: Brunner and van der Houwen suggest that “in actual computation one

might apply product integration formulas only in regions where the integrand is

not smooth and not in the whole integration interval” [14]; however we believe

that it has not previously been used for the solution of a Volterra equation

with a kernel weakly singular at the origin, where non-integer terms occur in

the error expansion. We also believe that the use of extrapolation processes

at the end of the first interval is a new approach, and the consolidated scheme

represents a reliable and accurate means of obtaining an approximation to the

smooth solution of equation (1.1), and of other equations in this class (i.e. with

algebraic singularity at the origin).

The underlying principles of the scheme are introduced in the two papers [20]

and [22]: in [20] we show that the uniqueness of a specific trajectory is defined

over any interval which does not include the origin, with separation at the rate

of at1−μ; in [22] the split-interval method is described, and to this we now add

the structured use of the extrapolation process, which ensures the reliability of

82

the results.

We return to equation (1.1), and take the interval of integration over [0, α]

and [α, T],(t > α):

u(t) = g(t) +

∫ α

0

sμ−1

tμ
u(s) ds+

∫ T

α

sμ−1

tμ
u(s) ds, (6.1)

and its discrete counterpart

ũ(tn) = g(tn) +

q∑
i=0

hwik(tn, ti)ũ(ti)

+

n∑
i=q

hvik(tn, ti)ũ(ti) + Eα,μ,

n = q + 1, . . . , T,

where Eα,μ is the error term and α = qh. On closer examination, this is not

strictly accurate, as the first interval ought to be implemented by the usual

Volterra triangular implicit set of values: we need to re-state (6.1) a little more

carefully, as

u(t) = g(t) +

∫ t1

0

sμ−1

tμ
u(s) ds+

∫ t2

α

sμ−1

tμ
u(s) ds,

where t1 = t ∈ [0, α], and t2 = t ∈ [α, T].

Over the first interval, we need a numerical approximation method suitable to

commence at the origin, and by this means an approximate value of the solution

ũ(α) is obtained. We may assume that this is not exactly the smooth solution

at α, but will lie on one of the adjacent non-smooth solutions. So knowing ũ(α),

and using the invariance of the equation for non-smooth solutions, we define

Ĩα =

∫ α

0

sμ−1ũ(s) ds,

where ũ(t) is the specific non-smooth solution passing through ũ(α). Returning

to the original equation, we now have an explicit representation of Ĩα as

Ĩα = αμ(ũ(α) − g(α)).

83

Now for tn > α we can replace the first summation with Ĩα/t
μ
n, to obtain the

split-interval discretisation

ũ(tn) = gn(tn) +
Ĩα
tμn

+
n∑

i=q

hvi
tμ−1
i

tμn
ũi(ti) + Eα,μ,

n = q + 1, . . . , T,

where the vi are the weights of the method chosen to approximate the second

interval. The error term Eα,μ is the subject of section (6.3).

When we consider the extrapolation process applied at α, the construction

above remains unchanged, except that the value of Ĩα will alter, becoming closer

to the analytic value Iα.

In previous pages we have discussed certain methods for the solution of VIE’s,

to assess their suitability for either phase one or phase two of our algorithm.

For reasons previously stated, these tend not to coincide: the requirements for

the primary rule are highly restrictive, and are governed by the need to find

a method which can successfully tackle the singularity in the arguments of the

kernel, while for the secondary we can select from the wide range of standard

methods available, depending on requirements.

6.1.1 Primary interval

The ‘closed’ Newton-Cotes methods take the end points of each step as the

defining system of quadrature, and are therefore invalid at t = 0 for the class of

equations in question. The ‘open’ methods require additional function evalua-

tions, which would need a starting scheme to establish the procedure (as would

the closed n-point schemes for n ≥ 3).

Moving on to the Runge-Kutta schemes, we have to reject any which contain

the first end-point of the interval. This excludes many of the classical forms,

a few typical examples of which are the Radau I and the Lobatto. The Radau

II construction could be of interest, but its implementation in the solution of

84

equation (1.1) yields a singular matrix over the first step calculation in the two-

stage scheme, and near-singular for the three- and four-stage versions.

Next, we take the Gaussian quadrature methods. Here, when the relevant

components of an ODE or a VIE are well-behaved, we can expect a high order of

accuracy. Of these, the Gauss-Legendre method appears to be the most promis-

ing, for several reasons: the nodes are so placed as to give optimal accuracy of

order 2m for an m-stage method; the first node does not coincide with the end

point; and the interval of integration over which the method is constructed en-

ables an afffine transformation of the interval of integration onto the step being

processed. However, disappointingly, we find that, as with the Radau II algo-

rithms, when applied to equation (1.1) the two-stage rule results in a singular

matrix for the first step, and the three- and four-stage variants are near-singular.

The class of linear multistep methods is also unsuitable, as these require a

starting formula, which precludes any of the above methods in the construction,

and to utilise any of the possible ideas considered below as a starting scheme for

a LM process, while not impossible, would render the resulting error analysis of

the tri-formate scheme very unwieldy. The same issue occurs in the case of the

open Newton-Cotes rules.

Product Integration

These methods have already been successfully applied to the class of singular

equations which is the topic of our investigation, specifically the product Euler

rule. Its ability to operate in the context is unquestioned, even if the input

function g is also singular at t = 0. However, the rate of convergence is low -

when μ < 1, the product Euler method is only of order μ (see Lima and Diogo

[44]). Further, results although technically convergent are poor, particularly over

a long time interval. The extrapolation procedures of section 4.11 need to be

used in order to achieve any significant improvement in the accuracy.

The product trapezoidal rule is found in practice to be of much greater ac-

85

curacy, and is of order (μ + 1) . The convergence analysis is described at the

end of this chapter, and owing to the general nature of the cited sources, this is

now suitable for the development of product integration methods of higher order.

Again, acceleration can be applied to improve the order, to the required level.

Hermite Collocation

In chapter 4 we suggested the method of Hermite as a suitable alternative to deal

with the singularity at the origin. It was used previously in this context for μ > 1

[26], and we will again consider its merits as a means of constructing the solution

of (1.1) when μ < 1 over the α-interval. It is a collocation method in the fullest

sense. The gradient is employed at every step, as well as the function value, a

factor which gives us a very clear indication that the path to be pursued will be

the smooth solution. Its construction is intricate, but the convergence resulting is

of a very high accuracy: we obtain the order 4 for standard application, providing

an exceptionally close approximation to the true solution. When this method is

applied to equation (1.1) with μ = 0.4, we find the convergence order to be in

the region of 3.6, slightly better than the 3 + μ predicted by the work of Lyness

and Ninham [48], although it is too early to generalise from this. The step size

does not need to be small - good results are obtained, comparable to the findings

of [26], with step sizes 0.1, 0.05 and 0.025. We consider this to be a suitable

method for the α-interval, if highly accurate results are required.

6.1.2 Convergence Acceleration

As we remarked earlier, this is not an alternative numerical method for obtaining

a solution, but works to improve schemes whose rate of convergence is inadequate

in the context for which it is to be used. We have principally used the work of

Brezinski and Redivo-Zaglia [13], and we also find in Weniger [68] a first class

readable explanation of the extrapolation schemes and their construction, with

86

the emphasis on nonlinear methods. The recent book by Sidi [59] provides a very

detailed analysis, with a considerable section devoted to Richardson extrapola-

tion, and the generalisations of this scheme.

To contruct the split-interval algorithm, we can consider the alternative op-

tions: (a) to apply the extrapolation process at the end of the first interval,

t = α, or (b) to apply it at the final time, t = T . There are several arguments in

favour of the former:

• only one set of error expansion terms has to be considered in contructing

the extrapolation algorithm;

• the approximate solution is restrained as early as possible to pursue the

required trajectory over the second stage;

• economy of computer time, in the reduction of trajectories required to

continue to t = T .

In order to decide which method of extrapolation to use, we have to assess what

is to be achieved. Here, we are looking for a way to eliminate the successive

terms of an error expansion of the form

|e| = a1h
μ + a2h+ a3h

μ+1 + a4h
2 + . . . (6.2)

for μ < 1, which is the appropriate expansion for the product Euler method, and

for the product trapezoidal where a1 = a2 = 0.

The Richardson scheme is the best known and usually the first choice; but

as it applies to an expansion of integer powers of h, we are unable to use it in

this case, and other standard methods are equally unsuitable. We refer to the

references cited above for a full account of the various procedures.

There is an alternative, in the E-algorithm of Brezinski, which may be applied

to any case where there is a known expansion for the error term. However, it is

very detailed to construct, and as stated by Brezinski [13] (p.55).

87

“. . . the drawback of such a generality is that, in a particular case,

it will be less powerful (in terms of number of arithmetic operations

and storage requirements) than an algorithm particularly adapted to

that case.”

The E-algorithm is used in [44], applied to the results from the product Euler

method applied to equation (1.1) over the interval t = [0, 1]. While it does obtain

a marked improvement in the error, we feel that this might be achieved by other

means. We shall employ a simpler method, which is constructed upon the basis

of a modification of the Richardson scheme, and which we find is comparable to

the accuracy of the E-algorithm. Our new scheme cannot be a fully recursive

algorithm, as the terms are not in uniformly ascending powers of h. We introduce

the system of equations

Y
(n)
1 = Y

(n)
0 + a1h

μ
n + a2hn + a3h

μ+1
n + a4h

2
n + . . .

where n = 1, 2, . . . , p for a (p−1)-stage application. The Y
(n)
0 are the approximate

solutions evaluated at stepsize hn where hn = hn−1/2, and as with Richardson

we may eliminate the a1 term, and reduce the number of equations by one, the

difference now being that we require to factor by (1 − 2μ). The next stage is

to obtain the terms Y
(n)
2 with a standard Richardson format eliminating a2, the

principal error term being O(h). This can now be developed into a sequential

process,

Y
(n)
i = Y

(n)
i−1 + ei

where the ei terms are obtained by eliminating the most significant error term,

which will alternate between hμ+k (k = (i− 1)/2) and hk (k = i/2). Clearly this

is unsuitable for a recursive formula, but we can use the semi-recursive process:

Y (j+1)
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y
(j)
n − 2j+μY

(j)
n+1

1 − 2j+μ
, j = 0, 2, 4, . . . ,

Y
(j)
n − 2jY

(j)
n+1

1 − 2j
, j = 1, 3, 5,

88

As with other similar schemes, we can portray this in columnar form, with the

number of values reducing by one at each stage:

Y 1
0

Y 2
0

Y 3
0

Y 4
0

...

Y 1
1

Y 2
1

Y 3
1

��

��

��

��

��

��

. . .

. . .

The usual texts describing Richardson extrapolation present the related con-

vergence proofs which apply solely to the series expansion which contains integer

powers. However, we find in Sidi (2003) [59] the application to non-integer pow-

ers, and this provides the rigorous foundation for our construction. Alternatively,

the proofs presented for the integer case by Brezinski and Redivo-Zaglia ([13],

Theorems 2.15 and 2.17) may be extended to the non-integer case by separating

the expansion into two series, and using induction.

6.1.3 Secondary schemes

The choice of secondary scheme is much wider, and depends on the properties

required: this may be simple construction, economical in terms of floating point

operations, or higher order and better accuracy, or perhaps a preferred method

of the user. While the explicit and implicit Euler schemes do give reliable results

in terms of the order O(h), the actual error values are unacceptably large. When

we move to the trapezoidal rule, however, not only do we have the order O(h2),

but also a marked increase in accuracy. Simpson’s rule is also a possibility if

order O(h4) is required, but there would be no advantage in proceeding to the

89

three-eighth rule, which is of the same order. However, this order can be better

achieved by other means.

We can also consider any of the lower order Runge-Kutta schemes: the re-

straint on the first endpoint is now lifted. If a high accuracy is required over

the second interval, the Gauss-Legendre rules, dismissed for the α-interval, give

excellent results of orders 4 and 6 for the 2- and 3- stage schemes respectively.

Of the linear multistep methods, when used in the context of the VIE, there

appears to be a question as to the stability of the Adams-Bashforth and Adams-

Moulton processes. The particular case of the backward differentiation formulae

has been shown to be exceptionally stable, even in problems where there is a

high Lipschitz constant [14]. We shall give examples of the AM and the BDF

construction.

Our possibilities for the combined algorithm have narrowed down to the fol-

lowing representation:

Pr. Euler

Pr. Trapez.

Hermite

Trapezoidal

Simpsons

RK or GL

AM or BDF

+Extrapolation? +Extrapolation?

� �
� �

Can the two stages be linked up without special treatment? Provided both

schemes are single-step methods, we do not see any problem. The solution value

of the first scheme at t = α (whether extrapolated or not) is taken up as the

starting value for the second stage. This would also apply if points internal to

90

the step are used, as in the Runge-Kutta methods. If, however, the choice of

secondary methods is of linear multistep type, then the single solution value at

α is insufficient. Two or more solution values are required if the transition is

to be seamless, alternatively the use of a starting procedure is required. This

will happen if an extrapolation method is used directly after the first stage. An

alternative would be the multiple use of acceleration processes - extrapolation

could be taken at two, three or more points, spaced on the basis of the stepsize

of the secondary scheme.

6.2 Construction of the split-interval algorithm

We have outlined in Section (6.1) the possible methods for the primary and

secondary stages of our dual method, together with the need for improving the

order by means of acceleration methods. We will now see how it is possible to

construct a numerical solution to some given accuracy, say O(hm), m ∈ Z. We

recall that the error expansions we are dealing with are in powers of h in the set

P
{
μ, 1, 1 + μ, . . .

}
(a) The simplest idea is to take primary and secondary methods both of order

m. We note that either method may be of order p > m, but this would still

result in a final solution of order m, such as would be achieved by the use of

product integrational methods, which we have shown to be of non-integer

order. Here we suggest the optimal value to be p : p ∈ P, �p� = m.

(b) We can take a primary method order p and a secondary method order

q : q ∈ Z, q > p with extrapolation at t = T to improve the order to m,

and allow the extrapolation process to take care of terms hp . . . hm in the

error expansion. If, as in the product Euler method, p = μ(< 1), then we

require 2m−1 stages of extrapolation, or for the general case, 2(m−�p�)−1

stages.

91

(c) The extrapolation may be used at the point α, at which the primary method

ends. We again need 2(m − �p�) − 1 acceleration stages, if the secondary

method is of order m.

(d) We might use extrapolation both at α and at T . This is advantageous if

a very high accuracy is required in the final solution, or if the final time

T is large. Let us suppose the required order is M , and as before, we

have a primary method of order p, and a secondary method order m. The

extrapolation at α would be 2(m−�p�)− 1 stages, eliminating error terms

below hm, and a further 2(M −m) stages at t = T .

We summarize this in the table

Sch. Primary Extrap. Secondary Extrap. F inal

Order stages Order stages Order

a p : p < m m p

b p : p < m q : p < q ≤ m 2(m − �p�) − 1 m

c p : p < m 2(m − �p�) − 1 m m

d p : p < m < M 2(m − �p�) − 1 m 2(M − m) M

Of these four schemes, (a), (b) and (d) (described earlier in this section) were

investigated during the developmental process, and we will now look at (c) in

detail, implemented using the product Euler method over the first interval, and

the trapezoidal rule for the second, with g(t) = 1 + t , α = 0.5 and μ = 0.4.

Consider the approximation over the first interval, taken over m stepsizes, in

this case m = 4. Define h
(1)
max = 1/20, say, and further values h = h

(1)
max/2i, i =

1, 2, 3. The results at t = α are then accelerated using the modified Richardson

scheme described above, and the second interval is then implemented using the

trapezium rule at stepsize h = h
(1)
max; this process is then repeated twice more,

using h
(2)
max = 1/40 and h

(3)
max = 1/80, and the extrapolated result in each case

is now the starting point for the trapezoidal rule at h = h
(2)
max and h = h

(3)
max.

Clearly, this involves some repetition of calculation, and becomes in effect a

92

five-level extrapolation, curtailed at the third level, as tabulated below, with

ei,n, i = 0, . . . , 3, n = 1, . . . , 6 defined as the error after i levels of extrapolation.

Extrapolation errors

h e0,n e1,n e2,n e3,n

1/20 −7.1472e− 1 −1.1564e− 1 −9.6285e− 3 −1.6226e− 5

1/40 −5.6966e− 1 −6.2637e− 2 −3.6586e− 3 4.3660e− 6

1/80 −4.4689e− 1 −3.3148e− 2 −1.3836e− 3 2.6690e− 6

1/160 −3.4670e− 1 −1.7266e− 2 −5.2264e− 4

1/320 −2.6693e− 1 −8.8941e− 3

1/640 −2.0445e− 1

Now we have the values Y
(n)
3 as the given starting values for the second interval,

and continuing with the trapezoidal rule, we find as expected that the final results

at T = 10 are of order 2:

Errors at t=T

h Error

1/20 −2.6394e− 3

1/40 −6.0993e− 4

1/80 −1.4302e− 4

6.3 Error analysis

6.3.1 Second interval

In order to create a rigorous framework for applying an arbitrary method over

the second interval, we recall that for the Volterra equation in which all terms

are of an acceptable order of continuity, the following holds: if the integration

term of a VIE is approximated by a method of order p, then the approximation

93

to the solution of the equation is convergent to the true solution, the convergence

also being of order p.

Thus, following the treatment by Linz [46] for the generic Volterra equation

φ(t) = ψ(t) +

∫ t

0

K(t, s, φ(s))ds, (6.3)

we require that

1. ψ(t) be continuous over the interval 0 ≤ t ≤ T ,

2. K(t, s, φ) be continuous over 0 ≤ s ≤ t ≤ T ,

3. the Lipschitz condition on the third argument of the kernel

|K(t, s, φ1) −K(t, s, φ2)| ≤ L|φ1 − φ2|

be satisfied, for all 0 ≤ s ≤ t ≤ T , and all φ1, φ2.

If these conditions are met, then uniqueness of the solution to (6.3) is assured, and

further, “. . . the analysis of the numerical methods will utilize these assumptions

and, strictly speaking, holds only when they are satisfied.” [46].

We now apply an approximation rule based on a quadrature method of order

p, and weights wi to the Volterra equation (6.3) to obtain the related discrete

equation

φ̃n = ψ(tn) + h
n∑

i=0

wniK(tn, ti, φ̃i), (6.4)

where tn = nh, n = 0, 1, . . . T/h and φ̃n is the approximation to the solution

evaluated at tn. We note that inclusion of the second subscript to the weights

indicates that they now have to be applied (and in more accurate methods cal-

culated) over the summation in i for each step increment in the approximation

φ̃n.

94

Convergence: the traditional approach

For the second interval, we are now in a position to use the standard arguments

relating to the convergence of an arbitrary approximation method (5.11) to the

solution of the conventional Volterra equation (5.10). We summarize the results

as given in [46], with the main theorem and associated definitions:

Definition 6.3.1 Let εi be the discretisation error, where

εi = φ̃i − φ(ti).

Definition 6.3.2 A VIE approximation method is convergent if

lim
h→0

{
max

0≤i≤N
|εi|
}

= 0.

Definition 6.3.3 A VIE method is convergent of order p if

max
0≤i≤N

|εi| ≤Mhp

for some M <∞ and for the maximum possible value of p.

Definition 6.3.4 For a rule whose weights are wi, the local consistency error is

δ(h, tn) where

δ(h, tn) =

∫ tn

0

K(tn, s, φ(s))ds− h
n∑

i=0

wniK(tn, ti, φ(ti)).

Definition 6.3.5 For a given class of equations of form (6.3), if

lim
h→0

max
0≤i≤N

|δ(h, tn)| = 0,

then the approximation method is said to be consistent.

Definition 6.3.6 If there is a constant C which exists for a particular class of

equations such that

max
0≤i≤N

|δ(h, tn)| ≤ Chp,

then the method is said to be consistent of order p for such equations.

95

Theorem 6.3.1 General Convergence Theorem (in Linz [46])

Taking the approximate solution of (6.3) by (6.4), with the assumptions

1. the solution φ(t) of (6.3) and the kernel K(t, s, φ) are such that the approx-

imation method is consistent of order p with (6.3),

2. the weights satisfy

sup
n,i

|wni| ≤W <∞,

3. the starting errors φ̃i − φ(ti), i = 0, 1, . . . , r − 1 go to zero as h → 0, and

hence

lim
h→0

r−1∑
i=0

|φ̃i − f(ti)| = 0,

then the method is a convergent approximation method. Also, in the absence of

starting errors, the order of convergence is at least p.

In arriving at this conclusion, the formula for the discretisation error εi is given

as

|εi| ≈
hWL

1 − hWL

{
max
0≤i≤n

|δ(h, tn)| + hWL
r−1∑
i+0

|φ̃i − φ(ti)|
}

(6.5)

for h < 1/WL, W = max{wi}, L is the Lipschitz constant for a particular class

of equations, h is the step length, and the other terms as defined above. The

formula (6.5) as presented by Linz includes an expression for the starting error,

shown as the second term in braces, but we must emphasize that this is the

error due to a starting scheme which is required for some method (such as the

Newton-Cotes or linear multistep) where the rule itself requires solution values

at more than one point to enable the first application of such a rule. If the

stepsize h changes, then so does the interval over which the starting method is

effective. This is in contrast to the split-interval method we use, for which the

initial interval [0, α] remains constant while the stepsize is progressively reduced.

In the above, we have a general theorem which proves convergence, but does

not assist in explaining any connection between the error and the parameter

96

α of our split-interval scheme, nor with the parameter μ of equation (6.3). In

appendix (A) we adopt a less orthodox approach, which neverthless allows an

understanding of these questions.

Application

We return to equation (1.1), and make the following substitutions: τ = t − α,

σ = s− α to obtain

u(τ + α) = g(τ + α) +
Iα

(τ + α)μ
+

∫ τ+α

α

sμ−1

(τ + α)μ
u(s) ds,

= g(τ + α) +
Iα

(τ + α)μ
+

∫ τ

0

(σ + α)μ−1

(τ + α)μ
u(σ + α) dσ.

Now define

y(τ) = u(τ + α),

f(τ) = g(τ + α) +
Iα

(τ + α)μ
,

to give the Volterra equation

y(τ) = f(τ) +

∫ τ

0

(σ + α)μ−1

(τ + α)μ
y(σ) dσ,

where 0 ≤ τ ≤ T − α.

The integral is still non-zero at the lower limit, so as a final precaution let

y(t) = y(t) − y(0) and f(t) = f(t) + y(0)/μ, to give

y(τ) = f(τ) +
y(0)

μ
+

∫ τ

0

(σ + α)μ−1

(τ + α)μ
(y(σ) − y(0))dσ,

y(τ) = f(τ) +

∫ τ

0

(σ + α)μ−1

(τ + α)μ
y(σ) dσ.

These substitutions do not alter the behaviour of equation (1.1) over t ∈ [α, T],

involving a straightforward shift of origin by α and u(α) in the original ordinates.

The smooth region of equation (1.1) now conforms fully to the requirements

above, the Lipschitz constant being 1/α, and we note that if Iα is the analytic in-

tegral over the first interval, the solution to (6.4) is the smooth solution, whereas

97

if it is replaced by an approximation, Ĩα, then the solution represented will be

a specific member of the non-smooth family. This is dealt with more fully in

subsection (6.3.3) below.

6.3.2 First interval

We use the product Euler method as the primary scheme for many of the exam-

ples in the next chapter. While the method is elementary of its type, its inclusion

as part of the split-interval scheme is by no means trivial. The issues dealt with

at this level enable the development of a secure and reliable approach, capable

of extension to higher orders.

We now extend the analysis to include the implementation of the product

Euler method over the first interval. The weights wi are the first order product

integration expressions

wi =

∫ ti+1

ti

k(t, s)ds,

and the second interval weights vi are, as above, the trapezoidal weights, to give

ũ(tn) = g(tn) +
m∑

i=0

wiũ(ti),+
n∑

i=m

vik(tn, ti)ũ(ti)

n = m + 1, . . . , T.

The approximate solution of equation (1.1) by the product Euler method

has been developed by Lima and Diogo (see [43] and [44]), and its convergence

behaviour is known, and the proofs well established. We present the main results

the first of which we introduced earlier in Chapter 3:

Theorem 6.3.2 (Existence and uniqueness) If 0 < μ ≤ 1 then equation

(1.1) has a family of solutions u ∈ C0[0, T] given by the formula

u(t) = c0t
1−μ + g(t) + γ + t1−μ

∫ t

0

sμ−2(g(t) − g(0))ds, (6.6)

where γ = 0 if μ = 1, or γ = g(0)/(μ− 1) for 0 < μ < 1.

98

Theorem 6.3.3 (Convergence) Assume that g ∈ C1[0, T] ,for μ > 0 and

μ �= 1, then the approximate solution defined by the product Euler scheme

ũ(tn) = g(tn) + t−μ
n−1∑
i=0

ũ(ti)

∫ ti+1

ti

sμ−1ds (6.7)

converges to the particular true solution 6.6 of (1.1) for which c0 = 0.

Theorem 6.3.4 Define en = |u(tn) − ũ(tn)|. For 0 < μ < 1 the approximate

solution defined in 6.7 above satisfies the error estimate

en = Cμt
1−μ
n hμ + 0(h),

where Cμ is independent of h.

These results are extended to the cases for which μ = 1, when the error

term contains a logarithmic element, and for the case when g(t) is such that the

solution is not sufficiently smooth.

Hence we establish the viability of the product Euler method as a suitable ap-

proximation over the primary interval. Similar convergence proof for the product

trapezoidal has not previously been available. We show in section (6.4), using

the results of de Hoog and Weiss [34], based on the earlier work of Lyness and

Ninham [48] that convergence order of 1 + μ is obtained. The Hermite-type

method used in [64] for μ > 1 does not at the time of writing have a convergence

proof for μ < 1, but empirical results show convergence of order at least 3 + μ.

6.3.3 Propagated error

We can now express the error term at the end of the first interval t = α = qh as

eα = Cμα
1−μhμ +O(h),

and the equation for this particular solution over t ∈ [α, T] becomes

u1(t) = g(t) + t−μĨα + t−μ

∫ t

α

sμ−1[u(s) + eα(h, μ, s)]ds,

99

where eα(h, μ, s) is the error term arising from the first interval, representing the

asymptotic error expansion (6.3), and the dependency on s is of the form s1−μ.

If this particular trajectory is followed accurately, we have

u1(t) = g(t) + t−μĨα + t−μ

∫ t

α

sμ−1[u(s) + s1−μeα(h, μ)]ds,

to give

u1(t) = g(t) + t−μĨα + t−μ

∫ t

α

sμ−1u(s)ds+ t−μ(t− α)eα(h, μ).

As the asymptotic expansion eα(h, μ) is independent of the time variable, (the

subscript is there to indicate that the term is generated at α, not any relation

involving subsequent time values), it is this expression which is propagated as a

result of the error at the end of the first interval, defining the non-smooth term

over the second interval, and we further note that

t−μ(t− α)eα(h, μ) ≤ t1−μeα(h, μ).

6.3.4 Combined Error

This yields the combined error estimation E at t = tj ∈ [α, T] as

E = eα(h, μ)t1−μ
j + (tj − α)

∞∑
i=m

bih
i,

where the first term includes the asymptotic expansion of the primary scheme,

and the second term is the error of the secondary scheme of order m, converging

to the non-smooth solution u1(t) identified above.

Suppose that the primary scheme is the product Euler, and the secondary is

the trapezoidal rule. Then we have

eα(h, μ) = a1h
μ + a2h+ a3h

1+μ + a4h
2 + . . .

where the multipliers ar and bi are independent of tj , h and α, and the second

series commences at m = 2.

100

As it stands, the scheme retains the weakness of the first interval approxima-

tion, and the solution at α needs to be sufficiently improved, at least to match

the order m, (or higher), of the second interval method. We introduce the ex-

trapolation applied to the solution set at α over successively reduced values of

h: the error term at the end of the first interval is now, by construction, of order

m, and this is in part the reason behind our choice of a simple linear form of

extrapolation, since we require to know, not only the resulting power of h, but

also how the overall scheme behaves in relation to α.

6.3.5 The effect of extrapolation

We selected a modification of the Richardson process mainly for its particular

application to the series which we wish to accelerate. A further benefit is that it

is a linear method, which will retain other factors we might be interested in. The

work of Lima and Diogo provides the leading term of the error expansion, and the

assumption is made - borne out by numerical evidence during this investigation

- that the further terms of the expansion contain the structure of a Frobenius

series (as well as Taylor). This is supported in the work of Lyness and Ninham

[48], which will be examined fully later.

By construction, being linear, the extrapolation does not alter the nature of

this series, but what does change is the value of the coefficients, and in particular

the leading residual coefficients. If we take the unprocessed error expansion for

the product Euler, as the series to be extrapolated, we have

Sh = S + a1h
μ + a2h+ a3h

1+μ + a4h
2 + . . . ,

and hi = hi−1/2, we obtain the first coefficient (of h) of the new series as

a2(1 − 2μ−1)/(1 − 2μ). As μ approaches unity, we no not have a problem, the nu-

merator tending to zero as the denominator nears −1. However, when μ is small

- say 0.1 - the magnitude of the denominator is small at .07, while the numerator

approaches unity, so the effect on the leading term after the first extrapolation

101

is considerable. However, provided at least one more level is taken, except in

extreme cases, the offending term can be eliminated.

Subsequent levels of extrapolation do not have this problem - the denomina-

tors are successively (−1), (1 − 21+μ), (−3), . . . and nor would an acceleration

process for any primary method (such as the product trapezoidal) where the

leading power is greater than unity.

We find at each level, that the correlation of the coefficients {ai} with other

values , such as α or μ, are unaffected by the extrapolation process, and hence

the propagated error itself will retain its dependence on such parameters.

6.3.6 Summary

In conclusion of this section, we have considered the error of a split-interval

scheme for solution of equation (1.1). We have taken results already in place

for the product Euler method from Lima and Diogo [44]. In the next section

we show, in principle, that product integration methods of higher order can

be introduced, commencing at the origin, using the generic system constructed

by Lyness and Ninham [48], developed for product integration rules applied to

integral equations by de Hoog and Weiss [34]

We have shown that the trapezoidal rule is a suitable choice for the second

interval approximation, and traced the error term from the primary method, and

the way in which it is propagated into the second interval. The second interval

error in isolation is treatable by the normal convergence arguments we have

given, but the very general nature of this approach leaves several key questions

unanswered: in particular, can we establish a link between the error and the

length of the initial interval, α, and further, between the error and the parameter

μ? In Appendix (A) we introduce a less orthodox method, which investigates

the particular case of the second interval for equation (6.1), and we find that the

terms h and α are linked in such a way that the order of a method as a power of

102

h is matched with the same inverse power in α; further, we are able to establish

a link between the error and the value of μ.

We have introduced a convergence acceleration process at the end of the first

interval, the related error analysis being available in e.g. [59] and the behaviour

of the effect caused by α and μ can be traced through the extrapolation process.

In the next chapter, we will give some examples to illustrate these results.

6.4 Product Trapezoidal Rule

6.4.1 Lyness and Ninham

Our understanding of the analysis of the product trapezoidal rule as applied

to equation (1.1) depends on the key paper by Lyness and Ninham [48] (1967),

which is quoted as the authoritative source for the error expansion relating to the

presence of certain forms of singularity as recently as 1997 [67] and mentioned in

Sidi (2003). We summarize the content, simplifying to include only one (of four)

types of singularity. Specific references included are Lighthill [42], for the ex-

pansion of the Fourier transform of the generalized function, and Whittaker and

Watson [69] concerning the generalized zeta-function, and the Fourier theorem

in the manner described below.

One form of the Fourier theorem may be expressed as follows (subject to

certain conditions):

f(x) =

∞∑
r=−∞

exp(−2πirx)

∫ 1

0

f(t) exp(2πirt)dt.

No condition of bounded variation applies to f(x). Re-arrangement yields

f(tj) −
∫ 1

0

f(t)dt =

∞∑′

r=−∞
exp(−2πirtj)

∫ 1

0

f(t) exp(2πirt)dt,

where the prime denotes omission of the term for which r = 0.

103

Adding linear combinations with weights aj , j = 1, 2, . . . , m we have

m∑
j=1

ajf(tj) −
∫ 1

0

f(t)dt =

∞∑′

r=−∞

{
m∑

j=1

aj exp(−2πirtj)

}∫ 1

0

f(t) exp(2πirt)dt,

where
m∑

j=0

aj = 1.

This is described as the fundamental summation formula, and it is noted that

the Poisson formula is a special case.

For a particular rule, denoted Rf ,

Rf(x) =

m∑
j=1

ajf(tj),

m∑
j=1

aj = 1,

the error functional is then Rf − If = Ef , where

Ef = Rf − If =

∞∑′

r=−∞
dr(R)

∫ 1

0

f(t) exp(2πirt)dt,

dr(t) =

m∑
j=1

aj exp(−2πirtj) = R(exp(−2πirx)),

a coefficient which depends only on the rule.

The next section of [48] (not shown here) develops Ef for a generalized trape-

zoidal rule, and shows how the construction applies to more intricate methods.

Expansions of Euler-McLaurin type

The expansion follows from the modified Poisson summation formula

∫ 1

0

f(t) exp(2πirt)dt =
f(1) − f(0)

2πir
− f ′(1) − f ′(0)

(2πir)2
+ . . .

+ (−1)w f
(w)(1) − f (w)(0)

(2πir)w+1
+ (−1)w+1

∫ 1

0

f (w+1)(t)e2πirt

(2πir)w+1
dt. (6.8)

104

Inserting this into the error formula for the end-point trapezoidal rule

R(m,1)f − If =

∞∑′

r=−∞

∫ 1

0

f(t) exp(2πirmt)dt

and summing over r yields the traditional form of the Euler-MacLaurin summa-

tion formula.

They then define formally the zeta-function, generalized zeta-function and

periodic generalized zeta-function.

Equation (4.23) in [48] then gives the traditional form of the Euler-McLaurin

formula:

R(m,1)f − If = 2
∞∑

n=1

(−1)n−1 ζ(2n)

(2πm)2n
[f (2n−1)(1) − f (2n−1)(0)].

Section 5(a) deals with numerical analysis of integration rules of specified de-

gree, and 5(b) with stochastic processes, which are not directly relevant for our

purposes.

Section 6 of [48] (‘Lighthill’s Procedure’) deals specifically with singularities.

If f(x) or its early derivatives are discontinuous in the interval 0 ≤ x ≤ 1

then the theory of sections 3,4 and 5(a) of [48] is no longer valid. Section 2,

however, is still applicable. They look to develop asymptotic expansions more

suited to computational purposes when f(x) has a simple algebraic or algebraico-

logarithmic singularities in the interval.

They consider singularities of the form

f(x) = xβ(1 − x)ω|x− tk|γsgn(x− tl)|x− tl|δh(x),

where h(x) and its derivatives are continuous in the interval 0 ≤ x ≤ 1, and β,

ω, γ and δ are non-integers. In the following, we extract only those parts of each

formula which relate to singularities of the form tβ, i.e. ω = γ = δ = 0.

We require an asymptotic expansion for the Fourier transform

g(r) =

∫ 1

0

f(t) exp(−2πirt)dt

105

as the expansion (6.8) [(4.1) of [48]], which was obtained by integration by parts,

is not valid for this function. They utilise the ‘powerful, simple and systematic’

method of Lighthill [42], who uses generalized function theory.

We require the FT of the generalized function

φ(x) = f(x)H(x)H(1 − x),

where

H(x) = 0, x < 0

= 1/2, x = 0

= 1, x > 0.

φ(x) coincides with f(x) on the interval of integration, and is zero elsewhere.

Corresponding to each singularity tj they construct an ‘approximating’ func-

tion Fj(x) with the following properties:

(i) φ(x) − Fj(x) has an absolutely integrable Nth derivative in a neighbour-

hood of x = tj

(ii) F (x) is a linear combination of functions of types |x−tj |α, |x−tj |αsgn|x−

tj |, |x− tj |αln|x− tj , and |x− tj|αln|x− tj |sgn|x− tj | (the first of these only is

required for equation (1.1)),

Theorem 6.4.1 If Fj(x) j = 0, 1, . . . , m satisfy these conditions and have as

their Fourier transforms Gj(r):

Gj(r) =

∫ ∞

−∞
Fj(t) exp(−2πirt)dt,

then an asymptotic expansion for g(r) is

g(r) =

m∑
j=0

Gj(r) +O(|r|−N) as r → ∞. (6.9)

We limit the singularities in F (x) above to that at t = 0. Define a function

φ0(x), continuous and with continuous derivatives at t = 0, as follows:

f(x) = xβφ0(x).

106

The approximating function F0(x) (satisfying conditions (i) and (ii) above) is

then constructed by retaining only the first N terms in the power series expansion

of φ0(x) about x = t0 = 0. Thus specifically

F0(x) =
N−1∑
s=0

φ
(s)
0 (0)

s!
xβ+sH(x).

The Fourier transform of the individual terms are given by Lighthill [42], p.43.

Let

h(β, r) =
β!

(2πir)β+1
where β! = Γ(β + 1).

Then we have ∫ ∞

−∞
xβ+sH(x) exp(−2πirx)dx = h(β + s, r),

and other singularity types are developed in a similar way. Substitution into

equation (6.9) yields

∫ 1

0

f(x) exp(−2πirx)dx =
N−1∑
s=0

1

s!
{φ(s)

0 (0)h(β + s, r)} +O(|r|−N).

This result provides the basis for the subsequent analysis. Section 7 deals with

the Euler-McLaurin formula for endpoint singularities, with the aim of finding

an asymptotic expansion for the error function associated with

f(x) = xβ(1 − x)ωh(x),

where h(x) and its derivatives are continuous over the appropriate interval of

integration.

Again allowing ω = 0, they obtain the error function E[m,α] for an arbitrary

trapezoidal rule R[m,α], leading to the endpoint trapezoidal rule such that

E[m,1] =

N−1∑
s=1

φ
(s)
0 (0)

s!

ζ(−β − s)

mβ+s+1
+O(m−N),

at which point we leave the Lyness/Ninham paper, and consider specifically

product integration methods in the following.

107

6.4.2 de Hoog and Weiss

We follow a similar pattern with this paper [34], summarizing to include only one

(of four) types of singularity. Note the change of notation - now f(t) is smooth,

and g(t) is absolutely integrable on 0 ≤ t ≤ 1.

In section 2 they define the product integration rule, where

ω(t) =

n∏
k=1

(t− uk),

and the Lagrange polynomials of degree n:

Lk(t) = ω(t)/(ω′(uk)(t− uk)), k = 1, . . . , n.

The uk are a set of points, which may be chosen optimally, but for our purposes

(the product trapezoidal rule), u1 = 0, and u2 = 1.

On tl ≤ t ≤ tl+1, l = 0, . . . , m− 1 the approximation to f(t) is

f(t) =

n∑
k=1

Lk

(
(t− tl)

h

)
f(tlk),

and hence,

Ig(f) =

m−1∑
l=0

∫ tl+1

tl

g(s)f(s)ds,

=

m−1∑
l=0

n∑
k=1

f(tlk)

∫ tl+1

tl

g(s)Lk

(
(s− tl)

h

)
ds,

=

m−1∑
l=0

n∑
k=1

hf(tlk)

∫ 1

0

g(tl + sh)Lk(s)ds.

This is the nm-point quadrature rule with which the paper is concerned. n = 2

defines the product trapezoidal rule, which we require to analyse. The error

functional for this rule is

Eg(f) = Ig(f) − Ig(f) = Ig(f − f).

Lemma 6.4.2 If f(t) ∈ Cp+1[0, T], p ≥ n, then

Eg(f) = h

p−n∑
r=0

hn+r

∫ 1

0

ωr(s)h

m−1∑
l=0

g(tl + sh)f (n+r)(tl + sh)ds+O(hp+1), (6.10)

108

where ωr(t) = ω(t)pr(t), and pr(t) is a polynomial

pr(t) =
(−1)r

(n+ r)!

r∑
q=0

n∑
k=1

(
n+ r − 1

n+ q − 1

)
(−1)q−1u

n+q−1
k

ω′(uk)
sr−q.

For any fixed s, 0 ≤ s ≤ 1, the sum

h
m−1∑
l=0

g(tl + sh)f (n+r)(tl + sh) (2.11) in [48] (6.11)

is a generalized Euler approximation to
∫ 1

0
g(s)f (n+r)(s)ds.

Section 3 of [34] deals with smooth g(t), which we omit at this time.

Summation formulae for (6.11) have been investigated by Lyness and Ninham,

and the application of their results to g(t)f (n+r)(t) is the basis of section 4, of [34],

where g(t) has a finite number of algebraic or logarithmic singularities. Again,

we select from the four possible singular types, that of the form g(t) = tβ , such

that β > −1.

Expansions of the form

h
m−1∑
l=0

g(tl + xh)z(tl + xh),

where z is a smooth function, are required. Such expansions have been obtained

by Lyness and Ninham [48], who use Lighthill’s procedure to obtain asymptotic

expansions for the integral terms in Poisson’s formula

h

m−1∑
l=0

g(tl + xh)z(tl + xh) −
∫ 1

0

g(s)z(s)ds,

=

+∞∑′

q=−∞
(−1)q exp(−πi(2x− 1)q)

∫ 1

0

g(s)z(s) exp(2πiqms)ds,

=

+∞∑′

q=−∞
exp(−2πiqx)

∫ 1

0

g(s)z(s) exp(2πiqs/h)ds. (6.12)

Applying the generalized Euler-Mclaurin expansion (as given in [48]) to g(t)f (n+r)(t),

109

we find that

h
m−1∑
l=0

g(tl + xh)f (n+r)(tl + xh)

=

∫ 1

0

g(s)f (n+r)(s)ds+

p−n−r∑
q=0

hq+1

q!

{
hβ ζ̃(−β − q, x)ψ

(q)
0r (0)

}

+O(hp−n−r+1), r = 0, . . . , p− n,

where

ψ0r(t) = f (n+r)(t)tβ,

again taking the other terms as irrelevant for our purpose, and ζ̃ as the periodic

generalized zeta function.

Substitution of (6.12) into (6.10) yields

Eg(f) =

p−n∑
r=0

hn+r

∫ 1

0

ωr(s)ds

∫ 1

0

g(s)f (n+r)(s)ds

+

p−n∑
r=0

hn+r+β+1

r∑
l=0

ψ
(r−l)
ol (0)

(r − l)!

∫ 1

0

ωl(s)ζ̃(−β − r + l, s)ds

+O(hp+1).

This is the desired Euler-McLaurin expansion for g(t) given by tβ selecting

the appropriate terms. For the important case of endpoint singularities (which

includes g(t) = tβ) terms of the form
∫ 1

0
ωl(s)ζ̃(α, s)ds can be reduced to sums

of ordinary zeta functions.

The remainder of this section includes singularities of logarithmic type.

Application to Integral Equations

Section 5 of [34] deals with the application to integral equations, specifically to

the Fredholm equation. (The transition to the VIE is straightforward). Further,

they consider singularities of the type |t−s|γ , which we now replace with tβ, and

adjusting related terms accordingly. We commence with the Fredholm equation

y(t) = G(t) + λ

∫ 1

0

K(t, s)y(s)ds, 0 ≤ t ≤ 1, (6.13)

110

and also define the Volterra equation

y(t) = G(t) +

∫ t

0

K(t, s)y(s)ds,

in both cases with

K(t, s) = P (t, s)Q(t, s)

(simplifying the kernel by dropping the summation), and where the relevant con-

ditions apply, Q(t, s) being smooth, and
∫ 1

0
P (t, s)ds bounded. The application

of product integration to the integral term in (6.13) yields the numerical scheme

Yij = G(tij) + λ

m−1∑
l=0

n∑
k=1

Wlk(tij)Q(tij , tlk)Ylk, (6.14)

j = 1, . . . , n; i = 0, . . . , m− 1,

where

Wlk(t) =

∫ tl+1

tl

P (t, s)Lk

(
s− ti
h

)
ds,

and Yij denotes the numerical approximation to y(tij). They cite the result from

Atkinson, that if λ is not an eigenvalue of (6.13), then (6.14) has a unique solution

for sufficiently small h, with a bound on the error,

max
j=1:n

i=0:m−1

|y(tij) − Yij| = O(E),

where

E = max
j=1:n

i=0:m−1

|
m−1∑
l=0

n∑
k=1

Wlk(tij)Q(tij , tlk)y(tlk) −
∫ 1

0

K(tij , s)y(s)ds|.

This is the error formulation for the Fredholm equation, as shown in [34].

Adjustment of the subscripts and the first summation limit, and taking the

upper limit of integration to be h (see below), yields the required expression for

the Volterra equation.

Remark 5 The application of the error term Eg(f), (4.4) in [34], and in its

condensed form (6.10) above, indicates that the dominant term in the error ex-

pansion is an integer power of h. This does not match the numerical results,

111

which give convergence of a lower noninteger order. We observe that the theo-

retical approach used involves integration of g(s)f (n+r)(s) over the limits 0 to 1.

The Volterra equation is solved one step at a time, and we need the upper inte-

gration limit to be h. If we scale the integrand by the substitution σ = sh, and

with g(s) = sβ, a factor of hβ is introduced, and the leading error term becomes

O(hn+β), which reflects the numerical findings.

112

Chapter 7

Numerical Results

In this chapter we are looking to answer some basic questions for the solution

of equation (1.1), with the integration process taken over the two intervals [0, α]

and [α, t]:

u(t) = g(t) +

∫ α

0

sμ−1

tμ
u(s)ds+

∫ t

α

sμ−1

tμ
u(s)ds. (7.1)

Commencing away from the origin, can we rely on the efficacy of a standard

method to perform as accurately as would be expected, if the kernel were fully

continuous in all arguments? How closely can we approach the origin while

maintaining the order of convergence of the method? What methods are suitable

to commence at the origin, and are there others as yet untried? Finally, we must

consider the way in which one method, which we call the primary method, can

commence at the origin, and after a short interval be linked to an alternative

method, the secondary method, which can match the primary method in terms

of accuracy, while allowing greater flexibility over the remainder of the full time

interval. The matching process needs to take account of the length of the initial

interval, and its effect on both methods, and considerations of the step size

between the first and second stages. Much of the preliminary discussion is covered

in the previous chapter. We have examined the various algorithms, giving reasons

for selecting those which we now consider in detail.

113

7.1 Test Equations

We are looking at a wide range of methods, and it is not always the case that

a test equation suitable in one context may also be suitable in another. The

purpose of choosing a test equation is to quantify the error at some given point

t = t1, by comparison between the true analytic solution and the numerical

approximation. In certain cases, a simple input function g may be adequate,

while in other circumstances more thought is necessary.

Our input functions are selected from the set of power terms in t. It is readily

established that if g(t) =
∑m

k=0 bkt
βk for integer k and β > 0, the smooth solution

is available, in the form

u0(t) =
m∑

k=0

bkt
βk

(
μ+ βk

μ+ βk − 1

)
,

provided μ+ βk − 1 �= 0. We seek to approximate the smooth solution, and also

determine whether, once a non-smooth trajectory uc(t) is established, such that

uc(t) = u0(t) + c0t
1−μ, the numerical approximation shows convergence to that

particular trajectory. In some cases, we have used the simple input g(t) = 1 + t

so that u0(t) = μ/(μ− 1) + (μ+ 1)t/μ, but certain methods were found to have

a very high degree of accuracy, although without convergence. We recall that a

quadrature method is expected to be completely accurate in approximation of

polynomials of degree up to the order of the method, so when this occurs, we use

either a higher degree polynomial, or a non-integer power of t, with satisfactory

results.

When dealing with non-integer powers, a further precaution is to consider the

smoothness of the function. We see above that the differentiability of the un-

known function will be of the same order as that of the input function, and when

using methods of greater complexity, we may require more stringent restrictions.

An example of this is the Hermite collocation described earlier, where we are

working in the space C4[0, T]. A slight alleviation in this context is that the dif-

ferentiability we have to consider does not depend on the power of the function

114

alone, but on the combined power of μ + λ, where u ∈ Cλ[0, T], (Corollary 4.1

in [44]).

Taking the intervals in reverse order, we first show the results obtained from

various standard methods over the second interval, commencing at the analytic

value of u(α) - the convergence pattern is predictable, but we can also show the

link between the error and α, predicted by the analysis in Appendix (A); the

primary methods are then considered in isolation, followed by the extrapolation

process, and finally the set of results for the split-interval scheme, taking various

alternative primary and secondary rules.

7.2 Secondary Methods

In order to evaluate the behaviour of the numerical approximation over the sec-

ond interval, we begin by treating it in isolation, that is, we will assume for the

time being that the solution over the primary interval is the true analytic solu-

tion up to a defined point t = α �= 0, and the secondary method will be applied

over the interval [α, T].

Since the equation is “well-behaved” away from the origin, we anticipate

that the order of a method will be maintained, and further we will be looking

for evidence to support the results of the analysis in Appendix (A), that the

error is also inversely proportional to the same power of α. We will also consider

the effects of altering μ and T , and how small we can take α. It will not be

possible to include every case, but we give some typical examples to illustrate

our findings, and at the end of this section give a generalized summary of further

trials.

We take the discrete version of equation (7.1) in the form:

ũ(tn) = g(tn) + t−μ
n

∫ α

0

sμ−1u(s)ds+
N∑

i=q

wnK(tn, ti)ui, n = q + 1, . . . , N,

where the function required over the initial interval is solved analytically by

115

means of the integral term, Iα, where

Iα =

∫ α

0

sμ−1u(s)ds,

which will be used throughout this section.

There is now a Lipschitz condition applicable to the third argument of the

kernel, with Lipschitz constant L = 1/α. If we apply the restriction of Theorem

(6.3.1) on the stepsize, that h ≤ 1/LW , where W = max{wn}, wn being the

weights for the appropriate rule, we obtain the limitation on α in terms of h: for

the trapezoidal rule, this becomes α ≥ h/2, and if we are to take α in terms of

integer multiples of h, then α = h is the safe effective minimum value.

7.2.1 Basic Methods

We use the discretisation :

ũ(tn) = g(tn) + t−μ
n Iα + t−μ

n

n∑
i=0

wit
μ−1
i ũ(ti)ds,

where wi = 1 − θ.

Example 7.2.1

We start with the simplest of quadrature methods, the explicit Euler rule, for

which θ = 0. We take μ = 0.4, T = 10, α = 0.2 ∗ k, k = 1, . . . , 5, and

h = 1/(10 ∗ 2m), m = 1, . . . , 6, and set g(t) = 1 + t. Since we are applying the

quadrature over the region for which the kernel is smooth, we would expect the

convergence to be of order 1, and results indicate that this is the case. When we

take the logarithm of the error and plot against log(h) for each value of α, the

linearity is good; the same matrix of results can then be used to plot log(error)

against log(α), and we find gradients lie between -0.9 and -0.95.

When we take the implicit Euler method, where θ = 1, we reach similar

conclusions. We include these cases for completeness, but the methods are not

sufficiently accurate for our purposes.

116

Example 7.2.2

The trapezoidal rule is found to be highly reliable, simple to construct, and a

useful tool in a wide range of experiments. The predicted order of 2 is achieved,

we have the inverse relationship with α: error ∝ α−2, and error ∝ (T − α). The

main results are displayed in figures (7.1) and (7.2) where we have again taken

μ = 0.4, T = 10, and g(t) = 1 + t. The logarithmic error values are plotted (a)

against log(h), for different values of α, where we obtain gradients of 2, and (b)

against log(α) for various h, where the gradients are −2. We have used the order

approximations A0 and A1 in this and all subsequent cases, where

A0 =

∣∣∣∣ log e0,k − log e0,1

log hk − log h1

∣∣∣∣
A1 =

∣∣∣∣ log e1,
 − log e1,1

logα
 − logα1

∣∣∣∣
taking the approximations over k values of h, and � values of α. Since we have

good linearity of the results, the average of the gradient of the logarithmic graphs

gives a reliable measure of the convergence of the method. This is the first

definite indication we have that there is a connection between the error and the

magnitude of the initial interval α, and we shall be looking to see whether this

is shown to be the case when other methods are considered below.

The connection between the error and μ is more obscure. The analysis of

Appendix A indicates that error ∝ 1/(μ − 1)(μ − 2), and this is confirmed by

the logarithmic plot (not shown) of error against the expression in μ, if h and α

remain constant.

Taking extreme values of μ makes little difference to the validity - the results

for μ = 0.02 are included in Appendix (B). We further find that if we extend the

time interval T progressively to T = 100, the usual linear link between error and

elapsed time holds good. In case this might be as result of the initial interval

being a significant proportion of the total time, we can extend the values of T,

117

now up to T=1000; and these relations still hold. When we pursue this through

the error analysis, we find that the inverse square term in α does indeed emerge.

When μ = 0.4, the actual values of error at T=10 are shown for values of h at

α = 0.4 and for values of α when h = 1/80.

h |e| α |e|

1/20 2.0227e-002 0.2 5.4934e-002

1/40 5.0761e-003 0.4 1.1864e-002

1/80 1.2702e-003 0.5 7.4023e-002

1/160 3.1764e-004 0.6 5.0761e-003

1/320 7.9415e-005 0.8 2.8393e-003

1/640 1.9854e-005 1.0 1.8287e-003

The graphs of these results for μ = 0.4 are shown in figures (7.1) and (7.2).

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2
−16

−14

−12

−10

−8

−6

−4

−2
Trapezium Rule Error/h (mu=0.4)

α=0.2

0.4

0.6

0.8

1.0

Log h

Lo
g

E
rr

or

Figure 7.1:

Trapez. Rule: Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−16

−14

−12

−10

−8

−6

−4

−2
Trapezium Rule Error/alpha (mu=0.4)

h=1/20

1/80

1/160

1/640

Log α

Lo
g

E
rr

or

Figure 7.2:

Trapez. Rule: Error/α

We obtain the order of the method from the gradients of the logarithmic

plots, making the assumption that these plots are linear in form, an assumption

which is supported by the results achieved.

118

Non-smooth solutions: The above results are all based on the premise that the

smooth solution has been selected, and this is the trajectory which is followed,

as we defined earlier, taking the case when c = 0. The path is defined by the

value of the term Iα, which has so far been taken as representing the integration

of the smooth solution over the initial interval [0, α]. We now take the value of

Iα to be amended by including the term c0t
1−μ in the integration process to give

a different trajectory over the initial interval. We now define Ic in terms of our

test equation to be

Ic =

∫ α

0

sμ−1(a+ bs+ c0s
1−μ)ds, (7.2)

=
tμ

μ− 1
+
tμ+1

μ
+ c0t. (7.3)

Our objective is to ascertain whether the secondary numerical scheme continues

on the present path, returns to the smooth solution, or pursues some third way,

which we would not have anticipated. Taking μ = 0.4, α = 0.4, T = 10 and

c0 = 0.5 we obtain the following results, where et is the error in the approximation

to the true solution (c0 = 0), and ec is the error in the approximation to the non-

smooth trajectory for c0 = 0.5.

h et ec

1/20 -0.00407346979360 -0.00407346979360

1/40 -0.00102071217663 -0.00102071217664

1/80 -0.00025532586443 -0.00025532586445

1/160 -0.00006384072516 -0.00006384072514

1/320 -0.00001596076036 -0.00001596076039

1/640 -0.00000399022635 -0.00000399022634

So in each case we have the appropriate convergence pattern of O(h2), and

the magnitude of the error in the non-smooth case resembles that of the smooth

approximation.

119

7.2.2 Newton-Cotes

Simpson’s Rule

The natural sequence after the trapezium rule is to look at Simpson’s Rule (fur-

ther Newton-Cotes methods can be constructed similarly, extending the process

as indicated in Chapter 5). We need to establish the convergence of order four,

and the nature of the link with the term α. The issues discussed here affect all

methods of Newton-Cotes type, applied to Volterra equations.

For straightforward quadrature, these rules are implemented over two steps

at a time (three for the 3/8 rule etc.), and it is straightforward to divide the

region of integration into subintervals in multiples of two (three, etc) to carry

out the approximation. However, as described earlier, for a numerical solution

to the Volterra equation, we need to increment the process a step at a time.

When we follow the scheme described in section (4.3), we require two starting

values before Simpson’s rule can be applied, (three for the 3/8 rule, etc.) and

there are various ways of constructing these starting values, and the intermediate

step values. Provided this is done with care, we should obtain the expected

convergence of order 4. The criteria we have decided on are as follows (see refs.

in Chapter 5):

1. the 3-point Simpson’s rule is augmented by the 4-point 3/8 rule on alternate

lines,

2. the repetition factor of unity is maintained for n0 ≥ 5, by including the

3/8 rule as the final values of intermediate rows;

3. a starting method consisting of the trapezium rule over the first half-step

and Simpson’s over two half-steps is applied.

This results in the weights {wn,j} for Simpson’s rule (cf. Brunner and van der

120

Houwen [14]) ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1
6

4
6

1
6

1
6

4
6

1
6

3
8

9
8

9
8

3
8

1
6

4
6

2
6

4
6

1
6

1
6

4
6

7
24

9
8

9
8

3
8

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the second column indicates the weights at t0 + h/2. We seek to keep

the scheme as simple as possible without compromising on the accuracy. Other

alternatives for the starting method and for the main body of the scheme might

be to use half- and quarter-steps with the trapezoidal rule ([8]), or a block-by-

block method ([46]).

We will not pursue the Newton-Cotes methods of higher order: the extra

accuracy can be better achieved in other ways, and they are unsuitable for dealing

with the singularity if applied from t = 0.

Simpson’s rule is, however, an alternative possibility to the trapezoidal rule

away from the origin, if convergence of order four is required, and we have in

addition the inverse relationship with α of order four to recommend it.

7.2.3 Runge-Kutta

The construction of the various RK methods over the second interval has been

implemented using the method described in [14]. The final or ‘incremental’ step

is calculated using the appropriate RK formula, and the tail or lag terms are

also calculated using the same RK formula, rather than some arbitrary method

of quadrature. Thus we retain the integrity of the method for a particular VRK

scheme, and by implication, the order of the lag quadrature is the same as that

of the newly calculated step.

121

As before, the initial interval is assumed to be known, so letting q = α/h, we

obtain the formula with intermediate stages:

Yn,i = F̃n(tn + cih) + h
m∑

j=1

aij
(tn + cjh)μ−1

(tn + cih)μ
Yn,j,

i = 1 . . .m,

F̃n(tn + cih) = g(tn + cih) +
Iα

(tn + cih)μ
+ h

n∑
i=q

m∑
j=1

aij
(ti + cjh)μ−1

(tn + cih)μ
Yi,j,

and the (n+ 1)th step evaluation:

yn+1 = F̃n(tn + h) + h
m∑

j=1

bj
(tn + cjh)μ−1

tμn+1

Yn,j,

n = 0 . . .N − 1,

F̃n(tn + h) = g(tn+1) +
Iα
tμn+1

+ h
n∑

i=q

m∑
j=1

aij
(ti + cjh)μ−1

tμn+1

Yi,j.

As the kernel is separable, we are able to retain the intermediate summation

for subsequent use, so avoiding repeated calculation.

The values ai,j , bj and ci are obtained from the appropriate Butcher array,

and we are now able to employ any of the wide range of RK methods available.

We give three examples below, and a further selection is included in Appendix

(C). The choice has been influenced by the requirement to demonstrate that the

RK explicit and impicit methods retain their order of convergence, to discover

whether the relationship between the error and α is altered in any way, and to

assess whether it would be possible to use any of these methods starting from

the origin (α = 0).

122

Example 7.2.3 RK classic explicit (3-stage)

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Log h

Lo
g

er
ro

r

Runge−Kutta classic

μ = 0.4
h=1/20 ... 1/640
α = 0.2 ... 1

Figure 7.3:

RK classic: Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Log α

Lo
g

er
ro

r

Runge−Kutta classic

μ = 0.4
h = 1/20 ... 1/640
α = 0.2 ... 1

Figure 7.4:

RK classic: Error/α

The Butcher array for this example is

0

1
2

1
2

1 −1 2

1
6

2
3

1
6

Again, we take μ = 0.4, h = 1/(10 ∗ 2i), i = 1 . . . 6, α = 0.2 ∗ j, j = 1 . . . 5.

We find the expected convergence rate of O(h3), and that the inverse relation

with α is O(α−3).

123

Example 7.2.4 RK Implicit (2-stage)

We now take the Butcher array as

0 1
4

−1
4

2
3

1
4

5
12

1
4

3
4

Again, we have convergence O(h3) and the same inverse relation with α.

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

Log h

Lo
g

er
ro

r

Split−interval scheme

Pr. Euler + RK Implicit

μ=0.4
T=10

α=0.2

0.4

0.6

0.8

1.0

Figure 7.5:

RK Implicit: Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

Log α

Lo
g

er
ro

r

Split−interval scheme

Pr. Euler + RK Implicit
h=1/20

1/40

1/80

Figure 7.6:

RK Implicit: Error/α

Example 7.2.5 RK Nystrom

We take the same parameters and input function as before, and using the Butcher

array

0

2
3

2
3

2
3

0 2
3

1
4

3
8

3
8

we obtain the expected order of 2. However, in this example we do not find the

uniformity of the relation between error and α. Between the lowest values taken,

124

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4
RK−Nystrom

Log h

Lo
g

er
ro

r

μ = 0.4
T = 10

α=0.2

0.4

0.6

0.8

1.0

Figure 7.7:

RK Nystrom: Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

Log α

Lo
g

er
ro

r

RK Nystrom

μ = 0.4
T = 10

Figure 7.8:

RK Nystrom: Error/α

the gradients A1 are less than unity, the average figure being approximately 1.2.

Over the subsequent interval, where α ∈ [0.4, 1.0] the values of the gradients are

more in line with the general picture obtained from other methods, approximat-

ing 1.7, as we see from figure (7.8) and the tables in Appendix (B). However,

due to this discrepancy we do not include the RK Nystrom method of order 2 in

the combined split-interval examples.

Example 7.2.6 Radau and Lobatto

We apply the Radau Ia, Radau II, Radau IIa and Lobatto 3c methods, all

of which attain their respective expected convergence orders. In general, the

2-stage methods achieve the same inverse power when the error is expressed in

terms of α, but the 3-stage methods tend to be approximately 0.5 lower.

Example 7.2.7 Gauss-Legendre

The Butcher array for the two-stage method is

3−√
3

6
1
4

3−2
√

3
12

3+
√

3
6

3+2
√

3
12

1
4

1
2

1
2

125

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−35

−30

−25

−20

−15

−10

−5
Gauss−Legendre 2−stage

Log h

Lo
g

er
ro

r

μ = 0.4
h = 1/20 ... 1/640
α = 0.2 ... 1

Figure 7.9:

Gauss-Legendre 2-stage:

Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−35

−30

−25

−20

−15

−10

−5

Log α

Lo
g

er
ro

r

Gauss−Legendre 2−stage

μ = 0.4
h = 1/20 ... 1/40
α = 0.2 ... 1

Figure 7.10:

G-L 2-stage: Error/α

The expected order O(h4) is achieved, and the inverse relation with α is slightly

better than the inverse O(α−4)

The Gauss-Legendre schemes would seem to present a strong possibility of

providing an approximate solution to equation (1.1), to include the singularity.

The nodes upon which the approximation is based do not include either end of

the step interval. The method is based upon integration over the finite interval

[-1,1], which may easily be transformed to accommodate the step interval of the

VIE. The accuracy of the method is extremely good - the order is 2m for an

m-stage method, and the coefficient of the leading error term appears low. We

have constructed the two, three and four-stage rules for equation (1.1) starting

away from the origin, and each of these schemes behaves in accordance with

expected orders of accuracy. Further, we again have the link with the α-interval,

finding that the relationship between error and α is inversely of the same order as

the method. The results for the 3-stage method would require to be constricted

within a narrower range of step size. We find that the high level of accuracy

at small step sizes (1/320, 1/640) is subject to rounding error, affected by the

computer accuracy eps = 2.220446049250313e− 016. If we scale the values of h

126

to larger step sizes, we need to relate to values of α which are multiples of the

enlarged scale.

For both these systems, we can now get to one step away from the origin

without losing convergence. However, when we attempt to implement Gauss-

Legendre from the origin, a problem arises. For the 2-stage method, the matrix

constructed for solution of the implicit system is singular. This is shown up when

we attempt to run the code, and it is straightforward to check the individual

terms of the matrix to find that this is indeed the case. When we run the code

for the 3-stage Gauss-Legendre scheme, the matrix is almost singular. It is usual

to consider the 3-stage version as providing sufficient accuracy for normal use,

but feeling that this is a special case, we must also look at the 4-stage scheme.

This might be more expensive, but as we are only looking to find a result over

the initial short interval, it is worth looking at. However, disappointingly, we

find that here, too, the matrix is almost singular.

7.2.4 Linear Multistep schemes

Again, there is a wide variety of such schemes available, but here, in the presence

of a singularity, we are particularly interested in the backward differentiation 2-

step method to illustrate a means of approximating the second interval, with its

known stability properties. First, though we consider the Volterra analogy of the

Adams-Moulton 2-step method, of order 3.

Example 7.2.8 Adams-Moulton 2-step

The analogue of LM methods in the context of the Volterra equation has

been assessed in the previous chapter, and several means of implementation are

considered. We apply an iterative scheme based on the 2-step AM method as

applied to the ODE, described in full in Appendix (D). We find that higher

order algorithms can be constructed, but in this context it would not be useful

to pursue this further: higher order results of greater stability are better achieved

127

by e.g. the Gauss-Legendre schemes, or for reliability and ease of construction,

the trapezoidal. We include this example to demonstrate that a VLM scheme is

possible here.

Applying the algorithm described in Appendix (D), we find that the results

give a good convergence of order 3, and also the connection between the error

and α is of order -3. However, this is based on a starting scheme of two steps

of the trapezoidal rule. If this is reduced to a single step, then the order of 3

is maintained, but the relation between error and α now approximates to −2.

Other possibilities exist, such as taking the trapezium weights over two half-steps

as the starting rule, or using a method of order 3 over the first step.

Example 7.2.9 BDF 2-step

We take the 2-step backward differentiation formula, with a0 = 3, a1 = −4,

a2 = 1 and b0 = 2. We use the property that this formula is (ρ, σ)-reducible,

and apply the weights as calculated by the formula derived by Wolkenfeldt [71],

commencing at tq = α, with the trapezoidal weights over the first step:

w1,1 = w1,2 = 1
2
, n = 1,

wn,1 = wn,2 = 3
4
(1 − (1

3
)n, n ≥ 2,

wn,j = 1 − (1
3
)n−j+1 n− j ≥ 0, j ≥ 3.

The weights are applied to the quadrature formula

ũ(tn) = g(tn) + t−μIα + h
n∑

i=0

wik(tn, ti)ũ(ti),

where the {wi} are now calculated as above. We obtain the results that indicate

convergence of order 2, and also the inverse power in α (see Appendix (A)).

The obliging link between the convergence order and the inverse relation

between error and α is not invariably present. Further numerical results are

given in Appendix (B), and we find that in certain cases, for a method of order

128

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−14

−12

−10

−8

−6

−4

−2
BDF 2−step

Log h

Lo
g

er
ro

r

α=0.2

0.4

0.6

0.8

1.0

μ = 0.4
T = 10

Figure 7.11:

BDF 2-step: Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−14

−12

−10

−8

−6

−4

−2

Log α

Lo
g

er
ro

r

BDF 2−step

h=1/20

1/40

1/80

1/160

1/320

1/640

μ = 0.4
T = 10

Figure 7.12:

BDF 2-step: Error/α

p, the error is proportional to α−r, where p − 1 < r < p. This discrepancy has

not been fully explained.

7.3 Primary Methods

Product integration is a highly suitable means of commencing at the origin,

for the reasons already discussed. The product Euler method is already well

established, with order of convergence hμ when μ < 1, and when the scheme is

used alone, the error is proportional to c0t
1−μ
N . In the remainder of the chapter,

we shall be curtailing the product Euler method at tq = α = qh, so this will

influence the cumulative error of the combined scheme.

We include some results to illustrate that when μ < 1, the convergence of

the product trapezoidal method is h1+μ. We also confirm that the error is again

proportional to c0t
1−μ
N

We further include evidence that the method of Hermite-type collocation,

developed previously in [64] for the case when μ > 1 where it was shown to have

order h4, now has convergence order h3.5 approximately.

129

7.3.1 Product Euler

We define the scheme to be as described in chapter 5, which we now develop using

the trivial Lagrange zero degree polynomial �0 = 1, and the kernel K(t, s) =

t−μsμ−1 to obtain the explicit method:

un(tn) = g(tn) +

n−1∑
j=0

t−μ
n uj

∫ tj+1

tj

sμ−1ds

to yield

un(tn) = g(tn) +
n−1∑
j=0

t−μ
n uj

(tμj+1 − tμj)

μ
.

Although this is a well-established method, and the convergence is weak but

known and proved, the actual magnitude of the errors is not insignificant, as the

following plots demonstrate. At μ = 0.2, T = 10, and for h = 1/20, the error

approaches 50%, and it is a remarkable fact that, even with this error of totally

unacceptable proportion, we can still obtain the requisite convergence, with a

uniform linearity over the stepsizes used. Figure (7.13) is the solution plots for

various h taken at μ = 0.4, while figure (7.14) shows the error values plotted

logarithmically against h, for μ = 0.2, 0.4, 0.6 and 0.8.

Pr. Euler

μ A0

0.2 0.1982

0.4 0.3930

0.6 0.5784

0.8 0.7419

We find in the following section that with the use of extrapolation, it is possible

to obtain reliable results of an acceptable degree of accuracy.

7.3.2 Product Trapezoidal

We construct the product trapezoidal method as indicated in the previous chap-

ter, with the first degree Lagrange polynomial �1 = (t− t0)/(t1 − t0). We retain

130

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

12

14

16

18
Product Euler Rule

t

u(
t)

h = 1/20, 1/40, 1/80
mu = 0.4
T = 5

Figure 7.13:(A) Product Euler solutions

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−4

−3

−2

−1

0

1

2

3

4
Pr. Euler

Log h

Lo
g

er
ro

r

μ=0.2

0.4

0.6

0.8

Figure 7.14:(B) Product Euler conv.

μ = 0.4 and T = 10, but the input function is now g : g(t) = t− t2/10.

Pr. Trapezoidal

μ A0

0.2 1.1997

0.4 1.3978

0.5 1.4950

0.6 1.5909

0.8 1.7596

131

So we have a fairly close convergence order of 1 +μ, with a slight weakness when

μ = 0.8, but with good linearity of the results.

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−14

−12

−10

−8

−6

−4

−2
Product trapezoidal − Error/h

Log h

Lo
g

er
ro

r

μ = 0.2

0.4

0.5

0.6

0.8

Figure 7.15:(C) Product trapez. conv.

7.3.3 Hermite-type collocation

For a much higher level of accuracy, we can use the method of Hermite-type

collocation, previously applied for the case when μ > 1, where it was found to

be of order 4. However the case for which μ < 1 does not have the necessary

bound, and as we have seen there is a multiplicity of solutions for any given

input function g. One further piece of information is required to identify which

of these solutions is required, which has already been considered by identifying a

point away from the origin by which a given solution is determined. If the unique

solution required is to be the smooth solution, then we may take the heuristic

argument that the gradient of the solution defined at t = 0 is also sufficient to

determine the trajectory which the numerical rule is required to approximate.

As the above method utilises the given starting value of u′(0), we may consider

this a suitable starting method for our split-interval scheme.

Now with μ < 1, we find evidence that commencing from the origin, the

convergence order p is such that 3 < p < 4. However, unlike the product

132

integration methods, there appears to be little change when different values of μ

are selected. There are inconsistencies at the smallest stepsize, almost certainly

due to machine error, and a slight shift in the convergence when μ = 0.8. The

table of gradients A0 is calculated excluding the case when h = 1/640.

μ A0

0.2 3.5597

0.4 3.6768

0.5 3.6447

0.6 3.5924

0.8 3.3825

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5
−28

−26

−24

−22

−20

−18

−16

−14

−12
Hermite Collocation − Error/h

Log h

Lo
g

er
ro

r

μ = 0.2

0.4

0.5

0.6

0.8

Figure 7.16:Hermite collocation

7.3.4 Comparison of primary methods

To conclude this section, we compare the three methods not only for convergence,

but for their overall accuracy. If each of these plots is extended to the vertical

line log h = 0, this gives an insight into the values of the leading error factor

in each case: with μ = 0.4 and T = 5, these are 0.105 for the product Euler,

0.024 for the product trapezoidal, and 0.129 for the Hermite scheme. The figure

133

−7 −6 −5 −4 −3 −2 −1 0
−30

−25

−20

−15

−10

−5

0
Comparison of 3 primary methods

Log h

Lo
g

er
ro

r

gradients approx. 0.97, 2.11, 3.68

Pr. Eu

Pr.Tr.

Hermite
Log of Constants approx −2.26, −3.73, −2.05

Actual constants approx. 0.105, 0.0240, 0.1290

mu = 0.4

Figure 7.17:Comparison of primary methods

is based on the following actual error values:

Comparison of errors

h Pr.Euler Pr.T rap. Hermite

1/20 −5.7125e− 3 4.2796e− 5 −2.0697e− 6

1/40 −2.9857e− 3 8.2734e− 6 −1.8088e− 7

1/80 −1.5302e− 3 1.8838e− 6 −1.4696e− 8

1/160 −7.7527e− 4 4.5729e− 7 −1.1415e− 9

1/320 −3.9029e− 4 1.1333e− 7 −7.738e− 11

1/640 −1.9582e− 4 2.8273e− 8 −4.727e− 11

and we clearly see the relative behaviour, not only of the order of convergence,

but the overall accuracy comparison.

7.4 Extrapolation

7.4.1 Modified Richardson

We use the modified Richardson scheme described in the previous chapter, and

apply the acceleration process to a set of results obtained by using the product

Euler method defined above, setting g(t) = 1 + t, over [0, 10], with μ = 0.4,

134

and stepsizes h = 1/(10 ∗ 2i), i = 1, . . . , 6. The error values are in the first

column, and we take five levels of extrapolation, eliminating error terms up to

and including h2+μ. The true solution is 34.3333 The actual process is

carried out on the solution approximation values, and the table below shows the

errors at each level of extrapolation.

Modified Richardson

h e0,n e1,n e2,n e3,n e4,n e5,n

1/20 -4.9018e+0

1/40 -3.7496e+0 -1.4342e-1

1/80 -2.8594e+0 -7.3154e-2 -2.8869e-3

1/160 -2.1760e+0 -3.7123e-2 -1.0915e-3 3.9725e-6

1/320 -1.6536e+0 -1.8768e-2 -4.1290e-4 1.1141e-6 1.6135e-7

1/640 -1.2555e+0 -9.4621e-3 -1.5627e-4 3.0133e-7 3.0391e-8 -2.2097e-10

7.4.2 E-algorithm

The E-algorithm of Brezinski is applied to the same inputs as above, to yield the

errors in the extrapolation stages to be

E-algorithm

h e0,n e1,n e2,n e3,n e4,n e5,n

1/20 -4.9018e+0

1/40 -3.7496e+0 -1.4342e-1

1.80 -2.8594e+0 -7.3154e-2 -2.8869e-3

1/160 -2.1760e+0 -3.7123e-2 -1.0915e-3 3.9725e-6

1/320 -1.6536e+0 -1.8768e-2 -4.1290e-4 1.1141e-6 1.6135e-7

1/640 -1.2555e+0 -9.4621e-3 -1.5627e-4 3.0133e-7 3.0391e-8 -2.2087e-10

Other schemes for convergence acceleration are noticeably less accurate for

this problem. Making the comparison of these two sets of calculations, we note

the following:

1. There is negligible difference between the two ways of achieving convergence

135

acceleration;

2. both methods require the asymptotic error expansion to be known;

3. the modified Richardson method requires fewer calculations, and is tailored

to the requirements of this particular situation;

4. adapting to different circumstances, e.g. product trapezoidal error expan-

sion, is also simpler with the modified Richardson.

We conclude that the modified Richardson extrapolation is the preferred method.

7.5 The Split-interval scheme

We have tested the separate components of the split-interval scheme defined in

the previous chapter, and we now need to show how these are combined to form a

reliable algorithm for the approximate solution of equation (1.1). In the majority

of cases we use the product Euler as the primary method - its weakness provides

a very real test of the acceleration process, and illustrates the importance of

the correct construction of the combined method. The process is best described

through examples.

Example 7.5.1 Product Euler and trapezoidal rule (a)

For our first example, we take the product Euler scheme as the primary, and the

trapezoidal rule as secondary, using extrapolation at α to improve the primary

result to order 2. We commence with a ‘base’ value of the stepsize, h
(1)
0 , and

three further values, each half of the one before. This provides a set of four

approximate solutions at α, to which we apply 3 levels of extrapolation, and the

single value from this is used as the starting point for the trapezoidal rule at

stepsize h
(1)
0 .

136

We then commence with a new ‘base’ value of h, h
(2)
0 , and obtain four values of

the approximation, again applying three levels of extrapolation, and implement-

ing the second interval with stepsize h
(2)
0 ; this process is continued for a further

level, and so we achieve a final set of three approximations un(T) which provide

the overall convergence of order 2. Allowing h
(3)
0 = h

(2)
0 /2 = h

(1)
0 /4 avoids repet-

itive calculation, and we effectively have a 5-level extrapolation table, curtailed

at the third level.

In this example we take α = 0.5 and μ = 0.4. The values em,n are the errors

of each of the approximate solutions Ym,n of the extrapolation table.

Extrapolation at α

h e0,n e1,n e2,n e3,n

1
20

−7.0918e− 1 −1.1938e− 1 −1.1066e− 2 −1.6947e− 4

1
40

−5.6637e− 1 −6.5223e− 2 −4.2984e− 3 − 3.8971e− 5

1
80

−4.4502e− 1 −3.4761e− 2 − 1.6530e− 3 −9.1210e− 6

1
160

−3.4568e− 1 − 1.8207e− 2 −6.3203e− 4

1
320

−2.6638e− 1 −9.4195e− 3

1
640

−2.0416e− 2

Instead of the more conventional layout, we align the values to the top of the

table, to emphasise the appropriate stepsize for the secondary method.

After setting the trapezoidal rule over the remainder of the interval [α, T] we

obtain the final set of results

Final Error values

h Error

1/20 −0.00249769500631

1/40 −0.00060425726332

1/80 −0.00014733377138

which clearly demonstrates order 2 for the combined scheme.

137

Example 7.5.2 Product Euler and trapezoidal rule (b)

Having demonstrated the construction of the method, we now take a range of

values for α, and obtain a more general set of results.

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
−11

−10

−9

−8

−7

−6

−5
Split−interval scheme

Log h

Lo
g

er
ro

r

Pr. Euler + trap. rule

μ=0.4
T=10

Figure 7.18:

Pr. Euler + trapezium rule:

Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−11

−10

−9

−8

−7

−6

−5

log α

Lo
g

er
ro

r

Split−interval scheme

Pr. Euler + trap. rule

μ=0.4
T=10

Figure 7.19:

Pr. Euler + trapezium rule:

Error/α

This yields the following convergence figures, based on the gradients as before:

P.Euler + Trap. rule

α A0 h A1

0.2 2.1847 1/20 −1.4676

0.4 2.1203 1/40 −1.3992

0.6 2.0783 1/80 −1.3358

0.8 2.0506

1.0 2.0316

with a good O(h2) for the combined scheme, and we find that the error is of

order −1.3 · · · − 1.5 in α. It is too early to draw conclusions from this.

138

Example 7.5.3 Product Euler + Runge-Kutta classic

The RK classic is of order 3, so now we require 5 levels of extrapolation to

bring the primary order to the same as the secondary. We let g(t) = t − t2/10,

otherwise, the construction is as for the previous example. Again, we allow 3

trajectories to continue over the second interval, which yield the expected order

of 3, and the error relates to α in terms of order approximately -2.7.

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

Log h

Lo
g

er
ro

r

Pr. Euler + RK classic

α=0.2

0.4

0.6

0.8

1.0

μ = 0.4
T = 10

Figure 7.20:

Pr. Euler + RK classic:

Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

Log α

Lo
g

er
ro

r

Split−interval scheme

P Euler + RK classic

μ=0.4
T=10

Figure 7.21:

Pr. Euler + RK classic:

Error/α

P.Euler + RK classic

α A0 h A1

0.2 2.9160 1/20 −2.6851

0.4 2.9606 1/40 −2.7263

0.6 2.9749 1/80 −2.7459

0.8 2.9821

1.0 2.9866

139

Example 7.5.4 Product Euler + RK Implicit

The RK Implicit being also a method of order 3, we retain 5 levels of extrapola-

tion at α, and g(t) = t− t2/10. The convergence is now marginally greater than

3, and we again find the order of the error in α around -2.7.

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

Log h

Lo
g

er
ro

r

Split−interval scheme

Pr. Euler + RK Implicit

μ=0.4
T=10

α=0.2

0.4

0.6

0.8

1.0

Figure 7.22:

Pr. Euler + RK Implicit:

Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

Log α
Lo

g
er

ro
r

Split−interval scheme

Pr. Euler + RK Implicit
h=1/20

1/40

1/80

Figure 7.23:

Pr. Euler + RK Implicit:

Error/α

P.Euler + RK Implicit

α A0 h A1

0.2 3.0322 1/20 −2.7319

0.4 3.0180 1/40 −2.7190

0.6 3.0127 1/80 −2.7114

0.8 3.0099

1.0 3.0083

Example 7.5.5 Product Euler + GL 2-stage

The Gauss-Legendre 2-stage is of order 4, so we now need 10 stepsize values at

each α, followed by 7 levels of extrapolation, to obtain 3 trajectories over the

second interval. Again, μ = 0.4, T = 10 and g(t) = t− t2/10. The results are a

140

close match to the order, and we find a slight weakening of the connection with

α, at around −3.5.

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
−24

−22

−20

−18

−16

−14

−12

−10

Log h

Lo
g

er
ro

r
Split−interval scheme

Pr. Euler + GL 2−stage

μ=0.4
T=10

α=0.2

0.4

0.6

0.8

1.0

Figure 7.24:

Pr. Euler + GL 2-stage:

Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−24

−22

−20

−18

−16

−14

−12

−10

Log α

Lo
g

er
ro

r

Split−interval scheme

Pr. Euler + GL 2−stage

μ=0.4
T=10

h=1/20

1/40

1/80

Figure 7.25:

Pr. Euler + GL 2-stage:

Error/α

P.Euler + GL 2-stage

α A0 h A1

0.2 3.9810 1/20 −3.5289

0.4 3.9954 1/40 −3.5416

0.6 3.9983 1/80 −3.5379

0.8 3.9993

1.0 3.9916

141

Example 7.5.6 Product Euler + Adams-Moulton

The implementation is similar to that of the method described in section (7.2.4),

but as with other methods we now commence the AM 2-step method at ũ(α).

The formula for the second interval is the same as that in App. E, and with

g(t) = 1 + t, we obtain order 3 in h, and order −3 in α.

P.Euler + AM 2-step

α A0 h A1

0.2 2.7012 1/20 −2.9308

0.4 2.8390 1/40 −3.0576

0.6 2.8912 1/80 −3.1321

0.8 2.9183

1.0 2.9349

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

Log h

Lo
g

er
ro

r

PE + AM 2−step

α=0.2

0.4

0.6

0.8

1.0

μ = 0.4
T = 10

Figure 7.26:

Pr. Euler + AM 2-step

Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

Log α

Lo
g

er
ro

r

h=1/20

1/40

1/80

μ = 0.4
T = 10

Figure 7.27:

Pr. Euler + AM 2-step:

Error/α

142

Example 7.5.7 BDF 2-step

Again, with the appropriate 3 levels of extrapolation, we find that the combined

method is of order 2, matching the expected order for a 2-step method applied

to a Volterra equation where all terms are smooth. Further, the relation with α

is again error ∝ α−2. The construction is the same as we used in section (7.2.4)

commencing at the true solution at α. As the BDF method is of special interest

in the solution of Volterra equations, we include the full representation of the

extrapolation process when α = 1:

Extrapolation at α = 1

h e
(n)
0 e

(n)
1 e

(n)
2 e

(n)
3

1
20

−1.1393 −1.2527e− 1 −7.3172e− 3 8.7321e− 6

1
40

−8.9377e− 1 −6.6295e− 2 −2.7673e− 3 5.3380e− 6

1
80

−6.9341e− 1 −3.4531e− 2 −1.0453e− 3 1.9241e− 6

1
160

−5.3386e− 1 −1.7788e− 2 −3.9489e− 4

1
320

−4.0890e− 1 −9.0916e− 3

1
640

−3.1209e− 1

We obtain the final error values at T = 10:

Final errors at T=10

h α = 0.2 0.4 0.6 0.8 1.0

1
20

−5.9322e− 2 −1.4346e− 2 −6.3533e− 3 −3.6028e− 3 −2.3340e− 3

1
40

−1.6541e− 2 −3.7643e− 3 −1.6303e− 3 −9.1414e− 4 −5.8827e− 4

1
80

−4.3903e− 3 −9.6255e− 4 −4.1150e− 4 −2.2927e− 4 −1.4700e− 4

143

and the gradient values of the logarithmic plots

P.Euler + BDF 2-step

α A0 h A1

0.2 1.8781 1/20 −2.0103

0.4 1.9488 1/40 −2.0730

0.6 1.9743 1/80 −2.1105

0.8 1.9870

1.0 1.9944

−4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3 −2.8
−9

−8

−7

−6

−5

−4

−3

−2
Pr. Euler + BDF

Log h

Lo
g

er
ro

r

α=0.2

0.4

0.6

0.8

1.0

μ = 0.4
T = 10

Figure 7.28:

Pr. Euler + BDF 2-step:

Error/h

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−9

−8

−7

−6

−5

−4

−3

−2

Lo
g

er
ro

r

Pr. Euler + BDF

Log α

μ = 0.4
T = 10

h=1/20

1/40

1/80

Figure 7.29:

Pr. Euler + BDF 2-step:

Error/α

7.6 Summary

We have shown that a wide range of methods is possible away from the origin,

and the standard convergence pattern occurs when such methods are applied,

starting from the true analytic solution at t = α. Further, that the order of

convergence in each case is echoed by a pattern of inverse order in α.

144

We have examined several methods which are suitable for commencing at

the origin. The product Euler method is already known to be reliable, and

we also can now include the product trapezoidal, and the collocation method

of Hermite. Higher order product integration is theoretically possible. Other

potential methods, such as Gauss-Legendre, have been constructed, but found

to be unworkable.

We have tested two suitable methods of convergence acceleration - the E-

algorithm of Brezinski, and a modification of the Richardson scheme. The per-

formance of these two in terms of accuracy is virtually identical, so we select the

modified Richardson as being specifically constructed for the particular expan-

sion involved, and having fewer calculations.

Finally, these separate components have been combined into the split-interval

scheme described in the preceding chapter. The construction of this is described

through examples, and by careful management of the procedure at α, we find

that the expected convergence rates can be achieved. The assumption is that

the primary method will have a lower convergence rate than the secondary, and

in this case the acceleration process and link with the secondary method must

be tightly controlled.

The relationship between error and α is still a matter for concern. For a

secondary method of integer order m, and acceleration of the primary method

to the same order, we find that the error is proportional to a negative power of

α which lies between m− 1 and m.

Remark 6

If the convergence rate of the primary scheme is higher than that of the secondary,

then the order of the combined method is expected to be that of the latter.

Extrapolation might be considered at the final time t = T , or used on non-

integer terms at α, and the integer terms at T . Such a case might arise if the

method of Hermite is applied over the first interval.

145

Chapter 8

Conclusions

We have been looking at the solution structures of a Volterra integral equation

with a singularity at the origin which is not of the type considered in standard

texts on the subject. The objective has been to develop an improved means of

numerical approximation to the solution, but there are also certain theoretical

developments which have emerged.

In this thesis we have concentrated on the most elementary member of a

particular class of Volterra integral equations. The methods and proofs described

are, in principle, applicable in general to the class of Volterra integral equations

with a singularity at the origin of algebraic type, such as those which have (a)

linear kernels of the form

K(t, s) =
sμ−1

tμ
k(t, s), 0 < μ < 1,

where k(t, s) is ‘well-behaved’ in the sense of continuity order, (b) the non-linear

case where the kernel is now

K(t, s, u) =
sμ−1

tμ
k(t, s, u),

and (c) systems of such equations. Cases (a) and (b) have been studied theo-

retically by Han [32], and the underlying theory of function analysis of Chapter

2 can be extended to include these examples, as well as the case when μ = 1,

already dealt with.

146

Previous work described in Chapter 1 has reduced the original equation from

an expression of considerable complexity to its innocuous-looking form in equa-

tion (1.1). A further possible substitution referred to in section (3.8) would

remove the singularity from the integrand, but replace it with an unbounded in-

tegral as the input function. This led to an interesting extension to the classical

approach, but we do not find the numerical approximation process made any

easier.

The construction of numerical approximation to the true smooth solution

described in Chapter 6 is suitable for extension to these cases. When the equation

is simplified by setting μ = 1, we can use the methods obtained by Lima and

Diogo [43] for (a) above. When the singularity is of logarithmic type, we find that

the work of Lyness and Ninham [48] and of de Hoog and Weiss [34] contains the

necessary convergence results to support the application of product integration

methods to such equations.

8.0.1 Theoretical Conclusions

The existing body of knowledge prior to this project showed that equation (1.1)

has a unique solution for the parameter μ > 1, and when μ < 1 there is a

single smooth solution, provided the input function is smooth, and a family of

non-smooth solutions with infinite gradient at the origin. The case when μ = 1

and g(0) = 0 has a single solution such that u(0) = 0, and a family of parallel

solutions. This was developed by Han [32] using the related ordinary differential

equation (also singular), and hence obtaining the solution formulae.

In Chapter 3 we consolidate and extend our understanding of the behaviour

of this class of equations, laying the foundation for a more generalized approach.

We apply the methods directly relating to integral equations, to obtain a more

uniform approach to the existence and uniqueness of solution(s). In this context

it is apparent that the conditions which may be placed upon the input and output

147

functions are of the utmost importance, and the defining of the problem is a

question of defining the admissible space for the solution. If we seek an analogy

to the initial-value differential equation, then the solution set determined by Han

[32] is sufficient; if, however, we require the full solution set, including the case

for which the initial value u(0) is unbounded, then the methods of Chapter 3 are

required.

Next, we consider the case when the initial first derivative of the solution

u′(0) may be unbounded: this was included in the solution formulae of Han, but

is now treated more economically, and as a part of the overall framework. The

Fredholm Alternative, as stated above, has clearly a relevance here, although

equation (1.1) does not have the compactness required, and we find that the

solution set is compatible with the second part of the Fredholm Alternative.

Defining the problem may now be achieved by a limitation on the function

space for which the solution is defined, so that the case when the solution u :

u(t) ∈ Cm[0, T], t ∈ [0, T], m ≥ 1 is unique, in that it is the sole solution

within that particular space. If, however, m = 0, then for μ < 1 the set of

non-smooth solutions has to be included, and uniqueness fails. We have set out

during our investigation to clarify which of these situations is relevant in any

particular context.

8.0.2 Numerical Approximation

We are looking specifically at the solution of equation (1.1), when μ < 1, so that

the kernel is singular in both arguments. Our objective is to obtain a means of

numerical approximation consisting of two elements: the role of the first is to

approximate over a short interval close to the origin, and the second may be any

method of choice.

The primary method must have the ability to approximate from the initial

singularity, so options are limited, while the secondary may be selected from any

148

of the methods available for VIE solution, since the evaluation of the kernel is no

longer singular for the relevant values of arguments s and t, and the restrictions

imposed by the singularity are now lifted.

Since the primary method is usually of lower order than the secondary, we

use convergence acceleration at the end of the first interval. This process requires

careful construction, in order to match the convergence of the (accelerated) pri-

mary scheme with that of the secondary.

Primary Method

We have taken the product Euler method as our main constructional element,

owing to its previous use in this context, and the availability of the related

convergence proofs. The disadvantage of this is that it has a poor rate of con-

vergence, particularly for μ < 1, when it is O(hμ), but that rate of convergence

is known and reliable. Further, we assume that the subsequent terms in the

error expansion are of the form O(hk) + O(hk+μ), k ∈ Z, for the purpose of

the extrapolation. We have introduced the product trapezoidal as an alternative

for the initial interval. Using the methods of Lyness and Ninham [48], and de

Hoog and Weiss [34], we have shown that this is of leading order 1 + μ, with

further error expansion of the form O(hk) + O(hk+μ), k = 2, 3, The qual-

ity of the solution approximation is shown in the examples to be a considerable

improvement on the product Euler.

A further method for use over the primary interval is the Hermite-type col-

location, used previously for μ > 1 when it was shown to be O(h4). We find

that with μ < 1 we obtain empirical convergence of order p : 3 < p < 4, and the

quality of the results is further improved.

Extrapolation

The extrapolation process is applied at the end of the first interval (t = α), for

the reasons described in section (6.1). The aim is to bring the lower order of the

149

primary method in line with the order of the secondary.

Remark 7 If further levels of extrapolation are required to raise the order of the

combined scheme, then this may be done at the end of the second interval.

The choice of extrapolation scheme depends on the series expansion which is

required to be accelerated. Here, the expansion is known to be of a particular

form, and we have considered the schemes best suited to this case. One possibility

is the E-algorithm of Brezinski, which is the most general algorithm for a known

series expansion. However, this is intricate to construct, and we find that a

modification of the Richardson process produces equally satisfactory results, but

with the simplicity of a scheme constructed for the purpose.

The extrapolation process to raise a scheme of order p (non-integer) to order

m (integer) requires 2(m−�p�)−1 levels, hence 2(m−�p�) input values; however,

this is an intermediate point in the overall scheme, so we take further input values

to allow assessment of the convergence at the end of the second interval. The

resulting extrapolation table (shown on p.93) is thus effectively a 2(m−�p�) + 1

level acceleration, curtailed at the 2(m−�p�)−1 level, leaving the starting values

for 3 trajectories using the secondary scheme.

Secondary method

In general, the order of the secondary method will be higher than that of the

primary. The second interval may be approximated by any of the many schemes

available for solution of Volterra equations, as here the kernel is a continuous

function in both arguments, subject to the input function also complying with the

appropriate continuity restriction. Our examples cannot extend to all possible

cases, but we include a representative selection to demonstrate that the choice

of method is not constrained in any way.

150

8.0.3 Combined Scheme

The split-interval scheme is constructed in such a way as to ensure a secure and

reliable link between the primary and secondary methods. The extrapolation

process described above plays a crucial role in this, matching the order of the

primary with that of the secondary. We have set in place the analysis for the

combined scheme, considered principally on the basis of the product Euler, taking

three levels of extrapolation, and continuing with the trapezoidal rule. This is

capable of development to involve higher order primary and secondary schemes,

by extending the extrapolation accordingly. We believe in principle that this can

be extended to include cases (a), (b) and (c) above.

8.0.4 Further work

We now have in place the basic precepts of a process which is capable of devel-

opment in a number of directions, in particular

1. implementation of the suggestions in the preceding subsection;

2. further extension to higher-order product integration as the primary method

when μ < 1;

3. error analysis for the Hermite-type collocation as the primary method when

μ < 1;

4. the third transform suggested in section (3.8).

These are direct extensions of the work in this investigation. There are also

alternative means of dealing with the initial interval, in particular

4. Clenshaw-Curtis methods;

5. the IMT transform (Iri, Moriguti and Takasawa), described in [67], [5] and

[19].

151

Appendix A

Error analysis

A.1 Second interval: An Alternative Approach

We aim to evaluate the local consistency error using the definition of Linz [46]

as δ(h, tj), where

δ(h, tj) =

∫ tj

0

K(tj , s, f(s))ds−
j∑

i=0

wjiK(tj , ti, f(ti)).

First, assume that we have the accurate solution of ũ(tj−1) = u(tj−1) of the

VIE at some point tj−1 > α, and that we are looking for the error of the final

step in the s dimension [tj−1, tj]. given by the approximation obtained by the

trapezoidal rule

ũ(tj) = g(tj) +
Iα
tμj

+

∫ tj−1

α

sμ−1

tμj
u(s)ds+

h

2tμj
[tμ−1

j−1 ũj−1 + tμ−1
j ũj]

to the VIE solution at tj

u(tj) = g(tj) +
Iα
tμj

+

∫ tj−1

α

sμ−1

tμj
u(s)ds+

∫ tj

tj−1

sμ−1

tμj
u(s)ds,

where

Iα =

∫ α

0

sμ−1u(s)ds.

152

Assuming that u is smooth, using the Mean Value Theorem for integrals, for

some ξj ∈ [tj−1, tj] and for j = q + 1, q + 2, . . .

ej = ũj − u(tj) =
h

2tμj

[
tμ−1
j−1 ũj−1 + tμ−1

j ũj

]
− 1

tμj

∫ tj

tj−1

sμ−1u(s)ds

=
h

2tμj

[
tμ−1
j−1 ũj−1 + tμ−1

j ũj

]
− u(ξj)

tμj

∫ tj

tj−1

sμ−1ds

=
h

2hμjμ

[
hμ−1(j − 1)μ−1ũj−1 + hμ−1jμ−1ũj

]
− u(ξj)

hμjμ

[hμjμ − hμ(j − 1)μ]

μ

=
1

2

[
1

j

(
1 − 1

j

)μ−1
ũj−1 +

1

j
ũj

]
− u(ξj)

μ

[
1 −

(
1 − 1

j

)μ
]

=
1

2

[
1

j

(
1 − (μ− 1)

j
+

(μ− 1)(μ− 2)

2j2
+ . . .

)
ũj−1 +

1

j
ũj

]

− u(ξj)

μ

[
μ

j
− μ(μ− 1)

2j2
+
μ(μ− 1)(μ− 2)

6j3
+ . . .

]

Again assuming that u is smooth, we have

lim
h→0

[ũj−1 + ũj

2
− u(ξj)

]
= 0.

Now we assemble the remaining terms in powers of j−1:

ej ≈
[(μ− 1)

2j2
+

(μ− 1)(μ− 2)

4j3

]
ũj−1

−
[(μ− 1)

2j2
+

(μ− 1)(μ− 2)

6j3

]
u(ξj) +O(j−4), (A.1)

which at first sight does not look promising as a basis for local error approxima-

tion. We could use the methods of e.g. [44], but applying (A.1) to the interval

of integration finds a more convenient outcome.

We now consider the error for the repeated trapezium rule over the interval

[α, tj], assuming that the first interval solution is accurately known, so that

j > q, q = α/h.

ũ(tj) = g(tj) +
Iα
tμj

+

j−1∑
i=q

h

2tμj
[tμ−1

i ũi + tμ−1
i+1 ũi+1]

153

and the true solution may be represented as

u(tj) = g(tj) +
Iα
tμj

+

j−1∑
i=q

∫ ti+1

ti

sμ−1

tμj
u(s)ds.

The error for tj ∈ [α, T] is now given as

E = ũj − u(tj) ≈
j−1∑
i=q

h

2tμj

[
tμ−1
i

(
ũi + ei

)
+ tμ−1

i+1

(
ũi+1 + ei+1

)]
−

j−1∑
i=q

u(ζi)

tμj

∫ ti+1

ti

sμ−1ds

=

j−1∑
i=q

h

2tμj

[
tμ−1
i

(
ũi + ei

)
+ tμ−1

i+1

(
ũi+1 + ei+1

)]
−

j−1∑
i=q

u(ζi)

tμj

(tμi+1 − tμi)

μ

=

j−1∑
i=q

h

2hμjμ

[
hμ−1iμ−1

(
ũi + ei

)
+ hμ−1(i+ 1)μ−1

(
ũi+1 + ei+1

)]

−
j−1∑
i=q

u(ζi)

hμjμ

(hμ(i+ 1)μ − hμiμ)

μ

for some ζi ∈ [ti, ti+1], by the Mean Value Theorem for integrals (again assuming

the smoothness of u). Expanding the various terms using equation A.1 gives

E = ũj − uj ≈
j−1∑
i=q

h

2hμjμ

[
hμ−1iμ−1(ũi + ei) + hμ−1(i+ 1)μ−1(ũi+1 + ei+1)

]

−
j−1∑
i=q

u(ζi)

hμjμ

(hμ(i+ 1)μ − hμiμ)

μ

=

j−1∑
i=q

iμ−1

2jμ

[
ũi + ũi+1

(
1 +

(μ− 1)

i
+

(μ− 1)(μ− 2)

2i2
+ . . .

)

+ ei + ei+1

(
1 +

(μ− 1)

i
+

(μ− 1)(μ− 2)

2i2
+ . . .

)
− u(ζi)

jμ

iμ

μ

(
1 +

μ

i
+
μ(μ− 1)

2i2
+ · · · − 1

)]

154

=

j−1∑
i=q

iμ

2jμ

[
ũi + ũi+1

i
+ ũi+1

{
(μ− 1)

i2
+

(μ− 1)(μ− 2)

2i3
+ . . .

}

ei + ei+1

i
+ ei+1

{
(μ− 1)

i2
+

(μ− 1)(μ− 2)

2i3
+ . . .

}

− u(ζi)

μ

{
μ

i
+
μ(μ− 1)

2i2
+ . . .

}]
. (A.2)

Taking the approximation

lim
h→0

ũi + ũi+1

2
− u(ζi) → 0

so that the leading terms in equation (A.2) again cancel out, we have

E ≈
j−1∑
i=q

iμ

2jμ

[
ũi+1

{
μ− 1

i2
+

(μ− 1)(μ− 2)

2i3
+ . . .

}

+ ũi

{
(μ− 1)

2i3
+

(μ− 1)(μ− 2)

4i4

}
− u(ξi)

{
(μ− 1)

2i3
+

(μ− 1)(μ− 2)

6i4

}

+ ũi+1

{
(μ− 1)

2(i+ 1)3
+

(μ− 1)(μ− 2)

4(i+ 1)4

}
− u(ξi+1)

{
(μ− 1)

2(i+ 1)3
+

(μ− 1)(μ− 2)

6(i+ 1)4

}

+ ei+1O(i−2) − u(ζi)i
μ

jμ

{
(μ− 1)

2i2
+

(μ− 1)(μ− 2)

6i3
+ . . .

}]
.

As h→ 0 we take the approximations

ũi − u(ξi) −→ 0 as h→ 0

ũi+1 − u(ξi) −→ 0 as h→ 0

ũi+1 − u(ζi) −→ 0 as h→ 0

which yields the error approximation

E ≈
j−1∑
i=q

iμ

2jμ

[
ũi

(μ− 1)(μ− 2)

4i4
+ ũi+1

{
(μ− 1)(μ− 2)

2i3
+

(μ− 1)(μ− 2)

4(i+ 1)4

}

− u(ξi)

{
(μ− 1)(μ− 2)

6i4

}
− u(ξi+1)

{
(μ− 1)(μ− 2)

6(i+ 1)4

}

− 2u(ζi)
(μ− 1)(μ− 2)

6i3
+O(i−4).

]

=

j−1∑
i=q

iμ

2jμ

[
ũi+1

2i3
− u(ζi)

3i3

]
(μ− 1)(μ− 2) +O(i−4)

155

Since q ≤ i < j, we have as h→ 0

E ≤
j−1∑
i=q

‖u‖
2

(μ− 1)(μ− 2)

6i3

where ‖.‖ denotes the maximum norm ‖u‖ = maxt∈[0,T] |u(t)|. We take the

summation, letting j = T/h, T being constant. Using the fact that q ≤ i ≤ j

and since (j − q)/q3 = (j − q)h/hq3 = (T − α)/αq2 we have

E ≤ (T − α)

12q2
‖u‖(μ− 1)(μ− 2) +O(q−3)

=
(T − α)

12

(
h

α

)2

‖u‖(μ− 1)(μ− 2) +O
(
(h/α)−3

)
.

Our definition of E is equivalent to the local consistency error δ(h, tj) since g(t)

and Iα/t
μ are unchanged over a single step in the t direction. We observe the

way in which the terms in h and α are related. Provided T >> α, this gives us

Lemma A.1.1 If the true solution is known at some point α away from the

origin, then the use of the trapezoidal rule in the solution of the VIE (1) has

convergence of order 2. Further, the error is also related to α inversely such that

E ∝ α−2.

Numerical results from higher order schemes, together with the pattern of

the error expansions, indicate that this result can be generalised - i.e. whatever

the order of the quadrature method used to implement the solution of the VIE

(1.1) away from the origin, with the true solution applied over the initial interval

[0, α] the order of the method is applicable to the solution of (1.1), and further

there is a corresponding inverse relationship between the error and the value of

α, of the same order.

The connection between the error and μ is also now plain - for the trapezoidal

rule, or indeed any rule of order 2, we find that the inverse proportionality with

(μ − 1)(μ− 2) is now apparent, and is confirmed by numerical comparison. We

believe this can be extended to rules of order 3, where the factor is (μ− 1)(μ−

2)(μ− 3), and order 4, where the factor becomes (μ− 1)(μ− 2)(μ− 3)(μ− 4).

156

Finally, we note that if the value of ũ(α) is other than that satisfying the

smooth solution for which c = 0, the above analysis will still apply, giving con-

vergence to the non-smooth solution uc(t) = u0(t)+c0t
1−μ, the only change being

to the value of Iα. This has important implications for the propagated error.

157

Appendix B

Tabulated Results

B.1 Secondary Methods

μ = 0.4, T = 10, g(t) = 1 + t

Gradients of log(error)

against log(h) and log(α)

Euler methods

Fwd Euler Bwd Euler

α A0 h A1 α A0 h A1

0.2 0.9887 1/20 −0.9056 0.2 1.0106 1/20 −0.9425

0.4 0.9941 1/40 −0.9153 0.4 1.0058 1/40 −0.9339

0.6 0.9959 1/80 −0.9201 0.6 1.0041 1/80 −0.9294

0.8 0.9968 1/160 −0.9224 0.8 1.0032 1/160 −0.9271

1.0 0.9973 1/320 −0.9236 1.0 1.0026 1/320 −0.9259

1/640 −0.9242 1/640 −0.9253

158

Trapezium Rule

Tr. rule μ = 0.4 Tr. rule μ = 0.02

α A0 h A1 α A0 h A1

0.2 1.9962 1/20 −2.1141 0.2 1.9967 1/20 −2.0400

0.4 1.9991 1/40 −2.1200 0.4 1.9992 1/40 −2.0451

0.6 1.9996 1/80 −2.1216 0.6 1.9996 1/80 −2.0464

0.8 1.9998 1/160 −2.1219 0.8 1.9998 1/160 −2.0467

1.0 1.9999 1/320 −2.1220 1.0 1.9999 1/320 −2.0468

1/640 −2.1221 1/640 −2.0468

Simpson’s rule

Trap.rule for Simpson’s

non-smooth trajectory

α A0 h A1 α A0 h A1

0.2 1.9962 1/20 −2.1141 0.2 4.0006 1/20 −3.4869

0.4 1.9991 1/40 −2.1200 0.4 4.0656 1/40 −3.5378

0.6 1.9996 1/80 −2.1216 0.6 4.0670 1/80 −3.5298

0.8 1.9998 1/160 −2.1219 0.8 4.0594 1/160 −3.5082

1.0 1.9999 1/320 −2.1220 1.0 4.0505 1/320 −3.4915

1/640 −2.1221 1/640 −3.6170

Runge-Kutta

RK classic RK implicit

0.2 2.9667 1/20 −2.8675 0.2 3.0153 1/20 −3.0350

0.4 2.9830 1/40 −2.8990 0.4 3.0093 1/40 −3.0253

0.6 2.9884 1/80 −2.9128 0.6 3.0066 1/80 −3.0183

0.8 2.9911 1/160 −2.9192 0.8 3.0051 1/160 −3.0143

1.0 2.9928 1/320 −2.9223 1.0 3.0041 1/320 −3.0121

1/640 −2.9238 1/640 −3.0109

159

Radau 1a

Radau 1a 2-stage Radau 1a 3-stage

α A0 h A1 α A0 h A1

0.2 3.0153 1/20 −3.0414 0.2 4.9708∗ 1/20 −4.4225∗

0.4 3.0093 1/40 −3.0317 0.4 5.0011 1/40 −4.4655

0.6 3.0066 1/80 −3.0248 0.6 4.9960 1/80 −4.4665

0.8 3.0051 1/160 −3.0207 0.8 5.0234 1/160 −4.4350

1.0 3.0042 1/320 −3.0186 1.0 4.9805 1/320

1/640 −3.0174 1/640

∗ Highly accurate results - see text for detail

Radau2 2-stage Radau2 3-stage

α A0 h A1 α A0 h A1

0.2 2.9744 1/20 −2.9632 0.2 4.9073 1/20 −4.3190

0.4 2.9884 1/40 −2.9889 0.4 4.9710 1/40 −4.4104

0.6 2.9925 1/80 −3.0000 0.6 4.9664 1/80 −4.4434

0.8 2.9944 1/160 −3.0051 0.8 4.8358 1/160 −4.4452

1.0 2.9956 1/320 −3.0075 1.0 4.7233 1/320 −4.0021

1/640 −3.0087 1/640 ∗

∗ Rounding errors affected result.

Radau2A 2-stage Radau2A 3-stage

g(t) = 1 + t g(t) = t − t2.5/10

α A0 h A1 α A0 h A1

0.2 2.9983 1/20 −3.1825 0.2 4.9053 1/20 −4.5054

0.4 3.0013 1/40 −3.1892 0.4 4.9785 1/40 −4.5699

0.6 3.0014 1/80 −3.1897 0.6 4.9926 1/80 −4.5846

0.8 3.0013 1/160 −3.1893 0.8 4.9970 1/160

1.0 3.0011 1/320 −3.1889 1.0 4.9972 1/320

1/640 −3.1884 1/640

160

Lobatto

Lobatto3c 2-stage Lobatto3c 3-stage

α A0 h A1 α A0 h A1

0.2 2.0322 1/20 −2.0104 0.2 4.0182 1/20 −3.4658

0.4 2.0171 1/40 −1.9837 0.4 4.0107 1/40 −3.4559

0.6 2.0116 1/80 −1.9694 0.6 4.0842 1/80 −3.4478

0.8 2.0088 1/160 −1.9620 0.8 4.1299 1/160 −3.4411

1.0 2.0072 1/320 −1.9583 1.0 4.2494 1/320 −3.4498

1/640 −1.9564 1/640 −3.9638

Gauss-Legendre

GL 2-stage GL 3-stage

g(t) = 1 + t g(t) = t − t2.5/10

0.2 3.9875 1/20 −4.2051 0.2 5.8344 1/20 −5.4434

0.4 3.9905 1/40 −4.2241 0.4 5.9510 1/40 −5.5442

0.6 3.9861 1/80 −4.2291 0.6 5.9658 1/80 −5.5434

0.8 4.0187 1/160 −4.2301 0.8 5.8806 1/160

1.0 3.9821 1/320 −4.2074 1.0 5.9505 1/320

1/640 −4.1934 1/640

Multistep methods

BDF O(h2) AM O(h3)

0.2 1.9199 1/20 −1.9796 0.2 2.8388 1/20 −2.9313

0.4 1.9587 1/40 −2.0437 0.4 2.9150 1/40 −3.0580

0.6 1.9725 1/80 −2.0807 0.6 2.9430 1/80 −3.1325

0.8 1.9794 1/160 −2.1007 0.8 2.9574 1/160 −3.1732

1.0 1.9836 1/320 −2.1112 1.0 2.9661 1/320 −3.1945

1/640 −2.1166 1/640 −3.2054

161

Appendix C

Runge-Kutta Methods

Examples of RK arrays up to 3-stage.

Sources: [3], [14], [15] [16], [31], [35], [41].

A comprehensive derivation, and listing up to 4-stage rules are given in [15].

m = number of stages in the method, p = order of the method

C.1 RK standard methods

RK Classical

m = 3, p = 3

0

1
2

1
2

1 −1 2

1
6

2
3

1
6

RK Implicit

m = 2, p = 3

0 1
4

−1
4

2
3

1
4

5
12

1
4

3
4

RK Nystrom

m = 3, p = 3

0

2
3

2
3

1 −1 2

1
4

3
8

3
8

C.2 Radau I

p = 2m− 1

162

m = 2, p = 3

0 0 0

2
3

1
3

1
3

1
4

3
4

m = 3, p = 5

0 0 0 0

6−√
6

10
9+6

√
6

75
24+

√
6

120
168−73

√
6

600

6+
√

6
10

9−6
√

6
75

168+73
√

6
600

24−√
6

120

1
9

16+
√

6
36

16−√
6

36

C.3 Radau IA

m = 2, p = 3

0 1
4

−1
4

2
3

1
4

5
12

1
4

3
4

m = 3, p = 5

0 1
9

−1−√
6

18
−1+

√
6

18

6−√
6

10
1
9

88+7
√

6
360

88−43
√

6
360

6+
√

6
10

1
9

88+43
√

6
360

88−7
√

6
360

1
9

16+
√

6
36

16−√
6

36

C.4 Radau IIA

m = 1, p = 1

1 1

1

m = 2, p = 3 :

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

m = 3, p = 5 :

4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−√
6

36
16+

√
6

36
1
9

16−√
6

36
16+

√
6

36
1
9

163

C.5 Lobatto IIIC

m = 2, p = 2 :

0 1
2

−1
2

1 1
2

1
2

1
2

1
2

m = 3, p = 4 :

0 1
6

−1
3

1
6

1
2

1
6

5
12

−1
12

1 1
6

16+
√

2
3

1
6

1
6

2
3

1
6

C.6 Gauss-Legendre

s = 1, p = 2 :

1
2

1
2

1

s = 2, p = 4 :

3−√
3

6
1
4

3−2
√

3
12

3=
√

3
6

3+2
√

3
12

1
4

1
2

1
2

s = 3, p = 6 :

5−√
5

10
5
36

10−3
√

15
45

25−6
√

15
180

1
2

10+3
√

15
72

2
9

10−3
√

15
72

5+
√

5
10

25+6
√

15
180

10+3
√

15
45

5
36

5
18

4
9

5
18

164

Appendix D

A VLM Method

We describe in Chapter 5 several alternative means of implementing the linear

multstep methods in the context of a Volterra equation (VLM methods). We

now set out the algorithm we use as a possible secondary method for our split-

interval scheme. Essentially, this is based on an iterative process applied to the

discretisation of the equation

u(t) = g(t) + t−μIα + t−μ

∫ t

0

sμ−1u(s)ds

which we now represent as

un(tn) = g(tn) + t−μ
n Iα + Φn, (D.1)

our objective being to construct the term Φn to be of normalised k-step Adams-

Moulton type,

yn = yn−1 + h
k∑

i=0

biyn−i,

where ao = −a1 = 1. Let

Φn = Φn−1 +

k∑
i=0

bifn−i, fn−i =
tμ−1
n−i

tμn
un−i

which is implicit for D.1 when i = 0, to give

un(tn) =
[
g(tn) + t−μIα + Φ′

n

]
/ [1 − hb0/tn]

165

where the prime ′ denotes exclusion of the f0 term. Now, we look at Φn−1,

noting that in constructing the code, this has been separated during the implicit

calculaton, and needs re-installing here, with the denominator now updated to

tμn, and we introduce the additional subscript, to give

Φn,n−1 = Φ′
n,n−1 + b0ht

μ−1
n−1/t

μ
n.

With these issues dealt with, we are now able to construct the VLM method,

AM3:. For starting values, we use two steps of the trapezium rule, using the

usual implicit quadrature, with weights ws:

{ws} =

⎡
⎣ 1/2 1/2

1/2 1 1/2

⎤
⎦

We can now define the recursive VLM method to be

un(tn) =

[
g(tn) + t−μ

n + Φn,n−1 + h

{
k∑

1=1

biun−i

}]
1

(1 − b0h/tn)
,

where

Φn,n−1 = Φn,n−1 +
b0ht

μ
n−1

tμn

This is the formula we use in chapter 7, and we note that the expression

usually described as ‘lag’ or ‘tail’ terms are now incorparated in Φn,n−1 and that

the implicit term in b0 has to be recovered in each calculation.

We illustrate this using the 2-step Adams-Moulton scheme, where {α; β} =

{12, −12; 5 4 − 1}, so that setting a0 = −a1 = 1, b0 = 5
12
, b1 = 2

3
b2 = −1

12
, we

have

un(tn) =

[
g(tn) +

Iα
tμn

+ Φn,n−1 + h

{
2tμ−1

n−1un−1

3tμn
− tμ−1

n−2un−1

12tμn

}]
1

1 − 5h
12tn

where

Φ3 =
tμ−1
q uq

2tμq+3

+
tμ−1
q+1uq+1

tμq+3

+
tμ−1
q+2uq+2

2tμq+3

;

Φn = Φn−1

tμn−1

tμn
+

5

12

tμ−1
n−1

tμn
un−1 + h

[
2

3

tμ−1
n−1

tμn
un−1 −

1

12

tμ−1
n−2

tμn
un−2

]

The core of the code for this iteration is a mere 5 lines.

166

Appendix E

Smoothness Properties

During this investigation, we looked for a comparison between the various cat-

egories of smoothness properties which can be applied. Davis and Rabinowitz

[19] give the following list, in ascending order of smoothness:

Smoothness of functions and approximate integration

1. Functions that are bounded and Riemann-integrable over [a, b];

2. Functions that are of bounded variation over [a, b];

3. Functions that are piecewise continuous over [a, b];

4. Functions that are continuous over [a, b];

5. Functions that satisfy a Lipschitz or Holder condition of order α ≤ 1 over

[a, b];

6. Functions that have a continuous first derivative over [a, b];

7. Functions that have a continuous nth derivative over [a, b];

8. Functions that are analytic in a region B containing the interval in its

interior;

167

9. Functions that are entire: i.e. have a Taylor expansion convergent in |z| <

∞.

10. Functions that are polynomials of degree ≤ n.

A class that does not fit into this scheme is the class Lp[a, b] or L[B], 1 ≤ p <∞,

the set of all Lebesgue measurable functions f on [a, b] or B such that∫ b

a

|f(x)|pdx or

∫
B

|f |p dV

is finite, as the case may be. [19].

168

Appendix F

Glossary of Terms

φ the unknown function of the general Volterra integral equation

ψ the input function of the general Volterra integral equation

g(t) the input function of the Volterra integral equation (1.1)

u(t) the unknown function for solution of the main equation, as a continuum

ũ(tn) the numerical approximation to u(tn) at points tn

μ the parameter occurring in the above equations:

our principal concern is with μ ∈ (0, 1)

c0 arbitrary constant which defines a non-smooth solution of the main equation

α initial interval over which a primary approximate solution is found;

the value of t which terminates such an interval

q the value of n such that tn = α

Iα the value of the integral term at α:
∫ α

0
sμ−1u(s) ds

Ĩα approximation for Iα

E
(n)
k element of E-algorithm array

T
(n)
k element of Richardson extrapolation array

Y
(n)
k element of modified Richardson array

169

Bibliography

[1] M. Abramowitz and I.E. Stegun. Handbook of Mathematical Functions.

Dover, N.Y. 1965 (rep. 1972).

[2] T.M. Apostol. Mathematical Analysis. Addison-Wesley, Reading, Mass.

1957 (rep. 1965). 1957.

[3] U.M. Ascher and L.R. Petzold. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations. SIAM, Philadelphia. 1998.

[4] K.E. Atkinson. An Introduction to Numerical Analysis. 2nd ed. Wiley, N.Y.

1989.

[5] K.E. Atkinson. The Numerical Solution of Integral Equations of the Second

Kind. Cambridge University Press. 1997.

[6] C.T.H. Baker. The Numerical Treatment of Integral Equations. Oxford Uni-

versity Press. 1977 (rep. 1978).

[7] C.T.H. Baker. Numerical Analysis of Volterra Functional and Integral Equa-

tions. in: The State of the Art in Numerical Analysis. (eds. I.S. Duff and

G.A. Watson). Oxford University Press, 1997. p.193-222.

[8] C.T.H. Baker. A Perspective on the Numerical Treatment of Volterra Equa-

tions. J.C.A.M. 125, 2000. p.217-249.

[9] M.A. Bartosevich. On a heat conduction problem. Inz. Fiz. Z. 28(2), 1975.

p.340-346 (in Russian).

170

[10] M.A.Bartosevich. Expansion in one orthogonal system of Watson Operators

for solving heat conduction problems. Inz. Fiz. Z. 28(3), 1978. p.516-522 (in

Russian).

[11] M. Bernkopf. The Development of Function spaces with Particular Reference

to their Origins in Integral Equation Theory. Arch. Hist. Exact Sci. 3, 1966.

p.1-96.

[12] G.J. Borse. Numerical Methods with Matlab. PWS, Boston. 1997.

[13] C. Brezinski and M. Redivo-Zaglia. Extrapolation Methods - Theory and

Practice. NorthHolland, Amsterdam. 1991.

[14] H. Brunner and P. van der Houwen. The Numerical Solution of Volterra

Equations. NorthHolland, Amsterdam. 1986.

[15] J.C.Butcher. The Numerical Analysis of Ordinary Differential Equations:

Runge-Kutta and General Linear Methods. Wiley, Chichester, U.K. 1987.

[16] J.C. Butcher. Numerical Methods for Ordinary Differential Equations. Wi-

ley, Chichester, U.K. 2003.

[17] R.V. Churchill. Operational Mathematics. McGraw-Hiill, Boston, Mass.

(3rd ed.) 1972.

[18] C. Corduneanu. Integral Equations and Applications. Cambridge University

Press. 1991.

[19] P.J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic

Press Inc. (London) Ltd. (2nd ed.) 1984.

[20] T. Diogo, J.T. Edwards, N.J. Ford, P. Lima and S.M. Thomas. Numerical

Analysis of a Singular Integral Equation. Appl. Math. Comput. (to appear).

171

[21] T. Diogo, J.M. Ford, N.J. Ford and P. Lima Non-integrable resolvent ker-

nels and qualitative behaviour for exact and approximate solutions to some

convolution integral equations. (preprint).

[22] T. Diogo, N. J. Ford, P. Lima, S. M. Thomas. Solution of a singular integral

equation by a split-interval method. Comm. Pure Appl. Anal. (to appear).

[23] T. Diogo, N. B. Franco, P. Lima. High order product integration methods

for a Volterra integral equation with logarithmic singular kernel. Comm.

Pure Appl. Anal. 3, 2004. n.2, p.217-235.

[24] T. Diogo, P. Lima. Comparative study of numerical methods for a class of

integral equations with weakly singular kernel. HERCMA2001, ed. Lipitakis.

LEA, 2002. p.574-581.

[25] T. Diogo, P. Lima, S. Valtchev and N.J. Ford. Numerical Methods for a

nonuniquely solvable Volterra integral equation. CILAMCE, XXIV Iberian

Latin-American Congress on Computational Methods in Engineering, 2003.

[26] T. Diogo, S. Mckee, T. Tang. A Hermite-Type Collocation Method for the

solution of an Integral Equation with a Certain Weakly Singular Kernel.

IMA J. Numer. Anal. 11, 1991. p.595-605.

[27] D. Elliott. An asymptotic analysis of two algorithms for certain Hadamard

finite-part integrals. IMA J. Numer. Anal. 13, 1993. p.445-462.

[28] G. Evans. Practical Numerical Analysis. Wiley, Chichester, UK. 1995.

[29] G. Evans. Practical Numerical Integration. Wiley, Chichester, U.K. 1993.

[30] G. Gripenberg, S-O. Londen and R. Staffans. Volterra Integral and Func-

tional Equations. Cambridge University Press. 1990.

[31] E. Hairer, S.P. Norsett and G. Wanner. Solving Ordinary Differential Equa-

tions I: Non-stiff Problems. Springer-Verlag, Berlin. 1993.

172

[32] W. Han. Existence, Uniqueness and Smoothness Results for Second-Kind

Volterra Equations with Weakly Singular Kernels. J. Integral Equations

Appl. 6, 5. 1994. p.365-384.

[33] H. Hochstadt. Integral Equations. Wiley, N.Y. 1973.

[34] F. de Hoog and R. Weiss. Asymptotic Expansions for Product Integration.

Math. Comp. 27, 1973. p.295-306.

[35] A. Iserles. A First Course in Numerical Analysis of Differential Equations.

Cambridge University Press. 1996.

[36] A.J. Jerri. Introduction to Integral Equations with Applications. 2nd ed.

Wiley, Chichester. 1999.

[37] A.N. Kolmogorov and S.V. Lomin. Functional Analysis. vol. 1: Metric and

Normed Spaces. Graylock Press, Rochester, N.Y. 1957. (Tr. from 1st Russian

edition (1954) by Leo F. Bevan).

[38] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley,

N.Y. 1978.

[39] A.J. Krommer and C.W. Ueberhuber. Computational Integration. SIAM,

Philadelphia. 1998.

[40] W. Lamb. A Spectral Approach to an Integral Equation. Glasgow Math. J.

26, 1985. p.83-89.

[41] J.D. Lambert. Numerical Methods for Ordinary Differential Systems. Wiley,

Chichester, U.K. 1991.

[42] M.J. Lighthill. Fourier Analysis and Generalised Functions. Cambridge Uni-

versity Press. 1958 (Rep.1978).

173

[43] P. Lima and T. Diogo. An extrapolation method for a Volterra integral

equation with weakly singular kernel. Appl. Num. M. 24, 1997. p.131-148.

[44] P. Lima and T. Diogo. Numerical Solution of a non-uniquely solvable

Volterra integral equation using extrapolation methods. JCAM 140, 2002.

p.537-557.

[45] P. Linz. Numerical Methods for Voltera Equations with Singular Kernels.

SIAM J. Numer. Anal. 6, 1969. p.365-374.

[46] P. Linz. Analytical and Numerical Methods for Volterra Equations. SIAM,

Philadephia. 1985.

[47] E.R. Localzo. in: T.N.E Greville. Theory and Applications of Spline Func-

tions, Academic Press, N.Y. 1969. p.37-44.

[48] J.N. Lyness and B.W. Ninham. Numerical Quadrature and Asymptotic Ex-

pansions. Math. Comp. 21, 1967. p.162-178.

[49] S. McKee and H. Brunner. The Repetition Factor and Numerical Stability

of Volterra integral equations. Comp. Math. Appl. 6, 1980. p.339-347.

[50] S. McKee, T. Tang and T. Diogo. An Euler-type Method for two dimensional

Volterra Integral Equations of the first kind. IMA J. Numer. Anal. 20, 2000.

p.423-44.

[51] A.D.Polyanin and A.V.Manzhirov. Handbook of Integral Equations CRC,

Boca Raton. 1998.

[52] C.D. Poole. A Basic Analysis of a second-kind Volterra Integral Equation

with non-Lipschitz kernel. M.Sc. Thesis. Chester College, 2002.

[53] P.M. Prenter. Splines and Variational Methods. Wiley-Interscience, N.Y.

1975.

174

[54] L. Rade and B. Westergren. Mathematics Handbook for Science and Engi-

neering. 5th ed. Springer-Verlag, Berlin. 2004.

[55] F. Riesz and B. Sz-Nagy. Functional Analysis. Dover, N.Y. 1990.

[56] P.G. Rooney. On an Integral Equation by Sub-Sizhonenko. Glasgow Math.

J. 24, 1983. p.201-210.

[57] F. Scheid. Numerical Analysis. McGraw-Hill, New York. 1988.

[58] L.F. Shampine. Numerical Solution of Ordinary Differential Equations.

Chapman and Hall, London. 1994.

[59] A. Sidi. Practical Extrapolation Methods - Theory and Applications. Cam-

bridge University Press. 2003.

[60] V.L. Smirnov. Course of Higher Mathematics. Vol.IV. Pergamon, London.

1964.

[61] F. Smithies. Integral Equations. Cambridge University Press. 1962.

[62] A.M. Stuart and A.M. Humphries. Dynamical Systems and Numerical

Analysis. Cambridge University Press. 1998.

[63] Y.A. Sub-Sizhonenko. Inversion of an Integral Operator by the method of

Expansion with respect to Orthogonal Watson Operators. Siberian Math.

Journal. 20, 1979. p.318-321.

[64] T. Tang, S. McKee and T. Diogo. Product Integration Methods for an In-

tegral Equation with a weakly singular kernel. Appl. Num. M. 9, 1992.

p.259-266.

[65] E.C. Titchmarsh. The Theory of Functions. Oxford University Press. 2nd

ed. 1939 (repr. 1997).

175

[66] F.G. Tricomi. Integral Equations. Dover, New York. 1985. (orig. pub. Inter-

science, New York. 1957.)

[67] C.W. Ueberhuber. Numerical Computation: Methods, Software and Analy-

sis. Springer-Verlag, Berlin. 1997. (2 vols.)

[68] E.J. Weniger. Nonlinear Sequence Transformations for the Acceleration of

Convergence and the Summation of Divergent Series. Computer Physics

Reports. 10, 1989. p.189-371.

[69] E.T.Whittaker and G.N. Watson. A Course of Modern Analysis (4th ed.).

Cambridge University Press. 1963.

[70] D.V.Widder. The Heat Equation. Academic Press Inc. (London) Ltd. 1975.

[71] P.H.M.Wolkenfeldt. The Construction of Reducible Quadrature Rules for

Volterra Integral and Integro-differential Equations. IMA J. Numer. Anal.

2. 1982. p.131-152.

176

