
CRANFIELD UNIVERSITY

Rihab Khalid Al Seyab

Nonlinear Model Predictive Control

Using Automatic Differentiation

School of Engineering

PhD Thesis

2006



CRANFIELD UNIVERSITY

School of Engineering

Department of Process And System Engineering

PhD Thesis

2006

Rihab Khalid Shakir Al Seyab

Nonlinear Model Predictive Control

Using Automatic Differentiation

Supervisor: Dr. Yi Cao

Academic Year: 2005–2006

This thesis is submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c©Cranfield University 2006. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner



Abstract

Although nonlinear model predictive control (NMPC) might be the best choice for a

nonlinear plant, it is still not widely used. This is mainly due to the computational

burden associated with solving online a set of nonlinear differential equations and a

nonlinear dynamic optimization problem in real time. This thesis is concerned with

strategies aimed at reducing the computational burden involved in different stages

of the NMPC such as optimization problem, state estimation, and nonlinear model

identification.

A major part of the computational burden comes from function and derivative evalu-

ations required in different parts of the NMPC algorithm. In this work, the problem is

tackled using a recently introduced efficient tool, the automatic differentiation (AD).

Using the AD tool, a function is evaluated together with all its partial derivative from

the code defining the function with machine accuracy.

A new NMPC algorithm based on nonlinear least square optimization is proposed.

In a first–order method, the sensitivity equations are integrated using a linear for-

mula while the AD tool is applied to get their values accurately. For higher order

approximations, more terms of the Taylor expansion are used in the integration for

which the AD is effectively used. As a result, the gradient of the cost function against

control moves is accurately obtained so that the online nonlinear optimization can be

efficiently solved.

In many real control cases, the states are not measured and have to be estimated for

each instance when a solution of the model equations is needed. A nonlinear extended

version of the Kalman filter (EKF) is added to the NMPC algorithm for this purpose.

The AD tool is used to calculate the required derivatives in the local linearization

step of the filter automatically and accurately.

Offset is another problem faced in NMPC. A new nonlinear integration is devised

for this case to eliminate the offset from the output response. In this method, an

i



Abstract ii

integrated disturbance model is added to the process model input or output to correct

the plant/model mismatch. The time response of the controller is also improved as a

by–product.

The proposed NMPC algorithm has been applied to an evaporation process and a

two continuous stirred tank reactor (two–CSTR) process with satisfactory results to

cope with large setpoint changes, unmeasured severe disturbances, and process/model

mismatches.

When the process equations are not known (black–box) or when these are too compli-

cated to be used in the controller, modelling is needed to create an internal model for

the controller. In this thesis, a continuous time recurrent neural network (CTRNN)

in a state–space form is developed to be used in NMPC context. An efficient training

algorithm for the proposed network is developed using AD tool. By automatically

generating Taylor coefficients, the algorithm not only solves the differentiation equa-

tions of the network but also produces the sensitivity for the training problem. The

same approach is also used to solve online the optimization problem of the NMPC.

The proposed CTRNN and the predictive controller were tested on an evaporator

and two–CSTR case studies. A comparison with other approaches shows that the

new algorithm can considerably reduce network training time and improve solution

accuracy.

For a third case study, the ALSTOM gasifier, a NMPC via linearization algorithm is

implemented to control the system. In this work a nonlinear state–space class Wiener

model is used to identify the black–box model of the gasifier. A linear model of the

plant at zero–load is adopted as a base model for prediction. Then, a feedforward

neural network is created as the static gain for a particular output channel, fuel gas

pressure, to compensate its strong nonlinear behavior observed in open–loop simula-

tions. By linearizing the neural network at each sampling time, the static nonlinear

gain provides certain adaptation to the linear base model. The AD tool is used here

to linearize the neural network efficiently. Noticeable performance improvement is

observed when compared with pure linear MPC. The controller was able to pass all

tests specified in the benchmark problem at all load conditions.

Keywords:

Continues Time Recurrent Neural Network, Offset Free Control, Nonlinear System

Identification, Coal Gasification, Nonlinear Integration.
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In this section the notational conventions used for mathematical symbols, operators

and abbreviation are presented.

Lower Case Symbols

b Bias vector in the Neural Network structure

d The Taylor series order

d̂ Estimated value of the input disturbance for offset free control

do Output integrated disturbance for offset free control

e Error

ess Offset (steady–state) error

f State and input mapping for the process model

fNN Nonlinear function to represent the neural network structure

g Output mapping for the process model

k Time instant, index

m The dependent variables number in chapter 3

n The independent variables number in Chapter 3

nx Number of the state variables

ny Number of the output variables

nu Number of the manipulated variables

r Reference signal at time t

u Manipulated variable vector

t Time vector

x State variable vector

y Output variable vector
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Upper Case Symbols

A State dynamic matrix of the linear state–space system

B Control signal dynamic matrix of the linear state–space system

C Output–state matrix of the linear state–space system

D Output–input matrix of the linear state–space system

E Error vector

F Nonlinear mapping of the dynamic part in a discrete–time state–space model

G The linearized model matrix in chapter 5, or the matrix of the steady–state

gain in chapter 8

H Hessian matrix

I Identity matrix

J Jacobian matrix

K1 Gain parameter of the nonlinear integrator function

K2 Slop parameter of the nonlinear integrator function

M Control horizon

N Number of the training (validation) data

P Prediction horizon

Q Output weighting matrix of the MPC objective function

R Control signals weighting matrix of the MPC objective function

S Control signal change weighting matrix of the MPC algorithm,

or a weighting matrix of the QP problem of chapter 8

R
n Euclidean n–dimensional space

Rxy Cross-correlation function between x and y

U Manipulated variable vector

Ts Sampling time

V Objective function of the NMPC algorithm

W Weights vector of the neural network

Y Output variables vector

Ym The vector of measured output variables

Yr The vector of desired output variables

X State variables vector
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Greek Symbols

α The state dynamic matrix of the linearized model of the EKF

β The input dynamic matrix of the linearized model of the EKF

γ Nonlinear function for the nonlinear integrator

η The independent variables vector in chapter 7

ϕ Regression vector of NARAX–NN model in Chapter 2

ϑ The actuators noise (white noise) in the EKF method

ω The measurement noise (white noise) in the EKF method

τ Normalized time
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Σ Covariance matrix in the EKF formulation
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θ Neural Network parameters vector

Superscripts
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Subscripts
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f final value

k k instant

L Linear

NL Noninear

NN Neural network

max Maximum

min Minumum
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Abbreviations
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ANN Artificial Neural Network
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CTRNN Continuous–Time Recurrent Neural Network

DD1 First–order Divided Difference

DD2 Second–order Divided Difference

CFD Centered Finite Difference

DMC Dynamic Matrix Control

EKF Extended Kalman Filter

FD Finite Difference
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GPC Generalized Predictive Control
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Chapter 1

Introduction

1.1 Linear Versus Nonlinear MPC

In the last two decades, model predictive control (MPC) has become a first choice

for an advanced control strategy in industry, due to its intuitiveness and capability

to handle multivariables systems with constraints. MPC can be found now in a wide

variety of manufacturing environments including power plants, petroleum refinery ap-

plications, chemicals, food processing, automotive, aerospace, metallurgy, and others

[QB97].

MPC is a class of computer control algorithms that control the future behavior of a

plant through the explicit use of a dynamic model of the process. At each control

interval the MPC algorithm computes an open–loop sequence of manipulated variables

(control horizon) in order to optimize plant behavior in the time ahead (the prediction

horizon). Process constraints and any changes in the process objectives or operating

conditions can be implemented online. This is one of attractions of MPC. This is

also a major difference from other control theories. MPC is referred to sometimes

as receding horizon (or moving horizon) control because only the first of the control

moves is implemented. A new process measurement is injected in the control loop and

the entire optimization is repeated at subsequent control intervals. At the heart of the

MPC controller is the model, which is used not only to forecast the effects of future

inputs, but also to estimate the current state of the plant from the given history of

past measurements and control. The MPC strategy is illustrated in Figure 1.1.

Until recently, industrial applications of MPC have relied on linear dynamic models

even though most processes are nonlinear. Linear MPC (LMPC) is acceptable when

1
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Figure 1.1: The MPC structure.

the process operates at a single operating point and the primary use of the controller

is the rejection of small disturbances [PiS00]. The main situations leading to non-

linear MPC (or nonlinear control in general) are; regulator control problems where

the process is subject to large frequent disturbances hence shows a strong degree of

nonlinearity, and servo control problems where the operation points change frequently

and span a sufficiently wide range of the process dynamics. Both cases are present in

most modern chemical processes. However, the extension to nonlinear model based

predictive control has not been very successful despite a significant amount of research

effort having been put into this area. The main hurdle facing the extension of LMPC

to NMPC is the significant computation burden especially in the case of large dimen-

sion, fast time response, and highly nonlinear processes. Any strategy that can be

devised to alleviate computation burden is therefore desirable. In fact, time saving is

needed in all of the different phases of the NMPC problem [BQ01] such as;

1. Rapid, reliable solution of a nonlinear control algorithms in real time.

2. Nonlinear state estimation.

3. Nonlinear model development.
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The aim of this thesis is to contribute to reducing the computation burden, and

increasing the calculation accuracy in all three phases of the predictive control, thus

permitting the NMPC algorithm to be extended far beyond its present limitations.

1.2 The Online Optimization Problem

There exist a number of strategies for tracking the optimal control problem [Bin01].

Some of the common methods are; successive linearization, sequential solution, simul-

taneous method, and others. All these approaches require intensive computations of

partial derivatives such as the sensitivity variables which are defined by the first and

second partial derivatives of the process outputs with respect to its inputs or what

are known the Jacobean and Hessian matrices. In a typical situation, calculating

dynamic sensitivity could take more than 70% of the total computation time of NLP.

Hence, dynamic sensitivity calculations are the computational bottleneck for solving

a dynamic optimization problem. In addition, a large computation burden would be

inevitable in the solution of a large set nonlinear differential equations representing

the nonlinear model itself .

The Automatic differentiation (AD) tool has been recently introduced to handle such

tasks [GW04]. AD is more convenient and flexible than manual differentiation and

computationally faster than symbolic differentiation and more accurate than numeri-

cal differentiation even for complex highly–nonlinear systems. AD find the derivatives

of a function given in the form of a computer code using the chain rule. This is done

with no truncation error for any selected outputs with respect to selected inputs. So,

the resulting derivatives have the same accuracy as the function itself [Gri00]. The

AD does the job with much superior speed and accuracy that results in time saving

in calculating the sensitivity variables or any order of partial derivative in addition to

further time savings in the optimizer resulting from the higher accuracy of calculation.

In the present work an efficient NMPC algorithm is developed using a nonlinear

least square optimizer (NLSQ) and the AD tool [CAS03]. The nonlinear least square

method that arises in this algorithm is solved using only the residual Jacobian matrix.

This is less time consuming compared to other optimizers as the Hessian matrix

is estimated from the Jacobean matrix. In one algorithm, a numerical integration

method is used to solve the process ordinary differential equations (ODEs), while a

shortcut approach is derived to calculate the residual Jacobian matrix directly from

the model sensitivity function using one step linear approximation. The dynamic

Nonlinear Model Predictive Control using Automatic Differentiation
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sensitivity equations as a result are simplified and the AD tool is used for fast and

accurate differentiation of the state trajectory.

An algorithm to solve ODEs and sensitivity equations using high–order Taylor series

and AD for autonomous systems given in [Gri95] is extended to non–autonomous

systems by Cao (2005) [Cao05]. In this work, the NMPC problem was recast as a

standard nonlinear programming problem and this formulation is extended further to

handle the case of black–box processes [ASC05c, ASC06]. A state estimation stage

is added to the controller for the case of unmeasurable state variables. Also, a new

approach to treat the problem of offset error for persisting disturbances and modelling

error is developed and added to the NMPC algorithm.

1.3 The Internal Model

The internal model in NMPC can be constructed from the physical laws governing the

behavior of the true system, if these are known. This is often referred to as a first–

principle, mechanistic, or a white–box model. An alternative method for constructing

a model is based on measurement of input and output data from the real plant. This

method belongs to what is known as system identification [BM90, DFL94, HS97] and

the resulting model is called an empirical or a black–box model.

In the case of the first–principle model, the sensitivity information can be calculated

directly from the models’ ODEs using the AD tool. For the second case a model

need to be constructed first before the controller is implemented. This is achieved via

system identification in state–space form. A continuous–time recurrent neural network

(CTRNN) is developed in this work to be used as the process model. The neural

network is represented in a general nonlinear state-space form and used to construct

the internal model of the NMPC approach. An efficient training algorithm for the

proposed network is developed here using AD techniques. By automatically generating

Taylor coefficients, the algorithm not only solves the differentiation equations of the

network but also produces the sensitivity for the training problem. The same approach

is used to solve the online optimization problem in the predictive controller. The

proposed neural network and the nonlinear predictive controller were tested on two

cases studies; an evaporation system and a two–CSTR process.

For the third application, the ALSTOM gasifier benchmark problem, a nonlinear

state–space class Wiener model [CAF03, SnA96] was chosen to identify the black–box

model of the process given in the problem package.

Nonlinear Model Predictive Control using Automatic Differentiation
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1.4 Nonlinear State Estimation

Solving a set of first–order differential equations of the model requires initial condi-

tions (states) to be known. The initial conditions are obtained from the measured

information of the process. In model based control algorithm this is repeated in every

online optimization step. Further, in many processes the state variables are unmea-

surable and requires some form of estimation of their values at every calculation step.

The Kalman filter [Kal60] is one of the commonly used tools for this task in the case

of linear control. For nonlinear control an extended version (EKF) [LR94] can be

devised by linearizing the problem every time step. Extended Kalman filter involves

a time–varying linearized model which requires the calculation of Jacobian matrices

at each time step. In this work, this is done accurately and automatically via the AD

tool. In some cases as when applying the offset free algorithm (using output integrated

disturbances) to be described in the next section, simple update of the states from

previous values was found to be adequate as the controller steered the plant much

nearer to the steady–state conditions all the time. The change in the states becomes

small in this case and simple update becomes sufficient.

1.5 Offset–free NMPC

Any real control situation must consider possible unmeasured disturbances that might

enter the process while under control. Unmeasured disturbances often produce errors

between the model predictions and plant output because the actual value of such

disturbance is seen by the plant but not by the controller [QB97, Hen98]. Measured

disturbances are less of a problem as their effect can be sensed and the appropriate

control action taken. It is more difficult to handle unmeasured disturbances because

neither their magnitude nor their points of entrance to the control loop are known.

Special methods are usually devised to deal with the problem. Simpler cases like zero

mean disturbances may be handled using filters like that of the extended Kalman

filter. However for persisting disturbances an offset (steady–state) error could be

produced in the final output response of the plant. Therefore a different procedure of

disturbances estimation is needed [RMM94, QB97, KC01].

In this thesis two methods based on adaptive nonlinear integration are devised and

shown to work very well in all tested control situations. In the first method, one

or more of the unmeasured disturbances are chosen as adaptation parameters. The

estimated value of these disturbances are then calculated by integrating the current

Nonlinear Model Predictive Control using Automatic Differentiation



1.6 Applications 6

output tracking error along one sample time. The estimated values of the unknown

disturbance are also applied to the nonlinear model in the EKF stage to correct the

model/plant mismatch.

In the second variation to the above method, an output virtual disturbance is created

from the current measurement using the same adaptive algorithm of the method above.

These disturbances are then added to the model outputs to compensate its steady–

state shifting from the real steady–state due to model/plant mismatch. The EKF

block can as a result, be removed from the control loop and replaced by a simple state

estimation method using state updates. Both input and output disturbance modelling

methods above can work together to produce offset–free NMPC performance in some

difficult cases.

The proposed offset removal using the output disturbance model is simple in design

and can efficiently eliminate offset errors produced from different sources (unmeasured

disturbances, modelling error, or both) which enhances the NMPC robustness and

stability.

1.6 Applications

1.6.1 Evaporator Process

In this thesis, an evaporator process is chosen to test various proposed controllers.

The first–principle equations of the process are known, and are given in a state–space

formulation comprising three inputs and three outputs. All the states are measurable

in this case. The same plant was then treated as black–box with input–output data

collected from simulation and then a nonlinear model was constructed for the process.

The proposed CTRNN is used in this case. The results are tested for robustness

against large and varied known and unknown disturbances, modelling error, and large

changes in the set points. Performance was also compared with results from other

published control algorithms.

1.6.2 Two CSTR Process

A process consisting of two–CSTR was chosen as the second application . This prob-

lem has two control configurations S1, and S2. The first–principle model equations

Nonlinear Model Predictive Control using Automatic Differentiation
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are also available. The process is nonlinear process with two inputs, two outputs,

and six states. A state estimator is needed in this case as four state variables are

not measurable. The internal model for the controller as in the previous case was

constructed using the model equations or using a black–box CTRNN model derived

from input–output data collected from the simulation of the first–principle model.

Results are then tested for robustness and response with other controllers such as

PID, linear optimal control, and LMPC. Excellent results were obtained using the

proposed NMPC algorithm with the help of the extended Kalman filter and the offset

removal algorithms.

1.6.3 The ALSTOM Gasifier

This is a challenge case, issued by the ALSTOM company [Dix99]. The first–principle

equations are not available for the process. The process is simulated by a MAT-

LAB/SIMULINK model. The model is nonlinear with five inputs, four outputs, and

25 states. A few published works have addressed this problem because of its impor-

tance for a clean and environmentally friendly way to burn coal. The process has

very stringent quality and safety constraints that makes it an excellent candidate

for model predictive control. The process is also characterized by widely varied re-

sponse time constants between the output and the various inputs. Furthermore, the

operation points for the plant can be varied between zero and full load conditions.

The controller for this case should be able to take all these facts into consideration.

Different control strategies for different input/output routes are attempted in this

case. LMPC and NMPC approaches were mixed to reach the best control strategy

[ACY04, ACY06, ASC05a, ASC05a]. A system identification step is performed before

hand to specify the internal model in the controller using a state–space class Wiener

model. A feedforward neural network is used here for modelling the static part for

one of the output variables the gas pressure. Linearization of the neural network is

performed at every sample time and the AD tool is used to calculate the derivatives

required for this local linearization. Linear quadratic programming (QP) is used in

the optimization section of the controller. All the challenge requirements are satisfied

using the designed LMPC and NMPC algorithms.

Nonlinear Model Predictive Control using Automatic Differentiation
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1.7 Thesis Organization

The thesis is organized as follows. After an introduction in chapter 1, background

material and survey of the relevant literature in the area of MPC and mainly NMPC,

are given in chapter 2.

In chapter 3 the AD tool is introduced in its various version and examples are given

on how to use it for calculating partial derivatives from the a code based formulation

of a multivariable function.

In chapter 4, the algorithm for a new NMPC strategy is developed. The procedure

to include the AD in the algorithm is also given. The model equations are integrated

numerically and the sensitivity equations required to solve the optimization problem

are calculated using a linear (first–order Taylor) approximation. The nonlinear least

squares optimizer is used to solve the online nonlinear programming problem of the

predictive controller. An evaporator process is chosen to demonstrate the proposed

NMPC algorithm in different operating tests.

In chapter 5 the proposed NMPC algorithm is extended to include a state estimate

stage. The algorithm to implement the state estimation in the form of EKF using the

AD tool is given in this chapter. The two–CSTR process with two control configura-

tions S1 and S2 are used as case studies to examine the developed NMPC with the

state estimator.

Chapter 6 includes the development of two alternative parameter adaptation tech-

niques to remove the offset error observed in the NMPC performance as a result of

unmeasured disturbances or/and modelling error. The two technique include an inte-

grated disturbance which can be used in the model input or output to shift the model

steady–state targets to the correct values. The nonlinear integration is used here for

fast and smooth responses during the offset error rejection time. The evaporator and

the two–CSTR processes are used as examples in this chapter.

In chapter 7, the case of black–box model is considered. The continues–time recur-

rent neural network is introduced as a system identification method for the internal

model of the proposed NMPC algorithm. The development of a new efficient training

algorithm for the CTRNN model via the AD tool is presented. In this algorithm,

the AD tool is used to calculate both the Taylor series coefficients and the sensitiv-

ity equations required to solve the NLP problem of the network training. A similar

approach is then used to solve the online optimization problem of the predictive con-
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troller. The evaporator process and the two–CSTR process are used as case studies

with satisfactory results.

In chapter 8 the benchmark ALSTOM gasifier plant case is studied. Using the

black–box model provided with the problem, a linear state–space model is derived

first. Different to previous attempts to control this problem, the linear model is

correctly selected based on the zero–load operating point. A LMPC algorithm based

on a state–space formulation is derived to control the plant as a first trial. Then,

the same controller is extended to NMPC approach via model linearization. Further

improvement to the controller was achieved using a nonlinear model for one of the

plant outputs, the gas pressure. A Wiener type model is developed for this case.

Linearization at every time step is needed and the AD is employed in this case. The

controllers are tested in different operating conditions and the results are discussed.

Further discussion of the performance results, conclusions, and recommendations for

further work are given in chapter 9.
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Chapter 2

Background Material and

Literature Survey

2.1 Introduction

The field of control is truly vast whether on the theoretical side or application side.

This is rightly so for a field that forms a back–bone of the present civilization and

beyond, MPC is only a recent addition to the field appearing in the literature of

the process industry around 1978 [RiR78] where it was then called dynamic matrix

control (DMC) [CuR80]. There were no major theories backing the early algorithms,

as the structure of this type of control is intuitive. A good example of MPC is a

car driver who sees a difficult situation ahead, uses his knowledge of the car (the

internal model) to decide on some optimized moves (control horizon) to keep to a set

of responses (prediction horizon) and achieve a certain goal (the objective function) to

overcome the road difficulty. After every move the whole situation is reassessed and a

new set of moves (receding horizon) are decided, taking into account the new position

of the car together with any changes in the objectives or the problem constraints.

Literature describing theoretical and practical issues associated with MPC technology

are summarized in several recent review articles. Qin and Badgwell present a brief

history of MPC technology and a survey of industrial applications in [QB97]. Meadows

and Rawlings summarize theoretical properties of MPC algorithms in [MR97]. Morari

and Lee discuss the past, present, and future of MPC technology in [ML99].

What is needed to perform the above control task is clearly a huge computing ca-

pability and speed. This is why MPC started making fast progress only in parallel

10
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with available computing power. The computing problem involves the solution of the

internal model equations, which are in general nonlinear with many variables. It also

involves the solution of an additional and probably larger set of nonlinear differential

equations of the sensitivity needed in the optimization step. This has to be done

online before the process gets out of control and probably in a MIMO context with a

large number of inputs and outputs and a long prediction horizon. It is clear therefore

that a considerable effort is needed to tackle and reduce this computational burden.

In addition to computation efficiency, studies in the literature have addressed robust-

ness, stability and other issues related to the solution of a large number of nonlinear

differential equations.

The next sections will introduce briefly the literature and background material on

linear model predictive control first and pass–on to NMPC. Literature on ways to

construct the internal model, whether using the process equations or the process

input–output data, is also discussed. The issues of controller algorithm, the solution

of the nonlinear model equations and sensitivity equations are discussed next. This is

followed by discussion of literature on other important issues like the structure of the

objective function, robustness and stability against unpredictable and unmeasured

factors. The final part is devoted to the important tool of AD and the algorithms to

implement it in the control and in the solution of the nonlinear model equations.

2.2 MPC Framework and LMPC

Model predictive control is an attractive feedback strategy, especially for linear and

nonlinear systems subject to input and output constraints. The MPC algorithm in

general, consists of the following three steps:

1. Explicit use of a model to predict the process output along a future time horizon

(prediction horizon).

2. Calculation of a control sequence along a future time horizon (control horizon),

to optimize a performance index.

3. A receding horizon strategy, so that at each instant the horizon is moved to-

wards the future, which involves the application of the first control signal of the

sequence calculated at each step.

The first predictive control methods were based on linear dynamic models. With a few

exceptions, linear MPC methods mostly employ a discrete–time model of the process.
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The major cause of this is that discrete–time models are known to be practical for

implementation on a digital computer. However, in NMPC there is a significant group

of methods based on continues–time models, because such models result from first–

principles modelling procedures. Discrete–time models, are also obtained as a result

of black–box or gray–box system identification. One major advantage of continuous–

time models however is that it allows a free choice of the time step without degrading

the model performance especially for the black box–model class.

The term LMPC refers to a family of MPC schemes in which linear models are used

to predict the system dynamics, even for the case when the dynamics of the closed

loop system is nonlinear due to the presence of constraints for example.

LMPC approaches are successful for many applications in a very wide range of pro-

cesses [QB97, RiR78, CuR80, GM82, CH88] and including the initial versions of MPC

e.g. DMC by [CuR80] or Generalized Predictive Control (GPC) by [CMT87].

LMPC is probably acceptable and sometimes desirable when the process operates

at a single setpoint and the primary use of the controller is the rejection of small

disturbances [PiS00]. Many systems are, however, inherently nonlinear. This, together

with higher product quality specifications, increasing productivity demands, tighter

environmental regulations and demanding economical considerations in the process

industry require operating systems that can operate closer to the boundaries of the

admissible operating region [ML99]. Such conditions are also met in many cases

including product change over in continuous processes, tracking problems in startup

and batch processes and the control of nonlinear reactors [Bie98, PiS00]. Because

these processes make transition over the nonlinear range of the system, LMPC often

results in poor control performance [Mac02, RAB03].

2.3 Nonlinear MPC

To properly control nonlinear processes, a nonlinear dynamic process model must be

used. Recognizing this need, a number of NMPC algorithms incorporating nonlinear

prediction models have appeared in the literature; e.g. Nonlinear Quadratic Dynamic

Matrix Control (NLQDMC) by Garcia [Gar84], and other types described in [CW91,

BS89, LGM92, SaA01, DiB02].

The constrained optimization problem can be expressed in the form:

min
u

V (k) (2.1)
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subject to process dynamics

xk+1 = F (xk, uk) (2.2)

yk = g(xk, uk)

and constraints:

umin ≤ uk ≤ umax

∆umin ≤ ∆uk ≤ ∆umax (2.3)

ymin ≤ yk ≤ ymax (2.4)

where x is the process state vector, u is the manipulated variable vector, y is the

process output vector, f(·) and g(·) are nonlinear functions, ∆u := uk+1 − uk is the

manipulated variables increments, and V is the objective function.

Typically, the criterion objective function V (k) is a quadratic function of the error

between the predicted output and the desired trajectory (reference) over the prediction

horizon, and usually includes terms which penalize the control effort and the rate of

change of the control variable. Following the notation in [Mac02], a typical criterion

function can be written as:

V (k) =
P∑

i=id

||ŷk+i|k − rk+i||2Q +
M∑

i=id

||uk+i|k||2R +
M−1∑
i=id

||∆uk+i|k||2S (2.5)

where id is a number of time steps representing the process delay time, ŷk+i|k denotes

the output prediction until time (k + i), made at time k, rk+i denotes the value

(or an estimate) of the reference at time (k + i), u and ∆u denote the manipulated

variable and the change of the manipulated variable. Subscripts Q, R, and S refer

to the matrices which are positive semi–definite diagonal weighting matrices, and

||x||W ≡
√

xT Wx denotes the weighted 2–norm of vector x. The weighing matrices

Q, R, and S, as well as the prediction horizon P and the control horizon M are design

parameters that must be tuned to reach a satisfactory performance in the controller.

2.4 Computational Approaches in NMPC

In NMPC context, there exist a number of strategies for tracking the optimal control

problem through nonlinear programming (NLP) [Hen98]:

1. Successive linearization or Instantaneous (Jacobian) linearization method, [GZ92].
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2. Multiple model MPC approach.

3. Sequential method [Mor86, EMP86, JJM87, Beq91a, Beq91b, SB91].

4. Simultaneous method, [PRE90, ER90, PE93, LP94].

2.4.1 Successive Linearization Method

A number of researchers have developed MPC approaches based on a linearization

of the plant model for the prediction phase. In this solution, the model equations

are linearized around the operating point and then apply one of the many linear

optimization methods available in the literature such as QP routine to obtain the

optimum control step. The linearization step is performed over all the prediction

horizon [Mac02, KR03], or at a number of time steps in the prediction horizon [BS89],

[GZ92, ZB02]. This method is very useful when the nonlinear model is extremely

difficult to identify. This strategy is highly successful in controlling mildly nonlinear

processes [NPR98].

2.4.2 Multiple Model Schemes

Model varying predictive control (MVPC) or multiple model predictive control (MMPC)

are approaches that are also based on the model linearization principle [ZhX03,

RAB03, AB03]. In addition, it is possible to sub–divide the operating range into

sub–ranges and use a single model within each sub–range as the prediction model in

MPC. This results in a family (or bank) of linear models obtained by linearizing the

nonlinear equations in several operating points. Based on these local multiple models,

a controller design is carried out at the different operation regions. This allows the use

of simple linear models to represent a nonlinear system and then design systematic

controllers. There are many advantages to use multiple models, such as their flexibility

in selecting the modelling methods (e.g. transfer function and state–space), differ-

ent presentation (e.g. continuous–time and discrete–time) [JF95, Joh95] and other

cases such as noise and disturbance reduction. Moreover, this method can be used

for online control of systems with high speed and accuracy [GL00, NBC95, PSR97].

The computation speed gain comes from the fact that the linearized model is ready

off–line thus eliminating the need of linearization calculations at every time step.

An extension of DMC to multiple models approach was proposed by Zhao et al.

[ZhX03] and further developed to handle different operating regions and input dis-
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turbances by Aufderheide et al. [AB03]. This is done by using a multiple model

framework of step response models. Two different model banks were tested in [AB03];

one uses actual step response for the different operating conditions and the other is

a minimal knowledge based approach using only first–order plus dead time models

(FOPDT). Different operating regions and disturbances are handled by the overall

model bank switching to a more appropriate model(s) using a switching control algo-

rithm [ZhX03], or Recursive Bayesian algorithm which assigns weights to each model

[AB03].

2.4.3 Sequential Method

To solve the MPC problem, it is necessary to both solve an optimization problem and

solve the system model equations. These two procedures may be implemented either

sequentially or simultaneously.

For sequential solutions, improved closed–loop performance is achieved because the

nonlinear dynamical model is directly used in the NMPC calculations. Standard NLP

however is not designed to handle dynamic constraints. This limitation is overcome by

using a two-stage approach wherein an optimization routine serves as the outer loop

which iteratively select new sets of manipulated variables moves, while a differential

equation solver is used to integrate the dynamic equations at each optimization step

[MLL86, Beq91a, Hen98, Beq91b]. In this solution only the control signals are the

decision variables. It is sequential because the optimization and integration problems

are solved iteratively to obtain a certain accuracy.

Most efficient methods for solving nonlinear programs require the evaluation of partial

derivatives of the objective function with respect to the decision variables (sensitiv-

ity equations). In order to take advantage of the efficiency of these methods, it is

important to be able to obtain gradient information efficiently and accurately.

Traditionally, there are three ways to calculate the sensitivity information of a dy-

namic system [StH99]: perturbations, sensitivity equations and adjoint equations. In a

perturbation approach finite differences are used to approximate derivatives. Hence it

need at least applying N perturbations of the dynamic system to get the solution of a

N–parameter sensitivity problem. Also, derivatives accuracy is difficult to determine

and numerical errors can grow excessively with problem complexity. Using numerical

derivatives obtained through finite differences in the sequential approach has been

reported to be with strongly negative results [HS97]. Differencing the output of an in-

tegration routine with adaptive step size, although tightly bounded by the integration
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algorithm, the integration error is unpredictable. Alternatively, sensitivity variables

can also be obtained by simultaneously solving the original ODEs together with nN

sensitivity equations, where n is the number of states [JJM87, CJ87, JJM89, ScM04].

Finally, sensitivity can be calculated by solving n adjoint equations (in reverse di-

rection). A number of efficient solvers have been developed to tackle the dynamic

sensitivity problem, for example DASAC in Fortran language [CS85], and CVODES

package in C language [SH03].

Joseph et al. integrate the model ODE’s and sensitivity equations for the optimal

solution [JJM89]. The prediction and control horizons are the same length. They

used a first–order filter for the setpoints, which eliminates the deadbeat type of control

that normally results when the prediction horizon and control horizon are the same.

Morshedi (1986) presents an extension of QDMC called universal dynamic matrix

control (UDMC), [Mor86]. The modelling equations are integrated using a nonlinear

ODE solver, while the mean–value theorem is used to develop a linear analytical

solution to the sensitivity equations in order to reducing the computational burden

significantly. In the starting of this thesis a first–order approximation was derived

using AD to simplify the dynamic sensitivity equations associated with a NMPC

problem so that computation efficiency was improved [CAS03]. It is similar to the

Morshedi approach above but using AD.

Recently, the AD techniques have been applied to tackle the dynamic optimization

problem [GW04, Cao05]. In these approaches, AD tool have been used to solve

ODEs and sensitivity equations using high–order Taylor series in a NLP problems.

In the second part of this work, the approach of [Cao05] is extended to solve both

the nonlinear model identification problem (training a dynamic recurrent neural net-

work) and NMPC control problem to speed up calculations and to increase efficiency

[ASC05c, ASC06].

2.4.4 Simultaneous Method

In the simultaneous solution [ER90, PE93, SK99] the differential equations are trans-

formed to algebraic equations which are solved in addition to the nonlinear equality

constraints in the optimization. The decision variables includes both the model states

and control signals and the model equations are appended to the optimization prob-

lem as equality constraints. This can greatly increase the size of the optimization

problem, leading to a trade–off between this approach and the sequential one. A
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major advantage of the simultaneous approach is that the state and output variables

constraints are easily handled. However, the major disadvantage to an infeasible path

approach, such as sequential quadratic programming (SQP) is the termination may

occur at an infeasible point. This may be all right in off–line strategies, where a new

initial guess could be made and the solution performed again. In online strategies,

some outer layer type of approach must be used to detect such a failure [Beq91b].

The simultaneous approach is well suited for large NLP problems with state/output

constraints [ER90, PRE90].

In general, the excessive computational burden appears to be the main disadvantage

of the NMPC strategies that resort to the direct use of an ODEs solver and nonlinear

optimization. The requirement of computing the gradient information at each iter-

ation requires repeated integration of ODEs which can be considerably demanding.

In fact, the calculation time of a large number of dynamic sensitivity equations re-

quired to solve any NLP problem in the NMPC could take more than 70 percent of

the total computation time of the optimization problem. Hence, dynamic sensitivity

calculation is the bottleneck of solving any dynamic optimization problem.

2.5 Internal Model Formulation

The basic control strategy in MPC is the selection of a set of future control moves

(control horizon) and minimize a cost function based on the desired output trajectory

over a prediction horizon with a chosen length. This requires a reasonably accurate

internal model, that captures the essential nonlinearities of the process under control,

to predict the dynamic behavior multi–step ahead [PeR03]. That makes the heart of

MPC.

The NMPC schemes proposed in literature use models developed from first–principles

[BS89, PE93] or models identified from input–output data (black–box model or em-

pirical model) [DFL94, SMc97, ZGS98]. Both approaches have been used successfully

in MPC applications. A third type of model which is a mixture of the two types of

models above and it is called hybrid models which can be also found in a number of

applications.

The various model forms used in this thesis are derived as a special cases from a

general continuous–time nonlinear state–space model:

ẋ(t) = f(x(t), u(t)) (2.6)

y(t) = g(x(t), u(t))
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where, u ∈ Rnu is a vector of manipulated (control) variables, y ∈ Rny , is a vector of

an output variables, and x ∈ Rnx is a vector of state variables.

This general form has been extensively used for control system analysis and design

for the cases of both white–box and black–box situations. It has many attractive

characteristics [ZGS98]:

1. It is a compact model consisting of fewer parameters than a corresponding Finite

Impulse Response (FIR) or Finite Step Response (FSR) models.

2. It provides a standard basis on which the MPC analysis and design can be

performed in a framework parallel to the linear quadratic optimal control.

3. It can capture full nonlinear dynamics.

4. Since many excellent theoretical results for stability properties of NMPC and

robust design are based on state–space model, their implementation will be

straightforward if the state–space models are available.

In the following sections, few model types commonly used in NMPC are discussed in

more details.

2.5.1 Linear Internal Models

In almost any control application, linear design techniques are usually the first to be

attempted and are completely satisfactory for many engineering applications, espe-

cially those involving regulation about a steady–state operating point.

Linear models have been used in the majority of MPC applications to date. A wide

variety of model forms are used, but they can all be derived from system (2.6) by

linearizing about an operating point and discretized in a sampling time Ts to get:

xk+1 = Axk + Buk (2.7)

yk = Cxk + Duk

An equivalent discrete–time, transfer function model, autoregressive model with ex-

ogenous inputs (ARX), FIR model, and FSR model can be also derived from (2.6)

(see [QB03]).

MPC based on linear models often results in poor control performance for highly

nonlinear processes because of the inadequateness of a linear model to predict dynamic
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behavior of a nonlinear process. There is therefore, a strong requirement of a good

fitting model for NMPC applications.

2.5.2 First–Principle (White–box) Nonlinear Models

In many practical applications, a restricted mathematical model based on physical

principles is developed based on process knowledge, usually constructed from mass

and energy balances, and written to take the form of (2.6). This type of model is

often referred to as a first–principle model, or white–box model, or mechanistic model

in some publications.

A general discrete–time first principle model that can be derived from system (2.6)

by integrating across the sample time can be written as:

xk+1 = F (xk, uk) (2.8)

yk = g(xk, uk)

A major advantage of first–principle models is that they can be used to predict over a

wide range of conditions, even without prior operating experience, provided that the

basic assumptions of the model remain valid. On the other hand, a model based on (for

example) artificial neural networks has almost no predictive value outside the range

of operating conditions where data has been collected. However, the development of

these type of models is usually time consuming and effort demanding, especially for

complex processes. For some poorly understood processes, it is even impossible to

build first–principle models or the resulting model is too complicated to be used for

control [ZM99].

2.5.3 Empirical (Black–box) Nonlinear Models

This type of models is based on using measurements of input and output signals from

the true system using nonlinear system identification and the resulting model is called

an empirical model or black–box model.

For the nonlinear case, the decision to use first–principle or empirical models is less

clear. For small systems with well–understood physical phenomena, fundamental

modelling is preferable, because of the ability of the model to predict beyond the

range of existing operating data. On the other hand, model identification is easier to

use for larger systems using black–box models [HS97].
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In many cases, nonlinear system identification is an inevitable step in a NMPC project.

Possibly, it is also the most costly and time consuming part of the project [ZGS98].

Therefore, an efficient and affective approach of nonlinear system identification is

critical to the success of NMPC.

A fundamental difficulty associated with the nonlinear input–output data (or nonlin-

ear empirical) modelling approach is the selection of a suitable model form. Discrete–

time models are most appropriate because plant data is available at discrete–time

instants and NMPC is most naturally formulated in discrete–time.

Unlike linear system identification, there is no uniform way to parameterize general

nonlinear dynamic systems. Some of the more classical identification method are given

bellow. The types of nonlinear models utilized for NMPC include;

1. Volterra models [MaD96].

2. Polynomial auto regressive moving average model with exogenus inputs (poly-

nomial ARMAX) [SrA97].

3. Hammerstein and Wiener models [CXS94, DFL94].

4. Artificial Neural Network (ANN) models [SMc97].

Voltera models can be described by the following input/output relationship [PeR94,

MaD96];

y(k) = y0 +
∞∑

j=0

aju(k − j) +
∞∑
i=0

∞∑
j=0

biju(k − i)u(k − j) +

∞∑
l=0

∞∑
i=0

∞∑
j=0

cliju(k − l)u(k − i)u(k − j) + · · · (2.9)

where, a, b, and c are the model parameters. Volterra series models can be used to

model a wide class of nonlinear systems however, these models are non–parsimonious

in parameters and in turn, difficult to use for modelling MIMO systems [Sah04].

NARMAX model provides a description of the systems in terms of a nonlinear function

of delayed input, output, and prediction error. Many MPC based on NARMAX

models were proposed in the literature [KP91, Mat91]. The NARMAX form for a

single–input single–output (SISO) system is:

y(k) = F (y(k − 1), · · · , y(k − n), u(k − 1), · · · , u(k −m), e(k), · · · , e(k − q + 1))

(2.10)
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Figure 2.1: Basic structure of nonlinear models, (a) Wiener model, (b) Hammerstein

model, (c) Hammerstein–Wiener model.

where, F is a nonlinear mapping which can be a polynomial nonlinearity, neural

network structure, or others, k represents the time instant k∆t, where ∆t is the

sampling time, y is the controlled output, u is the manipulated input, e is the noise

input, n is the number of past outputs used, m is the number of past inputs used,

and q is the number of current and past noise inputs used.

The main difficulty with NARMAX or its other variants even for SISO systems, is

the determination of an appropriate model structure (i.e. n, m, and q) that best

represents the process dynamics.

Two basic types of nonlinear empirical models have been used in this thesis to identify

the black–box process. These are a discrete–time state–space class Wiener model, and

a continues–time state–space recurrent neural network model. More details about each

type of these models are given in the following subsections.

2.5.4 Modelling with Wiener Models

Hammerstein and Wiener models have a special structure that facilitate their appli-

cation to NMPC [DFL94, CAF03, SnA96]. Wiener models are particularly useful in
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representing the nonlinearities of process without introducing the complications as-

sociated with general nonlinear operators. These models consist of a linear dynamic

element followed in series by a static nonlinear element. Hammerstein model contain

the same elements in the reverse order [NPR98]. Also, the simultaneous model con-

tains a linear dynamic model sandwiched between two memoryless nonlinear gain (see

Figure 2.1). These models correspond to processes with linear dynamics but nonlinear

gain, and can adequately represent many of the nonlinearities commonly encountered

in industrial processes such as distillation and pH neutralization [ZGS98]. Due to the

static nature of their nonlinearities, they can be effectively removed from the control

problem. This fact generalizes the well–known gain–scheduling concept for nonlinear

control [CAF03].

The Hammerstein and Wiener type models are relatively simple models requiring little

effort in development than a standard linear model, yet offer superior characteriza-

tion of systems with highly nonlinear gains. Wiener models may be incorporated into

MPC schemes in a unique way which effectively removes the nonlinearity from the

control problem, preserving many of the favorable properties of linear MPC [NPR98].

Norquay et al. examined the characteristics of Wiener models as well as various

methods of system identification (ARX and step–response models) and final model

validation [NPR98]. They have been presented as an effective way of introducing

nonlinearity to a control problem without the significant increase in complexity usu-

ally associated with nonlinear MPC. They reported that, NMPC based on Wiener

model was shown to effectively control the highly nonlinear pH neutralisation process

with excellent setpoint tracking and disturbance rejection capabilities as compared to

simple LMPC and PID control.

Zhao et al. [ZGS98] presented an approach to identifying linear/nonlinear state–space

class Wiener models for MIMO MPC. A hybrid linear and neural network model

structure was used in the static part of the model. It is shown that this type of

nonlinear models can approximate any discrete–time nonlinear processes with fading

memory [SBG98].

A problem of identification and control using a Wiener model was proposed by

[AKC96]. They proposed a hybrid model consisting of an ARMA model as a lin-

ear dynamic model in cascade with a multilayer feedforward neural network. They

also suggested control using the Wiener model by inserting the inverse of the static

nonlinearity in the appropriate loop locations. They demonstrated the effectiveness

of their proposed identification and control algorithm using simulation results.

Wiener–Laguerre nonlinear model is a special case of a Wiener model, where the linear
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dynamic part is represented by a series of orthonormal Laguerre filters followed by

a memoryless nonlinear mapping. Dumont et al. have used a model of this type for

developing an adaptive MPC scheme for controlling SISO nonlinear systems [DFL94].

Recently, multivariable extension of the Wiener–Laguerre model have been proposed

by Sentoni et al. [SBG98] and Saha [Sah99]. In both cases, the MIMO systems were

modelled by several multi-input single–output (MISO) models. Sentoni et al. [SBG98]

used artificial neural networks (ANNs) for constructing a nonlinear state output map

while Saha [Sah99] used quadratic polynomials as well as ANNs for constructing a

nonlinear output map and used these models in NMPC formulation.

Wiener–Laguerre model can be used to approximate the dynamic response of the

process only for open–loop stable systems. To handle open–loop unstable systems

Wiener–Kautz model was proposed by Wahlberg [Wah94]. This is done by replacing

Laguerre filters with Kautz orthonormal filters [LW93]. Recently, Abrahantes et al.

[AVA01] developed a nonlinear MIMO state–space model which is similar to Sentoni

et al. [SBG98] but they used Kautz filters instead of Laguerre filters in order to

approximate open–loop unstable systems.

The modelling scheme, based on a nonlinear extension of Laguerre filter modelling,

appears promising as the nonlinear model inherit all the merits of its linear counterpart

i.e. it requires no prior knowledge of plant order and time-delay and also has a flexible

structure so that the model complexity can easily be changed online [DFL94, SJ97,

GeJ00].

Recently, Huzmezan et al. (2002) designed an adaptive MPC approach based on

Wiener–Laguerre model to handle integrating type processes with long dead times

and long time constants [HuG02] . A system identification approach and NMPC

algorithm based on Wiener model is developed to control a pH neutralistion process

by Gomez et al., [GJB04]. The performance of the proposed Wiener model predictive

control (WMPC) was compared with that of LMPC and PID controllers and the

results show that the WMPC outperforms the other two controllers.

2.5.5 Modelling with Artificial Neural Networks

Neural networks hold great promise for solving problems that have proven to be

extremely difficult for standard digital methods [BM90]. The universal approximation

properties of the neural networks makes them a powerful tool for modelling nonlinear

systems [BM90, FN93]. There are two key advantages of using the neural networks;
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Figure 2.2: Simple Feed Forward Neural Network

1. Neural networks are inherently parallel machines and as a result they can solve

problems much faster than a serial machine.

2. Many neural networks have the ability to learn.

Neural networks generally are composed of neurons processing elements, termed nodes,

which are arranged together to form a network. The most commonly used processing

element is one which weights the input signals and then sums them together with

a bias term. The neuron output is then obtained by passing the summed, weighted

inputs a nonlinear activation function such as the hyperbolic tanh. In this case, the

network will be called feedforward neural network (FFNN) (see Figure 2.2). The

incorporation of a dynamic element into the network is important for the modelling

of dynamic data, so that some of the outputs are fed back to the network input as

the network dynamic states. In this case, the network will be called a dynamic or

recurrent neural network (RNN) type (see Figure 2.3).

Different neural networks models embedded in MPC systems are reviewed by [Hen98].

An advantage of the use of ANNs over a polynomial NARMAX models in MPC is

that the structure of the ANNs models is easier to develop, which is particularly true

when applied to the modelling of MIMO processes [YG02]. The application of ANNs

based model predictive control scheme is given in [DER95].
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It is has been shown [BM90] that conventional FFNN can be used to approximate

any spatially finite function given a set of hidden nodes. That is, for functions which

have a fixed input space there is always a way of encoding these functions as a neural

networks. For two–layered network, the mapping consists of two steps;

y(t) = G(F (u(t))) (2.11)

It can use automatic learning techniques such as backpropagation to find the weights

of the network (i.e. G and F ) if sufficient samples from the function is available.

Figure 2.2 show a simple diagram of a two layers FFNN. The first layer of nods

is the input layer (hidden or state layer), and the second layer is the output layer

respectively. Each layer will have its own index: k for output nodes, j (and h) for

hidden, and i for input nodes. In FFNN, the input vector u is propagated through a

weight layer V ,

yj(t) = f(netj(t)) (2.12)

netj(t) =
nu∑
i

uivji + bj (2.13)

where, nu is the number of inputs, bj is a bias, vij is the ij element of the weight

matrix V , and f is an output function (of any differentiable type).

The output of the network is in both cases determined by the state (the hidden layer

outputs) and a set of output weights W ;

yk(t) = f(netk(t)) (2.14)

netk(t) =
nx∑
j

yjwkj + bk (2.15)

where, g is an output function (possibly linear or the same as f), and wij is the ij

element of the weight matrix W .

Most of the publications in nonlinear system identification use FFNNs with backprop-

agation or its other variations for training, for example [TSM95, TC96]. Successful

applications of FFNNs to model chemical processes were reported by [BM90].

The static FFNNs together with tapped-delay lines provide a means to model nonlin-

ear dynamic systems in discrete–time [MSW90, NP90, LzP02]. In general, this type

of model (which is also referred to the nonlinear autoregressive with exogenous inputs

(NARX) model) can be represented by the following mathematical form;

y(t) = fNN(ϕ(t), θ) + e(t) (2.16)
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where y is the output of the model, fNN is a nonlinear function, θ is the network

parameters, e is known as the model residual, and ϕ is known as the regression vector

(which depends on past input and output information) and given as;

ϕ(t, θ) =
[
y(t− 1), · · · , y(t− n), u(t−m), · · · , u(t−m + 1)

]T
(2.17)

where, n and m are the tapped–delay–line memory (order) of the output and input

respectively. The main drawback of this approach is the input and output orders n

and m are unknown in real applications. In addition, this type of model can only

provide predictions for a predetermined finite number of steps, in most cases, only

one step. This drawback makes such models not well suited for predictive control,

where variable multi–step predictions are desired.

Recently, a NMPC based on multiple FFNNs has been proposed [Jaz04]. In this ap-

proach, a combination of multiple FFNNs with one hidden layer are used to model

an m–input n–output nonlinear dynamic system. This system consists of a two–

dimensional array of FFNNs blocks and each block consists of a one–step–ahead pre-

dictive neural model, which is identified to represent each output of the MIMO system.

These models are employed to predict the future outputs over the prediction horizon

of P time steps. This approach might solve the multi–steps ahead prediction problem

of the FFNN but it needs the training of a new FFNN for every extension to the

prediction horizon, or a large number of networks when a long prediction horizon is

needed.

Recurrent neural networks on the other hand are capable of providing long range

predictions even in the presence of measurements noise [SMc97]. Also, RNNs are more

efficient than FFNNs and can do an equivalent job using fewer neurons [DKW95]. In

some cases a small feedback system is equivalent to a large and possibly infinitely large

feed–forward system [HH93]. Therefore, RNN models are better suited for NMPC.

RNNs with internal dynamics are adopted in several recent works. Models with such

networks are shown [FN93, JNG95], to have the capability of capturing various plant

nonlinearities. They have been shown to be more efficient than FFNNs in terms of

the number of neurons required to model a dynamic system [DKW95, HH93]. In

addition, they are more suitable to be represented in state-space format, which is

quite commonly used in most control algorithms [ZV98].

RNNs are fundamentally different from FFNN architectures in the sense that they not

only operate on an input space but also on an internal state space, a trace of what

already has been processed by the network. The two–layered discrete–time RNN can
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Figure 2.3: Simple Recurrent Neural Network.

be represented as;

x(t) = F (x(t− 1), u(t); θ) (2.18)

y(t) = G(x(t)) (2.19)

where, x is the internal state vector of the network, and θ is the vector of the network

parameters (i.e. weight and bias elements).

In a simple RNN (see Figure 2.3), the input vector is similarly propagated through a

weight layer, but also combined with the previous state activation through an addi-

tional recurrent weight layer, O,

yj(t) = f(netj(t)) (2.20)

netj(t) =
nu∑
i

uivji +
nx∑
h

yh(t− 1)xjh + bj (2.21)

where, nx is the number of state nodes.

RNN can be discrete–time neural networks, [ZV98], or continuous–time neural net-

work (CTRNN), [FN93, KGW00]. In this case the difference equation (2.18) can be

replaced by the following differential equation;

ẋ(t) = f(x(t), u(t); θ) (2.22)

y(t) = g(x(t)) (2.23)
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The CTRNN have some advantages over and are computationally more efficient than

the discrete formulation even if in–the–end both are represented on the computer using

only discrete values [PeB95]. In addition, the sampling period used with CTRNN can

be varied without the need for re-training [FN93, KaC00, KGW00]. This is not

possible in the case of discrete–time RNNs.

Although a continuous-time model has clear advantages compared with discrete–time

RNN, it has rarely been used in NMPC. The main reason is due to the difficulty to

solve the dynamic optimization problem associated with the continuous–time nonlin-

ear model identification problem. So, the training of this type of neural network is

difficult as reported by [PeB95, KaMC96, PBV03]. To solve the nonlinear optimiza-

tion problem associated with CTRNN training, the calculation of a large number of

dynamic sensitivity equations is required.

In this study, the CTRNN is chosen for the nonlinear process model approximation to

be used in NMPC context. The network training difficulty is reduced by developing

a new training algorithm using Taylor series expansion and AD tool.

2.5.6 NMPC based on Hybrid Models

Hybrid nonlinear models are developed by combining the first–principle knowledge

with empirical modelling approaches. This allows the advantages of each modelling

approach to be exploited. A common method for developing hybrid models is to use

empirical (black–box) models to estimate unknown functions in the first–principle

model [Hen98]. Another possible approach is to utilize a first–principle model as

a nonlinear function of physical variables that generates other physically meaningful

variables to capture the basic process characteristics, and then to describe the residual

between the plant and the model using a nonlinear empirical model. Both techniques

allow the nonlinear model to be constrained by the underlying physics, but they do

not require a complete rigorous model of the plant. While hybrid models hold great

promise, their use for NMPC design has not been explored [Hen98].

2.6 Tuning Parameters

The most significant tuning parameters of the NMPC that must be selected are the

sampling period ∆t (or Ts), the control horizon M , prediction horizon P , and penalty
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weight matrices. In fact, the choice of these parameters together with the feedback

method if used, have a profound effect on NMPC nominal stability and robustness

[HS97]. A limitation of NMPC is that the effect of these parameters on closed–loop

performance is difficult to predict a priori. To date, parameter values which ensure

nominal closed–loop stability have been determined only if the prediction horizon is

infinite or a terminal state constraint is imposed. Because these conditions are rarely

satisfied in practice, it is important to develop heuristic guidelines. The following

results are summarized from [MR97] and [HS97].

For stable, and minimum phase systems, stability does not depend on the sampling

period (time). However to ensure good closed–loop performance, the sampling period

should be small enough to capture adequately the dynamics of the process. Small

sampling period generally improve performance but require a longer prediction horizon

to adequately capture the process dynamics which means an increase in the online

computation time [Hen98]. On the other hand, a large sampling period reduces online

computation, but it can result in poor performance such as ringing between sample

points [GM82]. For unstable systems, robustness depends critically on the sampling

period [HS97, Hen98]. There is an inverse relationship between Ts and the allowable

modelling error. As modelling error increase, more frequent feedbacks of process

measurements (i.e. small Ts) is required to indicate the onset of unstable behavior

[Hen98].

Linear systems results [MuR93] indicate that shortening the control horizon M rela-

tive to the prediction horizon P tends to produce less aggressive controllers, slower

response and less sensitivity to disturbance. For NMPC the effect of the control hori-

zon on the closed–loop performance is similar. For fixed prediction horizon, smaller

control horizons yield more sluggish output responses and more conservative input

moves. Large control horizons have the opposite effect on performance. In addition,

large values of M lead to increase the online computation as M is linearly related to

the number of decision variables in the NLP problem. In practice, M often must be

chosen to provide a balance between performance and computation.

The prediction horizon P has similar effects as the control horizon M . In fact, nominal

stability is strongly affected by the prediction horizon length. However, the advantages

of longer P are outweighed by the increase in computation time and result in more

aggressive control [Hen98].

The weighting matrices Q, R, and S in equation (2.1), can be the most difficult tun-

ing parameters to select because their values depend on the scaling of the problem.

Typically, they are chosen to be diagonal matrices with positive elements [Hen98].
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The magnitude of the diagonal elements depend both on the scaling and the relative

importance of the variables. For problems in which all the variables are scaled sim-

ilarly, it is suggested in Meadows and Rawlings [MR97] that the output penalties Q

be chosen in the range 1–100 and the input penalties R and S be chosen in the range

1–10. The final parameter values can be obtained by fine tuning via simulation study.

In this thesis these tuning ideas examined in the account in the NMPC design for a

number of case studies.

2.7 Stability Issues in NMPC

The first property of a control system that should be satisfied is nominal stability, i.e.

stability for systems free from modelling errors or disturbances. For linear systems

without constraints, stability can be verified by checking eigenvalues of the closed–loop

system. For nonlinear systems, there is no simple equivalent criterion.

Bitmead et al. [BGW90] showed that the general form of MPC does not guarantee

closed–loop stability, because a finite horizon criterion is not designed to deliver an

asymptotic property such as stability and closed–loop stability can only be archived

by a suitable tuning of design parameters such as prediction horizon, control horizon,

and weighting matrices. In the LMPC case, the infinite horizon controller can be

reformulated as a finite horizon controller with a terminal state penalty [MuR93].

For NMPC case, Bitmead et al. [BGW90] suggested an infinite horizon method (i.e.

P → ∞ (closely related to linear quadratic (LQ) control), which however, results in

an optimization problem that can generally be solved only for unconstrained linear

systems. However in practice the solution of the optimization problem with P = ∞
can not be obtained or is computationally demanding [?]

Rawlings and Muske [RM93] propose a receding horizon control scheme with infinite

prediction horizon and finite control horizon. Mayne and Michalska [MM90] showed

that the finite horizon constrained optimal control problem can be posed as minimizing

a standard quadratic objective function as the following form;

V (k) = ||xk+P |k||2W +
P∑

i=id

||xk+i|k||2Q +
M∑

i=id

||uk+i|k||2R (2.24)

subject to an additional terminal state equality constraint requiring the states to be

zero at the end of the finite prediction horizon i.e. x(t + P ) = 0. Note that the

above objective function is differs from the prototypical formulation of (2.5) in that;
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Figure 2.4: Suboptimal NMPC control.

(i) the control horizon is equal to the prediction horizon; (ii) the state variables x are

penalized rather than the output variables y; (iii) a penalty on the rate of change of

the input is not included; and (iv) the steady–state target values are zero [Hen98].

However, from a computational point of view, an exact satisfaction of the terminal

equality constraints requires an infinite number of iterations in the nonlinear case

[ChJ98]. In order to avoid this drawback, they extend their work in [MM93] with a

terminal inequality constraints such that the states are on the boundary of a terminal

region at the end of a variable prediction horizon. They suggested a dual–mode

receding horizon control scheme with a local linear state feedback controller inside

the terminal region and a receding horizon controller outside the terminal region.

Closed–loop control with this scheme is implemented by switching between the two

controllers, depending on the states being inside or outside the terminal region.

Chen and Allgower [ChJ98] proposed a quasi–infinite horizon NMPC (QIH–NMPC)

scheme that optimizes online an objective functional consisting of a finite horizon cost

and a terminal cost (Es(x(t+P ))) subject to system dynamics, input constraints and

a terminal region constraints Ω(x(t + P )) ≥ 0. Roughly speaking the terminal state

penalty term approximates the infinite horizon cost. The terminal region is calculated

around the origin that can be stabilized by a linear control law (i.e. u = −Kx). In

this case, instead of requiring the final states to be at the origin, the final states will

be in this region, Ω as shown in Figure 2.4.
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In fact, the primary tool for NMPC stability analysis above is Lyapunov theory

[KGE88]. For all algorithms in this theory, the Lyapunov function becomes the cost

or objective function of the optimization.

The major differences in the existing algorithms are the length of the horizon and the

consideration of an optimal or suboptimal solution;

1. Infinite horizon MPC

2. Finite horizon MPC without terminal constraints

3. Finite horizon with equality terminal constraints

4. Finite horizon with terminal state penalty and terminal region constraints (sub-

optimal MPC)

Other different schemes about guaranteeing stable NMPC can be found in the lit-

erature (see [MaR00, RO00]) for recent reviews. Recently, Imsland et al. [ImF03]

reported that; if an approach of state feedback NMPC controller in combination with

a state observer is used, in general little can be said about the stability of the closed–

loop, since no universal separation principle for nonlinear systems exists.

2.8 Nonlinear State Estimation

Recent trends in MPC favor the closed–loop approach, where the measurements are

incorporated into the prediction. This feature necessitates an estimator to recover

the states from noisy measurements and a knowledge of a process model with uncer-

tainty. The prediction is repeated at every time instant using the recovered states as

initial conditions. Since closed–loop MPC requires the solution of the estimation and

regulation problems online at each step, the computation time is limited between two

successive measurements. For a linear system the estimation problem can be easily

solved by the Kalman filter [Kal60], and the regulation problem can be solved very

fast by linear optimizer. A number of closed–loop estimation techniques using Kalman

filter for MPC has been proposed by many researchers [Ric90, LGM92, LY94]. How-

ever, for nonlinear systems, the computation cost becomes the biggest challenge for

MPC applications. Here, both the regulation and estimation problems are generally

nonlinear optimization problems, which are time–consuming to solve even for simple

nonlinearities.
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The most commonly used state estimation methods in NMPC are the extended Kalman

filter (EKF) [LR94], and moving horizon state estimation (MHSE) [TRW04]. EKF

is a nonlinear extension of the Kalman filter and it basically linearizes a nonlinear

model repeatedly and applies a Kalman filter on the resulting time–varying system.

The estimation component of NMPC using the EKF has negligible online computa-

tional load when compared to the control signal optimization since it actually deals

with a linear problem. However, the EKF needs statistical knowledge (covariance

matrices) of the noises acting on the states and on the output, which can be difficult

to obtain in nonlinear cases.

A few more state estimation techniques are also available. There are some refined

methods other than the celebrated Kalman filter or its extended nonlinear counter

part. The refinements include; re-iteration [GeK82], higher–order filtering [May82],

and statistical linearization [Lew86]. The more advanced techniques generally im-

prove estimation accuracy but it happens at the expense of a further complication in

implementation and much increased computational burden.

Norgaard et al, (2000) developed a new state estimator for nonlinear systems based on

polynomial approximations rather than Taylor series approximations of the nonlinear

transformations obtained with a particular multi-dimensional interpolation formula

[NPR00]. The new estimators are named, a first-order and second-order Divided

Difference filters (DD1) and (DD2) respectively. DD1 filter is based on first-order

polynomial approximation and DD2 filter is based on second-order polynomial ap-

proximation. The authors claimed that the implementation of these types of filters

is significantly simpler than estimators based on Taylor approximations used in the

EKF estimator as no derivatives are required.

An interesting alternative is to use an optimization based method such as MHSE,

which consists of minimizing an output criterion on a time horizon. It treats the

estimation as a least square optimization problem in a moving window. However,

the cost of extracting better performance is longer computation times for MHSE,

which is comparable to the optimization cost of regulation. Both EKF and MHSE

are function based state estimators in the sense that they pose optimization problems

with the nonlinear (or linearized) functions of the models as constraints.

Recently, several probability density function based state estimators have been pro-

posed. The Sequential Monte Carlo (SMC) [ChW04] or particle filters and Markov

chain based Cell Filter (CF) [UC03] are typical examples. While these methods are

computationally more expensive than EKF, they are shown to be less demanding and

easier to tune than MHSE [ChW04].
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2.9 Automatic Differentiation

The evaluation of derivatives of mathematical functions is a crucial ingredient in a

variety of computational techniques in numerical simulations. Gradients, Jacobians,

or higher–order derivatives are needed, for instance, in the solution of nonlinear sys-

tems of equations, differential and differential–algebraic equations, or optimization

problems. Derivatives also play a key role in sensitivity analysis, model validation,

inverse problems, and simulation problems [Ver00, ECF02], to name a few.

In this situation, numerical differentiation based on divided (finite) differencing (FD)

is by far the most widely used approach. However, the main disadvantage of numerical

differentiation is that any derivative value obtained from FD involves truncation error.

It is sometimes difficult or even impossible to find a suitable step size [ECF02]. In

addition, the run time requirements of finite difference approach are often unaccept-

ably high, particularly for problems with large number (thousands) of independent

variables.

Symbolic differentiation (SD) method is often used in computer algebra packages.

Symbolic languages are increasely being used in analysis and implementation of con-

trol algorithms [Com94]. However, SD is known to be slow and to often produce large

expressions which can become unmanageable [Com94]. It usually generates too long

formulas for practical use, and, moreover, it is weak on differentiation of a function

defined by a program containing conditional branches [Iri97].

Automatic differentiation (AD) [Gri89], which has developed rapidly during the last 20

years, is being recognized as the most promising among the differentiation algorithms.

Like symbolic differentiation AD obtains exact derivatives without truncation error

and preforms more efficiently than FD and SD in many cases [XZJ04].

AD is a simple and efficient technique for computing the derivative of a function rep-

resented by means of a program written in a higher level language such as FORTRAN,

C, MATLAB, or others. It can be used as a pre-compiler that can take as input a

FORTRAN/C subroutine that computes a function of several independent variables

and write as output a program that computes not only the function, but also the

gradient of the function with respect to the independent variables [ChS94, Ver00].

AD tool was introduced by Wengert in 1964, [Wen64], (see also [Wil64]) and further

developed by Rall in 1980-1983 [Ral81]. The recent development of general purpose

AD codes combined with the increasing interest in larger and more sophisticated
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control problems makes a consideration of the use of AD tool in control appropriate

[GDJ96, Com94].

Several AD software tools are being developed by the applied mathematics and com-

puting research community, all having both common and distinct features, regard-

ing languages supported (FORTRAN 77, FORTRAN 90, C, C++). These tools in-

clude ADIFOR [BGH92], AUTO–DERIV [SPF00], ADIC [Bis96], ADOL-C [GDJ96],

Odysee [FP98], and TAMAC [Gie97]. In the MATLAB environment, there is ADMIT-

1 [CV97], ADMAT [CV98], MAD [AMR00], and ADiMAT [Veh04].

Rich and Hill (1992) presented a C language implementation of AD that can be called

from MATLAB [RH92]. The C language GRAD [Rich89], automatically computes

the value of multivariate function and its gradient vector of first partial derivatives at

a given domain point. This function is called from MATLAB with a character string

representing a function f of n variables and a point X in the n–space at which f and

its first partial derivatives are to be evaluated.

A comparison between AD code in C language, (ADOL–C) [GDJ96], and symbolic

approach on the problem of integration of nonlinear prescribed path control problem

is given in [Com94]. The results were, for small problems either approach is suitable

but for larger problems or moderate sizes involving a moderate number of derivative

evaluations, the AD code is superior. Also, AD techniques are used to train large-

scale artificial feedforward neural network by [ErG97]. The algorithm used AD for

calculating derivatives and a conjugate gradients to approximatively solve a quadratic

linear programming problem in each iteration of an optimization routine.

The application of AD to numerical integration algorithms for ODEs is discussed in

[EB99]. An algorithm and software for sensitivity analysis of large-scale differential

algebraic equation (DAE) systems are given in [ShP00].

For nonlinear systems there are some observer design methods which are based on

differential geometric or differential algebraic concepts. The application to non-trivial

systems of these methods and others are limited due to the burden of symbolic com-

putations involved. To tackle this problem, a method for observer design using AD is

developed by [RbR03].

A software COOPT package for optimal control of large-scale DAE systems is pro-

posed in [SP01]. Gradient and Jacobian matrix that are the derivatives of the objective

function and constraints, required in SQP method were computed via DAE sensitivity

software DASPK3.0 [LP99]. The sensitivity equations to be solved are generated via

AD techniques.
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An extended automatic differentiation (XAD) algorithm was developed to generate

the derivative and was coded into subroutines to replace the first derivative evaluation

module of the SQP algorithm [XiW01]. The numerical results obtained using this

algorithm showed that the derivative evaluation by expressions, produced by XAD,

are far faster than that by finite difference approximation and plain AD. A significant

enhancement in optimization efficiency was also obtained.

The advantages of using AD in the engineering applications was demonstrated in

[BLR02]. They implemented the sensitivity analysis of electrostatic potential problem

via AD. The derivatives produced by this approach shown to be more efficient than

derivatives based on finite differences. They claimed that, their study demonstrated

that the technology of AD is not only applicable to small codes but scales up to

computer models consisting of hundred of thousands of lines of code. Also Dojouad

et al. used AD tool for sensitivity analysis in the multiphase chemical mechanism

application by [DAS02].

A methodology for implementing AD techniques into the TOUGH/ECO2 multiphase

flow simulator was described in [KF03]. AD was used to provide accurate analytical

derivatives for the Jacobian matrix, which is calculated to handle numerically the non-

linear behavior inherent in non–isothermal, multiphase flow problems. They claimed

that, the automatically generated AD code provides a faster derivative computation,

with faster convergence in the subsequent linear solution steps, compared to the tradi-

tional finite difference method. Therefore a reduction in computational running time

using AD was about 28%. Furthermore, the AD approach enhances the efficiency of

the linear solution step, which resulted in a total computational time improvement of

up to 60%.

AD has been applied to optimal control problems by [Ino03]. The sensitivity of

the system was computed implicity by AD and the performance function deduced

using a gradient method. Martinsen et al., (2004) investigated the application of four

different SQP optimization algorithms to NMPC [MBF04]. The comparison results

are collected through a CSTR case study to reached the suitable choice between these

strategies. The Jacobian matrices associated with each discretization method of the

CSTR model are calculated either analytically by AD tool, or approximated by FD

method. The final results led to the following conclusion [MBF04];

• FD approximations of the full Jacobian in all the SQP strategies should be

avoided.

• All solvers benefit from analytic derivatives and AD is a cheap way of achieving
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this.

Recently, a module-oriented AD approach based on AD algorithms is presented in

[XZJ04]. This approach can exploit the sparsity of a controller model by partitioning

it into a series of sequential modules and choosing the best differentiation algorithm

for each module accordingly. Moreover, external Jacobian evaluation codes for specific

modules are claimed to be easily incorporated into this approach.

Mathematical exposition of the AD tool together with some examples of the use of

the tool will be given in Chapter 3.

2.10 Unmeasured Disturbances and Their Mod-

elling

Closed–loop performance of MPC algorithms is directly related to model accuracy.

In practice, modelling error and unmeasured disturbances can lead to steady–state

offset unless precautions are taken in the control design. Intuitively, one expects

that measuring all state variables (usually impossible) would provide the best initial

conditions. Sistue and Bequette (1991), [SB91] have shown that this is not the case

for systems with parameter or model structure uncertainty. Poor dynamic response

and steady–state offset can occur even if all state variables are measured and used as

initial conditions with model/plant mismatch [Beq91b]. Also, offset could be caused

by the finite prediction horizon [RST02]. Therefore, some form of feedback is required

to remove this steady–state offset.

The first method involves modifying the control objective to include integration of the

tracking error. This method, employed by the PID control algorithm, can also be used

in the MPC framework [MuB02]. In this method, the integral action is incorporated

into MPC algorithms by augmenting the process model to include a constant step

disturbance. This disturbance is generated by comparing the measured and predicted

process output at time k as;

d̂(k) = ym(k)− y(k) (2.25)

where ym(k) and y(k) represent the process measurement and model prediction at the

current time, respectively. This disturbance is generally assumed to remain constant

in the future and its effect on the controlled variables is removed by shifting the
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steady–state target for the controller. The simple formula of this disturbance can be

given as;

y∗(k + i) = y(k + i) + d̂(k), for i ∈ [1, P ] (2.26)

where y∗ is the corrected prediction output. This is equivalent to assuming that a step

disturbance enters the output of the process [MuR93]. For the case of a linear model

and no active constraints, Rawlings et al. have shown that this form of feedback leads

to offset–free control [RMM94]. However, when the process has a pure integrator,

the constant output disturbance assumption will no longer lead to offset–free control

[KC01]. For this case it is common to assume that an integrating disturbance with a

constant ramp rate has entered at the output [QB97].

Most current NMPC implementations use the same method above . However, this

approach suffers from several known limitations even for linear systems [KC01]. Also,

this method is acceptable for stable plants. It cannot be used if the plant is unstable

[Pan03].

The other approach to eliminating steady–state offset is that, the integral term is

incorporated by augmenting the process model with tracking error states. However,

for large–scale systems, this augmentation can significantly increase the computational

cost of the dynamic optimization which grows in proportion to the cube of the state

dimension [RWR98]

Muske and Rawlings [MuR93] show that a wider class of disturbance models can be

implemented to the linear MPC using a standard Kalman filter [Kal60]. A disturbance

model that adds step disturbances either to the state or the process output is used by

Muske and Badgwell [MuB02]. This method is proven to remove offset when all the

measured variables are controlled at a given setpoint. A general disturbance model

for the case in which some of the measured variables are controlled at a given setpoint

is proposed by Pannocchia and Rawlings [PR03].

The choice of the disturbance model may have a strong influence on the performance

of MPC regulators. In fact, for nonlinear systems it seems reasonable to expect that

similar benefits can be achieved by implementing an explicit disturbance model using

EKF. Guidelines for disturbance model design are needed, however, to ensure that

the resulting augmented system is detectable and that it allows for offset–free control.

According to [Beq91b];

“the approach used for the solution of the ODEs is not nearly as important as the

other issues involved, such as selection of the initial conditions for the model at each

time step and the adjustment of the tuning parameters”.
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In the context of linearizable systems, Sastry and Isidori [SI89] used parameter adap-

tation approach for improving the control of nonlinear processes. This approach was

used by Iyer and Farell [IF95] to improve the performance of input–output control of

one reactor. In a parallel study, Huberman and Lumer [HL90] introduced a simple

adaptive control mechanism into nonlinear systems where a parameter in the system

is updated using the difference between setpoint and output, and its derivatives. This

approach is similar to the parameter adaptation of Sastry and Isidori [SI89], and was

used in the internal model control of nonlinear systems by Narayanan et al., [NKR97],

and Shukla et al., [ShD93]. Hu and Rangaiah [HR99] proposed a parameter adapta-

tion law for internal model control of nonlinear processes and studied its performance

theoretically as well as via simulation on typical processes.

Recently, Rangaiah et al. [RST02] proposed a simple adaptation technique for offset–

free NMPC approach used to control an industrial four–stage evaporator system. They

were considering that frequent disturbances are mainly in one of the plant unmeasured

input variables (the flow rate of feed), and this quantity has been chosen as the model

parameter to be updated irrespective of the actual disturbance in the real process.

The adaptation gain is selected to eliminate the offset error (the difference between

the plant outputs and setpoints) by a combination of physical insight and heuristics.

They claimed that the main purpose of using the parameter adaptation is to improve

the performance of NMPC in the presence of unmeasured disturbance.

In this thesis, two new offset removal techniques using a parameter adaptation tech-

niques are developed for the NMPC context. These techniques included an integrated

disturbances modelling via nonlinear integration, which can be then used as input

or output disturbances to process model in order to correct its steady–state shifting

from that of the real plant. Using nonlinear integration here is necessary to improve

the transient response of the system during the offset error rejection time.

2.10.1 Nonlinear Integration of the Output Error

In the late 1950’s, some researchers started to pay attention to the fact that a non-

linear regulator might improve the performance of a control system. A representative

such result was the nonlinear integrator with 38o phase shift presented by [Clg58].

Karybakas presented a nonlinear integrator with zero phase shift [Kar77]. In recent

years, research work on nonlinear regulators emphasized by several types of nonlinear

integrators named intelligent integrators have been proposed [GsA88, YZ90].

In a closed–loop control system, the role of the linear integrator is usually to eliminate
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the steady–state error. However, the phase shift of the linear integrator is a constant

of −90o and results in the reduction of phase margin of a closed–loop control system,

and the possibility of instability in the system [SS98].

The Proportional Integral Derivative (PID) controller has been around for more than

50 years and it still widely used due to its structural simplicity and field–proven

reliability. Linear and nonlinear PID controller can be found to work successfully in

many industrial applications in the literature. A conventional PID (or specifically

linear PID) controller can be described as:

u = KP

(
e +

1

TI

∫
edt + TDė

)
(2.27)

where, e,
∫

edt, and ė represent the error, the integration of the error, and the deriva-

tive of the error, respectively, KP is the proportional gain, TI is the integral time

constant, TD is the derivative time constant, and u is the controller output.

A nonlinear PID (NPID) controller can be described as [JG01]:

u = KNP

[
f(e, αP , δP ) +

1

TNI

f

(∫
edt, αI , δI) + TNDf(ė, αD, δD

)]
(2.28)

where, e,
∫

edt, and e are the same as in the linear PID controller. The parameters

KNP , TNI , TND hold the same meaning to KP , TI , and TD in the linear PID controller,

and f(·) is a nonlinear function. The idea of the NPID controller is to use a nonlinear

combination of e,
∫

e and ė in place of the linear values in the linear PID controller.

The f(x, α, δ) function could be an exponential function with α and δ parameters

(gain and exponent), tanh function or other types are used for the nonlinear mapping

between x and y. Compared with the linear function y = x, the exponential nonlinear

function f(·) for example gives high gain for small x and small gain for large x. This is

equivalent to using a linear PID controller with varying parameters which are modified

online based on the magnitude of the error. This is a form of gain–scheduling which

gives high gain for small errors and small gain for large errors. The NPID controller

uses an exponential function to implement this idea simply and systematically. The

tuning of a NPID controller is similar to tuning a PID controller based on test results.

Jiang [JG01] proposed a NPID control algorithm based on the idea above which is

applied to a class of truck Anti–lock Brake System (ABS) problems. He showed

that the proposed NPID for ABS archived better performance than the linear PID

controller, and combines the advantages of robust control and easy tuning.

A link between PID controller and generalized predictive control was performed by

Tan et al [THL00]. They proposed a PID controller with time–scheduled gains to
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unstable systems with deadtime. The controller gains are designed based on a GPC

control approach. Also, a class of nonlinear PID predictive controllers are derived

using nonlinear GPC approach by Chen et al. [CBG]. It is pointed out that this

composite controller is equivalent to a nonlinear controller with integral action. The

proposed controller is illustrated by an example nonlinear mechanical system.

Nonlinear PID control has a long history [Kri80, Rug87, Ser98, ANK01] and has found

two broad classes of applications:

1. Nonlinear systems, where NPID control is used to accommodate the nonlinear-

ity, often to achieve consistent response across a range of conditions [Rug87].

2. Linear systems, where NPID control is used to achieve performance not achiev-

able by linear compensation [ANK01].

It has been proven that for linear systems NPID control can provide [Ser98, JG01]:

• Increased damping

• Reduced rise time for step or rapid inputs

• Improve tracking accuracy

• Friction compensation

• Increase the controller robustness

The requirements for high performance control with changes in operating conditions or

environmental parameters and safety consideration are often beyond the capabilities of

simple PID (fixed–gain) controllers [Ser98]. A nonlinear integrator with positive phase

shift was proposed by Sheng [SS98]. In comparison with the linear PID controller,

the proposed nonlinear one has a better performance in the control system.

Seraji [Ser98] introduced a NPID controllers and provided a formal treatment of their

stability. Three simple nonlinear gains are used for the proposed controllers: the

sigmoidal–tanh function, the hyperbolic function, and the piecewise linear function.

The systems to be controlled are assumed to be modelled or approximated by second–

order transfer functions. The proposed nonlinear PI controller were implemented as a

force controller on a robotic arm and experimental results are presented. The results

demonstrated the superior performance of the nonlinear PI controller relative to a

fixed–gain PI controller.
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The nonlinear integration method has been used in the PID controller context only

and no application of it in MPC context was found. In this thesis a novel method is

proposed to ensure free–offset NMPC algorithm using a nonlinear integration action

to eliminate the steady–state error due to unmeasured disturbances or modelling error

with a satisfactory results.

2.11 Summary

The presented literature and background theory can be summarized as follows:

• Model predictive control works in real time in a feed forward mode with a feed

back of the process output after every calculation cycle is completed and a con-

trol step is affected. It uses an internal model of the process to be controlled and

can take account of any changes in the objective function or process constraints

• The process and constraints can be linear resulting in LMPC or nonlinear re-

sulting in NMPC. Linear MPC results in a convex objective function with guar-

anteed optimal solution. Nonlinear MPC on the other hand does not in general

produce convex objective functions and other methods need to be pursued in

order to achieve convergence in the optimizer.

• The computation burden for NMPC is prohibitive and leaves plenty of scope for

improvement in this area especially for highly nonlinear processes or those with

large number of input and input variables or long prediction horizons. A major

part of this computation burden is in function and partial derivative evaluations.

• The automatic differentiation tool is a new and efficient tool for evaluating

functions and its partial derivatives. It has already been used successfully for

the solution of differential equations and optimization, but not in the NMPC

field. The use of AD can therefore bring a great reduction in computation time.

Further, as the AD works on the computer code that defines a problem, it can

also reduce modelling time in addition to computing time.
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Chapter 3

Automatic Differentiation

3.1 Introduction

There are many ways to obtain the derivatives of a mathematical function. Straight

forward hand calculations is the first to come in mind. This course is usually taken

in problems of small size. If the function is not simple, the number of variables is

large, or the input and output range of values is large, hand calculation becomes

nearly impossible and prone to errors that are difficult to debug. In general, there

are three important methods for finding the derivatives. These are, the numerical

differentiation method, the symbolic method, and the recently developed method of

automatic differentiation. The three methods are introduced in the next sections with

special emphasis in the AD tool.

3.2 Numerical Differentiation

The most common alternative to hand coding is the numerical approximation of

derivatives by Finite Difference (or FD) formula. A simple formula is constructed

from the expansion of f(x) in Taylor series truncated after the first order term:

f(x) = f(xk) + ∆x
∂f

∂x

∣∣∣∣
x=xk

+O(∆x2) (3.1)

where ∆x = x − xk and it is some very small positive number. Evaluated at x =

xk −∆x, then a good approximation of the derivative is computed easily as;

∂f

∂x

∣∣∣∣
x=xk

=
f(xk)− f(xk −∆x)

∆x
+O(∆x2) (3.2)
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The order of the approximation is controlled by the term at which the series is trun-

cated that is the last term in (3.2). Note that only function evaluations are needed to

calculate the derivative. Thus, the coding of the algorithm is very simple and existing

codes can be used.

More accurate derivative can be computed using Centered Finite Differences(CFD)

method as:
∂f

∂x

∣∣∣∣
x=xk

=
f(x + ∆x)− f(x−∆x)

2∆x
+O(∆x3) (3.3)

which usually gives better approximation, but cost an additional function evaluation.

The main disadvantage of FD and CFD approaches lies with the tradeoff between

truncation error and roundoff error. As the truncated Taylor series expansion is only

valid in the neighborhood of the expansion point xk, small values of ∆x tend to reduce

the truncation error. Ideally, the exact derivative is the limit of these formula above,

when ∆x tends to zero. However, very small values of ∆x increase the roundoff error.

Finding the best ∆x requires numerous executions of the program, and even then the

computed derivatives are just approximations. Other disadvantages of this approach

are the instability of higher order differentiation formula and the computational cost

of the techniques, approximately n+1 times the computational effort associated with

evaluation of the function itself.

3.3 Symbolic Differentiation

Symbolic differentiation (or SD) is a computer aided analog to analytical or hand

differentiation employing a graph theoretical approach. The formula representation

of a function is transformed into a formula representation for its derivative, that is

either interpreted or further transformed into a program in a common programming

language. In principle, evaluation of these formula gives exact values of the derivatives

of the function. Symbolic differentiation only incurs roundoff error resulting from the

individual floating–point operations.

Symbolic differentiation, usually performed in computer algebra packages like Maple

[ChG88] and Mathematica, is unable to deal with branches, loops and subroutines

intrinsic in computer codes. For every binary operator (except + or -), the derivative

expression is likely to double in size, leading to a combinatorial explosion effect. Due

to this effect, the resulting derivative code is difficult to manipulate and to be used for

practical software applications. The computational cost of SD is almost impossible to

predict. It generally grows enormously with function complexity. Instead, Automatic
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Differentiation is bounded in terms of the number of independent and dependent

variables.

3.4 Automatic Differentiation

Automatic Differentiation (or AD), which is developed for the automatic computation

of derivatives, is a new approach to obtain analytical derivatives of programs (possible

containing conditional statement, loops etc.) [TB98]). AD is the numerical computa-

tion of exact values of the derivative of a function at a given argument value. It just

like FD, requires only the original program f . But instead of executing f on different

sets of inputs, it builds a new, augmented, program f ′, that computes the analytical

derivatives along with the original program. This new program is called the differ-

entiated program. Precisely, each time the original program holds some value v, the

differentiated program holds an additional value dv, the differential of v. Moreover,

each time the original program performs some operations, the differentiated program

performs additional operations dealing with the differential values. So, it decomposes

the model into a series of elementary functions (×, /, sin(·), etc.), applies the sim-

ple rules of differentiation (product rule, quotient rule, etc.) to evaluate the partial

derivatives of the elementary functions, and then accumulates them with the chain

rule to obtain the derivatives of the program. The resulted derivative values are ob-

tained without generating a formula for the derivatives, thus avoiding the unnecessary

overhead of symbolic differentiation and the truncation error inherent in FD formulas

[Gri89].

To explain further, consider the function f(x, y) represented below:

f(x, y) = 0.5xy3 − exp(sin(x + y)) (3.4)

The partial derivatives of this functions are easily obtained and are equal to:

∂f

∂x
= 0.5y3 − cos(x + y) exp(sin(x + y)) (3.5)

∂f

∂y
= 1.5xy2 − cos(x + y) exp(sin(x + y)) (3.6)

Using only binary operations, this function would be represented as shown in Table

3.1. Differentiation each line of the code, one would get the code to generate the

derivative without the formula of the derivative, shown as (3.5) and (3.6).

In order to calculate the partial derivative in respect to x the vector [dx, dy]T is set to

[1, 0]T , meaning that ∂y/∂x = 0 and ∂x/∂x = 1. Analogously, to calculate the partial
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Table 3.1: Evaluation of f and its derivative

Evaluation of f(x, y) Evaluation of f ′(x, y)

v1 = y dv1 = dy

v2 = v3
1 dv2 = 3v2

1dv1

v3 = xv2 dv3 = xdv2 + dxv2

v4 = 0.5v3 dv4 = 0.5dv3

v5 = x + y dv5 = dx + dy

v6 = sin(v5) dv6 = cos(v5)dv5

v7 = exp(v6) dv7 = exp(v6)dv6

f(x, y) = v4 − v7 df = dv4 − dv7

Table 3.2: Evaluation of the partial derivative of f

Evaluation of ∂f/∂x Evaluation of ∂f/∂y

dx = 1, dy = 0 dx = 0, dy = 1

dv1 = dy = 0 dv1 = dy = 1

dv2 = 3(v1)
2dv1 = 0 dv2 = 3(v1)

2dv1 = 3y2

dv3 = dxv2 = v2 = y3 dv3 = xdv2 + 0 = 3xy2

dv4 = 0.5dv2 = 0.5y3 dv4 = 0.5dv3 = 0.5(3xy2) = 1.5xy2

dv5 = dx + dy = 1 + 0 = 1 dv5 = dx + dy = 0 + 1 = 1

dv6 = cos(v5)dv5 = cos(x + y) dv6 = cos(v5)(dv5) = cos(x + y)

dv7 = exp(sin(x + y))(cos(x + y)) dv7 = exp(sin(x + y))(cos(x + y))

df = 0.5y3 − cos(x + y) exp(sin(x + y)) df = 1.5xy2 − cos(x + y) exp(sin(x + y))

derivative in respect to y, the vector [dx, dy]T is set to [0, 1]T . In Table 3.2 it is shown

that the evaluation of the formulas on Table 3.1 would lead to the same expressions

of (3.5) and (3.6).

Although great advances have been made in symbolic differentiation of formulas, AD

generally requires less memory and CPU time, and also applies to functions defined

by computer programs or subroutines for which no formula may be available [CVB00].

3.5 Different AD Modes

Automatic differentiation has two basic modes of operation, the forward mode and

the reverse mode.

In the forward mode, the derivatives are propagated through the computation using
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the chain rule. This is the most classical approach, the differentiation machinery be-

haves as a human who would augment the code by additional instructions computing

the derivatives (and re–using the shared expressions assigned to temporary variables).

Consider a function, y = g(f(x)) consisting of two operations: v = f(x) and y = g(v).

In forward mode, by applying the chain rule, ẏ = dy/dx can be evaluated in the se-

quence: ẋ = 1, v̇ = f ′(x)ẋ and ẏ = g′(v)v̇. In forward mode, a function and its

derivatives can be evaluated in parallel. Note that the same method is used in Table

3.1. This mode is easy to understand and implement, and requires computational

effort proportional to n×m, where n is the number of independent variables and m

the dimension of the function component.

In the reverse mode, the intermediate derivatives are computed in the reverse order,

from the final results down to the independent variables. The reverse mode evaluation

is based on the definition of adjoint, v = dy/dv. After evaluating the sequence,

v = f(x) and y = g(v) with all intermediate results recorded, adjoints are evaluated

in a reverse sequence: y = 1, v = yg′(v) and finally, dy/dx = x = vf ′(x).

The reverse mode requires saving the entire computation trace, since the propagation

is done backwards through the computation, and hence, the partial derivatives need to

be stored for derivative computation. Hence the reverse mode can be prohibitive due

to memory requirements [Ver00]. However, the reverse mode is better for computing

multi–dimensional gradients of a function, because the computational effort for it is

proportional with m, the length of the code list, and independent of n, the number

of independent variables. In fact, when the number of m is much less than n such

as the objective function of an optimization problem, evaluation in reverse mode is

vastly more efficient than in forward mode. This can result in significant saving in

computational time [Ral81].

There are aspects to be considered other than merely the computational cost when

discussing AD modes. Reverse mode implementation is quite more sophisticated and

may employ complex structures of indirect addressing. That may prevent vectoriza-

tion of the final code [CVB00]. Hence, available AD codes employ a combination of

both strategies in order to balance complexity and computational cost.

In the thesis the MAD/ MATLAB Toolbox is used for derivative calculation, where

only first-order derivative is required such as in the first NMPC algorithm where the

sensitivity equations are solved using a first–order approximation. Also it is used

in the local linearization step required in the EKF stage, and in the NMPC of the

ALSTOM gasifier case study. While ADOL–C tool is used in algorithms that needed

higher order derivatives such as the sensitivity equations calculations using Taylor
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series expansion and in the training algorithm of the continuous–time recurrent neural

network and also in the predictive controller for this type of model.

3.6 Implementation of AD using MAD/MATLAB

Toolbox

MAD (forward mode AD) can easily compute first derivatives of functions defined via

expressions built–up of the arithmetic operations and intrinsic function of MATLAB

using forward mode AD. It evaluates a function f(x) at x = x0 and in the course of

this also evaluates the directional derivatives f ′(x0)v. This is done by first initializ-

ing x as an fmad object using (in MATLAB syntax) x =fmad(x0, v) to specify the

point x of evaluation and the directional derivative v. Then evaluation of y = f(x)

propagates fmad object which, through overloading of the elementary operations and

functions of MATLAB ensures that directional derivatives and values of all successive

quantities and in particular y are calculated. By specifying v = V , a matrix form-

ing several directional derivatives may be propagated simultaneously. In particular,

if V = I the identity matrix, then the Jacobian f ′(x) at x = x0 is evaluated. If

the result of a calculation is a N–dimensional array, then directional derivatives are

N–dimensional arrays, and an N + 1 dimensional array may be propagated to handle

multiple directional derivatives [AMR00].

In this thesis MAD is used as AD tool to calculate the first–order partial deriva-

tives required to solve the online optimization problem of the first proposed NMPC

approach, and also in the model linearization step for different cases. For calculat-

ing high order derivatives (as the case of Taylor series expansion method required in

another parts of the thesis), the C language package ADOL–C is used.

3.7 Implementation of AD using ADOL-C Soft-

ware

The C++ package ADOL–C (Automatic Differentiation by OverLoading in C++)

proposed by Griewank et al. [GDJ96], facilitates the evaluation of first and higher

derivatives of vector functions that are defined by computer programs written in C

or C++. The resulting derivative evaluation routines may be called from C/C++,

Fortran, or any other language that can be linked with C. In the second part of the
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thesis (where high order derivatives will required) ADOL–C is linked with MATLAB

via mex warp for derivatives evaluation.

ADOL–C facilitates the simultaneous evaluation of arbitrarily high directional deriva-

tives and the gradients of these Taylor coefficients with respect to all independent

variables. Relative to the cost of evaluating the underlying function, the cost for eval-

uating any such scalar–vector pair grows as the square of the degree of the derivative

but is still completely independent of n, the number of vector functions component,

and m, the number of independent variables.

For the reverse propagation of derivatives, the whole execution trace of the original

evaluation program must be recorded, unless it is recalculated in piece as advocated

in [Gri92]. In ADOL–C, this potentially very large data set is written first into a

buffer array and later into a file if the buffer is full or if the user wishes a permanent

record of the execution trace. In either case, it refer to the recorded data as the

tape. The user may generate several tapes in several named arrays or files. During

subsequent derivative evaluations, tapes are always accessed strictly sequentially, so

that they can be paged in and out to disk without significant runtime penalties. If

written into a file, the tapes are self–contained and can be used by other Fortran, C

or C++ programs [Gri00].

3.8 Taylor Series Function Expansion using AD

Consider a d–time continuously differentiable function, f : Rn → R
m. Let x(t) ∈ Rn

denote any vector polynomial in the scalar variable t ∈ R which can be given by the

truncated Taylor series:

x(t) =
d∑

j=0

x[j]t
j (3.7)

with Taylor coefficient vectors:

x[j] =
1

j!

∂jx(t)

∂tj

∣∣∣∣
t=0

(3.8)

are simply the scaled derivatives of x(t) at the parameter origin t = 0. The first two

vectors x[1], x[2] ∈ Rn can be visualized as tangent and curvature at the base point

x[0], respectively. Then, z(t) = f(x(t)) ∈ Rm can be expressed by a Taylor expansion

[GDJ96]:

z(t) =
d∑

j=0

z[j]t
j +O(td+1) (3.9)
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where z[j] ∈ Rm coefficient is given by

z[j] =
1

j!

∂jz(t)

∂tj

∣∣∣∣
t=0

(3.10)

From the chain rule, z[j] is uniquely and smoothly determined by the coefficient vec-

tors, x[i] with i ≤ j, i.e.

z[0] = f(x[0]), z[1] = f ′(x[0])x[1] (3.11)

and

z[2] = f ′(x[0])x[2] +
1

2
f ′′(x[0])x[1]x[1] (3.12)

It is well known that the number of terms that occur in these “symbolic” expressions

for the z[j] (in terms of the first j derivative tensors of f and the “input” coefficients

x[i] with i ≤ j) grows very rapidly with j. Fortunately, this exponential growth does

not occur in AD, where the many terms are somehow implicity combined so that

storage and operating count grow only quadratically in the bound d on j.

Provided f is analytic, this property is inherited by the functions;

z[j] ≡ z[j](x[0], x[1], · · · , x[j]) ∈ Rm (3.13)

Inherently, functions z[j] are also d-time continuously differentiable and their deriva-

tives satisfy the identity [Chr92]:

∂z[j]

∂x[i]

=
∂z[j−i]

∂x[0]

:= A[j−i] ≡ A[j−i](x[0], x[1], · · · , x[j−i]) (3.14)

where, A[j] ∈ Rn×n, j = 0, · · · , d are also the Taylor coefficients of the Jacobian path,

i.e.;
∂f

∂x
= A[0] + A[1]t + · · ·+ A[d]t

d +O(td+1) (3.15)

The AD software package ADOL–C provide an efficient way to calculate these coef-

ficients vectors, z[j] and matrices A[i] [Gri00]. For example, using the forward mode

of AD all Taylor coefficient vectors for a given degree, d can be calculated simulta-

neously, whilst the matrices, A[i] can be obtained using the reverse mode of AD. The

run time and memory requirement associated with these calculations grow only as d2.

3.8.1 Derivatives for Ordinary Differential Equations

When the above approach is applied to an autonomous ordinary differential equation,

i.e.;

ẋ = f(x(t)) (3.16)

Nonlinear Model Predictive Control using Automatic Differentiation



3.8 Taylor Series Function Expansion using AD 51

since

x[k+1] =
z[k]

k + 1
(3.17)

all Taylor coefficients of x(t) up to any order can be iteratively obtained from x[0] =

x(0) using (3.13) by the forward mode of AD (forward routine in ADOL–C package)

[Gri95]. Moreover, the sensitivity of Taylor coefficients against the initial value x[0]

can also be efficiently obtained by matrix accumulation from (3.14):

B[k] :=
dx[k]

dx[0]

=
1

k

dz[k−1]

dx[0]

=
1

k

k−1∑
j=0

dz[k−1]

dx[j]

dx[j]

dx[0]

=
1

k

k−1∑
j=0

A[k−j−1]B[j] (3.18)

where, B[k] ∈ Rn×n, k = 0, · · · , d are the Taylor coefficients of the solution to the

sensitivity equations, Ḃ = f ′(x)B, B[0] = B(0) = I.

The above algorithm was extended to solving dynamic sensitivity of the following

non–autonomous state–space systems where an input signal is present as follows:

ẋ(t) = f(x(t), u(t)), x(0) = x0 (3.19)

y(t) = g(x(t), u(t)), 0 ≤ t ≤ Ts

where, u(t) ∈ Rnu is the control input, y(t) ∈ Rny is the output, and Ts is the sampling

time. System (3.19) can be converted to an autonomous system by augmenting it with

u̇ = 0 [RV04], so that the results described in above can be directly used. However,

the augmented system has nu extra differential equations, hence the algorithm is not–

efficient particularly when nu is large. An efficient approach was proposed by [Cao05]

to tackle this problem which is used in this thesis as will be shown in Chapter 7.
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Chapter 4

NMPC using Dynamic Sensitivity

Approximation with AD

.

4.1 Introduction

Although NMPC might be the best choice for a nonlinear plant, it is still not widely

used. This is mainly due to the computational burden associated with solving a set

of nonlinear differential equations and a nonlinear dynamic optimization problem. In

this chapter, a new NMPC algorithm based on nonlinear least square (NLSQ) opti-

mization is proposed. In the new algorithm, the residual Jacobian matrix is efficiently

calculated from the model sensitivity function without extra integrations. The sensi-

tivity functions are accurately and efficiently obtained from the state trajectory using

AD tool. These three features make the new algorithm computationally efficient.1

4.2 Principle of NMPC

Model Predictive control solves an online finite horizon open–loop optimal control

problem to select a set of future control moves (control horizon) based on the desired

output trajectory and constraints involving states and controls. Figure 4.1 shows the

general principle.

1Original paper has been published in Ref. [CAS03]
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Closed loop
input u

Closed loop
output   y

Past                                           Future

Setpoint

Predicted output ŷ

t        t + sT t + M                      t+P

P

M

Figure 4.1: The principle of the Model Predictive Control

Based on measurements obtained at time t, the controller predicts the future dynamic

behavior of the system over a prediction horizon P and determines (over a control

horizon M ≤ P ) the input such that a predetermined open-loop performance ob-

jective functional is optimized. If there were no disturbances and no model/plant

mismatch, and if the optimization problem could be solved for infinite horizons, then

one could apply the input function found at time t = 0 to the system for all times

t ≥ 0. However, this is not possible in general. Due to disturbances and model/plant

mismatch, the true system behavior is different from the predicted behavior. In order

to incorporate some feedback mechanism, the open–loop manipulated input function

obtained will be implemented only until the next measurement becomes available.

The time difference between two measurements can vary if necessary, however often

it is assumed to be fixed, i.e the measurement will take place every Ts sampling time

units. Using the new measurement at time t + Ts the whole procedure prediction and

optimization is repeated to find a new input function with the control and prediction

horizons moving forward (for this reason, MPC is also referred to as moving horizon

control) [FnI03].

If the output/input relation of the plant is linear, the problem is LMPC and the

optimization problem is convex and relatively easy to solve using existing tools. If the

output/input relation is nonlinear it becomes NMPC and a nonlinear optimization
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problem is at hand. A new efficient NMPC algorithm based on nonlinear least square

optimizer is developed in the next sections.

4.3 Nonlinear Model Predictive Control with AD

4.3.1 Nonlinear Least Square Problem

The nonlinear model predictive control considered is to solve the following nonlinear

optimization problem at each sampling time

min
u ≤ u ≤ u,

k = 0, ...,M − 1

V =
1

2

P∑
i=1

||ey
k+i||

2
Qi

+
1

2

M∑
j=1

||∆uk+j||2Sj
(4.1)

subject to

ẋ = f(x, u), t ∈ [t0, tP ] (4.2)

y = g(x, u)

x(t0) = x0, xk := x(t0 + kTs)

ey
k := yk − rk, k ∈ [1, P ] (4.3)

∆uk = uk+1 − uk k ∈ [1, M ] (4.4)

uk = u(tk) = u(t), t ∈ [tk, tk+1] (4.5)

uk = uM−1, k ∈ [M, P − 1] (4.6)

f and g are a nonlinear functions, Ts is the sampling period, the control horizon

[t0, tM ] is divided into M intervals, and the prediction horizon [t0, tP ] is divided into

P intervals, x ∈ Rnx , u ∈ Rnu , y ∈ Rny , are state, input, and output variables in

nx, nu, and ny dimensions respectively, rk the reference vector at tk. u and u are

constant vectors determining the input upper and lower constraints, and in the form

of element-by-element inequalities. Note that, the term ||e||Q ≡
√

eT Qe denotes the

weighted 2–norm of a vector e, the weighting matrices Qk ∈ Rny×ny and Sk ∈ Rnu×nu

are chosen to be positive definite and both have a Cholesky factorization i.e.:

Q = QT
1 Q1, S = ST

1 S1 (4.7)

where, Q1 and S1 are an upper triangular matrices.
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Taking

eQ
k := Q1,ke

y
k (4.8)

∆uS
k := S1,k∆uk (4.9)

E =
[
eQT
1 · · · eQT

P , ∆uST
1 · · ·∆uST

M

]T
∈ RnyP+nuM (4.10)

and

U =
[
uT

0 · · · uT
M−1

]T
(4.11)

U =
[
uT · · · uT

]T
∈ RnuM (4.12)

U =
[
uT · · · uT

]T
∈ RnuM (4.13)

Then the optimization problem of (4.1) can be restated as a standard NLSQ problem

in the form:

min
U≤U≤U

V (U) =
1

2
E(U)T E(U) (4.14)

The gradient matrix G(U) and Hessian matrix, H(U) of (4.14) have the special struc-

ture:

G(U) = JT (U)E(U) (4.15)

H(U) = JT (U)J(U) + W (U) (4.16)

where, J(U) ∈ R(nyP+nuM)×nuM is the Jacobian matrix of residuals vector, W (U) is

defined as:

W (U) =

nyP+nuM∑
i=1

Ei(U)Hi(U) (4.17)

where Ei, is the ith element of E, and Hi, is the Hessian matrix of Ei. The matrix

W (U) has the property that when U is approaching optimal solution and residual

‖E(U)‖ tends to zero then also W (U) tends to zero. This allows some efficient algo-

rithms to be applied to solve the problem [Mar63].

4.3.2 Sensitivity Calculation using First–order Approxima-

tion and AD

To solve the nonlinear least square problem, the Jacobian matrix for E is needed as

derived in this section. The (nyP + nuM)× nuM Jacobian matrix is defined as:

J(U) =
[

∂Ei

∂Uj

]
, i ∈ [1, nyP + nuM ], j ∈ [1, nuM ] (4.18)
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which can be re-written as;

J(U) =
[
Jy(U) Ju(U)

]
(4.19)

where the Jacobian matrix Jy can be partitioned into P ×M blocks as;

Jy(U) = [Jy
i,j], i ∈ [1, P ], j ∈ [1, M ] (4.20)

and each block is an ny × nu matrix defined as;

Jy
i,j =

∂eQ
i

∂uj−1

= Q1,i
∂ey

i

∂uj−1

= Q1,i
∂yi

∂uj−1

(4.21)

and the Jacobian matrix Ju can be portioned into M ×M blocks as

Ju(U) = [Ju
i,j], i ∈ [1, M ], j ∈ [1, M ] (4.22)

where each block ia an nu × nu matrix defined as

Ju
i,j =

∂∆uS
i

∂uj−1

= S1,i
∂∆ui

∂uj−1

(4.23)

The value of the Jacobian matrix Jy(U) ∈ RnyP×nuM in equation (4.20) is calculated

using the fact that future input cannot have an effect on a past state, Jy
i,j = 0 for

i < j, i.e. the Jacobian matrix is low block-triangular.

Taking partial derivative of both sides with respect to uj−1 of equation (4.2) gives:

∂

∂uj−1

(
dxi

dt

)
=

d

dt

(
∂xi

∂uj−1

)
= fx

∂xi

∂uj−1

+ fu
∂ui

∂uj−1

(4.24)

∂yi

∂uj−1

= gx
∂xi

∂uj−1

+ gu
∂ui

∂uj−1

(4.25)

where, fx := ∂f/∂x, fu := ∂f/∂u, gx := ∂g/∂x, and gu := ∂g/∂u respectively. Note

that, the order of differentiation in the l.h.s. term of equation (4.24) is reversed

because u is a continuous function during the sampling time.

Equation (4.24) is a linear time-varying system with initial condition; ∂x(t0)/∂uj−1 =

0. For j < M , the input, ∂u(t)/∂uj−1 is an impulse function:

∂u

∂uj−1

=

{
I, t ∈ [tj−1, tj]

0, otherwise
(4.26)

for j = M , the input is a step function,

∂u

∂uj−1

=

{
I, t ≥ tM−1

0, otherwise
(4.27)
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Generally, the nonlinear time-varying equation (4.24) has no analytical solution al-

though it can be represented in state-transition matrix form [ChC98]. Numerically,

equation (4.24) can be solved together with the ODEs (4.2) using a differential equa-

tion solver. The total number of differential equations to be solved in (4.24) is

nx × nu × M . Equation (4.24) can be simplified by approximated the sensitivity

functions, fx, fu, gx, and gu with piecewise constant. In this case, within any one

sampling period, analytical solutions can be obtained as follows

Let

Ai = efx(ti)τ , Bi =

∫ T

0

efx(ti)τdτfu(ti), (4.28)

Ci = gx(ti), Di = gu(ti), (4.29)

zi,j = ∂xi/∂uj−1, (4.30)

vi,j = ∂ui/∂uj−1, (4.31)

wi,j = ∂yi/∂uj−1 (4.32)

then equation (4.24) can be discretized as,

zi,j = Ai−1zi−1,j + Bi−1vi−1,j (4.33)

wi−1,j = Ci−1zi−1,j + Di−1vi−1,j

For j < M , vi−1,j = 0 if i > j, and vi−1,j = I, zi−1,j = 0 if i = j since the future

inputs can not effect the past states. Thus,

zi,j =

{
Ai−1zi−1,j for i > j

Bj−1 for i = j
(4.34)

Recursively, the following solution can be derived:

zi,j = Ai−1Ai−2 . . . AjBj−1 (4.35)

wi−1,j = Ci−1Ai−2Ai−3 . . . Aj−1Bj−2 + Dj (4.36)

For j = M , vi−1,j = I if i ≥ j. Denote,

Φ(i, k) = AiAi−1 · · ·Ak (4.37)

Φ(i− 1, i) = I
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and

Ψ(i, k) = Ci−1Ai−1Ai−2 · · ·Ak−1 (4.38)

Ψ(i− 1, i) = I

then the solution for this case is

zi,M =
i∑

k=M

Φ(i− 1, k)Bk−1 (4.39)

wi−1,M =
i∑

k=M

(Ψ(i− 1, k)Bk−1 + Dk−1 ) (4.40)

(4.41)

The value of the Jacobian matrix Ju(U) ∈ RnuM×nuM in equation (4.23) can be easily

calculated by taking the partial derivatives of the algebraic equation (4.4). Since for

taking j < M ;

∂∆ui

∂uj−1

=


I if i = j − 1

−I if i = j

0 else

(4.42)

and ∂∆ui/∂uj−1 = 0 for j ≥ M then

Ju(U) = S1/2


I 0 · · · 0 0

−I I · · · 0 0
...

... · · · ...
...

0 0 · · · −I I

 (4.43)

where I is an identity matrix with nu dimension.

The forward mode of AD tool (using MAD software, the AD toolbox in MATLAB)

is used to calculate the sensitivity variables fx and fu which are then used in the

calculations of the time–varying matrices A, B, C and D respectively.

The above procedure is summarized as follows:

1. Give the initial values u0, x0, u1, · · · , uM .

2. Integrate system (4.2) to get x1, x2, · · · , xP and y1, y2, · · · , yP .

3. Use the forward mode of AD tool to calculate fx(tk) and fu(tk) for k = 1, 2, · · · , P .

4. Calculate Ak, Bk, Ck, and Dk matrices using (4.28) and (4.29).

5. Use the above matrices to calculate the Jacobian matrix J .
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4.4 Nonlinear Model Predictive Control Algorithm

In this section, the outline of the proposed new NMPC algorithm is stated. This

description is general and is equally valid whether the model is first–principle or

derived from a black box and whether a first–order or high–order approximation of

the sensitivity functions is involved. The NMPC algorithm can be described as follows;

1. Collect current process information, such as measurements (measurable states,

measurable disturbance), and reference trajectory.

2. Use current measurements to estimate unknown information such as, unmea-

sured state variables, unmeasured disturbance, etc.

3. Apply nonlinear least square optimization solver to get a promising guess of

next control horizon.

4. The solver calls the objective function to calculate the cost corresponding to the

control horizon provided.

5. The cost subroutine calls an ordinary differential equation solver to predict the

state trajectory based on the control horizon provided.

6. Based on the prediction trajectory obtained, the cost subroutine applies an AD

tool to get the sensitivity function of the trajectory.

7. The residual Jacobian matrix is calculated according to the sensitivity function

obtained.

8. The residual vector and residual Jacobian matrix is returned to the optimization

solver. If the terminal conditions are not satisfied, the solver updates a new

control horizon and the procedural is repeated from step 3. Otherwise, the first

point of the control horizon is implemented to the process control system and

the procedural is repeated from step 1.

Remark 1. Most existing Newton–type dynamic optimization algorithms involve

an inverse integration for co–state or adjoint variables in order to get gradient in-

formation. In the proposed algorithm, the gradient information is obtained without

such integration. After calculating the state trajectory, only algebraic calculations

are involved in the procedural to get residual Jacobian matrix. Therefore, efficiency

is greatly improved in the proposed algorithm.
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Remark 2. For small dimension systems, the sensitivity function might be derived

analytically. However, for large dimension systems, particularly for a practical ap-

plication, it is not a trivial task to calculate the analytic derivatives of a functions.

Sometime, it is even not possible. Here the AD tool is used to provide help. The

proposed algorithm provides a link point where an AD tool can be involved to solve

the online dynamic optimization problem. In this work, the AD tool in MATLB,

MAD Toolbox is used.

Remark 3. For a feasible problem, the convergence of the algorithm is mainly

determined by the nonlinear least square solver used. In this work, the solver provided

in MATLAB Optimization Toolbox is applied. It is based on the Levenberg Marquardt

method [Mar63, Den77], which uses a scalar to control both search direction and

magnitude. When the scalar is zero, the search direction is identical to that of the

Gauss–Newton method, while as the scalar tends to infinity, search direction tends

toward a steepest descent direction. Therefore, in most cases, the value of cost function

is non–increasing and the algorithm is convergent.

Remark 4. The nonlinear least square method is a special case of general nonlin-

ear optimization problems. The main advantage of using the nonlinear least square

formulation is its efficiency due to the special structure of its gradient (4.15) and Hes-

sian (4.16) whilst the disadvantage is that it cannot directly handle hard constraints

on output variables. The hard constraints should be converted to soft ones using

Lagrange multipliers in order to use this method.

4.5 Stability Analysis

To ensure the closed–loop stability for the above NMPC algorithm, one of many

current solutions available in the literature can be used. For examples using long

enough prediction horizon, or using QIH–NMPC scheme [ChJ98] by adding a terminal

state penalty ||x(t+P )||TH to the objective function (after modify the objective function

(4.1) to the form of equation (2.24) and adding a terminal region constraint Ω(x(t +

P )) ≥ 0. However, adding an inequality constraint has the additional complications

of determining the terminal region in most cases off–line, and adding an elliptical

constraints that must be approximated in the optimization method [Ten02]. Tenny

(2002) [Ten02] reported that;

“our experience, dictates that, provided the terminal penalty is large enough or the

prediction horizon is long enough, the terminal constraints is not required at all”
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Therefore, to simplify the NMPC problem the prediction horizon is kept long and

the terminal penalty and the terminal constraints are not enforced. Good tuning of

the NMPC parameters i.e. M , Q, and S was also found in the present work to be

enough to ensure closed–loop stability for all the cases studies under widely different

operating conditions.

4.6 Case Study: Evaporator Process

Steam             T100
F100              P100

Evaporator

Condensate

Feed
F1, X1, T1

F3

Separator
P2, L2

Product
F2, X2, T2

T201

T200  
F200
Cooling

water
Condenser

Figure 4.2: Evaporation system

Evaporation is an operation to remove a liquid from a solution, suspension, or emul-

sion by boiling off some of the liquid. It is thus a thermal separation, or thermal

concentration process. Evaporation process can be defined as one that starts with

a liquid product and ends up with a more concentrated, but still liquid and still

pumpable concentrates as the main product from the process.

The concentration of dilute liquors by evaporating solvent from the feed stream is an

important industrial process used in such industries as sugar mills, alumina produc-

tion and paper manufacture, to name a few. An often used evaporator, known as a

forced circulation evaporator, which descried in Newell and Lee [NL89] and shown in

Figure 4.2. In this process, a feed stream enters the evaporator at concentration X1

and temperature T1, with flow rate F1. It is mixed with recirculating liquor, which

is pumped through the evaporator at a flow rate F3. The evaporator itself is a heat
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exchanger, which is heated by steam flowing at rate F100 with entry temperature T100

and pressure P100. The mixture of feed and recirculating liquor boil inside the heat

exchanger, and the resulting mixture of vapour and liquid enters a separator where

the liquid level is L2 . The operating pressure inside the evaporator is P2. Most of the

liquid from the separator becomes the recirculating liquor; a small proportion of it is

drawn off as the product, with concentration X2, at flow rate F2 and temperature T2.

The vapour from the separator flows to a condenser at flow rate F4 and temperature

T3, where it is condensed by cooling water flowing at rate F200, with inlet temperature

T200 and outlet temperature T201. Variable names, descriptions, standard steady state

values, and engineering units are listed in Table A.1 (see Appendix A). Note that, CP

is the heat capacity of the liquid and is assumed as a constant of 0.07 [kW/K(kg/m)].

The process is open–loop marginally stable due to the integrating characteristics of

the liquid level in the evaporator separator. The first–principle model of the process

is given in Appendix A.

4.7 Evaporator Control Specifications

Effective control of the evaporator system using traditional PID controllers was not

very successful especially for large setpoint changes [NL89]. Predictive control was

also considered by a number of workers. Linear model predictive control has also failed

to fully control this process for both the regulating and tracking problems [Mac02].

A nonlinear MPC strategy based on successive linearization solution to control this

process under a large setpoint change condition was proposed by Maciejowski [Mac02].

A good performance was observed after re-linearizing the nonlinear process model

after every few steps. However, disturbances have not been considered there. In

this chapter, the NMPC algorithms described in section 4.4 is applied to control the

process for setpoint tracking and disturbance rejection tests described as follows.

The control objective of the case study is;

1. Track setpoint ramp changes of X2 from 25% to 15% and P2 from 50.5 kPa to

70 kPa.

2. Track setpoint changes as above when disturbances, F1, X1, T1 and T200 are

varied within ±20% of their nominal values.
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3. Offset free performance when unknown non–zero mean disturbance applied at

F1 (a step change -20% of its nominal value at t = 10 minutes), or modelling

error applied to the internal model.

The control system is configured with three manipulated variables F2, P100 and F200

and three measured variables, L2, X2, and P2 . All manipulated variables are subject

to a first-order lag with time constant of 0.5 min and saturation constraints, 0 ≤ F2 ≤
4, 0 ≤ P100 ≤ 400, 0 ≤ F200 ≤ 400.

All disturbances are simulated as a step signal passing through a first-order lag. This

makes the process as close as possible to the real process. The amplitudes of step

changes are randomly produced within the ±20% range of the nominal values. The

changing intervals and time constants of the first–order delays are different for differ-

ent disturbance variables shown in Table 4.1. It is assumed that F1 is a measurable

disturbance in this chapter. The other three disturbances are considered not mea-

Table 4.1: Disturbance model parameters

Disturbance Interval [min] Time constant [min]

F1 5 0.2

X1 2 0.2

T1 1 1

T200 1 1

sured at all tests. The nonlinear dynamic model of the process (first–principle) is used

as the plant model. In this chapter, the same model is used also as the internal model

for NMPC whilst the actuator lags and disturbances lags are ignored in the prediction

in the controller. The ignored lags can be considered as plant/model mismatches for

the NMPC.

4.7.1 Evaporator Control using NMPC

The proposed NMPC algorithm is used to control the plant. The NMPC parameters

are chosen after online tuning with the following starting values; sampling period,

Ts = 1 minutes, prediction horizon, P = 5 time steps (5 minutes), control horizon,

M = 2 time steps (2 minutes), actuators lower limit, U = [0 0 0]T , actuators upper

limit, U = [4 400 400]T , outputs weighting matrix, Q = diag([1000 100 100]),

S = diag([1 0.5 0.5]). Good and stable response is obtained in the plant outputs in

all the required tests using the above tuned parameters.
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Figure 4.3: Evaporator performance at setpoints ramp changes using LMPC [Mac02].
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Figure 4.5: Evaporator performance using the present NMPC at setpoint changes

plus random disturbances test. (a)–(c) Measured outputs (solid lines) with setpoints

(dashed lines). (d)–(f) Manipulated variables. (g)–(j) Disturbances.

Simulation is performed with the above configuration where the NMPC controller is

represented via S-function in MATLAB. The behavior of the process in a setpoint

ramp change using the evaporator response when a LMPC [Mac02] is used for con-

trolling the plant under setpoint change test is shown in Figure 4.3. The figure shows

problems in L2 as a result of setpoint ramp change in X2 and P2. A serious offset

results and persists after the plant has settled to the new setpoints. The main reason

for this result is the presence of a mismatch between the nonlinear plant and the lin-

earized predictive model. Re-linearizing the internal model every 10 minutes during

the prediction horizon (extended linearization MPC (ELMPC)) solved the setpoint

tracking problem (see controller ELMPC performance in Figure 4.4) [Mac02]. When

the proposed NMPC algorithm is used to control the process under the same condi-

tion, noticeable improvement in the system performance is observed as in Figure 4.4.

In addition to the good performance associated with using the new NMPC algorithm,

the online time required to solve the open–loop optimization problem was shorter by

about 50% compared with the predictive controller based on re–linearized the process

model every 10 minutes given in [Mac02].

Figure 4.5 shows the system performance using the proposed NMPC approach during
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a setpoint tracking test when disturbances F1, X1, T1, and T200 are varying within

±20% of their nominal values. The figure shows that the measured outputs follow

the setpoints quite well (a)–(c) in spite of the existence of severe disturbances (g)–(j).

This is achieved without violating the input constraints (d)–(f).

In a disturbance rejection test, a non–zero mean disturbance in F1 is assumed. It

is represented by a step change in −20% from the F1 nominal value of F1 applying

to the process at t = 10 minutes. Note that the disturbance variable F1 is assumed

measurable in this case. Figure 4.6 shows the system performance using the proposed

NMPC.

It can be concluded from the above results that, the NMPC controller is effective and

achieves all the performance requirements.

To demonstrate the new NMPC algorithm efficiency, the CPU time in seconds that

has been used by the MATLAB process to solve each optimization problem during

ramp setpoint tracking problem is plotted in Figure 4.7. Note that, all computations

perform on a Windows XP PC with an Inetl Pentium-4 processor running at 3.0

GHz. Large reduction in the computation time is observed using the NMPC approach

with AD compared with the case when the numerical differentiation (FD) is used to

calculate the gradient of the objective function.

4.8 Summary

A new NMPC algorithm is proposed in this chapter. Based on a nonlinear least square

optimization problem, an efficient algorithm to calculate the residual Jacobian matrix

is derived. With the new approach, the gradient information can be obtained without

further integration of the sensitivity differential equations. The new algorithm also

provides a link point where recently developed automatic differentiation techniques

can be applied to get derivatives (sensitivity functions) accurately and efficiently.

The evaporator case study shows that satisfactory performance is obtained with the

controller using the new NMPC algorithm. Large time saving is obtained using the

proposed algorithm compared with finite difference method. No terminal penalty is

used in this work and a good tuning of Ts, P , M , Q, and S was found adequate to

ensure the close-loop stability for the case study in different operation conditions.
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Chapter 5

State Estimation Using EKF with

AD

5.1 Introduction

The proposed NMPC algorithm is extended in this chapter to include an additional

stage often required for many MPC applications. This is the state estimation stage.

This part is necessary to estimate any unmeasurable states to be used as the initial

values to solve the online optimization problem. The well known Extended Kalman

Filter has been chosen for this task. In order to increase the calculation speed and

accuracy in the state estimation stage, the model linearization step required for the

EKF, is done automatically using AD tool. The two–CSTR process is used to test

the new NMPC algorithm with the state estimator.

5.2 State Estimation in NMPC

In many practical problems, the states of the system are not directly accessible and

must be estimated. The quality of state estimates has important bearings on the

overall performance of a model predictive controller, especially of one based on a non-

linear model [ML99]. The implementation of the NMPC techniques discussed in the

previous section requires knowledge of the current state of the nonlinear system in

order to compute the solution to the open–loop optimal control problem formulated

at each control interval. Feedback in this controller comes from the update of the
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Figure 5.1: The state feedback control

current state. Since, the full state of the nonlinear system is not directly measurable

in most applications, some method of reconstructing the current state of the system

from the measured outputs must be employed. The importance of state estimation is

clarified in Figure 5.1. Good estimation to the process states, which is used as initial

values to solve the NLP each time step, will lead usually to a better and more stable

performance. The two basic goals of state estimation are; (i) get estimates of unmea-

sured states from output measurements, (ii) Reduce the influence of measurement

noise on state estimates. The details of the EKF is given below.

5.3 Principle of Extended Kalman Filter

The Kalman filter [Kal60] is an optimal state estimator applied to a dynamic system

that involves random noise and includes a limited amount of noisy real–time mea-

surements. Although it was originally derived for linear systems, the Kalman filter

can also be extended for application to nonlinear systems via specific online Taylor

expansions of the originally nonlinear system. The Kalman filter so obtained is called

extended Kalman filter.
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A straight forward approximation to optimal nonlinear state estimation is to linearize

the nonlinear model about a given operating point and apply optimal linear state

estimation to the linearized system. The EKF computes a state estimate at each

sampling time by the use of Kalman filtering on a linear time–varying system of the

nonlinear system. Application of the EKF is therefore contingent upon the assumption

that the required derivatives exist and can be obtained with a reasonable effort. The

Taylor linearization provides an insufficiently accurate representation in many cases,

and significant bias, or even convergence problems, are commonly encountered due to

the overly crude approximation.

The detailed theory and equations of the EKF are given in the literature [GA93,

StP93, WB04, Nor01]. The KALMTOOL Toolbox in MATLAB [Nor01] is used in

this work. The toolbox was developed based on the following formula;

Re–write system (4.2) as follows:

ẋ(t) = f(t, x, u, υ) (5.1)

y(t) = g(t, x, ω)

where, υ(t) and ω(t) are the actuators and measurement noise. The discrete version

of the continuous–time state–space model (5.1) is given as:

x(k + 1) = F (x(k), u(k), υ(k)) (5.2)

y(k) = g(x(k), ω(k))

where F (x(k), u(k), υ(k)) :=
∫ (k+1)Ts

kTs
f(t, x, u, υ)dt denotes the terminal state vector

obtained by integrating the ODEs (5.1) for one sample interval Ts with the initial

condition of x(k) and constant inputs of u(k).

Assume that the actuators noise υ, output noise ω, and the system’s initial state x(0)

satisfy the following conditions:

1. υ and ω are zero-mean Gaussian white random processes. For any k ≥ 0 and

l ≥ 0,

E{υ(k)} = 0 (5.3)

E{ω(k)} = 0 (5.4)

E{υ(k)υ(l)T} =

{
Rυ if k = l

0 otherwise
(5.5)

E{ω(k)ω(l)T} =

{
Rω if k = l

0 otherwise
(5.6)
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where Rυ and Rω represent the noise covariance matrices which are known

positive semi–define matrices.

2. x(0) is a Gaussian random vector with known mean and auto–covariance matrix

x̂0 = E{x(0)} (5.7)

Σ0 = E
{
[x(0)− x̂0]

T · [x(0)− x̂0]
}

(5.8)

3. x(0) is uncorrelated to υ and ω at any k.

EKF solves the problem by making the following linear approximation with respect

to x(k|k − 1) where x(k|l) denote the optimal estimates (i.e. minimum variance

estimates) for based on the measurements up to time l.

x(k + 1|k) ≈ F (x(k|k − 1), u(k), 0) + α(k)(x(k)− x(k|k − 1)) + β(k)υ(k)

y(k) ≈ g(x(k|k − 1), 0) + G(k)(x(k)− x(k|k − 1)) + Γ(k)ω(k)) (5.9)

where

α(k) = eα̃(k)τ (5.10)

β(k) =

∫ Ts

0

eα̃(k)τdτ · β̃(k) (5.11)

G(k) =
∂g

∂x

∣∣∣∣
x̂(k|k−1),u(k),0

(5.12)

Γ(k) =
∂g

∂ω

∣∣∣∣
x̂(k|k−1),u(k),0

(5.13)

and

α̃(k) =
∂f

∂x

∣∣∣∣
x̂(k|k−1),u(k),0

(5.14)

β̃(k) =
∂f

∂υ

∣∣∣∣
x̂(k|k−1),u(k),0

(5.15)

At each time instant k, given y(k) (and its available value at the previous time instants,

i.e. y(k − 1)), it is the goal of the extended Kalman filter to deliver state estimate

x̂(k + 1|k) so as to minimize the covariance of the estimation error;

E
{
[x(k + 1)− x̂(k + 1|k)]T · [x(k + 1)− x̂(k + 1|k)]

}
(5.16)

where x̂(k + 1|k) denotes the mathematical expectation of x(k + 1) conditional on

measurements available up to the kth time instant (actually x̂(k + 1|k) is one–step

prediction of x(k + 1)).
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The recursive equations of the EKF are as follows:

x̂(k + 1|k) = F (x̂(k|k − 1), u(k), 0)︸ ︷︷ ︸
model

+ L(k) [y(k)− g (x̂(k|k − 1), 0)]︸ ︷︷ ︸
correction

(5.17)

where L(k) is the Kalman filter steady–state gain given as;

L(k) = Σ(k|k − 1)GT (k)
[
G(k)Σ(k|k − 1)GT (k) + Γ(k)Rω(k)Γ(k)T

]−1
(5.18)

The estimation error covariance Σ(k + 1|k) is computed from Σ(k|k − 1) as follows;

Σ(k + 1|k) = α(k)Σ(k|k − 1)αT (k) + β(k)Rυβ(k)T (5.19)

with

x̂(0| − 1) := x̂0 (5.20)

Σ(0| − 1) := Σ0 (5.21)

In order to obtain the value of the Jacobian linearization matrices α(k), β(k), G(k),

and Γ(k) with high accuracy and less computational efforts, the forward mode of the

AD toolbox (MAD) in MATLAB has been used in this work successfully.

5.4 Case Study: Two CSTR Processes

A chemical system common to many chemical processing plants, known as a Contin-

uous Stirred Tank Reactor (CSTR), was utilized as a suitable test for many control

methods [Cao95, CB96]. It suffices to know that the CSTR constituted by a jacketed,

perfectly mixed reactor, where an exothermic, first order and irreversible chemical

transformation from reactionant A to product B takes place.

A process comprising of two CSTRs (CSTR1 and CSTR2) in series with an interme-

diate mixer introducing a second feed (see Figure 5.2) [Cao95] is investigated. Several

possible input–output configurations have been considered to determine the best con-

trol scheme, the lowest integral square error (ISE) cost over alternative configurations

of manipulated variables corresponds to the best option.
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Figure 5.2: The two CSTR Process

5.4.1 Modelling of Two CSTR’s in Series

A first–order irreversible exothermic reaction:

A −→ B (5.22)

is carried out in the process. The reactors are cooled by cooling water (temperatures

as TCW1 and TCW2) within the jacket surrounding each reactor. The mixture densities

and heat capacities are assumed to be constant and independent of temperature and

concentration.

Thus the process can be modelled in terms of the concentration of the raw material (A)

by the nonlinear differential equations given in Appendix B. Note that, the original

eight states of the model are reduced to six assuming that a constant volume is applied

to the process. The six states are: x1 = Co1 outlet concentration of CSTR 1; x2 = To1,

outlet temperature of CSTR 1; x3 = TCWo1, cooling water outlet temperature of CSTR

1; x4 = Co2, outlet concentration of CSTR 2; x5 = To2, outlet temperature of CSTR

2; and x6 = TCWo2, cooling water outlet temperature of CSTR 2, respectively. The

physical process constants are given in Table B.1 and the process is assumed to be

operated at the equilibrium point given in Table B.2 (see Appendix B).
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5.4.2 Input–Output Specifications

The input variables u can be chosen from QI1, QI2, Qcw1, and Qcw2. The state variables

x2 := To1 and x5 := To2 are chosen as the controlled (measured) variables. These

were chosen since economic analysis of this case study for control structure selection

[CB96] shows that the optimal operation point with respect to economics is very

sensitive to variation in the outlet temperatures of the reactors, hence these need

to be controlled. For this output specification, two possible two–input, two-output

configurations, named S1 and S2 (see Table 5.1) are considered in this work. In

Table 5.1, QI1 and QI2 are the inlet flowrates of CSTR 1 and CSTR 2 respectively, and

QCW1 and QCW2 are the cooling water flowrates of CSTR 1 and CSTR2 respectively.

For both configurations the cooling water temperatures Tcw1 and Tcw2 are considered

as disturbance variables.

Table 5.1: Input and output specifications

Name u1 u2 y1 y2

S1 QI1 QI2 To1 To2

S2 QCW1 QCW2 To1 To2

5.5 Process Control Specification

The control objective in the two–CSTR process is to maintain both tank temperatures

at the desired values in the presence of

1. Cooling–water temperature ±10oKfluctuations in TCW1 and TCW2 in the pres-

ence of actuator constraints.

2. Setpoints change in the two output variables in the presence of actuator con-

straints.

where the actuator constraints of systems S1 and S2 are given in the expressions below

for S1


QI1 + QI2 ≤ 0.8 (m3s−1)

QI1 ≥ 0.05 (m3s−1)

QI2 ≥ 0.05 (m3s−1)

(5.23)

for S2

{
0.05 (m3s−1) ≤ QCW1 ≤ 0.8 (m3s−1)

0.05 (m3s−1) ≤ QCW2 ≤ 0.8 (m3s−1)
(5.24)
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Cao and Biss, [CB96] designed a multi–loop PI controller to control the two system

configuration under regulating control. The PI controller designed for the system was

successful in rejecting non–zero mean disturbances (±10oK in Tcw1 and Tcw2), but had

somehow a long settling time (∼= 75 sec) and high peaks (∼= [1.25 0.86] oK) although

S1 configuration was able to reduce the disturbance in a shorter interval and with less

peak than S2.

Cao and Yang (2004), designed a linear optimal controller using the H2 and H∞ norm

to control the process in three control configurations (S1, S2, and S3) in a disturbance

rejection test [CY04]. In this test, the proposed linear optimal controllers were able

to reject the disturbance effects in a short time with some small peaks compared with

the PI controller. Setpoint tracking tests were not included in that work.

In this thesis, the linear optimal controller above was tested at first to control the

two–CSTR process in S1 and S2 configurations at setpoint tracking test. In this test,

a step changes in the nominal values of +2oK at t = 2 sec is assumed. The controller

was able to control the S2 system configuration. Long settling time (∼= [26 23] sec),

and approximately high overshoots [∼= [57% 55%]) are observed for this case. The

system performance was unstable and poor in the case of S1 configuration. As a

result linear and nonlinear MPC are designed in this work to control the two–CSTR

process at both the servo and the regulating problems as reported in the coming

sections.

5.6 Process Control Using NMPC

The proposed NMPC algorithm is used here to control the two–CSTR process. In

this process, only two from six state variables can be measured (i.e. x2 = To1 and

x5 = To2) while the other four states (i.e. x1 = Co1, x3 = Tcwo1, x4 = Co2 and

x6 = Tcwo2) are not. Thus, a state estimate stage is added to the control loop to

estimate the unmeasured states. Three types of state observers were considered for

this job. These are; the extended Kalman filter, the state estimators first-order di-

vided difference (DD1), and second-order divided difference (DD2) filters [NPR00]

using second-order divided difference filters developed by Norgaard et al. [NPR00].

The three estimators which are available in a MATLAB toolbox called KALMTOOL

[Nor01], worked with the same accuracy in the case of two–CSTR process, but EKF

was faster. The main difficulty with the EKF method over the others (which did not

contain any differentiation stage in the theory) is the additional computation efforts

required for the local ‘Jacobian’ linearization stage. This effort is reduced in this work
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for the case of two–CSTR using the forward mode of AD tool. The AD toolbox in

MATLAB, MAD, is used to calculate the required partial derivatives automatically

and simultaneously with the function values. Also, the linearized model will also be

more accurate because the derivatives are exact. An accurate model will be helpful

in reducing the state estimation error.

The predictive control parameters (i.e. Ts, P , M , Q, and S) are chosen using online

tuning and the final values are; for system S1; Ts = 0.1 sec, P = 10 time steps (1

seconds), M = 2 time steps (0.2 seconds), Q = diag(50, 100) and S = diag(2, 2). For

system S2; the same sampling time is chosen, while P = 5 time steps (0.5 seconds),

M = 2 time steps (0.2 seconds), Q = diag(100, 150), and S = I are chosen. The

first–principle model given in Appendix B is used as the plant and also the internal

model of the controller in this chapter.

In the disturbance rejection test, all disturbance variables were considered measured

(unmeasured disturbances are considered in the next chapter). The proposed NMPC

algorithm is tested on the two configurations of the two–CSTR process. Figures 5.3

shows S1 and S2 performance in the present of measured Tcw1 and Tcw2 disturbances

with positive step change +10 oK applied at t = 2 sec. System S1 needed longer

time to reject the disturbance than S2 as a result of the selection of the manipulated

variables and the NMPC tuning parameters.

In a setpoint tracking test, the performance of S1 and S2 systems using NMPC is

given in Figure 5.4. The results show that system S1 has faster response compared

with S2 but the later was more stable than S1 if the prediction horizons of both are

chosen equal to 5 time steps. Therefore a longer prediction horizon was needed in the

case of S1 (=10 time steps) to ensure the response stability.

To examine the NMPC efficiency the same tests above are repeated on the S2 configu-

ration using a linear predictive controller. The LMPC controller is designed using the

Model Predictive Control Toolbox in MATLAB (nlmpcsim Simulink block) with the

same parameters used for the NMPC approach. Figure 5.5 shows the two–CSTR/S2

response using LMPC approach at the measured disturbance rejection test. The lin-

ear predictive controller was able to reject the disturbances but that combined with a

big overshoot and long settling time compared with the NMPC results in Figure 5.3

(solid lines). Also, in the setpoint tracking test, Figure 5.6 shows the two–CSTR/S2

response using the designed linear and nonlinear predictive controllers. Also, in this

test the nonlinear controller performance is better than the linear one especially in

the manipulated variables behaviors since strong ringing in u is observed when the

LMPC is used. The previous results showed that NMPC is more efficient and reli-
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Figure 5.3: The response of two–CSTR process at measured disturbance in Tcw1 and

Tcw2 (+10 OK step change at t = 2 sec) test NMPC.

able to control the two–CSTR process due to the accurate prediction of the system

behavior using a nonlinear model which gives a better representative of the real plant.

To show the EKF capability to estimated the true values of the unmeasured states,

errors in the initial states are assumed as x1 = −0.1 mol/m3 (true value= 0.084),

x3 = 300 oK (true value=327.56), x4 = 0.06 mol/m3 (true value=0.053), and x6 =

300.447 oK (true value=335.447). Figure 5.7 shows a comparison between the true

and estimated states during the setpoint tracking test of S2 system. Good convergence

to the true states is achieved after few time steps. Similar results was obtained for S1

system.

The main advantage of using AD in the linearization step of EKF is a saving in both

the time and effort needed to calculate the required derivatives as this is done auto-

matically via AD tool for any new application. In addition, a high accurate linearized

model is be obtained using AD tool compared with the numerical differentiation. For

the two–CSTR case study, the simulation time with EKF using AD is reduced to only

10% compared to the time using FD in model linearization case. This is because the

dimension of the two–CSTR process is small (i.e. 2 inputs, 2 outputs, and 6 states).

For higher dimension systems the time saving would be much more significant.
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Figure 5.4: The two–CSTR S1 and S2 responses at setpoint tracking test.
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Figure 5.5: The two–CSTR/S2 response at Tcw1 and Tcw2 unmeasured disturbances

test using LMPC.
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In the optimization section of the proposed NMPC it is possible to use numerical

methods to evaluate the sensitivity equations. This is used to check the difference

in simulation time when using the the sensitivity approximation with AD approach

compared to using a perturbation method (FD). Figure 5.8 shows a comparison in the

CPU time used by MATLAB process to run the simulation results at setpoint tracking

test of S2 system, at different prediction horizon lengths. When the prediction horizon

is short the time saving using the sensitivity approximation method with AD is small

but it increased rapidly when the prediction horizon increased.

5.7 Summary

The proposed NMPC algorithm is developed further to handle nonlinear processes

with the presence of unmeasured state variables. In this case, a state estimate stage

of the extended Kalman filter type is added to the predictive controller. The AD tool

is used to develop the EKF state estimate. Two advantages can be obtained by using

AD for calculating the Jacobian linearization matrices required for the filter. First,

using AD gives as accurate calculation as the hand differentiation (analytically) but

without the need to re-calculate this derivatives for every new application. This will

be done automatically for any application which makes the EKF more general and

so it can be used as a package directly for any plant. Second, the linearized model

will be more accurate when AD is used compared with FD. Also this will be done in

a shorter time which is very important to reduce the online calculation time of the

NMPC. The new NMPC approach is used to control the nonlinear MIMO process of

the two–CSTR process. This process presented in two control configurations, S1 and

S2 depending on the manipulated variables selection. In this process only some of

the state variables can be measured, so the developed EKF is used to estimate the

remain unmeasured state variables. The controller capability to control the process

without any constraint violation is proved in different operations conditions such as

setpoint change and measured disturbances. The results are also compared with that

of LMPC approach with large performance improvement using the proposed NMPC

algorithm. Also the online computation time using the proposed NMPC is compared

with another using FD for sensitivity calculation. The comparison shows a big time

saving using AD tool especially in the case of long prediction horizons.
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Chapter 6

Offset–Free NMPC Using

Nonlinear Integration

6.1 Introduction

This chapter discusses the development of a new offset removal method to be used with

the NMPC approach. In this method, the offset error is fed back to create a distur-

bance model which can be applied to the predictive model input or output to correct

the model steady–state targets and eliminate the offset error. An adaptive nonlinear

integrator is used in this case to improve the system responses during the offset error

rejection period. The resulting NMPC is tested on two case studies; the evaporator

process and the two–CSTR process in presence of unmeasured disturbances, model

uncertainty, and measurements noise. In all cases, a response with zero offset errors

is obtained and the developed integrating disturbances were also useful to enhanced

the controller robustness as shown by the different tests.

6.2 Offset in NMPC

In some situations, the predictive controller manages to control the process adequately

in both the setpoint tracking and regulating problems, but a small constant error (or

offset) remain between the setpoint and the actual process output due to model/plant

mismatch. Clearly this is not acceptable in many cases and a good controller should

be able to produce an offset free result. This problem is well known even in simple
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linear controllers and is usually removed using an integral action that works on the

offset between process output and setpoint value.

When a non–zero mean (non–stationary) disturbance affects a system, the origin of the

state and input needs to be shifted in order to cancel the effect of such a disturbance

on the controlled variables [MuR93]. To this aim, at each sample instant a disturbance

model is created to correct (shift) the steady–state values of the predictive model as

the actual steady–state of the plant. Such that one can drive the offset error to zero. In

general, offset error in MPC algorithms could be caused by process/model mismatch

due to unmeasured disturbances, model uncertainty, and /or finite prediction horizon

[RST02]. A number of solutions can be used to eliminate this error such as increasing

the prediction horizon length, or adding the difference between the measured outputs

and model outputs at the latest time to the predicted outputs in the optimization

step [Gar84]

y(k + i) = g (x(k + i), u(k + i)) + d̃(k), for i ∈ [1, P ] (6.1)

where

d̃(k) := ym(k)− y(k) (6.2)

d̃(k + i) = d̃k, for i ∈ [1, P ] (6.3)

In many cases, increasing the prediction horizon is not sufficient to remove the offset

error and also will increase the computation burden of the NMPC algorithm. On the

other hand, adding the disturbance vector generated by comparing the plant and the

model outputs does not necessarily remove the error completely in some applications.

As reported by Meadows and Rawling [MR97] this method does not guarantee an

offset–free performance in the presence of modelling errors.

Another way to eliminate the offset in linear MPC is by augmenting a disturbance

vector with state observer vector, that shifts the target values of the desired states

(through some observer gain matrices) into an input–output linearizing (IOL) con-

troller [KH97]. Similar theory for a disturbance model has been proposed for linear

MPC by Campbell and Rawlings [CR98], who categorized the disturbance models

into three types, viz. generic disturbance model, output disturbance model and mea-

sured input disturbance model. They used integrating disturbance models to achieve

offset–free control.
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6.3 Offset–free Control via Parameter Adaptation

Motivated by the success of the parameter adaptation approach [ShD93, NKR97,

RST02], two new simple offset removal techniques are proposed here to be used in

NMPC context. In both, the error between the plant output and the desired value

is used to estimate (calculate) an integrated disturbance which can be then added

to the process model input (=dI) or output (=do) as shown in Figure 6.1. These

disturbances work to cancel the model steady–state shifting due to unmeasured dis-

turbances, modelling error, or measurement noise. In this way, an integral action will

be added to the MPC algorithm to produce zero offset error control. Note that, the

block (D) is the disturbance model which can be static as in equation (6.2) or dynamic

as the proposed disturbance model. The full description of these two methods is given

below.

Od
Id

yu G

D D

+

Figure 6.1: Simple diagram represents the way of adding the integrated disturbances

to the process model

6.3.1 Disturbance Estimation Using Nonlinear Integration

The main reasons behind offset error in MPC is model/plant mismatch due to un-

measured disturbance or model uncertainty. For cases without such mismatching,

the updating of state variables may provide offset–free control when using NMPC.

It is clear that when it is possible to measure a disturbance, the offset error can

be eliminate from the process outputs (see Figures 4.6 and 5.3). Since disturbances
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in practice might be unmeasured and unknown, a better technique to eliminate the

offset is to estimate these variables and use this in the response prediction step. In

this section, NMPC performance with zero offset error is obtained by estimating the

unknown disturbances via nonlinear integration of the offset error.

In NMPC, integral action is required to integrate any small error to maintain the

process variable at setpoint. This can be obtained by using the following adaptation

technique to estimate the unknown disturbance. The adaptation dynamics is in the

form of first–order differential equation;

˙̂
d(t) = γc(ess(t), t) (6.4)

where d̂ ∈ Rnd̂ is the estimated value of the unknown disturbance (which is equivalent

to dI in Figure 6.1), ess(t) := ym(t) − yr(t) is the offset error which is defined as the

difference between the measured output vector ym and the desired setpoint vector yr.

In this work, the term γc(ess(t)) has been chosen as a continuous nonlinear function

of the offset error instead of using a linear gain which is the traditional case. The dif-

ferential equation is approximated by Euler’s method with step size equal to sampling

time Ts as;

d̂(k + 1) = d̂(k) + γ(ess(k)) (6.5)

where;

γ :=

∫ (k+1)Ts

kTs

γc(ess)dt (6.6)

The initial value of d̂ is chosen to be equal to the nominal value of the original

unmeasured disturbances that need to be estimated. This value will be kept constant

along the prediction horizon during solving the online NLP problem i.e.,

d̂(k + i) = d̂(k + 1) = d̂k+1, i ∈ [1, P ] (6.7)

The function γ(·) is a nonlinear function which can be any general continuous non-

linear function of the offset error ess(k).

6.3.2 Nonlinear Gain

There is a broad range of options available for the nonlinear mapping γ. Here, the

smooth sigmoidal–tanh function of the tracking error ess is chosen (see Figure 6.2).

Mathematically this function is given as:

γ(ess) := K1[
2

1 + exp(−K2ess)
− 1] (6.8)
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Figure 6.2: The nonlinear integration function for different values of gain parameters

where, K1 ∈ Rnd̂×ny , and K2 ∈ Rny×ny are a positive constants. Re–write γ(ess(k)) as

γ for simplicity, then the value of γ is lower–bounded by γmin = −K1 when ess = −∞;

and upper–bounded by γmax = +K1 when ess = +∞, that is, γmin ≤ γ ≤ γmax;

and γ = 0 when ess = 0. The term K1 determines the range of variation of γ

(=γmax − γmin = 2K1) with K1 ≥ 0, and K2 specifies the rate of variation (slope) of

γ. Figure 6.2 shows a typical variation of γ as a function of ess with a different values

of K1 and K2, and shows that γ has an S–shaped curve. It is noted that when using

equation (6.8), the nonlinear value γ has equal excursions of ±K1 for positive and

negative error ess.

The disturbance model above works at all times to remove offset error observed in the

system. There is no information about the source of this offset if it is occurring due to

unmeasured disturbance, or setpoint change. In the case of setpoint change this might

lead to an additional overshoot in the output response due to the over excitation in the

manipulated variables. This problem is solved by using another shape of the nonlinear

function γ(·). This function is the same as (6.8) but with cut–off beyond a specified

range of the error ess (the solid–line in Figure 6.2). In this case, it can be called as

a conditional nonlinear integration. The conditional integration feature turns–off the

integral action (i.e. the integrated disturbance changes) when the error is large (as

the time instant where the setpoint begin changed for example), and turns–on the
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integral action when the error is sufficiently small (i.e. near a steady–state point):

γ(ess) =

{
γ if ess,min ≤ ess ≤ ess,max

0 otherwise
(6.9)

where ess,min and ess,max is the lower and upper bound of the offset error. Outside

this range, the estimated disturbance ∆d̂ is set to zero. In this work ess,min is chosen

equal to −ess,max thus reducing the number of tuning parameters.

The nonlinear function slope K2 is chosen as a diagonal matrix with positive elements

to reduce the number of tuning parameters too. Each element of K1 and K2 is

chosen by considering the response of the predictive model to step changes in the

unknown disturbances (through few open–loop simulations) and the signs of the gain

K1 elements are selected depending on the effect of each estimated disturbances on

the corresponding output variable. Then few closed–loop simulations are carried out

with different values for the parameters K1 and d̂.

The strategy of finding the suitable values of K1 and K2 is summarized as follows;

1. To find the best value of K2 (i.e. the slope of the nonlinear function), a linear

integration is considered at first as;

d(k + 1) = d(k) + KLess(k) (6.10)

where,

KL =
∂γ(ess)

∂ess

∣∣∣∣
ess=0

=
K1K2

2
(6.11)

If each element of K1 is set to 2, then KL ≡ K2 and only K2 is needed to be

tuned. The suitable value of each diagonal element of K2 will be determined

using simulation tests. If the values of the tuning K2 are put too large unstable

response will be detected so that it should be reduced slightly until a stable

response is obtained. On the other hand, if the parameters are too small, a

stable response will be detected but with sluggish behavior. The suitable values

of K2 are to be chosen between these boundaries to ensure stable response with

fast changing rate. Note that, in this stage, small oscillation in the response with

over damping response is acceptable because this behavior is to be considered

when using the nonlinear integrator at the next step.

2. After determining the value of K2, the linear integration is replaced by the

nonlinear integration as in equation (6.8). The suitable value of K1 can then be

tuned online until a smooth and fast response is satisfied.
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Figure 6.3: Simple diagram of the proposed NMPC after adding input disturbance

integrator for offset–free control.

3. To avoid a large increase in the estimated disturbances prediction due to large

tracking errors which may lead to closed–loop instability problem or large over-

shooting in the servo control problems, the conditional integration is used. The

value of the positive boundary ess,max = −ess,min is tuned as follows, at first it

is set at high value then reduced slightly during tests and the final value kept

constant depended on the quality of the output response.

Note that, incorporating the estimated value of the unmeasured disturbances in the

process model will not only increase the prediction accuracy, but also the EKF pre-

dictions, since such state estimation needs the same nonlinear model to generate the

time–varying linearized model. In fact, any error in the initial states of the open–loop

optimal problem could lead to the wrong solution or to an unstable response. There-

fore, a correct estimation of the unknown disturbances will help the estimator to find

the correct states as well as to reduce the prediction error in the controller.

A simple diagram about how to link the offset removal part to the original NMPC is

shown in Figure 6.3.
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Figure 6.4: Offset free NMPC using output disturbance integrator.

If the number of estimated disturbances nd̂ is equal to the number of outputs ny

the matrix K1 can be chosen as a diagonal matrix to reduce the number of tuned

parameters. However, a large number of tuning parameters for the K1 matrix will be

needed if nd is greater than ny. This is one of the drawbacks of the present method

which can be solved if an optimal problem is solved off–line to tune K1 and K2 or by

using a self—tuning approach online.

6.3.3 Output Disturbance Modelling Using Nonlinear Inte-

gration

In this case, the adaptive integrator approach is used to create an output virtual

disturbance which is then added to the predicted output to shift the process model

steady–state targets to the correct place. The output disturbance model is calculated

using the same formula of the input disturbance approach (i.e. equations (6.5) to

(6.9)). The only difference in this case is that, K1 is a diagonal matrix with ny

dimension and its elements are all positive. The estimated output disturbance do ∈
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R
ny will be added to the process model output as follows;

do(k + 1) = do(k) + γ(ess(k)) (6.12)

do(k + i) = do(k + 1) = dk+1,o, i ∈ [1, P ] (6.13)

y(k + i) = g(x(k + i), u(k + i)) + dk+1,o, i ∈ [1, P ] (6.14)

Since, the dimension of do is always equal to the dimension of the measured outputs

and the matrices K1 and K2 are always positive and diagonal, the effort required

to tune the adaptation parameters is less than the input disturbance estimation ap-

proach. The second advantage of using the output integrated disturbance is that, the

state estimation stage (i.e. the EKF stage) can be removed and replaced by a simpler

state updating step (i.e. xk+1 =
∫ Ts

0
f(xk, uk)dt) and the remaining estimation error

will be corrected via the output disturbance do. This method is implemented here in

the control of the two–CSTR case study and it is shown that the EKF is not necessary

there.

The tuning strategy of the nonlinear integration function in this approach is similar

to the previous case and can be obtained by online tuning as before. The simple

diagram of the NMPC algorithm with the output integrated disturbance is shown in

Figure 6.4.

Note that the two proposed offset removal approaches can be used together in parallel

in some difficult applications.

6.4 Example 1: Evaporator Process

To examine the proposed NMPC robustness, an additional test is performed to the

evaporator system by applying a non–zero mean disturbance of F1 (-20% step change

at t = 10 minutes). Note that F1 is assumed to be unmeasured disturbance in this

chapter. The process response in this test without using any offset removal technique

is shown in Figure 6.5 (solid lines). Offset errors can be observed on the output

responses due to the plant/model mismatch caused by the unknown disturbance F1.

It is noted here that the offset persists even when the exact set of ODEs of the

evaporator system are used as the actual plant and also the predictive model (except

ignoring the actuators lags in the predictive model). In addition, this happens even

when all the states are measurable in this process.
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Figure 6.5: Evaporator response at unmeasured disturbance test; NMPC without

offset removal stage (solid lines); NMPC with output disturbance (the difference be-

tween the plant and the model outputs) (dashed lines); NMPC after increasing the

prediction horizon from 5 minutes to 50 minutes (dash–dotted lines).

The regulatory performance of the NMPC shown in Figure 6.5 is far from satisfactory

because of the offset error problem in the three output variables. The problem of

offset error is not solved when adding the difference between the measured outputs

and model outputs at the latest time to the predicted outputs in the optimization step

(dashed lines in Figure 6.5). On the other hand, increasing the prediction horizon from

5 to 50 minutes in this test eliminates the offset error in X2 variable, but could not do

the same for L2 and P2 variables, leading to an even bigger offset in P2 (dash–dotted

lines in Figure 6.5).

6.4.1 Offset–free NMPC/Input Disturbance Estimation

Offset practically disappears if the disturbance F1 is measured and known to the

controller calculations as shown previously in Figure 4.6. The challenge is for the case

where the disturbance is unmeasured or not known to the controller. The proposed

offset removal techniques based on input disturbance estimation is used with the
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Figure 6.6: Input disturbance estimation using linear and nonlinear integral action

with the NMPC algorithm at -20% step change in F1 at t = 10 minutes.

original NMPC algorithm to solve the offset problem of the evaporator system.

The quantity F1 is chosen as the model parameter to be updated irrespective of the

actual disturbance in the real process. The adaptation law described in equation (6.5)

provides updated F̂1 (the estimated value of F1) for use in the internal model of the

predictive controller. The nonlinear integrator parameters are chosen using online

tuning and the values were fixed at K1 = [0.75 2.0 0.1], and K2 = I. At the start of a

large setpoints change which is usually known to the controller, it is desirable to switch

off the contribution of the nonlinear integrator leaving the controller to work freely

until the error reaches a predetermined small amount. These values ess,max = −ess,min

were set to [0.1 1 1].

The actual and estimated value of F1 are plotted in Figure 6.6 showing the capability

of the proposed controller to find the correct value of the unknown disturbance after

few calculation steps. Using this value in the model prediction removes the offset

error as shown in Figure 6.7.

The NMPC performance is also given for the case when linear integration is used

(the integrator gain is approximately similar to the tanh function slope). Both linear

or nonlinear integration in the disturbance estimation step succeed in eliminating

the offset error, however the linear integrator is incapable of accomplishing the two

contradictory requirements of a fast response with no overshoot simultaneously. When

the gain is a nonlinear function of the offset error, such as a sigmoidal–tanh function,
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Figure 6.7: Evaporator response at step change in F1 at t = 10 minutes; NMPC

without integral action (dashed); NMPC using linear integration (dot–dashed lines);

NMPC with nonlinear integration in the model input (solid lines).

initially the error ess between the desired value and the measured output increases;

hence the gain γ will be increased too, producing a fast response. If the error is too

large the gain γ will be saturated on the value ±K1 producing a stable response with

small overshoot. As time proceeds and ess is diminished, the gain γ will be reduced

automatically. Therefore, the automatic adjustment of the gain γ as a function of the

error ess produces fast response with small overshoot. This cannot be achieved by a

linear (fixed–gain) integrator at the same value of the gain. Figure 6.6 shows that the

transient response is fast in linear gain but with a lot of oscillation, high overshoot

(=2.735 kg/min), and long settling time (=44 min.) while these values are reduced

using nonlinear gain as a settling time is down to 18 minutes with no overshoot. The

results show clearly that a nonlinear gain improves the system response considerably

by speeding up the transient response without causing oscillations.

6.4.2 Offset–free/Output Integrated Disturbances

A persisting offset error due to the unknown non–stationary disturbance in F1 can

also be removed using the proposed offset–free control via added output integrated
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Figure 6.8: Evaporator response at unmeasured disturbance test using; NMPC with-

out integrated disturbance (dashed lines), NMPC with the proposed output integrated

disturbance (solid lines).

disturbance models as shown in Figure 6.8 (solid lines). A good performance is ob-

tained during unmeasured disturbance test and stepoint change test when the non-

linear gain parameters are chosen at K1 = diag(0.25, 0.25, 0.2), K2 = diag(1, 1, 1.5),

and ess,max = −ess,min =[0.5 1 1]. The virtual output disturbance vector do ∈ R3 is

added to the model output vector to correct the prediction results in different oper-

ation tests which are plotted in Figure 6.9. In the case of unmeasured disturbance

test, the disturbance do changes from its initial value [0 0 0] to a new steady-state

values [-0.1856 -0.4466 -0.4694] which compensates for the steady–state shifting in the

internal model due to the unknown disturbances F1 during the prediction phase. As a

result the optimizer can decide the correct manipulated variables movements without

producing offset error as shown in Figure 6.8.

The offset removal is also useful in increasing the system robustness in the presence of

modelling errors. A small modelling error in Cp is introduced (the heat capacity of the

liquid) by using 0.2 kW/K(kg/min) (the original value 0.07). The system response in

the setpoint tracking test in the presence of this modelling error and using the NMPC

without the offset removal routine shows offset errors on all the three plant outputs as

shown in Figure 6.10 (dashed lines). Adding an output disturbance as the difference
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Figure 6.9: The output integrated disturbances required to obtained offset free re-

sponse of the evaporator at different tests; (1) Unmeasured disturbance (solid lines)

(2) Setpoint tracking (dashed lines) (3) Setpoint tracking in present of model uncer-

tainty (dash–dotted lines).

between the plant and the model outputs to the predictive outputs reduced the offset

errors slightly but not to zero (dash–dotted lines) in the same figure above. On the

other hand, offsets are quickly removed by adding the proposed output integrated

disturbances as shown in Figure 6.10.

Also, the NMPC using output integrated disturbance was successful in eliminating

the offset errors (due to unmeasured disturbance in F1 in present of modelling error

in Cp) (the solid lines in Figure 6.11). It is noted that, the offset–free NMPC with

input integrated disturbance (dashed lines in Figure 6.11) is unable to eliminate the

offset error in this test. The reason behind this result comes from that, one adapta-

tion parameter (F̂1) seems not sufficient to correct the steady–state shifting in three

outputs (i.e. ny > nd). This can be solved by choosing another model variable such as

another disturbance as an additional input integrated disturbance but this of course

will need more tuning parameters. Therefore, it could be said that offset–free NMPC

using output disturbance models is more reliable, efficient, and easier to tune com-

pared with the input integrated disturbance method because there will always be one

output integrated disturbance for each one offset error (i.e. the chance to find the

solution is bigger).

In an additional test, the NMPC robustness is examined in present of measurement
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Figure 6.10: Evaporator response at setpoint tracking test with present of modelling

error using; NMPC without adding disturbances (dashed lines), NMPC with output

disturbance as the difference between the plant and the model outputs (dash–dotted

lines), NMPC with output integrated disturbance (solid lines).

noise with covariance Rω = diag(6e−4, 0.4, 1.5). The response of the evaporator pro-

cess in the presence of this value of measurement noise at setpoint ramp change is

shown in Figure 6.12. In this case, output integrated disturbances are used for offset

free NMPC. The result reflected the capability of the proposed NMPC algorithm to

control the evaporator plant in this situation as well.

6.5 Example 2: Two–CSTR Process

The two–CSTR process is chosen to demonstrate the addition offset removal tech-

niques. In a disturbance rejection test, all disturbance variables (Tcw1 and Tcw2) are

considered unmeasured in this case. The proposed NMPC algorithm without using in-

tegrated disturbances is tested first to control the two–CSTR/S2 process. Figure 6.13

shows the system performance in the presence of unmeasured disturbances as a pos-

itive step change +10oK applied to the process input at t = 2 sec. In the response,
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Figure 6.11: Evaporator response in the present of unmeasured disturbance and mod-

elling error; NMPC without integrated disturbances (dash-dotted lines), NMPC with

input integrated disturbance (dashed lines), NMPC with output integrated distur-

bance (solid lines).
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Figure 6.12: Evaporator response at setpoint ramp changes in present of measurement

noise.
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Figure 6.13: (a)–(d) Two–CSTR/S2 response at unmeasured disturbances test us-

ing; NMPC without integrated disturbance (dashed), NMPC with input integrated

disturbances (solid). (e)–(f) actual and estimated disturbances.

big offset errors are observed in the output variables due to model/plant mismatching

associated with unknown disturbances. Also, the same errors are observed in the

estimation error of the states using EKF for the same reason as shown in Figure 6.14.

6.5.1 Offset–Free NMPC using Input Integrated Disturbance

The main reason for the offset error observed on the process outputs is the missing

information about the actual values of the disturbances variables Tcw1 and Tcw2 for the

process model which is used in both the predictive controller and the state estimator.

This conclusion is supported by the fact that no such errors are observed when the

disturbances are measured (see Figure 5.3). The solution for this problem lay in

estimating the unknown disturbances values using the proposed nonlinear integrator

of section 6.3.1 and used in the prediction calculation as follows.

The suitable values of the nonlinear integrator parameters are tuned online by running

the simulations in different tests such as unmeasured disturbances, modelling error,

and setpoint tracking tests. The final values of these parameters for S1 are; K1 =
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Figure 6.14: State estimation errors during unmeasured disturbances tests of the two–

CSTR/S2 process using; NMPC without input integrated disturbances (dashed lines);

NMPC with input integrated disturbances (solid lines).

diag(10, 10), K2 = I, ess,max = −ess,min = [0.5 0.5], and for S2: K1 = diag(8, 8),

K2 = diag(1.5, 2), and ess,max as in S1 system. The estimated values of Tcw1 and Tcw2

are applied to the model input instead of the nominal values in both the predictive

model and the EKF to correct the model steady–state error. The resulting offset free

output responses as shown in Figure 6.13. The corresponding state estimation errors

are plotted in solid lines of Figure 6.14. It can be observed that, all the estimation

errors converge to zero after a number of time steps. The actual and estimated values

of the disturbances using the proposed nonlinear integration are given in the subplots

(e)–(f) in Figure 6.13. This results show clearly the offset removal capability in finding

the true values of the unknown disturbance with good transient response.

The NMPC algorithm is now tested for robustness to control the two–CSTR/S1 in

the presence of setpoint change plus modelling uncertainty. Modelling errors are

assumed in the values of some of the physical constants in the internal model as

V1 = 3m3 (true value=4.489), V2=6 m3 (true value=5.493), Ua1 = 0.2 m3s−1 (true

value=0.35), and Ua2 = 0.6 m3s−1 (true value=0.35). Without any integral action

offset errors are observed on the two plant outputs as shown in Figure 6.15. These
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Figure 6.15: (a)–(d) TwoCSTR/S1 responses at setpoint tracking plus modelling error

test using input integrated disturbances, (e)–(f) input integrated disturbances.
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Figure 6.16: The two–CSTR responses during unmeasured disturbance test using

offset free NMPC via output integrated disturbances.
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offset errors are completely eliminated from the output response when using input

integrated disturbances as shown in Figure 6.15. At the internal model, the estimated

disturbances (or adaptation parameters in this case) T̂cw1 and T̂cw2 are shifted from

their steady–state values to new values to compensate the steady–state error between

the model and the plant as shown in the subplots e and f of Figure 6.15.

6.5.2 Offset–free NMPC using Output Integrated Disturbances

The other way to eliminated the offset error is by adding a virtual output disturbance

model to the outputs to shifted its steady–state values to that of the plant. After on-

line tuning the final values of the parameters are chosen as follows; K1 = diag(0.3, 0.6),

K2 = I, ess,max = −ess,min = [0.2 0.2], for S2 K1 = diag(0.1, 0.08), K2 = diag(1, 2),

and ess,max = −ess,min = [0.2 0.2]). Note that, in this method the EKF is removed

from the close loop and replaced by simple state updates and the remaining estimation

error will be corrected via the output disturbance model do. Figures 6.16 shows the

offset free responses of the two control configurations of the process at unmeasured

disturbances test (+10 oK step change in Tcw1 and Tcw2 at t = 2 sec followed by

−10oK step change at t = 24 sec).

The same method is used to eliminate the offset errors due to modelling error from

system S1 outputs. This test is similar to that given in the previous section (i.e.

setpoint change plus model uncertainty). The offset errors are completely eliminated

from the output response when using output integrated disturbances as shown in

Figure 6.17. The output integrated disturbances do in this case are moving in the

direction that shift the steady–state values of the internal model to the correct place

as shown in the third subplot of Figure 6.17.

The presence of measurement noise is examined next with covariance Rω =

diag(10−5, 10−5). The response of S2 in the presence of this value of measurement

noise at unmeasured disturbances test is shown in Figure 6.18. Note that output inte-

grated disturbances are used for offset free NMPC. The result reflected the capability

of the proposed NMPC algorithm to control the two–CSTR plant in this situation

too. Similar performance is obtained with S1 system in different operation tests.
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Figure 6.17: (a)–(d) Two–CSTR/S1 responses at setpoint tracking test in present

of model uncertainty using NMPC with output integrated disturbances, (e)–(f) The

output integrated disturbances.
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Figure 6.18: TwoCSTR/S2 response at Tcw1 and Tcw2 unmeasured disturbances test

(+10 step change at t = 2 sec) in present of measurement noise.

Nonlinear Model Predictive Control using Automatic Differentiation



6.6 Summary 103

6.6 Summary

Two integrating disturbance techniques are proposed and successfully applied to ob-

tain offset-free NMPC. In the first type, the disturbances is injected in the process

model input as an estimated value of the unknown disturbances. An offset free re-

sponse is obtained after applying the integrated disturbances to the model input in

few time steps. A similar performance is observed using an integrated disturbances

on the process model outputs. The output disturbances are created from the current

tracking error and used to shift the internal model steady–state target to the correct

place. A nonlinear integrator represented by the sigmoidal–tanh function is used in

both methods to improve the system transient responses during the offset error re-

jection time. Fast and smooth response is obtained using the nonlinear integration

compared with a linear type. The evaporator process, and the two–CSTR process

are chosen to demonstrate the new offset removal techniques. The proposed input

and output disturbance were capable of removing the offset error due to unmeasured

disturbance or/and model uncertainty. The results show that the output integrated

disturbance technique was more practical and easier to tune than the input integrated

disturbance technique.

Nonlinear Model Predictive Control using Automatic Differentiation



Chapter 7

NMPC for a Black Box Process

using High–Order Taylor Series

.

7.1 Introduction

In many practical applications of NMPC, a mathematical model based on physical

principles is either unknown or too complicated to be used for control. In this case,

nonlinear system identification is an inevitable step in a NMPC project. Sometimes, it

is also the most costly and time consuming part of the project [ZGS98]. In this chapter

a new efficient NMPC algorithm, and nonlinear system identification algorithm using

a continuous–time recurrent neural network (CTRNN) model, are developed. In both

algorithms, the ODEs and the dynamic sensitivity are solved simultaneously using

Taylor series expansion and AD tool. The evaporator process and the two–CSTR/S2

process are chosen as applications for these methods.1

7.2 Nonlinear System Identification using CTRNN

An efficient and effective approach of nonlinear system identification is critical to the

success of NMPC. Unlike linear systems, there is no uniform way to parameterize a

1The material in this chapter is the subject of accepted for publication and submitted papers e.g.
[ASC05c] and [ASC06]
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general nonlinear dynamic system. Among many existing techniques, the universal

approximation properties of neural networks makes them a powerful tool for modelling

nonlinear systems [FN93]. Most of the publications in nonlinear system identification

use FFNN with backpropagation or some other variations for training, for example

[TSM95, TC96]. The static FFNNs together with tapped-delay lines provide a means

to model nonlinear dynamic systems in discrete–time [MSW90, NP90]. The main

drawback of this approach is that it can only provide predictions for a predetermined

finite number of steps, in most cases, only one step. This drawback makes such

models not well suited for predictive control, where variable multi–step predictions

are desired. RNNs on the other hand are capable of providing long range predictions

even in the presence of measurement noise [SMc97]. Therefore, RNN models are better

suited for NMPC. RNNs with internal dynamics has been adopted in several recent

works. Models with such networks are shown [FN93, JNG95], to have the capability

of capturing various plant nonlinearities. They have also been shown to be more

efficient than FFNNs in terms of the number of neurons required to model a dynamic

system of a certain order [DKW95, HH93]. In addition, they are more suitable to be

represented in state-space format, which is quite commonly used in many important

control algorithms [ZV98].

In this work, a continuous time version of the recurrent neural networks in state-

space form is used as the internal model of NMPC. The continuous–time RNN brings

further advantages and computational efficiency over the discrete formulation even if

at the end both are represented on the computer using only discrete values [PeB95].

Using a discrete time RNNs causes a great dependence of the resulting models on

the sampling period used in the process and no information is given about the model

trajectories between the sampling instants. The sampling period used with CTRNNs,

on the other hand, can be varied without the need for re-training [KaC00, KGW00].

The main difficulty with recurrent neural networks is in their training [PeB95,

KaMC96, PBV03]. Various training strategies have been suggested in the literature,

such as the backpropagation method [RuH86], the conjugate gradient method [LK99],

Levenberg-Marquardt optimization [Mar63], or methods based on genetic algorithm

(GAs) [Gol89]. Neural networking training is actually a nonlinear optimization prob-

lem. To solve the nonlinear optimization problem associated with CTRNN training,

the calculation of a large number of dynamic sensitivity equations is required. De-

pending on the number of sensitivity equations involved, the sensitivity calculation

could take more than 90 percent of the total computation time required for solving a

training problem. Hence, sensitivity calculation is a bottleneck in training CTRNNs.

In this chapter, a CTRNN is developed to be used in a NMPC context. The neural
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Figure 7.1: Continues–Time Recurrent Neural Network Structure

network is represented in a general nonlinear state–space configuration and used to

predict the future dynamic behavior of the nonlinear process in realtime. An effi-

cient training algorithm for the proposed network is developed using AD tool. The

algorithm calculates the Taylor series coefficients required to solve the ODEs of the

network and also produces the sensitivity for the training problem. The same approach

is also used to solve the online optimization problem in the predictive controller.

7.2.1 Dynamic Recurrent Neural Networks

A dynamic recurrent neural network is a complex nonlinear dynamic system described

by a set of nonlinear differential equations (continuous–time RNN) or difference equa-

tions (discrete–time RNN) with extensive connection weights. In this chapter, only

continuous–time version of the dynamic RNNs is discussed.

It has been shown that CTRNNs are able to approximate trajectories generated by
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nonlinear dynamic systems given by:

ẋ = f(x, u) (7.1)

y = g(x)

A key to the approximating capability of this type of networks is the use of hidden

neurons, [DKW95, GKW00]. The CTRNN is used to approximate the state–space

model of the above nonlinear systems.

In the absence of any prior information, the nonlinear functions f(·) and g(·) in equa-

tion (7.4) must be left as general as possible. Since neural networks can approximate

continuously differentiable nonlinear function arbitrarily well, it is a good choice for

parameterizing f and g. Also the resulting continuous–time state-space have the

neural network structure.

Hence, the CTRNN to be considered is represented in the following general form

˙̂x(t) = f̂(x̂(t), u(t), θ) (7.2)

ŷ(t) = Cx̂(t)

where u(t) ∈ Rnu is the external input, ŷ ∈ Rny the network output, x̂ ∈ Rnx̂ the

network’s state vector, θ ∈ Rnθ the network parameter vector and the output matrix

C is fixed as

C =
[
Iny×ny ,0ny×(nx̂−ny)

]
(7.3)

Hence the outputs are the first ny states of the networks.

The nonlinear process is approximated using a continuous-time recurrent Multi Layer

Perceptron (MLP) network with one hidden layer as shown in Figure 7.1:

xh(t) = σs (Wxx̂(t) + Wuu(t) + b1) (7.4)

˙̂x(t) = W2xh(t) + b2

ŷ(t) = Cx̂(t)

where, Wx ∈ R
nh×nx̂ , Wu ∈ R

nh×nu , and W2 ∈ R
nx̂×nh are connection weights,

b1 ∈ Rnh and b2 ∈ Rnx̂ are bias vectors, whilst each element of the vector σs(·) ∈ Rnh

represents the sigmoid-tanh function as the neural activation function, i.e.

σs(n) =
2

1 + e−2n
− 1
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The parameter vector is θ =
[
vec(Wx)

T vec(Wu)
T bT

1 vec(W2)
T bT

2

]T
∈ R

nθ ,

where nθ = nx̂ × (nh + 1) + nh × (nx̂ + nu + 1).

7.2.2 CTRNN sensitivity calculation using AD

Re–define system (7.2) as the following form

˙̂x(t) = f̂(x̂(t), η) (7.5)

ŷ(t) = Cx̂(t)

where η ∈ Rnη represents the general parameters vector, η = θ in network training

problem, and η = u in NMPC problem. The definition of the sensitivity is the

variation of the network output against the variation of η. Assume the function f̂ is

d-time continuously differentiable. Then, the sensitivity can be calculated by taking

partial derivative for both sides of equations (7.5):

ẋη(t) = fxxη(t) + fη (7.6)

yη(t) = Cxη(t)

where, xη := ∂x̂/∂η, yη := ∂ŷ/∂η, fx := ∂f̂/∂x̂, and fη := ∂f̂/∂η.

Equation (7.6) is a linear time–varying system with initial condition, xη(0) =

∂x̂(0)/∂η. Generally, system (7.6) has no analytical solution although it can be repre-

sented in a state-transition matrix form [ChC98]. The dynamic sensitivity function xη

can be calculated using different method as mentioned earlier. Numerically, equation

(7.6) can be solved together with the state equation (7.2) using a differential equation

solver. The total number of differential variables to be solved at each time instant

is nx̂ × (1 + nη). Depending on the size of a network, this number of differential

variables could grow so large that the calculation causes a significant burden on net-

work training. To tackle this problem, the sensitivity calculation method proposed

in [Cao05] to do the optimization step in a NMPC is extended to find the optimal

CTRNN parameters as well.

Using normalized time, τ = t/Ts, the right–hand-side of the state equation becomes

z(x̂(τ), η) := Tsf̂(x̂(τ), η) and the solution interval is 0 ≤ τ ≤ 1 for each integration

step. Consider x̂(τ) is given by the truncated Taylor series:

x̂(τ) = x̂[0] + x̂[1]τ + · · ·+ x̂[d]τ
d (7.7)

Nonlinear Model Predictive Control using Automatic Differentiation



7.2 Nonlinear System Identification using CTRNN 109

with coefficients x̂[i] ∈ Rnx̂ given as follows respectively:

x̂[i] = (i!)−1 ∂ix̂(τ)

∂τ i

∣∣∣∣
τ=0

(7.8)

Then, z(τ) can be expressed by a Taylor expansion:

z(τ) = z[0] + z[1]τ + · · ·+ z[d]τd +O(τ d+1) (7.9)

where coefficients z[j] are given as;

z[j] = (j!)−1 ∂jz(τ)

∂τ j

∣∣∣∣
τ=0

(7.10)

From the chain rule, z[j] is uniquely determined by the coefficient vectors, x̂[i] and η

with i ≤ j, i.e.

z[j] ≡ z[j](x̂[0], x̂[1], · · · , x̂[j], η) (7.11)

Inherently, functions z[j] are also d-time continuously differentiable and their deriva-

tives satisfy the identity [Chr92];

∂z[j]

∂x̂[i]

=
∂z[j−i]

∂x̂[0]

= Ax[j−i] ≡ Ax[j−i](x̂[0], x̂[1], · · · , x̂[j−i], η)

(7.12)

∂z[j]

∂η
= Aη[j] ≡ Aη[j](x̂[0], x̂[1], · · · , x̂[j−i], η)

(7.13)

where, Ax[j] ∈ Rnx̂×nx̂ , j = 0, · · · , d, and Aη[j] ∈ Rnx̂×nη , j = 0, · · · , d are also the

Taylor coefficients of the Jacobian path, i.e.;

∂z

∂x̂[0]

= Ax[0] + Ax[1]τ + · · ·+ Ax[d]τ
d +Oτ d+1 (7.14)

∂z

∂η
= Aη[0] + Aη[1]τ + · · ·+ Aη[d]τ

d +Oτ d+1 (7.15)

AD techniques provide an efficient way to calculate these coefficients vectors, z[j] and

matrices A[i] [Gri00]. For example, with the software package, ADOL-C [GDJ96,

Gri95], using the forward mode of AD all Taylor coefficient vectors for a given degree,

d can be calculated simultaneously, whilst the matrices, A[i] can be obtained using

the reverse mode of AD. The run time and memory requirement associated with these

calculations grow only as d2.
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Using AD for the CTRNN system (7.5), the Taylor coefficients of x̂(τ) can be itera-

tively determined from x̂[0] and η:

x̂[k+1] =
1

k + 1
z[k](x̂[0], · · · , x̂[k], η), k = 0, · · · , d− 1 (7.16)

ŷ[k] = Cx̂[k], k = 0, · · · , d (7.17)

Then, by applying AD to (7.16), the partial derivatives are obtained and partitioned

as;

A[k] =
[
Ax[k] | Aη[k]

]
:=
[

∂z[k]

∂x̂[0]
| ∂z[k]

∂η

]
, (7.18)

The total derivatives are accumulated from these partial derivatives as follows:

B[k+1] =
[
Bx[k+1] | Bη[k+1]

]
where

Bx[k+1] :=
dx[k+1]

dx[0]

=
1

k + 1

k∑
j=0

∂z[k]

∂x[j]

·
dx[j]

dx[0]

=
1

k + 1

k∑
j=0

Ax[k−j]Bx[j] (7.19)

Bη[k+1] :=
dx[k+1]

dη
=

1

k + 1

(
∂z[k]

∂η
+

k∑
j=0

Ax[k−j] ·Bη[j]

)
, k = 0, · · · , d− 1

(7.20)

and

B[0] =
[
Bx[0] | Bη[0]

]
=
[

I | Bη[0]

]
(7.21)

where Bη[0] := dx̂[0]/dη. Note that, in the NLP of the controller Bη[0]
= 0 because x̂[0]

is independent on the initial value of u.

x̂(Ts) =
d∑

i=0

x̂[i], ŷ(Ts) = Cx̂(Ts) (7.22)

whilst their sensitivities to initial value, x̂[0] and coefficients η are,

Bx(Ts) :=
dx̂(Ts)

dx̂[0]

=
d∑

i=0

Bx[i] = I +
d∑

i=1

Bx[i] (7.23)

Bη(Ts) :=
dx̂(Ts)

dη
=

d∑
i=0

Bη[i] = Bη[0] +
d∑

i=1

Bη[i] (7.24)

Dx(Ts) :=
dŷ(Ts)

dx̂[0]

= CBx(Ts) (7.25)

Dη(Ts) :=
dŷ(Ts)

dη
= CBη(Ts) (7.26)
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7.2.3 Network training algorithm

Training produces the optimal connection weights for the networks by minimizing

a quadratic cost function of the errors between the neural network output and the

plant output over the entire set of samples. Among many network training algo-

rithms, Levenberge-Marquardt (LM) algorithm [Mar63] is known to be a robust and

fast gradient method because of its second-order converging speed without having to

compute the Hessian matrix. For this reason, the LM algorithm is combined with the

sensitivity algorithm using AD described above for the dynamic network training.

Assuming the dynamic system (7.1) is initially at steady-state and introducing a set

of random inputs to the system, the outputs of the plant are then collected with the

inputs for N sampling points at sampling rate Ts. The unknown network parameters

θ are estimated from the input-output data set by minimizing the sum of squared

approximation errors, i.e.

min
θ

Φ = min
θ

1

2

N∑
i=0

eT
i ei (7.27)

where, ei is the error between the actual plant output and the network output at i-th

sampling point which is a function of the model parameter vector given by:

ei ≡ ei(θ) = ŷ(ti, θ)− y(ti), i = 1, 2, · · · , N (7.28)

Let:

E(θ) =
[
eT
1 · · · eT

N

]T
(7.29)

The nyN × nθ Jacobian matrix of E is defined as

J(θ) :=
∂E(θ)

∂θ
(7.30)

Then, the gradient of Φ is J(θ)E(θ), whilst the Hessian of Φ can be approximated as

JT (θ)J(θ). The training algorithm based on the nonlinear least square approach of

Levenberg–Marquandt [Mar63] is:

θk+1 = θk −
[
J(θk)

T J(θk) + µI
]−1

J(θk)
T E(θk) (7.31)

where, θk+1 is an updated vector of weights and biases, θk the current weights and

biases, and I the identity matrix. When the scalar µ is zero, this is a quasi-Newton ap-

proach, using the approximate Hessian matrix, JT J . When µ is large, it is equivalent

to a gradient descent method with a small step size. Quasi-Newton method is faster

and more efficient when Φ is near the error minimum. In this way, the performance

function Φ will always be reduced at each iteration of the algorithm.
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The Jacobian matrix can be partitioned into N blokes as:

J(θ) = [JT
1 (θ) · · · JT

N(θ)]T (7.32)

where each block is an ny × nθ matrix as:

Ji(θ) =
∂ei(θ)

∂θ
=

∂ŷ(ti, θ)

∂θ
= C

∂x̂(ti, θ)

∂θ
(7.33)

For accurate and fast calculation of the sensitivity equations required for the Jacobian

matrix above, the method described in the previous section is adopted here. Note that,

η is replaced by the network parameters vector θ in this case.

For given η[0], x̂(k + 1) := x̂(tk+1), and ŷ(k) := ŷ(tk) are iteratively determined from

x̂(0) = [yT (0),01×(nx̂−ny)]
T using (7.22). Then the value of Jk(θ) = dŷ(k)/dη[0] can be

calculated using (7.19) and (7.23) – (7.26) as:

Bθ(0) = 0 = Bθ[0](0) (7.34)

Bx(k) = I +
d∑

i=1

Bx[i](k − 1) (7.35)

Bθ(k) = Bθ(k − 1) +
d∑

i=1

Bθ[i](k − 1) = Bθ[0](k) (7.36)

Dθ(k) = CBθ(k) = Jk(θ) (7.37)

Hence, with AD, the nonlinear training problem can be efficiently solved using the

NLSQ method.

7.2.4 Model Validation

Many model validity tests for nonlinear models have been developed [ZM99], for

example, the Akaike information criterion (AIC), the statistical χ2 tests, the predicted

squared error criterion, and the higher–order correlation tests.

The most common method of validation is to investigate the residual (prediction

errors) by cross validation on a test data set. A number of such tests, including au-

tocorrelation function of the residual and cross–correlation function between controls
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and residuals. If the identified model based on CTRNN is adequate, the prediction

errors should satisfy the following conditions of high–order correlation tests [BVS86]:

Ree(τ) = E[e(t− τ)e(t)] = δ(τ), ∀τ (7.38)

Rue(τ) = E[u(t− τ)e(t)] = 0, ∀τ (7.39)

where Rxz(τ) indicate the cross-correlation function between x(t) and z(t), e is the

model residual. These tests look into the cross-correlation amongst model residuals

and inputs. Normalization to give all tests a range of ±1 approximate the 95% confi-

dence bounds, makes the tests independent of signal amplitude and easy to interpret

[BVS86]. If these correlation tests are satisfied then the model residuals are a random

sequence and are not predictable from the model inputs. This provides additional

evidence of the validity of the identified model.

7.3 NMPC Algorithm using Taylor Series

Once the CTRNN has been trained, the network can be used as an internal model of

a predictive controller. The recurrent neural network generates prediction of future

process outputs over a specified prediction horizon P , which allows the performance

criterion of the predictive controller to be minimized. Note that the same objective

function and variables constraints of the NMPC algorithm presented in chapter 4 is

used here, except that, the ODEs of system (4.2) is replaced by the steady–state

CTRNN equations (7.2), and the state variable x is replaced by the network state

variable x̂ as follows;

min
U≤U≤U

V (U) =
1

2
ET (U)E(U) (7.40)

s.t. ˙̂x(t) = f̂(x̂(t), u(t)), t ∈ [t0, tP ] (7.41)

ŷ(t) = Cx̂(t) + do,k (7.42)

x̂(t0) = x̂(0), x̂(k) := x̂(t0 + kTs)

E(U) =
[
e(1)QT · · · e(P )QT , ∆u(1)ST · · ·∆u(M)ST

]T
(7.43)

eQ(k) := Q1(k)(ŷ(k)− r(k)), k ∈ [1, P ] (7.44)

∆u(k)S := S1(k)1/2∆u(k) (7.45)

where U , U , U , ∆u, Q, S, Q1, S1, and S are defined in chapter 4, and do(k + i) =

do(k) = do,k for i = 1, · · · , P , is an output integrated disturbance vector (proposed in
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chapter 6) used here for offset free control. The prediction horizon [t0, tP ] is divided

into P intervals, t0, t1, · · · , tP with ti+1 = ti + Ts,i and
∑P−1

i=0 Ts,i = tP − t0. For

piecewise constant control, assume the optimal solution to (7.40) is u(t) ≡ u(tk) =

u(k) for tk ≤ t ≤ tk+1, k = 0, · · · , P − 1. Then, only the solution in the first interval

is to be implemented and whole procedure will be repeated at next sampling instant.

7.3.1 Jacobian Matrix Calculation

To efficiently solve the optimal control problem (7.40), the same strategy descried in

section 7.2.2, is used here.

Since the independent variables in this case are the control signals, the variable η in

Eqs. (7.5)–(7.26) will be replaced by u.

Let u(k), be input coefficient at t = tk, and U ∈ Rnu×P be;

U := [uT (0) · · ·uT (P − 1)]T (7.46)

For given u(k), x̂(k + 1) := x̂(tk+1) and ŷ(k) := y(tk) are iteratively determined from

x̂(k) using (7.16). Hence (7.40) can be represented in discrete form;

min
U≤U≤U

V (U) =
1

2
ET (U)E(U) (7.47)

s.t. ˙̂x(k + 1) = f̂(x̂(k), u(k)), x̂(0) = x̂[0] (7.48)

ŷ(k) = Cx̂(k), k ∈ [0, P − 1] (7.49)

Problem (7.47) is a standard NLP problem which can be solved by any modern NLP

solvers with P × nu degrees of freedom. In this work the nonlinear least square

method is used. The Jacobian matrix (i.e. the first order derivatives of E against U)

can be obtained using (7.25) and (7.26) repeatedly. More specifically, define dŷ(k)
dU

=[
dŷ(k)
du(0)

· · · dŷ(k)
du(P−1)

]
. Then,

dy(k)

du(j)
=


0 k ≤ j

Du(j + 1) k = j + 1

Dx(k)Bx(k − 1) · · ·Bx(j + 2)Bu(j + 1) k > j + 1

(7.50)

where, Bu and Du matrices have the same definition as the Bη and Dη matrices in

equations (7.24) and (7.26) respectively, after replacing the term η by u.
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For MPC with moving horizon, M < P , i.e. u(k) = u(M − 1), k = M, · · · , P − 1, the

derivatives against uM−1 is a summation of derivatives against uk, k = M−1, · · · , P−
1, i.e. d/du(M − 1) = ΣP−1

k=M−1d/du(k).

Hence, using AD the nonlinear model predictive control problem can be efficiently

solved by any modern NLP software. In this work NLSQ method is used to solve the

optimization problem while ADOL–C is the AD package in C++ langauge.

7.4 Example 1: Evaporator Process

7.4.1 System Identification Using CTRNN

Many researchers, [KGW00, GKW00] have studied the evaporator system to demon-

strate the modelling capability of the CTRNN in the form of the non–autonomous

system ẋ = f(x) + Bu. In this section, the evaporator is approximated using the

proposed CTRNN as the system (7.4). The identification scheme assumes that the

plant model equations are unknown and the only available information is the input-

output data which is generated through various runs of the first–principle model of

the plant (A.1) by [NL89]. Two different structures of the CTRNN are studied to

model the process. The first network (Net1 ) was trained with nx̂ = ny = 3, and

nh = 8 (nθ = 83), while the second one (Net2 ) was trained with nx̂ = 5 and nh = 8

(nθ = 117). The training was carried out repetitively over the data collected within

a fixed time interval of 500 minutes and sampled at every 0.2 minutes. The inputs

training data was random pulses with a different amplitude and durations with the

range chosen to cover all the region of operation of the plant and the expected length

of the prediction horizon (see Figure 7.2). Another set of data at sampling time 0.05

minutes is randomly generated from the plant to be used for network validation. The

output data are corrupted with a normally distributed zero mean noise with variance

5% of the steady state values of the output variables. The initial values of the first

ny network states were chosen equal to the steady state values of the plant outputs

while the (nx̂ − ny) remaining states were set equal to zero. The three sets of data

were normalized within ±1 to ensure that the data fall in the range of the nonlinear

tanh-sigmoid activation function of the hidden neurons.

To examine the CTRNN capability for evaporator model approximation, the actual

plant output and the trained neural networks output are compared in Figure 7.3 and

Figure 7.4. A good model fitting is observed for both networks with approximately
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similar accuracy with the training data. In terms of model validation, Net1 is better

than Net2 as shown in Figure 7.4. This means that increasing the network states

dimension does not necessarily improve the model fitting. Sometimes networks with

high order could include undesirable eigen values which may induce unstable or poor

performance. Net1 is chosen as a result as the internal model for the predictive

controller for accurate and fast online calculations. Also, the validation results show

the capability of the network to approximate the plant output with a sampling time

less than that used in the training, without the needed to re-train the network. In

fact, this is one of the most important advantages of CTRNNs over discrete-time

recurrent networks.

Also, as a confidence test of the resulting model, the correlation–based model valida-

tion results for the CTRNN model can be calculated according to equations (7.38)

and shown in Figure 7.5. The dotted lines in each plot are the 95% confidence bounds

(±1.96/
√

500). It can be seen that only a small number of points are outside the

bounds. This demonstrates that the model can be considered as being adequate for

modelling this plant.

To solve the training problem, a total nx̂×N×nθ = 3×2500×83 = 622500 sensitivity

variables need to be calculated in addition to the original 3 ordinary differential equa-

tions of Net1. For Net2, the number of sensitivity is 5 × 2500 × 117 = 1462500. To

demonstrate the efficiency of the new algorithm, it is compared with the traditional

sensitivity equation integrating approach using a typical numerical ODE solver, e.g.

the MATLAB function ode23.

To compare the computation time associated with a given accuracy, a reference so-

lution is produced using ode23 solver and setting the error tolerance to 10−14. Then

with four tolerance settings, (10−3, 10−6, 10−8, 10−10) and four different Taylor series

orders (3, 6, 8, 10), computation time and accuracy against the reference solutions

using two different approaches are compared in Table 7.1. Note that the computation

time in Table 7.1 is the time required to calculate the cost function and the sensitivity

variables over one optimization iteration. While the error term in the same table is

the maximum absolute error against the reference solution. The table shows that

training algorithm using AD perform better than the traditional sensitivity approach

in both efficiency and accuracy. It can be seen that the order of Taylor series plays

an important role in error control. Increasing the order by a small number, the error

would be reduced by an order of magnitude with only small increase in the computa-

tion time. However, using traditional approaches, significant computation time may

have to be traded off for a reduction in computation error.

Nonlinear Model Predictive Control using Automatic Differentiation



7.4 Example 1: Evaporator Process 117

Table 7.1: Computing Time and Accuracy Comparison/Evaporator

Traditional Sensitivity Approach

Tolerance Net1 : (nx̂ = 3) Net2 : (nx̂ = 5)

Time, sec Error Time, sec Error

1e-3 13.859 0.555 48.328 4.7175

1e-6 45.046 0.0153 257.454 0.1351

1e-8 69.437 4.0183e-4 434.547 8.973e-4

1e-10 77.906 1.1103e-8 580.125 1.3316e-5

ADOL–C Software

Actual Order Net1: (nx̂ = 3) Net2: (nx̂ = 5)

Time, sec Error Time, sec Error

3 2.609 3.276e-5 3.11 1.396e-4

6 4.031 2.095e-10 5.281 1.7862e-9

8 5.207 1.136e-13 6.875 1.2301e-12

10 6.813 8.881e-16 8.875 5.6843e-14

All tests are done on a Windows XP PC with an Inetl Pentium-4 processor running at

3.0 GHz. The proposed algorithm is implemented in C using ADOL-C and interfaced

to MATLAB via a mex wrap.

7.4.2 Evaporator Control Using NMPC

The NMPC algorithm descried in section 7.3 and the new offset removal approach

using output disturbance adaptation method is used to control the evaporator system.

The design parameters chosen after an online tuning are as follows: sampling time

Ts = 1 minutes, prediction horizon P = 7 time steps (7 minutes), and control horizon

M = 4 time steps (4 minutes).

The control signal change weighting matrix S is set to I and the output weighing

matrix Q is initially set to be the inverse of the output error bounds. After online

tuning, the final values is Q = diag(1000, 500, 200), and the do model constants are

chosen as K1 = diag(0.2, 0.5, 0.1), K2 = diag(1, 0.5, 1), and ess,max = −ess,min =[0.5 1

1].

By using piecewise constant input, the result NLP problem has nu×M = 12 degrees
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Figure 7.2: Training data set, Inputs, 4t = 0.5 min.
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Figure 7.3: Training data set, Outputs, 4t = 0.2 min.

Nonlinear Model Predictive Control using Automatic Differentiation



7.4 Example 1: Evaporator Process 119

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6
L 2  (

m
)

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

X
2 (

%
)

0 50 100 150 200 250 300 350 400 450 500
20

40

60

80

P
2  (

kP
a)

Time (minutes)

Actual output
Network 1 output
Network 2 output

Figure 7.4: Validation data set, Outputs, 4t = 0.05 min.
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Figure 7.5: Evaporator model validation tests (validation data set)
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Figure 7.6: Evaporator performance during unmeasured disturbance as -30% step

change in F1 at t = 2 minutes using NMPC based on CTRNN, 4t = 1 min.

of freedom. To solve the NLP problem of the NMPC, a total (nx̂ × P )× (nu ×M) =

252 sensitivity variables have to be calculated in addition to original 3 ODEs of the

neural network. In this work, the sensitivity equations are solved using the sensitivity

algorithm of section 7.3.

The control system is subject to the following tests. In the first test, an unmeasured

non–zero mean disturbance of a -30% step change in the nominal value of the flowrate

F1 is applied to the process at t = 2 minutes. Figure 7.6 show a comparison in the

system performance using NMPC with output integrated disturbance do and with-

out. The results indicate the importance of using the disturbance do to enhance the

predictive controller robustness in the presence of model/plant mismatch.

In a setpoint tracking test, ramp changes of X2 from 25% to 15% and P2 from 50.5 kPa

to 70 kPa are assumed. Then, at t = 60 minutes, an unmeasured disturbance, a step

change in F1 about −30% of its nominal value is injected to the process to test the

disturbance rejection performance of the NMPC controller. Simulation results of the

setpoint tracking plus unmeasured disturbance rejection test are shown in Figure 7.7.

The results show that the NMPC managed to force the measured outputs to follow

the setpoints quite well without any offset error or input constraints violation.
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Figure 7.7: Evaporator performance during ramp setpoint tracking, and unmeasured

step disturbance in F1 at t = 60 min. using NMPC based on CTRNN, 4t = 1 min.

To demonstrate the efficiency of the new NMPC algorithm using AD tool the following

cases are compared; C1 (for first–order approximation of sensitivity equations with

AD), and C2 (for sensitivity calculations using Taylor series expansion with AD), the

computational time is compared with two other NMPC controllers (Table 7.2); C3

using MATLAB ode23 solver plus a perturbation to get the sensitivity and C4 using

AD to solve the differential equations but with perturbation to get sensitivity. Table

7.2 shows that the differential equation solver using AD reduced computational time

(i.e. the total simulation time for the setpoint changes test shown in Figure 4.4)

approximately by an order of magnitude (comparing C2 with C1 and C3 with C4)

and (nyP × nuM) sensitivity variables calculation using AD saves another order of

magnitude in time (comparing C2 with C4 and C2 with C3). For differentiation using

the perturbation approaches, the computational time is very sensitive to the number

of independent variables (C3 and C4) whilst for AD approaches, it is insensitive in

this case study (C1 and C2).
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Table 7.2: Total Simulation Time (sec) Comparison

Controller Parameters C1 C2 C3 C4

P = 5, M = 2 16.719 4.125 48.64 8.203

P = 10, M = 5 18.875 4.3910 115.86 13.328

P = 50, M = 10 42.0 17.484 395.891 129.968

7.5 Example 2: Two CSTR Process

To test the proposed CTRNN generality to approximate nonlinear process models for

NMPC schemas, the two–CSTR/S2 has been chosen as an additional application.

7.5.1 System Identification Using CTRNN

The identification scheme assumes that the plant model equations are unknown and

the only available information is the input-output data which is generated through

various runs of the first principle–model of the plant (B.1) descried in [HPB94]. The

CTRNN is trained with nh = 6, nx̂ = 6. The training was carried out repetitively

over the fixed time interval [0, 600] seconds and sampling time equal 0.1 seconds to

minimize the performance index (7.27). The training data sets are given in Figures 7.8

to 7.9. The initial values of the first two states of the network were chosen equal to

the nominal values of the two tanks output temperature (= 362.995 Ko), while the

other four states were set equal to zero. Also, a measurement noise with a normally

distributed, zero mean, and variance 2.5% of the steady state values of the output

variables was added to the plant outputs. The network capability to approximate the

two–CSTR dynamic response were demonstrated by the validation results shown in

Figures 7.9 to 7.11. Note that the sampling time of the first validation data set is

equal to the training data sampling time (i.e. 0.1 second), while the second data set

was sampled at 0.02 second to demonstrate the network approximation capability at

different sampling rates.

The correlation–based model validation results for the two–CSTR model were calcu-

lated according to equations (7.38) and shown in Figures 7.12 to 7.13. The dash–lines

in each plot are the 95% confidence bounds (±1.96/
√

600). It can be seen that only a

small number of points are slightly outside the given bounds. This demonstrates that

the model can be considered as being adequate for modelling this plant.

In the network training step, the number of the sensitivity variables equal to nx̂×N×
nθ = 6× 6000× 96 = 3456000. The proposed training algorithm is used to train the
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Figure 7.8: Training data set, Inputs, 4t = 0.1 sec.
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Figure 7.9: Training data set, Outputs, 4t = 0.1 sec.
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Figure 7.10: Validation data set, Outputs, 4t = 0.1 sec.
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Figure 7.11: Validation data set, Outputs, 4t = 0.02 sec.
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Figure 7.12: Two–CSTR model validation tests (validation data set), 4t = 0.1 sec.
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Figure 7.13: Two–CSTR/S2 model validation tests (validation data set), 4t = 0.02

sec.
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network and its efficiency is compared with the traditional sensitivity approach (i.e.

ode23 MATLAB solver) as given in Table 7.3. The results show a big time saving

with a high accuracy level using the new training algorithm.

7.5.2 Controller Design

The control problem is to maintain both tank temperatures To1 and To2 at the desired

values in the presence of ±10Ko cooling-water temperature fluctuations (TCW1 and

TCW2 ). Also, the controller should be able to control the process during a setpoint

change. The two tests should be performed in the presence of actuator constraints

which are; 0.05 ≤ QCW1 ≤ 0.8, and 0.05 ≤ QCW2 ≤ 0.8 respectively. The NMPC

design parameters after online tuning have been chosen as follows; sampling time Ts =

0.1 sec, P = 5 time steps , M = 2 time steps, S0 = I, and Q0 = diag(100, 50), and for

do model, K1 = diag(0.5, 0.5), K2 = diag(0.8, 1.5), ess,max = −ess,min = [0.2 0.2]).

Simulation results during unmeasured disturbances rejection test (±10oK step change

in Tcw1 and Tcw2 at t = 2 sec) with the above configuration are shown in Figures 7.14–

7.15 respectively. The results show a comparison between the system response when

the difference between the plant and CTRNN output is added to the predicted out-

put as an output disturbance, and the system response when the output integrated

disturbances (i.e. do is added to the model output). Both controllers succeeded in

rejecting the unmeasured non–zero mean disturbances without any input constraints

violation or offset error, but the latter controller results in a shorter response time and

smaller peak than the first controller does. Figure 7.16 show the system performance

for the setpoint change test using the two NMPC strategies of the previous test. A

good sepoint tracking is observed without input constraints violation.

To demonstrate the efficiency of the new NMPC algorithm; C1 (for first–order ap-

proximation of sensitivity equations with AD), and C2 (for sensitivity calculations

using Taylor series expansion with AD), the total computation time (plant with con-

troller simulation time until t = 20 sec) of two–CSTR/S2 system at unmeasured

disturbance test (positive step change of Tcw1 and Tcw2) is compared with two other

NMPC controllers (see Table 7.4); C3 using MATLAB ode23 solver plus perturbation

to get sensitivity and C4 using AD to solve the differential equations but with pertur-

bation to get sensitivity. Table 7.4 shows that the differential equation solver using

AD reduce computational time by more than one half times (comparing C2 with C1

and C3 with C4) and (nyP × nuM) sensitivity variables calculation using AD saves

another order of magnitude in time (comparing C2 with C4 and C2 with C3). For
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differentiation using perturbation approaches, the computational time is very sensi-

tive to the number of independent variables (C3 and C4) whilst for AD approaches,

it is insensitive in this case study (C1 and C2).
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Figure 7.14: Two–CSTR/S2 response at unmeasured disturbance test (+10 oK step

change in Tcw1 and Tcw2 at t = 2 sec) using; NMPC with output disturbance as

the difference between the plant and the CTRNN model (dashed lines), NMPC with

output integrated disturbance (solid lines).

Table 7.3: CTRNN Training for two–CSTR/S2 process, Computing Time and Accu-

racy Comparison

Traditional Sensitivity Approach ADOL–C

Tolerance Time, sec Error Actual Order Time, sec Error

10−3 40.61 1.5899 3 2.437 0.001

10−6 162.281 0.0738 6 4.078 1.562e-7

10−8 272.657 4.551e-4 8 5.391 2.606e-10

10−10 316.375 1.864e-6 10 6.937 1.0729e-12
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Figure 7.15: Two–CSTR/S2 performance at unmeasured disturbance test (-10 oK

step change in Tcw1 and Tcw2 at t = 2 sec) using; NMPC with output disturbance as

the difference between the plant and the CTRNN model (dashed lines), NMPC with

output integrated disturbance (solid lines).
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Figure 7.16: Two–CSTR/S2 performance during setpoint tracking test
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Table 7.4: NMPC for two–CSTR/S2, Simulation Time (sec) Comparison

Controller Parameters C1 C2 C3 C4

P = 5, M = 2 16.25 7.782 26.047 9.078

P = 10, M = 2 19.312 8.563 48.359 18.079

P = 10, M = 5 23.984 10.609 102.891 33.219

P = 50, M = 10 115.063 43.765 802.61 318.75

7.6 Summary

This chapter demonstrates the application of the proposed NMPC algorithm to the

case of black box processes. The process is modelled first using a continuous–time

artificial neural network. An algorithm has been proposed to train a continuous-

time recurrent neural network to approximate a nonlinear dynamic systems given as

a black box, so that the trained network can be used as the internal model for a

nonlinear predictive controller. The new training algorithm is based on the efficient

Levenberge Marquardt method combined with another efficient and accurate tool,

automatic differentiation. Based on the identified neural network model, a NMPC

controller has been constructed. The same strategy that was used in the network

training was used to solve the online optimization problem of the predictive controller.

The evaporator process and the two–CSTR/S2 process are chosen as a case studies to

test the new system identification method and the NMPC algorithm with satisfactory

results.
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Chapter 8

MPC for the ALSTOM Gasifier

Benchmark Problem

8.1 Introduction

The ALSTOM gasifier is chosen in this chapter as a new case study. The process has

been issued by ALSTOM Power Technology Center as a benchmark challenge. Its

importance comes from the fact that it is in the heart of the clean energy program for

producing gas from underground coal deposits. Linear and nonlinear MPC algorithms

are developed here to control the benchmark problem. The process model is provided

in the form of a Simulink black–box in MATLAB. The internal model required for

the predictive controller must be constructed via system identification as a first step.

LMPC based on the state–space formulation is examined first to control the plant.

Then, an extension to NMPC via Wiener model linearizion is considered. Of all three

operating points of the plant, 0% load is identified as the most difficult case to con-

trol. Hence, a linear model of the plant at this load is adopted as the base model for

prediction in the case of using the LMPC. Due to this choice, the control system com-

fortably achieves performance requirements at the most difficult load condition. The

convex quadratic programming (QP) routine is used to solve the online optimization

problem. Meanwhile, the case study shows that the model is also adequate for other

load conditions to pass all tests specified in the benchmark problem.1

A further performance improvement is obtained when the LMPC algorithm is ex-

tended to NMPC one via model linearization. In this case, a partially nonlinear

1Most of material in this chapter is the subject of published papers e.g. [ACY04, ACY06, ASC05a,
ASC05b].
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state–space class Wiener model is used to identify the process model. The dynamic

part of the Wiener model is chosen as the same as the linearized model at 0% load.

In the static part of the model, a FFNN is created for a particular output channel,

fuel gas pressure, to compensate its strong nonlinear behavior observed in open-loop

simulation. By linearizing the neural network model at each optimization problem,

the static nonlinear gain provides certain adaptation to the linear base model. The

AD tool is used efficiently in the linearizion of the FFNN. Noticeable performance im-

provement is observed by comparing with pure linear model based predictive control.

Both MPC algorithms use standard formulation and off-the-shelf software with a few

tunable parameters. Thus, it is easy to implement and to tune to achieve satisfactory

performance.

8.2 The ALSTOM Gasifier

8.2.1 Gasification

Power generation is responsible for a significant part of the total emission of solid,

liquid and gaseous pollutants in Europe. Due to the predicted long–term high avail-

ability of solid fuels, in particular coal, compared to oil and natural gas, solid fuels will

play an important part in future energy supply. Further, the demand for clean air and

stringent environmental regulations are forcing consideration of alternative technolo-

gies, with high energy conversion efficiency and reduced pollutant emissions. However,

power generation by conventional coal firing has a much greater environmental im-

pact compared to natural gas based systems. Therefore, combustion technologies have

been developed which aim at an environmentally advantageous use of coal in power

generation plants [McS97]. As a result of this, Integrated Gasification Combined

Cycle (IGCC) power plants, combining gasification with gas and steam cycles, are

being developed around the world. The gasification plant considered in this study is

based on the spouted fluidized bed gasification concept and can be considered as a

reactor where coal is gasified with air and steam to produce low calorific value fuel

gas, which then can be burnt in a suitably adapted gas turbine. In modern advanced

power generating plants, gasification helps burning coal in a new and environmentally

clean process.

As a part of the UK’s Clean Coal Power Generation Group, ALSTOM has undertaken

a detailed feasibility study on the development of a small-scale prototype integrated

plant (PIP), based on the air-blown gasification cycle. The gasifier is one component
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Figure 8.1: ALSTOM Gasifier

of the model which, as a highly coupled multi-variable system, has been found to be

particularly difficult to control [DPM00]. For this reason, together with its associated

control specification, operating constraints and various disturbance characteristics,

ALSTOM coal gasifier has been issued by the ALSTOM Power Technology Center as

a benchmark challenge in 1997 and a second round challenge in 2002.

The first round challenge included three linear models representing three operating

points of the gasifier at 0%, 50% and 100% load conditions respectively. The challenge

requires a controller to control the gasifier at three load conditions to satisfy input

and output constraints in the presence of step and sinusoidal disturbances [DPM00].

An overview and a comparison of various control approaches submitted to the first

round challenge are given in [Dix99].

None of the controllers proposed in the first round of challenge managed to meet all

the performance criteria while satisfying the specified constraints. Using MPC to

control the same plant has previously been studied at the first round of challenge (see

ref. [RRS02]). The only MPC approach proposed to the first round challenge by Rice

et al [RRS02] involved the use of a LMPC with an additional inner loop to stabilize the

process. The inner loop controller is supervised by an outer loop to handle the process

constraints. However, the attempt was not very successful in terms of satisfying all

performance specifications.

The second round of the challenge issued in 2002 extended the original problem by
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providing participants with a nonlinear simulation model of the gasifier in MAT-

LAB/SIMULINK [Dix02]. In addition to the original disturbance test, two extra

tests: load change and coal quality disturbance tests were included. Recently, a group

of control solutions for the benchmark problem were presented at Control-2004 Con-

ference at Bath University, UK in September 2004. Most of controllers were reported

as capable of controlling the system at disturbance and load change tests. However,

this was not the case for the coal quality disturbance test because of the char flow

rate saturation behavior.

8.2.2 The Gasifier Plant Details

The gasifier plant for the PIP shown in Figure 8.1 is based on the British Coal exper-

imental gasifier, making use of the spouted fluidized-bed gasification concept and can

be considered as a reactor where coal is gasified with air and steam. In simple terms

the gasification process works as described below.

Pulverized coal mixed with limestone, which captures sulphur originating in the coal,

is conveyed by pressurized air into the gasifier. The air and injected steam not only

fluidize the solids in the gasifier but also react with the carbon and volatilize from the

coal, producing a low calorific value fuel gas (approximately 4.6 MJ/kg or 12 per cent

of that of natural gas). The remaining char (ash from coal, limestone and un–reacted

carbon) is removed as bed material from the base of the gasifier as elutriated fines

with the product gas. Under certain circumstances as much as 70 per cent of the total

char off-take may leave the gasifier as elutriated fines [GBP04].

A schematic of the plant is shown in Figure 8.2. The gasifier is a 5×4, MIMO nonlinear

plant. The controllable inputs are; flow rates of char extraction, coal, air, steam,

and limenstone, and the output variables are; gas quality, bed-mass, pressure, and

temperature. One of the inputs, limestone mass (WLS) is used to absorb sulphur in

the coal and its flow rate is set to a fixed ratio of 1:10 against another input (WCOL).

This leaves effectively 4 degrees of freedom for the control design. The plant inputs

and outputs with their limits are given in Tables 8.1 and 8.2, respectively.

8.2.3 Black Box Model

The coal gasifier model was developed using the Advanced Continuous Simulation

Language(ACSL) [Adv99]. Then it is transferred to MATLAB/SIMULINK to facil-

itate the design and evaluation of control law [DP04]. All the significant physical
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Figure 8.2: A simple diagram of the gasifier process

Table 8.1: Output variables and limits

Allowed Steady state values
Outputs Description Fluctuations 100% 50% 0%

CVGAS (MJ/kg) Fuel gas clarification ± 0.01 4.36 4.49 4.71
MASS (kg) Bed mass ± 500 10000 10000 10000
PGAS (N/m2) Fuel gas pressure ±1× 104 2.0×106 1.55×106 1.12×106

TGAS (K) Fuel gas temperature ± 1.0 1223.2 1181.1 1115.1

Table 8.2: Input variables and limits

Maximum Peak Steady state values
Inputs Description Value Rate 100% 50% 0%

WCHR (kg/s) Char extraction 3.5 0.2 kg/s2 0.90 0.89 0.50
WAIR (kg/s) Air flowrate 20 1.0 kg/s2 17.42 10.89 4.34
WCOL (kg/s) Coal flowrate 10 0.2 kg/s2 8.55 5.34 2.136
WSTM (kg/s) Steam flowrate 6.0 1.0 kg/s2 2.70 1.69 0.676
WLS (kg/s) Limestone flowrate 1.0 0.02 kg/s2 0.85 0.53 0.21
PSINK (N/m2) Sink pressure – – 18.5e5 14.8e5 11.1e5

effects are included in the model (e.g. drying processes, desulphurization process, py-

rolysis process, gasification process, mass and heat balances) and it has been validated

against measured time histories taken from the British Coal CTDD experimental test

facility. More detail concerning the model can be found in [Dix02].

The foundation of the model is a black box C–code s–function, which is included

within a SIMULINK block diagram (see Figure 8.3). Other nonlinear inputs for the

Nonlinear Model Predictive Control using Automatic Differentiation



8.2 The ALSTOM Gasifier 135

Auto Run Blocks
Double click to execute

appropriate m-files

Control Inputs (ut):
wschr
wair

wscol
wstm
wsstn

Disturbance: 
Psink

Boundary Cond:          
Wcon
Tair

Controlled Outputs (y t):
CV ( hcgas)

          Bedmass (msolgf r)
     Pressure (Pgas)

          Temperature (Tgas)

Others:                
         Load Point [%]

up

ldsp

tsim

ut

sp

psink

ld

yt

 % Load 

Setpoints

Psink

Bound Con

Load supervise & 
boundary condition 

set-up

Load 
Ramp

Control I/P

Psink

B.Cons

Coal Flag

Controlled O/P

% Load Point

Gasifier

disturb

Downstream pressure
disturbance set-up

Setpoints

measured outputs

Control

Controller
- bedmass controller and

shell for other control loops

Coal Quality 
Disturbance [change %]

Clock

Do Step disturbance
test at initialised load

Plot Results

Do Sine disturbance
test at initialised load

Plot Results

Do Ramp test
between 50-100% load

Plot Results

Run and Plot Steady
 State Inputs & Outputs

Initialise
Model Parameters

 0% Load

Initialise
Model Parameters

 50% Load

Initialise
Model Parameters

 100% Load

In Out

Actuator
Constraints

Multi-loop PI
Controller

Gasifier
black box model

Figure 8.3: The baseline Simulink model of the gasifier (provided by ALSTOM com-

pany)

model include boundary condition (to allow manoeuvres to different operating points),

a disturbances input, sink pressure (PSINK) which represents the pressure upstream

of the gas turbine which would vary according to the position of the gas turbine fuel

valve, and a coal quality input. At the various operating conditions the steady-state

conditions for the nonlinear model are given in Tables 8.2 and 8.1 respectively.

The full model of the gasifier has 25 states and the aim of the benchmark challenge

is to design a controller to work with the given nonlinear SIMULINK model as the

gasifier plant, to satisfy the control performance.

Two models were provided for the challenge: one open–loop with a simple bed–mass

control to avoid the system drifting from steady state, and the other, with a PI multi–

loop controller which is provided to demonstrate a baseline performance as shown in

Figure 8.3. The multi-loop PI controller was able to control the system in most of

the required tests except in the case of sine wave disturbance test at 0% load since an

upper constraint violation happened in PGAS output variable as shown in Figure 8.4.
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Figure 8.4: Output response to sinusoidal disturbance at 0% load using multi–loop

PI controller.

8.3 Control Specification

The aim of this benchmark is to design a controller using the nonlinear black box

model as the plant, to satisfy the following performance specification:

• All the system variable limits must not be exceeded when step or sine wave

PSINK disturbance are applied.

• The robustness of the controller determined at one load condition is to be eval-

uated at other load conditions during the PSINK disturbance tests.

• The plant should be driven to a number of operating (load change test) and the

stability of the plant over the working range should be satisfied.

• Control the system when the coal quality input changes by ±18%.

8.4 Linear MPC Attempts

Linear models with linear constraints and quadratic objective function results in a

convex optimization problem easily solvable using QP. In this section, a linear MPC
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approach based on the state–space formulation is implemented to control the AL-

STOM gasifier as a first trial.

8.4.1 LMPC formulation

Assume that the plant considered has manipulated input, ũ ∈ Rnu and measured

output, ỹ ∈ Rny , which have steady-state values, ũ0 and ỹ0 at the nominal operating

point respectively. Around the operating point, the dynamic behavior of the plant

can be approximated by the following linear discrete-time state-space equations:

x(k + 1) = Ax(k) + Bu(k) (8.1)

y(k) = Cx(k) + d(k)

where; k, stands for kth sampling time, u(k) = ũ(k) − ũ0, and y(k) = ỹ(k) − ỹ0,

are deviation variables, d(k): the virtual disturbance estimated at output, x(k), the

internal state of the model.

The model and plant are assumed to be coincident at the nominal operating point

with x(0) = 0, u(0) = 0, y(0) = 0 and d(0) = 0. At the kth sampling time, with

currently measured output, ym(k) = ỹ(k) − ỹ0 and current state, x(k), the future

output within the prediction horizon, P can be estimated from the future input (to

be determined within the moving horizon, M), u(k) as follows: assuming

d(k + i) = dk = ym(k)− Cx(k), for i = 1, . . . , P (8.2)

then

Y = ΦU + Ψx(k) + Ldk (8.3)

where:

Y =
[
yT (k + 1) · · · yT (k + P )

]T
(8.4)

U =
[
uT (k) · · · uT (k + M − 1)

]T
(8.5)

Φ =


CB 0 · · · 0

CAB CB · · · 0
...

... · · · ...

CAP−1B CAP−2B · · ·
∑P

i=M CAP−iB

 (8.6)
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Ψ =

 CA
...

CAP

 (8.7)

L =

I
...

I

 (8.8)

Future input, U is determined to follow the output reference, yr(k), and the input

reference ur(k) = G−1
0 (yr(k)−dk), where G0 = C(I−A)−1B. Define input and output

reference vectors as

Yr =
[
yT

r (k + 1) · · · yT
r (k + P )

]T
(8.9)

Ur =
[
uT

r (k) · · · uT
r (k + M − 1)

]T
(8.10)

Then, Ur = Λ(Yr − Ldk), where

Λ =


G−1

0 0 · · · 0 0 · · · 0

0 G−1
0 · · · 0 0 · · · 0

...
... · · · ...

... · · · ...

0 0 · · · G−1
0 0 · · · 0

 (8.11)

︸ ︷︷ ︸
M

︸ ︷︷ ︸
P−M

The optimization problem is to minimize the performance cost:

J = 0.5(Y − Yr)
T Q(Y − Yr) + 0.5(U − Ur)

T R(U − Ur) (8.12)

s.t. u ≤ u ≤ u

|u(k + 1)− u(k)| ≤ δu

where, output and input weighting matrices, Q and R are positive definite and u, u

and δu are the lower, upper and maximum rate bounds of the input respectively.

Using the predictive equation (8.3), the optimization problem is equivalent to a stan-

dard quadratic programming (QP) problem:

J = 0.5UT SU + UT (X1x(k)−X2(Yr − Ldk))

s.t. U ≤ U, − U ≤ −U (8.13)

FU ≤ ∆u + Zu(k − 1)

−FU ≤ ∆u − Zu(k − 1)
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where, u(k − 1) is the previous input, and other variables are defined as follows.

S = ΦT QΦ + R (8.14)

X1 = ΦT QΨ (8.15)

X2 = ΦT Q + RΛ (8.16)

U =
[
uT · · · uT

]T
, U =

[
uT · · · uT

]T
(8.17)

∆u =
[
δT
u · · · δT

u

]T
(8.18)

F =


I 0 · · · 0 0

−I I · · · 0 0
...

... · · · ...
...

0 0 · · · −I I

 (8.19)

Z =
[
I 0 · · · 0

]T
(8.20)

Note, in the above formulation, output constraints are neglected to simplify the al-

gorithm and to fully use the plant capability. The QP problem (8.13) is efficiently

solvable by off-the-shelf software. The only tunable parameters in the above formula-

tion are Q, R, P , M and the sampling time. Thus, the control strategy can be easily

implemented and tuned to satisfy required performance.

In vector U , only the first nu rows, corresponds to u(k) are applied to the plant. The

whole procedure is repeated at the next sampling instance.

For the unconstrained case, the optimal solution, corresponding to a state feedback

control law, can be obtained analytically:

U = −Kxx(k) + Ky(yr − dk) (8.21)

where Kx = S−1X1 and Ky = S−1X2. Let K be the first nu rows of Kx, then the

nominal stability (perfect model without input saturation) of the closed-loop can be

checked by calculating the eigenvalue of the matrix, A−BK.

8.4.2 Controller Design

The first task to implement the control design using the above algorithm is to deter-

mine an internal model of equation (8.1). Three operating conditions are specified in

the gasifier benchmark problem to represent 0%, 50% and 100% load conditions. All

load conditions are subject to disturbance tests. Among these tests, it is observed
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that those under 0% load condition are most difficult to pass. That is understandable

because a plant at a lower load condition (small throughput) normally exhibits larger

time lagging and a larger gain. Therefore, a control system tuned under a higher load

condition will tend to be unstable (or stability margin reduced) at a lower load condi-

tion. On the other hand, a controller designed for a lower load condition is more likely

to work well without re-tuning at higher load conditions although performance might

deteriorate when compared with a re-tuned controller at higher load conditions. Since

the performance requirements at 50% and 100% load conditions are easier to achieve,

it is decided to use the 0% load point as the nominal point to get the linearized state

space model.

A linearized state space model is obtained from the nonlinear simulation model at

0% load condition. This linear model is then reduced to 16 states via pole-zero

cancellation (using Control System Toolbox functions, ssbal and minreal). The 16-

state model is then discretized with the sampling time selected as follows.

Normally, the sampling time should be less than one tenth of 2π/ωb, where ωb is

the required bandwidth of the closed-loop. The benchmark requires to reject a sine

disturbance with a period of 25 seconds (0.04 Hz). Therefore, the sampling time

should be less than 2.5 seconds. On the other hand, the sampling time should not be

too large so that in step disturbance tests, the output variables will not deviate from

setpoints more than the specified limits before the controller can start to respond.

Several open-loop tests for a step disturbance of PSINK at three load conditions are

performed. The output response results are shown in Figure 8.5. The results show

that, the worst response case is the 0% condition, where, without control, the pressure

output can only stay within specified range for a period of 1.2 seconds. Hence, the

sampling time is selected to be 1 second. This satisfies the requirements for both

disturbance tests.

The above algorithm is implemented in MATLAB as a SIMULINK s-function to

replace the control block in the nonlinear simulation model provided in the benchmark

suit. The QP problem is solved by calling quadprog of the Optimization Toolbox at

each sampling time. This is the major computation burden in the above algorithm and

is solely determined by the control horizon, M . The prediction horizon, P has little

effect on computation time, thus can be selected relatively large to benefit stability.

To tune M and P , initially let P = M . By varying M from 1 s to 12 s, a stable perfor-

mance is obtained which satisfies all control specifications for 7 s ≤ M ≤ 10 s. When

M ≥ 10 s, the improvement on the system performance is negligible but computation

time increases significantly. Therefor M = 9 s is selected, which gives a good per-
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Figure 8.5: Open-loop output response to a step disturbance at 30s at 0% (solid),

50% (dashed) and 100% (dash-dotted) load conditions.

formance in all tests. To choose a suitable prediction horizon P , a reasonable range

from the minimum value (P = M = 9 s) to P = 25 s has been tested. A stable

response without any constraint violation is found within the range 15 s ≤ P ≤ 20 s.

No performance improvement can be observed when P ≥ 20 s. Therefore P = 20 s

(the maximum value of the range) is chosen to ensure both the system stability and

satisfactory control performance are achieved within a reasonable computation time.

The weighting matrix, Q = diag(Q0, · · · , Q0), where Q0 is diagonal and initially set

to be the inverse of the output error bounds. After online tuning, the final values are:

Q0 =


0.15 0 0 0

0 100 0 0

0 0 2.1 0

0 0 0 2× 106

 (8.22)

Also, the input weighting matrix R = diag(R0, · · · , R0), where R0 is diagonal and set

to the following value after online tuning;

R0 =


105 0 0 0

0 5× 103 0 0

0 0 5× 103 0

0 0 0 104

 (8.23)
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Using the above configuration, nominal stability is achieved at all three load condi-

tions, i.e. the magnitudes of all eigenvalues of Ai − BiK are less than 1. Where, Ai

and Bi are the discrete states and control matrices at different load conditions.

One of the advantages of MPC is that future setpoint change information is incor-

porable into the QP optimization problem to improve setpoint tracking performance.

This is implemented in the gasifier controller.

8.4.3 Simulation Results

1- PSINK Disturbance Tests:

The following two disturbance tests are performed for three load conditions for 300

seconds:

1. step change in sink pressure of −0.2 bar at 30s;

2. 0.04 Hz sinusoidal variation in sink pressure of amplitude 0.2 bar beginning at

30s.

The maximum and minimum values as well as the peak rate change of the input

variables of the two tests under different load conditions are shown in Table (8.4).

The maximum absolute error between output variables and their setpoints and the

integral of absolute error (IAE) of these variables are calculated in Table (8.3). The

corresponding plots of the normalized output errors at different load conditions are

shown in Figure 8.6. The normalized error of the output variables is defined as;

ey(t) :=
|ỹm(t)− ỹr(t)|

emax

(8.24)

where, emax ∈ Rny is the maximum value of the allowed output fluctuation around

the nominal value for each plant output. All the values of ey shown in Figure 8.6 are

positive and less than one which means that there is no output constraints violation.

The corresponding plots of the normalized input variables at different load conditions

are shown in Figure 8.7. Note, the input variables are normalized using;

un(t) :=
u(t)

umax

(8.25)
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Figure 8.6: Gasifier output responses during PSINK disturbance test.
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Figure 8.8: Output response to the load setpoint change using; (1) LMPC (dashed

lines) (2) NMPC (solid lines).
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where umax is the maximum value of the input variable. No constraint violation was

detected in the manipulated variables responses.

The output response plots show that the predictive controller based on a linear model

identified at 0% load is able to maintain output variables within the limits specified

for both tests. Particularly, the performance at 0% load is significantly improved from

the one achieved by the PID configuration provided in the benchmark (see Figure 8.5).

However, this improvement is traded with the price of performance deterioration at

other load conditions. Thus, using a nonlinear model might be necessary in order to

further improve performance at all load conditions.

2- Load Change Test :

In this test, the load is required to increase from 50% to 100% within time from 100s to

700s. The actual response is collected from simulation and compared with the demand

in Figures 8.8 to 8.9. Significant improvement in the setpoint tracking performance can

be observed from the results. This improvement is due to the advantage of predictive

control to wisely use future setpoint information in the online optimization.

3- Coal Quality Change Test :

The benchmark problem includes a test of coal quality changes by ±18%. Physically,

a positive coal quality change means an increase of energy per unit coal feed. To

maintain the same level of load, it is expectable that coal feed and char outlet (ash)

will decrease at steady state due to energy balance. Similarly, a negative coal quality

change will increase coal feed and char outlet at steady state. Therefore, the feasible

range of a coal quality change is restricted by the input constraints. If a coal quality

change is beyond this feasible range, at steady-state some input saturations are in-

evitable and the control problem becomes infeasible, i.e. there is no controller which

can achieve the performance specification.

Since an analytical model is not available, the feasible coal quality range is determined

via simulation described as follows. Set the PID simulation model provided in the

benchmark by removing all actuator constraints. Then repeatedly perform simulation

until steady state by introducing a different coal quality change but without any other

disturbance. By checking the steady-state input values against their constraints the

following feasible coal quality ranges for different load conditions are identified.
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100% load −6.6% ≤ coal quality ≤ +7.1%

50% load −14.1% ≤ coal quality ≤ +11.3%

0% load −16% ≤ coal quality ≤ +18%

At the upper bounds of feasible coal quality ranges, WCHR reaches its lower bound

at steady stated, whilst at the lower bounds of the feasible ranges WCHR saturates

at its upper bound except at 100% load condition where WCOL, instead of WCHR,

becomes saturated at its upper bound. The above results show that a performance

deterioration is inevitable when a coal quality change is out of the above feasible

range. This deterioration is independent of control design because of the inherent

limitation imposed by the physical nature of the system.

Such performance deterioration is also observed for the MPC controller. It has been

identified that the predictive controller can cope with coal quality change of ±18%

for all standard disturbance tests for up to 600 seconds. For a simulation time longer

than 600 seconds, output specifications are violated in sinusoidal tests under 0% load

with a coal quality change of -18% and under 100% load with a coal quality change of

+18%. A steady state test for a longer time (for example 15000 seconds) shows that

the system cannot cope with a coal quality change either of -18% under 0% and 50%

load conditions, or +18% under 50% and 100% load conditions.

In the presence of a sinusoidal disturbance test at 100% load, for positive coal quality

change, WCHR tends to zero at t ≥ 200 s as shown in Figure 8.11. When this happens

for a sufficiently long time, the temperature starts to go up as more carbon has to be

burned to balance the high coal quality inlet (Figure 8.10). Similarly, for sufficiently

negative coal quality change, WCHR, and WCOL will be saturated at their upper

bounds. The gasification process in this case is under–combusted and the outlet gas

temperature will unavoidably drop.

8.5 NMPC via Linearization Approach

The LMPC above was able to attain all the required performance specifications within

the input and output constraints at all load conditions. In this section, it is shown

that the plant/model mismatch can be further reduced and an improvement to the

whole system performance can be obtained if a partially developed nonlinear model

is used instead of a pure linear model.

Nonlinear Model Predictive Control using Automatic Differentiation



8.5 NMPC via Linearization Approach 147

0 200 400 600 800 1000
−15

−10

−5

0

5

10

15
C

V
 (

K
J/

kg
)

                         Disturbance Response: Outputs and Limits

0 200 400 600 800 1000

−0.4

−0.2

0

0.2

0.4

0.6

M
as

s 
(t

on
ne

s)

0 200 400 600 800 1000

−0.1

−0.05

0

0.05

0.1

0.15

P
re

ss
ur

e 
(b

ar
)

Time (sec)

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

T
em

p 
(K

)

Time (sec)

Figure 8.10: Output response for +18% step change in the coal quality at 100% load
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Figure 8.11: Input response for +18% step change in the coal quality at 100% load
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Figure 8.12: Nonlinear state–space type Wiener model for the gasifier process.

For extending linear MPC to NMPC, a model is required that can represent the

salient nonlinearities but possibly without the complication associated with general

nonlinear models. The Wiener model as mentioned earlier in chapter 2, corresponds

to a process with linear dynamics but a nonlinear gain. It can adequately represent

many of the nonlinearities commonly encountered in industrial processes [?, DFL94].

Due to the static nature of their nonlinearities, they can be effectively removed from

the control problem, allowing the use of simpler linear programming algorithms. This

model can be represented by a state-space model which as a general model form has

been extensively used for control system analysis and design. In the case of ALSTOM

gasifier, the previous linear (internal) model is extended to include some of the plant

nonlinearities by developing a static nonlinear model in the form of Wiener class

configuration as shown in Figure 8.12. Linear static gains are used for three outputs,

CVGAS, MASS, TGAS, while, an artificial neural network model is created for the

forth output PGAS.

The output selection was based on the open-loop step response comparison between

the linear and nonlinear simulation model (see Figure 8.13). The results showed that

the linear model can correctly capture the dynamic behavior in three of the four

outputs for up to 30 sec (the practical range of the prediction horizon length) under

all load conditions. However, the third output PGAS exhibits salient nonlinearities
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Figure 8.13: The gasifier open-loop response to a step change in WAIR at 0% load.

which cannot be predicted by the linear model. It is also observed that the effect

of the unmeasured disturbance PSINK on the output variable PGAS is quite large,

whilst the time constant of the response is very short compared to that of other

outputs (see figure 8.13). Therefore, even for a short prediction horizon (P ≤ 20 s),

both transient and static responses of PGAS should be covered by a prediction model,

while for other outputs only transient characteristics have dominant response. Hence,

a Wiener model would not be very useful for the other variables unless a very long

prediction horizon (about 104 s) is used which is clearly not practical.

Also, the neural network static gain of PGAS is trained to capture the static response

at the three load conditions, so that, this step will reduce the performance deteriora-

tion at 50% and 100% load conditions caused by the system nonlinearity, and using

a single dynamic model (which is linearized at 0% load) for all the operating points.

The PGAS nonlinear model was then linearized at every sampling instance to provide

adaptation to the main linear controller. The partial nonlinearity compensated model

leads to considerable performance improvement as shown later.
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8.5.1 NMPC Formulation

In this case, around the operating point, the dynamic behavior of the plant can be

approximated by the following nonlinear discrete-time state-space equations:

x(k + 1) = Ax(k) + Bu(k) (8.26)

yL(k) = CLx(k) + dL,k

yNL(k) = fNN(x(k)) + dNL,k

where u, x, and y are deviation variables as defined previously. In this model, the

output variables are divided into two groups: yL(k) outputs vector corresponding

to the linear variables CVGAS, MASS, and TGAS, and yNL(k) corresponding to

nonlinear output, PGAS. The matrix CL represents the linear static gain, while fNN

is the nonlinear function modelled by a neural network. The terms dL,k and dNL,k are

the virtual disturbances estimated from the plant measurement to correct the internal

model prediction at the next optimization problem, which are given as;

dL(k + i) = dL,k = ym(k)− CLx(k), for i = 1, . . . , P (8.27)

dNL(k + i) = dNL,k = ym(k)− fNN(x(k)), for i = 1, . . . , P

The model and plant is assumed to be coincident at the nominal operating point with

x(0) = 0, u(0) = 0, y(0) = 0 and dNL(0) = 0.

The matrices A, B, and CL are obtained by linearizing the nonlinear plant model at

0% load condition. The neural network model consists of two hidden layers and one

output layer. The transfer functions of both hidden layers are the nonlinear function

sigmoid type while a linear transfer function is used for the output layer. So that,

the mathematical form of the function fNN can be represented in a vector form as :

O1(k) = σs(W1x(k) + b1) (8.28)

O2(k) = σs(W2O1(k) + b2)

O3(k) := yNL(k) = W3O2(k) + b3

where O1(k), O2(k) and O3(k) are the output values of each layer at time instant k.

The values W1, W2, and W3 are the weight parameters while b1, b2, and b3 are the

bias parameters. The function σs(·) is the sigmoid–tanh function which is defined

previously in equation (7.5).

Because the model in equation (8.26) is nonlinear, the problem is no longer quadratic

and a nonlinear programming optimizer will be needed to solve the problem, which

Nonlinear Model Predictive Control using Automatic Differentiation



8.5 NMPC via Linearization Approach 151

can not guarantee to find the global minimum of the cost function every time. In

order to obtained a convex solution by using efficient QP algorithm, and to establish

a link between it and the PGAS Wiener model, a local linearization of the neural

network model around the current states is implemented as follows.

Future predictions of output based on current measurement, yNL(k) can be approxi-

mated by the first two terms of the Taylor series expansion, for i = 1, · · · , P :

yNL(k + i) ≈ fNN(x(k)) +
∂fNN

∂x

∣∣∣∣
x=x(k)

(x(k + i)− x(k)) (8.29)

= ρ(k) + CNL(k) x(k + i) (8.30)

where:

ρ(k) := ρk = fNN(x(k))− ∂fNN(x)

∂x

∣∣∣∣
x=x(k)

x(k) (8.31)

CNL(k) := CNL,k =
∂fNN(x)

∂x

∣∣∣∣
x=x(k)

, for k ∈ [1, P ] (8.32)

The value of the function fNN(x) and its partial derivative ∂fNN(x)/∂x are calculated

simultaneously and accurately from the neural network structure in equation (8.28)

using the forward mode of AD tool, MAD Toolbox in MATLAB.

By replacing yNL in equation (8.26) by the approximated value in equation (8.29),

the term ρk is absorbed into dNL(k). This results in the following time-varying linear

state-space model to be used in predictive control:

x(k + 1) = Ax(k) + Bu(k), k ∈ [1, P ] (8.33)

y(k) = Cx(k) + d(k)

where:

y(k) =

[
yL(k)

yNL(k)

]
, C =

[
CL

CNL,k

]
, dk =

[
dL,k

dNL,k

]

The time–varying model in equation (8.33) is used to predict the future dynamic

behavior of the plant while the same steps of the cost function and the other matrices

required for the QP optimization problem from the previous LMPC algorithm are

used here too.

The neural network model is trained and tested using the train and sim functions of

the MATLAB/Neural Network Toolbox while the MATLAB MAD Toolbox [AMR00]

is used as the AD tool for the local linearization of the PGAS nonlinear model.

Nonlinear Model Predictive Control using Automatic Differentiation



8.5 NMPC via Linearization Approach 152

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−1

0

1

C
ha

r 
(k

g/
s)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−10

−5

0

5

A
ir 

(k
g/

s)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−4

−2

0

2

C
oa

l (
kg

/s
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

0

1

Time (sec)

S
te

am
 (

kg
/s

)

0% load 50% load  100% load 

Figure 8.14: Input data for training set
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Figure 8.15: Output data for training set
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Figure 8.16: Gas pressure (PGAS) output response; actual (solid lines); linear model

(dot–dashed lines); Wiener model (dashed lines).

8.5.2 Simulation Results

PGAS Wiener model identification :

The same dynamic matrices A and B of the previous internal model in the LMPC

section are used in the linear dynamic part of the PGAS Wiener model. For the

nonlinear static part of the model, the number of nodes in the first and second hidden

layers of the neural network was 16 and 10 respectively with one node in the output

layer. Data were generated through applying a zero mean normalized sequence of

random pulses with their periods and amplitudes corresponding to the maximum and

minimum expected variations and frequency in response to individual input change

under different load conditions. The input and output data sets over different loads

were then linked together and used in training and validation of the ANN (see Fig-

ures. 8.14 to 8.15). The performance of the trained PGAS Wiener model at the three

load conditions are given in Figures 8.17 to 8.16, which show the model is capable of

capturing most of the characteristic behavior of the plant.
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Figure 8.17: Open-loop step response of PGAS

2- NMPC parameters tuning :

In this case, M = 7 s, P = 17 s are chosen to get a stable and good control performance

without any constraints violation.

The weighting matrices Q0, and R0 are set to the following values after online tuning;

Q0 =


1.0 0 0 0

0 150 0 0

0 0 3.5 0

0 0 0 2× 106

 , R0 =


104 0 0 0

0 5× 102 0 0

0 0 5× 102 0

0 0 0 103



Using the above configuration, nominal stability was achieved at all three load con-

ditions. That is the magnitudes of all eigenvalues of A−BK are less than 1.

3- PSINK Disturbance Test :

All the results to follow are compared with the linear MPC. The maximum and min-

imum values as well as the peak rate change of the input variables of two disturbance
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tests under different load conditions are shown in Table 8.4. The maximum absolute

error between output variables and their setpoints and the integral of absolute error

(IAE) of these variables are calculated in Table 8.3. Figs. 8.18 to 8.23 show the system

performance at 50% and 0% load conditions. In the step disturbance test, the results

are plotted for t ≤ 100 s to present the control performance in more detail. After this

time period, all the output responses remained constant. The results in Table 8.4 and

8.3 however are calculated until t=300 s.

For 0% load sinusoidal test, the results with extra simulation time (until t=600 s)

are provided to confirm the satisfactory performance of output in meeting the given

specifications. The results show that both controllers are capable of maintaining the

output variables within the limits for the tests specified by ALSTOM. In the case

of the step disturbance test, an improvement in the whole system performance was

observed using the NMPC approach. In fact, all output variables have benefited from

using a more accurate PGAS internal model. Due to multivariable interactions, the

improvement in other output variables sometimes is even larger than that in PGAS

itself (see Figures 8.18 and 8.20). This is explained as follows. The response of

PGAS, particularly to disturbance PSINK is much faster than other output variables

(Figure 8.5). The improvement of nonlinear model is mainly in long term prediction

(Figure 8.13). Hence, it has more effect on slow-response variables rather than PGAS,

which is a fast-response variable. Moreover, the maximum drop of PGAS in the step

disturbance test is the response to disturbance before the controller can take action,

hence is not able to be reduced by changing the internal model only.

However, in the sine disturbance test, the results of 50% and 100% load conditions

using the NMPC become less favorable compared to the LMPC results, but stay within

the allowed range. Further improvements in the CVGAS and TGAS responses at 0%

load are observed in the same test (see Tables 8.3). The remedy for this behavior

could be in further training of the FFNN to handle sinusoidal inputs. It is recalled

here that the training data is collected for all the three load conditions and not only

that for 0% load. A fully nonlinear model that can handle all load conditions might

also prove useful for solving this behavior.

4- Load Change Test :

The plant response in this test is compared with the results of LMPC controller. For

both controllers, good setpoint tracking performance is obtained (see Figs. 8.9 to 8.8).

The output results show approximately similar behaviors for the two controllers, with
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a small improvement in the MASS response when using the NMPC approach. Also,

the manipulated variables response is smoother in this case as shown in Figure 8.9.

8.6 Summary

Two predictive controllers have been developed to control the ALSTOM gasifier

benchmark process. The first controller was LMPC, then a NMPC approach was

developed by modifying the LMPC algorithm to include a partially nonlinear internal

model. In the linear predictive controller case, a linear state space model identified

at 0% load condition is chosen as the internal model while a QP routine is used to

solve the online optimization problem. The controller is able to achieve all required

performance specifications within input and output constraints. The linear controller

was then extended to a nonlinear one in order to improve the system performance

further. In this case, the QP routine is used as the optimizer and a time-varying lin-

ear state-space model is adopted for process response prediction. A nonlinear model

represented by a feed forward neural network is created for one of the four outputs

(PGAS) while a linear model corresponding to 0% load condition is adopted for the

other output variables. This selection is based on open loop response comparison

between the linear model and plant responses. A static nonlinear model of PGAS is

identified using FFNN. The data generated by the plant model at the three operating

points is used to train and validate the neural network. To regain the convex feature

of the optimization problem, the ANN model was linearized at every sampling time

to update the linear model used for optimization. Thus, the internal model is in

effect a linear time-varying model. The new controller meets all the required perfor-

mance specifications within given input and output constraints during sink pressure

disturbance and load change tests and the results show a significant improvement in

the system performance compared with the results obtained when only linear time-

invariant model is used. The final conclusion of this work is that sometimes a simple

controller might be able to control a complex plant. The gasifier control using fully

nonlinear plant and nonlinear optimizer is not used here because of the limitation of

the time scale and it will be our future work.

Nonlinear Model Predictive Control using Automatic Differentiation



8.6 Summary 157

40 60 80 100
−6

−4

−2

0

2

4

6

8

C
V

 (
K

J/
kg

)

40 60 80 100
−0.02

−0.01

0

0.01

0.02

M
as

s 
(t

on
ne

s)

40 60 80 100

−0.08

−0.06

−0.04

−0.02

0

0.02

P
re

ss
ur

e 
(b

ar
)

Time (sec)

40 60 80 100

−0.6

−0.4

−0.2

0

0.2

T
em

p 
(K

)

Time (sec)

LMPC
NMPC

Limits = ± 10 Limits = ± 0.5 

Limits = ± 0.1 Limits = ± 1  

Figure 8.18: Output response at 50% load condition
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Figure 8.19: Input response at 50% load condition
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Figure 8.20: Output response at 0% load condition
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Figure 8.21: Input response at 0% load condition
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Figure 8.22: Output response at 0% load condition

0 200 400 600
0

0.5

1

1.5

2

2.5

3

3.5

C
ha

r 
(k

g/
s)

0 200 400 600
0

5

10

15

20

A
ir 

(k
g/

s)

0 200 400 600
0

2

4

6

8

10

Time (sec)

C
oa

l (
kg

/s
)

0 200 400 600
0

1

2

3

4

5

6

S
te

am
, k

g/
s

Time (sec)

LMPC
NMPC

Limits = 0 & 3.5  

Limits = 0 & 10  Limits = 0 & 6  

Limits = 0 & 20  

Figure 8.23: Input response at 0% load condition
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Table 8.3: Output results

Step, 100% load Maximum Absolute Error IAE

Output LMPC NMPC LMPC NMPC

CVGAS 7.685 5.6659 90.975 84.568
MASS 12.915 10.4678 2328 1642
PGAS 0.0674 0.0735 0.251 0.2761
TGAS 0.529 0.5104 10.348 7.259

Step, 50% load Maximum Absolute Error IAE

Output LMPC NMPC LMPC NMPC

CVGAS 7.370 4.2325 75.002 66.515
MASS 8.046 3.3512 1210 125.717
PGAS 0.076 0.0816 0.308 0.3177
TGAS 0.610 0.5406 7.304 3.937

Step, 0% load Maximum Absolute Error IAE

Output LMPC NMPC LMPC NMPC

CVGAS 9.084 2.9471 86.041 49.2873
MASS 18.504 6.6339 4050 557.149
PGAS 0.095 0.1006 0.458 0.4490
TGAS 0.525 0.6005 29.347 8.1648

Sine, 100% load Maximum Absolute Error IAE

Output LMPC NMPC LMPC NMPC

CVGAS 5.1753 5.5628 890.19 898.96
MASS 2.3263 5.1133 318.004 865.246
PGAS 0.0308 0.03615 5.0379 5.241
TGAS 0.1819 0.3802 36.899 51.421

Sine, 50% load Maximum Absolute Error IAE

Output LMPC NMPC LMPC NMPC

CVGAS 4.3678 4.7659 725.15 764.8269
MASS 4.3017 8.0425 784.93 1406
PGAS 0.03259 0.04015 5.698 6.471
TGAS 0.22628 0.47371 49.3625 68.679

Sine, 0% load Maximum Absolute Error IAE

Output LMPC NMPC LMPC NMPC

CVGAS 7.8471 3.6711 646.07 256.71
MASS 33.918 45.694 5699 9853
PGAS 0.0962 0.0960 10.515 13.58
TGAS 0.7749 0.6574 103.57 85.558
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Table 8.4: Input results

Step, 100% load Maximum Minimum Peak Rate

Input LMPC NMPC LMPC NMPC LMPC NMPC

WCHR 1.585 1.3664 0.435 0.5498 0.2 0.2
WAIR 19.071 19.3215 16.136 16.158 1.0 1.0
WCOL 10.00 10.00 8.619 8.6153 0.2 0.2
WSTM 5.109 4.6969 2.531 2.3675 1.0 1.0

Step, 50% load Maximum Minimum Peak Rate

Input LMPC NMPC LMPC NMPC LMPC NMPC

WCHR 1.796 1.6831 0.583 0.6026 0.2 0.2
WAIR 13.934 14.0667 10.360 10.8571 1.0 1.0
WCOL 8.653 8.6843 6.845 6.839 0.2 0.2
WSTM 4.992 4.3168 1.897 1.7868 1.0 1.0

Step, 0% load Maximum Minimum Peak Rate

WCHR 2.1534 2.0469 0.2274 0.9536 0.2 0.2
WAIR 8.5508 8.7148 4.7147 4.7708 1.0 1.0
WCOL 7.7216 7.6251 5.1574 5.1398 0.2 0.2
WSTM 4.2366 4.2365 1.0404 1.1226 1.0 1.0

Sine, 100% load Maximum Minimum Peak Rate

WCHR 1.4640 1.725 0.3492 0.0742 0.2 0.2
WAIR 18.923 19.049 15.747 15.628 0.577 0.671
WCOL 9.7537 9.7444 7.2684 7.0443 0.2 0.2
WSTM 3.6452 3.7488 1.5192 1.5676 0.603 0.610

Sine, 50% load Maximum Minimum Peak Rate

WCHR 1.9503 1.8531 0.11527 0.21605 0.2 0.2
WAIR 13.764 14.014 10.331 9.9657 0.623 0.7461
WCOL 8.1287 8.1573 7.2684 7.0443 0.2 0.2
WSTM 3.3492 3.548 0.6553 0.3868 0.678 0.5866

Sine, 0% load Maximum Minimum Peak Rate

WCHR 2.3547 2.8559 0.12867 0 0.2 0.2
WAIR 8.905 8.9219 3.2579 3.4465 0.623 0.7461
WCOL 6.1213 6.4590 3.2334 2.860 0.2 0.2
WSTM 3.8088 4.3271 0 0 0.678 0.5866
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Chapter 9

Conclusion and Recommendations

9.1 General Conclusions

This section complements the various comments given as appropriately on the results

as they were obtained. In general the following points can be stated.

1. Two new algorithms for computationally efficient nonlinear model predictive

control are developed in this thesis. Based on a nonlinear least square optimiza-

tion problem, efficient algorithms to calculate the gradient information to solve

the NLP are derived.

2. An approach is developed for the dynamic sensitivity calculation which are re-

quired to solve the online optimization problem of NMPC. A first–order approx-

imation is introduced to simplify the dynamic sensitivity equations by using AD

tool so that the computation efficiency is improved.

3. The existing approach of using high–order Taylor series expansion and AD to

solve the model ODEs together with the sensitivity equations developed in

[Cao05], is further developed to included state estimate stage and integrated

disturbances models for offset free response and applied to a new test case.

4. An efficient algorithm has been proposed to train continuous-time recurrent

neural networks to approximate nonlinear dynamic systems so that the trained

network can be used as the internal model for a nonlinear predictive controller.

The new training algorithm is based on the efficient Levenberge Marquardt

method combined with an efficient and accurate tool of automatic differentia-

tion. The dynamic sensitivity equations and the ODEs of the recurrent neural
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network are solved accurately and simultaneously using high–order Taylor series

and AD. Higher efficiency to solve sensitivity equations with a higher accuracy

are obtained using the new algorithm compared with a traditional method. The

trained networks work well with different model orders showing the capability

to approximate a multivariable nonlinear plants. Different sampling time can

be used with the trained model without the need to re-train the networks. The

results show that, the choice of the network order is important to obtain good

model fitting and stable performance.

5. Based on the identified neural network model, a NMPC controller is developed.

The same strategy used in the network training has been used to solve the

online optimization problem of the predictive controller. The capability of the

new nonlinear identification algorithm and NMPC algorithm are tested in both

the evaporator and the two–CSTR case studies with good results.

6. The controllers are demonstrated to be robust and stable for the various non-

linear MIMO processes studied in this thesis. The structure used makes it easy

to incorporate variable constraints as well as large changes in the setpoint of

operation of the process under control. The controller worked well with model

mismatch experiments and with the presence of measurement noise, random

nonzero mean or sustained unmeasured disturbances. Using a nonlinear least

square optimizer in the controller is proved very effective and there has been

no instances of unfeasible solutions in any of the case studies reported. It is

not necessary for the case studies to included any terminal penalties on the

optimizer.

7. The proposed controllers are shown to work well with first–principle as well as

black–box process models. The black–box model can be used to replace the first–

principle models in NMPC if the latter is too complicated to be incorporated in

the controller.

8. The use of the automatic differentiation tool has remarkably reduced the com-

putation time as shown by the results. The use of AD tool reduces the total

calculation time by reducing the number of function evaluations and by pro-

ducing values for the function and its partial derivatives that are of very high

accuracy leading to more conclusive optimizing searches.

9. The predictive controller is formulated for state–space models. It is therefore

necessary to have an accurate estimate of the states at every time step. The

states are estimated from plant measurements and the main controller is aug-

mented by an extended Kalman filter to evaluate the states at the start of every
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equation solving step. This is necessary only for processes that contain hidden

states. The work of the extended Kalman filter was made more practical and

efficient using the AD tool on a locally linearized process model.

10. The controller was also augmented with a nonlinear feedback error integral func-

tion. This addition is needed to eliminate unwanted offset in the output result-

ing from plant/model mismatch due to the presence of sustained unmeasured

disturbances, random disturbances of nonzero mean, measurement noise, and

modelling errors. This new error integrator saturates at high offsets and large

set point changes until these are brought to a small level by the controller then

it works linearly on the remaining offset. It has been observed that it is not

possible to get offset free control in many cases without the help of this error

integrator. Furthermore, the EKF can be removed in some cases when this in-

tegrator is used and replaced with a simple state estimator. The offset remover

algorithm worked by looking for a match to the unmeasured disturbance and

shifting the model outputs or inputs to new levels. The output disturbance

integrator is more effective than the input disturbance integrator as there are

sometimes not enough disturbance inputs to cover all the offset sources. Non-

linear integration is used here to improve the transient behavior of the process

outputs during offset error rejection time.

11. The controller for the first case study, the evaporator did not need any stated

estimation as there were no unmeasured states in this case. The controller for

the two–CSTR plant in the two control configurations S1 and S2 on the other

hand needed EKF as the states are not all measurable. In both cases, two

controllers were designed with good success to handle the first–principle and

the black box model generated using the CTRNN for these case studies.

12. A simpler predictive controller has been developed to control the ALSTOM

gasifier benchmark process. LMPC employing a GPC strategy modified to in-

clude a partial nonlinear internal model. A nonlinear class Wiener model is

used to identify one of the process output variables (PGAS) which has strong

nonlinearity while a linear model at 0% load condition is adopted for the other

output variables. This nonlinear model for PGAS was linearized at every sam-

pling time to update the linear model used for optimization. Thus, the internal

model becomes a linear time-varying model. This is a novel approach which

shows that it is not always needed to turn the internal model to full nonlinear-

ity if a linear version can be made to work on some of the variables as in this

case study. The new controller meets all the required performance specifications

within given input and output constraints during various tests and the results
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show a significant improvement in the system performance compared with the

results obtained when only a linear time-invariant model is used.

9.2 Recommendations for Future Work

At the start of this project there were no publications connecting model predictive

control and automatic differentiation and few in nonlinear model predictive control.

The interest has grown very rapidly in the subject and more ideas are being generated

in the literature on how to improve the controller and to make it faster. Building on

the experience gained in this project and the new research by others, one can put

forward the following points for future advancement in the subject;

1. The present work relied fully on ready packages connected together for achieving

the present results. One useful procedure to save time is therefore to be able

to combine the various routines in one which will no doubt cut some of the call

time between the various procedures. One important saving can be made for

example if the generated machine code for the AD of a particular problem can

be compiled and saved to be used as a single procedure rather than calling the

whole AD software every time it is needed.

2. The continuous–time recurrent neural network proved to be a very effective

nonlinear modelling tool, and with the present method of training, it is recom-

mended to be used in more applications. Due to lack of time, the third case

study could have been modelled using this type of network. Not that the present

procedure is not defective, but such representation is likely to make the model

more effective for similar problems with perhaps stronger nonlinearities.

3. There has been a number of research monographs advocating a terminal penalty

or/and terminal region that are used to lead the optimizer to ensure stability

and feasibility in highly nonlinear problems. Although the formulation can be

included in the controller routines in this work, this is not done as no cases of

instability or infeasibility were met. This is not to say that such need will not

appear in some other applications. It is therefore recommended that new case

studies of varying degrees of complexity are attempted to asses the need for such

terminal regions and corresponding terminal penalty in the objective functions.

4. The use of an effective modelling tool as the CTRNN makes it attractive to

study the question of how much simplification is allowed in the model to produce
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effective NMPC. It is clear that a large time saving can be made if the model

structure is simpler, which might not represent the plant completely, but can

nevertheless produce an effective controller.

5. There is a possibility of splitting the controller into outer and inner control loops

both of the predictive control type. The main use of this type is in cases where

there are short time as well as long time objectives for the process. In this case

the inside loop will take care of the short term objective which could be done

using a simpler and faster loop, and the outer loop to take care of the longer

time objective which could use a more sophisticated model but with more time

available for doing the more demanding calculations.

6. The proposed offset removal approaches have two parameters that need to be

tuned. In this thesis online tuning is used for this task. It will be better if an

optimal off-line solution is attempted to find the best values of these parameters.

7. The strategy of using high–order Taylor series and AD tool for solve simulta-

neously the model ODEs and dynamic sensitivity equation solution used in the

proposed CTRNN training and the NMPC algorithm can be extended to solve

the NLP for the more advanced state estimate, i.e. moving horizon state esti-

mate, which can be then used with the proposed NMPC algorithm instead of

EKF for cases when simple state updates become inadequate.
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Appendix A

First–Principle Model of

Evaporator Process

The first–principle model of the process is given by the following differential equations;

dL2

dt
=

F1 − F4 − F2

20
(A.1)

dX2

dt
=

F1X1 − F2X2

20
(A.2)

dP2

dt
=

F4 − F5

4
(A.3)

T2 = 0.561P2 + 0.3126X2 + 48.43 (A.4)

T3 = 0.507P2 + 55.0 (A.5)

F4 =
Q100 − F1CP (T2 − T1)

38.5
(A.6)

T100 = 0.1538P100 + 90.0 (A.7)

Q100 = 0.16(F1 + F3)(T100 − T2) (A.8)

F100 = Q100/36.6 (A.9)

Q200 =
13.68F200CP (T3 − T200)

2CP F200 + 6.84
(A.10)

T201 = T200 +
Q200

F200CP

(A.11)

F5 = Q100/38.5 (A.12)

188
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Table A.1: Steady-state values of the evaporator system

Variables Description Value

F1 Feed flowrate 10 kg/min

F2 Product flowrate 2.0 kg/min

F3 Circulating flowrate 50 kg/min

F4 Vapor flowrate 8.0 kg/min

F5 Condensate flowrate 8 kg/min

X1 Feed composition 5.0 %

X2 Product composition 25 %

T1 Feed temperature 40.0 %

T2 Product temperature 84.6 oC

T3 Vapor temperature 80.6 oC

L2 Separator level 1.0 m

P2 Operating pressure 50.5 kPa

F100 Steam flowrate 9.3 kg/min

T100 Steam temperature 119.9 oC

P100 Steam pressure 194.7 kPa

Q100 Heat duty 339 kW

F200 Cooling water flowrate 208 kg/min

T200 Inlet C. W. temperature 25.0 oC

T201 Outlet C. W. temperature 46.1 oC

Q200 Condenser duty 307 kW
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Appendix B

First–Principle Model of the Two

CSTR Process

The first–principle model of the two–cstr process is given by the following differential

equations [Cao95];

dx1

dt
= −K1x1 + QI1

(CI1 − x1)

V1

(B.1)

dx2

dt
= ∆HK1x1 + QI1

(TI1 − x2)

V1

− Ua1
(x2 − x3)

V1

(B.2)

dx3

dt
=

1

VJ1

(QCW1(TCW1 − x3) + Ua1(x2 − x3)) (B.3)

dx4

dt
= −K2x4 + KV 1

√
V1

(x1 − x4)

V2

+ QI2
(CI1 − x4)

V2

(B.4)

dx5

dt
= ∆HK2x4 + KV 1

√
V1

(x2 − x5)

V2

+ QI2
(TI2 − x5)

V2

− Ua2
(x5 − x6)

V2

(B.5)

dx6

dt
=

1

VJ2

(QCW2(TCW2 − x6) + Ua2(x5 − x6)) (B.6)

where;

K1 =K0e
−E/Rx2 (B.7)

K2 =K0e
−E/Rx5 (B.8)

190



191

Table B.1: Physical and process constants of the two–CSTR process

Constant Value Units

V1 4.489 m3

V2 5.493 m3

KV 1 0.16 m3/2s−1

KV 2 0.256 m3/2s−1

Ua1, Ua2 0.35 m3s−1

E/R 6000 K

∆H 5 m3 ·K ·mol−1

K0 2.7× 108 s−1

VJ1, VJ2 1 m3

Table B.2: Two–CSTR process steady-state variables value

Variable Value Units

x1 0.084 mol/m3

x2 362.995 oK

x3 327.560 oK

x4 0.053 mol/m3

x5 362.995 oK

x6 335.447 oK

QI1 0.339 m3s−1

QI2 0.261 m3s−1

QCW1 0.45 m3s−1

QCW2 0.272 m3s−1

TI1, TI2, TCW1, TCW2 300 oK

CI1, CI2 20 mol/m3
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