
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40069842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Formal Patterns for Web-based Systems

Design

by

Abdolbaghi Rezazadeh

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

July 2007

http://www.soton.ac.uk�
file:ar02r@ecs.soton.ac.uk�
http://www.engineering.soton.ac.uk�
http://www.ecs.soton.ac.uk�

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Abdolbaghi Rezazadeh

The ubiquitous and simple interface of Web browsers has opened the door for the devel-
opment of a new class of distributed applications which they have been known as Web
applications. As more and more systems become Web-enabled we become increasingly
dependent on the Web applications. Therefore, reliability of such systems is a very
crucial factor for successful operation of many modern organisations and institutes.

In the first part of this thesis we review how Web systems have evolved from simple
static pages, in their early days, to their current situation as distributed applications
with sophisticated functionalities. We also find out how the design methods have evolved
to align with the rapid changes both in the new emerging technologies and growing
functionalities. Although design approaches for Web applications have improved during
the last decade we conclude that dependability should be given more consideration.
In Chapter 2 we explain how this could be achieved through the application of formal
methods. Therefore, we have provided an overview of dependability and formal methods
in this chapter.

In the second part of this research we follow a practical approach to the formal modelling
of Web Applications. Accordingly, in Chapter 3 we have developed a series of formal
models for an integrated holiday booking system. Our main objectives are to gain some
common knowledge of the domain and to identify some key areas and features with
regard to our formal modelling approach. Formal modelling of large Web applications
could be a very complex process. In Chapter 4 we have introduced the idea of formal
patterns for specification and refinement to accelerate the modelling process and to help
alleviate the burden of formal modelling.

In a further attempt to tackle the complexity of the formal modelling of Web applica-
tions, we have introduced the idea of specification partitioning in Chapter 5. Specifi-
cation partitioning is closely related to the notion of composition. In this chapter we
have extended some CSP-like composition techniques to build the system specification
from subsystems or parts. The summary of our research, related findings and some
suggestions for the future work are presented in Chapter 6.

http://www.soton.ac.uk�
http://www.engineering.soton.ac.uk�
http://www.ecs.soton.ac.uk�
file:ar02r@ecs.soton.ac.uk�

Contents

Acknowledgements xi

Preface 1
Background . 1
Thesis Organisation . 2
Contribution of the thesis . 3

1 An Overview of Web-Based Applications and Systems 5
1.1 Introduction . 5
1.2 What Are Web Applications? . 6

1.2.1 Taxonomy of Web Applications . 6
1.3 Web Application Architecture Views . 8

1.3.1 Logical View . 9
Presentation Layer: . 9
Application Layer: . 9
Data Layer: . 9

1.3.2 Physical View . 10
1.3.3 Development View . 11

1.4 Web Engineering . 11
1.4.1 Web Modelling Language(WebML) 12
1.4.2 Web Application Extension(WAE) 13
1.4.3 UML-based Web Engineering(UWE) 13
1.4.4 Object-Oriented Hypermedia Design Method(OOHDM) 14
1.4.5 Object-Oriented Hypermedia(OO-H) 14

1.5 Modelling Requirements for Web Applications 15
1.6 Modelling Support for Both Functional and Informational Aspects 17
1.7 Supporting Architectural Level and Component Based Modelling 18

1.7.1 Architecture Description Languages(ADLs) 19
1.7.2 Using UML as Architecture Description Language 21
1.7.3 The Need for Architectural Level Modelling in Web-based Appli-

cations . 24
1.8 Business Domain Modelling . 26
1.9 Conclusions . 28

2 Formal Methods and Web-Based Applications 31
2.1 Introduction . 31
2.2 An overview of critical systems . 31

v

vi CONTENTS

2.3 An overview of Formal Methods . 33
2.3.1 Classification of Formal Methods 36

Model-based Methods. 37
Logic-based Approach. 37
Algebraic Approach. 38
Process Algebra Approach. 38
Net-Based Approach. 38

2.4 An overview of the B Method . 40
2.5 Extending the B method . 41

2.5.1 Extending B with new features . 42
2.5.2 Action-system based approach to distributed system 43
2.5.3 UML and B-method Integration The Unified Modelling Language 44

2.6 Formal Development of Web-based Applications and Related Works . . . 45

3 Some Guidelines for Formal Development of Web-based Applications
in the B-Method 47
3.1 An Introduction to Web-Based Systems 47
3.2 Informal Representation of the Case Study 48
3.3 An Overview of the Formal Development Process 49
3.4 State Representation in Web-based Systems 51

3.4.1 Session Handling and State Management in Server side 51
3.4.2 State Management in client side 53
3.4.3 Conducting Inter-Server Interactions 54

3.5 Abstraction and Refinement of Complex Data-types 55
3.6 Abstraction and Refinement of Distributed Databases 58
3.7 Developing Formal Models for Communication Links 62

3.7.1 Formal models of Synchronised Communication Links 63
3.7.2 A More General Model of Communication Links 66

3.8 Summary of Results, Conclusions and Further Work 67

4 Pattern Based Formal Modelling 69
4.1 An introduction . 69
4.2 Formal Web applications Patterns . 71

4.2.1 General approach to Formal Patterns 72
4.2.2 Web Based Session Creation . 73
4.2.3 User-to-Web application pattern 75
4.2.4 Distributed Processing pattern . 81

4.3 Devising next stages of formal patterns . 86
4.4 Concluding and Results . 86

5 Specification Partitioning and Composition Techniques 89
5.1 Introduction . 89
5.2 Composition Techniques for Event-B . 91

5.2.1 Basic Parallel Composition Mechanism 92
5.2.2 Parallel Composition with Value-Passing 92

5.3 Online Auction System . 94
5.3.1 The Architecture of The Auction System 94

CONTENTS vii

5.4 Specification Partitioning and Composition Techniques 97
5.4.1 Combining Formal Patterns and Specification Partitioning 98
5.4.2 Modelling Initial Client Interaction and Establishing Session . . . 100
5.4.3 Modelling Login Scenario . 100

Defining the Specification Composition 106
Architectural Level Composition 108

5.5 Composition Patterns . 111
5.5.1 Basic Parallel Composition . 112
5.5.2 Parallel Composition with Value-Passing 112
5.5.3 Broadcasting Composition . 112
5.5.4 Choice Composition . 113
5.5.5 Conclusions and Future Work . 115

6 Conclusions 117
6.1 An Overview of the Research . 117
6.2 Major Thesis Contributions . 119
6.3 Future Research . 120

A The Travel Agency System 133
A.1 Specification of The Travel Agency System 133
A.2 First Refinement of The Travel Agency System—Separating Clients Op-

erations from the Travel Agency Server 147
A.3 Second Refinement—Introduction of Secondary Servers into The Model . 167

B Specification and Refinement of Patterns 189
B.1 Specification of The Session Creation pattern 189
B.2 Refinement of The Session Creation pattern 192
B.3 Specification of The User-to-Web Applications Pattern 194
B.4 Refinement of The User-to-Web Applications Pattern 197
B.5 Specification of The Distributed Processing pattern 199
B.6 Refinement of The Distributed Processing pattern 202

List of Figures

1.1 Taxonomy of Web Applications . 7
1.2 High Level Logical View of a Web Application 10
1.3 Physical View the Web Application . 11
1.4 Existing Modelling Approach Gap Analysis 16
1.5 Design Spaces for Web Sites and Web Applications 17
1.6 Relationships between modelling domains in WIED 28

2.1 Main Dimensions of Dependability. 32

3.1 A Simple Architecture of the System. 49
3.2 Abstract model of the travel agency system. 52
3.3 Some operation of the first refinement. 55
3.4 Some operations of the secondary servers. 56
3.5 An example of constant mapping. 57
3.6 An example of constant mapping from the case study. 58
3.7 An abstract model of the database operation. 59
3.8 A refinement of the database operations. 60
3.9 A corrected version of abstraction in Fig 3.7 61
3.10 Modelling the possibility of failure. 62
3.11 Refined model after introduction of secondary servers. 63
3.12 Abstract model with one-place buffers. 64
3.13 Refined model with unbounded buffers. 66
3.14 Modelling unbounded buffers with Bag. 67

4.1 Sets and Variables Definitions of the Session Creation Pattern 75
4.2 Formal Specification of the Session Creation Pattern 76
4.3 Invariants in Refinement of the Session Creation Pattern 76
4.4 Refinement of the Session Creation Pattern 77
4.5 Architecture of the User-to-Web Applications Pattern 78
4.6 Message Sequencing of the User-to-Web Applications Pattern 78
4.7 Sets, Constants and Variables Definitions of the User-to-Web Applications

Pattern . 79
4.8 Abstract Specification for of the User-to-Web Applications Pattern 80
4.9 Architecture of Distributed Processing Pattern 82
4.10 Message Sequencing Distributed Processing Pattern 83
4.11 Definitions of Distributed Processing Pattern 84
4.12 Formal Specification of Distributed Processing Pattern 85

5.1 Java EE Application Model, Presented in [94] 95

ix

x LIST OF FIGURES

5.2 Architecture of Auction System . 96
5.3 The Structure of HTTP Request and Response 99
5.4 The Property-Based style of HTTP Request and Response 99
5.5 Session creation in the Auction system . 101
5.6 Web Layer - First Part of Login Scenario 103
5.7 Application Layer - Second Part of Login Scenario 104
5.8 Informal Illustration of Composition Mechanism for Login Scenario 107
5.9 Formal Presentation of Composition . 108
5.10 Refined Web Layer Model for Login . 109
5.11 Refined Application Layer Model for Login 110
5.12 Informal Illustration of the Refined Composition for the Login Scenario . 111
5.13 Informal Presentation of the Choice Composition 114

Acknowledgements

My first and foremost thanks go to my supervisor Professor Michael Butler. This thesis
would not have been possible without his inspiration, constructive criticism and expe-
rienced guidance. I thank Dr. Mike Poppleton for his comments and useful advice in
some pars of this thesis. Many thanks to my friends and colleagues in the Dependable
Systems and Software Engineering Group for many stimulating and pleasant discussions.
Special thanks to Andrew Edmunds who took the time to read some part of the thesis
and provide me with invaluable comments.

My most profound gratitude goes firstly to my parents and secondly to my family espe-
cially my wife. My parents deprived themselves in many situations to provide me with
the means to make progress. My wife has been an endless source of inspiration and
support for me to pursue my doctorate; to whom this thesis is dedicated.

xi

Preface

This thesis investigates the formal modelling of Web-based applications using the B-
Method. We begin with studying the current approaches and modelling practices for
Web applications. Following this, based on our findings and general knowledge of formal
modelling we apply the B formal method to Web applications modelling. The prelimi-
nary goal of this research is to find out:

• How the B-Method could be adapted for the modelling of distributed Web appli-
cations?

• If the current constructs of the B-Method are not adequate for the modelling of
Web applications, how these could be extended based on the properties of such
systems.

Background

Since its inception, the World Wide Web has revolutionised many aspects of our life
and will continue to influence our society for years to come. Many technical and non-
technical aspects of our life are changing everyday as we become more dependent on the
Web. The Web browser’s ubiquitous and simple interface has opened the door for the
development of a new class of distributed applications which have been called Web-based
or simply Web Applications.

In the early days of Web, these systems were fairly simple and were constructed form
static HTML pages linked together. They were developed to provide easy access to
information on servers that could be situated anywhere across the globe. With the
introduction of new technologies such as Java developers suddenly realised the potential
of the Web for developing large-scale distributed Web applications. Companies started
developing Web applications with which they promised to deliver reliable services to
their customers and provide outstanding value to their stakeholders. As a result of this
the days of the Web as a medium for just documents sharing are over and the new era
of the Web as a vehicle for e-commerce and other applications has begun.

1

2 Chapter 0 Preface

In the early days of Web application development, too often, no design and modelling
principles were applied to Web application development process. Most of developers were
using ad hoc approaches which resulted in patchy and unreliable applications. System
developer were justifying their reluctance to adopt concrete approaches for reasons such
as speed of development, very rapid changes of under-laying technologies and the error-
prone nature of early Web systems.

Eventually, when Web applications started to establish themselves as a widespread form
of distributed systems, researchers recognised the need to apply well-structured and
methodological approaches to the modelling and development process of Web applica-
tions. As Web applications evolved and their complexity increased, developers realised
that their ad hoc approaches could not cope with the scope of the systems that should
be developed.

Thesis Organisation

In the next chapter we review how Web applications and related modelling approaches
were evolved. It provides a classification of Web systems and an overview of how mod-
elling approaches succeeded to take into account different aspects of such systems.

Many different modelling and development approaches have emerged during the last few
years. Some of these are well-established, but still more work is needed in this area. The
reliability and dependability of Web applications has to be improved. In Chapter 2 a
short overview of these concepts has been provided. In addition, we learn how these
goals could be achieved through the application of formal methods to the development
process.

Chapter 1 and 2 covers the domain study of this thesis. In Chapter 3 we introduce an
example case study and by modelling it in B we try to gain a deeper understanding of
formal modelling of Web-based applications. A set of interesting and challenging features
have been identified and some formal solutions have been provided in this chapter. The
models have been developed in Click-n-Prove environment which provided tool support
for B-Method.

Based on the experiences that we have gained from the case study in the previous
chapter, in Chapter 4 we have generalised some key features in the form of a few patterns.
The basic assumption is that these general patterns should be applicable to a wide range
of Web applications and it should promote re-usability and increases the productivity
of system developers.

Specification partitioning and composition mechanisms are another promising aspect
in the development of complex Web applications that are investigated in Chapter 5.

Chapter 0 Preface 3

We argue that for a whole range of reasons, such as productivity, team-based develop-
ment and the separation of concerns, the formal development approach needs to support
specification partitioning. In addition, in this chapter we investigate how the proposed
approach to specification partitioning could be extended to the high level architectural
modelling. Composition mechanisms are an indispensable part of any specification par-
titioning approach for building a complete solution for complex systems. Different com-
position mechanisms for both specification and architectural level modelling have been
introduced in this chapter.

Finally, Chapter 6 gives a conclusion, summarising the main results of this work and
indicating several directions for future research.

Contribution of the thesis

In this thesis we have investigated the applicability of the B Formal Method for the
modelling of Web applications. This in fact has two dimensions. In the first place our
initial goal was to assess the usability and applicability of current methods and tools in
developing this kind of distributed systems. Our second important goal was to find out
how the current methods and tool support could be extended or improved in the light
of case studies, which have been modelled. As we have taken a practical approach we
initiated our work by a real case study. During formal modelling of the travel case study
in Chapter 3 we have identified and modelled several key issues such as:

• Stepwise introduction of requirements based on the user view of the system

• Distributed database specification and refinement

• Complex data structure specification and their stepwise refinement

• Specification of communication links and a multiple-level refined model for them

The formal pattern for system modelling is a new concept, which we have introduced
in Chapter 4. A formal pattern includes specification, refinement and their associated
proofs. Developers can construct models by composing different patterns. In this chapter
we have argued that a few patterns can represent a wide variety of requirements in the
Web application domain.

In Chapter 5 we have developed the idea of specification partitioning and composition
mechanisms for both specification and architectural level modelling. We have defined
a number of different composition mechanisms that can simplify the formal modelling
process of multi-layered web applications.

Chapter 1

An Overview of Web-Based

Applications and Systems

1.1 Introduction

Distributed applications have gained a lot of attention in the past ten years. Among these
applications, the most common and known ones are so called Web-based applications.
Web-based applications have had enormous success during last few years. Today many
applications are developed for the Web, in such different areas as banking and finance, e-
commerce, education, government and entertainment. Legacy information and database
systems are being migrated to Web environments, in order to deploy their functionality
on the Web. Electronic commerce through the Internet is rapidly growing, cutting
across national boundaries. Many people are affected by the Web. At the same time the
complexity and sophistication of Web applications grows. Web applications are preferred
over traditional applications for the following reasons:

• Web applications are more accessible: The HTTP protocol used in Web appli-
cations is a standard protocol that can travel across corporate firewalls. Thus,
applications are accessible to many users ranging from home users to corporate
users. In addition, a Web application does not require a specialized client. A Web
browser, which nowadays comes packaged with almost all operating systems, is
used as the client. Users do not need to install, configure or maintain client soft-
ware. Also, the application is accessible on any platform as long as a Web browser
exists for the platform.

• Web applications have lower maintenance and deployment costs: Since the browser
is used as the client software for Web applications, there are no costs associated
with development of the client’s software. Maintaining the Web application re-
quires only modifying the code that resides on the server. This reduces the cost of

5

6 Chapter 1 An Overview of Web-Based Applications and Systems

upgrade and deployment of Web applications compared to traditional client/server
applications.

Now that many of us rely on Web-based systems and applications, they need to be
reliable and perform well. To build these systems and applications, Web developers need
a sound methodology, a disciplined and repeatable process, better development tools,
and a set of good guidelines. The emerging field of Web engineering fulfils these needs.
It uses scientific, engineering, and management principles and systematic approaches to
successfully develop, deploy, and maintain high-quality Web systems and applications.
It aims to establish a sound methodology for Web-based system development, minimize
risks, and enhance Web site maintainability and quality.

1.2 What Are Web Applications?

A Web application is an application, designed to be executed in a Web-based environ-
ment. More precisely a Web application is a mix of programs that dynamically generate
hyper-documents in response to some input from the user. A Web-based application is
a distributed system that consists of a number of client and servers distributed over the
Internet interacting with each other using the HTTP protocol. The Web clients most
likely communicate with the Web server through a Web browser like Microsoft Internet
Explorer or Netscape Navigator. An alternative is to use an application client where an
HTTP agent acts as client on behalf of the user. The client agent can accept HTTP
responses and is able to interact with the Web application by sending HTTP requests.
The functions performed can range from relatively simple tasks like reading content or
searching a local directory for a file or reference, to highly sophisticated applications
that perform real-time sales and inventory management across multiple business part-
ners. The technology behind Web applications has developed at a great speed. Web
applications can range form fairly simple applications built and run on a single Web
server (that may be connected to a simple database on the same host), to modern en-
terprise Web applications typically run on distributed application servers, (connecting
to multiple data sources through complex business logic tiers). They can consist of tens
or hundreds of servers each performing specific tasks or functions.

1.2.1 Taxonomy of Web Applications

Web applications are not limited to one type of application. They can range from simple
static Web pages (such as a personal Web site, a home page) to sophisticated e-commerce
applications (such as Amazon.com, eBay.com). Figure 1.1 shows the different categories
of Web applications grouped according to their data and control complexity [62]:

Chapter 1 An Overview of Web-Based Applications and Systems 7

1. Brochure: Brochure Web applications are the first generation of Web applications.
They tend not to have much programming logic in them; rather they are composed
of simple static Web pages. Their developers are referred to as content developers,
as they are more concerned with the layout of graphics and text on a Web page
and the content is very static and graphics intensive. Examples of Brochure ap-
plications include: the personal Web page of a person which simply contains their
resume and personal information, and Web sites that contain technical documents
(brochures) about a company’s product. Simple editors or specialized HTML ed-
itors are used to develop Brochure sites. The number of pages is rather small as
it is manually edited and maintained. These sites are more similar to desktop
publishing than to traditional software systems. These sites are the easiest to vi-
sualize. They are not of interest to our visualization effort, because we are more
concerned with the control and data flow across the different components; whereas
these sites are rather static with no control or data flow.

Figure 1.1: Taxonomy of Web Applications

2. Service oriented applications: These sites are dedicated to providing a service to
Web users, such as free email service or online word-processing systems. In these
applications, the layout of the data is a secondary concern. Instead, the developer
is concerned with implementing the logic needed to provide the services online.
For example, the developer of an online email service is more concerned with the
different functional steps needed to store and retrieve email messages. The layout
of the mail message displayed is of secondary Interest. During maintenance, the

8 Chapter 1 An Overview of Web-Based Applications and Systems

developers need a good understanding of the control flow between the different
components of the applications.

3. Data intensive applications: Theses are sites that provide an interface to browse
and query large quantities of data, such as online library catalogues. The main
emphasis in these applications is on the data, with minimal amount of logic or
control involved. Large commercial examples of these applications are search en-
gine sites such as Google.com, and online news sites such as CNN.com. A search
engine provides an interface to query a large database that indexes Web pages.
Data Intensive applications are closely tied to their database. A clear picture of
the data flow is vital during maintenance.

4. Information system applications: These applications are a mix of Service Oriented
and Data Intensive applications. An example of these sites is an online library
system where you can; in addition to browsing books, borrow reserve and recall
books. Most large electronic commerce sites are in this category such as Ama-
zon.com. The developers of Information System applications are concerned with
the data flow (for browsing and retrieving books) and control flow (for the different
phases involved with ordering and shipping a book). We observe that developers
need a good understanding of the data and control flow in their application as
is needed in traditional applications. In addition, Web applications have more
dependencies and interesting relations such as the navigation links between the
different pages of the Web application. In [62] they pointed out that many Web
application development tools are implementation oriented, they emphasize fast,
one-time release with no continuity and process enforcement. This emphasis on
implementation productivity with no concern on the maintenance and evolution
of Web applications is attributed to the fast pace of their development and the
immaturity of the Web applications domain.

1.3 Web Application Architecture Views

Web applications are distributed applications which are rely on different Web technolo-
gies as their infrastructure. They use Web browsers as their clients, HTTP protocol to
communicate between clients and servers, and the HTML or XML based standards to
express the content transmitted between servers and clients. They are complex systems
and use many different technologies. Using a single architecture view is insufficient and
not expressive enough to model such systems. Therefore a number of different views
have been proposed by Kruchten [74]: Logical, Physical, and Development views. Each
view captures specific design decisions and all views must be examined together to gain
a good understanding of the whole application. Some additional views like the security
architecture of the application could be taken into account for Web-based applications.

Chapter 1 An Overview of Web-Based Applications and Systems 9

As Web applications are composed of many different components and they use the In-
ternet, a public network, they are more vulnerable to attacks. The security of Web
applications merits its own view.

Clear separation of concerns and modelling different aspects of the Web-based applica-
tion is another reason for using multi-view models. This issue is widely regarded as a
key attribute for obtaining high quality design by many Web design methodologies, such
as HDM2000 [22], WebML [36] and OOHDM [121].

1.3.1 Logical View

Using logical layers in which different concerns and aspects are taken into account is
recommended by the above methodologies. Layering is an engineering principle that
helps to reduce the complexity of systems. The Logical view provides a high level
abstraction of the system based on the domain of the problem. Usually diagrams are
used to represent the different component in the system and the interactions between
them. A Three-layer Architecture as depicted in Figure 1.2 is proposed by [30] for
information systems and Web-based applications.

These layers are:

Presentation Layer: The Presentation Layer is responsible for presenting the data to
the end user or system. The Web server serves up data and the Web browser renders it
into a readable form, which the user can then interpret. It also allows the user to interact
by sending back parameters, which the Web server can pass along to the application.
This Presentation Layer includes Web servers like Apache and Microsoft’s Internet In-
formation Server and Web browsers like Internet Explorer and Netscape Navigator. It
may also include application components that create the page layout.

Application Layer: The Application Layer is the engine of a Web application. It
performs the business logic; processing user input, making decisions, obtaining more data
and presenting data to the Presentation Layer to send back to the user. The Application
Layer may based on technology like CGI’s, J2EE, or .NET services deployed in products
like IBM WebSphere and BEA WebLogic.

Data Layer: The Data Layer is used to store things needed by the application and acts
as a repository for both temporary and permanent data. It is the bank vault of a Web
application. Many modern systems now store data in XML format for interoperability
with other system and sources.

10 Chapter 1 An Overview of Web-Based Applications and Systems

Presentation Layer

Data Layer

Infrastructures

Application Layer

Figure 1.2: High Level Logical View of a Web Application

The three-tiered architecture provides a good separation of concerns for large Web appli-
cations, but some applications do not require a separation between the Application Layer
and database tiers. For example, some Service oriented applications do not have a clear
separation between the Database and the Business Logic tier, both tiers are combined
together. In this situation, a 2-tiered architecture is used. For both architecture styles,
an Infrastructure layer exists to provide support for the basic functionality needed by
the different tiers, such as access to the local file system.

1.3.2 Physical View

The Physical view presents the mappings of the components in the Development view to
the components in the environment. The environment of a Web application is composed
of many components that are inter-linked together to implement its functionality. Web
applications have a rich environment, which contains the following components:

• Web browsers (used by the clients)

• Web servers

• Web pages

• Application servers

• Databases

• Distributed objects such EJB and legacy systems.

• Multimedia Web objects such as Images, Videos, and etc.

The structure and interconnection between these parts is depicted in Figure 1.3.

Chapter 1 An Overview of Web-Based Applications and Systems 11

Figure 1.3: Physical View the Web Application

1.3.3 Development View

The Development view focuses on the mapping of the Logical view conceptual compo-
nents to the actual implementation artifacts. It presents the actual software module
organization in the development environment, such as the source code files, or the direc-
tory structure. Web applications are developed using many languages and technologies,
compared to traditional applications, which are usually developed in one language. The
Development view for Web applications must highlight the additional details such as:

• The Link structure of the application pages

• User’s session management techniques

• Application page generation technology

1.4 Web Engineering

In 1998 the term Web engineering had been coined and efforts have been made to estab-
lish a new discipline to cover the life cycle of Web applications. Contrary to the general
perception, Web engineering is not a clone of software engineering although both involve
programming and software development [56]. While Web engineering adopts many soft-
ware engineering principles, it incorporates new approaches and guidelines to meet the
unique requirements of Web-based systems [56]. Web development is a mixture between
print publishing and software development, between marketing and computing, between
internal communications and external relations, and between art and technology [111].
Building complex Web applications calls for knowledge and expertise from many dif-
ferent disciplines such as: software engineering, hypermedia and hypertext engineering,

12 Chapter 1 An Overview of Web-Based Applications and Systems

human computer interaction, information engineering and user interface development
[56].

Web Engineering is the application of systematic, disciplined and quantifiable approaches
to the development, operation, and maintenance of Web-based systems and Web appli-
cations. Many of Web Engineering concerns are rooted in the fields of software engi-
neering and distributed systems engineering. Research in the field focuses on applying
and adapting classical software engineering techniques to the Web domain.

Traditional Web sites can be regarded as (universally distributed) hypermedia appli-
cations, and can be largely modelled using hypermedia modelling methods. Most ap-
proaches distinguish at least two main dimensions for hypermedia/Web site conceptual
modelling: information modelling and navigation modelling. Information modelling de-
scribes the contents of the Web site. Navigation modelling describes its navigation ca-
pabilities, i.e., the paths that users can traverse, to explore the information universe. In
the rest of this section we have presented a short overview of the most popular methods.

1.4.1 Web Modelling Language(WebML)

Ceri et al. presented the Web Modelling Language (WebML) [36]. WebML provides a
high level conceptual description of a Web application. The language is geared towards
Catalogue (data-driven) Web applications. It is composed of five models:

1. A structural model describes the data flow in the application.

2. A navigational model describes the topology of links between the different pages.

3. A compositional model describes the files and databases that are grouped together
to represent some conceptual concept.

4. A presentation model describes the layout of each page and its graphical require-
ments.

5. A customization model describes the different groups of users of the software and
their needs.

WebML is more suited for the high level specification of Web application than for mod-
elling the actual implementation because it lacks the concepts needed to model control
flow. For example, relations between the different source code objects and the call graph
cannot be expressed using WebML’s constructs and concepts.

Chapter 1 An Overview of Web-Based Applications and Systems 13

1.4.2 Web Application Extension(WAE)

In [39], Conallen presents the Web Application Extension (WAE) for the Unified mod-
elling language (UML) [129]. In WAE, each Web page is modelled as a UML component
and each Web page has two aspects, the server-side aspect and the client-side one. The
server-side aspect shows the Web page’s interactions with the components that reside
on the server. On the other hand the client-side aspect focuses on the page’s interaction
with the objects and applets that reside on the client’s machine. This work is of great
value for the maintainers of the application, if the initial developers of the application
specified their application using these specification languages. The WAE defines a Web
application as: “a Web system that allows its users to execute business logic with a
Web browser”. This modelling approach proceeds to point out the need to model Web
applications due to their complexity. It is an important point that WAE is based on
standard UML. In WAE Web pages are modelled as UML components. Every Web page
is modelled using two different aspects:

1. Its server side aspect where it shows the page’s interaction with other pages, the
business logic objects, the databases and the server provided resources.

2. Its client side aspect where it shows the page’s interaction with the browser built-in
objects and Java applets.

1.4.3 UML-based Web Engineering(UWE)

In [63] Hennicker R. has proposed a UML-based Web Engineering (UWE) methodology
for hypermedia design which is based on a UML profile for the hypermedia domain
[24]. Starting with a use case analysis and a conceptual model of the application it
first provides guidelines for modelling the navigation space. From the navigation space
model we can derive, into the next step, a navigational structure model which shows
how to navigate through the navigation space using access elements like indexes, guided
tours, queries and menus. Finally, a presentation model is constructed that can be
directly implemented by HTML frames. The different models of the design process are
represented by using a hypermedia extension of UML. As it is clear, the only aspect of
Web applications which this methodology covers is the presentation layer.

In [71] it has been shown how UWE can be supplemented by other views using the
variety of UML diagram types and UML modelling elements. The proposed extensions
focus on the dynamic aspects of the design of Web applications, such as task modelling
and modelling of Web scenarios, graphical representation of the distribution of Web
components and semi-automatic generation of Web applications based on design models.

14 Chapter 1 An Overview of Web-Based Applications and Systems

1.4.4 Object-Oriented Hypermedia Design Method(OOHDM)

Hypermedia applications typically include complex information, and may allow so-
phisticated navigation behaviour. The Object-Oriented Hypermedia Design Method
(OOHDM) [121] and [115] uses abstraction and composition mechanisms in an object
oriented framework to, on one hand, allow a concise description of complex information
items, and on the other hand, allow the specification of complex navigation patterns and
interface transformations.

In OOHDM, a hypermedia application is built in a four-step process supporting an
incremental or prototype process model. Each step focuses on a particular design con-
cern, and an object-oriented model is built. Classification, aggregation and generaliza-
tion/specialization are used throughout the process to enhance abstraction power and
reuse opportunities.

According to OOHDM, the development of hypermedia applications occurs as a four
activities process – Conceptual Design, Navigation Design, Abstract Interface Design,
and Implementation – that is performed in a mix of iterative and incremental styles of
development; in each step a model is built or enriched. The cornerstones of the OOHDM
approach are:

1. The notion that navigation objects are views, in the database sense, of conceptual
objects;

2. The use of appropriate abstractions to organize the navigation space, with the
introduction of navigation contexts;

3. The separation of interface issues from navigation issues;

4. An explicit identification that there are design decisions that need only be made
at implementation time.

1.4.5 Object-Oriented Hypermedia(OO-H)

OO-H (Object-Oriented Hypermedia) [58, 103, 57]looks at Web systems as unified soft-
ware artifacts where structure, behaviour and presentation are all basic pieces that must
be properly combined to get a correct final software product. The OO-H method is a
generic model, based on the object-oriented paradigm that provides the designer with
the semantics and notation necessary for the development of Web-based interfaces and
its connection with previously existing application logic modules. OO-H defines a set of
diagrams, techniques and tools that shape a sound approach to the modelling of Web
interfaces. The OO-H proposal includes:

Chapter 1 An Overview of Web-Based Applications and Systems 15

• Design process

• Pattern catalogue

• Navigationaccess diagram(NAD)

• Two-fold presentation layer(abstractpresentation diagram and composite layout
diagram)

The extension to “traditional software” production environments is achieved by means
of two complementary views: (1) the navigational access diagram (NAD) that defines a
navigation view, and (2) the abstract presentation diagram (APD) and composite lay-
out diagram (CLD) that gather the concepts related to abstract structure of the site
and specific presentation details, respectively. The NAD diagram enriches the domain
view provided by the UML use case and class diagrams with navigation and interaction
features. Also, to define navigation and visualization constraints, OO-H uses the object
constraint language [136], a subset of the standard UML that allows software developers
to write constraints over object models augmenting the model precision. OO-H asso-
ciates such constraints to the navigation model by means of filters defined upon links.
On the other hand, the definition of abstract pages in the APD is based on a set of
XML DTDs. Both the NAD and the APD capture the interface related design informa-
tion with the aid of a set of patterns, defined in an interface pattern catalogue that is
integrated in the OO-H proposal.

1.5 Modelling Requirements for Web Applications

Traditional Web sites can be regarded as (universally distributed) hypermedia appli-
cations and can largely be modelled using hypermedia modelling methods. Most ap-
proaches that we have presented in the previous section distinguish at least two main
dimensions for hypermedia/Web site conceptual modelling: information modelling and
navigation modelling. Information modelling describes the contents of the Web site.
Navigation modelling describes its navigation capabilities, i.e., the paths that users can
traverse to explore the information universe. Hereafter the union of information mod-
elling and navigation modelling will be globally referred to as hypermedia modelling or
Web modelling, interchangeably.

Traditional hypermedia modelling focuses on organizing the information structures and
navigation paths. In many modelling approaches functional aspects are neglected or
regarded as second class citizens.

A comprehensive study regarding gap analysis for a wide range of available modelling
approaches has been made in [12]. The results have been presented in Figure 1.4. In this
chart the level of support that each methodology provides for functional and information

16 Chapter 1 An Overview of Web-Based Applications and Systems

aspect has been assessed. The target zone indicates the required level of abstraction for
both functional and information levels. The result of this study and similar study like
[97] reveals that most of Web modelling approaches need to be improved in one or more
of the following aspects:

• Ability to model functional and informational aspects with an integrated manner
and the same level of emphasis

• Ability to model the system in different level of abstraction and refinement with
support for architectural level and component based modelling

• Ability to model business domain concepts

In the following sections we try to summaries some recent attempts which have been
made relating to these three pre-mentioned aspects.

Figure 1.4: Existing Modelling Approach Gap Analysis

Chapter 1 An Overview of Web-Based Applications and Systems 17

1.6 Modelling Support for Both Functional and Informa-

tional Aspects

As we mentioned earlier current Web-based Systems are not just graphic design presen-
tation and hypertext navigation systems any more; they are delivering a complex set
of functional and transactional properties in e-business systems. Considering this fact
indicates that Web Modelling languages (WMLs) should consider both functional and
informational aspects as first class citizens. The problem of conceptual design of Web
applications can be approached from two different perspectives:

• Web applications can be regarded as extensions to traditional information systems,
complemented with navigation and complex information structures;

• Web applications can be regarded as extensions to traditional Web sites comple-
mented with various kinds of application operations and conventional functionality
of information systems.

Whatever the chosen approach, it is clear that Web applications introduce a new di-
mension into modelling space which must be modelled explicitly: non-navigational op-
erations. These operations are not “read-only”: They may modify individual contents
as well as entire information/navigation structures of the application. As such, they
add dynamic (i.e., evolution) properties to the two original dimensions (information and
navigation) of conventional Web sites. In [21] a graphical representation of design space
for Web sites and Web application is illustrated which we have reproduced in Figure 1.5.

(a) Web Site Modelling (b) Web Applications Modelling

Figure 1.5: Design Spaces for Web Sites and Web Applications

Differently from traditional Web sites, hypermedia structures of Web applications are
very often dynamic entities, in the sense that information and navigation objects evolve

18 Chapter 1 An Overview of Web-Based Applications and Systems

either along time, or by the (direct or indirect) effect of user operations. Therefore the
integrity and cohesion of a Web system is largely dependent on a close and yet flexible
interconnection between its information architecture and its functional architecture. The
requirement is that WMLs need to support not only the modelling of both information
architecture and functional architecture but, more importantly, the integration of them
in a cohesive and consistent manner [12].

It is critical that these are linked for the Web system to successfully address business
needs in an effective way [84]. Indeed, the integrity and cohesion of a Web system is
largely dependent on a close and yet flexible interconnection between its information
and functional modelling. The requirement is that WMLs need to support not only
the modelling of both information and functional aspects but, more importantly, the
integration of them in a cohesive and consistent manner. Several attempts including
[35, 72, 131] have been made to integrate theses aspects.

For example in [35] the authors have presented an extension to the OO-H conceptual
modelling approach for the specification of user-operation interaction (feeding of pa-
rameters, invocation of operations, either simple or compound, and view of operation
results).

This approach increases the level of abstraction at which Web Applications have been
traditionally developed and integrated. The main contributions of the above mentioned
paper can be summarized as follows:

• An integration process that, departing from traditional software engineering tech-
niques, extends the views provided by such approaches with a set of new comple-
mentary hypermedia views that include server interface definition.

• A set of interaction modes that define the way the user can introduce the values
for the set of parameters involved in the service invocation.

• A set of modelling constructs that abstract the definition of One-Step and Multi-
Step interfaces. At this moment efforts are being made towards the support of
Compound Services that involve Internet Transactions. OO-H is supported by
a CASE tool that, at this stage of development, already provides a model com-
piler for the automatic generation of interface prototypes. Intensive work is being
performed on the OO-H Case tool to provide full support to the method.

1.7 Supporting Architectural Level and Component Based

Modelling

A critical level of abstraction in the description of a complex system is its software
architecture. At an architectural level one describes the principal system components

Chapter 1 An Overview of Web-Based Applications and Systems 19

and their pathways of interaction. Architectural descriptions are typically used to pro-
vide an intellectually tractable, birds-eye view of a system, and to permit design-time
reasoning about system-level concerns, such as performance, reliability, portability, and
conformance to external standards and architectural styles.

In practice most architectural descriptions are informal documents. They are usually
centred on box-and-line diagrams, with explanatory prose. Visual conventions are idio-
syncratic, and usually project-specific. As a result, architectural descriptions are only
vaguely understood by developers, they cannot be analyzed for consistency or complete-
ness, they are only hypothetically related to implementations, their properties cannot
be enforced as a system evolves, and they cannot be supported by tools to help software
architects with their tasks [52, 109, 125]. To improve the situation a number of people
have suggested the use of more standardized and formal notations for architectural de-
scription. Viewed broadly, there are two main sources of such recommendations. One
is from the software architecture research community, which has proposed a number
of “architecture description languages” (ADLs). The other source is from the object-
oriented community. A number of authors have examined ways to model architectures
using object notations and specially UML. In the following sections short overviews of
these two approaches are presented.

1.7.1 Architecture Description Languages(ADLs)

Architecture description languages specifically designed to represent software and system
architectures are supported by some tools. Developers can use ADLs, such as Aesop [51],
Adage [23], C2 [92], Darwin [89], Rapide [88], SADL [98], UniCon [124], MetaH [26], or
Wright [13]. Although with a considerable overlap on the core, each ADL focuses on
different aspects of architectural specification, such as modelling the dynamic behaviour
of the architecture, or modelling different architectural styles. This diversity provides
different approaches to solve specific families of problems. However, the interchange of
information between different ADLs becomes a major drawback. Developing a single
ADL providing all the features of the various ADLs would be a very complex endeavour.
Instead, an ADL called Acme [53] emerged as a generic language which can be used
as a common representation of architectural concepts in the interchange of information
between specifications with different ADLs [20]. These languages have matured over the
past years. Most come with tool sets that support many aspects of architectural design
and analysis, such as graphical editing, code generation, run-time monitoring, anomaly
detection, and performance analysis. Although ADLs allow for architecture in-depth
analysis, their formality is not easily reconciled with day-to-day development concerns.
New UML 2.0 features [102] provide a promising way to rectify this weakness and to
bring architectural modeling to a larger community. In the later sections we discuss this
subject in more detail.

20 Chapter 1 An Overview of Web-Based Applications and Systems

While ADLs (and their associated tool sets) differ in many details, there has emerged a
general consensus about the main ingredients of architectural description. Focusing on
architectural structure, we take that core set of concepts as the starting point for this
review. In this shared ontology there are six basic concepts: components, connectors,
ports, interfaces, properties, systems, and styles [70, 52].

Components: (parts) represent the computational elements and data stores of a sys-
tem. Intuitively, they correspond to the boxes in box-and-line descriptions of software
architectures. Typical examples of components include clients, servers, filters, black-
boards, and databases. Components may have multiple interfaces (which we will call
ports), each interface defining a point of interaction between a component and its en-
vironment. A component may have several ports of the same type (e.g., a server may
have several active http connections).

Connectors: (relationships) represent interactions among components. They provide
the “glue” for architectural designs, and correspond to the lines in box-and-line de-
scriptions. From a run-time perspective, connectors mediate the communication and
coordination activities among components. Examples include simple forms of interac-
tion, such as pipes, procedure call, and event broadcast. Connectors may also represent
complex interactions, such as a client-server protocol or a SQL link between a data-
base and an application. Connectors have interfaces that define the roles played by the
participants in the interaction.

Ports: (Interfaces) a special type of architecture part that defines a set of interaction
points between it and other parts. Well-defined interfaces ensure proper relationships
between parts.

Properties:(constraints) represent additional information (beyond structure) about the
parts of an architectural description. Although the properties that can be expressed by
different ADLs vary considerably, typically they are used to represent anticipated or
required extra-functional aspects of an architectural design. For example, some ADLs
allow one to calculate system throughput and latency based on performance estimates
of the constituent components and connectors. In general, it is desirable to be able
to associate properties with any architectural element in a description (components,
connectors, systems, and their interfaces). For example, an interface (port or role) may
describe an interaction protocol.

Systems: represent graphs of components and connectors. In general, systems may be
hierarchical: components and connectors may represent subsystems that have internal
architectures. We will refer to these as representations. When a system or part of
a system has a representation, it is also necessary to explain the mapping between
the internal and external interfaces. We will refer to the elements of this mapping as
bindings.

Chapter 1 An Overview of Web-Based Applications and Systems 21

Types and Styles: represent families of related systems. An architectural style could
be considered as an architectural configuration: (or topology). Topology refers to
connected graphs of parts and relationships that describe an architectural structure.
At its most basic level, an architectural modelling language must be able to specify an
architectural structure consisting of parts, interfaces, relationships and constraints. For
distributed systems and Web-based applications [52], it is desirable that the language
also includes the ability to model the following:

Composition: Since a large system typically decomposed into subsystems, or may be
used as a subsystem by another system, architectural models should support hierarchical
composition.

Heterogeneity: Large, complex systems are often a mix of legacy and new subsystems,
with components and connectors at various levels of abstraction and granularity. An
architectural model needs to be able to connect these heterogeneous parts into a cohesive
whole

System evolution: Architectural parts are subject to complex and changing require-
ments and protocols. Architectural models must be able to specify the correct and
consistent refinement of parts from concept to implementation. In addition, they must
be able to support traceability of requirements across abstraction levels.

Distribution and concurrency: Architectural models for distributed enterprise ap-
plications need to specify distribution strategies and concurrent processing requirements.

Non-functional requirements: Architectural models must also be able to specify
non-functional requirements, such as reliability and performance constraints.

1.7.2 Using UML as Architecture Description Language

The OO approaches to software modelling are widely accepted in industry. In particular,
the UML [129] has become de facto standard for Modelling OO systems. Using UML
to describe software architectures can bring economies of scale, better tool support
and inter-operability, as well as lower training costs. Despite the above mentioned
advantages, using UML as an ADL has some shortcomings. For instance, all versions
of UML before UML 2.0 are less expressive than ADLs when representing connections
between components.

It is essential to appreciate that the UML is not specifically designed as an ADL. There-
fore it is fair to say that all versions of UML before UML 2.0 suffer from some shortcoming
for describing software architecture. Some of these issues have been resolved in UML
2.0. As in the time of writing this chapter the full specification of UML 2.0 had not
yet been released, no substantial assessment on UML 2.0 was available. Consequently

22 Chapter 1 An Overview of Web-Based Applications and Systems

in the rest of this section we first review earlier versions of UML and then provide some
recent researches related to UML 2.0.

UML unifies a number of object modelling notations in a common framework and is
quickly becoming a standard object notation for industry. While a detailed description
of UML is beyond the scope of this report, we summarize its principal constructs (known
as model elements) that can be used to model software architectures:

Classes, Interfaces and Objects: Classes are the primary construct for describing
the logical view of a system. Classes have properties in the form of attributes, provide
abstract services in the form of operations, and can be logically related to one another
using associations. Classes may expose their functionality through a set of supported
interfaces, collections of related operations. Classes have instances called objects, which
are used in models called collaborations to depict behaviour under particular scenarios.

Component and Component Instances: Components are used to describe the phys-
ical, deployable pieces of a system. Like classes, components in UML expose their
functionality through interfaces. Components are typically related to each other using
dependency relationships. The deployment of a system on a set of hardware is described
by associating components with hardware nodes.

Packages: UML provides a grouping mechanism that is used to partition large UML
models into manageable chunks called packages. UML also defines a type of grouping
element called a subsystem, which is typically used to encapsulate the object models
that define a coarse-grained module in a system.

Relationships: Model elements are related to one another with associations and de-
pendencies. Dependency is the most generic relationship in UML, indicating that an
element depends in some way on the definition of another element. Association is a
richer relationship that describes an abstract relationship between classes and the roles
the classes play in the relationship.

Stereotypes:To allow the extension of UML with domain-specific concepts, UML pro-
vides a mechanism for associating constraints with elements of a model, using a con-
straint language, OCL [129]. These constraints can be grouped and named using a
construct called a stereotype. UML also includes a set of standard stereotypes.

The above constructs can be composed in various ways in a UML model and visual-
ized in diagrams. Textual annotations may be associated with any of them. Frequently,
these annotations are in the form of tagged values: arbitrary attribute-value pairs. UML
also defines a set of models for describing the dynamic behaviour of a system, includ-
ing collaboration diagrams that specify system behaviour using event-based interaction
scenarios, descriptions based on state machines, and use cases.

Chapter 1 An Overview of Web-Based Applications and Systems 23

Several attempts to map ADLs to UML have been made in the past [93, 70, 43, 52]. One
motivation for such attempts is to bring architectural modelling to a larger community,
through the use of mainstream modelling notations. Another is to provide automatic re-
finement mechanisms for architectures. UML can be used as a bridge from architectural
to design elements.

In [52] five strategies have been examined for encoding Architectural description in UML.
For each of these the authors have considered a number of variations and strategies with
respect to completeness, legibility, and semantic match. The following conclusions were
drawn in this study.

First, there is no single best way to encode ADLs in UML. Each of the strategies has
strengths and weaknesses, depending on how well they support the evaluation criteria.
With respect to completeness and legibility there is a typically a trade-off: encodings
that emphasize completeness (by providing a semantic home for all of the aspects of
architectural design) tend to be verbose, while graphically appealing encodings tend to
be incomplete. Hence, the best strategy will depend on what aspects of architectural
design needed to be represented. In restricted situations (for example, if there is only
one type of connector) it may be preferable to use an incomplete, but visually appealing,
encoding.

Second, all of the encodings exhibit some form of semantic mismatch. UML’s vocabulary
of classes, objects, packages, components, associations, etc., while varied and rich, is
ultimately designed to support an object-oriented view of software design. As such, UML
does not provide a completely adequate foundation for architecture-based description of
systems. In this paper, they illustrated a number of specific examples of mismatch,
including the following:

• Neither the class, subsystem or UML’s component concept is a perfect match to
the ADL component concept;

• Unlike objects, architectural instances may need to define additional structure not
defined by their types;

• the port concept has no good analogy in UML, since unlike interfaces, a port
should be able to define both provided and required services, and a component
might have multiple instantiations of a particular port type;

• There is no satisfactory way to fully describe a connector and its roles; and

• Although the ADL type and instance concepts are very similar to the class and
object concepts of UML, neither class diagrams nor collaboration diagrams are
wholly appropriate for describing architectural configurations.

24 Chapter 1 An Overview of Web-Based Applications and Systems

Given these observations, one might well ask whether there are reasonable alternatives
to the direct encoding of architecture in ADL. According to [52] there are two possible
alternative paths:

1. Continue to use ADLs, but map to OO implementations. In this approach architec-
ture description retains its own notations, but tools are provided to convert those
descriptions to lower-level object notations in situations where the implementation
is done in an object-oriented fashion.

2. Extend UML to include additional concepts for architectural modelling. This
could be done by extending the UML meta-model, or by defining a profile for
architectural design. Indeed, we can see the inclusion of architectural notions,
such as ports, in proposals for real-time extensions to UML [123] and later in
UML 2.0 [102].

The authors suggested the extension of their examination of mappings to non-structural
aspects of software architecture, such as behaviour, performance, and reliability as future
research. Furthermore, to make more progress in reconciling architecture description
with UML it will be important to consider the problem at a more formal level.

All approaches were performed with UML 1.x, suffering from some problems including
notation mismatch. In [59] an approach based on using the new UML 2.0 meta-model
elements has been proposed. These new elements enhance the language’s suitability for
component-based design. The proposed mapping builds upon the added expressiveness
of UML 2.0 for architectural concepts. The availability of components with ports typed
by provided and required interfaces has proved to be a step forward in the exercise of
bridging the gap between architectural and design information. This improves trace-
ability between architectural description and its implementation, using the design as a
middle layer between them. This traceability is relevant for keeping consistency between
the architecture, design and implementation of a software system.

The proposed mapping focuses mainly on structural aspects and design constraints.
Although it also points out to ways of dealing with the definition of system properties,
including semantics and behavioural specification, further research is required to provide
more specific guidance on these aspects.

1.7.3 The Need for Architectural Level Modelling in Web-based Ap-

plications

Modelling approaches for Web-based systems should be business-oriented to facilitate
changes in customer and organization requirements and technology-neutral to insulate

Chapter 1 An Overview of Web-Based Applications and Systems 25

them from changes in technology. In addition, they must be able to address the issues
of distribution and concurrency associated with distributed applications.

There is a critical need for architectural constructs, techniques and methods to manage
the complexity of distributed Web-based applications and systems. The architectural
level modelling can bridge between business modelling and functional and information
modelling. The need for higher-level design abstraction in Web-based application could
better understand in the light some key aspects of these systems. Here we have presented
some of these aspects which have been summarised in [82]:

• Short time frames for initial delivery. Web development projects often have
delivery schedules that are much shorter than for conventional IT projects. This
is partly a consequence of the rapid pace of technological development and partly
related to the rapid uptake of Web systems.

• Increased importance of quality attributes. Web systems represent an in-
crease in mission-critical applications that are often directly accessible to external
users and customers. Flaws in applications (be they usability, performance or
robustness) are therefore much less able to be ‘hidden’ and hence much more
problematic.

• Open modularised architectures. Although not unique to Web applications,
it is still worth mentioning the emphasis that is typically placed on open and mod-
ularised architectures for Web systems. They are often constructed from multiple
COTS (commercial off-the-shelf) components that are adapted and integrated to-
gether. Indeed, strong integration skills become much more critical in most Web
projects.

• Rapidly changing technologies. The technology that underpins most Web
systems is changing very rapidly. This has several consequences. The important
one is that it increases the importance of creating flexible solutions that can be
updated and migrated to new technologies with minimal effort. For example, the
need for reusable data formats (such as XML) and technology neutral design is
very much emphasised in Web System development.

• Highly variable client. It is extremely common for Web-based systems to in-
teract with different type of clients on varieties of platforms. This typically means
that interoperability and dealing with heterogeneous clients is an absolute prop-
erty for these systems. Therefore the modelling approach should support high level
and platform independent modelling of the system.

The evolution of Web-based applications and underlying complex middleware, demands
high-level architecture modelling and modular design. This trend has been reflected is
some recent works on Web-based application modelling like [85, 91, 73, 41, 139].

26 Chapter 1 An Overview of Web-Based Applications and Systems

1.8 Business Domain Modelling

The growing importance of Web-based systems to organisations has become increasingly
evident within the recent years. Internet and an increasingly complex set of Web stan-
dards, protocols and technologies provide sophisticated business solutions that merge
Web-based front-ends with complex back-end software. The rapid and successful deploy-
ment of these systems is often critical to the business strategy of many organisations
- particularly with respect to the way in which they interact with customers, clients,
and/or business partners. In fact most Web applications actually form the channel
between the organisation and its business partners or customers.

Many research and practical experiences suggest that there is a much stronger linkage
between the business model and the technical architecture in Web systems in comparison
to conventional software systems [106, 83, 61, 79, 84]. As a consequence, the quality of
the technical architecture will largely depend on the developers’ understanding of the
current business model and the required changes to it, in the context of the impact
from Web technologies. To facilitate and document this understanding, WMLs need to
provide the ability to model business domain concepts e.g. business processes, business
entities, workflows, business rules, together with the roles and responsibilities of users.

Business-related development and modelling artifacts are usually created and used by
developers from both IT and business backgrounds. As a result, the modelling of business
domain concepts needs to be designed with the consideration of target user types so that
these model artifacts can be easily understood, communicated and modified within and
across development teams and business units.

Once understood and documented, the business model needs to be effectively translated
into a technical architecture so that the desired system functionality can be implemented
and delivered. To support this requirement, WMLs need to provide the ability to identify
the linkage between the business model and the technical architecture, and between
the model elements in the business model and the model elements in the technical
architecture. This interconnection needs to be represented at various abstraction levels.

The necessity to integrate business processes with WMLs is well recognised in many
recent publications including [118, 75, 110]. Some of these analyses suggest extending
available methods, meanwhile others introduce new methods. In [86, 130] an extension of
the WebML has been presented to support business process modelling and its integration
to information modelling..

An extension of the OOHDM which gives a behavioural definition to the core features of
this method and propose new models to support business processes has been proposed in
[117]. The authors claim that they derive application-specific model classes from prede-
fined behavioural model classes that have operations with a well-defined semantics. The

Chapter 1 An Overview of Web-Based Applications and Systems 27

behavioural model classes collaborate with a Web Application virtual Machine (WAM).
The WAM models basic Web-browser characteristics, i.e. HTTP-HTML characteristics.
Thus, the semantics of an OOHDM Web application model is precisely defined in an
executable way.

In [27]the authors propose UWA+, a framework which extends a methodology for mod-
elling Web applications UWA (Ubiquitous Web Application)[134] with concepts of busi-
ness process design. They claim that UWA+ is able to bridge the gap between the
business process modellers and the Web system designers. The framework proposed in
this paper aims to solve some of the problems haunting the relationship between busi-
ness process modelling and Web systems. Having a unique and standard language to
describe different aspects of business and systems is fundamental in order to create a
common ground for discussing both business and the supporting systems. The emphasis
of this framework is on providing the basis for creating such a common representation
and simultaneously providing a way for addressing the traceability between the different
views. The first view of the framework is about business goals and business processes.
The second view shows the relation between the process and Web system. It allows the
representation of how Web information systems support the business logic which is one
of the main issues in today’s organizations. Web system modelling is based on a user
cantered approach, which is the cornerstone of today’s Web system architecture.

In [131] a companion notation to an existing modelling language, WebML has been pro-
posed. This companion model is referred to as the Web Information Exchange Diagram
(WIED). A key point in this model is that the WIED approach is built around the notion
of information flows at the level of understanding business processes. This enables the
models to form a link between higher-level models (specifically, business models) and
lower-level detailed design models.

The WIED approach still has some limitations, however. For example, while WIED
provides linkages to some modelling approaches (e.g. a widely-adopted low-level infor-
mation modelling approach such as WebML and a typical business modelling approach
such as e3-value), it doesn’t support linkages to standard modelling approaches such as
UML. It has also yet to define clearly the relationship to functional modelling which can
be appropriately represented by the UML model suite. The relationship between differ-
ent levels of modelling in WIED has been depicted in Figure 1.6. In [87], the authors
have demonstrated how the WIED model can be mapped into UML compliant notations
and a new UML diagram. They have argued that this enables WIED to be compatible
with UML and provide improved connections between WIED and other models that are
typically constructed. Therefore, it will lead to a more standardized WIED and subse-
quently enhance the design process of Web-enabled systems. They believe that this will
also assist developers and clients, who use UML-based notations in their system devel-
opments, in understanding the impact on business process and models which arise from

28 Chapter 1 An Overview of Web-Based Applications and Systems

Figure 1.6: Relationships between modelling domains in WIED

changes that are made to the underlying information designs (as has been illustrated in
our previous work with WebML-compliant WIED.

In this work, they have also briefly proposed guidelines to support the mapping process
linking the WIED (UML-compliant) to other modelling approaches based on UML.
This should be a good start for making the WIED a practical companion to existing
widely-used UML models and potentially integrate with those models to create a better
UML-based modelling suite for Web system developments.

1.9 Conclusions

In this chapter we reviewed, how simple static Web systems have been evolved to very
sophisticated and complex Web applications. Although, as it was the case in other area
of software engineering, design and development methods of Web applications in the
early stages were very implementation oriented and ad-hoc in there approaches. As
the need for building more reliable and scalable systems grew, a lot of attempts by
researchers with different backgrounds have been made to introduce some methodical
approaches for modelling Web applications. These modelling approaches either extend
available general software modelling or introduce new methods.

Chapter 1 An Overview of Web-Based Applications and Systems 29

It can be seen, in this chapter, that as the systems become more complex, higher level
modelling methods like architectural and business level modelling become more essential.
Tool support for the modelling approach is another key issue. Using proper uniform
notation that can cover all necessary aspects of Web application modelling is another
key property for a modelling approach. The simplicity and the level of compliance with
standard notations like UML are other important aspects that play a great role to make
a modelling approach more acceptable to a broader range of system developers.

Despite the fact that many Web applications are mission-critical systems and that they
should provide a high level of dependability, almost all of the modelling approaches
which we surveyed in this chapter lack any forms of verifiability. Verifiability is an
essential approach to eliminate inconsistencies in the specification and design, and deploy
a dependable system. In the next chapter we investigate how formal approaches could
contribute toward more dependable Web systems.

Chapter 2

Formal Methods and Web-Based

Applications

2.1 Introduction

Every day more and more organisations and businesses extend their services to a wider
rang of users either by by developing new Web-based application or making legacy
systems Web-enabled. Many of these system are mission-critical or business-critical
systems; which implies any failure can cause high economical losses. For example online
banking, financial transaction systems, online shopping, revenue and taxation systems
are a few examples of business-critical systems. All these systems are being required to
function at high levels of reliability and security. Formal methods have been advocated
as a means of increasing the reliability of systems, especially those which are safety or
business critical systems.

In this chapter we present a short overview of critical systems and required properties
of such systems. Formal methods are one of the major common practices for developing
critical systems. Therefore a brief introduction about formal methods will follow the
first section. The B-Method is one the formal methods that we use it later to develop our
formal models. A more detailed review on this method and its extensions is presented
in section 3. Some of the extensions are inspired from other formal methods like CSP
(Communicating Sequential Processes), which we will discuss this issue in the end of
chapter.

2.2 An overview of critical systems

A critical system is a system where system failure can have severe human or economic
consequence. According to [66] critical systems can be classified into three categories:

31

32 Chapter 2 Formal Methods and Web-Based Applications

• Safety-critical systems: Failure results in loss of life, injury or damage to the
environment; examples of such systems are Chemical plant protection systems,
embedded control systems in airplanes and trains;

• Mission-critical systems: Failure results in failure of some goal-directed activity;
example of such systems is: Spacecraft navigation systems;

• Business-critical systems: Failure results in high economic losses; example of such
systems are: online banking, financial transaction systems, online shopping and
credit cart systems;

Many Web-based applications belong to the third group of the above category. The
most important property of such systems is the dependability of the systems. The
dependability of a system reflects the users degree of trust in that system. It reflects the
extent of the users confidence that it will operate as users expect and that it will not
fail in normal use. Systems that are not dependable are either unreliable or insecure.
Therefore they may be rejected by their users and consequently lead to financial losses.
The four major dimensions of dependability are:

• Availability

• Reliability

• Security

• Safety

These aspects and their related properties have been summarised in Figure 2.1:

Dependability

SafetyReliabilityAvailability Security

The ability of
the system to

deliver services
when requested

The ability of
the system to

deliver services
as specified

The ability of
the system to

operate without
catastrophic

failure

The ability of the
system to protect

itself against
accidental or

deliberate intrusion
Figure 2.1: Main Dimensions of Dependability.

Chapter 2 Formal Methods and Web-Based Applications 33

These are non-functional properties and they do not relate to any specific functionality
of the system. Some or all of these properties are usually more important than detailed
system functionality. It should be taken into consideration that the priority and the
degree of importance of these aspects could vary between different types of critical
systems. For example business systems are considered as security-critical system. This
implies that the systems ability to protect itself from accidental or deliberate external
attacks is becoming increasingly important. As systems are networked and external
access to the system through the Internet is the main possibility to interact with them,
security is an essential pre-requisite for availability, reliability and safety.

In today’s technologically driven world the creation of high profile, mission-critical Web-
based applications often requires the integration of a wide range of technologies and
protocol standards. They need to deliver a high-performance, high-availability, scalable
architecture, tightly supporting a wide range of Internet standards, databases and ap-
plications. Over the years, a variety of techniques have been developed to help us gain
more insight into modelling and ultimately ensuring the quality of such systems. Based
on the solid foundation of mathematics, formal methods have been found particularly
usable for ensuring software quality and dependability. Formal methods now are on the
verge of becoming best practice and/or required practice for developing safety-critical
and mission-critical software systems. Although there are already established techniques
and supporting tools for formal specification and development of software components,
there is much scope for further development in areas like Web-based applications. As our
aim is to apply formal method to the development process of Web-based applications,
we present a short survey on different formal methods in the following sections.

2.3 An overview of Formal Methods

Formal methods used in developing computer systems are mathematically based tech-
niques for describing system properties. Such formal methods provide frameworks within
which people can specify, develop, and verify systems in a systematic, rather than ad
hoc, manner [137].

A method is formal if it has a sound mathematical basis, typically given by a formal spec-
ification language. This basis provides the means of precisely defining notions like consis-
tency and completeness and, more relevantly, specification, refinements,implementation,
and correctness. It provides the means of proving that a specification is realizable, prov-
ing that a system has been implemented correctly, and proving properties of a system
without necessarily running it to determine its behavior.

A formal method also addresses a number of pragmatic considerations: who uses it,
what it is used for, when it is used, and how it is used. Most commonly, system
designers use formal methods to specify a system’s desired behavioral and structural

34 Chapter 2 Formal Methods and Web-Based Applications

properties. However, anyone involved in any stage of system development can make
use of formal methods. They can be used in the initial statement of a customer’s
requirements, through system design, implementation, testing, debugging, maintenance,
verification, and evaluation.

Formal methods are used to reveal ambiguity, incompleteness, and inconsistency in a
system. When used early in the system development process, they can reveal design flaws
that otherwise might be discovered only during costly testing and debugging phases.
When used later, they can help determine the correctness of a system implementation
and the equivalence of different implementations. For a method to be formal, it must
have a well-defined mathematical basis.

One tangible product of applying a formal method is a formal specification. A specifica-
tion serves as a contract, a valuable piece of documentation, and a means of communi-
cation among a client, a specifier, and an implementer. Because of their mathematical
basis, formal specifications are more precise and usually more concise than informal ones.
Since a formal method is a method and not just a computer program or language, it may
or may not have tool support. If the syntax of a formal method’s specification language
is made explicit, providing standard syntax analysis tools for formal specifications would
be appropriate. If the language’s semantics are sufficiently restricted, varying degrees
of semantic analysis can be performed with machine aids as well. Thus, formal specifi-
cations have the additional advantage over informal ones of being amenable to machine
analysis and manipulation.

A formal method consists of three parts, namely syntax, semantics and satisfactions.
The syntax part defines a set of symbols or notations and grammatical rules that define
well-formed formulae. These rules characterise a language’s syntactic domain. The
syntax of a language shows how the symbols in the language are put together to form
meaningful formulae. Neither the nature of the objects symbolised nor the meanings
of the relationships between them are characterised by the syntax of a language. For
example, the presentation of the propositional calculus is entirely syntactical.

Meanings, or interpretations of formulae, are specified by the semantics of a language.
A set of objects, known as the language’s semantic domain, can provide a model of
a language. The semantics are given by exact rules which state what objects satisfy
a specification. For example, Cartesian Geometry shows how theorems in Euclidean
Geometry can be modeled by algebraic expressions.

The third part defines relations between syntax and semantics. It consist a set of precise
relations and rules defining which objects satisfy each specification [137].

In [81] the authors suggested that a formal method should consist of some essential
components: a semantic model, a specification language (notation), a verification sys-
tem/refinement calculus, development guidelines and supporting tools:

Chapter 2 Formal Methods and Web-Based Applications 35

1. The semantic model is a sound mathematical/logical structure within which all
terms, formulas and rules used have a precise meaning. The semantic model should
reflect the underlying computational model of the intended application.

2. The specification language is a set of notations which are used to describe the
intended behaviour of the system. This language must have a proper semantics
within the semantic model.

3. Verification system/refinement calculi are sound rules that allow the verification
of properties and/or the refinement between specifications.

4. Development Guidelines are steps showing the use of the method.

5. Supporting tools may provide proof assistant, syntax and type checking, animator,
and prototyping.

It should be emphasised that all formal methods do not necessarily consist all above
elements. Thus in terms of the degree of rigorous mathematical support which they
offer for system development they could be classified in four different groups or levels of
formalism as following [99]:

• Level 0: No applied mathematics at all, but perhaps appeal to tabular or dia-
grammatic notations, pseudo code, and equations defining transfer functions, etc.

• Level 1: The use of concepts and notations from discrete mathematics, with
proofs conducted in the traditional, informal style of mathematical discourse.

• Level 2: The use of formalised specification languages with mechanised support
for syntax analysis, pretty-printing, and simple type checking.

• Level 3: The use of fully formal specification languages with comprehensive sup-
port environments including mechanised theorem proving and proof checking.

Proofs at levels 1 and 2 are conducted in the manner of the rigorous arguments preferred
by mathematicians, although specification formalisms at level 2 may provide deduction
rules that could in principle lead to formalising such arguments; the transition to level 3
is therefore marked by the provision of theorem provers and the fully formal specification
languages alluded to which are firmly rooted in mathematical logic (making mechanical
support a practical necessity), and which have demonstrably sound axiomatisations.

Formal methods could be used in different ways:

• writing formal specifications: The production of specifications which are then the
basis for a conventional system development. In this case, specifications are used
as a precise documentation medium which has the advantages of manipulability,
abstraction and conciseness.

36 Chapter 2 Formal Methods and Web-Based Applications

• proving properties about the specification: Consistency and property checks and
animation of specification could be performed at this stage with the aid of the
associated supporting tools. Therefore, formal methods allow us to find errors in
the specification phase.

• deriving implementations from a given specification: Once a specification has been
set up and one has figured out that it is indeed what is desired, it would be helpful
to have a design method that could automatically derive a system’s implementation
that fulfills the given requirements. However, specifications are often given in a
declarative manner and not in a constructive manner. This means that these
specifications only describe what the system should do, but not how this function
can be achieved. It is certainly not possible to derive correct programs from
declarative specifications since these problems are intrinsically undecidable so the
tools can never solve them. Although the tool can provide some sort of help and
directions like suggesting possible patterns for refinement, but the construction of
appropriate implementations will always remain a creative task for human beings.

• verifying specifications with respect to a given implementation: The design steps
that are used to refine the system’s specification must not affect the validity of
the specification. Therefore, through correctness preserving refinement rules, we
should be able to check whether each refinement step preserves the correctness of
previous step system. This will give the developed system a degree of certainty
and trustworthiness.

2.3.1 Classification of Formal Methods

Based of different criteria like syntax, underlying semantics or targeted systems , formal
methods could be classified in different classes. A very general classification is presented
in [137], which classify formal methods to three main classes, namely Model-oriented,
Property-oriented and Visual languages.

• Model-oriented: In model-oriented method, a specifier defines a system’s be-
havior directly by constructing a model of the system in terms of mathematical
structures such as tuples, relations, functions, sets, and sequences.

• Property-oriented: Using a property-oriented method, a specifier defines the
system’s behavior indirectly by stating a set of properties, usually in the form of
a set of axioms, that the system must satisfy.

• Visual languages:Visual methods include any whose language contains graphical
elements in their syntactic domains.

Chapter 2 Formal Methods and Web-Based Applications 37

A more detailed and precise classification of formal methods is presented in [81, 80]which
formal methods have been classified into the following five classes or types, i.e. Model-

based, Logic-based, Algebraic, Process Algebra and Net-based (Graphical)

methods. In the following subsections we will briefly discuss each of these approaches.

Model-based Methods.

A system is modelled by explicitly giving definition of states and operations that trans-
form the system from a state to another. In this approach, there is no explicit repre-
sentation of concurrency. Non-functional requirements (such as temporal requirement)
could be expressed in some cases. There are three most popular model-based formalisms:

• Z [128].

• VDM [69].

• B-Method [2]

Logic-based Approach.

In this approach logics are used to describe system desired properties, including low-level
specification, temporal and probabilistic behaviours. The validity of these properties is
achieved using the associated axiom system of the related logic. In some cases, a subset
of the logic can be executed, for example the Tempura system [100]. The executable
specification can then be used for simulation and rapid prototyping purposes. Logic can
be augmented with some concrete programming constructs to obtain what is known as
wide spectrum formalism. The development of systems in this case is achieved by a set
of correctness preserving refinement steps. Examples of this form are TAM [120] and
the Refinement Calculus [119]. Below some popular logic-based formalisms have been
listed:

• Hoare Logic [42].

• Modal Logic [104].

• Temporal Logic [90].

• TLA And TLA+ [76, 77].

• RTTL (Real-Time Temporal Logic) [105].

38 Chapter 2 Formal Methods and Web-Based Applications

Algebraic Approach.

In this approach, an explicit definition of operations is given by relating the behaviour of
different operations without defining states. This is similar to the model-based approach
where there is no explicit representation of concurrency. Below some popular algebraic-
based formalisms have been listed:

• OBJ [68].

• LARCH [60].

Process Algebra Approach.

In this approach, explicit representation of concurrent processes is allowed. System be-
haviour is represented by constraints on all allowable observable communication between
processes. Below some popular process algebra-based formalisms have been listed:

• CSP(Communicating Sequential Processes) [64].

• CCS(Calculus of Communicating Systems) [96].

• ACP(Algebra of Communicating Processes) [19].

• LOTOS [67].

Net-Based Approach.

Graphical notations are popular notations for specifying systems as they are easier to
comprehend and, hence, more accessible to nonspecialists. In this approach, graphical
languages with a formal semantics are used, which bring special advantages in system
development and re-engineering. Below some popular Net-Based formalisms have been
listed:

• Petri Net [112].

• Statecharts [133].

Comprehensive comparison of different formal methods has been presented in [81, 80].
The results have been illustrated in the form of some tables which for each specific
method shows to what extend it could be suited with respect to some given criteria like
automated tool support, reliability, industrial strength and so on. Based on this study
the B-Method is very good in the term of automated tool support and reliability with
real industrial applications (such as the Paris Metro Line 14). As we consider the use

Chapter 2 Formal Methods and Web-Based Applications 39

of B-Method for our system modelling in the next section we present a more in depth
discussion about it.

Here we should emphasise that providing a universal classification of formal methods is
difficult because there is a wide range of possible criteria upon which the classification
could be based. Any analysis may apply a different set of criteria. Possibly one useful
criterion is the domain applicability of a method, but the available data on the applica-
tion of formal methods is scant and poorly coordinated. Another attempt to provide a
classification based on the theoretical basis of methods could be found in [14].

Another common classification of formal approaches from behavioural viewpoint is to
partition them into state-based (e.g. B-Method, TLA or Z), usually rooted in logics,
and event-based (e.g. CSP, CCS or LOTOS), with algebraic roots [1, 29, 28]. In the
following paragraphs definitions of these two different approaches have been provided:

State-based: The focus is on capturing the system state at the right level of abstraction.
In a state-based approach, an execution of a system is viewed as a sequence of states,
where a state is an assignment of values to some set of components. The model of the
system should also include an initial state and a precondition for each operation.

Event-based: The focus is on identifying all the relevant events of the system and
then describing in what order these events are allowed to happen. To specify an event-
based system, we must determine: the collection of events relevant to the system; the
initial enabled events of the system (events which are immediately possible). Event-
based approaches are suitable for modeling distributed and concurrent systems such as
mail servers, telephony, communication protocols etc. The event-based style has become
prevalent for large-scale distributed applications due to the inherent loose coupling of
the participants. It facilitates the clear separation of communication from computation
and carries the potential for easy integration of autonomous, heterogeneous components
into complex systems that are easy to evolve and scale [48].

It is well-known that the two frameworks are interchangeable [1, 29]. For instance, an
action can be encoded as a change in state variables, and likewise one can model a state
change with different actions to reflect different values of its internal variables. However,
converting from one representation to the other often leads to a significant enlargement
of the state space. Moreover, neither approach on its own is practical when it comes
to modular software, in which actions are often data-dependent: considerable domain
expertise is then required to annotate the program and to specify proper claims.

In our approach we consider the B-Method as a Model-Based method. Considering
the fact that we have two different version of the B-Method known as standard B and
Event-B [8, 38] provides a sound justification for this decision. We will provide more
details about these versions in the latter sections.

40 Chapter 2 Formal Methods and Web-Based Applications

2.4 An overview of the B Method

The B method, invented by J.-R. Abrial [2], is a Model-based method built on set theory
and predicate logic and extended by generalized substitutions. Classical B was initially
developed for specifying, designing and coding software systems. The Specification,
which is represented by an abstract machine, could be refined in a stepwise manor to
produce a more concrete models. A machine encapsulates operations and state, the latter
being determined by a set of variables. Development proceeds in a layered fashion, where
higher level specifications are implemented using lower level constructs. Generalised
Substitutions are used to describe state modifications, the refinement calculus is used
to relate models at different levels of abstraction, and there are a number of structuring
mechanisms like machine, refinement and implementation which are used to construct
the softwares in a layered faction. The first version of the B method is extensively
described in The B-Book [2].

Atelier-B [15] and the B-Toolkit [16] are two development environments that support the
B Method. There are some differences between the two implementations of the B which
these tools support. These tools provide mechanised support for syntax and semantic
analysis, type checking, and mechanised theorem based proof checking. Therefore with
reference to the classification given in the beginning of this chapter, B is classified as
level 3 of formalism.

The B-Method is one of the most recently developed formal methods which it has several
important features that distinguish it from other formalisms. Some of these features can
be enumerated as following:

• The B-method is a mathematical method. It is based on logic and set theory.
At the highest-level the system can be specified using Abstract Machine Nota-
tion(AMN) and generalised substitution statements. Formal methods utilize either
a property-oriented or model-oriented approach and have different levels of rigor.
Model-oriented formal methods specify system behaviour by the construction of a
mathematical model with an underlying state (data) and a collection of operations
on that states. As we mentioned earlier the B-method is belongs to the Model-
Oriented approach of formal modelling. Therefore the B-method is very suitable
for system-level modelling.

• The B-Method has a rich set of notations that preserve simplicity and readability.
In particular, there is no real distinction between the specification notation and
the programming notation. In B the specification notation is a restricted subset
of whole set notation.

• In B, a specification is an abstract mathematical model of the required behaviour of
a system. The abstract specification will then be transformed through a sequence

Chapter 2 Formal Methods and Web-Based Applications 41

of formally defined refinement steps toward a concrete implementation. During the
refinement process there is a number of proof obligations that must be discharged.
In addition separate techniques are provided within the method to support the
development of large systems specifications.

• As we highlighted before, the B-method is supported by two tools. These tools pro-
vide system developers the facility to develop the model using constructs that are
described by precise mathematical theories. These models capture the behaviour
in a complete application domain. As specification is developed into implementa-
tion, the tools can produce proof obligations that basically describe the complete
set of tests that confirm that the behaviour of the specification and the design are
consistent with implementation. Therefore, discharging the proof obligation is the
counterpart of testing in other engineering disciplines and it dominates through
the complete domain of system development rather than having testing at a single
point.

The B-method has been used for modelling of different systems in both University re-
search works and industrial developments [122, 44]. During the last years there were
several attempts to apply B Method to modelling of distributed systems [31, 8]. It
seems that the standard B-Method has some limitations in modelling this sort of sys-
tems. Therefore there are varieties of suggested extensions that can be apply to the
standard B [5, 38].

2.5 Extending the B method

The B method was initially designed for formal software development and has been
successfully used in many cases. With the increasing complexity of systems, and bearing
in mind the fact that these systems are mostly distributed, adaptation of B method for
system modelling has been considered by many researchers. A number of these research
are presented here very briefly.

Another area of working with the B-method is to combine it with other formalism and
add some useful notation to it. Since diagrammatic notations offer a visual presentation
of systems and it could be quite useful in early stages of a new system development
to have an overall understanding of the whole system; therefore these type of notation
have a wide spared usage especially in industrial application. Among the graphical
notations, [129] is a widely accepted notation for system and software development.
Integration of B-method with UML is reported in [127, 78, 132] which is another area
that we are exploring in this report.

42 Chapter 2 Formal Methods and Web-Based Applications

2.5.1 Extending B with new features

Extending B and introducing dynamic constraints in B where presented in [5, 3] is
one of the most important attempts to introduce new constructs into the B-method to
make it much more suitable for distributed systems modelling. The main idea conveyed
in the above mentioned papers is that B abstract machines, normally used to specify
and develop software modules, might also be used to model the evolution of the global
system’s state. In this approach a machine can model a complete networked system.
The operations of this machine represent the events in the system, which can occur
spontaneously rather that being invoked, as is the case with a conventional abstract
machine operation. Some events could even model communication between different
agents situated in various parts of the network.

Instead of pre-condition operation, guarded events with certain predicates have been
suggested. Each guard explicitly states the condition under which the related event can
be enabled. Then within any time interval one of the enabled events could be selected
and executed. Finally, new events, which were not explicitly present in an abstract
specification, could be introduced in the successive refinement. Such events are all
supposed to refine the skip-operation in the abstract model. The gradual introduction
of new events in successive refinement steps makes it possible to develop a system by
starting from a single abstract machine and ending-up eventually with a completely
concrete distributed realisation.

Dynamic constraints such as liveness constraints, deadlock-freedom and eventuality
properties are the essential issues in event-based systems. For handling these types
of constraints some new clauses like Modalities and variant have been introduced. Fur-
thermore refinement and decomposition are the main strategies for tackling the problem
of complexity. The main difficulty in decomposition of a system to a number of subsys-
tems is variable splitting. Suppose that we have some variables in the original model
which are being used in more than one event. During the splitting process these shared
variables could be a source of problems regarding the sub-system consistency. Abrial
has suggested variable sharing during system decomposition and event splitting in [9].

The Event-B approach has been considered as an imperative method for describing
distributed systems in [6, 7]. A distributed system contains a number of concurrent
components, each of them being subjected to many transactions occurring, most of the
time asynchronously. Among these components some of them are supposed to control
other parts. Such control parts need to accumulate some information about the overall
status of the whole system. Information need to be transmitted to or from control
components through the communication links which are not instantaneous.

Further assumptions on the execution of events have been made. First of all, the exe-
cution of an event, which describes certain observable transaction of the state variables,

Chapter 2 Formal Methods and Web-Based Applications 43

is considered to take no time. As an immediate consequence, no two events of the same
machine can occur simultaneously. When more than one guarded event is enable, then
non-deterministically one of the enabled events can be executed and when no event is
enable, then the machine execution stops.

2.5.2 Action-system based approach to distributed system

One of the early attempts at a formal presentation of a distributed system with B-AMN
was introduced in [33]. The approach presented in that paper used an event-based view
of action systems. More precisely the author has shown the similarities between B-AMN
and action systems. This includes the fact that both approaches could be specified as a
model which consists of some states and some operations acting on those states. More
significantly it has been presented how reactive refinement and decomposition of action
systems could be applied to abstract machines in the B-method. The approach can fit
very closely with the stepwise refinement method of B where a single specification can
be refined into several concrete models. Introducing so-called new internal events is the
main practice before the decomposition stage.

In [34] the author has shown that despite the fact that a distributed system consists
of different parts like control, communication link and so on, we could start the formal
specification with a simple single model. As a next step by means of stepwise refinement
we make this abstract model more detailed and concrete. Refining a model consists
of refining its state’s variables and its events. A refined model should present a much
more concrete and accurate behaviour that the abstract one. The state of a refined
model is linked to the state of the abstract model through gluing invariants. Each
event of the abstract model is refined into a corresponding event of the concrete one.
Another frequent method of refining an event system consists of adding a new event in
the refined model which in that case the new event will refine a skip operation in the
abstract model. The new events that are introduced at some level should maintain some
specific constraints. For example they should not take control for ever.

Clearly, that model may now be quite large and thus difficult to develop, because it
may have a lot of state variables and events incorporated with these state variables.
That is the right moment to envisage decomposing the model into several sub-models.
Decomposition is the best way to mastering the inherited complexity of distributed
systems. A natural decomposition is clearly is one where we have a sub-model for
each physical part, communication link and control unit. We could have several control
unit as well as several physical parts communicating with each other. The role of the
decomposition is clear. Once a sub-model separated from the main body it could be
refined further independently from the rest of the system.

44 Chapter 2 Formal Methods and Web-Based Applications

In [33] some novel ideas have been provided for system decomposition. These ideas are
mostly inspired by the process algebra approach like CSP (Communicating Sequential
Processes) [65]. For better understanding of this style of decomposition it seem to be
necessary to have a quick review of related concepts in CSP.

In CSP, systems are modelled with some Processes. Interaction between a system and
its environment is represented with some events. The set of all events which a process
could engage is called the alphabet of the process. The behaviour of a process is specified
in term of a small set of algebraic notation like prefixing (→) and the sequence of
events. In CSP notation two processes can be composed in parallel. Parallel composition
of two processes P and Q is written as P‖Q. The two composed processes interact
by synchronisation over shared events. For describing communication between CSP
processes and their environments we use the notion of channel. There are two forms
of channel, input and output channels. A channel named c is represented by a set of
events in the form c.i . Occurrence of an event c.i represents communication of value
i over channel c. A process can accept an input value over input channel c and we use
the notion of c?x for it, or it can offer to its environment an output value over channel
c and we use the notion of c!x for it. Now by parallel composition of two processes
with one shared event name in each of them, which should be an input event in the
first process and an output event in the second process, we can model the value-passing
communication between the two processes.

Based on the above mentioned strategy in CSP the concept of synchronisation between
different subsystems based on shared event rather than shared variables has been in-
troduced by Butler in [33, 32]. Unlike the initial style of events suggested by Abrial,
in the Butler style events that are involved in communication can have input and out-
put parameters. Decomposition based on value passing communication could ease the
refinement process of distributed systems.

2.5.3 UML and B-method Integration The Unified Modelling Lan-

guage

UML has become a de-facto standard notation for describing, analysing and designing
object-oriented software systems. The graphical description of models helps developers
and their customers to easily grasp the general structure of the modelled software and
thus have a good basis for discussing user requirements and their possible implementa-
tion. However, the fact that UML suffers from the lack of a precise semantics is a major
drawback of UML models for critical system modelling. On the other hand B is a for-
mal software development method that covers the whole software process from abstract
specification to the final implementation with good tools support like Atelier-B and B-
Toolkit. These tools provide a framework for animation and mechanised proof. But in

Chapter 2 Formal Methods and Web-Based Applications 45

practice it could be difficult to learn and use B, especially for communicating with ordi-
nary users. An appropriate combination of UML and B can give rise to a practical and
rigorous software development. A promising approach is to start the modelling task with
some UML specifications like UML use-case or class diagrams and derive B specification
from them for formal proof and verification. Upon detecting a defect in the B model we
can go back to the UML model and amend it. Several works related to the derivation
of B specification from UML models have been reported in [127, 78, 132]. A tool for
translating from UML to B [126] is available. The modelling could be done by the use
of class diagrams and state-charts and it produces the appropriate B specification.

2.6 Formal Development of Web-based Applications and

Related Works

There has been some limited work on specific approaches to formally representing certain
aspects of Web applications, though this has tended to focus again on content and
navigational issues to the exclusion of functionality. For example, Hadez [55, 54] looks
at the use of formal methods (using the Z notation) to specify conceptual, structural
and perspective schemas. Other approaches have focused on specification of timing
constraints [40, 108] rather than content structure. Again, however, the focus is very
narrow and fails to couple the specifications with broader application requirements.

In the next chapter we consider the application of B Method for formal specification
of Web-based application with emphasis on operational aspect of applications. As we
mentioned in beginning of this chapter, many of current web applications tend to be
mission and business critical system. Therefore we believe that formal development
could provide a sound bases for developing appropriate Web applications.

Chapter 3

Some Guidelines for Formal

Development of Web-based

Applications in the B-Method

3.1 An Introduction to Web-Based Systems

Web-based applications are distributed systems that can be accessed using a Web
browser. During recent years the extent and scope of their use has grown rapidly,
significantly affecting all aspects of our lives. Industries such as manufacturing, travel
and hospitality, banking, education, and government are Web-enabled to improve and
enhance their operations. E-commerce has expanded quickly, cutting across national
boundaries. Even traditional legacy systems have migrated to the Web. The scope and
complexity of current Web applications varies widely: from small-scale, short-lived ser-
vices to large-scale enterprise applications distributed across the Internet, and corporate
intranets and extranets.

Although numerous Web-based systems are in use now and many of us rely on them, the
manner in which they are developed raises serious concerns [101, 116, 138]; they need to
be reliable and perform well. To build such systems, Web-based system developers need
a sound methodology, a disciplined process and a set of good guidelines. Due to the new
demands, Web applications are evolving continually and the complexity of these systems
is increasing rapidly. Therefore the use of a rigorous method becomes more important.

Formal methods use mathematical notation to describe systems in a clear and rigorous
manner. Abstraction and stepwise refinement employed by formal methods is a valuable
approach for developing complex Web-based systems. The B-Method is a well-known
formal method [2] which has been applied to several software development missions
including academic and industrial projects [122, 44, 31].

47

48
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

Our aim in this chapter, through the modelling of this specimen Web-based system, is
to identify some challenging aspects of these types of systems and propose an approach
to their formal representation. We hope to provide a set of guidelines which could serve
as a basis for further work. In the rest of this chapter we present the travel agency
case study and briefly discuss its initial aims and objectives. The chosen case study has
been selected to be inclusive enough to represent the main properties and functionality
of typical Web applications. By developing formal models in B we have extracted some
generic and essential patterns. These patterns are considered to model some common
properties and functionality shared by a broad category of Web applications. In the
next step we have tried to find some appropriate formal refinements for these abstract
patterns which could be provable within the framework of the B prover tool [4, 15, 17].
As Web applications are distributed systems, the decomposition of primary refinement
models into subsystems and introducing suitable formal models for communication links
are other objectives. The last section concludes the chapter with recommendations for
further work and discussions.

3.2 Informal Representation of the Case Study

In this section we outline the main requirements and sketch the overall architecture of the
system. The aim is to develop a Web-based Travel Agency system to enable potential
users to access it through an Internet connection using a standard Web browser to
perform one or more of the following tasks:

• Book a flight

• Cancel a booked flight

• Book a room in a hotel

• Cancel a booked room

• Hire a car

• Cancel a hired car

The Travel Agency Web-based system is hosted on the Travel Agency Server which is
responsible for processing the Web-clients’ requests. These messages are produced and
sent by the client browser through Internet links and based on HTTP or other similar
standards. The travel agency system relies on a group of secondary agencies’ servers like
flight agencies to accomplish the client requests. The travel agency system use Internet
links to communicate with the secondary servers. A simple architecture of this system
is depicted in Figure 3.1.

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 49

Client Client Client Client

Web-based Travel agency system

……..

Hotel system

Flight agency
system

Flight agency
system

:
:

Hotel system

:
:

Car Hire system Car Hire system

Http Links

Http Links

Http Links
Http Links

Figure 3.1: A Simple Architecture of the System.

It is apparent from Figure 3.1 that more than one client could communicate with the
travel agency system simultaneously. The travel agency system will manage the status
of different sessions by some state variables, stored in a local database. For booking
requests like flight booking, a message which includes necessary details about the request
will be broadcast to all related agencies servers by travel agency system. The number of
responses which the travel agency should expect could vary from zero to the number of all
secondary agencies in the best situation. The collected response will be sent by the travel
agency system to the appropriate client. In some other cases, like cancelling a previously
booked flight, the request will be sent directly to the related flight agency. Also it is
quite convenient to assume a local database in the travel agency server for representing
all booked services. This database could reduce the amount of communication and
complexity of un-booking process.

3.3 An Overview of the Formal Development Process

As we mentioned previously our main objective, in applying formal method to this case
study, was to identify some common challenging issues and propose some formal models
for them. Therefore instead of detailed presentation of formal models, in this section we
have summarised the formal development process.

This work is based on the Event-B style for development of distributed systems [3, 5].
Unlike standard B, which is used to specify and develop software modules in B, Event-B
was introduced for modelling of distributed systems. In the Event-B style operations are
then called ”events” which may occur spontaneously rather than being invoked. Those
events are no longer pre-conditioned, but guarded by a predicate, which express the
condition under which the event can be enabled. When we refine a model, we can either
refine an existing event by strengthening the guard or/and the before-after predicate
(removing non-determinism or applying data refinement), or add a new event which is

50
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

supposed to refine the skip event. The introduction of new events is supported by the
superposition method [135, 18]. In superposition refinement, some new functionality is
added to an existing model in the form of additional variables and assignments to these
variables as new operations, while the original computation is preserved.

In the first stage of formal process an abstract model based on Event-B style has been
produced. The abstract model is a single B-machine which encloses some operations
to model the main functionality of the travel agency system from the viewpoint of the
users. In the second step we have refined the abstract specification by introducing client
side operations based on the superposition methodology. Operations of the abstract
model have been classified as the server side operations at this stage. Some operations
of the abstract model which are influenced by the introduction of client operations have
been refined by adding extra guards and removing non-determinism. A full list of this
model is presented in Appendix A.

Operations of the secondary agencies servers have been introduced in the second refine-
ment model. In this stage some formal definitions for distributed databases have been
added. In fact each secondary server has a local database which contains information
about available service that this agency can offer to its costumers. Data distribution
among secondary servers and the travel agency system leads to distribution of process-
ing between different servers. In other words, introducing new operations which finally
reside on secondary servers for manipulating distributed data resulted in further refine-
ment of the travel agency operations in this stage. Now in the second refinement we
have operations of the clients, the travel agency system and the secondary servers.

Decomposition is the main strategy to tackle the complexity of the model in Event-B
style. Introducing communication links between different parts is a pre-stage to the
decomposition process. Therefore in the third refinement stage we have introduced
communication links. The main challenging questions which we have identified during
the above mentioned development processes are:

• Session and State Management in Both Client and Server side

• Inter-Server Interactions

• Refinement of Complex Data types

• Abstraction of Distributed Databases

• Formal Modelling of Communications Links

In the following sections we have examined these issues in detail and we have presented
some solutions for them. Although we have used the travel agency case study to discuss
the main properties of a Web application and to clarify the key issues in developing a

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 51

B-model for them, the identified aspects and proposed solutions could be applied to a
wide range of Web applications.

3.4 State Representation in Web-based Systems

The Web started as a means for sharing documents among scientists. Its designers have
built the underlying technology (e.g., HTTP and HTML) with these goals in mind. Since
then, people have realised the Web’s potential as an application delivery medium and
have started to exploit it. With the growth of e-business applications, the Web is rapidly
being transformed into an application-intensive environment. In Web-based applications
the core functionality of system, the business logic, is handled by the server. Most web
applications need to maintain communication sessions with their client, and monitor
each client’s individual status and activities. The communication protocol between web
browser and web server (HTTP) is stateless and it does not provide the functionality
on session control. Therefore it is not trivial to maintain information about each client
interaction with server. The server-centric architecture of current Web applications
makes a server-side session the natural choice. In the following sections we have examined
this subject in detail.

3.4.1 Session Handling and State Management in Server side

State maintenance is one of the major issues in many applications, such as e-commerce
and banking applications. As transactions between Web clients and Web servers occur in
a stateless environment, state must somehow be passed from one transaction to the next
in a Web application. Keeping state data on the server side is generally considered the
safest and most appropriate technique when handling information of a sensitive nature.

The server uses a session’s state variables to identify a user, process the input data
provided by a client and determine user rights or the type of access to be offered to a
user. Furthermore, based on the information which has been provided by the client, the
server can set state variables to determine the next possible execution path.

Challenge: How do you represent the state information related to a user’s interaction
with a Web application?

Guideline: We have used explicit state variables to represent session state information
on the server side. By defining two reference sets for state and session-ID and a mapping
function from a session-ID to session state we can manage each session in the server
side identically. In other words each session has a session identifier sid which could be
used as an index to access session information on the server side. A new sid could be

52
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

allocated to a new client as soon as the server received the first request from this client
and afterward the client can use this sid on subsequent interactions.

To clarify the guideline we have presented a snapshot of the specification machine for
the Travel agency case study in Figure 3.2. We have introduced the set STATE and
SESSION. The first definition represents the possible states for a client session and the
second one serves as a typing reference for sessions’ ID. The session state variable maps
each client session to its related state. The variable session represents the set of all
current active sessions. The operation StartNewSession models the creation of a new
session by the travel agency system. This operation allocates a free session ID for the
newly created session and sets the necessary environmental variables for it. Any changes
in a session’s state variable could enable a operation and execution of an operation could
resulted in some changes in a state variable. For example, the SelectService operation
is enabled when the session state is fresh and its execution changes the state of related
session to one of booking, unbooking or signed in state. The SelectService operation
models the interaction of the clients with the system, when they select an available
service.

MACHINE TravelAgency
SETS
 SESSION;
STATE={fresh,booking,unbooking,service_selct,options_ret,choice_made,
 signed_in,certified,valid,invalid,booking_ret,unbooked_sel};
DEFINITIONS
 freshSESSION

�
 SESSION - session;

VARIABLES
 session, session_state,
INVARIANT
 session � SESSION � session_state� session � STATE � ...
INITIALISATION
 session :=

�
 || session_state :=

�
 || ...

OPERATIONS
 StartNewSession

�

 ANY sid WHERE sid� freshSESSION THEN
 session := session � {sid} ||
 session_state(sid) := fresh
 END;
 SelectService

�

 ANY sid WHERE sid�session � session_state(sid)=fresh THEN
 SELECT (…….) THEN
 session_state(sid):= booking
 WHEN (…….) THEN
 session_state(sid):= unbooking
 WHEN (…….)THEN
 session_state(sid):= signed_in
 END || ...
 END;
 FlightRequest

�

 ANY sid WHERE sid� session � session_state(sid)= booking THEN
 session_state(sid):= service_selct
 END;

Figure 3.2: Abstract model of the travel agency system.

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 53

3.4.2 State Management in client side

In Web based applications Web clients generally are classified as thin clients. This
implies that processing in the client side usually is not significant. Web clients take
input from users, perform type checking and simple data validation and in some cases
carry out data encryption if necessary. Web clients use the application through Web
browsers, over the Internet. They interact with system concurrently, independently, in
an asynchronous manner. You can’t control what they’re doing and when they do it.
Although the browser and underlying mechanism do not support state handling, still
some coordination mechanism and state passing between server and client operations is
necessary.

Challenge: How do you maintain the state information in the client side and perform
coordination between different clients and the Web server.

Guideline: We have used a message-based mechanism for this purpose. Each message
is mapped to a session ID which relates the message to a specific client session. The
message-based mechanism could be considered as an implicit state representation in the
client side. Therefore from this viewpoint we can assume that two different approaches
have been taken for state representation in the server and the client side. We have found
that the main advantage of this approach is to avoid shared state variables among clients
and the Web server which in its turn could lead to further complication.

We have presented some operation of the clients along with the server’s operations from
first refinement of the case study in Figure 3.3 to illustrate the guideline. We have
used comments to make a distinction between the server and newly introduced client’s
operations. The server operations use explicit state variables for state representation.
On the other hand, the client operations employ an implicit message-based method for
state representation and coordination with the server operations.

The session ID, sid, plays a central role to convey state information between client
and server. However there is a situation that a client has triggered a new session but
it has not obtained a session ID yet. In this step the client should use a temporary
identification mechanism which for example could be the IP address plus some extra
information. The Client ReqSession operation in Figure 3.3 depicts this situation. We
have defined a new variable named handle to use it as temporary index to represent
a client request for a new session. When in the StartNewSession operation the server
has processed this request it allocates a new session ID for this specific client session
and replies to the client by placing the new session ID in the new client message buffer.
In the Get SessionID operation the client receives this allocated sid and it will use it
through the rest of session to communicate with the travel agency server. For example
in the PicService operation we have a message buffer named reqsevice buf which has

54
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

been defined as a mapping from session to REQUEST to carry the client’s requests to
the Server.

As we have mentioned in section 3, we have used superposition refinement to introduce
client operation. This means that we retain the variables and operations of the abstract
specification and introduce new operations which have no effect on the previous variables.
Some new variables which can be exploited by both the clients’ operations as well as
the Web server have been introduced in this stage. New variables are used as message
buffers to exchange data between client and server operations. The introduction of these
new variables has some implication on the Web server’s operations.

In the abstract model some operations use nondeterministically chosen input values
which need to satisfy just some typing and basic state conditions. In the refinement
model some changes have been made in the operations’ guards. These are related to the
refinement of the nondeterministic choice of input parameters to the values in the related
message buffers which are provided by clients. As we use superposition refinement in
this stage, we do not require any gluing invariant which implies an easier set of proof
obligations.

3.4.3 Conducting Inter-Server Interactions

Coordination and communication management is an important issue in modelling in-
teractions between two or more servers. In the case of inter-server communications,
unlike client and server communication, both parties which are involved in a session are
providing some services. Interaction between the travel agency system and secondary
servers is an example of such inter-server communication. For example the travel agency
system can ask a flight Agency server for available flight options and the flight agency
server will reply with available options.

Challenge: What is the best way to model inter-server interactions?

Guideline: Considering the fact that the servers are independent, any approach to
modelling their interaction, should provide a solution with minimum possible cohesion
between these subsystems. Using the message-based approach seems to be a good can-
didate for this purpose and furthermore it complies with common web services technolo-
gies.The messages are defined as mapping from a session ID to the requested information.

The message-based approach could be exploited to exchange both data and state infor-
mation between servers. As server to server communications are mostly asynchronous,
message-based communication is an appropriate candidate.

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 55

SETS
 HANDLE
DEFINITIONS
 freshHANDLE

�
 HANDLE - dom(new_client)

INVARIANT
 /* Client Variables */
 new_handle � HANDLE � new_client � HANDLE � SESSION �
 token � SESSION � fresh_session � SESSION �
 reqsevice_buf � SESSION � REQUEST
OPERATIONS
 Client_ReqSession

�
 /* Client Operation */

 ANY handle WHERE handle � freshHANDLE THEN
 new_handle:= new_handle �{handle}
 END;
 StartNewSession

�
 /* Server Operation */

 ANY sid, handle WHERE sid � freshSESSION � handle � new_handle THEN
 session:= session � {sid} ||
 session_state(sid) := fresh ||
 new_client(handle):= sid ||
 new_handle:= new_handle - {handle}
 END;
Get_SessionID

�
 /* Client Operation */

 ANY sid WHERE sid � SESSION � sid � ran(new_client) THEN
 token:= token � {sid} ||
 fresh_session:= fresh_session � {sid} ||
 new_client:= new_client �{sid}
 END;
PicService

�
 /* Client Operation */

 ANY sid, req WHERE sid � fresh_session � req � REQUEST THEN
 reqsevice_buf(sid):= req ||
 fresh_session:= fresh_session - {sid}
 END;

Figure 3.3: Some operation of the first refinement.

Some operations of the secondary servers and the travel agency system which involve
communication are presented in Figure 3.4. In this model, reqflight buf is used to trans-
mit requests from the travel agency to flight agencies. Flight agencies use respflight buf
message buffer to send responses to the travel agency.

3.5 Abstraction and Refinement of Complex Data-types

In many Web applications we frequently need to represent some complex data types
in different abstraction levels. For example this data could be a record with many
fields containing all necessary information for a booking request. Refining abstract data
types in a single step, especially when we do not need all details in this step, is not a
good approach to refinement; because it swiftly turns our simple abstract model into
an over-complicated refined model. Therefore we need to find a mechanism for stepwise
refinement of the abstract data types.

56
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

INVARIANT
 /* Server's New Variables */
 reqflight_buf � FLIGHT_AGENCY � (SESSION � FLIGHT_REQUEST) �
 /* Flight Agency Variables */
 respflight_buf � SESSION � (FLIGHT_AGENCY �

�
(FLIGHT_DETAIL))

OPERATIONS
Request_Flight � /* Server Operation */
 ANY sid,fr WHERE
 sid � SESSION �
 fr � FLIGHT_REQUEST
 THEN
 reqflight_buf:= � fa . (fa� FLIGHT_AGENCY | reqflight_buf(fa) �{sid�fr})
 END;
Resp_FlightReqs � /* Flight Agency Server Operation */
 ANY sid,fa,fr, xx WHERE
 sid � session �
 fa �FLIGHT_AGENCY �
 fr � FLIGHT_REQUEST
 (sid � fr) �. reqflight_buf(fa)
 xx � �(FLIGHT_DETAIL) �
 xx � Matchflight(fr � flight_db1(fa))
 THEN
 respflight_buf(sid):= respflight_buf(sid) � {fa � xx} ||
 reqflight_buf(fa):= reqflight_buf(fa)- {sid � fr}
 END;

Figure 3.4: Some operations of the secondary servers.

Challenge: What is a proper abstraction for data structures like records and how can
we refine an abstract representation of a record in a step-wise manner?

Guideline: We found that most details could be abstracted away by defining some
simple data types in the form of set definitions in the specification level. In refinement
stage to overcome the problem of unnecessary detail we found that, instead of direct
refinement of abstract data types, some constant mapping could be used. A mapping
defines a relation from an abstract data type to the required additional detail. By
employing this method we introduce fields into the refined model when it is necessary.

The abstract data types make operations very simple and understandable at the spec-
ification level and help us to have a clearer picture of the overall functionality of the
system. But we need to introduce the necessary details into these abstract data types
in the refinement level. Using constant mappings to introduce new fields of a previ-
ously defined abstract type could help to avoid unnecessary complication in the early
stage of refinement and postpone the detailed refinement of abstract data types to after
decomposition.

Using constant mapping to refine an abstract record may present some ambiguity to
the reader. So we will try to make some clarification here. Let assume that we have
an abstract record, REC in the specification level. We want to refine this abstract
record by introducing two new fields of it, namely afield and bfield. We can define these

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 57

two fields as a constant mapping from REC to two arbitrary types SETA and SETB
respectively. Now we can assert that for any aa and bb such that aa belongs to SETA
and bb belongs to SETB we can define a record that belongs to REC. Performing record
refinement with a constant mapping rather than a variable mapping simply means that
this information is global to all subsystems. Using constant mapping does not have any
restrictive impact on records manipulation. To clarify this issue we have presented an
example operation in Figure 3.5 that adds a record to a database.

MACHINE Database
SETS
 REC; SETA; SETB
CONSTANTS
 afield, bfield
PROPERTIES
 afield � REC�SETA � bfield � REC�SETB �

�

 (aa, bb�((aa � SETA � bb � SETB) �
 � rr. (rr � REC � afield(rr) = aa � bfield(rr) = bb)))
VARIABLES
 db
INVARIANT
 db � �(REC)
INITIALISATION
 db:=�
OPERATIONS
 Add_Database 	
 ANY af,bf,rn WHERE
 af � SETA �
 bf � SETB �
 rn � REC �
 afield(rn)=af � bfield(rn) = bf
 THEN
 db:= db
 {rn}
 END
END

Figure 3.5: An example of constant mapping.

An example from the case study is provided in Figure 3.6. We have two abstract data
types; the first one is an abstraction for a record which contains all the necessary informa-
tion for a flight request and the second one is the abstraction of a record which contains
all details about an offered flight by a flight agency. We have used two abstract set
definitions FLIGHT REQUEST and FLIGHT DETAIL for these two abstract records
respectively. In the refinement stage we need to access the flight agency that has provided
a flight. We assume that the flight agency identifier is a part of the FLIGHT DETAIL
record. Instead of direct refinement of the abstract data type, we have defined a con-
stant mapping from FLIGHT DETAIL to FLIGHT AGENCY which could satisfy our
requirement in this stage. The definition of this constant mapping is presented in Fig-
ure 3.6. The use of a constant function provides a way of modelling a record’s field in
B.

58
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

SETS
 FLIGHT_REQUEST; FLIGHT_DETAIL; FLIGHT_AGENCY;
CONSTANTS
 flightagency
PROPERTIES
 flightagency � FLIGHT_ DETAIL � FLIGHT_AGENCY

Figure 3.6: An example of constant mapping from the case study.

By using similar techniques we are able to introduce any extra detail which might be
necessary in successive refinement steps. Obviously at the implementation stage we have
to replace these constant mapping with an actual data field; but the fact that we could
postpone this step until after decomposition is helpful.

3.6 Abstraction and Refinement of Distributed Databases

Data that is shared between Web components and persistent between invocations of
a Web application is usually maintained by one or more databases. These databases
generally are distributed over different servers. Developing a formal abstract model and
refinement for them is another challenge that we examine in this section. This issue has
a close relation with process distribution; therefore we consider process distribution and
distributed databases together.

We can assume different functionalities for a database system. For example the simplest
case is a database which allows its contents to be viewed by different parts of the Web
application. On the other hand a complex database could support different type of
queries and permits updating current information or removing some records from it.
As the system is distributed it means that when a server makes some changes in its
database which could affects another part of the Web application, it takes some time for
the other part to know about it.

Challenge: How we can represent a proper abstraction and refinement of certain dis-
tributed database operations?

Guideline: In a distributed setting involving multiple clients, the high level specifica-
tion of a transaction such as confirming a flight booking needs to include the possibility
of failure. Also query operations involving multiple databases should be specified very
loosely at the abstract level.

To understand the complicated relation between process and Database from refinement
viewpoint we need some examples. In the travel agency system as depicted in Figure 3.1
we have a set of secondary servers which store some information about their available
services. Based on web clients’ requests the travel agency server occasionally initiates
and sends a distributed query to these secondary servers for information lookup. Later it

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 59

should collect and send available services to related Web clients. Obviously in the spec-
ification level we need an abstract formal representation of these distributed processes
and databases.

The first abstract model is presented in Figure 3.7. In this specification Matchflight is
a constant function type definition. It takes FLIGHT REQUEST as an abstraction for
user request and an abstract database which contains some FLIGHT DETAIL records
and returns a set of FLIGHT DETAIL records which match the user request.

CONSTANTS
 Matchflight
PROPERTIES
 Matchflight� FLIGHT_REQUEST �

�
(FLIGHT_DETAIL)�

�
(FLIGHT_DETAIL)

INVARIANT
 flight_db �

�
(FLIGHT_DETAIL) �

 flight_option � SESSION�
�

(FLIGHT_DETAIL)

Retrieve_FlightOptions� /* Server Operation */
 ANY sid, fr, xx WHERE
 sid � session �
 fr � FLIGHT_REQUEST �
 xx �

�
(FLIGHT_DETAIL) �

 xx � Matchflight(fr �flight_db)
 THEN
 flight_options(sid) := xx
 END;

Figure 3.7: An abstract model of the database operation.

In this abstract model we have defined the virtual database, flight db, as an abstract rep-
resentation for a set of distributed databases which reside on secondary servers. As we
mentioned earlier the content of these distributed databases could change independently
from the travel agency system. Based on the above assumption we have defined the op-
eration Retrieve FlightOptions which is an abstraction for collecting secondary servers’
responses to a distributed query for a service. Obviously we have not introduced sec-
ondary servers and their related databases in the abstract model to avoid making the
model over-complicated.

An intended refinement of the abstract model is presented in Figure 3.8. In this refine-
ment based on the superposition technique we have introduced some new operations.
The Request Flight operation models the travel agency side event that initiates a query
broadcast to a set of secondary servers. Equally when a secondary server receives a
query for a service, it responds if it has any available option(s). This is demonstrated
in Resp FlightReqs operation. The virtual database definition has been replaced by
actual databases which are distributed among secondary servers and we have defined
these by a mapping from FLIGHT AGENCY to power set of FLIGHT DETAIL. The
Retrieve FlightOptions has been refined in response to the introduction of the new op-
erations and now clearly reflects the fact that it should collect the secondary servers’
responses to reply the initial service query.

60
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

CONSTANTS
 Matchflight
PROPERTIES
 Matchflight � FLIGHT_REQUEST � �(FLIGHT_DETAIL) �

�
(FLIGHT_DETAIL)

INVARIANT
 flight_db1 � FLIGHT_AGENCY �

�
(FLIGHT_DETAIL) �

 reqflight_buf � FLIGHT_AGENCY �(SESSION� FLIGHT_REQUEST) �
 respflight_buf � SESSION�(FLIGHT_AGENCY ��(FLIGHT_DETAIL)) �
 flight_option � SESSION��(FLIGHT_DETAIL)

 OPERATIONS
 Request_Flight � /* Server Operation */
 ANY sid,fr WHERE sid � session � fr � FLIGHT_REQUEST THEN
 reqflight_buf:= �fa . (fa � FLIGHT_AGENCY | reqflight_buf(fa) � {sid	fr})
 END;
 Resp_FlightReqs � /* Flight Agency Server Operation */
 ANY sid,fa,fr, xx WHERE
 sid � SESSION �
 fa � FLIGHT_AGENCY �
 fr � FLIGHT_REQUEST �
 xx � �(FLIGHT_DETAIL) �
 xx
 Matchflight(fr 	 flight_db (fa))
 THEN
 respflight_buf(sid):= respflight_buf(sid) � {fa 	 xx}
 END;
 Retrieve_FlightOptions � /* Server Operation */
 ANY sid WHERE sid � session THEN
 flight_options(sid):= � fa.(fa � FLIGHT_AGENCY �
 fa� dom(respflight_buf(sid)) | respflight_buf(sid)(fa))
 END;

Figure 3.8: A refinement of the database operations.

Our intention is that the abstract database is an abstraction of the union of all of the
distributed databases. The response to a client request is formed from the union of
the responses from each of the agencies so this may seem like a reasonable abstraction.
However, we faced some difficulties when we tried to prove that the model in Figure 3.8
is a valid refinement of the abstract model in Figure 3.7. The problem is that the
abstract specification of Retrieve FlightOptions is based on the value of (the abstraction
of) all the flight agency databases at the point at which the results are collated by the
travel agency. But the results collated in the refined version will have been generated
by the individual flight agencies at earlier points in time. If the flight agency databases
didn’t change in between the point at which they respond to a flight request and the
point at which those responses are collated by the travel agency, then our refinement
would be valid. However, this is clearly an unrealistic restriction. The fact that the user
gets information about an available flight is no guarantee that that flight will still be
available when they try to book it. In principle the value of a flight agency database
at the point of generating a response might be completely different to its value at the
point at which that response is collated with other responses.

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 61

One possible abstract specification for this kind of distributed database query is pre-
sented in Figure 3.9. Although it appears to be a very loose specification but it is the
strongest specification that we could introduce in the abstract level. In this specification
we do not use definitions like Matchflight and virtual database flight db.

INVARIANT
 flight_option � SESSION�

�
(FLIGHT_DETAIL)

Retrieve_FlightOptions � /* Server Operation */
 ANY sid , xx WHERE
 sid � session �
 xx : (xx �

�
(FLIGHT_DETAIL))

 THEN
 flight_options(sid):= xx
 END;

Figure 3.9: A corrected version of abstraction in Fig 3.7

As we mentioned earlier data and process distribution have a reciprocal effect on each
other. We present another scenario from the travel agency case study to clarify this issue
further. During the booking process when a web client receives some available options
from the travel agency system, it can select one of them and send back its selected service
to the travel agency system. Now the travel agency system will know which secondary
server has offered this service and then send a booking request to this specific secondary
server. In the meantime this service could have been offered to another Web client and
is no longer available. Therefore in general the travel agency system could expect either
a successful or a failed response for a requested service booking. If the travel agency
system receives a confirmation for service booking it will add an appropriate record to
it local database for booked services. In either case of success or fail, it should reply to
the related Web client with a suitable response.

Developing an abstract formal specification for this case is not a straightforward task. In
the abstract level we have not introduced secondary servers, just to avoid complication,
but we have to find a mechanism to model the system behaviour. Using nondeterministic
“choice” could be an acceptable approach to model this case in the abstract level. This
solution is depicted in Figure 3.10. It should be emphasised that in the actual system
the booking process is a two stage process. If the requested service is still available on
a specific secondary server, then the first stage takes place on that secondary server. In
the second stage, when the travel agency system receives a message from this specific
secondary server denoting successful booking in the first stage, then the travel agency
system will add this booking to its database. Therefore the booking database on each
secondary server just stores booked services which have been offered by this specific
server. On the other hand the booking database on the travel agency system stores
all booked services of its users. The Flight Booking operation in Figure 3.10 demon-
strates the booking process in the travel agency system. This operation is defined as a

62
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

nondeterministic choice of two possible outcomes. The first case illustrates a successful
booking, while in the second (failed) case, no booking is made.

INVARIANT
 session_state � session � STATE �
 flight_booking � USER � FLIGHT_DETAIL �
 selctflight_buf � SESSION � FLIGHT_DETAIL
Flight_Booking �
 ANY sid,fd WHERE
 sid �session �
 fd � FLIGHT_DETAIL �
 session_state(sid)= valid �
 (sid � fd) � selctflight_buf
 THEN
 CHOICE
 flight_booking := flight_booking � {session_user(sid) � fd} ||
 selctflight_buf := {sid}� selctflight_buf ||
 session_state(sid):= fresh ||
 session_request(sid):= none
 OR
 selctflight_buf:= {sid}� selctflight_buf ||
 session_state(sid) := fresh ||
 session_request(sid):= none
 END
 END;

Figure 3.10: Modelling the possibility of failure.

In the refined model when we introduced databases in the secondary servers, now the
booking process in the Travel agency system is no longer nondeterministic and it depend
on the state of these databases. Therefore the refined operation could be modelled as we
presented in Figure 3.11. Here the Agency flight booking shows the first stage of booking
in the secondary server and the Flight Booking has been refined accordingly.

3.7 Developing Formal Models for Communication Links

Communication links are the medium for interaction between different parts of distrib-
uted systems. In Web-based systems communication links connect a client to a Web
server or a Web server to another Web server or a data server. Although communica-
tion in different levels could be based on different protocols and standards, but in general
a message-based approach is a widely accepted method in Web based application. This
approach is flexible and general enough to be implemented in the context of available
standards like XML based technologies and tools. In Event-B developments introducing
communication is an important stage before decomposition of a single model to sev-
eral sub-models. In the following sections we discuss the process of developing a formal
model for communication links.

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 63

CONSTANTS
 flght_agency
PROPERTIES
 flght_agency � FLIGHT_DETAIL � FLIGHT_AGENCY
INVARIANT
 fa_booking � FLIGHT_AGENCY � (USER � FLIGHT_DETAIL) �
 flight_db1 � FLIGHT_AGENCY �

�
(FLIGHT_DETAIL) �

 taf_booking �
�
(USER * FLIGHT_DETAIL * FLIGHT_AGENCY) �

 selectflight_buf1 � FLIGHT_AGENCY� (SESSION � FLIGHT_DETAIL)
Agency_flight_booking � /* Flight_agency Server Operation*/
 ANY fa,sid,fd WHERE fa � FLIGHT_AGENCY �
 sid � SESSION � fd � FLIGHT_DETAIL THEN
 SELECT fd � flight_db1(fa) THEN
 ANY fdb WHERE fdb �

�
(FLIGHT_DETAIL) � fdb � flight_db1(fa) THEN

 /* Updating original Database that maybe affected by booking */
 flight_db1(fa):= fdb
 END ||
 fa_booking(fa):= fa_booking(fa) 	 {(fd
 session_user(sid))} ||
 flightbookingresp(sid) := success
 WHEN fd � flight_db1(fa) THEN
 flightbookingresp(sid) := failed
 END
 END;
Flight_Booking � /* Server Operation */
 ANY sid,fa,fd WHERE
 sid �session � fd � FLIGHT_DETAIL � fa� FLIGHT_AGENCY
 THEN
 SELECT sid
success� flightbookingresp THEN
 taf_booking:= taf_booking 	 {(session_user(sid)
fd
fa)} ||
 suc_session:=suc_session 	 {sid}
 WHEN sid
failed� flightbookingresp THEN
 selectflight_buf1(fa):= selectflight_buf1(fa) - {sid
fd} ||
 unsuc_session:=unsuc_session 	 {sid}
 END
 END;

Figure 3.11: Refined model after introduction of secondary servers.

3.7.1 Formal models of Synchronised Communication Links

Synchronised communication is a common pattern of communication between Web
clients and Web servers. In other words generally the communication between clients
and the Web sever follows the send-process-receive pattern.

Challenge: What is an appropriate abstract model and refinement for communication
links between clients and the Web Server?

Guideline: At the abstract level it is convenient to model communication link a one-
place buffer. But this causes problems with model decomposition. So we present a
pattern for refining a communication link involving a one-place buffer by an unbounded
buffer.

64
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

To exemplify this issue we have presented some operation of the travel case study in
Figure 3.12. We have used a function definition to present a single place buffer for data
communication between each client and the travel agency server.

INVARIANT
 reqsevice_buf � SESSION � REQUEST �
 resp_buf � SESSION � RESPOSE
PicService

�
 /* Client Operation */

 ANY sid, req WHERE
 sid � fresh_session �
 sid�dom(reqsevice_buf) �
 req� REQUEST � req� none
 THEN
 reqsevice_buf(sid):= req ||
 fresh_session:= fresh_session - {sid}
 END;
SelectService

�
 /* Server Operation */

 ANY sid, req WHERE
 sid � session �
 req� REQUEST �
 resp�RESPONSE �
 sid � dom(reqsevice_buf)
 THEN
 session_request(sid):= req ||
 reqsevice_buf:= {sid}� reqsevice_buf ||
 resp_buf(sid):= resp
 END;
Submit_Servic_Dtail

�
 /* Client Operation */

 ANY sid,resp WHERE
 sid � dom(resp_buf) �
 resp � RESPONSE �
 resp_buf(sid):= resp
 THEN
 resp_buf(sid):= {sid}� resp_buf(sid)
 END;

Figure 3.12: Abstract model with one-place buffers.

In this model the reqsevice buf and resp buf define a single-place buffer from session to
REQUEST and RESPONSE respectively. The PicService is a client operation which
puts a request in the reqsevice buf. The client then waits for the server response, i.e.,
the first client operation is no longer enabled for this session and the second client
operation is enabled when a response appears in the response buffer. On the server
side the SelectService operation takes the request from the buffer and then produces a
response for the client by placing a response in the resp buf. Later the client’s operation
Submit Servic Dtail can take this response from buffer when received it.

Before the decomposition step we have to refine each buffer by splitting it to three buffers
and distribute them between the client, the communication and the server machines. But
when we replace a single-place buffer with three single-place buffers we face difficulty. We
should be able to demonstrate that all buffers are empty when a web client’s operation
produces a new message, before placing it in its buffer. This condition arises from the

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 65

gluing invariant which relates buffers in the refined model to the previous abstract model.
Clearly this is not a practical solution since, for example, a client cannot see whether
or not a buffer on the server side is empty. To overcome this difficulty we consider
the refinement of the one-place buffers with unbounded buffers based on using sequence
definition in B-method.

This intermediate refinement would help to split the buffers between different machines
and without too much restriction discharges prove obligations associated with this distri-
bution. Using unbounded buffers resolves the need for condition that distributed buffers
should be empty when we add a new message.

The intermediate refinement for the above model is presented in Figure 3.13. Here the
single-place buffers of Figure 3.12 have been replaced by unbounded buffers. Part of the
necessary gluing invariant are illustrated as well. The gluing invariant was constructed
using an iterative approach in combination with the B prover as described in [47]. We
first considered the case of a single implicit session. This simplification means that the
invariant has no universal quantifiers and the proof is much more automatic. We start
with a trivial invariant containing type information. We then generate and attempt to
prove the refinement proof obligations. Those that cannot be proved lead to a clause in
the invariant. The additional invariant clauses result in further proof obligations which
may in turn lead to further invariant clauses. In this case a sufficient invariant was
constructed in three iterations and the proof was completely automatic (for the case
without universal quantification). The invariant is then generalised to multiple sessions
and the proof goes through, though not completely automatically.

The above refinement indicates that single-place buffers could be refined by multi-place
buffers. The refinement works because of the request-response protocol that the client
and server follow. Multi-place buffers allow having more than one message at the same
time in different buffers. Although in this model message duplication is impossible due
to error and delay in communication links, message duplication is very likely in reality
and it could be taken in to account in later refinements. The next step refinement in-
volves splitting each unbounded buffer into three unbounded buffers and introducing new
operations for communications between these. These three buffers will be distributed
between client, communication and server respectively. This decomposition process is a
straightforward task with a simple gluing invariant which states that the order concate-
nation of the sub-buffers should be equal to the original buffer. Due to space restriction
we have not presented this refinement here.

Using sequences to represent communication buffers imposes ordering of messages. In
other words it assumes that the communication link should guarantee message delivery
in the order which they been sent out by sender. This implication could be considered
as a restriction and in some cases it might be necessary to use a more general model to

66
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

INVARIANT
 sreq_buf� SESSION � seq(REQUEST) �
 sresp_buf� SESSION � seq(RESPONSE) �
 /* Gluing Invariant */

�

sid.(sid � fresh_session � reqsevice_buf(sid) =�) �

�

sid.(sid �dom(sreq_buf) � sreq_buf(sid)�[] �
 first(sreq_buf(sid))� reqsevice_buf(sid)) � …

OPERATIONS
 PicService � /* Client Operation */
 ANY sid, req WHERE
 sid � fresh_session �
 sid � dom(sreq_buf) �
 req � REQUEST �
 req� none
 THEN
 sreq_buf (sid):= sreq_buf

	
 [req] ||

 fresh_session:= fresh_session - {sid}
 END;
 SelectService � /* Server Operation */
 ANY sid,req WHERE
 sid � session �
 req � REQUEST �
 resp � RESPONSE �
 sid �dom(sreq_buf) �
 sreq_buf(sid)�[] �
 first(sreq_buf(sid)) = req
 THEN
 session_request(sid):= req ||
 sreq_buf:= tail(sreq_buf) ||
 sresp_buf(sid):= sresp_buf(sid)

	
 [resp]

 END;
Submit_Servic_Dtail � /* Client Operation */
 ANY sid,resp WHERE
 sid �dom(resp_buf) �
 resp � RESPONSE �
 sresp_buf(sid)� [] �
 first(sresp_buf(sid)):= resp
 THEN
 sresp_buf(sid):= tail(sresp_buf(sid))
 END;

Figure 3.13: Refined model with unbounded buffers.

represent communication buffers. Therefore a different model based on using unordered
multi-place buffers can be used. This approach is presented in the following section.

3.7.2 A More General Model of Communication Links

It is obvious that some communication protocols do not preserve message ordering. In
these cases using sequences is not appropriate. Therefore a different model based on
using unordered multi-place buffers which is inspired by [32] has been introduced in
this section. This unordered buffer had been named as a Bag which is a collection of
elements that may have a multiple occurrences of any element. Bag representation does

Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the
B-Method 67

not guarantee to output messages in the order in which they are input. In Figure 3.14
some operations which could be associated with a bag and a model of communication
link based on using bags is presented.

DEFINITIONS
 BAG(T)

�
 (T � NAT);

 emptybag(T)
�

�

xx.(xx�T | 0) ;
 add(b,x)

�
 b � { x � b(x)+1 } ;

 rem(b,x)
�

 b � { x � b(x)-1 } ;

INVARIANT
 sreq_buf � SESSION � BAG(REQUEST) �
 sresp_buf � SESSION � BAG(RESPOSE)
OPERATIONS
PicService � /* Client Operation */
 ANY sid, req WHERE
 sid � fresh_session �
 req� REQUEST �
 req	 none
 THEN
 reqsevice_buf(sid):=add(reqsevice_buf(sid),req)) ||
 fresh_session:= fresh_session - {sid}
 END;
SelectService � /* Server Operation */
 ANY sid, req WHERE
 sid � session �
 req � REQUEST
 sid � dom(reqsevice_buf) �
 reqsevice_buf (sid)(req) > 0
 THEN
 session_request(sid):= add(session_request(sid), req) ||
 reqsevice_buf(sid):= rem(reqsevice_buf(sid),req))
END;
Submit_Servic_Dtail � /* Client Operation */
 ANY sid,resp WHERE
 sid � dom(resp_buf) �
 resp �RESPONSE �
 sresp_buf(sid)(resp)	0
 THEN
 sresp_buf(sid):= add(sresp_buf(sid),resp)
 sresp_buf(sid):= rem(sresp_buf(sid),resp)
 END;

Figure 3.14: Modelling unbounded buffers with Bag.

This representation does not put any restriction on order which messages could be
delivered to receiver and from this viewpoint it is more general that the previous model.

3.8 Summary of Results, Conclusions and Further Work

We have identified some key issues in formal modelling of Web-based systems like state
representation in server and client side, distributed database system abstraction and
refinement, handling complex data types and formal model for communication links.

68
Chapter 3 Some Guidelines for Formal Development of Web-based Applications in the

B-Method

We have proposed some solutions for these aspects which have been exemplified with
event-B models of a Travel agency case study.

In formal modelling we have considered only the safety properties and we have not
tackled the liveness issue. Although our work has been influenced by mainstream work in
Web-based system modelling and implementation, our models require further refinement
to implementation level.

Furthermore Web-based systems are constructed from distributed subsystems which
could operate concurrently and are connected with communication links. The fact that
the rich and complicated nature of such systems could not be completely enclosed by
a single B machine reveals the importance of decomposition as a next step in formal
development process. Decomposition is also an essential strategy for tackling the rapid
growth of system models’ complexity. Decomposition strategies could be based on CSP
style value passing channels which has been developed in [32] and applied to other types
of distributed systems [113].

Finally by investigating different examples of Web-based system we would expect to
identify some other challenging issues. By recognising these issues and identifying some
proper models a platform for formal modelling of Web-based systems could be proposed.
Web Services as a standardised derivation of Web-based system is another potential
area which could be examined by formal method practitioners. In the next chapter
we will attempt to develop more formal representations of the refinement patterns we
have identified and used here. These should make it easier to recognise and apply the
patterns and to provide tool support for their application. Ideally this should include
the automatic construction of appropriate gluing invariants when applying a pattern.

Chapter 4

Pattern Based Formal Modelling

4.1 An introduction

Building reliable Web-based application is hard. Building mission-critical Web appli-
cations is even harder. Current Web applications consist of a hybrid of distributed,
multi-tier, concurrent systems. In addition to these a typical Web application should
deploy numerous functionalities. All these aspects require tackling complex issues. Since
Web-based applications serve as the front line of modern e-Business, modelling these
types of systems requires dealing with dependability, heterogeneity, scalability, security,
high-availability, short time-to-market and technology-neutral issues.

Considering the above mentioned facts reveals that the formal specification of substantial
Web applications could be very complicated and tiresome. A desirable situation is to
have a set of generic formal patterns to apply them to the problem in hand and built
the entire solution by using some mechanisms like instantiation and composition. These
Formal Patterns codify the repeatable experience and knowledge that has been attained
from similar tasks before. Patterns not only document solutions to common reappearing
problems, but also point out pitfalls that should be avoided. In addition, creating
software from existing resources is a well-established part of programming and software
engineering for reasons of quality, productivity, rapid development and deployment.
Progress on this broad approach to reuse began at the lowest levels of programming,
such as code, and has slowly reached toward the highest levels of software development
process, such as architectural design. The ability to reuse software assets is a vital step
in the effective and efficient development of new systems and solutions.

The challenging aspects of Web-based applications make the idea of developing some
generic patterns for these type of systems very attractive. Patterns for Web-based
applications would help developers understand some of the problems beforehand, as
well as show how to solve them. In addition it will help developers to build systems

69

70 Chapter 4 Pattern Based Formal Modelling

with a shorter time to market. The idea of using patterns for Web application is not new
and it is well-known practice that some famous venders like IBM very much devoted to
it [11].

Based on our experience with developing formal models for the Travel Agency System
in the previous chapter, we have identified some common patterns which could be seen
in many Web applications . In this chapter we first define these patterns informally.
In the second stage we develop a very generic formal specification of these patterns.
Through stepwise refinement we introduce more details to each model to specialise and
refine them to some design patterns. The formal pattern approach could enable system
developers to argue not only about the applicability of different patterns, but also it
should support implementation of successful solutions through the re-use of a single
pattern or a suitable combination of generic patterns to build new systems. In other
words we anticipate that these formal models could be used in two different ways:

1. As a detailed example and prescriptive approach, following the mappings and
guidance provided

2. As a way to design more complex systems, to compose several patterns together
for more complex system architectures.

For informal presentation of each pattern we can adapt the common style of pattern
representation in the field of software patterns. Although there is no universal con-
vention on pattern presentation [50, 49], but the following elements considered to be
essential [107] in pattern documentation:

1. Name: This is a meaningful name which consist of a single word or short phrase
to refer to the problem and its solution.

2. Context: This part describes how the problem occurs and under which conditions
the proposed solution is applicable.

3. Problem: A statement of the problem which describes its intent. It should clarify
the goal and objectives of the pattern within the given context and forces. In reality
often the forces oppose the objectives as well as each other.

4. Forces: A description of the relevant forces and constraints and how maybe they
interact or conflict with each other and with goals.

5. Solution: The structure of the solution part for our formal patterns is different
from general pattern representation. Although the solution usually starts with
informal textual or graphical representation but the actual solution here consist
of an abstract formal specification and a number of stepwise related refinements.
Therefore the structure of a formal solution for a pattern essentially is much more
comprehensive than the informal pattern.

Chapter 4 Pattern Based Formal Modelling 71

6. Examples: This part is optional but it provides some related real world examples
which could help the reader to understand the pattern’s use and applicability.

7. Resulting Context: This section describes the result, benefits and consequences
of applying the pattern. It also shows how the forces were balanced or resolved.

4.2 Formal Web applications Patterns

In this section we present three generic patterns which model interactions between in-
terested parties and a Web Application. Interested parties include Web Clients or sec-
ondary servers which communicate with the Web application. Our main emphasis in the
specification level is to present these patterns in a generic form. This ensures that we
can specialise them later through refinement process. In many practical systems these
generic pattern could be closely related. Therefore pattern instantiation and composi-
tion usually are the next steps which could be envisaged. Also it is not our intention
to investigate this issue in this chapter but during formal pattern modelling maybe in
some cases it would be important to consider how different patterns could match to-
gether to build a larger pattern to demonstrate a part of a real system functionality and
behaviour.

As we mentioned earlier, we present three generic patterns in this chapter. The first
pattern is about session creation and it is concerned with preserving client state across
several interactions with the Web application. Considering the fact that the underlying
HTTP protocol is stateless and does not provide any support for state tracking and
on the other hand many Web applications are state-full applications, makes the session
creation pattern an essential part of many Web applications.

The second pattern represents the general model of interaction between a typical Web
client and the Web server which is the request-process-response pattern. We have gen-
eralised the formal specification of this pattern in such a way which could demonstrate
the essence of a whole class of similar interactions. Clearly when we consider applying
this pattern to a specific case, some specialisation should be envisaged.

In the third pattern, we present the idea of communicating servers. In fact this pattern
could be considered as an extension of the previous pattern. In this pattern the Web
application server in pattern two, has been replaced by a main Web server and a number
of secondary servers. The main server relies on services of secondary servers to fulfill
the Web clients Requests.

Before starting with formal presentations of the above patterns, in the next section
we discuss the common conventions and some general background to our modelling
approach.

72 Chapter 4 Pattern Based Formal Modelling

4.2.1 General approach to Formal Patterns

Across the rest of this chapter we have used some common definition like sets, constants,
and variable definitions which are used in several occasions. to avoid any redundant ex-
planation we discuss them in this section. In addition to this we use a general approach in
modelling the communication links between components. This approach is also specified
here.

The Web clients are sending requests and receiving responses, therefore we need to model
the request and response objects. Request and response are structured variables and
we have to use an appropriate model for them. Here we have used a constant mapping
to define a record-like structure for both request and response. This mechanism which
introduced in the previous chapter and has been described in [46] in detail. The main
advantage of this approach is that flexible enough to allow further refinement of the
structure by introducing extra fields in later stages.

A request record at least has three fields, namely ReqID, ReqSID andServc. The ReqID
field represent the sender of the request. To represent clients we have defined a reference
set and it named as AGENT ID. For each client session with the Web server we allocate
a fresh unique ID from this set. All the requests which send by this session will contain
this ID as their first field.

When the Web server receives a request form a client, it will check the second field of
the request for a valid session ID. If it does not include a session ID, then the Web server
assumes that it has received the request from a new client session. Therefore the Web
server creates a new session ID. The session ID will help the Web server to retrieve the
client related specific information on receiving subsequent requests from each client.

The third field in the request record represents the requested service by the client. It
could have further details, but in this stage we have abstracted away all detail in order
to have a generic pattern as well as avoiding any unnecessary complication in the proof
obligations.

The structure of the response record is very similar to the request record. The first field
RespID indicates which client should receive the response. Like a request record, the
second field RespSID carries the session ID which should be used with the next request.
The third field contains the server response to the requested service which previously has
been made by the client. Again in the implementation level this part could have much
more details but it have been abstracted away for the same reason we have mentioned for
the request record. The definitions of request and response are illustrated in Figure 4.1.

Another issue that we interested in is the modelling of communication links. In chapter
3 we presented a detailed approach to refine the communication links. In specification
level we started with single-place buffers. This is perfectly reflects the nature of client

Chapter 4 Pattern Based Formal Modelling 73

interactions with the Web server. When the client sends a request, it should normally
wait for a response from the Web server, before sending another request. In the previous
chapter it has been pointed out that by using this approach we face some complication
in the refinement level. Because we should refine the single-place buffers to multi-place
buffers to be able to discharge the proof obligations and proceed to decomposition stage.
Although this approach works perfectly, it is very complex and to avoid this issue we
propose another solution.

In this chapter we use a different approach to model the communication links in a
simpler way. The key concept in this approach is a history-recorder which guarantee
that no repeated request or response will be put in the communications buffers. Both
on the clients and server operations there are guards that enforce this requirement. The
history recorder for requests is named as req hist and it is resp hist for response. By
using this simple mechanism we can avoid some complications like refining single-place
buffers before decomposition.

4.2.2 Web Based Session Creation

Context : Many typical Web applications like E-commerce shopping applications need
to identify different users and maintain user data within a session. A Session is a series
of requests that occur during a time-period from the same user. The stateless nature of
the HTTP protocol, which is employed for communication, means that the Web appli-
cation should handle the state information. Basically, a Web server handles each request
independently from each other and does not have any knowledge about the preceding
requests from the same user. To overcome the problem, Web applications should imple-
ment a session management policy. This session management policy should guarantee
that all user interactions could be managed coherently in a session. To manage a session,
a server should save traces of user requests temporarily and maintains the session state
of each user. Above all, a server should identify the user who sends a request.
Problem: How we should develop an effective session management policy in Web appli-
cations?
Forces:

1. HTTP is a stateless Protocol.

2. The Web server has no control over the Web clients’ behaviour.

3. Web applications are usually dealing with more than one client at a time, therefore
they need to identify each client correctly.

4. The Web application should handles multiple transactions within a single session.
To complete a transaction, it may interact with a client by transferring several

74 Chapter 4 Pattern Based Formal Modelling

web pages and gathers several user specific information like credit card number
and delivery address from the client.

Solution: There have been various methods to identify clients from their requests. Using
session ID is the most common method used to track user sessions. The session IDs are
typically generated and associated with each new requests which the server receives. In
fact upon receiving each request, the server checks whether it contains a valid session
ID. If the received request does not contain a valid ID, it assumed to be a new session
and then a new session ID will be created. This session ID along with the initial page
in the form of the HTTP response will be send back to the Web client. Otherwise if
the request does contain a valid session ID, the server application will use this session
ID to retrieve the particular user date which is associated with the session ID. All user
data is stored on the server either in a temporary file or database.

Formal Specification: Sets, constants and variables definitions of this pattern are pre-
sented in Figure 4.1. The req buf models the output links from clients to the Web
server. Each client puts its request in this buffer and the Web server retrieves it form
this buffer. The current variable represent the current active browser windows on all
clients computers. When a client open a new browser window, a new identifer for this
window will be add to this set.

The session variable is representing the set of valid sessions. When the Web server
receives a request without a valid session ID, it assumes that a new client has joined the
system and the server will allocate a new session ID for it and adds it to the session.
The resp buf play the similar role to the req buf, but it stores responses from the Web
server to clients.

A simple formal representation of the scenario, which described in the first part of
solution, is illustrated in 4.2. In this specification we assumed that multiple users could
interact with the Web application. In addition to that each user is allowed to open more
than a single browser window and have multiple connections with the Web application
server. The act of opening a new browser window and typing a specific URL (Uniform
Resource Locator) by the user has been modelled in the Client CreateAgent operation.
Here aid is a unique handle to identify each opened browser window on the client
computer. The Server CreateSession represents the server side actions after receiving
a new request from a client. Through the operation guard ReqSID(req)= null, the new
request would be checked to examine that it does not contain a valid session ID. The
next part of the guard sid ∈ SESSION ∧ sid /∈ session represents the server allocating
a valid new session ID. The new session ID will be associated with the request in the
body of the operation. This task has been accomplished by building a response for the
client by using the request handler ID and a new session ID.

The HTTP link between clients and the server here has been modelled with a set.
We discussed this in the previous section and there is no need to repeat it here. In

Chapter 4 Pattern Based Formal Modelling 75

SETS
 SESSION; REQUEST; RESPONSE;
 AGENT_ID; SERVICES; SRVC_RESP

CONSTANTS
 null, ReqID, ReqSID, Srvc,
/* REQUEST ==
 ReqID � AGENT_ID
 ReqSID � SESSION
 Srvc � SERVICES */
 RespID, RespSID, Srvc_resp
/* RESPONSE ==
 RespID � AGENT_ID
 RespSID � SESSION
 Srvc_resp � SRVC_RESP */

PROPERTIES
 null � SESSION �
 /* REQUEST Record Definition */
 ReqID � REQUEST � AGENT_ID �
 ReqSID � REQUEST � SESSION �
 Srvc � REQUEST � SERVICES �

/* RESPONSE Record Definition */
 RespID � RESPONSE � AGENT_ID �
 RespSID � RESPONSE � SESSION �
 Srvc_resp � RESPONSE�SRVC_RESP

VARIABLES
 req_buf, current, session, resp_buf,
 req_hist, resp_hist

INVARIANT
 req_buf � �(REQUEST) �
 current � �(AGENT_ID) �
 session � �(SESSION) �
 resp_buf � �(RESPONSE) �
 req_hist � �(REQUEST) �
 resp_hist � �(REQUEST)

INITIALISATION
 req_buf := � ||
 current:= � ||
 session := � ||
 resp_buf := � ||
 req_hist:= � ||
 resp_hist := �

Figure 4.1: Sets and Variables Definitions of the Session Creation Pattern

addition to the buffers there are two operations for modelling the communication process
which are namely Convey SessionReq and Convey SessionID. These operations have
been introduced in the refinement. The invariants for refinement are presented in the
Figure 4.3 and a part of the refinement which contains these operations is illustrated in
the Figure 4.4. Maintaining simplicity is the main reason for postponing the introduction
of the communication link to the refinement stage. The req buf of the specification is
divided into two buffers in the refinement. The same process is applied to the response
buffer resp buf. The splitting process is a pre-requisite for the decomposition process in
the later refinement stages.

Resulting Context : Although the session creation pattern is an essential part of almost
all of Web applications but it usually applied in conjunction with other patterns. In the
next section we present another pattern which could be composed with this pattern.

4.2.3 User-to-Web application pattern

Context : The User-to-Web application pattern is applicable to situations where users
interact with a single Web application. The core idea of this pattern is around the simple
configuration of Request-Processing-Response. The scheme stars with a single request
from a client to the Web application. When the request received by the Web application
it will process the request and produce an appropriate response. By generalising the

76 Chapter 4 Pattern Based Formal Modelling

 Client_CreateAgent
�

 /* Client Operation */
 ANY aid, req WHERE
 aid � AGENT_ID
 � aid � current
 � req � REQUEST
 � req � req_hist
 � ReqID(req) = aid
 � ReqSID(req) = null
 THEN
 current := current � {aid}
 || req_buf := req_buf � {req}
 || req_hist := req_hist � {req}
 END;

 Server_CreateSession

�
 /* Server Operation */

 ANY req, resp, sid WHERE
 req � REQUEST
 � req � req_buf
 � ReqSID(req) = null
 � resp � RESPONSE
 � RespID(resp) = ReqID(req)
 � sid � SESSION � sid � session
 � RespSID(resp) = sid
 � resp � resp_hist
 THEN
 resp_buf := resp_buf � {resp}
 || session := session � {sid}
 || session_state := session_state � {sid � NS}
 || req_buf:= req_buf - {req}
 || resp_hist := resp_hist � {resp}
 END;

Figure 4.2: Formal Specification of the Session Creation Pattern

INVARIANT
 req_buf1 � �(REQUEST)
 � req_buf2 � �(REQUEST)
 � req_hist1 � �(REQUEST)
 � req_hist2 � �(REQUEST)
 � resp_buf1 � �(RESPONSE)
 � resp_buf2 � �(RESPONSE)
 � resp_hist1 � �(RESPONSE)
 � resp_hist2 � �(RESPONSE)

/* Gluing Invarints */
 � req_buf = req_buf1 � req_buf2
 � req_buf1 � req_buf2 = �
 � resp_buf = resp_buf1 � resp_buf2
 � resp_buf1 � resp_buf2 = �
 � req_buf1 � ReqID-1[current]
 � req_buf2 � ReqID-1[current]
 � resp_buf1 � RespSID-1[session]
 � resp_buf2 � RespSID-1[session]

Figure 4.3: Invariants in Refinement of the Session Creation Pattern

processing part, this pattern could be applied to many common cases like login, search
and query, selecting an option and submitting selected choices.

Problem: How the client-Web application interactions could be specified in abstract
form such that can be refined easily to represent different cases which they comply with
the generic form of the Request-Processing-Response pattern.

Chapter 4 Pattern Based Formal Modelling 77

OPERATIONS
 Client_CreateAgent

�
 /* Client Operation */

 ANY aid, req WHERE
 aid � AGENT_ID
 � aid � current
 � req � REQUEST
 � ReqID(req) = aid
 � ReqSID(req) = null
 � req � req_hist1
 THEN
 current := current � {aid}
 || req_buf1 := req_buf1 � {req}
 || req_hist1 := req_hist1 � {req}
 END;
 Convey_SessionReq

�
 /* Communication Operation */

 ANY req WHERE req � REQUEST � req � req_buf1
 THEN
 req_buf2 := req_buf2 � {req}
 || req_buf1 := req_buf1 - {req}
 END;
 Server_CreateSession

�
 /* Server Operation */

 ANY req, resp, sid WHERE
 req � REQUEST
 � req � req_buf2
 � ReqSID(req) = null
 � resp � RESPONSE
 � RespID(resp)= ReqID(req)
 � sid � SESSION
 � sid � session
 � RespSID(resp) = sid
 � resp � resp_hist1
 THEN
 resp_buf1 := resp_buf1 � {resp}
 || session := session � {sid}
 || req_buf2 := req_buf2 - {req}
 || resp_hist1 := resp_hist1 � {resp}
 END;
 Convey_SessionID

�
 /* Communication Operation */

 ANY resp WHERE resp � RESPONSE � resp � resp_buf1
 THEN
 resp_buf2:= resp_buf2 � {resp}
 || resp_buf1:= resp_buf1 - {resp}
 END
END

Figure 4.4: Refinement of the Session Creation Pattern

Solution: The User-to-Web application Pattern is commonly observed in e-business
solutions that provide users with the ability to access their information and change
it by interacting directly with core application and databases. A simple topology of
this pattern is illustrated in Figure 4.5. This pattern captures the essence of direct
interactions between users and the Web application.

Such interactions can range from simple static information lookup to complex updates
involving enterprise data. Examples of applications that use this pattern include the
following:

78 Chapter 4 Pattern Based Formal Modelling

Database

Web
Client

Processing
(Web Server)

Request

Response

Figure 4.5: Architecture of the User-to-Web Applications Pattern

1. Applications such as an Online Broker application that allows customers to manage
their portfolios and add/change/remove services and bookings across the Web.

2. Web based retailers that allow customers to shop for and buy retail goods by
accessing a catalogue of items and order entry functions from their browsers across
the Internet.

3. Convenience Banking which allow clients to view account balances, view recent
transactions, pay bills/transfer funds, stop payments and manage bank card.

A Sequence diagram that illustrate the communication link between a client and the
Web Application is depicted in Figure 4.6. It is clear from this diagram that when a
client submits a request, they should wait to receive a response before sending the next
request. Although in practise users can resubmit requests, the Web server could have a
mechanism to discard the repeated request.

������ ����		��
�����

�������

����

�������

����

Figure 4.6: Message Sequencing of the User-to-Web Applications Pattern

Formal Specification: In this section we provide a formal model for the user-to-Web
application pattern. The sets, constants and variables definitions of the pattern are

Chapter 4 Pattern Based Formal Modelling 79

presented in Figure 4.7. The structure of the request and response objects are the
same as the previous pattern and they serve the same purpose. The only difference
is that requests in this pattern always contain valid session ID. We have defined two
new constant definition which are Resp func and Update func. The significance of these
will be discussed very shortly, but here we can highlight the point that theses two
definition along with the simple definition of database contribute toward a more simpler
and generic pattern. Another major issue is the initialisation of the current and session
variables. Instead of initialising these variable with empty set like previous pattern, they
have been initialised with a subset of AGENT ID and SESSION. This shows that the
second pattern should be build on the top of the session creation pattern.

SETS
 SESSION; REQUEST;
 RESPONSE; AGENT_ID;
 SERVICES; SRVC_RESP; DB
CONSTANTS
 ReqID, ReqSID, Srvc,
/* REQUEST ==
 ReqID � AGENT_ID
 ReqSID � SESSION
 Srvc � SERVICES */
 RespID, RespSID, Srvc_resp,
/* RESPONSE ==
 RespID � AGENT_ID
 RespSID � SESSION
 Srvc_resp � SRVC_RESP */
 Resp_func, Update_func
PROPERTIES
 /* REQUEST Record Definition */
 ReqID � REQUEST � AGENT_ID �
 ReqSID � REQUEST � SESSION �
 Srvc � REQUEST � SERVICES �
 * RESPONSE Record Definition */
 RespID � RESPONSE � AGENT_ID �
 RespSID � RESPONSE � SESSION �
 Srvc_resp � RESPONSE � SRVC_RESP �

 Update_func � (DB � SERVICES) � DB �
 Resp_func � (DB � SERVICES) � RESPONSE

VARIABLES
 req_hist, current, req_buf,
 session, resp_hist, resp_buf, db
INVARIANT
 req_buf � �(REQUEST) �
 req_hist � �(REQUEST) �
 req_buf � req_hist �
 current � �(AGENT_ID) �
 session � �(SESSION) �
 resp_buf � �(RESPONSE) �
 resp_hist � �(RESPONSE) �
 resp_buf � resp_hist �
 db � DB

INITIALISATION
 req_buf := � ||
 req_hist := � ||
 current :� �(AGENT_ID) ||
 session :� �(SESSION) ||
 resp_buf := � ||
 resp_hist := � ||
 db :� DB

 Figure 4.7: Sets, Constants and Variables Definitions of the User-to-Web Applications
Pattern

The operations of the User-to-Web pattern could be viewed in Figure 4.8. In order to
make our model more generic and applicable to wider cases we have used two other con-
stant definitions to define an essential part of the pattern which is related to querying
a database and producing a response for the clients. As it has been depicted in Fig-
ure 4.5, to provide the client with a response, the Web application usually should access
a database. The precise method of producing the response and the way that it effects
the content of the database are dependent on both the request and the initial content
of the database. Therefore it is very desirable to have a general specification instead
of strict definition in the pattern. This general specification could be refined when the
pattern applied to the specific cases.

80 Chapter 4 Pattern Based Formal Modelling

MakeRequest
�

 /* Client Operation */
 ANY req WHERE
 req � REQUEST
 � ReqID(req) � current
 � req � req_hist
 THEN
 req_buf := req_buf � {req} ||
 req_hist := req_hist � {req}
 END;

 ProcessRequest

�
 /* Server Operation */

 ANY req, resp WHERE
 req � REQUEST
 � req � req_buf
 � ReqSID(req) � session
 � resp � RESPONSE
 � RespID(resp) = ReqID(req)
 � RespSID(resp) = ReqSID(req)
 � resp = Resp_func(db, Srvc(req))
 � resp � resp_hist
 THEN
 resp_buf := resp_buf � {resp} ||
 resp_hist := resp_hist � {resp} ||
 db:= Update_func(db, Srvc(req)) ||
 req_buf:= req_buf - {req}
 END;

 GetResponse

�
 /* Client Operation */

 ANY resp WHERE
 resp � RESPONSE
 � resp � resp_buf
 THEN
 resp_buf := resp_buf- {resp}
 END

Figure 4.8: Abstract Specification for of the User-to-Web Applications Pattern

The first constant mapping we mentioned in the previous paragraph is the Resp func,
that defines a mapping between the initial state of the database, the service which is
requested and the response produced by the Web server. In other words the response is
a function of the state of the database and the requested service. The second definition
is Update func, that defines a relation between the initial and the final state of the
database based on the requested service. Later in the operation body of the pattern we
should see how these definition contribute toward a succinct definition of the pattern.

The formal specification consists of three operations for making requests, processing
requests and receiving the result of processing on the client side. These operations have
been presented in Figure 4.8. To clarify the pattern further it is worth mentioning the
following points:

1. In the MakeRequest operation the req hist variable has been used for history track-
ing mechanism. This approach, that also has been used in previous pattern, is to

Chapter 4 Pattern Based Formal Modelling 81

guarantee the uniqueness of each request.

2. To model the communication between the client and the Web server we have used
the set-based buffer approach.

3. The constant mapping function have been used in the guard and body of the
ProcessRequest operation to avoid any implementation details.

A refined B Model for the User-to-Web Applications Pattern has been produced. In the
refined model we have introduced new operations to explicitly model the communication
links. The new operations’ details are very similar to what we had in the previous
pattern’s refinement, therefore here we avoid to present it but the full B codes could be
found in the Appendix B.

Resulting Context : As we mentioned earlier, this pattern could be used in conjunction
with the session creation pattern, because for any kid of interaction between a client
and the Web application a session should be established first. As it has been pointed
out earlier the composition of the pattern could be seen in the form of variable sharing.
Another important issue which should be considered is that, this pattern is applicable
to cases which involve simple lookup from database that does not change its content
and to cases which involve changing the database, therefore when the pattern applied
to a specific case, some instantiation would be necessary.

4.2.4 Distributed Processing pattern

Context : In many Web applications the main Web server relies on one or more secondary
servers to provide clients with their requested service. The main server’s collaboration
with secondary servers also could be applied to scenarios where there is the need for
integration with legacy or third-party applications. In this case the new application is
not built as a stand alone solution, but instead it has to communicate with some other
applications. Therefore unlike the previous pattern, in this pattern, the processing is
distributed between different servers. As a result of user requests the Web application
may need to interact with one or more third-party applications or back-end data system
by sending some service request. In the second stage, to accomplish user’s requests, it
has to collect the secondary servers responses and compile the response page for the
client.

Problem: How the client and Web application interactions which involves a main Web
server and some secondary servers could be specified formally. This should carried out
in such a way that demonstrate the following essential points:

• The distribution of processing between the main server and secondary servers

82 Chapter 4 Pattern Based Formal Modelling

• The link between the initial client requests and broadcasting a service request by
the main server

• Compiling the final response for each client from secondary servers’ responses

Solution: The distributed processing Pattern is observed in many e-business solutions
which for example involve credit checking and money transactions. When a client does
online shopping, the main Web application should check the user details and credit with
a bank or credit institution server. The process could proceed based on the type of
response that the main server receives from the secondary server/s. Another example of
this pattern could be found in the Travel Agency example of the previous chapter. The
main Web application provides an integrated airlines booking, accommodation reser-
vation and even car hiring facility. The system facilitates potential users to carry out
different queries and make all different bookings as an integrated solution. A simple
topology of this pattern is illustrated in Figure 4.9.

Web
Client

Request

Response

Database

Processing
(Web Server)

Secondary
Server 1

Secondary
Server n

Databas
e

Databas
e

Figure 4.9: Architecture of Distributed Processing Pattern

In fact this pattern could be considered as an extension of the previous pattern that the
central processing has been replaced with a distributed one. This extended configuration
allows the Web application to access new application business logic or data and to provide
a higher level of services to the Web application’s clients.

Unlike the communication link between the client and the Web application, which is
synchronous, the link between the Web application and secondary servers usually is
asynchronous. The communication is considered to be asynchronous in the sense that
the main server broadcast the service request and then continue with other jobs. The
main advantage of this approach is that the main server does not need to wait for
response. Another feature that could be considered is whether the Web server establishes
the links with secondary servers in parallel or serial manner. In other words whether

Chapter 4 Pattern Based Formal Modelling 83

the Web server sends its request to all secondary servers merely based on a client’s
request or it could be depend on another secondary server’s response. In the later case
the request would be sent just after a specific response has been received from another
server. As a result different derivations of this pattern could be considered based on
the above situation. The message sequencing and communication between a client, the
Web application and secondary applications is depicted in Figure 4.10. Based on this
sequence diagram regarding any client’s request we can envisage two different scenarios.
As it depicted in the first case, a client request resulted in a situation that the Web
application initiates and sends a series of requests to third parties applications and wait
for appropriate responses before replying the client’s request. It should be noticed that
we have a single Web server, but there multiple secondary servers. Another important
issue that should be taken into consideration is that the web server does not establish
a permanent session with secondary servers. For this reason there is no need to have
a notion like session ID that we use for client user interactions. As we mentioned
earlier communication between the Web server and secondary server is single-shout and
asynchronous.

������ ����		��
�����

�
�������		��
������
�

�������

��������

�����

�
�������		��
������
�

��������

�����

�����

 !"#$"����%&'('�)

��������

�����

Figure 4.10: Message Sequencing Distributed Processing Pattern

Formal Specification: The formal specification of this pattern consist of three main
operations. These operations are representing the main Web server asking for a service,
secondary server responding to a request for a service and main Web server compiling the
final response for the client respectively. The definitions and formal specification have
been presented in Figure 4.11 and 4.12. In the Ask for Service operation the Web server

84 Chapter 4 Pattern Based Formal Modelling

sends a request for service to a set of available secondary servers. This has been modelled
by placing requests in buffers associated with different secondary servers. Here we have
assumed that the Web server accomplishes this task simultaneously, but obviously, in
practice the middleware will send the request to each secondary server separately. This
fact could been taken into account in later refinement stages when the middleware model
added. To indicate that the Web server has sent the service request to the secondary
servers and it is waiting to receive some responses, the client request has been added
to the pending reqs set. Like previous pattern using req hist a mechanism has been
developed to guarantee that no repeated request is been send to secondary servers.

SETS
 REQUEST; RESPONSE; REC_ID; USERS;
 SERVICES; SERVERS; SRVC_RESP
CONSTANTS
 Limit,
 ReqID, User, Srvc,
/* REQUEST ==
 ReqID � REC_ID
 User � USERS
 Srvc � SERVICES */
 RespID, Provider, Srvc_resp
/* RESPONSE ==
 RespID � REC_ID
 Provider � SERVERS
 Srvc_resp � SRVC_RESP */
PROPERTIES
 Limit = 3 �
 /* REQUEST Record Definition */
 ReqID � REQUEST � REC_ID �
 User � REQUEST � USERS �
 Srvc � REQUEST � SERVICES �
 /* RESPONSE Record Definition */
 RespID � RESPONSE � REC_ID �
 Provider � RESPONSE � SERVERS �
 Srvc_resp � RESPONSE � SRVC_RESP

VARIABLES
 req_hist, serv_req, pending_reqs,
 resp_hist, serv_resp, completed_reqs,
 final_resp
INVARIANT
 req_hist � �(REQUEST) �
 serv_req � SERVERS � REQUEST �
 ran(serv_req) � req_hist �
 pending_reqs � �(REQUEST) �
 resp_hist � �(RESPONSE) �
 serv_resp � �(RESPONSE) �
 serv_resp � resp_hist �
 completed_reqs � �(REQUEST) �
 final_resp � �(RESPONSE)
INITIALISATION
 req_hist := � ||
 serv_req := � ||
 pending_reqs := � ||
 resp_hist := � ||
 serv_resp := � ||
 completed_reqs := � ||
 final_resp := �

Figure 4.11: Definitions of Distributed Processing Pattern

The Provide Service operation illustrates how a secondary server responds to a request
for service from the Web server. In order to have a generic model we have avoided
including any application specific details about how the response would be constructed.
Instead of that we have used the common nondeterministic pattern for representing
the the secondary server action. Nonetheless it is worth to mention that this could be
replaced with a more precise design level substitution when we apply the pattern to
specific cases. It is also very important to notice that we have not explicitly defined the
databases in the secondary servers. The reason for this is already provided in 3.6.

In a realistic situation it is very likely that only a subset of all available secondary
servers will responde to each request for service. Therefore the Web application should
designed in such a way to proceed to the next step when it received the minimum

Chapter 4 Pattern Based Formal Modelling 85

Ask_for_Service
�

 /* Main Server Operation */
 ANY req WHERE
 req � REQUEST
 � req � req_hist
 THEN
 serv_req := serv_req � SERVERS * {req}
 || req_hist := req_hist � {req}
 || pending_reqs := pending_reqs � {req}
 END;

Provide_Service

�
 /*secondary Server Operation */

 ANY serv, req , srvc_resp, resp WHERE
 serv � SERVERS
 � req � REQUEST
 � srvc_resp � SRVC_RESP
 � resp � RESPONSE
 � resp � resp_hist
 � (serv � req) � serv_req
 � RespID(resp) = ReqID(req)
 � Provider(resp) = serv
 � Srvc_resp(resp) = srvc_resp
 THEN
 serv_resp := serv_resp � {resp}
 || resp_hist := resp_hist � {resp}
 || serv_req := serv_req - {serv � req}
 END;

Complete_Req

�
 /* Main Server Operation */

 ANY req, resp WHERE
 req � REQUEST
 � req � pending_reqs
 � resp � serv_resp � {rs | rs � RESPONSE � RespID(rs) = ReqID(req)}
 � card(resp) � Limit
 THEN
 final_resp := final_resp � resp
 || completed_reqs := completed_reqs � {req}
 || pending_reqs := pending_reqs - {req}
 END

Figure 4.12: Formal Specification of Distributed Processing Pattern

necessary number of responses. The next step is compiling the final response for the
client. The optimal threshold for the minimum acceptable number of responses could
vary and depend on different factors. Here the simple constant Limit has been defined
to represent this threshold. In the Complete Req, which is specified as a part of the
Web application server, the operation’s guard checks the number of received responses
for each single request against this limit. If the limit has been satisfied, the guard is
enabled and the final response would be complied. After that the state of the request
should be changed from pending to completed which has been accomplished by removing
the request from the pending reqs set and adding it to the completed reqs set.

86 Chapter 4 Pattern Based Formal Modelling

As it was the case for previous patterns, a refinement of this pattern has been pro-
duced. This refinement mainly deals with the issue of the communication layer and the
related gluing invariants. Like previous patterns it wrap the first specification model
with a communication layer which could helps to carry out the decomposition process
smoothly. The decomposition process is an essential part of complex distributed sys-
tems modelling which the Web applications are an eminent example of such systems.
In Web application, the decomposition process make it possible to distinguish between
functionality of different parts and distribute them over different architectural elements.

4.3 Devising next stages of formal patterns

The formal patterns which we have developed in the previous sections are high level
architectural and platform-independent patterns. Therefore each of these patterns could
be refined to one or more platform-specific design patterns directly linked to the chosen
platform. In Web application implementation, one of the most widely used platform
is the Sun Microsystems, Java 2 Platform Enterprise Edition (J2EE) standards. The
J2EE defines the standard for developing multi-tier enterprise and Web applications.
The J2EE platform is based on modular and standardised component definitions which
should boost the applicability of pattern-based approach.

Another logical trend, as a continuation of this chapter, is instantiation and composition
of generic pattern to produce more sophisticated patterns for formal specifications and
designs. Devising rules and guidelines for formal patterns composition and pattern
applicability in the form of a framework could be considered as a natural continuation
of the formal patterns. In the next chapters we investigate these issues in depth.

4.4 Concluding and Results

Patterns describe successful solutions to known problems and using patterns in software
development is a well-known approach. Patterns have proven useful to help developer to
reuse successful practices. In addition patterns teach useful techniques, they help people
communicate better, and reason about different solutions.

Based on our experiences in the Travel Agency case study in the previous chapter,
we have extracted some generic patterns. In this chapter we presented these patterns
formally. Formalising patterns provide a well-founded support for reuse. Furthermore,
formalised patterns are a step toward defining a framework for developing mission-critical
Web-based Applications. As a continuation of our work in the first step we developed
some formal models for generic patterns that we presented in this chapter.

Chapter 4 Pattern Based Formal Modelling 87

In the next chapter we will apply our findings in this chapter to some real case studies
and assess our model. In applying these patterns the instantiation and composition of
patterns as a main strategy that will be considered. The outcomes will show to what
extend these formal patterns could assist the formal development process. The final
findings could serve as the basis for development of new generation of tools for the
B-Method and extending it to support automatic or semi-automatic refinement.

Chapter 5

Specification Partitioning and

Composition Techniques

5.1 Introduction

In conventional B development we start the formal specification process with a single B
machine which usually contains few operations and related variables. This single spec-
ification could be refined in a stepwise manner by introducing extra events’ definitions
and their related variables to produce a more concrete model. During the refinement
process when the complexity of the concrete model reaches a specific level that makes it
difficult to manage and understand the model we can decompose the refined model to a
number of sub-models. After this stage each sub-model could be refined independently.

Based on our experiences in developing a formal specification for the Travel Agency
System in Chapter 3 we found that the following characteristics of real Web applications
make conventional B development unsatisfactory.

• Multi-layer Architecture: The multi-layer architecture of this kind systems which
put a lot of emphasis on separation of layers’ specification and design is not com-
patible with the idea of a single B machine for the whole system specification.
Using a single B machine in early stage of specification and refinement resulted
in mixing up functionalities which in most cases are independent. The major de-
sign criteria like modularity, manageability and comprehensibility are in favour of
separation between the specifications of different layers.

• Substantial Requirements: The substantial list of requirements for an actual Web
application could makes the specification and refinements process very compli-
cated. Unlike simple exploratory case studies, it is not very convenient to start
the formal specification of these systems with a few operations and variables. The

89

90 Chapter 5 Specification Partitioning and Composition Techniques

main reason is that we have a comprehensive list of closely related requirements
with the same precedence. The close connection between requirements simply
means that it is not possible to specify one requirement without introducing all
other related properties and it is the point where the complexity is laying. Here
according to Abrial’s view [10] may argue that in many systems it is possible to
classify the initial requirements to a number of subsets of closely linked require-
ments. Then in the second phase we can pick up each subset one at a time and
incorporate it into our model through superposition refinement. Based on our
experiences, especially with the travel case study, even when this approach is pos-
sible it is not convenient. A major problem associated with this approach is that it
could be a long-drawn-out process before reaching the point to have the full spec-
ification and starting the actual refinement. Another weakness of this approach is
that any changes in one model may effects all previous models and bringing them
inline with the changes could be very time consuming and tedious job.

To overcome these complications, we devise a new development approach in this chapter.
Our alternative approach is based on specification partitioning in the early stage of formal
specification. In this approach the system specification comprises a few separated but
closely connected B machines. The relation between different models is defined by
some composition relations which are an essential part of this new approach. Each B
machine, articulates a specific aspect, layer or part of the system. In Web applications
different models should be devised in such a way that should match with the multi-layer
architecture and underlying platforms.

With reference to indispensable role of composition in our approach, in the next part
of this chapter we first explore the bases of the composition mechanism. In the later
sections we extend the composition mechanism based on different scenarios in the case
study.

In this chapter we pursue a practical approach rather than a theoretical one. For this
purpose we have chosen an online English auction system to develop our ideas and
demonstrate how they work in practise. A short informal presentation of the case study
in addition to the overview of the system architecture are presented in section 5.3.

Another important aspect of our work in this chapter is to apply the formal specifica-
tion patterns which we developed in the previous chapter. Assessing the suitability of
these patterns for real cases is an essential aspect of pattern based development. An
important issue which can arise by our new approach to the formal modelling, is how the
specification partitioning could effect the formal patterns of Chapter 4. In section 5.4.1
and during formal development process these issues will be discussed in detail.

Chapter 5 Specification Partitioning and Composition Techniques 91

5.2 Composition Techniques for Event-B

In this section we examine the existing formal background for devising an effective
composition mechanism in the Event-B. In Event-B a system is specified as an abstract
machine containing some state variable and a number of events. The events are guarded
operations that can perform some actions when their guard enabled. The execution of
an event can effects the state variables.

There are two different approaches on how the behaviour of a system could be viewed.
The fist approach is called state-based view and it is based on this approach that the
behaviour of the system is defined in terms of its state and how they are changing. In
the second approach which is called event-based view, the behaviour of the system would
be defined in terms of its events and their execution sequence. Butler in his early works
of B and CSP [32, 31] has illustrated that the event-based view of Event-B corresponds
to the way in which the system behaviour is modelled in process algebra formalisms like
CSP.

In CSP we define a system based on a number of independent Processes. Each process
can interact with other processes or more generally with its environment by engaging
in synchronous atomic events. According to Butler’s approach a machine in B could
be considered as a process in CSP and each guarded operation in that machine could
be viewed as an event of the corresponding process. In addition to this, based on
the notion of channel and value passing, which defines the method that CSP processes
can communicate values with their environment, the idea of events with input-output
parameters has formed.

Based on the above approach we can borrow the idea of process composition and adapt
it for specification composition or very similarly for distributed system decomposition.
There are some notions which shared by both composition and decomposition. Further-
more in many situation they could be considered as the reverse of the each other but in
this chapter we are only concerned with specification composition. More specifically we
are interested in parallel composition and hence in the next section we review this issue
based on some recent work from Butler which appears in RODIN deliverable D19 [114].

The CSP formalism supports different forms of composition including serial and paral-
lel composition. In specification composition we are interested in parallel composition.
Parallel composition as it has been defined in Butler’s works could have different varia-
tions. As we have devised our specification partition and composition mechanism based
on the idea of parallel composition in the reminder of this section we review this idea.

92 Chapter 5 Specification Partitioning and Composition Techniques

5.2.1 Basic Parallel Composition Mechanism

The parallel composition of two machine is defined by fusing the shared event of both
machines together. The parallel operator ‖ defines a synchronous connection between
shared events and leaving independent events independent. The synchronisation between
shared events means that the composed system can engage in the composite events
when the guard of both event are enabled. In practice the parallel composition models
simultaneous execution of the the shared events in both system. Here it is helpful
emphasising that shared events are defined based on having the same names as it is the
case in CSP, but later in this chapter we show that this could be extended by defining
composition between events with different names.

To define the basic parallel composition in more precise formal style, let assume we have
two machines M and N with disjoint state variables m and n respectively. The event
evM denotes the event from the machine M that should be fused or composed with the
event evN in the machine N . The parallel composition of these machines’ events could
be defined as follows:

evM =̂ WHEN G(m) THEN S(m) END
evN =̂ WHEN H(n) THEN T (n) END
evM ‖ evN =̂ WHEN G(m) ∧ H(n) THEN S(m) ‖ T (n) END

or

evM =̂ ANY x WHERE G(x,m) THEN S(x,m) END
evN =̂ ANY y WHERE H(y, n) THEN T (y, n) END

evM ‖ evN =̂

ANY x, y WHERE
G(x,m) ∧ H(y, n)
THEN
S(x,m) ‖ T (y, n)
END

5.2.2 Parallel Composition with Value-Passing

In many situations the composed events need to exchange parameters, but the definition
of Basic Parallel Composition does not support this kind of communication. Based on
the idea of communicating channels with input/output parameters the definition of
parallel composition in Event-B could be extended to deal with this issue.

In most basic form we can compose a single output event from one Machine with an input
event from another machine. To be able to distinguish input and output parameters from

Chapter 5 Specification Partitioning and Composition Techniques 93

ordinary variables of the systems we can use the same convention which been used in
CSP. For marking a parameter as input parameter we add the ? sign in the front of
it and for output parameter we use use ! instead. More formally, Parallel Composition
with Value-Passing could be be defined as following:

evM =̂ ANY x! WHERE G(x!, m) THEN S(x!,m) END
evN =̂ ANY x? WHERE H(x?, n) THEN T (x?, n) END

evM ‖ evN =̂

ANY x! WHERE
G(x!, m) ∧ H(x!, n)

THEN
S(x!,m) ‖ T (x!, n)

END

Once again evM represents the output event from machine M and evN corresponds to
the input event in machine N . The output parameter in evM denoted by x! and the
input parameter in event evN is x?. It is very important to note that the composed
parameter becomes an output parameter. Another possible extension is to have events
with independent parameters along with input/output parameters.

evM =̂ ANY x!, y WHERE G(x!, y, m) THEN S(x!, y, m) END
evN =̂ ANY x?, z WHERE H(x?, z, n) THEN T (x?, z, n) END

evM ‖ evN =̂

ANY x!, y, z WHERE
G(x!, y,m) ∧ H(x!, z, n)

THEN
S(x!, y, m) ‖ T (x!, z, n)

END

It is worth emphasising that the above extensions to Event-B not supported by current
tools. In the later sections of this chapter we try to adopt and extend current composition
mechanisms to devise the ideas of Specification Composition and later the Architectural
Composition.

As we mentioned it in the introduction of this chapter we follow a practical approach
and therefore we introduce our ideas by the means of a case study. Before starting the
formal modelling based on our new approach in the next section we introduce the case
study informally and very briefly.

94 Chapter 5 Specification Partitioning and Composition Techniques

5.3 Online Auction System

An online auction system is a typical example of Web-based applications. These type of
applications demonstrate a very rich nature of distributed, multi-threaded and transactional-
based e-commerce systems. Therefore it makes very desirable to apply our formal pat-
terns to it.

The online auction system is intended to facilitate online transactions between buyers
and sellers. The system allows the clients to buy and sell items by means of auctions.
Different types of auctions exist, but we consider the English auction because of its
popularity. In the English auction the item for sale is put up for auction starting at
a relatively low minimum price. Bidders are then allowed to place their bids until the
auction closes. In most cases the duration of the auction is fixed in advance, e.g. 30
days.

It is expected that any user with a standard web browser, an internet connection and
a basic knowledge of computing will be able to not only shop for items on the auction
Website but also set up their own online auctions with ease.

For using the main functionalities of the system the user should register with the system,
also it allow all users to brows auctions list. After providing necessary information and
registering with the auction system a user can login to the system. The auction system
creates an account for each registered user and they have to transfer some funds into
their account before bidding for any item. The other main functionalities of the system
are login, starting an auction, bidding for an item and transferring from/to the personal
account with the auction system.

The auction system has some internal mechanism to determine the end of each running
auction, closing it, informing the winner if there is any, and finally transferring funds
from the buyer account to the seller account and deducting the related commission. In
addition to that some security procedure like blocking a user account after a number of
unsuccessful attempts to login or for other legal reasons and log out an inactive client
after some period of time may have been envisaged. For our proposes here this short
induction of the system should be enough but for interested readers a longer list of
informal requirements could be found in the appendix section.

5.3.1 The Architecture of The Auction System

Before starting with the actual formal specification of the auction system, it is necessary
to discuss the architecture of underlying platform which the final system would be built
on top it. Although the the final implementation of the auction system is not a part of
our mission in this chapter but it is very important to acknowledge the significance of
platform architecture on design and even specification level modelling. In fact to have

Chapter 5 Specification Partitioning and Composition Techniques 95

an appropriate set of specification and design models, the modelling approach should
comply with the proposed architecture which recommended by the platform. Hence it
is very important to have a short review of the system architecture. In this chapter we
have opted for Java EE [95] as our choice of platform.

Java Platform, Enterprise Edition or Java EE(formerly known as Java 2 Enterprise
Edition or J2EE up to version 1.4), is one of the most widely used Platform for developing
and running distributed multitier Web applications. Java Web applications are largely
based on modular software components running on an application server. The Java EE
platform defined a layered architecture for developing application. This layered model
consist of different parts as following:

• Client-tier components run on the client machine.

• Web-tier components run on the Java EE server.

• Business-tier components run on the Java EE server.

• Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the four tiers shown in Figure 5.1, Java EE
multi-tiered applications are generally considered to be three-tiered applications because
they are distributed over three locations: client machines, the Java EE server machine,
and the database or legacy machines at the back end.

����������

�	
	��

���
��

JSP Pages
Servlets

JavaBeans
Components
(Optional)

Web
Tier

Business Tier

������
Database

And Legacy
Systems

�������������	���
�

�������	��������	�

�	
	��	������������

Java Persistence Entities
Session Beans

Message—Driven Beans

Application Client and
Optional

JavaBeans Components

Figure 5.1: Java EE Application Model, Presented in [94]

Here we are not intended to present details of Java EE 5 and we refer the interested
readers to the above official Sun documents. But we would like to point out an important
issue which is the separation between the interface layer and the application or business
logic layer. In the later stage we see how this layering mechanism effects the patterns
applicability and our approach to formal modelling of the system.

96 Chapter 5 Specification Partitioning and Composition Techniques

Based on the above general application architecture we have devised the following block
diagram which shows the main parts of the auction system and how they related to the
other elements.

User
(With a standard
Bowser)

Web
Interface

Auction
System

Database

Figure 5.2: Architecture of Auction System

The interface provided for the users will be a series of web pages that they can easily
access through a standard web browser such as Microsoft Internet Explorer. The sep-
aration between the Web interface and the core business logic of the system by using
the layering approach provides a mechanism for partitioning the specification. In other
words later we see that the specification of the system is comprised of two or more parti-
tions. When we dealing with a large complex system specification this approach should
result in a more manageable and clearer specification. Furthermore the combination of
this method with the pattern based approach of the previous chapter should lead to a
shorter and yet more efficient development process.

In summary, in the rest of this chapter we mainly concentrate on the two following issues
and their implications on the formal development process :

• Partitioning the formal specification of the system in some machine in such a way
that the formal specification comply more closely with the layered architecture of
Java EE.

• Using formal specification patterns to construct our specification machines to
achieve higher efficiency and faster development time.

Both of the above subjects have some implications on the formal development process.
The partitioning mechanism raises the issue of the composition between different models
and this in turn effects the whole specification and refinement approach in B method.
In addition to that partitioning mechanism effects the applicability of the specification
patterns as well. For example now we have to investigate how the pattern definition
could be extended to match the layering mechanism and specification partitioning.

Chapter 5 Specification Partitioning and Composition Techniques 97

5.4 Specification Partitioning and Composition Techniques

As we discussed in preceding sections, specification partitioning for Web application
seems to be very attractive. Breaking the system specification into different parts brings
some advantages like modularity and simplicity of models. Another important aim of
this approach is to speed up the specification process through parallelism and reusability
and we intend to boost the later one by means of formal specification patterns as well.

Based on three-tier architecture of Web applications, it has long being advocated that the
Application Layer could be analysed and modelled separately from the Web Layer. This
means that the Business Analysis or Problem Domain Analysis, as it is also known, could
be carried out independent of the Web Layer specification and design. In addition to that
the Application Layer commonly has to be persistent and persistence is usually achieved
with a database. Based on this approach we can divide the Auction system specification
at least into two separated B machine along with their composition mechanism. The
first one models the operations of the Web Layer and the second one, the Application
Layer, models the business logic of the auction system along with the database.

Web Applications are Event Driven systems. The Web server receives HTTP Requests
from the client. Each HTTP Request encapsulate an Event which in fact has been
defined by the previous page that client’s browser has received. When the Web server
extracts an event from the request, it must evaluate it and decide how to respond to it.
This evaluation process may involve interaction with the Application Layer.

The Web Layer is also responsible for sending an HTML output stream to the client.
Each time that the Web server sends a new Page (or Frame) of HTML to the client ,
we can consider that as the changing of the state of the client side and this illustrated
by the Browser is displaying a new page. Again in this stage to build the appropriate
HTML output, the Web Layer may need to access application information which can
be accomplished by calling the Application Layer and acquiring such information from
the database. It can then use that data to build an appropriate HTML page or form
populated with the necessary details and send it out to the client for display in the
browser. These interactions between the two layers in both direction forms the basis for
the composition mechanism between the Web Layer and the Application Layer.

It is destined to use the formal patterns of the previous chapter for the formal develop-
ment of the auction system whenever it is appropriate. But as a result of the specification
partitioning approach, the alignment of the patterns in some cases might be necessary.
In this relation two different situations are possible.

In the first case we have a scenario which includes a number of events that they have no
connections with the operations of the other machine. In this case we should be able to
use our formal patterns with a minimal amendment. On the other hand it is feasible to

98 Chapter 5 Specification Partitioning and Composition Techniques

have a scenario where a part of pattern should be separated out to another machine. In
this case there are some connections between operations of the two models and we need
to extend the applied formal pattern by devising a suitable composition mechanism.

5.4.1 Combining Formal Patterns and Specification Partitioning

To facilitate pattern application, first we have to identify suitable scenarios in the re-
quirements document. In the second phase each scenario should be analysed to find
out how it could be modelled with a pattern or a combination of patterns. In this sec-
tion, two different scenarios have been chosen to demonstrate our approach. The first
case concerns with the Initial Client Interaction and how a session could be established
between a new client and the auction system. The second case demonstrate the login
scenario for a previously registered user.

The Web Layer is the first point of contact in Web applications and it is responsible for
sequencing, state handling and interaction with clients. Therefore we start the specifi-
cation of the system with this layer. As we proceed, the specification of the Application
Layer and database in different machine would be introduced and consequently the
composition mechanisms could be defined between these layers’ specification.

Before starting with the formal specification of different scenarios, it is necessary to
discuss some definitions and conventions that we have used throughout the modelling
process. The key concepts that we use them frequently are HTTP Request, HTTP
Response and HTTP Session. For defining the first two items in the B specification we
have used a property-based record style. The detailed structure of these two item is
presented in 5.3. The first field of HTTP Request, the ReqID determines the sender of
the request uniquely. We assume that for each newly opened browser window on the
client computer the browser produce a unique ID and it assigns to every requests that
should be send by this client session. Similarly every produced response by the Web
server should be linked to a specific client session. Therefore we use the same Id In the
HTTP Response and it has been named as RespID.

On the server side for each new client session, the Web server creates an object which
called HTTP Session and links all of this client’s information and state variables to this
object. The formal specification of this process is presented in the next section. In the
B we define the a reference set for HTTP Session objects and we identify each instance
of this set with a session ID or more concisely SID. Beside the first request from the
each client session all other requests and response should contain a valid session ID.
Therefore both HTTP Request and HTTP Response have a field for session ID and they
been named ReqSID and RespSID respectively.

Browsers work based on the notion of the page. The client browser renders a received
response in the form of active viewing page. Within the active page commonly there are

Chapter 5 Specification Partitioning and Composition Techniques 99

HTTP_REQUEST ::
 ReqID � AGENT_ID
 ReqSID � HTTP_SESSION
 Req_Page � PAGE
 Req_Service � SERVICES
 Data_Field � DATA

 HTTP_RESPONSE ::
 RespID � AGENT_ID
 RespSID � HTTP_SESSION
 Resp_Page � PAGE
 Resp_Service �

�
(SERVICE)

Figure 5.3: The Structure of HTTP Request and Response

some options which lined to the available services on that specific page. The third and
fourth fields in both HTTP Request and HTTP Response models the page and services.
The only difference between them is that request could include only one requested ser-
vice. A requested service in the auction system for example could be Register, Login
or Create NewAuction. In most cases with a requested service the client has to pro-
vide some information. For example in the case of Login these are the User Name and
Password. The browser stores these items in the Data Field of the HTTP Request.

As the record style that we use is not supported by the current B tools, the property
based style of these records with set definitions are presented in the Figure 5.4.

SETS
 AGENT_ID; HTTP_REQ; HTTP_RESP; HTTP_SESSION; DATA;
 USER; NAME; SERVICE = {Register, Login, Brows};
 PAGE = {Index_Page, Main_Page, Denial_Page};
 MESSAGE

PROPERTIES
 � Req_ID � HTTP_REQ � AGENT_ID
 � Req_SID � HTTP_REQ � HTTP_SESSION
 � Req_Page � HTTP_REQ � PAGE
 � Req_Service � HTTP_REQ � SERVICE
 � Data_Field � HTTP_REQ � DATA

 � Resp_ID � HTTP_RESP � AGENT_ID
 � Resp_SID � HTTP_RESP � HTTP_SESSION
 � Resp_Page � HTTP_RESP � PAGE
 � Resp_Service � HTTP_RESP �

�
(SERVICE)

 � Data_Item � HTTP_RESP �
�

(AUCTION_CATEGORY)
 � Resp_Item � HTTP_RESP �

�
(AUCTION)

Figure 5.4: The Property-Based style of HTTP Request and Response

As we mentioned earlier to present our approach in detail in the following sections we
have selected two scenarios from the auction system. In the first stage we analyse each

100 Chapter 5 Specification Partitioning and Composition Techniques

scenario to determine whether it should be specified only in the Web Layer or it needs to
be separated out to the Application Layer. If it is so, then the composition mechanism
between different parts should formalised.

5.4.2 Modelling Initial Client Interaction and Establishing Session

In the auction system, as is the case in most of Web applications, multiple users interact
with the application server simultaneously. Clearly, we need a mechanism to identify
each user separately and track their requests over the whole course of conversation.
Therefore we can apply the session creation pattern in the same form that we have
presented it in Chapter 4. The new user interacts with the system by typing in the
initial URL of the auction system. When the server receives initial request which does
not contain a valid session ID, it assumes that a new user has joined to the system.
Therefore the server creates a new session ID and the related management structure for
it. In the next stage it produces a response page, which in this case, is the initial or
introductory page. The newly created session ID embedded in the page would be sent
to the user. Each subsequent request form that particular client will include the session
ID, making the user tracking possible for the Auction system. The B code presented in
figure 5.5 gives us a snapshot of this scenario.

On the server side we keep a list of valid session IDs. When the auction system receives
a new HTTP request which contain a session ID, it will check it against this list. In the
first place the server has to find out whether it is a valid ID and secondly if it is a valid
ID to retrieve the related state information for this particular client. All parts of this
pattern resides in the Web Layer and there no need for messaging with the Application
Layer in this stage. Therefore no composition mechanism needs to be devised.

5.4.3 Modelling Login Scenario

When the previous stage is accomplished and a new session ID allocated for the new
client, the new view should be built and sent back to the client. After the new view
is received and rendered by the browser it will provide a new set of options to the
client. In the case of the auction system one of the options could be login. The client
should provide a user name and password. When the client types in their user name and
password and presses the Login button, the following sequence of events will take place.

• The browser will send an HTTP request to the Web application. This request
contains an event name which is Login and in addition it has two parameters
which are the User Name and the Password.

Chapter 5 Specification Partitioning and Composition Techniques 101

MakeHTTP_Request
�

 /* Client Operation */
 ANY aid , http_req WHERE
 aid � AGENT_ID - used_ ids
 � http_req � HTTP_REQ
 � Req_ID(http_req)= aid
 � Req_SID(http_req)= Null
 � Req_Page(http_req)= Empty
 � http_req � req_hist
 THEN
 used_ids := used_ids � {aid}
 || req_buf := req_buf � {http_req}
 || req_hist := req_hist � {http_req}
 END;
ProcessHTTP_INiRequest

�
 /* Web Server Operation */

 ANY http_req, sid , http_resp WHERE
 http_req � HTTP_REQ
 � http_req � req_buf
 � Req_SID(http_req)= Null
 � Req_Page(http_req)= Empty
 � sid � HTTP_SESSION - current_session
 � http_resp � HTTP_RESP
 � Resp_SID(http_resp) =sid
 � Resp_ID(http_resp) = Req_ID(http_req)
 � Resp_Page(http_resp) = Index_Page
 � http_resp � resp_hist
 THEN
 current_session := current_session � {sid}
 || resp_buf := resp_buf � {http_resp}
 || req_buf := req_buf - {http_req}
 || resp_hist := resp_hist � {http_resp}
 END;

Figure 5.5: Session creation in the Auction system

• When the HTTP request arrived at the Web Server, it invokes the Servlet. This
Servlet evaluates the request specially for a valid session ID and when it found,
the controller in the Servlet retrieves related state data for this session.

• The event name and accompanied parameters along with the retrieved state data
in the form of a message would be sent to the Application Layer.

• Based on the data received by the Application Layer, it will produce a response
of either success or fail. In the case of failure, the response could contain extra
information about the exact nature of the fault. This response will be send back to
the Web Layer. To produce this response the Application Layer needs to consult
the stored data in the database.

• The Web interface layer based on the received message from the Application Layer,
should decide which view should be build and send to the client. If the Application
Layer ’s response was positive the next view would be the main page of the auction
system with available options for a logged-in user. Otherwise the client would be

102 Chapter 5 Specification Partitioning and Composition Techniques

asked to retry or if the maximum number of attempt has been reached the service
would be denied.

• Although it might not be the case for theLogin Response Page, but in some other
cases when the Web Layer is building up the response page it may need to com-
municate with the Application Layer for some extra necessary data to construct
the response page.

The above scenario is compatible with the formal definition of our generic User-to-Web
application pattern. But clearly here we have to extend this pattern to deal with the
new layout that processing has divided between the Web server and the Application
Layer. The formal specification consists of two separate models and the composition
mechanism definition as well.

The first model in Figure 5.6 specifies the data and operations of the Web Layer. This
formal specification defines how the incoming requests form different clients are being
linked to state data on the server side. In the next stage embedded events and their
related parameters should be extracted from the initial HTTP Request. After prelim-
inary checks, if the received event and its parameters were valid, the Web Layer will
pass them to the Application Layer. In the Application Layer based on stored data a
decision will be made about the outcome of the requested event and a response will be
produced and sent back to the Web Layer in the form of a message. The Web Layer
based on the received response from the Application Layer, will built the appropriate
page for the client and send it in the form an HTTP response to that client.

The main complexity of this model is layering in the Login User event. A new syntax
has been devised for the ANY substitution which is not supported by the current B
tools. This style has been inspired by the CSP style of value passing based event syn-
chronisation as we discussed it in section 5.2. In this operation we have three types
of parameters. The first parameter, http req is an ordinary parameter. The next three
parameters, which are sid!, uu! and pp! are output parameters. The exclamation mark
has been borrowed from CSP to indicate the type of variables that can send out some
value to another event. In this case we want to send these parameters to an event in
the Application Layer. The third type of parameter is mesg? where the question mark
denotes that this is an input parameter. In this case the input is being provided by
some event in the Application Layer. As it is evident from the specification the Web
Layer response to the client is being build based on this input parameter in the body of
the Login User event. The exact detail of synchronisation mechanism will be discussed
when we introduce the other elements. But it is important to notice that here in this
operation we have both input and output parameters and this is an extension of parallel
composition which defined by Butler in [114].

The second model encapsulates the underlying business logic of the login process in the
auction system. This model is presented in 5.7. Based on the actual value of the input

Chapter 5 Specification Partitioning and Composition Techniques 103

Client_Request_Login
�

 /* Client Operation */
 ANY http_req WHERE
 http_req � HTTP_REQ
 � Req_Service(http_req) = Login
 � http_req � req_hist
 THEN
 req_buf := req_buf � {http_req}
 || req_hist := req_hist � {http_req}
 END;

Login_User

�
 /* Synchronising Operation */

 ANY http_req, sid! , uu!, pp!, mesg? WHERE
 http_req � req_buf
 � sid! = Req_SID(http_req)
 � sid! � current_session
 � Req_Page(http_req) = view(sid!)
 � Req_Service(http_req) = Login
 � uu! = User(Data_Field(http_req))
 � pp! = Name(Data_Field(http_req))
 � mesg? � MESSAGE
 THEN
 pending_session(sid!):= Req_ID(http_req)
 || req_buf := req_buf - {http_req}
 || view(sid!) := Next_View(view(sid!), mesg?)
 END;

Respond_Login

�
 /* Web Server Operation */

 ANY sid, http_resp WHERE
 sid � dom(pending_session)
 � http_resp � HTTP_RESP
 � Resp_ID(http_resp) = pending_session(sid)
 � Resp_SID(http_resp) =sid
 � Resp_Page(http_resp) = view(sid)
 � http_resp � resp_hist
 THEN
 resp_buf := resp_buf � {http_resp}
 || pending_session := {sid} � pending_session
 || resp_hist := resp_hist � {http_resp}
 END

Figure 5.6: Web Layer - First Part of Login Scenario

parameters different scenarios are possible. Each possible scenarios has been modelled
with a separate event. The Login Success is the only case of success and the rest of
operations represent the different failure scenarios. The guards in each failure operation
demonstrate the condition which could lead to the failure of the login process.

All operations in this segment of the model have the same set of parameters. The
input and output parameters have been indicated by the question and exclamation
mark in the end of parameters respectively. The parameters in the Application Layer
are counterparts of operation of the Web Layer. More precisely each input parameter
in the Web Layer ’s operations at least has an output counterpart parameter in the
Application Layer ’s operation and vice versa. The exact connection between operations

104 Chapter 5 Specification Partitioning and Composition Techniques

Login_Success
�

 ANY sid? , uu?, pp? ,mesg! WHERE
 sid? � current_session
 � uu? � registered_user
 � pp? � PASSWORD
 � pp? = passwords(uu?)
 � uu? � loggedon_user
 � uu? � blocked_user
 � mesg! = LOGIN_SUCCESS
 THEN
 loggedon_user := loggedon_user � {uu?}
 || try_count(sid?) := 0
 || session_user(sid?) := uu?
 END;
Login_Failed_notRegistered

�

 ANY sid?,uu?, pp?, mesg! WHERE
 sid? � current_session
 � uu? � USER
 � pp? � PASSWORD
 � uu? � registered_user
 � try_count(sid?) < 3
 � mesg! = USER_NOT_REGISTERED
 THEN
 try_count(sid?) := try_count(sid?) + 1
 END;
 Login_Failed_IncorrectPass

�

 ANY sid?,uu?, pp?, mesg! WHERE
 sid? � current_session
 � uu? � USER
 � pp? � PASSWORD
 � passwords(uu?) � pp?
 � try_count(sid?) < 3
 � mesg! = PASSWORD_NOT_CORRECT
 THEN
 try_count(sid?) := try_count(sid?) + 1
 END

Login_Failed_HasLogedin
�

 ANY sid?,uu?, pp?, mesg! WHERE
 sid? � current_session
 � uu? � USER
 � pp? � PASSWORD
 � uu? � loggedon_user
 � try_count(sid?) < 3
 � mesg! = USER_HAS_LOGGEDIN
 THEN
 try_count(sid?) := try_count(sid?) + 1
 END;
 Login_Failed_UserBlocked

�

 ANY sid?,uu?, pp?, mesg! WHERE
 sid? � current_session
 � uu? � USER
 � pp? � PASSWORD
 � uu? � blocked_user
 � try_count(sid?) < 3
 � mesg! = USER_IS_BLOCKED
 THEN
 try_count(sid?) := try_count(sid?) + 1
 END;
Login_Denied

�

 ANY sid?, uu?, pp?,mesg! WHERE
 (sid? � current_session
 � uu? � USER � pp? � PASSWORD
 � try_count(sid?) >= 3
 � mesg! = MAXTRY_SERVICE_DENIED)
 �
 (uu? � registered_user
 � passwords(uu?) � pp?
 � uu? � loggedon_user
 � uu? � blocked_user)

 THEN
 skip
 END

Figure 5.7: Application Layer - Second Part of Login Scenario

of two machines and their input and output parameters should be defined by the third
component which is the composition mechanism definition.

The composition mechanism which defines how different parts of the system should be
linked together can have different forms. As we discussed earlier in section 5.2 this
approach has been inspired by value passing event in CSP formalism.

In initial parallel composition mechanism an output event from one system is composed
with a corresponding input event from another system. The composition has been done
in such a way that the output value from one event becomes the input value for the
other event. The formal semantics of composed system with output parameters passing
value to input variables could be presented by a single joint parameter.

In our work here we have extended the idea of fused or composed pairs of events in three
different aspects. The first aspect allows some relaxation on the naming convention in

Chapter 5 Specification Partitioning and Composition Techniques 105

such a way that different names for fused events could be used. The second aspect
concerns communication links in which one way communication has been extended to
bidirectional communication. The third and the most important aspect is the extension
of one-to-one composition to a one-to-many composition. We discuss these three aspect
in more details in the following.

In the initial composition approach the name of composed event in the two different sys-
tem should be identical, but here we consider to compose events with different names.
For example we want to compose the Login User event in the Web Layer specification
with the Login Success event in the Application Layer specification. Although the re-
laxation of the shared name convention gives us a great degree of freedom, it introduces
some new challenging issues both semantically and syntactically. We can solve the se-
mantics issue by the means of renaming mechanism similar to what we have in CSP. The
syntax issue should be dealt with by incorporating a third element into system speci-
fication which is the definition of composition mechanism. A simple way for defining
the composition mechanism could be a lookup table that defines the input and output
events. In the reminder of this section we should discuss this issue in more details.

The second aspect of extension in the initial parallel composition is related to the com-
munication. The communication in the initial work [114] is one directional. In other
words one event is an output event with one or more output parameters and possibly
some independent parameters and the counterpart event is an input event with input
parameter(s). In our approach we allow bidirectional communication in the sense that
we have both input an output parameters in a single event. For example in the Lo-
gin User event we have three output parameters which are Session ID, User Name and
Password and we have one input parameter which is a Message from the Application
Layer. A similar situation could be seen in the Login Success event in the Application
Layer specification that we have three input parameters and one output parameter.

The idea of having simultaneous input and output parameters in a single event makes
the specification composition very brief and yet comprehensive. It enables us to fuse
systems and events together without being concerned about underlaying architectural
complexity. But it should be highlighted that simultaneity between input and output is
not possible in the implementation level. As a result we have to refine the specification
level composition to an architectural or design level composition in the later stages of
formal development process. In the next section we examine this issue in detail.

The last and the most important aspect of extension of the initial parallel composition
which we introduce here is the one-to-many composition. Replacing one-to-one parallel
composition with a table-based defined composition gives us a great amount of flexi-
bility that we need need to model more sophisticated composition scenarios. A good
example of such cases could be seen in the Login operation. In the Web Layer speci-
fication of the Login operation we have one event which is the Login User event. The

106 Chapter 5 Specification Partitioning and Composition Techniques

three output parameters of this event should be seen by all six events of the Application
Layer which are Login Success, Login Failed notRegistered, Login Failed IncorrectPass,
Login Failed HasLogedin, Login Failed UserBlocked and Login Denied. This could be
observed through the corresponding input and output parameters in composed events.
On the other hand based on actual value of parameters in runtime situation and regard-
ing the mutual nature of the events’ guards in the Application Layer only one event
should be enabled. When the enable event executed, it should provide the output pa-
rameter for the Login User event in the Web Layer. Here we can see that this type of
composition has a nondeterministic nature that could be modelled with a choice.

As a direct result of the above extensions, the naming convention that defines the com-
position mechanism implicitly no longer could be sufficient. Therefore we need a third
element in our modelling approach to define and store the explicit definition of the
extended composition mechanism. In the next section we examine this issue in detail.

Defining the Specification Composition

Considering the fact that extended composition mechanism now is a substantial element,
and it could not be comprehended directly from the specification of the Web or Applica-
tion Layer, it seems inevitable to have a new part that defines the composition. To have
a better understanding of the different aspect of the extended composition mechanism
in the Login scenario, we have depicted it informally in Figure 5.8.

Form Figure 5.8 it could be comprehendible that the composition mechanism definition
should includes the following aspects:

• The name of the input and output event(s)

• The exact nature of communication between composed events, i.e. one-directional
or bi-directional, for example from Figure 5.8 we can see that the Login User event
in the Web Layer is both input and output event in the same time.

• The type of composition for example one-to-one parallel or one-to-many composi-
tion, in the case of login scenario, the composition of the Login User event with
multiple events in the Application Layer is one-to-many composition.

• The input and output parameter(s)

As we mentioned in the previous section this information could be stored in a lookup
table in a separate file a new element of the modelling. The tools can retrieve this infor-
mation and check it against the definition of the composed events in different machines
to produce and discharge the the proof obligations.

Chapter 5 Specification Partitioning and Composition Techniques 107

�����
�
���	

������	�

�����
�
�����

����		������

�����
�
�����

���	�������

�����
�
�����

����������

�����
�
�����

����������	��

�����
�
�������

�����
�
������

���������������

 �����

������	

!�����
�	"���	�

���#$��

#
$��
#�

������	"���	�

���%$��

%
$��
%�

�������	"���	

"���#�

������	"���	

"���%�

Figure 5.8: Informal Illustration of Composition Mechanism for Login Scenario

To provides a better view on formal definition of the composition mechanism and how
events in different part of a system are composed, an abstract formal model of the
composition forLogin scenario has been presented in Figure 5.9. In the Web Layer
specification the Client Request Login and Respond Login are independent operations
and they should remain unchanged in the composed system. The Login User operation
in the Web Layer has to be fused to all the events in the Application Layer. In the
composed events the new guard are conjunction of the initial events’ guards and the body
of composed events are the parallel composition of both event’s statements. Another
important issue that should be noticed is that the composition of input and output
parameters are becoming outputs.

The specification composition which has been introduced in this section initiate a new
prospect for modelling of complex multilayered systems, but as we mentioned previously
is not directly implementable. Therefore in new section we try to refine it in such away
to make it more realistic.

108 Chapter 5 Specification Partitioning and Composition Techniques

 :
Client_Request_Login

�

 /* Client Operation */
 ANY http_req WHERE
 GM1 (http_req, …)
 THEN
 SM1(http_req, …)
 END;

Login_User

�

 ANY http_req, sid! , uu!, pp!, mesg?
WHERE
 GM2 (http_req , sid! , uu!, pp!, mesg?)
 THEN
 SM2(http_req, sid! , uu!, pp!, mesg?)
 END;

Respond_Login

�

 ANY sid, http_resp WHERE
 GM3 (sid, http_resp)
 THEN
 SM3(sid, http_resp, …)
 END; :

(a) The Web Layer’s Operations

Login_Success
�

 ANY sid? , uu?, pp? ,mesg! WHERE
 GN1(sid? , uu?, pp? ,mesg!)
 THEN
 SN1(sid? , uu?, pp? ,mesg!)
 END;
Login_Failed_notRegistered

�

 ANY sid?,uu?, pp?, mesg! WHERE
 G N2 (sid? , uu?, pp? ,mesg!)
 THEN
 S N2(sid? , uu?, pp? ,mesg!)
 END;
:
:
Login_Denied

�

 ANY sid?, uu?, pp?,mesg! WHERE
 GN6(sid? , uu?, pp? ,mesg!)
 THEN
 SN6(sid? , uu?, pp? ,mesg!)
 END

(b) The Application Layer’s Operations

 :
Client_Request_Login

�

 /* Client Operation */
 ANY http_req WHERE
 GM1 (http_req, …)
 THEN
 SM1(http_req, …)
 END;
Login_User || Login_Success

�

 ANY http_req, sid! , uu!, pp!,mesg! WHERE
 GM2 (http_req , sid! , uu!, pp!,mesg!)
� GN1(sid! , uu!, pp!,mesg!)

 THEN
 SM2(http_req, sid! , uu!, pp!,mesg!)
 || SN1(sid! , uu!, pp!,mesg!)
 END;
Login_User || Login_Failed_notRegistered

�

 ANY http_req, sid! , uu!, pp!,mesg! WHERE
 GM2 (http_req , sid! , uu!, pp!,mesg!)
 � G N2 (sid! , uu!, pp!,mesg!)
 THEN
 SM2(http_req, sid! , uu!, pp!,mesg!)
 || S N2(sid! , uu!, pp!,mesg!)
 END;

Login_User || Login_Failed_IncorrectPass
�

 ANY http_req, sid! , uu!, pp!,mesg! WHERE
 GM2 (http_req , sid! , uu!, pp!,mesg!)
 � GN3(sid! , uu!, pp!,mesg!)
 THEN
 SM2(http_req, sid! , uu!, pp!,mesg!)
 || SN3(sid! , uu!, pp!,mesg!)
 END
 :
 :
Login_User || Login_Denied

�

 ANY http_req, sid! , uu!, pp!,mesg! WHERE
 GM2 (http_req , sid! , uu!, pp!, mesg!)
 � GN6(sid! , uu!, pp!,mesg!)
 THEN
 SM2(http_req, sid! , uu!, pp!,mesg!)
 || SN6(sid! , uu!, pp!,mesg!)
 END
Respond_Login

�

 ANY sid, http_resp WHERE
 GM3 (sid, http_resp)
 THEN
 SM3(sid, http_resp,…)
 END;

(c) The Composed System’s Operations

Figure 5.9: Formal Presentation of Composition

Architectural Level Composition

In previous section it has been pointed out that bi-directional composition with simul-
taneous input-output is not implementable. This is due to the atomicity of events that
are producing input and output in the same time. In reality producing a response could
not be simultaneous with receiving inputs, because for producing a response it may need
other parts to involved. For example in the case of Login when the Application Layer
receives the input parameters from the Web Layer they need to be checked against the

Chapter 5 Specification Partitioning and Composition Techniques 109

information in the database. Obviously this process takes time and the Application
Layer ’s events could not produce a response, or equivalently the output parameters,
simultaneous with receiving the input parameters. For this reason it is necessary to
refine the specification composition in such a way to allow intermediary processing to
happen in between. We call this composition the Architectural Level Composition or
simply Architectural Composition.

To illustrate the idea of the architectural composition we use the login scenario again.
The refined formal model of Web Layer for login has been presented in 5.10. One major
difference between this model and the previous one, is the new event Request for Login.
The main motivation behind this change is to separate the input and output composition.
This in turn makes it possible to have intermediary processing in between composed
events and over the problem of atomicity.

Client_Request_Login
�

 /* Client Operation */
 ANY http_req WHERE
 http_req � HTTP_REQ
 � Req_Service(http_req) = Login
 � http_req � req_hist
 THEN
 req_buf := req_buf � {http_req}
 || req_hist := req_hist � {http_req}
 END;

Request_for_Login

�

/* Web Server Operation */
 ANY http_req, sid!, uu!, pp! WHERE
 http_req � req_buf
 � sid! = Req_SID(http_req)
 � sid! � current_session
 � Req_Page(http_req) = view(sid!)
 � Req_Service(http_req) = Login
 � uu! = User(Data_Field(http_req))
 � pp! = Name(Data_Field(http_req))
 THEN
 pending_session(sid!):= Req_ID(http_req)
 || req_buf := req_buf - {http_req}
 END;

Login_User
�

/* Web Server Operation */
 ANY sid?, mesg? WHERE
 sid? � HTTP_SESSION
 � sid? � dom(pending_session)
 � mesg? � MESSAGE
 THEN
 completed(sid?) := pending_session(sid?)
 || view(sid?) := Next_View(view(sid?), mesg?)
 || pending_session:= {sid?}� pending_session
 END;

Respond_Login

�

 /* Web Server Operation */
 ANY sid, http_resp WHERE
 sid � dom(completed)
 � http_resp � HTTP_RESP
 � Resp_ID(http_resp) = completed(sid)
 � Resp_SID(http_resp) = sid
 � Resp_Page(http_resp) = view(sid)
 � http_resp � resp_hist
 THEN
 resp_buf := resp_buf � {http_resp}
 || completed := {sid} � completed
 || resp_hist := resp_hist � {http_resp}
 END

Figure 5.10: Refined Web Layer Model for Login

The change in composed events brings some other changes in to the models. For in-
stance the number of parameter in the Login User event 5.10 has changed as a result
of introducing the new Request for Login event. In the new layout we do not need both
input and output parameters in the same event any longer. For example all parameters
beside one ordinary parameter in the Request for Login event are output parameters.

The new formal model for the Application Layer has been presented in Figure 5.11. In
this model we have a new event which is the corresponding event for Request for Login

110 Chapter 5 Specification Partitioning and Composition Techniques

in the Web Layer with the same name. Obviously because the inbound and outbound
composition have bean separated the event in the Application Layer only has input para-
meters. As a result here we have a much simpler one-to-one parallel inbound composition
between the two Request for Login events in the Web Layer and Application Layer re-
spectively. The outbound composition also has changed in the sense that we on longer

Request_for_Login
�

 ANY sid?, uu?, pp? WHERE
 sid? � current_session
 � uu? � USER
 � pp? � PASSWORD
 THEN
 session_user(sid?) := uu?
 || user_password(sid?) := pp?
 END;
Login_Success �
 ANY sid!, uu, pp, mesg! WHERE
 …
 � (sid! � uu) � session_user
 � (sid! � pp) � user_password
 � uu � registered_user
 � passwords(uu) = pp
 � uu � loggedon_user
 � uu � blocked_user
 � mesg != LOGIN_SUCCESS
 THEN
 loggedon_user := loggedon_user � {uu}
 || try_count(sid!) := 0
 || session_user := {sid!} � session_user
 || user_password := {sid!} � user_password
 END;
Login_Failed_notRegistered

�

 ANY sid!,uu, pp, mesg! WHERE
..
 � (sid! � uu) � session_user
 � (sid! � pp) � user_password
 � uu � registered_user
 � try_count(sid!) < 3
 � mesg! = USER_�_REGISTERED
 THEN
 try_count(sid!) := try_count(sid!) + 1
 || session_user := {sid!} � session_user
 || user_password := {sid!} � user_password
 END;

Login_Failed_IncorrectPass
�

 ANY sid!,uu, pp, mesg! WHERE
…
 � (sid! � uu) � session_user
 � (sid! � pp) � user_password
 � passwords(uu) 	 pp
 � try_count(sid!) < 3
 � mesg! = PASSWORD_�_CORRECT
 THEN
 try_count(sid!) := try_count(sid!) + 1
 || session_user := {sid!} � session_user
 || user_password := {sid!} � user_password
 END;
 Login_Failed_HasLogedin

�

 ANY sid!,uu, pp, mesg! WHERE
…
 � (sid! � uu) � session_user
 � (sid! � pp) � user_password
 � uu � loggedon_user
 � try_count(sid!) < 3
 � mesg! = USER_HAS_LOGGEDIN
 THEN
 try_count(sid!) := try_count(sid!) + 1
 || session_user := {sid!} � session_user
 || user_password := {sid!} � user_password
 END;
 Login_Failed_UserBlocked

�

 ANY sid!,uu, pp, mesg! WHERE
….
 � (sid! � pp) � user_password
 � uu � blocked_user
 � try_count(sid!) < 3
 � mesg! = USER_IS_BLOCKED
 THEN
 try_count(sid!) := try_count(sid!) + 1
 || session_user := {sid!} � session_user
 || user_password := {sid!} � user_password
 END;

Figure 5.11: Refined Application Layer Model for Login

have both input and output parameters in the same event. In addition to that, the num-
ber of output parameter in composed events has changed, but the composition pattern
remans unchange. The new composition mechanism has been depicted in Figure 5.12
informally. As it could be seen from Figure 5.12 the inbound composition Between the
Web Layer and the Application Layer is very simple one-to-one parallel composition. On
the other hand outbound composition is the more complex Many-to-One Composition.
The Many-to-One Composition here is very similar to the composition that we had in

Chapter 5 Specification Partitioning and Composition Techniques 111

������

���	

�
���

����������

���	

�
��	���

�
���������

���	

�
��	���

����������

���	

�
��	���

��������	

���	

�
��	���

�� ��	�����

���	

�
!"���

���	

�
#�
	��

$%%�	���	�
���	�

 �&"��
�
'��
�
���	

����������

 �&"��
�
'��
�
���	

�$%%�	���	�
������

��������

("�%"�
����)����
�	�*+""

*
+%%
*�

	
%"�����)����
�	�,+""

,
+%%
,�

�
%"�����)����
�	�,+)��

,�
�"�%"�����)����
�	�*+)��

*�

Figure 5.12: Informal Illustration of the Refined Composition for the Login Scenario

the specification level. In fact the formal definition of them is almost identical and this
similarity leads us to the new concept of Composition Patterns. The refined composition
mechanism is modelled by a lookup table similar to the specification composition. In
the next section we try to sketch out the bases of this idea and how it could be merged
with the specification pattern to enable us to reach a higher level of productivity and
reusability.

5.5 Composition Patterns

A composition mechanism defines the way that different part of a system could be fused
together. To construct a formal model for our Auction System, in the last two section,
we devised some new composition mechanisms. These composition mechanisms extend-
ing the preliminary ideas of composition which we presented them in section 5.2. It
seems perfectly justifiable to consider the reusability of composition mechanisms includ-
ing those we have reviewed in section 5.2. To endorse the reusability of composition
mechanisms we prefer to define them as Composition Patterns. The idea of composition
patterns along with the specification patterns that we defined in the previous chapter

112 Chapter 5 Specification Partitioning and Composition Techniques

could serve as a framework for future works on formal modelling of Web applications
and Web services. In this section we want to review all patterns including those that
has been presented in section 5.2.

5.5.1 Basic Parallel Composition

In this form of composition events in two different model could be fused together. This
a simple synchronisation mechanism between a pair of event without any value passing.
The joint event guard is the conjunction of both events guards and the composed system
will engaged in the composed event when both guards are enable. This pattern has been
defined in Butler works and it is presented in section 5.2.

5.5.2 Parallel Composition with Value-Passing

The previous simple parallel composition could be extended by introducing the idea of
communicating values. In this form of composition we have a pair composed event that
can synchronise by value passing. One event could produce one or more output that
could be accepted by the second event as input. We simply call the first event as output
event and the later one as input event. As an accepted variant each event could deal
with a number of independent variables in addition to input or output parameters. This
pattern has been defined in Butler works and it is presented in section 5.2.

5.5.3 Broadcasting Composition

The Broadcasting Composition pattern or Multiple-Parallel Composition with Value-
Passing could be seen as an extension of the previous pattern in some way. In this
pattern we have a single output event which could synchronise with more that one input
event. The input events in the initial pattern have the same name but the belong to
different machines. This pattern has been defined in [114] but we did not present it
in section 5.2, because it has not been used in the auction case study. This pattern is
very useful for situation where a subsystem should ask multiple secondary subsystems
or systems for a service. A good example of this scenario could be observed in the travel
case study of Chapter 3 where the main server has to query the secondary servers for a
service by broadcasting a request for service.

The formal definition of this pattern could be presented as following:

Here the evM1 is an output event in the machine M1 and the rest of events are input
event each belong to a separate machine.

All the above composition patterns were simple in the sense that they could be defined
implicitly by the naming convention i.e. the composed events had the same name. In

Chapter 5 Specification Partitioning and Composition Techniques 113

evM1 =̂ ANY x! WHERE G1(x!,m1) THEN S1(x!,m1) END
evM2 =̂ ANY x? WHERE G2(x?,m2) THEN S2(x?,m2) END
..
evMn =̂ ANY x? WHERE Gn(x?,mn) THEN Sn(x?,mn) END

evM1 ‖ evM2 ‖ .. ‖ evMn =̂

ANY x! WHERE
G1(x!,m1) ∧ G2(x!,m2) ∧ .. ∧ Gn(x!, mn)
THEN
S1(x!,m1) ‖ S2(x!, m2) ‖ .. ‖ Sn(x!,mn)
END

addition to that we were using the same names for input and output parameters hence
there was no need for Explicit Formal Definition of the composition mechanism. But in
the rest of following patterns this no longer is the case.

5.5.4 Choice Composition

We used this composition pattern in login case scenario for the first time, without naming
it. In the first look this composition seems very similar to the previous composition
pattern, but its semantics is different. Three forms of it could be envisaged.

(a) Fusing an output event in the first model/machine with multiple input events in
the second model/machine

(b) Fusing multiple output events in the first model/machine with a single input event
in the second model/machine

(c) Combination of the above case in the form composing an input/output event with
multiple input/output events in the second model/machine.

An informal presentation of all three forms is depicted in Figure 5.13.

This pattern has the following differences with the broadcasting pattern:

1. Here the composition is just between two machines/models.

2. The naming convention could not be applied, because we have multiple events in
one machine that participate in the composition.

3. Composition between a single input event and multiple output event is possible.
Despite the hint in the [114], that this may leads to deadlock, here there is no such
danger. The reason for that in the mutuality of the output events’ guard. The
hidden fact in this pattern is this: the guards in the grouped events are mutually

114 Chapter 5 Specification Partitioning and Composition Techniques

e��

e��

e��

:

e�
��

(a) Composition of a Single Output event with
Multiple Input Events

e��

e��

e��

:

e�
��

(b) Composition of Multiple Output events with
a Single Input Event

e��

e��

e��

:

e�
��

(c) Composition of an Input/Output event with
Multiple Input/Output Events

Figure 5.13: Informal Presentation of the Choice Composition

exclusive. Therefore in any possible state only one of the them will have a valid
guard and could be activated.

Considering the fact that in runtime only one pair of events including one input and
one output will be composed in parallel manner, make this pattern very similar to the
Internal Choice in CSP. The name of this pattern is chosen to reflect this fact. In the
following Figure the formal definition for the first form of this pattern is presented.
Deriving a formal definition for the other two forms is very similar.

evM =̂ ANY x! WHERE GM (x!,m) THEN SM (x!,m) END ∈ M

ev1N =̂ ANY x? WHERE G1N (x?, n1) THEN S1(x?, n1) END
:
:
evxN =̂ ANY x? WHERE GxN (x?, nx) THEN Sx(x?, nx) END

∈ N

Chapter 5 Specification Partitioning and Composition Techniques 115

evM ‖ {ev1N , ev2N , ..., evxN} =̂

CHOICE
evM ‖ ev1N

OR
evM ‖ ev2N

:
OR

evM ‖ evxN

END

5.5.5 Conclusions and Future Work

In this chapter we introduced a new approach for formal development of Web based
application that could be equally beneficial for modelling other type of complex systems
which consist of many parts. In this new approach which is based on specification parti-
tioning and composition, we start the specification process by constructing a number of
specification models. Each specification model represents a part or a subsystem of the
whole system. The relations between different specification models are defined by some
composition mechanisms or patterns. In general the formal definitions of composition
patterns should be given explicitly, although in simple cases the composition could be
defined implicitly by the naming convention like CSP.

The main advantages of this approach are that it promote modularity, reusability and
team based system development. Because in this approach the system specification
includes several parts, each part should model a specific set of coherent requirements
and the modelling could be done by an individual in parallel with other part of the
system. Specification partitioning could assist with the idea of separation of concerns
that intended toward concentrating on one issue at a time. This in turn should resulted
in cleaner specification and design with higher reusability.

As it is the case in many engineering processes, the above advantages could not be
achieved without any cost. The cost of this approach is the overhead of defining the
composition mechanism in separate explicit model and obviously, the extension of cur-
rent tools to support this approach.

Chapter 6

Conclusions

This chapter summarises the main ideas presented in this thesis. In addition, future
research directions in the formal development of Web applications are discussed. Using
the B Method for development of distributed systems in general, and Web applications
particulary, has some implications on the B method itself. These could be in the form of
some suggested syntax and semantics extensions. In the following sections these issues
are discussed.

6.1 An Overview of the Research

The opening chapter provides the introduction, motivations and contributions of this
thesis. Chapter 1 gives an overview of the history of the Web from a document sharing
medium to a platform for the development of large scale distributed applications. We
explained that the need for development of more sophisticated systems with a higher
level of functionality was a real force behind the need for appropriate analysis and mod-
elling before any real implementation. As a result of this real need, different modelling
approaches emerged. Some of these modeling approaches had roots in hypermedia mod-
elling while others derived form the general field of software engineering. The need for a
more comprehensive approach leads to the merging of some previously introduced mod-
elling approaches. It assumed that the combined approaches should provide a higher
level of modelling, like architectural and business level modelling.

Web applications are critical to the day to day operation and success of many orga-
nizations. Many Web applications in that sense could be classified as mission critical
systems and therefore they should be highly dependable. To have a dependable system
we need to have a verifiable modelling approach as well as tool support for it. The sur-
vey in Chapter 1 shows that although there has been a great advance in Web modelling
approaches during last few years, but almost all of approaches fail to address the issue

117

118 Chapter 6 Conclusions

of verifiability. The need for dependable web application with verifiable development
process and tool support lead us toward the use of formal method for Web application
development as the ultimate aim of this research.

Chapter 2 surveys dependable software engineering and its different aspects. It identifies
that the use of formal methods is an eminent way to develop dependable systems. A
review of different formalisms and the domain of their applicability has been discussed.
Assessing some essential aspects like tool support, the completeness of notation and the
extent of their previous use in developing practical systems lead us to the selection of B
method. A short review of the B method notation, and some proposed extensions to the
standard B method to make it more suitable for system modelling have been presented.

Combination of the B method with other formal or semiformal notations has been dis-
cussed in many papers. In this relation the process algebraic notation, CSP, has a central
role to inspire some suggested extensions to this research. Therefore a short review of
the CSP is provided in the end of Chapter 2.

In this thesis we follow a practical approach towards formalising Web based applications.
To have a better understanding of these systems a case study, the travel agency, is chosen
in Chapter 3. By developing a formal B specification for the travel agency case study
we tried to achieve two goals. First, the formal specification should serve as a firm base
for understanding , further discussion and designing the system. The second goal was
to identify the challenging aspects of formal development and propose some solutions
for overcoming them.

A number of issues like requirement handling in complex system modelling, refinement
of structured data types, specification of distributed databases and their refinement, and
modelling of communication links have been identified as challenging aspects. We tried
to provide some solutions for these issues in the rest of Chapter 3.

In Chapter 4 based on our experience in the previous chapter we have explored the idea
of specification and refinement patterns. Although in a complex Web application we
may face a long list of requirements but in most cases the user interactions with the
system could be matched by a few patterns. Based on this fact we have identified a
number of generic patterns in Chapter 4 and developed some formal specification and
refinement models for them.

The formal specification and refinement patterns could serve as a basis for reusability
and faster system development. They also can alleviate the burden of proof obligation
discharging by suggesting some useful approaches. We tried as much as possible to make
the patterns’ definitions generic. This make it possible to apply them to a wider number
of cases but it is associated with a negative aspect. This negative aspect is that now we
have to specialise patterns for each applied case, which may in turn resulted in different
and difficult proof obligations.

Chapter 6 Conclusions 119

Finally in Chapter 5 we introduced specification partitioning as another means to tackle
the complexity of formal development process for Web applications. In line with our
practical approach, we used another case study in this chapter to discuss the main
aspect of specification partitioning. We discussed that composition mechanisms are the
major techniques to construct the complete systems specification from subsystems. We
explored some example cases and related devised composition techniques for them.

The composition mechanisms or patterns as we labeled them later in Chapter 5 could be
subject to refinement in correlation with the whole system refinement. In this relation we
presented the idea of composition in different levels like specification and architectural
composition. In addition to that we found that the idea of composition pattern could
provide yet a better framework for development of formal web applications.

6.2 Major Thesis Contributions

Applying formal methods specially to complex distributed systems like Web application
is a very challenging task. When we started this research we were able only to find
few previous works relating to the formalisation of Web applications, none of them on
applying B to the Web applications.

Based on our practical approach we identified some interesting issues in Chapter 3.
Although these cases were extracted from the given case study, but they can be reappear
in many other Web applications. We provided some B models for the following cases
that can serve as a set of guidelines for future developments:

• A practical approach based on superposition refinement for incorporating require-
ments into system specifications in a stepwise manner

• Introducing a property based approach for stepwise refinement of structured data
types in the B method.

• Specification and refinement of communication links by starting from single-place
buffers refined by multi-place buffers with order preservation and later unordered
multi-place buffers. The introduction of communication links is a pre-requisite for
successful decomposition of large models, which is in turn a major technique to
tackle the complexity.

• Develop an appropriate strategy for specification and refinement of distributed
databases. The specification model should be general enough to allow proper
refinement that reflects the complex nature of the database interactions.

Aiming at providing a framework for developing Web application we defined three spec-
ification and refinement patterns in Chapter 4. These patterns are selected based on

120 Chapter 6 Conclusions

the experiences gained in the previous chapter and they should be general enough to be
reused in other systems developments.

Specification partitioning and composition techniques are other main contributions of
this research towards a more effective way to model Web application, that we presented
in chapter 5. Some extensions and new aspects that we presented in this thesis are
not supported by the current B tools. Therefore they open a new front for extending
current tools to provide better support for Web applications by incorporating the new
constructs.

6.3 Future Research

The future of software development is tied very closely to the Web. Web applications
are becoming more and more common nowadays. Software engineering research must
address the concern of developing dependable Web applications. Formal methods are
our major tool to tackle this issue and tool support for formal methods is an essential
factor. As a result of the nature of web development projects, current constructs in a
formal method, like B, are not enough for Web applications. Our research has shown
that modification and new extensions are needed to adapt the B method for development
of Web applications. This research is the first step in an emerging research field that
addresses the needs for formal Web application development. In the following, we point
out some areas for future research that could extend the work presented in this thesis.

• Developing formal models for more case studies to identify further interesting and
challenging aspects. These extra cases can enrich the field and provide a wider
framework for real systems development.

• Extending the idea of specification and refinement patterns by incorporating more
new patterns definitions.

• Refining the patterns including new patterns to reach a more detailed technical,
and platform specific level, based on current underlaying technologies in Web based
applications.

• Developing the idea of specification composition by investigating the new cases
and identifying more composition mechanisms.

• Extending the B tools to incorporate the new extensions aiming at providing a
more supportive and productive development environment for dependable systems.

Bibliography

[1] Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM Trans. Pro-
gram. Lang. Syst., 15(1):73–132, 1993.

[2] J. R. Abrial. The B book - Assigning Programs to Meanings. Cambridge University
Press, 1996.

[3] J.-R. Abrial. Extending b without changing it (for developing distributed systems).
In Henry Abrias, editor, Proceedings of the 1st Conference on the B Method, pages
169–191, November 1996.

[4] J.-R. Abrial and D. Cansell. Click’n’Prove-Interactive Proofs Within Set Theory,
Version 23, May 2003. http://www.loria.fr/ cansell/cnp.html.

[5] J.-R. Abrial and L. Mussat. Introducing dynamic constraints in b. In B’98 : The
2nd International B Conference, Recent Advances in the Development and Use of
the B Method, pages 83–128, April 1998.

[6] Jean-Raymond Abrial. Event driven system construction. http://www.atelierb.
societe.com/documents en.htm, 1999.

[7] Jean-Raymond Abrial. Guidelines to formal system studies. http://www.

atelierb.societe.com/documents en.htm, 2000.

[8] Jean-Raymond Abrial. Event driven distributed program construction. MATISSE
project, Aug 2001.

[9] Jean-Raymond Abrial. Discrete system models. http://i12www.ira.uka.de/
∼keller/Uni-Page/Lecture-Abrial.htm, 2002.

[10] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and in-
stantiation of discrete models: Application to Event-B. Fundamenta Informaticae,
XXI, 2006.

[11] Jonathan Adams, Srinivas Koushik, George Galambos, and Guru Vasudeva. Pat-
terns for e-business: A Strategy for Reuse. IBM Press, 2001.

[12] Brian Henderson-Sellers Alice Gu and David Lowe. Web Modelling Languages:
the gap between requirements and current exemplars, 2002.

121

http://www.atelierb.societe.com/documents_en.htm�
http://www.atelierb.societe.com/documents_en.htm�
http://www.atelierb.societe.com/documents_en.htm�
http://www.atelierb.societe.com/documents_en.htm�
http://i12www.ira.uka.de/~keller/Uni-Page/Lecture-Abrial.htm�
http://i12www.ira.uka.de/~keller/Uni-Page/Lecture-Abrial.htm�

122 BIBLIOGRAPHY

[13] Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[14] S O Anderson, R E Bloomfield, and G L Cleland. Guidance on the use
of formal methods in the development and assurance of high integrity indus-
trial computer systems part iii a directory of formal methods. Technical re-
port, EWICS(EUROPEAN WORKSHOP ON INDUSTRIAL COMPUTER SYS-
TEMS), June 1998. Available online at www.ewics.org.

[15] Atelier B Web Page. http://www.atelierb.societe.com/.

[16] B-Core(UK) Ltd. B-Toolkit. http://www.b-core.com/btoolkit.html.

[17] B4free Web Page. http://www.b4free.com/.

[18] R. Back and K. Sere. Superposition refinement of reactive systems. Formal Aspects
of Computing, 8(3):324–346, 1996.

[19] Jos C. M. Baeten and Jan A. Bergstra. Real time process algebra. Formal Asp.
Comput., 3(2):142–188, 1991.

[20] M. R. Barbacci and C. B. Weinstock. Mapping metah into acme. Technical Re-
port CMU/SEI-98-SR- 006, Carneggie Mellon University / Software Engineering
Institute, Computer Science Department, Fanstord, California, July 1998.

[21] Luciano Baresi, Franca Garzotto, and Paolo Paolini. From web sites to web appli-
cations: New issues for conceptual modeling. In Stephen W. Liddle, Heinrich C.
Mayr, and Bernhard Thalheim, editors, ER (Workshops), volume 1921 of Lecture
Notes in Computer Science, pages 89–100. Springer, 2000.

[22] Luciano Baresi, Franca Garzotto, Paolo Paolini, and Sara Valenti. Hdm2000: The
hdm hypertext design model revisited. Technical report, Politecnico di Milano,
2000.

[23] Don Batory, Lou Coglianese, Mark Goodwin, and Steve Shafer. Creating reference
architectures: an example from avionics. In SSR ’95: Proceedings of the 1995
Symposium on Software reusability, pages 27–37. ACM Press, 1995.

[24] Hubert Baumeister, Nora Koch, and Luis Mandel. Towards a UML Extension for
Hypermedia Design. In Robert B. France and Bernhard Rumpe, editors, UML,
volume 1723 of Lecture Notes in Computer Science, pages 614–629. Springer, 1999.

[25] Zohra Bellahsene, Dilip Patel, and Colette Rolland, editors. Object-Oriented.
Information Systems, 8th International Conference, OOIS 2002, Montpellier,
France, September 2-5, 2002, Proceedings, volume 2425 of Lecture Notes in Com-
puter Science. Springer, 2002.

BIBLIOGRAPHY 123

[26] Pam Binns and Steve Vestal. Formal real-time architecture specification and analy-
sis. In RTOSS ’93: Proceedings of the tenth IEEE workshop on Real-time operating
systems and software, pages 104–108. IEEE Computer Society, 1993.

[27] Mario A. Bochicchio and Antonella Longo. UWA+: bridging web systems design
and business process modeling. In Hypermedia Development & Web Engineer-
ing Principles and Techniques: Put them in use International Workshop on Web
Engineering, in conjunction with ACM Hypertext 2004, Santa Cruz, August 2004.

[28] Tommaso Bolognesi. Composing event constraints in state-based specification.
In David de Frutos-Escrig and Manuel Núñez, editors, FORTE, volume 3235 of
Lecture Notes in Computer Science, pages 13–32. Springer, 2004.

[29] Tommaso Bolognesi. A conceptual framework for state-based and event-based
formal behavioural specification languages. In ICECCS, pages 107–116. IEEE
Computer Society, 2004.

[30] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture - A System of Patterns, page 35.
John Wiley & Sons Ltd., Chichester, England, 1996.

[31] M. Butler and M. Waldén. Distributed system development in b. In Proceedings
of the 1st Conference on the B Method, pages 155–168, Nantes, France, November
1996.

[32] Michael J. Butler. Stepwise refinement of communicating systems. Sci. Comput.
Program., 27(2):139–173, 1996.

[33] Michael J. Butler. An approach to the design of distributed systems with b amn.
In Jonathan P. Bowen, Michael G. Hinchey, and David Till, editors, ZUM, volume
1212 of Lecture Notes in Computer Science, pages 223–241. Springer, 1997.

[34] Michael J. Butler. A system-based approach to the formal development of em-
bedded controllers for a railway. Design Automation for Embedded Systems, 6(4),
July 2002. ISSN 0929-5585.

[35] Cristina Cachero and Jaime Gómez. Advanced conceptual modeling of web appli-
cations: Embedding operation interfaces in navigation design. In Matilde Celma,
Oscar Pastor, Natalia Juristo Juzgado, and Juan José Moreno-Navarro, editors,
JISBD, pages 235–248, 2002.

[36] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language
(WebML): a modeling language for designing Web sites. Computer Networks,
33(1-6):137–157, 2000.

[37] Peter P. Chen, David W. Embley, Jacques Kouloumdjian, Stephen W. Liddle, and
John F. Roddick, editors. Advances in Conceptual Modeling: ER ’99 Workshops

124 BIBLIOGRAPHY

on Evolution and Change in Data Management, Reverse Engineering in Informa-
tion Systems, and the World Wide Web and Conceptual Modeling, Paris, France,
November 15-18, 1999, Proceedings, volume 1727 of Lecture Notes in Computer
Science. Springer, 1999.

[38] ClearSy. Event B reference manual, June 2001.

[39] Jim Conallen. Building Web applications with UML. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[40] J. P. Courtiat, M. Diaz, R.C. De Oliveira, and P. Senac. Formal methods for the
description of timed behaviors of multimedia and hypermedia distributed systems.
Computer Communications, 19:1134–1150, 1996.

[41] Feras T. Dabous, Fethi A. Rabhi, and Hairong Yu. Using software architectures
and design patterns for developing distributed applications. In Australian Software
Engineering Conference, pages 290–299. IEEE Computer Society, 2004.

[42] Edsger W. Dijkstra and Carel S. Scholten. Predicate calculus and program seman-
tics. Springer-Verlag New York, Inc., 1990.

[43] Alexander Egyed and Nenad Medvidovic. Consistent architectural refinement and
evolution using the unified modeling language. In Proc. of the 1st Workshop on
Describing Software Architecture with UML, co-located with ICSE 2001, pages 83–
87, Toronto, Canada, 2001.

[44] P. Luigia et al. A methodology for integrating of formal methods in a healthcare
case study. Technical Report 436, TUCS, December 2001.

[45] Andy Evans, Stuart Kent, and Bran Selic, editors. UML 2000 - The Unified Mod-
eling Language, Advancing the Standard, Third International Conference, York,
UK, October 2-6, 2000, Proceedings, volume 1939 of Lecture Notes in Computer
Science. Springer, 2000.

[46] N. Evans and M. Butler. A proposal for records in event-B. In Proceedings of
Formal Methods 2006 (in press), Augsst 2006.

[47] C. Ferreira and M. Butler. Using b refinement to analyse compensating business
processes. In ZB 2003: Formal Specification and Development in Z and B: Third
International Conference of B and Z Users, LNCS 2651, Turku, Finland, 2003.
Springer.

[48] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. Modular event-based systems.
Knowl. Eng. Rev., 17(4):359–388, 2002.

[49] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

BIBLIOGRAPHY 125

[50] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[51] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in architec-
tural design environments. In SIGSOFT ’94: Proceedings of the 2nd ACM SIG-
SOFT symposium on Foundations of software engineering, pages 175–188. ACM
Press, 1994.

[52] David Garlan and Andrew Kompanek. Reconciling the needs of architectural
description with object-modeling notations. In Evans et al. [45], pages 498–512.

[53] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural descrip-
tion of component-based systems. In Gary T. Leavens and Murali Sitaraman,
editors, Foundations of Component-Based Systems, pages 47–68. Cambridge Uni-
versity Press, 2000.

[54] Daniel M. Germán. HadeZ, a Framework for the Specification and Verification of
Hypermedia Applications. PhD thesis, University of Waterloo, 2000.

[55] Daniel M. Germán and Donald D. Cowan. Formalizing the specification of web
applications. In Chen et al. [37], pages 281–292.

[56] Athula Ginige and San Murugesan. Guest Editors’ Introduction: Web Engineering
- An Introduction. IEEE MultiMedia, 8(1):14–18, 2001.

[57] Jaime Gómez and Cristina Cachero. OO-H Method: extending UML to model web
interfaces, pages 144–173. Idea Group Publishing, 2003.

[58] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual modeling of device-
independent web applications. IEEE MultiMedia, 8(2):26–39, 2001.

[59] M. Goulo and F. Abreu. Bridging the gap between Acme and UML 2.0 for CBD.
In Specification and Verification of Component-Based Systems (SAVCBS’2003),
2003.

[60] John V. Guttag and James J. Horning. Larch: languages and tools for formal
specification. Springer-Verlag New York, Inc., 1993.

[61] Brendan Haire, David Lowe, and Brian Henderson-Sellers. Supporting web devel-
opment in the open process: Additional roles and techniques. In Bellahsene et al.
[25], pages 82–94.

[62] Ahmed E. Hassan. Architecture recovery of web applications. Master’s thesis,
University of Waterloo, 2002.

[63] Rolf Hennicker and Nora Koch. A uml-based methodology for hypermedia design.
In Evans et al. [45], pages 410–424.

126 BIBLIOGRAPHY

[64] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[65] C. A. R. Hoare. Communicating Sequential Processes. Prentice/Hall International,
1985.

[66] Ian Sommerville. Software Engineering, chapter 3. Addison-Wesley, 7/E edition,
2004.

[67] ISO. Information systems processingopen systems interconnectionlotos. Technical
Report DIS 8807, International Standards Organisation, 1987.

[68] Goguen J.A. and Tardo J. An introduction to obj: a language for writing and
testing software specifications. In Specification of Reliable Software, pages 170–189.
IEEE Press, 1979.

[69] Cliff B. Jones. Systematic software development using VDM (2nd ed.). Prentice-
Hall, Inc., 1990.

[70] Cris Kobryn. Modeling enterprise software architectures using UML. In Cris
Kobryn, editor, Proceedings of The Second International Enterprise Distributed
Object Computing Workshop. IEEE, 1998.

[71] N. Koch and A. Kraus.

[72] Nora Koch, Andreas Kraus, Cristina Cachero, and Santiago Meli. Modeling web
business processes with oo-h and uwe. In D. Schwabe, O. Pastor, G. Rossi, and
L. Olsina, editors, In Third International Workshop on Web-oriented Software
Technology (IWWOST03), pages 27–50, July 2003.

[73] Xiaoying Kong and Li Liu. A web application architecture framework. In
AusWeb04, The Tenth Australian World Wide Web Conference, Seaworld Nara
Resort, Gold Coast, July 2004.

[74] Philippe Kruchten. The 4+1 View Model of Architecture. IEEE Software,
12(6):42–50, 1995.

[75] Wing Lam and Venky Shankararaman. An enterprise integration methodology. IT
Professional, 6(2):40– 48, 2004.

[76] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, 1994.

[77] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, July 2002.

[78] Hung Ledang and Jeanine Souquières. Contributions for Modelling UML State-
Charts in B. In Michael J. Butler, Luigia Petre, and Kaisa Sere, editors, IFM,
volume 2335 of Lecture Notes in Computer Science, pages 109–127. Springer, 2002.

BIBLIOGRAPHY 127

[79] Ying Liang. Generation of object models for information systems from business
system models. In Bellahsene et al. [25], pages 255–266.

[80] Xiaodong Liu, Zhiqiang Chen, Hongji Yang, Hussein Zedan, and William C. Chu.
A design framework for system re-engineering. In APSEC, pages 342–. IEEE
Computer Society, 1997.

[81] Xiaodong Liu, Hongji Yang, and Hussein Zedan. Formal methods for the re-
engineering of computing systems: A comparison. In COMPSAC, pages 409–.
IEEE Computer Society, 1997.

[82] David Lowe. Web system requirements: an overview. Requir. Eng., 8(2):102–113,
2003.

[83] David Lowe and John Eklund. Client needs and the design process in web projects.
J. Web Eng., 1(1):23–36, 2002.

[84] David Lowe and Brian Henderson-Sellers. Characteristics of web development
processes. In SSGRR-2001: International Conference on Advances in Infrastruc-
ture for Electronic Business, Science, and Education on the Internet, August 2001.

[85] David Lowe, Brian Henderson-Sellers, and Alice Gu. Web Extensions to UML:
Using the MVC Triad. In Stefano Spaccapietra, Salvatore T. March, and Yahiko
Kambayashi, editors, ER, volume 2503 of Lecture Notes in Computer Science,
pages 105–119. Springer, 2002.

[86] David Lowe and Rachatrin Tongrungrojana. WebML+ for Communication of
Information Flows: An Empirical Study. In Juan Manuel Cueva Lovelle, Bernardo
Mart́ın González Rodŕıguez, Luis Joyanes Aguilar, José Emilio Labra Gayo, and
Maŕıa del Puerto Paule Rúız, editors, ICWE, volume 2722 of Lecture Notes in
Computer Science, pages 218–221. Springer, 2003.

[87] David Lowe and Rachatrin Tongrungrojana. Web Information Exchange Diagrams
for UML. In Xiaofang Zhou, Stanley Y. W. Su, Mike P. Papazoglou, Maria E.
Orlowska, and Keith G. Jeffery, editors, WISE, volume 3306 of Lecture Notes in
Computer Science, pages 29–40. Springer, 2004.

[88] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, D. Bryan,
and Walter Mann. Specification and analysis of system architecture using rapide.
IEEE Trans. Software Eng., 21(4):336–355, 1995.

[89] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying distrib-
uted software architectures. In Wilhelm Schäfer and Pere Botella, editors, ESEC,
volume 989 of Lecture Notes in Computer Science, pages 137–153. Springer, 1995.

[90] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems. Springer-Verlag New York, Inc., 1992.

128 BIBLIOGRAPHY

[91] Daniel Schwabe Mark D. Jacyntho and Gustavo Rossi. A software architecture for
structuring complex web applications. J. Web Eng., 1(1):37–60, 2002.

[92] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.
Using object-oriented typing to support architectural design in the c2 style. In
SIGSOFT FSE, pages 24–32, 1996.

[93] Nenad Medvidovic and David S. Rosenblum. Assessing the suitability of a standard
design method for modeling software architectures. In WICSA1: Proceedings of the
TC2 First Working IFIP Conference on Software Architecture (WICSA1), pages
161–182. Kluwer, B.V., 1999.

[94] Sun Microsystems. The Java EE 5 online tutorial.
http://java.sun.com/javaee/5/docs/tutorial/doc/.

[95] Sun Microsystems. Java Platform, Enterprise Edition 5 Web Pages.
http://java.sun.com/javaee/technologies/javaee5.jsp.

[96] Robin Milner. Communication and concurrency. Prentice Hall, Hemel Hempstead,
United Kingdom, 1st edition, 1989.

[97] Susana Montero, Paloma Dı́az, and Ignacio Aedo. A framework for the analysis
and comparison of hypermedia design methods. In M. H. Hamza, editor, Applied
Informatics, pages 1053–1058. IASTED/ACTA Press, 2003.

[98] Mark Moriconi, Xiaolei Qian, and Robert A. Riemenschneider. Correct architec-
ture refinement. IEEE Trans. Software Eng., 21(4):356–372, 1995.

[99] Matthew John Morley. Safety Assurance in Interlocking Design. PhD thesis,
Department of Computer Science, the University of Edinburgh, 1996.

[100] Ben Moszkowski. Executing temporal logic programs. Cambridge University Press,
1986.

[101] San Murugesan and Yogesh Deshpande, editors. Web Engineering, Software En-
gineering and Web Application Development, Lecture Notes in Computer Science
2016. Springer, 2001.

[102] OMG. UML Resource Page. http://www.uml.org/.

[103] Object-Oriented Hypermedia. http://gplsi.dlsi.ua.es/iwad/ooh project/.

[104] Mehmet A. Orgun and Wanli Ma. An overview of temporal and modal logic
programming. In ICTL ’94: Proceedings of the First International Conference on
Temporal Logic, pages 445–479. Springer-Verlag, 1994.

[105] Jonathan S. Ostroff. Temporal Logic for Real-Time Systems. Advanced Software
Development. John Wiley & Sons, 1989.

BIBLIOGRAPHY 129

[106] Scott P. Overmyer. What’s different about requirements engineering for web sites?
Requir. Eng., 5(1):62–65, 2000.

[107] Patterns Home Page. http://www.hillside.net/patterns.

[108] Fabiano Borges Paulo, Marcelo Augusto Santos Turine, Maria Cristina Ferreira
de Oliveira, and Paulo Cesar Masiero. Xhmbs: A formal model to support hyper-
media specification. In Hypertext, pages 161–170. ACM, 1998.

[109] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[110] Charles J. Petrie and Akhil Sahai. Guest editors’ introduction: Business processes
on the web. IEEE Internet Computing, 8(1):28–29, 2004.

[111] Thomas A. Powell. Web Site Engineering: Beyond Web page Design. Prentice-
Hall, 1998.

[112] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc.,
1985.

[113] A. Rezazadeh and Michael Butler. Event-based modelling and refinement of
distributed monitoring and control systems. In Refinement of Critical Systems
(RCS’03), Turku, June 2003.

[114] RODIN Web Page. http://rodin.cs.ncl.ac.uk/.

[115] Gustavo Rossi, Daniel Schwabe, and Fernando Lyardet. Web Application Models
Are More Than Conceptual Models. In Chen et al. [37], pages 239–253.

[116] et al. S. Murugesan. Web engineering: A new discipline for development of web-
based systems. In Proceedings of the First ICSE Workshop on Web Engineering,
LNCS 1189, Los Angeles, June 1999.

[117] Hans Albrecht Schmid and Oliver Herfort. A behavioral semantics of oohdm core
features and of its business process extension. In Nora Koch, Piero Fraternali,
and Martin Wirsing, editors, ICWE, volume 3140 of Lecture Notes in Computer
Science, pages 74–87. Springer, 2004.

[118] Hans Albrecht Schmid and Gustavo Rossi. Modeling and designing processes in
e-commerce applications. IEEE Internet Computing, 8(1):19–27, 2004.

[119] D. J. Scholefield. A Refinement Calculus for RealTime Systems. PhD thesis,
Department of Computer Science, University of York, 1992.

[120] David Scholefield and Hussein S. M. Zedan. Tam: A formal framework for the
development of distributed real-time systems. In Jan Vytopil, editor, FTRTFT,
volume 571 of Lecture Notes in Computer Science, pages 411–428. Springer, 1992.

130 BIBLIOGRAPHY

[121] Daniel Schwabe and Gustavo Rossi. An object oriented approach to web-based
applications design. TAPOS, 4(4):207–225, 1998.

[122] Emil Sekerinski and Kaisa Sere. Program Development by Refinement: Case Stud-
ies Using the B Method. Springer-Verlag, 1999.

[123] Bran Selic. Using uml for modeling complex real-time systems. In Frank Mueller
and Azer Bestavros, editors, LCTES, volume 1474 of Lecture Notes in Computer
Science, pages 250–260. Springer, 1998.

[124] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,
and Gregory Zelesnik. Abstractions for software architecture and tools to support
them. IEEE Trans. Software Eng., 21(4):314–335, 1995.

[125] Mary Shaw and David Garlan. Software architecture: perspectives on an emerging
discipline. Prentice-Hall, Inc., 1996.

[126] Colin Snook and Michael Butler. UML-B formal modelling with UML.

[127] Colin Snook and Michael Butler. Verifying dynamic properties of uml models by
translation to the b language and toolkit. In Proceedings of UML 2000 Workshop,
Dynamic Behaviour in UML Models: Semantic Questions, 2000.

[128] J. M. Spivey. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, 1988.

[129] Unified Modelling Language Specification. http://www.omg.org/uml/.

[130] Rachatrin Tongrungrojana and David Lowe. WebML+: connecting business mod-
els to information designs. In SEKE: Fifteenth International Conference on Soft-
ware Engineering and Knowledge Engineering, pages 17–24, Knowledge Systems
Institute, Skokie, IL, San Francisco, USA, 2003.

[131] Rachatrin Tongrungrojana and David Lowe. Wied: A web modelling language for
modelling architectural-level information flows. J. Digit. Inf., 5(2), 2004.

[132] Helen Treharne. Supplementing a uml development process with b. In Lars-Henrik
Eriksson and Peter A. Lindsay, editors, FME, volume 2391 of Lecture Notes in
Computer Science, pages 568–586. Springer, 2002.

[133] Andrew C. Uselton and Scott A. Smolka. A compositional semantics for statecharts
using labeled transition systems. In CONCUR ’94: Proceedings of the Concurrency
Theory, pages 2–17. Springer-Verlag, 1994.

[134] UWA Consortium. http://www.uwaproject.org.

[135] M. Waldén and K. Sere. Reasoning about action systems using the b-method.
Formal Methods in Systems Design, 13:5–35, 1998.

BIBLIOGRAPHY 131

[136] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 1998.

[137] Jeannette M. Wing. A specifier’s introduction to formal methods. IEEE Computer,
23(9):8–24, 1990.

[138] et al. Y. Deshpande. Web engineering: Beyond cs, is and se. In Proceedings of
the First ICSE Workshop on Web Engineering, pages 171–176, Los Angeles, June
1999.

[139] Weiquan Zhao and David A. Kearney. Deriving architectures of web-based applica-
tions. In Xiaofang Zhou, Yanchun Zhang, and Maria E. Orlowska, editors, APWeb,
volume 2642 of Lecture Notes in Computer Science, pages 301–312. Springer, 2003.

Appendix A

The Travel Agency System

A.1 Specification of The Travel Agency System

MACHINE TravelAgency

SETS

SESSION; USER; PASS; CARD_DETAIL;

FLIGHT_REQUEST; FLIGHT_DETAIL;

ROOM_REQUEST; ROOM_DETAIL;

CAR_REQUEST; CAR_DETAIL;

STATE={fresh,booking,unbooking,service_selct,options_ret,choice_made,

signed_in,certified,valid,invalid,booking_ret,unbooked_sel};

REQUEST={bf, br, bc, uf, ur, uc, none}

DEFINITIONS

freshSESSION == SESSION - session;

freshUSER == USER - dom(current_user) ;

freshPASS == PASS - ran(current_user)

CONSTANTS

unnamed

PROPERTIES

unnamed: USER

VARIABLES

session, session_user, session_state,

session_request, current_user,

133

134 Appendix A The Travel Agency System

flight_booking, flight_options,selctflight_buf,

booked_flight,ubselctflight_buf,

room_booking, room_options,selctroom_buf,

booked_room, ubselctroom_buf,

car_booking, car_options, selctcar_buf,

booked_car,ubselctcar_buf

INVARIANT

session <: SESSION &

session_user: session --> USER &

session_state: session --> STATE &

session_request: session --> REQUEST &

current_user: USER +-> PASS &

flight_booking: USER <-> FLIGHT_DETAIL &

flight_options: SESSION +-> POW(FLIGHT_DETAIL) &

selctflight_buf: SESSION +-> FLIGHT_DETAIL &

booked_flight: SESSION +->POW(FLIGHT_DETAIL) &

ubselctflight_buf: SESSION +-> FLIGHT_DETAIL &

room_booking: USER <-> ROOM_DETAIL &

room_options: SESSION +-> POW(ROOM_DETAIL) &

selctroom_buf: SESSION +-> ROOM_DETAIL &

booked_room: SESSION +-> POW(ROOM_DETAIL) &

ubselctroom_buf: SESSION +-> ROOM_DETAIL &

car_booking: USER <-> CAR_DETAIL &

car_options: SESSION +-> POW(CAR_DETAIL) &

selctcar_buf: SESSION +-> CAR_DETAIL &

booked_car: SESSION +-> POW(CAR_DETAIL) &

ubselctcar_buf: SESSION +-> CAR_DETAIL

INITIALISATION

session := {} || session_user := {} || session_state := {} ||

session_request := {} || current_user:={}||

flight_booking:={} ||flight_options:= {} || selctflight_buf:={} ||

booked_flight:= {} || ubselctflight_buf:= {} ||

room_booking:={} || room_options:= {} || selctroom_buf:= {} ||

booked_room:= {} || ubselctroom_buf := {} ||

car_booking:={} ||car_options:= {} || selctcar_buf:= {} ||

booked_car:= {} || ubselctcar_buf := {}

OPERATIONS

Appendix A The Travel Agency System 135

Client_ReqSession= /* Client Operation */

skip;

StartNewSession =

ANY sid WHERE sid: freshSESSION THEN

session := session \/ {sid} ||

session_user(sid) := unnamed ||

session_request(sid) := none ||

session_state(sid) := fresh

END;

Get_SessionID= /* Client Operation */

skip;

PicService= /* Client Operation */

skip;

SelectService =

ANY sid, req WHERE

sid:session &

req: REQUEST &

req/=none &

session_state(sid)=fresh

THEN

SELECT (req=bf or req=br or req= bc) THEN

session_state(sid):= booking

WHEN (req=uf or req=ur or req= uc) THEN

SELECT session_user(sid) = unnamed THEN

session_state(sid):= unbooking

WHEN session_user(sid) /= unnamed THEN

/* If User has signed-in before there is no need for re-login.*/

session_state(sid):= signed_in

END

END ||

session_request(sid):= req

END;

Submit_FlightRequest= /* Client Operation */

skip;

136 Appendix A The Travel Agency System

Submit_RoomRequest = /* Client Operation */

skip;

Submit_CarRequest = /* Client Operation */

skip;

Get_FlightRequest = /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid)= booking &

session_request(sid)= bf

THEN

session_state(sid):= service_selct

END;

Get_RoomRequest = /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid)= booking &

session_request(sid)= br

THEN

session_state(sid):= service_selct

END;

Get_CarRequest = /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid)= booking &

session_request(sid)= bc

THEN

session_state(sid):= service_selct

END;

Request_Flight = /* Server Operation */

skip;

Request_Room = /* Server Operation */

skip;

Request_Car = /* Server Operation */

skip;

Resp_FlightReqs = /* Flight Agency Server Operation */

skip;

Appendix A The Travel Agency System 137

Resp_RoomReqs = /* Hotel Server Operation */

skip;

Resp_CarReqs = /* Car Agency Server Operation */

skip;

Retrieve_FlightOptions = /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid) = service_selct &

session_request(sid)= bf

THEN

ANY xx WHERE xx: POW(FLIGHT_DETAIL) THEN

flight_options(sid):= xx

END ||

session_state(sid):= options_ret

END;

Retrieve_RoomOptions=

ANY sid WHERE sid: session &

session_state(sid)= service_selct &

session_request(sid)= br

THEN

ANY xx WHERE xx: POW(ROOM_DETAIL) THEN

room_options(sid):= xx

END ||

session_state(sid):= options_ret

END;

Retrieve_CarOptions=

ANY sid WHERE sid: session &

session_state(sid)= service_selct &

session_request(sid)= bc

THEN

ANY xx WHERE xx: POW(CAR_DETAIL) THEN

car_options(sid):= xx

END ||

session_state(sid):= options_ret

END;

Select_Flight= /* Client Operation */

138 Appendix A The Travel Agency System

skip;

Select_Room= /* Client Operation */

skip;

Select_Car= /* Client Operation */

skip;

GetSelected_Flight= /* Server Operation */

ANY sid,fd WHERE sid:session &

session_state(sid)=options_ret &

session_request(sid)=bf &

sid:dom(flight_options) &

fd:FLIGHT_DETAIL &

fd: flight_options(sid)

THEN

selctflight_buf(sid):= fd ||

flight_options:= {sid}<<| flight_options ||

SELECT session_user(sid) = unnamed THEN

session_state(sid):= choice_made

WHEN session_user(sid) /= unnamed THEN

session_state(sid):= signed_in

END

END;

GetSelected_Room= /* Server Operation */

ANY sid,rd WHERE sid: session &

session_state(sid)=options_ret &

session_request(sid)=br &

sid:dom(room_options) &

rd: ROOM_DETAIL & rd: room_options(sid)

THEN

selctroom_buf(sid):= rd ||

room_options:= {sid}<<| room_options ||

SELECT session_user(sid) = unnamed THEN

session_state(sid):= choice_made

WHEN session_user(sid) /= unnamed THEN

session_state(sid):= signed_in

END

END;

Appendix A The Travel Agency System 139

GetSelected_Car= /* Server Operation */

ANY sid,cd WHERE sid:session &

session_state(sid)=options_ret &

session_request(sid)=bc &

sid:dom(car_options) &

cd: CAR_DETAIL &

cd: car_options(sid)

THEN

selctcar_buf(sid):= cd ||

car_options:= {sid}<<|car_options ||

SELECT session_user(sid) = unnamed THEN

session_state(sid):= choice_made

WHEN session_user(sid) /= unnamed THEN

session_state(sid):= signed_in

END

END;

Request_UserInfo= /* Server Operation */

skip;

Client_Register = /* Client Operation */

skip;

Register =

ANY sid,username,pass WHERE sid: session &

session_state(sid)= choice_made &

username: freshUSER &

pass: freshPASS

THEN

current_user:= current_user \/ {username|->pass} ||

session_user(sid) := username ||

session_state(sid) := signed_in

END;

Client_login = /* Client Operation */

skip;

Login =

ANY sid, username, pass WHERE sid: session &

username: USER & pass: PASS &

(session_state(sid)= choice_made or

140 Appendix A The Travel Agency System

session_state(sid)= unbooking) &

(username|-> pass): current_user

THEN

session_user(sid) := username ||

CASE session_state(sid) OF

EITHER choice_made THEN

session_state(sid) := signed_in

OR unbooking THEN

session_state(sid) := certified

END

END

END;

EnterCard = /* Client Operation */

skip;

Card_Validate=

ANY sid WHERE sid: session &

session_state(sid)= signed_in

THEN

CHOICE

session_state(sid) := valid

OR

session_state(sid) := invalid

END

END;

Restart_invalid=

ANY sid WHERE sid: session &

session_state(sid)= invalid

THEN

session_state(sid) := fresh ||

session_request(sid):= none

END;

Send_SelectedFlight= /* Server Operation */

skip;

Send_SelectedRoom= /* Server Operation */

skip;

Appendix A The Travel Agency System 141

Send_SelectedCar= /* Server Operation */

skip;

Agency_flight_booking= /* Flight_agency Server Operation*/

skip;

Hotel_room_booking= /* Hotel Server Operation*/

skip;

Agency_car_booking= /* Car_agency Server Operation*/

skip;

Flight_Booking = /* Server Operation */

ANY sid,fd WHERE sid:session &

fd: FLIGHT_DETAIL &

session_state(sid)=valid &

sid: dom(selctflight_buf) &

selctflight_buf(sid)= fd

THEN

CHOICE

flight_booking:= flight_booking \/ {session_user(sid)|->fd} ||

selctflight_buf:= {sid}<<| selctflight_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

selctflight_buf:= {sid}<<| selctflight_buf ||

session_state(sid) := fresh ||

session_request(sid):= none

END

END;

Room_Booking = /* Server Operation */

ANY sid,rd WHERE sid: session &

rd: ROOM_DETAIL &

session_state(sid)=valid &

sid: dom(selctroom_buf) &

selctroom_buf(sid)= rd

THEN

CHOICE

room_booking:= room_booking \/{session_user(sid)|->rd} ||

selctroom_buf:= {sid}<<| selctroom_buf ||

142 Appendix A The Travel Agency System

session_state(sid):= fresh ||

session_request(sid):= none

OR

selctroom_buf:= {sid}<<| selctroom_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Car_Booking = /* Server Operation */

ANY sid,cd WHERE sid: session &

cd:CAR_DETAIL &

session_state(sid)=valid &

sid:dom(selctcar_buf) &

selctcar_buf(sid)= cd

THEN

CHOICE

car_booking:= car_booking \/{session_user(sid)|->cd} ||

selctcar_buf:= {sid}<<| selctcar_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

selctcar_buf:= {sid}<<| selctcar_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Retrieve_BookedFlight=

ANY sid WHERE sid: session &

session_state(sid) = certified &

session_request(sid)= uf

THEN

booked_flight(sid):= flight_booking[{session_user(sid)}] ||

session_state(sid):= booking_ret

END;

Retrieve_BookedRoom=

ANY sid WHERE sid: session &

session_state(sid) = certified &

session_request(sid)= ur

Appendix A The Travel Agency System 143

THEN

booked_room(sid):= room_booking[{session_user(sid)}] ||

session_state(sid):= booking_ret

END;

Retrieve_BookedCar=

ANY sid WHERE sid: session &

session_state(sid) = certified &

session_request(sid)= uc

THEN

booked_car(sid):= car_booking [{session_user(sid)}] ||

session_state(sid):= booking_ret

END;

Select_UnBbookedFlight= /* Client Operation */

skip;

Select_UnBbookedRoom= /* Client Operation */

skip;

Select_UnBbookedCar= /* Client Operation */

skip;

GetSelected_UBFlight= /* Server Operation */

ANY sid,fd WHERE sid:session &

session_state(sid)=booking_ret &

session_request(sid)=uf &

sid:dom(booked_flight) &

fd:FLIGHT_DETAIL &

fd: booked_flight(sid)

THEN

ubselctflight_buf(sid):= fd ||

booked_flight:= {sid}<<| booked_flight ||

session_state(sid):= unbooked_sel

END;

GetSelected_UBRoom= /* Server Operation */

ANY sid,rd WHERE sid: session &

session_state(sid)=booking_ret &

session_request(sid)=ur &

sid:dom(booked_room) &

144 Appendix A The Travel Agency System

rd: ROOM_DETAIL &

rd: booked_room(sid)

THEN

ubselctroom_buf(sid):= rd ||

booked_room:= {sid}<<|booked_room ||

session_state(sid):= unbooked_sel

END;

GetSelected_UBCar= /* Server Operation */

ANY sid,cd WHERE sid:session &

session_state(sid)=booking_ret &

session_request(sid)=uc &

sid:dom(booked_car) &

cd: CAR_DETAIL &

cd: booked_car(sid)

THEN

ubselctcar_buf(sid):= cd ||

booked_car:= {sid}<<|booked_car ||

session_state(sid):= unbooked_sel

END;

Send_UBFlight= /* Server Operation */

skip;

Send_UBRoom= /* Server Operation */

skip;

Send_UBCar= /* Server Operation */

skip;

Agency_Flight_Unbooking= /* Flight_agency Server Operation*/

skip;

Hotel_Room_Unbooking= /* Hotel Server Operation*/

skip;

Agency_Car_Unbooking= /* Car_agency Server Operation*/

skip;

Unbook_Flight =

ANY sid,fd WHERE sid: session &

Appendix A The Travel Agency System 145

fd:FLIGHT_DETAIL &

session_state(sid)=unbooked_sel &

sid: dom(ubselctflight_buf) &

ubselctflight_buf(sid)= fd

THEN

CHOICE

flight_booking:= flight_booking - {session_user(sid)|->fd} ||

ubselctflight_buf:= {sid}<<|ubselctflight_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

ubselctflight_buf:= {sid}<<| ubselctflight_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Unbook_Room =

ANY sid,rd WHERE sid: session &

rd: ROOM_DETAIL & session_state(sid)=unbooked_sel &

sid: dom(ubselctroom_buf) &

ubselctroom_buf(sid)= rd

THEN

CHOICE

room_booking:= room_booking - {session_user(sid)|->rd} ||

ubselctroom_buf:= {sid}<<| ubselctroom_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

ubselctroom_buf:= {sid}<<| ubselctroom_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Unbook_Car =

ANY sid,cd WHERE sid: session &

cd: CAR_DETAIL &

session_state(sid)=unbooked_sel &

sid: dom(ubselctcar_buf) &

ubselctcar_buf(sid)= cd

146 Appendix A The Travel Agency System

THEN

CHOICE

car_booking:= car_booking - {session_user(sid)|-> cd} ||

ubselctcar_buf:= {sid}<<| ubselctcar_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

ubselctcar_buf:= {sid}<<| ubselctcar_buf ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Client_Recv_Reply= /* Client Operation */

skip;

Client_logout= /* Client Operation */

skip;

Logout=

ANY sid WHERE sid:session THEN

session:= session - {sid} ||

session_user:= {sid}<<| session_user ||

session_state:= {sid}<<| session_state ||

session_request:= {sid} <<| session_request ||

flight_options:= {sid}<<|flight_options ||

selctflight_buf:= {sid}<<| selctflight_buf ||

booked_flight:= {sid}<<| booked_flight ||

ubselctflight_buf:= {sid}<<|ubselctflight_buf ||

room_options:= {sid}<<|room_options ||

selctroom_buf:= {sid}<<| selctroom_buf ||

booked_room:= {sid}<<|booked_room ||

ubselctroom_buf:= {sid}<<| ubselctroom_buf ||

car_options:= {sid}<<|car_options ||

selctcar_buf:= {sid}<<| selctcar_buf ||

booked_car:= {sid}<<|booked_car ||

ubselctcar_buf:= {sid}<<| ubselctcar_buf

END

END

Appendix A The Travel Agency System 147

A.2 First Refinement of The Travel Agency System—Separating

Clients Operations from the Travel Agency Server

REFINEMENT TravelAgency1

REFINES TravelAgency

SETS

TAG; HANDLE;RESP={failed, succeed}

DEFINITIONS

freshSESSION == SESSION - session ;

freshUSER == USER - dom(current_user) ;

freshPASS == PASS - ran(current_user);

freshHANDLE == HANDLE - dom(new_client)

CONSTANTS

Reg, Log

PROPERTIES

Reg: TAG & Log: TAG

VARIABLES

/* Server Variables */

session, session_user, session_state,

session_request, current_user,

flight_booking, flight_options,selctflight_buf,

booked_flight,ubselctflight_buf,

room_booking, room_options,selctroom_buf,

booked_room, ubselctroom_buf,

car_booking, car_options, selctcar_buf,

booked_car,ubselctcar_buf,

/* Server New Variables */

availflight_buf, availroom_buf, availcar_buf,resp_buf,

bookedflight_buf, bookedroom_buf, bookedcar_buf,

/* Client Variables */

new_handle, new_client, token,

fresh_session, reqsevice_buf,

reqFD_buf, reqRD_buf, reqCD_buf,

148 Appendix A The Travel Agency System

flightReq_buf, roomReq_buf, carReq_buf,

pikedflight_buf, pikedroom_buf, pikedcar_buf,

unnamed_buf, unsigned_buf,userInfo_buf, reqCard_buf,

card_buf, ubflight_buf, ubroom_buf, ubcar_buf, logout_buf

INVARIANT

/* Server New Variables */

availflight_buf: SESSION +-> POW(FLIGHT_DETAIL) &

availroom_buf: SESSION +-> POW(ROOM_DETAIL) &

availcar_buf: SESSION +-> POW(CAR_DETAIL) &

resp_buf: SESSION +-> RESP &

bookedflight_buf: SESSION +-> POW(FLIGHT_DETAIL) &

bookedroom_buf: SESSION +-> POW(ROOM_DETAIL) &

bookedcar_buf: SESSION +-> POW(CAR_DETAIL) &

/* Client Variables */

new_handle<: HANDLE &

new_client: HANDLE+->SESSION &

token <: SESSION &

fresh_session<: SESSION &

reqsevice_buf: SESSION +-> REQUEST &

reqFD_buf<: SESSION &

reqRD_buf<: SESSION &

reqCD_buf<: SESSION &

flightReq_buf: SESSION +->FLIGHT_REQUEST &

roomReq_buf: SESSION +->ROOM_REQUEST &

carReq_buf: SESSION +->CAR_REQUEST &

pikedflight_buf: SESSION +->FLIGHT_DETAIL &

pikedroom_buf: SESSION +->ROOM_DETAIL &

pikedcar_buf: SESSION +->CAR_DETAIL &

unnamed_buf<: SESSION &

unsigned_buf<: SESSION &

userInfo_buf: SESSION +->(USER*PASS*TAG) &

reqCard_buf<: SESSION &

card_buf: SESSION+->(CARD_DETAIL)&

ubflight_buf: SESSION+->FLIGHT_DETAIL &

ubroom_buf: SESSION+->ROOM_DETAIL &

ubcar_buf: SESSION +->CAR_DETAIL &

logout_buf<: SESSION

INITIALISATION

Appendix A The Travel Agency System 149

/* Server Variables */

session := {} ||

session_user := {} ||

session_state := {} ||

session_request := {} ||

current_user:={}||

flight_booking:={} ||

flight_options:= {} ||

selctflight_buf:= {} ||

booked_flight:= {} ||

ubselctflight_buf:= {} ||

room_booking:={} ||

room_options:= {} ||

selctroom_buf:= {} ||

booked_room:= {} ||

ubselctroom_buf := {} ||

car_booking:={} ||

car_options:= {} ||

selctcar_buf:= {} ||

booked_car:= {} ||

ubselctcar_buf := {} ||

/* Server New Variables */

availflight_buf:= {} ||

availroom_buf:= {} ||

availcar_buf:= {} ||

resp_buf:= {} ||

bookedflight_buf:= {} ||

bookedroom_buf:= {} ||

bookedcar_buf:= {} ||

/* Client Variables */

new_handle:={} ||

new_client:={} ||

token:={} ||

fresh_session:={} ||

reqsevice_buf:={} ||

reqFD_buf:={} ||

reqRD_buf:={} ||

reqCD_buf:={} ||

flightReq_buf:={} ||

150 Appendix A The Travel Agency System

roomReq_buf:={} ||

carReq_buf:={} ||

pikedflight_buf:= {} ||

pikedroom_buf:= {} ||

pikedcar_buf:= {} ||

unnamed_buf:={}||

unsigned_buf:={}||

userInfo_buf:={}||

reqCard_buf:={}||

card_buf:= {} ||

ubflight_buf:= {} ||

ubroom_buf:= {} ||

ubcar_buf:= {} ||

logout_buf:= {}

OPERATIONS

Client_ReqSession= /* Client Operation */

ANY handle WHERE handle: freshHANDLE THEN

new_handle:= new_handle \/{handle}

END;

StartNewSession = /* Server Operation */

ANY sid, handle WHERE sid: freshSESSION &

handle: new_handle

THEN

session:= session \/{sid}||

session_user(sid) := unnamed ||

session_request(sid) := none ||

session_state(sid) := fresh ||

new_client(handle):= sid ||

new_handle:= new_handle - {handle}

END;

Get_SessionID= /* Client Operation */

ANY sid WHERE sid: SESSION &

sid: ran(new_client)

THEN

token:= token \/ {sid} ||

fresh_session:= fresh_session \/ {sid} ||

Appendix A The Travel Agency System 151

new_client:= new_client |>>{sid}

END;

PicService= /* Client Operation */

ANY sid, req WHERE sid: fresh_session &

req: REQUEST & req/= none

THEN

reqsevice_buf(sid):= req ||

fresh_session:= fresh_session - {sid}

END;

SelectService = /* Server Operation */

ANY sid, req WHERE sid: session &

session_state(sid)=fresh &

sid:dom(reqsevice_buf) &

req: REQUEST &

req/=none &

reqsevice_buf(sid)=req

THEN

session_request(sid):= req ||

reqsevice_buf:= {sid}<<| reqsevice_buf ||

CASE req OF

EITHER bf THEN

reqFD_buf:= reqFD_buf \/ {sid}||

session_state(sid):= booking

OR br THEN

reqRD_buf:= reqRD_buf \/ {sid} ||

session_state(sid):= booking

OR bc THEN

reqCD_buf:= reqCD_buf \/ {sid} ||

session_state(sid):= booking

OR uf,ur,uc THEN

SELECT session_user(sid) = unnamed THEN

session_state(sid):= unbooking

WHEN session_user(sid) /= unnamed THEN

/* If User has signed-in before there is no need for relogin.*/

session_state(sid):= signed_in

END

END

END

END;

152 Appendix A The Travel Agency System

Submit_FlightRequest = /* Client Operation */

ANY sid, fr WHERE sid: token &

sid: reqFD_buf &

fr: FLIGHT_REQUEST

THEN

flightReq_buf(sid):= fr ||

reqFD_buf:= reqFD_buf - {sid}

END;

Submit_RoomRequest = /* Client Operation */

ANY sid, rr WHERE sid: token &

sid: reqRD_buf &

rr: ROOM_REQUEST

THEN

roomReq_buf(sid):=rr ||

reqRD_buf:= reqRD_buf -{sid}

END;

Submit_CarRequest = /* Client Operation */

ANY sid, cr WHERE sid: token &

sid: reqCD_buf &

cr: CAR_REQUEST

THEN

carReq_buf(sid):=cr ||

reqCD_buf:= reqCD_buf - {sid}

END;

Get_FlightRequest = /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid)= booking &

session_request(sid)= bf &

sid: dom(flightReq_buf)

THEN

flightReq_buf:= {sid}<<| flightReq_buf ||

session_state(sid):= service_selct

END;

Get_RoomRequest = /* Server Operation */

ANY sid WHERE sid: session &

Appendix A The Travel Agency System 153

session_state(sid)= booking &

session_request(sid)= br &

sid: dom(roomReq_buf)

THEN

roomReq_buf:={sid}<<|roomReq_buf ||

session_state(sid):= service_selct

END;

Get_CarRequest = /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid)= booking &

session_request(sid)= bc &

sid: dom(carReq_buf)

THEN

carReq_buf:={sid}<<| carReq_buf ||

session_state(sid):= service_selct

END;

Request_Flight = /* Server Operation */

skip;

Request_Room = /* Server Operation */

skip;

Request_Car = /* Server Operation */

skip;

Resp_FlightReqs = /* Flight Agency Server Operation */

skip;

Resp_RoomReqs = /* Hotel Server Operation */

skip;

Resp_CarReqs = /* Car Agency Server Operation */

skip;

Retrieve_FlightOptions = /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid) = service_selct &

session_request(sid)= bf

THEN

154 Appendix A The Travel Agency System

ANY xx WHERE xx:POW(FLIGHT_DETAIL) THEN

flight_options(sid):= xx

END ||

availflight_buf(sid):= flight_options(sid) ||

session_state(sid):= options_ret

END;

Retrieve_RoomOptions= /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid)= service_selct &

session_request(sid)= br

THEN

ANY xx WHERE xx:POW(ROOM_DETAIL) THEN

room_options(sid):= xx

END ||

availroom_buf(sid):= room_options(sid) ||

session_state(sid):= options_ret

END;

Retrieve_CarOptions= /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid)= service_selct &

session_request(sid)= bc

THEN

ANY xx WHERE xx:POW(CAR_DETAIL) THEN

car_options(sid):= xx

END ||

availcar_buf(sid):= car_options(sid) ||

session_state(sid):= options_ret

END;

Select_Flight= /* Client Operation */

ANY sid, fd WHERE sid: token &

sid: dom(availflight_buf) &

fd: FLIGHT_DETAIL &

fd: availflight_buf(sid)

THEN

pikedflight_buf(sid):= fd ||

availflight_buf:= {sid}<<| availflight_buf

END;

Appendix A The Travel Agency System 155

Select_Room= /* Client Operation */

ANY sid, rd WHERE sid: token &

sid: dom(availroom_buf) &

rd: ROOM_DETAIL &

rd: availroom_buf(sid)

THEN

pikedroom_buf(sid):= rd ||

availroom_buf:= {sid}<<| availroom_buf

END;

Select_Car= /* Client Operation */

ANY sid, cd WHERE sid: token &

sid: dom(availcar_buf) &

cd: CAR_DETAIL &

cd: availcar_buf(sid)

THEN

pikedcar_buf(sid):= cd ||

availcar_buf:= {sid}<<| availcar_buf

END;

GetSelected_Flight= /* Server Operation */

ANY sid,fd WHERE sid:session &

fd:FLIGHT_DETAIL &

session_state(sid)=options_ret &

session_request(sid)=bf &

sid:dom(flight_options) &

fd: flight_options(sid) &

sid:dom(pikedflight_buf) &

pikedflight_buf(sid)= fd

THEN

selctflight_buf(sid):= fd ||

flight_options:= {sid}<<|flight_options ||

pikedflight_buf:={sid}<<| pikedflight_buf ||

SELECT session_user(sid) = unnamed THEN

session_state(sid):= choice_made

WHEN session_user(sid) /= unnamed THEN

/* If User has signed-in before there is no need for re-login.*/

session_state(sid):= signed_in

END

END;

156 Appendix A The Travel Agency System

GetSelected_Room= /* Server Operation */

ANY sid,rd WHERE sid: session &

rd: ROOM_DETAIL &

session_state(sid)=options_ret &

session_request(sid)=br &

sid:dom(room_options) &

rd: room_options(sid) &

sid:dom(pikedroom_buf) &

pikedroom_buf(sid)= rd

THEN

selctroom_buf(sid):= rd ||

room_options:= {sid}<<|room_options ||

pikedroom_buf:= {sid}<<| pikedroom_buf ||

SELECT session_user(sid) = unnamed THEN

session_state(sid):= choice_made

WHEN session_user(sid) /= unnamed THEN

/* If User has signed-in before there is no need for relogin. */

session_state(sid):= signed_in

END

END;

GetSelected_Car= /* Server Operation */

ANY sid,cd WHERE sid:session &

cd: CAR_DETAIL &

session_state(sid)=options_ret &

session_request(sid)=bc &

sid:dom(car_options) &

cd: car_options(sid) &

sid:dom(pikedcar_buf) &

pikedcar_buf(sid)= cd

THEN

selctcar_buf(sid):= cd ||

car_options:= {sid}<<|car_options ||

pikedcar_buf:= {sid}<<| pikedcar_buf ||

SELECT session_user(sid) = unnamed THEN

session_state(sid):= choice_made

WHEN session_user(sid) /= unnamed THEN

/* If User has signed-in before there is no need for relogin. */

session_state(sid):= signed_in

END

END;

Appendix A The Travel Agency System 157

Request_UserInfo= /* Server Operation */

ANY sid WHERE sid: session &

(session_state(sid)= choice_made or

session_state(sid)= unbooking)

THEN

SELECT session_state(sid)= choice_made THEN

unnamed_buf:= unnamed_buf \/ {sid}

WHEN session_state(sid)= unbooking THEN

/* There is a distinction between a user that requests

an unbooking and booking session ,because the

former has registered before so it can just can

login, but for booking session it can either

login or register if it has not registered */

unsigned_buf:= unsigned_buf \/ {sid}

END

END;

Client_Register = /* Client Operation */

ANY sid, username,pass,confpass WHERE sid: token &

sid: unnamed_buf &

username:freshUSER &

pass:freshPASS &

confpass:freshPASS &

pass=confpass

THEN

userInfo_buf(sid):= (username|-> pass|-> Reg) ||

unnamed_buf:= unnamed_buf - {sid}

END;

Register = /* Server Operation */

ANY sid,username,pass WHERE sid: session &

session_state(sid)= choice_made &

username:freshUSER &

pass:freshPASS &

sid:dom(userInfo_buf) &

userInfo_buf(sid)= (username|->pass|->Reg)

THEN

current_user:= current_user \/ {username|->pass} ||

session_user(sid) := username ||

userInfo_buf := {sid}<<| userInfo_buf ||

158 Appendix A The Travel Agency System

session_state(sid) := signed_in ||

reqCard_buf:= reqCard_buf \/ {sid}

END;

Client_login = /* Client Operation */

ANY sid, username,pass WHERE sid: token &

username: USER & pass: PASS &

(username|->pass): current_user &

(sid: unnamed_buf or sid: unsigned_buf)

THEN

userInfo_buf(sid):= (username|->pass|->Log) ||

SELECT sid: unnamed_buf THEN

unnamed_buf:= unnamed_buf - {sid}

WHEN sid: unsigned_buf THEN

unsigned_buf:= unsigned_buf - {sid}

END

END;

Login = /* Server Operation */

ANY sid,username, pass WHERE sid: session &

(session_state(sid)= choice_made or

session_state(sid)= unbooking) &

username: USER & pass: PASS &

(username|-> pass): current_user &

sid: dom(userInfo_buf) &

userInfo_buf(sid)= (username|->pass|->Log)

THEN

session_user(sid) := username ||

userInfo_buf:= {sid}<<| userInfo_buf ||

CASE session_state(sid) OF

EITHER choice_made THEN

session_state(sid) := signed_in ||

reqCard_buf:= reqCard_buf \/ {sid}

OR unbooking THEN

session_state(sid) := certified

END

END

END;

EnterCard = /* Client Operation */

ANY sid,xcard WHERE sid:token &

Appendix A The Travel Agency System 159

sid: reqCard_buf &

xcard: CARD_DETAIL

THEN

card_buf(sid):= xcard ||

reqCard_buf:= reqCard_buf - {sid}

END;

Card_Validate= /* Server Operation */

ANY sid WHERE sid:session &

session_state(sid)=signed_in &

sid:dom(card_buf)

THEN

CHOICE

session_state(sid) := valid

OR

session_state(sid) := invalid

END ||

card_buf:= {sid}<<| card_buf

END;

Restart_invalid=

ANY sid WHERE sid: session & session_state(sid)= invalid THEN

session_state(sid) := fresh ||

session_request(sid):= none

END;

Send_SelectedFlight= /* Server Operation */

skip;

Send_SelectedRoom= /* Server Operation */

skip;

Send_SelectedCar= /* Server Operation */

skip;

Agency_flight_booking= /* Flight_agency Server Operation*/

skip;

Hotel_room_booking= /* Hotel Server Operation*/

skip;

160 Appendix A The Travel Agency System

Agency_car_booking= /* Car_agency Server Operation*/

skip;

Flight_Booking = /* Server Operation */

ANY sid,fd WHERE sid:session &

fd: FLIGHT_DETAIL &

session_state(sid)=valid &

sid: dom(selctflight_buf) &

selctflight_buf(sid)= fd

THEN

CHOICE

flight_booking:= flight_booking \/ {session_user(sid)|->fd} ||

selctflight_buf:= {sid}<<| selctflight_buf ||

resp_buf(sid):= succeed ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

selctflight_buf:= {sid}<<| selctflight_buf ||

resp_buf(sid):= failed ||

session_state(sid) := fresh ||

session_request(sid):= none

END

END;

Room_Booking = /* Server Operation */

ANY sid,rd WHERE sid: session &

rd: ROOM_DETAIL &

session_state(sid)=valid &

sid: dom(selctroom_buf) &

selctroom_buf(sid)= rd

THEN

CHOICE

room_booking:= room_booking \/

{session_user(sid)|->selctroom_buf(sid)} ||

selctroom_buf:= {sid}<<| selctroom_buf ||

resp_buf(sid):= succeed ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

selctroom_buf:= {sid}<<| selctroom_buf ||

resp_buf(sid):= failed ||

Appendix A The Travel Agency System 161

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Car_Booking = /* Server Operation */

ANY sid,cd WHERE sid: session &

cd:CAR_DETAIL &

session_state(sid)=valid &

sid:dom(selctcar_buf) &

selctcar_buf(sid)= cd

THEN

CHOICE

car_booking:= car_booking \/{session_user(sid)|->cd} ||

selctcar_buf:= {sid}<<| selctcar_buf ||

resp_buf(sid):= succeed ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

selctcar_buf:= {sid}<<| selctcar_buf ||

resp_buf(sid):= failed ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Retrieve_BookedFlight= /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid) = certified &

session_request(sid)=uf

THEN

booked_flight(sid):= flight_booking[{session_user(sid)}] ||

bookedflight_buf(sid):= booked_flight(sid) ||

session_state(sid):= booking_ret

END;

Retrieve_BookedRoom= /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid) = certified &

session_request(sid)=ur

THEN

162 Appendix A The Travel Agency System

booked_room(sid):= room_booking[{session_user(sid)}] ||

bookedroom_buf(sid):= booked_room(sid) ||

session_state(sid):= booking_ret

END;

Retrieve_BookedCar= /* Server Operation */

ANY sid WHERE sid: session &

session_state(sid) = certified &

session_request(sid)= uc

THEN

booked_car(sid):= car_booking [{session_user(sid)}] ||

bookedcar_buf(sid):= booked_car(sid) ||

session_state(sid):= booking_ret

END;

Select_UnBbookedFlight= /* Client Operation */

ANY sid, fd WHERE sid: token &

sid: dom(bookedflight_buf) &

fd: FLIGHT_DETAIL &

fd: bookedflight_buf(sid)

THEN

ubflight_buf(sid):= fd ||

bookedflight_buf:= {sid}<<| bookedflight_buf

END;

Select_UnBbookedRoom= /* Client Operation */

ANY sid, rd WHERE sid: token &

sid: dom(bookedroom_buf) &

rd: ROOM_DETAIL &

rd: bookedroom_buf(sid)

THEN

ubroom_buf(sid):= rd ||

bookedroom_buf:= {sid}<<| bookedroom_buf

END;

Select_UnBbookedCar= /* Client Operation */

ANY sid, cd WHERE sid: token &

sid: dom(bookedcar_buf) &

cd: CAR_DETAIL &

cd: bookedcar_buf(sid)

THEN

Appendix A The Travel Agency System 163

ubcar_buf(sid):= cd ||

bookedcar_buf:= {sid}<<| bookedcar_buf

END;

GetSelected_UBFlight= /* Server Operation */

ANY sid,fd WHERE sid:session &

fd:FLIGHT_DETAIL &

session_state(sid)=booking_ret &

session_request(sid)=uf &

sid:dom(booked_flight) &

fd: booked_flight(sid) &

sid: dom(ubflight_buf) &

ubflight_buf(sid)= fd

THEN

ubselctflight_buf(sid):= fd ||

booked_flight:= {sid}<<| booked_flight ||

ubflight_buf:= {sid}<<| ubflight_buf ||

session_state(sid):= unbooked_sel

END;

GetSelected_UBRoom= /* Server Operation */

ANY sid,rd WHERE sid: session &

rd: ROOM_DETAIL &

session_state(sid)=booking_ret &

session_request(sid)=ur &

sid:dom(booked_room) &

rd: booked_room(sid) &

sid: dom(ubroom_buf) &

ubroom_buf(sid)= rd

THEN

ubselctroom_buf(sid):= rd ||

booked_room:= {sid}<<|booked_room ||

ubroom_buf:= {sid}<<| ubroom_buf ||

session_state(sid):= unbooked_sel

END;

GetSelected_UBCar= /* Server Operation */

ANY sid,cd WHERE sid:session &

cd: CAR_DETAIL &

session_state(sid)=booking_ret &

session_request(sid)=uc &

164 Appendix A The Travel Agency System

sid:dom(booked_car) &

cd: booked_car(sid) &

sid: dom(ubcar_buf) &

ubcar_buf(sid)= cd

THEN

ubselctcar_buf(sid):= cd ||

booked_car:= {sid}<<|booked_car ||

ubcar_buf:= {sid}<<| ubcar_buf ||

session_state(sid):= unbooked_sel

END;

Send_UBFlight= /* Server Operation */

skip;

Send_UBRoom= /* Server Operation */

skip;

Send_UBCar= /* Server Operation */

skip;

Agency_Flight_Unbooking= /* Flight_agency Server Operation*/

skip;

Hotel_Room_Unbooking= /* Hotel Server Operation*/

skip;

Agency_Car_Unbooking= /* Car_agency Server Operation*/

skip;

Unbook_Flight = /* Server Operation */

ANY sid,fd WHERE sid: session &

fd:FLIGHT_DETAIL &

session_state(sid)=unbooked_sel &

sid: dom(ubselctflight_buf) &

ubselctflight_buf(sid)= fd

THEN

CHOICE

flight_booking:= flight_booking - {session_user(sid)|->fd} ||

ubselctflight_buf:= {sid}<<|ubselctflight_buf ||

resp_buf(sid):= succeed ||

session_state(sid):= fresh ||

Appendix A The Travel Agency System 165

session_request(sid):= none

OR

ubselctflight_buf:= {sid}<<| ubselctflight_buf ||

resp_buf(sid):= failed ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Unbook_Room = /* Server Operation */

ANY sid,rd WHERE sid: session &

rd: ROOM_DETAIL &

session_state(sid)=unbooked_sel &

sid: dom(ubselctroom_buf) & ubselctroom_buf(sid)= rd

THEN

CHOICE

room_booking:= room_booking - {session_user(sid)|->rd} ||

ubselctroom_buf:= {sid}<<| ubselctroom_buf ||

resp_buf(sid):= succeed ||

session_state(sid):= fresh ||

session_request(sid):= none

OR

ubselctroom_buf:= {sid}<<| ubselctroom_buf ||

resp_buf(sid):= failed ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Unbook_Car =

ANY sid,cd WHERE sid: session &

cd: CAR_DETAIL &

session_state(sid)=unbooked_sel

& sid: dom(ubselctcar_buf) &

ubselctcar_buf(sid)= cd

THEN

CHOICE

car_booking:= car_booking - {session_user(sid)|-> cd} ||

ubselctcar_buf:= {sid}<<| ubselctcar_buf ||

resp_buf(sid):= succeed ||

session_state(sid):= fresh ||

166 Appendix A The Travel Agency System

session_request(sid):= none

OR

ubselctcar_buf:= {sid}<<| ubselctcar_buf ||

resp_buf(sid):= failed ||

session_state(sid):= fresh ||

session_request(sid):= none

END

END;

Client_Recv_Reply= /* Client Operation */

ANY sid WHERE sid: token & sid: dom(resp_buf) THEN

resp_buf:= {sid}<<|resp_buf

END;

Client_logout= /* Client Operation */

ANY sid WHERE sid: token THEN

reqsevice_buf:= {sid}<<| reqsevice_buf ||

new_client:= new_client |>>{sid} ||

fresh_session:= fresh_session - {sid} ||

reqFD_buf:= reqFD_buf - {sid} ||

reqRD_buf:= reqRD_buf - {sid} ||

reqCD_buf:= reqCD_buf- {sid} ||

flightReq_buf:= {sid}<<| flightReq_buf ||

roomReq_buf:= {sid}<<| roomReq_buf ||

carReq_buf:= {sid}<<| carReq_buf ||

pikedflight_buf:= {sid}<<|pikedflight_buf ||

pikedroom_buf:= {sid}<<|pikedroom_buf ||

pikedcar_buf:= {sid}<<|pikedcar_buf ||

unnamed_buf:= unnamed_buf - {sid} ||

unsigned_buf:= unsigned_buf - {sid} ||

userInfo_buf := {sid}<<| userInfo_buf ||

reqCard_buf:= reqCard_buf - {sid} ||

card_buf:= {sid}<<| card_buf ||

ubflight_buf:= {sid}<<| ubflight_buf ||

ubroom_buf:= {sid}<<| ubroom_buf||

ubcar_buf:= {sid}<<|ubcar_buf ||

logout_buf:= logout_buf \/ {sid}

END;

Logout= /* Server Operation */

ANY sid WHERE sid: session & sid: logout_buf THEN

Appendix A The Travel Agency System 167

session:= session - {sid} ||

session_user:= {sid}<<| session_user ||

session_state:= {sid}<<| session_state ||

session_request:= {sid} <<| session_request ||

flight_options:= {sid}<<|flight_options ||

selctflight_buf:= {sid}<<| selctflight_buf ||

booked_flight:= {sid}<<| booked_flight ||

ubselctflight_buf:= {sid}<<|ubselctflight_buf ||

room_options:= {sid}<<|room_options ||

selctroom_buf:= {sid}<<| selctroom_buf ||

booked_room:= {sid}<<|booked_room ||

ubselctroom_buf:= {sid}<<| ubselctroom_buf ||

car_options:= {sid}<<|car_options ||

selctcar_buf:= {sid}<<| selctcar_buf ||

booked_car:= {sid}<<|booked_car ||

ubselctcar_buf:= {sid}<<| ubselctcar_buf ||

availflight_buf:= {sid}<<| availflight_buf ||

availroom_buf:= {sid}<<| availroom_buf ||

availcar_buf:= {sid}<<| availcar_buf ||

resp_buf:= {sid}<<|resp_buf ||

bookedflight_buf:= {sid}<<| bookedflight_buf ||

bookedroom_buf:= {sid}<<| bookedroom_buf ||

bookedcar_buf:= {sid}<<| bookedcar_buf ||

logout_buf:= logout_buf - {sid}

END

END

A.3 Second Refinement—Introduction of Secondary Servers

into The Model

REFINEMENT TravelAgency2F

REFINES TravelAgency1F

SETS

SESSION; USER; PASS; CARD_DETAIL ;

FLIGHT_REQUEST; FLIGHT_DETAIL;

ROOM_REQUEST; ROOM_DETAIL;

CAR_REQUEST; CAR_DETAIL;

REQUEST={bf, br, bc, uf, ur, uc, none};

168 Appendix A The Travel Agency System

TAG= { Reg, Login, Logout}; HANDLE;

FLIGHT_AGENCY; HOTEL; CAR_AGENCY

DEFINITIONS

freshSESSION == SESSION - session;

newSESSION(new) == session \/{new} ;

freshUSER== USER - dom(current_user) ;

freshPASS== PASS - ran(current_user) ;

freshHANDLE == HANDEL - dom(new_client)

CONSTANTS

unnamed

Matchflight, Matchroom, Matchcar

PROPERTIES

unnamed: USER &

Matchflight: FLIGHT_REQUEST * POW(FLIGHT_DETAIL)-->POW(FLIGHT_DETAIL) &

Matchroom: ROOM_REQUEST * POW(ROOM_DETAIL)-->POW(ROOM_DETAIL) &

Matchcar: CAR_REQUEST * POW(CAR_DETAIL)-->POW(CAR_DETAIL)

VARIABLES

/* Server Variables */

session, session_user, session_state,

session_request, current_user,

flight_booking, flight_options, booked_flight,

room_db, room_booking, room_options, booked_room,

car_db, car_booking, car_options, booked_car,

/* Client Variables */

new_handle, new_client, token,

fresh_session, req_sevicebuf,

reqFD_buf, reqRD_buf, reqCD_buf,

unbooking_session, unsigned_sessinon,

unnamed_session, booking_session,

flightReq_buf, roomReq_buf, carReq_buf,

flight_select, room_select, car_select,

userInfo_buf, reqCard_buf, certified_session,

Appendix A The Travel Agency System 169

card_buf, valid_session, invalid_session,

ubflight_buf, ubroom_buf, ubcar_buf,

logout_buf

/* Server’s New Variables */

reqflight_buf, reqroom_buf, reqcar_buf,

ret_session,selectflight_buf, selectroom_buf,

selectcar_buf, taf_booking,

tar_booking, tac_booking,

pro_session1, failed_session1,

suc_session, unsuc_session,

selectUBflight_buf, selectUBroom_buf,

selectUBcar_buf,

pro_session2, failed_session2,

send_session,

/* Flight Agency Variables */

flight_db1, respflight_buf,

fa_booking,

/* Hotels Variables */

room_db1, resproom_buf,

/* Car Agency Variables */

car_db1, respcar_buf

INVARIANT

/* Server’s New Variables */

reqflight_buf: FLIGHT_AGENCY +-> (SESSION +-> FLIGHT_REQUEST) &

reqroom_buf: HOTEL +-> (SESSION +-> ROOM_REQUEST) &

reqcar_buf: CAR_AGENCY +-> (SESSION +-> CAR_REQUEST) &

ret_session<: session &

selectflight_buf: FLIGHT_AGENCY +->(SESSION +->FLIGHT_DETAIL)&

selectroom_buf: HOTEL +->(SESSION +->ROOM_DETAIL)&

selectcar_buf: CAR_AGENCY +-> (SESSION +->CAR_DETAIL) &

taf_booking: POW(FLIGHT_AGENCY*FLIGHT_DETAIL*USER) &

tar_booking: POW(HOTEL*ROOM_DETAIL*USER) &

tac_booking: POW(CAR_AGENCY*CAR_DETAIL*USER) &

pro_session1<: session &

failed_session1<: session &

170 Appendix A The Travel Agency System

suc_session<: session &

unsuc_session<: session &

selectUBflight_buf: FLIGHT_AGENCY +->(FLIGHT_DETAIL+->USER) &

selectUBroom_buf: HOTEL +->(ROOM_DETAIL+->USER) &

selectUBcar_buf: CAR_AGENCY +->(CAR_DETAIL+->USER) &

pro_session2<: session &

failed_session2<: session &

send_session<: session &

/* Flight Agency Variables */

flight_db1: FLIGHT_AGENCY --> POW(FLIGHT_DETAIL) &

! fa1,fa2 . (fa1:FLIGHT_AGENCY & fa2:FLIGHT_AGENCY & fa1/=fa2 =>

flight_db1(fa1) /\ flight_db1(fa2)={}) &

flight_db = UNION(fa).(fa: FLIGHT_AGENCY |flight_db1(fa)) &

respflight_buf: SESSION --> (FLIGHT_AGENCY <-> FLIGHT_DETAIL) &

fa_booking: FLIGHT_AGENCY +->POW(FLIGHT_DETAIL * USER) &

/* Hotels Variables */

room_db1: HOTEL --> POW(ROOM_DETAIL) &

! hh1,hh2 . (hh1: HOTEL & hh2: HOTEL & hh1/=hh2 =>

room_db1(hh1) /\ room_db1(hh2)={}) &

room_db = UNION(hh).(hh: HOTEL |room_db1(hh)) &

resproom_buf: SESSION --> (HOTEL <-> ROOM_DETAIL) &

hotel_booking: HOTEL +->POW(ROOM_DETAIL * USER) &

/* Car Agency Variables */

car_db1: CAR_AGENCY --> POW(CAR_DETAIL) &

car_db = UNION(ca).(ca: CAR_AGENCY |car_db1(ca)) &

! ca1,ca2 . (ca1:CAR_AGENCY & ca2:CAR_AGENCY & ca1/=ca2 =>

car_db1(ca1) /\ car_db1(ca2)={}) &

respcar_buf: SESSION --> POW(CAR_AGENCY <-> CAR_DETAIL) &

ca_booking: CAR_AGENCY +->POW(CAR_DETAIL * USER)

INITIALISATION

session := {} || session_user := {} ||

session_request := {} || current_user:= {} ||

flight_db:= POW(FLIGHT_DETAIL) || flight_booking:={} ||

flight_options:= {} || booked_flight:= {} ||

room_db:= POW(ROOM_DETAIL) || room_booking:={} ||

room_options:= {} || booked_room:= {} ||

car_db:= POW(CAR_DETAIL) || car_booking:={} ||

Appendix A The Travel Agency System 171

car_options:= {} || booked_car:= {}

new_handle:={} || new_client:={} || token:={} ||

fresh_session:={} || req_sevicebuf:={} ||

reqFD_buf:={} || reqRD_buf:={} || reqCD_buf:={} ||

unbooking_session:={} || unsigned_session:={} ||

unnamed_session:={} || booking_session:={} ||

flightReq_buf:={} || roomReq_buf:={} || carReq_buf:={} ||

flight_select:= {} || room_select:= {} || car_select:= {} ||

userInfo_buf:={}|| reqCard_buf:={}|| certified_session:={}||

card_buf:= {} || valid_session:={}|| invalid_session:={} ||

ubflight_buf:= {} || ubroom_buf:= {} || ubcar_buf:= {} ||

logout_buf:= {}

/* New Variables Initialisation */

reqflight_buf:= {} || reqroom_buf:= {} || reqcar_buf:= {} ||

ret_session:= {} || selectflight_buf:= {} || selectroom_buf:= {} ||

selectcar_buf:= {} || taf_booking:= {} ||

tar_booking:= {} || tac_booking:= {} ||

pro_session1:= {} || failed_session1:= {} ||

suc_session:= {} || unsuc_session:= {} ||

selectUBflight_buf:= {} || selectUBroom_buf:= {} ||

selectUBcar_buf: := {} ||

pro_session2:= {} || failed_session2:= {} ||

send_session:= {} ||

flight_db1:= FLIGHT_AGENCY -->POW(FLIGHT_DETAIL) ||

respflight_buf:= {} || fa_booking:= {} ||

room_db1:= HOTEL --> POW(ROOM_DETAIL) ||

resproom_buf:= {} || hotel_booking::= {} ||

car_db1:= CAR_AGENCY --> POW(CAR_DETAIL) ||

respcar_buf:= {} || ca_booking:= {} ||

OPERATIONS

Client_ReqSession= /* Client Operation */

ANY handle WHERE handle: freshHANDLE THEN

new_handle:= new_handle \/{handle}

END;

172 Appendix A The Travel Agency System

StartNewSession = /* Server Operation */

ANY sid, handle WHERE sid: freshSESSION & handle: new_handle THEN

newSESSION(sid)||

session_user(sid) := unnamed ||

session_request(sid) := none ||

new_client(handle):= sid ||

new_handle:= new_handle - handle

END;

Get_SessionID= /* Client Operation */

ANY sid WHERE sid: SESSION & sid: ran(new_client) THEN

token:= token \/ sid ||

fresh_session:= fresh_session \/ sid ||

new_client:= new_client |>>{sid}

END;

PicService(sid,req)= /* Client Operation */

PRE sid: SESSION & req: REQUEST THEN

SELECT sid: fresh_session & req: REQUEST & req/= none THEN

req_sevicebuf(sid):= req ||

fresh_session:= fresh_session - sid

END

END;

SelectService = /* Server Operation */

ANY sid, req WHERE sid: session & req: REQUEST & req/= none

sid: dom(req_sevicebuf) & req_sevicebuf(sid)= req THEN

session_request(sid):= req_sevicebuf(sid) ||

req_sevicebuf:= sid<<| req_sevicebuf ||

CASE req OF

EITHER bf THEN

reqFD_buf:= reqFD_buf \/ {sid}

OR br THEN

reqRD_buf:= reqRD_buf \/ {sid}

OR bc THEN

reqCD_buf:= reqCD_buf \/ {sid}

OR uf,ur,uc THEN

unbooking_session:= unbooking_session \/ sid

Appendix A The Travel Agency System 173

END

END;

Submit_FlightDetail(sid,fr) = /* Client Operation */

PRE sid: SESSION & fr: FLIGHT_REQUEST THEN

SELECT sid: token & sid: reqFD_buf & fr: FLIGHT_REQUEST THEN

flightReq_buf(sid):= fr ||

reqFD_buf:= {sid}<<| reqFD_buf

END

END;

Submit_RoomDetail(sid,rr) = /* Client Operation */

PRE sid: SESSION & rr: ROOM_REQUEST THEN

SELECT sid: token & sid: reqRD_buf & fr: ROOM_REQUEST THEN

roomReq_buf(sid):=rr ||

reqRD_buf:= {sid}<<| reqRD_buf

END

END;

Submit_CarDetail(sid,cr) = /* Client Operation */

PRE sid: SESSION & cr: CAR_REQUEST THEN

SELECT sid: token & sid: reqCD_buf & fr: CAR_REQUEST THEN

carReq_buf(sid):=cr ||

reqCD_buf:= {sid}<<| reqCD_buf

END

END;

Request_Flight = /* Server Operation */

ANY sid,fr WHERE sid: SESSION & sid: dom(flightReq_buf) &

fr: FLIGHT_REQUEST & flightReq_buf(sid)= fr THEN

reqflight_buf:= %fa . (fa: FLIGHT_AGENCY | reqflight_buf(fa) \/{sid|->fr}) ||

flightReq_buf:= {sid}<<| flightReq_buf

END

Request_Room = /* Server Operation */

ANY sid,rr WHERE sid: session & sid: dom(roomReq_buf)

rr: ROOM_REQUEST & roomReq_buf(sid)= rr THEN

reqroom_buf:= %hh . (hh: HOTEL | reqroom_buf(hh) \/{sid|->rr}) ||

roomReq_buf:= {sid}<<| roomReq_buf

END

174 Appendix A The Travel Agency System

Request_Car = /* Server Operation */

ANY sid,cr WHERE sid: session & sid: dom(carReq_buf) &

cr: CAR_REQUEST & carReq_buf(sid)= cr THEN

reqcar_buf:= %ca . (ca: CAR_AGENCY | reqcar_buf(ca) \/{sid|->cr}) ||

carReq_buf:= {sid}<<| carReq_buf

END;

Resp_FlightReqs = /* Flight Agency Server Operation */

ANY sid,fa,fr WHERE sid: session & fa:FLIGHT_AGENCY & fa: dom(reqflight_buf)

& fr: FLIGHT_REQUEST & {sid|->fr}: reqflight_buf(fa) THEN

ANY xx WHERE xx <: Matchflight(fr|->flight_db1(fa)) THEN

respflight_buf(sid):= respflight_buf(sid) \/ {fa |-> xx}

END ||

reqflight_buf(fa):= reqflight_buf(fa)- {sid|->fr}

END;

Resp_RoomReqs = /* Hotel Server Operation */

ANY sid,hh,rr WHERE sid:session & hh: HOTEL & hh: dom(reqroom_buf) &

rr: ROOM_REQUEST & (sid|->rr):reqroom_buf(hh) THEN

ANY xx WHERE xx <: Matchroom(rr|->room_db1(hh)) THEN

resproom_buf(sid):= resproom_buf(sid) \/ {hh |-> xx}

END ||

reqroom_buf(hh):= reqroom_buf(hh) - {sid|->rr}

END;

Resp_CarReqs = /* Car Agency Server Operation */

ANY sid,ca,cr WHERE sid: session & ca: CAR_AGENCY & ca: dom(reqcar_buf) &

cr: CAR_REQUEST & {sid|->cr}: ran(reqcar_buf(ca)) THEN

ANY xx WHERE xx <: Matchcar(cr|->car_db1(ca)) THEN

respcar_buf(sid):= respcar_buf(sid) \/ {ca |-> xx}

END ||

reqcar_buf(ca):= reqcar_buf(ca) - {sid|->cr}

END;

Retrieve_FlightOptions= /* Server Operation */

ANY sid WHERE sid: session & sid: dom(respflight_buf)& sid/: ret_session &

card(dom(respflight_buf(sid)))>= 3 THEN

Appendix A The Travel Agency System 175

flight_options(sid):= ran(respflight_buf(sid)) ||

ret_session:= ret_session \/ {sid}

END;

Retrieve_RoomOptions= /* Server Operation */

ANY sid WHERE sid: session & sid: dom(resproom_buf)& sid/: ret_session &

card(dom(resproom_buf(sid)))>= 3 THEN

room_options(sid):= ran(resproom_buf(sid)) ||

ret_session:= ret_session \/ {sid}

END;

Retrieve_CarOptions= /* Server Operation */

ANY sid WHERE sid: session & sid: dom(respcar_buf)& sid/: ret_session &

card(dom(respcar_buf(sid)))>= 3 THEN

car_options(sid):= ran(respcar_buf(sid)) ||

ret_session:= ret_session \/ {sid}

END;

Select_Flight= /* Client Operation */

ANY sid, fd WHERE sid: token & sid: dom(flight_options) &

fd: FLIGHT_DETAIL & fd: flight_options(sid) THEN

flight_select(sid):= fd ||

booking_session:= booking_session \/ sid ||

flight_options:= {sid}<<| flight_options

END;

Select_Room= /* Client Operation */

ANY sid, rd WHERE sid: token & sid: dom(room_options) &

rd: ROOM_DETAIL & fd: room_options(sid) THEN

room_select(sid):= rd ||

booking_session:= booking_session \/ sid ||

room_options:= {sid}<<| room_options

END;

Select_Car= /* Client Operation */

ANY sid, cd WHERE sid: token & sid: dom(car_options) &

cd: CAR_DETAIL & fd: car_options(sid) THEN

176 Appendix A The Travel Agency System

car_select(sid):= cd ||

booking_session:= booking_session \/ sid ||

car_options:= {sid}<<| car_options

END;

Request_UserInfo= /* Server Operation */

ANY sid WHERE sid: session & (sid: booking_session or sid: unbooking_session) THEN

SELECT sid: unbooking_session THEN /* If User has signed-in before there*/

IF session_user(sid)= unnamed THEN /* is no nedd for relogin. */

unnamed_session:= unnamed_session \/ sid ||

unbooking_session:= unbooking_session - sid /* There is also a distinction */

ELSE /* between a user that requests */

reqCard_buf:= reqCard_buf \/ sid || /* an unbooking and othere one’s */

unbooking_session:= unbooking_session - sid /* because the former has to */

END /* registered before so it */

/* can just can login, but

for booking session it can either login or register */

WHEN sid: booking_session THEN

IF session_user(sid)= unnamed THEN

unsigned_session:= unsigned_session \/ sid ||

booking_session:= booking_session - sid

ELSE

reqCard_buf:= reqCard_buf \/ sid ||

booking_session:= booking_session - sid

END

END

END;

Client_Register(sid,name,pass,confpass) = /* Client Operation */

PRE sid: SESSION & name: USER & pass: PASS & confpass: PASS THEN

SELECT sid: token & sid: unsigned_session & name: freshUSER &

pass: freshPASS & pass= confpass THEN

userInfo_buf(sid):= {username|->pass|->Reg} ||

unsigned_session:= unsigned_session - {sid}

END

END;

Register = /* Server Operation */

ANY sid,username,pass WHERE sid: session & sid:dom(userInfo_buf) &

username: freshUSER & pass: freshPASS &

userInfo_buf(sid)= (username|->pass|->Reg) THEN

Appendix A The Travel Agency System 177

current_user:= current_user \/ {username|->pass} ||

session_user(sid) := username ||

reqCard_buf:= reqCard_buf \/ sid ||

userInfo_buf := {sid}<<| userInfo_buf

END;

Client_login(sid,username,pass) = /* Client Operation */

PRE sid: SESSION & name: USER & pass: PASS THEN

SELECT sid: token & (sid: unsigned_session or sid:unnamed_session) &

& {username|->pass}: current_user THEN

userInfo_buf(sid):= {username|->pass|->Login} ||

IF sid: unsigned_session THEN

unsigned_session:= unsigned_session - {sid}

ELSE

unnamed_session:= unnamed_session - {sid}

END

END

END;

Login = /* Server Operation */

ANY sid,username, pass WHERE sid: session & sid: dom(userInfo_buf) &

{username|->pass}:current_user & userInfo_buf(sid)={username|->pass|->Login} THEN

session_user(sid) := username ||

CASE session_request(sid) OF

EITHER bf, br, bc THEN

reqCard_buf:= reqCard_buf \/ sid

OR uf,ur,uc THEN

certified_session:= certifed_session \/ {sid}

END ||

userInfo_buf:= {sid}<<| userInfo_buf

END;

EnterCard(sid, xcard) = /* Client Operation */

PRE sid: SESSION & xcard: CARD_DETAIL THEN

SELECT sid:token & sid: reqCard_buf & xcard: CARD_DETAIL THEN

card_buf(sid):= xcard ||

reqCard_buf:= {sid}<<| reqCard_buf

END

178 Appendix A The Travel Agency System

END;

Card_Validate= /* Server Operation */

ANY sid WHERE sid:session & sid: dom(card_buf) THEN

CHOICE

valid_session:= valid_session \/ {sid}

OR

invalid_session:= invalid_session \/ {sid}

END ||

card_buf:= {sid}<<| card_buf

END;

Restart_invalid= /* Server Operation */

ANY sid WHERE sid: session & sid: invalid_session THEN

fresh_session:=fresh_session \/ {sid} ||

invalid_session:= invalid_session - {sid}

END;

Send_SelectedFlight= /* Server Operation */

ANY sid,fd WHERE sid:session & sid: valid_session & session_request(sid):=bf &

sid: dom(flight_select) & fd: FLIGHT_DETAIL & flight_select(sid)= fd THEN

ANY fa WHERE fa: FLIGHT_AGENCY & {fa|-> fd}: respflight_buf(sid) &

sid: ret_session THEN

selectflight_buf(fa):= selectflight_buf(fa) \/ {sid|->fd} ||

ret_session:= ret_session - {sid} ||

respflight_buf:= {sid}<<| respflight_buf

END ||

valid_session:= valid_session - {sid} ||

END;

Send_SelectedRoom= /* Server Operation */

ANY sid,rd WHERE sid:session & sid: valid_session & session_request(sid):=br &

sid: dom(room_select) & rd: ROOM_DETAIL & room_select(sid)= rd THEN

ANY hh WHERE hh: HOTEL & {hh|-> rd}: resproom_buf(sid) &

sid: ret_session THEN

selectroom_buf(fa):= {sid|->rd} ||

ret_session:= ret_session - {sid} ||

resproom_buf:= {sid}<<| resproom_buf

END ||

valid_session:= valid_session - {sid} ||

END;

Appendix A The Travel Agency System 179

Send_SelectedCar= /* Server Operation */

ANY sid,cd WHERE sid:session & sid: valid_session & session_request(sid):=bc &

sid: dom(car_select) & cd: CAR_DETAIL & car_select(sid)= cd THEN

ANY ca WHERE ca: CAR_AGENCY & {ca|-> cd}: respcar_buf(sid) &

sid: ret_session THEN

selectcar_buf(ca):= {sid|->cd} ||

ret_session:= ret_session - {sid} ||

respcar_buf:= {sid}<<| respcar_buf

END ||

valid_session:= valid_session - {sid} ||

END;

Agency_flight_booking= /* Flight_agency Server Operation*/

ANY fa,sid,fd WHERE fa: FLIGHT_AGENCY & fa: dom(selectflight_buf) & sid: SESSION

& sid/: pro_session & sid/: failed_session & fd: FLIGHT_DETAIL

& {sid|->fd}: selectflight_buf(fa) THEM

IF fd: flight_db1(fa) THEN

ANY fdb WHERE fdb<: flight_db1(fa) THEN

/* Updating original Database that maybe affected by booking */

flight_db1(fa):= fdb

END ||

fa_booking(fa):= fa_booking(fa) \/{fd|->session_user(sid)} ||

pro_session1:=pro_session1 \/ {sid}

ELSE

failed_session1:= failed_session1 \/ {sid}

END

END;

Hotel_room_booking= /* Hotel Server Operation*/

ANY hh,sid,rd WHERE hh: HOTE & hh: dom(selectroom_buf) & sid: SESSION

& sid/: pro_session & sid/: failed_session & rd: ROOM_DETAIL

& {sid|->rd}: selectroom_buf(hh) THEM

IF rd: room_db1(hh) THEN

ANY rdb WHERE rdb<: room_db1(hh) THEN

/* Updating original Database that maybe affected by booking */

room_db1(hh):= rdb

END ||

hotel_booking(hh):= hotel_booking(hh) \/{rd|->session_user(sid)} ||

pro_session1:=pro_session1 \/ {sid}

ELSE

180 Appendix A The Travel Agency System

failed_session1:= failed_session1 \/ {sid}

END

END;

Agency_car_booking= /* Car_agency Server Operation*/

ANY ca,sid,cd WHERE ca: CAR_AGENCY & ca: dom(selectcar_buf) & sid: SESSION

& sid/: pro_session & sid/: failed_session & rd: ROOM_DETAIL

& {sid|->cd}: selectcar_buf(ca) THEM

IF cd: car_db1(ca) THEN

ANY cdb WHERE cdb<: car_db1(ca) THEN

/* Updating original Database that maybe affected by booking */

car_db1(ca):= cdb

END ||

ca_booking(ca):= ca_booking(ca) \/{cd|->session_user(sid)} ||

pro_session1:=pro_session1 \/ {sid}

ELSE

failed_session1:= failed_session1 \/ {sid}

END

END;

Flight_Booking = /* Server Operation */

ANY sid,fa,fd WHERE sid:session & (sid: pro_session or sid: failed_session) &

sid: dom(flight_select) & fd: FLIGHT_DETAIL & flight_select(sid)= fd &

fa: FLIGHT_AGENCY & fa: dom(selectflight_buf) & {sid|->fd}: selectflight_buf(fa) THEN

IF sid: pro_session THEN

taf_booking:= taf_booking \/{fa|->fd|->session_user(sid)} ||

selectflight_buf(fa):= selectflight_buf(fa) - {sid|->fd} ||

flight_select:= {sid}<<| flight_select||

pro_session1:= pro_session1 - {sid} ||

suc_session:=suc_session \/ {sid} ||

session_request(sid):= none

ELSE

selectflight_buf(fa):= selectflight_buf(fa) - {sid|->fd} ||

flight_select:= {sid}<<| flight_select||

failed_session1:= failed_session1 - {sid} ||

unsuc_session:=unsuc_session \/ {sid} ||

session_request(sid):= none

END

END;

Appendix A The Travel Agency System 181

Room_Booking = /* Server Operation */

ANY sid,hh,rd WHERE sid: session & (sid: pro_session or sid: failed_session) &

sid: dom(room_select) & rd: ROOM_DETAIL & room_select(sid)= rd

hh: HOTEL & hh: dom(selectroom_buf) & {sid|->rd}: selectroom_buf(hh) THEN

IF sid: pro_session THEN

tar_booking:= tar_booking \/{hh|->rd|->session_user(sid)} ||

selectroom_buf(hh):= selectroom_buf(hh) - {sid|->rd} ||

room_select:= {sid}<<| room_select||

pro_session1:= pro_session1 - {sid} ||

suc_session:=suc_session \/ {sid} ||

session_request(sid):= none

ELSE

selectroom_buf(hh):= selectflight_buf(hh) - {sid|->rd} ||

room_select:= {sid}<<| room_select||

failed_session1:= failed_session1 - {sid} ||

unsuc_session:=unsuc_session \/ {sid} ||

session_request(sid):= none

END

END;

Car_Booking = /* Server Operation */

ANY sid,cd WHERE sid: session & sid: pro_session or sid: failed_session) &

sid: dom(car_select) & cd:CAR_DETAIL & car_select(sid)= cd

ca: CAR_AGENCY & ca: dom(selectcar_buf) & {sid|->cd}: selectcar_buf(fa) THEN

IF sid: pro_session THEN

tac_booking:= tac_booking \/{ca|->cd|->session_user(sid)} ||

selectcar_buf(ca):= selectcar_buf(ca) - {sid|->cd} ||

car_select:= {sid}<<| car_select||

pro_session1:= pro_session1 - {sid} ||

suc_session:=suc_session \/ {sid} ||

session_request(sid):= none

ELSE

selectcar_buf(ca):= selectcar_buf(ca) - {sid|->cd} ||

car_select:= {sid}<<| car_select||

failed_session1:= failed_session1 - {sid} ||

unsuc_session:=unsuc_session \/ {sid} ||

session_request(sid):= none

END

END;

182 Appendix A The Travel Agency System

Retrieve_BookedFlight= /* Server Operation */

ANY sid, fa WHERE sid: session & sid: certified_session &

fa: FLIGHT_AGENCY & session_request(sid):=uf THEN

booked_flight(sid):= %fd . (fd: FLIGHT_DETAIL &

{fa|->fd|->session_user(sid)}:taf_booking| fd) ||

valid_session:= valid_session - sid

END;

Retrieve_BookedRoom= /* Server Operation */

ANY sid, hh WHERE sid: session & sid: certified_session &

hh: HOTEL & session_request(sid):=ur THEN

booked_room(sid):= %rd . (rd: ROOM_DETAIL &

{hh|->rd|->session_user(sid)}:tar_booking | rd) ||

valid_session:= valid_session - sid

END;

Retrieve_BookedCar= /* Server Operation */

ANY sid, ca WHERE sid: session & sid: certified_session &

ca: CAR_AGENCY & session_request(sid):=uc THEN

booked_car(sid):= %cd . (cd: CAR_DETAIL &

(ca|->cd|->session_user(sid)):tac_booking | cd) ||

valid_session:= valid_session - sid

END;

Select_UnBbookedFlight= /* Client Operation */

ANY sid, fd WHERE sid: token & sid: dom(booked_flight) &

fd: FLIGHT_DETAIL & fd: booked_flight(sid) THEN

ubflight_buf(sid):= fd ||

booked_flight:= {sid}<<| booked_flight

END;

Select_UnBbookedRoom= /* Client Operation */

ANY sid, rd WHERE sid: token & sid: dom(booked_room) &

rd: ROOM_DETAIL & fd: booked_room(sid) THEN

ubroom_buf(sid):= rd ||

booked_room:= {sid}<<| booked_room

END;

Select_UnBbookedCar= /* Client Operation */

Appendix A The Travel Agency System 183

ANY sid, cd WHERE sid: token & sid: dom(booked_car) &

cd: CAR_DETAIL & fd: booked_car(sid) THEN

ubcar_buf(sid):= cd ||

booked_car:= {sid}<<| booked_car

END;

Send_UBFlight= /* Server Operation */

ANY sid, fd WHERE sid: session & sid: dom(ubflight_buf) & sid/: send_session &

fd: FLIGHT_DETAIL & ubflight_buf(sid)=fd THEN

ANY fa WHERE fa: FLIGHT_AGENCY & {fa|->fd|->session_user(sid)}:taf_booking THEN

selectUBflight_buf(fa):= selectUBflight_buf(fa) \/ {fd|->session_user(sid)} ||

send_session:= send_session \/ {sid}

END

END;

Send_UBRoom= /* Server Operation */

ANY sid, rd WHERE sid: session & sid: dom(ubroom_buf) & sid/: send_session &

rd: ROOM_DETAIL & ubroom_buf(sid)=rd THEN

ANY hh WHERE hh: HOTEL & {hh|->rd|->session_user(sid)}:tar_booking THEN

selectUBroom_buf(hh):= selectUBroom_buf(hh) \/ {rd|->session_user(sid)} ||

send_session:= send_session \/ {sid}

END

END;

Send_UBCar= /* Server Operation */

ANY sid, cd WHERE sid: session & sid: dom(ubcar_buf) & sid/: send_session &

cd: CAR_DETAIL & ubcar_buf(sid)=cd THEN

ANY ca WHERE ca: CAR_AGENCY & {ca|->cd|->session_user(sid)}:tac_booking THEN

selectUBcar_buf(ca):= selectUBcar_buf(ca) \/ {cd|->session_user(sid)} ||

send_session:= send_session \/ {sid}

END

END;

Agency_Flight_Unbooking= /* Flight_agency Server Operation*/

ANY fa,fd,uu WHERE fa: FLIGHT_AGENCY & fa: dom(selectUBflight_buf) &

uu: USER & fd: FLIGHT_DETAIL & {fd|->uu}: selectUBflight_buf(fa) THEM

IF fd: fa_booking(fa) THEN

ANY fdb WHERE flight_db1(fa)<: fdb THEN

/* Updating original Database that maybe affected by Unbooking */

flight_db1(fa):= fdb

END ||

184 Appendix A The Travel Agency System

fa_booking(fa):= fa_booking(fa) - {fd|->uu} ||

pro_session2:=pro_session2 \/ {sid}

ELSE

failed_session2:= failed_session2 \/ {sid}

END

END;

Hotel_Room_Unbooking= /* Hotel Server Operation*/

ANY hh,rd,uu WHERE hh: HOTE & hh: dom(selectUBroom_buf) & uu: USER &

rd: ROOM_DETAIL & {rd|->uu}: selectUBroom_buf(hh) THEM

IF rd: hotel_booking(hh) THEN

ANY rdb WHERE room_db1(hh)<: rdb THEN

/* Updating original Database that maybe affected by Unbooking */

room_db1(hh):= rdb

END ||

hotel_booking(hh):= hotel_booking(hh) - {rd|->uu} ||

pro_session2:=pro_session2 \/ {sid}

ELSE

failed_session2:= failed_session2 \/ {sid}

END

END;

Agency_Car_Unbooking= /* Car_agency Server Operation*/

ANY ca,cd,uu WHERE ca: CAR_AGENCY & ca: dom(selectcar_buf) & uu: USER &

rd: ROOM_DETAIL & {cd|->uu}: selectUBcar_buf(ca) THEM

IF cd: ca_booking(ca THEN

ANY cdb WHERE car_db1<:(ca)cdb THEN

/* Updating original Database that maybe affected by Unbooking */

car_db1(ca):= cdb

END ||

ca_booking(ca):= ca_booking(ca)- {cd|->|->uu} ||

pro_session2:= pro_session2 \/ {sid}

ELSE

failed_session2:= failed_session2 \/ {sid}

END

END;

Unbook_Flight = /* Server Operation */

ANY sid, fd WHERE sid: session & (sid: pro_session2 or sid:failed_session2) &

sid: send_session & sid: dom(ubflight_buf) & fd: FLIGHT_DETAIL &

ubflight_buf(sid)=fd THEN

Appendix A The Travel Agency System 185

ANY fa WHERE fa: FLIGHT_AGENCY & {fa|->fd|->session_user(sid)}:taf_booking THEN

taf_booking:= taf_booking - {fa|->fd|->session_user(sid)} ||

send_session:= send_session - {sid} ||

ubflight_buf:= {sid} <<| ubflight_buf ||

session_request(sid):= none ||

IF sid: pro_session2 THEN

pro_session2:= pro_session2- {sid} ||

suc_session:= suc_session \/ {sid}

ELSE

failed_session2:= failed_session2- {sid} ||

unsuc_session:= unsuc_session \/ {sid}

END

END

END;

Unbook_Room = /* Server Operation */

ANY sid, rd WHERE sid: session & (sid: pro_session2 or sid:failed_session2) &

sid: send_session & sid: dom(ubroom_buf) & rd: ROOM_DETAIL &

ubroom_buf(sid)= rd THEN

ANY hh WHERE hh: HOTEL & {hh|->rd|->session_user(sid)}:tar_booking THEN

tar_booking:= tar_booking - {hh|->rd|->session_user(sid)} ||

send_session:= send_session - {sid} ||

ubroom_buf:= {sid} <<| ubroom_buf ||

session_request(sid):= none ||

IF sid: pro_session2 THEN

pro_session2:= pro_session2- {sid} ||

suc_session:= suc_session \/ {sid}

ELSE

failed_session2:= failed_session2- {sid} ||

unsuc_session:= unsuc_session \/ {sid}

END

END

END;

Unbook_Car = /* Server Operation */

ANY sid, cd WHERE sid: session & (sid: pro_session2 or sid:failed_session2) &

sid: send_session & sid: dom(ubcar_buf) & cd: CAR_DETAIL &

ubcar_buf(sid)=cd THEN

ANY ca WHERE ca: CAR_AGENCY & {ca|->cd|->session_user(sid)}:tac_booking THEN

tac_booking:= tac_booking - {ca|->cd|->session_user(sid)} ||

send_session:= send_session - {sid} ||

186 Appendix A The Travel Agency System

ubcar_buf:= {sid} <<| ubcar_buf ||

session_request(sid):= none ||

IF sid: pro_session2 THEN

pro_session2:= pro_session2- {sid} ||

suc_session:= suc_session \/ {sid}

ELSE

failed_session2:= failed_session2- {sid} ||

unsuc_session:= unsuc_session \/ {sid}

END

END

END;

Client_Recv_Reply= /* Client Operation */

ANY sid WHERE sid: token & sid: dom(resp_buf) THEN

resp_buf:= {sid}<<|resp_buf

END;

Client_logout= /* Client Operation */

ANY sid WHERE sid: token THEN

reqsevice_buf:= {sid}<<| reqsevice_buf ||

new_client:= new_client |>>{sid} ||

fresh_session:= fresh_session - {sid} ||

reqFD_buf:= reqFD_buf - {sid} ||

reqRD_buf:= reqRD_buf - {sid} ||

reqCD_buf:= reqCD_buf- {sid} ||

flightReq_buf:= {sid}<<| flightReq_buf ||

roomReq_buf:= {sid}<<| roomReq_buf ||

carReq_buf:= {sid}<<| carReq_buf ||

pikedflight_buf:= {sid}<<|pikedflight_buf ||

pikedroom_buf:= {sid}<<|pikedroom_buf ||

pikedcar_buf:= {sid}<<|pikedcar_buf ||

unnamed_buf:= unnamed_buf - {sid} ||

unsigned_buf:= unsigned_buf - {sid} ||

userInfo_buf := {sid}<<| userInfo_buf ||

reqCard_buf:= reqCard_buf - {sid} ||

card_buf:= {sid}<<| card_buf ||

ubflight_buf:= {sid}<<| ubflight_buf ||

ubroom_buf:= {sid}<<| ubroom_buf||

ubcar_buf:= {sid}<<|ubcar_buf ||

logout_buf:= logout_buf \/ {sid}

Appendix A The Travel Agency System 187

END;

Logout= /* Server Operation */

ANY sid WHERE sid: session & sid: logout_buf THEN

session:= session - {sid} ||

session_user:= {sid}<<| session_user ||

session_state:= {sid}<<| session_state ||

session_request:= {sid} <<| session_request ||

flight_options:= {sid}<<|flight_options ||

selctflight_buf:= {sid}<<| selctflight_buf ||

booked_flight:= {sid}<<| booked_flight ||

ubselctflight_buf:= {sid}<<|ubselctflight_buf ||

room_options:= {sid}<<|room_options ||

selctroom_buf:= {sid}<<| selctroom_buf ||

booked_room:= {sid}<<|booked_room ||

ubselctroom_buf:= {sid}<<| ubselctroom_buf ||

car_options:= {sid}<<|car_options ||

selctcar_buf:= {sid}<<| selctcar_buf ||

booked_car:= {sid}<<|booked_car ||

ubselctcar_buf:= {sid}<<| ubselctcar_buf ||

availflight_buf:= {sid}<<| availflight_buf ||

availroom_buf:= {sid}<<| availroom_buf ||

availcar_buf:= {sid}<<| availcar_buf ||

resp_buf:= {sid}<<|resp_buf ||

bookedflight_buf:= {sid}<<| bookedflight_buf ||

bookedroom_buf:= {sid}<<| bookedroom_buf ||

bookedcar_buf:= {sid}<<| bookedcar_buf ||

logout_buf:= logout_buf - {sid}

END

END

Appendix B

Specification and Refinement of

Patterns

B.1 Specification of The Session Creation pattern

MODEL

Session_Creat_Spec

SETS

SESSION; STATE = {NS, RM, RP};

REQUEST; RESPONSE; AGENT_ID;

SERVICES; SRVC_RESP

CONSTANTS

null,

ReqID, ReqSID, Srvc,

/* REQUEST ==

ReqID : AGENT_ID

ReqSID : SESSION

Srvc : SERVICES

*/

RespID, RespSID, Srvc_resp

/* RESPONSE ==

RespID : AGENT_ID

RespSID : SESSION

Srvc_resp : SRVC_RESP

*/

189

190 Appendix B Specification and Refinement of Patterns

PROPERTIES

null : SESSION &

/* REQUEST Record Definition */

ReqID : REQUEST --> AGENT_ID &

ReqSID : REQUEST --> SESSION &

Srvc : REQUEST --> SERVICES &

/* RESPONSE Record Definition */

RespID : RESPONSE --> AGENT_ID &

RespSID : RESPONSE --> SESSION &

Srvc_resp : RESPONSE --> SRVC_RESP

VARIABLES

req_buf, current, req_hist, session, resp_buf,

session_state, resp_hist

INVARIANT

req_buf : POW(REQUEST)

& current : POW(AGENT_ID)

& req_hist : POW(REQUEST)

& session : POW(SESSION)

& resp_buf : POW(RESPONSE)

& session_state : session--> STATE

& resp_hist : POW(RESPONSE)

INITIALISATION

req_buf := {}

|| current := {}

|| req_hist := {}

|| session := {}

|| resp_buf := {}

|| session_state := {}

|| resp_hist := {}

OPERATIONS

Client_CreateAgent = /* Client Operation */

ANY aid, req WHERE

aid : AGENT_ID

Appendix B Specification and Refinement of Patterns 191

& aid /: current

& req : REQUEST

& req /: req_hist

& ReqID(req) = aid

& ReqSID(req) = null

THEN

current := current \/ {aid}

|| req_buf := req_buf \/ {req}

|| req_hist := req_hist \/ {req}

END;

Convey_SessionReq = /* Middleware Operation */

skip;

Server_CreateSession = /* Server Operation */

ANY req, resp, sid WHERE

req : REQUEST

& req : req_buf

& ReqSID(req) = null

& resp : RESPONSE

& RespID(resp)= ReqID(req)

& sid : SESSION & sid /: session

& RespSID(resp)= sid

& resp /: resp_hist

THEN

resp_buf := resp_buf \/ {resp}

|| session := session \/ {sid}

|| session_state := session_state \/ {sid |-> NS}

|| req_buf:= req_buf - {req}

|| resp_hist := resp_hist \/ {resp}

END;

Convey_SessionID = /* Middleware Operation */

skip

END

192 Appendix B Specification and Refinement of Patterns

B.2 Refinement of The Session Creation pattern

REFINEMENT

Session_Creat_Ref1

REFINES

Session_Creat_Spec

VARIABLES

current, session,

req_buf1, req_buf2,

req_hist1, req_hist2,

resp_buf1, resp_buf2,

resp_hist1, resp_hist2

INVARIANT

req_buf1 : POW(REQUEST)

& req_buf2 : POW(REQUEST)

& req_hist1 : POW(REQUEST)

& req_hist2 : POW(REQUEST)

& resp_buf1 : POW(RESPONSE)

& resp_buf2 : POW(RESPONSE)

& resp_hist1 : POW(RESPONSE)

& resp_hist2 : POW(RESPONSE)

/* Gluing Invarints */

& req_buf = req_buf1 \/ req_buf2

& req_buf1 /\ req_buf2 = {}

& resp_buf = resp_buf1 \/ resp_buf2

& resp_buf1 /\ resp_buf2 = {}

& req_buf1 <: ReqID~[current]

& req_buf2 <: ReqID~[current]

& resp_buf1 <: RespSID~[session]

& resp_buf2 <: RespSID~[session]

/*

& ! rq .(rq : REQUEST & rq : req_buf1 => ReqID(rq) : current)

& ! rq .(rq : REQUEST & rq : req_buf2 => ReqID(rq) : current)

& ! rsp . (rsp : RESPONSE & rsp : resp_buf1 => RespSID(rsp) : session)

& ! rsp . (rsp : RESPONSE & rsp : resp_buf2 => RespSID(rsp) : session)

*/

INITIALISATION

current := {}

Appendix B Specification and Refinement of Patterns 193

|| session := {}

|| req_buf1 := {}

|| req_buf2 := {}

|| req_hist1 := {}

|| req_hist2 := {}

|| resp_buf1 := {}

|| resp_buf2 := {}

|| resp_hist1 := {}

|| resp_hist2 := {}

OPERATIONS

Client_CreateAgent = /* Client Operation */

ANY aid, req WHERE

aid : AGENT_ID

& aid /: current

& req : REQUEST

& ReqID(req) = aid

& ReqSID(req) = null

& req /: req_hist1

THEN

current:= current \/ {aid}

|| req_buf1 := req_buf1 \/ {req}

|| req_hist1 := req_hist1 \/ {req}

END;

Convey_SessionReq = /* Client Operation */

ANY req WHERE req : REQUEST & req : req_buf1

THEN

req_buf2 := req_buf2 \/ {req} ||

req_buf1 := req_buf1 - {req}

END;

Server_CreateSession = /* Server Operation */

ANY req, resp, sid WHERE

req : REQUEST

& req : req_buf2

& ReqSID(req) = null

& resp : RESPONSE

& RespID(resp)= ReqID(req)

& sid : SESSION & sid /: session

194 Appendix B Specification and Refinement of Patterns

& RespSID(resp)= sid

& resp /: resp_hist1

THEN

resp_buf1 := resp_buf1 \/ {resp}

|| session := session \/ {sid}

|| req_buf2 := req_buf2 - {req}

|| resp_hist1 := resp_hist1 \/ {resp}

END;

Convey_SessionID = /* Server Operation */

ANY resp WHERE resp : RESPONSE & resp : resp_buf1

THEN

resp_buf2:= resp_buf2 \/ {resp} ||

resp_buf1:= resp_buf1 - {resp}

END

END

B.3 Specification of The User-to-Web Applications Pat-

tern

MODEL

User_to_Web_Spec

SETS

SESSION; REQUEST; RESPONSE; AGENT_ID;

SERVICES; SRVC_RESP; DB

CONSTANTS

ReqID, ReqSID, Srvc,

/* REQUEST ==

ReqID : AGENT_ID

ReqSID : SESSION

Srvc : SERVICES

*/

RespID, RespSID, Srvc_resp,

/* RESPONSE ==

RespID : AGENT_ID

RespSID : SESSION

Srvc_resp : SRVC_RESP

*/

Appendix B Specification and Refinement of Patterns 195

Resp_func, Update_func

PROPERTIES

/* REQUEST Record Definition */

ReqID : REQUEST --> AGENT_ID &

ReqSID : REQUEST --> SESSION &

Srvc : REQUEST --> SERVICES &

/* RESPONSE Record Definition */

RespID : RESPONSE --> AGENT_ID &

RespSID : RESPONSE --> SESSION &

Srvc_resp : RESPONSE --> SRVC_RESP &

Resp_func : (DB * SERVICES) --> RESPONSE &

Update_func : (DB * SERVICES) --> DB

VARIABLES

req_hist, current, req_buf,

session, resp_hist, resp_buf, db

INVARIANT

req_buf : POW(REQUEST) &

req_hist : POW(REQUEST) &

req_buf <: req_hist &

current : POW(AGENT_ID) &

session : POW(SESSION) &

resp_buf : POW(RESPONSE) &

resp_hist : POW(RESPONSE) &

resp_buf <: resp_hist &

db : DB

INITIALISATION

req_buf := {} ||

req_hist := {} ||

current :: POW(AGENT_ID) ||

session :: POW(SESSION) ||

resp_buf := {} ||

resp_hist := {} ||

db :: DB

196 Appendix B Specification and Refinement of Patterns

OPERATIONS

MakeRequest = /* Client Operation */

ANY req WHERE

req : REQUEST

& ReqID(req) : current

& req /: req_hist

THEN

req_buf := req_buf \/ {req} ||

req_hist := req_hist \/ {req}

END;

Convey_Request = /* Middleware Operation */

skip;

ProcessRequest = /* Server Operation */

ANY req, resp WHERE

req : REQUEST

& req : req_buf

& ReqSID(req) : session

& resp : RESPONSE

& RespID(resp) = ReqID(req)

& RespSID(resp) = ReqSID(req)

& resp = Resp_func(db, Srvc(req))

& resp /: resp_hist

THEN

resp_buf := resp_buf \/ {resp} ||

resp_hist := resp_hist \/ {resp} ||

db:= Update_func(db, Srvc(req)) ||

req_buf:= req_buf - {req}

END;

Convey_Response = /* Middleware Operation */

skip;

GetResponse = /* Client Operation */

ANY resp WHERE

resp : RESPONSE

& resp : resp_buf

THEN

Appendix B Specification and Refinement of Patterns 197

resp_buf := resp_buf- {resp}

END

END

B.4 Refinement of The User-to-Web Applications Pattern

REFINEMENT

User_to_Web_Ref1

REFINES

User_to_Web_Spec

VARIABLES

req_hist, current,

req_buf1, req_buf2,

resp_hist, session, db,

resp_buf1, resp_buf2

INVARIANT

req_buf1 : POW(REQUEST) &

req_buf2 : POW(REQUEST) &

resp_buf1 : POW(RESPONSE) &

resp_buf2 : POW(RESPONSE) &

/* Gluing Invarints */

req_buf = req_buf1 \/ req_buf2 &

req_buf1 /\ req_buf2 = {} &

! rq .(rq : REQUEST & rq : req_buf1 => ReqID(rq) : current) &

! rq .(rq : REQUEST & rq : req_buf2 => ReqID(rq) : current) &

req_buf1 <: req_hist &

req_buf2 <: req_hist &

resp_buf = resp_buf1 \/ resp_buf2 &

resp_buf1 /\ resp_buf2 = {} &

! rsp . (rsp : RESPONSE & rsp : resp_buf1 => RespSID(rsp) : session) &

! rsp . (rsp : RESPONSE & rsp : resp_buf2 => RespSID(rsp) : session) &

resp_buf1 <: resp_hist &

resp_buf2 <: resp_hist

198 Appendix B Specification and Refinement of Patterns

INITIALISATION

req_hist := {} ||

current :: POW(AGENT_ID) ||

req_buf1 := {} ||

req_buf2 := {} ||

resp_hist := {} ||

session :: POW(SESSION) ||

db :: DB ||

resp_buf1 := {} ||

resp_buf2 := {}

OPERATIONS

MakeRequest = /* Client Operation */

ANY req WHERE

req : REQUEST

& ReqID(req) : current

& req /: req_hist

THEN

req_buf1:= req_buf1 \/ {req} ||

req_hist:= req_hist \/ {req}

END;

Convey_Request = /* Middleware Operation */

ANY req WHERE req : REQUEST & req : req_buf1

THEN

req_buf2 := req_buf2 \/ {req}

|| req_buf1 := req_buf1 - {req}

END;

ProcessRequest = /* Server Operation */

ANY req, resp WHERE

req : REQUEST

& req : req_buf2

& ReqSID(req) : session

& resp : RESPONSE

& RespID(resp) = ReqID(req)

& RespSID(resp) = ReqSID(req)

& resp = Resp_func(db, Srvc(req))

Appendix B Specification and Refinement of Patterns 199

& resp /: resp_hist

THEN

resp_buf1 := resp_buf1 \/ {resp}

|| resp_hist := resp_hist \/ {resp}

|| db:= Update_func(db, Srvc(req))

|| req_buf2:= req_buf2 - {req}

END;

Convey_Response= /* Middleware Operation */

ANY resp WHERE

resp : RESPONSE

& resp : resp_buf1

THEN

resp_buf2 := resp_buf2 \/ {resp}

|| resp_buf1 := resp_buf1 - {resp}

END;

GetResponse = /* Client Operation */

ANY resp WHERE

resp : RESPONSE

& resp : resp_buf2

THEN

resp_buf2 := resp_buf2- {resp}

END

END

B.5 Specification of The Distributed Processing pattern

MODEL

Distributed_Proc_Spec

/* Main Server interaction with secondary servers Model */

/* In The following model we have multiple user and

multiple secondary servers */

SETS

REQUEST; RESPONSE; REC_ID;

USERS; SERVICES; SERVERS; SRVC_RESP

200 Appendix B Specification and Refinement of Patterns

CONSTANTS

Limit,

ReqID, User, Srvc,

/* REQUEST ==

ReqID : REC_ID

User : USERS

Srvc : SERVICES

*/

RespID, Provider, Srvc_resp

/* RESPONSE ==

RespID : REC_ID

Provider : SERVERS

Srvc_resp : SRVC_RESP

*/

PROPERTIES

Limit = 3 &

/* REQUEST Record Definition */

ReqID : REQUEST --> REC_ID &

User : REQUEST --> USERS &

Srvc : REQUEST --> SERVICES &

/* RESPONSE Record Definition */

RespID : RESPONSE --> REC_ID &

Provider : RESPONSE --> SERVERS &

Srvc_resp : RESPONSE --> SRVC_RESP

VARIABLES

req_hist, serv_req, pending_reqs,

resp_hist, serv_resp, completed_reqs,

final_resp

INVARIANT

req_hist : POW(REQUEST) &

serv_req : SERVERS <-> REQUEST &

ran(serv_req) <: req_hist &

pending_reqs : POW(REQUEST) &

resp_hist : POW(RESPONSE) &

serv_resp : POW(RESPONSE) &

serv_resp <: resp_hist &

Appendix B Specification and Refinement of Patterns 201

completed_reqs : POW(REQUEST) &

final_resp : POW(RESPONSE)

INITIALISATION

req_hist := {} ||

serv_req := {} ||

pending_reqs := {} ||

resp_hist := {} ||

serv_resp := {} ||

completed_reqs := {} ||

final_resp := {}

OPERATIONS

Ask_for_Service = /* Main Server Operation */

ANY req WHERE

req : REQUEST

& req /: req_hist

THEN

serv_req := serv_req \/ SERVERS * {req}

|| req_hist := req_hist \/ {req}

|| pending_reqs := pending_reqs \/ {req}

END;

Transmit_Req_For_Service =

skip;

Provide_Service = /*secondary Server Operation */

ANY serv, req , srvc_resp, resp WHERE

serv : SERVERS

& req : REQUEST

& srvc_resp : SRVC_RESP

& resp : RESPONSE

& resp /: resp_hist

& (serv |-> req) : serv_req

& RespID(resp)= ReqID(req)

& Provider(resp)= serv

& Srvc_resp(resp)= srvc_resp

THEN

serv_resp := serv_resp \/ {resp}

|| resp_hist := resp_hist \/ {resp}

202 Appendix B Specification and Refinement of Patterns

|| serv_req := serv_req - {serv |-> req}

END;

Transmit_Service_Resp =

skip;

Complete_Req = /* Main Server Operation */

ANY req, resp WHERE

req : REQUEST

& req : pending_reqs

& resp <: serv_resp /\ {rs | rs : RESPONSE

& RespID(rs)= ReqID(req)}

& card(resp) >= Limit

THEN

final_resp := final_resp \/ resp

|| completed_reqs := completed_reqs \/ {req}

|| pending_reqs := pending_reqs - {req}

END

END

B.6 Refinement of The Distributed Processing pattern

REFINEMENT

Distributed_Proc_Ref1

REFINES

Distributed_Proc_Spec

VARIABLES

req_hist,

serv_req1, pending_reqs, serv_req2,

resp_hist1, serv_resp1, serv_resp2,

completed_reqs, final_resp

INVARIANT

serv_req1 : SERVERS <-> REQUEST &

ran(serv_req1) <: req_hist &

serv_req2 : SERVERS <-> REQUEST &

ran(serv_req2) <: req_hist &

resp_hist1 : POW(RESPONSE) &

Appendix B Specification and Refinement of Patterns 203

serv_resp1 : POW(RESPONSE) &

serv_resp1 <: resp_hist1 &

serv_resp2 : POW(RESPONSE) &

serv_resp2 <: resp_hist1 &

serv_req1 /\ serv_req2 = {} &

serv_resp1 /\ serv_resp2= {} &

/* Gluing Invariants */

serv_req = serv_req1 \/ serv_req2 &

resp_hist1 = resp_hist &

serv_resp = serv_resp1 \/ serv_resp2

INITIALISATION

req_hist := {} ||

serv_req1 := {} ||

pending_reqs := {} ||

serv_req2 := {} ||

resp_hist1 := {} ||

serv_resp1 := {} ||

serv_resp2 := {} ||

completed_reqs := {} ||

final_resp := {}

OPERATIONS

Ask_for_Service = /* Main Server Operation */

ANY req WHERE

req : REQUEST

& req /: req_hist

THEN

serv_req1 := serv_req1 \/ SERVERS * {req}

|| req_hist := req_hist \/ {req}

|| pending_reqs := pending_reqs \/ {req}

END;

Transmit_Req_For_Service =

ANY serv,req WHERE

serv : SERVERS

& req : REQUEST

& (serv |-> req) : serv_req1

204 Appendix B Specification and Refinement of Patterns

THEN

serv_req2:= serv_req2 \/ {(serv |-> req)}

|| serv_req1 := serv_req1 -{(serv |-> req)}

END;

Provide_Service = /*secondary Server Operation */

ANY serv, req , srvc_resp, resp WHERE

serv : SERVERS

& req : REQUEST

& srvc_resp : SRVC_RESP

& resp : RESPONSE

& resp /: resp_hist1

& (serv |-> req) : serv_req2

& RespID(resp)= ReqID(req)

& Provider(resp)= serv

& Srvc_resp(resp)= srvc_resp

THEN

serv_resp1 := serv_resp1 \/ {resp}

|| resp_hist1 := resp_hist1 \/ {resp}

|| serv_req2 := serv_req2 - {(serv |-> req)}

END;

Transmit_Service_Resp =

ANY resp WHERE

resp : RESPONSE

& resp : serv_resp1

THEN

serv_resp2 := serv_resp2 \/ {resp}

|| serv_resp1 := serv_resp1 - {resp}

END;

Complete_Req = /* Main Server Operation */

ANY req, resp1 WHERE

req : REQUEST

& req : pending_reqs

& resp1 = serv_resp2 /\ {rs | rs : RESPONSE

& RespID(rs)= ReqID(req)}

/* resp1 = serv_resp2 /\ (RespID~[{ReqID(req)}]) */

& card(resp1) >= Limit

THEN

Appendix B Specification and Refinement of Patterns 205

final_resp := final_resp \/ resp1

|| completed_reqs := completed_reqs \/ {req}

|| pending_reqs := pending_reqs - {req}

END

END

