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Abstract 

In recent years Peer-to-Peer Systems have gained popularity, and are best known as a 

convenient way of sharing content. However, even though they have existed for a 

considerable length of time, no method has yet been developed to measure the quality of 

the service they provide nor to identify cases of misbehaviour by individual peers. This 

thesis attempts to give to P2P systems some quality measures with the potential of giving 

querying peers criteria by which to judge and make predictions about the behaviour of 

their counterparts. The work includes the design of a reputation system from which 

querying peers can seek guidance before they commit to transaction with another peer. 

Reputation and Recommender systems have existed for years but usually as 

centralized services. Our innovation is the use of a distributed recommendation system 

which will be supported by the peers themselves. The system operates in the same 

manner as "word-of-mouth" in human societies does. In contrast to other reputation 

systems the word-of-mouth technique is itself decentralized since there is no need for 

central entities to exist as long as there are participants willing to be involved in the 

recommendation process. 

In order for a society to exist it is necessary that members have some way of knowing 

each other so that they can fonn relationships. The main element used to link members in 

an online community together is a virtual trust relationship that can be identified from the 

evidence that exists about their virtual partnerships. In our work we approximate the level 

of trust that could exist between any two parties by exploiting their similarity, 

constructing a network that is known as "web of trust". Using the transitivity property of 

trust, we make it possible for more peers to come in to contact through virtual trust 

relationships and thus get better results than in an ordinary system. 
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Chapter 1 

INTRODUCTIO~ 

1.1 Problem Statement 

Peer-to-Peer information sharing environments have gained recognition and 

popularity in recent years. In spite of the excellent characteristics they provide for 

the ways that participants can collaborate, the issue of quality preservation in the 

shared services has not yet been considered seriously. 

The reasons why users cannot always obtain services of the quality they 

expect are either because of deliberate action (e.g. provision of corrupted 

resources) or are dependent on the current state of the infrastructure (e.g. network 

congestion, software failures). Systems where survivability is based on self­

organization into communities could be a solution to the quality problem that is 

implemented by the peers themselves. In this thesis we propose that the 

deployment of an assessment schema based on a localized view of reputation 

where peers act by themselves, could help towards finding an optimum resource 

discovery policy. The deployment of an assessment schema is also expected to 

improve the general provision of services. 

Even though there are various Peer-to-Peer models, in this thesis we consider 

only the unstructured one known as the "atomistic type" of P2P network because 

it is closest to the model of virtual communities which approximates best the way 

that real communities work. We chose this because, knowing the benefits and the 

pitfalls of networking architectures (centralized/distributed), our aim is to offer a 

solution that is closer to the fundamental principles of Peer-to-Peer technologies. 

These aim to offer a kind of communication as independent as possible from the 

use of centralized entities, approaching the way that human entities naturally 

communicate with each other. 

In this work we intend to apply a reputation propagation mechanism to the 

system we propose. Reputation in general can be thought of as "what we expect 

about an entity's behaviour based on observations and collected illformation from 



the environment regarding the past actions of the agent" [1]. In our computational 

model we attempt to apply a word of mouth scheme over the virtual community 

that is formed through the Trust relationships that we establish hypothetically 

between the members of that community. 

In order to do this we examine the Trust relationships that may have been 

developed between members and derive from them a measure of reliability as seen 

from the point of view of the querying entities. 

Similar systems have been running for years on the web as centralized services 

but they cannot give accurate answers to a satisfactory number of queries. What 

we aim to do with our work is to make predictable how satisfied users will be with 

the answers to queries so that they can be assisted in making the best choice. \Ve 

leave any security issues that may arise for future research. 

Our research covers several areas of technology: 

• Recommender Systems 

• Peer-to-Peer technologies 

• Trust systems and Reputation 

Peer-to-Peer systems exist fundamentally as decentralized services because 

they were built to work in this way. Trust systems exist as theoretical subjects in 

the computing literature and at the time of writing there is no solution that 

involves Trust applied to a real application. On the other hand, Recommender 

systems are well known and run as applications in centralized environments and 

so far they have had remarkable success. 

The challenge is to combine Peer-to-Peer technologies which run 

decentralized, with the Recommender systems which currently run as centralized 

services on the web. As will be seen from the results of this work, the 

decentralization and the use of Trust we attempt in the recommender systems has 

positive effects on the P2P service itself because it produces better results than 

before. 
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1.2 Related Work 

Many researchers have in the past worked towards the objective of improving 

search results for queries by organizing peers into groups of common interests [~]. 

This is based on the assumption that if a peer has a particular interest in a piece of 

content then it is likely to have items of interest to others as well. This concept is 

also the basis of Recommender Systems which are based mainly on Collaborative 

Filtering techniques. The main idea behind Collaborati\·e filtering is that, if two 

entities agreed in the past about choices of items, then it is likely that they will 

agree again in the future. 

In the existing solutions neither knowledge nor expenence of a peer's 

behaviour that could be taken into consideration in any future choices is used. 

Observations of the past could shape future expectations and thus help in making 

successful decisions. 

The need to exploit this information which otherwise goes wasted and unused 

leads us to the introduction of the notion of Reputation. The concept of reputation 

and its associated structures is not new and it has been formed by the way that 

people trade in human communities. In computing science reputation is defined as 

the common belief of a group of entities about another entity with reference to 

some certain activity. 

This sense of common belief makes reputation seem to be a more objective 

characteristic than a SUbjective one. In centralized systems there are no difficulties 

as to how this objective characteristic will be assessed, but in decentralized 

environments like unstructured Peer-to-Peer Systems, reputation is difficult to 

maintain due to a lack of central entities where common beliefs can be held and 

managed. As it happens in real communities, reputation as common belief is 

shaped by the individual opinions that the members of a community hold. Those 

measures are mainly subjective and in the literature are known as Trust 

relationships. 

3 



1.3 Reputation in Computing 

Most of the work in computing concernmg reputation has been tailored to 

problems similar to those found in the static web. Even though the applicability of 

such methods is limited in the Peer-to-Peer area it is worthwhile to examine the 

reasons why. 

The first approach to provision of evaluated search results on the web was 

using ordinary search engines, where ranking and relevance indicators in XML 

format were automatically attached to search responses [3]. This direction lead to 

a new way of providing data through the web that is now called "The Semantic 

Web". The novelty of the Semantic web was the extra semantic information 

together with the data which were used as an aid for the users in making their 

choices. 

The work of assessment, and later the production of metadata was performed 

exclusively in centralized search engines (e.g. Google) which from then on were 

considered as trusted entities for the provision of that kind of information. In 

Google the weighting is determined by a number of factors such as the internal 

back-link index. This shows how many links from other web pages point to a page 

and every link is considered as a recommendation for someone to visit that 

particular page. Apart from the danger that this leads to ambiguous results since a 

highly referenced page does not necessarily mean that it is of good quality, it also 

has the danger that the central entity might provide biased recommendations. For 

example, if the central entity gets some benefit from giving a high rank to some 

web content it is difficult to find out if this is happening. 

1.4 Trust and Reputation 

Trust is a complex concept and is therefore not easy to define. Also the Trust 

literature can be quite confusing because the term is used with a variety of 

meanings [6]. 

A working definition inspired by McKnight & Chervany [6] is: "Trust is the 

extent to which one party is willing to depend on something or somebody in a 
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given situation with the feeling of relative security. even \vhen negative 

consequences are possible". 

As can be seen from this definition, Trust includes some basic concepts which 

are dependence, risk and uncertainty. Dependence is explicitly expressed \\'hereas 

risk and uncertainty are expressed through the possibility of negative 

consequences. Uncertainty is an important characteristic which comes from the 

fact that there is always a lack of knowledge when making a decision. 

The above definition includes the fact that non-living material or abstract 

things can also be trusted. The fact that different entities can have different kinds 

of Trust for the same target entity (trustee) indicates that Trust is sUbjective. 

Unlike Reputation which is objective, Trust is what each different participant in a 

community subjectively beliefs about the trustee entity and therefore we can say 

that individually expressed Trust is what shapes the Reputation of that entity. This 

is important because non-living material or anything abstract can be trusted 

although an item does not have the free will to behave honestly or dishonestly in 

the same way that living persons would. It is not always possible to distinguish 

between items and agents because the distinction between agents and non-living 

material can be fuzzy as happens in the case of automated systems. In general they 

can be seen as extensions of the humans they work for, who do have free will. 

Stephen Marsh [20] defines Reputation as follows: "Reputation is the amount 

of trust inspired by the particular person in a specific setting or domain of 

interest". Reputation is conceived as a multidimensional value. Individuals may 

enjoy a high Reputation in one domain while they have a low Reputation in 

another. As with Trust, Reputation is context specific. 

Li.Ding et.al. in [29] give another definition for reputation and they present 

Reputation as public Trust. As they say, "Public Trust is based on the reported 

social experiences throughout agent society and it reflects the general opinion 

about individuals" derived from secondhand evidence and, according to them, 

Personal Trust is derived from the agent's own social experiences (first hand 

evidence). 
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1.5 From centralization to Peer-to-Peer 

In the early stages of the Internet the services and the connectivity was much like 

a Peer-to-Peer infrastructure. Universities in the United States were connected 

together for the purpose of exchanging scientific information. The Peer-to-Peer 

type of organization was at the machine connectivity level. Services from the 

early days such as Email, which still runs as a Peer-to-Peer service, demonstrates 

the architectural ideas on which it was based. 

The increasing load on what became the Internet, the explosi\'e growth of its 

user base and the emergence of its new face, the Web, were all factors that drove 

development away from the early peer network to a more hierarchical structure. 

The resulting trend was towards the client-server model where the great 

majority of users were seen as passive recipients of static, server-stored 

information. 

Parallel to this divisive trend, a trend emerged in Internet connectivity for 

direct data transfers over high bandwidth connections between top-level servers, 

further distancing the Internet from its Peer-to-Peer roots. The recent development 

of Internet2, a separate higher-capacity backbone network has added a further 

dimension of separation to the basic connection structure. 

Much of the motivation behind various Internet peer technologies can be seen 

as a reaction away from server centric content and passive clients, back to free 

exchange between individually combined client-server nodes in the network. The 

fact that data and resources are controlled by the users and not an external 

authority is characteristic of, and motivation for, many of the current Peer-to-Peer 

technologies. The success of Email, which was the killer application for the early 

Internet, confirms the assumption that what people always want to do, whatever 

the technology, is to communicate with each other. It is an open question now if e­

mail should be considered as peer-to-peer technology. The original Peer-to-Peer 

functionality moved on into another technology that is now called IM which is 

used for chatting. Today's chat and IM are perceived as Peer-to-Peer in the same 

way that conversations on the telephone are. Chat technology resolves the 

individual addressing issue by maintaining a centralized directory to correlate a 

registered user with an on line Internet address. As can be seen from this example 
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there is either a total or partial dependence on central entities for Peer-to-Peer 

services that are running over the Internet infrastructure. 

1.6 Architectural Models of Peer-to-Peer infrastructures 

A good characterization of Peer-to-Peer models is based on the amount of 

dependence on centralized entities they require. The models differ from each other 

in the ways that searching for information takes place. [11] contains the following 

categorization. 

1.6.1 Unstructured model 

In the Unstructured or Atomistic model of P2P networks there is no central 

administration, all nodes are both server and client and each is completely 

autonomous, managing its own resources and connectivity itself. This offers 

maximum availability, stability, robustness and persistence of data but it suffers 

from difficulties in node discovery. A good example of this type of network is the 

Gnutella P2P network. [75] 

1.6.2 User Centric model 

The User Centric model is quite similar to the previous one but there is central 

server mediation. In the simplest form a directory server is used to simplify the 

way that nodes find each other. The server can be thought of as a centralized 

registry. Nodes are required to register with this directory before they and their 

contents become available to the rest of the community. However the existence of 

the central entity raises privacy and vulnerability issues. 

1.6.3 Data Centric model 

The Data Centric model is identical to User Centric with the difference that the 

central entity maintains an index of available resources and not users. An example 

of this type of network was Napster. 
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The original vision of the World Wide Web by its "creator" Tim Bemers-Lee 

and others was a data centric Peer-to-Peer network of globally hyperlinked 

content space where no single server had precedence over any other. However 

much to the disappointment of the first visionaries the Web instead evolved to 

have mostly static content and be server-centric. With users constrained to the role 

of passive consumers, and little peer communication between them, functional 

development of Web browsers focused mainly on fancy presentation features. 

Nevertheless, the importance and use of open Peer-to-Peer models has returned on 

a new level, user-to-user rather than machine-to-machine, making the 

developmental chronology implied by the previous table reasonably accurate. 

In our study we will be dealing with the first model, Unstructured or Atomistic 

as it is closest to the way that human entities communicate with each other in the 

contemporary communities. 

1.7 The challenges 

The basic problem related to reputation management in Peer-to-Peer networks is 

that information about transactions performed between peers is dispersed 

throughout the network so that a peer can only have an approximate view of the 

global state of the network. 

Another problem that makes the situation even more complicated is that the 

peers that hold and process the trust-related information cannot be considered as 

totally trustworthy themselves and nodes must take into account the possibility 

that those peers might be behaving maliciously. 

Due to the dynamic nature of Peer-to-Peer communities new rules have been 

put in place and they obey the application of new regulations for the handling of 

any kind of such information that is to be collected. In the case of reputation 

ranking information, the problem is that such information becomes stale far more 

quickly than in ordinary client-server systems whose operation and services are 

long-lived. 
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Furthennore the storage of large amounts of critical infonnation in the peers 

themselves, might not be a suitable solution because: 

• With the databases running on ordinary peers without using a replication 

scheme, the availability of the data cannot be guaranteed since peers join 

and leave at any time and without prior warning. 

• It is likely that the nodes and the replication mechanism will not be able to 

cope with the high levels of traffic that the database requests will create. 

• The idea does not confonn with the self-structured philosophy of the Peer­

to-Peer networks. 

1.8 Word of mouth 

The schema we intended to apply in our work for the dispersion of the infonnation 

has an analogy in the physical world: "word-ol-mouth". Wikipedia [42] defines 

"word- ol-mouth" as: 

"The passing of information by verbal means, especially recommendations, 

but also general information, in an informal, person-to-person manner, rather 

than by mass media, advertising, organized publication, or traditional 

marketing. Word of mouth is typically considered a spoken communication, 

although web dialogue, such as blogs, message boards and emails are often 

now included in the definition". 

Word-of-mouth promotion is highly valued by marketeers. It is felt that this 

fonn of communication gives valuable source credibility. People are more 

inclined to believe word-of-mouth promotion than more fonnal fonns of 

promotion because the communicator is unlikely to have an ulterior motive, i.e. 

they are not out to sell you something (for evidence of the conditions under which 

word-of-mouth communication is effective, see R.Grewal et al. [43]). Moreover, 

people tend to believe people that they know. In order to manufacture word-of­

mouth communications, marketers use a wide variety of publicity techniques. 

There is some overlap in meaning between word-of-mouth and the following: 

rumour, gossip, innuendo, and hearsay; however the negative connotations of 

these words are not usually part of the meaning of word-of-mouth. 
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A useful definition we can give for word-of-mouth is: 

"A social reputation dispersion mechanism which has its basis in the human way 

of communicating data and distributing opinions between people. Using H·ord of 

mouth techniques in computing for the diffusion of the information in the same 

way as in the human communities can be more effective and less costly ill 

resources" . 

Both this definition and that of Wikipedia exclude the use of mass media and 

traditional marketing as a way of promoting the services to be published. The 

analogy with the computer information world is that mass media symbolize the 

central entities or web sites of high publicity, and traditional marketing the client 

server protocols. 

1.9 Recommender Systems 

There are many Recommender systems [11] used in on-line systems today. They 

help people make choices when they do not have sufficient personal experience of 

the options from which they have to choose. In these systems we recognize two 

types of users: the recommenders and those who seek recommendations. Users 

can either provide anonymous or pseudo-anonymous recommendations and also 

encounter the problem of ''free riding" which comes from content sharing in Peer­

to-Peer applications, as well as the incentive and privacy problems as found in the 

peer preview system used in academia. "Free Riders" or "leeches" are those peers 

which take part in a Peer-to-Peer scheme without sharing any files or information. 

The best known types of Recommender systems have as their basis 

Collaborative Filtering [12] which helps humans make choices based on the 

opinion of other people. The simplest form of this is "word-ol-mouth". As we saw, 

word-of-mouth is also known as "a system for propagating reputations" [1]. Ways 

of automating the word-of-mouth technique can be found in [13]. This work 

attempted to build a personalized music Recommender system using Social 

Information filtering, (i.e the word-of-mouth technique), by organizing users in 
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communities of similar interests. The system was called "Ringo" and compared 

user profiles to find which users had similar tastes. 

In simple terms, in the word of mouth model a query about some other entity 

B is sent by a human A to her neighbours and it propagates (up to a predefined 

distance h) until a neighbour that knows B is reached. Then B's opinion is sent 

back to A to help in decision making. 

This way of forming decisions requires that opinions can be propagated from 

people to their neighbours to a distance h or at least that the effects of propagation 

on the transferred message are known. (e.g. unsuccessful attempts) 

We can distinguish two challenges for Recommender systems: the time the 

algorithms take to respond and the quality of the received results. In some ways 

these are in conflict since the less time an algorithm spends searching for 

neighbours the more scalable it will be and the worse its quality. For this reason it 

is better to attack these two challenges simultaneously so that the system can be 

both useful and practical. 

Another less important challenge is to build Recommender systems which are 

resistant to attacks. This vulnerability comes from the centralized nature of 

existing solutions where all ratings are available to the participants and thus 

making it possible to know everyone's tastes and the way that people express their 

opinions. We intend to move towards Recommender systems which will be less 

vulnerable to attack by making them distributed with correlations performed by 

third parties and not by the central system itself. 

In the next chapter we present a more detailed analysis of the Collaborative 

Filtering technique which is the best known and most important of the other 

methods. 

1.10 Trust in computing 

There is a whole range of challenges not met by traditional security approaches 

which will typically protect resources from malicious users by restricting access 

only to authorized users through such devices as encryption, authentication and 

access control. However in many situations we have to protect ourselves from 

those who offer resources, so the problem is reversed. Information providers can 
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act dishonestly by providing false or misleading information and traditional 

security mechanisms are unable to provide protection against this type of threat. In 

the case where information providers are anonymous peers the situation becomes 

even worse because the peers' identity is hidden by the protocol. This happens 

because peers have no incentive to act for the benefit of the community. 

On the other hand, Trust and Reputation can provide protection again such 

threats. The problem faced by potential collaboration partners is basically that of 

making decisions involving risk and uncertainty. Trust is a catalyst for 

cooperation because it allows entities to interact spontaneously and efficiently. 

The ability to gain the Trust of others is an important criterion for the success 

and survival of an entity because it makes others willing to collaborate with it. 

The safest and most often used strategy is simply acting in a responsible and 

trustworthy manner. The ability to assess correctly the trustworthiness of a target 

is therefore an equally important criterion for the performance, success or survival 

of an entity. 

Computer networks are increasingly removing us from direct interaction. We 

may now collaborate in Peer-to-Peer networks with people and organizations we 

have never met and perhaps have never heard of before. Many of the traditional 

strategies e.g. access control systems, for representing and accessing 

trustworthiness can no longer be used in such situations. It can therefore be 

difficult to assess whether the services and information provided by remote parties 

are reliable or even whether they are correctly represented. 

Thus there is a need for mechanisms that enable parties to determine the 

trustworthiness of remote entities through computer mediated communication and 

collaboration. These mechanisms should recognize trustworthy entities as such. 

The idea behind this is that such Trust and Reputation systems will enable highly 

trustworthy entities to attract collaboration from others and discourage fraudulent 

users from participating in the community. 

1.11 Uncertain probabilities theory 

There is a theory called Dempster-Shaffer theory [7], otherwise known as the 

theory of uncertain probabilities, which allows us to allocate probabi lity like 
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weights to a set of events in a way that allows statements of ignorance about the 

likelihood of some of events. In our approach we have made use of the basic 

principles of this theory and its successor, Subjective Logic. \lore information 

about this theory can be found in chapter 3. 

One of the weaknesses of the Dempster - Shaffer theory is that it cannot 

produce good results in situations like ours which are characterized by high 

uncertainty and the demand for short response times that a real time system 

requires. Therefore we use Subjective Logic to avoid this problem. Subjective 

Logic can be thought as extension to Shafferian Theory which is based more on 

classical probability theory. 

Another problem is the construction of the opinions that will be used in the 

Subjective Logic algebra. This is because the values have to be given in a special 

form expressed as a triplet of belief, disbelief and uncertainty. In this thesis we 

have used our own method of forming opinions so that they can be used by the 

algebra of Subjective Logic. Another way of producing triplets of data from 

evidence is to use the Beta distribution function [26] but such a method requires 

evidence to be in a predefined format which is not suitable for our case scenario. 

1.12 Assumptions 

We assume that the peers involved in the infrastructure being examined are not 

behaving maliciously and that the Trust values they provide in response to the 

queries are those derived from the application of the formulae we use. We also 

assume that there is no bias in the expressed opinions. 

1.13 Hypothesis 

In this thesis we hypothesize that there is a connection between Trust and 

Similarity. In other words, users which seem to have a similarity in the choices 

they have made are likely to Trust each other rather more than if they were 

dissimilar. 

In other words, the logical hypothesis we make is that if we can assume that 

two entities are likely to Trust each other's ratings, in the case where they have 
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previously provided similar ratings for similar services, then we can use this Trust 

to allow recommendations to be propagated transitively through the network. This 

will allow entities to obtain recommendations from greater distances in a Trust 

network. 

1.14 Thesis Contributions 

This thesis introduces a set of contributions that addresses the problems of 

Recommender systems and intends to improve the quality of the services 

provided. 

More analytically it provides: 

• An overview of a Trust model that uses the operators of Subjective Logic 

and how this could be used in a Recommender system. 

• A model for deriving Primary Trust from evidence or from qualitative and 

quantitative information about users' preferences. The novelty in this 

model is that Trust is distinguished from Similarity. 

• Validation of a distributed, Trust-enabled Recommender system which can 

run in existing Peer-to-Peer communities as a consultation service. 

• A performance analysis which shows the sizes of communities in which 

such a solution can be applied. 

1.15 Dissertation Outline 

The work in this thesis is structured in two parts: In the first part we present a 

study of what can be achieved in terms of the benefits we can have if exploiting 

the Trust relationships in a transitive way. In this study we have used a set of 

formulae to encode Trust relationships in a form that is convenient for applying 

the theory of uncertain probabilities and then we used Subjective Logic operators 

to perform the analysis of the resulting Trust graphs. This logic was found useful 

because it provides a framework for computing Trust properties in long chains. 
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The second part of the thesis studies the performance of such systems and 

focuses on scalability issues. In this study we examine systems of various sizes 

and we make conclusions about the applicability of the method .. 

Chapter 2 gives a brief overview of some models of Reputation as well as to other 

existing solutions that run as consultation services on the web today. We focus 

more on the problems of these Reputation systems but also describe their Trust 

models, what problems they try to solve, and the circumstances under which they 

operate in today's info-sphere. 

We also describe the fundamental operation of Recommender systems, 

presenting the mathematical formulae behind them and the functions they provide 

in the environments they are applied to. 

Chapter 3 discusses Trust systems for computational environments as well as 

focussing on Trust models and calculus. Specifically, it presents the essential 

knowledge that is required to understand the Trust model we use. We also refer to 

the other Trust properties as they can be found in the bibliography. Finally there is 

an introduction to Subjective Logic and its algebra that we use in our Trust 

calculations experiments. 

In Chapter 4 there is an outline of our architecture presenting the steps that have 

to be followed in order to build a distributed Recommender system. Each 

individual phase that has to be carried out to have a workable solution is analyzed. 

There is also a comparison with the centralized architecture focusing on the 

benefits of the distribution. 

In Chapter 5 we present the Trust model we use in our project and analyze the 

way that pure evidence is converted to Trust values. We also evaluate our method 

by comparing its results against an existing mapping model based on the Beta 

distribution function. For the evaluation we use an existing sample dataset of 

evidence which we convert to opinions using both methods. The creation of a new 

mapping was necessary because no behavioural data were available in the format 

that Subjective Logic can use. 
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In Chapter 6 we apply our Trust model to an existing data set of eyidence in a 

hypothetical Recommender system and in this way we build a web-of-trust. We 

apply two Subjective Logic operators to calculate the Trust in transitive chains. 

We finally measure the benefits of our trust-enabled model against a t)pical 

Recommender system that makes no use of Trust and where the decisions are 

made intuitively. 

Chapter 7 contains a performance analysis which shows the applicability of our 

trust-enabled community in a real Peer-to-Peer file exchange application. In this 

chapter we test our protocol's behaviour in terms of traffic that the protocol 

produces in the environment on which it runs. We have included tests for various 

sizes of agent communities and we intend to find the community sizes for which 

the Recommender system can provide responses within an acceptable time limit. 

In conclusion, Chapter 8 provides a general discussion of the success of our 

approach in meeting the requirements we set above and also discusses 

improvements of the model that have been left as future work. 
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Chapter 2 

REVIEW OF RELATED WORK 

2.1 Introduction 

In this chapter we define and describe reputation systems and look at some of the 

problems that such systems have. We also analyze related work that has been done in 

our areas of interest, including Reputation systems in general, particularly in the Peer­

to-Peer world. We briefly examine the best known problems of Reputation systems 

and present relevant, older solutions such as UDDI. In this chapter Recommender 

systems are distinguished from Reputation Systems. In general Reputation Systems 

are used to assist agents in choosing reliable participants to interact with when some 

information about the Trustworthiness of the agent is offered. On the other hand 

Recommender Systems provide assistance to people in making choices when their 

personal experience is inadequate. Therefore Recommender Systems can be 

considered as a special class of Reputation Systems because they provide 

Recommendations by employing Reputation mechanisms in their internal operations. 

The main focus of our work lies in how Recommender systems work. This review is 

no by means exhaustive, for a more complete survey see [45]. 

2.2 Reputation Systems 

Systems established in electronic environments for building Trust between members 

are known as "Reputation Systems". In general a Reputation system is used to assist 

agents in choosing reliable peers to interact with, when some information about the 

trustworthiness of an agent, a peer or a resource in general is offered. 

In Reputation systems feedback is collected from members of a community 

regarding past transactions with other members of that same community. This 

feedback is then analyzed and made publicly available to the whole community in the 

form of feedback profiles of its members. If some member who is seeking assistance 

accepts the past behaviour as a relatively reliable predictor of future behaviour then 
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such profiles can act as a control mechanism essentially used as the digital equivalent 

of a person's reputation. 

One of the problems of reputation systems, is that negative feedback is rarely given 

by participants because they fear retaliation. So participants tend to skip the feedback 

phase although the effort required to complete it is small. Furthermore it is difficult to 

preserve privacy and anonymity and at the same time provide enough information so 

that the entity in question can be successfully identified by other peers [55]. 

Rahman and Hailes [1] proposed a Trust model that can be applied in a Peer-to­

Peer network based on Marsh's work [20]. Rahman's model is somewhat simplified 

compared with Marsh's proposed model and Trust can have only 4 possible values. 

The goals of this work were to assist users in fmding trustworthy entities and 

providing artificial autonomous entities to reason about Trust. The model is inspired 

by work that has been done in the area of the social sciences and it is based on real­

world characteristics of Trust. This model identifies three types of Trust: 

Interpersonal, System and Dispositional. Interpersonal Trust is context specific and is 

the Trust that one agent has directly for another. The second type, System Trust, is not 

based on the state of the trustee but on the reliability of the system to which the 

examined entity belongs. The third type of Trust is called Dispositional Trust or 'basic 

Trust' and describes the general attitude toward oneself and the world. This type of 

Trust is independent of any context. McKnight et. al. [39] define further SUbtypes of 

Dispositional Trust. 

The vulnerability of this approach is in the fact that every agent in the community 

has to be quite complex and include large data structures that represent global 

knowledge about the whole network. In real situations this might be a time­

consuming task. It is also unclear if the model scales for hundred of thousands of 

nodes. Another important weakness that must be considered if the system is used in 

Peer-to-Peer systems is the fact that during bootstrapping a new agent faces a high 

degree of uncertainty about other agents it may find. As a result, it will be unable to 

distinguish between trustworthy and untrustworthy agents and that makes it 

vulnerable to manipulation, as happens to any newcomer to a community. To reduce 

uncertainty and risk it is recommended that new agents are equipped with a number of 

trusted entities so that initial interactions can be made with trusted parties only, or 

with those recommended by already trusted recommenders. 
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Another model that has its basis in gossiping techniques is that of Yu and Singh. 

[38]. Gossiping is the action of spreading news from entity to entity in a nem'ork 

especially by rumours or private information. The term also carries implications that 

the news so transmitted has a personal nature. In Computing Science gossiping is 

defined as "a mechanism for scheduling communication in a netH'ork in which 

individuals exchange information periodically according to a fued schedule". For 

more, see [64][67]. In Yu's and Singh's model, a Social network amongst agents is 

built that supports participants' Reputation. Every agent keeps a list of its neighbours 

which is updated and computes the trustworthiness of other agents by testimonies 

received from reliable referral chains. After a bad experience with some other agent, a 

bad rating is propagated to the rest of the neighbours, so that the other agents update 

their ratings accordingly. As in the previous model it is unknown whether these 

communities can scale to large numbers of users or not. 

N.Mezzeti presents a Socially Inspired Reputation model in [44] aImIng to 

develop a model that allows an entity to predict whether another entity will exhibit 

dependable behaviour or not, based on the behaviour that the same entity exhibited in 

the past. It defines Trust as a measure of how much reliance an entity can place on the 

dependability of another's behaviour within a specific context. This model provides 

amongst others things a property called transitivity which is used to represent 

trustworthiness and competence in recommending in a specific context. It also refers 

to the measure of strength as "Trust degree" with values between [0,1]. 

With regard to transitivity, the model defines a rule which says that the trustor 

should be prevented from trusting a given trustee more than either the Trust he places 

on the recommender or the Trust the recommender places on the trustee. This leads to 

a formula in which the Trust to the trustee (Cecilia) is the product between the Trust 

in the intermediate entities: 

E.g. T(Alice, Cecilia,a) = T(Alice, Bab,j(a)) .r(Bab, Cecilia, a) where, 

a is the context and T symbolises the Trust relation between two entities. j(a) is the 

mathematical representation of the jurisdiction sub-context associated with a, given a 

context 0 and it is represented in mathematical notation by j(a). An entity controlling 
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the context 0 is trusted to provide reliable Trust information about trustees within 

context o. The jurisdiction sub-context was introduced in order to allow transitiyity in 

the Trust relationships. 

This model also introduces time into the Trust relationship which decays with 

some rate n as time passes. Wrong or unexpected interactions have an effect on the 

Trust value and thus the Trust degree. 

Even though the model takes into consideration time and Trust transitivity, it does 

not discuss how a parallel combination of Trust relations would affect deriyed Trust. 

For example what would be the consequences on Alice's Trust of Cecilia ifthere were 

more than one recommender (e.g. Bob and David) who could offer some experience 

about trusting Cecilia? This characteristic makes the model unsuitable for building 

and deriving Trust in a "web-of-trust" scheme where, in principle, when an entity is 

well trusted by more than one trustor then the derived Trust is stronger. 

Stakhanova et al. [46] present a Reputation system which is specially designed for 

the Gnutella Peer-to-Peer network. The proposed solution does not employ 

centralized storage and what is presented in this paper is a policy for managing traffic 

in a Peer-to-Peer network based on peers' Reputation. In this solution each peer 

monitors the activity of its connected peers and makes Trust decisions based on the 

individual thresholds they set for good and bad actions. Traffic from a node with a 

bad Reputation is not accepted by those who have characterized it as a bad node. Such 

a system enables each node to have its own personal view of every other neighbouring 

node and is based on good and bad actions as characterised by the users themselves. 

Even though the figures show that Reputations follow the behaviour of each node 

according to how it behaves, the system requires human intervention via a GUI for 

people to rate and characterize the peers as good or bad. Note that, a node that has 

been characterized as bad might be useful for forwarding the queries and pings of the 

Gnutella protocol to other peers no matter how it has been rated. The policy has not 

been tested in large networks to know for sure what the consequences are of applying 

these policies at a large scale. 

NICE [-+7] is a distributed, reputation-based, approach for Trust management 

designed as a platform for implementing co-operative applications over the Internet. 
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NICE is based on a distributed scheme where user Reputation information is stored in 

the form of cookies (signed statement) expressing peer satisfaction about 

transactions. Before initiating a transaction a peer checks a local database to ensure 

that a targeted peer can be trusted. One of the aims of this work is to attack the 

problem of "free riders", who only use services from the system without offering any 

resources in return, by revealing the free riders in the Peer-to-Peer community. NICE 

uses a signalling system which communicates messages using a multicast protocol. 

The goal of the default policies in NICE is to limit the resources that can be consumed 

by cliques of malicious users and, via the Trust computation, to identify misbehaving 

nodes. The main idea is to build a web-of-trust based on the cookies that are 

communicated between the nodes-entities. For each transaction in the system each 

user involved produces a signed statement (cookie) about the quality of the 

transaction. For example, Alice signs a cookie stating that she has successfully 

completed a transaction with Bob. Bob may store the cookie and use it later to prove 

his trustworthiness to other users including Alice. We can describe the existence of 

Trust in terms of a directed graph called a trust-graph, with vertices representing the 

users in the system and the edges denoting that a cookie is held on one vertex (Alice) 

about another user-vertex (Bob). The set of Alice's cookies that Bob holds denotes 

how much Alice trusts Bob. In the case that prior to a transaction there is no direct 

link between the entities who wish to interact; an indirect link through others can give 

an estimate of the target's trustworthiness. 

However, if no cookie is available for the peer in question, co-operation with 

other peers can gather the necessary information to go on. The method does not 

provide a clear solution to the case where there are multiple paths that lead from the 

origin node of the Trust graph to the destination, where in the best case it uses a 

weighted sum of the strongest paths. The suggested scheme has to be tested to see if it 

scales for infrastructures that include a large number of nodes. As regards the 

assignment of values to cookies, in many cases it is unclear how to assign real-valued 

quality metrics to transactions. The NICE approach also requires the cooperation of 

peers in Reputation calculation, but such cooperation might not always be available, 

for example in cases where there is a conspiracy between malicious users. 

In the approach presented by Gupta et aI. [48] there is a debit-credit mechanism 

which is used for the computation of reputations which credits peer Reputation scores 
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for serving content and debits for downloading. "Behaviour" and "Capabilities" are 

the factors used in the calculation of the Reputation score of each node in the system. 

This solution is an example of a centralized solution with respect to where data are 

stored and where decisions are made. The proposed model tracks positive peers' 

contribution to the system using a credit-debit mechanism. In the system each peer 

computes and stores its Reputation as derived by its own formula locally. For 

ensuring secure and distributed access to Reputation scores a "Reputation 

Computation Agent" periodically collects the Reputations from the peers using a key 

pair. Unfortunately, this approach does not provide mechanisms for decreasing the 

Reputation of users behaving maliciously. 

PGP (Pretty Good Privacy) is another distributed Trust model used for proving the 

identity of key holders. It makes use of user defined thresholds to decide whether a 

given key should be trusted or not. Unlike NICE described above, PGP allows only 

one level of interaction. For example if entity A is trying to decide the trustworthiness 

of an entity B then there can be at most only one entity between A and B since there is 

no transitivity in PGP. In [25], however, there is a method for assessing Trust in 

certification chains. 

2.3 UDDI: an Existing Consultation Service 

UDDI is a primitive form of consultation system that exists on the Web running as a 

meta-service for locating Web Services by enabling robust queries against reach 

metadata. It was used as an industry specification standard for building flexible, 

interoperable, XML Web Service registries useful in private as well as public 

deployments. UDDI stands for "Universal Description Discovery and Integration" 

protocol and creates a standard interoperable platform that enables companies and 

applications quickly, easily, and dynamically to fmd and use Web Services over the 

Internet. UDDI also allows operational registries to be maintained for many purposes 

in different contexts. UDDI is a cross-industry effort by software as well as 

marketplace operators and e-business leaders within the OASIS standards consortium 

[37]. It was built for Business-to-Business collaborations and operates as a yellow 

pages service where queries about services can be answered. UDDI is a good example 
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of a discovery service but it operates as a protocol in which the requirements of a 

query will be described in some pre-defined format in such a way that will be 

understood by other counterparts that have adopted the UDDI protocol. 

A business may deploy one or more private and/or public UDDI registries. :\ 

private registry permits access only to authorized users. A public registry does not 

restrict access to its registry. A business may choose to deploy multiple registries in 

order to segregate internal and external service information. An internal registry 

supports intranet applications, while an external registry supports e\:tranet 

applications. Industry groups may deploy a UDDI registry to support public or private 

exchanges. 

In terms of Reputation, in the UDDI scheme the reputation management 

responsibility is given to distinct centralized entities which act as agencies that receive 

advertisements from providers. Potential partners can locate them directly by 

querying using the UDDI language. This scheme even though it is a working solution 

that looks like a Peer-to-Peer scheme, does not have the flexibility and robustness of 

pure unstructured Peer-to-Peer systems where the registries can be any node in the 

community. 

In table 1 there is a summary of the Reputation systems we examined with their 

advantages and disadvantages. 
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Method In favour Against Scalability 

Rahman-Heiles Inspired by work that has Every agent in the Unknown 
been done in the area of Community needs to be 
social sciences and based complex and include 
on real world large data structures 
characteristics of Trust 

Yu Sigh Based on Gossiping Unknown 
techniques and propagates 
bad experiences which 
does not consume many 
resources 

Mezzati Supports transitivity in It does not describe Unknown 
Trust how parallel 

combination of Trust 
relations would affect 
the derived Trust 
therefore is unsuitable 
for building webs-of-
trust 

Stackhanova Does not employ a Requires human Unknown 
centralized storage· a pure intervention via a GUI 
Distributed Solution. for people to 

characterize peers as 
good or bad. 

NICE Aims to attack the problem No clear solution in the ~lLlllicJ.q 

of free-riders. Supports case where there are Yes 
we b-0 f- trust. multiple paths between 

the origin and the 
target. 

Gupta Secure via the use of a key Centralized approach in Unknown 
pairs for the calculation of regard to where data 
Reputations are saved & decisions 

are made. 

UDDI Standard adopted by the It does not have the Yes 
Industry flexibility & the 

robustness of pure 
unstructured Peer-to-
Peer systems where the 
registries can be at any 
node in the community. 

Table 1. Summary of ReputatlOn Systems m General 
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2.4 Reputation systems in the Peer-to-Peer world. 

These can be considered as a special category of Recommender systems (see chapter 

1). They are Reputation systems because they provide Recommendations by 

employing Reputation mechanisms in their internal operations. In the bibliography 

they can be found under both descriptions. To avoid confusion, in the following 

chapters the term Recommender systems will be used instead of Reputation systems. 

One of the main goals of a Reputation system for a Peer-to-Peer network is to 

reduce the chances of a peer being cheated in a transaction. The general idea behind 

Peer-to-Peer Reputation systems is that Peers evaluate each other's Reputation 

information in a process based on mutual interaction. In some studies it has been 

suggested that decentralization is recommended in reputation systems because it 

significantly reduces the number of malicious transactions [56][57]. This happens for 

a number of reasons: 

• The Reputation system itself rewards those peers that co-operate well with 

others 

• It punishes those peers that cheat or try to do malicious things 

• It motivates network peers to cooperate with each other 

The cost of operation, which in the case of centralized systems has to be covered 

by the central entity where the service runs, is an important factor for a Reputation 

system. In the case of Peer-to-Peer Recommender systems the service is supported by 

the participants themselves and so there is no problem. Thus, theoretically, there is no 

significant cost for running such a service because it is shared amongst the 

participants. 

It has been shown [61][62] that various problems and attacks can compromise a 

Reputation system. For example, systems in which easy change of identity is allowed 

have been shown to be prone to malicious behaviour of peers. Also, it is difficult to 

evaluate the integrity and reliability of the Reputation information in the case that it is 

stored on the peer's computer, because it can be easily falsified. 
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The weakness of the various proposed solutions is that they are specially tailored 

for particular protocols. E.Damiani et.al. [4] proposed a mechanism tailored to the 

Gnutella algorithm, which makes reliability checks on candidate participants prior to 

downloading by sending polls directly to all neighbouring peers via a Reputation 

exchange protocol called XRep. The purpose of this protocol is the collection of Yotes 

from those peers that have download material from the peer in question in the past. 

After all the information from the polls has been collected, it is validated by another 

poll and finally is used by the querying peer to reach a decision. Peers maintain local 

repositories of opinions about other peers they have interacted with in the past. The 

criteria for such updates are, however, SUbjective. 

Even though there are no evaluation results available nor any performance 

analysis of the level of improvement that the algorithm offers in retrieval operations, 

the polling mechanism itself affects the scalability of the Gnutella protocol due to the 

extra messages that need to be sent. A rough estimate shows that the resulting traffic 

is a threefold increase. 

Although this work addresses many security considerations for both Peer-to-Peer 

networks and Reputation systems, it offers no incentive to the peers to participate in 

the XRep scheme. 

PRIDE [58] is another Reputation system also designed for the Gnutella network 

and requires small modifications to be made to the standard protocol. This protocol 

needs no central server to identify peers and store information. Peers create their own 

identities using self-certification and store any recommendations they receive from 

requesters locally. The key operations in the protocol are the creation of a 

Recommendation after a content download and the creation of a transaction number 

for the provider. The transaction number is signed and stored by the requester after a 

download. Both the signed transaction and the Recommendation are stored locally by 

the provider. The provider shows this information to the next requester as a proof of 

its Reputation to persuade himlher to proceed with a transaction. Thus, there is no 

need for a Reputation search by the requester as happens in the XRep protocol 

described above. 

In the protocol every peer runs its own Certificate Authority (CA), which signs its 

identity certificate. This certificate specifies the IP address range within which the 

identity can be used. If the identity certificate is used by an address outside the range 
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then the transaction is aborted. IP addresses are not used as identities because they 

change and sometimes are not managed by the peers themselyes. 

The problem with self certification is that any peer can generate a large number of 

identities and maliciously mcrease their Reputation by gIvmg false 

Recommendations; such a farm of identities is called a 'liar farm'. In the case that 

self-certification is used, a peer's identities (Liar farm) cannot be mapped back to it 

without its consent. By the use of security zones that are subsets of the IP space it is 

assumed that only the information provider receives the Recommendation and the 

requester provides it. In this scheme each peer maintains a local database of verified 

identities. If the requester cannot find a valid identity in its local database then it 

verifies the identity by performing a cryptographic challenge-response to the IP 

address in the identity certificate of the previous requesters. 

Once a requester has received a list of valid Recommendations it sorts them by IP 

address, determines a security distance d and divides the linear IP space into slices of 

length d. Then it calculates the Reputation of the information provider identity. The 

method is based on the fundamental assumption that it will be difficult for a malicious 

peer to generate identities that have totally non-contiguous IP addresses (identity 

farm). By increasing d a requester can reduce the probability of an information 

provider having an identity farm. 

EigenRep [49] is an attempt to build a Reputation management system for Peer­

to-Peer networks. In it each peer stores (locally) its own view of the peers with which 

it has committed transactions in the past. A global Reputation value is computed by 

using the local Reputation values assigned by other peers but weighted properly by 

the global Reputations of the assigned peers. The main source for the Reputation 

value is the peer's history of uploads. 

This algorithm is intended to decrease the number of downloads of files which are 

inauthentic in a Peer-to-Peer file sharing network like Gnutella, and the method is 

based on Power iteration [79]. (Power iteration is the most straightforward technique 

for computing the principle eigenvector of a matrix). The global Reputation value is 

used by peers to choose from whom to download and the network effectively 

identifies malicious peers and isolates them. 
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The problem with this method is that it cannot protect the system from organised 

groups of malicious users who will give high marks to each other to acquire good 

Reputations. 

PeerTrust [50] is another Trust management system for measuring and comparing 

the Reputation of peers in P2P networks, based on feedback from others. It has two 

main features: 

First, it introduces three basic Trust parameters and two adaptive factors for the 

computation of the trustworthiness of peers. These are: 

I) The amount of satisfaction received by the other peers in the community. 

2) The total number of transactions a peer has committed to. 

3) Some balancing factor to offset the impact from malicious peers 

misreporting other peers' service. 

Second, it introduces a general Trust metric which combines the above 

parameters. The Trust value for a peer as it is computed in this system is subjective 

and dependent on the above three factors. 

Each peer maintains a small database which stores a portion of the global Trust 

data. This solution is much like the storage system of the P-Grid database Reputation 

system, but PeerTrust requires co-operation from the peers for storing the 

Reputations. To avoid users acting maliciously there are multiple copies of data stored 

in the databases. Trust is computed on the fly by querying multiple databases across 

the network. 

Micro-payments [51] can also be considered as elementary Reputation 

mechanisms. They comprise a number of digital payment mechanisms which are used 

to track the contribution of each of the participants in a network. The credits obtained 

are proportional to each one's contribution and in that way it works as an incentive to 

increase resource contribution. In such a model, Reputation profiles are developed for 

each of the peers depending on the number of credits each peer manages to collect 

during trading operations. Even though this policy can have positive effects in 

persuading users to exhibit good behaviour, it is solely based on subjective criteria. In 

spite of that, we mention it here as a good example of a basic distributed Reputation 

system. 
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The Histos system [10] approaches the challenge of sharing Reputation in highly 

connected online communities by using directed graphs for the representation of the 

relationships between the users. This characteristic gives a sense of personalization to 

the system. The system was inspired by the Friend of a Friend Finder scheme [54J 

where it was thought that everyone within a community could be known to each other 

through their relationships with their friends. Any relationships established between 

entities could be based on the commonalities found in their sets of interests. Histos is 

an attempt to develop methods by which we can automate the social mechanisms of 

reputation for the purposes of an electronic marketplace. 

In a typical situation the nodes in the directed graph represent users and the 

weighted edges the Reputation ratings that one user gives another. The reason why a 

graph scheme has been used is because it gives higher value to inter-personal 

communication. This means, a node's idea of another, if there is no direct relationship 

between them, depends on the point of view. Thus, all the intermediates shape the 

reputation value of the examined node and therefore the calculated value is dependent 

on these intermediate nodes and especially on how well they know each other. Even 

though Histos is a promising solution, it does not make obvious how the relationships 

between nodes should be created or under what circumstances and semantic 

constraints. It is also not clear if transitive relationships can be supported over long 

chains of nodes. The formula that is used in Histos for the calculation of Reputation is 

based on the assumption that the Trust that is built from the Reputation relationships 

is absolutely transitive. As will be seen in the next chapter, there are certain 

restrictions derived from the properties of Trust under which transitivity can be 

considered. In other words, direct and indirect Trust relationships are treated in the 

same way by this algorithm. 

Another interesting pIece of work in the area of Peer-to-Peer Recommender 

systems is that of Kinatender and Rothermel [68] which presents the algorithms and 

the architecture of a Distributed Recommender system. The work uses a Trust over­

net to establish Trust between individual entities but is preliminary and has not been 

applied in a real environment. Therefore no set of results is provided. 

In table 2 there is a summary of the P2P Reputation Systems systems we 

examined with their advantages and disadvantages. 
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Method In favour Against Scalahility 

Damiani et al. Addresses many It is based on a polling Not scalable. 
security mechanism which Affects th~ 
considerations for comes from a scalability of 
both P2P networks centralized idea. Gnutella also. 
and Reputation 
systems. 

PRIDE Recommendations The problem of self Yes 
are created after a certification is that any 
content download. So peer can generate a 
there is no reason for large number of 
Reputation search by identities and 
the requester which maliciously increase 
would be very their Reputations by 
consuming in giving false 
resources. Recommendations. 

EigenRep Is intended to It cannot protect the Unknown 
decrease the number system from organized 
of downloads of groups of malicious 
content that is users which will give 
inauthentic. high marks to each 

other to acquire good 
Reputations. 

PeerTrust It regards the amount Requires cooperation Unknown 
of satisfaction from peers for storing 
received by the other Reputations in the P-
peers in the Grid database. 
community. 

Micropayments A good example of a A solution solely based Yes 
distributed on subjective criteria. It 
Reputation system. comprises very basic 

operations. 

Histos The Reputation is It does not make clear Unknown 
dependent on the how the relationships 
point of view which between the nodes 
makes it more should be created or 
realistic since it uses under what 
theory from social circumstances and 
networks. semantic constraints. 

Kinatender et al. Pure distributed Not applied in a real Yes 

solution. environment so far. 

Table 2. Peer-to-Peer ReputatIOn Systems 
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2.5 Centralized Reputation Systems 

This is the best known type of Reputation system and runs embedded in a centralized 

service. The Recommender systems we mentioned in the introduction have been 

studied from the perspective of the electronic commerce. Recommender systems often 

exist as services embedded into web sites therefore their use is completely transparent 

to the end user. They provide support for e-commerce activities. 

www.epinions.com[16], www.amazon.com[17] and www.ebay.com[IS] are some of 

the most popular sites that use them. 

In the systems we referred to in the first chapter, data analysis techniques are 

applied to solve the problem of helping customers to find the products they would like 

to purchase through E-Commerce sites. In a sense, Recommender systems are a type 

of application which belongs to the category of Knowledge Discovery in Databases 

[53] (KDD). For instance companies are using KDD to save money by discovering 

which products sell well in some periods of the year and in this way manage their 

inventories. KDD is also used by companies to reduce the cost of direct mail by 

discovering which customers will be more interested in particularly special offers. 

How effective a Recommender system is can be measured in terms of its success 

in predicting consumer preferences. 

One simple approach to building a Reputation mechanism is to have a central 

agency that keeps records of the recent activity of the users in the system in the same 

way that the scoring systems of credit history agencies work [27]. Then an algorithm 

is used to correlate the scorings and make predictions about future choices. 

The best known technique is Collaborative Filtering [63] [5] [14]. This is used to 

detect patterns among the opinions of various users and utilize them in making 

recommendations based on the personal judgment of other members who happen to 

have similar tastes. It employs statistical techniques to find a set of customers which 

can be seen virtually as neighbours and also have a history of agreeing with the target 

user. The basic idea of Collaborative Filtering is to make predictions of scores based 

on the heuristic that two people who agreed (or disagreed) in the past will probably 

agree ( disagree) again. Even though this heuristic can be sufficient for correlating 

numerous users, systems that have employed the method still appear to be highly 

sparse and thus ineffective in making accurate predictions at all times. 
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Once the neighbourhood of users is formed, an algorithm is used to produce 

recommendations. B.Sarwar et. al. [14] distinguish three phases in the 

recommendation production mechanism: Representation, Neighbourhood Formation 

and Recommendation Generation. The first one, "Representation" deals with the 

modelling of items that a customer has already purchased. The second phase, 

"Neighbourhood Formation" deals with the problem of identifying other 

neighbouring customers for which there are common items, and finally the third task 

focuses on the problem how to find the best N products or how a neighbouring user 

would rate some product unknown to her. 

The Representation in a typical Collaborative Filtering system has the form of 

stored transactions of n customers against m products, an n x m matrix in which 

boxes either contain the ratings given by user n for product m or zero in the case that 

there is no experience by that user at all. Such a representation is not perfect and it has 

problems when associated with this type of Recommender system. 

The commonest problems of centralized Reputation systems are: 

• Sparsity: The problem is the reduced coverage due to having a sparse matrix and 

appears as the system being unable to produce recommendations for a user. By 

sparsity we mean the lack of data required for a Collaborative filtering system to 

work. Levels of 95% sparsity are common in contemporary Collaborative filtering 

systems. For instance, the sparsity of the matrices of "Eachmovie" and 

"Movielens", two of the publicly available datasets typically used in research, are 

respectively 97.6% and 95.8%. 

• Scalability: These types of algorithms require computation that grows with both 

the number of users n and the number of products m. The increase in the numbers 

of users and items will require increasing amounts of computational and storage 

resources for the correlation of the data. Sparsity, however, helps those systems to 

scale up, since due to it the number of computations is kept within reasonable 

limits and makes it affordable for a centralized system to perform the required 

calculations in real time. 

• Synonymy: Different item names can refer to similar products and thus 

correlation-based systems may see no match between products when computing 

the correlation. For example, suppose there are two customers of which the first 
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one rates 10 different "recycled letter pad" products with a high mark and the 

second one also rates with high mark 10 "recycled memo pads". Any correlation 

between the items will not be seen by a Correlation-based Recommender system, 

thus it will be unable to provide an association between the first and the second 

customer. Mainly, this is because these methods work with exact matches. 

• Cold-start problem: Users who have experienced just a few ratings are unable to 

become members of potential neighbourhoods. So, they become isolated and thus 

they cannot receive good quality recommendations. This problem occurs in 

situations where a user enters the system and has expressed no ratings at all. 

Collaborative filtering techniques cannot provide any recommendations in such 

cases. Cold start users are usually identified as those who have expressed no more 

than 5 ratings. However, the users need to receive good quality recommendations 

as an incentive to keep using the system. 

• Vulnerability to attacks: The attacker can simply create a fake user with similar 

preferences to those of the targeted user and thus he/she becomes highly 

influential to the victim. If the process of creating recommendations is known and 

the ratings of every user are publicly available, a simple but effective attack can 

be the following: A malicious user wants to recommend some product f to the 

target user. Then he can create a new user fakeuser who can rate all the items 

rated by the target user in the same way and also rate with the highest mark the 

product! In this way the system looking for users similar to target user will see 

the high similarity of user fakeuser and target user and so it will weight his rating 

on f with the highest mark and therefore recommend f to the target user. This 

could occur in those centralized systems which make user ratings publicly 

available. 

As regards the problem of sparsity, various techniques have been proposed for its 

reduction and the best known is Singular Value Decomposition (SVD)[30]. SVD is 

used in recommender systems to perform two different tasks: First, it is used to 

capture latent relationships between customers and products, which allow us to 

compute the predicted likeliness of a certain product by a customer that could not be 

seen before. Second, SVD is used to produce a low-dimensional representations of the 

original customer-product spaces and then compute the neighbourhood in the reduced 
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space. We can then use that to generate a list of the top-X product recommendations 

for customers. However, for extremely sparse data sets it has shown no improvement 

over standard techniques. In our approach we intend to reduce sparsity, as well as to 

provide users with recommendations of higher quality. 

2.6 How a typical Recommender System works 

Collaborative filtering is a technique used to detect patterns amongst the opinions of 

different users and to make recommendations to people automatically, based on others 

who have shown similar taste. It essentially automates the process of "word-of­

mouth". In collaborative filtering systems the votes of a user are predicted by an 

algorithm which has its basis in some representative information about the user itself 

and a set of weights calculated from the database of user's experiences. 

2.6.1 Memory-based algorithms 

When asked for a recommendation by a user, a standard Collaborative Filtering 

algorithm includes the following 3 steps: 

Step 1 

It compares the user who asks for a recommendation against every other user in 

the community, computing a user similarity coefficient. For this task different 

techniques have been proposed: the Pearson Correlation Coefficient is the best 

performing and most frequently used [28]. Proposed alternatives are the Constrained 

Pearson Correlation Coefficient, the Spearman Correlation Coefficient and Cosine 

Similarity. In the following formula, the Pearson Correlation Coefficient 

wo,; represents the Similarity of user a to some user i with regard to their ratings on 

items and it is defined as: 

Where} is the number of items rated by both entities a and i, uo .j is the rating 

given by user a to item}, U
Q 

is the mean of a's ratings. It is important to emphasize 
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that the coefficient can be computed only if there are items rated by both users. The 

Pearson correlation coefficient gives valid results in the case where it is calculated for 

more than five common experiences; otherwise it has unstable behaviour, is not 

meaningful and gives unsatisfactory results. The coefficient can be computed for 

overlapping items. For similar users it takes values close to 1 and for dissimilar users 

it tends to -1. A zero value would mean that there is no correlation between these two 

users or else, there is no linear relationship between the rated items and thus the 

experiences cannot be used for doing predictions. 

Step 2 

It predicts the recommendee's rating for every item she has not yet rated. So a 

predicted rating Pa,j of an active user for item} is a mean rating plus a weighted sum 

of deviation from the mean rating for every user where the weight is the user 

similarity to user a: 

If a user A is similar to user B, much importance is given to the opinions of user A 

when creating a recommendation for user B. 

Step 3 

The system suggests to the user the items with the highest predicted ratings. 

Apart from Pearson's, the other method most often used for correlation is called 

Cosine-based similarity. Here, two items are thought of as two vectors in the m 

dimensional user-space. The similarity between them is measured by computing the 

cosine of the angle between the two vectors. Formally in the m x n ratings matrix 

similarity between items i and} is denoted by sim(ij) and is given by: 

similarity(i,j) ~ cos(I,}) ~ ~~I i~lI~ 

where the symbol "." denotes the dot-product of the two vectors. The denominator 

contains the product of the actual length of the two vectors. 
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The memory based method is quite well known and was first used for rating 

articles. The best known developed scheme is Grouplens [5]. The Pearson Correlation 

Coefficient was established as the basis for the weight factor mainly from Grouplens. 

Hence, the correlation between users a and i can be calculated by knowing the sums 

of their relative distances over the j items for which both users have expressed ratings. 

A detailed survey that discusses this type of algorithm as well as to the Amazon 

Recommender system can be found at [81]. 

2.6.2 Model-based methods 

The type of collaborative filtering model we described above is called Memory-based 

and is the most common type. For reference we mention Model-based methods which 

are also known as Probabilistic methods. The best known types of probabilistic model 

are the Cluster model [76], the Bayesian Network [15] and the Horting model [33]. 

Despite their speed in providing recommendations they are not practical for 

environments in which user preferences are updated regularly [14]. 

Bayesian networks create a model based on a training set with a decision tree at 

each node and edges representing user information. The model can be built off-line 

over a matter of hours or days. The resulting model is small, fast, and essentially as 

accurate as nearest neighbour methods [32]. Bayesian networks may prove practical 

for environments in which knowledge of user preferences changes slowly with respect 

to the time needed to build the model but are not suitable for environments like ours 

in which user preference models must be updated rapidly and frequently. 

In Cluster models users are grouped by their similarity in preferences and 

predictions are made regarding the participation of the user in some cluster. In the 

case of participation in various clusters the prediction is a weighted average. 

Once the clusters have been created, predictions for an individual user can be 

made by averaging the opinions of the other users in that cluster. Some clustering 

techniques represent each user with partial participation in several clusters. The 

prediction is then an average across all clusters, weighted by the degree of 

participation. 

As shown in [19], algorithms based on Clustering haH in some cases worse 

accuracy than Nearest-Neighbourhood, therefore pre-clustering, which is a time 
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consuming operation, is recommended. Once the clustering is complete, ho\\ ever, 

performance can be good since the size of the group that must be analysed is much 

smaller. 

Another type of Memory-based algorithm is called Vector similarity. In 

information retrieval, the similarity between two documents can be measured by 

supposing that each document is a vector of word frequencies and computing the 

cosine of the angle between the two frequency vectors [52]. This formalism can be 

adopted in collaborative filtering systems where Users and titles have the role of 

words and votes take the role of frequencies. 

2.6.3 Extensions to Memory-based algorithms 

One extension method for collaborative filtering is default voting and works where 

there are few common votes between two entities. The standard correlation algorithm 

in that case would not perform well because it uses votes in the intersection of the 

items that both individuals have voted upon I a n I j . If some default value is assumed 

for the cases that common votes do not exist then we can form the match over the 

union of their voted items I a U I j . Moreover we can assume some default vote value 

for some number of additional items that neither has voted on. 

2.6.4 Other methods 

Horting [33] is a graph-based technique in which nodes are users and edges between 

the nodes indicate the degree of similarity between users. Predictions are produced by 

walking the graph to nearby nodes and combining the opinions of the nearby users. 

Horting differs from nearest neighbour algorithms as the graph may be walked 

through other nodes which have not rated the item in question, thus it explores 

transitive relationships that nearest neighbour algorithms do not consider. 

In other words, this method claims that it solves the problem of the quality of 

Recommendations by using transitive similarities. The Horting method has so far 

been tested with synthetic rather than real data and it seems that it produces better 

predictions than a nearest neighbour algorithm. Among the advantages of the Horting 
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method are speed, scalability, accuracy of results and the fact that it requires only a 

modest learning curve. 

In our system we make use of a memory-based model since these are best known 

and are used in Reputation mechanisms in on-line bidding web sites such as eBay. 

Amazon, etc. Another reason for this choice was the nature of the dataset itself we 

used for testing which was more convenient (because of high availability of votes) for 

that method. The fact that memory-based models, in contrast to Bayesian models, do 

not have a learning phase makes them suitable for yet another reason. Such systems 

provide a suggestion service in the form of top selections or they simply provide some 

rating about a product that is asked for. 

In all these memory-based systems the rating is provided by the users themselves 

but all the weighting calculations are done in a centralized manner finally producing a 

global scale value. 

Here we need to mention the advantages that a decentralized system could offer in 

comparison to all the systems we have described. Decentralized system would provide 

resistance to attacks and can work unbiased since there is no central place where 

somebody could maliciously provide biased results. In addition to the scalability 

problems that centralized solutions have we should also mention that they provide a 

single point of failure. 

It is worth pointing out that in the bibliography, memory-based algorithms are 

divided into Item-based Collaborative Filtering algorithms and User-based algorithms 

[31]. Experiments suggest that Item-based algorithms provide dramatically better 

performance than User-based algorithms while at the same time providing better 

quality than the best available User-based algorithms. This is also because User-based 

systems' widespread use has revealed potential challenges such as: Sparsity which is 

responsible for poor recommendations and Scalability because they reqUIre 

computation that grows with the number of items and the number of users. 

2.7 Summary and Conclusion 

As can be seen from the systems and algorithms reviewed, almost none of them work 

as a complete solution for providing recommendations in an unstructured Peer-to-Peer 

infrastructure, as they are almost all based on ideas inspired by the centralized world. 
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Many of them also require considerable user intervention to operate. None of the 

technologies presented can be adopted without change for a Recommender system. 

The algorithms of Recommender systems we present in this review have been 

designed to work mainly in centralized services and require that a large amount of 

computation is done by a central entity and therefore they do not scale well for large 

numbers of users. Also, in the form they are currently provided they cannot be applied 

in decentralized environments. 

Clustering users in groups of common interests is not suitable for our use-case 

because new recommendations are produced very frequently. To do this would 

require frequent restructuring of the clusters and as a result an increased number of 

computations with serious impact on performance. 

In most advertised solutions there are no figures for performance and therefore the 

applicability of each method can not be fully guaranteed due to the lack of relevant 

evidence. Furthermore, many of the proposed solutions were tailored specially for 

existing infrastructures and Peer-to-Peer protocols and therefore those particularities 

were taken into consideration in the design of the proposed solutions. In all cases they 

use infrastructures from unstructured Peer-to-Peer networks. 

As regards the use of graph topologies for propagating recommendations the 

algebras examined do not provide support for long chains nor for combining 

recommendations in serial or parallel when there are multiple paths to explore. 

In the next chapter we present Trust systems for computational environments, 

refer to some fundamental issues and examine in more detail how they cope with 

network infrastructures. 
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Chapter 3 

ESSENTIAL KNOWLEDGE ABOUT TReST SYSTE:\IS 

3.1 Introduction 

In this chapter we explore Trust in computer systems and analyse its properties. Out 

of all the existing solutions for building Trust systems we focus on Subjective Logic, 

its operations, the algebra that it offers, and its benefits and limitations. First, 

however, we discuss some other models of Trust that are worth mentioning. We also 

discuss the Dempster-Shafer model which formed the basis for Subjective Logic and 

we give a basic description of the notion of Uncertainty as it is useful for expressing 

opinions that are based on observations that cannot be infinite. In this chapter there is 

more focus on Subjective Logic because it is the model we actually chose to use in 

our Peer-to-Peer Reputation system. 

3.2 Trust in Computing Systems 

Trust and Reputation have always been a concern for computer scientists and much 

work has been done to formalize it in computing environments [20]. In computing, 

Trust has been the subject of investigation in distributed applications in order to allow 

service providers and consumers to know how much reliance to place on each other. 

As we mentioned above, the relation between Trust and Reputation is that Reputation 

is a commonly held belief about an agent's trustworthiness. 

Yahalom et.al in [21] distinguish between directly trusting an entity about a 

particular subject and trusting an entity to express the trustworthiness of a third party 

with respect to a subject. These two types of Trust are known as Direct and Indirect 

(or derived) Trust. 

Given the above distinction, the obvious concern is how does one traverse a 

network or the web-of-trust (a trust recommendation path) that develops in an 

environment in which one Trusts an agent, who can also express beliefs about the 

trustworthiness of others, and the other who may do the same? 
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A variety of definitions of Trust have been given and in many of them Trust is 

declared to be dependent on the context in which an interaction occurs or otherwise 

on the observer's subjective point of view. One of the definitions by Deutsch [2-+] 

says: 

"If an individual is confronted with an ambiguous path. a path that can lead to 

an event perceived to be beneficial (Va+) or to an event perceived to be harmful 

(Va-); he perceives that the occurrence of (Va+) or (Va-) is contingent on the 

behaviour of another person; and he perceives that the strength of (Va-) to be 

greater than the strength of (Va + ). If he chooses to take an ambiguous path lI'ill! 

such properties. I shall say he makes a trusting choice; if he chooses not to take 

the path he makes a distrustful choice." 

From this definition we notice that harmful events are those to which the 

individual pays more attention than beneficial ones. In other words, this explains why 

trustful paths are hard to build and easy to be destroy. 

3.3 Properties of Trust 

In this section we describe some essential properties of Trust which are found to be 

important for the modelling of Trust we perform in our proposed system. First of all 

we need to distinguish the right terms to use for the entities that take part in a Trust 

relationship. We call the entity which expresses Trust about something else the trustor 

and the passive entity for which the Trust is expressed about, the trustee. 

3.3.1 Subjective 

As we mention in the previous paragraph, Trust can be thought as a subjective 

measure because different entities can have different kinds of Trust for the same , 

target entity. If we imagine a community of agents, the Trust for a specific agent is 

dependent on point of view, since every agent will have a different set of experiences 

with the trustee and consequently different perception of their Trust on the trustee, 
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The repeated use of the word "perceive" in Deutsch's definition sho\vs Trust as a 

sUbjective quality that two individuals place on each other. The fact that different 

entities can have different kinds of Trust in the same target entity means that Trust is 

subjective. 

3.3.2 Context Specific 

As with Reputation, Trust is also context specific since it is related to the objective 

and the nature of the Trust relationship, otherwise called purpose. From Deutsch's 

definition we also notice that Trust is related to the purpose and nature of the 

relationship. 

For example, if the context is finding a good car mechanic, then the Trust for 

those entities that could be trusted must be to do with suggesting a car mechanic. As 

we will see in the next paragraph the existence of common purpose is a requirement 

for having transitive Trust. 

3.3.3 Transitive 

As seen in [7] Trust is not implicitly transitive. There are arguments about whether or 

not Trust is transitive. However, under specific circumstances transitivity can be 

allowed when covered by explicit conditions. 

Trust transitivity means if, for example, Alice trusts Bob who trusts Clark then 

Alice will also trust Clark. This is what happens in a typical recommendation. In a 

classic scenario if Bob trusts Clark as a good car mechanic then the Trust of Alice for 

Bob must be in suggesting somebody to be a good car mechanic. Under this common 

purpose (Alice trusts Bob to provide that recommendation) we can say that Alice can 

trust Clark. So Alice trusts Bob as a recommender of a good car mechanic. If the level 

of Trust of Alice for Bob is known then it makes it possible to find out how much 

trust Alice can place on Clark to be a good car mechanic. The Trust purpose of the 

final leg must somehow be part of every leg of the Trust chain. Trust in the ability to 

recommend represents recommendation Trust and is precisely what makes Trust 

become transitive. 
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As we saw in section 3.2 Trust can be split into Direct and Indirect (derived). This 

raises an issue of how one can traverse a whole chain ofintennediate entities to find a 

Trust value for a distant trustee. 

Even though it has been shown that Trust is not necessarily transitive [7] there are 

various requirements such as the context, otherwise known the Trust purpose, that 

need to be specified and which indicates the ability to recommend [22]. This ability, if 

it exists, makes Indirect Trust possible. Assuming that this ability is present in a long 

chain then a recommendation can be made since indirect Trust can be calculated 

along the chain. 

Sometimes in the literature, Indirect Trust is referred to as Recommendation Trust 

and Direct Trust is referred to as Functional Trust. In reality, Trust is never absolute 

and many researchers have proposed expressing Trust as discrete verbal statements, as 

probabilities or continuous measures. One observation which can be made, from a 

human perspective, is that Trust is weakened or diluted through transitivity. 

The idea of constructing chains of transitive Trust, based on a single Trust purpose 

with Functional and Recommendation variants, is captured by the following definition 

found at [34]: 

"A valid transitive Trust chain requires that the last leg in the chain represents 

functional Trust and that all other legs in the chain represent recommendation Trust 

where the functional and the recommendation Trust legs all have the same Trust 

purpose". 

This observation suggests that the Trust purpose of the final leg must somehow be 

part of every leg in the Trust path. 

In the case that there are both functional and recommendation Trust in a purpose, 

these should be expressed as two separate Trust legs. In the above example, the 

existence of both functional and recommendation Trust legs e.g. from Clark to David 

should be interpreted as Clark having Trust in David not only to be a good car 

mechanic but also to recommend somebody else for that job. In that case that 

expression can be pictorially represented as in the following figure. 
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Alice Bob Clark David 

~ ____ ~_~_ •• : ___ B __ [dr~l:~C~~~~._~_ •• __ c[~d~ 
~ A[if]:D ~ 

figure 1. 

The above chain of entities in figure 1 can be written as: 

Alice: David = Alice: Bob : Clair: David 

The transitive path stops where the first non-recommendation Trust leg IS 

encountered. 

A distinction can also be made between Initial Direct Trust and Derived Indirecr 

Trust, where i indicates Indirect Trust, d Direct Trust , r Recommender Trust and f 
Functional Trust. What we aim to do is to find out what would be the Functional 

Trust of Alice for David given that we know the Trust of the intermediate entities as 

recommenders: 

Alice[ifP1 ]:David = Alice[ drP1] :Bob[ drP1 ]:Clair[ dfP1 ]:David 

In other words in order to know the Functional Trust of a distant entity, we 

require the Recommender Trust of the intermediate entities to be known. In the case 

that an entity has both functional and recommendation Trust for another entity then it 

should be expressed as two separate Trust legs in the expression. 

As can be seen, if Functional Trusts are known or can be derived by some method 

or formula then the problem that arises is how to calculate the Recommender trusts. 

3.4 Combination of Trusts - Topologies 

In the previous examples we used serial combination of trusting entities from which 

we derived the indirect Functional Trust of Alice to David. There are cases in which 

recommendations are received from several sources in order to provide plentiful 

information in making decisions. We refer to that case as parallel Trust combination. 

Assume that there is a second opinion in the previous example where Alice can be 

told how good David is: 
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Alice 
David 

Clark 

Figure 2. 

In this scenario Alice needs to get her car serviced and she asks Bob and Clark 

who both have some personal experience with David. In other words Alice asks for a 

second opinion about David. In the case that she receives positive recommendations 

about David, the Functional Trust of Alice to David is stronger than if she had asked 

for one recommendation only. In the case of a parallel combination of Trust the 

expression would be: 

Alice[itPl] : David (Alice[drPl] : Bob[dtPl] : David), 

(Alice[ drPl] :Clair[ dtP 1] :David). 

3.5 The problem of Dependence 

Recommendations should be passed in their original form and not as indirect derived 

Trust, otherwise there is the danger that the calculation of derived Trust is done 

incorrectly. The rule is that only direct Trust should be recommended. This is because 

the relaxation of this rule may lead to situations where the originating entity will not 

get the real picture of the Trust network. This way makes impossible the existence of 

hidden topologies that the trustor cannot see. We require that all the information 

regarding the topology from the trustor to the trustee is forwarded back to the 

originating entity. 

In a recommendation topology similar to that of figure 3 there are various ways 

that the graph can be traversed to find how much Trust A would place to E. 
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Figure 3. 

A perceived topology (A:E) might be interpreted as (A:B:E),(A:C:E) or 

(A:B:D:E),(A:C:D:E) both of which are wrong. In the first scenario the existence of 

the D entity is kept hidden while in the second one the DE relationship appears twice 

in the expression. The correct one can be considered to be A:E = «A:B:D),(A:C:D»:E 

which corresponds to the real topology. There is a crucial difference between 

recommending Trust resulting from our own experience and recommending Trust 

which has been derived as a result of recommendations from others. (see 3.2). By 

recommending Direct Trust the querying entity is able to know the real topology of 

the Trust network between A and E and therefore the calculations of the 

simplifications of the resulting Trust graph must be done by the originator A itself 

after it has received all the topological data. 

In a parsing algorithm, which would be constructed to perform the simplification 

task, such simplification SUb-operations should not be done by the intermediate 

entities themselves. In the example in figure 3 the originator A must wait until all 5 

Trust vectors are received A ~ B,A ~ C,B ~ D,C ~ D,D ~ E during a Trust 

query and then apply some Trust algebra in order to calculate the derived Trust 

A ~ E. Assuming that serial and parallel operations can be applied to a series of 

Trust vectors, A has first to combine serially the two chains A ~ Band B ~ D and 

also A ~ C and C ~ D. Then it should combine in parallel the two chains 

A ~ B ~ D and A ~ C ~ D in order to get A ~ D. Finally, it should again apply 

the suggestion operator to (A ~ D and D ~ E) to get the requested opinion A ~ E. 

In order to apply this rule we need to assume that the Trust vectors that are 

forwarded back from a transitive chain are passed unaltered to the query originator. In 

other words, we assume that intermediates act with honesty during this phase. This 

requirement disallows the deployment of simple cacheing mechanisms in the 
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intermediate nodes which could offer much to the pre-calculation of Trust that could 

save time and computational effort. 

Josang et al. suggests a more practical fonn of expressing transitive chains. 

Especially when the topology that is to be analyzed (or some parts of it) are unknown, 

each isolated Trust relationship can be expressed individually and then an automatic 

parser can be used to establish valid topologies depending on what needs calculating. 

In [34] he presents a simple parser algorithm that can be useful for detennining 

whether at least one Trust path exists between two principals. However, further 

analysis is required to derive the measure of Trust resulting from the topology. 

3.6 Time 

Josang in [22] mentions time as an important element in a Trust relationship. 

Obviously the Trust of the trustor in the trustee regarding a certain purpose at a 

certain point in time may be different from the level of Trust after several transactions 

have taken place between the two entities. However, even if no transactions take 

place, Trust should gradually change with the passing of the time. The rule about time 

that should be followed is that when more than one instance of a Trust value exists, 

the one which has the newest timestamp must be used. 

It is also worth mentioning the paper of N. Mezzeti [44] which introduces time to 

the calculation of Reputation. 

3.7 Asymmetry 

Trust is an asymmetric binary relation between a trustor and a trustee. It is 

asymmetric since "A trusts B" does not necessarily imply that "B trusts A". Moreover 

both the trustor and the trustee could be one or many agents. 

3.8 Measures of Trust 

Trust has a value. A Trust relation is associated with a value that represents its 

strength or degree of truth. Trust can have various measure forms and depends on the 

approach and use. For example it can han the form of binary Trust (trusted, non-
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trusted), it can be discrete (strong Trust and weak Trust, strong distrust and weak 

distrust) or it can even have contiguous fonus such as probability or a percentage of 

belief property in the Trust relationship. From a probabilistic point of view there 

would be both a certain amount of belief and disbelief (the complement of belief) 

which can be used to express the level of trustworthiness with absolute certainty. 

3.9 Temporal Dimension 

Trust has a temporal dimension. Since Trust is learned from past observations, Trust 

values evolve with new observations and experiences. Moreover, to account for 

changes in a trustee's behaviour, recent observations carry more weight in deri\'ing 

Trust than past observations. 

3.10 Dempster-Shafer Theory 

Dempster-Shaffer theory allows the allocation of probability-like weights to a set of 

events in a way that penuits statements of ignorance about the likelihood of some of 

the events. The allocation of weights leads to the derivation of two numbers: the 

Belief, the degree to which an event is supported by the evidence, and the Plausibility, 

the degree to which there is a lack of evidence to the contrary. See figure 4, These two 

numbers are the basis on which any belief-based decision is made. 

Plausibility 
, 

Belief 

Ignorance Disbelief 

Figure 4. 

This theory owes its name to work by A.Dempster (1968) and G.Shafer (1976). The 

Dempster-Shafer Theory, also called Frame of Discernment, has two aspects: degrees 

of belief and one question utilizing subjective probabilities for a related question. 

Dempster's rules for combining degrees of belief which are based on independent 

items of evidence, gives a third basic probability from two given probabilities. This 
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framework consists of belief - ignorance - disbelief; the noteworthy point is that 

ignorance is not always the same as disbelief. In the Bayesian framework of 

discrimination there is only belief and disbelief. Because the Dempster-Shaffer theory 

introduces a new property, that of ignorance, there is no correspondence with 

Bayesian logic. 

Example: 

Imagine that there is a traffic light and two witnesses who report its state. The 

traffic light can be in any of the following states {Red, Amber, Green, Red+Amber}. 

In the case that the first witness would say that he saw an Amber light and the second 

one a Red light it would be easy to find states which are compatible with those 

observations which in this case is the Red+Amber combination. In an environment 

with uncertainty the reliability of the witness (in that case how sure they were about 

what they saw) should be taken into consideration in the analysis. 

In the case that the second witness had said that he was sure that he saw a Green 

light, conventional probabilistic logic would give no solution to the problem. Saying 

nothing about the Ambemess of the light, is similar to excluding the possibility that 

the light was Amber. In Dempster-Shaffer theory by introducing ignorance the result 

might be either that the light was Green or Amber or Amber+Red depending of how 

sure the first witness was in comparison with the second witness. In that case there is 

no definite decision about what the light's state was but a decision will be taken when 

new evidence is provided to resolve the situation. 

3.11 Uncertainty 

Because opinions are based on observations it is always impossible to know for 

certain the real or objective behaviour of the examined entity. [23] introduces the 

notion of uncertainty to describe this gap in knowledge or else the absence of belief 

and disbelief. Uncertainty is important in Trust modelling as it is always present in 

human beliefs and thus is suitable for expressing these kinds of beliefs. 

Trust models for calculating Trust transitivity in long chains which also make use 

of uncertainty have been proposed in the past [8] and are better known as an "Algebra 

for Artificial Reasoning" or "Subjective Logic ". This model has its basis in uncertain 
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probability theory and provides the appropriate logical operators for combining 

beliefs and deriving conclusions in cases where there is insufficient evidence. 

As absolute certainty can never exist, the uncertainty property (u) has been 

introduced to fill in the gap that deals with the absence of both belief and disbelief. A 

probabilistic approach would treat trustworthiness by observing the pattern of some 

entities' behaviour and using only two properties belief (b) and disbelief (d) where 

b+d=1 ,b.d E [0,1] . As we mentioned earlier in this chapter, traditional binary calculus 

assumes statements of Trust as dual valued either true of false. As such, Subjective 

logic can be seen as an extension of both binary calculus and probability calculus. The 

relationship between b,d and u is expressed as b + d + U = I which is known as the 

Belief Function Additivity Theorem [8]. As can be seen from this theorem, uncertainty 

is interpreted as something that fills the void in the absence of belief and disbelief. 

3.12 Trust modelling with Subjective Logic 

In uncertain probability theory [23], Trust can be thought of as the level of belief 

established between two entities in relation to a certain context. In this theory Beliefis 

expressed m a metric called Opinion. Trust is a fuzzy concept and is usually 

expressed as a binary statement (true or false) but our imperfect knowledge is 

translated into degrees of belief, disbelief and uncertainty. 

Subjective logic is an extension of the Dempster-Shafer logic of the theory of 

evidence and as we have mentioned, it produces better results for environments with 

high uncertainty and in cases where real time results are required. 

The triplets (b,d,u) obeying the rules of the Belief Function Additivity theorem are 

called Opinions. Each of the b,d, and u parameters has a value between ° and l. In 

Subjective Logic there is also a fourth redundant parameter which is known as 

Relative Atomicity a and shows the bias of the system. An opinion can be converted to 

a plain probabilistic value by calculating the notion of Probability Expectation E(x): 

Ex =b+a'u 

Subjective logic also provides the traditional logical operators for combining 

opinions (e.g. A,V) as well as some non-traditional ones. In total, in order to reason 

about uncertainty six operators have been defined: Conjunction, Disjunction, 

Negation, Consensus, Discounting and Conditional inference. In our research we use 
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only the Recommendation and Consensus operators which are useful for combining 

series of opinions serially or in parallel and thus analyzing graphs that haye been built 

up from numerous Opinions and thus can be used for simplifying graphs of opinions 

into a single Opinion. A complete reference to the algebra of SUbjectiYe Logic and on 

how the algebra is applied to Belief, Disbelief and Uncertainty properties can be found 

in [25]. 

Even though opinions in the form of (b,d,u) are more manageable due to the 

flexible calculus that opinion space provides, evidence is usually available in other 

forms easier for humans to understand. 

Despite the fact that Trust and Reputation express different things, they both have 

common characteristics such as being context specific and dynamic (they change over 

time and follow experience growth). Since there are no formal ways of absolutely 

measuring the Reputation of an object or an entity in general, we attempt to give a 

solution to approaching trustworthiness by measuring and analysing the derived 

properties of Trust. Comparing Opinions can be done in relation to a basis. Josang in 

[8] suggests a priority-ordering scheme for opinions. According to that scheme when 

comparing opinions the next 3 criteria with the following order must be used: 

1. The opinion with the greatest Probability Expectation Ex. 

2. The opinion with the least Uncertainty. 

3. The opinion with the least Relative Atomicity a. 

Even though such criteria are suitable for ordering Opinions, no tests have been 

carried out in real environments where Opinions represent physical values. Also the 

sense of order as given by the above rules is quite fuzzy and nothing explains whether 

this order should be followed strictly in some evaluation experiment compared with 

any other alternative. 
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3.13 The algebra of Subjective Logic 

Open networks allow users to communicate without any prior arrangements such as 

contractual agreement or organization membership. Howe\"er the nature of open 

networks makes authenticity difficult to verify. Therefore, an algebra has been 

proposed as "logic for uncertain probabilities" [8] which can be used to calculate the 

trustworthiness of a target entity in a big network of interacting agents. 

As we discussed in paragraph 3.4 there are cases where Trust must be derived by 

using serial and parallel combinations of Trust vectors starting from the originating 

entity and ending at the target entity. A full set of logical operators has been proposed 

in this algebra but we will focus only on the operators used for combining serial and 

parallel Trust. This algebra has also been tested [25] for assessing Trust In 

certification chains in the calculation of the authenticity of keys in the chain. 

In the algebra of Subjective Logic the Opinions are defined as: Let co={b,d,u} be a 

triplet where the first, second and third component correspond to belief, disbelief and 

uncertainty respectively. Opinions defined in this way have 2 dimensional measures 

consisting of a probability dimension and an uncertainty dimension. Since an opinion 

can be interpreted as an uncertainty probability measure, this logic can be called a 

"calculus for uncertain probabilities ". 

The symbol co will be used to denote Trust. We use superscripts to indicate the 

subject and SUbscripts to indicate the belief statements, so that: 

co; ={b:,d:,u;} 

represents Agent's A's belief about p, where p is the Trust purpose or else the context 

of belief. For example, A believes that some key is authentic to the degree that is 

expressed by the belief disbelief and uncertainty components respectively. Next we 

focus on the Recommendation and Consensus operators. 
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3.13.1 Recommendation 

Let A and B be two agents where (tJ~ = {b; ,d; ,u;} is A's opinion about B's 

recommendations and let p be a binary statement where (tJB = {b B dB uB}is B's 
p p' p' p 

opinion about p expressed in a recommendation to A. Then A's opinion about p as a 

result of the recommendation from B is defined by 

(tJAB = (tJA ® (tJB = {b AB dAB AB} 
P B p p' p ,Up 

Where: 

The recommendation operator can only be justified when it can be assumed that 

recommendation is transitive, or, more precisely, that the agents in a recommendation 

chain do not change their behaviour.(i.e. what they recommend) 

3.13.2 Consensus 

Let A and B be agents and the Opinions respectively held by them about the same 

binary statement p be respectively: (tJ; = {b: ,d: ,u:} and (tJ: = {b: ,d: ,u:}. Then the 

Consensus Opinion held by an imaginary agent [A, B] representing both A and B is 

defined by: 

U:,B = (u:u:)/(u: + u: - u:u:) 

The effect of the Consensus operator is that it reduces uncertainty. Moreover, 

Opinions which contain zero uncertainty cannot be combined. The requirement for 

Consensus is that the same relationship should not appear twice in an expression. e.g 

the Consensus of an Opinion with itself. 
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3.14 The problem of Dependence 

As we mentioned before, the Consensus and Recommendation operations must be 

applied in the right order in an expression to avoid having hidden topologies. That 

happens in cases where several recommendation chains produce Opinions for the 

same statement. It is therefore important to know in which order Opinions are 

combined so that the Opinion independence criterion is not violated. 

3.15 Pitfalls of Trust graph analysis 

Special care must be taken in the cases where graphs of Opinions cannot be analyzed 

and simplified down to a single Opinion because of the existence of topologies that 

seem unable to be analyzed using the provided algebra. In these cases neither 

Consensus nor Recommendation operations can be applied in an analysis. A special 

arrangement must be made in order to exclude from the graph analysis those Opinions 

that can lead the operation of analysis to deadlock. Ideally, all possible paths between 

any pair of entities should be taken into account when deriving the Trust value. 

However, a directed graph may contain loops and dependences. Excluding certain 

paths can avoid this, but can also lead to information loss. Therefore, some specific 

selection criteria are needed in order to find the optimal subset of paths to include. 

The following figure (5) illustrates an example of a graph that is called a Non-optimal 

Directed Series-Parallel Graph. 

E 

Figure 5. 

It is assumed that A is the source and E is the target for which Trust is to be 

calculated. 

Josang et. al. in [41] presents some criteria for preserving Directed Series Parallel 

Graphs. Among those criteria, there is a way of characterising some paths as non­

canonical ones and thus excluding them from the simplification process. In the above 
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example B ~ D is a non-canonical and therefore it should not be considered in the 

calculation of Trust between A and E. 

There is a criterion for preserving a Directed Series Parallel Graph when adding 

new Sub-paths which is given in three rules. More information about the criteria can 

be found in Chapter 6 where we examine some special cases. The question that arises 

though is what happens in the cases where the infrastructure is pre-specified and the 

links between the entities already exist? In the above example a decision must be 

made regarding which one of B ~ D or B ~ C will be considered as Canonical. 

3.16 The beta distribution function 

Another problem that has not been discussed so far is how Reputations are created. In 

the physical world evidence exists in various formats and various kinds. This creates 

the need for some engine that will produce Reputations from the data gathered in a 

form that can be recognizable by the Trust algebra we presented above. Such systems 

are called Reputation engines because they are used to produce data from physical 

sources and involve activities that convert them from their primitive form to first hand 

evidence. 

The beta Reputation engine is so called because it is based on the beta probability 

distribution function. In contrast to most other Reputation systems [65][66] which are 

intuitive and ad-hoc, the beta distribution system has its basis in the theory of 

statistics. Although we describe a centralized approach, the beta Reputation system 

can also be used in a distributed environment. 

The system is based on the beta probability density function which is used to 

represent probability distributions of binary events. In our model (see Chapter 5) we 

have used our own Reputation system due to the nature of the existing data which 

made it impossible for them to be expressed as binary events. 

Beta provides a sound mathematical basis for combining feedback and for 

expressing Reputation ratings. The mathematical analysis leading to the expression 

for posteriori probability estimates of binary events can be found in many text books 

and papers [77][78] on probability theory. 

The whole idea behind the beta engine is the existence of a process which creates 

events with two possible outcomes {x, x}. From those events we call r the observed 
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number of outcome x and s the observed number of x. Then the probability density 

function of observing outcome x in the future can be expressed as a function of past 

observations by setting: 

a = r + 1 and ~ = s + 1 where r,s ~ a 

For example a process with two possible outcomes {x,x} which has produced 

outcome x seven times and x only once can be expressed with a beta distribution 

function as f(pI8,2). The probability expectation value given by E(P)=0.8 can be 

interpreted as saying that the relative frequency of outcome x in the future is 

somewhat uncertain and that the most likely value is 0.8. There is a whole family of 

continuous beta density functions indexed by two parameters a and ~. 

The probability density function for beta is a 3-dimensional representation of 

uncertain probabilities and there is a way to perform a mapping between the two 

representations (evidence and opinions) which lead to equivalent interpretations. 

In the mapping done by Josang [8] there can be opinions (b,d,u) provided by the r 

and s parameters we introduced above that can be expressed as functions. Josang in 

[8] has set empirically the following requirements in order to map the evidence space 

to opinion space: 

1. b (belief) to be an increasing function of good experiences r, 

2. d to be an increasing function of bad experiences s, 

3. u to be a decreasing function of (r,s), 

4. e[f(p)]=e[w] 

where 1 and 2 are set so that there is an affinity between b and r and between d and s. 

Requirement 4 means that there is equality between the probability expectation values 

of the derived opinions and the beta probability density function of the evidence. 

From those requirements we get: 

b- r 
- r+s+2' 

s 
d=--­

r+s+2 

2 
U=--­

r+s+2 

As can be seen, uncertainty reaches its maximum value 1.0 when there is no 

evidence at all and thus good and bad experiences reach zero r = s = O. 
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3.17 Other Trust models 

It is worth mentioning the existence of other Trust models that haye been proposed so 

far, such as that of Li Ding et.al. [29] which distinguishes Trust into Domain Trust 

and Referral Trust. The first one refers to an agent's beliefs about the trustworthiness 

(or usefulness) of other agents' knowledge in a certain domain. Referral Trust relates 

to an agents' beliefs about the trustworthiness of other agents' referral knowledge. 

This concept is quite similar to that of Josang's ideas about Primary and 

Recommender Trust. 

In the same paper besides the right, wrong and unknown properties of Trust there 

IS a new property introduced which is called untouched and corresponds to 

experiences where an agent responds with "not known". In other words it 

distinguishes ignorance from experiences in which the participant answered with "not 

known". 

Their method uses the consensus of selected trusted agents to derive Trust about 

an unfamiliar agent. They also provide a formula which shows that an agent A derives 

the reliability of Domain Trust about agent B from the weighted consensus of a set of 

other agents NA. 

~)Rdomain Jet (A, N,domain) * Rdomain (N, B,domain)] 
Rdomain (A, B, domain) = .!..:N.::.:EN..:.:.;A'--------""7

IN
-

A
7"""I--------

3.18 Other systems 

It's worth mentioning the work done by P.Massa in building a Trust Aware 

Collaborative Filtering system [35]. Here there is an attempt to build a web-of-trust 

between the users who express their Trust values to their neighbours by themselves. 

In this system there is no need for central entities to work. We can visualize the 

derived Trust network with nodes being the users and edges Trust statements. 

The derived or predictive Trust to a distant user in the graph is calculated simply 

by multiplying the intermediates' Trust values from the origin to the destination. After 

some interaction has taken place, users are required to express their level of Trust 

about the user they have interacted with. Once the web-of-trust has been formed, a 

graph-walking algorithm is used to predict the importance of a certain node in the 
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network. The webs-of-trust of all users can be aggregated into one global Trust 

network that would look like this. 

Figure 6. 

From the Trust values it is possible to calculate the similarity measures between 

two distant users where the similarity metric used is that of Pearson. 

In this work, different experiments were conducted with different maximum 

propagation distances from 1 to 4. The policy was based on the heuristic that the 

further away the user for which Trust is to be calculated is from the current user the 

less reliable is the inferred Trust value. There is also a comparison between the classic 

pure Collaborative Filtering method and the proposed one, called Trust-aware 

Collaborative Filtering. 

The results show that user similarity tends to perform well with users who have 

rated many items and poorly with users that have rated few items. However, even 

though the method benefits from coverage (because more users become potential 

neighbours through the Trust network) this method generates substantially high mean 

error which increases as the depth of Trust propagation increases. Such high mean 

absolute error (MAE) makes any results that the system can provide unreliable. 

Especially for cold start users the error appears to be quite high and accurate 

prediction is difficult for the system. 

Among the weak points of this model we should mention the way that 

neighbourhoods of users are formed which requires the users themselves to provide 

Trust measures about those they consider as neighbours. We believe that it is 

unreasonable to expect users to rate large number of items and at the same time to 

involve themselves in a process of rating their counterparts' trustworthiness since 

such an operation is both boring and risky for them. This is because users use their 

own personal taste, which might be different from some other people's, to rate 

material. That requires users to have some experience in expressing Trust rates about 

other counterparts as well as being able in rating items. 
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Another weak point of this approach is the way that Trust is propagated in the 

resulting graph. The propagation, in the sense that it happens in the proposed system. 

is done in a simplistic and arbitrary way by mUltiplying the Trust values along a path. 

The paper does not state how a complex graph is traversed and what rules are applied 

in the calculation of Trust. 

Finally, the calculation of the correlation coefficient is treated positively only in 

the case that there is positive similarity (w>O) and what happens in the case where the 

users for which the similarity is to be calculated are completely dissimilar (w = -1) is 

not explained in that paper. 

3.19 Trust management 

Aberer and Despotovic in [36] have proposed a solution for how to manage Trust in 

Peer-to-Peer communities. It is based on the idea of analyzing the earlier transactions 

of agents and deriving from those the Reputation of an agent. It defines as Reputation 

the assessment of the probability that an agent will cheat and the method is based on 

statistical data analysis of former transactions. They propose a method that scales well 

for a large number of participants because it does not make use of a central database 

and due to its distributed nature it can be applied to a Peer-to-Peer system. In this 

model the data are stored in a distributed database called P-Grid [40]. 

The problem related to Reputation based management is that information about 

transactions performed is dispersed around the network and thus peers can have only 

an approximation of the global situation. As behavioural data the model uses 

complaints and the form of Trust that it uses can have a binary value indicating that an 

agent is trustworthy or not. It assumes that Trust always exists and that malicious 

behaviour is the exception, so Reputation is based on global knowledge regarding 

complaints that have been received about some entity. The issue of Reputation is seen 

from the perspective of data management, and more specifically is concerned with 

where the data about the complaints will be kept. It mainly focuses on the operations 

that take place when a complaint is to be stored or retrieved from the distributed 

database and not on the formation of Trust and the procedures that must be followed 

within the distributed community. Even though the access method is organized in a 

Peer-to-Peer fashion and the data are dispersed over various hops in the network, the 

59 



decisions and the assessment of Trust are not made as it would be in a Peer-to-Peer 

network. Moreover, the system does not have any preventative measures against 

inserting arbitrary complaints about users. 

Furthermore, P-Grid is advertised as a distributed solution for data storage with all 

the benefits that decentralization offers. Undoubtedly, having the Reputation data 

distributed in the peers is beneficial, but on the other hand, the application of a strict 

Reputation based assessment model in a global scale comes in contrast with the 

freedom of expression of the personal opinions that all peer-participants in a dynamic 

Peer-to-Peer community should be allowed to have. In addition, performing updates 

with high regularity in P-Grid whenever a transaction occurs raises an extra cost in 

resources and likely translates into deterioration of the existing traffic. In spite of the 

decentralized characteristics that P-Grid provides, the traffic problems caused by the 

large number of messages still remains unsolved. 

This model also deals with the storage and dissemination of Trust data and not 

with deriving how much Trust to place in a distant entity. 

Using word of mouth techniques for the diffusion of information in the same way 

as in human communities can be more effective and less costly in resources. 

3.20 Summary and Conclusion 

Subjective Logic, which has its basis in Saferian theory, has some interesting 

characteristics that are worth discussing. It offers a set of operators sufficient for 

deriving the level of Trust in long transitive chains in complex graphs of user agents. 

There are, however, some special cases of graphs in which the standard operators that 

the algebra provides can not resolve, and that appears to be a future research issue. 

The useful (for our case) characteristic of using uncertainty for describing lack of 

evidence and also the fact that it provides a calculus by which Trust can be calculated 

between entities in a graph, steered us in the direction of using it in the Peer-to-Peer 

model we propose. The requirement for the evidence to be in a format suitable for the 

method requires that the users' agents prepare and deliver them in the appropriate 

form so that they can be used. More specifically it requires that the data be in a binary 

form and be referred as good and bad behaviours. For the reason that this is not 

always convenient we intent to build our own model for converting evidence to 
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opinions. In essence, it looks to be a very promising solution for solving the problem 

of quality of the services in Peer-to-Peer systems. 

In the toolkits referred to in paragraphs 3.18, 2.4 that make use of Trust in 

networking environments, there is no distinction between Primary and Secondary 

Trust. Other issues examined in solutions described as 'Trust Systems', were to do 

with the storage of data where almost all of the systems discussed (see paragraph 

3.19) provide distributed storage of data. In general, there was not much work done in 

Trust derivation from evidence and in most solutions the rating evidence is provided 

by the users themselves expressing how happy they were after a transaction has been 

completed. 

For the above reasons we intend to use Subjective Logic for the modelling and 

management of Trust for our distributed Recommender system. In the following 

chapter we deal with the encoding and translation of evidence to a form that is 

recognizable by Subjective Logic, so that they can be converted into Trust measures. 

We also take care that the main properties of Trust and the principles in which the 

operations are carried out will not be violated. 

In the work that is presented next we propose, build and study a Recommender 

system which will make use of Trust in relating users together. We first show what 

can be achieved by the use of Trust in a Reputation system and second we attempt to 

apply it in a distributed infrastructure. 
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Chapter 4 

THE PROPOSED ARCHITECTURE 

4.1 Introduction 

In this chapter we describe the design of a distributed architecture for a Recommender 

system and present its benefits as compared to a centralized architecture. The main 

characteristic of this architecture is that, for reasons that will be explained later in this 

chapter, it has its basis on Trust infrastructures. Trust is derived from evidence that 

the users themselves provide to the system in the form of opinions. 

Our design has been done in such a way that the derived system will operate as 

an integrated collaborative filtering system; therefore, in addition to elementary 

operations, we have included other functionality found in typical collaborative 

filtering systems. 

Using Trust in a Reputation system can have positive effects on usability and can 

also provide better results as regards the prediction of user ratings. Chapter 6 contains 

a study which shows the improved results of a Trust-enabled Reputation system in 

comparison to a non-Trust-oriented system. 

The strong points of such an architecture are its dynamic view of Trust and the 

robustness that it provides, since there is no single point of failure. The main 

advantage is that such a design is suitable for Peer-to-Peer systems which, as is well 

known, are self structured, making them stay functional under conditions which may 

require dynamic restructuring. 

We also examine a simple scenario of the operation of a Recommender system by 

tracking the steps that would be followed in a typical search operation, and we 

analyse the sub-operations carried out. 

In the following two chapters we analyse each individual step of recommendation 

production separately. We also discuss the main requirements for such an architecture 

to become applicable at every individual step and thus give an idea of the context of 

their operation. 

There are many similarities between the structures found on a Peer-to-Peer 

network and a Trust network. In our work we will examine if the existing 
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infrastructure that establishes a Peer-to-Peer network is itself enough to support a 

Trust-enabled Recommender system. 

4.2 Motivation 

Contemporary Recommender systems operate essentially as centralized servIces 

[16,17,18]. The main idea behind them is to correlate users based on the opinions they 

have expressed in the past and to provide them with suggestions in the form of 

predictions of ratings about items they want to know about. 

Trust-enabled Recommender systems can provide an improvement in the quality 

of recommendations. This is achieved by decreasing sparsity in the datasets, but if this 

is not done correctly then the extra effort required may cause more side effects than 

benefits as we will see later in chapter 6. By sparsity we mean a lack of users' shared 

experiences that Collaborative filtering systems need to work. The extra effort is 

necessary because such a technique requires first and foremost a large amount of 

computation to support the Trust infrastructure, and this increases with the number of 

users. Given the requirement that such systems need to operate in a live, interactive 

fashion, response times must be kept within strict limits and any additional 

computational load will almost certainly have negative consequences for usability. 

If the system uses a flooding algorithm to propagate Trust values to neighbouring 

users this would require O(nl) unicast operations since a query running to depth d 

d 

would need roughly L = n Ln l
-

I operations for each search operation to propagate to 
1=1 

n trusted neighbours. In reality the number of messages will not be as many as the 

formula shows due to the sparsity of the datasets. 

High sparsity is also responsible for obscuring the scalability problem since it is 

never possible for all users to be correlated with each other. This means that 

predictions cannot be made about every prospective choice for any user within the 

community. 

The two challenges, namely reduction of sparsity and scalability are in conflict 

since the less time spent on a search query, the worse the quality of the results the 

system will give. The increasing number of computations is the main reason for the 

reduced scalability of Collaborative Filtering systems and this is why, theoretically, a 
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centralized Recommender system of this type would not scale to a massive number of 

users and products. 

In the next chapter we deal with the operations of Trust derivation that are 

required in the initial step of Primary Trust establishment, so first we build a model 

that derives Trust from evidence using an empirical method. 

As regards the calculation of, so-called, secondary Trust, we apply two of the 

rules of evidential reasoning to the Trust calculation as they are described in the 

framework of Subjective Logic. As we described above, that framework, under some 

specific constraints, provides transitivity of Trust relationships which translates to a 

capability for deriving how much Trust to place on a distant entity not directly known 

to the one making a query. 

The main idea behind our work on using Trust in such infrastructures is to use it 

In conjunction with a similarity metric and thus make it possible to work out 

predictions about measures that are formed using similarity. As we will see in the next 

two chapters the novelty in our approach is that we apply a scheme through which 

Trust metrics can be transformed to similarity and vice versa. 

The purpose of the proposed scheme is to provide correct Reputation metrics 

about resources that can be found within a community. These Reputation metrics 

appear in such system in the form of ratings of items which can be used to guide the 

choices of a potential user of the system. 

Recommender systems [11] generally run as centralized services and often exist as 

services embedded into web sites which provide support for e-commerce activities. 

Proposals for interesting designs for Distributed Peer-to-Peer Recommender systems 

have also appeared in the past. Nevertheless, in the existing works no performance 

measures have been presented to show the limitations (or advantages) of every 

particular solution. Also, as we saw in chapter 2, the proposed solutions do not deal 

with and do not solve the problem of sparsity that Recommender systems have when 

there are insufficient data to support a recommendation. In general there is no 

decentralised solution running today, and the level of sparsity in centralized solutions 

is high and obscures their problems. 
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4.3 The Lifecycle of the proposed system 

In this section we provide a high level view of the system focusing particu larly on 

each entity involved as well as the way in which they interac t and collaborate,. ith 

each other. Figure 1 shows a user-centric view of the co llaborating ent ities. 

The aim of the proposed scheme is to provide accurate prediction of rating for 

items that a user has as yet not experienced. Achieving th is requires finding how 

similar the user is to others that have had that same experience in the past. In tandard 

Collaborative ftltering techniques Similarity between users can only be d rived if a 

considerable number of common experiences exists. Our contribution i a way to link 

Similarity with Trust in such a way that the latter can be derived d irectly fro m fo rmer 

and vice versa. In this way derived similarities can be converted into Tru t es timate 

and then be shared with the user community. In the same way the co mmunit y can 

provide Trust estimates (in the form of direct Trust) which u ers can analy e by u ing 

Subjective Logic algebra and derive how much they would Trust some other u er for 

which similarity can not be calculated directly . Finally the Trust es timates are 

converted into similarity expressions and along with the common experience of the 

local neighbours provide the predicted rating. 

Produces 
secondary 

Tr~ 

Subjective 
Logic 

Re~ieve '" '" 
Pr~ary Trust 

e. + Personal experiences 

S~il~~ • 

'" ~o~vbe ~ertedinto 

Common Pr· . lll1ary 
Expenences T 
of Local rust 

neighbors 

~Sb 
(direct or 
recommender) 

Community 

Figure 1. High level view 

4.3.1 The System Components 

Rating 
prediction 

We can describe the system in more detail as fo llows. In all we di tingui h five 

coUaborative entities that can be identified as the main mechanisms of our propo ed 

architecture. These are: 
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• 
• 
• 
• 
• 
• 

The user profIle 

The registry of local knowledge about the neighbours' rating beha iour 

The similarity calculator 

The Trust estimator 

Trust repository 

The rating prediction engine 

We can identify a potential user's personal rating behaviour as the main input along 

with the description of an item that the user is interested in experiencing. The output 

can be a prediction of the level of the user' s satisfaction if u ing the item. The 

composition of the above elements can be represented as in figure 2. 

User's Registry of 

~ 
profile LocaJ 

Knowledge 

Rating 
prediction 

User engine 

Figure 2. Architecture diagram User community 

Next we describe the functions of each entity in more detail. The user 's profile 

mainly contains the rating behaviour of the current user who is joing the scheme. 

Such information is the ratings that the user in question has given to items he/ he has 

experienced in the past. 

The registry of local knowledge refers to the volume of information that has been 

collected by the user regarding the rating behaviour of his neighbours. Neighbouring 

nodes can be any nodes whose existence the user is aware of. In regard to discovery 

of neighbours within a small logical distance from the user, there are various 

mechanisms that can be used to achieve this and these are discussed in more detail in 

the next chapter. 

The main purpose of the similarity calculator is to provide measures of how 

similar various neighbouring users appear to be with each other. The Trust e timato r 

is mainly used for converting similarity measures to Primary Trust es timate and ice 
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versa. The Trust estimator can also provide estimates of Secondary Trust using as 

input Primary Trust estimates for other users in the community. The latter information 

is held in the Trust repository from which the Trust estimator retrieves information to 

build secondary Trust. 

Finally, the rating predictor calculator has as its main task to provide a prediction 

in a comprehensible form to the user, taking as input rating behaviour as well as 

similarities with other users. 

4.3.2 How do these components collaborate together? 

As previously mentioned, the purpose of our proposed system is the provision of good 

quality recommendations to users. Recommendations may be concerned with a single 

item or may take the form of a suggestions list. 

Almost all components used in the architecture diagram (except for the Trust 

estimator) can also be found in an ordinary collaborative filtering mechanism. The 

idea is to allow users to derive their own rating predictions based on existing 

knowledge about the rating behaviour of others within the community for whom their 

similarity with the querying users can be calculated. 

The main difference between our proposed scheme and standard collaborative 

filtering is the use of the Trust estimator entity itself. The latter operates as an aiding 

mechanism which can express Trust estimates for community members that are 

willing to contribute in the Trust derivation. Next, using the Trust estimator this 

information is converted into Secondary Trust which can then be passed to the 

Similarity Calculator for further processing. 

We need to distinguish Primary from Secondary Trust because the former is 

established between any user and his local neighbours in a pro-active way. As such 

Primary Trust has a local scope whereas Secondary Trust is built upon Primary Trust 

whenever the system needs to know the trustworthiness of non-neighbouring users. 

Therefore Secondary Trust is built in a Reactive and dynamic way whenever the 

circumstances require. For example a rating prediction request sent by a user requires 

that a number of Secondary Trust queries be executed so that non-neighbouring 

recommenders can be assessed appropriately. 
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We can distinguish the following five entities that take part in the process of 

composition of Primary Trust: User's Profile, Registry of Knowledge, Local 

Community, Trust Estimator and Trust Repository. Secondary Trust, however, 

involves only three entities: the Trust Repository, the Trust Estimator and the 

contribution of the Global community since this Trust is built upon the Primary Trust 

that is shared by other community members. 

Due to the dynamic nature of the system in which each prediction request invohoes 

many different entities of a dynamically changed topology such as a P2P system, it is 

necessary that Secondary Trust is recalculated on a frequent basiso In contrast, 

Primary Trust requires recalculation whenever the set of personal experiences of the 

local neighbours is enriched with new experiences. 

4.3.3 Example of the use of the system 

When a user signs up to the service he first registers his own experiences so that a 

profile is created for him. When joining the community a sharing of profiles is 

performed between the local user and his close neighbours and finally this 

information is stored in the Registry of local knowledge. By comparing the profiles it 

is possible to find out how similar and how trustworthy each neighbour is for the local 

user (performed by the Similarity calculator and the Trust Estimator respectively). 

The Trust that is built is based on first hand evidence which in this case is shared 

experiences. Therefore Primary Trust is built proactively, is stored in the users' local 

Trust Repository and can be provided to other users upon request as 

recommendations. 

Whenever the user wishes to know how much he would like a new product, he 

first checks his local repository for similar users that have experienced the same 

product in the past and then the search is broadened to the global community. Since it 

is impossible to know the similarity (and thus the primary Trust) for each of the 

distant users due to the lack of first hand evidence, the system tries to approximate the 

trustworthiness of these users by sending relevant queries to the Global community. 

Upon receiving the Primary Trust estimates of all the intermediate users which are in 

the path between himself and the remote one the Trust estimator builds, using 

Josang's Subjective Logic operators, the transitive path and calculates the derived 
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Trust. It is worth mentioning that this Trust is created in a reactive way and is thus 

built upon recommendations identified as Secondary Trust. The received Trust value 

is saved in the Local repository for future use by the user (but should be never 

provided as a recommendation to other users to preserve opinion independence) and 

finally passed to the Similarity calculator. The process of calculating the similarity is 

repeated for all the remote users who have had experiences with the product in the 

past. Finally all similarities along with the product ratings for all involved users in the 

query (local and remote) are sent to the rating prediction engine to generate the user's 

predicted rating for the product. 

4.4 Our proposed architecture 

In this section we outline the operations that our proposed architecture requires and 

associate them with relevant functions that can be found in a typical Collaborative 

Filtering system. 

In the scheme we propose there is not only decentralization in the operations 

involved in the provision of Recommendation but it also has the characteristic that the 

entities involved can exist and operate autonomously, and also appear to have equal 

roles within the community. Each entity in the scheme has its own knowledge about 

its neighbours and can operate similarly to the other entities in the community (e.g. 

can initiate and reply to queries). They also can voluntarily offer some fundamental 

support for the existence of the community. For example, the propagation of Trust 

query messages according to commonly agreed rules that we will describe below is 

essential for the recommendation service. Such autonomous schemes can be found in 

unstructured Peer-to-Peer networks and in the architecture we propose the 

autonomous entities meet the requirements that a peer should have in an unstructured 

network. 

As mentioned in Section 2.5 above, Sarwar et.al.[14] distinguish 3 phases in 

recommendation production in centralized systems and suggest Knowledge 

Representation, Neighbourhood formation and Recommendation generation as the 

key tasks. Our Peer-to-Peer based concept fits this categorization almost perfectly 

since Knowledge Representation and Neighbourhood Formation overlap. So we 
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distinguish Trust Discovery, Recommendation Search and Recommendation 

Generation respectively as the main operations of our distributed proposal. 

• .. Resource discovery network used by resource 
search queries 

Trust relationships network used by Trust queries 

(a,c,T) .. . 1 (c,g,T) ,. :, ~ ; 
: (b,e,T) : 4< (e g T) : 

i r~ ai~ i ~ 

( ,~:j~ = 
Figure 3. A typical Trust Over-net. (a,c,T) denotes the Primary Trust of a for c. 

In order to explain these operations more easily we first present a common 

searching scenario in a hypothetical Peer-to-Peer system that provides Trust-based 

recommendations . The scenario consists of the following four steps: 

1. User U initiates a simple resource-searching query seeking for some product A 

she is interested in. 

2. The system detects, through the resource discovery operations, the subset S of 

entities that can provide their own experiences with product A. 

3. The system tries to estimate the trustworthiness (Secondary Trust) of each of the 

S entities through the Trust graph, and after that attempts to reach each one of 

them by initiating Trust queries via its neighbours in the Trust overlay. 

4. Once the secondary Trust information has been received back by the trustor 

(query initiator) and the Trust for every entity S has been established, U 

estimates what she believes about the trustworthiness of each one, from which 

she finally derives the similarity to each one from the set of S. Then, by using a 

predictability formula derives the expected rating of product A. 

Figure 3 shows a typical example of two entities g and b which share some 

experience with product A. In the scenario a third entity a is also interested in product 

A. This entity is first informed which other entities have experi enced A before and by 

sending a search query finds out that g and b are those that make up the subset S 

mentioned in step 2. After it has received this information, it then tries to deri ve the 
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trustworthiness of each of the counterparts g and b for which there is no direct Trust 

relationship through the Trust graph even though a is a physical neighbour of one of 

them (b). 

In order to run a Trust query of the type described in step 3 Primary Trust 

establishment must have been done prior to the search operation. This phase is 

described below as the Trust Discovery Phase and is executed asynchronously with 

respect to the Recommendation Search. Trust discovery is performed by the execution 

of algorithms that do correlation of the first-hand evidence that any two potential 

counterparts have collected from their experiences. In the next chapter we will explain 

in more detail how to implement these operations. The experiences here refer to 

ratings that the users have given to items. From such evidence we derive the similarity 

of the entities involved and consequently how much Primary Trust they should place 

on each other. The Trust overlay that connects the trusted nodes, for which there is 

sufficient first hand evidence, is based upon those relationships. Special criteria and 

policies to restrict the overlay to selected nodes can also be applied. This justifies the 

fact that there is no absolute match in the above scheme between the physical resource 

sharing Peer-to-Peer network and the Trust overlay. 

When this phase finishes, the peers have formed a mesh of overlay links 

connecting each other and are able to relay Trust queries that help in the derivation of 

secondary Trust. The secondary Trust queries are performed using a broadcast 

mechanism based on flooding messages through the overlay. The combination of 

overlay links produced in the Trust formation phase together with the way that Trust 

queries are dispersed within the mesh looks very much like an application layer 

multicast scheme. 

In application layer multicast there are various ways of restricting communication 

to a subset of peers that want to communicate as part of a multicast group. One way to 

achieve this is by getting peers that wish to form a multicast group to create their 

individual Peer-to-Peer overlay and then use the new overlay to communicate with 

each other. Another way is to make the peers that are to take part in the multicast 

group filter and forward the messages to those only that belong to the group or discard 

them. Our approach combines both ways of achieving restricted communication with 

the difference that the first is put into operation during the Neighbourhood Formation 

phase and the second during the secondary Trust querying where Trust-based filtering 

71 



is also applied in the propagation of Trust queries. (See Chapter 6 for the description 

of the algorithm). 

Going back to the first phase of our design, we see Trust establishment as the 

operation of estimating the levels of belief, disbelief and uncertainty between users 

using their behavioural data as evidence. 

Secondary Trust can be calculated if knowing the primary Trust of entities in the 

overlay which can be achieved by collecting all the Trust vectors that exist between 

the querying and the examined entity in the overlay mesh. Note the case where there 

might not be any vectors collected. There might be cases where secondary Trust 

cannot be calculated due to a lack of Trust relationships in the overlay, which 

translates to a lack of first hand evidence or common experiences between the 

relevant peers. In the following sections we analyze each of the individual steps 

separately. 

Figures 4 and 5 show a representation of a centralized architecture for a 

Recommender system and the proposed distributed one respectively. 

Central Database 

Item Rate 
1 4 
2 1 
1 3 

User 1 3 2 User 4 

Figure 4. A centralized architecture for a Recommender system 

For the sake of simplicity in figure 4 we depict the whole Peer-to-Peer network as 

a bus topology meaning that there is a mesh type of network connecting the users 

together. 
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Peer-to-Peer overlay 

Figure 5. A distributed architecture ofa Recommender System 

The main difference between the two architectures is that in the distributed system 

each user keeps their own local database with their own experiences instead of using a 

common central place for maintaining the data. Such a distributed approach is much 

more robust than the centralized equivalent but it makes it more complicated to 

implement search operations. 

Next, we present in more detail each operation in the graph structure which is 

used for the recommendation production. 

4.5 Trust Discovery phase. 

The Trust discovery phase we mentioned is concerned with the representation of Trust 

relationships and the formation of neighbourhoods of users with respect to the level of 

Trust they place on each other. This kind of Trust is known as Primary Trust. This 

phase must take place before a search operation commences and every entity that 

wishes to participate in the Trust scheme must implement this phase. In contrast to 

centralized Recommender systems, in our design there is no central customer-product 

matrix since users maintain their own tables for selecting their neighbours and they 

keep such information for every product they have used in the past just for the needs 

of this phase. In the next chapter we present an empirical model for Trust derivation 

using evidence in which Trust values are derived from the common experiences that 

every pair of users has had in the past. We can imagine individual cells of the 

hypothetical user-product matrix as experiences. 

In this model the existence of common experiences IS a requirement for the 

establishment of Trust. Additional filters, for example on the minimum number of 
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common experiences, are sometimes essential for setting up a good Trust graph 

especially in cases where there is unstable behaviour. In the proposed model there is a 

mapping that uses both quantitative and qualitative measures to transform 

observations into Opinions. The use of qualitative measures is what makes our 

proposed method different from others which simply use the quantity and the kind of 

experiences as metrics for Trust establishment. The basic idea of our scheme is the , 

easier the two parties can predict the ratings of their common choices, the more 

trusted they are. An empirical formula taken from Collaborative Filtering systems is 

used for the predictions 

The operations of the Trust Derivation phase can be carried out jointly off-line by 

the parties involved, which can periodically broadcast messages indicating they are 

looking for entities with which they wish to establish primary Trust. In the 

implementation level such operations can be carried out adequately using IP 

multicasting. Members can periodically send multicast messages to their sub­

networks in order to find new neighbours and those who respond can proceed to the 

phase of exchanging experiences. 

Once the Primary Trust relationships have been established, the Trust overlay is 

set and ready to resolve Trust requests. A typical Trust request should be directed to a 

single node and have the format of (Source node, Target node). That call should 

expect a response that may look like as a single Trust triplet (b,d,u). 

To keep the protocol as simple as possible we rely solely upon the honesty of each 

counterpart and allow the calculations to be done by the entities involved themselves. 

A dishonest counterpart could answer either by providing inaccurate data or could 

even use the data received from the other counterpart to perform an attack. If we 

consider such attacks from malicious users who might want to influence their 

counterparts by providing fraudulent evidence, the Trust calculation and the 

transmission of the results could be done confidentially by the parties involved. 

We consider the detection and prevention of such attacks as an issue for further 

research. For example, Trust calculation could be done by a trusted third party from 

whom both counterparts expect to get the right results and be assured that the third 

party will not use the data for performing an attack against any of the counterparts. 
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4.5.1 The Security Issue 

A simple fonn of the protocol that could be used for computing Trust values more 

securely and prevent the kind of attack we mentioned is the following, which makes 

use of a Third Trusted Party C: 

Command Info Comment 
transmitted 

1 {A} ~ {B} Requesting B to choose a 
Third Trusted Entity 

2 C~{B} B finds a Third Trusted 
Entity which responds 
positively 

3 {B} ~ {A} C {B} announces to A 
which Third Trusted 
Entity has been chosen. 

4 {B}~C (Items)k B masquerades and 
submits its own ratings set 
to C. 

5 {B} ~ {A} k B submits the key k also 
to A. 

6 {A}~C (Items)k A masquerades and 
submits also its own 
choices to C. 

7 C~{A} Trust A .... B C works out the ratings 

8 C~{B} Trust B .... A 

and announces to each 
party the Trust values they 
should place on their 
relationships 

We use braces to indicate that an entity communicates anonymously with the 

other party. Parentheses indicate encrypted content using a key. Anonymity in the IP 

layer can be provided by using, for example, MIX cascades [69]. In order to allow 

communication between two peers without revealing their identities to each other, 

techniques such as anonymous web-posting can be used where messages are posted in 

anonymous letter boxes associated with keys that are set up for a specific purpose 

[70]. 

Given that the Trust Computation application will be running on a unstructured 

Peer-to-Peer system, we assume that the task of being a Third Trusted Party will be 

carried out by one of the available network peers and not by some external entity. As 
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a Third Trusted Party we can imagine a peer randomly chosen or according to some 

criteria from the entities that take part in the schema. 

That simple form of the protocol does not deal with the fact that the Trusted party 

C might be one of the counterparts A or B. Even though we assume anon)mous 

communication, it would be easy for either of the A or B to understand if they have 

been selected as Third Trusted Parties by carefully examining the messages 

exchanged. In case this happens, the selected Third Trusted Parties could be able to 

recover the other's profile and use it for malicious purposes. 

What we suggest is grouping items in the ratings list before it gets transmitted and 

the allocation of more than one Third Trusted Party for the calculation of the Trust 

value by sending a separate group of ratings from the list to each one. The optimum 

number of Third Trusted Parties as well as the size of the group of items that is 

required to provide a certain level of security is a subject for further research. 

4.6 Recommendation Search 

Once the Trust graph has been shaped by the pnmary Trust relationships, 

Recommendation Search queries can be serviced. Such queries can be initiated by any 

peer that is member of the Trust overlay or, in other words fulfils the requirements 

needed for establishing relationships with other counterparts. Such requirements 

include the minimum number of experiences that each node possesses as well as the 

common experiences between the two counterparts. Chapter 5 describes in more 

detail. The purpose of this kind of query is to make those entities that are known to 

have useful experiences for the query originator reachable via the Trust overlay, in 

order to derive their trustworthiness. Special rules can be applied as regards 

reachability, for example the distance in hops from the originator to the candidate 

entities that will contribute with their own experiences in the rating prediction. 

We assume that a flooding scheme, through which Trust queries propagate in the 

Trust graph up to a pre-defined hop distance, will be used. As we will show in chapter 

7 there is an optimum hop distance to which it is advisable to propagate queries. It is 

worth mentioning the requirement for the existence of common purpose [22] in the 

relationships in order to make it possible for users to employ transitiYe Trust using the 

graph. In our analysis we have made the assumption that this requirement is fulfilled 
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along a path and some entity which has been recommended for some context is also 

good at providing recommendations for the same context. 

Valid Trust paths starting from the query originator and ending at the target node, 

if that is reached, will be sent back to the originator directly. The process must be 

done this way and not otherwise in order to let the originator understand the real 

topology that has to be analysed as the final structure and thus avoid cases where 

hidden topologies might exist. 

Various quality restrictions can be set when initiating queries, for instance to 

disclose those entities with a low number of experiences or those which do not appear 

to be trustworthy. In the latter case the queries stop propagating further when a 

participant with controversial trustworthiness is encountered during path exploration. 

This policy can also reduce the number of unimportant links in the resulting graph 

and thus help in keeping the derived Trust calculation times low. Special care must be 

taken so that there will be a balance between the number of vectors returned and the 

restrictions set, in order to avoid cases where no results at all are produced. The last 

case we mention is related to a notion we call coverage ratio (see Chapter 6), which is 

the number of services that can be reached by a particular user divided by the total 

number of services that the system can provide ratings about. 

As we will see in Chapter 6, analysis shows that using filters for Trust query 

propagation has no serious impact on the error in the predicted recommendations. 

Even though the range of filters used in the tests is not wide, the result suggests the 

application of stronger filters since in this way traffic is kept low due to the simpler 

structures communicated as query results. 

As search queries go deeper, so does the coverage ratio - the number of entities 

reached - but the resulting exponential increase in the number of messages due to 

using a flooding protocol, impacts scalability. As we will see in Chapter 7, the 

application of filters influences the user's satisfaction due to the high impact on the 

response times. 

Upon receipt of the Trust vector replies, the originator should from then on 

maintain a collection of Trust vectors which constitute a graph leading to the distant 

node. Then the derived Trust of the target node can be easily calculated by parsing 

and analyzing the collected graph. This is precisely where the Recommendation and 

Consensus operators of Subjective Logic must be applied in sequence to the graph. A 

loop simplifying one vector at a time until the remaining structure becomes simplified 
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down-to a single vector may be the proper algorithmic approach. The reason the 

resource greedy task of parsing the entire graph is done by the querying entity itself. 

even though it could be done by the intermediate entities in the form of cacheing. is 

that in this way it preserves the dependence avoidance requirement in the calculation 

of Trust. This is known in the literature as the Dependenc}' Problem in Trust 

derivation [34]. We also referred to the dependency problem in Chapter 3. 

4.7 Recommendation Generation 

Finally, Recommendation Generation comprises the collection of all Derived Trust 

query results from the previous step. The results are in the form of Trust statements 

expressed in triples of belief, disbelief and uncertainty. Using a transformation 

formula that we present in the next chapter, each of the secondary Trust measures can 

then be turned into similarity measures, expressing in this way how similar the 

querying entity appears to be with each of the entities that have some experience with 

the product in question and that were found through the previous step. 

Knowing how similar each pair of entities is, makes it easy to predict the rating 

that the querying entity would give to a particular product. The following steps are the 

same as those that can be found in a plain Collaborative Filtering system. The actual 

prediction of the rate that a querying user would give to a particular product can be 

approximated using a suitable formula. For example, the Grouplens Recommender 

System uses Resnick's [11] prediction formula. In its general form is: 

Such a formula requires the average rating of the recommendee be known as well as 

the weighting factor w, which in our case is the similarity measure between the 

recommendee entity a and the series of entities i which have experience of the product 

in question. Also needed are the ratings of other products that the i entities have 

tested, as well as the average rating of every other entity i. We assume that such 

information is provided and processed by the system with a mechanism similar to that 

of the Trust Discovery phase. 

The prediction formula returns a value p which, if the algorithm is applied to a 

series of products, can give results in the form of the top X products for the user a. 
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4.8 The network protocol explained 

In this section we will explain the protocol used in the Recommendation Search phase 

for building the dynamic Trust graph. In particular we explain how the requests and 

the replies are communicated between the nodes involved in the Trust overlay. By 

doing this, we try to give a rough idea of how the graph is built by explaining 

schematically the messages that are communicated between the parties involved. 

We Call A the trustor entity which is searching for information about a trustee B. 

We assume that the trustor has decided that B is the right place to ask for product 

ratings by running an information searching query prior to this phase and thus being 

informed about the existence of B. A initiates a query to its neighbours which 

replicate the message and forward it to their neighbours, up to a predefined search 

depth k. Once the message has reached its destination (trustee B) a reply is sent back 

to the originator A directly. Each reply message should contain all the path associated 

information which in this case would be the Trust vectors from all the intermediate 

nodes encountered from the source A to the destination B. We can imagine each 

vector of information as a triple of (Source, Destination, Trust value) which 

symbolises the Trust that the Source places on the Destination entity. In the case 

where we use Subjective Logic in the processing of opinions we can see the Trust 

value as a triple of numbers. 

The time taken from Trust query initiation to the time that the propagated query 

reaches the trustee B through the intermediate nodes is called Propagation Time. 

The time taken for all replies to be collected by all the various nodes is called 

Collection Time. The reason why more than one reply might be returned to the trustor 

A is that there can be several different paths to B. The fact that replies are sent 

asynchronously to the trustee suggests that the trustor should wait for some time for a 

sufficient number of replies, if not all, to be received. For this reason in a real 

implementation of the protocol an appropriate threshold must be set in order to avoid 

trustor A waiting forever before going to the next step. The collection time varies 

significantly from query to query depending on how many different paths exist 

between A and B and also from the capacity of the network links as well as the 

available bandwidth of the intermediate nodes. Given that the system runs over a 
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Peer-to-Peer infrastructure the utilization and the bandwidth of the lines used by the 

users that take part in the scheme have to be considered. 

In a performance analysis we did of the model, which can be found in Chapter 7, 

we consider the capabilities of the network and we study the system performance for 

users using lines of low capacity (Modems) to connect to the Internet and also the 

case where nodes of higher connection capacity are used (DSL connections). This 

comparison was made specifically to show how the protocol is affected by current and 

future technological developments. 

A Intermediates B 

f------1~----------_~~ - - - - - - - - - - - - - - - .. 
I---~M--------y 

Propagation time 

Collection time 

Calculation time 

Figure 6. The Request-Reply protocol for the collection of the opinions 

Even though the network infrastructure affects the Propagation and the Collection 

time, the Computation time for the graph analysis is dependent solely on the available 

computing power of the trustor node A and how busy the trustor is or, in other words, 

the number of search queries running at the same time in the node. 

Figure 6 explains roughly the communication operations that take place In a 

typical Trust query scenario. 

In order to test the scalability of the protocol which implements the Trust 

transitivity we performed the simulation experiment presented in chapter 7. The 

purpose of this experiment was to validate the mechanism of derivation of secondary 

Trust and especially the performance implications that it might have on usability. In 

this simulation experiment it was assumed that Primary Trust has already been built 

when the simulation began. In the study the cost in terms of resources due to the 

Primary Trust formation is consider negligible. 

In addition, Chapter 6 presents a statistical evaluation that demonstrates the 

benefits that can be achieved when knowledge from both the similar and the trusted 
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participants is used for predicting user preferences and is compared to using similarity 

alone. In that experiment the arithmetical calculation of secondary Trust was 

performed in the same way as in a real implementation. The time taken for Trust to be 

computed was also measured in this experiment and used as an input parameter to the 

scalability evaluation in chapter 7. 

4.9 Summary and Conclusion 

In this chapter we gave an outline of a proposed distributed architecture for Peer-to­

Peer recommender systems, which can be seen as having the form of a virtual Trust 

over-net. The formation of the Peer-to-Peer overlay is the key to recommendation 

production and this is where the Subjective Logic algebra rules we presented in the 

previous chapter can be applied. 

One of the major differences of such an architecture in contrast to the 

conventional one is the use of distributed data ratings instead of keeping them in a 

central place, which makes it more secure and resilient to attacks as well as leading to 

a more robust scheme. The basic idea explained in simple terms is that each node 

keeps its own personal experiences which it shares with a selected group of other 

nodes with which it has some similarities. From those similarities is possible to 

calculate Trust measures between the "similar" members. The application of such 

Trust measures in a whole community forms a network known as "web-of trust". By 

calculating Trust relations that meet the criteria of transitivity we can transfoml them 

back to similarity metrics and thus get able to answer queries for which there was 

insufficient evidence for a local user to work out. 

We also presented a simple protocol that implements this architecture and 

described the steps that must be followed in order to run this protocol to a real 

environment. In the next two chapters we get into more detail about the way that 

primary Trust relationships are formed and how beneficial the new query mechanism 

is for the whole community. 
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Chapter 5 

THE TRUST DISCOVERY PHASE 

5.1 Introduction 

In this chapter we describe the first set of operations that occur in a Recommender 

system, during the Trust Discovery Phase. This phase is concerned with the 

representation of Primary Trust relationships and the formation of neighbourhoods of 

users with respect to the level of Trust they place in each other. This phase must be 

implemented by every entity that wishes to participate in the Trust scheme. The 

challenge for those entities that have decided to participate in the schema is how to 

turn first hand evidence into Trust measures. This requires a transformation formula 

which, in our case, is adapted to a Recommender System where first hand evidence is 

in the form of ratings that users have given to items. 

In this chapter we present our technique for modelling Trust relationships by 

using first hand evidence produced in recommender systems' environments. In such 

an environment agents collaborate with each other with the common aim of providing 

accurate recommendations to each other. First-hand evidence is any data concerning 

primary Trust that an agent has derived from its own experiences with the examined 

entities. Second-hand evidence consists of Recommendations from other agents. It is 

so called because the derived Trust (secondary Trust) from these Recommendations 

has not been derived from the agent's own experiences with the entities in. In our 

model we use techniques taken from Collaborative Filtering to express Trust 

properties as beliefs. We also validate our model by comparing the results with those 

from existing models for mapping types of behaviours to Trust values based on the 

Beta distribution. Finally, we describe the requirements of a protocol that could be 

used for the deployment of the proposed model in a real distributed environment. 
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5.2 Trust derivation from evidence 

As shown in the previous chapter, evidence can exist in various forms. In a system 

that makes use of Trust, the form of the evidence must be in a form that the Trust 

model requires. 

A Subjective Logic based model requires that Trust be expressed in the form of 

opinions, triples of belief, disbelief and uncertainty. In Recommender systems instead, 

evidence usually exists in the form of ratings that users have given to items and this 

makes a transformation formula necessary. In Collaborative Filtering systems 

statistical techniques are employed to develop virtual relationships between users. In 

this way, neighbourhoods of users consisting of those who have a history of agreeing 

in the past, and thus are considered to be similar, can be formed. Although a similarity 

relationship can easily be expressed for any pair of entities, this type of relationship is 

not transitive whereas Trust relationships can be [22], under appropriate 

circumstances with regard to a common Trust purpose. 

The necessity for approaching Trust modelling in a new way leads to the idea of 

expanding the neighbouring base of the users by using Trust relationships that could 

have been developed between them so that it is possible for other members of the 

community to be reached through them. Sparsity in the Recommender systems is the 

main reason for poor behaviour because not much evidence can be gathered to 

support a Recommendation. It appears mainly because users themselves are not 

willing to invest much time or effort in rating items. 

For such an idea to become applicable, users must somehow be able to place Trust 

in their neighbours. In the usual centralized consumer opinion sites [16] a requirement 

is that this Trust measure should be provided by the users themselves. In other words, 

users should be able to set the Trust values by giving a measure of how much they 

Trust other entities. Moreover, this means that users need to have developed a good 

instinct for judging things and this cannot be guaranteed. Poor judging abilities lead to 

the danger of establishing relationships with the wrong counterparts. Trust on the 

other hand is not easy to estimate and it is not always possible to assure that the 

people that are behind the machines are always capable of doing this, even if the 

evidence they have would be sufficient for some other person. In other words it is a 

personal issue of how much evidence is sufficient for a certain person to become able 

to build adequate Trust with another. 
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Our contribution to this issue is to introduce a technique for mapping between 

similarity measures and Trust. In other words, by knowing how similar two entities 

are, they will be able to estimate how much Trust they should place on each other. 

Also in reverse, knowing how trusted two entities are, will be sufficient to derive a 

measure of similarity for them. The reason for trying to use both forms of correlation 

between users is because each type has its own advantages. For example, similarity 

measures are suitable for use in Collaborative Filtering systems since predictions can 

be made using them and Trust measures have transitive characteristics under certain 

circumstances. 

5.3 The basis of our model 

In our model we use ordinary measures of similarity taken from Collaborative 

Filtering in order to form the potential Trust between the correlated entities. This 

Trust would be propagated using a method identical to a "word-aI-mouth" scheme in 

the graph built up by the relationships between the entities. The aim of our Trust 

model is to enable some entities in the graph to find out how similar they are even if 

there is no direct similarity relationship between them. 

The Trust that an entity should place on a distant one will be derived through the 

Trust graph. Ultimately, the transformation of the value back into a similarity 

measure, could make it appropriate for use in Collaborative Filtering schemes. 

W express Trust in the form of opinions as they are modelled in Subjective Logic. 

As we mentioned in the previous chapter, Trust is considered a SUbjective measure 

and this introduces the important idea that there is always imperfect knowledge when 

judging things. Imperfect knowledge is expressed with the notion of Uncertainty. 

SUbjective logic [8] uses a simple intuitive representation of uncertain probabilities by 

using a three dimensional metric that comprises belief, disbelief and uncertainty. Even 

though Opinions in the form (b,d,u) are more manageable due to the quite flexible 

calculus that opinion space provides, evidence however is usually available in other 

forms that are more understandable by humans. 

As mentioned in Chapter 3, Trust is context specific. It is also related to tasks in a 

sense that entities are trusted to perform a particular task. A simplistic approach 

would be to determine the levels of Trust and distrust that should be placed on some 

entity from its probabilistic behaviour as seen from the trustor's point of view. 
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The Beta Distribution Probability Function can offer an alternative representation 

of uncertain probabilities [26] making it possible to approximate Opinions from 

behavioural data. However, data in that evidence space are considered as sets of 

observations and therefore they must be provided strictly in binary form representing 

the possible two outcomes of a process x or x. These can be thought of as a positive 

and a negative possible outcome. So, a behaviour is described by the value of x or ~ 

that derives from the set of observations. As we saw in Section 3.16, the Beta 

Reputation system is based on using beta probability density functions to combine 

feedback and derive reputation ratings. 

As can be seen from the formula in section 3.16 that give the values of b,d and 

u, the Opinion properties (b,d,u) are solely dependent on the number of observations 

characterised as good or bad. These parameters though, are meaningless in a 

Collaborative filtering system where the available data are nothing but ratings that 

users have given to items. 

The Beta reputation system requires that there are processes with two possible 

outcomes to estimate the probability of positive outcomes in the future. As can be 

seen it is oriented to a special type of problem where outcomes can be categorized as 

"good" and "bad" behaviours. For other kinds of evidence a different mapping is 

necessary. The existence of data in the form of "good" and "bad" behaviours is 

difficult to find in existing datasets or to expect people to provide them in that form. 

In that case, some kind of criterion is required for the transformation of data from 

some usable form to the appropriate beta distribution values. Opinions or Trust 

values, on the other hand, do not have any meaning for people if they are asked to 

provide them. 

In contrast, other similarity based approaches such as that in [33] are based on the 

idea of getting the users linked together indirectly using predictability measures, but 

these have not been tested in real environments. 

The principle idea of a Reputation system is that past experience with remote 

transaction partners can be projected into the future, giving a measure of their 

trustworthiness. This effect has been called the "shadow of the future" by the political 

scientist Robert Axelrod [59]. 

85 



5.4 Our Trust model 

In general, Trust models are used to enable the parties involved in a Trust relationship 

to know how much reliance to place on each other. Our model aims to provide a 

method for estimating how much Trust two entities can place on each other, given the 

similarities between them. 

As we have seen, the problem with Recommender systems is that the entities 

involved provide their views about other entities in the form of ratings about items 

and not in the form of Trust estimates about other entities. This means, making the 

model Trust-enabled requires that all this info, which so far has been expressed in the 

form of ratings, should be transformed into Trust values. 

In order to do this, we consider the ratings that users have given to items as the 

behavioural data required for the composition of their opinions. 

In our model we assume that the level of Trust that develops between every pair 

of entities is based on how similar each other's choices seem to be as they see it. In 

other words, the Trust values derived are based on similarity of choices. We use the 

Pearson coefficient to express the similarity measure, as this is the best known and 

most suitable coefficient for this type of application. It takes values between -1 and 1 

and two entities are considered to have high similarity when their Pearson values are 

close to 1 and are completely dissimilar when the value is -l. A value of 0 would 

mean that there is no relationship between the two entities at all. 

Unlike the Beta distribution mapping to Opinions which we described above, in 

our model we describe Uncertainty by using both Quantitative and Qualitative criteria 

to extract information from the evidence. This is because we believe that, unlike Beta 

function based modelling, in the physical world the number of experiences required to 

define uncertainty is variable. The reason is that some people need different numbers 

of experiences from others in order to reach the same level of certainty in a Trust 

relationship they develop with a counterpart. 
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5.5 Modelling Uncertainty 

As with the Beta distribution, the way of applying quantitative criteria obeys the rule 

that Uncertainty should be inversely proportional to quantity of the evidence. As 

regards the quality of the data we re-define the perception of Uncertainty as the 

inability of some entity to make accurate predictions about the choices of the other 

party in the Trust relationship. A low ability value would be the result of the existence 

of conflicting data making the observer unable to fill in its own Uncertainty gap. Such 

a combination of low quantity of data and inability to make accurate predictions 

would lead to a high Uncertainty value. In the case that there are not enough 

observations to distinguish rating trends, data might appear to be highly conflicting. 

Uncertainty would also be high in the case where there are not sufficient data to 

support an opinion. 

Bearing in mind the idea that those entities whose ratings can be accurately 

predicted should be considered as trustworthy sources of information, the Uncertainty 

in such relationships should be lower. Therefore we propose the following formula to 

model Uncertainty from prediction error: 

where k is the number of common experiences (ratings) of the two entities that take 

part in a relation, px is the predicted rating of item x calculated using a prediction 

calculation formula and r x is the real rate that the entity in question has given to item 

x. The quantity m represents the maximum value that a rating can take and is used 

here as a measure of rating. 

The logical reasoning for deriving the above formula for Uncertainty is the 

following: Uncertainty is proportional to the prediction error for every user's single 

experience; therefore the nominator represents the absolute error between the 

predicted value (using a rating prediction formula) and the real (rated) value. The 

dominator m has been used for normalization of the error in the range 0-1. The sum 

symbol has been used to include all the experiences (k in number) of the particular 

user. Finally, the result is divided by the total number of experiences (k) to get the 

average normalized error. 

87 



In the sum we take every pair of common ratings and try to predict what the rate p 

would be. Every time we perform the prediction by assuming that all but the real 

rating of the value that is to be predicted exists. 

A suitable prediction formula that can be used for calculating Px is that of 

Resnick's [11]. In our approach, for every pair of common ratings we calculate the 

Pearson correlation coefficient and then we use it for the prediction of the rating that 

we have kept hidden and that we are trying to predict it. 

Resnick's prediction formula requires that the Pearson correlation coefficient 

w(a,i) (which expresses a measure of similarity between a and i) , and the average 

rating of the users involved should be known. The correlation value is used as a 

weight for the user ratings, according to the intuition that, if another user rates in a 

way similar to the current user, then her ratings are useful for predicting the ratings of 

the current user. p a,j is the predicted rating of user a for product j, Ujj is the rating of 

every other user who has experienced j in the past and u j is the average rating of all 

products that the Uj user has rated. 

The pairs of common ratings in this case play the role of the evidence, which are k 

In number. This means that, a calculation of uncertainty requires k times the 

calculation of prediction which requires!! times the calculation of similarity value. 

We can say that an order of magnitude of 2 for k common items for a calculation of a 

single opinion is a weak point of the algorithm. This is because normally the value of 

the item that is to be predicted must be excluded from the calculation of similarity and 

only the other pairs of values should be used. Nevertheless, the predicted values PaJ 

can be accurately calculated by using the similarity value that has been derived by the 

whole set of pairs. In the case that the number of pairs of items involved in the 

calculation is high, the deviation by using the same similarity value is negligible. 

Whenever a new pair of ratings is added into the collections of two related users 

their similarity must be recalculated since new evidence may have turned up. A 

formula that will avoid the recalculation of the whole set from the beginning 

whenever a new experience is added to the set of experiences of each counterpart is 

left as a future research problem. 

88 



As can be seen from our formula, Uncertainty is inversely proportional to the 

number of experiences k. This agrees with the targets we set as requirement for 

Uncertainty regarding the quantitative criteria we discussed in the previous paragraph. 

Unlike the mapping based on the Beta distribution function where uncertainty 

exclusively tends to 0 as the number of experiences grows, in our model this tension 

remains quite vague because uncertainty is now also dependent on the average 

prediction error. In the extreme case where there is high controversy in the data, u will 

reach a value close to 1, leaving space for the other elements of the opinion, (belief 

and disbelief), to develop their values. In some extreme case the predicted and the 

actual rated values match each other: this happens when both counterparts have given 

the same ratings for all the same items. This is what makes Uncertainty equal to 0 and 

belief equal to 1. In the interesting case where the correlated entities have given 

opposite ratings, for example, what A has rated with high value, B has rated with low 

value and vice versa, thanks to the prediction formula, this will also give values equal 

to the rated ones and the uncertainty will get its lowest value of 0 again. But in this 

specific case the rest of the opinion gap will be filled with disbelief which will have 

the value of 1. 

Another interesting characteristic of our model is the asymmetry in the Trust 

relationships produced which adheres to the natural form of relationships since the 

levels of Trust that a pair of entities place on each other may not necessarily be the 

same. This comes from the fact that Trust properties according to our model are 

derived from ratings, which have not necessarily taken the same values in both sides 

of a relationship. 

5.6 Modelling belief - disbelief 

As regards the other two properties b (belief) and d (disbelief), we set them up in such 

a way that they are dependent on the value of the Similarity metric wa,u. In our model 

we have used Pearson's Correlation Coefficient as a similarity metric, which 

introduces the idea of computing the similarity between the two users, which is one of 

the standard steps in Collaborative Filtering techniques. The Pearson Correlation 

Coefficient has the form: 
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where: ra and ru are the average ratings of the users a and u respectively, r
a

,; is the 

rating of user a for item i and ru; is the rating of user u for item i. 

The correlation coefficient is computed only for items common to both users. 

For the two properties belief and disbelief we use the following formulae: 

for belief 

b=(l-u)(1+w
a
J 

2 ' 

for disbelief 

d = (1 - u) (1- w ) 
2 a." 

As can be seen from the derived formulae b + d = ( 1 - u ), which conforms to the 

Belief Function Additivity Theorem of Subjective Logic. The ratio of belief and 

disbelief is shaped by the Correlation Coefficient (or Similarity) value. In this way, a 

positive Correlation Coefficient would be expected to strengthen the belief property at 

the expense of disbelief. In the same way disbelief appears to be stronger than belief 

between entities that are negatively Correlated (wa,u<O). According to this model two 

entities which have given similar ratings to the same items and thus behave similarly 

in their rating behaviour, will have stronger belief than disbelief in the Trust 

relationship between them and therefore they will Trust each other more. 

The two formulae can also be used in the opposite way, so as to estimate how 

similar (expressed by w) the two entities should consider each other given their Trust 

properties. As can be seen from the previous expressions, any two of the Trust 

properties would be enough to derive the similarity between the two counterparts. 
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This asymmetry in the relationships is mainly responsible for unequal similarities 

in the normal and the reverse relationship. Also responsible for this difference are the 

differing points of view, and the formula included in the calculation of uncertainty, 

which is used to work out the predictions Px in the proposed technique. Formulae 

identical to Resnick's empirical formula for the Grouplens Collaborative filtering 

system can be used for the purpose of predicting values. 

5.7 Evaluating the model 

As explained above the modelling we performed for the properties of Trust was done 

on an empirical basis, so we considered it appropriate to do a comparison of our 

modelling technique with other potential methods of modelling Trust Opinions using 

evidence. 

In this section we present experimental results in the form of a comparative study 

that shows the accuracy of our modelling technique. For the evaluation of our 

Evidence to Opinion mapping method, we tested it against a model that uses the Beta 

probability distribution function. Even though a model of evidence based on the Beta 

probability density function would be inflexible and, as we explained, would not 

always feasible, we attempt a comparison between this and our model and 

demonstrate how close the results for both schemes appear to be and also under what 

circumstances. Note that modelling in Beta is not always possible because it is 

dependent on a subjective view of the data, which may lead to different interpretations 

by various people. As we will see next, the choice of the statistical measure we used 

as a criterion in evaluating an elementary piece of data in the Beta function was 

strictly our own. 

For the testing we used a dataset taken from a real Collaborative Filtering system 

known as MovieLens. The main reason why we chose this system was because the 

dataset was publicly available and thus our method can be evaluated by anyone who 

wishes. MovieLens [60] is a movie recommender system based on Collaborative 

Filtering established at the University of Minnesota. The whole dataset is publicly 

available and contains 1,000,209 anonymous ratings of approximately 3,900 movies 

made by 6,040 users who joined the service in the year 2000. As stated before, the 

Beta distribution function requires that behavioural data should be expressed in a 

strictly binary form referring to the two possible outputs of a process: satisfactory or 
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non-satisfactory. This characteristic makes this type of coding very restrictive when 

applied to a small set of applications that can give binary output exclusively unless 

there is a way of converting available data to their binary equivalents. Given that we 

have to deal with Recommender systems in which ratings are expressed by continuous 

values or in numerical discrete alternatives, this makes the model inflexible. 

In our case, in the dataset used for our experiments the ratings were available in 

discrete values ranging from 1 to 5. For the sake of our evaluation we restricted the 

test to a subset of the MovieLens database based on 100 users only. In total the testing 

dataset comprised 12,976 ratings provided by this subset of users. The analysis we 

performed on the dataset showed an asymmetric distribution of ratings with 

mean=3.61, standard deviation squared=1.24, median M=4 and a skew to the left. The 

value 4 for the median can be explained by the fact that people tend to be kind when 

they rate things they have experienced themselves and therefore almost always give a 

higher rating compared with what they actually think. 

We faced two challenges when carrying out this experiment. First how to make 

the experimental dataset suitable for representing evidence for the Beta distribution 

and second what measures to use for the comparison. 

The fact that no data supplied by users, showing how much they Trust each other, 

were given in an appropriate form, led us to generate artificially the weights that 

should be placed on the relationships. In Beta modelling the evidence should be 
-

provided in binary form x or x, to represent how an entity would perceive the 

behaviour of the other party in the relationship. 

To judge the rating of every single item with respect to its behaviour, we defined 

our own criterion. The basic idea of this is the use of the relative distance between a 

pair of ratings given by two users as a condition to decide whether some behaviour is 

characterised as good or bad. 

Let us call RA,k the rate that the first user A gave to item k and RB,k the rate of the 

second user B to the same item. A relatively long distance between the RA,k and the 

RB,k should be considered - subjectively judged - by A or B as unsatisfactory 

behaviour of the other counterpart. As it can be seen, such a rule requires a criterion 
-

that would define when a behaviour would correspond to x or x . 

In our experiment we used the Median value as the barrier for characterising a 

behaviour as bad if the two ratings have been placed on different sides. For the same 

purpose a different metric from Median could be used to separate one area form 
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another could be used, but we believe that the Median is the most appropriate because 

it divides the sample into two parts with an equal number of item ratings. 

For example, a case where RS,k=3 and RA,k=5 should be considered as ~. The 

median reflects the way that users rate items. Finally, we choose one of the four 

possible scenarios of the table in Figure 1., that characterise a behaviour. 

1---1 RA,k>M i RA,k<M 
, 

I RS,k>M x x 
--- --

RS,k<M x x 

Figure 1. Truth table of Evidence 

Once all the pairs of common ratings have been examined, we transform the 

evidence to opinions (b,d,u) by using the Beta transformation equations. (See section 

2.21). 

The kind of data representation, which we used in the Beta model in the 

comparison test, in order to be successful and produce correct results, requires that the 

sample dataset be static, with known statistical values, and not dynamic as in a real 

world scenario. Therefore its use is not recommended for real environments. 

For the sake of the evaluation tests we built a graph of the 100 randomly chosen 

users from the MovieLens database, which constituted 8782 Trust relationships and 

the results are given in Figure 2 below. 

In order to be able to compare the Opinions created by each model, we converted 

them into a plain probabilistic value, which by convention is called the Probability 

Expectation. This can be interpreted as saying that the relative frequency of both 

counterparts in the relationships agreeing in taste is somewhat uncertain and the most 

likely value is E, = b + a . u . a represents a measure called Relative Atomicity which 

is used to describe if, and how much bias, there is in the system towards belief or 

disbelief. A formal definition of Probability Expectation can be found in [8]. In the 

experiment we measured how close the two derived opinions from the two methods 

are by comparing their probability expectations. Therefore, the values shown in our 

results are in terms of this measure. 

In figure 2 we present the divergence between our modelling and the Beta 

probability distribution function, the measurements being derived from the relative 
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difference (%) between the two probability expectations. In this table, the results have 

been grouped for various classes of common experiences that constitute an opinion, to 

show how the number of experiences affects the divergence between the two types of 

modeling. The second column indicates how many relationships from the dataset 

belong to each class, based on the number of common experiences. 

5.8 Discussion of the results 

Figure 2 shows increased divergence between the two modelling techniques for small 

numbers of common experiences. This can be explained as the result of the noisy 

behaviour of the Correlation Coefficient. In these categories the quality of predictions 

is quite uncertain. 

Class Num of Common Sample Mean divergence Standard 
experiences SIZe (%) deviation (%) 

1 [2-3) 624 17.50 8.M 

2 [3-5) 1326 16.67 8.17 

3 [5-10) 2277 13.77 7.67 

4 [10-20) 2191 11.29 7.03 

5 [20-40) 1417 10.10 6.88 

6 [ 40-60) 471 11.22 7.33 

7 [60-80) 195 11.98 7.75 

8 [80-100) 101 12.90 7.68 

9 [100-150) 115 10.64 7.71 

10 [150-200) 46 10.52 8.49 

11 [200-250] 10 11.26 7.81 

Figure 2.a. Mean and Standard deviation of divergence for various numbers of 

common experiences 
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Figure 2.b. Divergence. Mean and Standard deviation visual repre entation 

The small increasing trend in divergence that is noticeable as the num ber of 

common experiences grows (2-10) is due to the poor data set used in tho e categorie , 

since only a very small sample size existed in this class of common experience . 

From the results it can be seen that our coding method converges to Beta 

modelling when the agents have at least 20 co mmon experiences, at which point the 

divergence stabilizes to a relatively low value. 

Even though both methods give slightly diffe rent results (differing by aro und 

10%), there is no real situation which could be used as a point of reference to eva luate 

how accurate, in absolute measures, each coding method is. 

Having this evaluation experiment as a guide we can dec ide not to use primary 

Trust relationships between users whose number of common experiences is less than 

20, because in this range the proposed method 's behaviour diverges significantly from 

the Beta modelling which we use as a point of reference. 

5.9 Application to a P2P network 

In this section we discuss how the Trust Discovery Phase can be established in an 

existing user community. Primary Trust establishment requires that u er exchange 

information with each other regarding their pas t experiences of items. 
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This requires users to have enough knowledge about the communities to which they 

belong, which means information about the topology is somehow available. Peer-to­

Peer networks nodes have network discovery implemented as a low level operation so 

that it remains transparent to the services running above. Thus the topology 

information is kept in a local registry which the Trust establishment mechanism could 

consult and so find appropriate neighbours. Various criteria can be used to determine 

the suitability of each neighbour such as hop distance, longevity etc. 

We assume that a Peer-to-Peer infrastructure already exists before Trust 

establishment begins. Using the Gnutella network as an example we can show that 

nodes discover their neighbours by analysing the messages they receive (pongs) from 

those nodes which respond to the network exploration polls (pings). This information 

is kept in their local registry to be used in other operations such as resource searching. 

In this way Trust discovery, which can run on top of network exploration, may 

be restricted only to near neighbours which are within a radius of a few hops of the 

querying node. This results in reaching and establishing Trust with, usually, a few 

hundred nodes, which is sufficient. Having in mind that the establishment of the 

relationships would be done using a request-reply scheme, congestion problems can 

be partially alleviated if the receiving side ignores any Trust establishment requests 

for which the relationship has already been built and thus send no reply at all. 

In case the above scenario has not led to a large number of trusted participants 

the requesting node could then retry the discovery process using an increased hop 

count. 

The calculation of Primary Trust can be done in the way explained in the 

previous chapter bearing in mind the security issues. Thus both the requesting and the 

replying entity could then supply their ratings from which the Trust value can be 

calculated. 

5.10 Future Work 

We intend to apply our modelling to a real system with the expectation of improving 

the quality of the derived recommendations. Another idea, which we will see applied 

in the next chapter, is to make use of the "web-al-trust" that would evolve from the 

establishment of direct Trust relationships between users. Our aim is to improve the 

recommendations provided by exploiting the experiences of any entities not 
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neighbouring the originator of the query but reached via the "web-af-trust ". This 

requires the calculation of derived Trust relationships from the primary Trust values. 

The question that arises from this is how accurate the predictions can be. Obviously 

there will be some increase in the coverage, which translates into reduced sparsity in 

the dataset of opinions that can be expressed. 

The ad-hoc way we chose to code the positive and negative evidence for the Beta 

distribution necessitates more tests against other alternative coding techniques and the 

use of different statistical measures. (For example using the ~vlode instead of Median 

value as a criterion for separating good from bad experiences). 

No matter how good recommendations such an architecture can provide, there are 

security weaknesses for the Recommender Systems, which must also be tolerated. 

5.11 Summary and Conclusion 

We presented an empirical technique for modelling the trustworthiness of entities 

using evidence that describe their rating behaviour. The novelty comes from the 

shaping of the derived Uncertainty which is dependent on a predictability measure 

and thus on the value of the evidence. We coded our derived Trust Opinions into 

metrics taken from Shafferian belief theory and we attempted an evaluation of our 

model against an identical one based on the Beta probability distribution function for 

mapping evidence to Opinions. 

The evaluation was done experimentally by taking data from an existing database 

and processing the data using a formula which could transform them from their 

simple form to a compatible type that could be identified by both methods. 

The use of the Median as a criterion for the identification of the distance between 

the two ratings and thus the characterisation of good and bad behaviours was mainly a 

personal choice. This seems to be a weak point of the evaluation method but it could 

not be avoided due to a lack of other transformation methods. 

From the evaluations it appears that both methods produce very similar results. 

The strong points of the proposed technique can be summarized as its ability to 

incorporate similarity measures in its properties, its use of qualitative as well as 

quantitative measures to derive Opinions and its flexibility in accepting datasets of 

continuous values rather than just binary, which makes the method suitable for the 

Collaborative Filtering type of Recommender Systems. The weak point is the lack of 
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security in the transmission of Opinions which creates a security threat in the system. 

We leave this as a future research problem. 
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Chapter 6. 

THE RECOMMENDATION SEARCH "lECHA~IS"1 

6.1 Introduction 

In this chapter we describe a method that can be used for carrying out the 

Recommendation Search referred to in Chapter 4 as one of the phases that must be 

implemented in a distributed Recommender system. The main idea is based on the use 

of Trust relationships to support prediction of user preferences. The method is 

presented here in its simplest form and can also be run in a centralized environment. It 

can, however, easily be extended to support distributed environments. It also has 

another interesting characteristic, which is the avoidance of the sparsity problem and 

for this reason helps in providing improved quality Recommendations. 

This chapter deals only with the derivation of secondary Trust between the trustor 

and the trustee entities, which are both members of a given graph. After the 

completion of this phase the system is ready to provide Recommendations in the usual 

way. The exploitation of the recommendation search phase is worthwhile when there 

is a considerable hop distance between the trustor and the trustee and thus they can 

form a network through which secondary Trust is calculated. 

Trust derivation is done using the Consensus and the Recommendation operators 

of Subjective Logic algebra and is especially used for the simplification of the Trust 

graphs formed. The type of Trust that is calculated through a Recommendation search 

operation is the type we called Indirect. For more details on types of Trust see Chapter 

3. 

As we discussed in Chapter 4 a typical neighbourhood formation scheme uses 

Correlation and Similarity as measures of proximity. With this approach, 

relationships between members of the community can be found only in the case that 

common experiences and common purpose exist. 

We intend to exploit information, which at first glance may seem to be 

extraneous, in such a way that might be beneficial for the community. In a 

Recommender system this benefit appears as improved accuracy as well as improved 
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capability in providing Recommendations. In the previous chapter we made use of the 

common experiences that two entities might have, to establish hypothetical Trust 

relationships between the entities. Through such relations the entities will be able to 

find how much they should Trust other entities that are logically positioned a 

significant hop distance away. 

This chapter also contains a validation of the proposed idea. An experiment is 

performed in which evaluation results are presented using statistical measures. More 

specifically, we measure the performance of a system that incorporates this idea and 

especially: 

• The mechanism that converts Similarity to Trust and vice versa, and 

• The concept of building a Trust infrastructure for deriving the Trustworthiness 

of non-neighbouring users. 

Our approach is compared to the standard one which uses Similarity alone. In the 

evaluated system it is assumed that the derivation of primary Trust has been done in 

such a way that conforms to the limits set regarding the number of common 

experiences that two potentially trusted users must have and were presented in chapter 

5. Assumptions have also been made regarding Trust transitivity. 

6.2 Claims about performance 

There are two challenges for recommender systems which appear to be in conflict 

with each other: Scalability and Accuracy. An approach to expressing a measure of 

performance in such system should take into consideration a combination of both 

challenges. 

Accuracy has to do with how close the values predicted by the Recommender 

system, are to their real values. The calculation of accuracy involves an estimation 

method called "leave-one-out". In this method a known value is kept hidden and the 

testing system tries to predict it. Although ratings already exist as personal 

assessments on things, we assume here that prior to a calculation these ratings do not 

exist and the Recommender system is trying to calculate their values using the 

algorithms. So, real values are considered as unknown throughout the evaluation. 

Scalability has to do with how many different sources of data are considered in 

order to make a prediction. The more sources supplied, the worse the Scalability since 
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this demands a higher number of calculations to produce a result. In principle, sparse 

datasets require lower number of calculations and therefore such configurations scale 

better. 

Accuracy is proportional to the amount of data that is available but appears to 

work at the expense of Scalability, since accurate predictions require more time for 

searching for sources of data. In this chapter we only deal with the first challenge. 

leaving the scalability issues as future work. 

Sparsity is a characteristic of the Recommender Systems based on Collaborative 

Filtering. Such systems work using algorithms that are called Nearest-neighbour 

algorithms. Other technologies used include Bayesian networks and Clustering. In the 

latter, users are grouped by their similarity in preferences, and predictions are made 

regarding the participation of a user in a cluster. In the case of participation in 

multiple clusters the prediction is a weighted average. As shown in [19] algorithms 

based on clustering have worse accuracy than Nearest-neighbour. therefore pre­

clustering is recommended. Pre-clustering is a graph partitioning method that is used 

to group objects of a sparse graph into sets of smaller clusters. It belongs to a category 

of clustering methods that are called "Hierarchical Methods ". For categorization of 

clustering methods see [85]. 

The basic idea behind Collaborative Filtering as described in Chapter 2, is to make 

predictions of scores based on the heuristic that people who agreed (or disagreed) in 

the past will probably agree (disagree) again. Even though such a heuristic can be 

sufficient to correlate numerous users with each other, systems which have employed 

this method still appear to be highly sparse and thus are ineffective in making accurate 

predictions all the time. This ineffectiveness is proportional to how sparse the datasets 

are. 

By Sparsity we mean a lack of data required for a Collaborative Filtering System 

to work. In this specific case the data are in the form of experiences which users share 

with each other through the system. In a conventional centralized Recommender 

system, sparsity appears as a number of empty cells. In a system represented as a 

"web-ol-Trust" graph, sparsity appears as lack of relationships between the nodes. 

Our claim is that discovering Trust relationships and thereby linking users of the 

Recommender system together can have a positive impact on the performance of such 

a system. As discussed in previous chapters such linking of users is theoretically 
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possible and one can imagine that they compose a virtual network on top of the 

existing one: a Trust Overlay. 

In a conventional Recommender System the mam type of relation exploited 

between users is Similarity. Recommendations and the formation of groups of users 

are based on the similarity property of the entities that take part in the scheme. Our 

idea is that developing other types of relations in addition to Similarity between the 

users could help their connectivity base increase and thus their contribution to the 

system. Also, any other type of relation that can be mapped to similarity would be 

useful in increasing the connectivity base. Such an idea would also be beneficial to 

new users whose relationship group is poor and Similarity alone is not enough to help 

them exploit information from the collaborative environment. This is known as the 

"cold start problem" in collaborative filtering systems and we expect that our method 

will ease this. 

In standard Collaborative Filtering, the correlation of ratings is done on a 

"nearest-neighbour" basis, which means that only users who have common 

experiences will be correlated. If we are only using Similarity metrics for doing 

correlations then a single node can benefit solely from knowledge and experiences 

which are within one hop distance. In Collaborative Filtering systems, whose datasets 

are characterised by high sparsity, this has as a result poor performance. 

A B C D 

Figure l.a Figure l.b 

For example in the simple scenario in figure l.a where 3 services are experienced 

by 4 entities when using the standard method there is no way that knowledge from 

entity D can reach entity A since no Similarity measures can be computed between 

them. We use the term knowledge for expressing the ratings that those entities have 

given about items tested in the past. 

In Figure l.a we call 1,2 and 3 the items for which expenences have been 

provided and A,B,C and D the user entities that take part in the example schema. As 

opposed to users A and D, users A and C can be correlated due to the existence of 
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common ratings between them and particularly with their personal experience of item 

2. We can better show the relationships by using a graph such as that of figure l.b. 

The denser the graph, the easier for an entity to collect the appropriate information 

and thus the higher the possibility of making a prediction. In addition, as shown in 

our experiments, the predictions due to the extra data collected are even more 

accurate. 

Our idea is to exploit information from any experiences that can be reached 

beyond the barriers of the local neighbourhood for the benefit of the querying entities. 

We deal with this issue by utilizing any Trust relationships that could exist between 

the entities involved and in this way build a hypothetical Trust network within the 

system. In the above example by using Trust relationships in a transitive manner we 

can bridge the gap between the distant entities A and 0 of our example and find how 

trustworthy D looks to A and vice versa. From the derived Trust we can estimate the 

similarity of the distant entities and thus be able to predict their ratings of each other. 

For long Trust graphs there is a problem with the length of the Trust chain and 

this raises the issue of how one can traverse a whole chain of intermediate nodes to 

find a Trust value for a distant one. In fact, there is a debate as to whether it is \'alid or 

not to consider transitive Trust relationships. Even though it has been said that Trust 

is not necessarily transitive [7], Indirect Trust is possible when various requirements 

are met. The existence of the same context along a chain, also known as Trust 

purpose, is crucial to exist and indicates the ability to recommend [22]. This ability 

comes from the way that Trust relationships have been formed. 

Assuming that this ability is present in a long chain, then a Recommendation can 

be made, as Indirect Trust can be calculated along the chain. Hereafter, in this 

experiment we assume that the entities, in fact, do have this ability to provide 

Recommendations as soon as they appear to have a common taste for things. The 

basis of our hypothesis is that someone is considered a good recommender given 

when he/she knows the subject of Recommendation well. For example, someone who 

is known to be a good car engineer is also able (always assuming that he answers 

enquiries honestly) to judge and recommend someone else who is good at repairing 

cars. Or else, he can provide Recommendations about a service that are as good as 

how he himself provides the service. 

Finally, from the Trust relationship we can express how similar the two entities in 

question might be and give one of them the opportunity to use the information from 
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which they derived their hypothetical Similarity. In Figure l.b the Indirect Trust 

relationship would appear as an additional link between A and D (dashed line). In a 

system represented as a matrix of users by items it would affect its sparsity and in this 

case would decrease it. 

6.3 Sparsity and Performance 

Even though there are various techniques to help reduce sparsity, such as the Singular 

Value Decomposition technique [30], this is not always desirable. This is mostly due 

to the centralized architecture of most Collaborative Filtering and also because the 

number of calculations required for a prediction depends on the available data. 

When the ratings are represented as a matrix of users and items, the number of 

calculations needed to make a decision is dependent on the product of users by items. 

As a result, if the prediction has to consider a significant number of ratings then a 

large amount of time will be needed. 

Even though a query almost never involves more than a small number of users 

who have expressed a series of common ratings we must take into consideration the 

fact that at every single moment a quite significant number of queries may be running, 

which in a centralized system may be catastrophic. Given that, due to the Trust 

computation, there will be extra demand for resources because of the extra load for 

the handling of the new relationships that will arise, we believe that things might get 

even worse as regards computational load. 

We conclude that such a requirement could make the Recommender system 

respond outside the time limits that the average user would accept. The systems we 

know about (e.g. Epinions , Movielens ) appear to have sparsity levels that approach 

97% which means that those services have almost empty matrices. Therefore 

conventional Recommender systems should not be considered as scalable. 

As such the reduction of sparsity in the standard systems by using the normal 

techniques of Collaborative Filtering is not a panacea. In our proposed design though, 

there is the advantage of distributing the computing effort to that peer that initiated the 

query. This effort includes the following operations: 

• The collection of the data about cooperation with the other users/peers, 
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• The computation of the derived Trust and Similarity, 

• And finally, the production of the output to the user interface . 

As will be seen in subsequent chapters the response time for queries in such a 

system is highly dependent on the Trust filters used for the propagation of queries and 

on the number of peers that are involved in the process. 

6.4 The outline of our experiment 

To support our hypothesis we ran experiments on a small community of 100 nodes 

and compared the Recommendations of our Trust-enabled system against those results 

that a plain Collaborative Filtering method would give. In our experiment we used the 

same community as used in the previous chapter for the evaluation of the 

neighbourhood formation protocol. 

We also performed a comparison against the output that we would get if the 

choices were solely based on intuition. Even though an intuition based comparison 

would not have any practical result we present it here as a point of reference so as to 

emphasise the benefits of our design. Note that some intuition based value cannot be 

calculated in decentralized environments because they require the existence of global 

knowledge, which a single peer cannot have. We assume that an intuition-based 

choice follows the statistical distribution of the past choices of ratings over the items. 

We call this 'Intuition' in our terminology. In our particular case this distribution has 

a median value of 4. 

The aim of performing this series of tests was to examine how efficient our design 

might be if applied to a real Recommender System. Efficiency is measured as how 

successfully the system can predict a consumer's preferences. Given that in a 

conventional Collaborative Filtering system the efficiency has a known value, our aim 

in using the Trust-enabled Collaborative Filtering system is to improve this situation 

and get as higher value as possible. As we mentioned above the data used were taken 

from a publicly available dataset of the MovieLens project. 

We applied some filtering to the existing relationships to avoid poor performance 

due to the noisy behaviour of the Pearson Correlation Coefficient that we used for the 

prediction of values. Under this scheme, those relationships which were built upon 15 
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or less common experiences were not considered in our calculations. This value (15) 

was chosen as the most appropriate according to the evaluation experiment we 

performed in the previous chapter and was applied as a filter in the Trust queries used 

for the propagation of Trust. From the evaluation experiment it was shown that for 

this number of common experiences and beyond our Trust modelling converges to the 

modelling done using the Beta pdf. 

The dataset we used also contained timestamps for every rating indicating the time 

when the rating took place, but this information was not considered at all in our 

correlations since at this stage of our research, our intention was to perform a study on 

the static behaviour of the model. The use of time stamps might be useful in some 

future experiment as a secondary criterion for choosing ratings that have been issued 

by both counterparts within a certain amount of time and accordingly be considered in 

a Trust relationship. In this variation, where more than one rating has been given by a 

user for some item, we would only take into consideration the newest for the 

calculations. 

Next, we provide some data and the format of the experimental database to give 

an idea of what the data we used are like. More about the format of the database we 

used can be found in Appendix A. 

The RATINGS were provided in the form of a stream of data contained in a single 

file. The rest of the information, such as USERS and MOVIES, was kept in separate 

files. The table called TRUST was derived by appropriate processing of the 

RATINGS table. More specifically this table contains triples of (b,d,u) values for all 

related users and were derived using our Trust modelling as described in Chapter 5. 

In our analysis, we demonstrate how such a system would perform in comparison 

to a standard Collaborative Filtering scheme and also against a system that involves 

no use of recommendations at all. In the latter the users would make the choices by 

themselves by using their Intuition alone. For this comparison, every user's 

predictions were guided alone by their personal past experiences of every user 

separately by using the local knowledge acquired from the way that the user has rated 

its own experiences. Such a scheme would be somewhat impractical in cases where 

insufficient knowledge has been acquired by an individual user-node and thus the user 

would be unable to make predictions about its own future rating behaviour. The main 

reason that it is used here is for comparison purposes. 
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6.5 Definitions 

For the sake of our experiments we introduced two notions that will be used in our 

measurements. 

I Computability: We define this as the total number of services for which a user 

can find Opinions using our system through the established Trust graph, divided by 

the total number of services that have been rated by all counterparts in the sample 

dataset. 

Each user has its own Computability value because the number of Opinions that 

can be collected through the Trust graph varies from person to person and is 

dependent on the point of view as well as on the number of existing experiences. The 

performance limit reached when considering all counterparts should be seen as the 

normalization value as then no more services can be reached by any of the 

participants in the system. 

II Recommendation Error. We define this as the average error that users make 

when trying to predict their own impressions of those services they can reach when 

using the Reputation system. It is defined as the predicted rating divided by the rating 

that is given after the experience. Similar to Computability, this measure is also 

specific to a particular user. That is because individual users can reach different 

numbers and groups of users from their points of view. 

In order to provide a unique metric of effectiveness, we also introduce the notion 

of Normalized Coverage Factor F. This measure combines Recommendation Error 

and Computability into a single value and is expressed as: 

F = (1- E)· C 

where: 

E is the average Recommendation Error for a particular user and C is the 

Computability value for that user. We take the average value of E because each user 

has more than one experience for which the error can be calculated. In other words, F 
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represents how much a user benefits from its participation in the community. High 

values of F, which translates to low computability Error and good Coverage, would 

mean that the participation of the user in the group is beneficial for him her. 

6.6 Testing method 

To perform the evaluation of our techniques we used two algorithms, one for the 

calculation of Computability and another one for the Recommendation Error. Due to 

the static nature of the available dataset we used in the experiment there was no way 

to simulate a real environment of users experiencing services in real time. The dataset 

that was available for the experiments was representing a single snapshot of the 

system at a single moment. Therefore, what we show in the results is what is observed 

at one particular instant. 

We used the technique called "/eave-one-out" as our metric for the reason that we 

should measure the difference between a prediction that is done using our Trust­

enabled system, and the actual experience of each user. 

Let S the set of all services 
Let t the filter used in the trust propagation 
Let hop the number of hops the trust can be propagated 
Let U the set of all users in the group 
For each user UA in U { 

Let SA ~ S the set of services that U,. has experienced 
For each service s in SA ( 

Let r = R(UAI s) /* The rate of UA on S */ 

Let Bs <;;; U the set of users that have also experienced s 
For each user UB in Bs { 

Trust OA,B = f (path A>B' t, distanceA>B<hop) 
CC A,B = f (Trust OA,OB) 

Let Sp 
Let Er 

f (CC ) Vie B, A,i I 

f(r,Sp) 

RecamError = Average(Err) 

Figure 2. Pseudocode for evaluating the Recommendation error 

The pseudocode for the algorithm we used to evaluate the Recommendation Error 

is given in Figure 2. We have used some calls to some specific functions that worth 

explaining: 

In the nested For loop, we call the Trust OA,B function with parameters: 
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• 

• 

• 

The filter t used in Trust propagation, 

the maximum hop count that the request can be propagated further away, 

the sub-graph that connects the source of the query A with the destination 

node B. 

In the next part of the pseudocode where the calculation of similarity is 

performed, we use the Trust that was calculated in the previous step. Immediately 

after this loop is the calculation of the predicted rating Sp using the formulae we 

presented in the previous chapter. This is done by using all available information from 

the group of users that have used that service before and with whom Similarity can be 

calculated. Finally the Error (Err) for a single experience is calculated from the real 

rating and the predicted rating Sp. Setting hop=l in the algorithm returns the 

prediction error for the plain Collaborative Filtering method, which is based on 

examining the nearest neighbours only. In the same way hop=O can gi\'e the error if 

users were doing the choices guided by their intuition alone since there is no 

participation of the graph. In our experiments we ran tests for hop ranging from 0 to 3. 

As regards Computability (or else Coverage), we also ran evaluations for hop 

distances with values from 0 to 3. The pseudocode of the algorithm we used in the 

experiment is shown in figure 3. 

Let S the set of all services 
Let t the filter used in the trust propagation 
Let hop the number of hops the trust can be propagated 
Let U the set of all users in the group 
For each user UA in U { 
Let SA ~ S the set of services that UA has experienced 
For each user UB in U { 
TrustuA,B = f (path A>B' t, distanceA>B<hop) 

If TrustuA,B > 0 { / * B is reachable by A * / 

} 

Let Ss ~ S the set of services that UB has experienced 
SA = SA + SB /* Add it to A's potential experiences */ 

Coverage 

Figure 3. Pseudocode for calculating coverage 

The function used in figure 3 for the calculation of the Trust between any two 

entities within the Trust graph is the same as that used in the pseudocode in figure 2. 
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By Coverage we mean the ratio between the experiences of an entity divided by all 

the experiences that this entity could have experienced. The If ':":C°clSt
llA

,1I > 0 

statement checks whether there can be a Trust relationship between the two users A 

andB. 

The calculation of the relationship between the two entities was implemented by 

two operations, the first carries out the graph collection phase and the second the 

simplification of the resulting graph. 

For the process dealing with discovering the Trust paths between any two entities 

in the Trust graph we used a parser to collect the paths in the graph that lead from the 

trustor entity to the trustee. The graph collection parsing was done in such a way that 

all the vectors between the trustor and the trustee were collected back to the entity 

from which the query originated (trustor). The requirement for opinion independence 

[25] obeyed that this should be done for each entity separately in order to avoid the 

existence of hidden topologies. Therefore, the calculation of the resulting Trust was 

left to each trustor individually after it received all the Trust vectors. 

As regards the second phase in the calculation, this is a network simplification 

technique and is based on the application of two Subjective Logic rules (expressed by 

the Consensus and Recommendation operators) to the collected graph. This is to 

simplify the resulting graphs into a single Opinion that the trustor would hold about 

the distant trustee. 

6.7 Problems in the graph analysis 

In our model for the cases where Trust paths couldn't be analyzed and simplified 

further by just using these two operators, we applied a simple pruning technique to 

remove those Opinion vectors that were found to cause problems in the simplification 

process. In the case studies we used there were many models of different topologies 

which were found to be problematic and which could not be simplified further by just 

using the classic Consensus and Recommendation operations. In the literature these 

topologies are referred to as non-canonical. 

Even though that there are guidelines [41] for how to construct DSPG or Directed 

Series-Parallel Graphs by sequences of serial and parallel composition operations, in 

our case scenario they could not be applied. The problem in our infrastructure is that 
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the graphs that are to be analyzed and checked for non-canonical topologies have 

already been formed when the graph analysis is to be done, since they are built upon 

the virtual relationships that exist between users. As we explained in the previous 

chapter these neighborhood formation schemes are derived from the first hand 

evidence (expressed ratings) that are available from each peer in the graph. However 

these graphs might include loops and dependencies which may lead to information 

loss if some graph pruning technique is applied unwisely. Therefore, any such 

operation must be applied carefully so as to minimize information loss. The same 

paper [41] refers to a fourth property which was introduced for each vector which is 

called Confidence and has to do with the significance of information that the vector 

carries. The criterion for defining Confidence is the maximization of Certainty (the 

complement of Uncertainty) in the produced sub-graph. 

6.8 Phase 1 - The path discovery algorithm 

In our model we used a simpler technique in which the vector that is to be pruned is 

picked by its position in the topology. The criterion we use is to apply the pruning 

operations with the aim of achieving the minimum loss with regard to the number of 

vectors that have to be removed from the original Trust graph, in order to bring the 

graph into a Canonical form. 

In the testing infrastructures we used for our experiments we discovered various 

topologies which during the simplification lead to non-Canonical graphs and for 

reference we present them in our work indicating the vector which has to be pruned. 

First we must describe the algorithm that does the construction of the Trust graph 

by finding all the available paths between the originator and the target entity in 

question. The algorithm we propose is executed recursively starting from the initial 

pair of trustor and trustee. The constructed graph is saved in a temporary set with the 

format (trustor,trustee, Trust Value) and is used by the algorithm that is applied 

afterwards for the simplification of graphs. 

The Saverecord commands are called III case a recurSIve search attempt is 

successful and when the target has been reached. The first Saverecord that appears in 

the listing is initiated when the target is reached and then the vector that ends to the 

target is saved in the temporary set. The second Saverecord was put there to store 
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recursively the entire path from the query origin to the destination in the set. This is 

performed whenever control is returned back from a recursive call. The Indicator 

variable is used to show a successful execution of a Saverecord command which 

translates to a successful discovery of a path towards the destination node. 

DEFINE Origin = The Entity where the search will start from 
DEFINE Target = The target Entity where the search to be stopped 
DEFINE Depth = The depth in the recursive search 
DEFINE TeeMinExp = Filter used as the min number of experiences of trustee 
DEFINE MinCornExp = Minimum number of common experienced between the trustor and trustee 
DEFINE TrustFilt = The minimum trust value in a trust relation to be called the algorithm recursively 

Find-'path(Origin,Target,Depth,TeeMinExp,MinCornExp,TrustFilt) 

lfDepth=O then Return(false) 

For all Trust Vectors with origin=Origin and 
Commmonexperience>=MinCornExp and 

bdu>TrustFilt do 
Read Vector from the Dataset 
Indicator=false 
If Vector.experiences>=TeeMinExp Then 

lfuser2=Target Then 
Saverecord 
Indicator=true 

Else 
lfFind-'path(user2, Target, Depth-I, TeeMinExp, MinCornExp, TrustFilt)=true Then 

Saverecord 
Indicator=true 

Endif 

End for 

Return (Indicator) 
End 

6.9 Phase 2 - The graph simplification algorithm 

Once the resulting graph of vectors has been formed by the application of the previous 

algorithm the next concern is how to carry out the simplification of the graph. 

Assuming that the output of the previous phase is a set of vectors, we can apply 

upon this set the following algorithm which in every loop of execution produces a 

new structure equivalent with the original one but having one vector less. The loop is 

executed until the resulting structure has been converted to a single vector. 
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DEFINE Origin = The Entity where the search will start from 
DEFINE Destination = The target Entity where the search is to bended 

DELETE any vectors that point to the Origin 
DELETE any vectors that originate from the Destination Ds 
WHILE there are more than a single vector in the graph DO 

DELETE self-loops A->A 
FIND a pair of consecutive vectors (a,b) 
APPLY the SUGGESTION operator to (a,b) 
FIND a pair of parallel vectors (c,d) 
APPLY the CONSENSUS operator to (c,d) 
DELETE unlinked vectors 
TAKE SNAPSHOT of the graph 
IF graph has not changed THEN 

DELETE loops A->B,B->A 
IF graph has not changed THEN 

APPLY the SIMLPE pruning algorithm by REMOVING the middle vector 
IF graph has not changed THEN 

APPLY the COMPLEX criterion (Origin, 1) 
IF graph has not changed THEN 

APPLY the COMPLEX criterion (Origin, 2) 
IF the graph has not changed THEN RETURN panic code 

ELSE Return 
END IF 

ELSE Return 
ENDIF 

ELSE Return 
ENDIF 

ELSE Return 
ENDIF 

END WHILE 

COMPLEX criterion (from F, hop H) 
FOR ALL vectors (k.m) 

IE K is in H hop distance form F 
AND K should be the ending of one vector and the beginning of at least two 
AND M should be the beginning of at least one vector and the ending of at least two. 

THEN REMOVE (k,m) 
ENDIF 

END FOR 

In order to make the simplification algorithm easier to understand we need to 

clarify the following tenns used in the relevant processes. 

By Self-loops we mean vectors where the heads point back directly to their tails. 

By Parallel vectors we mean a pair of vectors that have the same starting point and 

the same ending point. Unlinked vectors refer to those vectors where their beginning 

points are not the ending points of any other vector nor are their ending points the 

beginning of another vector. The purpose of taking snapshots of the graph as it 

develops in the algorithm is to identify any successful simplification operations that 

may have been done in the database. There being no change monitored by the 
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snapshots is an indication of the existence of non-Canonical fonn in the resulting 

graph. The simple pruning algorithm that is called as a first option to spot a non­

Canonical fonn is the one that is demonstrated in Figure 4.a. The complex pruning 

criterion that is applied as a second option is demonstrated in figure -Lb. As can be 

seen from the algorithm this criterion can run for distances of 1 and 2 hops from the 

origin node. In the graph we used for the evaluation of our algorithm we applied the 

complex (2
nd 

option) criterion for resolving complex cases at hop distances up to 2 

from the origin. The main reason for not proceeding further to longer distances was 

the fact that in our experimental set up the Trust sub-graph was constructed using 

paths which were only 3 vectors long and resolving cases at that depth was quite 

sufficient. 

The panic code we included in the pseudocode is returned in any case a non­

canonical fonn has been spotted and it could not be resolved by applying either the 

Simple or the Complex criterion. 

The simple pruning algorithm refers to cases like the one shown in Figure -i.a 

where 0 represents the origin and D the destination entities. The vector that has to be 

removed according to our pruning policy is shown as (A, B). Figure -i.b presents a 

more complicated scenario we identified which requires application of the complex 

criterion for depth 2, in order to be resolved. 

o 

A 

B 

Figure 4.a 

D 0 

D 

A 

Figure 4.b 

As can be seen, such a complex scenario can be resolved with the minimum loss if 

the indicated vector C ~ F is removed from the graph. In order to identify similar 

cases of vectors and successfully be removed from the structures we have described a 

set of criteria that a candidate vector must meet: 

• The vector it is within two hops of the Origin (0), 
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• 

• 

Its head (C) is the ending of at least one vector ( A ~ C) and the beginning of 

two others ( C ~ F and C ~ Dest ), 

Its tail F is the beginning of at least one vector ( F ~ Dest) and the ending of 

at least two ( C ~ F and B ~ F). 

In order to simplify the sub-graph by making the minimum possible alterations to 

it, the criteria are applied in such a way that on every single cycle only one vector \vill 

be removed from the processed graph and the algorithm through the while-loop will 

check if the complex case has been resolved and the derived Trust between the Origin 

and the Destination has become computable. 

Next follows the parsing and simplification policy expressed in a formal way: 

• Let V be a set of vertices of a directed graph and let E be a set of edges (arcs) 

(el ,e2,e3, ... ,en) of that graph. 

• Each Vertex represents an agent and each Edge the Trust relationship between 

the first and the second agent. 

• We call i,fa pair of functions on E such that if i(e)=x andf(e)=y then e is an 

edge denoting the Trust of agent x for agent y. 

• Assuming the existence of two vertices x and y such that i(e)=x we call 

degree(i(e)) the function that returns the number of edges that begin from x. 

• We call the outer degree (odegree) of a vertex x the function that returns the 

number of vertices that originate from x and the inner degree (idegree) of the 

vertex y the function the returns the number of edges that end at y. 

• Let origin and dest be the vertices where the graph parsing originates from and 

terminates, respectively. 

Definitions: 

Loop: 

Digraph: 

Unlinked: 

A single edge path with the same initial and final points. 

A graph whose both directed edges exist. (e.g. a~ and b~a). 

A vertex having inner or outer degree, lower than 2. 
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Not Analyzed: A sub-graph that cannot be simplified using the standard algebra and is 

resolved by pruning one of its edges. 

In order to get the graph simplified, the following six steps have to be applied in a 

loop up to the point where the whole graph is simplified into a single edge. 

• 

• 
• 
• 

• 

• 

• 

Parallel composition: Vel ,ez E E:i(e.) = ieee) I\f(e
l

) = f(e
2
), => 

eI.2 = e l EB e Z 
p p p 

Serial composition: Ve, ,e2 E E : i(ez) = feel ), ~ e~·2 = e~ ® e~ 

Loops Removal: V e l E E : feel ) = i(el ) => remove el 

Remove Unlinked Vertices: Vel E E : i(e l ) *- origin V feel ) *- dest => 
remove el 

Avoid Digraphs: Vel ,e 2 E E:i(e l ) = f(e z ) l\i(e
l
)=f(e2) => remo\c 

el v e2 
Simple Pruning Criterion: Vee e e e E E: 

I' 2' 3' 4' S 

i(el )=i(e3 ) /\ f(e zl )=f(e4 )/\i(ez)=f(c;) /\i(e4)=f(e3),i(e~,)=i(ez)/\ 

f(e5 ) = f(e3 ) 1\ degree(i(es)) = degree(f(es)) =3 => remove es 

Complex Pruning Criterion: Vel' e2 ,e3 ,E E : 

i(e l ) = origin /\f(e l ) = i(ez ) /\i(e3) = f(ez) /\ idegree(i(e3))~ 11\ 

odegree(i(e3JJ ~ 2 /\ odegree(f(e3» ~ 1/\ idegree(f(e3» ~ 2. => remove e, 

6.10 Our Test-bed 

Even though the system we designed is intended to be used as a distributed one, in our 

study we chose a centralized environment as our test-bed for evaluating the 

algorithms and for carrying out the processing of data. That was done for two reasons. 

The principle reason was that the infrastructure was available which encouraged 

us to do it in the centralized way. Moreover, the tools that were available for the tests 

were tailored to run in a centralized rather than in a distributed manner. An equally 

important characteristic of this type of testing was that the type of evaluation applied 

would not affect the results produced. The alternative would be to build a real 

application for which the system was designed and run it in the same way as it would 

operate under the commands of real users. Since it was much more difficult to build 

and run the real application, we preferred to simulate the operations carried out in a 

centralized controlled system. 
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The other reason for choosing a centralized type of infrastructure for the 

evaluation was because in the case of applying our Trust enabled solution to an 

existing Recommender system, which would run as a centralized web site 

[16][17][18], we would have the opportunity to access the data in a way similar to a 

conventional system. Our contribution would be restricted in that case only to th~ 

provision of algorithms which would be used to calculate derived Trust and to 

interpretation of similarity. As stated previously about the datasets of contemporary 

Recommender systems, the high sparsity that they have is what makes such systems 

workable because the number of necessary computations is decreased to an affordable 

number. Deciding to run the proposed Recommendation service in a centralized 

manner makes it possible to investigate the application of some filtering of the 

relationships that will finally be used in the Trust derivation. More investigation is 

required into the applicability of the algorithm in extreme situations such as decreased 

sparsity. 

Even in the case where the real system is to run in a centralized manner we could 

consider how this can be accomplished by using Web Services. In such a solution 

each graph analysis task could be run as a deployed service in a Grid architecture. As 

can be seen from the algorithms we presented, there is a huge processing requirement 

for the graph analysis where a single or a small number of CPUs would be unable to 

produce accurate results within a reasonable time without significant impact on the 

system's usability. Alternatively, doing the graph analysis in a decentralized manner 

the whole operation will be done simply via the exchange of messages between the 

nodes in the graph structure, which would not be very demanding in CPU power but 

instead would require network resources. This translates to the need for high speed 

connections between the nodes in the graph. In the performance analysis we present in 

Chapter 7 we simulate and analyse the performance of the distributed architecture 

which is the main focus of our work, rather than the centralized one. However, we do 

discuss the requirements, benefits and pitfalls of deploying it in a decentralized 

system. Next we describe in more detail the software itself as well as the 

infrastructure used to perform this task. 

Our experiment was performed in such a way that a centralized database was the 

only entity used as a central repository of data. The process of Trust graph analysis 

was done as a service executed by a cluster of computers directed by a scheduler. \V e 
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can imagine each of the computers in the cluster to be running an infinite loop asking 

for graph analysis jobs to carry out. We were feeding the scheduler with combinations 

of users for which the Recommendation error and the Coverage were to be calculated 

as well as with other parameters such as the depth of search and the Trust propagation 

filter. 

The central database was used as the place where the user ratings were stored 

together with the details of the users and the products. A separate table called TRUST 

in the database was used for storing data such as Trust vectors derived from the 

processing phase of first-hand evidence (ratings) which ran asynchronously as a 

separate task. 

More specifically, there were two kinds of processes run by the scheduler. 

• Processes that were calculating the primary Trust between any combination of 

nodes based on their common ratings (first hand evidence) 

• Processes that were used for the calculation of the derived (secondary) Trust 

by analysing the graph. 

The latter category of processes was doing the discovery of graph vectors that 

existed between the Origin and the Destination nodes as well as the calculation of 

secondary Trust. For that task the two algorithms we presented previously in 

pseudocode in figures 2 and 3 were implemented. 

In the first category the tasks were designed to be executed asynchronously 

whenever a new rating was inserted into the system. In this case there is a possibility 

that a primary Trust relationship may change its value if a rating pattern for some 

entity is changed. More about the formulae used in the conversion of first hand 

evidence to primary Trust values can be found in Chapter 5. 

The use of a centralized infrastructure was also the main reason why we used a 

subset of only 100 users from the MovieLens database even though the whole data set 

contains data from at least 3000 users. Even with the choice of using a decentralized 

network for the simulation of the experimental environment we would still need a 

large number of CPUs, for simulating each individual node. That was difficult to 

accomplish in the context of our research. 

Nevertheless, to avoid bias in the results taken, the 100 user base that was actually 

used included users randomly chosen out of the nearly 3200 that were available. 
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6.11 Results 

There were two parameters used in the measurements we performed on receiving the 

results: the Trust filter used for the further propagation of Trust from one hop to its 

neighbours (called the "filtering policy"), and the maximum distance that a message 

was allowed to be propagated during the calculation of derived Trust. 

Figures 5, 6 and 7 show the results of the experiments. Figure 5 shows how 

Prediction Error changes with respect to hop distance and various belief filtering 

policies used in Trust propagation. In total, we performed tests for three filtering 

policies (b>0.5, b>0.6, b>0.7) where b refers to the belief property in a relationship 

which expresses primary Trust. According to this filtering policy, a Trust query is not 

allowed to propagate to entities that are not as trustworthy as the filter value. Under 

this scheme path exploration will proceed up to the point that the belief property of 

some neighbouring entity does not exceed the value set on the filter and also the hop 

distance does not exceed the preset value. 

We assumed that the use of a filter which would block the propagation of queries 

to nodes in the discovery path that have b<0.5 should not be considered in the 

experiment because in that case the other two properties - uncertainty and disbelief -

dominate. What we were willing to investigate were the cases where the entities 

involved were clearly seen to be trustworthy. 

In all the diagrams (figures 5,6,7) we have also included the results when applying 

the plain Collaborative Filtering method. (propagation allowed up to 1 hop). We also 

show the results when the choices are made using intuition combined for all users 

together. This appears in the diagram as a dotted horizontal line. As we mentioned 

above, that case has been included only for comparative reasons because it 

corresponds to an imaginary situation where users predict their own choices by 

making use of the old ratings that they have given. Such a prediction scheme is based 

solely on the given ratings which follow the known distribution function referred to in 

Chapter 5. In that prediction scheme there is no categorization of Trust filters since 

there is no use of Trust at all. The results represent average values taken over the 

series of 100 entities. 
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Figure 6. Computability of Recommendations 

The results show that on average, a rating policy based so lely on intuition appear 

to give lower error than our method, but as we will see, this criterion seems to be 

inadequate when used for making decisions. An equally interesting fact is that in our 

method (hop distance >1 ) the error is not affected significantly as the hop distance 

increases fro m 2 hops to 3, which means that there is no loss of precision in u ing the 

Trust graph. Especially in the case when the weak filtering policy (b>0.5) is app lied. 
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the error increases by only 0.12% when the distance increase from the 2 hop to 

hops. 

Figure 6 shows the average Coverage Ratio , that is , the number of reachabl 

services for the group of 100 nodes divided by the total number of er ice about 

which Opinions can be expressed. 

In all cases, our idea of using Subjective Logic rules to calculate the deri d Tru t 

within a "web-of-Trust ", appears to perform better against both the intuiti echoic 

(horizontal dotted line) and the plain Collaborative Filtering method (hop count 1). 

This was to be expected, since when traversing the graph there are more chance to 

find some entity which has some entirely new experience abo ut an item. Th 

application of a strong filtering policy has a negative impact on coverage, e pecia lly 

for short hop distances, whereas appl ying a middle-range fi lter (b>0.6) eem to 

improve the situation in the case of (hop=2) . Another important charac teris tic i that 

strong filtering policies do not have a positive effect on Coverage Ratio (as expected) 

since the probability of fmding a new node that has some new experience decline. 

As can be seen from the figures for Prediction Error and Coverage Ratio alone 

these do not let us reach a conclusion about the effectiveness of our algo rithm. T hi 

was the reason for introducing the Normalized Coverage Factor which i a 

combination of the previous two factors. 

NCoverage F 
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-+- b>0.6 31 .63 68 .09 75 .33 

b>0.7 11 .23 32.84 52 .52 

- - - - - - Intuition 4.69 4 .69 4 .69 J 

Figure 7. Normalized Coverage F 
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Figure 7 presents the Normalized Coverage Factor we introduced and which can 

be considered as the total gain from using some policy. From the graph it can be seen 

that the NCoverage factor has a similar trend as Coverage and the participants do not 

really get any benefit when strong filtering policies are applied. In almost all cases the 

curve of the filtering policy b>0.7 gives a lower Normalized Coverage than any other 

combination. The only exception is the case when a search of 3 hops is performed and 

a strong filtering policy is used. In this case it appears that a strong filtering policy 

(b>0.7) performs slightly better than the standard Collaborative Filtering method 

(max hop distance=l) for medium-filtering policy (b>0.6). Strong filtering, howe\'er, 

consumes less resources due to the simpler graphs that have to be explored and 

simplified. Therefore, such comparison without including the cost compared to the 

benefit is unfair. For such a purpose we need to define what the cost of a search 

operation is. In the next chapter there is a full performance analysis that identifies the 

best searching policy. 

Finally, as seen from figure 7, as with Coverage Ratio, the intuition based 

approach performs worst of all the policies. 

6.12 Discussion of the results 

Our method seems to have positive effects on both Coverage (Computability) and the 

Prediction Error. The increase in Coverage that can be achieved also seems to have a 

positive effect on the reduction of Sparsity in the dataset. Our measurements show a 

significant fall of sparsity by 9.5%. The original 100 user dataset that was used in the 

test was found to be 97.85% sparse. This calculation of sparcity is based on the 100 

users set we used in the evaluations over the whole set of items (6040). The total 

number of ratings expressed by those 100 users was 12976. 

Nevertheless, such improvement might not look as interesting SInce the final 

sparsity after the application of the method is still high at 88.35%. Judging it from 

another point of view, it shows some improvement in the coverage of empty cells that 

reaches 18.45%, which in our opinion is a significant figure. 

A more careful look at the results reveals that when using our method there is a 

30% possibility that a user will get some benefit from using the Trust graph. The 

remaining 70% were those users who benefited by just using the plain Collaboratiye 

Filtering technique (as shown in 1 hop distance figures). This is because in the dataset 
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used it was likely for two users to have common experiences and this was dependent 

on how clustered the user communities in the examined dataset were. In our case, 

there was high clustering in the examined virtual topology since the users seemed to 

be connected with many others due to the high number of common experiences we set 

as a limit for a Trust relation to exist (15 experiences). 

In the case of our experiment the 100 user dataset produced a single cluster of 

nodes. We filtered the users that constituted the virtual community and we selected 

from the MovieLens dataset only those who had expressed at least 30 experiences 

during their lifetime. In our case, if there were more than one clustered communities 

of users, then on average the benefit of using the graph would be higher because a 

small number of users would be enough to bridge the gap between those separate 

clusters and thus to increase the number of Recommendations that could be 

communicated to the other cluster. In this scenario we suspect that the percentage of 

users that benefited by making use of the graph would be higher. 

The extra 30% benefit we mentioned characterizes the potential of the proposed 

system with respect to the dataset used in the experiment. In our opinion that potential 

cannot be characterised as high. Possibly modifying the rules by which the primary 

Trust was built (e.g to use stricter rules in the formation of primary Trust 

relationships) might give better results as regards the ratio of users benefited. As 

regards sparsity, a comparison between our method and others used for the purpose of 

reducing the sparsity would be interesting. 

The results justify the explanation we gave previously saying that the plain 

method suffers from reduced Coverage due to the small number of ratings that close 

neighbours can provide and thus the possibility that a similarity relationship can exist 

between two entities is decreased. This is where Trust relationships can express some 

kind of correlation between users even if there are no common experiences between 

them. This happens because in the plain method, which is based on nearest-neighbour 

algorithms, the relationships rely upon exact matches. 

As regards Prediction Error, a comparison against choosing ratings randomly 

instead of predicting them shows that our method performs better even for hop 

distances of 3. As is shown in figure 5, which represents the error, all figures except 

that of hop distance of 1 (plain method) appear to produce such high error in the 

predictions that exceeds that of the random choice. Using our dataset to generate 

random values based on the frequencies curve of ratings would give error rates as low 
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as 24.5%, but such a comparison would be unfair for two reasons. First. because such 

a rating requires users to have access to global knowledge which is unlikely to be 

possible. In a distributed model it is very unlikely that such information would be 

available globally and be disseminated everywhere due to the nature of distributed 

systems. The second reason is that the error is highly dependent on the distribution of 

ratings over the classes of rates and that makes a rating that is closer to the ~1edian be 

more likely to be closer to the real value. 

Although our method increases the system output by improving the quality of 

recommendations compared with the plain method, the algorithms do not scale to 

large amounts of data and thus performance degrades as the number of users 

increases. This is due to the large number of computations required for the calculation 

of indirect Trust through the Trust graphs, because of the execution of complex and 

CPU intensive algorithms. In other words, the design will not lead to a system capable 

of providing quality Recommendations in real-time. As we indicated above, the 

provision of a Recommendation should be seen as a synchronous operation which 

requires the results to be returned in a relatively small amount of time after the query 

has been initiated. In the next chapter, which includes a performance analysis of our 

model, we explore this issue by introducing a parameter called "Patience Limit ". 

Even in the case where the complex and expensive computations of Direct Trust 

vectors are done in the background there might still be a bottleneck due to the 

calculation of the Indirect Trust relationships and the discovery of Trust paths. This is 

because the method requires that a vector that represents Direct Trust must be 

recalculated whenever a new rating is introduced by any of the two participants in a 

Trust relationship. The main reason for this is the asymmetric property of Trust which 

requires recalculation whenever any side enriches its set of experiences. However, 

these recalculations could be done off-line, preserving the computing power for the 

graph analysis. This is quite feasible given that in such Recommender systems the 

user base and the item data do not change frequently. The same situation applies to 

the ratings of people about items. 

For the above reasons and especially the high demand in CPC power, the method 

we proposed does not seem to be suitable for use in centralized systems. Cacheing 

techniques might improve the situation slightly, provided that changes in the virtual 

Trust infrastructure will not happen often. 
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Therefore, it is suggested that such a system should run in decentralized manner 

disseminating the cost of derived Trust calculation to the nodes that are involved in a 

query. More precisely, the graph discovery part of the algorithm should be done by a 

message-flooding scheme returning the Trust vectors involved back to the query 

originator. The difficult part though, relies on the graph analysis phase which has to 

be carried out only by the querying entity itself so as to avoid dependency problems. 

We consider the case where this operation is done jointly and in distributed manner by 

more than one different entities as a future research issue. 

6.13 Future Issues 

In the future we intend to perform a companson of our method against other 

alternatives that are used for reducing the sparsity of large datasets such as Horting 

[33] or others based on Dimensionality Reduction such as Singular Value 

Decomposition [30]. As regards depth we chose when carrying out the graph analysis, 

we anticipate performing more analyses using depths greater than the 3 hops we used 

in the experiment. This case will need slight modifications to the algorithms that deal 

with the graph analysis and the search for non-Canonical infrastructures in the graphs. 

Searching beyond 3 hops will help us study how the performance increases with the 

depth of search and also find the optimum depth (if there is one) given the high 

computational load that searching demands. 

Since the method is not particularly suitable for runnmg m a centralized 

infrastructure, because of the high demand for computation resources, the outcome 

suggests a need to explain how a conversion to a Peer-to-Peer architecture 

accompanied with redefinition of the roles would improve the performance of the 

Recommender system. The benefit in this case is two fold. First, it provides 

distributed computational load as well as higher robustness and second it makes the 

system less vulnerable to the attacks we discussed earlier. A Peer-to-Peer architecture 

is also closer to the natural way that recommendations within groups of people take 

place due to the commonalities between human communities and Peer-to-Peer 

communities which appear to have the same structural characteristics and governing 

laws (equal communicating with equal). 
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6.14 Conclusions 

In this chapter we proposed a method based on the idea of exploiting the potential 

Trust relationships between the members of a community so that they can extend their 

knowledge and as a result improve the quality of recommendations they receive. Our 

innovation is that, in addition to the similarity relationships used in classic 

Recommender systems to correlate users, in the proposed system Trust relationships 

are used as well. These additional relationships were found useful in cases where 

similarity relationships could not be expressed. 

To measure quality we introduced 2 notions: 

• Recommendation Error, which is the difference between a value that has been 

predicted by using our system, and the real one. 

• Coverage which is the ratio of the items that can be reached by some entity 

using the derived Trust graph divided by the whole set of items. 

By combining both Recommendation Error and Coverage together into one 

measure we introduced what we call Normalized Coverage. which shows the total 

benefit that a single entity receives by using the algorithm. 

In the study we applied a model that uses quantitative and qualitative parameters 

to build primary Trust relationships between entities based on existing common 

choices. 

We used two operators of Subjective Logic algebra for the calculation of 

Secondary Trust and to relate users through their transitive Trust relationships that 

could exist between them using a maximum search depth of 3 hops. In this way we 

extended the users' neighbour base. 

We presented the algorithms used for the derivation of the Trust sub-graphs that 

link the Origin and the Target entities as well as for the simplification of those graphs. 

Our series of experiments was run with the following variables: the number of 

hops that the Trust queries were allowed to propagate from one to another in the 

derived Trust graph, and the minimum value of a property known as belief used in 

Trust propagation. That value was used to express the strength of Trust of 

neighbouring entities and we used it in order to restrict propagation to the more 

trustworthy neighbours. For the evaluations we used real data taken from a publicly 
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available centralized Recommender system and we presented some preliminary 

results about the performance of our method. 

We also discussed the benefits and the pitfalls of our method. Our first results 

showed that even if the method is not capable of providing recommendations in real 

time, it helped the system to improve its efficiency which translates into increased 

computability. The encouraging fact was that this improvement was achieved without 

significant impact on the accuracy of predictions. More precisely it was shown that 

the method improves the effectiveness of the proposed Trust-enabled Recommender 

system shown as decreased sparsity in the available dataset. 

Given that the dataset was taken from another experimental system, we focused 

on the problems that appeared when applying the principles of transitive Trust onto 

existing environments. These were the existence of dependencies in the Trust graphs 

and the derivation of non-Canonical graphs by using the existing evidence. 

We also pointed out the disadvantages (mainly concerned with performance) and 

how they could be overcome if the method is applied in a decentralized environment. 
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Chapter 7 

PERFORMANCE A~AL YSIS 

7.1 Introduction - The need for Performance Analysis 

From the experiments we perfonned in the previous chapter it became clear what 

challenges are met and what benefits are obtained by using a Trust-enabled 

Recommender system. In this chapter we approach the problem of deploying such a 

system in a real distributed infrastructure. Since centralized solutions seem to be 

inappropriate to meet the requirements that a "web-of trust" infrastructure imposes 

such as no central control, equal communication between the participants and Trust 

dependent on point of view, we attempt an analysis of the distributed approach. 

We chose to assess the perfonnance of our approach by simulation. This could 

also have been done using analytic modelling but the complexity of the algorithm and 

the availability of a dataset based on real data steered us towards the simulation 

approach. 

The evaluation experiment described in this chapter examines the performance 

implications that our proposed scheme for predicting the users ratings for items using 

Trust might have on usability. In the simulated Trust infrastructure it is assumed that 

Primary Trust has already been built when the simulation begins. Thus, the Trust 

network topology is assumed to be static throughout the experiment. In a real system, 

users are considered as individual nodes in the system and may join or disappear 

dynamically. As regards to the computational cost, in reality, user nodes may have 

different capabilities for processing requests but here are assumed as equal to each 

other. More specifically, the time needed for an elementary computation for 

processing a Trust response is taken from the experiment in Chapter 6. The behaviour 

ofuser-c1ients is also assumed to follow a certain pattern. 

The fact that the simulation procedure requires an existing Trust infrastructure led 

us to prepare such an infrastructure offline and run the simulations using it. In other 

words, we planned to run a simulation based on a static rather a dynamic yiew of the 

system because we were more interested in studying its behaviour with regard to how 
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it would respond to Trust quenes. However, we are aware of the fact that 

asynchronous maintenance of the Trust graph when recalculating primary Trust 

vectors introduces an additional cost in resources and we assumed that such a task 

would be done in the background and thus would not interfere with the task of 

calculating secondary Trust. We therefore assume that there is always spare capacity 

of resources such as network bandwidth and CPU cycles, which would othel"\\Oise be 

consumed exclusively for computing the primary Trust. 

The main purpose of this evaluation is to discover the limits of the parameters 

under which a Peer-to-Peer system can support our Trust Recommender system. 

To be in agreement with the tests we performed in the previous chapters 

(evaluation of the Trust derivation algorithm and the testing of the various Trust 

policies) we used the same 100 user community we chose from the :YlovieLens 

dataset. Even though the chosen sample community might appear small since it has 

been taken from a publicly available database which contained more than 3000 users, 

we chose to do so because the scope of our study was to see whether the system 

shows scalable behaviour. For other cases, we would need to know what limitations 

should be set in the parameters that describe the structural characteristics of the 

infrastructure: number of nodes, connection speeds etc. 

7.2 The Simulation method 

A simulation model describes the functions of a system expressed by individual 

events for its component elements. Such a model requires that the relationships 

between the elements in the system be described and so becomes able to capture the 

effects of the elements actions on each other as a dynamic process. 

A simulation is driven either by generated input data or by feeding it with some 

representative input data. The first case is a probabilistic or Monte-Carlo Simulation, 

and in that case the pattern which the input data follows needs to be known. In the 

second case we have a deterministic or trace-driven simulation which requires that 

some typical input data should exist in order to simulate the input operations. This is 

especially useful in the case when it is unknown whether the input follows a known 

pattern which can be described with a function. 
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To specify the system we need to know three things: 

• The arrival mechanism or the pattern of job arrivals at the server, 

• The service mechanism or the description of the service time for a job, 

• The queue discipline or the procedure by which jobs are selected from the sen"ice 

queue. 

Also needed is the time that is taken for a typical service to be carried out. 

Probability distributions provide the most convenient characterization of the 

varying intervals. Once these distributions are known we can write a program that 

generates sequences of service variants and drive the simulator with these random 

sequences. This is called a self-driven simulation. Instead, Trace-driven simulation is 

more suitable when the system workload is based on real data. More about 

Performance Evaluation Methodologies can be found at H.Kobayashi [9]. 

In our case we assume that the arrival pattern of new requests at the users' 

systems follows the Poisson distribution function, so we have used a self-driven 

simulation. In this probability distribution function the number of process calls in the 

period T follows the probability distribution: 

P[n(T) = i] = (AT)i e-)'T 

"' l. 

Where A is the parameter of the Poisson distribution. That means, in every T period 

the physical user submits on average A requests. We assume that queues use a FIFO 

discipline. 

7.3 Time control in the simulator 

We can summarize the operation of the simulation system thus: at every node, queries 

arrive initiated by node owners and enter a queue waiting for service. After the 

processes have received service, which in our case is the execution of a query, they 

leave the system. A query is a request to calculate the derived Trust between any two 

peers (trustee and trustor) in the system. Thus, the simulation model must describe 

and synchronize the arrival and the servicing of jobs. 

The method we used for controlling time in our simulating environment is called 

Synchronous Timing. In this method there is a global clock in the simulated 
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environment and the environment status is advanced by a tick at an appropriately 

chosen time unit ~t. For every time unit ~t the system state is updated detennining 

what events took place within the predefined time unit. We choose tit to be relatiYely 

small in order to reduce the possibility that two e\"ents occur simultaneously. The 

value we used was ~t = Imsec. 

Possible events that need to be observed during a time unit ~t are the initiation of 

a new query by the owner of a node, the propagation of a message to a neighbour, the 

initiation of a query reply etc. 

In the simplest case scenario where the arrival pattern follows a Poisson 

distribution function the probability that an event will take place within a time unit of 

A~t is: 

regardless of when the last event took place. By using this equation we can create an 

event generator function and simulate the environment that is to be tested. 

7.4 Related work 

In the area of Peer-to-Peer system simulation we should mention the work done by 

K.Kant and R.Iyer [71] which is a perfonnance evaluation for resource sharing 

networks, carried out using analytic modeling. B.Yang and H.Garcia-Molina [72] 

provide evaluations of a wide range of configurations of Peer-to-Peer networks based 

on existing file sharing protocols. Even though both the above papers are good 

references in the area of sizing Peer-to-Peer networks they are restricted to resource 

location operations rather than the establishment and discovery of Trust relationships. 

So, we found it inappropriate to base our evaluation upon the work that they produced 

and therefore implemented an evaluation environment from scratch that was best 

suited to our needs. 

7.5 Assumptions 

In order to perform testing we made a number of assumptions regarding the 

conditions under which rating prediction is performed. Some assumptions were found 

necessary due to the limitations that a simulated environment imposes: 
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• We assumed that the pattern of user demand follows a Poisson probability 

distribution function with parameter A=I(min-1
). That means, every minute the 

physical user submits an average of 1 Trust request to the system. In all our 

experiments we kept this parameter fixed. 

• Every vector of the Trust graph has the form of a triple of (Primary Trust 

Value(b,d,u), Trustor, Trustee) and has a fixed size of 50 bytes which breaks 

down to 15 bytes allocated to the Trust value that is being carried in the 

message, 10 bytes split into the node addresses of trustor and trustee 

respectively and the last 25 bytes occupied by TCP headers. 

• The number of Trust estimation queries that follow a resource-searching query 

is equal in number to the entities that have been found to have some 

experience with the resource. 

• The simplification process of the Trust graph is done by applying the 

Consensus and Recommendation operators of Subjective Logic [8], to simplify 

parallel and serial combinations of opinion vectors respectively. The time 

required for a Trust graph to be completely simplified is dependent on the 

number of vectors that make up the graph. From our measurements an 

elementary simplification operation implemented in java takes about 1 msec in 

a modem PC, thus we assume for the sake of our experiment that in all it 

takes: t = _1_ secx Size 01" Granh. 
s 1000 - 'J - r 

For simplicity we 

assume that CPU power is always available for the Trust calculation to be 

performed. 

• The time required for the collection of the graph is dependent on the available 

. . . Size of Re plying Graph x V 
bandWIdth and It IS calculated as: t c = A·l bl B ·d h val a e anWI t 

where V is the size of the Trust vector in bytes. We assume that V equals 

50bytes as described above. 

• The calculation of Trust begins after the query originator has received all the 

reply vectors. 

• Peers reply to Trust queries with absolute honesty and return triples of (b,d,u) 

values that correspond to real values. 
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7.6 Variables 

We identified 3 variables used in the simulation, which generate 60 different testing 

scenarios. These are: 

• The Trust filter. This represents the minimum level of belief that the trustor 

must have about some neighbouring trustee in order to allow a query to be 

propagated further away. In the experiment we used 3 different filters for the 

propagation b>0.5, b>0.6 and b>0.7 

• The bandwidth capacity of the network connection that links together the 

nodes that constitute the testing environment. In total we performed tests for 

speeds of7 kbytes/sec and 64 kbytes/sec, simulating a low speed (analog 

modem line) and a high speed (DSL) connection respectively. 

• The size of the community ranging from 5 to 100 user nodes. It might not 

seem meaningful to perform tests for communities as small as 100 nodes when 

there is data available for communities of more than 3000 nodes, but our aim 

was simply to identify any trends in regard to scalability. 

In the simulation we performed it has been assumed that all nodes are connected 

with the underlying network using lines of the same capacity (e.g. modems) and also 

network congestion can only exist in the peers themselves and not in the underlying 

network. 

7.7 Test plan 

We ran a series of simulations for each combination of variables of propagation 

jilter, community size and bandwidth capacity. In total, every combination was left to 

run for 10 sessions of about 2 hours of simulated time each and the results averaged. 

The length of simulation was chosen to ensure that the system came to a steady state 

before measurements were taken. The measures we used for the evaluation of the 

model were the Response time and the Success Rate. 

Response time expresses the expected time taken between the initiation of the 

Trust query and the calculation of the Secondary Trust vector. In order to calculate 
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this for each query, we measured the time taken and estimated the distribution of the 

frequencies. 

We introduced the notion of Success Rate because pure Response times, as will be 

shown, do not have a meaningful value. Success Rate expresses the probability that a 

query completes within a preset threshold of 10 sec. We chose this as a reasonable 

threshold value and we aimed in this experiment to measure how many times this 

value was exceeded thus rendering the system less usable. This threshold represents a 

measure called the Patience Limit and studies in interactive computer environments 

[73] have shown that for most users the Patience Limit has the above size. The same 

study mentions that a response that is given within 0.1 sec is considered by users as 

instantaneous. Furthermore, 1.0 sec is about the limit for the users' flow of thought to 

stay uninterrupted even though they will notice the delay. With that delay users have 

the feeling of operating directly on the data. The 10 sec limit is important for users for 

keeping their attention focused on the dialogue. Which is why we chose patience limit 

as the critical value for the decisions taken regarding the usability of the system. 

This measure means that if no response has been received within this threshold the 

user may abandon the request or retry it. Abandonment and retry in distributed 

environments including Peer-to-Peer systems is quite expensive in resources because 

it adds more load to the system and makes the situation worse [74]. Therefore we treat 

both abandonment and retry as unsuccessful outcomes of queries. 

while ( time has not elapsed ) do 

for each node 

if probability that a new query is issued > l/min 

Initiate a new request with another rand~y selected user 

S = trust query Initiated 

D = propagation delay of S 

R = time to collect the graph response of S 

C = processing time of S 

Response Time or S = D + R + C 

Success Rate or S = r(Response time or S,Coverage) 

end if 

end for 

display average Delay & Success Rate 

end do 

Figure 1. The pseudocode of the algorithm we used for the testing 
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Figure 1 roughly explains the algorithm used in our testing plan. Appendix B contains 

the source code of the program that was used for the simulation experiment coded in 

Java. The reason why we moved to this solution and did not use an existing network 

simulation software was basically because the existing tools, e.g ns (aka network 

simulator) [80] are known to have a steep learning curve and they require a lot of 

experimentation to tailor them to the characteristics of each particular experiment. 

Besides, there was no need to describe in much detail the information communicated 

at the level of network packet exchange as is usually required by these tools. Another 

reason was the nature of the application itself: as with all other Peer-to-Peer software. 

our Trust-enabled system was running as a service above an existing network 

infrastructure and therefore, there was no need for high level operations to be 

described in much detail at the Transport and Network levels as a conventional 

network simulator would require. Hence, a relatively simple program written in a 

conventional programming language (e.g. java), which would simulate the basic 

operations of the application level protocol and of course \vould meet the 

requirements regarding Time control and the Arrival mechanism of the jobs we 

mentioned earlier, would suffice. 

7.8 Results 

Figure 2 shows the expected Response time of a typical Trust query for each of the 60 

different configurations we included in the test and the various sizes of communities, 

and considers the case of using queries with a maximum distance of 3 hops. We ran 

no tests for the case of queries that were propagated for hop distances lower than 3 

since these were found to be meaningless. The value of 3 hops was chosen as the most 

representative since it causes measurable traffic in the network. All the tests we 

performed for propagation distances of 2 hops produced Response times smaller than 

the 10 sec threshold we set as a limit. Therefore we concluded that there is no 

scalability problem for communities of up to 100 nodes in size using that propagation 

distance. At the same time a propagation distance of 3 hops is a good reference for 

comparisons if we use the concepts we introduced in the tests we performed in the 

previous chapter (Coverage and Error). The output in the vertical axis is provided in a 

logarithmic scale to make the figures easier to read. 
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The line which shows the Patience limit of 10 ec also appear in the diagram. 

For comparison, we also tested it by using three different Tru t ftlter 

(b>0.5 ,b>0.6,b>0.7) in Trust propagation. We studied various izes of communiti 

ranging from 5 to 100 nodes and as can be seen from the diagrams, ther ar c e 

where the Response times are within the Patience Limit, especially wh n trong 

fLltering policies e.g. (b>0.7) were applied. 

As expected, with the increase in connection speed, the consequence of the 

Response time follow the inverse trend. The application of tro nger fIltering policie 

also decreases Response times. As can be seen in the fIg ures, the cur e ar 

positioned in the graph as groups of two each having the same Trust ftl ter. Thi can be 

explained because perfo rmance is influenced more by the Tru t fIl ter rather than the 

available bandwidth. 
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Figure 2. Expected Response times fo r various communities 

Another interesting observation is the fo llowing: any co mbination of parameter 

which does not employ weak fLltering policy in communities of up to 100 u er , 

produces results within the 10 sec limit we set as an acceptable Respon e time. 

Figure 3 shows the percentage of the queries whose respon e time exceeded the 

preset threshold of 10 sec and thus were considered unsucce sfu\. The rate of 
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uncompleted requests within the threshold can be regarded as the complement of th 

Success rate of the configuration being examined, so, from now on in the proce ing 

of the results we use this value. For comparison we present both results for the case 

where a DSL connection bandwidth is used and fo r an analogue Modem line. 

As can be seen in figure 3, no cases using strong Trust fll ters (b>0.7) ha e been 

included because there were no responses measured outside the Patience limit. Hence. 

for every fig ure from the b>0.7 fIltering policy it should be assumed that all qu rie 

are within the Patience limit. As can also be seen from the diagram, the application of 

a weak filtering policy (b>0.5) affects the nu mber of cases that go beyond the Patient 

limit significantly, even for low numbers of users (around 50). 
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Figure 3. Responses beyond Patience Limit fo r various trust fi lters 

The case of using Modem and applying the propagation filter b>0.5 seems 

interesting. In this scenario the maximum percentage of requests beyond the Patience 

Limit appears in the population of 80 users rather than that of 100 users. Another 

interesting characteristic is that the curves of Modem and DSL converge in the case of 

a lOO-peer network. 

The performance as presented in these figures does not seem adequate to indicate 

whic h is the best choice because it does not contain a fac tor that can be translated into 

137 



"gain" for each individual case along with some cost, which in the context of our 

experiment would be the Response time to the queries. 

Therefore, we introduce the Satisfaction factor (SF), which combines a measure 

of performance based on the ratio of the successful responses (those which the 

Response time was within the Patience limit) and the Coverage that is achieved when 

applying a filtering policy. We define Satisfaction Factor as: 

SF = Success_Rate· NCoverage 

We can imagine the Success Rate as the complement of the percentage of 

responses that go beyond the Limit. In this way we assume that the rate of success of 

a combination of parameters (Connection speed, Propagation filter) is inversely 

proportional to the number of requests that exceeded the Patience Limit for that 

combination. In the previous figure we saw how the complement of Satisfaction 

Factor shapes for various depths of searching and for various Trust filters. In this 

way, Success Rate can be extracted indirectly from the data that were used to create 

Figure 3. 

As we mentioned in Chapter 6, Normalized Coverage (NCoverage) is the total 

number of services for which a user can find opinions through the Trust graph divided 

by the total number of services that have been rated by all parties. NCoverage also 

takes care of the fact that there is always some error when trying to predict user 

ratings. The formula that gives NCoverage is: 

NCoverage = (l - E) . C 

where, C is the Computability ratio and E is the average Recommendation error for a 

particular recommendation. By Computability ratio we mean the number of services 

reachable for the group of users divided by the total number of services about which 

opinions can be expressed. Figure 4 shows the NCoverage for three different filtering 

scenarios and for a maximum propagation distance of 3 hops. The full definition of 

NCoverage as well as what values it can take for various infrastructures can be found 

in the preceding chapter. 
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Trust b>O.5 b>O.6 b>O.7 

Filter 

N-Coverage 76.89 75.33 53.53 

\00 DSL 3.80 61.5 53.53 

100 Modem 5 .67 71 .56 53.53 

80 DSL 3.0 1 72.99 53.53 

80 Modem 11.9 75 .33 53.53 

FIgure 5. User Satisfaction 

The figure for Normalized Coverage that is displayed in Fig. 4 consider only the 

case of propagation of up to 3 hops because the simulation we ran for the purpose of 

the performance analysis was done for this configuration only, and therefore excluded 

other cases. Also displayed is User Satisfaction (SF) for two individual configurations 

and for various Trust filters and two different sizes of communities (80 and 100 

users). We did not perform tests for communities smaller than 80 users in size 

because in the small communities there is a very high Success Rate and, as expected, 

the Satisfaction Factor always reaches 100%. 

From the table it can be seen that DSL users get the highest satisfaction for both 

sizes of communities when the middle (b>0.6) Trust policy is applied. Another 

interesting characteristic is that with both types of connections (DSL and analogue 

Modem) when a weak filtering policy for Trust (b>0.5) is used, users get almo t no 

satisfaction. This happens mainly because this policy causes high co ngestion and as a 
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result query responses are being received outside the 10 sec Patience Limit. As a 

consequence, such a filtering policy should be avoided even though it provides good 

Coverage when using the available resources. 

Both DSL and Modem users receive the same level of satisfaction when the strong 

filtering policy (b>0.7) is applied no matter the size of the community. That is 

because the Success Rate for this Trust filter approaches 100% and thus it does not 

affect the Coverage of the relevant combination (hop count=3 and Trust filter>O.7). In 

this combination Coverage and Satisfaction Factor match. 

Also observe that in all combinations, the highest satisfaction is obtained when a 

middle-range Trust filtering policy is applied. It can be seen from the diagram that the 

peak for both the modem and the DSL curves emerges when the Trust filter has been 

set to (b>0.6). 

With respect to the size of the communities, the diagrams show that satisfaction 

declines as communities grow. All 100 user curves appear to be below those of 80 

users. This is expected since the larger the community the higher the number of 

messages communicated in the network links between the peers and thus the longer 

the delivery time for those messages to reach their destinations. 

From figure 2 it can be seen that there is no significant difference in the Response 

time between using a slow (analogue modem) or a fast (DSL) connection since both 

figures have the same trend. 

As regards scalability issues, from the diagrams it can be seen that as the number 

of users increases, the response times increase exponentially (fig. 2), which imposes a 

scalability problem. Due to a lack of computing resources we are unable to find out 

what trend the User Satisfaction follows for communities that are larger than 100 

nodes. 

7.9 Conclusion 

Decentralized architectures, such as Peer-to-Peer, seem, both in theory and in 

practice, to be quite suitable for supporting services such as Recommender Systems 

which are traditionally centralized. In this chapter we have presented quantitative 

results for running Recommender Systems upon such an infrastructure. The simple 

analysis we performed was based on real data and it shows that, within the technical 
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limitations of the current technology, such an architecture can support a distributed 

Trust-enabled Recommender System effectively. There are some limitations with 

regard to the scalability of the algorithm we used, which shows that such algorithms 

do not scale well with the number of users when Trust query propagation is done in 

distances beyond 2 hops. This has serious effects on usability. Therefore, use of such 

algorithms is suggested in environments that have sizes no bigger than 100-150 nodes 

which mainly means medium size corporate networks. Given the drawbacks, one 

significant advantage of using such algorithm is the greater robustness it provides as 

opposed to a centralized solution. 

We introduced a metric called Satisfaction Factor and the experiments show that 

for the sizes of Peer-to-Peer networks we tested and the variety of connection speeds, 

the best value for satisfaction is achieved when a medium Trust policy is applied. 

As we mentioned, the scope of our study was to provide a macroscopic analysis of 

the behaviour of the protocol as the user community grows, considering the effects of 

its operation on the rest of the network infrastructure and its effects on the peers 

themselves. Our future plan is to build an analytic model that will help us to study 

these issues from a macroscopic view and would also give an understanding of the 

protocol performance in extreme situations which were impossible to test due to the 

lack of experimental data (e.g. propagating Trust beyond 3 hop distances). 

Comparison with an identical centralized solution with regard to the cost/value ratio 

as well as the applicability to an existing Peer-to-Peer protocol [75] is also an 

important future issue. 

Even though we ran the tests for relatively small communities of popUlation of 

100 users max, in our opinion, there was no reason to employ more than this number 

of peers in order to derive a Trust recommendation. Even if a real Peer-to-Peer 

community contains a huge numbers of peers, the best 100 of them that could be 

involved in a Trust overlay could be selected by using the appropriate Trust 

propagation filter. In the analysis we did in the previous chapter, the Prediction Error 

of ratings is not affected significantly by the filters used in the Trust propagation. 

Therefore, we suggest filtering the propagated Trust in cases where the number of 

peers in the overlay is significantly large and the Response times cannot be kept 

within the acceptable time limits (Patience Limit). Alternatively some other criteria 

must be used in order to find the most suitable ones to support a query. 
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Chapter 8 

CONCLUSIONS 

8.1 Overview 

A distributed Peer-to-Peer Recommender system has been designed and built and tested 

by simulation. Conventional Recommender Systems run in a centralized manner and our 

proposed prototype is distributed and is also enhanced with a Trust derivation model that 

is used to enrich the relationship base of the participants. As shown in Chapter 2, neither 

the idea of distributed Recommender systems nor Trust in computing environments arc 

new. What we aimed to demonstrate with this study was the benefits that can be achieved 

by combining them. The value of this study has been two fold: to analyze the concept of a 

simple distributed Recommender system that uses Subjective Logic algebra for the 

calculation of Trust and also to provide an assessment of how, and whether, such a 

system could work in a real environment. 

8.2 Assumptions 

The nature of the Trust model and its similarity with a ',>mrd-ofmouth" scheme made it 

suitable for application in a Peer-to-Peer topology. In spite of the problems that were 

encountered with the existence of non-Canonical cases during the analysis of Trust 

graphs, the Subjective Logic enhanced Trust model we built was found to be a successful 

choice due to its special characteristics (which we had in mind when choosing it) such as 

support for transitive relationships. The main idea was to engage the entities involved in 

the Peer-to-Peer infrastructure with the task of carrying messages that encapsulate the 

trustworthiness of their neighbours. 

It is worth emphasising that this idea was based on the assumption that the entities 

involved would respond with absolute honesty to the Trust queries they were asked to 

provide opinions for and also that they would not make any alterations to the contents of 

the query responses that they communicated back to the originators, either deliberately or 
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as a result of failure. In our judgment, such an assumption seems to be too restricti\ c for 

a model that works under the conditions of a real world community. Even though in all 

the experiments we performed the absolute honesty of the participants was assumed, it 

would be interesting to examine the consequences of having misbehaving parties in the 

chain of information delivery. Another important assumption we made is that users were 

not obliged to wait for unlimited time for their queries to be answered and therefore we 

introduced a Patience Limit which would determine whether queries would be considered 

successful or not. Furthermore, we assumed that in a real scenario primary Trust 

relationships would be calculated off-line. 

Another implication that was considered seriously when we designed our system was 

the fact that users are usually reluctant to provide Trust measures about those with which 

they have interacted because such a process seems tedious when compared with the 

benefits received. Because of this it seems unreasonable to expect users to express 

judgments about their counterparts when a transaction they had been invoh-ed in has been 

finished. We therefore introduced a mechanism which derives the Trust measures 

between pairs of users from their rating behaviour. The latter was a major weakness of 

Subjective Logic which required the users to assign values of trustworthiness by 

themselves and which our method overcomes. 

8.3 Analysis of the Conclusions of our experiments 

In terms of performance of Recommender systems, a significant benefit of using our 

policy was the reduction of a metric called sparsity. Our experiments showed that using 

such a Trust model is beneficial for the community that adopts the scheme. Our system 

seemed to improve the total gain, which in our terminology we called the NCoverage 

factor, when compared with a standard Collaborative Filtering system that does not make 

use of Trust. In fact, Subjective Logic was helpful in the Trust derivation process in the 

cases where transitivity was necessary and was found effective for calculating the 

trustworthiness between two distant entities in a Trust graph and thus helped in making 

accurate predictions of ratings. 

There were also some serious limitations imposed by our method and in the current 

simple form that we used in our experiments that seemed to cause scalability problems. 
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Performance analysis showed that the main reason for the scalability problems was the 

use of the simple flooding algorithm, even though various controls were applied in the 

forwarding of Trust messages. There is much room for experimentation and optimization 

in this area, which could lead to more scalable solutions than those we found in our 

experiments. For example, cacheing techniques could be applied to ayoid queries being 

propagated further to areas of the graph whose topological characteristics and experience 

base do not change frequently. 

A Recommender system obeying the rules we presented here would not scale to 

massive number of nodes whilst maintaining good performance as measured by 

Normalized Coverage. 

The scalability problems were encountered in the case that search for trusted 

participants is done for a depth of 3 hops from the querying peer. As shown in the 

experiments any search queries that run for depths of 1 and 2 hops can provide results 

within reasonable time but a relatively poor set of participants is used, which means 

insufficient data and thus we did not focus on this case. 

Given that a conventional Recommender system would contain the opInIOns of 

thousands of users, the limitation of our algorithm to supporting a few hundred of them 

seems significant. The proposed solution leads to a partitioned network in which no node 

will be able to calculate Trust with all of the nodes that take part in the system. One idea 

would be to apply the algorithm only to those datasets characterized by high sparsity, 

since the Trust enabled algorithm seems to be more helpful in those cases of datasets in 

which many users encounter the cold-start problem due to a lack of available data. 

Nevertheless, the study was done with the assumption that the algorithm would be 

able to run on a contemporary network of conventional workstations connected together 

using a bus architecture which would have limited capacity and with uniformity in the 

connection speeds of the nodes. 

Even though the tests we performed were for small communities of 100 nodes, due to 

the high computation effort that the simulation process required, the trend showed that 

the scalability barrier was very close to this value and any effort to go beyond the 100 

nodes barrier would add significant cost to the performance of the system. The main 

problems for scalability come from the use of the Subjective Logic algebra itself and 

especially from the way that the derivation of secondary Trust is done. As we mentioned 
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in the description of the protocol, in order to avoid having dependencies in the opinion 

graphs analysis, whole groups of Trust vectors have to be transferred from the Trust 

destination (trustee) back to the query originator (trustor) where the deri\·ed Trust value 

can then be decided. The weak point of this design is that relatively lengthy messages 

have to be communicated via the network thus increasing congestion. 

In the calculation of Response times we considered the time taken for all alternative 

paths, which were composed of primary Trust vectors, to be transmitted back from the 

query destinations to the origin. If we assume that a threshold is set, beyond which any 

message received will be discarded, we can assume that secondary Trust will be built 

using only the evidence collected within the threshold period. There is a danger in this 

that there could be cases where Trust might be calculated wrongly based on incomplete 

data. A future issue is to find the relationship between the percentage of Trust vectors 

collected and the accuracy of the calculated secondary Trust. The ideal value for 

secondary Trust is the value calculated considering all the Trust vectors. 

The crucial point of our method is that the node where the query originates does not 

always have a complete picture of the network and thus is unable to know the real 

number of alternative paths between the trustor and the trustee. Therefore, in a real world 

case scenario it is impossible to know for certain the size of the expected query response 

and how long it will take to collect. 

Given that every alternative path that links the destination (trustee) with the query 

initiator usually strengthens the derived trustworthiness, we understand how important it 

is for the property that expresses the belief in the resulting Trust vector to include as 

many paths as possible so that the actual value will be the least distorted. Conversely, the 

property that expresses the uncertainty of the resulting Trust vector decreases with the 

inclusion of more alternative paths. 

As can be seen from the results of the Performance Analysis, response times are 

affected not by the networking infrastructure used but mostly by the Trust filtering policy 

itself. The Trust filtering policy affects the size of the returned graphs which translates to 

the number of calculations that have to be performed in the graph simplification phase. 

This leads to the conclusion that the algorithm is more demanding in computation than in 

network resources. This is encouraging because the bottleneck in CPU resources gives a 

further chance for improving the situation by reducing the time needed to carry out an 
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elementary graph analysis operation. In the computations we performed in the simulation 

we assumed that a simple simplification operation in Java would take about 1 msec. Re­

writing the part of the program which does the graph analysis using another language, 

such as C for example, could significantly improve the situation and achieve lower times. 

In this case, the overhead will be transferred to the network connections between the 

nodes. The improvement in both CPU utilization and networking infrastructure will help 

towards supporting larger Trust networks. In contrast to other Peer-to-Peer algorithms 

such as the Gnutella searching algorithm whose scalability is restricted by the networking 

infrastructure alone due to the small amount of computation it needs, our algorithm 

demands that both the computing and the network infrastructure be improved in order to 

expand the scalability barrier. 

Finally, we should mention the advantages of a distributed Recommender system in 

comparison to a centralized solution, which come from the increased robustness of Peer­

to-Peer networks together with the higher security in Trust derivation they can offer. In 

such an architecture the problem of having a single point of failure does not exist 

especially in the case when using the Trust derivation algorithm in a distributed topology. 

That is because queries are supported by many entities. If some node involved in a query 

fails then the system will still be able to answer queries and provide results. Even though 

the result will be distorted since not all the available sources will be considered in its 

computation, the system will continue working and providing recommendations. As 

regards the security issue, Chapter 4 describes an idea for how an attack might be 

intercepted. 

8.4 The future infrastructure 

The main idea on which the design of the whole system was based, was to build an 

unstructured network that works as a single tier system and that does not rely on central 

entities to work. To fulfill the requirement for having nodes totally independent from 

third parties and other centralized entities we designed our Reputation system like other 

Peer-to-Peer systems that are used for exchanging content on the web [75]. Most of those 

networks work almost independently of centralized entities. 

As we saw in the performance diagrams, (see Chapter 7) the increase in the Response 
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Time is almost linear except in the cases where weak Trust filters are used. In all cases 

where medium and strong filtering were used, the threshold of 10 sec was not exceeded. 

If today with the current technology (average CPU power and average network capacity) 

a Trust network would efficiently support 150 well satisfied users, in the future when the 

infrastructure improves, this number may change to thousands or more, giving significant 

hope that Trust enabled Peer-to-Peer networks, like the one we propose, will be able to 

run on a wide scale. As a consequence the usability will also improve. 

An example of an unstructured network that started with a low technological 

infrastructure is Gnutella. Searches in Gnutella were done using a flooding technique. Its 

designers restricted the number of nodes that could be seen by a single node (called a 

horizon) to around 3000, by setting a limitation on the number of hops that a message 

could be propagated before it expired (TTL). This led to a partitioned network where 

each user was only able to see and search the contents of around 3000 other nodes. In the 

same way, in our case where the Trust network is also partitioned, each node will be able 

to see and receive Trust influences from around 150 other counterparts. We believe that 

even if the technological infrastructure never reaches the expected point of maturity, this 

number is quite sufficient for entities to be involved in a Trust query. As with the 

Gnutella example, we could set our own restrictions in the propagation filters for Trust 

queries. A belief filter value of 0.6 looks quite reasonable since it does not significantly 

affect the Prediction Error of the Trust queries as was shown in Chapter 6. 

8.5 Short term plans 

The purpose of our study was to provide a macroscopic analysis of the behavior of our 

proposed protocol with the growth of the user community. In this study we considered 

the effects of the protocol's operation on the rest of the network infrastructure and also on 

the peers that adopt it. Our future plan is to build an analytic model that will help us to 

study these issues from a different perspective and also to give an understanding of the 

protocol performance in extreme situations that we have been unable to test due to lack of 

experimental data (e.g. propagating Trust beyond 3 hops). 

Our future plans include: the alteration of the assumptions we have set and the study 

of the behaviour of the proposed system in cases where there may be dishonest Trust 
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query replies. 

As regards the requirement for the existence of a common purpose in order for Trust 

relationships be used in a transitive way, we intend to alter the assumption we have made 

by saying that "users are good recommenders since they know the context of 

recommendation weIr' and re-run the experiment using pure Recommender Trust in the 

transitive chains. Since this kind of Trust is sometimes impossible to derive due to lack of 

data, it is easier to approximate its value. However, this requires that, using existing 

evidence, we somehow model the Trust that is placed on the recommender's abilities for 

a given purpose. 

We also plan to investigate the model from a graph theoretical perspective and 

examine how the characteristic properties of the Trust graph such as the Clustering 

Coefficient might affect the quality of recommendations or else Prediction error and 

Coverage. We suspect that clustered communities benefit more by the deployment of 

such a system with regard to Coverage since more experiences can be reached through a 

bridging node in the graph. Moreover, a closer analysis of each user individually could 

show with greater clarity the characteristics of those user nodes that benefited most from 

their contribution to the system. 

8.6 Future improvements 

Going one step further, and inspired by the examples of Peer-to-Peer systems developed 

for content exchange, our system could be enhanced to a layered system with nodes 

running at different tiers of responsibilities. An example that adapts to our case would be 

to use the nodes at the top of the hierarchy as Hubs which communicate Trust messages 

about their members in their local neighbourhoods. This will reduce the demand for large 

communities of nodes. Each Hub could serve a larger number of second level nodes 

which will act as simple (2nd layer) peers in the system. The Hubs could be connected 

directly with the nodes constructing a virtual sub-graph topology managed by the higher 

layer node. During the initialization of a 2nd layer node a sign-up procedure to its local 

Reputation server could be performed, during which the new node would transfer all its 

ratings about the items it has experienced. The Hub then would be able to start 

calculating the Similarity and the Trust values between the new member and all the 
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others that belong to the same neighbourhood and in this way it would maintain virtually 

the local "web-aI-Trust" in its memory. The Trust queries, instead of being broadcast 

from the simple nodes to everywhere possible, could be sent directly to their local Hub 

which would then manage the query using its own resources. In the case that the query 

could be resolved by the local community alone e.g. if there are lots of trusted parties and 

common experiences within the same community, the hub would perform the 

calculations for the derived Trust value using the experiences of the local neighbours and 

return the reply directly to the querying entity. Conversely, in the situation where the 

local results are poor the Hub could ask for the contribution of other Hubs which would 

reply with data from their local Trust graphs. 

Figure 1. 

The combination of the local Trust graph together with the Trust graphs from other Hubs 

as well as the relationships between them constitute a much wider graph for a querying 

entity to consult. The use of Hubs is also expected to reduce network traffic, which is the 

main bottleneck for graph analysis, but it will cause some extra overhead to the Hubs 

themselves which will have to carry out all the correlation computations for all users that 

have registered with them. 

In Figure 1 we see the operation of Hubs as local Reputation engines where in the 

case of the existence of sufficient counterparts in a relationship the Trust query is 

resolved locally by the correlation of the local counterparts. E.g. A, Band C. 

Another important advantage that Hubs could give is their use as cache engines. Hubs 

are aware of the changes in the topologies of the sub-graphs they manage and therefore 
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they could keep the contents of the graphs cached until they are asked to serve a Trust 

query about some entity that is under their supervision and then provide the reply 

instantly if no topological changes have happend. 

Given that it is infeasible to know the contents of the graph that will be returned as an 

answer to a Trust query before the query is initiated, the use of a filter to decide how 

many responses are required for a satisfactory reply graph is necessary. Our study cannot 

give such an answer since it was entirely based on experimental. Also, as the two-tiered 

solution leads to a partitioned network, it would be very interesting to examine how 

partitioning affects the quality of the results. 

8.7 Epilogue 

A general question that arises from this study is how beneficial the use of distributed 

Recommender systems is, given that the existing solutions which run on the web today as 

centralized services are doing well in providing Recommendations. One crucial question 

that needs to be answered is the following: is it worthwhile to deploy such a distributed 

system since comparison with a centralized solution shows that the benefit it offers is 

negligible? 

A second question that arises is: given that centralized solutions will not be able to 

give satisfactory results as the user communities grow, how successful might a 

distributed solution be that makes use of the Trust that can exist between the members of 

a community? 

To sum up and give some answers to these two questions, our guess is that centralized 

solutions even though they might appear to be workable solutions today due to the high 

sparsity of the datasets, will not be able to provide the service with the same level of 

performance in a few years time when their data sets will be denser. This, soon or later, 

will be the subject of research for new methods of providing query responses within 

acceptable time limits. On the other hand, decentralized systems such as Peer-to-Peer 

which distribute the computation load already show great promise for solving the 

problem. 

Nevertheless deployment must be done in a rational way. Trust enabled systems can 

provide solutions to the plain centralized systems that are only based on similarity. As 
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was seen, they can also help in the case of sparse datasets and help in tackling the cold­

start problem for new users. The framework of Subjective Logic can help in the creation 

of Recommender systems of this kind and it seems that its features fit well with the 

requirements of a decentralized Trust-enabled Reputation system. (e.g. it supports 

transitivity and thus a graph derived by a "word-ol-mouth" scheme can be represented). 

However, from the performance model we studied, it seems that the special requirement 

for opinion independence would lead to a less successful solution than we first thought. 

The scalability problems that we showed during the testing of the first solution 

necessitate a more careful adaptation of Subjective Logic theory to the problem of 

recommending opinions within a society. Our proposed improvement is the use of multi­

tiered systems in which the duties within the community will be carefully allocated. 

As a general conclusion, our experiments showed that a Trust-enabled Reputation 

system can be helpful for the participants in a Peer-to-Peer community in forming 

decisions about resources they might, or might not, like. As a result, the quality of the 

resources offered is preserved since the participants are able to make the best choices 

and, more importantly, aided by the community members themselves. The fundamental 

characteristic of such scheme, which is independence from central entities, can assure the 

provision of unbiased, robust and secure consultation services on the Internet. As regards 

the applicability of the proposed ideas, the scalability problems that are mentioned can be 

overcome by using existing schemes and techniques that have been used in Peer-to-Peer 

topologies in the past. 
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APPENDIX A 

The structure of MOVIELENS Database 

===================================================================== 
USERS FILE DESCRIPTION 
===================================================================== 

User information is in the file "users.dat" and is in the following 
format: 

UserID: :Gender::Age: :Occupation::Zip-code 

All demographic information is provided voluntarily by the users and is 
not checked for accuracy. Only users who have provided some demographic 
information are included in this data set. 

_ Gender is denoted by a "M" for male and "F" for female 
- Age is chosen from the following ranges: 

* 1: 
* 18: 
* 25: 
* 35: 
* 45: 
* 50: 
* 56: 

"Under 18" 
"18-24" 
"25-34" 
"35-44" 
"45-49" 
"50-55" 
"56+" 

_ Occupation is chosen from the following choices: 

* 0: 

* 1 : 

* 2 : 

* 3 : 

* 4: 

* 5 : 

* 6 : 

* 7: 

* 8 : 

* 9 : 
* 10: 
* 11: 
* 12: 
* 13: 
* 14: 
* 15: 
* 16: 
* 17: 
* 18: 
* 19: 
* 20: 

" other" or not specified 
"academic/educator" 
"artist" 
"clerical/admin" 
"college/grad student" 
"customer service" 
"doctor/health care" 
"executive/managerial" 
"farmer" 
"homemaker" 
"K-12 student" 
"lawyer" 
"programmer" 
"retired" 
"sales/marketing" 
"scientist" 
" self-employed" 
"technician/engineer" 
"tradesman/craftsman" 
"unemployed" 
"writer" 
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Sample Data: 

+----+-------+------+------------+-------------+-------+ 
I ID I Genre I Age I Occupation I Experiences I ZIP I 

+----+-------+------+------------+-------------+-------+ 
I 11 I F I 25 I 1 I 137 I 04093 
I 12 I M I 25 I 12 I 23 I 32793 
I 13 I M I 45 I 1 I 108 I 93304 
I 14 I M I 35 I 0 I 25 I 60126 
I 15 I M I 25 I 7 I 201 I 22903 
I 16 I F I 35 I 0 I 35 I 20670 
I 17 I M I 50 I 1 I 211 I 95350 
I 18 I F I 18 I 3 I 305 I 95825 
I 19 I Mil I 10 I 255 I 48073 
I 20 I M I 25 I 14 I 24 I 55113 
+----+-------+------+------------+-------------+-------+ 

===================================================================== 
MOVIES FILE DESCRIPTION 
===================================================================== 

Movie information is in the file "movies.dat" and is in the following 
format: 

MovieID::Title: : Genres 

- Titles are identical to titles provided by the IMDB (including 
year of release) 
- Genres are pipe-separated and are selected from the following genres: 

* Action 
* Adventure 
* Animation 
* Children's 
* Comedy 
* Crime 
* Documentary 
* Drama 
* Fantasy 
* Film-Noir 
* Horror 
* Musical 
* Mystery 
* Romance 
* Sci-Fi 
* Thriller 
* War 
* Western 

_ Some MovieIDs do not correspond to a movie due to accidental duplicate 

entries and/or test entries 
_ Movies are mostly entered by hand, so errors and inconsistencies may 

exist 
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Sample data: 

+----+--------------------------------+------------------------------+ 
I ID I TITLE I GENRE I 

+----+--------------------------------+------------------------------+ 
I 1 I Toy S~~ry (1995) I AnimationlChildren'slComedy I 
I 2 I JumanJ~ (1995) I AdventurelChildren'slFantasy I 

I 3 I Grumpier Old Men (1995) I ComedylRomance I 

I 4 I Waiting to Exhale (1995) I ComedylDrama I 
I 5 I Father of the Bride Part II (1 I Comedy I 
I 6 I Heat (1995) I Action I Crime I Thriller I 

I 7 I Sabrina (1995) I ComedylRomance I 

I 8 I Tom and Huck (1995) I AdventurelChildren's I 

I 9 I Sudden Death (1995) I Action I 

I 10 I GoldenEye (1995) I Action I Adventure I Thriller I 

+----+--------------------------------+------------------------------+ 

===================================================================== 
RATINGS FILE DESCRIPTION 
===================================================================== 

All ratings are contained in the file "ratings.dat" and are in the 
following format: 

UserID: :MovieID: :Rating::Timestamp 

- UserIDs range between 1 and 6040 
- MovieIDs range between 0 and 3592 
- Ratings are made on a 5-star scale (whole-star ratings only) 
- Timestamp is represented in seconds since the epoch as returned by 
time(2) 
- Each user has at least 20 ratings 

Sample data: 
+------+-------+------+-----------+ 
I User I Movie I Rate I Timestamp I 

+------+-------+------+-----------+ 
1 1193 5 I 

978300760 I 

1 661 3 I 
978302109 I 

1 914 3 I 
978301968 I 

1 3408 4 I 
978300275 I 

1 2355 5 I 
978824291 I 

1 1197 3 I 
978302268 I 

1 1287 5 I 
978302039 I 

1 2804 5 I 
978300719 I 

1 594 4 I 
978302268 I 

1 919 4 I 
978301368 I 

+------+-------+------+-----------+ 
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APPENDIXB 

In this appendix we present the source code of the program that was used to carry out the 
perfonnance analysis. The reason why we present it here is because we did not use a 
conventional emulation tool in the experiment. The code is mainly written in java and uses 
calls to a database object where the MovieLens dataset is stored. 

import java.net.*; 
import java.text.DateFormat; 
import java.io.*; 
import java.util.'; 
import java.util.EventListener; 

import java.sql.Connection; 
import java.sql.DriverManager; 
import java.sql.SQLException; 

class ReportRec { 
int Req1D; 
String request; 
int timeStart; 
int timeEnd; 
int numOfPaths; 

class StatisticRec { 
int StartTime; 
int Unique_re~1D; 
int payload; 

II For every request there is a record of performance 
II The unique 1D of the request. 
II The request as Origin->Target 
II when the request initiated 
II when the request serviced 
II Sum up all the vectors of the PayLoad 

class KnowledgeRec 
it came from 

II This is used to know in a case of a reply has to be sent back. through which node 

int 1D; 
int From; 

class TCPreq { 

int TTL; 
int Waiting; 
int Destination; 
int 1D; 
int Type; 
int From; 
int Origin; 
int TimeStamp; 
int payload; 

class Peer ( 
int 1D; 

II 

II request 1D. After it is used then it should be cleared. 
II where it came from 

II how far can be propagated to. 
II how long has been wating in the stack 
II which node it tries to reach if it is a query only 
II useful to know if request tracking is required. 
II Type of the request ( 0: query I 1: reply) 
II the node 1D of where it came from 
II The node where it started from 
II When the request was born. 
The hops followed to reach destination 

int [] Link = new int[201]; 

ArrayList Stack = new ArrayList(); 

II Table of links. 
II Every peer can be linked with up to 100 other peers 
II request stack (TCP/1P) contains unexecuted requests. 
II Every pair contains 
II i) type of request 
II ii) time it takes to expire. 

ArrayList KnowledgeDatabase new ArrayList () ; 
II Database of knowledge of which 1D came from which node 
II The elements are KnowledgeRec records. 

------------------------------------------
I 

---------------
I -------------------------------------

public class P2simLcl_new ( 

static ArrayList ReportDataBase = new ArrayList(); 
static Peer [] Nodes = new Peer[201]; 

II The static community of 100 nodes 
1/ Frequency at which the requests are issued in 
II the system by the user (5 per min) static int L = 3; 

static int MaxNumofUsers = 50; 
static int time = 0; 
static int StopTime = 1200000; 
static int Bandwidth = 7168; 

II Time counter starts form: 
II miliseconds to run for 
II bandwidth in byteslsec (MODEM) _ (for512DSL 1S 65535) 

static int initial_TTL = 3; 

static int PatientLimit = 10000; II Patiemt Limit is set to 10 sec 

static int MsgLen = 50; II size of a single message in bytes, 
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static 
static 
static 

int MaxlD=O; 
mySQL_class SQL= new mySQL_class(); 
ArrayList Statistic = new ArrayList(); 

II define and fill registry with node informatloo 

II database which is used to store the results 
II --------------------------_______________________________________________ _ 

static void report() { 

for (int i=l;i<MaxNumOfUsers;i++) 
System.out.println(); 
System.out.print(" ("+i+") e); 

for (int j=O;j<MaxNumOfUsers;j++) 
if (Nodes[il .Link[jl !=O) ( 

System.out.print(i+"->"+Nodes[il.Link[jl+" e); 
I II if 
II for 

System.out.println(); 
System.out.print("Stacksize:"+Nodes[il.Stack.size()+" contents,"); 
for (int k=O;k<Nodes[il .Stack.size();k++) ( 

TCPreq StackElement = new TCPreq(); 
StackElement = (TCPreq)Nodes[il.Stack.get(k); 
II lD,DESTlNATlON,TTL,TYPE,WAlTlNG. 
System,out.print(" 

"+StackElement.lD+","+StackElement.Destination+","+StackElement.TTL+","+StackElement Type ••.• St kBl t 
Waiting); . . • ac amen. 

) I I for 
System.out.println(); 

IISystem.out.print("Knowledge:·.Nodes[il .KnowledgeDatabase.size(»; 
for (int j=O;j<Nodes[il .KnowledgeDatabase.size();j++) ( 

KnowledgeRec KR = new KnowledgeRec(); 
KR=(KnowledgeRec)Nodes[il.KnowledgeDatabase.get(j); 
System.out.print(" "+KR.lD+":From:"+KR.From+" e); 

System.out.println(); 
I I I for 

II report 

II --------------------------------------------------------------------------
static void buil~network() 

String Query=""; 
for (int i=l;i<=MaxNumOfUsers;i++) 

Query = "Select distinct User2 from Trust where bdu>=O.SOO and User2<=".MaxNumOfUsers.· and 
User2>0 and Userl="+i+" and common>=S'; 

Peer N = new Peer(); 
N.lD = i; 
Nodes[il = N; 

String Output SQL.ExecuteSQL(Query,O); 
StringTokenizer DataLine = new StringTokenizer(OUtput.trim(),·\n"); 

int j=O; 
while (DataLine.hasMoreTokens(» 

String nextNumber = (DataLine.nextToken(» .trim(); 
int counterpart=lnteger.valueOf(nextNumber) .intValue(); 
j++; 
Nodes[il.Link[jl=counterpart; II Linking the nodes togeather and build the graph. 

) II while 
II/for 

II build network 

II --------------------------------------------------------------------------
public static void main (String [I args) ( 

System.out.println("P2P Simulator. G.Pitsilis'); 

if (args.length<l) (System. out.println ("Usage: java P2SimLcl_new <users>'); System.exit(l); ) 
MaxNumOfUsers = lnteger.valueOf(args[OI) .intValue(); 

System. out.println (MaxNumOf Users); 
System.out.println("'''+SQL.connect('localhost","root","",'MovieLens"»; 

buil~network(); 

while (time<StopTime) { 
time++; 

II build the network using the vectors from the database 
I I At this point every node knowns every other noded that 
II is connected to. 

if (timeUOOO==O) { System.out.println(· ("+time+")"); 

II For all nodes check if there is some query to run. 
for (int i=l;i<=MaxNumOfUsers;i++) { 

double Probability = (double) (L) I 60000.0; II probability that a request is 
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} II for 
} II while 

~uble P = Math.random(); 
1f (P<=Probability) { II 

/I 
/I 

II being issued within a single 
II msec 

User decides to initiate a query 
about some other user X 
e.g. find the trustworthiness of x 

int 
int 

II Do not initiate any request between the 
II (time limdt-patient limdt) 

f= !int) (Math.randam()· IfaxNun)fUsers); 
un1que_request_ID = initiate_test_request(i,f); 

II initiate the statistic procedures 
ReportRec NR = new ReportRec(); 
NR.ReqID = unique_request_ID; 
NR.timeStart = time; 
NR.request = String.valueOf(i)+"->"+String.valueOf(f); 

II A new record in the report database is created 
ReportDataBase.add(NR); 

/I if 
update~odes_requests(i); II refresh all nodes TCP stacks with requests 

II replies have to be initiated. 

print_report(); 
System.out.println("FIN:"+time); 

II main 

II ---------------------------------------------------------------
static void update~odes_replies(int node) { 

II The replies 

} 

for (int k=O;k<Nodes[node) .Stack.size();k++) 
TCPreq cTCP = new TCPreq(); 
cTCP = (TCPreq) Nodes [node) .Stack.get(k); 

cTCP.Waiting = cTCP.Waiting - 1; 
} /I for 

II ---------------------------------------------------------------
static void update_nodes_requests(int node) { 

II This method is used to update the status of each request in the stack of node (node) 
II Is called every one millisecond. 

for (int k=O;k<Nodes[node] .Stack.size();k++) II for all elements in the TCP stack of the node 

TCPreq cTCP = new TCPreq(); 
cTCP = (TCPreq) Nodes [node) .Stack.get(k); II Get the TCP request 

II decrease expiry time by one msec 

II The delay time should be analogous to the stack size or how many 
II requests are waiting in the queue. 

II 100 is the maximum size of the stack. 

cTCP.Waiting = cTCP.Waiting - 1; 

if (cTCP.Waiting<=O) { 

II and put it back by removing the element 
II and put back the new one 

II if the time has expired, propagate the 
II request to all neighboring nodes except the 
II one where it came from 
II find first which the neighbors are. 

for (int linkID=0;linkID<200;linkID++) { 

int s (Nodes [node] .Link[linkID»; 
if (s > 0) { II if there is a link from this position in 

II the link table then decrease TTL-l 
II s: other node that the current one is linked 
/I to 
II req : request that is to be propagated. 

TCPreq req = (TCpreq)Nodes[node).Stack.get(k); 

if (s!=req.From) ( II If it is not the one where it came from 
propagate_request(s,req,node); II node is the id of the node where the 

} /I if 
/I if 

II for 

II request is propagated from 

II removing it first from the old node's TCPstack. 

TCPreq T = new TCPreq(); 
for (int w=0; w<Nodes[node] .Stack.size(); w++) ( T= (TCPreq) Nodes [node] .Stack.get(w): 
Nodes [node) .Stack.remove(k); II remove it from the stack after 
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f II propagation or expiratlon 
or (int w=O; w<Nodes(node] ,Stack.size(),' w++) I T=(TCPreqINodes(node].Stack.getlv); 

else I 
Nodes(node].Stack.set(k,cTCP); 

] II if cTCP waiting 
II for 

} II redfresh~odes_requests 

II replace the old TCP req with the 
II refreshed one. 

II -------------------__________________________________________ _ 
static void propagate_request (int node,TCPreq reg,int PramNode) I-

if (node req.Destination) I 

req.Payload = initial_TTL-req.TTL+l; 
Sumas (req.ID, req.Payload, time, node); 

return; 
/I if 

req.Payload = initial_TTL-req.TTL; 

if (req.TTL>O) { II it must be broadcast further 

int endsat=O; 
for (int f=0;f<200;f++) I 

if ( Nodes (node) .Link(f] 1=0 ) I endsat = f; } 

I I node: which node is looked for 
I I TCPreg: request 
II PromNode: where the request c~~ fram. 

II here goes the code that will have to 
II be executed if the destination is found 
II In that case it does not propagate any 
II further. 

req.Waiting = (int) (MsgLen * endsat Bandwidth)*lOOO; 

boolean exists=false; 

II 28 is the message length waiting time 
II before propagation calculated msec 

II Search if the record exists already in 
I I the knowledge database 

for (int j=O,j<Nodes(node] .KnowledgeDatabase.size();j++) ( 
KnowledgeRec KR = new KnowledgeRec(); 
KR=(KnowledgeRec)Nodes(node] .KnowledgeDatabase.get(j); 
if «KR.ID==req.ID)&&(KR.From==FromNode)) I 

exists=true; 
} /I if 

II for 

if (exists==false) I 
KnowledgeRec KR new KnowledgeRec(); 

KR.ID = req.ID; 
KR.From = FromNode; 

Nodes [node] .KnowledgeDatabase.add(KR); 

TCPreq newReq = new TCPreq(); 

newReq.Destination = req.Destination; 
newReq.ID = req.ID; 

II if it does not exist then and insert it 
II Add it to the knowledge base 

I I the ID of the 
II The node where the request has been 
II forwarded from 

newReq.Waiting = (int) (MsgLen * endsat I Bandwidth)*lOOO; 

newReq.TTL = req.TTL-l; 

newReq.Origin = req.Origin; 
newReq.Destination= req.Destination; 
newReq.TimeStamp = req.TimeStamp; 
newReq.Type 0, 
newReq.From = FromNode; 

Nodes [node] .Stack.add(newReq); 
} II if 

II propagate_request 

II Here the request is added to the stack of the new node. 

II ---------------------------------------------------------------
II this is called by a target node when a reply has to be generated 
static void initiate_reply(TCPreq request} I 

I I The requestID is the unique code number used for 
II distinguishing the origin of a request 

TCPreq k = new TCPreq(}; 

k.Waiting = 1000; 
k.Destination = request.Origin; 

II setup to propagate to a hop distance of 3 
II waiting time before propagation 100 msec 
II the destination of the reply which must be the query 
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k.ID = request.ID; 

k.Type = 1; 
k.Payload = request. Payload; 

II originator 
II The 10 is set the same with the request in order to 
II foll~ the same path back to the originator 
II Repl1es are of type I 
II The payload is cleared here and is filled with nodes as 
II to traverses back to the origin. 

ID:"+k.ID+" 

k.Origin = request.Destination; 
k.Fram = k.Origin; 
System.out.println(·(·+time+·) node 

and it has payload ·+k.Payload); -+k.ID.- initiates a reply to -.request.Origin.- with 

) 

int existsAt = 0; 
int j; 

II Search for the Statistic record using the unique 10. 
II find and replace the record which has the 10 
II with a new one which has the 

for (j=O;j<Statistic.size();j++) ( 
StatisticRec SRI = new StatisticRec(); 
SRI = (StatisticRec)Statistic.get(j); 
if (SRl.Unique_re~ID==k.IDI ( 

existsAt = j; 
StatisticRec SR = new StatisticRec(); 
SR =(StatisticRec)SRl; 
SR. payload = k.Payload; 
Sumas(SR.Unique_re~ID,SR.payload, (time-SR.StartTime) 1)' 
Statistic.remove(j); , , 
Statistic.add(SR); 

) II if 
II for 

II -------------------------- _____________________________________________________ _ 
static void Sumas(int RID,int payload, int time,int node) ( 

II Add it to the statistic report 
boolean found=false; 
for (int j=O;j<ReportDataBase.size(l;j++) ( 

ReportRec RR = (ReportRecIReportDataBase.get(j); 
if (RR.ReqID == RID) ( 

found=true; 

ReportRec NeWTempRec = new ReportRec(); 

II Create a temporary new record to replace the 
II existing one 

if (Nodes [node] .Stack.size() 1=0) ( 
NeWTempRec.nurnOfPaths = RR.nurnOfPaths + payload' 

Nodes [node] .Stack.size() I MaxNurnOf Users; 
) else ( 

NeWTempRec.nurnOfPaths RR.nurnOfPaths + payload; 

NeWTempRec.ReqID = RID; 
NeWTempRec.timeEnd = time; 
NeWTempRec.timeStart = RR.timeStart; 
NeWTempRec.request = RR.request; 
ReportDataBase.remove(j); 
ReportDataBase.add(NeWTempRec); 
return; 

II if 

II for 

II replacing the old with the new record. 

if (found=falsel II create a new account 10 

) II Sumas 

ReportRec NewReportRec = new ReportRec(); 
NewReportRec.ReqID = RID; 
NewReportRec.nurnOfPaths = payload * Nodes [node] .Stack.size(); 
NewReportRec.timeEnd = time; II time elapsed 
ReportDataBase.add(NewReportRec); 

II ---------------------------------------------------------------------------------

static void print_report() ( 
int countNurnOfPaths=O; 
int countBeyondPatientLimit=O; 
double AvgWaitingTime=O.O; int Elements=O; 
System.out.println("---------------- REPORT --------------------------.); 
System.out.println(· 10, Time Start, Time End, Vectors, return graph time,avg waiting time '1; 
for (int j=O;j<ReportDataBase.size();j++) ( 

ReportRec RR = (ReportRec)ReportDataBase.get(j); 
double ReturnGraphTime = (RR.numOfPaths*25.0+10)/Bandwidth*lOOO; 
double CalcGraphTime = (RR.numOfPaths*I); II 100 msec each simplification eperation 
System.out.print(RR.ReqID+· "+RR.request+· ·+RR.timeStart+· "+RR.timeEnd+" 

"+RR.nurnOfPaths+" "+ReturnGraphTime); 
if (RR.nurnOfPaths>O) ( countNumOfPaths++; Elements++; 

AvgWaitingTime=AvgwaitingTime+(RR.timeEnd­
RR.timeStart)+ReturnGraphTime+CalcGraphTime; 

System.out.println(" 
RR. timeStart) +ReturnGraphTime+CalcGraphTime)+" 

"+AvgWaitingTime/Elements+' ".(IRR.timeEnd-
• "+AvgWaitingTime+ " '+Elementsl; 
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if «RR.timeEnd-RR.timeStart+ReturnGraphTime+CalcGraphTime»lOOOO) 
countBeyondPatientLimit++, ) 

) else ( System.out.println(), } 
} II for 
System.out.println("Only the "+«double)countNumOfPaths/(double)ReportDataBase.size()"lOO.J)··' 

has replied"), 
System.out.println("The 

"+«double)countBeyondPatientLimit/(double)ReportDataBase.size()*100.0)+"' is beyond the patient limit"); 

System.out.println("Number of users: "+MaxNumOfUsers); 
System.out.println("Bandwidth:"+Bandwidth), 
System.out.println("TTL:"+initial_TTL), 

II ------------------------------------------------------------------------------

static int initiate_test_request(int node1D,int to) ( 

TCPreq k = new TCPreq(); 
k.TTL = initial_TTL; 
k.Type = 0; 

int endsat=O, 
for (int f=0;f<200,f++) ( 

if ( Nodes [node1Dj .Link[f] 1=0 ) ( endsat 

II setup to propagate to hop distance of J 
II Is of type request 

f, ) 

k.Waiting (int) (MsgLen " endsat I Bandwidth) "1000; 

k.Origin = nodeID; 
k.From = k.Origin, 
k.TimeStamp = time, 
k.Destination = to; 
Nodes [node1D] .Stack.add(k), 
Max1D++; 
k.1D = MaxID; 

StatisticRec SR = new StatisticRec(), 
SR.StartTime=k.TimeStamp; 
SR.Unique_re~1D=k.1D, 

Statistic.add(SR), 
return(k.1D) , 

II ------------------------------------- ------------

II 28 is the message length waitinQ time 
II before propagation calculated msec 
II The originator 

II When it was bom 
II where it goes to 

II here a record in the database i8 created 

--------------
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The next piece of code in order to run requires connection with the MovieLens database 
which will be provided in the fonnat we mention in Appendix A. Next follows the classes 
required to achieve connectivity with the database via a mBC interface. The following code 
requires that the appropriate mBC drivers have been installed in the system which will be 
used for the analysis. The source code that is following has been prepared to run with 
MySQL Connector/J set of mBC drivers. It can be ignored in the case that some other driver 
or other type of access is used in the data. 

class mySQL_class extends Object ( 

static Connection con: 

static String connect(String Server, String User, String Password,String Database) 
try ( 

II Load the driver 
Class.forName("com.mysql.jdbc.Driver") .newlnstance(): 
String url = "jdbc:mysql:II"+Server+"I"+Database+"?user="+User+"&password="+Password; 
con = DriverManager.getConnection(url); 
return "Connection established"; 

} 
catch ( Exception e ) { return e+" :Error while connecting to the Database"; } 

II -------------------------------

static String Disconnect() { 
try { 

con. close () : 
return ftDisconnected R

; 

} 
catch ( Exception e ) { return "Error while Disconnecting from the Database"; } 
II disconnect 

/I 

static void ExecuteSQLupdate(String query) { 

try ( 
java.sql.Statement stmt = con.createStatement(); 
int output = stmt.executeUpdate(query): 
stmt. close () : 

catch (Exception e) ( e.printStackTrace(): } 

II ExecuteSQLupadte 

II --------------------------------------

static String ExecuteSQL(String query,int head) { 
II head should take value l:¥ES or O:NO 

String Otpt="": 

try ( 
java.sql.Statement stmt = con.createStatement(); 
java.sql.ResultSet rs stmt.executeQuery(query); 

II Getting Metadata 
java.sql.ResultSetMetaData meta = rs.getMetaData(); 
int columns = meta.getColumnCount(): 

for (int i=l:i<=columns:i++) ( 
Otpt = Otpt + meta.getColumnLabel(i) + • ". 

} 
Otpt = Otpt + "\n": 

if (head==O) ( Otpt 

String ReportLine: 

while( rs.next() ) 
ReportLine = ""; 

for (int i=l: i<=columns: i++) ( rs.getString(i) + " ". 
ReportLine = ReportLine + 

} 
Otpt = Otpt + ReportLine + "\n"; 

} 
rs. close () ; 
stmt.close (): 

catch (EXception e) ( e.printStackTrace(): } 

161 



return Otpt; 
} 

II ---------------------------------------

void getDatalnfo() 

} 

} 

t~ 
java.sql.DatabaseMetaData md con.getMetaData(); 

if (md==null) { 
System.out.println("No Database Meta Data"); 
else { 
System.out.println("Database Product Name ". md.getDatabaseProductName(», 
System.out.println("Allowable active connections: ". md.getMaxConnections(», 

catch (Exception e) { e.printStackTrace(); } 

II ---------------------------------------
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