
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

A narrative-based collaborative writing tool for
constructing coherent technical documents

by

Nishadi H. De Silva

A doctoral thesis submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

April 2007

i

To my parents

ii

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

A narrative-based collaborative writing tool for constructing
coherent technical documents

by Nishadi H. De Silva

One important feature of an effective document that makes it easy to read and understand is

known as coherence. Technical documents produced collaboratively are often incoherent due

to a lack of group consensus and misaligned contributions by the individual authors.

However, current document planning techniques and writing tools do not provide explicit

support for improving coherence. The goal of this research, therefore, is to develop and

evaluate a new technique and tool that helps teams of authors to structure coherent technical

documents.

The coherence of a document can be attributed to the story (or narrative) it conveys to the

reader. If this story is consistent and coherent, the same can be said about the document. A

discourse theory such as Rhetorical Structure Theory (RST) that has been developed by

linguists helps further to analyse and improve a narrative. RST explains the coherence of a

text by virtue of relationships (such as “paragraph A justifies paragraph B”) between parts of

the text. This research has combined the ideas from these parallel strands of research to

develop a new document planning technique called narrative-based writing. The method

involves writing down an explicit précis of the story (called a document narrative or DN)

and then analysing it using RST. The DN and RST analysis are then used to structure the

eventual document.

To extend the usability of narrative-based writing to geographically-dispersed authors, I have

designed and implemented a collaborative tool that allows co-authors to edit, analyse and

review DNs. The thorough design for the tool uses a combination of three models

(conceptual, business process and functional) culminating in a set of functions that enable

collaborative narrative-based writing. This dissertation discusses how, in the future, these

functions could be incorporated in existing collaborative writing tools. Implementing this

tool, albeit in its current prototypic state, has been invaluable in understanding the

complexities of modelling and manipulating DNs and RST structures. Initial investigations

using the new technique and tool have been positive, encouraging me to continue the research

and evaluation in this field.

iii

Acknowledgements

This research has been funded completely by a scholarship from the School of Electronics

and Computer Science, University of Southampton, UK and by an Overseas Research

Students (ORS) award (Universities UK).

Firstly, I am indebted to my PhD supervisor, Professor Peter Henderson, for the technical

guidance and motivation to reach new heights. Thank you very much.

I am thankful to all my friends and colleagues who supported me throughout my PhD work.

I would also like to pay tribute to all my past school teachers and principals who went above

and beyond their call of duty for their pupils.

Last but by no means least, I am eternally grateful to my family: to my parents for everything

they have done for us; and to Prasadi for being a loving sister and loyal confidante.

iv

List of publications

1. De Silva, N. and Skaf-Molli, H. (2006) Narratives to preserve coherence in collaborative

writing. Proceedings of the 8th International Workshop on Collaborative Editing Systems,

Banff, Canada.

2. Henderson, P. and De Silva, N. (2006) A narrative approach to collaborative authoring: A

business process model. Proceedings of the 8th International Conference on Enterprise

Information Systems (ICEIS), Cyprus.

3. De Silva, N. and Henderson, P. (2005) Narrative support for technical documents:

Formalising Rhetorical Structure Theory. Proceedings of the 7th International Conference

on Enterprise Information Systems (ICEIS), USA.

4. De Silva, N. (2005) A narrative approach to technical document construction. Proceedings

of the PREP 2005 conference, Lancaster University, UK. (Awarded the EPSRC prize for

best oral presentation in Computer Science)

5. De Silva, N. and Henderson, P. (2005) Computer Support for Narrative Structures.

Proceedings of Computers and Writing 2005, Stanford University, USA.

v

Table of contents

1 INTRODUCTION... 1

1.1 BACKGROUND TO THE PROBLEM ..1
1.2 OUTLINE OF OUR SOLUTION ...2
1.3 A LIST OF ORIGINAL CONTRIBUTIONS ...3
1.4 OUTLINE OF THE THESIS ...4

1.4.1 A document narrative for each chapter ..5

2 BACKGROUND LITERATURE .. 6

2.1 DOCUMENT COHERENCE: AN INFORMAL DEFINITION ...7
2.2 WHY FOCUS ON TECHNICAL DOCUMENTS...8
2.3 COLLABORATIVE WRITING ...9

2.3.1 Ways in which authors collaborate ..9
2.4 THREE TECHNIQUES TO ORGANISE THE IDEAS IN A DOCUMENT ..11

2.4.1 Mind maps ..11
2.4.2 Outlines...13
2.4.3 Pyramids...14

2.5 COLLABORATIVE WRITING (CW) TOOLS ..17
2.5.1 Discussion..20

2.6 THE ROLE OF NARRATIVES IN TECHNICAL WRITING..22
2.6.1 Understanding and improving narratives...22

2.7 SUMMARY ..29

3 RHETORICAL STRUCTURE THEORY (RST)... 30

3.1 APPLYING RST: FIRST EXAMPLE..31
3.2 FIRST STEP: SEGMENTATION ..32

3.2.1 Segment size...33
3.3 SECOND STEP: DEFINING THE RST RELATIONSHIPS..33

3.3.1 Five schemas...34
3.3.2 Recognising the relationships..35
3.3.3 Forming the RS-tree ..36

3.4 RST AND TEXT COHERENCE ...38
3.5 APPLYING RST: SECOND EXAMPLE..40
3.6 SUMMARY ..42

4 NARRATIVE-BASED WRITING: ... 43

4.1 THE TECHNIQUE EXPLAINED...44
4.1.1 Formulating the document narrative (DN)..44
4.1.2 Analysing the DN using RST..46
4.1.3 Producing the document ...49

4.2 THE ROLE OF DNS IN COLLABORATIVE WRITING..51
4.3 APPLYING NARRATIVE-BASED WRITING: SECOND EXAMPLE ..51
4.4 DISCUSSION ...53
4.5 SUMMARY ..55

5 A NARRATIVE-BASED COLLABORATIVE WRITING TOOL: THE DESIGN 56

5.1 THE CONCEPTUAL MODEL ...57
5.1.1 Introduction ..57
5.1.2 The document narrative (DN)..57
5.1.3 The RS-tree ..57
5.1.4 A sample representation ...59

vi

5.1.5 Summary ...61
5.2 VERSION CONTROL...62

5.2.1 Introduction ...62
5.2.2 Revision Control System (RCS) ..62
5.2.3 Concurrent Versions System (CVS) ..63
5.2.4 LibreSource ..63
5.2.5 Our method of version control..64
5.2.6 Summary ..66

5.3 THE BUSINESS PROCESS MODEL: AN AUTHOR’S PERSPECTIVE ..67
5.3.1 Introduction ..67
5.3.2 Reading a RS-tree...67
5.3.3 Editing a RS-tree ..68
5.3.4 Reviewing a RS-tree..71
5.3.5 Summary ..71

5.4 THE FUNCTIONAL MODEL: AN IMPLEMENTER’S PERSPECTIVE ..72
5.4.1 Introduction ..72
5.4.2 The data model ...72
5.4.3 Notation used..73
5.4.4 The six core functions ...74
5.4.5 Discussion on NXT relationships..77
5.4.6 Functions to implement user actions ..78
5.4.7 Summary ...88

5.5 MERGING ...89
5.6 SUMMARY ..90

6 A NARRATIVE-BASED COLLABORATIVE WRITING TOOL: AN IMPLEMENTATION. 91

6.1 TIER THREE: DATABASE ...92
6.1.1 Distributed vs. a centralised document repository ...92
6.1.2 XML vs. relational databases ...92
6.1.3 Developing the relational database..93

6.2 TIER TWO: FUNCTIONS ...96
6.2.1 Functional programming languages vs. Java...96
6.2.2 Implementing the functions in Java ..96

6.3 TIER ONE: USER INTERFACE ...97
6.3.1 Standalone vs. web-based applications ..97
6.3.2 Implementing a Web-based interface ...97

6.4 SUMMARY ..99

7 CASE STUDIES .. 101

7.1 THE IMPACT OF DNS IN COLLABORATIVE WRITING ..102
7.1.1 Discussion...106

7.2 SAMPLE APPLICATIONS OF NARRATIVE-BASED WRITING ..106
7.2.1 Research proposals...106
7.2.2 Conference presentation...111
7.2.3 Project website ...113

7.3 SUMMARY ..117

8 EVALUATION.. 118

8.1 EXPERIMENT ..118
8.1.1 Aims and objectives ...118
8.1.2 Experiment design ..119
8.1.3 Results and conclusions..120
8.1.4 Summary ...126

8.2 CRITICAL APPRAISAL..126
8.2.1 Semantic Web ...126
8.2.2 Ontologies...127
8.2.3 Speech acts ...128

8.3 OUR INITIAL GOALS REVISITED ..129
8.4 SUMMARY ..131

vii

9 CONCLUSIONS AND FUTURE WORK... 132

9.1 LIST OF OUR MAIN CONTRIBUTIONS..133
9.2 SUMMARY OF OUR MAIN CONTRIBUTIONS ..134
9.3 FUTURE WORK DIRECTIONS ..135
9.4 CONCLUDING REMARKS ...138

A: RST DEFINITIONS AND ANALYSES.. 139

A.1 DEFINITIONS OF THE RST RELATIONSHIPS ...139
A.1.1 Hypotactic relationships...139
A.1.2 Paratactic relationships ..145

A.2 RST ANALYSES OF THE DNS IN THE THESIS ...145
A.2.1 Chapter 1 and 9 – DN for the thesis ...146
A.2.2 Chapter 2 DN..147
A.2.3 Chapter 4 DN..148
A.2.4 Chapter 5 DN..148
A.2.5 Chapter 6 DN..149
A.2.6 Chapter 7 DN..149
A.2.7 Chapter 8 DN..150

A.3 DN FOR AN ABSTRACT OF A RESEARCH PAPER ...150

B: IMPLEMENTATIONS... 151

B.1 PREVIOUS PROTOTYPES ..151
B.1.1 Narrative support for research proposals ..151
B.1.2 CANS (Computer-Aided Narrative Support) ..152

B.2 LIST OF JAVA METHODS IN THE CURRENT TOOL ...154
B.2.1 Housekeeping methods ...154
B.2.2 Methods corresponding to the six core functions in Chapter 5158
B.2.3 Methods corresponding to the other functions in Chapter 5 ..163

C: DETAILS OF THE EXPERIMENT ... 179

C.1 THE QUESTIONNAIRE..179
C.2 RS-TREES PRODUCED BY THE VOLUNTEERS ...183

LIST OF FIGURES ... 192

BIBLIOGRAPHY .. 196

 Chapter 1

Introduction

Certain kinds of presentations, texts, have a kind of wholeness or integrity that others

lack. We recognise that they “hang together” and are understandable as whole

objects. They are coherent.

(Mann et al., 1992)

1.1 Background to the problem

The need to put things in writing could be, as Barbara Minto (2002) states in her book, “one

of the least pleasant aspects of a professional person’s job”. It is not just the need to produce

documents that is challenging but the requirement to produce good documents.

What is a good document? A good document should contain useful information for the reader.

Furthermore, the style of the sentences, grammar, language and punctuation should be

appropriate. However, a document in which these attributes are all flawless can still fail to

make sense. The way in which the sentences are placed together can dramatically influence

the reader’s understanding of the text. This, often undervalued, characteristic of a document is

called coherence. For a document to be good and effective, it must be coherent.

Achieving document coherence is not always straightforward. This is particularly true for

technical documents. By technical documents we refer to a variety of forms of

communication in a scientific context. Some examples include research papers, conference

presentations, theses and websites. Technical documents are often written by authors who do

not come from a linguistic background or have no formal training in writing (Kieras, 1989).

They are also commonly produced by multiple authors working together. In this case, the

possible lack of a group consensus and misaligned contributions by different authors can

affect document coherence even further.

We found that document coherence can be attributed to the story conveyed to the reader in a

document. Other researchers have made similar observations (Evans and Gruba, 2004, Zobel,

2004). Readers automatically search for relationships between the ideas that appear in

Chapter 1 Introduction 2

sequence (Minto, 2002) and deduce, perhaps even anticipate, the story. It is important,

therefore, to plan this story prior to constructing the document. However, current techniques

available for technical authors to organize the material in a document and collaborative

writing tools do not provide sufficient support to formulate this story.

1.2 Outline of our solution

Our solution to this problem is as follows: We introduce a new technique called narrative-

based writing and, develop and evaluate a tool that enables a team of writers engage in this

technique.

Narrative-based writing draws together ideas from two parallel strands of research: narratives

and technical writing. In particular, we have made use of a discourse theory developed by

linguists called Rhetorical Structure Theory (RST). In narrative-based writing, authors are

encouraged to write down a précis of the story their document will convey to the readers. This

story is called the document narrative (DN). As an example, see the DN for this thesis in

Figure 1-2.

Once the DN has been created, it can be analysed using RST to enhance and evaluate its

coherence. RST explains coherence by asserting relationships between parts of the text (e.g. A

motivates B). These relationships are illustrated as shown below. By identifying these

relationships, authors are able to understand and improve the DN. Moreover, it is conjectured

by the authors of RST that the text is coherent if these relationships can be assembled into a

tree structure. This attribute of RST gives authors a mechanism to judge the quality of their

DN before beginning to write.

The final part of the technique is producing the document. The sequence of parts in the DN

dictate the sequence of sections in the document and the RST relationships give some

guidance about the content of each of the sections.

We have, therefore,

devised a new

narrative-based

technique and

developed a tool.

Document coherence

is important but

currently there are no

tools or techniques to

support it.

Motivation

Figure 1-1: An example of a MOTIVATION relationship. The lack of support in existing tools

and techniques motivated us to develop narrative-based writing and the tool.

In order to extend the use of narrative-based writing to teams of geographically-dispersed

authors, we designed and built a Web-based tool. The most important aspect of implementing

this tool was studying, in detail, the functions that were needed to collaboratively manipulate

RST tree structures. These functions have been implemented in Java and have helped us

understand the complex computational aspects of manipulating RST structures.

Chapter 1 Introduction 3

In order to evaluate the results of our research, we have studied the impact of narrative-based

writing on a number of technical documents including presentations and websites. We also

conducted an experiment involving a group of volunteers to test the ideas of a DN and the

tool. These preliminary investigations have been encouraging.

1.3 A list of original contributions

The original contributions made by this research are listed below. They have been divided

into primary and secondary contributions.

• (PRIMARY) A new technique called narrative-based writing

A technique called narrative-based writing has been introduced (Chapter 4) which helps

authors, particularly those working together in a team, develop a consistent story for their

document. This technique brings together the key ideas from previously parallel strands

of research: technical writing and narratives. Narrative-based writing was developed to

address the shortcomings of other techniques, such as outlining, by providing authors

with a way of working out the natural sequence of sections for their document. The use of

RST in this context (i.e. to synthesise technical documents) differs greatly to its mainly

analytical applications.

• (PRIMARY) The design for a narrative-based tool for collaborative writers

The design of any collaborative working tool needs to be thorough. Our implementation

is made more complex by the non-trivial RST tree structures (RS-trees) that need to be

stored and maintained. Therefore, a combination of three models has been used to design

the tool (Chapter 5): a conceptual model, a business process model and a functional

model. The design culminates in a set of functions that are needed to manipulate the tree

structures. This design furthers the understanding of narrative-based writing and

modelling RS-trees. This design also allows the narrative-based functionality to be added,

in the future, to existing collaborative working tools.

• (PRIMARY) A web-based tool for collaborative narrative-based writing

A Web-based tool that implements the design is presented in Chapter 6. The tool was

developed using Java, a JSP-driven HTML interface and a relational database. Alternative

technologies such as XML were experimented with in two prototypes prior to this tool.

This tool is a proof of a concept of the design.

Chapter 1 Introduction 4

• (SECONDARY) A tutorial and a catalogue of case studies

We have produced a tutorial of narrative-based writing which is continuously being

expanded. Furthermore, a set of generic DNs for popular types of documents such as a

research paper, research proposal and presentation have been developed. Some of these

DNs and their RST analyses are presented in this thesis as case studies in Chapter 7. The

tutorial and the case studies will benefit technical authors when composing such

documents.

• (SECONDARY) Evaluation via an experiment and critical appraisal

The narrative-based technique and tool have been evaluated by us and also by a group of

volunteers in an experiment conducted in May 2006. The outcomes of the experiment

were encouraging and are described in Chapter 8.

1.4 Outline of the thesis

This introduction has, so far, outlined the problem addressed by our research, our solution and

the main contributions made by our work. The rest of the chapters are organised as follows:

Chapter 2, Background Literature, defines document coherence and describes why

collaborative writing makes coherence harder to achieve. We outline three methods by which

authors can plan the structure of their documents and several collaborative writing tools. We

show that they do not support document coherence. We discuss the connection between

document coherence and narratives, and investigate possible discourse theories that could be

applied to technical writing.

Chapter 3, Rhetorical Structure Theory (RST), RST is the theory that was chosen for

narrative-based writing. This chapter explains RST in detail and shows, by example, how it

can be applied to a text.

Chapter 4, Narrative-based writing, introduces and explains the new technique.

Chapter 5, A narrative-based collaborative writing tool: The design, presents a detailed

design for the tool. Three models are used for this design: a conceptual model, a business

process model and a functional model.

Chapter 6, A narrative-based collaborative writing tool: An implementation, describes an

implementation of the tool that is a proof of concept of the design in Chapter 5.

Chapter 7, Case Studies, contains case studies showing how narrative-based writing is

applicable to various genres of technical communication, with particular benefits in

collaborative writing.

Chapter 1 Introduction 5

Chapter 8, Evaluation, details the experiment conducted in May 2006 to evaluate our

technique and tool. Then we provide a critical appraisal of our work and compare it to some

related technologies.

Chapter 9, Conclusions and future work, presents the conclusions and areas of future work.

1.4.1 A document narrative for each chapter

To further illustrate the use of narrative-based writing, a DN has been included for each

chapter in this thesis. The current chapter is an exception because it contains the DN for the

entire thesis (Figure 1-2). Each DN was created after ruminating on the material intended for

the chapter and formulating the most appropriate story. The DN is always given at the end of

the chapter.

All DNs in the thesis will appear in text boxes with grey dashed lines as shown below. The

RST analyses for some of them are included in the body of thesis. The rest can be found in

Appendix A (section A.2). Most of the RST tree diagrams in this thesis have been drawn

using the free software called RSTTool (O'Donnell, 2000).

The DN below summarises the story we want to convey via this thesis. Note that it has been

divided into nine segments, each corresponding to one of the chapters.

Figure 1-2: DN for the thesis

[We believe that a narrative-based approach can help technical authors improve the

coherence of documents they produce collaboratively.]1 [Coherence can be attributed to

the story conveyed by a document. It is particularly difficult to get right in collaborative

technical writing. Current writing tools do not support document coherence.]2 [Narrative

and discourse theories, in particular RST, provide a solution.]3 [By combining the

knowledge of these two parallel strands of research (narratives and technical writing), we

have developed a new method of document structuring called narrative-based writing.]4

[In order to facilitate teams of geographically-dispersed authors to engage in narrative-

based writing, we have carefully designed a tool]5 [and done a Web-based implementation

of it.]6 [The new technique and tool are particularly beneficial in collaborative writing and

can also be applied to other genres of technical communication such as websites and

presentations.]7 [Preliminary investigations suggest that the narrative-based approach is

helpful]8 [and that the tool, with some enhancements, can be a valuable contribution to

technical authors.]9

 Chapter 2

Background literature

In chapter 1 we introduced the problem addressed in this thesis and outlined our solution. The

aims of this chapter are to form a firm basis for understanding this problem further and to

begin paving the path for the narrative-based solution that we propose in the forthcoming

chapters. In order to do this, the chapter is divided into two parts.

Part I looks at what it means for a document to be coherent and why it is common for

technical documentation to be particularly incoherent. One reason for this incoherence in

technical documents is that they are often produced by multiple authors. We proceed,

therefore, to examine the ways in which authors collaborate, highlighting the factors that lead

to poorly structured documents. Finally, we present an overview of three current techniques

that can be used to plan the structures of documents and some tools that help authors

collaborate with their peers. We show that there is a clear gap in these areas with regards to

document coherence.

Part II introduces the prospect of approaching document coherence from a narratives

perspective. Previous texts have referred to the presence of an underlying narrative or story in

a good document. The formal use of narratives in technical documents as shown in this thesis

is a novel approach that combines previously parallel strands of research and will be

explained in detail in chapter 4. We claim that the quality of a document can be improved by

thinking of a better narrative for it. In preparation for chapter 4, part II of this chapter defines

what a narrative is and examines some narrative theories (formally called “discourse

theories”) that have been developed by linguists and experts in narratology to analyse and

synthesise better narratives. This is continued in Chapter 3 where the discourse theory chosen

for our research, Rhetorical Structure Theory (RST), is discussed at length. RST is to become

the mechanism by which we assess a narrative for a given document before writing any text.

The two parts of the chapter are presented below.

Chapter 2 Background Literature 7

Coherence and collaborative technical writing

2.1 Document coherence: An informal definition

The concept of coherence is subjective and a precise definition is almost impossible. The use

of language, the reader’s prior knowledge of the subject area and even the layout of the text

can all affect how coherent a document is to a reader. However, for the purposes of this thesis,

it is necessary to discuss, and if possible specify, what is meant by the word ‘coherence’

within the context of our research.

Let us take the case of a set of related sentences, each of which is constructed well. If they are

arranged haphazardly to produce a paragraph, it is unlikely that the paragraph will make much

sense. Worse still, the paragraph may appear to convey a message but burden the reader with

having to make non-existent logical connections between the adjacent sentences. With just a

little bit of planning, the sentences can be positioned such that there is a natural, smooth

progression of ideas between them making it easier for the reader to understand the paragraph

just as the author intended it to be understood. It can even be said that such a paragraph

conveys a consistent story or narrative to the reader. This aspect of a text is what we call

coherence.

The above situation is best illustrated using the example below that has been taken from

Alistair Knott’s PhD thesis (1996). The figure shows two texts constructed using nearly

identical sentences placed in different orders. The text on the left is coherent because it is

easy to understand and conveys a story to the reader. The text on the right is incoherent. It is

difficult to decipher and there are no obvious relationships between adjacent sentences.

Figure 2-1: Example of a coherent (left) and incoherent text (right). Source: (Knott, 1996)

This definition of coherence can be extended to whole documents, both at the level of the

sentences (like in the example above) and the level of sections or chapters. Similar thought

Chapter 2 Background Literature 8

processes are necessary to work out the best order of the sections and how they would be

linked together. This sort of planning for short texts like a paragraph may seem trivial. Many

of us do it all the time in our conversations, e-mails and so on without paying much attention

to it. However, for larger texts such as papers, theses or books, it is not so straightforward.

For instance, this chapter needed to explore a multitude of ideas and areas of research. Several

plans were made to determine the best possible way of arranging all the sections or, to put it

in another way, to determine the best possible story that this chapter could tell its readers. One

might argue that the current version of this chapter is not appropriate either. However, the

point being made is that it is not always easy to plan for and ensure coherence in a text,

particularly in large documents (large technical documents, to be more precise).

2.2 Why focus on technical documents

By technical documents, we refer to everything from research papers and theses to

conference presentations and websites. Technical documents, unfortunately, have a reputation

for being poorly designed and difficult to read. Sometimes this is due to their scientific

content being pitched at a level that is either too high or too low for the reader. Most times,

though, the problems with these documents are related to coherence and how the information

is pieced together.

• One explanation for this is that technical documents are often not written by people with

formal training in writing or from linguistic backgrounds (Kieras, 1989). Winograd

(1999) describes technical documentation as “that burdensome chore that managers are

always trying to force onto recalcitrant…programmers”. This may not be applicable to

academic technical writing but rings true for some industrial settings. All this makes it

harder for some technical authors to recognise and correct problematic texts. Furthermore,

the tight deadlines to which these documents are produced mean that there is not much

time to fix problematic texts.

• Another, more likely, explanation for the lack of coherence in technical documents is

collaboration. It is very common to work with colleagues, in the same department or in

different countries, to produce a technical document (e.g. a research paper). It was

mentioned earlier that planning a coherent document is difficult. This is multiplied several

times in collaborative writing. Imagine a scenario where many authors are contributing

the sections of a document and also sharing opinions about where these sections should

be placed. How would such a writing team arrive at the best possible story for their

document? How would they make sure that each individual contribution adhered to this

story?

For these reasons, the domain of our research is collaborative technical writing. Technical

writing was chosen for two other reasons too. Being computer scientists, most of our writing

experience so far has been in this area, making it a suitable genre to apply our research to.

Chapter 2 Background Literature 9

Also, later in the thesis, we recommend generic structures for types of documents such as

research proposals. This cannot be done with other, less structured types of writing such as

creative writing. Even though there may be anticipated formats for some creative texts (e.g.

the typical set of moves in Figure 2-12 that is expected in a James Bond novel), others may

deliberately be constructed to defy recommended structures for added effect (e.g. a novel with

an unexpected twist at the end or a poem). We focus, therefore, on technical documents

produced collaboratively.

2.3 Collaborative writing

Collaborative writing (CW) is the process in which multiple authors work together to produce

one document. It is not just the soliciting of ideas about the document but the actual

contribution of the various sections which are then collated together to form the final

document.

CW has several advantages over single-author writing. In a survey done by Noël and Robert

(2004), the participants agreed that CW resulted in richer documents owing to diverse ideas,

input from co-authors with different expertise and task distribution. Theoretically, CW should

also be more efficient. Each author would have to produce just a section instead of the whole

document; when done in parallel, this should save time. Assuming that each section is written

by the relevant expert in the team, the sections are likely to be better and more accurate as

well.

The disadvantages of CW include difficult group management and coordination (Noël and

Robert, 2004), and documents that are poorly structured. Extra coordination is needed in CW,

especially when the authors are geographically dispersed. The sections contributed by the

authors may need to be edited to fit the eventual document structure. All this could lead to an

increase in the time spent, in comparison to the time required for a single author to write the

same document. The final document may also have some problems with coherence. For

instance, some authors lower down in the hierarchy may not be aware of the whole purpose

and structure of the document (e.g. a PhD student delegated some writing by his supervisor).

The sections thus created may not fit together properly leading to documents that have been

described as ‘arbitrary’ (Lowry et al., 2004).

Nevertheless, CW is becoming increasingly popular and there are, broadly, two ways in

which these authors can opt to work (see below). Each model has its own pros and cons with

regards to the quality of the eventual document.

2.3.1 Ways in which authors collaborate

When authors work collaboratively, they can choose to coordinate their work in one of

several ways. All these methods can be divided into two models: sequential and parallel.

Chapter 2 Background Literature 10

Sequential writing model

In this model, only one author can edit the document at a given time and once his/her task is

complete, passes the document along to the author next in the chain.

Figure 2-2: Sequential writing model

This model is easy to organise and improves coordination between the authors. Each author

can read the previous authors’ work before making his contribution. This can help improve

coherence. However, there are some disadvantages (Lowry et al., 2004) in this model such as

the lack of group consensus and the difficulty in ensuring that all document sections are

addressed adequately. Unless the team reviews the document, there is no way of finding out if

all the sections meet everyone’s expectations and fit the story that was intended for the

document. Also, the order of the authors greatly influences the final document. One author

can change previous contributions or bias subsequent authors.

Parallel writing models

In this model, a team divides the writing task into discrete units and works in parallel. This

improves group consensus and efficiency. If the authors are able to view the rest of the

document as they write, it is more beneficial for document coherence.

There are several variants of this process. In one, team members are assigned roles depending

on their expertise such as ‘writer’, ‘reviewer’ and ‘editor’. Members then work on the

document according to their roles. In another variation, the document is divided into sections

Figure 2-3: Parallel writing model

- Document

1 2 3

- Section in the document

- Document

Chapter 2 Background Literature 11

and each author is assigned a section that he/she is responsible for. The completed sections

are submitted to the team leader who assembles them together to form the final document.

This approach is sometimes called horizontal-division writing (Lowry et al., 2004) and can,

unfortunately, result in arbitrary sections that do not constitute a coherent story in the eventual

document. Alternatively, the team leader will have the mammoth task of editing each section

to make them fit. In (Alred et al., 2003), the sequence of steps in this parallel writing process

is listed as:

1. Designate one person as the team coordinator.
2. Collectively identify the audience, purpose and project scope.
3. Create a working outline of the document.
4. Assign segments or tasks to each team member.
5. Establish a schedule: due dates for drafts, revisions, and final documents.
6. Agree on a standard reference guide for style and format.
7. Research and write drafts of document segments.
8. Exchange segments for team member reviews.
9. Revise segments as needed.
10. Meet your established goals.

Both the writing models above have their advantages and also their weaknesses with respect

to the time taken, workload on the team leader and, most worryingly, the coherence and

consistency of the final document produced. One way of improving this situation is by

planning the structure of the document at the start of the writing process (as depicted by step 3

in the list above).

2.4 Three techniques to organise the ideas in a document

There is evidence to suggest that a period of planning can significantly enhance the quality

and coherence of a document (Torrance and Bouayad-Agha, 2001). Such a plan makes the

author aware of the goals that the entire document (and individual sections) should fulfil and

the structure it should adhere to. Outlines are a popular method of planning documents. In this

section, we discuss outlines and two other planning techniques. We concentrate on the impact

these methods have on the coherence of collaboratively written documents, traits that make

them popular and gaps in their structuring methodologies.

2.4.1 Mind maps

Mind maps are diagrams that help authors strategically visualise their thinking on a particular

topic. They are organised displays of information. Figure 2-4, for instance, shows the key

ideas in this chapter. The method by which these diagrams are drawn is called mapping or,

sometimes, clustering (Roth, 1999). Authors start with a topic at the centre and then generate

a web of related ideas from that (Steele, 2002).

Chapter 2 Background Literature 12

In a mind map, key ideas are usually enclosed in boxes (or “clouds”) and lines (sometimes

labelled) are used to indicate relationships between these ideas. Some authors also use various

ways to differentiate the main concepts from the sub-concepts. In Figure 2-4, for instance, the

levels of concepts are indicated, in order, using dark, dashed and normal lines in the boxes

(and circles).

Figure 2-4: A map showing the ideas that are presented in this chapter

Mind maps are good visual aids. In writing, one can imagine a group of authors sitting in a

room discussing a document and the team leader plotting the corresponding mind map on a

white board. There can be debates about the inclusion, exclusion and importance of concepts

and the how they relate to one another. At the end of the session, the authors have a logical

picture or model of the document in their minds. This mental image will serve well when

formulating the content of the document.

However, the benefits of using a mind map are unclear when the writers are far apart, having

no or infrequent face-to-face meetings. Much of the information in a mind-map is gained by

understanding the associations made between ideas. The questions or relationships raised by

the connecting arrows may be ambiguous. So, how well would a mind map drawn by one

author in the team communicate the ideas to a second author?

Furthermore, in order to become a practical guide to writing, a mind-map needs to be

transformed into a linear format, such as an outline, to reflect the order in which the ideas will

appear in the document. There is no definite way to derive this linear format from a mind map

and, once again, may differ from author to author. Therefore, a mind map alone is not an

adequate planning technique.

Chapter 2 Background Literature 13

PART I
2.1 Document coherence
2.2 Why technical documents
2.3 Collaborative writing

 Sequential writing
 Parallel writing

2.4 Three techniques

 Mind maps
 Outlines
 Pyramids

2.5 Tools

PART II
2.6 Narratives and theories

2.7 Summary of the chapter

In summary, the diagrammatic representation of ideas in a mind map is useful but the lack of

a defined process by which it translates into a linear structure for a document is frustrating

and, possibly, detrimental to the document.

2.4.2 Outlines

Outlines are, by far, the most popular way of planning a document. An outline is “an orderly

plan…showing the division of ideas and their arrangement in relation to one another” (Roth,

1999). An example of an outline is given below, showing the organisation of the content in

this chapter.

Outlines can be composed of noun phrases (as shown in Figure 2-5) or whole sentences.

Relationships between the phrases are shown by indentation (main topic and sub topics) and

using the same kind of symbol for equally important ideas (A,B,C… I,II,III...1,2,3 and so on).

Figure 2-5: Outline for this chapter

Outlines transform notes, drafts and other material into an ordered progression of ideas

(Lester and James D. Lester, 2005). There is a direct correspondence between an outline and

the sections in the document, making it a useful reference and guide.

A writing team can agree on an outline at the start. If the team is geographically dispersed,

this is something that can be done by e-mail. Phrases can be inserted and deleted, and their

order changed. The added advantage is that all the team members are likely to be able to

relate to outlines since the technique is popular and easy.

Chapter 2 Background Literature 14

However, outlines lack the explicit connections between the ideas that were made in mind

maps. Even though hierarchical relationships are shown (such as sections, sub sections and so

on), there is little indication of the purpose of each section and the role it is meant to play.

This latter kind of information will help improve coherence since it advises authors on how to

structure their text. For example, section 2.4 in the sample outline above is expected to

discuss planning techniques. But how should this discussion be crafted? Why is this section in

this chapter? What effect is it supposed to have on the reader such that it prepares the reader

for the next section?

So, in summary, outlines are popular, easy to understand and have a one-to-one

correspondence with the document. There is, however, a lack of information in them to

support overall coherence. An outline only seems to function as scaffolding for the document.

2.4.3 Pyramids

Pyramids are another way of structuring information in a document. For years, journalists

used “inverted pyramids” when writing newspaper articles. This meant that they placed the

most important piece of information (often the conclusion) at the start of the article.

Graphically, this was represented by the broadest part of the pyramid being at the top (hence,

inverted). The rest of the article would contain information of diminishing importance. This

had the advantage that if the reader left the article at any given point, he would still have the

whole story (or certainly, the general gist of it). This was ideal for newspaper reports and web

pages.

Figure 2-6: The inverted pyramid structure used by journalists

However, for most documents there needs to be an introduction at the start and a gradual

build up to the most important part of the document (for example, theses and papers). This is

often depicted by drawing the pyramid the “right way up” (i.e. with the broadest part of the

pyramid at the bottom). The Pyramid Principle is a technique introduced by Barbara Minto

(2002) that formalises the use of pyramids in this way. The important feature in this technique

is the organisation of ideas such that it corresponds to the reader’s thinking.

She recommends structuring the ideas in a top down fashion to form a pyramid as illustrated

in Figure 2-7. The top-most box in the pyramid presents the central subject (the introduction)

under which all the other ideas belong. The pyramid is governed by vertical and horizontal

relationships.

most important

least important

Chapter 2 Background Literature 15

The vertical relationships in the pyramid are ‘question and answer’ relationships. Each box in

the pyramid is expected to raise certain questions in the mind of the reader. These questions

should be answered in the boxes immediately below it. The questions raised by this next level

in the pyramid should be answered in the level below. This is continued until the writer is

confident that the reader will have no more questions. As a general rule for a good document,

Minto advices not to answer a question before it has been raised in the reader’s mind or to

raise a question that will not be answered.

Each level in the pyramid also has horizontal relationships. These are logical relationships.

The boxes should not only answer the questions raised in the line above them but answer

them logically. This is done by presenting clearly either an inductive or deductive argument.

To illustrate this process further and to compare it to the previous techniques, the pyramid

principle has been applied to the structure of this chapter too (see Figure 2-7). More details

about the Pyramid Principle can be found in (Minto, 2002).

An important point in this technique is the consideration of the document from the reader’s

perspective. The defined need for relationships between and across levels in the pyramid

contributes to coherence. The technique leads to a diagrammatic display of ideas that provides

a good visual aid. It also relates to the hierarchical structure of a document (main topics

followed by sub topics underneath them) and the linear sequence of the sections.

The question-and-answer dialogue with the reader is also ideal, creating a certain amount of

curiosity in the reader’s mind before quickly supplying the answer. The Pyramid Principle

contains the right amount of detail necessary to improve coherence. Focusing on creating

these logical relationships in the text will no doubt lead to better documents.

The main disadvantage, in our opinion, is that the pyramid principle is comparatively harder.

Chapter 2 Background Literature 16

Figure 2-7: Barbara Minto’s pyramid principle applied to the content of this chapter. There are

vertical question-answer relationships and horizontal logical relationships in the pyramid.

To sum up: We have studied three techniques with regards to their ability in improving the

coherence of co-authored documents.

• A graphical representation of ideas like a mind map is useful but cannot be relied on

entirely. Sooner or later, a mind map has to be converted into a linear format to work out

the sequence in which the ideas should appear in the document.

• Outlining is a popular and easy technique to derive the linear sequence of sections in a

document. However, an outline does not have enough information to justify this linear

format or advise the authors about the logical tone that their individual sections (and the

whole document) should take.

• The pyramid principle gives a good, well-defined structure to create this logical flow in

the document. While being useful, it is relatively complex.

• All three techniques also have no way of guaranteeing (or evaluating) coherence.

We recognise a need for a planning technique for co-authors that will be a graphical model,

provide a natural ordering of sections and connect these sections with logical

relationships that justify their existence and location in the document. With respect to

collaborative writing, the technique also needs to be such that plans produced by one author

can easily be transferred to and understood by another author. These criteria are re-examined

in chapter 4 when we introduce narrative-based writing.

What? Why?

Why?

Document coherence is hard to achieve in
collaborative technical writing. Current tools
and techniques do not support coherence either.
However, narratives may be able to help.

Technical documents
produced collaboratively
are sometimes arbitrary

Current tools and
techniques do not
support coherence

Improving the
underlying story can
help coherence

Technical
authors
have no
training in
writing

Collaborative
writing is
difficult to
coordinate

Writing
tools

Planning
techniques

Theories can
enhance and
verify this
story

How?

Coherence
linked to the
underlying
story

Chapter 2 Background Literature 17

2.5 Collaborative writing (CW) tools

In section 2.3, the difficulties in achieving document coherence in CW were raised. We

mentioned that one way that this situation can be helped is by using a planning technique

prior to writing. Another way is to make use of an appropriate software tool. Having studied

existing planning techniques in the previous sections, we now move on to look at some tools

that support collaborative writing.

Writing software are many and varied (Palmquist, 2003, Porter, 2003), supporting various

aspects of the authoring process. For instance, some tools aim to increase the productivity of

the author and enhance the layout of a document, famously Microsoft Word and LaTex. Such

tools are powerful in what they were designed to do but have little relevance to coherence or

collaborative writing. The focus of this section is, therefore, on tools that aid collaborative

writing. We consider these tools with respect to two questions:

1. How do these tools support collaboration? (to identify a set of features supported by a
majority of collaborative writing tools)

2. Do these tools help improve coherence?

The idea of computer support for collaborative working has been around for several decades.

It has even generated a dedicated field of research called CSCW (Computer-Supported

Cooperative Work). It is impossible to explore all the software that has since been generated

to support collaborative working. There are just too many of them. So, we examine only a

demonstrative sample of collaborative writing tools, presented below in chronological order.

The first in our list is a tool called Quilt from 1988 (Fish et al., 1988). It allowed users to

change, annotate and share documents. It provided messaging, computer conferencing and

notification facilities to support communication between the collaborators of a document.

Another stand-alone application of that era was the PREP editor (Neuwirth et al., 1992,

Neuwirth et al., 1990, Neuwirth et al., 1994). Instead of storing whole documents, it

introduced a concept called a ‘chunk’ (Neuwirth et al., 1990) which roughly corresponded to

an idea and was able to contain text, grids or images. One of the important features of PREP

was the use of a flexible difference-finding algorithm to find discrepancies between versions

of documents. This enabled authors to see, at a glance, the changes that other authors had

made to the document. There was no obvious support for document structures and coherence.

These tools are presented here mainly for their historic value. They were developed at a time

when CSCW was still in its infancy and, while demonstrating useful concepts such as version

control and tracking changes, the success of both of them was limited.

There were several other collaborative tools developed at the time (Genthial and Courtin,

1992). However, with the success of the WWW, the use of web-based tools for CW was

becoming increasingly popular. Even the standard HTTP/1.1 protocol was extended to

support the features necessary for asynchronous CW. The new protocol was called WebDAV

(World Wide Web Distributed Authoring and Versioning). It provided additional services for

Chapter 2 Background Literature 18

editing and managing files on remote web servers in a secure way (e.g. locking, version

management, access control and so on) forming a good basis for building web-based CW

applications (Dridi and Neumann, 1999). Today, there are many web-based tools that assist

collaboration. We discuss a couple of them.

Writely1 is a free web-based tool that allows authors to upload documents (in one of several

formats) and collaborate with specified co-authors in real time. Documents can be edited

online via an interface similar to that of Microsoft Word. If someone else is working on the

same document at the same time, the changes are merged instantly. There is offsite storage

and backups are made every ten seconds. The revisions of the documents can be compared

and authors can roll back to previous versions (thus ‘undo’ing some updates). Users accessing

the document can be owners, collaborators or viewers (user roles). Owners own the document

and can edit and delete it. Collaborators can edit the document and invite other collaborators.

Viewers can only read the latest version of the document but cannot make changes.

Figure 2-8: An example of a document in writely. The figure shows two versions of the document

being compared.

Writely possesses all the basic requirements for CW: version control, tracking changes,

authorising users and so on. Furthermore, web-based tools are contemporary, are simpler to

build and allow easy access. To use Writely, for example, users only require a web browser.

We conclude the discussion on web-based tools with a quick look at Wikis. Wikis are

websites that allow its users to add, edit and remove the site’s content. They are among the

newest forms of communication on the web. A history of revisions is often maintained and

therefore, changes can be undone by reverting to an older version. The uniqueness of Wikis is

1 http://www.writely.com/

Differences between the versions are highlighted in green

Chapter 2 Background Literature 19

that there is no prior determination of the users that are allowed to edit the content and is, in

this sense, open to all. This can have both advantages and disadvantages. Wikipedia, for

example, is a thriving wiki. Readers contribute the facts with some minimal supervision from

the host site. The varying expertise of the readers means that the information is thorough and

up to date.

At the same time, there is always a question about the validity of the information on wikis

(Johnson, 2006). There is no guarantee that individuals contributing to wikis are trustworthy

and unbiased. An example where a wiki failed was the first ever wikitorial hosted by the LA

Times in June 2005. Their editorial was re-written by about 400 “wikipedians”. However, two

days after its launch the site had to be taken down because of some inappropriate content that

was posted online.

Version management software like CVS and LibreSource also assist collaborative writing by

maintaining a systematic record of revisions and merging versions (see section 5.2 for a

discussion of these tools with regards to version control). Merging is an important point to

raise here. Co-authors working on individual local copies of the document are bound to make

conflicting changes. Several merge algorithms have been developed to integrate these

changes. A classic approach is to reproduce every change in all the copies of the document.

However, with this method, the merged result may not always be correct.

Figure 2-9: Integration of changes using the Operational Transformation method (Source: (Molli

et al., 2003))

Chapter 2 Background Literature 20

Figure 2-92 shows two authors editing a paragraph which initially has three sentences labelled

A, B and C. Both authors insert new sentences. On the left, the change made by one author is

just replicated in the other author’s copy. This results in two different merged versions

(ABXYC and ABXCY).

A merging technique called Operational Transformation (used in LibreSource) (Molli et al.,

2003) improves this situation by integrating the changes made to the individual copies and

preserving the context in which they were made (referred to as ‘intention preservation’). So,

on the right hand side of Figure 2-9, the operation performed by User 2 has been modified so

that it takes into account the previous operation done by User 1. This results in both users

having the identical versions of the text (ABXCY). This algorithm provides some assistance

to coherence by making sure that the merged versions have all the changes integrated

correctly. However, syntactic equivalence alone does not guarantee coherence and is not a

complete solution to our problem (De-Silva and Skaf-Molli, 2006).

Our study into writing tools also included software that provided templates for users to create

documents. For instance, the Newnovelist3 software (developed and published by Creativity

Software Ltd.) claims to help a novice write a novel in five steps. The tool provides fixed

templates for various genres of novels. However, these tools were not included here because

they give no leeway to authors to be creative or explore document structures on their own.

These are not feasible solutions to improving coherence of documents even though the

suggested templates can be good guidelines to the writing.

One may also notice the absence of tools like Mindmapper4 - that helps draw mind maps –

and tools that assist in the creation of outlines in our discussion. This is deliberate because it

was decided earlier (section 2.4) that mind maps and outlines were not sufficient to improve

the coherence of documents. Also, the number of writing tools is far too many for us to be

able to cover everything here.

2.5.1 Discussion

Writing tools have had varied success in appealing to collaborative writers. Some authors

only ever use e-mail to communicate their ideas and word processors to produce the

documents that they then mail to each other (Noël and Robert, 2004). However, despite these

debates about the usefulness of specialised collaborative writing tools (Noël and Robert,

2004, Pargman, 2003), programmes like CVS and even the “track changes” option in Word

are in popular use.

Software tools do help collaborative writing in many aspects. Some useful features of

collaborative writing tools are listed below:

2 This diagram is similar to the figure in (Molli et al, 2003). We focus on changes to a paragraph while
their figure illustrated changes to a single word.
3 Available from www.amazon.co.uk
4 http://www.mindmapper.com/

Chapter 2 Background Literature 21

• Being able to track changes

• Version control and the ability to revert to previous versions

• Merging of versions (and thus recognising syntactic conflicts)

• Being able to identify the contributor of each change

• Controlling who has rights to access and change the document

• Some tools are web-based allowing easier access

The area of collaborative writing that our research focuses on is coherence. An explanation of

what we mean by the word coherence was given in section 2.1. We were, therefore, looking

for software that supported co-authors make decisions about which section should go where

in a document so that it presented a good story. However, we were unable to find such

support in the tools that we have come across during the course of our research. The closest

the tools got to improving coherence was by making sure that the authors worked on

consistent copies of the document and by preserving the context in which changes were made

to these copies. This, however, is no guarantee of coherence.

This prompted us to look into ways that coherence could be better supported.

Chapter 2 Background Literature 22

Narratives and narrative theories

2.6 The role of narratives in technical writing

A narrative can be broadly defined as “the…representation of a series of events

meaningfully connected in a temporal and causal way” (Onega and Landa, 1996). While some

researchers distinguish between a story and a narrative (Lothe, 2000, Abbott, 2002), others

use the two words interchangeably. In this thesis, a narrative is considered to be analogous to

a story.

The word ‘narrative’ has been used in connection to the structuring of technical documents in

several texts. For instance, when describing the pyramid principle, Barbara Minto (2002) uses

the terms “narrative flow” to emphasise the need for a smooth story in the introduction. Evans

and Gruba (2004) say that a thesis should “read like a novel”, thus implying the need for a

story or a smooth progression of ideas. Similarly, other researchers such as Zobel (2004) have

alluded to the need for a story (or narrative) to improve documents in computer science. We

too turned to narratives in our attempt to address coherence. It was a natural development of

our research.

The need for a consistent narrative is apparent, in our opinion, in novels, movies and other

stories. A murder mystery, for example, will only succeed if the plot unravels in a logical

sequence. This requirement is less obvious in technical and business writing where the

emphasis is mainly on the factual content as opposed to the storyline. However, even

technical documents are more effective if they present a well planned story to the reader. One

of the major faults with technical writing, particularly ones with multiple authors, is that the

various sections do not seem to fit together properly. We, therefore, attribute the coherence of

a document to the narrative it conveys to the reader. We claim that the more coherent this

narrative is, the more coherent the document will be. This idea is the basis for the new

technique we introduce in chapter 4.

Having identified the role that narratives can play in technical documentation, we went further

to explore methods by which narratives could be improved. Were there defined ways to

structure better narratives? Theories? It turned out that there were many theories developed by

linguists and experts in narratology to analyse and synthesise well structured narratives. We

realised that using such a theory will benefit technical documents since the underlying story in

them could be verified and improved. With this intention, we discuss some of these theories

below.

2.6.1 Understanding and improving narratives

It appears that there are two ways in which narratives have been studied. The first was to

identify regular structures for a genre of narratives and use this as a guideline when creating

Chapter 2 Background Literature 23

new text belonging to this genre. The second was to develop mechanisms by which the human

thinking process behind the construction of a successful narrative could be modelled and

emulated. A similar distinction is made in (Lang, 1999). We discuss both these approaches,

presenting three theories for each.

For the first category, we discuss the work of Gustav Freytag, Vladimir Propp and Umberto

Eco. They have identified regular structures for a play, the Russian folktale and James Bond

stories respectively.

(1) In 1863, the German journalist and writer, Gustav Freytag, recommended a five-part

pyramidal structure that he believed was the most successful format for a play (Freytag,

1863).

Figure 2-10: Freytag’s pyramidal structure for a play (Freytag, 1863)

Each part in Freytag’s pyramid has a specific function and could consist of a single scene or a

succession of connected scenes (an act). As the name suggests, the introduction introduces

major characters, sets the theme for the plot and perhaps even hints of the forthcoming

conflict (Wheeler, 2004). The second part, rise, represents an increase in tension or

uncertainty. Climax is the part with the greatest tension and audience involvement, usually

situated in the third act of the play. The fourth part usually has falling fortunes for either the

hero (if it is a tragedy) or the antagonist (if it is a comedy). This section culminates in the final

part called the catastrophe. If it is a tragedy, the final part will be a disaster involving the hero

and his loved ones. If it is a comedy, this will be a denouement (or conclusion) leaving the

antagonist worse than he started off with at the beginning of the play. After this final disaster,

the suspense and tension ends, providing the audience with closure.

(2) Similarly, Vladimir Propp studied 128 Russian folktales (Propp, 1928) and arrived at a

sequence of 31 generic narratemes (smallest narrative units), most of which were present in

each folktale. A few of these narratemes are listed below. Propp’s narratemes have been

implemented in software such as the Joseph system (Beaubouef and Lang, 1998) to

generate tales that resembled folktales.

Rise

Introduction

Climax

Return or fall

Catastrophe

Chapter 2 Background Literature 24

Figure 2-11: A few of Propp's narratemes for the Russian folktale

(3) The third example we present in this category is the classic sequence of moves identified

by Umberto Eco (1979) in all of Fleming’s James Bond novels. In each story, Bond’s ‘boss’

(M) assigns him a task which evokes some opposition from a villain. There is usually a

woman who becomes involved in the conflict. The villain has temporary success when he

captures Bond. However, in the end, the villain is always defeated and James Bond emerges

as the winner. Below, this structure is repeated verbatim from (Eco, 1979).

Figure 2-12: Scheme of moves for a James Bond novel. .M represents James’ ‘boss’ (Copied

literally from (Eco, 1979))

We presented three regular patterns identified for specific types of stories and plays. For the

most part, readers welcome new but familiar patterns (Sharples, 1996). Take the James Bond

movies for example. The audience is aware that James Bond will always win in the end but

still enjoy watching the different settings and twists that make it difficult for Bond to win.

This latter point is also the flaw in these fixed templates. For creative writing, generic

structures do not do justice to the slight variations to the patterns that make each story unique.

For technical writing, this is not so much of a problem since most documents have similar

patterns. However, these templates do not give authors an understanding as to why they are

more popular than others. Such knowledge will help authors make decisions about whether or

not their documents are good and coherent.

A. M moves and gives a task to Bond;
B. Villain moves and appears to Bond (perhaps in vicarious forms);
C. Bond moves and gives a first check to Villain or the Villain gives first check to Bond;
D. Woman moves and shows herself to Bond;
E. Bond takes Woman (possesses her or begins her seduction);
F. Villain captures Bond (with or without woman, or at different moments);
G. Villain tortures Bond (with or without woman);
H. Bond beats Villain (kills him, or kills his representative or helps at their killing);
I. Bond, convalescing, enjoys Woman, whom he then loses.

1. A member of a family leaves home (the hero is introduced);

…
12. Hero is tested, interrogated, attacked etc, preparing the way for his/her
receiving magical agent or helper (donor);

…

16. Hero and villain join in direct combat;

…

30. Villain is punished;

31. Hero marries and ascends the throne (is rewarded/promoted).

Chapter 2 Background Literature 25

The second approach to narrative analysis has led to theories that, in our opinion, equip the

authors with knowledge of how stories work. This allows them to create, analyse and justify

suitable structures themselves. This is more suited to enhancing the coherence of technical

documents than just providing authors with templates. We looked at several of these theories

with the aim of picking one for our research. We discuss three of them below with regards to

the following criteria:

1. Simplicity

2. Complete definitions that help the authors produce texts as opposed to just analysing

them

3. Ability to provide some way of judging if a narrative is coherent

4. Suitability for technical documents

In order to illustrate each of the theories better, we apply each one to the simple, light-hearted

example below.

(1) First, we present Wendy Lehnert’s theory (Lehnert, 1981). This theory is a bottom up

approach to analysing texts by breaking them up into affect states. An affect state is a smaller

entity that occurs with respect to one character. There are three types of affect states.

+ Events that please (positive events)

- Events that displease (negative events)

M Mental states of the character (neutral effect)

A map of chronologically ordered affect states can be drawn for each character of the story

(see Figure 2-14). Diagonal links signify causalities of affect across characters.

Lehnert recognised about fifteen recurring patterns in which these affect states occurred. She

called these groups of affect states plot units. A story could be summarised by using its plot

units. Two examples of plot units are given below. The success plot unit depicts a mental state

of a character leading to a positive event. The failure plot unit leads to a negative event.

Figure 2-13: Examples of two plot units identified by Wendy Lehnert

SUCCESS

 M

 +

FAILURE

 M

 -

Fido is usually a happy dog.

One day, Fido was unhappy because he had got fleas and could not stop scratching.

The vet recommended a flea treatment which got rid of the fleas.

Fido stopped scratching and was happy again.

Chapter 2 Background Literature 26

Figure 2-14: Wendy Lehnert's affect states applied to our short story

This is a reasonably simple theory to understand but while been useful to analyse texts, it

does not provide much guidance regarding the production of texts. Ideally we want a theory

that will help authors generate better narratives. Also, the reliance on characters in the

analysis is not appropriate for technical writing.

(2) The second theory that we found interesting is the classification of narrative events by

Bremond (1980). Narrative events in a story were divided into two basic types: “amelioration

to obtain” and “degradation expected”. He describes three ways in which these two types of

events can be combined in a story. One such combination is called coupling. This is when the

amelioration of the fate of one character coincides with the degradation of the fate of another

character (with opposite interests) like in our sample story (see below).

Amelioration to obtain (Get rid of fleas) vs. Possible degradation (Flea could be treated)

Amelioration process (Flea treatment) vs. Degradation process (Flea treated)

Amelioration obtained (Fido happy) vs. Degradation achieved (Flea unhappy)

Figure 2-15: Applying Bremond's theory to our sample story

Once again such a theory would not be applicable to technical writing. It was interesting

because it presented ways in which events could be combined to form different types of

stories and we were curious to find out if this approach was possible in technical documents

too. The answer, in our opinion, is no.

Chapter 2 Background Literature 27

(3) Finally, we present Centering Theory (Grosz and Sidner, 1986, Grosz et al., 1995). This

theory focuses on the local coherence of a discourse. A discourse is a sequence of utterances

that exhibit coherence. The theory suggests that each of these utterances has a centre which

links it to other utterances in the discourse. Each utterance is assigned a set of forward-

looking centres and a single backward-looking centre (except the first utterance in the

discourse). The symbols for these concepts are given below.

C – Centre

U – Utterance

Cf (Un) – Set of forward looking centres of utterance Un
Cb(Un) – The backward looking centre of utterance Un

The eventual coherence of the text is determined by the nature of the transition of these

centres from one utterance to the next. They define three ways in which this transition can

happen. We examine one of them below.

Centre Continuation:

Cb(Un+1) = Cb(Un) AND this entity is the most highly ranked element of

Cf(Un+1). In a coherent discourse, Cb(Un+1) will go on to become Cb(Un+2) and

so on.

This is the easiest transition for the reader to understand and is shown below.

U1 : Fido is usually happy.

U2 : He suddenly became unhappy and started scratching.

U3 : He was taken to the vet.

The two other transition types are Centre Retaining and Centre Shifting (Cb(Un+1) ≠ Cb (Un)).

Center shifting is demonstrated in the example below and it is clear why a reader would find

it difficult to comprehend.

U1 : Fido had fleas.

U2 : He was taken to the vet.

U3 : He is generally very good with animals.

The theory goes on to present two rules that govern the centre transitions of coherent

discourses and is therefore able to guide an author towards a better narrative. According to the

theory, an author should aim for centre continuation and avoid centre shifts. The examples

above are all of very short texts but this theory can, in our opinion, be extended to whole

documents. In this case, the rules will apply to the centres of entire sections. Due to the formal

nature of its definitions, this theory appears to be something that can be implemented in

The backward and
forward centre of
these utterances is
Fido.

U3 is confusing. It
actually refers to the
vet but it could
easily be taken to be
about Fido.

Chapter 2 Background Literature 28

software. The drawback of this theory is that it is time consuming to apply and has no

indication of the logical relationships between utterances.

Centre continuation is definitely important for coherence. However, is it the only requirement

for coherence? Are there other factors that govern the quality of the underlying story told in

documents? The answer came in the form of coherence relationships; the concept of there

being interdependencies between parts of a text that went beyond just centre continuation.

Several researchers pointed out that there were implicit relationships between segments of a

text that held it all together and made it more coherent. One such researcher was J. R. Hobbs

who introduced a set of coherence relations (Hobbs, 1982, Hobbs, 1985):

Occasion Elaboration

Evaluation Exemplification

Background Contrast

Explanation Violated expectation

Parallel

For instance, in our sample story, the fact that Fido is usually a happy dog provides

background information to the events that follow next. Without it, the observation that Fido is

unhappy bears no special significance.

Figure 2-16: A coherence relationship

The rest of the story can be seen as a problem (Fido is scratching) and a solution (flea

treatment). The need to make Fido happy again could be the motivation to take him to the vet.

Applied recursively, these relations explain the coherence of a narrative in a hierarchical

form, producing a tree. Hobbs (1985) states: “In a well-planned text, it is possible that one

tree will span the entire text.” This idea is propagated further and more completely in

Rhetorical Structure Theory (RST) (Mann and Thompson, 1988).

RST is simple, has precise, detailed definitions for its relationships (useful for technical

authors wanting some certainty that the correct relationship is being applied) and it can be

used as a guide to producing coherent narratives. RST has the added benefit that it, to some

extent, allows an author to gauge the quality of the narrative by considering the number of

segments in it that are involved in RST relationships. Mann and Thompson also conjecture

that if all the relationships can be assembled to form a tree, the narrative is likely to be

coherent. This provides a way to evaluate narratives.

background

Fido is usually happy (….Rest of the story….)

Chapter 2 Background Literature 29

RST has also become one of the most popular discourse theories with a multitude of

researchers experimenting with, studying, applying and implementing it. For all these reasons,

RST is the theory chosen for our research. The diagram below shows one possible RST

analysis of our sample story. The way to do this analysis is explained in detail in the next

chapter.

2.7 Summary

The aims of this chapter were to further the understanding of the problem we address in the

thesis and provide some background material for the solution we propose in the forthcoming

chapters. We allow the document narrative (DN) below to sum up the story that we had hoped

to convey in this chapter.

Figure 2-18: DN for this chapter

The vet

recommended a flea

treatment which got

rid of the fleas.

Fido stopped

scratching and was

happy again.

Motivation

3-41-2

Solutionhood

One day, Fido was

unhappy because he

had got fleas and

could not stop

scratching.

Fido is usually a

happy dog.

Background

Figure 2-17: RST analysis of the Fido and Flea story

Coherence is the attribute of a document (that is assumed free of spelling, grammatical or

factual errors) which makes it easy to read and understand. It is not always easy to achieve

coherence, particularly when technical authors have to work together to produce large

documents. We anticipate that the use of a planning technique at the start of the writing

process and an appropriate software tool can help this situation. However, the current

techniques and tools available to authors do not adequately support document coherence.

We then began looking at ways to fill this gap. We conjecture that coherence can be linked

to the story (or narrative) that a document conveys to the reader and that enhancing this

story will improve the coherence. Studies into narratives revealed that there are theories

to formalise the structure of a text and make sure that it is consistent. Such a theory can

help technical authors formulate better stories for their documents. After examining

several possible theories, we have chosen Rhetorical Structure Theory (RST) for our

research.

 Chapter 3

Rhetorical Structure Theory (RST)

A discourse theory can help understand and enhance the coherence of a narrative. As seen in

the previous chapter, there are several such theories. Rhetorical Structure Theory (RST),

described by Mann and Thompson (1988) is one of them.

RST was created in the 1980’s by a group of researchers interested in Natural Language

Generation: William Mann, Christian Matthiessen and Sandra Thompson. Since it was first

described, the theory has enjoyed widespread success and been used in a variety of

applications ranging from teaching students to write (Mahmud and Ramsay, 2005, Mahmud,

2004) to generating puppet presentations (Rizzo et al., 2002) and Japanese abstracts (Ono et

al., 1994). Other applications of RST are described in (Taboada and Mann, 2006a).

RST provides a bird’s eye view of a text (Taboada and Mann, 2006b). It asserts a hierarchical

structure as discussed at the end of the last chapter. Each part of the text is expected to have a

purpose and be related to the other parts. A text is said to be coherent by virtue of these

relationships (Reiter and Dale, 2000), particularly if the relationships can be assembled into a

tree like that shown in Figure 3-1. Mann and Thompson have stated that a majority of texts

appear to have a RST analysis with some known exceptions such as laws, contracts and

poetry.

For several reasons, RST was a clear choice for our research. It proposes a simpler and more

complete view of text organisation than most other theories. It has precise relationship

definitions and the ability to help the author evaluate the level of coherence in a text. The

latter is possible because RST requires a tree of relationships to be formed. If this tree cannot

be produced easily, it is conjectured by Mann and Thompson that the text may not be

coherent. Finally, RST is also applicable to technical documents making it ideal for our work.

Therefore, this chapter describes how to analyse a text using RST.

Chapter 3 – Rhetorical Structure Theory (RST) 31

3.1 Applying RST: First example

The first example is a paragraph from an editorial in The Hartford Courant which has already

been analysed by Mann and Thompson. The text (divided into segments) and the RST

analysis of it are given below.

Figure 3-1: First paragraph of an editorial in The Hartford Courant (above) and the RST

analysis for it (below) done by Mann and Thompson

A successful RST analysis is expected to result in a Rhetorical Structure tree (RS-tree) as

shown above. Many of the RS-trees in this thesis have been drawn using the free software

tool called RSTTool (O'Donnell, 2000). The way in which they are drawn may seem

unconventional to computer scientists but this was the way that Mann and Thompson chose to

draw them and we have adhered to their style.

These RS-trees are similar to traditional tree structures except that they have additional RST

relationships added on. So, in the diagram above, the root of the tree is the node containing

segments 1 to 7 from the text. This is divided into two subtrees: 1-3 and 4-7. The tree

structure is actually denoted by the horizontal lines. Segments 1-3 are joined by a

[Farmington police had to help control traffic recently]1 [when hundreds of people lined

up to be among the first applying for jobs at the yet-to-open Marriott Hotel.]2 [The

hotel's help-wanted announcement - for 300 openings - was a rare opportunity for

many unemployed.]3 [The people waiting in line carried a message, a refutation, of

claims that the jobless could be employed if only they showed enough moxie.]4 [Every

rule has exceptions,]5 [but the tragic and too-common tableaux of hundreds or even

thousands of people snake-lining up for any task with a paycheck illustrates a lack of

jobs,]6 [not laziness.]7

Chapter 3 – Rhetorical Structure Theory (RST) 32

BACKGROUND relationship to segments 4-7. In this case, segments 1-3 form what is called

the “satellite” of the BACKGROUND relationship and segments 4-7 form the “nucleus”.

These relationships have precise definitions (see Table 3-1 for one such definition).

The subtree containing segments 4-7 is further divided into two: 4 and 5-7. Segments 5-7

(satellite) are linked by an EVIDENCE relationship to segment 4 (nucleus). This continues

until all the segments are connected by relationships. A more traditional tree-view of this RS-

tree is given in section 3.3.3. The process of doing this analysis is explained in detail in the

forthcoming sections.

Relation name: EVIDENCE

Constraints on the Nucleus (N): The reader R might not believe the information that is
conveyed by the nucleus N to a degree satisfactory to the
writer W

Constraints on the Satellite (S): The reader believes the information that is conveyed by the
satellite S or will find it credible

Constraints on N+S combination: R’s comprehending S increases the R’s belief of N

The effect: R’s belief of N is increased

Locus of the effect: N

Table 3-1: The definition of the EVIDENCE relationship in RST (Mann and Thompson). Note

that segment 4 in the analysis above is the nucleus of the EVIDENCE relationship and segments

5-7 together form the satellite. The other relationship definitions are in Appendix A.

3.2 First step: Segmentation

The first step in the analysis is dividing the text into non-overlapping segments5. In Figure 3-1

the segments were demarcated using square brackets. The segmentation is done prior to the

analysis to avoid circularities (i.e. an analysis depending on the segments and segment

choices depending on the analysis) (Taboada and Mann, 2006b). Each segment is required to

have independent functional integrity. Therefore, the segments in Mann and Thompson’s

analyses are often clauses6.

RST establishes two types of segments in a text: nuclei and satellites. Nuclei are segments

that are most important and essential to the understanding of the text. Satellites contribute to

the understanding of the nuclei but are secondary. Therefore, a text without its satellites

should still be comprehensible (like a synopsis of the original text) but not a text without its

nuclei. Going back to the EVIDENCE relationship in Figure 3-1, segment 4 is the nucleus. If

read on its own, it still manages to convey most of its message: that unemployment is,

perhaps, not entirely due to the laziness of the people. Segments 5-7 provide additional

5 In some other descriptions of RST, segments are also called units.
6 A clause is a group of words containing a subject and a predicate, usually a part of a more complex
sentence.

Chapter 3 – Rhetorical Structure Theory (RST) 33

evidence and information for this statement. However, on their own, the purpose of segments

5-7 would not be entirely clear.

3.2.1 Segment size

The size of a segment is arbitrary. Very large segments have been discouraged by Mann and

Thompson since there could be units within a large segment that belong to relationships with

units outside that segment. However, large segments are not entirely uncommon, particularly

when studying the overall structure of bigger texts (Taboada and Mann, 2006b, Mann et al.,

1992).

In our research, RST is applied to relatively short texts called document narratives (DN). So,

the segments will often be clauses or, at most, a few sentences. These segments in the DN will

eventually correspond to sections or chapters of a large document. Chapter 4 explains, in

detail, this new technique that we propose.

3.3 Second step: Defining the RST relationships

The second step is to define relationships between the segments. A relationship identifies a

clearly established connection between two (or more) segments. In RST, only one relationship

can be applied to a pair of segments. Even though there have been arguments against this

restriction (Moore and Pollack, 1992), we will obey Mann and Thompson’s rule.

Most relationships are between a nucleus (N) and a satellite (S). Mann and Thompson calls

these relationships hypotactic. A few relationships, such as SEQUENCE and CONTRAST,

exist between segments of equal importance. They are called multi-nuclear or paratactic

relationships (Mann and Thompson). Not all relationships are binary either. The SEQUENCE

relationship can be applied to as many segments as necessary.

There is also a JOINT schema (see section 3.3.1 for other schemas) which can be applied to

multiple segments, but it is unclear when one would use JOINT. Mann and Thompson state

that it is the declared absence of a relationship and, in one of their analyses, have used it

between the segments listed below. They are adjacent segments from a letter persuading

readers to donate money to an organisation (Mann et al., 1992).

1. Our small staff is being swamped with requests for more information
2. and our modest resources are being stretched to the limit.

We have, so far, not used JOINT in the analyses we have done. Mann and Thompson draw

hypotactic and paratactic relationships as illustrated below. In these diagrams, nuclei are

represented under vertical (or diagonal) lines and the relationships are denoted by labelled

curved lines. In figures showing hypotactic relationships, the curved lines are arrows that

always point towards the nucleus.

Chapter 3 – Rhetorical Structure Theory (RST) 34

Figure 3-2: An illustration of a hypotactic relationship (left) and a paratactic relationship (right).

The curved lines are labelled with the name of the relationship. In a hypotactic relationship, the

arrowhead always points to the nucleus. Nuclei are indicated by vertical (or diagonal) lines above

them.

Mann and Thompson identified 23♦ relationships in their original paper. They are listed

below. Mann and Thompson emphasised, however, that this is in no way a closed list and

expected additions for different genres of text. In our analysis of technical documents, only a

few of these relationships have been used regularly. These are marked with an asterisk. This

will be discussed in the next chapter.

Hypotactic relations

1. Evidence*
2. Justify*
3. Solutionhood*
4. Elaboration*
5. Background*
6. Enablement*
7. Motivation*
8. Circumstance
9. Volitional Cause
10. Non-Volitional Cause
11. Volitional Result
Non-Volitional Result

12. Purpose
13. Antithesis
14. Concession
15. Condition
16. Otherwise
17. Interpretation
18. Evaluation
19. Restatement
20. Summary

Paratactic relations

21. Sequence*
22. Contrast*

Figure 3-3: List of all 23 relationships. The ones used regularly in our research have been

marked with an asterisk

Each relationship has a precise definition for its nucleus, satellite, their combination and the

effect it has on the reader. The definition for the EVIDENCE relationship was given in Table

3-1. The definitions for the other relationships are in Appendix A (section A.1).

3.3.1 Five schemas

There are five structures (or schemas) according to which the relationships can be applied.

Schemas specify how text segments can co-occur. For instance, a CONTRAST schema

should always have exactly two nuclei. The other schemas are represented by the examples

below. JOINT, a multinuclear schema, has no corresponding relationship.

♦ 23 relationships and JOINT (a multi-nuclear schema) which is the declared absence of a relationship

Motivation

S N

 Sequence Sequence

 N N N

Chapter 3 – Rhetorical Structure Theory (RST) 35

Schemas for relationships not shown in the figures all follow the simple pattern represented

by the CIRCUMSTANCE relationship: a single relationship with a nucleus and a satellite

(Mann and Thompson).

Figure 3-4: Five types of schemas in RST

3.3.2 Recognising the relationships

Some relationships in a text are signalled explicitly by cue phrases such as conjunctions, and

the mood and tense of the text. For instance, two relationships in the analysis in Figure 3-1 are

signalled by the cue words below.

• when (in segment 2, helping to signal a CIRCUMSTANCE)

• but (in segment 6, helping to signal an ANTITHESIS)

A corpus of other cue words and phrases that signal relationships can be found in Appendix A

of Alistair Knott’s PhD thesis (Knott, 1996).

However, many relationships can also be identified without the presence of explicit signals

(Taboada and Mann, 2006b). For example, the remaining relationships in the analysis in

Figure 3-1 - VOLITIONAL-RESULT, BACKGROUND, EVIDENCE and CONCESSION –

had been considered to exist in the text by Mann and Thompson without any obvious signals.

In our use of RST, the analyst is often also the author of the text. Therefore, having created

the text with a certain understanding of it, it is anticipated that the analyst cum author would

not need to heavily rely on signals to recognise the relationships.

 Circumstance

S N

 Joint

 N N

 Sequence Sequence

 N N N

 Motivation Enablement

S N S

 Contrast

N N

Chapter 3 – Rhetorical Structure Theory (RST) 36

3.3.3 Forming the RS-tree

Relationships need to be defined recursively working either from the top down or from the

bottom up, or both, as deemed convenient. The segments joined by a relationship form a

span7 which can, in turn, become part of another relationship (hence, recursive). As an

example, consider the relationships in the analysis in Figure 3-1. Segments 2 and 3 are joined

using a CIRCUMSTANCE relationship. The span 2-3 then goes on to become part of the

VOLITIONAL-RESULT relationship with segment 1.

This continues until the relationship schemas can be assembled into a rhetorical structure

tree (RS-tree). The tree in RS-tree structures like the one in Figure 3-1 may not always be

easily recognisable. Therefore, the diagram below shows a different view of the RS-tree in

Figure 3-1. The traditional tree structure is in black and the RST relationships are in blue. The

names of the relationships have not been included so as not to clutter the diagram.

Figure 3-5: RS-tree from Figure 3-1 redrawn to highlight the tree structure

There can be, as one might imagine, more than one RS-tree for a given text. This is why,

whenever we present a RST analysis of a text in this thesis, we label it as “one possible

analysis”. Analysts may identify different relationships between the same pair of segments or

group segments in different ways. However, the important point to be noted is that, no matter

what the individual relationships are, the eventual RS-tree has to be well-formed (see below).

A text that forms a well-formed RS-tree when analysed is expected to be coherent.

7 We distinguish between a segment and a span. Most RST descriptions just use ‘text spans’ to refer to
all participants in a relationship.

4 - 7

1 2 - 3 5 - 7

6 - 7 5

6 7

4

2 3

1 - 7

1 - 3

Chapter 3 – Rhetorical Structure Theory (RST) 37

There are four criteria that determine whether a RS-tree is well-formed (Mann and Thompson,

1988, Marcu, 2000). They are listed and explained below. Each criterion is examined with

respect to the well-formed tree in Figure 3-1 (and Figure 3-5).

Completedness: One schema application (the root) should cover the entire text. For

example, in Figure 3-1, the BACKGROUND relationship at the top

includes all the seven segments of the text.

Connectedness: Each text span/segment, apart from the span that covers the entire text,

should be a minimal unit in the tree or part of another schema application.

In other words, each node in the tree, apart from the root, must either be a

leaf node or an internal node. Segments that cannot fit in the tree structure

via relationships are referred to as non-sequiturs and are a sign of a lack of

coherence in the text.

Uniqueness: Each text span/segment should have only one parent (i.e. each schema

application consists of a different set of text spans/segments). So, for

instance, in Figure 3-5 above, the “parent” of segment 4 is the span 4-7. It

cannot also be a child of another span as illustrated below.

 Figure 3-6: Invalid application of RST. Segment 4 has more than one parent.

Adjacency: Only adjacent text spans/segments can be grouped together to form larger

spans. So, in the example in Figure 3-5, segment 5 and span 6-7 have been

grouped to form a larger span 5-7 because they are adjacent. Span 6-7

cannot be joined with segment 4, say, to form a span. It appears that

individual relationships, however, can exist between non-adjacent segments

or spans, provided that they have the same parent. Looking ahead to Figure

3-15, for instance, segment 9 is linked to segment 5 which is not adjacent to

it.

 …….. ……..

1 - 4 4 - 7

 4 4

1 - 7

Chapter 3 – Rhetorical Structure Theory (RST) 38

3.4 RST and text coherence

One of the main reasons we chose RST for our research was because of its ability to help

authors evaluate the level of coherence in a text. Coherence in RST arises due to the set of

constraints associated with each relationship and the overall effect on the reader. For instance,

in a MOTIVATION relationship, the reader expects to find in the satellite some information

that will persuade him to perform the action presented in the nucleus. These expectations are

dictated by the relationship definitions (see Appendix A for all the definitions). The more

segments that can be linked via relationships, the better the quality of the narrative.

Figure 3-7: A MOTIVATION relationship

It is also strongly conjectured that the construction of a well-formed RS-tree for a given text

would suggest that it is coherent. “If an RST diagram is a connected whole, with every unit of

the text linked into the diagram somehow, then the analysis demonstrates how the text can be

seen as coherent” (Taboada and Mann, 2006b). It is almost a test for coherence. The presence

of non-sequiturs (segments of text that do not seem to belong) suggests a lack of coherence.

This too helps authors gauge the quality of their narratives.

To demonstrate this feature, the example of coherent and incoherent text from Chapter 2 has

been considered again. The texts have been reproduced below for convenience.

Figure 3-8: An example of a coherent (left) and an incoherent (right) text. Source: (Knott, 1996)

It was possible to create a RS-tree for the coherent text.

Chapter 3 – Rhetorical Structure Theory (RST) 39

2-3

Elaboration

Though it will be

hesitant at first,

it will last the longer

for being so.

Nonvolitional-result

1993 will start with the

world in a pessimistic

frame of mind. That

gloom should soon

dispel itself. A clear

economic recovery is

under way.

4-6

Evaluation

If you are sitting in

one of the world's
blackspots, this

prediction will seem

hopelessly optimistic.

Contrast

5-6

Contrast

But next year's

wealth won't return

to yesteryear's

winners;

these middle-aged

rich people need to

look over their

shoulders to the

younger world that is
closing in on them.

Elaboration

Figure 3-9: A possible RS-tree for the coherent text from Figure 3-8

It was, however, not possible to complete an analysis for the incoherent text (Figure 3-10);

thus showing that RST’s requirement of a tree structure is a valuable tool to evaluate the level

of coherence in a text.

A clear economic

recovery is under

way.

1993 will start with

the world in a

pessimistic frame of

mind.

Background

That gloom should

soon dispel itself.

These middle-aged

rich people need to

look over their

shoulders to the

younger world that is

closing in on them.

Though it will be

hesitant at first, this

prediction will seem

hopelessly optimistic.

But next year's

wealth won't return to

yesteryear's winners;

it will last the longer

for being so if you are

sitting in one of the

world's blackspots.

Figure 3-10: An attempt to analyse the incoherent text from Figure 3-8. There were no clear

relationships between the segments.

RST also provides some guidance to the author about how to structure the text. For instance,

Mann and Thompson recommend the order of the satellite and nucleus for some relationships.

The order of text spans is not usually constrained by the relationship and is under the control

of the author. However, after analysing many texts, Mann and Thompson identified patterns

for some relationships. It has been observed that this ordering often improves the quality of

the text. For instance, placing the problem (satellite) before the solution (nucleus) in a

SOLUTIONHOOD relationship is generally considered better and more coherent. Similarly,

for a BACKGROUND relationship, it was suggested that the background material (satellite)

be presented before the nucleus. Both these examples are common practice in technical

documents. There were other recommendations too (listed below).

Satellite before Nucleus
 Antithesis Conditional
 Background Justify
 Concession Solutionhood

Nucleus before Satellite
 Elaboration Purpose
 Enablement Restatement
 Evidence

Figure 3-11: The orders identified by Mann and Thompson for some relationships

Chapter 3 – Rhetorical Structure Theory (RST) 40

3.5 Applying RST: Second example

RST is applied to a second example to reinforce the information in the preceding sections.

The text analysed is an article from the BBC website8. The article has been shortened to

provide a suitably sized example. The text was divided into nine segments as shown below.

Figure 3-12: An article from the BBC website (shortened) divided into segments

The RST analysis was done bottom up. So, segment 2 was seen as providing background

information to the problem stated in segment 1. Segments 3 and 4 were recognised as being in

a CONTRAST relationship. Similarly, segments 7 and 8 were linked by a SEQUENCE

relationship and the span 7-8 then became part of an ELABORATION relationship with 6.

The remarks by the strategist at the end of the article were seen as elaborations of the plan by

the Chinese government to help the environment and community. These subtrees are shown

below.

8 The original article was published on the website on the 22nd of March, 2006. It can be found at:
http://news.bbc.co.uk/1/hi/business/4831734.stm (Last accessed on the 17th of August, 2006).

China introduces chopsticks tax

[China produces about 45 billion pairs of chopsticks a year, consuming millions of trees

and bamboo plants.]1 [The disposable splints of wood, usually between eight and 10 inches

long, have long been a target for Chinese environmentalists.]2

[School children have written to the Chinese prime minister asking for a ban on

disposable wooden chopsticks, while students have persuaded some college cafeterias to

replace them with spoons.]3 [In recent years, the government has actually encouraged

their use, in a bid to reduce the spread of infectious illnesses by sharing eating utensils.]4

[The Chinese government is introducing a 5% tax on disposable wooden chopsticks in a

bid to preserve its forests.]5 [The move came as China said it would raise some

consumption taxes next month in a bid to help the environment and narrow the gap

between rich and poor.]6

["This is part of the government's strategy of rebalancing growth and reducing energy

demand," said Ben Simpfendorfer, a strategist with the Royal Bank of Scotland in Hong

Kong.]7 ["The government wants to show that it is doing something to increase the tax

burden on the richer segment of the population to reduce the widening disparity between

the rich and poor."]8

[Shanghai consumers gave a mixed response to the new tax.]9

Chapter 3 – Rhetorical Structure Theory (RST) 41

3-9

5) The Chinese

government is

introducing a 5% tax

on disposable

wooden chopsticks
in a bid to preserve

its forests.

9) Shanghai

consumers gave a

mixed response to

the new tax.

Evaluation

3-4

Motivation

6-8

Elaboration

Solutionhood

1-2

Figure 3-13: Segments 1 and 2 in a BACKGROUND relationship, and segments 3 and 4 in a

CONTRAST relationship.

Figure 3-14: An ELABORATION and SEQUENCE relationship

The whole RS-tree thus formed is illustrated below. The subtrees involving segments 1-2, 3-4

and 6-8 that have already been shown are collapsed in order to make the other segments more

visible. The whole article is seen as the presentation of a problem and a possible solution to it.

Hence, a SOLUTIONHOOD relationship is used to cover the entire text.

Figure 3-15: The complete RS-tree for the BBC news article. Note that segment 9 is in a

relationship with non-adjacent segment 5. This is allowed in RST. It is the joining of non-

adjacent segments or spans to form larger spans that is not allowed in well-formed RS-trees.

Chapter 3 – Rhetorical Structure Theory (RST) 42

3.6 Summary

RST is a discourse theory that asserts a hierarchical structure in a text. Parts of the text are

linked to other parts with relationships such as MOTIVATION and SEQUENCE. A text is

said to be coherent if the relationships within it can be assembled into a well-formed RS-tree.

Mann and Thompson and other researchers have analysed large corpuses of texts. One such

corpus includes the analysis of 385 Wall Street Journals. The corpus was produced by Carlson

et al. (Carlson et al., 2001) and is now distributed by the Linguistic Data Consortium (LDC).

Studying some of these analyses has helped us understand RST better9.

Some researchers into RST have commented on various shortcomings of the theory. For

instance, Moore and Pollack (1992) strongly contradict the rule of having just one relationship

between two segments. They believe that there needs to be multiple, co-existing levels of

analysis (i.e. more than one relationship between segments) if a model of discourse is to be

complete. One might ask if one level of analysis is adequate for our research. The answer, for

now, is yes. Even though more relationships would perhaps indicate a higher level of

coherence, multiple levels of analysis would delay technical authors and complicate the

process that we propose in Chapter 4.

RST exhibits many of the properties that we were looking for in a discourse theory. This

chapter is a tutorial on RST and marks the end of the background material in this thesis. From

this point forward, we introduce the original contributions of our research. Chapter 4 presents

the new technique we propose called narrative-based writing that makes use of RST. Chapters

5 and 7 describe the design and implementation of a tool that helps co-authors improve the

coherence of technical documents by using narrative-based writing. The remainder of the

chapters evaluate and show applications of this technique and tool.

Figure 3-16: DN for this chapter

9 More information about RST can be found in M&T’s original paper or the website about RST that is
maintained by Maite Taboada (http://www.sfu.ca/rst/).

The previous chapter discussed a number of discourse theories. RST is one of them. Since

its creation in the 1980’s, RST has enjoyed widespread use in a variety of applications

beyond what it was originally built for. We too find that RST is the most suitable for our

research for a number of reasons. The process of applying RST involves two steps:

segmentation and the recursive definition of relationships between spans, constructing a

well-formed RS-tree. There are five schemas and four criteria that determine whether a

RS-tree is well-formed. It is popularly conjectured that only a coherent text can produce a

well-formed RS-tree. Over the years, researchers have pointed out shortcomings in the

theory but we find RST to be adequate for our research into the coherence of technical

documents.

 Chapter 4

Narrative-based writing:
A new approach to document planning

To sum up so far: Coherence is the feature of a document that makes it easy to read and

understand. Technical documents, unfortunately, have a reputation for being poorly structured

and incoherent. One of the main reasons for this is that these documents are often produced

collaboratively with several authors contributing sections which are collated to produce the

final version. We found that current collaborative writings tools and planning techniques

available to technical authors, while being good at what they were designed for, did not

provide sufficient support for coherence. Our goals, therefore, are to:

1. Devise a planning technique that improves document coherence

2. Develop a tool that helps teams of co-authors use this technique

This chapter addresses the first of these goals. Chapters 5 and 6 address the second.

Halfway through the background chapter (chapter 2), we introduced the idea of linking

document coherence to the implicit story conveyed to the reader. Based on this, we propose a

new technique called narrative-based writing. It brings together these previously parallel

strands of research: technical documents, coherence, narratives and RST.

In the new technique, a précis of the story conveyed by a document is called a document

narrative (DN). Thinking about the suitable DN for a document helps an author arrange the

content of a document in an appropriate fashion. As additional verification of the quality of

the DN, RST can be applied to it. The RST relationships also make clear the authors’

intentions for creating the narrative in a certain way (e.g. Motivation, Justify). Finally, the DN

and the RST analysis can be used to write the document.

The steps in narrative-based writing are explained and illustrated in this chapter.

Chapter 4 – Narrative-based writing: A new approach to document planning 44

4.1 The technique explained

Narrative-based writing is the new technique we propose to assist authors in planning

coherent documents. The technique stems from the idea that the coherence of a document can

be attributed to the story conveyed to the reader, which we call the DN. The process can be

distilled into these three steps:

1. Formulate the DN

2. Analyse the DN using RST to study and gauge its coherence

3. Use the DN and RST analysis as a guide to structuring the document

Each of the steps are described below. We use chapter 3 of this thesis as an example to

demonstrate each step.

4.1.1 Formulating the document narrative (DN)

The first step in this planning technique is to write down the DN. A DN is an explicit précis of

the story that a document conveys to the reader. We sometimes use the analogy of an elevator

speech or an executive summary to describe what a DN is. It is a top-level view of what the

document is expected to say to the reader.

With most writing tasks, authors often start out with a list of things they want to include in the

document. So, for instance, the ideas that were considered important (in no particular order)

for chapter 3 were:

History and overview of RST
Shortcomings of RST
Why was it chosen over the other theories?
How to do the RST analysis – describe each step
One or two examples

An author will generally ponder on the ideas for a while before “putting pen to paper”.

However, in what order should the ideas be presented and how should they be linked

together? What is the story that the document should convey? For experienced authors this is

often a straightforward task. Others may, time permitting, try various combinations and revise

the document until it ‘sounds right’. For others still, this is not trivial.

Narrative-based writing provides a way to get this ‘story straight’ right from the beginning.

By having to think explicitly about the DN, authors iron out inconsistencies and link bits of

the content together in a natural way. If a piece of information is really difficult to fit into the

DN, it may be an indication for it to be left out of the document or re-inserted in a different

location. A DN gives technical authors a quick way to formulate the story for their document.

This is beneficial for technical authors who often have a short time to plan this story as

opposed to say, novelists, who may take years to plan a novel.

Chapter 4 – Narrative-based writing: A new approach to document planning 45

Formulating the DN from a list of ideas may not, at once, be obvious. A certain amount of

persistence is necessary to arrive at the best DN, having ruminated on everything that needs to

be said in the document. The DN used for Chapter 3, generated from the list of key ideas

above, is shown in Figure 4-1.

Figure 4-1: DN for Chapter 3 of this thesis

The concept of the DN has been continually refined. In our early attempts at writing them, we

included the authors’ intentions and reasoning as part of the DN. For instance, ‘we want to

motivate the reader to fund us’ was the starting sentence in our first DN for a research

proposal (De-Silva and Henderson, 2005). We used to also include structural information

such as ‘on the next page’ or ‘in one or two sentences.’ An example of this previous kind of

DN is given in section 4.3. However, this information made the DN difficult to read. We also

realised that the RST relationships captured the author’s intentions, making it unnecessary to

repeat them in the DN. Both these practices have now been abandoned and DNs focus purely

on the story that gets across to the reader.

We recommend that the DNs be kept relatively short. Each of our DNs is usually no more

than half a page long. This is because a DN is meant to be a top-level view of a document and

is not expected to contain much detail. It is also expected to provide the author with a mental

model of the document which he can think about and improve. It would be difficult to do this

with a large DN10.

Our recommendation is to create a high level DN for the document and then to create DNs for

each of the chapters if more detail is required. This is similar to the concept of a ‘framing

narrative’ (Abbott, 2002). A framing narrative is one that contains (and puts into context)

other narratives. Abbott uses the tale of the ‘One thousand and One Arabian nights’

(McCaughrean, 1999) as an example of a framing narrative. In order to delay her execution,

Queen Shaharazad tells her murdering husband a wonderfully exciting story every night. The

10 It has been shown that humans can only hold a certain number of concepts in the mind at one time
(e.g. ‘seven plus or minus two’ theory).

[The previous chapter discussed a number of discourse theories. RST is one of them. Since

its creation in the 1980’s, RST has enjoyed widespread use in a variety of applications

beyond what it was originally built for. We too find that RST is the most suitable for our

research for a number of reasons.]1 [The process of applying RST involves two steps:]2

[segmentation]3 [and the recursive definition of relationships between spans, constructing

a well-formed RS-tree.]4 [There are five schemas and four criteria that determine whether

a RS-tree is well-formed.]5 [It is popularly conjectured that only a coherent text can

produce a well-formed RS-tree.]6 [Over the years, researchers have pointed out

shortcomings in the theory]7 [but we find RST to be adequate for our research into the

coherence of technical documents.]8

Chapter 4 – Narrative-based writing: A new approach to document planning 46

king is used to a new wife every day only to put her to death the next morning. However, he

becomes so intrigued with Shaharazad’s stories that he keeps postponing her execution. Each

of the stories told by the queen is contained within this framing narrative. In some ways, say

in a book or thesis for example, the DN for the whole document is similar to a framing

narrative and the DN for each of the chapters is a story in itself but contained within the main

DN.

Having got a DN as a guide, authors can proceed to write the document. However, we

conjecture that the more coherent the DN is, the more coherent the document will be.

Therefore, as an additional step, we use RST to study, improve and validate the coherence of

the DN before using it to plan the document.

4.1.2 Analysing the DN using RST

The second step in narrative-based writing is the RST analysis. There are several properties of

RST that will help improve the structure and coherence of a DN as explained in the previous

chapter. If a well-formed tree can be constructed for a DN, the authors have some assurance

of the quality of their DN.

The DN for Chapter 3 was segmented as shown (demarcated by the square brackets) in Figure

4-1. A RST analysis for it is shown in the figures below. It was not possible to fit the entire

diagram onto the page, so the RS-tree has been presented in parts. One of the first

relationships that can be identified is the SEQUENCE relationship between segments 3 and 4.

However, segments 5 and 6 elaborate the process of creating the RS-tree. Hence, the subtree

below is a possible analysis of segments 3-6.

Figure 4-2: Sub tree showing segments 3-6

Chapter 4 – Narrative-based writing: A new approach to document planning 47

Secondly, it was observed that segments 7 and 8 are in a contrast relationship.

Figure 4-3: Subtree showing segments 7 and 8

These subtrees are linked to the rest of the segments as shown below. Once again, it needs to

be stressed that this is just one of the possible analyses of this DN. The important point is that

a well-formed RS-tree was constructed from the segments. Note that the span 7-8 is linked to

segment 2 by an ELABORATION relationship even though they are not adjacent to each

other. This is, as mentioned in Chapter 3, allowed in well-formed RS-trees. However, non-

adjacent spans cannot be joined together to form larger spans. So, segment 2 and the span 7-8

cannot be grouped together to become part of another relationship.

Figure 4-4: Possible RST analysis of the DN for chapter 3

Mann and Thompson identified 23 RST relationships. It is a tall order to expect a technical

author to remember the definitions for each of these relationships. Therefore, we have

identified a subset of nine relationships that have been consistently used in the analyses done

so far on technical documents. We list these relationships below along with a summarised

definition for each. We do not claim that this subset is sufficient for all technical documents.

More analyses need to be done (by different people) to establish if this is the case. In addition

to this nine, two other relationships have been used too but only occasionally. They are all

listed below.

Chapter 4 – Narrative-based writing: A new approach to document planning 48

The following tables list the set of relationships used frequently in our analyses along with a

brief description. The relationships for which Mann and Thompson recommended the order of

the satellite (S) and nucleus (N) are also indicated. The relationships for which there were no

explicit recommendations have been left blank.

Name Description Order of N & S

Background Satellite provides background information to the
nucleus

S before N

Contrast Applies to two nuclei that contrast each other

Elaboration Satellite elaborates the information in the nucleus N before S

Enablement Information in the satellite enables the reader to
perform action in nucleus

N before S

Evidence Satellite provides evidence to the statement in the
nucleus

N before S

Justify Satellite justifies the nucleus

Motivation Satellite motivates the reader to perform the action in
the nucleus

Sequence Multiple nuclei that follow each other in sequence

Solutionhood Satellite is the problem. Nucleus provides the solution. S before N

Table 4-1: Subset of relationships used frequently to analyse technical documents

Name Description Order of N & S

Purpose The nucleus presents an intended situation and the

satellite presents the intent behind that situation

N before S

Volitional-

result

The satellite is a result of the action in the nucleus

Table 4-2: Two relationships used less frequently

A RST relationship also encapsulates the authors’ intentions and reasoning for having certain

segments of the DN. In a collaborative writing scenario, this is an ideal way to communicate

these intentions for the document. Since there are detailed definitions for each of the

relationships, there is little room for ambiguity about what a specific relationship means. (The

role narrative-based writing can play in collaborative writing is discussed in section 4.2.) RST

also provides a mechanism for rationalising a DN. Authors in a team may have different

opinions of what the DN should be for their document and using RST can help them justify

their choices and come to an agreement. Having analysed the DN, this information can now

be used to structure and produce the document. This is explained next.

Chapter 4 – Narrative-based writing: A new approach to document planning 49

4.1.3 Producing the document

The final step in narrative-based writing is using the DN and the RST analysis as a guide to

structuring the document. We recognise two ways in which the document can directly be

influenced:

1. The sequence of ideas as they appear in the DN is a good indication of the sequence

that they should be presented in the document.

2. The RST relationships can dictate how the text and examples of a particular section

are crafted in order to create the anticipated effect on the reader.

Both these points are described below.

(1) We examine the positioning of sections first. When constructing the document, presenting

the information in the right, logical order is vital. With narrative-based writing, the sequence

of the sections in the document should correspond to the sequence of segments in the DN.

Reverting to the previous example, the sections in Chapter 3 of this thesis were organised as

shown below. The corresponding segments in the DN are shown too (on the left). Note that

some DN segments do not have associated sections. This is normal. These segments are just

needed to glue the story together and it is likely that the other sections in the document will

have information relating to these segments.

1 The previous chapter discussed a number of discourse theories. RST is
one of them. Since its creation in the 1980’s, RST has enjoyed
widespread use in a variety of applications beyond what it was
originally built for. We too find that RST is the most suitable for our
research for a number of reasons.

 *Introduction to
the chapter

2 The process of applying RST involves two steps:

3 Segmentation

 *Segmentation

4 and the recursive definition of relationships between spans, constructing
a well-formed RS-tree.

 *Defining
relationships

5 There are five schemas and four criteria that determine whether a RS-
tree is well-formed.

6 It is popularly conjectured that only a coherent text can produce a well-
formed RS-tree.

 *RST and text
coherence

7 Over the years, researchers have pointed out shortcomings in the theory

 *Summary of the
chapter

8 but we find RST to be adequate for our research into the coherence of
technical documents.

Table 4-3: Correspondence between DN segments and sections of Chapter 3

Chapter 4 – Narrative-based writing: A new approach to document planning 50

Certain sections or chapters in a document are required due to standard practice. For instance,

most documents are required to have an introduction at the start and a conclusion at the end.

Similarly, letters are expected to have a letterhead and a signature. These fixed structures are

sometimes called holistic structures (Mann et al., 1992). Narrative-based writing is a way of

planning the rest of the document; the relational aspects of the body of the document.

The suggested orders of the satellites and nuclei for some relationships (listed in Chapter 3)

can also guide how the sections are placed. For example, it is better to present the satellite of a

BACKGROUND relationship first. However, this would also require going back and

changing the DN accordingly (so that the segments are in the right order).

Some ideas can also be placed in subsections depending on the sorts of relationships they are

involved in. In the RST analysis above, segment 5 is an elaboration of segment 4. Therefore,

we decided to place the sections about the schemas and the four criteria of RS-trees (segment

5) as subsections of the section about defining relationships (segment 4). In our experience,

this is often a reasonable practice for most situations. If the nucleus of an ELABORATION

relationship is a section, then the satellite can be the subsection. We have defied this rule

when we included a section called ‘RST and text coherence’ as a section on its own, even

though the corresponding segment in the DN is a satellite of an ELABORATION

relationship. So, it is important to note that these suggestions are guidelines, not fixed rules.

(2) We see a second way by which the document is influenced by the RST analysis: the need

to establish the appropriate RST relationship in and across the sections. So, a section

corresponding to a DN segment involved in a MOTIVATION relationship, for instance, needs

to motivate the reader to perform the actions in the other sections (or say why the authors

were motivated to perform those actions) and so on. This is usually done by crafting the text

accordingly, by choosing the right examples and so on. So, in chapter 3, we introduced two

examples of an RST analysis to contribute to the BACKGROUND and ELABORATION

relationships. While bringing out the relationship within the text, the section should also

establish linkage and context (its connection to previous sentences/sections and so on). Once

again, these are just guidelines.

 Figure 4-5: Sections of Chapter 3

Eventually, the sections in Chapter 3 were presented in the order shown above. In our

opinion, writing a document this way will have the most benefits in a collaborative writing

scenario. This is explained in the following section.

3.0 (Introduction to the chapter)
3.1 Applying RST: First example
3.2 First step: Segmentation
3.3 Second step: Defining the RST relationships
3.4 RST and text coherence
3.5 Summary

Chapter 4 – Narrative-based writing: A new approach to document planning 51

4.2 The role of DNs in collaborative writing

The main goal of our research is to address the issue of coherence in collaborative technical

writing. Narrative-based writing, in our opinion, can help alleviate this situation. The process

of collaborative writing can be augmented by a DN as shown below.

1. Authors agree on and analyse a DN for the document

2. Authors formulate DNs for the individual sections if necessary

3. Assign sections and the corresponding DN to authors

4. Each author, now aware of all the narrative goals, completes the section and returns it to

the team leader

5. The team leader puts the sections together so that it fits the DN for the entire document

It is anticipated that authors would first agree on and maybe analyse a DN for the whole

document. This will help iron out conflicting ideas and support the structure for the document.

Next, if the sections are to be assigned to various authors, DNs can be produced for the

individual sections too. In a large project, these DNs can even be made by the team leader and

distributed to the relevant subordinate authors.

Each author then has the responsibility of creating his section according to the DN and the

RST relationships. Each section should establish links with all the corresponding ideas in the

DN and bring to the surface the RST relationships. Finally, the sections can be returned to the

team leader who will collate them to form the final document. In theory, the sections should

fit the overall DN better.

RST relationships also help communicate ideas about the structure for the document. Since

the relationships have fixed definitions, an analysis done by one author can be transferred to

another author with little room for ambiguity. So, even though narrative-based writing may

appear a long-winded process for a single author, we anticipate that the benefits it can have in

collaborative writing are many. A comprehensive example that shows the use of narrative-

based writing (and the corresponding tool) in a real collaborative writing scenario is presented

in Chapter 7.

4.3 Applying narrative-based writing: Second example

To reinforce the steps of narrative-based writing, a second example is given below. A concise

non-technical document has been chosen this time so that all three steps can be demonstrated

easily and within a few pages. We do not examine any particular collaborative writing

features here. In this example, we just focus on the method. We imagine the need for an

author to produce a set of simple fables that teach the reader the moral lesson of being

prepared for the days of necessity.

Chapter 4 – Narrative-based writing: A new approach to document planning 52

[There are two animal characters that have opposite human characteristics.]1 [They meet

while going about their daily activities and converse.]2 [The ‘bad’ character enjoys

momentary success and makes fun of the better character.]3 [The sequence of events after

that alters this situation.]4 [The bad character is left destitute and in envy of the good

character]5 [who is reaping the benefits for continuing his untiring efforts.]6

3.The ‘bad’ character
enjoys momentary

success and makes

fun of the better

character.

1-2

2.They meet while
going about their

daily activities and

converse.

1.There are two
animal characters

that have opposite

human

characteristics.

Background

4.The sequence of
events after that

alters this situation.

1-6

SequenceSequenceSequence

5-6

Sequence

5.The bad character
is left destitute and in

envy of the good

character

6.who is reaping the
benefits for

continuing his

untiring efforts.

Justify

Step 1: Creating the DN

The example of the fable was something we analysed previously. The first DN we created for

it was written in the old style we discussed earlier and incorporated the author’s intentions

and reasoning. We present this DN below just as it appeared in (Henderson and De-Silva,

2006) to serve as an example of the old type of DNs. This style has now been abandoned and

a more recent version of the DN, which will be used in the rest of this example, is given too.

Figure 4-6: Older version of the generic DN for a fable

Figure 4-7: New version of the fable DN

Step 2: Analysing the DN using RST

The next step is to analyse the DN using RST. We do not go into the details of the analysis

since the process has been discussed several times already (see Chapter 3 for a tutorial on

RST). A possible RS-tree for the DN is given below.

Figure 4-8: Possible RST analysis of the DN for a fable

(above). Tree structure in the RS-tree (right).

I want to write a short story that will contain an implicit moral lesson. I will use animal

characters with human features. I believe this will convey the wisdom in an enjoyable and

memorable way. I will introduce two or three characters with opposite human characteristics

(one righteous, one immoral). These characteristics will be revealed through brief

conversations at the start of the story. Then there will be a series of events that will be

tailored to demonstrate that the characters with the moral attitude always win and that the

others suffer consequences for their unwise actions. Thus the reader will be gently persuaded

to take on the characteristics of the successful characters.

Chapter 4 – Narrative-based writing: A new approach to document planning 53

Step 3: Writing the fable to fit the DN

Instead of creating a new fable, we have taken the popular story of the Ant and the

Grasshopper (Long, 1997) and analysed it to show how it fits our DN. We show the segments

of the DN and the corresponding sections in the fable.

1 There are two animal characters that
have opposite human characteristics.

In a field one summer's day a Grasshopper was hopping
about, chirping and singing to its heart's content. An Ant
passed by, bearing along with great toil an ear of corn he
was taking to the nest.

2 They meet while going about their
daily activities and converse.

"Why not come and chat with me," said the Grasshopper,
"instead of toiling and moiling in that way?"

"I am helping to lay up food for the winter," said the Ant,
"and recommend you to do the same."

3 The ‘bad’ character enjoys
momentary success and makes fun of
the better character.

"Why bother about winter?" said the Grasshopper; we have
got plenty of food at present." But the Ant went on its way
and continued its toil.

4 The sequence of events after that
alters this situation.

5 The bad character is left destitute and
in envy of the good character

When the winter came the Grasshopper had no food and
found itself dying of hunger,

6 who is reaping the benefits for
continuing his untiring efforts.

while it saw the ants distributing every day corn and grain
from the stores they had collected in the summer.

Figure 4-9: The fable of the Ant and Grasshopper structured according to the DN

4.4 Discussion

This section contains a discussion of narrative-based writing and a re-examination of the

criteria we set out in Chapter 2 for a document planning technique.

A DN, on its own, is a useful guide to planning a document. Creating a DN helps authors

think of the document from the reader’s point of the view (i.e. the story that will eventually be

transferred to the reader’s mind). Also, it helps to derive a natural sequence to the ideas in the

document. Doing an RST analysis of the DN adds extra information and also provides some

measure of the quality of the DN. If all the segments can be linked via relationships and

assembled into a tree, there is a higher likelihood of the DN being coherent.

One may also question the practice of analysing the DN as opposed to the actual document

sections. The author could analyse the document if they wanted to. In our technique, the DN

is analysed instead because the story needs to be validated before being implemented in the

document. If the DN is coherent (RS-tree formed), then a document that follows that DN is

Chapter 4 – Narrative-based writing: A new approach to document planning 54

taken to be coherent too. Also, as seen earlier, not all segments in the DN will have

corresponding sections in the document. Thus an analysis on the DN will have some

relationships that cannot be made explicit in the document. However, these ‘hidden’

relationships are useful to the authors.

RST, by its very nature, helps implement some of the advice given about good writing. For

instance, Gopen and Swan (1990) suggest that old (known) information should appear before

new (unknown) information in a sentence. They claimed that most writers rush to record the

new information and later, at their leisure, add the contextualising material that links back to

the previous discourse. This burdens the reader. Mann and Thompson suggested that for some

RST relationships the satellite should be presented before the nucleus (see section 3.4). The

BACKGROUND relationship was one of them. Therefore, the old information (satellite)

should appear before the new information (nucleus). Similarly, the segments of other

relationships have recommended orders too.

Finally, we revisit the criteria from Chapter 2 that we determined were necessary for a

document planning technique. We stated that a technique should:

• Support a graphical representation of ideas (like mind maps) because it provides for a

better mental model of the document. The RS-tree created in narrative-based writing is a

good visual aid. It shows how ideas are linked together and also shows their hierarchical

ordering.

• Provide more information to justify the linear sequence of ideas (than outlines). A DN is a

justification of the sequence of sections in the documents. It connects the ideas in a

natural story-like fashion. We also said that some guidance as to the logical tone an

author’s writing should take will be beneficial. This is provided by the RST relationships.

• Be applicable to collaborative writing. By this we meant that the technique should help

iron out inconsistent ideas and help the team by guiding the authors on how their sections

link to others and so on. We also wanted a technique that enabled plans drawn up by one

author to be transferred to and understood by another author. In our opinion, narrative-

based writing achieves these goals.

• Have a way of measuring or guaranteeing the coherence of a document. By using RST,

narrative-based writing allows the authors to study and verify the coherence of the DN

and, therefore, the eventual document.

We conclude, therefore, that narrative-based writing is a useful aid to collaborative authors.

There is some initial learning involved with regards to RST but the benefits of doing a

successful analysis, we believe, outweigh this learning curve. Also, the identification of a

possible subset of relationships that is applicable to technical document may help this

situation even more.

Chapter 4 – Narrative-based writing: A new approach to document planning 55

Ruminate on the
story.
Write the DN

Analyse the DN

using RST
Produce

document

4.5 Summary

In this chapter, we proposed and explained a new technique called narrative-based writing

that will help authors structure a more coherent document. A summary of the steps in

narrative-based writing is illustrated below11. Note that the dashed line indicates that an author

could, if he wishes, progress directly to the writing stage after doing the DN. However, our

recommendation is to complete the RST analysis before producing the document because

such an analysis can benefit the coherence of the DN.

Figure 4-10: Summary of the narrative-based writing technique.

RST has, previously, been used to analyse technical documents (Rösner and Stede, 1992,

Feltrim and Aluísio, 2003) but we believe the use of RST to evaluate a narrative that is

subsequently used to write the document is a novel concept. Narrative-based writing

formalises what most authors do subconsciously. We make use of the technique ourselves to

plan the chapters in this thesis and, as evidence, present the DN for each of the chapters. The

RST analyses for them are in Appendix A (section A.2).

The next step in our research is to formalise narrative-based writing and implement it in a tool

that can be used by collaborative authors. This is discussed next.

Figure 4-11: DN for this chapter

11 We are also working on a website which contains a tutorial on narrative-based writing
(www.narratives-uk.com).

Narrative-based writing is a new technique we propose for planning the

structure of a document. It has three main steps: create the DN, analyse the DN

using RST and produce the document accordingly. The technique is useful

because it helps authors identify and improve the story of a document; thus

enhancing its coherence. The new technique fulfils the gaps we recognised in the

existing planning techniques.

 Chapter 5

A narrative-based collaborative

writing tool: The design

Chapter 4 described narrative-based writing which is the new technique that we propose to

assist with document coherence. The three main steps in the process are summarised in Figure

5-1. As discussed in the previous chapter, narrative-based writing is most beneficial to

collaborative authors since a DN can help maintain a consistent story in the document. To

devise a method by which coherence can be improved was the first of our goals. The second

goal was to develop a tool that enabled co-authors to use this technique. This chapter begins

to address this goal by presenting a comprehensive design for such a tool.

Figure 5-1: A diagram summarising the steps in narrative-based writing

As computer scientists, our interest to build such a tool was twofold. Firstly, we were curious

about the effects of using the tool on technical documents. Do DNs improve coherence?

Secondly, we wanted to understand and address the non-trivial issues of modelling and

manipulating RS-trees. The latter, in our opinion, is the main contribution of our research.

A tool that supports collaborative work, particularly one involving complex structures such as

RS-trees, requires careful design. Therefore, a graduated set of three models has been used to

design this tool. Each model addresses different, progressively more refined aspects of the

design that culminates in a set of formal functions. The three models described are:

1. A conceptual model

2. A business process model

3. A functional model

A simple method of version control and merging are discussed too because they are essential

for collaborative writing, but are not the main focus of this research.

1. Write the DN 3. Produce the

document
2. Analyse the DN

using RST

Chapter 5 – A narrative-based collaborative writing tool: The design 57

5.1 The Conceptual Model

5.1.1 Introduction

Sowa (1983) states that a “conceptual analysis clarifies muddled thinking and makes ideas

precise.” Hence, we begin the design with a conceptual model to define the key concepts. In

narrative-based writing, there are three main components: the DN, the RS-tree and the

eventual document. The document is not considered here since there are many other tools that

support the collaborative editing of a document well. We only model the DN and the RS-tree.

5.1.2 The document narrative (DN)

A DN is a précis of the story conveyed by a document to the reader. It is divided into

segments during the RST analysis12. Therefore, a DN can be defined as an ordered sequence

of text segments where a segment is a string of arbitrary length. The order of the segments is

important to maintain the DN intact. The DN can be changed by inserting new segments at

specified positions or deleting and changing existing segments.

However, once the RST analysis is done, a DN is actually the fringe of the RS-tree. Consider,

for instance, the RS-trees in the previous chapters. The DN could have been obtained by a

pre-order traversal of the RS-tree, making it unnecessary to store both DNs and RS-trees in a

database. Therefore, only RS-trees will be focused on from now on.

5.1.3 The RS-tree

On closer inspection, a RS-tree consists of two parts: the ordinary tree structure and the RST

relationships. In order to model a RS-tree, both these components need to be considered.

We first study the representation of the tree structure. Let us assume that a RS-tree is made up

of nodes and that each of these nodes has a unique identification number. Every RS-tree has a

root node by which it can be identified. The leaf nodes in the RS-tree correspond to the

segments in the DN. The internal nodes are spans. (A span is then a collection of adjacent

nodes.)

The tree can be built using two types of relationships: “parent-child” and “next” relationships.

Parent-child (PC) relationships exist between a node and its children nodes, and are typical in

tree representations. It is also important, in this context, to maintain the order of the sibling

nodes. This is the purpose of the Next (NXT) relationship which exists between a pair of

nodes that have the same parent and follow one another. Both these types of relationships are

discussed below, with reference to the RS-tree in Figure 5-2.

12 See section 3.2 for information on how to segment a text for the RST analysis.

Chapter 5 – A narrative-based collaborative writing tool: The design 58

Parent-child (PC) relationships

A PC relationship holds between a node and its child node. It is represented using two fields:

(Parent node, Child node). The PC relationships in Figure 5-2 are (1, 2), (1, 3), (3, 4), (3, 5)

and (3, 6).

Next (NXT) relationships

A NXT relationship holds between two nodes that have the same parent and are in sequence.

It is also represented using two fields: (First node, Second node). In the following sections, it

will become necessary to order a group of nodes according to these NXT relationships. To

simplify this process, we have decided to add a special NXT relationship - (_,N) - to indicate

that N is the first sibling in a set of children. Therefore, the NXT relationships in Figure 5-2

are (_,2), (2, 3), (_,4), (4, 5) and (5, 6).

Having modelled the tree structure, we move on to study the representation of the other

component of a RS-tree: the RST relationships. One way of denoting a RST relationship is as

a triple (e.g. node1, motivates, node2). These can be stored in a triple store and manipulated

using the algorithms developed to retrieve information from a triple store. (See (Harris and

Gibbins, 2003) for more information on triple stores.) However, we do not expect to deal with

a repository of relationships so large as to warrant the use of a triple store. We stick to a

simpler representation which is described below.

RST relationships

In our model, a RST relationship is stored using four fields: the relationship name, the nucleus

node, the satellite node and state.

 (Relationship name, Nucleus node, Satellite node, Relationship State)

The RST relationships in Figure 5-2 are: (Motivation, 3, 2, Satisfied), (Background, 5, 4,

Satisfied) and (Justify, 5, 6, Satisfied).

The first three fields are self-explanatory. The ‘state’ field has been introduced to keep track

of relationships as changes are made to the RS-tree. The value of this field can either be

“satisfied” or “unsatisfied”. In our model, a relationship is satisfied when its nucleus and

satellite (or two nuclei) fit definitions by Mann and Thompson (1988) for that relationship. A

relationship remains unsatisfied until explicitly stated otherwise by the user. As authors make

changes to parts of the RS-tree, certain relationships that were previously true may need to be

changed to unsatisfied. The strategy used to select which relationships need to be changed is

explained in the section on version control.

Chapter 5 – A narrative-based collaborative writing tool: The design 59

In multi-nuclear relationships, the second field will hold the second nucleus node. We also

restrict the relationships to be binary13. This will affect the SEQUENCE and JOINT

relationships which are allowed to involve multiple nodes. They will now have to be

represented using two nodes at a time. So, if N1, N2 and N3 are in a SEQUENCE

relationship, it will need to be broken down into (Sequence, N1, N2, Satisfied) and

(Sequence, N2, N3, Satisfied).

These concepts are illustrated below. For clarity, the conventional tree structure is in black

and the added RST information is in blue.

Figure 5-2: Diagram showing the components of a RS-tree

5.1.4 A sample representation

To demonstrate the use of nodes and relationships to model a RS-tree, we present an example

in this section. The DN below will be used for the RST analysis.

Figure 5-3: A sample DN

A possible RST analysis for this DN was completed and the diagram below shows how the

RS-tree is stored in our model. The figure is followed by a description of its relationships and

nodes.

13 N-ary relationships can be converted to binary. Other researchers have restricted themselves to only
binary RST relationships too.
MARCU, D. (2000) The Theory and Practice of Discourse Parsing and Summarization, The MIT
Press.

Justify Background
Leaf node (segment)

Motivation

1

2 3

5 6

Root node of tree

Nodes linked by
RST relationship
and next
relationship

Nodes linked by
parent-child
relationship

Internal node (span)

4

[There is a good initial condition] [which is disrupted by an unexpected problem.] [A

solution is fast sought and executed] [to restore the initial condition.]

Chapter 5 – A narrative-based collaborative writing tool: The design 60

Figure 5-4: Diagram illustrating how the RS-tree for the DN in Figure 5-3 is stored using our

model

The nodes necessary to represent the RS-tree using our model are listed below. Node 1 is the

root node. Nodes 1, 2 and 3 are spans because they are parents of, and thereby contain, other

nodes.

Table 5-1: Nodes needed to represent the RS-tree using our model

The relationships necessary to model the RS-tree are listed next. In Figure 5-4, a tick ()

beside a RST relationship indicates that it is satisfied. This RS-tree will be used in the

forthcoming sections to demonstrate various functions.

NNooddee RReepprreesseennttss

1 Root node (contains nodes 2-7)

2 Span containing nodes 4 and 5

3 Span containing nodes 6 and 7

4 “There is an initial condition”

5 “which is disrupted by an unexpected problem.”

6 “A solution is fast sought and executed”

7 “to restore the initial condition.”

 Solutionhood

1

2 3

4 5 6 7

 Background Motivation

PPCC rreellaattiioonnsshhiippss::
(1,2), (1,3), (2,4), (2,5), (3,6), (3,7)

NNXXTT rreellaattiioonnsshhiippss::
(_,2), (2 3), (_,4), (4,5), (_,6), (6,7)

RRSSTT rreellaattiioonnsshhiippss::
(Solutionhood, 3, 2, Satisfied)

(Background, 5, 4, Satisfied)

(Motivation, 6, 7, Satisfied)

Table 5-2: Relationships needed to represent the RS-tree using our model

Chapter 5 – A narrative-based collaborative writing tool: The design 61

In this chapter, RS-tree diagrams will be drawn as shown in Figure 5-4 to better illustrate the

concept of nodes and the types of relationships. It differs from the RS-tree diagrams in the

preceding chapters. Note that circles have been used to represent nodes (whereas rectangles

were used before to denote segments). Also, even spans now have a node number. Before,

they used to just contain the list of segments it represented (e.g. 3-7).

5.1.5 Summary

A DN can be obtained by taking the fringe of a RS-tree. Therefore, only RS-trees have been

modelled in our design. A RS-tree can be represented completely by a set of relationships.

Three types of relationships have been used for this purpose: PC, NXT and RST relationships.

Each RS-tree has a root node. Meanwhile, leaf nodes correspond to segments in the DN and

internal nodes correspond to spans. These concepts are summarised below.

DN The fringe of a RS-tree

RS-tree A set of relationships

Relationship A PC, NXT or RST relationship between nodes

Node A component of the RS-tree. Every RS-tree has a root node. Leaf nodes

correspond to segments of the DN and internal nodes are spans.

A DN prior to being analysed using RST will be stored as a minimal tree structure (i.e. just

the root node with children nodes corresponding to the segments of the DN). There will be no

RST relationships. This is shown below.

Figure 5-5: A minimal tree showing the DN before the RST analysis

The RS-trees are stored in a repository. As changes are made to a particular RS-tree, new

versions of it will be created. This means that there needs to be a method to manage these

versions. Therefore, version control is discussed next.

1

2 5 3 4

There is a good
initial condition

which is disrupted by
an unexpected
problem.

A solution is fast
sought is fast sought
and executed

to restore the
initial condition

Chapter 5 – A narrative-based collaborative writing tool: The design 62

5.2 Version control

5.2.1 Introduction

A detailed study of version control is beyond the scope of this thesis. However, a tool

allowing collaborative editing of RS-trees cannot be complete without some method of

managing the revisions. This discussion on version control has been placed in a separate

section because it was unclear as to which model it should belong to. It is necessary, however,

to know the method of version control before proceeding to the business process model so

that user operations can be properly specified. Hence, this was thought to be the ideal location

for this section.

We present a brief overview of three version control systems existing today. The three version

control systems discussed are RCS, CVS and LibreSource. RCS was chosen for historic

reasons. It appears to have been one of the first tools to use the concept of differences (or

deltas) to regenerate the revisions. Many of the features in RCS form the basis for the now

popular tool, CVS. LibreSource is a web-based tool that allows users to work on individual

replicas of a file and uses a method called operational transformation to ensure that the edits

are applied to each replica in the right context (this was discussed in section 2.5). This

overview is followed by a description of the simple method of version control designed for

our tool.

5.2.2 Revision Control System (RCS)

RCS is a version control system from the 1980’s. Like several other tools at the time, RCS

stored just the differences between successive revisions (called deltas14) to conserve space.

However, RCS differed from previous tools in two ways. RCS was novel in that it considered

changes to the whole family of files together while previous tools had treated the components

of a system in isolation. RCS also used a technique of reverse deltas (Tichy, 1982) to

reconstruct revisions.

Files were checked in to and out of the system using the ci and co commands respectively.

When a file was checked in, an appropriate version number was allocated automatically or

assigned by the user. RCS also prompted for a log message that summarised the changes

made. Therefore, each version contained the following information: check-in time and date,

author’s identification, state, log message and the actual text (only deltas). The state of a

version was, by default, set to ‘experimental’. The state could be changed to ‘stable’ or

‘released’ by a user. A tree of versions was created. A function called ‘join’ was available that

could be applied to a triple of versions to merge the changes based on a common ancestor.

14 When storing deltas, the grain of change is the line. This was because the UNIX program called

diff computed deltas line by line.

Chapter 5 – A narrative-based collaborative writing tool: The design 63

RCS used locks to avoid conflicting changes to the same version. So, a version was locked

when it was checked out by a user for editing. The lock was released once it was checked

back in. These locks could be forced; thus, allowing some flexibility to the otherwise

restrictive system of locking. For more information about RCS, see (Tichy, 1985).

5.2.3 Concurrent Versions System (CVS)

CVS is a free version control system that is popularly used today. It started out “as a bunch of

shell scripts written by Dick Grune, posted to the newsgroup comp.sources.unix in the

volume 6 release of July, 1986” (Cederqvist, 2002). Like RCS, it also records just the

differences between the versions and is driven using CVS commands.

All the files in CVS are stored in a centralised repository. Each revision is numbered with a

number of period separated decimal integers (e.g. 1.1, 1.2 and so on). Revisions on branches

are numbered accordingly (e.g. 1.1.1, 1.1.2 and so on) forming a tree of versions.

Users never access these files directly. Instead, the user has to ‘check out’ the required file to

create his own working copy of it. After the user finishes working on it, he can commit the

changes to the repository, making the revised files available for anyone else using that

repository. This process can be performed in one of two modes: reserved checkouts or

unreserved checkouts. Reserved checkouts (or file locking) is often the only option provided

in systems like RCS. It allows only one person to edit a file at a time. Unreserved checkouts,

on the other hand, allow all the participants to work on independent copies of the files and

CVS merges the changes once they are committed15. CVS has many other features which are

explained in (Cederqvist, 2002).

5.2.4 LibreSource

LibreSource is an open-source, web-based platform dedicated to collaborative software

development. Its design and development are based on the J2EE technology and an

application server called ‘jonas’. The LibreSource platform is available via a website and is

used in a variety of applications. For example, Marjanovic et al. (2006) describe the use of

LibreSource in E-learning.

Software and documents shared using LibreSource are hosted as projects. Each project is

allocated a set of resources. So6 synchroniser, a version control system developed for

LibreSource, is one of these resources (Forest, 2005). So6 is based on a technique called

operational transformation (OT) and aims to overcome some of the shortcomings of CVS.

OT was described in Chapter 2. Users can work on copies of the shared document locally.

These local workspaces are then linked to the synchroniser. The synchronisation process takes

15 The merge works best with text files. External merge tools may need to be used for other types of
files.

Chapter 5 – A narrative-based collaborative writing tool: The design 64

into account modifications done to the document by all the users and applies these to all the

replicas of the document so that the users (and the server) end up with identical values.

When concurrent edits are made to the same set of lines, users are notified of conflicts. They

are then required to manage and resolve the conflict. LibreSource also allows user groups and

roles to be defined, along with access rights for each. This and more advanced security

features are described in the LibreSource documentation (Forest, 2005).

5.2.5 Our method of version control

We are not going to implement a complex version control mechanism into our tool because

that is not the main focus of our work. The method designed for the tool is simple and

sufficient for the purposes of this application. Some features have been borrowed from the

systems described above.

Early on in the design, it was decided that data once stored in the repository would never be

changed or deleted. Therefore, any modification to a RS-tree results in the creation of a new

version of that tree (as opposed to in-situ updates to the data). All unacceptable changes can

be undone by reverting to a previous version.

Each new version created is allocated a unique version number - an integer – automatically.

Each version also contains the name of the author that made the change and the number of the

version it was derived from. We call the older version the ancestor or parent version16. The

parent version enables users to track changes. A tree of versions is established like in RCS

and CVS. This is illustrated by the diagram below where versions 3 and 5 have been derived

from version 2, version 4 from 1 and so on. The first version of a RS-tree is always assigned

0.

Figure 5-6: Diagram showing a tree of versions

16 Note that the use of the word ‘parent’ in “parent version” differs to its use in the “parent-child” (i.e.
parent of a node) relationships. We will distinguish clearly between the two in the following sections.

Version 0

Version 2 Version 1

Version 3 Version 5 Version 4

Chapter 5 – A narrative-based collaborative writing tool: The design 65

 Solutionhood

1

2 3

4 5 6 7
 Background

x Solutionhood

 Motivation

8

9

10

x Motivation

Version 2 Version 1

Like in RCS, each version of the RS-tree is also given a “Status” attribute which indicates

whether it was created after an edit, review or a merge. The status field can, therefore, contain

“Edit”, “Reviewed” or “Merged.”

Each time a change is made, a new version of the RS-tree is created with the change

incorporated. However, only the affected nodes are replaced. This ensures that unaffected

parts of the tree are not copied unnecessarily. This is similar to storing the deltas in RCS and

CVS. The unchanged nodes in the parent version are linked to from the new version.

A certain process is used to determine the nodes and relationships that should be changed and

those that should remain the same. Figure 5-7 is used to explain this process. It shows two

versions of the RS-tree from Figure 5-4.

Node 7 in version one is changed. This node is replaced in version two and is assigned the

number ten (node 10). To incorporate this replacement, node 3 has to be changed too (node

9). Node 9 is now the parent of nodes 6 and 10. Using the same reasoning, node 1 is replaced

with node 8, which becomes the root node of version 2. Links are made to unaffected nodes in

version 1 which are indicated by grey dashed lines.

With respect to the RST relationships, when changes are made to nodes, it is assumed that

relationships involving those nodes and their parents may no longer be satisfied (and,

therefore, need to be brought to the attention of the authors). Using this rule, the state of the

MOTIVATION relationship in version 2 between nodes 6 and 10 is changed to “unsatisfied”

due to the changes. This is denoted by a cross against the relationship name and a red arrow

instead of a blue one. The Solutionhood relationship may also be affected and is set to

“unsatisfied”. The Background relationship remains unchanged.

Thereby, when a node in the RS-tree is changed or deleted, or a new node is added, the

relationships in the path from the root node to the affected node are set to unsatisfied

and the nodes in the path are replaced. All other relationships and nodes stay the same.

Figure 5-7: Diagram showing the creation of a new version of a RS-tree. Node 7 in version 1 is

changed. Unaffected parts in version 1 are linked to from version 2.

Chapter 5 – A narrative-based collaborative writing tool: The design 66

If the order of nodes is affected by the change, some nodes that are siblings of the changed

node may need to be replaced too. This is discussed in detail in the functional model. The

status of both these versions of the RS-tree is “Edit”. Each version will also hold the name of

the author who created it. The root nodes in the versions above have been highlighted using

darker lines. When multiple versions of a RS-tree exist, it is akin to a forest of connected RS-

trees with each of them identified by a unique root node.

5.2.6 Summary

In summary, each time a user makes some change to a RS-tree, a new version of it is created

and stored in the repository. However, only affected parts of the RS-tree are replaced in the

new tree. The unchanged sections are just linked from the parent version.

Each version of the RS-tree contains the following information: the version number, the root

node, the parent version (or ancestor), the author that created it and the status of the version.

To this list, we add another attribute called ‘ID’. Although the root node is a unique identifier

of a RS-tree, it will not make much sense from a user’s point of view. An author is likely to

want to say ‘I want version 2 of the RS-tree relating to a particular document’. Hence, the ID

has been introduced. So, the ID together with the version number, is another way of uniquely

identifying a RS-tree.

Our method of version control contains no locking. This is ideal for our application since a

restrictive mechanism would not enable the authors to work naturally. A system of locks is

possible future work for the tool to manage conflicting updates to the same version. For now,

every update is stored in a version of the RS-tree. The merge function described at the end of

this chapter allows users to merge two RS-trees derived from the same parent version.

Having studied the key concepts and a way of managing the versions, it is now possible to

enumerate and define the user operations. This is done next in the business process model.

Chapter 5 – A narrative-based collaborative writing tool: The design 67

5.3 The business process model: An author’s perspective

5.3.1 Introduction

It is an established fact that successful applications rely on well understood business

processes (Henderson, 2000). A business process (BP) model, in this context, is an

enumeration of all the actions which the authors can engage in; exactly like a use case model.

It may, at first, seem unusual to describe collaborative editing as a “business”. However, it

has all the characteristics and complications of coordinated actions in any business. To be

formal about a BP, these actions, the order in which they can be performed and the effect they

have on the shared global state must be stated. This is non-trivial when there are multiple

authors working asynchronously. Unusually, there appears to be no constraints on the order in

which these actions can be performed by the author, as is typical in other business processes

(Henderson and De-Silva, 2006).

In narrative-based writing, authors will perform the following basic actions: read a DN with

its RST relationships, edit a DN and analyse the DN using RST. A fourth action – review - is

added to this list. ‘Review’ is the process done at the end of the analysis to check if the RST

relationships are satisfied or unsatisfied. Since only the RS-trees are stored in the repository,

these actions can be restated as follows:

1. Read a RS-tree

2. Edit a RS-tree (includes editing a DN and analysing it)

3. Review a RS-tree

These actions are briefly described below.

5.3.2 Reading a RS-tree

To read a RS-tree, the author has to specify the ID and version number of the RS-tree he

needs. Using these two values, the root node of the required RS-tree is found. Starting at this

root node, the RS-tree is traversed using a pre-order traversal technique. For each node in the

RS-tree, the text (if it is a segment in the DN) or an empty string (if it is a span) is displayed

along with details of the corresponding RST relationships. Multiple authors can read the same

version of a RS-tree at the same time.

Figure 5-8: Two authors reading the same version of a RS-tree

Version number
RS-tree ID

Version number
RS-tree ID

RS-
tree

RS-
tree

Chapter 5 – A narrative-based collaborative writing tool: The design 68

5.3.3 Editing a RS-tree

Once again, the user needs to provide the ID and version number to identify the required RS-

tree. In addition to these values, information regarding the edit (i.e. the node number being

changed or removed, the new text and so on) also needs to be given. After each edit, a new

version of the RS-tree is created with the affected nodes and relationships changed (as

explained in section 5.2). All three types of relationships in the new version of the RS-tree –

PC, NXT and RST – will need to be considered. The new version will be assigned a version

number and its status will be set to “Edit”.

As discussed in the section on version control, a new version is stored for every modification

done to a RS-tree. This may seem like it is overkill but these data objects are tiny when

compared to today’s storage capacities. It also enables close tracking of activities and the

ability to undo any action by going back to the previous version.

As stated in the conceptual model, a RS-tree is constituted of two components: the ordinary

tree structure and the RST information. Therefore, editing a RS-tree needs to encompass

changes to both these components. The corresponding user actions are described below: first

the actions to edit the tree structure and then the actions to edit the RST information. Obvious

validation checks such as making sure if a node exists before deleting it are not mentioned.

(1) Adding a new node at a specified position

A new node in this action represents a new segment to the DN. The position in the RS-tree

where the new node has to be inserted is specified using two values: the node which should be

the parent of the new node and the node after which the new node should be placed.

Either one of these values on its own is not sufficient in our model to specify an exact

location. This is illustrated by a simple diagram below showing two places that a new node 6

can be inserted if the only specification given was that it should be after node 5. With both

possibilities, the new node would be after node 5 when the RS-tree is traversed. (The

relationship names have been left out of the diagram.)

Figure 5-9: Two possible locations in the RS-tree that a new node after node 5 could be added.

1

2 3

4 5 6

6 ?

?

Chapter 5 – A narrative-based collaborative writing tool: The design 69

This action results in a new version of the RS-tree being created with the new node added in

the right location. Relationships in the path from the root node to the new node are set to

‘unsatisfied’ and the corresponding nodes are replaced. Since the order of the nodes is now

different, the NXT relationships need to be changed too (discussed in detail in the functional

model).

(2) Replacing an existing node

This action allows users to change the content of a leaf node in the RS-tree. It is equivalent to

changing the text of a segment in the DN. The user needs to specify the RS-tree ID, the

version number, the number of the node that needs changing and the new text. As before, a

new version of the RS-tree is created with the appropriate nodes and relationships replaced.

This process was illustrated in Figure 5-7.

(3) Removing a node

This action allows users to remove a node in the tree. The author has to specify the RS-tree

ID, the version number and the number of the node that needs to be deleted. A new version is

created with the node removed along with any relationships that involved that node.

(4) Creating a new span

The conceptual model defined a node in the RS-tree as being either a segment in the DN or a

span (i.e. a collection of other nodes). Therefore, creating a span can be seen to be equivalent

to adding a node. However, it is described as a separate action here since it requires different

arguments and processing than the ‘add a new node’ action above.

To create a span, the user needs to specify a set of adjacent nodes with the same parent (in

addition to the RS-tree ID and version number). A new RS-tree will be created with the

adjacent nodes grouped into a subtree. This subtree will be a child of the nodes’ previous

parent node.

Figure 5-10: Creating a span

A

D C

B

1

2 3 4

7 6

Create a span
with nodes 3 and
4

C A D B

8

2

7 6

9

10 4

Chapter 5 – A narrative-based collaborative writing tool: The design 70

Spans are necessary for the RST analysis. The figure above shows a RS-tree for a DN with

four segments (A,B,C and D) and a span being created with nodes 3 and 4. It is usual for these

nodes to be first linked by a RST relationship. So, for example, nodes 3 and 4 will be related

by a MOTIVATION relationship (say) and they will then become a span which can, in turn,

become part of another RST relationship. We do not enforce this rule in our tool. So, users

can, if they wish, create the tree structure (as shown in Figure 5-10) and then add the

corresponding RST relationships later.

The dashed lines indicate parts of the RS-tree that have not changed. Note that the first node

in the new span has been replaced with a new node (containing the same content). So, in the

example above, node 3 was replaced with node 10 while node 4 remained the same. This was

done in order to maintain the NXT relationships. This process is detailed in the functional

model.

Next, the actions needed to edit the RST information in the RS-tree are described. The word

‘relationship’ below refers to RST relationships. Like in the actions above, the user needs to

provide the RS-tree ID and version number. This will not be repeated in each description

below.

(5) Adding a new relationship

To add a new relationship, the author needs to specify the name of the relationship and the

two nodes to which it applies. In the original definition of RST (Mann and Thompson, 1988),

any two nodes are only expected to have one relationship between them. Therefore, if the two

nodes specified are siblings (i.e. have the same parent) and have no other relationship between

them, a new version of the RS-tree is created with the relationship added. If there is already a

relationship between the specified pair of nodes, it will be replaced by the new relationship.

The state of this relationship, by default, is set to “unsatisfied” until this is changed in the

review process.

(6) Editing a relationship

A relationship is modelled using four fields: the relationship name, the nucleus node, the

satellite node and the state. In this action, the user is allowed to change the name of a

relationship. The user has to specify the two nodes between which the relationship exists and

also the change required (i.e. new name). A new version of the RS-tree is created with the

relationship modified as requested. The two corresponding nodes are also replaced to

accommodate this change17. If the user wishes to modify the nodes to which the relationship

applies, then he needs to delete the relationship and add a new one.

17 The previous relationship will continue to exist between the two nodes in the old version. In the new
version, the new relationship has to then be between two similar nodes (but not the same ones).

Chapter 5 – A narrative-based collaborative writing tool: The design 71

(7) Deleting a relationship

This action results in the creation of a new RS-tree with the specified relationship removed.

The relationship is specified using the numbers of the two nodes involved. (There should only

be one relationship between any two nodes.)

5.3.4 Reviewing a RS-tree

Reviewing a RS-tree can be viewed as a collection of ‘edit a relationship’ actions where the

author modifies the states of the relationships in a given RS-tree. A new version of the RS-

tree is created with the states changed. In some collaborative writing teams only members

who are designated as ‘reviewers’ are allowed to carry out this action. The status of the new

version thus created is set to ‘reviewed’.

5.3.5 Summary

The business process model identified the user actions necessary to perform narrative-based

writing and defined each of them informally. Each action results in a new version being

created. The actions are listed below.

Action performed by the author

1 Read a RS-tree

2 Edit a RS-tree

 Add a new node at a specified position

 Replace an existing node

 Remove a node

 Create a span

 Add a relationship

 Edit a relationship

 Delete a relationship

3 Review a DN

Table 5-3: A summary of the author actions

These actions are formally defined as functions in the functional model (described next).

Chapter 5 – A narrative-based collaborative writing tool: The design 72

5.4 The functional model: An implementer’s perspective

5.4.1 Introduction

At each step, the design of this tool has been refined to show more clarity and precision. The

functional model in this section is the culmination of the preceding discussions. We present

formal definitions for a set of functions that are necessary to implement the user operations

that were described in the business process model. Some of the functions are called core

functions because they provide basic functionality such as searching the RS-tree and

retrieving the children of a given node. The other functions use a combination of these core

functions to define the user actions. These functions have been implemented in Java. See

Appendix B (section B.2) for the Java methods.

Descriptions of the functions below are accompanied by a sample application of the function

on the RS-tree and DN from Figure 5-4. The RS-tree has been reproduced below for

convenience. Note that the relationship names will be denoted by single letters to save space

(S – Solutionhood, B – Background, M – Motivation).

Figure 5-11: Sample RS-tree

5.4.2 The data model

The functions in this section are carried out on RS-trees in the repository. The conceptual

model showed how a RS-tree can be stored using a set of nodes and relationships. The

attributes of a version of a RS-tree, a node and the three types of relationships are repeated

below. In addition to the data types listed below, boolean, integer and String have

been used in the functions as well.

 M

 S

1

2 3

4 5 6 7 B

Chapter 5 – A narrative-based collaborative writing tool: The design 73

AAttttrriibbuutteess ooff aa vveerrssiioonn ooff aa RRSS--ttrreeee

 ID The number identifying the RS-tree

 Version Number of this version of the RS-tree

 Parent version Number of the parent version

 Root node Root node of the RS-tree

 Author Name of the author who submitted this version

 Status The status of the version (Edit, Reviewed or Merged)

AAttttrriibbuutteess ooff aa NNooddee

 ID The unique number identifying the node

 Text Contains the text of the node if it represents a segment.

 (Empty if it is a span.)

AAttttrriibbuutteess ooff aa PPaarreenntt--CChhiilldd ((PPCC)) rreellaattiioonnsshhiipp

 Parent The ID of the parent node

 Child The ID of the child node

AAttttrriibbuutteess ooff aa NNeexxtt ((NNXXTT)) rreellaattiioonnsshhiipp

 First The ID of the first node in the pair

 Second The ID of the second node in the pair

AAttttrriibbuutteess ooff aa RRSSTT rreellaattiioonnsshhiipp

 Name Name of the relationship

 Nucleus The ID of the nucleus node

 Satellite The ID of the satellite node (or second nucleus)

 State ‘Satisfied’ or ‘Unsatisfied’

5.4.3 Notation used

A form of pseudocode has been used to define the functions. We have tried to make it as self-

explanatory as possible but we include a few general comments below for further

clarification.

o Comments are indicated by ##.

o An equals sign (=) is used for assignment and a double equals sign (= =) to test for
equality.

o A ‘set’ refers to a collection of data elements (e.g. set(Node) is a set of Nodes) and ‘add’
is a function to add elements to a set (e.g. children.add(node)). Indices are used to refer to
particular elements (e.g. children[1]).

Chapter 5 – A narrative-based collaborative writing tool: The design 74

o ‘For’ loops are defined as shown below. If more than one type of item is used in the
iteration, they are separated with commas.

for (each item,item in collection) {

 ...action...

}

o Usually, ‘n’ is used to refer to a node and ‘r’ is used when the node referred to is the root
of the tree under consideration. ‘c’ denotes the current position in the tree.

o A dot is used to refer to the attributes of an element (e.g. n.text refers to the text attribute
of the node n).

o Variables are initialised as follows: children = new set(Node). This initialises the
variable ‘children’ to an empty set which can contain elements of type Node.

o STORE is an operation that stores the data in the repository.

5.4.4 The six core functions

The six core functions provide essential operations to retrieve information about a version of a

RS-tree. They are: getChildren, getNodes, contains, locate,

getRSTRelationships and getNXTRelationships. The results of applying each

function to the sample RS-tree in Figure 5-11 are shown in the right hand panel. These core

functions are used in the more complex functions in the next section.

In the functions, the particular RS-tree is indicated by specifying its root node (denoted by r).

In the business process model, a RS-tree was identified using the RS-tree ID and the version

number. However, this was purely for the user’s benefit. Given the ID and the version

number, the root node can be easily extracted.

(1) Function getChildren(n) examines all the PC relationships in the repository and returns

the immediate children of node n. The child nodes are also ordered according to the NXT

relationships. This function is necessary to traverse the tree. The data types of the argument

and result are Node and set(Node) respectively.

 getChildren(n){

 children = new set(Node)
 pcrelations = all PC relations
 where n is a parent
 for (each parent,child in pcrelations){
 children.add(child)
 }
 ## order children (discussed below)
 return children
}

getChildren(1) = (2,3)

getChildren(3) = (6,7)

getChildren(5) = ()

Chapter 5 – A narrative-based collaborative writing tool: The design 75

The child nodes are ordered according to the NXT relationships. There are several ways of

doing this. We have used the following method:

i) Find the first child in the sequence

Extract the (_,N) NXT relationship pertaining to this set of children and find out

which of the child nodes appears in N. This is the first in the sequence.

ii) Build the sequence by following the NXT relationships from the first child

In the Java, we have separated the ordering of children into a different method since it is often

not necessary to order the nodes. Only a few of the forthcoming functions require the results

of getChildren() to be ordered.

(2) Function getNodes(r) returns all the nodes in the RS-tree with root node r (including r). It

makes use of the getChildren() function above to traverse the tree. The recursion ends when

getChildren() returns an empty set18. The data types of the argument and result are Node and

set(Node) respectively.

 getNodes(r){

 descendants = new set(Node)
 descendants.add(r)
 children = getChildren(r)
 for(each node in children){
 descendants.add(getNodes(node))
 }
 return descendants
}

getNodes(1) =

(1,2,3,4,5,6,7)

getNodes(3) = (3,6,7)

getNodes(5) = (5)

(3) Function contains(n,r) returns true if the node n is contained somewhere in the RS-tree

with root r. It makes use of the getNodes() function above. The function takes as arguments

two values of type Node and returns a boolean.

 contains(n,r){

 return (n is in getNodes(r))
}

contains(1,1) = true

contains(5,2) = true

contains(2,3) = false

(4) Function locate (n,r) returns the immediate subtree within the tree with root r that

contains node n. It makes use of the getChildren() and contains() functions. The data type of

the two arguments is Node and the result is an integer (the id of the root of the subtree). It

returns -1 if the node is not contained in any of the immediate subtrees. This function is useful

18 getChildren() performed on a leaf node will return an empty set.

Chapter 5 – A narrative-based collaborative writing tool: The design 76

when finding the path in a RS-tree from, say, the root node to a node that has been changed

by an author.

 locate(n,r){
 children = getChildren(r)
 for(each node in children){
 if (contains(n,node)){
 return node.ID
 }
 }
 return -1
}

locate(5,1) = 2

locate(3,2) = -1

(5) Function getRSTRelationships(r) examines all the RST relationships in the repository

and returns those pertaining to the tree with root r. For each RST relationship, the function

checks if both the nucleus and satellite are contained in the tree with root r. The function takes

one argument of type Node and returns a set of RST relationships.

getRSTRelationships(r){
 rels = new set(RST Relationship)
 for(each RST relationship in repository){
 if(contains(satellite,r) AND
 contains(nucleus,r))
 rels.add(the RST relationship)
 }
 return rels
}

getRSTRelationships(1) =

(Solutionhood, 3,2, Satisfied)

(Background, 5, 4, Satisfied)

(Motivation, 6, 7, Satisfied)

getRSTRelationships(3) =
(Motivation, 6, 7, Satisfied)

(6) Function getNXTRelationships(children) examines all the NXT relationships in the

repository and returns those pertaining to the nodes in children. For each NXT relationship,

the function checks if both the first and second nodes are in the set children. The exception to

this is in the case of the (_,N) relationships where only N will be checked to see if it is

contained in the set. The function takes one argument of type set(Node) and returns a set of

NXT relationships.

getNXTRelationships(children){
 nxtrels = new set(NXT Relationship)
 for(each NXT Relationship in repository){
 if((first is in children OR is _) AND
 (second is in children))
 nxtrels.add(the NXT relationship)
 }
 return nxtrels
}

getNXTRelationships((6,7))

= (_,6), (6,7)

getNXTRelationships((2,3))

= (_,2), (2,3)

Chapter 5 – A narrative-based collaborative writing tool: The design 77

8

9 3

4 10 6 7 11

5.4.5 Discussion on NXT relationships

Before proceeding to present the functions to implement the user actions, it is necessary to

discuss the issues that arise when maintaining the NXT relationships. Consider, for instance,

the NXT relationships pertaining to the sample tree. They are (_,2), (2,3), (_,4), (4,5), (_,6)

and (6,7). Whenever a new node is added, a node is removed or a span is created, this

sequence of nodes is going to be affected. When, say, a new node is added after node 4 in the

sample tree, one would expect the new RS-tree below to be created (the RST relationships

have not been shown). The new node is assigned the ID 10.

Figure 5-12: Sample RS-tree with a node added after node 4

The NXT relationships pertaining to this new RS-tree are (_,9), (9,3), (_,4), (4,10), (10,5),

(_,6) and (6,7). However, when the getNXTRelationship() function is called for the children

of node 9, the following NXT relationships will be returned: (_,4), (4,5), (4,10) and (10,5). As

can be seen, the relationships (4,5) and (4,10) are in conflict.

To overcome this problem, we replace the node immediately after the changed node. In the

example above, this would produce the tree below. Note that node 5 has now been replaced

with a new node 11 (with the same text). The NXT relationships for the children of node 9

now are (_,4), (4,10), (10,11) and thus cause no confusion with the parent version of the RS-

tree. A similar process has to be done when a node is removed and when a span is created.

Figure 5-13: Sample RS-tree with a node added and NXT relationships restored

8

9 3

4 10 6 7 5

Chapter 5 – A narrative-based collaborative writing tool: The design 78

5.4.6 Functions to implement user actions

The following functions (which make use of the core functions above) enable the user actions

of reading, editing and reviewing a RS-tree to be implemented. Once again, the results of

applying each function to the RS-tree in Figure 5-11 are included.

Reading a RS-tree

This action is implemented using the function print(c,r). This function traverses the tree with

root r and prints the details of the nodes and RST relationships. The two arguments c and r are

of type Node. Argument c is used to maintain the position in the tree during the recursion.

print(c, r){
 display c.ID and c.text
 relationships = getRSTRelationships(r)
 for (each rel in relationships){
 if(c==rel.nucleus)
 display details of rel
 }
 children = getChildren(c)
 for (each node in children)
 print(node,r)
}

The results of doing print(1,1) on the sample RS-tree are shown below. The nodes that

are spans have no associated text; hence, just the node number is displayed.

Figure 5-14: Results of doing print(1,1) on the sample RS-tree

1:
 2:
 4: “There is an initial condition”

 5: “which is disrupted by an unexpected problem”

 Related to node 4 by Background

 3:
 Related to node 2 by Solutionhood

 6: “A solution is fast sought and executed”

 Related to node 7 by Motivation

 7: “to restore the initial condition”

Chapter 5 – A narrative-based collaborative writing tool: The design 79

Editing a RS-tree

The RS-tree can be edited using seven functions: four which edit the tree structure and three

to edit the RST information (see business process model). These functions are listed in Table

5-4.

Functions to edit the tree structure of a RS-tree

1 addNode(…) Adds a new node at a specified location

2 replaceNode(…) Replaces the text of a specified node

3 removeNode(…) Removes a node

4 createSpan(…) Creates a span using a specified set of adjacent nodes

Functions to edit the RST information of a RS-tree

5 addRelationship(…) Adds a new RST relationship between two nodes

6 replaceRelationship(…) Changes the name of an existing RST relationship

7 removeRelationship(…) Removes a specified RST relationship

Table 5-4: List of functions that implements the user actions

The general structure for each of these functions is:

i. Traverse the tree until the right location is found (only travelling along the path from

the root to this specified position, replacing the affected nodes and relationships on

the way)

ii. Once found, make the necessary change

iii. Return the root of the new RS-tree

This generic structure is tailored to perform the desired action in each of the functions. These

definitions are given below.

(1) The addNode(…) function adds a new node at a specified location and returns the root of

the new version of the RS-tree. The input parameters are below.

 n: Node after which the new node should be added (left empty if new node is first)

 p: Node that should be the parent of the new node

 s: The text for the new node

 c: The current position in the tree

 r: The root of the tree

Both p and n are needed to specify the location of the new node as discussed earlier (Figure

5-9). The function traverses the RS-tree until the specified location is found, replacing

affected nodes and relationships in the path. The function is outlined below.

Chapter 5 – A narrative-based collaborative writing tool: The design 80

addNode(n,p,s,c,r){

 1. Replicate the text of node c in a new node (say, newnode)

 2. Traverse the tree until the parent node p is found

 (a) if (c = = p)

 Store a new node with text s (say, newnode2)

 Store PC (newnode.ID, newnode2.ID)

 Store appropriate NXT relationships (see a.1 below)

 (b) else

 x = locate (p,c)

 xx = addNode (n,p,s,x,r)

 3. Fix other relationships (see 3.1, 3.2 and 3.3 below)

 4. Return ID of newnode

}

Note that, by using the locate(p,c) function, it is possible to traverse along the path

from the root to the affected location in the tree (without having to visit unnecessary nodes

and subtrees). When p is found, the new node is added to the database and connected to the

new RS-tree via a PC relationship.

The NXT relationships affecting the children are added too (as shown below). If n is empty, it

means that the new node is expected to be the first child of node p. In this case, the NXT

relationships (_,newnode2) and (newnode2, previous first child of p) have to be added. If a

value has been specified for n, then the new node has to be added after n: (n.ID,

newnode2.ID). If there was a node immediately after n in the original sequence, it would also

have been replaced as discussed in section 5.4.5 (say, newnode3) and hence (newnode2.ID,

newnode3.ID) has to be added too.

if(n is not empty)

 STORE NXT (n.ID, newnode2.ID)

 STORE NXT (newnode2.ID, replacement for node after n)

else

 STORE NXT (__, newnode2.ID)

 STORE NXT (newnode2.ID, first child of node p)

In step 3, all the other relationships in the path (PC, NXT and RST) are transferred to the new

RS-tree. The basic idea is to change any pointers to nodes that have been replaced with their

new IDs. Nearly all the functions will have a similar procedure to handle these relationships.

Therefore, we discuss them at length here but will not go into as much detail in the other

functions unless there is a specific point to be made.

(a.1)

Chapter 5 – A narrative-based collaborative writing tool: The design 81

nxtrels = getNxtRelationships(children)
for (each rel in nxtrels){
 if (rel.first == x)
 STORE NXT (xx.ID, rel.second)
 else if (rel.second == x)
 STORE NXT (rel.first, xx.ID)
}

rstrels = getRelationships(r)
for (each rel in rstrels){
 if(c==rel.nucleus){
 STORE RST (rel.name, newnode, rel.satellite, unsatisfied)
 else if (c==rel.satellite){
 STORE RST (rel.name, rel.nucleus, newnode, unsatisfied)
 ## Similarly, replace pointers to x and the node after n too

}

First the PC relationships are fixed. ‘x’ and ‘xx’ are values obtained in the function above in

step (2)(b). Below, if the node used to be x, it is replaced with xx. If it used to be the node

after n, it is replaced with newnode3. All other relevant children are added as children of

newnode.

Similarly, the NXT and RST relationships are fixed too. The states of the affected RST

relationships in the path are set to “unsatisfied”.

In the implementation stage, we will add information about the RS-tree such as its author and

status into the database. For now, we concentrate on the manipulation of the nodes and

relationships.

The result of doing addNode(5, 2, 1, 1, “new text”) to the sample RS-tree is shown

below. Links to nodes in the parent version are indicated using grey dashed lines. The tables

following the diagram show the nodes and relationships in the repository after this change has

been made. The grey information existed in the repository already (see section 5.1.4).

children = getChildren(c)
for (each node in children){
 if (node.ID == x)
 STORE PC (newnode.ID, xx)
 else if (node is node after n)
 STORE PC (newnode.ID, newnode3.ID)
 else
 STORE PC (newnode.ID, node.ID)
}

 (3.1)

(3.2)

(3.3)

Chapter 5 – A narrative-based collaborative writing tool: The design 82

 B M

x S

8

9 3

4 10 6 7 5

Figure 5-15: A new version of the sample RS-tree after a node is added

NNooddee RReepprreesseennttss

1 Root node (contains nodes 2-7)

2 Span containing nodes 4 and 5

3 Span containing nodes 6 and 7

4 “There is an initial condition”

5 “which is disrupted by an unexpected problem.”

6 “A solution is fast sought and executed”

7 “to restore the initial condition.”

8 Root node

9 Span containing nodes 4,5 and 10

10 “new text”

Figure 5-16: The entries in the repository showing the changes made to the RS-tree

(2) The replaceNode(…) function replaces the text of a specified node with new text and

returns a new version of the RS-tree. This process was illustrated in Figure 5-7 in the section

on version control. The input parameters are listed below.

 n: Node that needs to be replaced (Node)

 s: The new text (String)

 c: The current position in the tree (Node)

 r: The root of the tree (Node)

The function traverses the RS-tree replacing the nodes in the path and setting the affected

RST relationships to ‘unsatisfied’. When node n is found, it is replaced in the new tree with a

node that contains text s. It is assumed that node n exists in the tree.

PPCC rreellaattiioonnsshhiippss::
(1,2), (1,3), (2,4), (2,5), (3,6), (3,7)

(8,9), (8,3), (9,4), (9,5), (9,10)

NNXXTT rreellaattiioonnsshhiippss::
(_2),(2 3), (_,4),(4,5), (_,6),(6,7)

(_,9), (9,3), (5,10)

RRSSTT rreellaattiioonnsshhiippss::
(Solutionhood, 3, 2, Satisfied)

(Background, 5, 4, Satisfied)

(Motivation, 6, 7, Satisfied)

(Solutionhood, 3, 9, Unsatisfied)

Chapter 5 – A narrative-based collaborative writing tool: The design 83

replaceNode(n,s,c,r){

 1. Generate a new node with a unique ID (say, newnode)

 2. Traverse the tree until the specified node is found

 (a) if (c = = n)

 Store newnode (containing text s)

 (b) else

 x = locate (n,c)

 xx = replaceNode (n,s,x,r)

 Store the contents of node c in a new node (newnode)

 Fix PC relationships

 3. Fix other relationships (NXT and RST)

 4. Return ID of newnode

}

The process to fix the PC, NXT and RST relationships in step 3 is similar to that in the

previous function and is, therefore, not repeated. The main difference is that the node

immediately after n in the original sequence is not replaced. A diagram is not included either

since it was illustrated in Figure 5-7.

(3) The removeNode(…) function removes a specified node and returns a new RS-tree. Any

RST relationships involving this node are removed too. The arguments for this function are

given below.

 n: Node that needs to be removed

 c: The current position in the tree

 r: The root of the tree

removeNode(n,c,r){

 1. Generate a new node with a unique ID (say, newnode)

 2. Traverse the tree until the specified node is found

 (a) if (c == n)

 Replace the node just after n (newnode2)

 Set relevant NXT relationships

 (b) else

 x = locate (n,c)

 xx = removeNode (n,x,r)

 Replicate the content of node c in newnode

 3. Fix relationships

 4. Return ID of newnode

}

The relationships that involve n are ignored (i.e. doing nothing to transfer them to the new

tree will automatically remove them). The diagram below shows the resulting RS-tree when

node 7 is removed from the sample RS-tree. As before, the links to nodes in the parent

version are indicated by grey dashed lines.

Chapter 5 – A narrative-based collaborative writing tool: The design 84

B

x S

8

2 9

5 6 4

Figure 5-17: RS-tree after node 7 is removed from the sample RS-tree

In this particular case, the new NXT relationship that needs to be added is (2,9). However, if

node 7 had a node immediately after it in the original version of the tree, it would have been

replaced with a new node to avoid conflicting NXT relationships.

With regards to the RST relationships in the new tree, note that the MOTIVATION

relationship that node 6 was involved in has been removed and the SOLUTIONHOOD

relationship is set to ‘unsatisfied’ because it is in the path and the deletion may have affected

its validity.

(4) The createSpan(…) function groups the specified set of nodes into a subtree, attaches the

subtree to the nodes’ common parent (p) and returns the root of the new version of the RS-

tree. It is assumed that the specified nodes are adjacent and in the given tree.

 nodes: Set of adjacent nodes that are to be grouped into a subtree

 p: Node that the subtree will be attached to (common parent of nodes)

 c: The current position in the tree

 r: The root of the tree

createSpan(nodes,p,c,r){

 1. Store the text of node c in a new node (say, newnode)

 2. Traverse the tree until the specified parent p is found

 (a) if (c = = p)

 Create a new node (say, newnode2) ##span - no text

 Store PC (newnode.ID, newnode2.ID)

 Store relevant NXT relationships

 for (each node in nodes)

 Store a new node for the first node in the span

 For rest, store PC (newnode2.ID, node.ID)

 (b) else

 x = locate (nodes[1],c) ##Since nodes are siblings

 xx = createSpan (nodes,p,x,r)

 3. Fix relationships (discussed below)

 4. Return ID of newnode

}

Chapter 5 – A narrative-based collaborative writing tool: The design 85

A new RS-tree is used to demonstrate this function. The previous sample tree, while being

ideal for the other functions, would not have demonstrated createSpan() well since the

nodes in it have a maximum of just two children.

The result of applying createSpan ((3,4), 1, 1, 1) to the RS-tree below is shown. A

new span (node 9) is created with nodes 3 and 4 as its children. Node 9 can then be used in

RST relationships with either node 11 or node 2.

Figure 5-18: The resulting RS-tree (below) after createSpan () was applied to the tree above.

In our opinion, RST relationships that involved the nodes in the span can now be applied to

the span. Their state is “unsatisfied” since it needs to be checked if these relationships are still

applicable. In the example, the MOTIVATION (M) relationship now exists between nodes 2

and 9. The PC relationships are also relatively trivial to fix. Once again, we discuss the NXT

relationships in detail.

The nodes 3 and 4 are already in a NXT relationship from the parent version. The new

information that has to be added is that node 3 is now also the first node in the sequence

(which once again could be problematic since a (_,3) relationship will seem relevant to the

parent version too even though it is not). Our solution has been to replace the first node in the

span with a new node; thus requiring new, unambiguous NXT relationships. Note that node 5

has been replaced with node 11. This was also done to avoid conflicting NXT relationships

between the children of node 8.

M

1

2 3 4 5

7
B

6

M

B

8

2 11

7 6

9

10 4

Parent version

New version after
creating the span

Chapter 5 – A narrative-based collaborative writing tool: The design 86

(5) We now go on to the functions that edit the RST information in the tree. The

addRelationship(…) function inserts a specified RST relationship between two nodes and

returns the root of the new tree. The arguments for the function are as follows:

 n1: Node which will be the nucleus

 n2: Node which will be the satellite (or second nucleus)

 rel: The name of the relationship

 r: The root of the tree

 c: The current position in the tree

The arguments are all of type Node, except ‘rel’ which is a string. The function assumes that

n1 and n2 are sibling nodes in the tree and that there is no other relationship between them.

The new relationship is set to ‘unsatisfied’.

addRelationship(n1,n2,rel,r,c){

 1. Store the text of node c in a new node (say, newnode)

 2. Traverse the tree until the specified nodes are found

 (a) if (c!=n1 AND c!=n2)

 x1 = locate (n1, c)

 x2 = locate (n2, c)

 xx1 = addRelationship(n1,n2,rel,r,x1)

 if (x1 != x2){

 xx2 = addRelationship(n1,n2,rel,r,x2)

 STORE new RST relationship between xx1 and xx2

 STORE new NXT relationship between xx1 and xx2

 Fix PC relationships affected by xx1 and xx2

 3. Fix other relationships (similar to previous functions)

 4. Return ID of newnode
}

Once again, the locate(…) function is used to find the path to the nodes n1 and n2. Since

n1 and n2 are assumed to be siblings (i.e. have the same parent), locate(…) should keep

returning the same values. If locate(n1,c) and locate(n2,c) return different values,

it means that the relevant nodes have been reached. This check is used to determine when to

add the new relationship. The relationship is, by default, set to be “unsatisfied” (until

explicitly changed later in the review stage).

The other relationships are processed in much the same way as it was done in the

addNode(..) function. Pointers to nodes that have been replaced in the new RS-tree are

corrected.

Chapter 5 – A narrative-based collaborative writing tool: The design 87

The sample RS-tree that has been used to demonstrate the previous functions has a RST

relationship between all possible adjacent nodes already. Therefore, another example is used

instead.

Figure 5-19: RS-trees showing the application of the addRelationship function

(6) The replaceRelationship(…) function replaces the specified relationship and returns the

root of the new tree. This function can be used to change the name of an existing relationship.

It has a similar structure to the function above. The arguments are listed below.

 n1: The nucleus

 n2: The satellite (or second nucleus)

 rel: The new name of the relationship

 r: The root of the tree

 c: The current position in the tree

replaceRelationship(n1,n2,rel,r,c){

 1. Store the text of node c in a new node (say, newnode)

 2. Traverse the tree until the specified nodes are found

 (a) if (c!=n1 AND c!=n2)

 x1 = locate (n1, c)

 x2 = locate (n2, c)

 xx1 = replaceRelationship(n1,n2,rel,r,x1)

 if (x1 != x2){

 xx2 = replaceRelationship(n1,n2,rel,r,x2)

 STORE new RST relationship between xx1 and xx2

 STORE new NXT relationship between xx1 and xx2

 Fix PC relationships affected by xx1 and xx2

 3. Fix other relationships (similar to previous functions)

 4. Return ID of newnode
}

It needs to be noted that this function is identical to the addRelationship() function above. In

the Java, they have been implemented using one method. However, in the design, we keep

them as two functions because, in principle, they are two different processes.

x Justify

1

2 3 4

5

6 7 4

addRelationship(3,2,“Justify”,1,1)

Chapter 5 – A narrative-based collaborative writing tool: The design 88

(7) The removeRelationship(…) function removes the specified relationship and returns the

root of the new RS-tree. The arguments, all of type Node, are:

 n1: Node which is the nucleus of the relationship to be removed

 n2: Node which is the satellite (or second nucleus)

 r: The root of the tree

 c: The current position in the tree

removeRelationship(n1,n2,r,c){

 1. Store the text of node c in a new node (say, newnode)

 2. Traverse the tree until the specified nodes are found

 (a) if (c!=n1 AND c!=n2)

 x1 = locate (n1, c)

 x2 = locate (n2, c)

 xx1 = removeRelationship(n1,n2,r,x1)

 if (x1 != x2){

 xx2 = removeRelationship(n1,n2,r,x2)

 Fix PC and NXT relationships involving x1 and x2

 3. Fix other relationships

 4. Return ID of newnode
}

The name of the relationship is not specified since there should only be one relationship

between n1 and n2. Once again, the tree is traversed using the locate(…) function. All the

RST relationships in the parent tree are added to the new tree, except the one being removed.

Reviewing a RS-tree

Reviewing a version of a RS-tree involves changing the state of several RST relationships.

This function takes a set of RST relationships and incorporates them all into a new RS-tree.

The function is not discussed as length because of its similarity to the

replaceRelationship(…) function.

5.4.7 Summary

This section presented formal definitions for the functions necessary to implement the user

actions discussed in the business process model. Six core functions were identified that

provided basic functionality. These core functions were then used to define the bigger

functions that corresponded to the user operations of reading, editing and reviewing a RS-tree.

The functions have been implemented in Java (see Appendix B).

Chapter 5 – A narrative-based collaborative writing tool: The design 89

5.5 Merging

Since co-authors can create divergent versions of the same parent RS-tree, it is useful to be

able to merge these changes. Therefore, a simple merge function has been designed that takes

two versions of a RS-tree and produces one RS-tree. The merge function is being discussed

separately from the functional model because it is extra functionality (not part of our business

process model) that was considered essential for collaborative working.

Both trees are traversed simultaneously. The merged tree will be produced using the

following rules:

• If two nodes are identical (i.e. same IDs or same text) at the same level in the tree, then

include one instance of this node in the merged tree.

• If there are two identical relationships between the same pair of nodes in both trees, add

one instance of the relationship.

• Include all non-identical relationships and nodes. This may mean that a pair of nodes in

the merged tree may have more than one relationship between them. This is acceptable in

this situation and the authors are left to choose the most appropriate relationship.

This algorithm works best if the two versions are derived from the same parent or if one is

derived from the other. The diagrams below are used to better explain this process. Version 2

of the RS-tree is derived from version 1 after changing the text of node 6. Version 3 is the

merged tree. Both nodes 6 and 9 (and corresponding relationships) are included in version 3

because they are not identical.

Figure 5-22: Merging of two versions of a RS-tree

 B E

 M

1

2 3

4 5 6

+ Version 1

 B x E

x M

7

2 8

4 5 9

Version 2

 x E
 B E

x M 10

2 11

4 5 6 9

 M

Version 3

Chapter 5 – A narrative-based collaborative writing tool: The design 90

5.6 Summary

Having described the narrative-based technique in Chapter 4, this chapter begins to address

the second goal of our research: to develop a tool that allows collaborative authors to engage

in narrative-based writing.

This chapter presented the design for our tool using three models: a conceptual model, a

business process model and a functional model. The concepts in narrative-based writing such

as a DN, RS-tree, node and relationship were clarified using the conceptual model. Using

these concepts, the BP model described the actions that an author would expect to perform on

the RS-trees in the repository. These operations were broadly categorised into reading, editing

and reviewing a RS-tree. The functions necessary to implement these actions were formally

defined in the functional model. As with many collaborative working tools, version control

and merging had to be addressed too. We have devised simple methods to maintain the

versions and merge two versions derived from the same parent. Although these methods are

simple in comparison to the technologies that exist today, they are adequate for our tool.

The next chapter discusses the implementation of our tool.

Figure 5-23: DN for this chapter

A tool that is expected to support collaborative editing, particularly of non-trivial

structures such as RS-trees, needs careful and thorough design. Therefore, the design for

this tool has been done using a graduated set of three models. A conceptual model defines

the main concepts of narrative-based writing. A business process model identifies a set of

user actions which are then defined formally in the functional model. Methods for version

control and merging have been designed as well since they are essential for collaborative

editing (even though they are not the main focus of the tool). These functions will now be

implemented.

 Chapter 6

A narrative-based collaborative

writing tool: An implementation

The previous chapter presented the design of a tool that enabled teams of authors to engage in

narrative-based writing. The design was divided into three main sections: the conceptual

model, the business process model and the functional model. This chapter describes an

implementation that is a proof of concept of this design.

We realise that there are several technologies that could have been used and different ways in

which these could have been combined. We present one possible implementation. Our choices

of technology are HTML and JSP for the user interface, Java for the functions and a relational

database (RDB) to store the RS-trees. Figure 6-1 illustrates this three-tier architecture.

Figure 6-1: The three-tier architecture of the tool

The implementation of each of the tiers is discussed in this chapter (starting with the third).

For each, we also compare some of the alternative technologies and highlight points specific

to RS-trees and collaborative editing.

Two prototypes were developed prior to this tool to experiment with various ways of storing

RS-trees and supporting narrative structures in technical documents. These are described in

Appendix B. We refer to these prototypes briefly in this chapter when discussing alternative

technologies such as XML databases.

User interface
(JSP + HTML)

Functions
(Java)

RS-trees
(RDB)

Tier 1 Tier 2 Tier 3

Chapter 6 – A narrative-based collaborative writing tool: An implementation 92

<hypRelation id = “subtree-A”
 type = “Motivation”>
 <satellite id = “5” />
 <nucleus id = “4” />
</hypRelation>

6.1 Tier three: Database

The implementation of the RDB is presented first. In collaborative editing, documents can

either be held in a central repository (to which changes are submitted) or replicated in local

workspaces. We compare these two architectures below. One might also question the use of a

relational database for storing tree structures instead of XML. Therefore, the use of XML to

store RS-trees is discussed too.

6.1.1 Distributed vs. a centralised document repository

There are different ways that a database can be replicated. One way is to replicate the entire

database in multiple locations. This has major complications when it comes to keeping the

data up-to-date. The other way is to replicate parts of the database so that they are nearer the

users maintaining it. The subject of this discussion is the replication of the RS-trees. The RS-

trees could be copied in each of the authors’ sites. Each author can edit his/her personal copy

and ‘submit’ the changes. The copies will then be merged and the conflicting changes

reconciled. We refer to this as a distributed document architecture and is done, for example, in

LibreSource (Forest, 2005).

We have chosen a centralised document architecture for our tool instead. While the

distributed architecture above is an effective way of collaborative working, the merging

techniques needed to continuously monitor ongoing changes were beyond the scope of our

research. It is also anticipated that, in the future, this narrative-based tool can be integrated

into existing software that already has established merging mechanisms (see Chapter 9)

making it unnecessary to focus on them here. In our tool, users modify versions of the RS-

trees that are all held in one central database. The changes are submitted to the system and

new versions of the RS-trees are stored in the repository.

6.1.2 XML vs. relational databases

XML is a natural way to store hierarchical data structures, particularly ones where there are

varying amounts of text in the nodes. The RSTTool (O'Donnell, 2000) that has been used to

draw some of the RS-trees in this thesis also stores the structures in XML files. We too used

XML in the previous prototypes (see Appendix B, section B.1). In particular, URML

(Underspecified Rhetorical Markup Language) which is an XML format for storing RS-trees

(Reitter and Stede, 2003b) was used in the second prototype.

Figure 6-2: Storing a MOTIVATION relationship in URML

Chapter 6 – A narrative-based collaborative writing tool: An implementation 93

URML was introduced by Reitter and Stede to enable “underspecified” (or incomplete) RS-

trees to be stored. This is harder with natural XML since it is common to have the entire tree

defined at the start. This is not practical with RST analyses. URML bridged this gap by

defining identifiers for the subtrees in a RS-tree. For example, above, “subtree-A” is an

identifier for the span created by the MOTIVATION relationship.

Traversing the XML using Java was non-trivial. So, in the previous prototype, we used

Xindice, a native XML database system (Xindice, 2004), to store and manage the XML files.

This simplified the querying and updating of the RS-trees.

We have not used XML for this tool in order to explore the use of relational databases.

Relational databases are a closer match to the data model in Chapter 5. They are well

established and have several features (such as locking records and quick access using unique

indexes) that would enable us to easily programme asynchronous editing without interference.

However, it needs to be stressed that each of these technologies has individual strengths and

trying both have been valuable experiments. Another option for a future implementation of

this tool will perhaps be a combination of XML and a RDB.

6.1.3 Developing the relational database

The first step in developing the database was identifying the necessary tables and their fields.

From the descriptions in Chapter 5, a table was necessary to store the details of:

1. Nodes in the RS-trees (NODE)

2. RST relationships (RSTREL)

3. Parent-Child relationships (PCREL)

4. Next relationships (NXTREL)

5. The versions of the RS-Trees (RSTREE)

Some normalisation was done to these tables. In the above state, the name of the RST

relationship would be stored in each record in the table RSTREL. Therefore, a sixth table

called RELATION was introduced to store the names of the 23 RST relationships from Mann

and Thompson. The identifier for each relationship is then used in the RSTREL table instead

of the name.

The fields of each of the tables are listed. The primary key(s) of each are indicated by an

asterisk.

Chapter 6 – A narrative-based collaborative writing tool: An implementation 94

(1) TABLE: NODE

This table contains the ID and text of all the nodes in the RS-trees. If the node is a leaf node,

the text field will contain the text in that node. If the node is a span (internal node), the text

field will be empty.

Row name Data type Description

ID* Number Unique identifier

Text Text Text of the node

(2) TABLE: RSTREL

This table has the details of all the RST relationships. Node_1 and Node_2, together, are used

as the primary key (since only one RST relationship can exist between any two given nodes).

The state of the relationship is a boolean field. If the relationship is satisfied, it will be true. If

not, it will be false.

Row name Data type Description

Node_1* Number Nucleus

Node_2* Number Satellite (or second nucleus)

Relation_ID Number ID of the relationship

State Boolean Satisfied (true) or unsatisfied (false)

(3) TABLE: PCREL

This table has all the PC relationships.

Row name Data type Description

Parent Number Parent node

Child Number Child node

(4) TABLE: NXTREL

This table has all the NXT relationships.

Row name Data type Description

First Number First of the two nodes

Second Number Second of the two nodes

(5) TABLE: RSTREE

Each row of this table contains the details of a version of a RS-tree. Most of the fields below

were introduced in Chapter 5. A new ‘title’ field has been added to store the name of the

document that the RS-tree corresponds to (e.g. “Paper for ICEIS conference”). This again was

to make it more user-friendly.

Chapter 6 – A narrative-based collaborative writing tool: An implementation 95

If this table were to be completely normalised, the title and author fields need to be removed

from here and replaced with corresponding IDs (like Relation_ID in RSTREL table). Two

separate tables called AUTHOR (Author ID, Author name) and DOCUMENT (Document ID,

Document name) will be necessary. However, we do not include these extra tables for now to

keep the database simple.

As mentioned in Chapter 5, the ID of the RS-tree together with its version number form the

primary key. (The root node too could be used as the primary key of this table.)

Row name Data type Description

ID* Number ID of the RS-tree

Version* Number Version number

Title Text Title of the document (E.g. “Thesis”)

Root_node Number Number of the root node

Parent_version Number Number of the parent version

Status Text Edit, Review or Merged

Author Text Name of the author

(6) TABLE: RELATION

This table contains the names of the 23 RST relationships from the Mann and Thompson

paper. These IDs are used in the RSTREL table.

Row name Data type Description

ID* Number ID of the RST relationship

Name Text Name of the RST relationship

These tables were stored using Microsoft Access. In addition to the tables above, two tables

were added for “housekeeping” purposes. Since unique identifiers needed to be generated for

the new nodes and versions of RS-trees, tables called INDEX and INDEX2 were added to

store the latest identifiers for the relevant tables. When new items are added, the values in

these tables are incremented to generate new IDs. We have decided to do this instead of using

the ‘autoincrement’ feature in Microsoft Access in order to have fine-grained control over the

IDs.

Chapter 6 – A narrative-based collaborative writing tool: An implementation 96

6.2 Tier two: Functions

6.2.1 Functional programming languages vs. Java

Since the functions in Chapter 5 deal with trees and use recursion, it may seem more usual to

use a functional programming language. Functional programming enables the activities on a

tree to be decomposed into smaller, reusable functions and “glued” together (Hughes, 1989).

Recursion, in general, is not preferred. It can even be slower in functional programming.

However, with processor speeds of today, the performance time is rarely a factor that needs to

be considered for an application like this. Recursion also makes use of a stack. The stack size

is not just limited by the memory size but some compilers dictate a stack size as well. It is

relatively easy to reach this limit. However, we do not anticipate there being so many calls

that will break the stack size.

Java was selected to build the functions for this tool instead of a functional programming

language mainly because of our previous experience in it. We were keen to have a prototype

of the tool soon and using a familiar language was the best way forward. We have made use

of some functional programming concepts such as breaking the functionality down into

smaller, general methods that can be reused.

6.2.2 Implementing the functions in Java

The second step in the development process was implementing the defined functions. To

match the design closely, classes to represent a node and each of the relationship types seem

necessary. However, this has not been done in the implementation. Integers have been used

instead to identify the nodes and the relevant information has been extracted from the

database. So, for example, the getChildren(n) function in Chapter 5 that took a Node as

argument, takes an integer in the actual Java. One motivation for this was to have complete

control over the shared entities. This was considered necessary for more complex

collaborative editing.

Each version of a RS-tree contains the name of the author that created it. In the functions in

Chapter 5, we omitted the author’s name as an argument to avoid overcrowding the functions.

The Java methods take the author name as an argument.

Apart from these differences, there is a one-to-one correspondence between the Java methods

and the pseudocode outlined in Chapter 5. Some additional methods were necessary such as

methods to generate new IDs and retrieve information from the database. See Appendix B

(section B.2) for a listing of the Java. The validation of the input data (e.g. such as checking if

a node exists in a tree) is not discussed since it is trivial. The Java methods are based on the

functions in the design and have been tested. With regards to our application, this is enough

verification that the functions are correct.

Chapter 6 – A narrative-based collaborative writing tool: An implementation 97

There are some issues, particular to collaborative writing, that need to be addressed by our

tool such as version management, interference and author authentication. Version

management was discussed in Chapter 5 and the implementation has adhered to this design.

In the tool, every change made by an author will be stored as a separate version and thus, the

problem of lost updates is unlikely to arise. More than one author could decide to edit version

3 (say) of a RS-tree. Each of them will submit changes. These changes will not interfere

because they will be stored as two separate versions derived from the same parent version. In

the remote possibility that each author submits the changes at the exact same time, there is a

chance that the version number will not be incremented properly. However, this event is so

rare that we have not studied this aspect in great detail. The use of the Java synchronize

(Friesen, 2004) may be a possible way of making the critical parts of the functions more safe.

There is currently no security implemented in the tool because any change done by an author

can be ‘undone’ by reverting to an older version. However, for a more professional tool that

dealt with sensitive documents, security would need to be considered. For the purposes of this

research on document coherence, it is not essential.

6.3 Tier one: User interface

6.3.1 Standalone vs. web-based applications

Several collaborative working tools are standalone applications (e.g. CVS). The advantage

with these is that languages used to build standalone applications generally have features to

design better user interfaces. However, standalone applications make maintenance harder

since any change needs to be replicated in each author’s copy of the software. Authors may

also be reluctant to spend time downloading, installing and learning the new application.

Web-based applications, on the other hand, are more versatile, contemporary and easier to

build and use. For instance, the HTML and JSP used in the current tool is comparatively

trivial and took a very short time to create. The server-client architecture in Web-based

applications also makes modifications easier and almost transparent to the users. For these

reasons, a web-based interface was chosen for our tool.

6.3.2 Implementing a Web-based interface

The interface to the tool is implemented by a set of JSP pages. The information is gathered

from the user, validated and sent to the relevant Java method. The results of the Java method

are then displayed using HTML. The tool can be accessed by pointing a web browser at the

specified URL. The HTML pages were tested on several major web browsers to make sure it

rendered properly in all of them.

Chapter 6 – A narrative-based collaborative writing tool: An implementation 98

Figure 6-3: Menu

The main page is divided into three frames. Even though there have been debates about the

use of frames, we found them useful to place content in independent panels. The same effect

can be achieved using JavaScript. However, the frames version was simpler.

The left frame contains the menu. The menu enables a user to select an existing RS-tree or

create a new one. Once a RS-tree has been chosen, a second menu (Figure 6-3) allows the

user to specify the version that he/she wants to work on from a drop down list of the available

versions. The drop down list makes it easier for the author and also guards against invalid

user entries. A table at the bottom of the left frame displays a history of the versions for the

RS-tree. It displays the version number, the parent version, its status and the author who

worked on it.

The top-right frame (Figure 6-4) displays the required version of the RS-tree along with

options to edit, analyse or review it. This frame reverts to the latest version of the current RS-

tree if an alternative is not specified. When a RS-tree is displayed, relationships that are

satisfied are displayed in blue and those that are unsatisfied in red so that authors are

immediately aware of sections of the DN that may need attention.

The textual representation of the tree (as shown in Figure 6-4) may not be ideal to visualise

the RST structure. It is also in a different orientation from the RS-trees normally seen and

drawn (even though the RSTTool also provides an option to view RS-trees this way).

However, time did not allow for us to build a graphical interface.

The bottom-right frame allows the author to read another version of the RS-tree at the same

time. This helps make comparisons. There is also a Help document for users wanting more

information about how to use the tool

Chapter 6 – A narrative-based collaborative writing tool: An implementation 99

Figure 6-4: Screen shot of tool

6.4 Summary

This chapter discussed the three tiers in the implementation of our tool. This tool is a proof of

concept of the design that was presented in the previous chapter.

The tool is implemented using Java, JSP, HTML and a relational database (maintained in

Microsoft Access). The Java methods, listed in Appendix B, correspond directly to the

functions defined in the design; thus our implementation matches the specification. The Java

methods were tested but this testing is not discussed in this chapter since it is not relevant to

this evaluation. We were able to build this implementation relatively quickly owing to the

good, disciplined design. The functions in Chapter 5 are taken to be correct because we have

implemented them in Java which has been tested.

This chapter marks the end of the design and development of the tool. The next chapter

(Chapter 7) shows how the narrative-based technique and the tool can be used in a variety of

technical writing scenarios. The following chapter (Chapter 8) evaluates the technique and

tool.

Chapter 6 – A narrative-based collaborative writing tool: An implementation 100

Figure 6-5: The DN for this chapter

Different implementations can be done based on the design presented in Chapter 5. We

present one possible implementation. We are aware that there are other technologies and

architectures that could have been used. However, the choices made were justified for the

goals we wanted to achieve at the time of implementation. The tool has all the

functionality described in the design including features to deal with interference and

version control.

 Chapter 7

Case Studies

To recap: Chapter 4 introduced a new technique for structuring documents called narrative-

based writing. Chapters 5 and 6 described the design and implementation of a tool that

allowed a team of authors to use this technique to plan their document. It is now necessary to:

a) Show how the technique and tool can be used

b) Evaluate the technique and tool

This chapter shows how narrative-based writing can be used by presenting four case studies.

The next chapter will contain an evaluation by way of an experiment involving some

volunteers, a critical appraisal of our tool and a re-examination of our initial goals.

We propose that the narrative-based technique and tool can be applied to a variety of

technical documents; with particular benefits in collaborative writing. It is not restricted to

written documents however. The technique can be extended to presentations and websites,

too. Therefore, this chapter presents the use of narrative-based writing in a collaborative

writing scenario, highlighting the communication between the authors and the ways in which

the document changes according to the evolving DN. This is followed by applications of

narrative-based writing on a research proposal, a conference presentation and a website to

demonstrate that the technique is suitable for a variety of forms of technical communication.

Chapter 7 Case studies 102

7.1 The impact of DNs in collaborative writing

This section presents an example showing how the narrative-based tool and technique can be

used to plan a document produced by multiple authors. The example is a rational

reconstruction of the process by which Hala Skaf-Molli and I wrote our joint paper. We did

not meet face-to-face to plan it and a lot of the structure was determined by exchanging DNs

at the start. A similar example also appeared in that paper (De-Silva and Skaf-Molli, 2006). A

fictional third author has, however, been introduced here to make the writing task more

complex. Apart from that, the example has been kept deliberately small so that the necessary

aspects of collaboration can be demonstrated easily.

Let us imagine three authors (A, B and C), not in the same location, with the task of writing a

joint paper about their research on merging algorithms and narrative-based writing. Authors A

and B are authorities on merging algorithms while Author C is involved in narrative-based

writing. They hope to divide the sections of the document according to their expertise.

To get the ball rolling, Author A comes up with a DN for the paper. He inputs the DN into the

tool and does a RST analysis of it. Both the DN and RST analysis now become available to

the other authors (version 1).

VERSION 1 (by Author A)

Figure 7-1: Version 1 of the DN and RS-tree (created by Author A)

The sections that need to be in the document according to the DN are listed alongside the

figure. Note that the ‘Introduction’ and ‘Conclusion’ sections are mandatory for most papers

and are not governed by the DN in this case (hence, they are in grey). Sections II and III

planned for the document correspond to the two segments in this DN and implement the

SOLUTIONHOOD relationship between them.

 Solutionhood

1: Merging techniques guarantee syntactic
convergence but not the coherence of the
document.

2: Integrating merging algorithms with narrative-
based writing can fill this gap.

I. Introduction

II. The problem

III. Our solution

IV. Conclusion

1 2

0

Chapter 7 Case studies 103

In theory, a paper with this structure will be sufficient. However, it is flat and lacking in

detail. The general norm is to introduce some background material before talking about the

problem. However, what should the material be and where should it be placed (seeing as

several areas of research need to be introduced)? In our opinion, this is where a DN can play a

major role. Trying to say the story, naturally, will help resolve some of these issues.

Author B responds by e-mail:

“It’s likely that many people at this conference will be from a collaborative writing
background. While being aware of merging techniques, they may not know what

narrative-based writing is. We should definitely include some background material

on merging techniques, collaborative writing and, in particular, narrative-based

writing. What do you think?”

Author B makes multiple changes to the RS-tree. She adds two new nodes and RST

relationships, and creates two spans. In the tool, this would have to be done in several

stages because the tool tracks and records every change in a new version. We omit

these stages for the purposes of this example and label the version created by Author B

as version 2.

VERSION 2 (derived from version 1 by Author B)

Figure 7-2: Version 2 of the DN and RS-tree (created by Author B)

 Background Background

 Solutionhood

5: Coherence is harder to achieve in
collaborative writing when authors
work on replicas of a document.

6: Merging techniques guarantee
syntactic convergence but not the
coherence of the document.

8: Narrative-based writing is a technique
to plan coherent documents.

9: Integrating merging algorithms with
narrative-based writing can fill this
gap.

I. Introduction

II. Background

III. The problem

IV. Narrative-based writing

V. Our solution

VI. Conclusion

3

4 7

5 6 8 9

Chapter 7 Case studies 104

Note that Author B has linked two pieces of background information into the DN. The

segment about collaborative writing is the background to the problem and the segment

about narrative-based writing is the background to the solution. These changes are

accepted by the two other authors.

The SOLUTIONHOOD relationship is marked by the tool as being unsatisfied due to

the changes made to the DN. Despite not doing a formal review of the relationships to

change its state to “satisfied”, the authors agree that it is still valid and get started with

the writing. Authors A and B agree to do sections I, II, III and VI. Author C gets

assigned sections IV and V. They are aware of how these sections should be linked

(dictated by the RST relationships).

Meanwhile, Author C recognises the lack of a MOTIVATION or JUSTIFY

relationship in the DN to address the ‘So what? How is this useful?’ question that may

arise in the reader’s mind. Author C adds a new node and a MOTIVATION

relationship to version 1 of the DN.

VERSION 3 (derived from version 1 by Author C)

Figure 7-3: Version 3 of the DN and RS-tree (created by Author C)

The authors realise the usefulness of a MOTIVATION relationship in a DN and agree

that it is an essential component of a winning paper. However, they still think the

background material is important too. Seeing that version 3 was also derived from

version 1 (as was version 2), they use the tool to merge the DNs to produce the results

below (version 4).

 Motivation Solutionhood

11: Merging techniques guarantee
syntactic convergence but not the
coherence of the document.

12: Integrating merging algorithms with
narrative-based writing can fill this
gap.

13: This is a unique solution that helps
writers produce better documents.

I. Introduction

II. The problem

III. Our solution

IV. Benefits

IV. Conclusion

11 12

10

13

Chapter 7 Case studies 105

VERSION 4 (merged from versions 2 and 3 by Author A)

Figure 7-4: Version 4 of the DN and RS-tree (created by Author A)

The authors are happy with this merged version. The RST relationships are all still valid

(even though the tool has marked SOLUTIONHOOD as “unsatisfied” according to the

implemented protocol). The scene for the paper is set by the Background and Problem

sections. The Background section will need to say why there is such a problem and the

impact it has on documents. The solution is introduced together with a short tutorial on

narrative-based writing which is necessary to fully comprehend the nature of the proposed

work. The Benefits section can contain applications or examples of where the solution will

help the existing situation. This will be the motivation that led the authors to develop these

ideas.

 Motivation

 Background Background

 Solutionhood

5: Coherence is harder to achieve in
collaborative writing when authors
work on replicas of a document.

6: Merging techniques guarantee
syntactic convergence but not the
coherence of the document.

8: Narrative-based writing is a technique
to plan coherent documents.

9: Integrating merging algorithms with
narrative-based writing can fill this
gap.

13: This is a unique solution that helps
writers produce better documents.

I. Introduction

II. Background

III. The problem

IV. Narrative-based writing

V. Our solution

VI. Benefits

VII. Conclusion

14

15 18

5 6 8 9

13

Chapter 7 Case studies 106

For the actual paper, the DN was changed again so that the satellite of the MOTIVATION

relationship preceded the solution. However, we stop the example here because the essential

attributes of how the DN and the tool can assist in planning a document have been shown.

7.1.1 Discussion

Changes to the DN affect the authors’ writing. In this example, the introduction of the

Benefits section requires changes to the other sections of the document (which the authors

had already started writing). For instance, the Problem section may now need to introduce a

particular scenario which cannot be addressed by merging algorithms alone. The Benefits

section can re-visit this example to show how the narrative-based approach can help the

problem. This amplifies the MOTIVATION relationship.

The DN provides a way of quickly discovering the natural progression of concepts in a

document. The authors need to think of the best possible story that their ideas can be fitted

into. The corresponding RST analysis gives some evaluation of the story’s coherence and

also helps point out ill-fitting story segments or better alternatives. When several authors

have opinions on the content of the paper, a DN helps combine these ideas into a coherent

whole.

The tool helps manage the versions, store the RS-trees and draw the authors’ attention to

unsatisfied relationships. The RS-tree in the example was relatively small. A larger analysis

would benefit from this tracking of the state of relationships. The tool also helps authors who

are spread geographically, like in the example.

7.2 Sample applications of narrative-based writing

In this section, we present the application of narrative-based writing on a written document, a

presentation and a website to emphasise that the technique can be extended to various genres

of technical communication. For each, we give the DN, present the RS-tree drawn using

RSTTool and show how the structure of the eventual document (or presentation or website) is

influenced by the DN. The RST analysis of the DNs are not discussed at length like in the

section above. However, the important points will be highlighted.

7.2.1 Research proposals

When we started our research on narrative-based writing, the research proposal was the first

document we studied. Research proposals are interesting because their authors have a much

harder goal to achieve: to convince the readers to fund them. Therefore, improved coherence

in a research proposal is even more critical. Books on technical writing usually contain a

chapter on how to write good research proposals (Alred et al., 2003, Zobel, 2004, Paradis and

Chapter 7 Case studies 107

We want you to fund

us

2-19

Motivation

because we will

achieve these

objectives/ results

3-19

Evidence

9-12 16-19

Elaboration

3-8

Solutionhood

13-15

Condition

We will solve this

problem

Zimmerman, 2002). There are various holistic structures19 (Mann et al., 1992) for them

suggested by different funding bodies. For example, in 2003, EPSRC required a research

proposal to contain a two-page previous research track record and a page with a diagrammatic

work plan. However, the generic story required by many institutions is similar. After studying

several sets of instructions on how to write a research proposal, the following generic DN was

created. This DN appeared in (De-Silva and Henderson, 2005).

Figure 7-5: A generic DN for a research proposal that appeared in (De-Silva and Henderson,

2005)

This was our first DN. Note that it was written in the old style which included the authors’

intentions and reasoning. The phrases in the DN that we expected to become sections in the

document are underlined. This strong correlation between segments in the DN and section

headings in the document has been abandoned. It is more important to have an understanding

of the DN and the RST analysis prior to writing. Since the RS-tree for the DN above was too

large to fit into a single figure, a collapsed version of it is given below which demonstrates the

key RST relationships and also that they can be assembled into a tree structure. The four

subtrees that have been collapsed are not expanded later because we move on to present a

more modern version of this DN.

Figure 7-6: RS-tree of generic DN for a research proposal

19 A holistic structure specifies requirements such as including an Introduction at the beginning.

[We want you to fund us]1 [because we will achieve these objectives/results.]2 [We

believe these results are important to you]3 [because of benefits-to-beneficiaries]4 [and

to the whole world]5 [because there exists an unsolved-problem.]6 [We know this is

unsolved]7 [because we have studied the background.]8 [We will solve this problem]9 [by

this method.]10 [We know this is the best method]11 [because we have studied

alternative-methods.]12 [To achieve this, we will need total-time]13 [and these

resources]14 [because justification-of-resources.]15 [The research will be carried out by

these researchers]16 [and they are the most qualified to do this because justification-of-

researchers.]17 [The research will be conducted at these locations]18 [because

justification-of-locations.]19

Chapter 7 Case studies 108

A newer version of the generic research proposal DN is given below. This does not contain

statements about why the authors are creating the DN in a certain way.

Figure 7-7: A new generic DN for a research proposal

The DN above has been made to reflect some ideas from the inverted-pyramid structure

which was discussed in section 2.4.3. The most important part of the story (i.e. the results that

will be delivered) is given first. Other details such as background research and the required

resources are presented after this. An alternative would have been to introduce the unsolved

problem, outline the background material and present the results. However, to achieve the

goals of a research proposal, the former approach was considered better.

A possible RST analysis for this DN is given below. Once again, some subtrees have been

collapsed. The figure below shows the key statement in the DN with the three other main

parts of the analysis: the segments that motivate the researchers to look for the results (2-3),

the segments that contain background information (4-5) and the segments that present

conditions20 upon which this research depends on (6-9).

Figure 7-8: Possible RST analysis of new DN for a research proposal

20 In this case, the CONDITION relationship (which is not in our subset of relationships for technical
documents) can also be replaced with an ELABORATION relationship.

[We will achieve the required results in the given timeframe.]1 [These results are

beneficial to you and the scientific community at large]2 [because there exists this

unsolved problem to which our results are the answer.]3 [Studies into previous work in

this area show that existing solutions do not address all the complexities of this

problem.]4 [Our solution is unique and different to previous attempts.]5 [To achieve this,

we will need total-time]6 [and these resources]7 [The research will be carried out by

researchers in the following institutions]8 [because they have an impressive track record

of work in this area.]9

1.We will achieve the

required results in the

given timeframe.

2-3

Motivation

4-5

Background Condition

6-9

Chapter 7 Case studies 109

The three subtrees that were collapsed in the figure above have been expanded below.

This DN and RS-tree for a research proposal has been entered into the database of our tool. A

screen shot of the tool showing this RS-tree (with all the relationships set to satisfied) is given

in Figure 7-9. This DN, along with some others for popular types of documents, is available

for authors to use and modify. Of course, this generic DN will need to be made more specific

for an actual research proposal.

Note that the node numbers in the screenshot below do not correspond to the numbers of the

segments in the RS-tree above. This is because the tool has assigned unique ID numbers to

each new node. The node numbers allocated by the tool are used again in Table 7-1 which

shows the corresponding sections in a research proposal.

Subtree with segments 2-3

Subtree with segments 4-5

Subtree with segments 6-9

Chapter 7 Case studies 110

Figure 7-9: Screen shot of tool showing the RS-tree for the generic DN for a research proposal

Finally, we list below the sections in a research proposal that would correspond to the

segments in the DN. (We use the node numbers from the screenshot above for the segments.)

(25) We will achieve the required results in the given timeframe. (Introduction)

(26) These results are beneficial to you and the scientific

community at large

Benefits of these results

(27) because there exists this unsolved problem to which our

results are the answer.

Description of problem

(28) Studies into previous work in this area show that existing

solutions do not address all the complexities of this problem.

Background research

(29) Our solution is unique and different to previous attempts.

Details of our solution

(compare to existing research)

(30) To achieve this, we will need total-time Time plan

(31) and these resources List of resources (e.g. money)

(32) The research will be carried out by researchers in the

following institutions

List of researchers

(33) because they have an impressive track record of work in this

area.

Details of researchers (maybe

CVs etc)

Table 7-1: Sections in a research proposal corresponding to the segments of the DN

Chapter 7 Case studies 111

7.2.2 Conference presentation

Another genre of scientific communication is presentations. This includes conference

presentations, seminars and lectures. There are many guidelines on making a good

presentation. Designing the slides clearly and pitching the content at a level suitable for the

audience are some examples. While these are important issues in a presentation, they are not

the topic of discussion here. We focus, instead, on the story conveyed to the audience and

apply narrative-based writing to improve it.

As an example, we present a generic DN for a scientific conference presentation. This DN

appeared in (Henderson and De-Silva, 2006).

Figure 7-10: Generic DN for a conference presentation

The content of this DN is similar to that of the research proposal earlier. The main difference

is that in Figure 7-10 the information is presented in a more traditional fashion: problem first,

then the solution and so on. In the research proposal DN, we used an inverted-pyramid like

approach where the most important piece of information (in this case, the solution/results) is

presented first.

The DN was divided into nine segments as shown above. A possible RST analysis is

presented below. The story is divided into a problem (segment 1) and its solution (segments

2-9). This is indicated by the SOLUTIONHOOD relationship at the top of the RS-tree.

Research into the current state of the problem (segments 2-3) provides background

information and also shows that it is a significant problem worth solving. The steps in the

research (segments 4-6) and the results (segments 7-8) are set in sequence. The fact that the

results help the people affected by the problem is motivation to conduct this research.

The RS-tree is given below. The two collapsed subtrees in the figure are expanded later. Both

the subtrees have ELABORATION relationships because the satellites provide extra

information about the nuclei. This additional material is not essential but supports the

understanding of the nuclei (and thus, the whole DN).

[There was an unsolved problem in this scientific field and we have solved it.]1 [Our

research into previous work revealed that there was no complete solution to this particular

problem]2 [and this lack was affecting specific groups of people.]3 [We gathered some

useful ideas from these previous researchers]4 [and set about designing our own

experiments to overcome the hurdles that they faced.]5 [Here is the design of the

experiments we conducted]6 [and a list of our results.]7 [These results are much better

than those of our predecessors but we hope to improve them further by conducting more

experiments.]8 [Thereby, we conclude that our results are currently the best in this field

and greatly help the people who were most affected by this problem.]9

Chapter 7 Case studies 112

Figure 7-11: RST analysis of the DN for a conference presentation

As with writing a document, there are two aspects to the creation of a presentation. There is

the ordering of the slides (assuming that slides are used) and the content that needs to be put

in each of these slides. The order of the slides is determined by the order of the segments in

the DN (see Table 7-2). The content of the slides and the associated speech needs to be

designed according to the RST relationships (see Chapter 4).

2-91.There was an

unsolved problem in

this scientific field

and we have solved

it.

Solutionhood

4-8

4.We gathered some

useful ideas from

these previous

researchers

Sequence

5.and set about

designing our own

experiments to

overcome the

hurdles that they

faced.

Sequence

6.Here is the design

of the experiments

we conducted

Sequence

9.Thereby, we

conclude that our

results are currently

the best in this field

and greatly help the

people who were

most affected by this

problem.

MotivationBackground

7-8

Sequence

2-3

Subtree with segments 2-3 Subtree with segments 7-8

Chapter 7 Case studies 113

[There was an unsolved problem in this scientific field and we have

solved it.]1

Introduction

[Our research into previous work revealed that there was no complete

solution to this particular problem]2

Background information

[and this lack was affecting specific groups of people.]3

[We gathered some useful ideas from these previous researchers]4

[and set about designing our own experiments to overcome the hurdles

that they faced.]5

Our experiments

[Here is the design of the experiments we conducted]6

[and a list of our results.]7 Results

[These results are much better than those of our predecessors but we

hope to improve them further by conducting more experiments.]8

Comparison

[Thereby, we conclude that our results are currently the best in this field

and greatly help the people who were most affected by this problem.]9

Conclusion

Table 7-2: Possible list of slides that correspond to the DN

7.2.3 Project website

The story in a website may, perhaps, be the least obvious. It is harder to define and implement

a DN in a website since users are free to choose their own narrative by following different

links. This is not the case in documents where the ordering of the pages or sections enable the

concepts to be laid out in sequence according to a well-structured narrative (Winograd, 1999).

Furthermore, the impact of visual aspects such as colour and fonts is far greater in a website,

making the role of a narrative appear significantly smaller.

However, it may be possible to guide users along a narrative by presenting the right menu

options and having the appropriate text on each of the pages. Once again, there are popular

standards for the menu items such as a ‘Home’ page at the start and a ‘Contacts’ page at the

end. A DN can help determine what the other menu options should be, the order they should

be in and if they need to be at the top level of navigation.

There has been some previous discussions about the narrative in a website (Bernstein, 2001,

Aaronson, 2002). Of particular interest to us are the comments about users drawing

conclusions about the relationships between adjacent menu items and the idea of there being a

Chapter 7 Case studies 114

9.Meanwhile,

OMII-Europe
welcomes any

suggestions,

comments or

questions.

3-6

4-5

4.To begin with,

OMII-Europe has

chosen five essential
Grid components

Sequence

5.and three

widely-used Grid

platforms to focus
on.

Sequence

6.Work is already

underway and is
being influenced by

three driving factors.

Elaboration

3.The work of this

project will benefit
European projects by

making Grid

applications easy and

transparent to use.

Motivation

1-2

Elaboration

7-8

Evidence

narrative within each page as well as a narrative joining these pages together. All these are

familiar concepts in narrative-based writing.

We present a DN for the website of a project called OMII-Europe. OMII-Europe stands for

Open Middleware Infrastructure Institute for Europe. It is a European project funded by the

EU to produce interoperable Grid components. More about the project can be found at

www.omii-europe.org. The University of Southampton, UK, is the project’s coordinating

partner. For in-house development and discussions about the project website, we have made

use of DNs. We give two versions of this DN below. The RS-trees and menu items

corresponding to the segments of each DN are shown.

Figure 7-12: DN for the OMII-Europe website (version 1)

Figure 7-13: Possible RST analysis for DN

[OMII-Europe is a European project that has been established to produce key Grid

applications that can interoperate across heterogeneous Grid platforms.]1 [The project

started in May 2006 and involves 16 partners from Europe, the USA and China.]2 [The

work of this project will benefit European projects by making Grid applications easy and

transparent to use.]3 [To begin with, OMII-Europe has chosen five essential Grid

components]4 [and three widely-used Grid platforms to focus on.]5 [Work is already

underway and is being influenced by three driving factors.]6 [When sufficient progress has

been made, the components will be made available for users]7 [along with relevant

information on how to use them.]8 [Meanwhile, OMII-Europe welcomes any suggestions,

comments or questions.]9

Subtree with segments 1-2 Subtree with segments 7-8

Chapter 7 Case studies 115

The DN was divided into nine segments. In the RS-tree above, the segments are grouped into

three main spans (1-2, 3-6 and 7-8). Segments 4-5 are the most important parts of the DN

since they describe the work of the project. The fact that other projects will benefit from

interoperable components (segment 3) is motivation for this work. The information about the

driving factors (segment 6) elaborates the work. Segments 1-2, together, provide more details

about the project (such as a list of the project partners) and are, therefore, involved in an

ELABORATION relationship with span 3-6. Segments 7 and 8 provide evidence that the

project is actually producing these Grid components.

Segment 9 is included in the DN because websites need to have a contacts page. It cannot,

however, be fitted into the RS-tree. This is expected with certain parts of a document (e.g. the

letterhead in a letter) (Mann et al., 1992) but does not mean that the DN is incoherent.

The menu items corresponding to this DN are shown below. The segments associated with

each item are, respectively: 1, 2, 4, 5, 6, 7, 8 and 9. Note that there is no item relating to

segment 3. According to the DN, however, there should be a third menu item called

“Benefits” (or something similar) that would link to some sample applications that highlight

the benefits of interoperable components. We have not yet included this because, at present,

there are no specific applications to write about here since the project is still in its infancy.

Figure 7-14: A list of possible menu items (version 1)

The DN above was modified after some discussions. The “driving factors” in the project were

seen to be goals. A placeholder for documents that were generated by the project was

considered important and the possibility that users may look for a “download” button was

raised. How should the menu items be reorganised to include these points? What’s the new

story? The second version of the DN is given next.

Chapter 7 Case studies 116

[OMII-Europe is a European project that is to produce a repository of Grid components

that can interoperate across heterogeneous Grid platforms.]1 [The project involves 16

partners from around the world,]2 [all aspiring to achieve the three project goals.]3 [The

focus is on re-engineering existing components. Therefore, OMII-Europe has identified

five key Grid components]4 [that will be made to work across three major Grid

platforms.]5 [Such interoperability benefits several European projects that rely on

different infrastructures.]6 [Work is successfully underway.]7 [When sufficient progress

has been made, the components]8 [and tutorials on how to use them will be posted

online.]9 [Meanwhile, OMII-Europe welcomes any suggestions, comments or questions.]10

Figure 7-15: DN for OMII-Europe website (version 2)

The second version of the DN incorporates the changes discussed above. We do not go into a

detailed discussion of the RST analysis again but present the modified list of menu items

below. As before, a “Benefits” button which would correspond to segment 6 has been left out.

The rest of the segments all have associated menu options.

Figure 7-16: A list of possible menu items (version 2)

The preceding discussion illustrates how changes to the DN can alter the sequence of items on

a menu and, thereby, influence the narrative that is imposed upon the reader (since readers are

likely to assume relationships between items placed in juxtaposition). Having decided the best

sequence of menu items, the second step is to create the web pages that implement the RST

relationships. Some web pages may also benefit from an inverted-pyramid approach to

writing where the most important information is presented in the first few lines on the page.

Thus, the readers can receive the gist of the information quickly and are not forced to wade

through non-essential information.

Chapter 7 Case studies 117

7.3 Summary

In this chapter, we presented four case studies which showed narrative-based writing being

applied to various forms of technical communication.

Firstly, a collaborative writing task involving DNs and the tool was discussed. The example

showed how the DN evolves due to opinions that each of the authors have about the

document. When the DN changed, the sections in the document changed too. The advantages

of a DN and RST analysis in this case were the converging of ideas into a coherent whole and

the increased awareness among the authors about how the sections should be linked together.

In chapter 2 (section 2.3.1), we discussed how co-authors could work in parallel or sequential

ways. The example here demonstrated the use of narrative-based writing in a scenario where

the authors worked in parallel. It could just as well support a team that worked in sequence.

The tool provided a medium by which authors could edit, analyse and merge DNs. It drew the

authors’ attention to unsatisfied RST relationships and managed the versions that were

produced. Authors were able to revert to and compare previous versions of the DN.

Secondly, three case studies presented applications of narrative-based writing on a research

proposal, a presentation and a project website. Thinking of the story in a document or

presentation is natural, but it is not as obvious in a website. We do not claim that any of the

DNs presented are the best for that genre of writing. Instead, the focus is to show how the

technique and tool can be used. The creation of a document (or presentation or website) can

be broadly divided into two tasks: working out the sequence of the sections and then crafting

the text to fit each section. These tasks correspond, respectively, to the sequence of segments

in the DN and the RST relationships.

The goal of this chapter was to show how narrative-based writing and the tool can be used.

The next chapter contains an evaluation of this technique and tool.

Figure 7-17: DN for this chapter

Narrative-based writing has particular benefits in collaborative writing. The technique is

not restricted to just written documents. It can be applied to presentations and websites as

well.

 Chapter 8

Evaluation

Chapter 7 presented four case studies that demonstrated the use of the narrative-based

technique and tool in collaborative writing and different genres of technical communication.

The current chapter contains an evaluation of the technique and tool. We do this in three

steps. We first describe an experiment that was conducted in May 2006 to get feedback from

a group of technical authors. Next we examine the associations, if any, of narrative-based

writing to technologies such as the semantic web, ontologies and speech acts. Then we

compare our work to other collaborative writing and document planning approaches, re-

examining our initial goals.

8.1 Experiment

An all-day experiment was conducted on the 11th of May, 2006 with nine volunteers

(postgraduates and academic staff) from the School of Electronics and Computer Science at

the University of Southampton, UK. The volunteers had varying amounts of experience in

producing technical documents, both single-author and collaborative. The objectives, design

and results of the experiment are discussed below.

8.1.1 Aims and objectives

Our aim was to get feedback on the process of narrative-based writing and the tool from

technical authors. Our three primary objectives were:

• To find out if formulating a DN and doing the RST analysis helped technical authors.

(How easy or difficult the RST analysis was? Does the DN help plan the structure of a

document?)

• To evaluate the tool: its interface and, more importantly, the functionality offered to

authors.

• To study how collaborative writing teams developed a DN and if it assisted in clarifying

the ideas among the authors.

Chapter 8 Evaluation 119

We want to convince the reader to book a holiday in the country described. Therefore, on

the first page, we'll place a catchy title and a picture showing a leisurely activity or scenery

that this country is famous for. The next page will begin with a greeting in the local

language and its translation. Five to six short paragraphs will follow this, each describing

attractions that will appeal to a wide range of holiday-makers; some of these attractions

will be familiar and some unique so as to distinguish this country from the rest. The first

of these paragraphs will include a sentence about the country's geographical location and

some of the paragraphs will be enhanced using illustrations. Next, brief details about the

climate, currency and languages spoken will be given to inform the interested reader (who

has read this far). Finally, contact details of reputable travel agents and a URL for more

information about the country will be provided for readers who may now be considering

booking their holidays.

In addition to the above, we were also keen to learn if the subset of RST relationships that we

identified for technical documents (see Chapter 4) was sufficient for the analyses.

8.1.2 Experiment design

The experiment began at 9:30am and carried on till 3:30pm. The five main activities of the

day are outlined below.

(I) Tutorial on narrative-based writing

We presented a tutorial at the start of the experiment that described the steps in narrative-

based writing (with a detailed explanation of RST), gave two examples and outlined the rest

of the day’s activities.

(II) RST analysis of a given DN

The volunteers were then asked to do a RST analysis of a DN for a travel brochure. The DN

was provided (see Figure 8-1) so that the participants could focus entirely on the RST analysis

(and not on creating the DN). This also gave rise to different analyses of the same DN which

was beneficial in understanding how other technical authors perceived a DN and RST. The

volunteers were, however, allowed to make minor changes to the DN if they saw it as an

improvement that made the segments better fit the RS-tree (thereby, enhancing its coherence).

Figure 8-1: DN that the volunteers had to analyse

Chapter 8 Evaluation 120

A travel brochure was chosen because it was a short and informal example. Note that the DN

was still in the old style and contained phrases such as “the next page” and “the first of these

paragraphs.” It was feedback from this experiment that made us recognise that this was not

ideal and change the format of DNs.

The volunteers were asked to do the analysis using the subset of RST relationships that was

identified in Chapter 4. Even though the DN provided was not of a technical document, we

did not anticipate that its analysis will require any additional relationships than that of a

typical DN for a technical document. This enabled us to evaluate if this list was sufficient or

whether the volunteers needed other relationships to complete their analysis.

(III) Enter the RST analysis from above into the tool

Each volunteer was asked to enter the analysis from the previous task into our tool. Since the

RST analysis was already available, the users were free to focus entirely on the tool. The

volunteers had brought their own laptops and accessed the tool via a Web browser.

(IV) Produce a DN in a team

For this task, the volunteers were divided into three teams: A, B and C. Each team was asked

to produce a DN for a research paper. No other specifications were given.

(V) Fill in a questionnaire

The volunteers then had to fill in a questionnaire about the tasks above. The responses and the

conclusions drawn from them are discussed next.

8.1.3 Results and conclusions

The questionnaire was divided into four sections, each focusing on a specific aspect of the

feedback we wanted. See Appendix C (section C.1) for a copy of the questionnaire used.

Section 1: Information about the volunteer

Section 2: RST analysis

Section 3: Experiences using the tool

Section 4: Collaborative writing activity

The answers to each of these sections are summarised and analysed below.

Section 1

This section asked the volunteers about their writing experience, in particular if they wrote

collaboratively and what methods of document planning they used. The answers are

summarised in Table 8-1.

Chapter 8 Evaluation 121

Prof - Professor

RS - Research Staff
Stu - PhD Student
O - Outlines

M - Mind maps

Doc - Document

 Volunteer

Question

1 2 3 4 5 6 7 8 9

Position RS Stu Prof Stu Stu Stu Stu Stu Stu

Docs in a month > 5 1-5 >5 0 1-5 1-5 1-5 > 5 1-5
Of these, num of
collaborative docs

Few 0 75% 0 0 0 2-3 0 0

Current doc
planning technique

O O&M O O O O M O O

Table 8-1: Summary of results from the first section of the questionnaire

As seen by the answers, all the volunteers (with the exception of volunteer 4) produced

documents on a regular basis. Most used outlining to plan these documents. A few volunteers

regularly engaged in collaborative writing, making them ideal candidates to comment on the

collaborative aspects of the narrative-based tool.

Section 2

The second part of the questionnaire was about the RST analysis of the given DN. The

volunteers were asked the following questions:

• How was the tutorial at the start of the experiment?

• Did the DN dictate an appropriate structure for the travel brochure?

• How easy/difficult was the RST analysis?

• How long did it take to complete the RST analysis?

• Did you require more relationships than the ones suggested in the list?

• Were you able to form a RS-tree for the DN?

• Did you change any part of the DN to fit this RS-tree?

The responses to these questions are summarised in Table 8-2. A blank cell indicates the

absence of an answer. ‘Mod’ and ‘m’ stand for ‘moderate’ and ‘minutes’, respectively.

Chapter 8 Evaluation 122

1 2 3

1 2-3

2
3

 Volunteer

Question

1 2 3 4 5 6 7 8 9

Tutorial at the start
was

Good Good Good Good Good Good OK1 OK2 Good

Travel brochure
DN appropriate?

N Y Y Y Y Y Y Y Y

Doing the RST
analysis was

Hard Mod Hard Mod Hard Mod Mod Easy Mod

Time taken for
analysis

45m 30m 20m 20m 25m 20m 20m 15m 15m

Required more
relationships?

N N N N N N N N N

Did you form a
RS-tree?

Y Y Y3 Y Y Y Y Y

Did you change
the DN to fit tree?

N4 N N5 N Y N Y N

1 “include more examples of RST relationships”
2 “explain how to separate a document into basic elements”
3 “but I didn’t think that the narrative was particularly easy to read”
4 “but perhaps I would have liked to. I thought it was not allowed.”
5 “perhaps with more experience I may have done”

Table 8-2: Results from section two of the questionnaire

Feedback about the presentation at the start of the experiment was positive. Two volunteers

had suggested including more examples of RST relationships and a better explanation of the

segmentation process. Both comments have been taken on board for future tutorials.

The volunteers produced very different RST analyses. The RS-trees constructed by the

volunteers are reproduced in Appendix C (C.2). The most common error in the RS-trees

(found in about three of the analyses) was the use of relationships as shown below.

Figure 8-2: Uncommon application of RST relationships

Since this was not one of the schemas designed by Mann and Thompson (see section 3.3.1),

we anticipate that such as application of relationships will not be valid in RST. A possible

alternative is shown below.

Figure 8-3: Alternative application of RST relationships

Chapter 8 Evaluation 123

However, these technicalities of RST were not the focus of the experiment. It is likely that

more details in the tutorial would have resolved this matter. The important point is that all the

volunteers had managed to form RS-trees, using a range of relationships that were applicable

to the given DN (SEQUENCE, MOTIVATION, ELABORATION, CONTRAST,

ENABLEMENT, SOLUTIONHOOD, JUSTIFY and BACKGROUND).

With regards to doing the analysis, three volunteers found it hard. However, a majority of the

volunteers had found the task moderate (i.e. not hard nor easy). After just a short tutorial

teaching RST, this is actually promising. The results suggest that technical authors can be

taught narrative-based writing even in a short space of time. There appears to be no apparent

correlation between the experience of the writer and the ease with which he performed the

RST analysis. For instance, volunteers 1 and 3 who were the most prolific technical authors

found the RST analysis difficult.

None of the volunteers had said that they needed more relationships for the RST analysis.

However, during the discussions after the experiment, one volunteer suggested the possibility

of having an IF-THEN-ELSE relationship which he thought was useful for documents written

by computer scientists. In our opinion, however, the CONDITION and OTHERWISE

relationships defined in RST fulfill this need. They were not included in the list of

relationships provided to the volunteers since they had not been used frequently in our

previous analyses. We will consider including them in the list of relationships for technical

documents.

Most volunteers thought that the DN was appropriate for the travel brochure (or at least that it

resembled the DNs that we presented in the tutorial). Volunteer 1 thought that the DN was not

suitable and had made this remark in the questionnaire:

“We want two things – sell holiday and enable booking. This is hidden in the narrative.”

Volunteer 4 had said that the DN did not read well. Subsequent discussions with the

volunteers revealed that the use of phrases such as ‘on the first page’, ‘the next page’ and so

on made the DN seem incoherent. It was at this point that we decided to remove such

contextual information from a DN altogether. A DN is now a précis of the story in a

document and this is the definition used in this thesis.

Section 3

This section asked the volunteers for feedback on their experience of entering the RST

analysis into the tool. The volunteers had to select the functions that they used (e.g. add a

node, read a version) and comment on the functionality and user interface. The following

suggestions were made:

1. If the interface was graphical, it would be nice to be able to drag and drop nodes in the

appropriate places in the tree.

Chapter 8 Evaluation 124

2. Two volunteers thought it would be better if the node numbers in the tool corresponded to

the node numbers assigned by the analyst (i.e. start from 1 in each RS-tree).

3. A volunteer had suggested including the capability to split existing nodes (i.e. breaking a

segment into multiple smaller segments). However, this is not common in RST. Segments

cannot be subdivided into smaller segments halfway through the analysis. He/she had also

said: “Take a look at Eclipse based UML tools such as Rational to get some ideas on

possible graphical interfaces.”

4. A volunteer had proposed tagging the changes to the RS-tree with the author’s name. In

our tool, every change made to the RS-tree is saved in a new version and each version

contains the name of the author who created that version. So, in effect, every change is

tagged with the author’s name. However, this is not common with other versioning

software such as CVS which would have many changes in one version. Since this

volunteer had not realised this in our tool, we may need to highlight this more in the

tool’s documentation or the tutorial.

5. A volunteer had also said that some user-friendliness issues may need to be addressed.

We had asked the volunteers for comments on the use of a graphical interface in the tool

because, eventually, it can be an improvement to the application. However, for the scope of

our research, a graphical interface does not have much added value. The comments will be

saved for future work.

Section 4

The final section in the questionnaire asked the volunteers about their experience producing a

DN collaboratively. The volunteers were divided into three teams: Team A (1, 2, 4), Team B

(3, 5, 6) and Team C (7, 8, 9). The figures below show the three DNs that were produced for a

research paper.

Team A

Figure 8-4: DN produced by team A

There is an area of scientific work that we wish to survey and bring together. There is an

absence of such a survey and, as far as the foremost researchers in the field, we are the most

qualified. Précis history of that area as background. We will look at the web, printed

material and contact active practitioners in the field. We then correlate, categorise, structure

the material and identify visible trends, gaps, conflicts, corroboration and reinforce

agreements. We predict future trends in the field and identifying areas we think need

further research. In the study, we have identified a significant gap in the knowledge, a

conflict between two research trends and a common agreement between major research.

Chapter 8 Evaluation 125

Team B

Team C

Figure 8-5: The DNs produced by the teams B and C

The three DNs produced were exceptionally good. Since the tutorial at the start contained a

DN for a research proposal (see Chapter 7), we expected the DNs to be almost identical to

that research proposal DN. Two of the DNs (by teams A and B) bore some resemblance and

appeared to be for a generic research paper. The third DN, however, was for a specific

research paper about proving Newton’s law and was very different to the research proposal

DN. Many of the volunteers had said that they analysed the DN using RST.

 Team A Team B Team C

 Volunteer

Question

1 2 4 3 5 6 7 8 9

Did writing a DN
help the team?

Y Y Y Y Y Y Y Y Y

Did you analyse
the DN?

Y N N Y Y Y Y Y Y

Would you use
DNs in the future?

Y Y Y Y Y Y1 Y Y Y

1 “maybe”

Table 8-3: Results from section four of the questionnaire

Each team had taken about 20 minutes to produce the DN. Most volunteers had said that

every member contributed sections of the DN and that creating a DN helped the team.

We have solved an important problem. Our solution will help people in the future. There

are existing solutions or partial solutions to this problem – highlight some of these

solutions. Our solution is better than their’s. Here is evidence of our claim based on

experiments. Here is a comparison of our results with others. Here is a summary of results

and claims.

We are students of Mechanical Engineering and learning some aspects of dynamics. We

wanted to verify if Newton’s Law is valid with varying air friction. Originally, in Newton’s

law, the effect of air friction was not considered. Due to recent advances in aero dynamics,

air friction measurement and its impact is a major issue. We conducted experiments X, Y

and Z. As a result, we found that air friction is an important parameter affecting Newton’s

law. During the analysis, we found that there is a significant difference between the end

velocity calculated using the formula and that produced in the experiments.

Chapter 8 Evaluation 126

8.1.4 Summary

The experiment would have benefited from more time but it was not possible to get

volunteers for a longer period than one day. However, even in this short time, the volunteers

welcomed the idea of a DN for a technical document and grasped the process of doing a RST

analysis surprisingly fast.

Suggestions to improve the tutorial on narrative-based writing have been noted. The

volunteers did not need additional relationships to complete their analysis but we will

consider adding the CONDITION relationship to the identified subset for technical

documents. Comments about the user interface have also been saved but will be a part of

future work because improvements to the interface (e.g. converting it to a graphical one) at

this stage will not add much more to the focus of our research which is document coherence.

A significant change that took place as a result of this experiment is the difference to the style

of writing a DN. We used to include information about the physical layout and authors’

reasoning. After the remarks made by the volunteers, we realised that this type of information

was inappropriate. Current DNs only contain a précis of the story in the document.

In conclusion, the results of this initial investigation were definitely encouraging and we have

met the objectives in section 8.1.1.

8.2 Critical appraisal

This section examines the connections of narrative-based writing to related technologies. It is

hardly possible to explore them all, so we have selected three technologies for this discussion:

the semantic web, ontologies and speech acts.

8.2.1 Semantic Web

The WWW is a collection of documents typically written in HTML. However, HTML is

incapable of adding any meaning to the content of these documents apart from basic

information about the hierarchical organisation of the document (e.g. Heading 1, Body) and

its presentation (e.g. font colour and size). While a human being can scan through the

information to find what he is looking for (say, a list of all the good primary schools in the

area), a computer or software agent is not able to do the same.

The Semantic Web is an initiative that aims to add meaning (or semantics) to these documents

so that the information in them can also be processed by machines (Berners-Lee et al., 2001).

In order to do this, technologies such as XML, Web Ontology Language (OWL) and

Resource Description Framework (RDF) are being used.

Chapter 8 Evaluation 127

XML allows everyone to create their own tags; thus increasing flexibility. Ontologies allow

information in different databases to be shared unambiguously. RDF is based upon making

statements about knowledge (or resources) in the form of subject-predicate-object triples. The

subject and object usually denote resources (identified by Uniform Resource Identifiers

(URI)) while the predicate expresses a relationship between them (e.g Banister Infant School,

located-in, Southampton).

RDF triples are similar, in our opinion, to RST relationships. We envisage that, just as

resources are linked using relationships such as “is-a-friend-of”, they can be linked via RST

relationships such as MOTIVATION and BACKGROUND too. One advantage of RST

relationships is that they have fixed definitions and, therefore, will mean the same thing

across databases. So, the subject and object of a RDF triple would be the nucleus and satellite

of a RST relationship.

As can be seen, there are definite parallels that can be drawn between the two areas of

research and both communities can learn from each other. Perhaps the use of RST can enable

software agents to automatically evaluate the level of coherence of documents (or information

on the whole) by navigating the RST links and looking for RS-tree structures. Users can also

be presented with information like: “Here’s the background information to that particular

problem and the motivation behind solving it.” We do not pursue these areas of research here

but they are interesting possibilities for future work.

8.2.2 Ontologies

In philosophy, the word “ontology” is the study of being or existence. Artificial Intelligence

(AI) and Web researchers use the word to refer to a document or file that formally defines the

relationships between terms (Berners-Lee et al., 2001). Ontologies define objects, the classes

they belong to, their attributes and relationships to other objects. For instance, going back to

the primary school example from the previous section, the attributes of a primary school can

include its name, address and the number of pupils. Each primary school is a subclass of

“school” which can include secondary schools and so on. Such definitions form a taxonomy.

A taxonomy can be complemented with inference rules. For example, a simple rule that says

“If the number of pupils in the school is more than a hundred, it is a big school” can help

software automatically list only the significant primary schools in the area. Other information

that is likely to be misinterpreted across databases (such as a postcode in the UK and a zip

code in America) can also be resolved using ontologies.

The use of ontologies in narratives is not uncommon. For instance, Tuffield et al (2006)

discuss an ontological understanding of narratives and Bärenfänger et al (2006) talk about a

taxonomy of RST relationships that will help discourse parsing. We too started out thinking

that document structures could be defined using an ontology based on the idea that sections in

a document, while having attributes of their own, were also linked to each other. We even

went on to implement a simple ontology editor that allowed users to create (and reuse)

Chapter 8 Evaluation 128

document structures. Reverting to the story of the Fido and the Flea in Chapter 2 (section

2.6.1), the ontology had a set of triples such as the ones shown below to model the story

events and characters.

<Fido>, <is-a>, <Dog>

<Fido>, <gets>, <Fleas>

<Dog>, <is-a>, <Animal>

Ontologies can also be made to contain information such as: “A research proposal should

contain an Introduction, a Background section…and the Introduction should be linked to the

Background in the following way.” However, we eventually moved away from ontologies as

the focus of our research shifted towards document coherence. Nevertheless, ontologies are a

possible way of modelling RS-tree structures as well and can be an area for future work.

Ontologies can enable agents to recognise certain types of documents (E.g. If a document has

the following sections and an executive summary, it must be a research proposal). Moreover,

with the use of RST, it may be possible to get them to recognise whether or not that research

proposal is coherent.

8.2.3 Speech acts

A “speech act” is a term from linguistics and the philosophy of language. It is based on the

idea that in saying something, we do something. More formally, speech acts “designate all

intentional actions…carried out in the course of a communication” (Ferber, 1999). Some

examples include: it is raining, wash your hands and I promise I’ll be back by five.

John Searle is a prominent figure in this area. He introduced, in particular, the idea of indirect

speech acts. An indirect speech is an utterance such as “Would you mind turning down the

stereo?” which appears to warrant a Yes/No answer but will usually result in the hearer

turning down the volume instead. Searle developed a series of steps that explained how two

meanings can be derived from the same utterance.

Speech acts have been influential in AI for communication between software agents. More

importantly for us, speech acts have been linked to technical writing too. James Euler (1992)

states that a technical document is a conversation between the writer (or writers in our case)

and the reader through which they achieve some act (e.g. use some software, get funding). He

goes on to argue that, in this respect, “voiceless” technical writing is unfair. Technical

documents are required to be “depersonalised” (without the use of ‘I’ or ‘We’) when, in

reality, many of them have personal goals (such as to please the writer’s employers).

Euler’s discussion is not too far from our work. The purpose of our research has been to

improve this conversation between reader and writer (by enhancing the coherence). Our early

DNs included explicit statements such as “We want you to fund us” which are, in a sense,

speech acts. Most of these statements have now been removed from a DN but many of the

intentions (and assertions) are still encapsulated in the RST relationships (e.g. this motivates

Chapter 8 Evaluation 129

the reader to do something). There are many aspects of speech acts (and the corresponding

theories) that can have some bearing on narrative-based writing. However, we do not have

time to explore this here but list it, once again, as a possible area for future research.

Depending on one’s experience and research background, narrative-based writing can be

related to several other technologies. We have chosen three that seemed the most relevant but

do not claim that this is an exhaustive list. All these comparisons expose many interesting

areas of work which we do not have time to go in to now, but list as future research.

 8.3 Our initial goals revisited

For the final part of our evaluation, we re-examine the research goals we set for ourselves in

Chapter 2. We recognised that document coherence was linked to the story conveyed to the

readers and that this was difficult to get right in collaborative writing. We realised that current

planning techniques and writing tools did not address the issue of document coherence, and

set out to develop a new narrative-based planning technique and tool.

In Chapter 2, we investigated three planning techniques: mind maps, outlines and the pyramid

principle. Mind maps provided a good visual aid to authors but had to eventually be converted

to a linear format in order for it to be useful in the actual writing of the document. Mind maps

were also subjective. So, a map drawn by one author could be misunderstood by another

author. Outlining was the most popular technique. Outlines provided a way in which the

sections of a document could be laid out in sequence, but there were no explicit relationships

identified between these sections (apart from that they were in sequence and that some

sections were contained within others). The pyramid principle was more elaborate than either

of the previous techniques. It had definite instructions on how to structure the arguments in a

document and construct a logical flow. It was also unique in that it encouraged authors to

think of the document from a reader’s point of view. The pyramid structures came the closest

to addressing document coherence and we have used some of its properties together with our

narrative-based approach. For instance, version two of the research proposal DN in Chapter 7

(section 7.2.1) was written in an inverted-pyramid structure. The only criticism of the pyramid

principle was that it was relatively complex. All three methods also did not allow an author to

judge if one structure for a document was more coherent than the other.

Each of the techniques had particular benefits that we were keen to include in any new

technique that we developed. These features were:

• Provide a visual aid

• Provide a way of determining the natural, linear ordering of the sections in a document

• Connect these sections logically

In addition to these, we also wanted to look for ways in which the authors could judge if their

document was coherent.

Chapter 8 Evaluation 130

Narrative-based writing was designed to address these issues. When authors start working out

the story in the document, they automatically formulate the best linear order for the sections

in a document (since the sequence of sections in the document corresponds to the sequence of

segments in the DN). The RST analysis helps connect these sections with logical relationships

and the eventual RS-tree is a good visual aid. We have also suggested that DNs should be

kept short so that the RS-trees are smaller and easier to manipulate. The assertion in RST of a

tree structure helps authors gauge the quality of their DN (and thus, the coherence of the

document).

RST dictates that if all the segments in the document can be linked via relationships (and

more importantly, formed into a tree) then the text is coherent. When there are segments that

cannot be included in the RS-tree, it is an indication to the authors to rethink the DN. Of

course, there are some segments in a DN that are not expected to fit in the tree (such as the

segment corresponding to the letterhead in a letter or the contacts page in a website). This is

normal.

The main disadvantage with narrative-based writing is having to learn RST. Most technical

authors are not going to be familiar with the use of a discourse theory. Initially, even reading

RS-trees is not entirely straightforward (especially those that are drawn by RSTTool) since

they are different to traditional tree structures in computer science. However, the results of the

experiment have been encouraging. The nine technical authors who took part learnt RST very

quickly. The minor irregularities in the RST applications (see Figure 8-2) could have been

avoided if there had been a longer, more comprehensive tutorial at the start.

Having developed this technique, we went on to design and implement a tool. The most that

current writing tools did towards enhancing coherence was provide templates for certain

genres of documents (e.g. Newnovelist, the wizards in Microsoft Word) and ensure that the

replicas of a document that the authors were working on individually were kept syntactically

equivalent (e.g. operational transformation). It needs to be said that, apart from coherence, the

other aspects of collaborative writing such as version control and merging have all been well

established in these other tools (e.g. CVS).

The aim of our tool was to enable a team of geographically-dispersed authors to engage in

narrative-based writing. By implementing this tool, we have had to address the non-trivial

issues surrounding the manipulation of versions of RS-trees (e.g. maintaining the sequence of

nodes using NXT relationships). The main contribution of our work has been the

identification of a set of functions that allows the creation, analysis and reviewing of a DN.

The tool was implemented as a Web-based application using JSP, HTML, Java and a

relational database.

Our tool focuses on the DN and RS-tree. The third component of this process, the actual

document, is not dealt with by us since several other tools such as CVS handle collaborative

documents well. It is anticipated, therefore, that our narrative-driven functions can, in the

future, be added on to these existing tools so that they support coherence as well (or at least

Chapter 8 Evaluation 131

We have evaluated our technique and tool in three steps. We conducted an experiment

with some technical authors who gave us feedback on narrative-based writing and the

tool. We then drew some parallels between our work and other areas of research that we

believe can expose interesting future research prospects. Finally, we re-examined our

research goals.

allow authors to plan coherent DNs). Some discussions in this area have already begun (De-

Silva and Skaf-Molli, 2006).

We appreciate that there are user interface issues that need to be addressed in our tool. Some

points about this were raised during the experiment too. Visually, a graphical representation

of RS-trees may be better. Also, the rapidly increasing node numbers become confusing after

a while. It will be better if each RS-tree could be displayed with node numbers corresponding

to how the author divided the DN into segments. However, while these issues are important,

they are not essential to the point we are trying to make. Our focus was to devise a tool that

allowed authors to share DNs and RS-trees so that their ideas can be moulded into one

coherent story. We have made the first steps towards achieving this goal.

8.4 Summary

This chapter contained an evaluation of narrative-based writing and our tool. We first

described an experiment that was conducted in May 2006 with nine volunteers. The

volunteers were assigned set tasks that focused on RST, the tool and collaborative writing.

The results were definitely encouraging. The participants understood and welcomed the

concept of a DN and, even with a relatively short introduction to RST, managed to complete

the RST analyses. We got useful feedback about DNs and the tool. We have implemented

some comments straightaway and left the rest for future work.

Secondly, we discussed three technologies just outside the scope of our research that we were

able to see had connections to narrative-based writing. Several parallels can be drawn with

technologies such as the semantic web. We are not able to explore all these areas in the time

given but leave them in the thesis as possible future work.

Finally, we re-examined our initial research goals from Chapter 2. We conclude that

narrative-based writing addresses the criteria that we identified as being essential in a

planning technique and that the tool has fulfilled its objective of enabling authors to engage in

narrative-based writing, albeit requiring some improvements to its interface.

In the next chapter, we outline some more areas of future work and present our conclusions.

Figure 8-6: DN for this chapter

 Chapter 9

Conclusions and future work

There is an increasing demand for technical documents and, often, they need to be produced

collaboratively with peers against tight deadlines. The title ‘technical document’ in this thesis

was used to refer to a variety of forms of communication in a scientific context including

written documents, presentations and websites. For these documents to fully achieve their

respective goals, they need to, of course, be technically sound, well presented and free of

spelling and grammatical mistakes. However, perhaps the most important aspects of an

effective document are consistency and coherence.

Document coherence is a subjective phenomenon. We defined coherence as the attribute of a

text that makes it understandable and easy to follow. The order in which the sentences are

placed can have a significant impact on coherence, even if each individual sentence is

perfectly constructed. This was illustrated in Chapter 2. Incoherence is easy to detect in short

texts such as a paragraph but this is not the case with large documents, particularly if they are

produced by multiple authors. Even if the problems are recognised in such documents, it may

not always be obvious how to correct them.

Authors are usually encouraged to make use of some planning techniques prior to writing to

organise their ideas. Outlines, mind-maps and the pyramid principle are just three of these

techniques. While each of them has individual strengths, they do not help authors work out

the natural ordering of their ideas and there was, definitely, no way of checking if the

sequence of sections formed a coherent text. We anticipated that current writing tools would

provide co-authors with some assistance towards document coherence. However, while the

tools facilitate collaborative working excellently, they lack explicit support or guidance for

the semantic coherence in documents.

After reading several texts that gave advice on technical writing (e.g. (Zobel, 2004)), we

picked up on the idea that a document should convey a narrative (or story) and decided that

more could be done to help technical authors ensure this story was consistent. While doing

research on narratives, we discovered that linguists had developed discourse theories, such as

RST (Chapter 3), that helped analyse and synthesise coherent narratives. The combination of

Chapter 9 Conclusions and future work 133

ideas from these parallel strands of research formed the basis for our new technique called

narrative-based writing (Chapter 4).

In this technique we introduced the concept of a document narrative (DN) which is an

explicit précis of the story that a document conveys to its reader. A DN could be further

analysed using RST to ensure that it is coherent (i.e. Do the relationships in it assemble into a

tree?) and add more meaning (e.g. Information in section A is the motivation for conducting

this research). The third step in the technique is to use the DN and the RST analysis to

structure the document.

We built a Web-based tool to enable teams of authors to engage in narrative-based writing. As

for all tools that supported collaborative working, particularly with non-trivial data structures

such as RS-trees, careful design was crucial. We used a combination of three models to

design our tool (Chapter 5). The main contribution made by our design is a set of functions

that enable collaborative narrative-based writing. These functions were implemented in Java

as a proof of concept (Chapter 6). The resulting tool enables authors to edit, analyse, review

and merge DNs asynchronously via the Web.

The technique and tool have been used to produce structures for several documents. A few of

these were presented in Chapter 7 as case studies. Finally, we conducted an experiment using

a group of volunteers to evaluate the technique and our tool (Chapter 8). The results of the

experiment were definitely encouraging. Even with just a short tutorial, the volunteers learned

the concepts of the DN and the RST analysis quickly. We received useful feedback about

DNs and the interface of the tool; some of which have already being implemented.

We now summarise the main contributions of our research, and present the future work ideas

and concluding remarks.

9.1 List of our main contributions

The contributions have been divided into primary and secondary contributions.

• (PRIMARY) A new technique called narrative-based writing

A new technique called narrative-based writing was introduced that enables authors to

improve the coherence of collaborative technical documents. The technique uses ideas

from narratives and RST and applies them to technical writing. The use of RST in this

context (i.e. to synthesise technical documents) differs greatly to its mainly analytical

applications in the past. Narrative-based writing was designed to address the

shortcomings of the other document planning techniques by providing a way of working

out the natural sequence of ideas in a document and evaluating the coherence of the

implicit story by using RST.

Chapter 9 Conclusions and future work 134

• (PRIMARY) The design for a narrative-based tool for collaborative writers

Chapter 5 presented the combination of three models that was used to clarify the concepts

and design a tool that supports collaborative narrative-based writing. The chapter also

discussed the data structures necessary to store the RS-trees. This design furthers the

understanding of narrative-based writing and addresses the complexities involved in the

manipulation of RS-trees.

• (PRIMARY) A web-based tool for collaborative narrative-based writing

The third primary contribution made by our research is the web-based tool. It has been

built and tested as proof of concept of the design. Chapter 6 discussed how the tool was

implemented and the choices made between alternative technologies.

• (SECONDARY) A tutorial and a catalogue of case studies

The tutorial we produced for the experiment to teach narrative-based writing is available

online (www.narratives-uk.com) and is in the process of being substantially expanded.

Several DNs (and corresponding RST analyses) for various types of documents have also

been produced. Some of them were included as case studies in Chapter 7. The tutorial and

these sample DNs can be useful guidelines for technical authors. Already, the DN for the

abstract of a research paper (see Appendix A, section A.3) has assisted a few colleagues

in the lab with their writing.

• (SECONDARY) Evaluation via an experiment and critical appraisal

The tool and the technique have been evaluated by us and also by a group of volunteers in

an experiment conducted in May 2006. The outcomes of the experiment were

encouraging.

9.2 Summary of our main contributions

RST is a formal method of analysing texts. In narrative-based writing, we use the ideas from

RST in the synthesis of technical documents. By making the authors attend to the RST

analysis of the DN, they are forced to think about the structure and story in a greater level of

detail. This eventually leads to improved document coherence. Coherence is an important

issue in documents which has not been dealt with before in this way. By implementing the

tool, we had to study and solve all the issues surrounding narrative-based writing in a

collaborative scenario. The functions that arose may not be highly efficient or the most

elegant, but they address the necessary aspects of a collaborative RST analysis in a complete

manner. Of course, there are improvements that could be made. However, achieving all these

goals within the three years of PhD research is nearly impossible. The initial objectives we set

ourselves have been met and we are investigating the areas of future work.

Chapter 9 Conclusions and future work 135

9.3 Future work directions

The future work directions we intend to pursue are outlined below. We have already made

some progress in some of these areas.

• Enhancements to the functions

The enhancements to the functions are twofold. First, we will improve the functions we

have got already by adding more RST-related rules or guidelines. Secondly, some new,

more elaborate, functions will be investigated. Both these improvements are discussed

below.

(a) As an example of the first type of enhancement, we demonstrate the adding of a

segment below. Imagine a RS-tree as shown below.

Figure 9-1: Initial RS-tree

If a node is added before node 3 (say, 3A), the current function will allow the following

tree to be formed with the BACKGROUND and MOTIVATION relationships set to

‘unsatisfied’ (to alert the authors to closely scrutinise and correct the relationships).

Figure 9-2: Tree after a node is inserted

An improvement to the function will be to recognise that the BACKGROUND

relationship is now no longer between the second and third segments in the DN, and

inform the author of how this will affect the document. For instance, should the

Chapter 9 Conclusions and future work 136

BACKGROUND relationship now be between node 3A and 3? If so, 3A has to be the

satellite since it has been suggested by Mann and Thompson that, for a BACKGROUND

relationship, the satellite should be presented before the nucleus. The function could

remove the BACKGROUND relationship or ask the author for confirmation. These rules

are not essential at the moment since authors are given complete control over the

maintenance of relationships.

(b) The second kind of enhancement is the inclusion of more elaborate functions to the

existing suite. One function that we have begun to study is explained below. This function

takes as arguments, a sequence of DN segments and the set of RST relationships between

them. From these values, the function will be able to suggest a possible RS-tree.

For example, imagine a sequence of five segments in the DN.

An author recognises that the following relationships exist between these segments. The

relationships are not named in order to simplify the diagram.

Figure 9-3: Relationships between segments of a DN

A possible RS-tree that could be generated from these relationships is shown below. In a

sense, this can be an automatic verification of coherence. Defining the set of rules and

assumptions that need to be made to construct such a tree is not trivial.

Figure 9-4: Possible RS-tree that incorporates all the relationships above

Chapter 9 Conclusions and future work 137

• Integrate narrative-based writing into existing tools

Existing collaborative working tools such as CVS or LibreSource already possess

advanced versioning and merging properties. We anticipate that if narrative-based support

could be integrated into these tools, the co-authors can have documents that are both

syntactically merged and following a coherent DN. We have already made some headway

in this regard by collaborating with the researchers at the University of Nancy, France

who are involved in the development of LibreSource. Our research ideas, still in their

infancy, are in (De-Silva and Skaf-Molli, 2006) where we explore the possibilities of

using the merging technique called Operational Transformation (OT) to converge copies

of a DN and RS-tree that authors may be editing simultaneously.

• Identify recurring patterns of relationships

Having analysed DNs for several technical documents, it may be possible to identify

recurring patterns in the ways in which these relationships are commonly assembled. For

instance, the Problem-Solution narrative is often used in technical documents. A set of

relationships associated with this narrative is shown below. We have alluded to some

aspects of this structure in the collaborative writing scenario in Chapter 7 (when Author C

realises that a MOTIVATION relationship is missing).

Figure 9-5: Regular Problem-solution pattern in technical documents

If more patterns can be identified, the tool can be further enhanced to give some guidance

to the authors when creating and analysing DNs.

Elaboration

1-2

Problem Background to the

problem

Background

Solution Details of the

solution

Solutionhood

3-4 Motivation for finding

this solution

Motivation

Chapter 9 Conclusions and future work 138

9.4 Concluding remarks

We set out to address the problem of incoherence in co-authored technical documents. We

have achieved this goal by combining the ideas from narratives and RST into a new planning

technique and tool for authors. After encouraging results from our own evaluation and from

experimental evaluation, we are keen to put our theories into practice. We are currently

exploring the impact of DNs on the website and documentation produced in OMII-Europe21.

Software support for narrative-based writing, particularly its inclusion in popular

collaborative tools such as CVS, can greatly influence the ways in which co-authors

coordinate their ideas and enhance the quality of the eventual documents.

We have used narrative-based writing to structure the content of this thesis. We end by

presenting, once again, the DN for the entire thesis (the framing DN). Each segment in the

DN below corresponds to one of the chapters.

Figure 9-6: DN for the thesis

21 Open Middleware Infrastructure Institute for Europe (www.omii-europe.org)

[We believe that a narrative-based approach can help technical authors improve the

coherence of documents they produce collaboratively.]1 [Coherence can be attributed to

the story conveyed by a document. It is particularly difficult to get right in collaborative

technical writing. Current writing tools do not support document coherence.]2 [Narrative

and discourse theories, in particular RST, provide a solution.]3 [By combining the

knowledge of these two parallel strands of research (narratives and technical writing), we

have developed a new method of document structuring called narrative-based writing.]4

[In order to facilitate teams of geographically-dispersed authors to engage in narrative-

based writing, we have carefully designed a tool]5 [and done a Web-based implementation

of it.]6 [The new technique and tool are particularly beneficial in collaborative writing and

can also be applied to other genres of technical communication such as websites and

presentations.]7 [Preliminary investigations suggest that the narrative-based approach is

helpful]8 [and that the tool, with some enhancements, can be a valuable contribution to

technical authors.]9

Appendix A

RST definitions and analyses

This appendix contains the definitions for all the RST relationships, the RS-trees for the DNs

that have not been analysed elsewhere in the thesis and the DN for an abstract of a research

paper (which was mentioned in Chapter 9).

A.1 Definitions of the RST relationships

Below we reproduce the definitions for the 23 relationships from the original RST paper

(Mann and Thompson, 1988). First the hypotactic relationships (one nucleus, one satellite) are

defined followed by the paratactic relationships (multiple nuclei). Each definition consists of

four fields:

1. Constraints on the Nucleus

2. Constraints on the Satellite

3. Constraints on the combination of the Nucleus and Satellite

4. The Effect

(N – nucleus, S – Satellite, R – Reader, W – Writer)

A.1.1 Hypotactic relationships

EVIDENCE

Constraints on the Nucleus: The reader R might not believe the information that is
conveyed by the nucleus N to a degree satisfactory to the
writer W

Constraints on the Satellite: The reader believes the information that is conveyed by the
satellite S or will find it credible

Constraints on N+S combination: R’s comprehending S increases the R’s belief of N

The effect: R’s belief of N is increased

Locus of the effect: N

Appendix A RST definitions and analyses 140

JUSTIFY

Constraints on the Nucleus: None

Constraints on the Satellite: None

Constraints on N+S combination: R’s comprehending S increases the R’s readiness to accept
W’s right to present N

The effect: R’s readiness to accept W’s right to present N is increased

Locus of the effect: N

SOLUTIONHOOD

Constraints on the Nucleus: None

Constraints on the Satellite: Presents the problem

Constraints on N+S combination: The situation presented in N is a solution to the problem
stated in S

The effect: R recognizes the situation presented in N as a solution to the
problem presented in S

Locus of the effect: N and S

ELABORATION

Constraints on the Nucleus: None

Constraints on the Satellite: None

Constraints on N+S combination: S presents additional detail about the situation or some
element of subject matter which is presented in N or
inferentially accessible in N in one or more of the way listed
below. In the list, if N presents the first member of any pair,
then S includes the second.

set : member
abstract : instance
whole : part
process : set
object : attribute
generalization : specific

The effect: R recognizes the situation presented in S as providing detail
for N. R identifies the element of subject matter for which
detail is provided.

Locus of the effect: N and S

BACKGROUND

Constraints on the Nucleus: R won’t comprehend N sufficiently before reading text of S

Constraints on the Satellite: None

Constraints on N+S combination: S increases the ability of R to comprehend an element in N

The effect: R’s ability to comprehend N increases

Locus of the effect: N

Appendix A RST definitions and analyses 141

ENABLEMENT

Constraints on the Nucleus: Presents R action (including accepting an offer), unrealized
with respect to the context of N

Constraints on the Satellite: None

Constraints on N+S combination: R comprehending S increases R’s potential ability to perform
the action presented in N

The effect: R’s potential ability to perform the action presented in N
increases

Locus of the effect: N

MOTIVATION

Constraints on the Nucleus: Presents an action in which R is the actor (including accepting
an offer), unrealized with respect to the context of N

Constraints on the Satellite: None

Constraints on N+S combination: Comprehending S increases R’s desire to perform action
presented in N

The effect: R’s desire to perform action presented in N is increased

Locus of the effect: N

CIRCUMSTANCE

Constraints on the Nucleus: None

Constraints on the Satellite: S presents a situation (not unrealized)

Constraints on N+S combination: S sets a framework in the subject matter within which R is
intended to interpret the situation presented in N

The effect: R recognises that the situation presented in S provides the
framework for interpreting N

Locus of the effect: N and S

VOLITIONAL CAUSE

Constraints on the Nucleus: Presents a volitional action or situation that could have arisen
from a volitional action

Constraints on the Satellite: None

Constraints on N+S combination: S presents a situation that could have caused the agent of the
volitional action in N to perform that action; without the
presentation of S, R might not regard the action as motivated
or know the particular motivation; N is more central to W’s
purposes in putting forth the N-S combination than is S

The effect: R recognises that the situation presented in S as a cause for
the volitional action presented in N

Locus of the effect: N and S

Appendix A RST definitions and analyses 142

NON-VOLITIONAL CAUSE

Constraints on the Nucleus: Presents a situation that is not a volitional action

Constraints on the Satellite: None

Constraints on N+S combination: S presents a situation that, by means other than motivating a
volitional action, caused the situation presented in N; without
the presentation of S, R might not know the particular cause
of the situation; a presentation of N is more central than S to
W’s purposes in putting forth the N-S combination.

The effect: R recognises the situation presented in S as a cause of the
situation presented in N

Locus of the effect: N and S

VOLITIONAL RESULT

Constraints on the Nucleus: None

Constraints on the Satellite: Presents a volitional action or a situation that could have
arisen from a volitional action

Constraints on N+S combination: N presents a situation that could have caused the situation
presented in S; the situation presented in N is more central to
W’s purposes than is that presented in S

The effect: R recognises the situation presented in N could be a cause for
the action or situation presented in S

Locus of the effect: N and S

NON-VOLITIONAL RESULT

Constraints on the Nucleus: None

Constraints on the Satellite: Presents a situation that is not a volitional action

Constraints on N+S combination: N presents a situation that caused the situation presented in S;
presentation of N is more central to W’s purposes in putting
forth the N-S combination than is the presentation of S.

The effect: R recognises the situation presented in N could have caused
the situation presented in S

Locus of the effect: N and S

PURPOSE

Constraints on the Nucleus: Presents an activity

Constraints on the Satellite: Presents a situation that is unrealised

Constraints on N+S combination: S presents a situation to be realized through the activity in N

The effect: R recognises that the activity in N is initiated in order to
realize S

Locus of the effect: N and S

Appendix A RST definitions and analyses 143

ANTITHESIS

Constraints on the Nucleus: W has positive regard for the situation presented in N

Constraints on the Satellite: None

Constraints on N+S combination: The situations presented in N and S are in contrast (cf.
CONTRAST, i.e. are (a) comprehended as the same in many
respects, (b) comprehended as differing in a few respects and
(c) compared with respect to one or more of these
differences); because of an incompatibility that arises from
the contrast, one cannot have positive regard for both the
situations presented in N and S; comprehending S and the
incompatibility between the situations presented in N and S
increases R’s positive regard for the situation presented in N

The effect: R’s positive regard for N is increased

Locus of the effect: N

CONCESSION

Constraints on the Nucleus: W has positive regard for the situation presented in N

Constraints on the Satellite: W is not claiming that the situation presented in S doesn’t
hold

Constraints on N+S combination: W acknowledges a potential or apparent incompatibility
between the situations presented in N and S; W regards the
situations presented in N and S as compatible; recognizing
that the compatibility between the situation presented in N
and S increases R’s positive regard for the situation presented
in N

The effect: R’s positive regard for the situation presented in N is
increased

Locus of the effect: N and S

CONDITION

Constraints on the Nucleus: None

Constraints on the Satellite: S presents a hypothetical future or otherwise unrealized
situation (relative to the situational context of S)

Constraints on N+S combination: Realization of the situation presented in N depends on
realization of that presented in S

The effect: R recognizes how the realization of the situation presented in
N depends on the realization of the situation presented in S

Locus of the effect: N and S

OTHERWISE

Constraints on the Nucleus: Presents an unrealized situation

Constraints on the Satellite: Presents an unrealized situation

Constraints on N+S combination: Realization of the situation presented in N prevents realization
of the situation presented in S

The effect: R recognizes the dependency relation of prevention between
the realization of the situation presented in N and the
realization of the situation presented in S

Locus of the effect: N and S

Appendix A RST definitions and analyses 144

INTERPRETATION

Constraints on the Nucleus: None

Constraints on the Satellite: None

Constraints on N+S combination: S relates the situation presented in N to a framework of ideas
not involved in N itself and not concerned with W’s positive
regard

The effect: R recognizes that S relates the situation presented in N to a
framework of ideas not involved in the knowledge presented
in N itself

Locus of the effect: N and S

EVALUATION

Constraints on the Nucleus: None

Constraints on the Satellite: None

Constraints on N+S combination: S relates the situation in N to the degree of W’s positive
regard toward the situation presented in N

The effect: R recognizes that the situation presented in S assesses the
situation presented in N and recognizes the value it assigns

Locus of the effect: N and S

RESTATEMENT

Constraints on the Nucleus: None

Constraints on the Satellite: None

Constraints on N+S combination: S restates N, where S and N are of comparable bulk

The effect: R recognizes S as a restatement of N

Locus of the effect: N and S

SUMMARY

Constraints on the Nucleus: N must be more than one unit

Constraints on the Satellite: None

Constraints on N+S combination: S presents a restatement of the content of N, that is shorter in
bulk

The effect: R recognizes S as a shorter restatement of N

Locus of the effect: N and S

Appendix A RST definitions and analyses 145

A.1.2 Paratactic relationships

SEQUENCE

Constraints on the Nucleus: Multi-nuclear

Constraints on the combination of

nuclei:

A succession relationship between the situations is presented
in the nuclei

The effect: R recognizes the succession relationship among the nuclei

Locus of the effect: Multiple nuclei

CONTRAST

Constraints on the Nucleus: Multi-nuclear

Constraints on the combination of

nuclei:

No more than two nuclei; the situations presented in these two
nuclei are (a) comprehended as the same in many respects, (b)
comprehended as differing in a few respects and (c) compared
with respect to one or more of these differences

The effect: R recognizes the comparability and the difference(s) yielded
by the comparison being made

Locus of the effect: Multiple nuclei

A.2 RST analyses of the DNs in the thesis

The RS-trees for the DNs that were not analysed in the main body of this thesis are presented

here. Note that more than one RST analysis is possible for a given text. The important point

for coherence is whether or not the RST relationships can be assembled into a tree structure.

The DN for each chapter in the thesis is analysed below. The first and last chapters contained

the DN for the entire thesis. The DN for chapter 3 was analysed in chapter 4. The rest of the

DNs are analysed below.

Appendix A RST definitions and analyses 146

3-61.We believe that a

narrative-based

approach can help
technical authors

improve the

coherence of

documents they
produce

collaboratively.

Motivation

2.Coherence can be

attributed to the story

conveyed by a
document. It is

particularly difficult to

get right in

collaborative
technical writing.

Current writing tools

do not support

document

coherence.

Solutionhood

5.In order to facilitate

teams of

geographically-dispersed
authors to engage in

narrative-based writing,

we have carefully

designed a tool

Sequence

6.and done a

Web-based

implementation of it.

Sequence

3-4

Sequence

7-9

Evaluation

A.2.1 Chapter 1 and 9 – DN for the thesis

[We believe that a narrative-based approach can help technical authors improve the

coherence of documents they produce collaboratively.]1 [Coherence can be attributed to

the story conveyed by a document. It is particularly difficult to get right in collaborative

technical writing. Current writing tools do not support document coherence.]2 [Narrative

and discourse theories, in particular RST, provide a solution.]3 [By combining the

knowledge of these two parallel strands of research (narratives and technical writing), we

have developed a new method of document structuring called narrative-based writing.]4

[In order to facilitate teams of geographically-dispersed authors to engage in narrative-

based writing, we have carefully designed a tool]5 [and done a Web-based implementation

of it.]6 [The new technique and tool are particularly beneficial in collaborative writing and

can also be applied to other genres of technical communication such as websites and

presentations.]7 [Preliminary investigations suggest that the narrative-based approach is

helpful]8 [and that the tool, with some enhancements, can be a valuable contribution to

technical authors.]9

Appendix A RST definitions and analyses 147

A.2.2 Chapter 2 DN

4-6

4.We then began

looking at ways to fill
this gap. We

conjecture that

coherence can be

linked to the story (or
narrative) that a

document conveys to

the reader and that

enhancing this story

will improve the
coherence.

Sequence

5.Studies into

narratives revealed
that there are theories

to formalise the

structure of a text and

make sure that it is
consistent. Such a

theory can help

technical authors

formulate better

stories for their
documents.

Sequence

6.After examining

several possible
theories, we have

chosen Rhetorical

Structure Theory

(RST) for our
research.

Sequence

1-3

Solutionhood

3.We anticipate that

the use of a planning
technique at the start

of the writing process

and an appropriate

software tool can help
this situation.

However, the current

techniques and tools

available to authors

do not adequately
support document

coherence.

1-2

Background

1.Coherence is the
attribute of a

document (that is

assumed free of

spelling, grammatical

or factual errors)
which makes it easy

to read and

understand.

Sequence

2.It is not always
easy to achieve

coherence,

particularly when

technical authors

have to work
together to produce

large documents.

Sequence

[Coherence is the attribute of a document (that is assumed free of spelling, grammatical or

factual errors) which makes it easy to read and understand.]1 [It is not always easy to

achieve coherence, particularly when technical authors have to work together to produce

large documents.]2 [We anticipate that the use of a planning technique at the start of the

writing process and an appropriate software tool can help this situation. However, the

current techniques and tools available to authors do not adequately support document

coherence.]3 [We then began looking at ways to fill this gap. We conjecture that coherence

can be linked to the story (or narrative) that a document conveys to the reader and that

enhancing this story will improve the coherence.]4 [Studies into narratives revealed that

there are theories to formalise the structure of a text and make sure that it is consistent.

Such a theory can help technical authors formulate better stories for their documents.]5

[After examining several possible theories, we have chosen Rhetorical Structure Theory

(RST) for our research.]6

Appendix A RST definitions and analyses 148

Narrative-based
writing is a new

technique we

propose for planning
the structure of a

document.

2-4

Elaboration

It has three main

steps: create the

DN,

Sequence

analyse the DN

using RST

Sequence

and produce the

document

accordingly.

Sequence

1-4 5-6

Justify

The technique is
useful because it

helps authors identify

and improve the story
of a document; thus

enhancing its

coherence.

Sequence

The new technique
fulfils the gaps we

recognised in the

existing planning
techniques.

Sequence

A.2.3 Chapter 4 DN

A.2.4 Chapter 5 DN

Therefore, the design

for this tool has been

done using a

graduated set of

three models.

3-6

Elaboration

3-5

A conceptual model

defines the main

concepts of

narrative-based

writing.

Sequence

A business process

model identifies a set

of user actions which

are then defined

formally

Sequence

in the functional

model.

Sequence

Methods for version

control and merging

have been designed

as well since they are

essential for

collaborative editing

(even though they

are not the main

focus of the tool).

Elaboration

These functions will

now be implemented.

Evidence

2-6A tool that is

expected to support

collaborative editing,

particularly of

non-trivial structures

such as RS-trees,

needs careful and

thorough design.

Background

[Narrative-based writing is a new technique we propose for planning the

structure of a document.]1 [It has three main steps: create the DN,]2 [analyse the

DN using RST]3 [and produce the document accordingly.]4 [The technique is

useful because it helps authors identify and improve the story of a document;

thus enhancing its coherence.]5 [The new technique fulfils the gaps we

recognised in the existing planning techniques.]6

[A tool that is expected to support collaborative editing, particularly of non-trivial

structures such as RS-trees, needs careful and thorough design.]1 [Therefore, the design

for this tool has been done using a graduated set of three models.]2 [A conceptual model

defines the main concepts of narrative-based writing.]3 [A business process model

identifies a set of user actions which are then defined formally]4 [in the functional

model.]5 [Methods for version control and merging have been designed as well since they

are essential for collaborative editing (even though they are not the main focus of the

tool).]6 [These functions will now be implemented.]7

Appendix A RST definitions and analyses 149

A.2.5 Chapter 6 DN

We are aware that

there are other

technologies and

architectures that

could have been

used. However, the

choices made were

justified for the goals

we wanted to

achieve at the time

of implementation.

Elaboration

Different

implementations can

be done based on

the design presented

in Chapter 5. We

present one possible

implementation.

The tool has all the

functionality

described in the

design including

features to deal with

interference and

version control.

Elaboration

A.2.6 Chapter 7 DN

1-4

Narrative-based

writing has particular

benefits in

collaborative writing.

Sequence

2-4

Sequence

The technique is not

restricted to just

written documents.

3-4

Elaboration

It can be applied to

presentations

Sequence

and websites as well.

Sequence

[Different implementations can be done based on the design presented in Chapter 5. We

present one possible implementation.]1 [We are aware that there are other technologies

and architectures that could have been used. However, the choices made were justified for

the goals we wanted to achieve at the time of implementation.]2 [The tool has all the

functionality described in the design including features to deal with interference and

version control.]3

[Narrative-based writing has particular benefits in collaborative writing.]1 [The technique

is not restricted to just written documents.]2 [It can be applied to presentations]3 [and

websites as well.]4

Appendix A RST definitions and analyses 150

A.2.7 Chapter 8 DN

We have evaluated

our technique and

tool in three steps.

2-4

Elaboration

We conducted an

experiment with some

technical authors

who gave us

feedback on
narrative-based

writing and the tool.

Sequence

We then drew some

parallels between our

work and other areas

of research that we

believe can expose
interesting future

research prospects.

Sequence

Finally, we

re-examined our

research goals.

Sequence

A.3 DN for an abstract of a research paper

MANN, W. & THOMPSON, S. (1988) Rhetorical Structure Theory: Toward a

functional theory of text organisation. Text, 8, 243-281.

[We have evaluated our technique and tool in three steps.]1 [We conducted an experiment

with some technical authors who gave us feedback on narrative-based writing and the

tool.]2 [We then drew some parallels between our work and other areas of research that we

believe can expose interesting future research prospects.]3 [Finally, we re-examined our

research goals.]4

[We want the reader to select our paper for publication.]1 [So, our thesis is given first (in

one sentence, if possible)]2 [to grab the attention of the reader and create anticipation.]3

[Next, the problem solved by this research is presented]4 [along with some brief

evidence to show that it is a significant problem that is currently unsolved.]5 [The

methods we used in our research to address this problem and the outcomes should

follow next,]6 [highlighting features that we are particularly successful in]7 [to confirm

that our work is superior, unique and worth publishing.]8 [Finally, our conclusions will

be given (in a couple of sentences)]9 [to show the reader the implications of our work

and the many interesting future work directions that stem from this effort.]10

Appendix B

Implementations

This appendix contains an outline of two previous prototypes we implemented and a listing of

the Java methods of the current tool.

B.1 Previous prototypes

A few prototypes were built before the current tool to explore the use of different

technologies and study the ways in which document coherence could be supported. The two

most relevant prototypes are briefly described below.

B.1.1 Narrative support for research proposals

The first prototype provided, in essence, a template for research proposals. The users were

prompted for a descriptive answer and a key sentence in response to twelve questions. The

questions were:

1. What is the description and significance of the problem?

2. What are the previous attempts to solve this problem?

3. What is my/our attempt to solve this?

4. Alternative approaches considered?

5. What exactly will we do?

6. What are the results we hope to achieve/have achieved?

7. Who will do these tasks?

8. Why are they qualified to do these tasks?

9. What equipment/software will we need?

10. How much will they cost?

11. Total cost (direct and indirect)?

12. Total time needed?

The answers were stored in an XML file (sample below) and used to generate a research

proposal, an abstract and an executive summary using XSLT stylesheets. The ‘SEQ’ attribute

of the ‘PART’ element in the XML provided a unique identifier for each part of the proposal

(see below).

Appendix B Implementations 152

<RESEARCH_PROPOSAL Title=”Finding the perfect programming language”>

 <PART QUESTION=”What exactly will we do?” SEQ=”1”>

 <TEXT> Descriptive answer </TEXT>

 <KEY_SENTENCE> … </KEY_SENTENCE>

 </PART>

 …

</RESEARCH_PROPOSAL>

The answers were assembled in specific ways (hard coded into the tool) to produce a research

proposal, an abstract and an executive summary. For example, the Introduction of the

proposal was composed of the following:

Key sentence of problem description

Context and deeper explanation of problem

Key sentence about expected results

Key sentence about literature review

Key sentence of methodology

The generated abstract was a sequence of the key sentences glued together by phrases such as

‘We hope to achieve’ and ‘We estimate this will cost’. The executive summary contained key

sentences of the problem and method, followed by detailed accounts of the cost and time.

B.1.2 CANS (Computer-Aided Narrative Support)

We quickly moved away from a strong coupling between the structure of a document and its

content. CANS was a single-author tool that allowed authors to create a DN and analyse it

using RST (De-Silva and Henderson, 2005). The users accessed the tool via an HTML

interface and the RST structures were stored using URML (Underspecified Rhetorical

Markup Language) (Reitter and Stede, 2003b, Reitter and Stede, 2003a). URML is an XML

format suggested for storing underspecified RS-trees. An example is shown below.

Appendix B Implementations 153

The author had to link each segment of the DN to a corresponding section in the document.

This was done by specifying a question that will later prompt the author for the content of that

section. The questions had to be entered when the DN was first created. These narrative

structures and questions were stored in the tool.

When an author wanted to create a document, he would choose the appropriate DN for it and

then answer the questions that were relevant to that DN. These answers were then ordered

according to the sequence of segments in the DN. The tool could also traverse the RS-tree in a

different way (using the recommended satellite and nucleus ordering suggested by Mann and

Thompson) and suggest an alternate narrative for the document. This feature of being able to

explore alternative structures for a document was a key feature of this tool.

The functionality was provided by JSP and XSLT. They were contained in a J2EE server. The

XML data was stored in flat files. Later, we used Xindice (http://xml.apache.org/xindice/) to

maintain the XML files which made the code to access and edit the data much shorter and

easier.

<hypRelation id=“subtree-A”
 type=“Motivation”>
 <satellite id=“5" />
 <nucleus id=“4" />
</hypRelation>

Appendix B Implementations 154

B.2 List of Java methods in the current tool

This section lists the Java methods that were used to implement the tool. We first present a

few of the “housekeeping” methods that were needed to access and update the database, and

increment unique indices. Then we present the methods that correspond to the functions

designed in Chapter 5: the six core functions and the larger functions that implement user

actions.

B.2.1 Housekeeping methods

(1) The method below returns a connection to the database (db2).

public Connection getConnection(){

 String driver = "sun.jdbc.odbc.JdbcOdbcDriver";

 String url = "jdbc:odbc:db2";

 String username = "", password = "";

 Connection connection = null;

 try {

 Class.forName(driver);

 connection =

 DriverManager.getConnection(url,username,password);

 }catch (ClassNotFoundException cnfe){

 System.err.println("Error loading driver: " + cnfe);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

 return connection;

}

(2) The method below closes the connection to the database.

public void close(Connection connection){

 try {

 connection.close();

 }catch (Exception e){

 System.err.println("Error closing the connection: " + e);

 }

}

(3) The methods below extract a particular field from the database. The arguments to the

methods provide the details necessary for the SQL query: the name of the field that needs to

be retrieved, the name of the table, the name of the field that needs to be compared and the

value it has to be compared to. The SQL queries in this situation are expected to return just

one field.

Appendix B Implementations 155

The method below extracts a field from the database which is of type String.

public String getStringField(String field_retrieve, String table,

 String field_compare, int id){

 String field = "";

 try {

 Connection con = this.getConnection();

 //form and execute SQL query

 String query = "SELECT " + field_retrieve + " FROM " +

 table + " WHERE " + field_compare + "=" + id;

 Statement statement = con.createStatement();

 ResultSet resultSet = statement.executeQuery(query);

 while (resultSet.next()){ //Should only have one element

 field = resultSet.getString(field_retrieve);

 }

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

 return field; //Return string field

}

The method below extracts a field from the database which is of type int.

public int getIntField(String field_retrieve, String table,

 String field_compare, int id){

 int field = -2; //Returns -2 if there is no other value

 try {

 Connection con = this.getConnection();

 //form and execute SQL query

 String query = "SELECT " + field_retrieve + " FROM " +

 table + " WHERE " + field_compare + "=" + id;

 Statement statement = con.createStatement();

 ResultSet resultSet = statement.executeQuery(query);

 while (resultSet.next()){ //Should only have one element

 field = resultSet.getInt(field_retrieve);

 }

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

 return field; //return int field

}

These two methods could have been combined into one generic method that retrieves a field

of a specified type. The method would then need to return an object of type Vector or

something like that. This would have, however, lengthened the processing to extract the

required information in the method that calls this method. Therefore, we have decided to have

two separate methods.

Appendix B Implementations 156

(4) The method below inserts new records to the database. It takes a SQL INSERT statement

as an argument and executes it. (There will be no SQL UPDATE statements since we do not

update any information in-situ in the database.)

public void put(String stmt){

 try {

 Connection con = this.getConnection();

 Statement statement = con.createStatement();

 statement.executeUpdate(stmt);

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

}

(5) The method below generates the IDs for nodes and RS-trees. The method reads the current

value of the ID, increments it by one and stores the new ID back in the table. The new ID is

also returned by the method. The “autonumbering” feature of Microsoft Access could have

been used to achieve some of this functionality. The reasons against doing that were presented

in Chapter 6.

public int newID(String field){

 System.out.println("Generating new id for " + field);

 int new_id = -1;

 try{

 Connection con = this.getConnection();

 //Get current ID from INDEX table

 String query = "SELECT " + field + " FROM INDEX";

 Statement statement = con.createStatement();

 ResultSet resultSet = statement.executeQuery(query);

 resultSet.next();

 new_id = resultSet.getInt(field) + 1; //Increment by 1

 //Store new ID back in table

 String update = "UPDATE INDEX SET " + field + "=" + new_id;

 statement.executeUpdate(update);

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

 return new_id;

}

Appendix B Implementations 157

(6) The method below assigns new version numbers for a given RS-tree. The process is

identical to the method above except that the following method uses the INDEX2 table

(which contains the latest version number for each RS-tree in the database).

public synchronized int newVersion(int doc){

 int new_id = -1;

 try{

 Connection con = this.getConnection();

 String query = "SELECT Version FROM Index2 WHERE

 Doc_ID=" + doc;

 Statement statement = con.createStatement();

 ResultSet resultSet = statement.executeQuery(query);

 resultSet.next();

 new_id = resultSet.getInt("Version") + 1; //Increment by 1

 String update = "UPDATE INDEX2 SET Version=" + new_id +

 " WHERE Doc_ID=" + doc; //Write new id back to table

 statement.executeUpdate(update);

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error: " + sqle);

 }catch (InterruptedException ie){

 System.err.println("Error: " + ie);

 }

 return new_id;

}

Appendix B Implementations 158

B.2.2 Methods corresponding to the six core functions in Chapter 5

 (1) The method below corresponds to the getChildren(n) function. It returns a vector

containing the set of immediate children of node n. In the implementation, the functionality to

order the children was separated into a different method since the children do not always need

to be ordered. For most functions, a set of unordered children is sufficient. The nodes only

need to be ordered for a few of the other methods.

getChildren(n){
 children = new set(Node)
 pcrelations = all PC relations
 where n is a parent
 for (each parent,child in pcrelations){
 children.add(child)
 }
 ## order children (separate function below)
 return children

}

public Vector getChildren(int n){

 Vector children = new Vector();

 try {

 Connection con = this.getConnection();

 String query = "SELECT Child FROM PCRel WHERE Parent=" + n;

 Statement statement = con.createStatement();

 ResultSet resultSet = statement.executeQuery(query);

 while (resultSet.next()){ //Add each child to vector

 children.addElement(new Integer(resultSet.getInt("Child")));

 }

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

 return children;

}

The method to order the children is below. It is in a dashed box because it is a part of the

getChildren() function that was discussed in Chapter 5 (even though it is a separate method in

the actual Java).

public Vector orderChildren(Vector children){

 Vector orderedChildren = new Vector();

 //Get NXT relationships for these children

 Vector nxtrels = this.getNXTRelationships(children);

 //Find first

 int firstchild = -1;

 for(int i=0; i<nxtrels.size(); i++){

 //If first node is -1 i.e. (-1,X), then X is first

Appendix B Implementations 159

 if (((((Integer)((Vector)nxtrels.elementAt(i))

 .elementAt(0)).intValue()) < 0)){

 firstchild = ((Integer)((Vector)nxtrels.elementAt(i))

 .elementAt(1)).intValue();

 }

 }

 //If first child has been located successfully

 if (firstchild > 0) {

 orderedChildren.addElement(new Integer(firstchild));

 //Navigate the NXT relationships for the rest

 int nextchild=this.getIntField("Second", "NXTRel", "First",

 firstchild);

 while (nextchild!=-2){ //getIntField returns -2 if error

 orderedChildren.addElement(new Integer(nextchild));

 nextchild = this.getIntField("Second", "NXTRel",

 "First", nextchild);

 }

 }

 return orderedChildren;

}

(2) The method below corresponds to the getNodes(r) function. It returns a vector

containing all the nodes in a given tree.

getNodes(r){
 descendants = new set(Node)
 descendants.add(r)
 children = getChildren(r)
 for(each node in children){
 descendants.add(getNodes(node))
 }
 return descendants

}

public Vector getNodes(int t){

 Vector nodes = new Vector();

 nodes.addElement(new Integer(t));

 Vector children = this.getChildren(t);

 for(int i=0;i<children.size();i++){

 nodes.addAll(this.getNodes(((Integer)children.elementAt(i))

 .intValue()));

 }

 return nodes;

}

Appendix B Implementations 160

(3) The method below corresponds to the contains(n,r) function. It returns true if node n is

contained anywhere in tree t.

contains(n,r){
 return (n is in getNodes(r))

}

public boolean contains(int n, int t){

 Vector nodes = this.getNodes(t);

 if (nodes.contains(new Integer(n))){

 return true;

 }

 return false;

}

(4) The method corresponds to the function locate(n,r) which returns the immediate

subtree within tree r that contains node n.

locate(n,r){
 children = getChildren(r)
 for(each node in children){
 if (contains(n,node)){
 return node.ID
 }
 return -1

}

public int locate (int n, int t){

 Vector children = this.getChildren(t);

 for(int i=0;i<children.size();i++){

 if (this.contains(n,

 (((Integer)children.elementAt(i)).intValue()))){

 return (((Integer)children.elementAt(i)).intValue());

 }

 }

 return -1;

}

Appendix B Implementations 161

(5) The method below corresponds to the getRSTRelationships(r) function. It returns

a vector with all the RST relationships pertaining to the tree with root r.

getRSTRelationships(r){
 rels = new set(RST Relationship)
 for(each RST relationship){
 if(contains(satellite,r) AND
 contains(nucleus,r))
 rels.add(the RST relationship)
 }
 return rels

}

public Vector getRSTRelationships(int r){

 Vector rels = new Vector();

 Vector nodes = this.getNodes(r);

 try {

 Connection con = this.getConnection();

 //Get all RST relationships in tree with root r

 String query = "SELECT * FROM RSTRel";

 Statement statement = con.createStatement();

 ResultSet resultSet = statement.executeQuery(query);

 while (resultSet.next()){

 int node1 = resultSet.getInt("Node1");

 int node2 = resultSet.getInt("Node2");

 //If both nodes in this version

 if (nodes.contains(new Integer(node1)) &&

 nodes.contains(new Integer(node2))){

 Vector entry = new Vector();

 entry.add(new Integer(node1)); //Node1

 entry.add(new Integer(node2)); //Node2

 entry.add(new Integer

 (resultSet.getInt("Relation_ID"))); //Relation_ID

 entry.add(new Boolean(resultSet

 .getBoolean("State"))); //Checked or unchecked

 rels.add(entry);

 }

 }

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

 return rels;

}

Appendix B Implementations 162

(6) The method below corresponds to the getNXTRelationships(children) function.

getNXTRelationships(children){
 nxtrels = new set(NXT Relationship)
 for(each NXT Relationship in repository){
 if((first is in children OR is _) AND
 (second is in children)
 nxtrels.add(the NXT relationship)
 }
 return nxtrels
}

public Vector getNXTRelationships(Vector children){

 Vector nxtrels = new Vector();

 try{

 Connection con = this.getConnection();

 //Get all the NXT relationships

 String query = "SELECT First,Second FROM NXTRel";

 Statement statement = con.createStatement();

 ResultSet resultSet = statement.executeQuery(query);

 while (resultSet.next()){ //For each NXT relationship

 int first = resultSet.getInt("First");

 int second = resultSet.getInt("Second");

 //If first and second nodes are elements in children

 if((children.contains(new Integer(first)) || first==-1)

 && (children.contains(new Integer(second)))){

 Vector entry = new Vector();

 entry.addElement(new Integer(first));

 entry.addElement(new Integer(second));

 nxtrels.add(entry); //Add NXT Relationship

 }

 }

 this.close(con);

 }catch (SQLException sqle){

 System.err.println("Error with connection: " + sqle);

 }

 return nxtrels;

}

Appendix B Implementations 163

B.2.3 Methods corresponding to the other functions in Chapter 5

(1) The pseudocode for the function print(c,r) is given below.

print(c, r){
 display c.ID and c.text
 relationships = getRSTRelationships(r)
 for (each rel in relationships){
 if(n==rel.nucleus)
 display details of rel
 }
 children = getChildren(c)
 for (each node in children)
 print(node,r)

}

This function has been implemented using two Java functions. The first function gets the RS-

tree ID and version number from the user, displays some initial information about the RS-tree

and calls the second function.

public String read(String author, Integer ver, Integer rstree){

 this.recordLog("Reading document " + rstree.toString() +

 " version " + ver.toString() +" (" + author + ")");

 String document = "";

 document = document.concat("");

 document = document.concat("Version " + ver.intValue() +

 "
"); //Version of the document

 document = document.concat("Title: " +

 this.getTitle(ver.intValue(),rstree.intValue())); //Title

 document = document.concat("
");

 int root_node = this.getRoot(ver.intValue(),rstree.intValue());

 document = document.concat("Root Node: " + root_node +

 "
");

 document = document.concat(this.read(root_node, root_node,"

 "));

 return document;

}

The second function traverses the RS-tree, displays the node and RST information. The extra

“indent” argument is necessary to display the text with proper indentation so as to make the

tree structure obvious.

Appendix B Implementations 164

public String read (int n, int r, String indent){

 String document = "";

 String line = "";

 Vector children = this.getChildren(n);

 children = this.orderChildren(children); //order the children

 for(int i=0;i<children.size();i++){ //For each child

 int current_node =

 ((Integer)children.elementAt(i)).intValue();

 line = indent;

 line = line.concat("<I>(" + current_node +

 ") </I>"); //Node ID in italics

 line = line.concat(this.getStringField("Text","Node","ID",

 current_node)); //Text of the node

 line = line.concat("
"); //New line

 document = document.concat(line);

 Vector relations = this.getRSTRelationships(n);

 for(int ii=0;ii<relations.size();ii++){ //For each rel

 int node1 = ((Integer)((Vector)relations.elementAt(ii))

 .elementAt(0)).intValue();

 int node2 = ((Integer)((Vector)relations.elementAt(ii))

 .elementAt(1)).intValue();

 int rel_id = (Integer)((Vector)relations.elementAt(ii))

 .elementAt(2)).intValue();

 boolean checked = ((Boolean)((Vector)relations

 .elementAt(ii)).elementAt(3)).booleanValue();

 if (node1==current_node){ //If node1 is current node

 String font = "blue"; //Satisfied � blue

 if(checked==false){ // Unsatisfied � red

 font = "red";

 }

 line = indent;

 //Create the HTML

 line = line.concat("<font color=" + font +

 ">Related by a "+ this.getStringField

 ("Name","Relation","ID",rel_id) + "

 relationship with node " + node2 + "");

 line = line.concat("
");

 document = document.concat(line);

 }

 }

 document = document.concat(

 this.read(current_node,r,indent.concat(" ")));

 }

 return document;

}

Appendix B Implementations 165

(2) The method below corresponds to the addnode(...) function.

addNode(n,p,s,c,r){

 1. Replicate the text of node c in a new node (say, newnode)

 2. Traverse the tree until the parent node p is found

 (a) if (c = = p)

 Add a new node with text s (say, newnode2)

 Store PC (newnode.ID, newnode2.ID)

 Store appropriate NXT relationships (see a.1 below)

 (b) else

 x = locate (p,c)

 xx = addNode (n,p,s,x,r)

 3. Fix relationships

 4. Return ID of newnode

}

The sections in the Java that relate to the pseudocode above have been grouped (indicated by

boxes around them). A second method receives the input from the user, calls the method

below and adds a new version of the RS-tree into the database.

public int addNode (int n, int p, String s, int c, int r){

 int newnode = this.newID("Node_ID");

 //Replicate the text of node c in newnode

 this.put("INSERT INTO Node VALUES (" + newnode + ",'" +

 this.getStringField("Text","Node","ID",c) + "')");

 int x = -10, xx = -10, newnode3 = -10, nextofn = -10;

 nextofn = this.getIntField("Second", "NXTRel", "First", n);

 if (c==p){ //If this is the parent

 //Adding the new child

 int newnode2 = this.newID("Node_ID");

 this.put("INSERT INTO Node VALUES (" + newnode2 + ",'" +

 (s.replaceAll("'","''")) + "')");

 //Add relevant PC and NXT relationships

 this.put("INSERT INTO PCRel VALUES (" + newnode + "," +

 newnode2 + ")");

 this.put("INSERT INTO NXTRel VALUES (" + n + "," +

 newnode2 +")");

 //If n has a next (in original sequence)

 if (nextofn != -2){

 //Replace nextofn with a newnode3

 newnode3 = this.newID("Node_ID");

 this.put("INSERT INTO Node VALUES (" + newnode3 + ",'"

 + this.getStringField("Text","Node","ID",nextofn) + "')");

 this.put("INSERT INTO NXTRel VALUES (" + newnode2 + ","

 + newnode3 +")");

 //Similarly, check if nextofn has a next

 if((this.getIntField("Second", "NXTRel", "First",

 nextofn))!= -2){

 this.put("INSERT INTO NXTRel VALUES (" + newnode3

Appendix B Implementations 166

+ "," + this.getIntField("Second", "NXTRel", "First", nextofn) +")"

);

 }

 }

 }else{ //Else, recurse

 x = this.locate(p,c);

 xx = this.addNode(n, p, s, x, r);

 }

 /*Fix other relationships (replace x with xx, c with newnode and

 n with newnode3) */

 //PC relationships

 Vector children = this.getChildren(c); //No need to order

 for(int i=0;i<children.size();i++){

 if((((Integer)children.elementAt(i)).intValue())==x){

 // (newnode,xx)

 //Need to sort x since the recursion stops at the parent

 this.put("INSERT INTO PCRel VALUES (" + newnode + "," + xx +

")");

 }else if(nextofn > 0 &&

 (((Integer)children.elementAt(i)).intValue())==nextofn){

 // (newnode,newnode3)

 this.put("INSERT INTO PCRel VALUES (" + newnode + "," +

newnode3 + ")");

 }else{ // (newnode, child)

 this.put("INSERT INTO PCRel VALUES (" + newnode + "," +

((Integer)children.elementAt(i)).intValue() + ")");

 }

 }

 //NXT relationships

 Vector nxtrels = getNXTRelationships(children);

 for(int i=0;i<nxtrels.size();i++){ //For each NXT relationship

 int first =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(0)).intValue());

 int second =

(((Integer)((Vector)nxtrels.elementAt(i)).elementAt(1)).intValue());

 if(first == x){ //replace x with xx

 this.put("INSERT INTO NXTRel VALUES (" + xx + "," +

second + ")");

 }else if (second == x){

 this.put("INSERT INTO NXTRel VALUES (" + first + "," +

xx + ")");

 }

 //NXT relationships pertaining to nextofn have already been

resolved

 }

 //RST relationships

 Vector relations = this.getRSTRelationships(r);

 for(int ii=0;ii<relations.size();ii++){

 int node1 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(0)).intValue();

 int node2 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(1)).intValue();

 int rel_id =

Appendix B Implementations 167

((Integer)((Vector)relations.elementAt(ii)).elementAt(2)).intValue();

 boolean checked = false; //All become unchecked

 if(c==node1){

 this.put("INSERT INTO RSTRel VALUES (" + newnode

+ "," + node2 + "," + rel_id + "," + checked + ")");

 }else if (c==node2){

 this.put("INSERT INTO RSTRel VALUES (" + node1 +

"," + newnode + "," + rel_id + "," + checked + ")");

 }

 if(nextofn==node1){

 this.put("INSERT INTO RSTRel VALUES (" + newnode3 + "," + node2

+ "," + rel_id + "," + checked + ")");

 }else if (nextofn==node2){

 this.put("INSERT INTO RSTRel VALUES (" + node1 + "," + newnode3

+ "," + rel_id + "," + checked + ")");

 }

 if(x==node1){

 this.put("INSERT INTO RSTRel VALUES (" + xx + ","

+ node2 + "," + rel_id + "," + checked + ")");

 }else if (x==node2){

 this.put("INSERT INTO RSTRel VALUES (" + node1 +

"," + xx + "," + rel_id + "," + checked + ")");

 }

 }

 return newnode;

}

(3) The method below corresponds to the replaceNode(...) function.

replaceNode(n,s,c,r){

 1. Generate a new node with a unique ID (say, newnode)

 2. Traverse the tree until the specified node is found

 (a) if (c = = n)

 Store newnode (containing text s)

 (b) else

 x = locate (n,c)

 xx = replaceNode (n,s,x,r)

 Store the contents of node c in a new node (newnode)

 Fix PC relationships

 3. Fix other relationships (NXT and RST)

 4. Return ID of newnode

}

Appendix B Implementations 168

public int replace (int n, String s, int c, int r){

 int newnode = this.newID("Node_ID"); //Generate new Node ID

 if(c==n){

 //Store a new node with the new content

 this.put("INSERT INTO Node VALUES (" + newnode + ",'" +

 (s.replaceAll("'","''")) + "')");

 }else {

 //Replicate current node (in the path)

 this.put("INSERT INTO Node VALUES (" + newnode + ",'" +

 this.getStringField("Text","Node","ID",c) + "')");

 int x = this.locate(n,c);

 int xx = this.replace(n,s,x,r);

 //PC relationships

 Vector children = this.getChildren(c);

 for(int i=0;i<children.size();i++){

 //For each child, set appropriate PC relationships

 if((((Integer)children.elementAt(i)).intValue())==x){

 this.put("INSERT INTO PCRel VALUES (" + newnode +

 "," + xx + ")");

 }else{ // (newnode, child)

 this.put("INSERT INTO PCRel VALUES (" + newnode +

 "," + ((Integer)children.elementAt(i)).intValue() + ")");

 }

 }

 }

 //NXT Relationships

 Vector nxtrels = getNXTRelationships(this.getNodes(r));

 for(int i=0;i<nxtrels.size();i++){ //For each NXT relationship

 int first =

(((Integer)((Vector)nxtrels.elementAt(i)).elementAt(0)).intValue());

 int second =

(((Integer)((Vector)nxtrels.elementAt(i)).elementAt(1)).intValue());

 if(first == c){ //replace c with newnode

 this.put("INSERT INTO NXTRel VALUES (" + newnode + ","

+ second + ")");

 }else if (second == c){

 this.put("INSERT INTO NXTRel VALUES (" + first + "," +

newnode + ")");

 }

 }

 //RST Relationships

 Vector relations = this.getRSTRelationships(r);

 for(int ii=0;ii<relations.size();ii++){

 int node1 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(0)).intValue();

 int node2 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(1)).intValue();

 int rel_id =

((Integer)((Vector)relations.elementAt(ii)).elementAt(2)).intValue();

 boolean checked = false;

 if(c==node1){

 this.put("INSERT INTO RSTRel VALUES (" + newnode + ","

 + node2 + "," + rel_id + "," + checked + ")");

Appendix B Implementations 169

 }else if (c==node2){

 this.put("INSERT INTO RSTRel VALUES (" + node1 + "," +

 newnode + "," + rel_id + "," + checked + ")");

 }

 }

 return newnode;

}

A second method receives the input from the user, calls the method above and adds a new

version of the RS-tree into the database.

(4) The method below corresponds to the removeNode(...) function.

removeNode(n,c,r){

 1. Generate a new node with a unique ID (say, newnode)

 2. Traverse the tree until the specified node is found

 (a) if (c == n)

 Replace the node just after n (newnode2)

 Set relevant NXT relationships

 (b) else

 x = locate (n,c)

 xx = removeNode (n,x,r)

 Replicate the content of node c in newnode

 3. Fix relationships (discussed below)

 4. Return ID of newnode

}

public int removeNode (int n, int c, int r){

 int newnode = this.newID("Node_ID");

 int nextofn = this.getIntField("Second", "NXTRel", "First", n);

 int x = -10, xx = -10, newnode2 = -10; //Initialising these.

 if (c==n){

 //Insert a new node to replace the node just after

 if(nextofn != -2){

 newnode2 = this.newID("Node_ID");

 this.put("INSERT INTO Node VALUES (" + newnode2 + ",'"

+ this.getStringField("Text","Node","ID",nextofn) + "')");

 //Fix the affected NXT relationships

 //Check if n had a node before it in the sequence

 if (this.getIntField("First", "NXTRel", "Second", n) !=

-2){

 this.put("INSERT INTO NXTRel VALUES (" +

this.getIntField("First", "NXTRel", "Second", n) + "," + newnode2

+")");

 }

 //Similarly, check if nextofn has a next

 if((this.getIntField("Second", "NXTRel", "First",

nextofn))!= -2){

Appendix B Implementations 170

 this.put("INSERT INTO NXTRel VALUES (" +

newnode2 + "," + this.getIntField("Second", "NXTRel", "First",

nextofn) +")");

 }

 }

 }else{

 x = this.locate(n,c);

 xx = this.removeNode(n, x, r);

 this.put("INSERT INTO Node VALUES (" + newnode + ",'" +

this.getStringField("Text","Node","ID",c) + "')");

 }

 //Fix PC relationships

 Vector children = this.getChildren(c);

 for(int i=0;i<children.size();i++){

 if((((Integer)children.elementAt(i)).intValue())!=n){

 //If it is NOT the child that needs to be deleted

 if((((Integer)children.elementAt(i)).intValue())==x){

 this.put("INSERT INTO PCRel VALUES (" + newnode +

"," + xx + ")");

 }else

if((((Integer)children.elementAt(i)).intValue())==nextofn){

 this.put("INSERT INTO PCRel VALUES (" + newnode +

"," + newnode2 + ")");

 }else{ // (newnode, child)

 this.put("INSERT INTO PCRel VALUES (" + newnode +

"," + ((Integer)children.elementAt(i)).intValue() + ")");

 }

 }

 }

 //Fix NXT relationships

 Vector nxtrels = getNXTRelationships(children);

 for(int i=0;i<nxtrels.size();i++){ //For each NXT relationship

 int first =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(0)).intValue());

 int second =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(1)).intValue());

 if (first !=n && second !=n){

 if(first == c){ //replace c with newnode

 this.put("INSERT INTO NXTRel VALUES (" + newnode

+ "," + second + ")");

 }else if (second == c){

 this.put("INSERT INTO NXTRel VALUES (" + first +

"," + newnode + ")");

 }

 } //The NXT relationships involving newnode2 have already

being sorted

 }

 //Fix RST relationships

 Vector relations = this.getRSTRelationships(r); //Get relations

in this tree

 for(int ii=0;ii<relations.size();ii++){

 int node1 =

 (Integer)((Vector)relations.elementAt(ii)).elementAt(0)).intValue();

Appendix B Implementations 171

 int node2 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(1)).intValue();

 int rel_id =

((Integer)((Vector)relations.elementAt(ii)).elementAt(2)).intValue();

 boolean checked = false;

 if (node1 != n && node2 != n){

 if(node1==nextofn){

 this.put("INSERT INTO RSTRel VALUES (" + newnode

+ "," + node2 + "," + rel_id + "," + checked + ")");

 }else if (node2==nextofn){

 this.put("INSERT INTO RSTRel VALUES (" + node1 +

"," + newnode2 + "," + rel_id + "," + checked + ")");

 }else if(node1==c){ //Add rst relation

(newnode,node2,rel_id,false)

 this.put("INSERT INTO RSTRel VALUES (" + newnode

+ "," + node2 + "," + rel_id + "," + checked + ")");

 }else if (node2==c){ //Add rst relation (node1,

newnode, rel_id, false)

 this.put("INSERT INTO RSTRel VALUES (" + node1 +

"," + newnode + "," + rel_id + "," + checked + ")");

 }

 }

 }

 return newnode;

}

(4) The method below corresponds to the createSpan(...) function.

createSpan(nodes,p,c,r){

 1. Store the text of node c in a new node (say, newnode)

 2. Traverse the tree until the specified parent p is found

 (a) if (c = = p)

 Create a new node (say, newnode2) ##span - no text

 Store PC (newnode.ID, newnode2.ID)

 Store relevant NXT relationships

 for (each node in nodes)

 Store a new node for the first node in the span

 For rest, store PC (newnode2.ID, node.ID

 (b) else

 x = locate (nodes[1],c)

 xx = createSpan (nodes,p,x,r)

 3. Fix relationships (discussed below)

 4. Return ID of newnode

}

Appendix B Implementations 172

public int createSpan (Vector nodes, int p, int c, int r){

 int newnode = this.newID("Node_ID");

 int x=-10, xx=-10, newnode2=-10,newnode3=-10;

 this.put("INSERT INTO Node VALUES (" + newnode + ",'" +

this.getStringField("Text","Node","ID",c) + "')");

 if (c==p){ //If this is the parent, add the new subtree

 newnode2 = this.newID("Node_ID");

 this.put("INSERT INTO Node VALUES (" + newnode2 + ",'')");

//blank node, since it will be span

 this.put("INSERT INTO PCRel VALUES (" + newnode + "," +

newnode2 + ")");

 //Adjust specific NXT relationships

 if(this.getIntField("First","NXTRel","Second",

 ((Integer)nodes.elementAt(0)).intValue())!= -2){

 this.put("INSERT INTO NXTRel VALUES (" +

this.getIntField("First","NXTRel","Second",((Integer)nodes.elementAt(

0)).intValue()) + "," + newnode2 + ")");

 }

 if(this.getIntField("Second","NXTRel","First",

((Integer)nodes.elementAt(nodes.size()-1)).intValue())!= -2){

 this.put("INSERT INTO NXTRel VALUES (" + newnode2 +

this.getIntField("Second","NXTRel","First",((Integer)nodes.elementAt(

nodes.size()-1)).intValue()) + ")");

 }

 //Process the nodes that need to be in the span

 for(int i=0;i<nodes.size();i++){

 if(i==0){ //the first node is replaced with a new node

 newnode3 = this.newID("Node_ID");

 this.put("INSERT INTO Node VALUES (" + newnode3 +

",'" +

this.getStringField("Text","Node","ID",((Integer)nodes.elementAt(i)).

intValue()) + "')");

 this.put("INSERT INTO NXTRel VALUES (" + -1 + ","

+ newnode3 + ")");

 if(nodes.size() >= 2){

 this.put("INSERT INTO NXTRel VALUES (" +

newnode3 + "," + ((Integer)nodes.elementAt(1)).intValue() + ")");

 }

 this.put("INSERT INTO PCRel VALUES (" + newnode2

+ "," + newnode3 + ")");

 Vector temp =

this.getChildren(((Integer)nodes.elementAt(0)).intValue());

 for(int ii=0; ii<temp.size(); ii++){

 this.put("INSERT INTO PCRel VALUES (" +

newnode3 + "," + ((Integer)temp.elementAt(ii)).intValue() + ")");

 }

 }else{ //Just add as a child of newnode2

 this.put("INSERT INTO PCRel VALUES (" + newnode2

+ "," + ((Integer)nodes.elementAt(i)).intValue() + ")");

 }

 }

Appendix B Implementations 173

 }else{

 x = this.locate(((Integer)nodes.elementAt(0)).intValue(),c);

 //All values in nodes should have same parent

 xx = this.createSpan(nodes, p, x, r);

 }

 //PC relationships

 Vector children = this.getChildren(c); //No need to order

 for(int i=0;i<children.size();i++){

 if(!nodes.contains(children.elementAt(i))){

 if((((Integer)children.elementAt(i)).intValue())==x){

 //Need to sort x since the recursion stops at the

parent level

 this.put("INSERT INTO PCRel VALUES (" + newnode +

"," + xx + ")");

 }else{ // (newnode, child)

 this.put("INSERT INTO PCRel VALUES (" + newnode +

"," + ((Integer)children.elementAt(i)).intValue() + ")");

 }

 }

 }

 //NXT relationships

 Vector nxtrels = getNXTRelationships(children);

 for(int i=0;i<nxtrels.size();i++){ //For each NXT relationship

 int first =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(0)).intValue());

//Stored to make things easier

 int second =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(1)).intValue());

 if (!(nodes.contains(new Integer(first))) &&

!(nodes.contains(new Integer(second)))){

 if(first == c){ //replace c with newnode

 this.put("INSERT INTO NXTRel VALUES (" + newnode

+ "," + second + ")");

 }else if (second == c){

 this.put("INSERT INTO NXTRel VALUES (" + first +

"," + newnode + ")");

 }

 }

 }

 //RST relationships

 Vector relations = this.getRSTRelationships(r); //Get RST

relationships in this tree

 for(int ii=0;ii<relations.size();ii++){

 int node1 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(0)).intValue();

 int node2 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(1)).intValue();

 int rel_id =

((Integer)((Vector)relations.elementAt(ii)).elementAt(2)).intValue();

 boolean checked = false; //All relations in the path become

unchecked

Appendix B Implementations 174

 if((nodes.contains(new Integer(node1))) &&

!(nodes.contains(new Integer(node2)))){

 this.put("INSERT INTO RSTRel VALUES (" + newnode2 + ","

+ node2 + "," + rel_id + "," + checked + ")");

 }else if ((nodes.contains(new Integer(node2))) &&

!(nodes.contains(new Integer(node1)))){

 this.put("INSERT INTO RSTRel VALUES (" + node1 + "," +

newnode2 + "," + rel_id + "," + checked + ")");

 }else if ((nodes.contains(new Integer(node1))) &&

(nodes.contains(new Integer(node2)))){

 if(node1== ((Integer)nodes.elementAt(0)).intValue()){

 this.put("INSERT INTO RSTRel VALUES (" + newnode3

+ "," + node2 + "," + rel_id + "," + checked + ")");

 }else if(node2==

((Integer)nodes.elementAt(0)).intValue()){

 this.put("INSERT INTO RSTRel VALUES (" + node1 +

"," + newnode3 + "," + rel_id + "," + checked + ")");

 }

 }else if(x==node1){ //Add RST relation

(xx,node2,rel_id,false)

 this.put("INSERT INTO RSTRel VALUES (" + xx + "," +

node2 + "," + rel_id + "," + checked + ")");

 }else if (x==node2){ //Add RST relation (node1, newnode,

rel_id, false)

 this.put("INSERT INTO RSTRel VALUES (" + node1 + "," +

xx + "," + rel_id + "," + checked + ")");

 }

 }

 return newnode;

 }

Appendix B Implementations 175

(5) The method below corresponds to the addRelationship(…) function.

addRelationship(n1,n2,rel,r,c){

 1. Store the text of node c in a new node (say, newnode)

 2. Traverse the tree until the specified nodes are found

 (a) if (c!=n1 AND c!=n2)

 x1 = locate (n1, c)

 x2 = locate (n2, c)

 xx1 = addRelationship(n1,n2,rel,r,x1)

 if (x1 != x2){

 xx2 = addRelationship(n1,n2,rel,r,x2)

 STORE new RST relationship between xx1 and xx2

 STORE new NXT relationship between xx1 and xx2

 Fix PC relationships affected by xx1 and xx2

 3. Fix other relationships (similar to replaceNode function)

 4. Return ID of newnode

}

The “rel” argument in the Java is an int that is an ID from the RELATION table.

public int addRelationship (int n1, int n2, int rel, int r, int c){

 int newnode = this.newID("Node_ID");

 this.put("INSERT INTO Node VALUES (" + newnode + ",'" +

 this.getStringField("Text","Node","ID",c) + "')");

 int x1=-10, x2=-10, xx1=-10, xx2=-10; //Initialising

 if (c!=n1 && c!=n2){

 x1 = this.locate(n1,c); //n1 and n2 have same parent

 x2 = this.locate(n2,c);

 xx1 = this.addRelationship(n1,n2,rel,r,x1);

 if (x1!=x2){

 xx2 = this.addRelationship(n1,n2,rel,r,x2);

 this.put("INSERT INTO RSTRel VALUES (" + xx1 +

 "," + xx2 + "," + rel + "," + false + ")");

 // Fix PC relationships

 Vector children = this.getChildren(c);

 for(int i=0;i<children.size();i++){

 if((((Integer)children.elementAt(i)).intValue())==x1){

 //(newnode,xx1)

 this.put("INSERT INTO PCRel VALUES (" + newnode + "," +

 xx1 + ")");

 }else if((((Integer)children.elementAt(i))

 .intValue())==x2){

 // (newnode,xx)

 this.put("INSERT INTO PCRel

 VALUES("+newnode+","+xx2+")");

 }else{ // (newnode, child)

 this.put("INSERT INTO PCRel VALUES (" + newnode + "," +

 ((Integer)children.elementAt(i)).intValue() + ")");

 }

 }

Appendix B Implementations 176

 //Add this specific NXT relationship

 this.put("INSERT INTO NXTRel VALUES("+xx1 + "," + xx2 + ")");

 }

 }

 //Fix NXT Relationships

 Vector nxtrels = getNXTRelationships(this.getNodes(r));

 for(int i=0;i<nxtrels.size();i++){ //For each NXT relationship

 int first =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(0)).intValue());

 int second =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(1)).intValue());

 //If it's not the NXT relationship already added

 if (!(first==n1 && second==n2)){

 if(first == c){ //replace c with newnode

 this.put("INSERT INTO NXTRel VALUES (" + newnode + "," +

 second + ")");

 }else if (second == c){

 this.put("INSERT INTO NXTRel VALUES (" + first + "," +

 newnode + ")");

 }

 }

 }

 //Fix RST Relationships

 Vector relations = this.getRSTRelationships(r);

 for(int ii=0;ii<relations.size();ii++){

 int node1 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(0)).intValue();

 int node2 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(1)).intValue();

 int rel_id =

((Integer)((Vector)relations.elementAt(ii)).elementAt(2)).intValue();

 boolean checked = false; //All relations now become unchecked

 if (!(node1==n1 && node2==n2)){

 if(c==node1){ //(newnode,node2,rel_id,false)

 this.put("INSERT INTO RSTRel VALUES (" + newnode + "," +

 node2 + "," + rel_id + "," + checked + ")");

 }else if (c==node2){ //(node1, new_node, rel_id, false)

 this.put("INSERT INTO RSTRel VALUES (" + node1 + "," +

 newnode + "," + rel_id + "," + checked + ")");

 }

 }

 }

 return newnode;

 }

Appendix B Implementations 177

(5) The replaceRelationship(…) function has been implemented using the addRelationship()

method in the Java. In the design, we used two functions because, in principle, they are two

different processes.

(6) The method below corresponds to the removeRelationship(…) function.

removeRelationship(n1,n2,r,c){

 1. Store the text of node c in a new node (say, newnode)

 2. Traverse the tree until the specified nodes are found

 (a) if (c!=n1 AND c!=n2)

 x1 = locate (n1, c)

 x2 = locate (n2, c)

 xx1 = removeRelationship(n1,n2,r,x1)

 if (x1 != x2){

 xx2 = removeRelationship(n1,n2,r,x2)

 Fix PC and NXT relationships involving x1 and x2

 3. Fix other relationships

 4. Return ID of newnode

}

public int removeRelationship (int n1, int n2, int r, int c){

 int newnode = this.newID("Node_ID");

 this.put("INSERT INTO Node VALUES (" + newnode + ",'" +

this.getStringField("Text","Node","ID",c) + "')");

 int x1 = -10, x2 = -10, xx1 = -10, xx2 = -10;

 if (c!=n1 && c!=n2){

 x1 = this.locate(n1,c); //n1 and n2 have same parent

 x2 = this.locate(n2,c);

 xx1 = this.removeRelationship(n1, n2, r, x1);

 if (x1!=x2){

 xx2 = this.removeRelationship(n1,n2,r,x2);

 //Do not insert any RST relationship

 }

 //Fix PC relationships

 Vector children = this.getChildren(c);

 for(int i=0;i<children.size();i++){

 if((((Integer)children.elementAt(i)).intValue())==x1){

 this.put("INSERT INTO PCRel VALUES (" + newnode +

"," + xx1 + ")");

 }else if((((Integer)children.elementAt(i)).

 intValue())==x2){

this.put("INSERT INTO PCRel VALUES (" + newnode + "," + xx2 + ")");

 }else{ // (newnode, child)

 this.put("INSERT INTO PCRel VALUES (" + newnode +

"," + ((Integer)children.elementAt(i)).intValue() + ")");

 }

 }

 //Add specific NXT relationship

 if(this.getIntField("Second","NXTRel","First",n1)==n2){

Appendix B Implementations 178

 this.put("INSERT INTO NXTRel VALUES (" + xx1 + "," +

xx2 + ")");

 }else if

(this.getIntField("Second","NXTRel","First",n2)==n1){

 this.put("INSERT INTO NXTRel VALUES (" + xx2 + "," +

xx1 + ")");

 }

 }

 //Fix NXT Relationships

 Vector nxtrels = getNXTRelationships(this.getNodes(r)); //Get

all the NXT relationships

 for(int i=0;i<nxtrels.size();i++){ //For each NXT relationship

 int first =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(0)).intValue());

 int second =

 (((Integer)((Vector)nxtrels.elementAt(i)).elementAt(1)).intValue());

 if ((!(first==n1 && second==n2)) &&

 (!(first==n2 && second==n1))){

 if(first == c){ //replace c with newnode

 this.put("INSERT INTO NXTRel VALUES (" + newnode +

"," + second + ")");

 }else if (second == c){

 this.put("INSERT INTO NXTRel VALUES (" + first +

"," + newnode + ")");

 }

 }

 }

 //Fix RST Relationships

 Vector relations = this.getRSTRelationships(r);

 for(int ii=0;ii<relations.size();ii++){

 int node1 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(0)).intValue();

 int node2 =

((Integer)((Vector)relations.elementAt(ii)).elementAt(1)).intValue();

 int rel_id =

 (Integer)((Vector)relations.elementAt(ii)).elementAt(2)).intValue();

 boolean checked = false;

 if (!(node1==n1 && node2==n2)){ //Everything except the

relationship to be deleted

 if(c==node1){ //Add RST relation

(new_node,node2,rel_id,false)

 this.put("INSERT INTO RSTRel VALUES (" + newnode +

"," + node2 + "," + rel_id + "," + checked + ")");

 }else if (c==node2){ //Add RST relation (node1,

new_node, rel_id, false)

 this.put("INSERT INTO RSTRel VALUES (" + node1 +

"," + newnode + "," + rel_id + "," + checked + ")");

 }

 }

 }

 return newnode;

}

Appendix C

Details of the experiment

C.1 The questionnaire

SECTION I

BACKGROUND INFORMATION

A) Your ID number is: _______

B) Name of your research group (if not DSSE): ________________________________

C) Position:

� PhD Student
� Research staff
� Lecturer
� Other (please specify): ___

D) On average, how many documents do you produce a month? This includes papers, proposals,
lecture notes, presentations, mini-theses and so on.

� None

� 1 – 5

� More than 5

E) How many of these documents are produced jointly with others? _____

F) What was the last document you completed? _________________________________

G) What language do you most often use for communication? _____________________

H) What technique(s) do you currently use to plan documents? (Tick all that apply)

� None used
� Outlines
� Mind-maps
� Others (please specify): ___

Appendix C Details of the experiment 180

SECTION II

NARRATIVE ANALYSIS

A) The tutorial/presentation at the start of the experiment was:
� Good, it covered the concepts well, giving the audience enough information to do the

narrative analysis
� OK, but needs more information on some topics
� Poor

B) If you answered OK, which sections of the tutorial would you have liked more information on?
__

C) Did the narrative dictate an appropriate structure for the travel brochure?

� Yes
� No

D) If you answered No, which sections of the narrative did you think were particularly poor?

__

E) How did you find doing the RST analysis of the given document?

� Very easy
� Easy
� Moderate
� Hard
� Very hard

F) How long did it take you to do the RST analysis? _________________________

G) When doing the analysis, did you require more relationship types than those listed in the
handout/tutorial?

� Yes
� No, the relations in the list were sufficient to do the analysis

H) If you answered Yes to the above, what relations would you have liked to use that were not in
the list?

I) Were you able to form a RST tree structure for the narrative?

� Yes
� No

Appendix C Details of the experiment 181

SECTION III

J) Did you change any parts of the narrative while doing the analysis to make it fit this tree?

� Yes
� No

A) How long did it take you to enter the analysis information into the tool? ________________

B) Which of the functions below did you use during the analysis? (Tick all that apply)

� Read a narrative
� Create a new narrative
� Edit text segments
� Add new text segments
� Delete text segments
� Add a subtree to a node in the tree
� Add relations
� Remove relations
� Review relations
� Merge two versions of the narrative
� Read a second version of the narrative simultaneously
� Help

C) The interface will soon be changed to a graphical one. In addition to the functions provided
already, do you think any extra functionality is necessary for creating and analysing the narratives
collaboratively? If so, please describe them below.

D) Any other comments or suggestions:

USING THE TOOL

Appendix C Details of the experiment 182

SECTION IV

Please use this space for any additional comments or e-mail me on nhds03r@ecs.soton.ac.uk.

Thank you for taking part in this experiment. Please attach the narrative analysis and other

notes before returning this questionnaire.

Thank you very much for your time.

Nishadi De Silva

COLLABORATIVE NARRATIVE PRODUCTION

A) During this task, you were in team: A B C (delete as appropriate)

B) How much time did it take to produce the narrative? __________________

C) Did you use the tool to create the narrative?

� Yes
� No

D) How did you arrive at the final narrative?

� One member (leader) suggested a narrative and the team revised this
� Every member contributed sections of the narrative
� Other (please describe):

E) Did writing a narrative help clarify ideas among the members in your team for the document?

� Yes
� No

F) Did you analyse the narrative to see if it was coherent?
� Yes
� No

G) Would you consider using a narrative to structure documents in the future?

� Yes
� No

Appendix C Details of the experiment 183

C.2 RS-trees produced by the volunteers

The DN that the volunteers had to analysis was given in Chapter 8. For each volunteer, we

have shown the way he/she segmented the DN and the corresponding RST analysis. Wherever

possible, we have used RSTTool to draw the trees.

RST analysis of volunteer 1

The segments in this RST analysis are not in the same sequence as they appear in the DN.

[We want]1 [to convince the reader to book a holiday in the country described.]2

[Therefore, on the first page, we'll place a catchy title and a picture showing a leisurely

activity or scenery that this country is famous for. The next page will begin with a greeting

in the local language and its translation. Five to six short paragraphs will follow this, each

describing attractions that will appeal to a wide range of holiday-makers;]5 [some of these

attractions will be familiar and some unique so as to distinguish this country from the rest.

The first of these paragraphs will include a sentence about the country's geographical

location and some of the paragraphs will be enhanced using illustrations. Next, brief

details about the climate, currency and languages spoken will be given to inform the

interested reader (who has read this far).]6 [Finally, contact details of reputable travel

agents and a URL for more information about the country will be provided for readers]4

[who may now be considering booking their holidays.]3

Appendix C Details of the experiment 184

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page,]2 [we'll place a catchy title and a picture showing a leisurely activity or

scenery that this country is famous for.]3 [The next page will begin with a greeting in the

local language and its translation.]4 [Five to six short paragraphs will follow this,]5 [each

describing attractions that will appeal to a wide range of holiday-makers;]6 [some of these

attractions will be familiar and some unique so as to distinguish this country from the rest.

]7 [The first of these paragraphs will include a sentence about the country's geographical

location]8 [and some of the paragraphs will be enhanced using illustrations.]9 [Next, brief

details about the climate, currency and languages spoken will be given]10 [to inform the

interested reader (who has read this far).]11 [Finally, contact details of reputable travel

agents and a URL for more information about the country will be provided for readers] 12

[who may now be considering booking their holidays.]13

RST analysis of volunteer 2

The RS-tree above is well thought out. The only problem with it is that some of the arrows in

the relationships are pointing the wrong way.

Appendix C Details of the experiment 185

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page, we'll place a catchy title]2 [and a picture showing a leisurely activity or

scenery that this country is famous for.]3 [The next page will begin with a greeting in the

local language and its translation.]4 [Five to six short paragraphs will follow this,]5 [each

describing attractions that will appeal to a wide range of holiday-makers;]6 [some of these

attractions will be familiar]7 [and some unique so as to distinguish this country from the

rest.]8 [The first of these paragraphs will include a sentence about the country's

geographical location and some of the paragraphs will be enhanced using illustrations.]9

[Next, brief details about the climate, currency and languages spoken will be given]10 [to

inform the interested reader (who has read this far).]11 [Finally, contact details of

reputable travel agents and a URL for more information about the country will be

provided]12 [for readers who may now be considering booking their holidays.]13

RST analysis of volunteer 3

Volunteer has put a question mark for the relationship that should link segments 9-13 with

segments 4-8.

Appendix C Details of the experiment 186

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page, we'll place a catchy title and a picture showing a leisurely activity or

scenery that this country is famous for.]2 [The next page will begin with a greeting in the

local language and its translation.]3 [Five to six short paragraphs will follow this, each

describing attractions that will appeal to a wide range of holiday-makers;]4 [some of these

attractions will be familiar and some unique so as to]5 [distinguish this country from the

rest.]6 [The first of these paragraphs will include a sentence about the country's

geographical location and some of the paragraphs will be enhanced using illustrations.]7

[Next, brief details about the climate, currency and languages spoken will be given to

inform the interested reader (who has read this far).]8 [Finally, contact details of reputable

travel agents and a URL for more information about the country will be provided]9 [for

readers who may now be considering booking their holidays.]10

RST analysis of volunteer 4

Appendix C Details of the experiment 187

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page, we'll place a catchy title and a picture showing a leisurely activity or

scenery that this country is famous for.]2 [The next page will begin with a greeting in the

local language and its translation. Five to six short paragraphs will follow this,]3 [each

describing attractions that will appeal to a wide range of holiday-makers; some of these

attractions will be familiar and some unique so as to distinguish this country from the

rest.]4 [The first of these paragraphs will include a sentence about the country's

geographical location and some of the paragraphs will be enhanced using illustrations.]5

[Next, brief details about the climate, currency and languages spoken will be given to

inform the interested reader]6 [(who has read this far).]7 [Finally, contact details of

reputable travel agents and a URL for more information about the country will be

provided for readers who may now be considering booking their holidays.]8

RST analysis of volunteer 5

Appendix C Details of the experiment 188

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page, we'll place a catchy title and a picture]2 [showing a leisurely activity or

scenery that this country is famous for.]3 [The next page will begin with a greeting in the

local language and its translation.]4 [Five to six short paragraphs will follow this,]5 [each

describing attractions that will appeal to a wide range of holiday-makers;]6 [some of these

attractions will be familiar and some unique so as to distinguish this country from the

rest.]7 [The first of these paragraphs will include a sentence about the country's

geographical location]8 [and some of the paragraphs will be enhanced using illustrations.]

9 [Next, brief details about the climate, currency and languages spoken will be given]10 [to

inform the interested reader (who has read this far).]11 [Finally, contact details of

reputable travel agents and a URL]12 [for more information about the country]13 [will be

provided for readers who may now be considering booking their holidays.]14

RST analysis of volunteer 6

There appears to be 14 segments in the DN and only 12 in the RS-tree. It is possible that the

segmentation was misinterpreted by us because there was a lot of writing (and crossing out)

done by this volunteer.

Appendix C Details of the experiment 189

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page, we'll place a catchy title and a picture showing a leisurely activity or

scenery that this country is famous for.]2 [The next page will begin with a greeting in the

local language and its translation.]3 [Five to six short paragraphs will follow this,]4 [each

describing attractions that will appeal to a wide range of holiday-makers;]5 [some of these

attractions will be familiar and some unique so as to distinguish this country from the rest.

]6 [The first of these paragraphs will include a sentence about the country's geographical

location]7 [and some of the paragraphs will be enhanced using illustrations.]8 [Next, brief

details about the climate, currency and languages spoken will be given to inform the

interested reader (who has read this far).]9 [Finally, contact details of reputable travel

agents and a URL for more information about the country will be provided for readers

who may now be considering booking their holidays.]10

RST analysis of volunteer 7

There was a missing relationship between segment 1 and the span 2-10.

Appendix C Details of the experiment 190

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page, we'll place a catchy title and a picture showing a leisurely activity or

scenery]2 [that this country is famous for.]3 [The next page will begin with a greeting in the

local language and its translation.]4 [Five to six short paragraphs will follow this,]5 [each

describing attractions that will appeal to a wide range of holiday-makers;]6 [some of these

attractions will be familiar and some unique so as to distinguish this country from the

rest.]7 [The first of these paragraphs will include a sentence about the country's

geographical location and some of the paragraphs will be enhanced using illustrations.]8

[Next, brief details about the climate, currency and languages spoken will be given to

inform the interested reader (who has read this far).]9 [Finally, contact details of reputable

travel agents and a URL for more information about the country will be provided for

readers who may now be considering booking their holidays.]10

RST analysis of volunteer 8

Appendix C Details of the experiment 191

[We want to convince the reader to book a holiday in the country described.]1 [Therefore,

on the first page, we'll place a catchy title and a picture showing a leisurely activity or

scenery that this country is famous for.]2 [The next page will begin with a greeting in the

local language and its translation.]3 [Five to six short paragraphs will follow this, each

describing attractions that will appeal to a wide range of holiday-makers; some of these

attractions will be familiar and some unique so as to distinguish this country from the

rest.]4 [The first of these paragraphs will include a sentence about the country's

geographical location and some of the paragraphs will be enhanced using illustrations.]5

[Next, brief details about the climate, currency and languages spoken will be given to

inform the interested reader (who has read this far).]6 [Finally, contact details of reputable

travel agents and a URL for more information about the country will be provided for

readers who may now be considering booking their holidays.]7

RST analysis of volunteer 9

This volunteer had used double-ended arrows for the multi-nuclear relationship SEQUENCE.

List of Figures

FIGURE 1-1: AN EXAMPLE OF A MOTIVATION RELATIONSHIP. THE LACK OF SUPPORT IN EXISTING
TOOLS AND TECHNIQUES MOTIVATED US TO DEVELOP NARRATIVE-BASED WRITING AND THE TOOL.
..2

FIGURE 1-2: DN FOR THE THESIS ...5

FIGURE 2-1: EXAMPLE OF A COHERENT (LEFT) AND INCOHERENT TEXT (RIGHT). SOURCE: (KNOTT, 1996)
..7

FIGURE 2-2: SEQUENTIAL WRITING MODEL ...10

FIGURE 2-3: PARALLEL WRITING MODEL...10

FIGURE 2-4: A MAP SHOWING THE IDEAS THAT ARE PRESENTED IN THIS CHAPTER12

FIGURE 2-5: OUTLINE FOR THIS CHAPTER..13

FIGURE 2-6: THE INVERTED PYRAMID STRUCTURE USED BY JOURNALISTS ..14

FIGURE 2-7: BARBARA MINTO’S PYRAMID PRINCIPLE APPLIED TO THE CONTENT OF THIS CHAPTER. THERE
ARE VERTICAL QUESTION-ANSWER RELATIONSHIPS AND HORIZONTAL LOGICAL RELATIONSHIPS IN
THE PYRAMID...16

FIGURE 2-8: AN EXAMPLE OF A DOCUMENT IN WRITELY. THE FIGURE SHOWS TWO VERSIONS OF THE
DOCUMENT BEING COMPARED. ..18

FIGURE 2-9: INTEGRATION OF CHANGES USING THE OPERATIONAL TRANSFORMATION METHOD (SOURCE:
(MOLLI ET AL., 2003)) ...19

FIGURE 2-10: FREYTAG’S PYRAMIDAL STRUCTURE FOR A PLAY (FREYTAG, 1863)..................................23

FIGURE 2-11: A FEW OF PROPP'S NARRATEMES FOR THE RUSSIAN FOLKTALE ...24

FIGURE 2-12: SCHEME OF MOVES FOR A JAMES BOND NOVEL. .M REPRESENTS JAMES’ ‘BOSS’ (COPIED
LITERALLY FROM (ECO, 1979))..24

FIGURE 2-13: EXAMPLES OF TWO PLOT UNITS IDENTIFIED BY WENDY LEHNERT25

FIGURE 2-14: WENDY LEHNERT'S AFFECT STATES APPLIED TO OUR SHORT STORY26

FIGURE 2-15: APPLYING BREMOND'S THEORY TO OUR SAMPLE STORY ...26

FIGURE 2-16: A COHERENCE RELATIONSHIP ..28

FIGURE 2-18: DN FOR THIS CHAPTER ..29

FIGURE 3-1: FIRST PARAGRAPH OF AN EDITORIAL IN THE HARTFORD COURANT (ABOVE) AND THE RST
ANALYSIS FOR IT (BELOW) DONE BY MANN AND THOMPSON...31

FIGURE 3-2: AN ILLUSTRATION OF A HYPOTACTIC RELATIONSHIP (LEFT) AND A PARATACTIC
RELATIONSHIP (RIGHT). THE CURVED LINES ARE LABELLED WITH THE NAME OF THE RELATIONSHIP.
IN A HYPOTACTIC RELATIONSHIP, THE ARROWHEAD ALWAYS POINTS TO THE NUCLEUS. NUCLEI ARE
INDICATED BY VERTICAL (OR DIAGONAL) LINES ABOVE THEM...34

FIGURE 3-3: LIST OF ALL 23 RELATIONSHIPS. THE ONES USED REGULARLY IN OUR RESEARCH HAVE BEEN
MARKED WITH AN ASTERISK ..34

FIGURE 3-4: FIVE TYPES OF SCHEMAS IN RST ...35

FIGURE 3-5: RS-TREE FROM FIGURE 3-1 REDRAWN TO HIGHLIGHT THE TREE STRUCTURE36

List of Figures 193

FIGURE 3-6: INVALID APPLICATION OF RST. SEGMENT 4 HAS MORE THAN ONE PARENT.37

FIGURE 3-7: A MOTIVATION RELATIONSHIP ...38

FIGURE 3-8: AN EXAMPLE OF A COHERENT (LEFT) AND AN INCOHERENT (RIGHT) TEXT. SOURCE: (KNOTT,
1996) ...38

FIGURE 3-9: A POSSIBLE RS-TREE FOR THE COHERENT TEXT FROM FIGURE 3-8......................................39

FIGURE 3-10: AN ATTEMPT TO ANALYSE THE INCOHERENT TEXT FROM FIGURE 3-8. THERE WERE NO
CLEAR RELATIONSHIPS BETWEEN THE SEGMENTS. ...39

FIGURE 3-11: THE ORDERS IDENTIFIED BY MANN AND THOMPSON FOR SOME RELATIONSHIPS39

FIGURE 3-12: AN ARTICLE FROM THE BBC WEBSITE (SHORTENED) DIVIDED INTO SEGMENTS40

FIGURE 3-13: SEGMENTS 1 AND 2 IN A BACKGROUND RELATIONSHIP, AND SEGMENTS 3 AND 4 IN A
CONTRAST RELATIONSHIP. ...41

FIGURE 3-14: AN ELABORATION AND SEQUENCE RELATIONSHIP ...41

FIGURE 3-15: THE COMPLETE RS-TREE FOR THE BBC NEWS ARTICLE. NOTE THAT SEGMENT 9 IS IN A
RELATIONSHIP WITH NON-ADJACENT SEGMENT 5. THIS IS ALLOWED IN RST. IT IS THE JOINING OF
NON-ADJACENT SEGMENTS OR SPANS TO FORM LARGER SPANS THAT IS NOT ALLOWED IN WELL-
FORMED RS-TREES. ...41

FIGURE 3-16: DN FOR THIS CHAPTER ..42

FIGURE 4-1: DN FOR CHAPTER 3 OF THIS THESIS ..45

FIGURE 4-2: SUB TREE SHOWING SEGMENTS 3-6 ...46

FIGURE 4-3: SUBTREE SHOWING SEGMENTS 7 AND 8...47

FIGURE 4-4: POSSIBLE RST ANALYSIS OF THE DN FOR CHAPTER 3 ...47

FIGURE 4-5: SECTIONS OF CHAPTER 3 ...50

FIGURE 4-6: OLDER VERSION OF THE GENERIC DN FOR A FABLE...52

FIGURE 4-7: NEW VERSION OF THE FABLE DN ..52

FIGURE 4-8: POSSIBLE RST ANALYSIS OF THE DN FOR A FABLE (ABOVE). TREE STRUCTURE IN THE RS-
TREE (RIGHT). ..52

FIGURE 4-9: THE FABLE OF THE ANT AND GRASSHOPPER STRUCTURED ACCORDING TO THE DN............53

FIGURE 4-10: SUMMARY OF THE NARRATIVE-BASED WRITING TECHNIQUE. ..55

FIGURE 4-11: DN FOR THIS CHAPTER ..55

FIGURE 5-1: A DIAGRAM SUMMARISING THE STEPS IN NARRATIVE-BASED WRITING56

FIGURE 5-2: DIAGRAM SHOWING THE COMPONENTS OF A RS-TREE ..59

FIGURE 5-3: A SAMPLE DN ...59

FIGURE 5-4: DIAGRAM ILLUSTRATING HOW THE RS-TREE FOR THE DN IN FIGURE 5-3 IS STORED USING
OUR MODEL..60

FIGURE 5-5: A MINIMAL TREE SHOWING THE DN BEFORE THE RST ANALYSIS..61

FIGURE 5-6: DIAGRAM SHOWING A TREE OF VERSIONS..64

FIGURE 5-7: DIAGRAM SHOWING THE CREATION OF A NEW VERSION OF A RS-TREE. NODE 7 IN VERSION 1
IS CHANGED. UNAFFECTED PARTS IN VERSION 1 ARE LINKED TO FROM VERSION 2.65

FIGURE 5-8: TWO AUTHORS READING THE SAME VERSION OF A RS-TREE ...67

FIGURE 5-9: TWO POSSIBLE LOCATIONS IN THE RS-TREE THAT A NEW NODE AFTER NODE 5 COULD BE
ADDED. ..68

FIGURE 5-10: CREATING A SPAN ...69

FIGURE 5-11: SAMPLE RS-TREE ..72

List of Figures 194

FIGURE 5-12: SAMPLE RS-TREE WITH A NODE ADDED AFTER NODE 4 ...77

FIGURE 5-13: SAMPLE RS-TREE WITH A NODE ADDED AND NXT RELATIONSHIPS RESTORED77

FIGURE 5-14: RESULTS OF DOING PRINT(1,1) ON THE SAMPLE RS-TREE..78

FIGURE 5-15: A NEW VERSION OF THE SAMPLE RS-TREE AFTER A NODE IS ADDED82

FIGURE 5-16: THE ENTRIES IN THE REPOSITORY SHOWING THE CHANGES MADE TO THE RS-TREE82

FIGURE 5-17: RS-TREE AFTER NODE 7 IS REMOVED FROM THE SAMPLE RS-TREE....................................84

FIGURE 5-18: THE RESULTING RS-TREE (BELOW) AFTER CREATESPAN () WAS APPLIED TO THE TREE
ABOVE. ..85

FIGURE 5-19: RS-TREES SHOWING THE APPLICATION OF THE ADDRELATIONSHIP FUNCTION87

FIGURE 5-22: MERGING OF TWO VERSIONS OF A RS-TREE ..89

FIGURE 5-23: DN FOR THIS CHAPTER ..90

FIGURE 6-1: THE THREE-TIER ARCHITECTURE OF THE TOOL ..91

FIGURE 6-2: STORING A MOTIVATION RELATIONSHIP IN URML...92

FIGURE 6-3: MENU ..98

FIGURE 6-4: SCREEN SHOT OF TOOL ..99

FIGURE 6-5: THE DN FOR THIS CHAPTER...100

FIGURE 7-1: VERSION 1 OF THE DN AND RS-TREE (CREATED BY AUTHOR A)102

FIGURE 7-2: VERSION 2 OF THE DN AND RS-TREE (CREATED BY AUTHOR B).......................................103

FIGURE 7-3: VERSION 3 OF THE DN AND RS-TREE (CREATED BY AUTHOR C).......................................104

FIGURE 7-4: VERSION 4 OF THE DN AND RS-TREE (CREATED BY AUTHOR A)105

FIGURE 7-5: A GENERIC DN FOR A RESEARCH PROPOSAL THAT APPEARED IN (DE-SILVA AND
HENDERSON, 2005) ...107

FIGURE 7-6: RS-TREE OF GENERIC DN FOR A RESEARCH PROPOSAL..107

FIGURE 7-7: A NEW GENERIC DN FOR A RESEARCH PROPOSAL..108

FIGURE 7-8: POSSIBLE RST ANALYSIS OF NEW DN FOR A RESEARCH PROPOSAL108

FIGURE 7-9: SCREEN SHOT OF TOOL SHOWING THE RS-TREE FOR THE GENERIC DN FOR A RESEARCH
PROPOSAL ..110

FIGURE 7-10: GENERIC DN FOR A CONFERENCE PRESENTATION ...111

FIGURE 7-11: RST ANALYSIS OF THE DN FOR A CONFERENCE PRESENTATION112

FIGURE 7-12: DN FOR THE OMII-EUROPE WEBSITE (VERSION 1)..114

FIGURE 7-13: POSSIBLE RST ANALYSIS FOR DN...114

FIGURE 7-14: A LIST OF POSSIBLE MENU ITEMS (VERSION 1) ...115

FIGURE 7-15: DN FOR OMII-EUROPE WEBSITE (VERSION 2)...116

FIGURE 7-16: A LIST OF POSSIBLE MENU ITEMS (VERSION 2) ...116

FIGURE 7-17: DN FOR THIS CHAPTER ..117

FIGURE 8-1: DN THAT THE VOLUNTEERS HAD TO ANALYSE ..119

FIGURE 8-2: UNCOMMON APPLICATION OF RST RELATIONSHIPS ..122

FIGURE 8-3: ALTERNATIVE APPLICATION OF RST RELATIONSHIPS..122

FIGURE 8-4: DN PRODUCED BY TEAM A..124

FIGURE 8-5: THE DNS PRODUCED BY THE TEAMS B AND C...125

FIGURE 8-6: DN FOR THIS CHAPTER ..131

List of Figures 195

FIGURE 9-1: INITIAL RS-TREE ...135

FIGURE 9-2: TREE AFTER A NODE IS INSERTED ..135

FIGURE 9-3: RELATIONSHIPS BETWEEN SEGMENTS OF A DN...136

FIGURE 9-4: POSSIBLE RS-TREE THAT INCORPORATES ALL THE RELATIONSHIPS ABOVE136

FIGURE 9-5: REGULAR PROBLEM-SOLUTION PATTERN IN TECHNICAL DOCUMENTS...............................137

FIGURE 9-6: DN FOR THE THESIS ...138

Bibliography

AARONSON, J. (2002) Your Web Site As a Narrative Device: Introduction. CRM Strategies.
Article online at http://www.clickz.com/showPage.html?page=1450401 (Last
accessed on 23.11.2006).

ABBOTT, H. P. (2002) The cambridge introduction to narrative, Cambridge, UK, Cambridge
University Press.

ALRED, G. J., BRUSAW, C. T. & OLIU, W. E. (2003) Handbook of technical writing,
Boston, MA, Bedford/St. Martin's.

BÄRENFÄNGER, M., HILBERT, M., LOBIN, H. & LÜNGEN, H. (2006) Using OWL
ontologies in discourse parsing. Proceedings of the workshop of Ontologies in Text
Technology. Osnabrück, Germany.

BEAUBOUEF, T. & LANG, R. (1998) Rough Set Techniques for Uncertainty Management
in Automated Story Generation. ACM Southeast Regional Conference 1998. Marietta,
GA, USA.

BERNERS-LEE, T., HENDLER, J. & LASSILA, O. (2001) The Semantic Web. Scientific
American, 30.

BERNSTEIN, M. (2001) Beyond Usability and Design: The narrative web. A List Apart
(Issue 106). Found online at http://alistapart.com/articles/narrative (Last accessed
15.05.2006).

BREMOND, C. (1980) The Logic of Narrative Possibilities. IN ONEGA, S. & LANDA, J. A.
G. (Eds.) Narratology. New York, Pearson Education Inc.

CARLSON, L., MARCU, D. & OKUROWSKI, M. E. (2001) Building a discourse-tagged
corpus in the framework of Rhetorical Structure Theory. 2nd SIGdial Workshop on
Discourse and Dialogue. Denmark.

CEDERQVIST, P. (2002) Version Management with CVS, Network Theory Ltd.

DE-SILVA, N. & HENDERSON, P. (2005) Narrative Support for Technical Documents:
Formalising Rhetorical Structure Theory. 7th International Conference on Enterprise
Information Systems (ICEIS). Miami, FL, USA.

DE-SILVA, N. & SKAF-MOLLI, H. (2006) Narratives to preserve coherence in collaborative
writing. The Eighth International Workshop on Collaborative Editing Systems. Banff,
Canada.

Bibliography 197

DRIDI, F. & NEUMANN, G. (1999) How to implement Web-Based Groupware Systems
Based on WebDAV. Proceedings, IEEE 8th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises. Stanford, CA, USA.

ECO, U. (1979) The Role of the Reader: Explorations in the semiotics of texts, Hutchinson &
Co. (Publishers) Ltd.

EULER, J. S. (1992) Against Default Voice: Technical Writing as Speech Act. IPCC 92
Santa Fe. Crossing Frontiers. Conference Record, 125-129.

EVANS, D. & GRUBA, P. (2004) How to write a better thesis, Melbourne, Australia,
Melbourne University Press.

FELTRIM, V. D. & ALUÍSIO, S. M. (2003) Analysis of the rhetorical structure of computer
science abstracts in Portuguese. Corpus Linguistics. Lancaster University, UK.

FERBER, J. (1999) Multi-agent systems: An introduction to distributed Artificial Intelligence,
Pearson Education Limited.

FISH, R. S., KRAUT, R. E. & LELAND, M. D. P. (1988) Quilt: a collaborative tool for
cooperative writing. Proceedings of the ACM SIGOIS and IEEECS TC-OA 1988
conference on Office information systems. Palo Alto, United States, ACM Press New
York.

FOREST, J. (2005) LibreSource: Overview and quick start.

FREYTAG, G. (1863) Freytag's technique of the drama, New York & London, Benjamin
Blom.

FRIESEN, J. (2004) Java Tech: The ABCs of Synchronization. This is a java.net article
available online at http://today.java.net/pub/a/today/2004/08/02/sync1.html (Last
accessed 20.9.2006).

GENTHIAL, D. & COURTIN, J. (1992) From Detection/Correction to Computer Aided
Writing. 14th conference on Computational linguistics. Nantes, France.

GOPEN, G. D. & SWAN, J. A. (1990) The science of scientific writing. American Scientist,
(Nov-Dec 1990), Volume 78, 550-558.

GROSZ, B. J. & SIDNER, C. L. (1986) Attentions, Intentions and the Structure of Discourse.
Computational Linguistics.

GROSZ, B. J., WEINSTEIN, S. & JOSHI, A. K. (1995) Centering: A framework for
modeling the Local Coherence of Discourse. Computational Linguistics, 21, 203-225.

HARRIS, S. & GIBBINS, N. (2003) 3store: Efficient Bulk RDF Storage. Proceedings of 1st
International Workshop on Practical and Scalable Semantic Systems (PSSS'03).
Sanibel Island, Florida.

Bibliography 198

HENDERSON, P. (2000) Business Processes, Legacy Systems and a Fully Flexible Future.
IN HENDERSON, P. (Ed.) Systems Engineering for Business Process Change. New
York, USA, Springer-Verlag.

HENDERSON, P. & DE-SILVA, N. (2006) A narrative approach to collaborative writing: A
business process model. 8th International Conference on Enterprise Information
Systems (ICEIS). Cyprus.

HOBBS, J. R. (1982) Towards an understanding of coherence in discourse. IN LEHNERT,
W. & RINGLE, M. (Eds.) Strategies for Natural Language Processing. New Jersey,
Lawrence Erlbaum Associates, Inc.

HOBBS, J. R. (1985) On the coherence and structure of discourse. Center for the study of
language and information, Stanford University.

HUGHES, J. (1989) Why functional programming matters. Computer Journal, 32.

JOHNSON, B. (2006) Creator of web warns of fraudsters and cheats. The Guardian.
Available online at http://technology.guardian.co.uk/news/story/0,1938477,00.html
(Last accessed 30.11.2006).

KIERAS, D. E. (1989) An Advanced Computerized Aid for the Writing of Comprehensible
Technical Documents. IN BRITTON, B. K. & GLYNN, S. M. (Eds.) Computer
Writing Environments: Theory, Research and Design. New Jersey, Lawrence
Erlbaum Associates.

KNOTT, A. (1996) A Data-Driven Methodology for Motivating a Set of Coherence
Relations. Department of Artificial Intelligence. Edinburgh, UK, University of
Edinburgh.

LANG, R. (1999) A declarative model for simple narratives. Proceedings, AAAI Fall
Symposium on Narrative Intelligence. North Falmouth, Massachusetts.

LEHNERT, W. (1981) Plot Units: A Narrative Summarization Strategy. IN LEHNERT, W. &
RINGLE, M. (Eds.) Strategies for Natural Language Processing. New Jersey,
Lawrence Erlbaum Associates.

LESTER, J. D. & JAMES D. LESTER, J. (2005) Writing research papers: a complete guide,
New York, USA, Pearson Education, Inc.

LONG, J. R. (1997) Aesop's fables: Online collection. Found at
http://www.pacificnet.net/~johnr/cgi/aesop1.cgi?sel&TheAntandtheGrasshopper&&a
ntgrass.ram (Last accessed: 6.10.2005).

LOTHE, J. (2000) Narrative in Fiction and Film: An Introduction, USA, Oxford University
Press.

LOWRY, P. B., CURTIS, A. & LOWRY, M. R. (2004) Building a taxonomy and
nomenclature of collaborative writing to improve interdisciplinary research and
practice. Journal of Business Communication, 41, 66-99.

Bibliography 199

MAHMUD, R. (2004) Revealing Discourse Relations Structure: An Approach for a Dynamic
Computer Aided Writing. Computers and Writing Conference 2004. Hawaii.

MAHMUD, R. & RAMSAY, A. (2005) Finding Discourse Relations in Student Essays. Sixth
International Conference on Intelligent Text Processing and Computational
Linguistics (CICLing 2005). Mexico.

MANN, W. & THOMPSON, S. (1988) Rhetorical Structure Theory: Toward a functional
theory of text organisation. Text, 8, 243-281.

MANN, W. C., MATTHIESSEN, C. M. I. M. & THOMPSON, S. A. (1992) Rhetorical
Structure Theory and Text Analysis. IN MANN, W. C. & THOMPSON, S. A. (Eds.)
Discourse Description: Diverse Linguistic Analyses of a Fund-Raising text.
Amsterdam and Philadelphia, John Benjamins.

MARCU, D. (2000) The Theory and Practice of Discourse Parsing and Summarization, The
MIT Press.

MARJANOVIC, O., SKAF-MOLLI, H., MOLLI, P., RABHI, F. & GODART, C. (2006)
Supporting complex collaborative learning activities - The LibreSource approach. 8th
International Conference on Enterprise Information Systems. Paphos, Cyprus.

MCCAUGHREAN, G. (1999) One Thousand and One Arabian Nights, Oxford University
Press.

MINTO, B. (2002) The pyramid principle, UK, Pearson Education Limited.

MOLLI, P., OSTER, G., SKAF-MOLLI, H. & IMINE, A. (2003) Using the transformational
approach to build a safe and generic data synchronizer. Proceedings of the 2003
international ACM SIGGROUP conference on Supporting group work, 212-220.

MOORE, J. D. & POLLACK, M. E. (1992) A problem for RST: The need for multi-level
discourse analysis. Computational Linguistics, 18, 537-544.

NEUWIRTH, C. M., CHANDHOK, R., KAUFER, D. S., ERION, P., MORRIS, J. H. &
MILLER, D. (1992) Flexible diff-ing in a collaborative writing system. 4th
conference on computer-supported cooperative work. Toronto, Canada, ACM Press.

NEUWIRTH, C. M., KAUFER, D. S., CHANDHOK, R. & MORRIS, J. H. (1990) Issues in
the design of computer support for co-authoring and commenting. 3rd conference on
computer-supported cooperative work. LA, California, USA, ACM press.

NEUWIRTH, C. M., KAUFER, D. S., CHANHOK, R. & MORRIS, J. H. (1994) Computer
Support for Distributed Collaborative Writing: Defining parameters for interaction.
Conference on computer-supported cooperative work. Chapel Hill, NC, USA, ACM
press.

NOËL, S. & ROBERT, J.-M. (2004) Empirical Study on Collaborative Writing: What do co-
authors do, use, and like? Computer Supported Cooperative Work, 13.

Bibliography 200

O'DONNELL, M. (2000) RSTTool 2.4 - A markup tool for Rhetorical Structure Theory.
Proceedings, International Natural Language Generation Conference (INLG'2000).
Mitzpe Ramon, Israel.

ONEGA, S. & LANDA, J. (1996) Introduction. IN ONEGA, S. & LANDA, J. (Eds.)
Narratology. New York and London, Longman Group Ltd.

ONO, K., SUMITA, K. & MIIKE, S. (1994) Abstract generation based on rhetorical structure
extraction. 15th International Conference on Computational Linguistics
(COLING'94). Kyoto, Japan.

PALMQUIST, M. (2003) A brief history of computer support for writing centers and writing-
across-the-curriculum programs. Computers and Composition, 20.

PARADIS, J. & ZIMMERMAN, M. (2002) The MIT Guide to Science and Engineering
Communication, The MIT Press.

PARGMAN, T. C. (2003) Collaborating with writing tools: An instrumental perspective on
the problem of computer-supported collaborative activities. Interacting with
computers, 15, 737-757.

PORTER, J. (2003) Why technology matters to writing: A cyberwriter’s tale. Computers and
Composition, 20.

PROPP, V. (1928) Morphology of the Folktale. 2nd ed. Austin, University of Texas Press.

REITER, E. & DALE, R. (2000) Building Natural Language Generation Systems, Cambridge
University Press.

REITTER, D. & STEDE, M. (2003a) Step by step: Underspecified markup in incremental
rhetorical analysis. Proceedings, 4th International Workshop on Linguistically
Interpreted Corpora (LINC-03). Budapest.

REITTER, D. & STEDE, M. (2003b) An underspecified markup syntax for rhetorical
structure annotations.

RIZZO, P., SHAW, E. & JOHNSON, W. L. (2002) An agent that helps children author
rhetorically-structured digital puppet presentations. Proceedings, 6th International
Conference on Intelligent Tutoring Systems.

RÖSNER, D. & STEDE, M. (1992) Customising RST for the Automatic Production of
Technical Manuals. IN DALE, R., HOVY, E., RÖSNER, D. & STOCK, O. (Eds.)
Aspects of Automated Language Generation. Berlin, Springer.

ROTH, A. J. (1999) The research paper: process, form and content, USA, Thomas Learning
Inc.

SHARPLES, M. (1996) An Account of Writing as Creative Design. IN LEVY, C. M. &
RANSDELL, S. (Eds.) The science of writing: Theories, Methods, Individual
Differences and Applications. New Jersey, Lawrence Erlbaum Associates.

Bibliography 201

SOWA, J. F. (1983) Conceptual Structures: Information processing in mind and machine,
New York, Addison-Wesley.

STEELE, V. (2002) Using mind maps to develop writing. Articles on teaching English by the
BBC and British Council. Available online at:
http://www.teachingenglish.org.uk/think/write/mind_map.shtml (Last accessed on
1.8.06).

TABOADA, M. & MANN, W. C. (2006a) Applications of Rhetorical Structure Theory.
Discourse Studies, 8.

TABOADA, M. & MANN, W. C. (2006b) Rhetorical Structure Theory: Looking back and
moving ahead. Discourse Studies, 8.

TICHY, W. F. (1982) Design, implementation, and evaluation of a Revision Control System.
6th international conference on Software engineering. Tokyo, Japan, IEEE Computer
Society Press.

TICHY, W. F. (1985) RCS: A System for Version Control. Software: Practice & Experience,
15, 637-654.

TORRANCE, M. & BOUAYAD-AGHA, N. (2001) Rhetorical Structure Analysis as a
method for understanding writing processes. IN DEGAN, L., BESTGEN, Y.,
SPOOREN, W. & WAES, L. V. (Eds.) Multidisciplinary Approaches to Discourse.
Amsterdam, Nodus.

TUFFIELD, M. M., MILLARD, D. E. & SHADBOLT, N. R. (2006) Ontological Approaches
to Modelling Narratives. 2nd AKT DTA Symposium, AKT. Aberdeen University, UK.

WHEELER, K. (2004) Freytag's pyramid. Available online at
http://web.cn.edu/kwheeler/documents/Freytag.pdf (Last accessed on 26.10.2006).

WINOGRAD, T. (1999) Documentation, Interaction, and Conversation. The Journal of
Computer Documentation, 23, 3-6.

XINDICE (2004) Available online at http://xml.apache.org/xindice/ (Last accessed on
25.6.2004).

ZOBEL, J. (2004) Writing for computer science, USA, Springer.

