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Abstract

Molecular electronics based on the bottomup approach appears to be a promising

alternative to overcome the limitations of the topdown lithographic fabrication of

electronic devices. The ability to manipulate single or small groups of molecules

provides a great opportunity to build electronic devices at the molecular level. However,

before any device can be constructed, it is vital to understand the parameters that control

the device properties such as: molecular structure, conformation and arrangement at the

surface, the moleculesubstrate and moleculeelectrode interactions.

This thesis presents an investigation of the alignment of acceptorelectron bridgedonor

structures and describes how the molecular structure and arrangement affect rectifying

properties of the monolayers. Studies included typical LangmuirBlodgett (LB),

chevronshaped, and ionically coupled structures that were characterised using various

techniques, such as Quartz Crystal Microbalance (QCM), Surface Plasmon Resonance

(SPR), Second Harmonic Generation (SHG) and Scanning Tunnelling Spectroscopy

(STS).

The results obtained showed that to achieve high rectification the molecules must form

ordered and stable monolayers that are able to withstand the electric field applied to the

junction. It was also shown that due to the disordered monolayer formation and

presence of certain ions, it was extremely difficult to state without doubt whether the

rectification was a result of the donorelectron bridgeacceptor structure proposed by

Aviram and Ratner1.

Studies of chevronshaped molecules confirmed the possibility of depositing them

using the LB technique. However, the reduction of long aliphatic chains was very likely

balanced by the formation of less ordered or unstable monolayers. The highest

rectification ratio of 30 ± 3 at ± 1 V was obtained for 1-butyl-2,6-bis-[2-(4-

dibutylamino-phenyl)-vinyl]-pyridinium iodide (dye 7) and the origin of the IV

asymmetry was attributed to back electron transfer from iodide to pyridinium ring.

Although dye 1-butyl-2,6-bis-(2-{4-[2-(4-dibutylamino-phenyl)-ethyl]-phenyl}-vinyl)-
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pyridinium iodide (dye 9) showed electrical asymmetry (RR=16 at  1 V) shortly after

deposition onto the goldcoated highly oriented pyrolytic graphite (HOPG), it seemed

to form an unstable alignment and as a consequence the rectification decayed over a

period of a few hours.

Improved ordering, stability, and rectification were achieved from ionically coupled

structures, where the monolayers were formed using chemisorption and ionic assembly

instead of physisorption.
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1 Introduction

1.1 Nanotechnology

In the last few decades, the miniaturisation process has been the driving force of major

technological innovations, and a number of important scientific discoveries, what we

now call nanotechnology2,3,4,5. The idea of nanotechnology can be attributed to Richard

Feynman, who gave his famous lecture ’there’s plenty room at the bottom’ in 19596. In

his talk he outlined the benefits that might occur from manufacturing devices on the

very small scale. Among others, he forecasted the possibility of making machines that

could pickup and place single atoms. Later, Drexler7 defined nanotechnology as, ‘the

principle of atom manipulation, atombyatom, through control of the structure of

matter at the molecular level. It entails the ability to build molecular systems with

atombyatom precision, yielding a variety of nanomachines.’

Currently, some electronic components such as diodes and transistors are based on

silicon8,9. In 1965 Moore10 predicted that integrated circuits (IC) would become the

future of the electronics. His law established in the 1960’s, showing the exponential

decrease of electronic device size with time has so far been fulfilled. It has been

achieved thanks to the socalled topdown approach driven by progress in lithographic

techniques (see Figure 1-1).

Figure 1-1 Moore’s law11
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Moore10 predicted that the power of siliconbased computer chips would double every

1824 months. Unfortunately, siliconbased devices are unavoidably approaching their

size limits and further miniaturisation soon will not be possible using current

technology. Although the industry is continuing to make the existing components

smaller and smaller, it has become necessary to find and develop materials12,13,14,15,

scientific tools3,16,17 and advanced technologies that overcome the obstacles associated

with the miniaturisation process.

1.2 The bottomup approach

A promising alternative to the topdown approach (restricted by physical limitations of

lithographic processes) seems to be the bottomup approach, which gives an

opportunity to build nanostructures from atoms, molecules and nanoparticles based on

chemical synthesis and/or the highly controlled deposition and growth of materials.

Several new molecular electronic systems have been introduced and explored leading to

the development of fully operational devices2,18,19. Also the invention of the scanning

tunnelling microscope (STM) by Binning and Rorher16 in 1981, and related techniques

was a milestone that brought science closer to fulfilling this aim.

1.3 Aims

The main objective of the research was to find organic rectifiers with high rectification

ratios (RR) for future applications within molecular electronics. The work included the

verification of the model proposed by Aviram and Ratner1, and attempted to reveal how

the molecular structure and alignment affected the rectifying properties of organic

molecules. The knowledge of these allowed for a better understanding of the monolayer

behaviour and the electron transport through the organic material when deposited

between electrodes. In order to fulfil these aims, a number of specific candidates were

investigated and they included:

 typical LangmuirBlodgett (LB) structures,

 chevronshaped compounds,

 ionically assembled structures, called also hybrid structures.
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1.4 Summmary

A number of organic compounds based on acceptorelectron bridgedonor structure

were studied in order to investigate the alignment and rectifying properties when placed

between nonoxidisable electrodes. Verification of the Aviram and Ratner concept1 of a

molecular rectifier proved difficult. This was mainly due to the possible presence of I

or Br ions within the monolayer which could take part in the electron transport through

the monolayer. Studies of chevronshaped molecules showed that molecules without

long aliphatic chains can be deposited using the LB technique. However, reduction of

the carbohydrate chain resulted in the formation of disordered and unstable monolayers.

This work demonstrated that it is essential to produce stable and ordered monolayer in

order to obtain reproducible asymmetric IV characteristics. Implementation of an ionic

assembly as an alternative deposition technique to LangmuirBlodgett (LB) or

selfassembly (SA) seemed to be successful in obtaining this aim. Formation of

ionically assembled structures by deposition of chevronshaped molecules on

anionically modified substrates, not only improved the desired ordering and

stabilisation, but also improved rectification.



4

2 Background and literature

2.1 Molecular rectification

There has been much interest in molecular rectifiers and in molecular electronics18,20,21.

Years of research which concentrated around organic molecular junctions22,23,24 showed

that the molecular structure defined the conformation, orientation, packing and

stabilisation of the molecules within the monolayer and these determined the

conductance properties25,26. The knowledge allowed for an understanding of the

monolayer behaviour, and helped to predict whether the molecule might become a

successful material for molecular devices such as diodes.

Early research regarding molecular rectification was reported in 1964 when Meinhard27

observed the rectification behaviour of an organic junction fabricated from bulk bilayers

of ntype and ptype materials. However, as later studies showed28,29,30, due to the use

of lead electrodes, the rectifying behaviour probably arose from an oxideinduced

Schottky barrier31,32,33. The Schottky barrier is an intrinsic energy barrier that forms

when there is a difference between Fermi energies of the materials generating the

junction31,32. It arises at the interface of most metal−semiconductor junctions (often

between a metal and its oxide) and it can significantly change the IV characteristics.

Later, in 1974, Aviram and Ratner1 proposed a breakthrough concept of a molecular

rectifier and since then the growth of interest around molecular electronics has been

noted.

2.1.1 The Aviram and Ratner model1

The rectifier proposed by Aviram and Ratner1 comprised of two parts: donor and

acceptor subunits, connected by a covalent saturated σbridge. The presence of the

bridge in the structure was essential, as it provided the necessary isolation between the

donor and acceptor sections of the molecule. More recently the model of a molecular

rectifier has been modified and a twisted πbridge34,35 was used to break the

conjugation. The electrical device is formed when the molecular rectifier is aligned
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between two metallic electrodes. In order for rectification to occur, it is required for the

donor to have a low ionisation potential (IP), while the acceptor has to exhibit a high

electron affinity. An organic molecule that could fulfil the requirements of the Aviram

and Ratner model1 was a hemiquinone (see Figure 2-1).

Figure 2-1 Structure of a hemiquinone1

The oxygen groups (=O) raised the electron affinity of one subunit, whereas the

methoxy groups (OCH3) lowered the ionisation potential of the other. Another very

wellknown simplified schematic of the Aviram and Ratner model1 is the rectifier

depicted in Figure 2-2. It is a theoretical molecular rectifier, where the acceptor is

7,7,8,8tetra cyanoquinodimethane (TCNQ) and the donor is tetrathiafulvalene (TTF).

However, this molecule has never been synthesised.

NC CN

NC CN

S

S

S

S

Donor Acceptor

Figure 2-2 Theoretical molecular rectifier1

According to the Aviram and Ratner theory1, when a voltage was not applied to the

device, the molecular orbitals of the molecule were distributed in relation to the

electrodes as depicted in Figure 2-3. It is necessary for orbital B, which represents the

lowest unoccupied molecular orbital (LUMO) of the acceptor to be totally or partially

empty. It should also be located at, or slightly above the Fermi energy level of the

electrode E1. Additionally, orbital C, which represents the highest occupied molecular

orbital (HOMO) of the donor, should lie below orbital B.

O

O

OMe

OMe

OMe
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Figure 2-3 Distribution of the molecular orbitals of a rectifier in relation to metal electrodes when
no bias is applied; where A and B are HOMO and LUMO of the acceptor, respectively;
C and D are HOMO and LUMO of the donor, respectively;  is the work function of
electrodes, and E1 and E2 are electrodes1.

If these requirements are fulfilled, and an appropriate voltage is applied to the device,

then electron transport through the molecule should be observed (see Figure 2-4).

Figure 2-4 Electron transport through the Aviram and Ratner rectifier1

The process of electron transport across a molecule placed between two electrodes can

be divided into three steps. During the first step, ‘A’ (see Figure 2-4) an electron tunnels

from the cathode to the LUMO of the acceptor subunit. However, this is only possible

when the voltage is sufficient to overcome the energy difference between the work

function of the cathode and the LUMO of the acceptor. The second step, ‘C’, occurs

simultaneously with the first, with an electron tunnelling to the anode from the HOMO

of the donor subunit. This process leads to the excited state of the molecule (A–

electron bridge–D+). During the final step, ‘B’, an electron travels from the acceptor to
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the donor subunit and as a result, the molecule returns to its ground state

(Delectron bridge–A). If the bias is reversed, a larger applied voltage is needed to

enable electron tunnelling through the molecule, as there is an energy mismatch

between the Fermi energies and the appropriate molecular levels in this direction1 (see

Figure 2-5).

Figure 2-5 Electron transport when reverse polarisation is applied to the device1

2.2 Molecular rectifiers

Since the concept of a ‘molecular rectifier’ has been proposed, a considerable amount of

effort has been made to understand the mechanism of the electron transport through the

molecule. Various molecular structures were assembled using different deposition

techniques (LB36,37,38,39, SA40,41, ionic assembly42,43), and different methods used to

study the electrical behaviour of organic monolayers (STM16,44, atomic force

microscopy (AFM)45, Hg drop junction46, mechanically controlled break junction47,

nanopore48, cross wires49, etc.). These showed that control over the position of an

individual molecule on the surface during IV measurements could be difficult.

Inappropriate metal contacts50,51 and/or too high voltage bias applied to the studied

system52,53,54 can cause irreversible changes to the monolayer and lead to the

misinterpretation of IV data. In order to avoid this, great care must be taken when the

organic junctions are fabricated and when the measurements are performed.
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2.2.1 Sigma ()bridged molecular structures

The first studies on DA structures were reported in the 1980’s. In 1983, Saito et

al.55 showed rectification from Langmuir-Blodgett (LB) films based on merocyanine

and triphenylmethane dye derivatives. Then in 1985, rectification from films that

consisted of mixed monolayers of surfactant derivatives of semiconducting dyes and

arachidic acid was reported56. However, in both cases, oxidisable aluminium (Al) and

silver (Ag) electrodes were used to monitor the diodelike behaviour, and therefore, the

rectification was subsequently associated with the formation of a Schottky barrier33.

In 1988, the rectifying behaviour of a single molecule (hemiquinone)57 deposited on a

gold surface and contacted via STM tip was reported (see Figure 2-6).

Figure 2-6 Hemiquinone structure consisted of catechol (donor), and quinone (acceptor)57

Rectification (observed at the negative tip bias) was, at the beginning, attributed to the

molecular structure. Although hemiquinone represents the AD structure, the

electron transport through the junction appeared to have followed a slightly different

mechanism to the one proposed by Aviram and Ratner1. It was assumed that when the

tip was negative and the substrate positive, an electron travelled from the tip to quinone

(acceptor) and from catechol (donor) to the substrate. Then the oneproton motion from

the positively charged catechol to the negatively charged quinone would produce two

neutral semiquinones (free radicals). It was suggested that semiquinones would behave

as conductors, which lowered the potential barrier between the tip and the surface and

increased current flow through the molecule. This explanation however, was later

retracted58 when similar behaviour was also observed in systems lacking these

molecules.

Bu OH

OHS
HOOC

O

O

t
tBu

Catechol Quinone
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In order to perform an experimental test of the Aviram and Ratner concept1, and attempt

to fully understand the conduction process through the organic monolayers, Sambles et

al.28,59, studied the systems of Pt  DOP−C−BHTCNQ Mg, Ag (see Figure 2-7).

Figure 2-7 Pt  DOP−C−BHTCNQ | Mg, Ag structure28

According to the Aviram and Ratner theory1, when an organic molecule of the AD

structure was sandwiched between two electrodes, the preferable direction of electron

flow was from the acceptor to the donor. Sambles et al.28 believed that due to the

hydrophobic character of the bottom platinum (Pt) electrode used in the experiment,

molecules were aligned in such a way that the acceptor part was located closer to the top

electrode, even though the monolayer was deposited on the upstroke. This suggested

that when a voltage bias was applied to the system, the higher current should be

observed in the positive quadrant of the IV plot and this agreed with recorded data.

However, the measurements showed hysteresis even after annealing the sample at 70C

(see Figure 2-8).

Figure 2-8 IV characteristics of Pt  DOP−C−BHTCNQ | Mg, Al system, (a) just after
deposition, (b) after annealing at 70C28

O
O

NC CN

NC CN

N

O

H
Br

C12H25O

Mg, Ag
Pt

Donor Acceptor
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The presence of a long chain (typical for LB films) that acted as a tunnelling barrier26,60,

was expected to inhibit the current flow through the junction. Thus, very high values of

current and the hysteresis obtained from the measurements had cast doubt as to whether

rectification was a result of the proposed by Aviram and Ratner molecular structure1.

The hysteresis could have been an indication of either contamination in the film61, or the

flexible NH(CO)OCH2CH2CH2O bridge34 within the structure that could have

caused changes in the molecular alignment during the deposition and subsequent

measurements. Due to the significant difference in work functions of magnesium (Mg)

and platinum (Pt) used in the experiments (3.66 and 5.65 eV, respectively)28, and the

high reactivity of the top magnesium electrode, the observed rectification was more

likely attributed to the Schottky effect31,33.

Sambles et al.62 later reported asymmetric I−V characteristics for another A−−D

structure (OHAPy-C-DNB). The junction was fabricated by the deposition of OHAPy-

C-DNB between a silver-coated glass slide and silver-coated magnesium pads (see

Figure 2-9).

Figure 2-9 Ag,Mg | OHAPy-C-DNB | Ag structure62

The recorded IV curves showed high RR in excess of 100 before breakdown and no

hysteresis was observed62. However, the direction of the higher current was in the

opposite quadrant to that expected from the Aviram and Ratner theory1. Studies of the

junction suggested that a predominant process involved in the rectification was probably

again the formation of a Schottky barrier31,32, which resulted from the use of reactive

magnesium as the top electrode. Additionally, it should be noted that the method of

evaporating the electrode onto the organic monolayer has been criticised28,63 due to the

high possibility of forming a short circuit.

N N
H H

O

O

O NO2

NO2

Donor Acceptor

Ag,Mg
Ag
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Twenty years after the Aviram and Ratner breakthrough1, studies of

tetrathiafulvaleneacceptor molecular rectifiers were published64. Ho et al.64

investigated TTF D bridgeA diads (see Figure 2-10). The molecules seemed to be

appropriate candidates for molecular electronic devices as they consisted of the strong

donor and acceptor separated by a saturated bridge. However, studies of the compound

(see Figure 2-10 (a)) revealed that the linker was too long and flexible. This introduced

an additional tunnelling barrier26,60, and also led to an unwanted headtotail

intramolecularcomplex conformation64. To eliminate these problems, the next

compound had a shorter bridge (see Figure 2-10 (b)).

NO2

S

CN
NC

NO2
NO2

O

O

O

O

SS

SS

C5H11
C5H11

Donor

Acceptor

(a)

NO2

O2N

O

SS

S S

C5H11C5H11

O
O2N

NC
CN

Donor

Acceptor

(b)

Figure 2-10 TTF donoracceptor diads 64

The molecule (see Figure 2-10 (b)) was sandwiched between nSi/SiO2/molecule/Ti,Al

and IV measurements were taken which yielded rectification. Although many

publications65,66,67 have criticised the origin of molecular rectification from junctions

based on oxidisable electrodes, Ho et al.64 believed that the use of a highly reactive

titanium (Ti) electrode instead of a nonoxidisable Au electrode was a better solution. It

was assumed that evaporation of Ti would immediately cleave the terminal CH bonds

and form a thin layer of titanium carbide at the studied surface, which would prevent the

monolayer from further penetration of Ti atoms. However, it was considered that this

explanation was not very strong. Studies of the same molecule64 sandwiched between

Au and Hg electrodes showed rectification in the opposite direction to the one obtained
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for nSi/SiO2 | molecule | Ti,Al. This confirmed that the rectification originated from

electrode effects.

The experimental verification of the Aviram and Ratner concept1 had proved to be

difficult to obtain. Although the presented DA structures showed rectifying

behaviour, the use of reactive electrodes such as Ti29, Mg28 or Al50 raised some doubt as

to whether the true properties of the monolayer were indeed measured. In order to avoid

misleading interpretation of IV characteristics, studies of DA structures when

sandwiched between nonoxidisable electrodes were required68.

2.2.2 Rectification studies from Z(1hexadecyl4
quinolinium) cyano4 styryldicyanomethanide
(C16H33−Q3CNQ)

Although the original Aviram and Ratner proposal1 was based on an DA structure,

much research has been devoted to modified molecules, where instead of a bridge, a

bridge was used34,67,69. The reason for this was that sterically hindered bridged

molecules are more rigid and this allowed a better control of molecular alignment on the

substrate, which may result in an improvement of the rectification properties67.

Described as a modified Aviram and Ratner model1, Z(1hexadecyl4

quinolinium)cyano4styryldicyanomethanide (C16H33−Q3CNQ) (see Figure 2-11),

is the most extensively studied example of an organic rectifier34,70,71,72,73. It was also the

first molecule, where a sterically hindered −bridge was utilised to separate the donor

from the acceptor part of the molecule.

N

CN

CN

NC

C16H33

H

Acceptor (+) Donor (-)

Ag,Mg Pt

Figure 2-11 C16H33−Q3CNQ structure34
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The earliest studies regarding the rectification process of this molecule were presented

by Ashwell et al.34. The junction was formed by placing the organic films between

Ag, Mg | C16H33−Q3CNQ | Pt. To prevent from oxidation, the Mg electrode was coated

with silver prior to breaking the vacuum (see Figure 2-12).

Figure 2-12 I−V characteristics of Mg|C16H33−Q3CNQ |Pt structures34, (a) one, (b) three, (c) four
LB monolayers

The process of electron motion through the junction was explained as follows34:

Step one: an electron was transferred from the Mg anode to the acceptor (A+), which

was believed to be a quinolinium cation, and simultaneously, an electron was

transferred from the donor (D) to the cathode (Pt). Step two: an electron was

transferred from the acceptor (A0) to the donor (D0). However, the mechanism of

rectification was not fully understood and the authors of the publication were aware that

this explanation might not be the only interpretation of the observed rectification34.

Further investigation of C16H33−Q3CNQ showed that similar asymmetrical IV

characteristics were obtained when the molecules were sandwiched between

Ag, Mg | C16H33−Q3CNQ | Ag electrodes65,74. To prove that the molecular structure was

responsible for rectification and not the reactive electrode, the molecules of

C16H33−Q3CNQ were bleached. The bleaching process, which was achieved by the
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addition of metallic ions into the water subphase, disrupted the acceptordonor

structure, and therefore rectification was not expected. I−V characteristics obtained

from the bleached molecules sandwiched between the same Ag and Mg electrodes

confirmed this (see Figure 2-13).

Figure 2-13 I−V characteristic of Ag, Mg|C16H33−Q3CNQ |Ag structure74

Further evidence was obtained by fabricating a junction, where the same monolayer was

separated from both electrodes (Ag/Mg and Ag) using an organic spacer of

tricosenoic acid65. It was believed that this process would successfully eliminate the

Schottky barrier31,32 and provide strong evidence that supported the Aviram and Ratner

theory. As expected, Ag, Mg | tricosenoic acid | A+D  tricosenoic acid | Ag

junction showed asymmetric I−V characteristics (see Figure 2-14 (a))65,70.
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(a) (b)

Figure 2-14 I−V characteristics of (a) Ag, Mg|tricosenoic acid |A+Dtricosenoic acid|Ag,
and (b) Ag, Mg|tricosenoic acid |Ag structures65

Additionally, measurements of the Ag | 8 layers of tricosenoic acid | Mg, Ag

structure revealed symmetric curves (see Figure 2-14 (b))65. This eliminated any doubts

that the tricosenoic acid layer could contribute to the rectification, and confirmed that

the asymmetry obtained was associated with the DA structure of the molecule.

Although there has been controversy surrounding oxidisable electrodes28,29 and their

significant influence on rectification, studies of Al | Al2O3 | C16H33−Q3CNQ | Al2O3 | Al

junctions were also reported. Metzger61 believed that Fermi levels of the metals, such as

Mg or Al, were closer to the LUMO of the organic acceptors compared to Au or Pt, and

therefore it would not result in the Schottky effect33. Two aluminium electrodes were

used in order to avoid complicated analysis of IV plots associated with the usage of

electrodes with different work functions75. The experimental data showed three types of

behaviour for Al | Al2O3 | C16H33−Q3CNQ | Al2O3 | Al junctions. They included

asymmetrical curves with the high current recorded in the positive quadrant of the IV

plot and RR of 20, symmetrical curves, and asymmetrical curves with the high current

observed in the negative quadrant of the IV plot61. The variety in the behaviour of the

samples studied were attributed to molecular rearrangement within the monolayer that

might arise after LB deposition12,54, during storage periods61,76, metal evaporation

process28 or during STM measurements52,53,61 (as a consequence of possible interactions

between dipole moments and the applied electric field).
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The ambiguity associated with using highly reactive materials for electrodes, and/or

using electrodes with different work functions was finally eliminated when diodelike

behaviour from the same zwitterionic molecule sandwiched between oxidefree gold

electrodes was reported72,70.

2.2.3 Pi ()bridged molecular structures

Due to the success of the C16H33−Q3CNQ as a molecular rectifier, Metzger and

Szablewski et al.77 decided to investigate a slightly modified molecule (where A+ was

ammonium, and D was tricyanoquinodimethanide). It was believed that the new

structure would also provide the desired asymmetric IV characteristic with a high

rectification (see Figure 2-15).

Figure 2-15 Structure of (C10H21)2N
+3CNQ

The compound was sandwiched between gold electrodes and the measurements

revealed a disappointing lack of rectification. The poor result was attributed to a partial

or total antiparallel alignment of the molecules in the LB monolayer77. It was also

believed that the dodecyl chains were not hydrophobic enough to maintain the

molecules in a parallel orientation at the airwater interface. However, it is worth

considering whether the steric hindrance necessary for DA structures was strong

enough to effectively separate the donor from the acceptor unit in this case.

CN

CN

N

NC

Acceptor (+) Donor (-)
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Since Aviram and Ratner1 proposed their concept of the molecular rectifier, a number of

experiments have been undertaken to test this hypothesis35,78,79. It also involved studies

of the dipole reversal effect in cationic D−−A dyes80, which were defined as modified

versions of the original proposal.

In 2001, rectification was reported from a multilayer containing 100 layers of

5−(4−dibutylaminobenzylidene)−2−octadecyl−5,6,7,8−tetrahydroisoquinolinium octade

cylsulfate66 cationic dye codeposited with octadecanoic acid and placed between gold

electrodes (see Figure 2-16).

N

H

C18H37

N
C4H9

C4H9

C18H37OSO3

C17H35CO2H

DonorAcceptor

Figure 2-16 Structures of 5−(4−dibutylamino-benzylidene)−2−octadecyl−5,6,7,8−tetrahydro-
isoquinolinium octadecylsulfate and octadecanoic acid66

Later, studies of the same cationic dye, but with a different aliphatic chain were

performed in order to demonstrate that a change of the dipole orientation influenced the

rectifying behaviour of the molecule. Each cationic compound was deposited via the LB

technique together with the octadecyl sulfate counterion (see Figure 2-17), and then

sandwiched between two gold electrodes80.
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C12H25 N

H
N

C4H9

C4H9

C18H37OSO3

(2)

Figure 2-17 Structures of E-4-[(N-alkyl-5,6,7,8-tetrahydroisoquinolinium-5-ylidene)methyl]-N,N-
dibutylaniline octadecyl sulphate, (1) octadecyl and (2) dodecyl analogues80

As expected, the results showed that both compounds possessed diodelike

characteristics. However, in the case of the octadecyl analogue the higher current was

observed in the positive quadrant of the IV plot, while for the dodecyl analogue, the

higher current was observed in the opposite quadrant of the plot. This simple

manipulation of the molecular arrangement provided evidence that rectification arose

from the molecular structure.

This experiment was further enhanced by studies of LB filmforming isomers of

Nalkyl5(4dialkylaminobenzylidene)5,6,7,8 tetrahydroquinolinium iodide (see

Figure 2-18), when deposited on a goldcoated substrate and contacted via an Au or PtIr

tip81,82.

Figure 2-18 Structure of Nalkyl5(4dialkylaminobenzylidene)5,6,7,8tetrahydroquinolinium
iodide81
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Two of the three alkyl substituents were methyl groups and the other was a hexadecyl.

The location of the hexadecyl group caused the molecules to be aligned on the substrate

in different ways. When the long aliphatic chain was attached to the acceptor, the

molecules were deposited with the donor located closer to the substrate, and the

acceptor with the alkyl tail was pointing upward. When the hexadecyl chain was

attached to the donor, the molecules were aligned in the opposite way. Subsequent IV

measurements demonstrated that the rectification was attributed to the D−−A structure.

Both analogues exhibited asymmetric IV characteristics, however, for the

[ADCnH2n+1] structure the higher current was observed in the negative quadrant of

the IV plot, and for the [DACmH2m+1] structure, asymmetry was recorded in the

positive quadrant of the IV plot (see Figure 2-19)81.

Figure 2-19 IV characteristics of structure of Nalkyl5(4dialkylaminobenzylidene)
5,6,7,8tetrahydroquinolinium iodide81

Deposition of the mixture of these two analogues led to symmetrical IV curves81,

which were associated with the antiparallel alignment of the active moieties within the

monolayer. This showed that rectification, which resulted from the D−−A structure

was also dependant upon the arrangement and orientation of the molecules.

Studies of another cationic dye (4{2−[4−(N,N−dibutylylaminophenyl]vinyl}

Noctadecylquinolinium octadecyl sulphate) sandwiched between gold electrodes also

showed rectification79 (see Figure 2-20). However, the electrical asymmetry disappeared
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over a period of time, which was attributed to an anioninduced effect. It was assumed

that the counterion movement led to the formation of two forms: aromatic and

quinonoid with reversed dipoles.

Figure 2-20 Structure of 4{2−[4−(N,N−dibutylylaminophenyl]vinyl}Noctadecylquinolinium
octadecyl sulfate79

2.2.4 The alkyl tunnelling barrier effect on molecular
rectification

Krzeminski et al.83 suggested that the rectification depends not only on the molecule’s

HOMO and LUMO level positions with relation to the Fermi energy level of the

electrodes, as Aviram and Ratner1 postulated, but also on the position of the

electroactive part of the molecule in the monolayer. According to the theoretical studies

of C16H33–Q3CNQ placed between Al and Au electrodes83, the π–bridge used to isolate

the acceptor from the donor of the molecule did not sufficiently separate the molecular

orbitals (localised on either donor or acceptor). Therefore, the molecular orbitals were

delocalised over the entire molecule. Krzeminski83 believed that the extended aliphatic

chain, which led to the asymmetric position of the donoracceptor moiety in relation to

the electrodes played a significant role in the rectification process.

Later, Kornilovitch et al.84 inspired by Krzeminski’s work83, proposed a molecular

rectifier based on a conjugated system HS(CH2)mC6H4(CH2)nSH (see Figure 2-21).
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Figure 2-21 HS(CH2)mC6H4(CH2)nSH system84

It was thought that the rectification of metal | organic molecule | metal systems could be

produced by the asymmetrical positioning of the molecule with respect to the electrodes

without needing the Delectron bridgeA structure that Aviram and Ratner postulated1.

It was estimated that for this system, the highest rectification ratio (RR) possible was

500 for m=2 and n=10. This work84 stated that rectification could be obtained from one

conducting molecular unit placed closer to one of the electrodes, and that by changing

the length of the insulating barriers, the rectification could be symmetrically changed.

However, these values are theoretical and have not been confirmed by experiment.

In 2003, Chang et al.29 reported very high rectification of 5x105 at ± 2.3 V from a

Kornilovitch84 type rectifier. A SAM of alkoxynaphthalene thiol was deposited onto the

Pt electrode and then overcoated by the Ti electrode (see Figure 2-22).

C3H6

O C13H26 CH3

SPt
Ti

Figure 2-22 Chang’s molecule29

According to the results obtained by Chang et al.29, the monolayer deposited on the Pt

electrode was highly ordered. The deposition of the Ti electrode revealed some

disruption within the monolayer structure that arose as a result of a reaction with the

alkyl chains, but the naphthalenes remained intact. Although Chang et al. 29 attributed

rectification partly to the contact potential generated by the different work functions of

Pt and Ti, and partly to the asymmetric tunnelling barrier of the compound83,84. It was

HS

SH

Lleft Lright
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very likely caused by an oxideinduced Schottky barrier formation31,32, rather than the

molecular structure itself. This statement has been confirmed by others30 and thus,

claims of molecular rectification obtained from studies using oxidisable electrodes

should be excluded.

Krzeminski83 and Kornilovitch’s84 work was questioned when no rectification was

reported from the AuSC10H20squaraine | PtIr tip structure85, where the chromophore

was asymmetrically positioned between nonoxidisable electrodes.

Attempts to manipulate the position of the chromophore between electrodes were also

performed for the CH3CO−S−CnH2n−Q3CNQ structure70, where the chain length CnH2n

was changed within the range: 3 ≤ n ≤ 12. All of the samples studied were contacted via

Au and PtIr tips, and the results obtained were similar for both tips. All of the samples

showed rectification. Ashwell et al.70 believed that the chromophore of the

Au−S−C3H6−Q3CNQ | PtIr system was located approximately midway between the

electrodes, as the van der Waals contact between the tip and the molecule were similar

to the length of the chain (Au−S−C3H6). The almost identical IV plots for analogues

Au−S−C12H24−Q3CNQ//PtIr and Au−S−C3H6−Q3CNQ//PtIr (see Figure 2-23), and

similar behaviour observed for the rest of the analogues suggested that the position of

the chromophore in relation to the electrodes did not influence the rectification

behaviour of the device70.

Figure 2-23 I−V characteristic of CH3CO−S−CnH2n−Q3CNQ structure ( n=3, green), (n=12, red)70
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A high current was observed in the positive quadrant of the IV plot, which implied that

electron flow was from the top electrode and passed through the monolayer to the

bottom electrode. Thus the heterocycle acted as a donor, whereas the C(CN)2 was an

acceptor, and this is consistent with a quinoid ground state, rather than the zwitterionic

state of the molecule (see Figure 2-24)70.

(a) Acceptor Donor

S CnH2n N
H

NC

Au

CN

CN

(b) Donor Acceptor

S CnH2n N
H

NC

Au

CN

CN

Figure 2-24 (a) Zwitterionic and (b) Quinoid ground state of CH3CO−S−CnH2n−Q3CNQ70

The protonation process70, which switched off rectification of the

Au−S−C10H20−Q3CNQ structure, provided unambiguous evidence that the effect of

geometrical asymmetry was insignificant relative to the rectification produced by the

Aviram and Ratner structure1 (see Figure 2-25).

Figure 2-25 I−V characteristic of Au−S−C10H20−Q3CNQ after protonation70

Continuing the dispute around the asymmetrical geometry, the rectifying behaviour of

AuSC3H6AD structure86 and its C10H20 analogue35 were studied. To avoid any
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ambiguity associated with the alignment of molecules on the substrate when deposited

via the LB technique, and to eliminate the long aliphatic chain that was believed to

introduce an additional tunnelling barrier26,60, dyes were attached to a gold electrode

using a chemisorption process (see Figure 2-26).

Figure 2-26 Structure of a possible molecular rectifier86

STS measurements revealed rectification of 12 at ± 1 V from AuSC3H6AD

structure86. The monolayer was then subjected to a protonation process to verify the

origin of the rectification. Upon exposure to HCl vapour, the chargetransfer axis of the

structure was disrupted (protonation of the donor group). As a consequence, the

rectification decayed and symmetrical IV characteristics were observed. Exposure to

NH3 vapour removed the proton and consequently restored rectification, although with a

reduced RR. This reversibility provided unambiguous evidence that rectification was

caused by the DA structure.

To manipulate the position of the chromophore between the electrodes, the C10H20

analogue (see Figure 2-27) was contacted by three different tips35 (an uncoated Au tip, a

tip coated by pentanethiolate AuSC5H11, and a tip coated by decanethiolate,

AuSC10H21). Although it had been shown that the DA structure was the major

factor causing rectification, these studies may suggest that rectification could be partly

affected by the tunnelling barrier generated by the aliphatic chains because RR values of

18, 11 and 5 at ± 1 V were observed when an uncoated Au tip, a tip coated by

pentanethiolate (AuSC5H11), and a tip coated by decanethiolate (AuSC10H21) were

used, respectively35.
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Figure 2-27 Structure of 4-[2-(4-dimethylamino-phenyl)-vinyl]-1-(10-mercapto-decyl)-quinolinium
iodide35

Similar conclusions were made from the results obtained for the molecule87 with the

same acceptor but different donor (see Figure 2-28).

Figure 2-28 Structure of iodide salt of a sterically hindered DA87

Studies showed that when the monolayer was contacted by an uncoated gold tip (see

Figure 2-29(A)) the RR of 30 at ± 1 V was obtained, but when the tip was coated with

pentanethiolate that positioned the chromophore approximately midway between the

electrodes, the RR of 10 at ± 1 V was obtained. The important fact is that the results

obtained via STS were confirmed by using mercury droplet electrodes87 (see Figure 2-29

(B)).
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Figure 2-29 IV characteristics of TCNQ- salt of a sterically hindered DA measured by (A)
STM, and ( B) mercury drop87

Studies of Au−S−C10H20−A−−D structures were continued but with different acceptors

and donors35 (see Figure 2-30). If the assumption that the asymmetrical position of the

chromophore between electrodes played a key role in rectification84, then each molecule

should have exhibited rectification.
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Figure 2-30 Structures of SA analogues for molecular rectifiers studied by Ashwell et.al.35

However, as studies showed35, rectification was observed only for the compound (1)

(see Figure 2-30 (1)). The two other examples (see Figure 2-30 (2 and 3)) did not yield
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asymmetrical IV characteristics. This was due to a planar structure in the case of

compound (2) (see Figure 2-30 (2)), and an unstable form of compound (3) (see Figure 2-30

(2 and 3)), which very likely reacted with atmospheric H2CO3. This investigation

revealed that in order to obtain rectification from DA molecules, it is vitally

important to provide steric hindrance within the structure to enforce a nonplanar

arrangement to effectively separate the donor from the acceptor35. This also confirmed

that the aliphatic chain did not have significant influence on rectification and it is

extremely important that the molecules form stable monolayers.

Studies of other examples confirmed this statement. The almost planar compound87 with

a pyridinuim ring acting as an acceptor (see Figure 2-31) did not yield any rectification.

Figure 2-31 Structures of 1-(10-mercapto-decyl)-4-[2-(4-methoxy-phenyl)-vinyl]-pyridinium
iodide87.

The sterically hindered dye with a quinolinuim acceptor (see Figure 2-32)) showed

rectification between 50150 at ± 1 V when placed between two nonoxidised

electrodes67 (see Figure 2-33 (a)).

Figure 2-32 Structure of 1(10acetylsulfanyldecyl)4{2(4dimethylaminonapthalen1yl)
vinyl}quinolinium iodide 67
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The rectification was partly attributed to the controlled alignment of the DA

structure, and partly to the steric hindrance that created a nonplanar structure and

consequently effectively isolated the molecular orbitals of the donor and acceptor

subunits from each other67. To confirm that the rectification was induced by the

molecular structure, the investigated monolayer was briefly exposed to HCl vapour,

which suppressed the electrondonating properties of the molecule due to the

protonation of the dimethylamino group. The rectifying behaviour was then restored

upon exposure to NH3 (see Figure 2-33 (b))67.

(a) (b)

Figure 2-33 IV characteristics of (a) 1(10acetylsulfanyldecyl)4{2(4dimethylamino
napthalen1yl) vinyl}quinolinium iodide measured before, and (b) after
protonation 67

2.2.5 Different approaches

Other approaches arose as a result of research aimed at finding materials that performed

with the desired diodelike behaviour.

Ellenbogen and Love proposed a molecular diode88 based on the Aviram and Ratner

concept1. The molecule presented (see Figure 2-34) was a chemically doped

polyphenylenebased molecular wire where Xgroup provided donor character,

Ygroup provided acceptor character to the molecule, and the Rgroup acted as a

bridge. However, the model was not supported by experiment.
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Figure 2-34 Ellenbogen and Love rectifier88

The research regarding molecular rectification also included the investigation of LB

films of phthalocyanines89,90, even though they did not possess a typical AD

structure1. Due to a substitution process, it could be possible to form a

donorphthalocyanineacceptor type molecule (DPcA). Zhou et al.89,90 published

results of asymmetrically substituted phthalocyanines, and the structure of one is

depicted in Figure 2-35

Figure 2-35 Structure of phthalocyanine studied by Zhou et al.89

These molecules were deposited directly onto an HOPG surface that acted as one of the

electrodes and contacted via an STM tip (PtIr or tungsten). The use of the STM

eliminated a common problem associated with an evaporated top electrode, which could

easily lead to a short circuit of the thin films28,61. Although it was stated that the

rectifying behaviour was partly attributed to the material and geometrical asymmetry89,
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(i.e. the molecules were located closer to the HOPG surface than the STM tip), it

seemed to be unlikely attributed to the Aviram and Ratner mechanism1, as the butyl

groups did not act as donor groups.

Metzger et al.91 reported asymmetric IV curves with an incredibly high rectification of

12000 ± 2000 at ± 1.5 V from a LB film of dimethylanilinoaza [C60] fullerene

sandwiched between two gold electrodes (see Figure 2-36).

Figure 2-36 Structure of dimethylanilinoaza[C60]fullerene91

However, it was considered doubtful whether such a high value of rectification was a

consequence of the monolayer itself, and it was suspected that other factors had a

significant role in the rectification process. Indeed, extensive studies showed that the

high current and RR recorded for this molecule were most likely caused by a formation

of gold stalagmites through the gold. After much cycling of the bias, the current had a

much lower value and rectification dropped to 2, which was attributed to the destruction

of the gold stalagmites91.

The controversy associated with the insulation barrier created by a long aliphatic chain

and its influence on rectification led to studies of a chevronshaped compound69,92,93

(see Figure 2-37).
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Figure 2-37 Structure of the chevron-shaped molecule69,92

This molecule represents a novel class of compounds with short aliphatic chains that

have been successfully aligned using the LB method. The molecules are comprised of

an acceptor located in the middle of two donor limbs (DAD). Studies of several

samples yielded rectification when a monolayer was placed between gold electrodes.

The average rectification was 8.4 at ± 1.5 V with a higher current observed in the

positive quadrant of the IV plot (the top electrode was positive)69. This corresponded

to electron flow from the bottom electrode to the top. Detailed studies of the molecules

implied that the iodide remained in the monolayer and therefore rectification was

assigned to back electron transfer from iodide to pyridinium ring. The presence of the

iodide could result in two possible alignments of the molecules on the substrate

(see Figure 2-38).

Figure 2-38 Suggested alignment of the chevronshaped molecule between electrodes69

Repeated measurements led to a decrease of the asymmetry, and following 510 cycles

the asymmetry disappeared. This suggested that the molecules rearranged whilst a

voltage bias was applied to the junction52,53. Therefore, it was impossible to identify the
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correct alignment of the molecules on the surface. Further discussion regarding this

example and a presentation of other examples of chevronshaped molecules will be

provided in the results section.

Metzger94 studied a Ushaped organic rectifier containing a fullerene attached to two

triphenylamine groups via a πbridge (see Figure 2-39).

Figure 2-39 Ushaped rectifier containing fullerene94

The molecule was deposited onto a goldcoated substrate and the second gold electrode

was deposited on top of the organic monolayer using an evaporation process.

Measurements taken from this system revealed that in the low bias range (± 3 V) no

rectification was observed. However, when the bias was increased to 5.4 V, asymmetric

IV characteristics with a RR up to 16.4 were achieved. According to the authors94, the

rectification arose as a result of the asymmetric placement of the molecular orbitals of

the acceptor and donor subunits with regards to the electrodes. It is worth noting that

after much cycling of the bias, the current did not drop, and this was due to its tendency

to form rigid and stable LB monolayers.

Whitesides et al.46,95, demonstrated that Ag | SAM1 || SAM2| Hg junctions also rectified

current, although the molecular system did not possess the typical structure of the

Aviram and Ratner model1. With SAM1 being a selfassembled monolayer formed
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from a derivative of TCNQ, and SAM2 being a selfassembled monolayer formed from

alkanethiol (HS(CH2)n1CH3, n=14,16,18) (see Figure 2-40). It was believed that

rectification could be achieved in a metal | insulator | metal junction, if an electron

acceptor was placed in the insulating layer46. Studies showed that each additional CH2

group in (HS(CH2)n1CH3, n=14,16,18) decreased rectification, which suggested that

both conductivity and ability of the junction to rectify was dependent on the chain

length of the SAM2. However, the obtained data also indicated disorder within SAM1,

which could influence the electrical properties of the monolayer.

Figure 2-40 Ag | SAM1 || SAM2| Hg junctions studied by Whitesides et al. 46

McCreery96 reported strong rectification of up to 600 at ± 2 V from a 3.7 nm thick layer

of nitrobenzene (NAB). It was claimed that rectification was caused by the molecule,

and in particular to ‘switching’ between phenyl and quinoid forms when the bias was

applied (see Figure 2-41).

Figure 2-41 Phenyl and quinoid forms of NAB96

However, some researchers argued that the rectification originated from the Schottky

effect31,32 due to the use of oxidisable titanium as a top electrode. Indeed, the results
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were retracted, when studies of the same molecule in an oxygenfree environment

showed a lack of asymmetry in the IV characteristics97.

2.2.6 Hybrid structures

There has been much interest concentrated around hybrid donor/acceptor (D/A)

structures98,99, which may be described as a modified model of the organic rectifier

proposed by Aviram and Ratner1. These structures were formed as a result of a

layerbylayer deposition100, which allowed the elimination of usually complicated

synthetic routes. This very simple technique offered the possibility of selecting donors

and acceptors to build a variety of D/A or A/D assemblies with desirable electrical

properties.

2.2.6.1 Donor /Acceptor assemblies

In 1995 Fisher99 reported molecular rectification from a hybrid structure:

Au | 6 monolayers of PcPd | 6 monolayers of PTCDI | Au (see Figure 2-42).
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Figure 2-42 Structures of (a) PcPd, (b) PTCDI and (c) layer configuration of the hybrid99

IV characteristics were obtained at a temperature of 4.2 K. Fisher99, as well as

Okazaki60 and Yamada101 believed that the temperature may have affected the electrical

properties of the monolayers. Rectification behaviour from the hybrid structure was

observed for both negative and positive bias. However, thresholds for positive and

PTCDI

PcPd

Top electrode

Bottom electrode
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negative bias occurred at 0.91 V and 0.40 V, respectively. It was believed that

rectification arose as a result of the D/A structure, and in particular to the different

positions of the energy levels of PcPd and PTCDI with regards to the Fermi energy

levels of the electrodes99 (see Figure 2-43).

Figure 2-43 Schematic diagram of the estimated energy levels of the PcPd and the PTCDI
compared to the gold Fermi energy level99

This conclusion was confirmed by IV measurements of Au | layers of PcPd | Au and

Au | layers of PTCDI | Au structures, which yielded no rectification for either junction.

In 2005, rectification from a D/A structure was also reported by Mukherjee and Pal102.

The system investigated, consisted of monolayers of the donor (copper phthalocyanine

(CuPc)) and the acceptor (rose bengal) that were fabricated using electrostatic bonding

(see Figure 2-44).
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The IV measurements of the D/A assembly sandwiched between Si and Hg exhibited

asymmetric curves with RR of 30 at ± 1.9 V. Unfortunately, the higher current was

recorded in the negative quadrant of the IV plot, which suggested that the electrons

flowed from the donor to the acceptor, (the opposite direction to that expected from the

Aviram and Ratner theory1). However, Mukherjee and Pal102 believed that rectification

resulted from the D/A structure because when the monolayers were investigated

separately via STS, neither the donor nor acceptor showed any rectifying features.

In the same year, the layerbylayer deposition of squaraines103 led to

orientationinduced rectification. The first layer of the selfassembled DAD

structure was deposited using a chemisorption process. As a result, the molecules were

packed vertically with respect to the substrate. The second layer was deposited using the

LB technique, but this time the molecules were aligned horizontally on the surface,

forming the bilayer structure as depicted in Figure 2-45.
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Figure 2-45 Structure of a hybrid structure containing squaraines103

Each monolayer was investigated individually using STS and neither revealed

asymmetric IV characteristics. However, when deposited together as a hybrid
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structure103, the IV measurements showed asymmetry with a RR of 12 at ± 1 V, which

was attributed to the Aviram and Ratner mechanism1 (see Figure 2-46).

Figure 2-46 I-V characteristic of a hybrid structure containing squaraines103

2.2.6.2 Donor/Aceptor structures based on the ionic assembly approach

Recently, Ashwell et al.104, presented promising results from organic rectifying

junctions that were fabricated based on ionic coupling attraction between opposite

charges of the molecules. This appeared to be an ideal deposition method for structures

without long hydrocarbon chains (required for the LB technique). The structures were

formed in two steps. The first layer was formed via chemical bond: AuS. Then, the

second layer was deposited via metathesis (see Figure 2-47.).

Figure 2-47 Hybrid structure of 4,4’bipyridinium and copper phthalocyanine3,4’,4’’,4’’’
tetrasulfonate104
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The electrical properties of the structure were investigated using STS and the results

showed asymmetric curves with a high rectification between 60100 at ± 1 V104 (see

Figure 2-48).

Figure 2-48 I-V characteristic of hybrid structure of 4,4’bipyridinium and copper phthalocyanin
3,4’,4’’,4’’’ tetrasulfonate104

The high RR was attributed to the D/A structure; in particular to the mechanism

proposed by Aviram and Ratner1. To provide additional evidence to support this

statement, subsequent experiments were undertaken. On top of the phthalocyanine layer

a cationic acceptor monolayer (4,4’bipyridinium) was deposited to obtain an

Au | acceptor | donor | acceptor | Au structure. Also, the Au | 4,4’bipyridinium | Au

junction was investigated104. The results matched expectations, as both systems showed

symmetric IV characteristics.

To support these results, another D/A structure formed using the ionically assembly

method was studied105. In this case, a bipyridinium layer acting as an acceptor was

replaced by a protonated 7 nm long wire (see Figure 2-49). The wire was investigated

using STS and showed no rectification when deposited alone on a goldcoated substrate

(see Figure 2-50 (a)).

S

O

O
O

O

O

O

O
O

O

O

S CN

N

Au

H

H

Figure 2-49 Structrure of the 7 nm wire105
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However, when molecules of an electrondonating phthalocyanine (Figure 2-47) were

deposited on top of the wire monolayer, asymmetrical IV characteristics were

observed and the RR ranged between 20 and 80 at  1 V105 (see Figure 2-50 (b)). The

large variation of the RR value might be a consequence of the nonuniform alignment

across the whole sample, where some regions may have been better aligned.

(a) (b)

Figure 2-50 I-V characteristics of (a) 7 nm wire, (b) hybrid structure of the7 nm wire and Pc105

This hybrid structure105 proved that it was possible to assemble electron donating and

electron accepting groups into a hybrid structure in order to induce or improve

rectification. Due to the promising results obtained, other hybrid structures comprising

of molecular wires with different lengths are currently under investigation.

2.2.6.3 Ionically coupled structures on Au-S-CH2CH2CH2-SO3-.

The promising results obtained from ionically assembled D/A structures led to studies

of cationic DA molecules aligned on a selfassembled anionic thiol (sodium

3mercapto1propanesulfonate)42. Ashwell et.al.43 investigated four hybrid structures.

Two of the cationic DA molecules showed similar results to those obtained from the

ionically coupled structure on AuSCH2CH2CH2SO3. Two other examples (see

Figure 2-51) revealed an improvement of rectification. The first hybrid structure43 (see

Figure 2-51 (1)) provided a very high RR of 450 at ± 1 V compared to only 14 at ± 1 V for

the analogue that was deposited using the SA technique35. In the case of the second
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cationic DA dye (see Figure 2-51 (2)) the rectification obtained was in the range of

50150 at ± 1 V when self assembled via chemisorption67. Whereas, the same dye was

ionically assembled the initial RR of 3060 at ± 1 V was obtained shortly after

deposition, and this increased to 100200 at ± 1 V after a few hours43. This

phenomenon was explained by selforganisation of the structure76,106.

Figure 2-51 Hybrid structures of Au–S–C3H6–SO3
 | A+–π–D | Au structures43

According to the Aviram and Ratner theory1 of rectification, these structures should

exhibit an asymmetric IV characteristic with the higher current in the negative

quadrant of the plot, and as expected the STS studies confirmed this. These results43

also demonstrated that the formation of a wellpacked and ordered monolayer is

extremely important in order to obtain high rectification, and that it can be achieved by

the simple modification of the substrate’s surface.

2.2.6.4 Further studies of mixed bilayer structures based on the ionic assembly
approach

The ionic assembly approach was also used to demonstrate the significant improvement

in the rectifying behavior of molecular rectifiers based on the D–electron bridge–A

structure1. Three separate systems based on the Au–S–C10H20–A+–π–D | D– | Au

structure107 were studied (see Figure 2-52)
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Figure 2-52 Au–S–C10H20–A+–π–D | D |Au structures107

In all cases, a cationic D–electron bridge–A dye was deposited on a goldcoated

substrate using the self–assembly technique, and then an anionic donor was placed on

the top via ionic assembly. The verification of the methathesis was provided by the

UVVIS spectrum on a glass slide coated with a 10 nm thick platinum film. The STS

data yielded rectifying behaviour107 with an RR of 3000 at ± 1 V (see Figure 2-53), the

highest RR observed to date from an experiment that adhered to the Aviram and Ratner

model1. This high value of RR was obtained from the Au–S–C10H20–A+–π–D | D– | Au

system, where 5(4dimethylaminobenzylidene)5,6,7,8tetrahydro isoquinolinioum,

was the cationic dye and the anionic donor (forming the second layer) was copper (II)

phthalocyanine3,4’,4’’,4’’’tetrasulfonate (see Figure 2-52 (1)).
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Figure 2-53 I-V characteristic of Au–S–C10H20–A+–π–D|D–|Au structure, where the cationic moiety
was 5(4dimethylaminobenzylidene)5,6,7,8tetrahydroisoquinolinioum, and the
anionic donor (forming the second layer) was copper (II)
phthalocyanine3,4’,4’’,4’’’tetrasulfonate107

Ashwell et al.107 believed that the electrical properties of these systems were determined

by the cationic dye, and in particular to the steric hindrance that effectively separated

molecular orbitals localised on either acceptor or donor67. These studies also showed

that the deposition of an additional layer of phthalocyanine enhanced the donor effect.

Studies of two other hybrid structures107 (see Figure 2-52 (2 and 3)) showed further

evidence that rectification resulted from the hybrid structure. The structure107 (see Figure

2-52 (2)), showed asymmetric IV plots with RR of 1570 at ± 1 V, whereas the same

cationic moiety, without a monolayer of the phthalocyanine, showed a lack of

rectification35. A significant improvement of RR was also observed for the third hybrid

structure (see Figure 2-52 (3)), where RR increased from 5015067 to 700900107

at ± 1 V. These impressive results proved that this method may prove to be a perfect

technique for incorporating successful materials into molecular electronic devices in the

future.

2.3 Possible applications

There are a number of articles2,12 and books7,108 devoted to possible future applications

of molecular rectifiers. They have been considered as potential materials for an

electrochemical photodiode109, switches20, as liquid crystals in displays110, dye lasers,
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sensors111, logic gates112 and elements of memory storage113. The advantage of organic

materials is that they can often be incorporated into a polymeric structure114, which can

be used (for instance) to build photovoltaic cells115, diodes116 and transistors20,117.

However, it is not the objective of the research presented here to create a fully

operational device. These few examples of possible applications are given purely to

highlight the great potential behind organic materials.

2.4 Monolayer deposition

To consider any organic materials for the use in a molecular electronic device, it often

has to be aligned in a defined way. For this purpose, two deposition techniques (LB and

SA) were implemented.

2.4.1 LangmuirBlodgett technique

The history of Langmuir films dates back to 1774, when Benjamin Franklin deposited

oil on a water surface and observed its calming influence at Clapham pond118. Later, in

the 1880s, Rayleigh119 studied the surface tension lowering effect when oil was

distributed on a water surface. Then in 1891, Pockel’s studies120 proved that oil formed

a thin layer at the surface. Finally, joint studies by Langmuir36 and Blodgett37 led to the

technique that allowed monolayers (called Langmuir films) to be deposited on solid

substrates resulting in LangmuirBlodgett (LB) films.

2.4.1.1 Materials for Langmuir and LB films

Organic thin films have attracted considerable attention over the past few decades for

their potential applications121,122 as sensors, membranes, displays, transistors etc.

The Langmuir film36,123 is a monolayer formed by amphiphilic molecules trapped at an

interface of two different environments, for instance: oilwater or waterair. The

monolayerforming molecules consist of two distinct groups: a hydrophilic and a

hydrophobic part (see Figure 2-54).
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COOH

Figure 2-54 Molecular structure of stearic acid, a typical amphiphilic molecule

The hydrophilic part is readily soluble in water, while the hydrophobic part is soluble in

non-polar solvents. This specific architecture allows the molecule to be anchored at the

interface of the two phases (usually waterair) and eventually form the Langmuir film.

However, a correct balance between a hydrophobic and a hydrophilic part must be

maintained. It was discovered122,123 that C12H25 appeared to be a critical length for the

aliphatic chain. The formation of a stable monolayer was difficult to achieve with chain

lengths less than this. Extensive studies13,123,124 of amphiphilic molecules also revealed

that any changes implemented to either the hydrophilic or hydrophobic part would result

in changes to the material properties, alignment and structure. These are important

features because they allow the production of molecules with desirable properties in a

controlled way. For instance, the increase of the chain length causes a decrease in the

water solubility of the molecule124,125 (see Figure 2-55).

R

X

R=CnH2n+1, 4  n  12

X=CH2CH2COOH

Figure 2-55 Structures of anthracene derivatives studied by Stewart125

The implementation of double bonds or the replacement of an atom126 is known to

disrupt the geometry of the chain and so influences the packing and consequently alters

the properties122,124 (see Figure 2-56).

Hydrophobic part

Hydrophilic part
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Figure 2-56 (a) Stearic acid, (b) oleic acid, cis form, (c) elaidic acid, trans form126

The modification can also be introduced as a variation of the ‘head group’ of the

amphiphilic molecule. The carboxylic group (COOH) could be replaced by an ester

(CO2R), an amide (CO2NH2), amine (NH2) or alcohol (OH)123,124.

Since the LB technique was established, a wide range of organic materials have been

investigated using this method. These materials have included fatty acids and their

derivatives122,124, derivatives of benzene122,125, heterocyclic compounds, dyes, liquid

crystals, polymers, TCNQ derivatives, azobenzenes (and their derivatives), cyanine and

merocyanine dyes124,127. Unconventional compounds such as porphyrine128 and

phthalocyanines (Pc)129,130 have attracted much interest. They are macrocyclic

compounds and are ubiquitous in nature. Although porphyrines and phthalocyanines do

not possess an amphiphilic feature that is necessary for LB deposition, it is possible to

generate LB filmforming derivatives by alkylation with different length hydrocarbon

chains attached to the outside of the ring122. In a similar way to phthalocyanines129,130

and porphyrines128, also squaraines131,132, which consist of two donor parts and one

centrally located acceptor could be subjected to alkylation in order to form an

amphiphilic structure (see Figure 2-57).
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Figure 2-57 Structure of squaraine studied by Ashwell et al.131
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Studies131,132 did confirm that these molecules formed Langmuir films and that the LB

technique could be used to deposit them onto solid substrates.

A particularly unusual group of molecules that had been successfully deposited using

the LB technique are fullerenes (C60, C70)
133,134,135. These are not typical amphiphilic

compounds, however, published results showed that pure fullerene C60 or a mixture of

C60 with arachidic acid generated Langmuir films on a subphase133,134.

As described above, typical amphiphiles consist of a hydrophilic head and a long

aliphatic chain. However, the long chain tends to act as a spacer and also increases the

overall thickness of the monolayer26. Due to these factors, a lot of effort has been made

to design molecules with shorter hydrocarbon chains. This research has led to a group of

molecules called chevronshaped69,92, or bentcore136,137, which are mainly known to be

liquid crystals138,139.

Zou et al.140 published studies of different chevronshaped liquid crystals in Langmuir

films (see Figure 2-58).
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Figure 2-58 Structures of different chevronshaped liquid crystals140

The hydrophobicity of both, the core and the end of the chains, were varied in order to

study the molecules behaviour when deposited on a water surface. The results of five

different molecules demonstrated that it was possible to form stable Langmuir
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monolayers from chevronshaped molecules. Deep analysis showed also that the

properties of these layers strongly depended on the individual character of the molecule.

The molecules with amphiphilic end chains were aligned flat on the airwater surface,

whereas the molecules with hydrophobic chains formed a complex multilayer

structure140.

Ashwell et al.69,92 reported LB films from two different chevronshaped molecules (see

Figure 2-37 and Figure 2-59).
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Figure 2-59 Structure of a chevronshaped molecule studied by Ashwell92

They have a central cationic acceptor and two bridged donor groups (DAD).

The angle between the chargetransfer axes of the chevronshaped molecule

was ca. 120. These chevronshaped molecules represented a modified model of an

Aviram and Ratner type rectifier. Published results69,92 revealed that although they had

short aliphatic chains it was possible to deposit them using the LB technique. It was

shown that these molecules formed a noncentrosymmetric alignment and showed

rectifying properties, and detailed studies are provided in a result section.

A majority of the research regarding chevronshaped materials was based on theoretical

studies of the molecules behaviour at the airwater interface141,142,143. Simulations of a

chevronshaped molecule depicted in Figure 2-60 were carried out by Duff et al.141.
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Figure 2-60 Structure of a chevronshaped molecule studied by Duff et al.141

Calculations showed completely different molecular arrangements between films in a

vacuum and films on the water surface. According to simulations the molecules aligned

on the water surface in such a way that the central and outer phenyl rings tended to be

flat with respect to the water surface, while the inner phenyl rings of the wings tended to

take on a broad range of orientations. The studies also revealed that substitution of two

hydrogen atoms on the central phenyl ring with chlorine affected the conformation

significantly. AFM studies of very similar structures144 to the one shown in Figure 2-60

also revealed a strong relationship between the molecular structure and the arrangement.

2.4.1.2 Pressurearea isotherm

The isotherm is a plot of the surface pressure as a function of surface area of the water

surface available to each molecule. In order to be obtained, molecules of interest are

dissolved in a non-polar and volatile solvent that does not mix with the subphase36,37,124.

A freshly prepared solution is then deposited dropwise on a clean surface (usually

water), which must have previously been submitted to a purification process. The

solution once deposited on a water surface will spread rapidly and cover all the

available area. The molecules assemble spontaneously in such a way that the polar head

group are immersed in the water and the long hydrocarbon chains are pointing towards

the air and the monolayer will begin to form. During the deposition process, the solvent

evaporates to leave the molecules as a highly disordered film on the surface. The film is

then compressed, causing the molecules to align and eventually to generate a

wellpacked and ordered structure that is called a Langmuir film36,124 (see Figure 2-61).
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Figure 2-61 The alignment of the amphiphilic molecules in a Langmuir film at the airwater
interface

The state of the monolayer can then be characterised by controlling the changes in the

surface tension124,145. The surface pressure is defined as the difference between the

surface pressure of pure water (0) and that of the water covered by the monolayer ():

  0 (1)

The surface pressure measurement is recorded using Wilhelmy plates attached to a

microbalance. The Wilhelmy plate is a strip of a very thin material that can be platinum,

glass, quartz, mica or chromatography paper, which when suspended at an airwater

interface is pulled down into the subphase by the surface tension of water145 (see Figure

2-62).

Figure 2-62 Wilhelmy plate arrangement145

When the molecules of an organic surfactant are deposited on the surface, it results in a

decrease of the surface tension. The opposing forces acting on the plate consist of

gravity and surface tension acting downward, while buoyancy due to the displaced

water acts upward. When a rectangular Wilhelmy plate of dimensions lp, wp, tp and

density p is immersed to a depth hl in a liquid of density l, then the force is given by

the following equation145:
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    llllpppppp hwtgwttwlgF   cos2 (2)

where is the liquid surface tension,  is the contact angle of the liquid on the solid

plate and g is the gravitational constant.

Using equation (2) and estimating that the plate is completely wetted by the liquid (i.e.

cos = 1), the surface pressure can be determined from the following equation145:

    ppp wFwtF 22   if wp >> tp (3)

It is the difference in F measured for a stationary plate between a clean surface and the

same surface with a monolayer present.

An isotherm is the most important indicator of the monolayer properties of an

amphiphilic material. The shape of the isotherm is characteristic for the molecules that

form the thin film and it provides information about the size, orientation, degree of

order and stability of the compressed monolayer at high pressures36,124. In the ideal case,

three characteristic phases can be observed on the isotherm: gas, liquid and solid phase

(see Figure 2-63).

Figure 2-63 The isotherm of stearic acid; (a) solid phase, (b) liquid phase, (c) gas phase123
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In the gas phase, molecules stay highly disordered and the intermolecular distance

between molecules is large and interactions between them are small. Hence, the

monolayer has rather little effect on the water’s surface tension and the surface pressure

is very low (close to zero). As the result of a slow compression, the surface tension

rises. Molecules are forced closer to each other and start forming a more ordered

structure36,124. This effect is observed in the next phase and is called the liquid phase.

Further compression leads the liquid phase into the solid phase. At this stage the

molecules are very closely packed and interact strongly with each other and

consequently the surface tension increases dramatically. The solid phase reflects the

welldefined and ordered monolayer124. The film will eventually reach its collapse point

when further compression is applied to the monolayer beyond the solid phase and this is

characteristic for every Langmuir film. It is defined as the maximum pressure to which

a monolayer can be compressed and still retain its wellordered structure. After this

point the film breaks and the surface pressure drops significantly124,36. However, instead

of evenly covering the available area, molecules will often group to form domains when

spread on the water surface. Therefore, the shape of an isotherm can significantly differ

from the ideal. With an ideal isotherm, the boundaries of the phases are easily

identifiable, but in practice, as presented in the results, these boundaries are not clearly

defined and sometimes there is no observable collapse point.

2.4.1.3 Experimental considerations for Langmuir and LB films formation

The monolayers formed using the LB technique are usually of fairly high quality and

great care must be taken to ensure film consistency36,124,123. The parameters to be

considered involve the:

 Type of the molecules and solvents

 Chemical purity

 Subphase

 Trough

 Environment.

A crucially important factor is having a correct balance between the hydrophilic and

hydrophobic parts of the amphiphile. If the ‘tail group’ is not hydrophobic enough, then
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the whole unit may dissolve in water. On the other hand, if there is no hydrophilic part,

the molecule may form a thick multilayer film on the surface. The molecules need to be

dissolved in an appropriate organic solvent that is highly volatile and insoluble in water,

and also chemically inert in relation to the studied material124,145. Some of the organic

solvents may dissolve in water, and so the amphiphile (instead of generating the

monolayer on the surface) can ‘sink’ or precipitate in the subphase. This is very

common when acetone or isopropanol are used as a solvent122. The subphase that is

most commonly used is water. However, there are reported cases when also mercury

was utilised146. Before use, water is subjected to a purification process (double

distillation) that will eliminate contamination. It is a vitally important factor that can

affect the quality of the monolayer13,124. For the same reason, only the highest purity

chemicals available can be used for solution preparation. The trough and substrates used

for the experiment also need to be carefully cleaned. There are also constraints set for

the material the trough can be made of. The requirements are quite straightforward; the

material must be inert and must not release impurities into the subphase. It should be

able to withstand organic solvents as well as inorganic acids. A cleanroom

environment also needs to be provided. Any contaminants, even very small amounts can

be easily incorporated into a generated monolayer, which can significantly alter the area

per molecule and change the properties of the monolayer formed124,122.

2.4.1.4 LB film deposition

At the appropriate target pressure (during the solid phase) the film is transferred onto a

solid substrate. The substrate is immersed slowly into the subphase and passes through

the Langmuir film using the dipper mechanism. During transfer of the compressed

monolayer onto the substrate, the pressure is kept constant by a moving barrier. It is

very important to choose the correct pressure for the deposition. It cannot be too low as

the monolayer will not be wellpacked, and it cannot be too high as the film can

collapse while transferring onto the solid substrate. There are two methods of deposition

depending on the substrate’s character. If it is hydrophilic, then the dipping direction is

on the upstroke (as shown in Figure 2-64), if it is hydrophobic, then the deposition will be

on the downstroke123,145.
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Figure 2-64 Mechanism of deposition of the Langmuir film onto a solid substrate to form an LB
film147

By utilising the LB technique it is possible to produce highly ordered and aligned

monolayer or multilayer films. Depending on the orientation of the layers with respect

to the substrate, and to each other, the multilayers can be aligned on the solid substrate

in three different ways (an X, Y and Z − alignment)13,124. These are illustrated in Figure

2-65.

Figure 2-65 X,Y and Ztype alignment of multilayer LB films123,124

In the Xtype alignment, all layers are transferred on the downstroke. In the case of Y

type, the first layer is deposited on the upstroke and the second layer is transferred on

the downstroke and this process is then repeated. In this case the layers are deposited so

that they are aligned in a head-to-head and tail-to-tail arrangement. However, the most

popular alignment is the Z type, where each layer is transferred on the

upstroke13,124,123.

Xtype Ytype Ztype
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2.4.2 Self-assembled monolayers

Much research has been focused around the deposition methods known as

selfassembly13,148,149. This method has potential for applications in corrosion, sensors,

biological applications and electronic devices13,148,150. Experiments regarding this

deposition method were first reported in 1946 by Zisman151. However, interest was

renewed in the early 1980’s, and since then the growth in the number of published

papers has been noted152,153,154. Selfassembled monolayers (SAMs) are defined as

stable, wellordered organic molecular assemblies that are formed spontaneously, either

from solution or gas phase. The organic constituents are adsorbed on an appropriate

substrate in an immersion process, which is based on the chemisorption phenomenon.

Adsorption is driven by the formation of a chemical bond between a molecule and the

substrate41,148(see Figure 2-66). The substrate acts as a support for the SAM. Its surface,

depending on the application of the deposited SAM, can vary from planar (glass or

silica covered by very thin metal films of gold, silver, copper, platinum, mercury or

iron) to highly curved monostructures (colloids, nanocrystals and nanorods)40.

Figure 2-66 SAM formation on a substrate155

2.4.2.1 Materials used in SAMs

Using this method, a wide variety of molecules can be incorporated into the structure of

a SAM. These include the deposition of alcohols, fatty acids, organosilicon derivatives

and organosulfur compounds13,148. Similar to molecules used in the LB technique, the

organic assemblies consist of various segments (see Figure 2-67).
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Figure 2-67 Structure of SA molecule

The ‘head group’ determines the affinity to the solid substrate. The strong

molecularsubstrate interactions result in pinning the ‘head groups’ to the surface and

thus the formation of a SAM on the solid substrate can be achieved. These interactions

can be a strong covalent bond formed between SiO in the case of alkyltrichlorosilanes

attached to hydroxylated surfaces; a strong, covalent, but slightly polar chemical bond

between AuS for alkanethiols deposited on gold; or weaker, an ionic CO2
Ag+ bond

for carboxylic acids on AgO/Ag (see Figure 2-68)13,40.
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Figure 2-68 Monolayer formation via different ‘head groups’40,148
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The second segment of the selfassembled molecule is the ‘body’ that can include alkyl

chains and/or aromatic rings. This part of the molecule provides a welldefined

thickness and also acts as a physical barrier156,157. Finally, the ‘functional group’

determines the surface properties. The terminal groups can be chosen with regards to the

application of the monolayer, and can include either CH3, OH, (C=O)OCH3,

(C=O)CH3, (C=O)CF3, (C=O)C6H5, COOH or OSO3H.13,148,152.

The most extensively studied compounds are organosulfur molecules153,157,158.159 such as

alkanethiols, disulfides or sulfides (see Figure 2-69).

HS SS S SS

O N

SS

Figure 2-69 Organosulfur compounds156,158,159

These molecules bind to the surface of metals via the formation of a metalsulfur

bond. Due to thiols having a very high affinity to gold (a strong goldsulfur bond is

easily formed) they are known to generate well-defined and ordered monolayers. The

first results referring to the deposition of organosulfur compounds on gold were

published in 1982 by Taniguchi160. It was observed that pyridine disulfide

spontaneously formed a SAM on gold (see Figure 2-70).

S

S

N

N

Figure 2-70 Structure of pyridine disulfide studied by Taniguchi160

Then in 1983, Nuzzo and Allara161 reported that bifunctional disulfides formed an

oriented monolayer on a gold surface. According to work reported by Bain and
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Whitesides162, the chemisorption of dialkyldisulfides and alkanethiols on clean gold

gave undistinguished monolayers, where Au (I) and thiolate (RS) species were formed.

It was believed that the chemisorption process of dialkyldisulfides could be described as

follows*:

00 2 nn AuAuRSAuSRRS  

As for alkanethiols, the reaction is shown below*:

2
00

2

1
HAuAuRSAuHRS nn  

2.4.2.2 Experimental considerations for SAM preparation

Similar to the LB technique, there are a few very important parameters that influence

the order13, stability and the rate of the deposition153,157 of the SAM163, and these

include:

 Molecular structure,

 Chemical purity,

 Cleanliness of the substrate,

 Concentration of the solution,

 Immersion time,

 Temperature.

The understanding of the relationship between molecular structure and their

organisation on the surface is essential. The packing and orientation of molecules affect

surface chemistry and it is crucial to successfully produce monolayers with the desired

properties. Therefore, several investigations of molecular arrangements of alkanethiol

SAMs and in particular to those on Au (111) surfaces have been studied164. It was

reported165 that the nalkanethiol molecules within the monolayer had a tendency to be

tilted with respect to the surface normal, by typically 30º. Whereas, aromatic

compounds, such as p-biphenylthiols, p-terphenylthiols, and oligo(phenylene ethylene)

* It is an accepted way of presenting chemisorption of dialkyldisulfides and alkanethiols to gold, although
the equations do not balance.
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thiols appear to be bonded to the surface at different angles148. Porter et al.166

discovered that the reduction of the alkyl chain length of nalkylthiols leads to

disordered monolayers with lower packing and coverage.

The other concern is the purity of studied molecules and solvents, and the use of a

clean substrate. The formation of ordered and stable monolayers is essential for the

future development of molecular devices. It is important to minimise the amount of any

contamination, as it can be easily incorporated into the monolayer and consequently

affect the structure and properties148,167,168. The most common solvent used to prepare

the SAM is ethanol. The reason it is used so widely is that it dissolves a variety of

alkanethiols with varying degrees of polar character and chain length. It is also

available with high purity and shows low toxicity13.

The concentration and the duration of immersion play important roles in the adsorption

process and they are inversely related. The lower the concentration of the adsorbate

solution, the longer the immersion time required for the deposition. Additionally,

increasing the individual immersion time reduces the number of multiple immersions

and consequently reduces the overall time required for the process of monolayer

formation153,158.

It was also noted that the SAMs formed at temperatures above 25ºC exhibited higher

order due to the improvement in kinetics. The higher temperature also increased the

rate of desorption for adventitious materials and solvents physisorbed on the

surface13,153. Uosaki et al.101 believed that the temperature effect is particularly

important during the first few minutes of the deposition, when the adsorption and

reorganisation is taking place.

2.4.2.3 SAM deposition

There are several reasons why the selfassembly method became so popular. First of

all, it is easy to prepare and it does not need a ultrahigh vacuum or complicated and

expensive equipment. Moreover, the monolayers can be formed on objects of all shapes

and sizes.
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The deposition procedure to form a SAM is very simple13,41. The molecules are

dissolved in an appropriate solvent, which is usually ethanol with a concentration

normally being in the range of 1−10 mM. The freshly prepared solid is then immersed

into the solution for certain periods of time to allow molecules to attach to the gold via a

chemical bond (see Figure 2-71).

Figure 2-71 Formation of SAMs from solution169

Between each immersion the sample is rinsed with appropriate solvents in a certain

sequence to prevent physisorption of the molecules. The immersion time is individually

matched to each compound studied. The total time of deposition can vary between 100

to 1000 minutes or more, as some molecules attach quicker than others.

Bain et al.153,157 studied the kinetics of alkanethiol monolayer formation on gold. It was

found that there were two adsorption kinetics. For a solution with concentrations of

approximately 103 M, the adsorption process occurred very rapidly during the first few

minutes. During this time 8090 % of the molecules were deposited. The kinetics then

decreased significantly and the process to complete a monolayer can then take several

hours.
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2.5 Methods for monolayer characterisation

2.5.1 Quartz crystal microbalance

The area per molecule was determined using the QCM technique170,171. It is a

wellestablished tool designed for monitoring the adsorption and desorption of small

amounts (ng/cm2) of materials onto surfaces. It is widely used in drug research,

development of gas sensors and thin film formation, and the detection of contamination,

bacteria, etc.172,173,174. Measurements can be taken both, in a vacuum or in a normal

atmosphere. It is a noninvasive technique, and together with the thickness

measurements obtainable from the surface plasmon resonance (SPR) technique, a full

understanding of the makeup of a molecular monolayer can be gained with insight into

packing order, tilt angle, and even surface stability. The QCM consists of an ATcut

piezoelectric quartz crystal wafer. Either side of the quartz crystal are thin gold film

electrodes (see Figure 2-72).

Figure 2-72 Quartz crystal microbalance structure175

The QCM is sensitive to deposition or accumulation of a surface mass and it can be

used to monitor the kinetics of a deposition process in real time176. When the electrodes

are connected to an oscillator and a voltage is applied over the electrodes, the quartz

crystal oscillates at its resonant frequency. Mass adsorbed or desorbed causes a

frequency change that can be detected at any time during the deposition process. The

additional mass adsorbed causes a decrease in the oscillation frequency of the quartz

crystal. Accordingly, a removal of any mass is recorded by an increase in the oscillation

frequency171,173. To convert a frequency shift obtained from the experiment into a value

of the mass adsorbed or desorbed from the quartz crystal, the wellknown Sauerbrey

equation177 was utilised:
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(4)

where F is a change in frequency (Hz), m is the mass deposited (g), F0 is the

fundamental frequency of the QCM (107 Hz), A is the area of the electrode (2.059 x 10-5

m2), q is the density of the quartz (2.648 x 106 gm-3), q is the shear modulus of the

quartz (2.947 x 1013 gm-1 s-2).

Changes in the oscillation frequency can be converted into changes of the disc mass:

  Fm  101001.009.9 (5)

Finally, the area per molecule can be calculated:

AmN

AW
moleculeperArea




2
__ (6)

where W is the molecular weight, and NA is Avogadro’s constant (6.023 x 1023

molecules mol-1).

2.5.2 Surface plasmon resonance theory

Surface plasmon resonance (SPR) phenomenon is a wellestablished and

nondestructive optical method useful for investigating thin organic layers deposited on

a metal surface, usually Au, Ag or Cu178,179,180. Due to the SPR method being sensitive

to molecules on or near the environment of the metal film, it has become widely

exploited as a sensing probe in areas such as gas sensing, biosensing, immuno-sensing

and electrochemical studies181,182. It is capable of detecting small changes in the

thickness and refractive index that cause a measurable change in the plasmon resonance

angle. Therefore, it is often used to monitor the growth of organic monolayers on a

metallic surface.
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SPR is based on the total internal reflection phenomenon. Thus, if we consider light

passing from a ‘denser’ medium (high refractive index) to a ‘less dense’ one (low

refractive index), light will be partly reflected and partly refracted at the interface of

these two different mediums. However, above a certain angle, called the critical angle,

total internal reflection is observed, which means no light is refracted.

Surface plasmons are an excitation of the evanescent electromagnetic wave that travels

along the interface between two mediums of different refractive index. The generated

evanescent electromagnetic wave has the highest intensity at the interface and the

amplitude of the wave decays exponentially with the distance from the interface179.

The SPR instrument setup generally consists of a light source (monochromatic,

ppolarised light), a prism (which represents a medium of high refractive index) and a

thin (approximately 47 nm) metal film coated onto the prism and photodetector. The

monolayer under study is deposited on the metal film on the opposite side of the

prism183 (see Figure 2-73).

Figure 2-73 Kretschmann configuration184,185

Light passes through the prism (high refractive index) onto a metal film (low refractive

index) at different incidence angles. Light is totally reflected from the inner face of the

prism, which is coated with a metal film and the reflected light intensity is measured as

a function of the incident angle (see Figure 2-74).
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Figure 2-74 Spectrum of reflectivity of light as a function of the incidence angle184

At an appropriate incident angle, a deep minimum of reflected light is observed due to

the resonance energy transfer between the evanescent wave and surface plasmons183.

The angle strongly depends on several factors, including the characteristics of the metal

film, the wavelength of incident light source, the thickness and refractive index of the

molecular layer deposited onto the metal film. Consequently, if the surface is modified

by the deposition of a new component then the optical properties, particularly the

refractive index of the ‘new surface’ will change180.

2.5.3 Scanning tunnelling microscopy

Since the vision of ‘nanodevices’ had been highlighted by Feynman, scientists have

worked towards the development of tools that would be capable of investigating

potential devices at the atomic scale. In the early 1980’s Binning, Rohrer and

collaborators16 invented the scanning tunnelling microscope in the IBM laboratory in

Zurich, for which, in 1986 they were awarded a Nobel Prize.

The scanning tunnelling microscope (STM) is a very useful, and a widely applied tool

that can characterise the electrical properties of various materials, and also obtain

images of surface topography at the atomic scale186,187. It allows observations of the

arrangement of molecules, determining the size of compounds and their conformation.

It also allows the roughness and defects of the surface to be investigated67,89,188.
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The principle of the STM is simple and consists of a sharp metallic tip and a conducting

sample, which is electrically biased with respect to the tip. Both the tip and the sample

are working as electrodes between which a tunnelling current flows16. The main concept

of a working STM is that of a tunnelling current phenomenon. It arises only when the

electron orbital of the outermost atoms of the tip and the sample overlap and a voltage

bias is applied between the two. The tunnelling current has a very important

characteristic:

)( dkeUKI  (7)

Where: K, k −constants, d −distance between tip and the surface, U−voltage, I−current.

The tip is an essential part of the microscope, as it can affect the quality of the IV

characteristics and images. According to the Rohrer and Binning design16, the tip of the

microscope is manufactured in such a way that the tip is atomically sharp. A

nonmetallic atom or cluster present on the tip apex can easily distort the measurements.

Some common materials used for the tip are Pt/Ir alloy, tungsten or gold188. These are

used due to their low reactivity and resistance to oxidation. The tip is positioned within

about 1 nm distance above the studied surface to allow the tunnelling current to flow

between it and the sample. The tip is attached to a piezoelectric tube, which changes

shape when a voltage is applied to the circuit16,188 (see Figure 2-75). The arising

tunnelling current depends on the gap between the tip and the sample, as well as on the

electronic structure of the tip.

Figure 2-75 STM apparatus189
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The STM works in two different modes188: constantheight and constantcurrent mode.

In constantheight mode the tip travels horizontally above the sample and as a result the

tunnelling current is varied depending on the topography of the surface. When the STM

is in constantcurrent mode, the tip adjusts the distance between the tip and the sample

to provide a constant value of the tunnelling current at each measured point. The

tunnelling current strongly depends on the precise distance between the tip and

sample16,188, and it changes exponentially with the tip-sample distance. This means that

very small changes in the tip-sample distance induce a large change in the tunnelling

current. Increasing the gap between the sample and the tip by approximately 1 Å can

cause a decrease in the value of the tunnelling current by about one order of magnitude.

It is a powerful technique that permits measurements to be performed in an ultrahigh

vacuum, a mineral oil or in air, and within a wide range of temperatures188.

2.5.4 Secondharmonic generation

The term ‘non-linear optics’ applies to all phenomena in which materials react

nonlinearly to an electric field, which includes secondharmonic generation (SHG),

thirdharmonic generation (THG), sum frequency generation (SFG), and difference

frequency generation (DFG)190,191. For the purpose of this thesis, this section will be

focused only on SHG phenomenon.

When light passes through the dielectric medium it interacts with the electrons of the

matter inducing a polarisation. The polarisation190,191 can be then written as:

EP  0 (8)

where: 0 is the permittivity of free space (constant), χ is the susceptibility190,191 (tensor)

and it is related to the refractive index of the material, n, by:

12  n (9)
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In most cases the polarisation is a linear function of the electric radiation. At high

intensities (as can be produced by lasers) the polarisation becomes a nonlinear function

of the electric field191,192:

      .......33221
0  EEEP  (10)

where: χ(1) − first order susceptibility, χ(2) − second order susceptibility, χ(3) − third order

susceptibility. In theory this series goes to infinity. However, in practice, later

polarisability coefficients become negligible as they fall rapidly at low light intensities.

Therefore, the length of equation (10) depends strongly on the light (ie. laser) intensity.

Equation (10) describes the polarisation of a bulk material. However, when considering

a single molecule, the polarisation191,192 can be written as:

 .....32
0  EEEP  (11)

where: ,  and  correspond to first, second and thirdorder molecular polarisabilities

respectively.  and  are also known as first and secondorder hyperpolarisabilities,

respectively.

One of the non−linear processes is SHG190,191. For SHG, the light of angular frequency,

ω, is passed through a medium that then generates a beam of angular frequency 2ω 

(see Figure 2-76).

Figure 2-76 Secondharmonic generation

2

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The condition necessary for SHG to occur is that the medium is non−centrosymmetric,

because the SHG is cancelled out by a centrosymmetric medium. If it is considered as

only a secondorder term from the equation (5), it gives:

2)2(
0 )()( xExP  (12)

where: x represents the direction of oscillation of the dipole. If the medium is now

inverted and (-x) is considered, then it can be stated that:

)()()( )2(
0

2)2(
0 xExExP   (13)

Therefore:

)()( xPxP  (14)

This is only possible when P(x) = 0, thus there is no SHG for a centrosymmetric

medium.

In organic materials, atoms are connected to each other through  and bonds.

However, electrons forming bonds are loosely bound and hence they can be easily

polarised. As a consequence, molecules containing conjugated bonds with a donor at

one end and an acceptor located at the opposite end can result in large asymmetric

polarisation and high  values when subjected to a high intensity laser beam. High 

values for single molecules do not always mean that a bulk material will show a high

value of macroscopic secondorder susceptibility. The condition necessary to provide a

high value of (2) is that the molecules are arranged in such a way that the molecular

dipoles are aligned in the same direction (so they do not cancel each other out)193. Since

the discovery of the LB technique, a great number of assemblies have been studied for

non-optical applications194,195. In the case of thin films, secondharmonic intensity is

described by the following equation193:
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eff is the effective susceptibility, l is the film thickness, n and n2 are the refractive

indices at fundamental and harmonic wavelengths respectively,  and 2 are the

angles of the propagating waves relative to the normal, lc is the coherence length and

sinc2(1/2 lk)1 for l<<.

Secondharmonic intensity is directly proportional to the square of film thickness193:

2
2 lI  (17)

As the thickness is proportional to the number of monolayers, therefore:

NII N )1(2)(2   (18)
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3 Experimental

3.1 Substrate preparation

Different substrates were used with regards to the type of experiment performed. These

included hydrophobic and hydrophilic glass slides, goldcoated highly oriented

pyrolytic graphite (HOPG).

3.1.1 Hydrophilic glass slides

Hydrophilic glass slides were used as a substrate for UVVIS spectra of films obtained

via the LB technique, and were prepared according to the following steps:

 The slides were initially examined for surface defects and wiped with dust and

surfactant free tissues soaked in chloroform to remove any surface grease.

 The slides were ultrasonicated in a solution of propan-2-ol and then in

ultrapure water, for 10 minutes in each solution, and then rinsed thoroughly in

ultra pure water.

 The slides were immersed in a 50:50 mixture of 30% v/v H202 and concentrated

H2S04. This process is strongly oxidising and exothermic and takes 24 hours to

complete.

 The slides were rinsed thoroughly in ultra pure water and propan-2-ol

 The slides were immersed in 30 % v/v H202 at ca. 5C and prior to use the slides

were rinsed in ultra-pure water and finally dried in a stream of air.

3.1.2 Hydrophobic glass slides

The cleaning procedure of hydrophobic glass slides (BDH) was slightly different and it

involved the following stages:

 The slides were initially examined for surface defects

 The slides were ultrasonicated in a solution of chloroform and then propan-2-ol,

for 20 minutes in each solution.

 The slides’ surfaces were wiped with dust and surfactant free tissues soaked in

acetone to remove any surface grease.
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 The slides were again ultrasonicated in a solution of chloroform, propan-2-ol

and ultra-pure water, for 20 minutes in each solution,

 The slides were immersed in propan-2-ol and prior to use the slides were rinsed

in ultra-pure water and finally dried in a stream of air.

3.1.3 Highly Oriented Pyrolytic Graphite

The Highly Oriented Pyrolytic Graphite (HOPG) was used as a substrate for IV

characterisation of the monolayers studied. The samples were purchased from Aztech

Trading. The advantage of using graphite is that the carbon atoms create a multilayer

structure, which is flat and highly smooth. Due to its layered structure it was easy to

remove the top layer and reuse the HOPG. By attaching a strong adhesive tape to the

flat surface of the HOPG, and then pulling it off to remove only the top layer, leaving a

smooth and clean surface underneath, the HOPG was then ready for gold coating.

3.1.4 Gold coating procedure

Clean hydrophobic glass slides and HOPG were coated with a thin gold film

(approximately 4750 nm thick) for SPR and STM measurements. The coating was

performed using a BOC Edwards 360 automatic coater (see Figure 3-1) and the gold wire

(99.99 %) used as the coating material was purchased from Sigma-Aldrich Chemicals

Ltd. First, the coating chamber was cleaned with isopropanol. Then substrates (slides or

HOPG) and gold wire were placed on a special mask and in a molybdenum boat,

respectively. Then the chamber was closed and the pressure was reduced to a value of

1.9 x10-6 mbar. When the correct pressure was obtained, a current was applied to the

boat to melt the gold wire. Then the deposition process was started and continued until

the thickness of the gold film reached a value of 47 nm.
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Figure 3-1 BOC Edwards 360 automatic coater196

3.2 Langmuir film formation and isotherms

Isotherms were obtained on a LB trough (Nima 621) (see Figure 3-2).

Figure 3-2 LB trough (Nima 621)147

It is a onecompartment rectangular trough made of PTFE that is hydrophobic, inert,

and able to withstand direct contact with the subphase and other solvents used for

monolayer deposition and cleaning. Prior to use, it was cleaned, first with propan2ol

and then with chloroform. The molecules being investigated were dissolved into

chloroform, with a concentration of approximately 0.1 mg/ml, and deposited onto the

ultrapure water subphase surface using a syringe (Haminton). When the desired
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volume was deposited, the trough was left for 5−10 minutes in order to allow the

solvent to evaporate. After this time the surface containing disordered molecules was

compressed at the barrier speed of 0.5 cm2/s to obtain an isotherm from Langmuir films

of studied compounds. All isotherms presented were performed at an ambient

temperature of 2225C.

3.3 LB deposition

The LB films were formed using a twocompartment trough (Nima 622) (see Figure 3-3).

Figure 3-3 Twocompartment LB trough (Nima 622)

A dipper mechanism located in the middle of the two halves allows the transfer of

Langmuir monolayers onto solid substrates. The solid substrate was placed on the

dipper mechanism that rotated with a speed of 5 mm/min. At an appropriate ‘target

pressure’, usually in the solid phase. The Langmuir film was transferred onto the solid

substrate during the upstroke. The ‘target pressure’ was chosen individually and

carefully for each studied compound. When the LB film was deposited, it was subjected

to further investigations that are described in the results section.

3.4 SAM deposition

The deposition of the SAM was performed using a simple immersion process. A

goldcoated solid substrate was immersed into the freshly prepared solution of studied

molecules for certain periods of time. Between each immersion the sample was rinsed
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with solvents methanol, ethanol and acetone to prevent any physisorption. When the

first layer was completed, then deposition of the second layer could begin. Although the

deposition of the second layer was also obtained via an immersion process, the principle

of the deposition process was slightly different. While the first layer was built via

formation of the covalent bond AuS, the formation of the second layer relied on the

interaction between opposite charges. The deposition of the first monolayer formed an

ionic surface, which attracted oppositely charged ions or molecules. The studied

molecules were dissolved in a polar solvent (ethanol or acetone) with a concentration of

0.1 mg/ml then the substrate containing the first layer was immersed in a freshly

prepared solution for a set period of time. Between each immersion, samples were

rinsed with solvents in the correct sequence to remove the physisorbed molecules. The

deposition time altered from 600 to 1000 minutes according to the compound used.

3.5 QCM preparation and measurements

QCM measurements were performed using goldcoated 10 MHz quartz crystals

purchased from the International Crystal Manufacturing Company. Prior to deposition

they were subjected to a cleaning procedure. First they were cleaned using the plasma

cleaner, PlasmaPrep2, Gala Instrumente. Afterwards, each crystal was rinsed thoroughly

with solvents in a suitable sequence: ethanol, ultrapure water, ethanol, methanol,

chloroform, methanol and ethanol, then dried in a stream of cold air. Then, the

frequency of the crystal was measured. The procedure of rinsing with solvents was

repeated several times until the difference in the value of subsequent frequency

measurements prior to deposition of the studied molecules was not higher than 1 Hz.

The crystals were then ready for sample deposition. The deposition was performed on a

circular trough, Nima 2000 (see Figure 3-4), and the conditions for LB deposition are

described in section 3.3.
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Figure 3-4 Circular LB trough, (Nima 2000)

After deposition, the frequency of the crystal coated with the monolayer of the

investigated compound was measured again to determine the difference in the frequency

before and after deposition. This was then converted into the molecular area using the

Sauerbrey equation (4).

The deposition of the SAM required multiple immersions. Following each immersion

the sample was rinsed with solvents and then a measurement of the crystal frequency

drop was recorded. Deposition curves obtained by QCM analysis tend to flatten out

toward the end of deposition, giving a useful indicator as to when the deposition was

complete. All measurements were recorded using the Hewlett Packard 53131A 225

MHz Universal Frequency Counter and Thandar TS3021S power supply (see Figure 3-5).

QC holder

Frequency counter

power unit

Figure 3-5 QCM setup



75

3.6 SPR measurements

The thickness and dielectric permittivities of the LB films investigated were determined

by SPR measurements (using the Kretchman configuration185). The monolayer of

interest was deposited onto goldcoated glass slides. Measurements were performed

using two different laser beams: 532 nm, frequency doubled Nd:YAG laser and 632.8

nm, HeNe laser. The laser beam passed through a ppolariser to remove any vertical

spolarised light. Then, only ppolarised light was passed through a chopper. The laser

beam was then split in half. One half of the chopped laser beam was recorded by a

reference photodetector, and the other half of the laser beam passed through the 60°

BK7 prism to which a goldcoated slide was attached (see Figure 3-6).

Figure 3-6 SPR setup

The slide with the gold film deposited on the opposite side was attached to the prism

using methyl benzoate as an index matching fluid to reduce interference by the interface

between prism and the slide (see Figure 2-73). The prism and slide were placed on a

rotating stage, which during the experiment was rotated by a suitable angle with respect

to the laser beam. The incident angle varied from 3850, this was due to the critical

angle of BK7 glass being approximately 41 and so the SPR angle occurred above this

angle. Both signals from sample and reference photodetectors were ratioed and analysed

using software197. The fitting program uses equations by Fresnel and Maxwell to

Beam
splitter

Chopper

Sample detector

Sample detector

Prism and
sample

LASER

Diaphram

p-polariser
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generate an errorminimised fit of measured curves to theoretical curves predicted by

the equations. It returns likely values for the real and imaginary components of the

refractive indices of all layers (usually two: gold and the sample), along with thickness

measurements.

3.7 STS measurements

I−V characteristics and images of the surface were obtained by using a Digital

Instruments Multimode STM with a Nanoscope (IV) control box (see Figure 3-7).

Figure 3-7 Digital Instruments Multimode STM

The microscope is a very sensitive tool and therefore prior to measurements, it was

placed on a special vibrationisolation table to prevent vibrations that could affect the

measurements. All measurements were obtained by STM with the Pt/Ir tip. The tip

position was set to provide a current of 200−1000 pA at a bias of 50−1000 mV. The

rectification ratio (RR) at the applied voltage V0 was calculated from equation (19):

)_(_

__

0

0

Vatcurrent

Vatcurrent
RR


 (19)
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3.8 SHG measurements

In this project the SHG was measured using a Nd:YAG, p−polarised laser (=1064 nm).

The wavelength of the laser beam was shortened from 1064 nm to 532 nm by the

organic molecules studied. These compounds were deposited onto hydrophilic slides

using the LB technique. The laser beam was reflected onto a mirror and then passed

through a beam splitter to split the beam into a sample and a reference beam. The

sample was positioned at 45 relative to the beam. A quartz slide was used as a

reference in the experiment (see Figure 3-8).

Figure 3-8 SHG setup

During the experiment, an average of 5 readings were taken at different positions on the

slide. The sample was then replaced by a matched quartz slide and 5 readings were

taken again. Photo multiplier tubes were used to monitor the reference and sample

beams and the resulting signals were sent to a computer and analysed. This method

allowed the control of orientation and order of the molecules in the thin film studied and

also reflected the stability of the layer formed.
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3.9 Chemical characterisation techniques

The reagents and solvents used in the experiments were purchased from Aldrich

Chemical Company (Gillingham, UK), Avocado Fine Chemicals (UK), VWR (UK) and

Surechem (UK). These were used as supplied without further purification. Organic

compounds synthesised at Cranfield University were characterised using various

techniques to confirm the structure and purity of the dyes. The techniques used included

differential scanning calorymetry used to determine the melting points and purity of the

dyes. The samples were placed in special crucibles that were heated from 25° C to 400°

C in 10° C increments.

Mass spectroscopy was performed at the University of Wales, Swansea by the EPSRC

National Mass Spectrometry Service Centre.

Hydrogen nuclear magnetic resonance spectra (NMR) were recorded at Hull University

on a 250 MHz instrument.

3.9.1 UVVIS spectroscopy

Ultraviolet-visible spectra of dyes in solution were obtained using a CECIL CE 9000

series spectrophotometer, with spectra being obtained between wavelengths of 250 and

800 nm. It is a double-beam instrument; the light is split into two beams before it

reaches the sample. One beam is used as the reference, while the other beam passes

through the sample. The instrument has two detectors (photodiodes), and the sample and

reference beam are measured at the same time. Liquid samples were placed in quartz

cells with path lengths of 10 mm. The reference cell was filled with pure solvent and the

sample with a dilute solution of the dye. The spectrophotometer measured the intensity

of light passing through a sample (I), and compared it to the intensity of light passing

through the reference cell (Io). The ratio I / Io is called the transmittance, and is usually

expressed as a percentage (%T). The absorbance, A, is based on the transmittance:

)log_(%TA  (20)
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The spectra of films on glass slides were performed using a Perkin Elmer Lambda 7

spectrophotometer.

3.10 Synthesis

3.10.1 1-Hexyl-2,6-dimethyl-pyridinium iodide193

To a solution of 2,6-Dimethyl-pyridine (1.02 g, 9.5 mmol) in methanol (~50 ml), was

added hexyl iodide (2 g, 9.5 mmol). The resultant mixture was stirred at reflux for 5

days. After this time, the mixture was allowed to reach room temperature, and the

solvent was then reduced to approximately 10 ml. About 100 ml diethyl ether was

added to extract the product; a pale yellow precipitate which was filtered and left to dry,

(yield 34 %). The reaction scheme is depicted in Figure 3-9.

N
I

I

CH3OH

reflux N

Figure 3-9 Reaction scheme of 1-Hexyl-2,6-dimethyl-pyridinium iodide

3.10.2 1-hexyl-2,6-bis-[2-(4-dibutylaminophenyl)-
vinyl] pyridinium iodide (dye 8)

To a solution of 1-Hexyl-2,6-dimethyl-pyridinium iodide (0.492 g, 1.55 mmol) in

methanol (~50 ml), was added 4-dibutylamino-benzaldehyde (0.7 g, 3.05 mmol) and

finally piperidine (0.2 ml). The resultant mixture was heated at reflux and stirred for

four weeks. Upon cooling the solvent was evaporated in a vacuum and purified by silica

gel flash chromatography using chloroform and chloroform/methanol mixture (90:10

v/v) as eluent. The reaction scheme is depicted in Figure 3-10
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Figure 3-10 Reaction scheme of 1-hexyl-2,6-bis-[2-(4-dibutylaminophenyl)-vinyl] pyridinium iodide
(dye VI)

The final product was obtained as a dark red solid: 0.105 g, yield (12 %), mpt

1701750C; λmax(CHCl3) = 562 nm; 1HNMR (CDCl3, 250 MHz, J/Hz): 0.069 (s, 15 H,

(CH3) x 5), 0.840.87 (m, 10 H, (CH3CH2) x 5), 0.870.98 (m, 2H,

NCH2CH2), 1.25 (s, 5H, NCH2CH2CH2CH2CH2CH3), 1.331.41 (m, 2H,

NCH2), 1.57 (s, 16H, (N+CH2CH2) x 4), 6.666.80 (m, 2H, (ArH) x 2), 7.07.12

(m, 2H, (ArH) x 2), 7.49 (d, 4H, (trans alkeneH) x 4), 7.517.52 (m, 4H, ArH) x 4),

7.88 (d, 2H, (PyH) x 2), 8.20 (t, 1H, PyH); m/z (ES+):622.5 ([MI]+), 100%,

(ES):126.9 ([I]), 100%.

3.10.3 1-Butyl-2,6-dimethyl-pyridinium iodide69

To a solution of 2,6-dimethylpyridine (1.7 g, 15.9 mmol) in methanol (~30 ml) was

slowly added butyl iodide (3.02 g, 16.4 mmol). The resultant mixture was transparent in

colour and was stirred at reflux for five days. After this time the mixture changed colour

to a pale yellow. Upon cooling the solvent was eliminated using rotary evaporation at

ambient temperature to leave ~10 ml of solvent. At the next stage ~100 ml of diethyl

ether was added to extract the product, a pale yellow precipitate that was filtered and

left to dry (yield 22 %), m.p. 187C. The reaction scheme is depicted in Figure 3-11.
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N
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reflux N

I

Figure 3-11 Reaction scheme of 1-Butyl-2,6-dimethyl-pyridinium iodide69

3.10.4 1-Butyl-2,6-bis-[2-(4-dimethylamino naphthalen)-
vinyl] pyridinium iodide (dye 11)

To a solution of 4-dimethylamino-naphthalene-1-carbaldehyde (0.409 g, 2 mmol) in

methanol (~ 30 ml) was added 1-Butyl-2,6-dimethyl-pyridinium iodide

(0.29 g, 1 mmol) and piperidine (~0.3 ml). This was heated at reflux for three weeks.

After this time the mixture was cooled and solvent was eliminated using rotary

evaporation. The resultant product was extracted and purified by silica gel flash

chromatography using chloroform and chloroform/methanol mixture (90:10 v/v) as

eluent. The reaction scheme is depicted in Figure 3-12.
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N
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N
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Figure 3-12 Reaction scheme of 1-Butyl-2,6-bis-[2-(4-dimethylamino naphthalen)-vinyl] pyridinium
iodide (dye VIII)

The final product was obtained as a pale yellow solid: 0.2398 g, yield (49%), mpt

1830C, λmax(CHCl3)=360 and 490 nm; m/z (ES+):526.5 ([MI]+), 30%, (ES-):126.9

([I]), 100%, no 1HNMR available.
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4 RESULTS AND DISCUSSION

Chemical nomenclature of studied dyes is provided in a list section of the thesis.

4.1 Acceptor Donor structures

4.1.1 Dye 1

The first studied molecule, dye 1 depicted in Figure 4-1 was provided by Professor D.J.

Sandman at the University of Massachusetts, US.

Figure 4-1 Structure of dye 1

The molecule represents an DA structure as proposed by Aviram and Ratner1, with

the dodecyloxyphenyl group acting as an electrondonor and TCNQ as an

electronacceptor. The long aliphatic chain (C12H25), typical for LB filmforming

molecules, allowed the formation of a structure at the airwater interface. Previous

studies of this compound were reported by Sambles, Mattern and Sandman28,59. Despite

the DA structure, the obtained results did not prove the concept set by Aviram and

Ratner1. One of the electrodes (Mg) used is known to oxidise easily, and therefore the

main reason of rectification was associated with the formation of a Schottky barrier31,32.

Additionally, the electrodes used in the experiment had different work functions (3.66

and 5.65 eV)28,59, and therefore it was believed that it might also lead to asymmetrical

IV plots. For these reasons, the molecule was reinvestigated and studies of the

molecule sandwiched between nonoxidisable electrodes were performed.

O
O

NC CN

NC CN

N

O

H
Br

C12H25O



83

The conditions used to obtain isotherms and to generate the LB film were kept as close

as possible to the published method28. The concentration (c) of the solution under study

was c=0.165 mg/ml (see Figure 4-2, black curve). The isotherm yielded an area of

Ao= 0.60 nm2/molecule at zero pressure and Ac= 0.26 nm2/molecule at 45 mN/m, which

corresponded to the collapse point of the monolayer.
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Figure 4-2 Isotherms of dye 1

The shape of the isotherm was similar to the one obtained 15 years ago, however some

differences were observed. A region of slowly increasing pressure was observed

between 17 to 22 mN/m (current data), while the original isotherm28 showed that this

equivalent region had a lesser gradient and occurred within the range of 2127 mN/m.

Moreover, isotherms obtained from solutions of different concentrations of 0.12, 0.165

and 0.35 mg/ml (see Figure 4-2) revealed different shapes in relation to each other and

compared to that obtained by Sandman et al.28. This suggested that the molecules might

have adopted different orientation at the airwater interface, or form aggregates

according to concentration.

The Langmuir film of dye 1 was successfully transferred onto solid substrates, which

was confirmed by its UV−VIS spectra. The UV−VIS spectrum of dye 1 in a solution of

chloroform showed two bands, at 423 nm and at 401 nm (see Figure 4-3 (a)), whereas the
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LB monolayer on a glass slide showed a broad band at a maximum absorbance between

425430 nm (see Figure 4-3 (b)).
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Figure 4-3 UV−VIS spectra of dye 1; (a) in chloroform solution, (b) an LB monolayer on glass slide

The monolayers were deposited on the upstroke at different target pressures (10, 15, 20,

25, 30 and 35 mN/m), and for each deposition pressure, the isotherm (see Figure 4-1,

black curve) showed different values of area per molecule. These values were then

confirmed by QCM measurements (see Table 4-1).

Table 4-1 Area per molecule of dye 1

Deposition pressure

[mN/m]

Area [nm2/molecule]

estimated from the

isotherm*

Area [nm2/molecule]

calculated from QCM

measurements†

35 0.28 0.26

30 0. 29 0.27

25 0.32 0.32

20 0.36 0.39

15 0.43 0.48

10 0.50 0.52

* Diviation (±0.2 nm2/molecule)
† Diviation (±0.1 nm2/molecule)
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The data revealed that the molecular area was found to be dependent on the transfer

pressure used for deposition. As expected the area per molecule decreased with the

increase of deposition pressure. Small areas per molecule were obtained at 35, 30 and

25 mN/m that suggested that the monolayer of dye 1 had formed a bilayer above

20 mN/m.

The main part of the investigation was focused on STS measurements. A series of

samples of dye 1 were prepared and the studies provided interesting, although difficult

to explain results (see Figure 4-4)*. To eliminate the Schottky barrier effect31,33,

nonoxidisable gold and PtIr electrodes with very similar work functions were used.

Moreover, to avoid shortcircuit problems associated with the evaporation of the top

electrode onto a monolayer63, an STM tip was used to contact the sample. The results

showed a variety of IV characteristics, which included asymmetric and symmetric

curves. The asymmetric curves had rectification values from 620 at  1 V with some

showing high current in the positive quadrant and some showing high current in

negative quadrant of the IV plots. It was assumed that the molecules aligned at the

airwater interface with a partly hydrophilic part pointing downwards, and a

hydrophobic part directed upward. It was hoped that this alignment would be

maintained when the Langmuir film was transferred onto a goldcoated substrate.

However, the variety of IV curves observed suggested a discrepancy in the orientation

and alignment of the molecules on the surface, and consequently when it was

transferred onto a goldcoated HOPG.

* The results were reproducible and the showed IV characteristics are representative.
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Figure 4-4 I–V characteristics of Au |dye 1| PtIr; dyeI was deposited at different pressures; (1) 10
mN/m, (2) 13 mN/m, RR=6 (3) 16 mN/m, RR=20 (4) 17 mN/m, RR=8 (5) 19 mN/m,
RR=8 (6) 20 mN/m

As depicted in Figure 4-4 (1), the I–V plot showed hysteresis when the dye was deposited

at a low pressure of 10 mN/m. The hysteresis was also observed in the original
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work28,59. However, there was a difference in shape of the hysteresis observed 15 years

ago and that shown in Figure 4-4 (1). It was very likely that this hysteresis was caused by

a very low deposition pressure and as a consequence led to the formation of an

incomplete monolayer. Increasing the pressure to 13 mN/m gave slightly asymmetric

curves with rectification of approximately 6 at ± 1 V with a higher current being

observed in the positive quadrant of the I–V plot (see Figure 4-4 (2)). This implied that

the preferential electron flow was from the tip through the organic monolayer to the

bottom electrode. This would suggest that the molecules aligned with the acceptor

(hydrophilic) located close to the tip and the donor (hydrophobic) close to the substrate.

However, this is unexpected as the LB deposition on the upstroke implied the opposite

orientation of the molecule. In contrast, the transfer of the monolayer at a higher

deposition pressure of 15 mN/m led to asymmetric I–V curves with a high RR of

20 at ± 1 V. The direction of electron tunnelling at forward bias was from the substrate

to TCNQ acceptor and simultaneously from dodecyloxyphenyl donor to the probe,

followed by electron movement from the acceptor to the donor (see Figure 4-4 (3)). This

was consistent with the direction predicted by the Aviram and Ratner model1.

Unfortunately, STS measurements of other samples, which were deposited at 17 mN/m,

and 19 mN/m showed again that the molecules of the dye were aligned on the solid

surface in a very similar way to that of the sample deposited at 13 mN/m (see Figure

4-4 (4 and 5)). Finally, symmetric I–V characteristics were obtained for a film deposited

at 20 mN/m (see Figure 4-4 (6)), and it suggested that a bilayer had formed.

The variety of IV plots obtained for the Au | dye 1 | PtIr system revealed a relationship

between rectification and the deposition pressure used to form the monolayer. These

results suggested that molecules, at different deposition pressures, adopted different

molecular arrangements on the subphase while being compressed and during transfer

onto the goldcoated HOPG. The behaviour obtained from dye 1 was probably a

consequence of the weak hydrophilic character of TCNQ, and the high flexibility of the

long aliphatic chain and bridge34,63,64. Due to the flexibility of the structure, it was

thought that the molecule might adopt a scorpionlike arrangement, with the acceptor

arching over the donor and SPR results seemed to confirm this concept. The

significantly lower thickness obtained here (1.5  0.2 nm), compared to the value
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published28,59 (2.2 nm) clearly indicated that the long aliphatic chains, were tilted or

bent, instead of pointing upright, and thus the molecules very likely did not form an

ordered monolayers.

4.1.2 Dye 2

Another example of Aviram and Ratner model1 is depicted in Figure 4-5. Dye 2, supplied

by D. Mattern, comprises of the dinitrophenyl group acting as an acceptor, while pyrene

was the donor. It also had a typical LB molecule structure with a long aliphatic chain

(C12H23) that pointed upwards when deposited at the airwater interface. The C12H23

chain required for the LB deposition was chosen for its ability to form densely packed

monolayers62.

Figure 4-5 Structure of dye 2

The same compound, but with a shorter (C6H13) hydrocarbon chain was previously

studied by Sambles et al.62 and the results were published. According to the

publication62, the IV characteristics obtained from the fivelayered film of C6H13

analogue showed rectification in excess of 100. However, higher current was observed

to flow in the opposite direction to that suggested by the Aviram and Ratner model1.

Due to the oxidisable electrodes used in the experiment, the high rectification observed

was associated with the Schottky barrier33 created at the interface: DA | Mg, Al,

rather than the molecular structure itself.

Prior to the investigation of electrical properties of dye 2, an isotherm was produced in

order to provide data about the alignment of the molecules at the airwater interface

(see Figure 4-6). The isotherm of dye II did not show a distinct collapse point. The
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chosen pressure for deposition was estimated to be 26 mN/m and based on the isotherm,

the area obtained at this deposition pressure was 0.47 nm2/molecule. A lower area of

0.28  0.1 nm2/molecule was found by applying the Sauerbrey equation to the

frequency data when dye 2 was deposited at 26 mN/m onto 10 MHz quartz crystals.

This difference could be associated with the different arrangement of the molecules at

the airwater interface and on the quartz crystals.
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Figure 4-6 Isotherm of dye 2

The UVVIS spectrum from chloroform solution revealed absorbance maxima at 270,

315, 346 and 390 nm (see Figure 4-7). Attempts to obtain the spectrum of dye 2 on a

glass slide failed, as the spectrum did not reveal any absorbance peaks. It was most

likely caused by the poor molecular attachment to the glass slide and therefore

absorbance peaks could not be distinguished from the spectrum.
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Figure 4-7 Spectrum of dye 2 in chloroform solution

Analysis of IV characteristics of dye 2 provided interesting information regarding the

alignment, stability and electron transport through the monolayer of dye 2 deposited

between nonoxidisable electrodes. STS studies showed two types of curve, with one

being almost symmetrical with a low RR of 1.5 at ± 1 V, and the other being

asymmetrical with the higher current in the negative quadrant of the plot and RR up to 6

at ± 1 V (see Figure 4-8).
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Figure 4-8 Representative I–V characteristics of Au | dye 2 | PtIr; (1) RR=1.5 at ± 1 V, (2) RR=6
at ± 1 V
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Although, it is known that the LB molecules form usually denselypacked films, they

are attached to the substrate via weak van der Waals bonds39,123,124. Therefore, when a

voltage bias was applied to the system, it could lead to the reorientation of the

molecules within the monolayer52,54,63 and thus the two types of curves could be

observed. The differences of the IV characteristics could also be a consequence of

defects at the gold surface167,168, which are believed to strongly determine the

arrangement of the molecules.

The experiment was performed to test the concept proposed by Aviram and Ratner1.

Due to the fact that the LB film was deposited on the upstroke, it was assumed that the

hydrophilic part (acceptor) would have been located closer to the bottom electrode,

while the donor (pyrene with long chain) will be closer to the tip. The higher current

observed in the negative quadrant indicated that electrons were travelling from the

bottom electrode through the acceptor and donor to the top electrode, and this agreed

with the Aviram and Ratner concept1 of the molecular rectifier. Some researchers75

suggested, that using electrodes with different work functions could lead to an

asymmetry of the IV plots. However, due to the low difference in the work function

values of Au (5.5 eV)28 and PtIr (5.2 eV)75, it was assumed to have no influence on

rectification. The presence of the long aliphatic chain (C12H23) also indicated that the

system had a geometrical asymmetry because the active part of the dye was closer to the

gold electrode than to the tip, which according to Krzeminski83 and Kornilovitch84 this

is the main factor causing rectification. Therefore, although the Au | dye 2 | PtIr system

shows asymmetric IV characteristics, it was still difficult to unequivocally determine

the cause of the rectification.

4.2 Acceptor bridgedonor structures

4.2.1 Dye 3

In order to provide more information regarding alignment and the mechanism of

electron transport through the metal | Delectron bridgeA | metal system, a subsequent

molecule with a strong acceptor (bipyridinium) and a dialkylamino donor group was

subjected to investigation. The structure of the compound supplied by Danika Locatelli
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from Milan University, Italy is depicted in Figure 4-9. The molecule did not represent the

typical Aviram and Ratner structure1. In this case, instead of a  bridge, a twisted

 bridge was used to provide a nonplanar structure, and thus effectively separate the

molecular orbitals of the acceptor from the donor subunit.

Figure 4-9 Structure of dye 3

The isotherms obtained revealed unusual behaviour of the molecules at the airwater

interface (see Figure 4-10). It has been noted that there was a discrepancy in the position

of the isotherms produced from the same solution in relation to each other.
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The isotherms showed a phase transition in the range of 3843 mN/m, and the measured

area at the transfer pressure of 33 mN/m was At = 0.290.39 nm2/molecule. QCM

measurements were performed to verify the values of the molecular area obtained from

the isotherms, which yielded a value of 0.53  0.15 nm2. A variety of values obtained

from the isotherms and QCM measurements could imply that the molecules might have

adopted different alignments for each deposition onto the aqueous subphase and during

the transfer onto a solid substrate. As the monolayer was prepared from an aqueous

subphase, ionic exchanges92, as well as a solvent trapping process198 in the formed

monolayer may have occurred to impair close packing within the film.

To obtain a better understanding of the molecular arrangement on the surface, SPR

measurements were carried out to determine the thickness of the monolayer. The

measurements provided a thickness of 1.9  0.2 nm, which suggested that the long tail

was tilted, or bent in relation to the gold surface.

UVVIS spectra from chloroform solution and the LB film on a glass slide were

recorded to reveal absorbance maxima (see Figure 4-11).

(a) (b)

Figure 4-11 UV-VIS spectra of dye 3; (a) in chloroform solution, (b) LB film on a glass slide

The compound showed maximum absorbance at 310, 450 and 630 nm when dissolved

in chloroform solution and 420 and 540 nm when deposited as the LB film on a glass
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slide. There was a large shift in the position of maximum absorbance from 630 nm to

540 nm. According to previous studies199,200 this shift was caused by the alignment of

dipoles in the same direction.

To investigate the electrical properties of this material, several samples were prepared

for STS analysis. Monolayers were deposited on goldcoated HOPG and contacted via

a PtIr tip. The measurements yielded rectifying plots from the film with rectification

from 3.4 to 16 at  1 V (see Figure 4-12).
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Figure 4-12 Representative I–V characteristics of Au | dye 3 | PtIr; (1) RR=3.4 at ± 1 V, (2) RR=16
at ± 1 V

The higher current was observed in the negative quadrant of the IV plot, which

implied that the preferential direction for electron flow was from the bottom electrode to

the tip of the microscope. Additionally, the IV curve depicted in Figure 4-12, showed

high current value of 15 nA. Due to the structure of the molecule, a hydrophilic acceptor

and a hydrophobic donor, it was assumed that molecules at the airwater interface

would align with the acceptor immersed in the subphase, and the long aliphatic chains

pointing upright. The same arrangement was believed to be maintained when the

Langmuir film was transferred onto a solid substrate. A discrepancy in RR values could

be the effect of the electrical field applied to the system, which by interaction with the

molecular dipoles could lead to the movement of the molecules under the tip52,63.

Although, the results were consistent with the Aviram and Ratner concept1, the
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geometrical asymmetry resulting from the presence of the hydrocarbon tails in the

structure added ambiguity to the origin of rectification.

4.2.2 Hybrid structure 1: Au-S-CH2CH2CH2-SO3
− / dye 4

In order to investigate the influence of the aliphatic chain on rectification, the same

chromophore but with short (C4H9) chains was studied. The attempts to deposit this

compound as an LB film were unsuccessful. Due to the high affinity of the acceptor to

water, and the low hydrophobic character of the donors, the molecules ‘sank’ into the

water subphase and thus they were not able to form a Langmuir film at the airwater

interface. Consequently, an alternative deposition technique was used to form a

monolayer of dye 4 and it was achieved by the creation of an ionically assembled

structure (see Figure 4-13).

Figure 4-13 Hybrid structure 1

The structure was formed in two steps. The bottom monolayer was formed by the

deposition of sodium 3-mercapto-1-propanesulfonate, shown in Figure 4-14, onto a

goldcoated substrate. Thiols are known to produce wellpacked and stable layers, due

to the van der Waals interaction between the alkyl chains13,166. The thiol used possessed

a sulfonate group, which was utilised to generate an anionic surface.
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Figure 4-14 Structure of sodium 3-mercapto-1-propanesulfonate on the gold surface

The thiol was dissolved in methanol with the resultant solution possessing a

concentration of 0.65 mg/ml. The deposition process took a total of approximately four

hours. Every thirty minutes the sample was rinsed with methanol, ethanol, and acetone

to remove physisorbed material. The whole process was controlled by monitoring the

frequency change during deposition onto the quartz crystal. The final mean area

of approximately 0.3nm2 /molecule for AuS(CH2)3SO3
 Na+ was obtained, and this

value implied a closely packed arrangement, as the crosssectional area of the molecule

approximates to the area per molecule obtained from QCM (see Figure 4-15).
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Figure 4-15 Thiol deposition onto QCM

SPR studies were performed and provided a thickness of 0.6 ± 0.05 nm for a monolayer

of thiol, which also confirmed a wellpacked structure, as this approximates to the

length of the molecule. Then the substrate with the thiol monolayer was immersed into

the solution of dye 4 (dissolved in ethanol to obtain a concentration of 0.1 mg/ml) in

order to allow the monolayer to be formed via ionic assembly. It was assumed that

SO3S NaAu
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during the deposition of the second layer, Na+ ions were replaced by the cationic dye at

the surface. It was also assumed that Br ions would remain in the aqueous subphase.

The total deposition time was found to be 600 minutes and the area per molecule was

calculated to be approximately 0.4 nm2 (see Figure 4-16).

Figure 4-16 QCM of dye 4 deposited by immersion in ethanol solution onto the thiol surface

To investigate the electrical properties, the bilayer structure was sandwiched between

two electrodes: gold and PtIr tip. The STS measurements revealed three different types

of IV plots (see Figure 4-17). Approximately 30 % of the curves were symmetrical

while the remaining 70 % showed asymmetry, with one half of these having a higher

current observed in the negative quadrant of the IV plots and RR up to 11 at  1 V and

the other half having a higher current observed in the positive quadrant of the IV plots

with RR up to 4.5 at  1 V. These results were attributed to the disordered monolayer

formation. It was also very likely that some amount of Na+ and Br ions were trapped in

the film during the deposition process, and therefore could take part in the electron

transport through the junction. Due to the variety of the IV characteristics observed for

this structure, the ambiguity associated with the long aliphatic chain and its contribution

to rectification still remained.
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Figure 4-17 Representative I–V characteristics of hybrid structure 1: Au-S-CH2CH2CH2-SO3
− / dye

4, (dye 4 was deposited as SA); (1) RR=11 at  1 V, (2) RR=1 at  1 V, (3) RR=4.5 at 
1 V

4.3 Donor Acceptor Donor structures

4.3.1 Dye 5 and dye 6

In order to further investigate the rectification origin for dyes 3 and 4, another two

compounds supplied by Danika Locatelli from Milan University, Italy were studied (see

Figure 4-18). These compounds, like the previous two had the same acceptor and donor

with the difference of having two donor groups instead of one, and therefore formed

donor acceptor donor (DAD) structures, later referred to as

chevronshaped molecules. These molecules represented a novel and unconventional
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class of compounds for molecular rectification. The angle between the two

chargetransfer axes of the chevronshaped molecules is ca. 120. The twisted

bridge enforced the nonplanar structure and provided effective separation between

the acceptor and donors.

Figure 4-18 Structure of Donor Acceptor Donor structure, dye 5 (n=16, m=1), dye 6 (n=4,
m=4)

Reproducible isotherms obtained for dye 5 showed a distinct collapse point at the

surface pressure of 45 mN/m and the measured areas were: Ao= 1.35 nm2/molecule at a

pressure of 0 mN/m, Ac= 0.62 nm2/molecule at 45 mN/m (collapse point), and

At= 0.78 nm2/molecule at the transfer pressure of 33 mN/m. Comparing the isotherms

obtained for dye 3, it seems that the presence of the ‘second’ donor in the structure

increased the order within the monolayer at the air−water interface (see Figure 4-19).

Figure 4-19 Isotherm of dye 5
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UVVIS spectra of the chloroform solution and the LB film (on a glass slide) were

carried out to show the shift of the maxima absorbance associated with the alignment of

the molecules in the same direction199,200. The spectrum in chloroform solution showed

two maxima: 610620 nm and 460 nm. As expected, the spectrum of the LB film on a

glass slide also showed two maxima: 600 and 440 nm (see Figure 4-20).
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Figure 4-20 UV-VIS spectra of dye 5; (a) in chloroform solution, (b) LB film on glass slide

QCM analysis indicated deposition to a molecular crosssection of 0.67  0.02 nm2.

SPR provided the monolayer film thickness of 2.2  0.2 nm. The calculations assumed

that the Br counterions were retained in the deposited film, and the data confirmed the

formation of a compact structure. The discrepancy between the area obtained by QCM

(0.67 nm2/molecule) and from the isotherm (0.78 nm2/molecule) might suggest that

during the monolayer transfer onto a solid substrate, part of Br counterions remained in

the subphase.

Due to the presence of the additional donor group, it was believed that the order of the

monolayer would improve, and thus also enhance the rectification. However, the IV

characteristics resulted in the same range of RR of 3.515 at  1 V, as for dye 3, which

had only one donor group (see Figure 4-21).
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Figure 4-21 I–V characteristics of dye 5; (1) RR=3.5 at ± 1 V, (2) RR=15 at ± 1 V

As expected, a higher current was observed in the negative quadrant of the IV plot,

which implied that the preferred movement of electrons was from the gold surface

through the monolayer to the tip. This agreed with the theory proposed by Aviram and

Ratner1. The variation in the observed RR values across the sample was probably due to

some disorder within the monolayer. This could be caused by poor adhesion of the

monolayer to the substrate or it could also be a result of defects caused by an uneven

substrate surface39,167,168.

4.3.2 Hybrid 2: Au-S-CH2CH2CH2-SO3
− /dye 6

Dye 4, similar to dye 6, was deposited onto an anionic surface via an immersion process

(see Figure 4-22). Formation of the thiol monolayer is described in section 4.2.2. A

monolayer of dye 6 was successfully formed using a sequence of twentyminute

immersions into a 0.1 mg/ml solution in ethanol. The growth of the monolayer was

monitored via frequency changes, and the deposition was obtained after approximately

660 minutes.
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Figure 4-22 Hybrid structure 2

The thickness of the monolayer was found to be 1.13  0.1 nm. QCM studies of the

complete monolayer revealed an area per molecule of 1.14  0.1 nm2, which

surprisingly was much higher to that observed for dye 5 (with long aliphatic chains) (see

Figure 4-23). Such a difference could have only been attributed to a greater amount of

Br− ions being trapped within the monolayer of dye 6, compared to the monolayer of

dye 5.

Figure 4-23 QCM of dye 6 deposited by immersion in ethanol solution onto Au-S-CH2CH2CH2-SO3
−
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Rectification obtained from STS studies ranged from 6.5 to 21 at  1 V. As expected,

the higher current was observed in the negative quadrant of the IV characteristics (see

Figure 2-24). The discrepancy in RR observed for this structure was associated with the

presence of regions in the bilayer structure where molecules were more ordered than in

other areas of the sample.
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Figure 4-24 Representative I–V characteristics of hybrid 2: Au-S-CH2CH2CH2-SO3
− /dye 6, (dye 6

was deposited as SAM); (1) RR=6.5 at  1 V, (2) RR=21 at  1 V

Because dye 6 with short hydrocarbon chains exhibited slightly higher rectification than

dye 5, with long chains, these studies seemed to confirm that the asymmetrical position

of the active chromophore between electrodes created by long aliphatic chains have an

insignificant effect on the rectification compared to the DA structure. However, to

provide more evidence to support this statement, further studies of molecules with short

or no aliphatic chains were performed.

4.3.3 Dye 7

Dye 7 depicted in Figure 4-25 is the most extensively studied chevronshaped molecule

to date69,92,93,143. It forms a noncentrosymmetric alignment and some preliminary

results have been published69,92.
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Figure 4-25 Structure of dye 7

The molecule consists of a pyridinium ring acceptor, which is located in the centre of

two dibutylamino donor groups forming the ‘limbs’ of the compound. The long

aliphatic chains, usually required for LB deposition were replaced with shorter (C4H9)

analogues. This was to improve the conductivity and decrease the geometrical

asymmetry into the Metal | DAD | Metal system.

The isotherm confirmed that although the molecules have no significant chain, they

spontaneously aligned when deposited from chloroform solution (see Figure 4-26). The

shapes of the recorded isotherms were slightly different to that shown in the

publication69,92. The original data69,92 showed a collapse point at 29 mN/m, while the

isotherm shown in Figure 4-26 did not exhibit a distinct collapse point and it was

assumed that the phase transition of the film occured above 25 mN/m. These observed

differences were most likely caused by a slightly different alignment adopted by the

molecules at the airwater interface. In order to eliminate ambiguity resulting from the

difference between the isotherms to that shown in the publication, the isotherm was

repeated several times before the monolayer was deposited onto a solid substrate.
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Figure 4-26 Isotherm of dye 7

The UV−VIS spectrum of dye 7 in chloroform solution showed a maximum absorbance

at a wavelength of 490 nm (see Figure 4-27). The Langmuir film of dye 7 was

successfully transferred onto a solid substrate at 20 mN/m and the LB film showed the

maximum absorbance had shifted by 10 nm in the shorter wavelength direction.
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Figure 4-27 UV−VIS spectrum of dye 7, (a) in chloroform solution, (b) on glass slide
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The monolayer of dye 7 was deposited on a goldcoated substrate in order to estimate

the molecular area and thickness, which were found to be 0.90 ± 0.05 nm2/molecule and

1.1 ± 0.1 nm, respectively. It should also be mentioned that the calculations assumed a

presence of the iodide counterions in the deposited film. Previous studies showed that

the iodide ions were partly replaced by OH, and because values of molecular area and

thickness obtained for dye 7 were very similar to that published

(0.95 ± 0.05 nm2/molecule and 1.16 ± 0.1 nm)69,92, it was also assumed that the partial

ion exchange happened in this case.

It was expected that the hydrophilic part (acceptor) would be located closer to the

bottom electrode when the LB film was transferred onto a solid substrate on the

upstroke. However, because of the unique nature of the molecule, there was a risk that

the alignment and the packing would not follow a conventional arrangement.

Asymmetric curves obtained for the Au | dye 7 | PtIr junction provided a promising

result, as the calculated RR was 30 ± 3 at 1 V (see Figure 4-28). The higher current was

observed in the positive quadrant of the IV plot, which indicated the electron flow was

from the tip through the acceptor and donor of the organic monolayer to the bottom

electrode. If the electron transport through the organic monolayer was ruled by the

Aviram and Ratner theory1, electrons should travel from the tip to the LUMO of the

acceptor (pyridinium ring) and at the same time, electrons should travel from the

HOMO of the donor (dibutylamino group) to the gold electrode. This process would

lead to the exited state of dye 7. Then, the electron should pass from the acceptor to the

donor subunit and lead to the restoration of the molecule. However, the model proposed

in 1974 really applies to bridged compounds1, and thus the mechanism of the

electron flow could be different in DAD structures.
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Figure 4-28 Representative I−V characteristic of Au | dye 7 | PtIr

Previous studies69 reported asymmetric IV characteristics with an average RR of 8.4 at

 1.5 V. Unfortunately, repeated measurements led to loss of the asymmetry, which had

likely resulted from rearrangement of the molecules upon application of an electric

field. Ashwell and Metzger69 claimed that rectification was a result of back electron

transfer from the iodide to the pyridinium. Because QCM measurements suggested

presence of iodide ions in the monolayer of dye 7, it was also possible that they could

significantly contribute to the rectification observed.

The results shown in this case highlighted the difficulties to unequivocally identify the

molecular alignment of dye 7 on the goldcoated substrate, and consequently determine

the real mechanism of the electron transport through the monolayer. The difficulty lies

in whether it was the electron transport from the acceptor (pyridinium ring) to the donor

(dibutylamino group), following the Aviram and Ratner model1; or charge transfer that

occurred from the iodide ions to the acceptor (pyridinium ring), as was suggested by

Ashwell and Metzger69.

4.3.4 Dye 8

To further investigate the alignment and rectifying behaviour of chevronshaped

compounds with short aliphatic chains, dye 8 was studied (see Figure 4-29). It was very

similar to that of dye 7, as it had the same acceptor located in the middle of the
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molecule, and the same donor groups. The only difference between this molecule and

dye 7 was the length of the chain attached to the pyridinium ring.

Figure 4-29 Structure of dye 8

To produce an isotherm, the material was dissolved in chloroform and the resultant

solution of concentration 0.067 mg/ml was deposited at the airwater interface and

compressed at a rate of 5 mm/min to produce a Langmuir film. The shapes of the

isotherms depicted in Figure 4-30 and that of dye 7 are very similar, therefore it was

assumed that the molecules were organised at the airwater interface in the same way.

The isotherm yielded a phase transition of the film at 35 mN/m and an area of

At= 0.67 nm2/molecule at the transfer pressure of 24 mN/m (see Figure 4-30).
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Figure 4-30 Isotherm of dye 8
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The UV−VIS spectrum of dye 8 in chloroform solution revealed that the maximum

absorbance occurred at a wavelength of 562 nm (see Figure 4-31).

Figure 4-31 UV-VIS spectrum of dye 8 in chloroform solution

The Langmuir film was then successfully transferred onto a solid substrate on the

upstroke with a surface pressure of 24 mN/m, and subsequent QCM studies showed a

molecular area of 0.81 ± 0.03 nm2/molecule for dye 8. This was a slightly lower value

compared to the molecular area calculated for dye 7. It could suggest that some iodide

ions remained in the subphase during the monolayer transfer onto a solid substrate, or

they were replaced with OH and/or HCO3
 at the airwater interface92. However, the

latter has not been confirmed by experiment.

The main emphasis was concentrated on the STS studies to reveal electrical properties

of a monolayer of dye 8 and to show whether the chain attached to the acceptor could

influence the alignment and consequently rectification. For this purpose several

different samples were prepared and measurements were taken in several places across

each sample in order to obtain a complete picture of the monolayer properties. STS

measurements revealed symmetric I–V plots (see Figure 4-32), whereas dye 7 did show

rectifying properties with a high RR of 30 ± 3 at ± 1 V. It was unexpected to observe

completely different results from almost the same structures. Symmetric I–V plots

suggested that the molecules of dye 8 very likely formed a disordered monolayer on the

goldcoated substrate. This could have been the result of the rearrangement of
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molecules, and in particular to highly mobile iodide ions. This could happen during the

deposition process, or when an electric field was applied to the junction. Taking into

account that the only difference between these two structures is the length of the

hydrocarbon chain attached to the nitrogen of the acceptor, it was believed that it

significantly influenced the alignment of dye 8 within the LB monolayer and

consequently the rectification properties.
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Figure 4-32 Representative I–V characteristic of Au | dye 8 | PtIr

4.3.5 Hybrid 3: Au-S-CH2CH2CH2-SO3
− / dye 7

If rectification is to be assigned unambiguously to the D−−A−−D structure, an

alternative method of deposition was used in order to identify the actual alignment of

the molecule between the electrodes. It was believed that the formation of the hybrid

structure 3: Au-S-CH2CH2CH2-SO3
−/dye 7 (see Figure 4-33) would confirm whether it

was possible to force molecules to align in a defined way to produce rectification.
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Figure 4-33 Structure of hybrid 3: Au-S-CH2CH2CH2-SO3
− / dye 7

The procedure for the hybrid formation was the same as the other examples in this

thesis. A thiol monolayer was deposited onto a goldcoated substrate in order to obtain

an anionic surface. A monolayer of dye 7 was successfully deposited onto an anionic

surface using a sequence of onehour immersions into a 0.1 mg/ml solution in ethanol.

A complete monolayer was obtained after 1260 minutes and an area of

0.86 ± 0.1 nm2/molecule was determined from a Sauerbrey analysis of the frequency

change177 (see Figure 4-34). The value obtained was slightly lower compared to the

molecular area observed when dye 7 was deposited onto QCM alone

(0.95 ± 0.1 nm2/molecule), and it suggested that some of iodide ions were removed

from the monolayer during rinsing.
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Figure 4-34 QCM of dye 7 deposited by immersion in solution onto Au-S-CH2CH2CH2-SO3
−

surface

The subsequent measurements taken by STS gave satisfactory results. The obtained

rectification varied from 5 to 23 at ± 1 V when dye 7 was deposited onto the thiol via

SA (see Figure 4-35). The higher current was observed in the negative quadrant of the

IV plots (electron flow from the bottom electrode to the tip). This was consistent with

the Aviram and Ratner model1, as the molecules of dye 7 were deposited on the anionic

surface in such a way that the acceptor was located close to the thiol chain and the

donor groups were pointing upwards.
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Figure 4-35 Representative I–V characteristics of hybrid structure 3: Au-S-CH2CH2CH2-SO3
−

/ dye 7, (dye 7 was deposited as a SAM); (1) RR~5 at ±1V, (2) RR~23 at ±1V
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Although the observed rectification was not as high as that achieved when dye 7 was

deposited on gold by LB (RR=30 ± 3 at ± 1 V), the results were still very interesting.

They clearly showed that rectification was associated with the DAD structure,

as the IV characteristics of the thiol monolayer sandwiched between electrodes

showed no rectification (see Figure 4-36).
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Figure 4-36 Representative I–V characteristic of a thiol monolayer

Additionally, they demonstrated that it was possible to deposit molecules in an

identifiable way, and therefore allowed better control over the alignment. They also

revealed an alternative deposition method for this group of compounds. The variation in

the value of RR observed across the sample indicated anisotropy of the structure. It

could be a result of defects caused by an uneven substrate surface167,168, which could

affect the alignment and as a consequence the electrical properties of the structure

investigated.

Very surprising results were produced when dye 7 was deposited via the LB technique

on the anionic surface. All I–V characteristics were symmetric (see Figure 4-37).
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Figure 4-37 Representative I–V characteristics of hybrid structure 3: Au-S-CH2CH2CH2-SO3
− / dye

7, (dye 7 was deposited as an LB film)

It would appear that when dye 7 was deposited via the traditional LB technique122,123 on

a goldcoated substrate, the molecules preferred to align with the donors closer to the

bottom electrode and thus a high RR of 30 ± 3 at ± 1 V was observed. However, when

the same monolayer was aligned on the anionic surface, the interaction between the

negatively charged thiol and positively charged chevron was forcing the

chevronshaped molecules to flip over and thus caused disorder within the monolayer,

resulting in symmetric I–V characteristics. Additionally, QCM measurements, which

provided a higher area of 1.04 ± 0.02 nm2/molecule for dye 7 deposited on the anionic

surface using the LB technique compared to that observed for dye 7 deposited onto

QCM alone (0.95 ± 0.1 nm2/molecule) might suggest that Na+ and I− were trapped

within a monolayer and therefore could also affect the alignment and the STS

measurements.

4.3.6 Dye 9

The next structure, which was successfully deposited using the LB technique is dye 9

(see Figure 4-38), synthesised at Cranfield University42.
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Figure 4-38 Structure of dye 9

According to the information obtained from the isotherm (see Figure 4-39), a film

collapse occurred at 30 mN/m and the measured areas were: Ao= 1.2 nm2/molecule at

zero pressure, Ac= 0.5 nm2/molecule at 30 mN/m and At = 0.75 nm2/molecule at the

transfer pressure of 23 mN/m. The value of the molecular area obtained was verified

using the QCM technique, which provided a slightly higher area of

0.88 ± 0.10 nm2/molecule for the monolayer deposited at 23 mN/m. Similar to other

dyes studied, the analysis assumed that the iodide counterions remained in the structure.

However, QCM data suggested that the iodide ions might have been partly involved in

ion exchange with OH and/or HCO3
 at the airwater interface92. The molecular

masses of ions OH and HCO3
, which occur naturally in the subphase, are significantly

lower than that of iodide, and thus a difference between the area obtained by QCM

(0.88 nm2/molecule) and by isotherm (0.75 nm2/molecule) was observed. Alternatively,

the larger area may reflect either incomplete surface coverage, or irregular arrangement

of chevron molecules upon deposition.
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Figure 4-39 Isotherm of dye 9

The UV−VIS spectrum possessed two bands of absorbance, one at a wavelength 380

nm, and another more intensive at 480 nm (see Figure 4-40).

Figure 4-40 UV-VIS spectrum of dye 9 in chloroform solution

SPR measurements provided a thickness of 1.95 ± 0.05 nm for an LB film monolayer of

dye 9. This would seem to be a reasonable value, as the thickness of the monolayer of

dye 7 (containing three benzene rings in the structure) was found to be 0.9 nm2.
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To study the electrical properties of the monolayer, dye 9 was deposited on a

goldcoated substrate and contacted via a PtIr tip. The STS investigations revealed very

interesting results. It was noticeable that dye 9, when deposited on the gold surface,

seemed to be unstable after a certain period of time (approximately 3 hours).

Immediately after deposition, the compound exhibited rectification with a ratio of

16 ± 3 at ± 1 V (see Figure 4-41).

Figure 4-41 Represenative I−V characteristic of Au | dye 9 | PtIr (after deposition)

Because the monolayer was transferred on the upstroke, it was assumed that the

acceptor of the molecule was attached to the gold surface, while donors were located

closer to the tip. It was believed that donor groups with short butyl chains attached

represented the hydrophobic part of dye 9, and thus they should point upright when

deposited at the airwater interface. The higher current was seen in the negative

quadrant of the I−V plot and it corresponded to electron movement from the substrate,

through the acceptor, and then the donor of the monolayer to the tip. This agreed with

the Aviram Ratner theory1. However, a few hours later when the measurements were

repeated, the STS study showed that the RR had decreased and the I−V curves had

become more symmetric (RR = 2 at  1 V) (see Figure 4-42).
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Figure 4-42 Representative I-V characteristic of Au | dye 9 | PtIr ( 3 hours after deposition)

These results demonstrated the importance of stability and structural order of the LB

film in order to generate rectification. The decrease of rectification in the

Au | dye 9 | PtIr system suggested that the electric field probably interacted with the

molecular dipoles61 causing movement of the cationic dye and anion within the

monolayer. Due to these molecules not being strongly attached to the gold surface39,63,

they may have a tendency to flip over. Thus, the initial well−ordered monolayer of

dye 9 became more and more disordered over a period of time, and as a result the

observed rectification decreased.

Additionally, the SHG studies confirmed that dye 9 initially exhibited a

noncentrosymmetric alignment. After a few hours, the SHG dropped to zero, which

could be explained by a change in orientation of the molecules within the monolayer

(see Figure 4-43), and resulted in a disordered alignment.

-1.0 -0.5 0.5 1.0

-0.08

-0.04

0.04

0.08

I/nA

V/V



119

0 100 200 300 400
0.0

1.0x10
-4

2.0x10
-4

3.0x10
-4

4.0x10
-4

I2

/a

.u
.

Time/min

Figure 4-43 Time dependence of the suppression of the second-harmonic intensity of four
LB films following deposition on glass substrates. The different initial
intensities are consistent with the film structure being inherently unstable

The changes in the alignment of the monolayer of dye 9 were also observed in UVVIS

spectra measurements on glass slides. The monolayer showed maximum absorbance at

approximately 480 nm, which is in very close vicinity with SHG signal (532 nm).

Therefore, it was possible that the monolayer of dye 9 could absorb the signal, and this

could consequently lead to molecular rearrangement within a monolayer. As a result,

the absorption maximum at 500 nm disappeared after a few hours following deposition

(see Figure 4-44).
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Figure 4-44 UVVIS spectra of a monolayer LB film of dye 9, (red curve) just after deposition,
(green curve) 3 hours after the deposition

4.3.7 Hybrid 4: Au-S-CH2CH2CH2-SO3
− / dye 9

In order to improve the stabilisation of the dye 9 monolayer, it was deposited on an

anionic surface using two different methods. The first was to align the chevronshaped

molecules by simply immersing the anionically coated quartz crystal in a solution of

dye 9 to obtain the hybrid structure as depicted in Figure 4-45.

Figure 4-45 Hybrid structure 4: Au-S-CH2CH2CH2-SO3
− /dye 9
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The QCM measurements gave satisfactory results, implying that although dye 9 belongs

to the LB filmforming group, it was possible to deposit it using the SA method (see

Figure 4-46). A monolayer of dye 9 was successfully formed using a sequence of

onehour immersions into a 0.1 mg/ml solution of chloroform. The complete monolayer

was formed after 1300 minutes. It was assumed that during the deposition of the second

layer, ions of Na+ were replaced by the cationic dye at the surface. It was also suspected

that iodide ions would remain in the aqueous subphase. However, the area per molecule

for dye 9 was found to be 1.01 ± 0.10 nm2/molecule (see Figure 4-46), which was slightly

higher than the value obtained from QCM analysis when dye 9 was deposited via the

LB technique (0.88 ± 0.10 nm2). The QCM values obtained suggested the existence of a

disordered monolayer and a presence of iodide ions in the second layer. These could

then influence the electron transport through the bilayer structure.
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Figure 4-46 QCM of dye 9 deposited on anionic surface by immersion in chloroform solution

Subsequent STS studies of this hybrid structure provided disappointing data, as only

slightly asymmetric I–V curves with RR of only approximately 2 at  1 V were

observed (see Figure 4-47). Moreover, the higher current was observed in the positive

quadrant of the I–V plot, so the movement of electrons was from the tip through the

monolayer to the bottom electrode, which was opposite to that expected. These results

seemed to confirm that the presence of iodide ions in the structure and their position in

relation to the cationic dye played a manipulated rectification69.
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Figure 4-47 Representative I–V characteristic of hybrid structure 4: Au-S-CH2CH2CH2-SO3
−

/dye 9, (dye 9 was deposited as a SAM)

Due to the disappointing results, the second deposition method of dye 9 was

implemented. The chevronshaped molecules were deposited on the anionic surface

using the LB technique. The conditions for deposition were the same as described in

section 4.3.6. It was very likely that some of the I ions could be incorporated into the

structure during the deposition process as the QCM studies yielded an area per molecule

of 0.90 ± 0.03 nm2. This value is exactly the same for the monolayer of dye 9 when

deposited straight onto QCM alone. The assumption was that the interaction between

thiol and dye would be strong enough to stabilise the structure, and further STS

investigations confirmed this. At forward bias, which corresponds to the negative

quadrant of the I–V plot, the electrons travelled from the substrate to the tip, and

consistent with the Aviram and Ratner concept1, they travelled from the cathode to the

HOMO of the acceptor and from the LUMO of the donor to the anode. Finally, by

intramolecular tunnelling, the molecule was restored to the ground state. This meant that

the acceptor, where the positive charge was located, was placed close to the thiol and

the donor subunits were pointing upwards. STS studies also provided a satisfactory

increase in the RR from 14 to 25 at ± 1 V (see Figure 4-48). The measurements were

repeated the following day to ensure that it was not shortlived and the results showed

similar curves with RR between 2225 at  1 V.



123

-1.0 -0.5 0.5 1.0

-0.08

-0.04

0.04

0.08

I/
n

A

V/V

Figure 4-48 Representative I–V characteristic of hybrid structure 4: Au-S-CH2CH2CH2-SO3
−

/dye 9, (dye 9 was deposited as LB film)

These results showed that this simple modification of the substrate surface had a

profound effect in preventing molecular realignment of the LB filmforming dye and

also led to an improvement of the RR.

4.3.8 Dye 10

Dye 10 is similar to the previous chevronshaped dyes, having a DAD structure

with twisted conjugated bridges to enforce a nonplanar structure and to effectively

separate the donor from acceptor. Professor David Lacy from the University of Hull

supplied this molecule and its structure is depicted in Figure 4-49

Figure 4-49 Structure of dye 10

It is believed that the electrical properties of LB films are limited by the hydrophobic

alkyl chain because it introduces an additional insulating barrier between one of the

electrodes and the Delectron bridgeA in a molecular device60. Therefore, the length
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of the chain was further decreased, and this structure had the advantage of shorter tails

(C2H5) attached to the donor groups. This molecule had been studied previously92, and

the studies had revealed a considerable amount of information about the LB monolayer

of this material. However, to further identify the critical areas of interest such as the

exact surface arrangement and electrical properties of this unique LB monolayer, more

investigation was required. In order to obtain this information an isotherm was produced

and the resultant shape is presented in Figure 4-50. The discrepancy observed between

the shape of the published isotherm92 and the isotherm obtained here was possibly due

to the water molecules trapped in the structure. Due to the lack of a distinguishable

collapse point it was assumed that the Langmuir film of dye 10 collapsed above

14 mN/m. The measured areas were: Ac= 0.87 nm2/molecule at 14 mN/m and At= 1.05

nm2/molecule at the transfer pressure of 10 mN/m (see Figure 4-50).
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Figure 4-50 Isotherm of dye 10

Previous studies92 on such films had revealed a molecular area of 0.88 nm2, and a film

thickness of 1.23 nm, indicating that the molecules formed a wellpacked monolayer.

QCM measurements of dye 10 resulted in a value of 1.1 ± 0.1 nm2. The SPR

measurements provided a thickness of 1.18 ± 0.1 nm. It was believed that the molecules

were tilted away from the desired vertical orientation relative to the surface. The higher

value of the molecular area obtained for dye 10 also confirmed the assumption that

iodide ions and water may have been trapped in the structure during deposition.



125

UVVIS spectrum from the LB monolayer film on a glass slide showed an absorbance

maximum at 520 nm (see Figure 4-51) and this is consistent with the reported data92.
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Figure 4-51 UV−VIS spectrum of the LB monolayer of dye 10 on glass slide

The main emphasis however, was concentrated on STS investigations of dye 10. In

order to obtain IV characteristics the monolayer of dye 10 was deposited on a

goldcoated HOPG and contacted via a PtIr tip. STS studies showed disappointing

results. This compound did not seem to rectify, as the I−V plots were only slightly

asymmetric with a very low RR approximately 1.4 at ± 1 V (see Figure 4-52).
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Figure 4-52 Representative I–V characteristic of Au | dye 10 | PtIr
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The very low RR observed across the sample indicated anisotropy of the monolayers

studied. This could be due to the poor attachment of the molecules to the gold substrate,

which could have led to the reorganisation of the molecules when a voltage was applied

to the junction61,63. Moreover, the presence of I− and water molecules trapped within the

monolayer, could have disrupted the alignment of the molecules when deposited at the

airwater interface, and subsequently during the transfer onto the substrate.

4.3.9 Hybrid structure 5: Au-S-CH2CH2CH2-SO3
− /dye 10

The low rectification ratio of 1.4 at ± 1 V achieved for dye 10 led to the investigation of

hybrid structure 5 (see Figure 4-53), which was believed to improve the order within the

monolayer and consequently rectification.

Figure 4-53 Hybrid structure 5: Au-S-CH2CH2CH2-SO3
− /dye 10

STS measurements of this hybrid structure yielded asymmetric I–V characteristics with

the RR of 8 at  1 V. A higher current was observed in the negative quadrant of the plot

(see Figure 4-54), and this implied that the chevron-shaped molecules aligned in the

desired way as depicted in Figure 4-53 with the positively charged acceptor positioned

closer to the short chains of the thiols, while the donor groups were directed upwards.

The increase of the RR value from 1.4 to 8 at  1 V clearly indicated that the molecules

of dye 10 formed a more ordered and closelypacked monolayer. The results also

followed the modified Aviram and Ratner model1.
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Figure 4-54 Representative I–V characteristics of hybrid structure 5: Au-S-CH2CH2CH2-SO3
−

/dye 10, (dye 10 was deposited as a LB)

The studies of hybrid structure 5 were continued with the monolayer now being

deposited via immersion of the ionically modified substrate into an acetone solution of

dye 10 (concentration 0.1 mg/ml). The deposition of the second monolayer was based

on interactions between the positively charged acceptor of the dye with the negatively

charged thiol. It was assumed that this interaction would be strong enough to force

molecules to align in a specific way to obtain the hybrid structure as depicted in Figure

4-53. An optimum deposition was achieved after approximately 1000 minutes, and the

resultant monolayer characterised by QCM had an area per molecule of approximately

0.4 nm2 (see Figure 4-55).
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Figure 4-55 QCM of dye 10 deposited by immersion in acetone solution onto an ionic surface

STS studies of hybrid structure 5 showed a further increase of the RR to 25 at ± 1 V

(see Figure 4-56). The low value of area per molecule determined from a Sauerbrey

analysis177 of the frequency changes implied that during deposition, Na+ and I ions

remained in the solution, and thus they had not disrupted the monolayer and

consequently had not contributed to rectification. In conclusion, the rectification

obtained could only have been a result of the ordered monolayer of dye 10.
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Figure 4-56 Representative I–V characteristics of hybrid 5: Au-S-CH2CH2CH2-SO3
− /dye 10, (dye 10

was deposited as a SAM)
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STS measurements of Au-S-CH2CH2CH2-SO3
−Na+ | PtIr junction, which yielded

symmetric IV plots seemed to provide further evidence of the Aviram and Ratner

mechanism1 causing rectification.

These results demonstrated that it was possible to design and then enforce a desired

alignment to improve the stabilisation and order of molecules within a monolayer and

therefore increase the RR value.

4.3.10 Dye 11

To further investigate the chain length effect on the diodelike behaviour of

chevronshaped compounds another chromophore was studied. Dye 11 was synthesised

by the author, and the synthesis is detailed in section 3.10.4 and the structure of the

compound is shown in Figure 4-57.

Figure 4-57 Structure of dye 11

The compound was dissolved in chloroform and the resultant solution with a

concentration of 0.1 mg/ml was deposited at the airwater interface and compressed in

order to produce an isotherm. Based on the results from the obtained isotherm it was

assumed that the phase transition of the film occured above 22 mN/m and the measured

areas were unexpectedly low: Ao= 0.13 nm2/molecule at zero pressure, Ac= 0.048

nm2/molecule at 22 mN/m and At= 0.07 nm2/molecule at the transfer pressure of 19

mN/m (see Figure 4-58).
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Figure 4-58 Isotherm of dye 11

The low areas obtained from the isotherm suggested that molecules of dye 11

overlapped during the compression process and did not result in a well−ordered

Langmuir film. Consequently, it was very likely that the molecules formed very poor

quality LB films. However, in order to confirm this conclusion the measurements were

continued.

The UV−VIS spectrum of a chloroform solution of dye 11 showed two bands of

absorbance, one at 360 nm and another at 490 nm (see Figure 4-59 (a)). The spectrum of

an LB monolayer of dye 11 deposited at a transfer pressure of 19 mN/m on a glass slide

revealed a very similar spectrum with maximum absorbance observed at the same

wavelengths (Figure 4-59 (b)). Additionally, the spectrum of the LB monolayer of dye 11

exhibited an absorbance that was unusually high for a single monolayer. These results

suggested that molecules of dye 11 overlapped and did not form a wellordered

monolayer.
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Figure 4-59 UV−VIS spectra of dye 11; (a) in chloroform solution, (b) LB monolayer on glass slide

QCM (see Table 4-2) and SPR studies confirmed the results obtained from the isotherm.

SPR provided a thickness for the monolayer of 2.9 ± 0.2 nm, which was also found to

be too high for a single monolayer. Therefore, it was assumed that during Langmuir

film compression and deposition a bilayer or multilayer was formed.

Dye 11 was deposited at various target pressures in the range of 17–25 mN/m. As

expected the area per molecule decreased with increasing pressure. This indicated that

the higher the deposition pressure, the more compact was the resultant monolayer.

However, the measurements resulted in smaller values of area per molecule than

expected and this clearly indicated that a bilayer or multilayer was formed. This could

be due to the chosen target pressures being too high and so leading to film breakage.

This breakage may have occurred as a result of the weak hydrophobic character of the

donor groups, which failed to maintain the molecules of dye 11 at the airwater

interface.
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Table 4-2 Area per molecule of dye 11

Deposition

pressure [mN/m]

Area

[nm2/molecule]

25 0.24

20 0.35

18 0.44

17 0.43

The results obtained from the isotherm, QCM and SPR measurements provided

evidence that the film of dye 11 overlapped during compression, and therefore, it was

not possible to obtain a wellordered and stable monolayer. Also, data supplied from

STS measurements confirmed this assumption because all I−V characteristics were

symmetric (see Figure 4-60). These results showed that the advantage of having reduced

alkyl chains had been balanced by the formation of a disordered monolayer.

Figure 4-60 Representative I−V characteristic of Au | dye 11 | PtIr
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5 CONCLUSIONS

The main objective of this research was to investigate the alignment and electrical

properties of different types of Delectron bridgeA structures when placed between

nonoxidised electrodes. These included LB type compounds with a long aliphatic

chain, chevronshaped molecules, and finally hybrid structures. This research was

inspired by the Aviram and Ratner proposal1 of the organic rectifier. The results

obtained, summarised in table 5.1, showed that the physical properties of thin films

strongly depend not only on the molecular structure but also on the molecularlevel

packing, and the possible intermolecular interactions between charged species (ruled by

the orientation of the molecules with respect to one another).

Table 5-1 IV characteristics of all compounds studied

Structure IV characteristics

Strong relationship between IV

characteristics and deposition

pressure, RR up to 20 at ± 1 V

Symmetric and asymmetric with

RR of 6 at ± 1 V

Asymmetric with RR between

3.416 at ± 1 V
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Symmetric and asymmetric

curves with RR between 4.511

at ± 1 V

Asymmetric with RR between

3.515 at ± 1 V

Asymmetric with RR between
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± 1 V
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Symmetric

Symmetric when the second

layer was deposited using the

LB technique

Asymmetric (RR between 523

at ± 1 V) when the second layer

was deposited in the immersion

process
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Symmetric

Asymmetric (RR of 8 at ± 1 V)

when the second layer was

deposited using the LB

technique.

Further increase of RR to 25 at

± 1 V when the second layer

was deposited in the immersion

process

Symmetric

The molecules studied were deposited onto a substrate using different techniques. The

LB technique was chosen because it is known to produce wellpacked structures123,124.

However, as the results showed, great care was needed when the LB monolayers were

formed and exploited. Studies of dye 1 revealed a strong relationship between the

deposition pressure and molecular arrangement. Depending on the deposition pressure

the molecules of dye 1 aligned at the surface in different ways and as a consequence a

variety of IV characteristics were observed. Dye 2 yielded two types of I–V curves:

symmetrical and asymmetrical, with a higher current in the negative quadrant and low

RR of 6 at ± 1 V, which seemed to follow the Aviram and Ratner theory1.

Unfortunately, there had been noted difficulties over controlling the alignment of these

molecules due to a flexible bridge68. For this reason the investigation was then
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focused towards a modified DA Aviram and Ratner rectifier model1, which used a

twisted bridge instead of a bridge. The implementation of a twisted bridge was

believed to keep an effective separation of molecular orbitals of the donor from the

acceptor, and additionally form a more rigid structure34,87, and this studies confirmed it.

Studies of dye 3 and the chevronshaped molecule with long aliphatic chains attached

to donors (dye 5) showed improvement of RR values (3.416 at ± 1 V). The

rectification observed agreed with the Aviram and Ratner proposal1. However, there

was a high possibility that ions took a significant role in the electron transport.

Moreover, some scientists60,83,84 claimed that the long hydrocarbon chains required for

the LB deposition acted as an additional tunnelling barrier and might affect electrical

behaviour of the metal | monolayer | metal structures. In order to avoid the ambiguity

associated with the presence of long chains in the molecular structures, a major part of

the research was devoted to chevronshaped molecules without long aliphatic chains.

These materials were defined as a modified Aviram and Ratner rectifier1, which

consisted of a central cationic acceptor and two bridged donor groups

(DAD). Unfortunately, the results showed that the reduction of aliphatic chains

was very likely balanced by the formation of less ordered or unstable monolayers. Of all

the chevron-shaped molecules investigated, dye 7 revealed the highest RR of 30 ± 1 V.

However, the direction of the current observed from the I−V characteristics suggested a

different alignment to the one expected. Dyes 8, 10 and 11 showed symmetric I−V

curves. Dye 9, although showed asymmetric I−V characteristics shortly after deposition

onto the goldcoated HOPG, it seemed to create an unstable alignment on the

hydrophilic slide and as a consequence the rectification decayed over a period of a few

hours. Due to the instability of the LB monolayers, an innovative method of

stabilisation based on the layerbylayer technique was introduced. This simple method

was used to modify the substrate surface by the deposition of short chain thiols on the

gold surface to generate an ionic surface. Then the second monolayer was formed via

the interactions between positively charged chromophores and the negatively charged

substrate. As the results showed, this method not only increased the stabilisation of LB

films but also enhanced the rectification behaviour of these structures as a result of the

improved molecular alignment of the unconventional LB filmforming dyes. Studies of

the hybrid structure 4 (Au-S-CH2CH2CH2-SO3
− / dye 9) resulted in a desirable
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monolayer stabilisation and an increase in RR from 16 to 25 at ± 1 V. Studies of hybrid

structures 1 and 2 showed also that this technique could also be used as an alternative

deposition method for the molecules which could not form a monolayer using the LB

technique. The strong hydrophilic character of the acceptor compared to hydrophobic

character of the donor for dyes 4 and 6 prevented the monolayer formation using the LB

technique. However, the molecules seemed to be able to produce a monolayer based on

opposite charge attraction. STS measurements obtained from hybrid 2 showed

asymmetric curves with RR in the range of 621  1 V. Studies of the hybrid 1 structure

confirmed that the formation of the monolayer of dye 4 was achievable but

unfortunately it appeared to be disordered. Very satisfactory results were obtained also

from hybrid structure 5, where as a chromophore, dye 10 was used. Studies showed that

dye 10 formed disordered monolayers when deposited on a purely goldcoated

substrate, and thus symmetric IV characteristics were obtained. However, the RR

increased to 8 at  1 V when the same monolayer was deposited on top of the thiol

monolayer using the LB technique. A further increase of RR to 25 at  1 V was

observed when the same monolayer was deposited on a thiol monolayer via the

immersion process.

In summary, the studies presented here show that it is extremely important to

understand the mechanism of the electron transport through the device and all factors

that may significantly influence it. Experimental verification of the Aviram and Ratner

concept proved to be difficult to achieve. Studies of DA compounds did not yield

very promising results. Although an ambiguity associated with the Schottky effect31,32

and the use of the electrodes with different work functions had been eliminated, the

results highlighted the difficulties of controlling the alignment of molecules with a

flexible bridge. All structures studied represented a typical or modified Aviram and

Ratner molecular rectifier1. However, the mechanism of the electron transport through a

metal | organic | metal junction still remains unclear. This was due to I, Br, OH and

HCO3
 ions trapped within the structures. On the other hand, this work has proved that

the identification and control over the alignment of the molecules within a monolayer

play a key role in the determination of rectifying behaviour of the structures studied.

This research pointed out that the molecules must form stable and ordered monolayers,
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which have a strong enough attachment to the substrate to be able to withstand the

electric field applied to the device. The satisfactory results obtained from the hybrid

structures encourage further investigation in this field. This method enabled the

incorporation of additional layers, which acted as ‘stabilisers’ in order to generate an

ordered and stable monolayer. It also provided a great opportunity to form desired

structures from building blocks and often avoided very complicated synthesis.

Although there is still much research involved in order to fabricate a real nanoscale

device, the first steps have been made to bring this idea closer to reality.
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