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0.1 Abstract 

This thesis deals with conservation laws and symmetries of difference equations. 

The main new results in the field of conservation laws are: 

• We have improved the effectiveness of Hydon's direct method for constructing con­

servation laws; 

• A classification of all three-point conservation laws for a large class of integrable 

difference equations that has been described by Nijhoff, Quispel and Capel is pre­

sented. We show that every nonlinear equation from this class has at least two 

nontrivial conservation laws. 

• We deal with conservation laws for all integrable difference equations that belong to 

the famous Adler-Bobenko-Suris classification. All inequivalent three-point conser­

vation laws are found, as are three five-point conservation laws for each equation. 

• We describe a method of generating conservation laws from known ones; this method 

can be used to generate higher-order conservation laws from those that are listed 

here. 

• An example of conservation laws for a Toda type system is presented. The connec­

tion between these conservation laws and symmetries is shown. 

• Conservation laws for non autonomous quad-graph equations are found. 

• We include a Maple program for deriving three-point conservation laws for quad~ 

graph equations. 

The main new results in the field of symmetries are: 

• Symmetries of all integrable difference equations that belong to the Adler-Bobenko­

Suris classification are described. For each equation, the characteristics of symme­

tries satisfy a functional equation, which we solve by reducing it to a system of 

partial differential equations. In this way, all five-point symmetries of integrable 
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equations on the quad-graph are found. These include mastersymmetries, which 

allow one to construct infinite hierarchies of local symmetries. 

• We demonstrate a connection between the symmetries of quad-graph equations and 

those of the corresponding Toda type difference equations . 

• A program for deriving five-point symmetries for quad-graph equations is presented. 
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Chapter 1 

Introduction 

This chapter describes a brief history of the topic and gives a motivation of the thesis. 

The two main topics of study in the thesis are: conservation laws of partial difference 

equations (P~E's) and symmetries of partial difference equations. 

1.1 Equations on the quad-graph 

Partial difference equations on the quad-graph have recently attracted much interest, 

especially from the integrable systems community. The first quad-graphs were derived in 

the works of Hirota [30, 31]. Since then, Lax pairs have been derived for these and many 

other quad-graph equations [14, 15,47, 49]. 

UO,l Ul,l 

Uo,O Ul,O 

Figure 1.1: Quad-graph 

Quad-graphs have a scalar dependent variable U that is defined on the domain Z2; we 

7 
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shall use the coordinates (k,l) as the independent variables. For brevity we denote the 

values of u at the vertices of the quad-graph by Uo,O = u{k, l), UI,O = u(k + 1, l), UO,l =; 

u{k, 1 + 1), Ul,! = u(k + 1,1 + 1), as shown. More generally Ui,j denotes u(k + i, 1 + j). 

At present, there are various criteria for P~Es to be integrable [5, 14, 27, 47, 59, 61, 

69J. Attention has largely focused on quad-graphs (Fig. 1.1). The easiest definition of 

integrability for quad-graphs is consistency on a cube. This implies the existence of a 

Lax pair [14], so that the system is integrable via a spectral problem. Adler, Bobenko 

& Suris(ABS) have classified all integrable, scalar equations on the quad-graph that are 

consistent on a cube, linear in each variable, invariant under the symmetries of a square, 

and possess the tetrahedron property [5J. Hietarinta discovered a quad-graph that lacks 

the tetrahedron property but has a Lax pair [28J. However, this has recently been shown 

to be linearizable (63], so it can be integrated without recourse to the spectral problem. It 

is not yet known whether all quad-graphs that have a Lax pair but lack the tetrahedron 

property can be linearized. 

Classification does not tell us whether a given quad-graph (that does not satisfy the 

assumptions of any known classification) is integrable. Various tests have been developed 

which indicate (but do not prove) integrability; the most notable of these is the method 

of singularity confinement [27J. Another possibility is to seek symmetries or conservation 

laws. In particular, one definition of integrability is the possession of infinitely many 

higher symmetries or conservation laws [22, 45J. 

1.1.1 Classification of integrable equations on quad-graphs. Con­

sistency approach. 

The complete classification of integrable equations on the quad-graphs (Figure 1.1) was 

done by Adler et al. in [5]. Here we briefly show the method of classification and its 

result. 

The general form of a scalar difference equation on the quad-graph is 

(1.1) 
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In [5] the authors classified equations which satisfy the following conditions. 

1) Linearity. The function P(uo,o, Ul,O, Uo,l, Ul,l; a,,8) is linear in each argument 

(affine linear): 

(1.2) 

where coefficients ai depend on a, (3. 

2) Symmetry. For quad-graphs there are no distinguished coordinate directions with 

the understanding that indices are used locally (within one quadrilateral), and do not 

stand for shifts into the globally defined coordinate directions. So, uo,o, Ul,O, Ul,l, UO,l can 

be any cyclic enumeration of the vertices of an elementary quadrilateral. Equation (1.1) 

should not depend on the enumeration of vertices, therefore the following assumption 

is natural when considering equations on general quad-graphs. The equation (1.1) i~ 

invariant under the group D4 of the square symmetries, namely, the function P satisfies 

the symmetry properties 

P(Uo,o, Ul,O, UO,b Ul,l; a, (3) = €P(uo,o, Uo,l, Ul,O, Ul,l; (3, a) 

= (JP(UI,O, uo,o, Ul,b UO,l; a, (3) 
(1.3) 

with €, (J = ±1 (see Figure 1.2). Of course, due to the symmetries (1.3) not all coefficients 

ai in (1.2) are independent. 

Integrability can be detected in an algorithmic manner starting with no more infor­

mation than the equation itself: a sufficient condition for integrability of an equation is 

its three-dimensional consistency. This property means that the equation (1.1) may 

UO,J,. a ;UI,l .,--+-----, , , , , , 
, I , 

, I ' 

(3- - - - -'-~{. - - - - - (3 , I , 
, I , 

, I ' 

" I " 

" I '~ 
UO,Q a '1.1.1,0 

Figure 1.2: D4 symmetry 
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be consistently embedded in a three-dimensional lattice, so that similar equations hold 

for all six faces of any elementary cube, as on Figure 1.3 (it is supposed that the values 

of the parameters aj assigned to the opposite edges of any face are equal to one another! 

so that, for instance, all edges (X2,X12), (Xa,Xa1), and (X2a,X12a) carry the label (1): 

X3~----~------~ 
X3I 

.--------
~~/ X2 

" 
x 

Figure 1.3: Three-dimensional consistency 

To describe more precisely what is meant by three-dimensional consistency, consider 

the Cauchy problem with the initial data x, Xl! X2, X3' The equations 

(1.4) 

allow one to determine uniquely the values XI2, X23, X31' After that one has three dif­

ferent equations for X123, coming from the faces (Xl,X12,X31,X123), (X2,X23,XI2,X123), and 

(X3, X31, X23, XI23). Consistency means that all three values thus obtained for X123 coincide. 

3) Tetrahedron property. The function X123 = z(x, Xl, X2, Xa; a1, a2, aa), existing 

due to the three-dimensional consistency, actually does not depend on the variable X, that 

is, Z;I; = O. 

Under the tetrahedron condition we can paint the vertices of the cube in black and 

white, as on Figure 1.3, and the vertices of each of the two tetrahedra satisfy an equation 

of the form 

(1.5) 
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it is easy to see that under the assumption 1) (linearity) the function P may also be taken 

as linear in each argument. 

The tetrahedron condition is closely related to another property of (1.1), namely to 

the existence of a three-leg form of this equation [14]: 

(1.6) 

The three terms in this equation correspond to three legs: two short ones, (Uo,o, Ul,O) and 

(uo,o,uo,d, and a long one, (UO,O,Ul,l)' The short legs are edges of the original quad­

graph, while the long one is not. In some cases it is more convenient to write the three-leg 

equation (1.1) in the multiplicative form 

(1.7) 

The three-leg form gives an explanation for the equation for the black tetrahedron from 

Fig. 1.3. Consider the three faces adjacent to the vertex X123 on this figure, namely the 

quadrilaterals (Xt,X12,X3t,X123), (X2,X23,X12,X123), and (X3,X31,X23,X123)' A summation 

of three-leg forms (centered at X123) of equations corresponding to these three faces leads 

to the equation 

This equation, in any event, relates the fields in the black vertices of the cube only, i.e. 

has the form of (1.5). 

So the tetrahedron property is a necessary condition for the existence of a three­

leg form. On the other hand, a verification of the tetrahedron property is much more 

straightforward than finding the three-leg form, since the latter contains two a priori 

unknown functions 'I/J, <p. 

It remains to mention that, as demonstrated in [14], the existence of the three-leg form 

allows one to immediately establish a relation to discrete systems of the Toda type [4J. 

Indeed, if x is a common vertex of n adjacent quadrilaterals with faces 
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with the parameters k assigned to the edges (x, Xk), then the fields at the point x and at 

the black vertices of the adjacent faces satisfy the following equation: 
n 

L 4>(x, Xk,k+l, ak, ak+l) = O. 
k=l 

This is a discrete Toda type equation. 

(1.9) 

Theorem 1.1. (Adler, Bobenko and Suris [S, IS]) Up to common Mobius transfor­

mations of the variables Uo,O and point transformations of the parameters a, the three­

dimensionally consistent quad-graph equations (J.4) with the properties 1),2),3) (linear­

ity, symmetry, tetrahedron property) are exhausted by the following three lists Q, H, A 

(Ul,O = Xli UO,l = X2, Ul,l = X12, a = aI, {3 = (2). 

QI: o(uo,o - UO,I)(UI,O - UI,I) - f3(uo,o - UI,O)(UO,1 - UI,t} + 820{3(0 - (3) = 0, 

Q2: o(uo,o - UO,l)(Ul,O - uI,d - {3(uo,o - UI,O){UO,l - UI,I) 

+ 0{3(0 - (3)(uo,o + Ul,O + UO,1 + Ul,l) - 0{3(0: - {3)(0:2 - 0:{3 + {32) = 0, 

Q3: ({32 - 0:2)(uO,OUI,1 + UI,OUO,!) + {3(0:2 - l)(UO,OUI,O + UO,lUI,I) 

- 0(132 
- l)(uO,OUO,1 + UI,OUI,I) - 82(02 - {32)(02 - 1)({32 - 1)/(40j3) = 0, 

Q4: sn(o:)(uO,OUI,O + UO,IUI,t} - sn({3)(uO,OUO,1 + UI,OUI,I) - sn(o - {3)(uO,OU},1 + uI,ouo,d 

+ sn(o - f3)sn(o:)sn(f3)(l + K2uo,OUI,OUO,IUI,t} = 0, 

HI: (uo,o - uI,d(UI,O - uo,I) + {3 - 0 = 0, 

H2: (uo,o - uI,d(UI,O - UO,I) + ({3 - o)(uo,o + UI,O + UO,1 + UI,I) + {32 - 0 2 = 0, 

H3: O'(UO,OUl,O + UO,IUI,t} - {3(uO,OUO,l + UI,OUI,I) + 82 (0:2 
- {32) = 0, 

AI: o:(uo,o + UO,I)(UI,O + UI,I) - f3(uo,o + UI,O)(UO,l + UI,I) - 820:{3(0 - {3) = 0, 

A2: (132 
- 0:2) (UO,OUI,OUO,IUI,1 + 1) + 13(02 -l){uo,ouo,l + Ul,OUl,l) 

- 0({32 - l)(UO,OUI,a + UO,IUI,I) = O. 

Here a, {3 are constants and sn(a) = sn(a; K) is a Jacobi elliptic function with modulus 

K. The ABS equations depend on two arbitrary functions a = a(k) and f3 = {3(l). With­

out loss of generality, the parameter 6 is restricted to the values 0 and 1. For convenience, 

we have used the form of Q4 that was discovered by Hietarinta {29j. 

The oldest equations in this list are HI and H36=o, which can be found in the work 

of Hirota [31] (of course not on general quad-graphs but only on the standard square 
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lattice with the labels a constant in each of the two lattice directions). Equations Ql 

and Q3c5=o go back to [61], see also a review in [47]. Equation Q4 was found in [3] in 

the Weierstrass normalization of an elliptic curve; in [15] was shown that the formulas 

become much nicer in the Jacobi normalization. The discovery of this equation is a very 

important achievement, because other equations from the list can be obtained from Q4 

by appropriate limits of the parameters. 

In our research we deal with two wide classes of integrable quad-graphs. The first 

class is the ABS equations which are listed above. The second class was introduced by 

Nijhoff, Quispel and Capel [51]: 

(p + S)Ul,O - (p - r)uo,o - 1 (q + r)ul,l - (q - S)Ul,O - 1 
(q + S)UO,l - (q - r)Uo,o - 1 = (p + r)ul,l - (p - S)UO,l - 1 ' 

(1.10) 

where r, S are free constant parameters. The parameters p and q can be interpreted as 

the corresponding constant lattice parameters. 

When 82 i- r2, (p + r) (p - 8)( q + r) (q - 8) i- 0 equation (1.10) can be transformed to 

Q3c5=o by the following map 

u(k,l) f-+ (al- s)k (f3 q 
- 8)' u(k, 1) + _1_, p f-+ 

p+r q+r r+8 

1.2 Conservation laws 

Conservation laws are ubiquitous in applied mathematics. In some cases, they express 

conservation of physical quantities. Even when they do not, they are usually of mathe­

matical interest. Much attention has been given to integrable systems that have infinite 

hierarchies of conservation laws, which are related to generalized symmetries by Noether's 

theorem. Conservation laws of integrable and nonintegrable systems can be used in many 

ways, such as. to prove existence and uniqueness theorems, to derive shock conditions, 

and to check that numerical methods are not produCing spurious results (at least qualita­

tively). If a differential equation is to be approximated using a finite difference method, it 

seems desirable that the discretized equation should retain as much of the original struc­

ture as possible, including discrete analogues of the conservation laws. Thus it would be 
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useful to have a systematic method for constructing conservation laws of a given difference 

equation that does not require the equation to be integrable. 

Noether's theorem provides the best-known method of constructing conservation laws 

of any partial differential equation (PDE) that is the Euler-Lagrange equation for a vari­

ational problem [54]. This method uses variational symmetries, which form a subset of 

the set of generalized (or Lie-Backlund) symmetries of the PDE. Generalized symmetries 

of a particular order can be found systematically from the symmetry condition, which 

amounts to an overdetermined system of PDEs (see [12, 57] for a modern introduction). 

Noether's theorem has been extended to Hamiltonian PDEs [57] and to multisymplectic 

PDEs [16, 35]. However, Noether's theorem does not apply to all PDEs, but only to those 

that have at least one of the special structures listed above. Alternatively, conservation 

laws of all types of PDEs may be found by a direct method which does not use symmetries 

[8, 10,57]. 

The theory of conservation laws for partial difference equations mirrors that for PDEs. 

The first conservation laws for the fully discrete sine-Gordon equation were presented 

by Orphanidis in [58]. Hydon and Mansfield [36] have formulated the basic theory for 

the realization of conservation laws in a discrete space. Just as for PDEs, the discrete 

analogue of Noether's Theorem [21, 37, 42, 75] is applicable only to equations with a 

known variational, Hamiltonian or multisymplectic structure [16]. Until recently, this 

condition greatly restricted the class of P ~Es for which conservation laws could be found. 

This is partly because symmetry analysis of difference equations was not introduced until 

Maeda's 1987 paper [43], and it has since been developed along several different lines 

[32,41, 62]. Furthermore, symmetry calculations are typically lengthy, and only a few of 

the symmetries that have been found so far are variational symmetries. 

Generally speaking, it is much harder to calculate conservation laws for difference 

equations than for differential equations, because one has to solve a complicated functional 

equation rather than a system of overdetermined partial differential equations. The first 

systematic technique for obtaining all conservation laws of a given type was introduced by 

Hydon [34], who found all three-point conservation laws of the discrete potential modified 



CHAPTER 1. INTRODUCTION 15 

Korteweg-de Vries (dpmKdV) equation. 

1.2.1 Useful results 

A conservation law for a partial difference equation on 'J'i is an expression of the form 

(Sk - id)F + (Sl - id)G = 0 (1.11) 

that is satisfied on all solutions of the equation. Here id is the identity mapping and Sk, S~ 

are forward shifts of the coordinates k and 1 respectively: 

Sk : (k, l, u(k, l) -+ (k + 1, I, u(k + 1, I», Sl : (k, l, u(k, l)) -+ (k, 1 + 1, u(k, I + 1». 

This is the general form of the kernel of the Euler equation [36]. Other forms are possible, 

e. g. 

Analytic properties may not be preserved by going from one form to another. 

Just as a local conservation law for a PDE can be integrated to obtain global conserved 

quantities, so (1.11) can be summed over m or n to obtain such quantities for difference 

equations. 

The conservation laws for the dpmKdV equation 

lI(k, I)UI,O - UO,I 
UII = Uoo () , 

I I II k, 1 UO,I - UI,O 
(1.12) 

were considered in [34]. Here lI(k, I) is an arbitrary function. The functions F and G were 

chosen in the form 

F = F(k, l, 'UO,O, Uo,l), 

G = G(k, l, 'UO,O, 'UI,O)' 

In [34] it was found that conservation laws for (1.12) exist only in the case when 

lI(k, l) = a(k){J(l), 
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where a(k) and f3(1) are arbitrary functions. The conservation laws for the dpmKdV 

equation are 

UO,OUO,l 
f3( 1) , F1 = Gl = a(k)uO,OUl,O, 

1 
F2 - --:-:"~--

- f3(l)uO,OUO,l' 
G

2 
= a(k) , 

UO,OUl,O 

F3 = -f3(1) (UO'l + uo,o) , 
Uo,o UO,l 

Ga = _1_ (Ul.O + uo,o) , 
a(k) uo,o Ul,O 

F4 = (_l)k+I,6'(l) (UO.l _ uo,o) , 
uo,o UO,l 

G
4 

= (_1)k+1 (Ul,O _ uo,o) . 
a(k) Uo,o Ul,O 

1.3 Symmetries 

Symmetries of PAE's first appeared as similarity constraints for integrable lattices. In 

[50J, it is shown that discrete analogues of the Painleve equations arise from similarity 

constraints. Similarity constraints and reductions to discrete Painleve equations for the 

cross-ratio, discrete Korteweg-de Vries (dKdV) and discrete potential modified Korteweg­

de Vries equations were later considered in [26, 46, 47, 48, 52, 53]. One notable feature 

of similarity constraints for quad-graphs is that circle patterns can be formed for certain 

initial conditions [6, 7, 13, 15]. Recently, Tongas et at. pointed out that the similarity 

constraints for quad-graph equations obtained previously are equivalent to characteristics 

of symmetries [73}. They used an indirect method to discover mastersymmetries and 

higher-order symmetries for the dKdV equation. Symmetries of several other quad-graph 

equations have been found in [38, 39, 60, 72]. 

An alternative approach to symmetries of difference equations (not only integrable 

ones) is to try to construct discretizations of differential equations that retain all Lie 

point symmetries of the original system [17, 19, 20,40,41]. This requires a non-constant 

grid; in effect, the original continuous independent variables become extra dependent 

variables in the discretized system. 

For a given difference equation, whether it is integrable or not, the main problem in 

finding symmetries is solving the linearized symmetry condition, which is a functional 

equation. Hydon developed a direct method of solving such functional equations by 



CHAPTER 1. INTRODUCTION 17 

creating an associated system of differential equations that can be solved (32, 34J. 

1.4 Overview of the thesis 

The goal of the thesis is to describe methods for calculating conservation laws and sym­

metries of partial difference equations and to find them for parameter-rich classes of 

integrable, scalar equations on the quad-graph. 

Chapter 2 deals with conservation laws of difference equations. The structure of this 

chapter is as follows: §2.1 describes the direct method for calculating conservation laws of 

quad-graph equations. §2.2 is a classification of all three-point conservation laws for the 

NQC equation. In §2.3 there is a list of all three-point conservation laws for each equation 

in the ABS classification; three five-point conservation laws for each ABS equation are 

given in §2.4. 

Chapter 3 deals with symmetries of difference equations. The chapter begins with 

an introduction to the theory that is the basis for our calculations. In §3.2, we explain 

the method of finding local symmetries. §3.3 lists all symmetries on the 3 x 3 square for 

equations from the ABS classification; mastersymmetries are given in §3.4. 

Chapter 4 shows an example of symmetries and conservation laws for Toda type equa­

tions. In §4.1, we explain the connection between symmetries of equations from the ABS 

classification and those of the corresponding Toda type equations. In §4.2, conservation 

laws for a Toda type system are given. 

Applications of symmetries and conservation laws are presented in Chapter 5. A 

method that enables one to generate a new law from a known one is described in §5.1. 

In §5.2 we use conservation laws as an indicator of integrability for generalized nonau­

tonomous dKdV and dpmKdV equations. To illustrate one of the most common applica­

tions of symmetries, §5.3 describes the construction of a group-invariant solution. 

In Chapter 6, we draw conclusions and describe some open problems. 

Programs which help to find three-point conservation laws and five-point symmetries 

for quad-graph equations are presented in the Appendix. 



Chapter 2 

Conservation laws 

2.1 The Method 

The general form of a scalar P ~E on the quad-graph is: 

(2.1) 

A conservation law for any quad-graph equation (2.1) is an expression of the form 

(Sk - id)F + (8, - id)G = 0 (2.2) 

that is satisfied by all solutions of the equation. Here the functions F and G are the 

components of the conservation law and id is the identity mapping. 

A conservation law is trivial if it holds identically (not just on solutions of the PAE), 

or if F and G both vanish on all solutions of (2.1). 

We consider conservation laws that lie on the quad-graph. This means that the func­

tions F, G, SkF and B,G must depend upon only k, l, uO,o, Ul,O, Uo,l and Ul,l. Conse­

quently the most general form of F and Gis: 

F = F(k, l, Uo,o, Uo,d, 

G = G(k, l, Uo,O, Ul,O). 

(2.3) 

(2.4) 

The dependence of F and G upon the continuous variables Ui,j is illustrated in Figure 

2.1; together, these functions lie on three points of the quad-graph. For this reason, we 

call such conservation laws three-point consenJation laws. 

18 
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UO,l Ut,l 
---------- .. 

F 

Uo,O G Ul,O 

Figure 2.1: Three-point conservation law 

The three-point conservation laws can be determined directly by substituting (2.1) 

into 

F(k+ 1, i, Ul,O, ul,d - F(k, l, uo,o, UO,l) + G(k, i + 1, Uo,b Ul,l) - G(k, I, Uo,O, Ul,O) = 0, (2.5) 

and solving the resulting functional equation. Suppose that (2.1) can be solved for Ul,l 

as follows: 

Ul,l = w(k, l, Uo,o, Ul,O, uo,d· (2.6) 

(This means that (2.6) and (2.1) are entirely equivalent.) Then (2.5) amounts to 

F(k + 1, l, Ut,O, w) - F(k, l, Uo,o, Uo,l) + G(k, I + 1, UO,l, w) - G(k, 1, UO,o, Ul,O) = O. (2.7) 

In order to solve this functional equation we have to reduce it to a system of partial 

differential equations. To do this, first eliminate functional terms F(k+ 1,1,ul,o,w) and 

G(k, 1 + 1, UO,l,W) by applying each of the following (commuting) differential operators to 

(2.7): 

Ll 
-_ _ 0 _ WUO•1 _0 a WU1,o a 

L2 =-------
QUO,l wuo,o aUo,o ' OUl,O wuo,o auo,o ' 

where WU;,j denotes :::'j' The operators Ll and L2 differentiate with respect to Uo,l and 

Ul,O respectively, keeping w fixed, so 

Itl (F(k + 1, i, Ul,O,W» = 0, L2 (G(k, 1+ 1, Uo,l, w)) = O. 

This procedure does not depend upon the form of w; it can be applied equally to any 

quad-graph equation. Applying Ll and L2 to (2.7) yields 

LlL2 (F(k, l, uo,o, UO,l) + G(k, i, Uo,o, Ul,O») = O. (2.8) 
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If (2.8) is divided by the factor that mUltiplies a particular derivative of G(k, 1, uO,o, Ul,O) 

and is then differentiated with respect to Uo,l, we obtain a functional differential equa­

tion which is independent of that derivative. This process is repeated for each deriva-: 

tive of G(k, l, uo,o, Ul,O) and finally for G(k, 1, uo,o, U1,Q) itself; this produces a PDE for 

F(k, l, Uo,Q, UQ,1)' If the coefficients involve Ul,Q, the PDE can be split into a system of 

PDEs. 

Further information about F may be found by substituting 

into (2.5). Here Ul,Q = n is another representation of (2.1). Then (2.5) amounts to 

F(k + 1,1, n, ul,d - F(k, 1, uO,o, UO,1) + G(k,l + 1, UQ,l, Ul,r) - G(k, 1, Uo,Q, n) = o. (2.9) 

We eliminate the terms F(k + 1,1, n, U1,t} and G(k, 1, Uo,o, n) by applying each of the 

following (commuting) differential operators to (2.9): 

This yields 

L3 = ~ _ nuo,o~ 
aUo,o nUO•1 aUO,1 ' 

L3L4( - F(k,l,uo,o,UO,l) + G(k,l + l,uo,1,U1,t}) = O. 

This equation can also be reduced to a system of partial differential equations for F(k, 1, uo,o, uo,t} 

which (typically) is different from obtained previously. 

Having differentiated the determining equation for a conservation law several times, 

we have created a hierarchy of functional differential equations that every three-point 

conservation law must satisfy. The functions F and G can be determined completely by 

going up the hierarchy, a step at a time, to determine the constraints that these equations 

place on the unknown functions. As the constraints are solved sequentially, more and more 

information is gained about the functions. At the highest stage, the determining equation 

(2.7) is satisfied, and the only remaining unknowns are the constants that multiply each 

conservation law. 

Mansfield and Szanto [44] proved that the algorithm for finding conservation laws 

and symmetries is well-founded. In other words, it will yield all conservation laws and 

symmetries of a given class whenever the equation can be put in the form (2.6). 

1 ) 
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In essence, the above approach is a generalization of a method introduced in 1823 by 

Abel, who solved functional equations for which each function depends on a single con­

tinuous variable [1]. (For a modern description of Abel's method, see [2].) Surprisingly, 

this method was not applied to the problem of finding symmetries and first integrals of 

difference equations until Hydon used it in 1999. Until then, symmetries had been found 

by series techniques and other Ansatze (see [32J for a discussion). In 2000, Hydon general­

ized this approach to deal with functions that depend upon several continuous variables; 

enabling conservation laws to be found systematically [34]. However, as the number of 

variables increases, the length of the functional differential equations grows exponentially. 

This 'expression swell' limits the complexity of the conservation laws that can be found 

by the direct method. Therefore great care is needed to ensure that differentiations are 

applied in an order that minimizes expression swell. At present, this is still something of 

an art. 

2.1.1 Example of conservation laws of the discrete KdV equa­

tion 

The Korteweg-de Vries equation is [30]: 

(p + q + VI,I - vO,o)(q - p + VI,O - VO,I) = q2 _ p2, (2.10) 

which is an integrable quad-graph equation. Here p, q are parameters and p2 =/: q2. To 

simply matters, we use the transformation 

v(k, l) = u(k, l)Jq2 - p2 - qk - pi 

to reduce (2.10) to 

(Ul,l - UO,O) (Ul,O - UO,I) = 1. (2.11) 

We shall call this equation dKdV. As with all integrable quad-graph e<luations, the dKdV 

equation may be solved to write anyone of Uo,O, UI,O, UO,b Ul.l in terms of the other three. 

In particular, we will write the dKdV equation as either 

Ul,l = w, where 
1 

w = + uo,o, 
Ul,O - UO,l 
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or 
1 

Ul,O = 0, where ° = + Uo,l. 
UI,l - uO,o 

With help of L1 , L2 the determining equation (2.7) for the dKdV equation is reduced 

to 

where F = F(k, l, uO,o, UO,I) and G = G(k, l, Uo,o, UI,O). Differentiating (2.12) three times 

with respect to Uo,l eliminates G and its derivatives, leaving the necessary condition 

(2.13) 

This equation can be split into an overdetermined system by equating powers of UI,O' 

Further information about F may be found by substituting Ul,O = 0 into (2.5). Differen­

tiating 

F(k + 1, l, 0, Ul,l) - F(k, l, uo,o, uO,r) + G(k, l + 1, UO,I, UI,r) - G(k, l, uo,o, 0) = 0 

with respect to uo,o, Ul,l and keeping n fixed yields 

- 2 - - _ 
FUO,IUO,! - GuO,!UO,! - (Ul,l - uo,o) (Fuo,ouo,! + GUO,lul,J - 2(Ul,1 - uo,o)(Fuo,o - GUO,I) - 0, 

(2.14) 

where G = G(k, l + 1, uo,o, Ul,l)' The function G and its derivatives are eliminated by 

differentiating three times with respect to Uo,l, which yields 

(2.15) 

The overdetermined system of partial differential equations (2.13), (2.15) is easily solved 

to obtain 

(2.16) 

where each Ci is an arbitrary function of k,l, and FI = F1(k,l,uo,d, F2 = F2(k,l,uo,o) 

are arbitrary functions. The term F2(k, l, uo,o) can be removed (without loss of generality) 

by adding the trivial conservation law 

FT = (81 - id)F2' 

GT = -(Sk - id)F2' 
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to F and G respectively. 

So far, we have differentiated the determining equations for a conservation law five 

times; this has created a hierarchy of functional differential equations that every three­

point conservation law must satisfy. The unknown functions Cj" FI and G are found by 

going up the hierarchy, a step at a time, to determine the constraints these equations 

place on the unknown functions. 

By this technique we have found all independent nontrivial three-point conservation 

laws for the dKdV equation; they are as follows: 

1. F = Uo,o (uo,t}2 - (UO,O)2 UO,l + uo,o - UO,l, 

G = (UO,O)2 Ul,O - Uo,o (UI,O)2 , 

2. F = (-1 )k+l+l {uo,o (UO,I)2 + (Uo,O)2 UO,l - uo,o - UO,l} , 

G = (_1)k+1 {( uo,o)2 Ul,O + uo,o (Ul,O)2} , 

3. F = ( -1 )k+l+l { (Uo,OUO,1)2 - 2Uo,OUO,1 + ~ } , 
G = (_l)k+l {(UO,OUl,O)2} , 

4. F = (_l)k+l+l {uO,OUO,l - ~} , 

G = (-l)k+1 {Uo,OUl,O}' 

Three of these conservation laws depend on k and 1 explicitly. If we had chosen functions 

F and G that depended only upon Ui.,i on the quad-graph (and not also upon k and l), 

we would have found only the first of the four three-point conservation laws. 

2.2 Conservation laws for NQC-type equations. 

The purpose of the current section is to use the direct method to classify the three­

point conservation laws of a wide class of integrable quad-graphs that were introduced by 

Nijhoff, Quispel and Capel [51]. These are of the form 

(p + S)Ul,O - (p - r)uo,o - 1 _ (q + r)ul,l - (q - S)Ul,O - 1 
(q + S)Uo,l - (q - r)uo,o - 1 - (p + r)uJ,l - (p - S)UO,l - 1 ' 

(2.17) 
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where r, s are free constant parameters. The parameters p and q can be interpreted as the 

corresponding constant lattice parameters. We shall refer to (2.17) as the NQC equation; 

the factors (p ± r), (p ± 8), (q ± r) and (q ± 8) will be called the coefficients of the N QC 

equation. 

2.2.1 Simplification of the NQC equation 

We begin by showing that the NQC equation is mapped to another NQC equation under 

the group of equivalence transformations D4 generated by rotations and reflections. 

First consider rotations. Let 

Then 

k = -l, i = k, u(k, i) = u(i, -k) = u(k, l). 

u(k -1,i) = u(i, 1- k) = u(k,l+ 1), 

u(k - 1, l + 1) = u(i + 1,1 - k) = u(k + 1, 1 + 1), 

u(k,i + 1) = u(i + 1, -k) = u(k + 1,l). 

Note that stu(k,i) = Slu(k, l) and S(D.(k,i) = Sku(k, l). The NQC equation (2.17) can 

be rewritten as 

(p + 8)UO,l - (p - r)uo,o - 1 (q + r)u_l,1 - (q - S)Uo,1 - 1 
(q + 8)'11-1,0 - (q - r)uo,o - 1 = (p + r)u-1,1 - (p - S)U_1,0 - l' 

where Ui,; = u(k + i, i + j). Apply Sk to (2.18) and then rearrange to obtain 

(-q + r)u1,O - (-q - 8)'110,0 - 1 _ (p + S)Ul,l - (p - r)ul,O - 1 
(p + r)Uo,1 - (P - 8)UO,0 - 1 - (-q + 8)U1,1 - (-q - r)uO,l - 1 . 

This is of the form 

where 

(p + §)Ul,O - (p - f)uo,o - 1 _ (q + f)Ul,l - (q - 8)Ul,0 - 1 
(q + 8)UO,1 - (q - f)uo,o - 1 - (p + f)U1,1 - (p - 8)'110,1 - 1 

(p, ij, f, 8) = (-q,p, 8, r). 

(2.18) 

(2.19) 

(2.20) 
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Therefore this rotation generates the equivalence transformation 

ra : (p, q, r, S) f-+ (-q,p, s, r). (2.21) 

Suppose that for a particular choice of parameters (p, q, f, s) equation (2.19) has a con­

servation law 

(SA: - id)F(ic, i, uo,o, uo,!) + (Sf - id)C(k, i, '110,0, Ul,O) = O. (2.22) 

Then, applying st to this and expanding, we obtain 

F(k, I, '110,0, UO,l) - F(k - 1, l, U-1,O, u-l,d + C(k - 1, l + 1, U-l,l' uo,d 

-C(k - 1, I, '11-1,0, '110,0) = o. 

In terms of the original variables, this amounts to 

F( -I, k, Uo,o, Ul,O) - F( -l - 1, k, Uo,l, Ul,l) + G( -l - 1, k + 1, u},}, u},o) 

-C( -l- 1, k, UO,}, uo,o) = 0, 

which can be written as 

(Sk - id)G( -l - 1, k, UO,I, uo,a) + (SI - id)[-F( -l, k, uo,o, Ul,O)] = O. (2.23) 

This is a conservation law for the original NQC equation (2.17) with the parameters 

(p,q,r,s) = (q,-p,s,f). 
In the same way, we can examine the effect of reflections upon conservation laws. Let 

Then 

k = -k, l = l, u(k,I) = u(-k,I) = u(k,I). 

u{k -l,l) = u(l- k,i) = u(k + l,l), 

u(k - 1, i + 1) = u(l- k, i + 1) = u(k + 1, l + 1), 

u(k,I + 1) = u(-k,l + 1) = u(k,l + 1). 
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So stuck, i) = Sku(k, l) and StuCk, i) = S,u(k, l). As before, write the NQC equation 

(2.17) in terms of the new variable as follows: 

(p + S)U-l,O - (p - r)uo,o - 1 _ (q + r)u_l,l - (q - S)U-l,O - 1 
(q + S)11o,l - (q - r)11o,o - 1 - (p + r)u_l,l - (p - S)u.a,l - 1 . 

Now apply Sir, and rearrange to obtain 

(-p + r)ul,O - (-p - s)uo,o - 1 _ (q + S)Ul,l - (q - r)ul,O -1 
(q + r)11o,l - (q - s)uo,o - 1 - (-p + S)Ul,l - (-p - r)11o,l - 1 . 

This is of the form (2.19) with 

(p, q, r, s) = (-p, q, s, r). 

Therefore the above reflection amounts to the equivalence transformation 

rb: (p,q,r,s) ....... (-p,q,s,r). 

The conservation law (2.22) amounts (after applying Sk-d to 

(2.24) 

(2.25) 

(Sk - id)[-F( -k, l, Uo,O, uo,d] + (8, - id)G( -k - 1, I, Ul,O, Uo,o) = O. (2.26) 

Note that r + S and Ip2 - q21 are invariants of the group generated by r a and r b• 

For certain parameter values, the NQC equation is degenerate in one of two senses: 

either it can be factorized into a pair of linear PDEs, or it can be integrated to yield an 

OLlE. These degenerate cases are classified by the following two lemmas. 

Lemma 2.1. If p2 = q2 then the NQC equation is Jactorizable. 

Proof Substituting p = q into (2.17) and rearranging this as a polynomial equation gives 

the factorization 

(Ul,O - Uo,l) [(q + r)(q + S)Ul,l - (q - r)(q - s)uo,o - 2q] = O. 

Substituting p = -q into (2.17) gives 

(uo,o - ul,d [(q + r)(q + S)Uo,l - (q - r)(q - S)Ul,O - 2q] = O. 

o 
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Lemma 2.2. If at least one of p, q and at least one of r, s are zero then the NQC equation 

may be reduced to an O~E. 

Proof. Without loss of generality, we may restrict attention to the case q = r = O. All 

other cases may be obtained from this one by using r a and rb. Note that if p = q = r = 0 

then (2.17) is a trivial equation, so assume that p =f. O. 

If s = 0 then the NQC equation reduces to 

[1 + P(UO,l - ul,d] [1 + p(uo,o - Ul,O)] = 1. 

Hence 

(S, + id) In [1 + p(uo,o - Ul,O)] = 0, 

which reduces to the O~E 

In[1 + p(Uo,o - Ul,O)] = (-I)lf(k), 

where f(k) is an arbitrary function. 

If p =f. s =f. 0 then the substitution u(k, l) H (1 - s/p)ku(k, l) + 1/ s reduces the NQC 

equation to 
(p2 _ S2)Ul,O - p2uo,o _ UO,l 

S2 U1 ,O - Ul,l - UO,l 

which can be rearranged as 

(5, +id)In (1- :~::) = In (~). 
This may be integrated to yield the O~E 

In (1- :::) = iln (~) + (-1)'f(k). 

Finally, if p = s =f. 0 then u(k, l) H u(k, l) + 1/ s reduces the NQC equation to 

(S, + id) (Uo,o) = 2, 
Ul,O 

which yields the O~E 

UO,O = 1 + (-1)' f(k). 
Ul,O 

o 
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We now seek to to simplify the NQC equation by using equivalence transformations. 

All choices of p, q, r, s are considered, subject only to the two nondegeneracy constraints: 

2. at most one element in each of the pairs {p, r}, {p, s}, {q, r}, {q, s} is zero. 

These constraints will be assumed to hold from here on. We will use point transformations 

of the form 

u(k,l) 1-+ ).kl1,lu(k,l) + f(k,l), 

where)., J.t are nonzero constants, to simplify the coefficients of the NQC equation. 

Case I: s = r, (p'l- r2)(q2 - r2) -:F 0 

In this case, the NQC equation can be transformed into the cross-ratio equation [47J, 

a( Ul,O - uo,o) _ Ul,l - Ul,O 

f3( UO,l - uo,o) - Ul,l - UO,l 
a -:F 0, f3 =/: 0, a -:F {3. 

Here a = p2 - r2 and f3 = q2 - r2. If r = s = 0, the required transformation is 

k 1 
u(k,l) H u(k,l) + - + -, 

p q 

which gives a = p2 and f3 = q2. Otherwise, the transformation is 

u(k,l) 1-+ (p - r)k (q - r)' u(k,l) + 21 ; 
p+r q+r r 

Case II: s = r, (p2 - r2)(q2 - r2) = 0 

(2.27) 

(2.28) 

(2.29) 

Here at least one of the coefficients (p ± r) and (q ± r) is zero. Furthermore, the 

nondegeneracy constraints are only satisfied if exactly one such coefficient is zero. Conse­

quently r is nonzero. By using the equivalence transformations generated by r Q, we can 

set q + r = 0 without loss of generality; then the NQC equation amounts to 

(p + r)ul,O - (p - r)uo,o - 1 _ 2rul,O - 1 
2ruo,o - 1 - (p + r)ul,l - (p - r)uO,l - 1 . 

The point transformation 

P - r 4r 1 
( )

k ( 2)' u(k,l) 1-+ p+ r p2 _ r2 u(k,l) + 2r (2.30) 
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reduces the NQC equation to 

Ul,O - uo,o = Ul,O 
uO,o Ul,l - UO,l 

Case III: s = -r ':/: 0 

Here the NQC equation amounts to 

(p - r)(ul,O - uo,o) - 1 (q + r)(ul,l - Ul,O) - 1 
(q - r)(uO,l - Uo,o) - 1 = (p + r)(ul,l - uo,d - 1 . 

29 

(2.31) 

At least three of the four coefficients must be nonzero, for otherwise the non degeneracy 

constraints are violated. We can use ra and rb to set (p + r)(q + r) ':/: o. Then the 

transformation 
k l 

u(k,l) ~ u(k,l) + - +-
p+r q+r 

simplifies the NQC equation to 

(p2 - r2)(ul,O - uo,o) - 2r _ Ul,l - Ul,O 
(q2 - r2)(Uo,l - uo,o) - 2r - Ul,l - UO,l 

Case IV: S2 ':/: r2 

First note that the transformation 

reduces the NQC equation to 

1 
u(k,l) ~ u(k,l) +­

r+s 

(p + S)Ul,O - (p - r)Uo,o (q + r)ul,l - (q - S)Ul,O 

(q + S)UO,l - (q - r}uo,o = (p + r}ul,l - (p - S)Uo,l . 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

At least one of the coefficients in each numerator and denominator in (2.35) must be 

nonzero, for otherwise (2.35) reduces to an OLlE or a trivial identity. Therefore at least 

four of the eight coefficients are nonzero. Suppose that (2.35) can be transformed by an 

element of the group generated by r 4, rb into a form for which 

(p + r)(p - s)(q + r)(q - s) ':/: O. (2.36) 
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Then the transformation 

u(k, l) ~ (p - s) k (q - s) I u(k, l) 
p+r q+r 

reduces (2.35) to 

(p2 _ S2)Ul,O - (p2 - r2)uo,o _ Ul,l - Ul,O 

(q2 - S2)UO,1 - (q2 - r2)Uo,O - Ul,l - UO,l 

30 

(2.37) 

(2.38) 

We have already seen that this equation can be reduced to Q36=o, which has two essential 

parameters. 

All that remains is to consider whether there are any circumstances in which the 

coefficients cannot be transformed to satisfy (2.36). If only one coefficient is zero, it can 

be transformed into q+s = 0, which does not violate (2.36). Suppose then, that q+s = 0 

and that at least one of the factors in (2.36) is also zero. Clearly, p - sand q - s must 

be nonzero to satisfy the nondegeneracy constraints. The case q + r = 0 does not need to 

be considered, as this violates 82 :j:. r2. Finally, if p + r = q + 8 = 0 then the rotation r a 

transforms these conditions to q + s = -p + r = 0, and so (2.36) is satisfied. 

This completes the classification of the simplified forms of the NQC equation. We have 

shown that, up to equivalence transformations, the only nondegenerate cases of NQC may 

be mapped to one of (2.27), (2.31), (2.33) and (2.38). 

2.2.2 Three-point conservation laws of the simplified equations 

In this section we present a complete classification of the three-point conservation laws 

of (2.27), (2.31), (2.33) and (2.38). These conservation laws have been obtained by the 

method described in Section 2.1. The computer algebra system MAPLE [74]( see Appendix 

A.l) was used to carry out the calculations, details of which are omitted. 

Case I A complete set of three-point conservation laws for the cross-ratio equation 

(2.27) is 

ll' 
1) F= , 

UO,l - uo,o 
{J 

G=--~-, 
Ul,O - uo,o 
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2) F = auo,o , 
UO,l - Uo,o 

G = _ (3ul,O 
Ul,O - uo,o 

3) F = aUO,OUO,l , 
Uo,l - uo,o 

G = _ (3UO,oul,O 
Ul,O - uo,o 

, 

, 

4) F = (_l)k+l (2In[uO,1 - uo,o] -In[a]), 

G = -( _l)k+l (2In[ul,O - uo,o] -In[(3]). 

Case II A complete set of three-point conservation laws for equation (2.31) is 

1) F = Uo,l, 
Uo,o 

G = Ul,O 
Ul,O- Uo,o 

, 

2) F = (_l)k+lln[uo,o], 

G = -( _1)11:+1 In [Ul,O - uo,oj. 

Case III A complete set of three-point conservation laws for equation (2.33) is 

1) F = In [(q2 - r2)(Uo,1 - Uo,o) - 2r], 
UO,l - Uo,O 

G = -In [(p2 - r2)(ul,O - uo,o) - 2r], 
Ul,O - uo,o 

2) F = (-l)k+lln[(uO,l - uo,O)«q2 - r2)(uo,1 - uo,o) - 2r)], 

G = -( _l)k+lln[(ul,O - Uo,O)(p2 - r2)(ul,O - uo,o) - 2r)J. 
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Case IV A complete set of three-point conservation laws for equation (2.38), except for 

the cases p = r, q = -8 and p = -8, q = r, is 

1) F = In [ UO,l - Uo,O ] 
(q2 _ s2)Uo,1 - (q2 - r2)uo,o ' 

G = -In [ Ul,O - uo,o ] 
(r - S2)Ul,O - (r - r2)uo,o ' 

2) F = (-1)k+1In[(uO,1 - uo,O)«q2 - s2)uO,l - (q2 - r2)uo,o)], 

G = -( -l)k+lln[(ul,o - uo,O)«p2 - 82)Ul,O - (p2 - r2)Uo,o)]. 

If p = r, q = -8 in (2.38) then the three-point conservation laws are 
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1) F = In [Uo,l - Uo,o], 
Uo,o 

G = -In [UI,O - Uo,O] , 
UI,O 

2) F = (-l)k+lln[Uo,o(uO,1 - Uo,o)], 

G = -( -l)k+lln[ul,O(UI,O - Uo,o)], 

3) F = (k + 1) In [Uo,IU- Uo,o] -In[UO,IUO,o], 
0,1 

G = -(k + l) In [UO.O(Ul.O - UO,O)]. 
UI,02 

Finally, if P = -s, q = r then the three-point conservation laws are 

1) F = In [uo.! - uo.o], 
UO.I 

G = -In [U!,O - Uo,o], 
uo,o 

2) F = (-l)k+lln[Uo.I(UO.l - uo,o)], 

G = -( -l)k+lln[uo,O(Ul,O - Uo,o)], 

3) F = (k + l) In [uo,o( uo,~ - Uo.o)], 

G = -(k + l) In [Ul'OU'::!~'O] + In[UI,OUo,oJ. 
1,0 
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2.2.3 Constructing the conservation laws of the NQC equation 

Having classified the conservation laws of the simplified representatives of each equivalence 

class, we now show how to obtain conservation laws of the original NQC equation for a 

particular example. If 

(p,q,r,s) = (-1,2,1,1) (2.39) 

then the NQC equation amounts to 

2uo,o - 1 _ 3UI,l - UI,O - 1 
3Uo,l - uo,o - 1 - 2Uo,l - 1 

(2.40) 

This case satisfies the condition r = s, p + r = 0, so (2.40) is a sub case of Case II. From 

the discussion in §2.2.1, all equations in Case II can be obtained by applying one of the 
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rotations generated by r a to 

(p + f)U1,0 - (ft - f)ito,o - 1 _ 2fu1,0 - 1 
2fito,0 - 1 - (ft + f)U1,1 - (ft - f)UO,l - 1 . 

(2.41) 

To obtain the NQC equation with coefficients (2.39) we need to apply ra to (2.41) once: 

Therefore, from (2.20), the choice of coefficients in (2.41) that corresponds to (2.40) is 

3uo ° - U1 ° - 1 2Ul 0 - 1 , , --_...:...'---
2uo,0 - 1 - 3UO,1 - Ul,l - 1 . 

(2.42) 

Equation (2.42) has two conservation laws which can be obtained from the conservation 

laws for (2.31) by inverting the transformation (2.30). After rescaling (for convenience)l 

these are 

A A A 3(2ito,1 - 1) 
1) F(k,l,uo,o,Uo,d = 

2(2uo,0 - 1) , 
A A A 2U10 - 1 

G(k, l, uo,o, U1,0) = 3A ' AI' 
Uo,o - U1,0-

2) F(k, i, ito,o, ito,l) = (-I)k+i+1ln[1 - 2uo,0], 

G(k,i,itO,0,U1,0) = (-I)k+Cln[3uo,0 - U1,0 -1]. 

So (2.23) tells us that the NQC equation with (p, q, r, s) = (-1,2,1,1) has the two con­

servation laws 

A 2~0-1 
1) F(k, l, uo,o, uo,d = G( -l - 1, k, UO,l, uo,o) = 3 ' 1 ' 

UO,l - Uo,O-
A _ 3(2u1,0 - 1) 

G(k,l,~,O,Ul,O) = -F(-l,k,uo,0,U1,0) - 2(2uo,0 -1) , 

2) F(k, l, ~,o, ~,t} = (_I)k-lln[3uo,1 - ~,o - 1], 

G(k, l, uO,o, U1,0) = -( _1)k-lln[1 - 2uo.o]. 

2.3 Three-point conservation laws for ABS equations 

In this section we present all three-point conservation laws for integrable equations on the 

quad-graph that are listed in [5J; these were found by the method described in §2.1. 

All three-point conservation laws for these equations are listed in Table 2.1. We omit 

the details of our calculations, which were carried out using the computer algebra system 
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MAPLE [74J(see Appendix A.l); they are very complex and it is impossible to present 

them in any suitable form. Three-point conservation laws for HI, H36=o and Q16=o have 

already appeared in [34] and previous sections. One conservation law for Q4 involves the 

following Jacobi elliptic functions with modulus K: 

cn(a) = cn(a; K), ns(a) = ns(a; K), dn(a) = dn(a; K). 

This conservation law can be derived from a Backlund transformation, as described in 

[3,9J. 

Note that in all three-point conservation laws for ABS equations, the component F 

does not depend upon a and G does not depend upon (3. Therefore the conservation laws 

from Table 2.1 are valid for all functions a = a(k) and {3 = (3(l). 

For the simplest quad-graph equations Q16=O' HI, H3,s=o, there are 4 three-point .con­

servation laws. Orphanidis also found 4 conservation laws for the discrete sine-Gordon 

equation [58J. This led to an opinion that perhaps this number of conservation laws is 

associated with integrability. However Table 2.1 shows that many integrable quad-graph 

equations have fewer than 4 three-point conservation laws. It seems likely that every in­

tegrable quad-graph has infinitely many conservation laws (see also Orphanidis' comment 

[58] about generating these in a nonlocal form by repeated Backlund transformations). 



Eq. 

Q16=O 

Q16=1 

Q2 

Q36=O 

Q36=1 

Table 2.1: Three-point conservation laws for equations from the ABS classification 

Generators 

Fl = -P(uo,o - UO,I)-I, F2 = -{3uo,o(uo,o - UO,l)-I, F3 = -{3UO,OUO,I(UO,O - UO,I)-I, F. = _(_l)k+1 (21n (UO,o - UO,I) -In(p», 

Gl = o.(uo,o - Ul,O)-I, G2 = OUl,O(UO,O - Ul,O)-I, G3 = auo,OUl,O(UO,O - Ul,O)-I, G. = (_I)k+1 (2 In (uo,o - Ul,O) -In(o.», 

Fl = In ({3 - UO,I + UO,o) -In (P - uo,o + uo,d , F2 = -( -1)k+1 (In (P - UO,I + UO,O) + In ({3 - UO,o + UO,I) -In({3», 

Gl = In (0: - UO,O + Ul,O) - In (0: - Ul,O + UO,O), G2 = (-I)k+1 (In (0: - UO,O + Ul,O) + In(o. + uo,o - Ul,O) - In(o.)) , 

Fl = _(_I)k+1 (In (~,O + ({32 - UO,1)2 - 2UO,O({32 +UO,I») -In({3»), 

Gl = ( _1)k+1 (In (~,O + (02 - Ul,O)2 - 2uo,o(o.2 + Ul,O») -In(o.») , 

Fl = In (UO,1 - {3uo,o) -In (PUO,1 - UO,O), F2 = _(_1)1.+1 {In (UO,1 - PUO,o) + In (/3uo,1 - UO,o) _In({32 -I)}, 

Gl = In (OU1,O -UO,O) -In(Ul,O -auo,O) , G2 = (-I)k+1 (1n(aul,O-UO,O)+In(Ul,o-auo,O) -In(a2 -1», 

Fl = _(_I)k+1 {In {(1- {32)2 + 4{3(UO,1 - IJuo,O)(IJuo,1 - uo,o)} -In ({3({32 -1»), 

Gl = (-I)k+1 {In {(1- 0.2)2 + 4a(Ul,O - auo,O)(aul,O - UO,O» -In {a (a2 - 1»), 

Continued on next page 
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Q4 

K=±1 

HI 

H2 

H36=O 

Generators 

Fl = -( -1)II:+lIn (ns(,8)("~'1 + .. ~,O) - K2SD(,8)~,I"~,O - 2cn(,8)dn(,8)ns(,8) UO,lUO,O - 80(.8») , 

G1 = (_1)11:+1 In (lIS(a)( .. ~,o + .. ~,o) - K2sn(a) .. to"~,o - 2cn(a)dn(a)ns(a)u1,ouo,O - sn(a») , 

F2 = -In(tanh(.8)UO,OUO,l + UO,O - UO,l - tanh(P» + In(tanh(P)UO,OUO,l - UO,O + UO,l - tanh(P», 

G2 = In(tanh(a)uo,OU1,O + UO,O - U1,O - tanh(a» -In(tanh(a)UO,OU1,O - UO,O + U1,O - tanh(a», 

F1 = -(-I)k+1 (2uo,OUO,l -,8), F2 = - (uo,O - UO,I) (UO,OUO,l - (J), Fa = -(-1)k+1 (UO,o + UO,l) (UO,OUO,1 - (J), 

G1 = (_1)11:+1 (2UO,OU1,O - a), G2 = (UO,O - U1,0)(UO,OU1,O - a), Ga = (_1)11:+1 (UO,O + U1,O)(UO,OUl,O - a), 

F4 = -{-I )k+1 (2UO,02UO,12 - 4,8uo,OUO,l + P2) , 

G4 = {-I)k+1 (2UO,02u1,02 - 4auo,OU1,O + a2) , 

F1 = -(-1)"+1 (2UO,OUO,l - {J2 - 2fJuo,o - 2{JUO, 1) , F2 = -(-I)k+IIn {{J + UO,O + UO,I) , 

G1 = (-I)k+1 (2UO,OU1,O - a2 - 2auo,o - 2au1,O) , G2 = (_I)k+' In {a + UO,O +U1,O), 

Fl = -(-I)k+1fJuo,oUO,lo F2 = -(-I)k+I{J{UO,OUO,I}-l, Fa = (UO,02 - UO,1 2)({JUO,ouo,d-1, F4 = -(_I)k+1 (UO,02 + UO,1 2)(.8UO,OUO,l)-I, 

Gl = (-I)k+lauo,OUl,O, G2 = (-I)"+'a(UO,oul,O)-I, G3 = (Ul,02 - uo,02)(auo,oul,O)-l, G4 = (-I)k+1 (UO,02 + Ul,02)(auo,OUl,O)-l, 

Continued on next page 
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Eq. Generators 

H36=1 
Fl = -(-I)k+l ln (,8 + UO,OUO,l), F2 = -(-1)"+1,8(,8 + 2UO,OUO,l)' 

Gl = {-I)"+lln (a + UO,OUl,O), G2 = {-I)"+la (a + 2UO,OUl,O), 

A16=O 
Fl = -(-I)k+ I ,8(uo,O + UO,l)-l, F2 = ,8uo,o(uo,o + UO,l)-l, F3 = -(-1)"+I,8UO,OUO,l(UO,O + UO,l)-l, 

Gl = (-I)"+la (UO,o +Ul,O)-l, G2 = aul,0 (UO,O + Ul,O)-l, G3 = (-1)"+lauo,DUl,O(UO,O +Ul,O)-l, 

F. = -(-1 )10+1 (2 In (uo,o + UO,l) - In(,8)) , 

G. = (_1)"+1 (2ln(uo,o + Ul,O) -In(a)), 

Fl = _(_1)10+1 (2ln(uo,o + UO,l +,8) -In(,8)) , F2 = _(_1)10+1 (2ln(uo,o + UO,l -,8) -In(,8)), 
A16=1 

Gl = (_1)"+1 (2ln (UO,o + Ul,O + a) -In(a)), G2 = (_1)"+1 (2ln (UO,o + Ul,O - a) -In(a)) , 

A2 
Fl = _(_1)10+1 (2ln(UO,OUO,l -,8) _In(,82 -I», F2 = _(_1)"+1 (2 In{,8UO,OUO,l -1) _1n(,82 -1)), 

Gl = (-I)k+1 (2 In (UO,OUl,O - a) -In{a2 -I» , G2 = {-I)k+1 (2 In (auo,oul,O - 1) -In(a2 -1») . 
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UO,l 

• • 

U-l,Oe-----.-.----.Ul,O 
Uo,O 

• • UO,-l 

Figure 2.2: Form of a five-point conservation law 

38 

2.4 Five-point conservation laws for ABS equations. 

The simplest higher conservation laws are defined on five points. These can be arranged 

in various configurations, but for each of the ABS equations the one shown in Figure 2.2 

gives the conservation laws in their most concise form. The functions F and G are of the 

form 

F = F(k, I, Uo,-b U-l,O, Uo,o, Uo,l), G = G(k, l, Uo,-l, U-l,O, UO,o, Ul,O). 

Therefore the determining equation for the five-point conservation laws is 

F(k + 1, l, Ul,-I, Uo,o, Ul,O, Ul,l) - F(k, I, UO,-l! U-l,O, uo,o, Uo,l) + 

G(k, I + 1, Uo,o, U-l,l, Uo,l, Ul,l) - G(k, I, Uo,-b U-l,O, Uo,o, Ul,O) = o. 

(2.43) 

(2.44) 

Shifted versions of each quad-graph equation are used to eliminate U-l,b Ul,-l and Ul,l' 

The direct method yields three five-point conservation laws for Hl and H3,s=o. For 

the other .equations, the complexity of the calculations has prevented us from solving the 

determining equation (2.44) directly when F and G are of the form (2.43). However, for 

each of the equations Hl and H36=o, the three five-pOint conservation laws can be written 
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in the form 

Fl = F(k, l, U-l,O, Uo,o, Uo,l), 

F2 = F(l, k, UO,-l, Uo,o, Ul,O), 

F3 = kFl + lF2 , 

Gl = G(k, l, U-l,O, Uo,O, Ul,O), 

G2 = G(l,k,uo,-l,UO,O,Uo,l), 

G3 = kGl + lG2• 

39 

This suggests that, for each of the remaining ABS equations, we should seek a five-point 

conservation law of the form 

F = F(k, l, U-l,O, uo,o, Uo,d, G = G(k, l, U-l,O, Uo,o, Ul,O)' (2.45) 

By substituting (2.45) into (2.11) we obtain a determining equation that is simpler than 

(2.44): 

F(k + 1, l, Uo,o, Ul,O, Ul,l) - F(k, I, U-l,O, Uo,o, UO,l) + 

G(k, 1 + 1, U-l,l' Uo,l, Ul,l) - G(k, l, U-l,O, Uo,o, Ul,O) = o. 

Shifted versions of the quad-graph equation are used to eliminate U-l,l and Ul,l' 

(2.46)' 

By using the direct method to solve (2.46) we found one five-point conservation law 

for Q1cS==O,1, Q3cS==o, H2, H3cS=l, AlcS=o,l, A2. Let 

(2.47) 

be the solution of (2.46) for an ABS equation. All ABS equations are invariant under the 

transformation 

k -+ f, 1 -+ k. 

Therefore each of the above equations has a second five-point conservation law, 

(2.48) 

For equations Q2, Q36=1 and Q4, we could not solve the simplified determining 

equation (2.46) directly. However, we observed that each of the other ABS equations has 
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'two five-point conservation laws of the form: 

= S;l(_l)k+IQ - aln(ul,O - U-l,O), 

1 k 1-=SI- (-1) +F+aln(uO,l-UO,-l), 

(2.49) 

Here f is a function and a is a constant; furthermore, P and Q are components of a 

three-point conservation law of the same equation, of the form 

(2.50) 

Table 2.1 shows that most equations from the ABS classification have a three-point con­

servation law of the form (2.50); the only exceptions are HI, H36=o, whose five-point 

conservation laws we have already found. Therefore we have sought two five-point con­

servation laws that can be written in the form (2.49) for each of the remaining equations 

Q2, Q36=1 and Q4. By substituting Fl , Gl from (2.49) into (2.11) we obtain the deter­

mining equation for f and a. For each of Q2, Q36=l and Q4, this determining equation 

can be solved by the direct method. 

So far we have described how to find two five-point conservation laws for all ABS 

equations. Our results for HI and H36=o suggest that other equations from the ABS 

classification may have a third conservation law that is related to the other two as follows: 

We find that in (2.51) the two conservation laws must be written in the form 

1 HI - 1 HI - ( FI = -SIS; (-I) G - S; (-1) G + ad U-l,O, Uo,o, UO,l) + a2, 

Gl = (_l)k+IQ + Skl (-l)k+IQ - a3ln(ul,O - U-l,O), 

F2 = (_l)k+IP + SI- l ( _l)k+IP + a3ln(uO,I - uo,-d, 

(2.51) 

G2 = -SkSi1( _l)k+IP - Sil( _l)k+IP - ad(Uo,-l, Uo,o, Ul,O) + a2. (2.52) 

Here F, Q and f are the same as in (2.49), and the constants ai can be found by sub­

stituting (2.51) into (2.11). The terms SISk1(-1)k+IQ and SkSI-1(-1)k+lP depend on 
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U-l,b Ul,-l! which do not lie on the cross (2.43); these variables can be eliminated by 

shifted versions of the quad-graph equation. 

The results of the above are summarized in Table 2.2, in which we list the genera­

tors Pi and Oi of the five-point conservation laws for each of the ABS equations. The 

corresponding conservation laws are 

= (F't,Ch), 

= (F2, (2), 

In Table 2.2 we use Fn and Gn to denote the components of nth three-point conservation 

law for the same equation as given in Table 2.1. For Q4 alone, we have presented the result 

without eliminating U-l,l, Ul,-l, as this is far shorter than the result after elimination. 

We have checked that all five-point conservation laws cannot be reduced to lower-order 

conservation laws; in other words, they are independent of those which we have found so 

far. 

All of the three-point conservation laws apply to non autonomous equations, for which 

a and {3 are not constants. However, each equation from the ABS classification has only 

one five-point conservation law whose component G does not depend upon a and one 

five-point conservation law for which F does not depend upon {3. Consequently, if exactly 

one of a and {3 is constant then only one of the five-point conservation laws survives. If 

neither a nor {3 is constant, none of the above conservation laws hold. 



Eq. 

Q1.s:0 

Q16""1 

Q2 

Q36:O 

Table 2.2: Generators for five-point conservation laws for equations from the ABS classification 

Generators 

Fl = (-I)I:+IF4 - 8;1 (-I)I:+IG4 + 2 In((UO, 1 - U-l,O)(O:(UO,l - UO,O) + J3(uo,o - U-l,O»), 

al = (-I)"+lG4 + 8;1 (-I)"+lGc - 41n(Ul,0 - "'-1,0), 

F2 = (-I)"+IF4 + 811(_1)1:+1 F4 + 4ln(UO,1 - uo,-d, 

a2 = (-I)k+IG4 - 811 (-I)"+IFc - 2ln«"'1,0 - uo,-l)(a(uo,o - UO,-l) + J3(Ul,O - UO,O»), 

Fl = -In«UO,l - uo,o +J3)(uo,o - "'-1,0 - O:)(UO,l - "'-1,0 - 0: + ,8)-1 (a(uo, 1 - UO,o) + ,8(uo,o - "'_1,0»-1), 

a1 = In«UI,O - uo,o + a)(uo,o - U-I,O - a)(Ul,o - U_l,0)-2), 

F2 = -In«uo,o - UO,-l - ,8)(UO,l - UO,O + ,8) (UO,l - UO,_1)-2), 

a2 = In«uo,o - UO,-I -13)(ul,o - UO,O + a)(Ul,o - UO,-1 + a -13)-I(J3(Ul,o - UO,o) + a(uo,o - UO,_I»-I), 

Fl = (-I)"+'F1 - 8;1 (-I)"+lG I + In((U~l,O + «a - (3)2 - UO,I)Z - 2u-l,o«a - ,8)2 + UO,I)(auo,1 + (a - (J)(a{J - uo,o) - (J"'_1,0)2), 

Gl = (-I)I:+IGl + S;;I(-I)I:+IG1 - 4 1n("'1 ,0 - U-l,O), 

Fz = (-I)I:+IFl + SI1 (_I)"+1 Fl + 4ln(UO,l - UO,-l), 

a2 = (_I)"+IGI - SII( -1)1:+1 Fl -In«U~,_1 + «a - ,8)Z - Ul,O)2 - 2UO,-1«a - ,8)2 + Ul,O»(auo,-l + (a - 13)(00/3 - UO,o) - /3"'1,0)2), 

Fl = -In «au-l,o - uo,O)(/3UO,l - "'0,0)(/3"'0,1 - au_1,O)-I(I3(I- a Z)uo,l + (002 - 132)"'0,0 - 00(1- J32)U_1,O)-1), 

al = In «au1,O - UO,o)(UO,o - au-l,O)(U1,O - U_l,O)-2) , 

F2 = -In ((,8UO,l - "'O,O)(,8uo,-l - UO,O)(UO,l - uo,_d-2) , 

G2 = In «aul,O - UO,o)(UO,o - {JUO,-l)(aul,O - ,8UO,_l)-l({J(1 - ( 2)uo,_1 + (a2 -132)uo,o - a(1 - (J2)"'I,O)-1) , 
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Q36=1 

Q4 

HI 

H2 

H36=O 

Generators 

Fl = (-I)k+IFl - S;l(-I)k+IGl + 1n«(a2 - {32)2 + 4a{3(auo,l - {3U-l,O)({3UO,l - aU_l,o»({3(1 - a 2)uo,1 + (a2 - {32)UO,O - a(l- {32)U_l,O)2), 

01 = (-I)k+IG1 + S;1(-I)k+IG1 - 41n(U1,O - U-1,O), 

F2 = (-I)k+IF1 +S,1(-I)k+IF1 +41n(UO,1 - UO,-1), 

02 = (-I)k+IGl - Sj1(_I)k+1 Fl _In«(a2 _/J2)2 + 4a{3(aUl,O - {3UO,-1)({3Ul,O - auo,-1»({3(1 - ( 2)uo,_1 + (a2 - {32)UO,O - a(1 - {32)U1,O)2), 

Fl = -S,S;l(-I)k+IGl-S;l(-I)k+IGl+ 

21n«sn(a - {3)2(1 + K 2sn({3)2sn(a)2) - sn(.8)2 - sn(a)2)uo,1 U-1,O + sn(a)sn({3)(U~,l + U~l,O - sn(a - {3)2(1 + K2U~,1 U~l.O»)' 

01 = (-I)k+IGl + S;l(-I)k+IGl - 41n(Ul.O - U-l.O), 

F2 = (-I)k+IF1 +Sjl(-I)k+IF1 +41n(UO,1 -UO.-1), 

02 = -SkSjl{-I)k+IF1- S,l(-I)k+IF1-

21n{{sn{a - {3)2(1 + K 2sn{{3)2sn(a)2) - sn({3)2 - sn(a)2)U1.0UO._1 + sn(a)sn({3)(uto + U~._1 - sn(a - {3)2(1 + ~utOU~._l)))' 

Fl = -In (UO.l - U-l.O), F2 = -In (UO.l - UO,-l) , 

01 = In (Ul.O - U-l.O), 02 = In(Ul.O - UO.-l), 

Fl = (-I)k+lF2 - S;1(-I)k+lG2 + 1n«{3 - a - UO.1 +U-l.O)({3 - a + UO,l - U_1.0)3), 

0 1 = (-1)k+IG2 + S;1(-I)k+IG2 - 41n{U1.0 - U-1.0), 

F2 = (-1)k+lF2 +S,l(-1)k+IF2 + 41n{UO,1 - UO.-1), 

02 = (-I)k+IG2 - S,1(_I)k+1 F2 -In{{a - {3 - Ul,O + uo.-l)(a - {3 +U1,O - UO._1)3), 

Fl = -In(auo'1-{3u-l.O)UO,~), F2 = -1n(UO.l-UO.-l)UO.~), 

0 1 = In (U1.0 - U=-1.0)~j,~)--,---- 02 = In ({3U1.0 - auo.-t>UO,~) , 
Continued on next page 

@ 
~ 
~ 
~ 
~ 

8 
~ 
trj 

~ 
~ 

~ 
~ 
~ 
~ 

~ 

"" 



Eq. 

H36=1 

A16=O 

Al&=1 

A2 

Generators 

Fi = (-I)k+IFI - S;I(-I)k+IOI + In((,BUO,1 - QU-l,O)(auo,1 -I3U_l.O)3), 

01 = (-I)k+IOI + S;I(-I)k+IOI - 4ln(Ul.0 - U-l,O), 

F2 = (-I)k+IFI +Sjl(-I)k+IFI +4ln(UO.l-UO.-l), 

02 = (-1)k+101 - Sjl(_I)k+lFI -In((OUl.0 - Puo.-l)(,BUl.0 - auo,_1)3), 

Fl = (_I)k+IF4 - S;I(-I)k+104 + 2ln«UO.l - U-l.0)(a(UO.l + UO.O) -13(uo.o +U-l.0))), 

a 1 = (-1)k+104 + S;I(-I)"+104 - 4ln(Ul.O - U-l,O), 

F2 = (-l)k+lF4 + Sj""I(_I)k+lF4 + 4 In(UO, 1 - UO.-l), 

a2 = (-1)"+104 - Sj""I(-I)"+lF4 - 2ln«Ul.0 - uo.-1)(I3(Ul.0 + UO.O) - a(uo.o + UO.-l))), 

Fl = (-l)k+I(Fl + F2) - S;I( -1)"+1(01 + 02) + 2ln«(a -(3)2 - (UO.l - U_l,o)2)(a(uo,1 + UO,o) -13(uo,o + U_l,o))2). 

01 = (-l)"+I(GI + 02) + S;I(-I)"+I(OI + G2) - 8ln(Ul,O - U-l.0), 

F2 = (-l)k+/(FI + F2) + Sjl(_I)k+I{Fl + F2) + 8ln{UO,l - UO,-I), 

02 = (-I),.,+I(GI +02) - Sj""I(-l)"+I(FI + F2) - 2ln«(a -(3)2 - (Ul,O - UO,-1)2)(I3{Ul,O + UO,o) - a(uo,o + UO,_1))2}, 

Fl = (-I)k+I(FI + F2) - S;I(-I)"+I(OI + G2) +2ln«auo,1 -l3u-l,o)(Puo,1 - OU_l,o)(a(I-132)uo,1 - u-l.o(I3(1 - £1'2) + (£1'2 - ,B2)UO,OUO.l»2), 

01 = (-I)k+l(Gl +02) + S;I(-I)k+I(OI +02) - 8ln(Ul,O - U-l,O), 

F2 = (-l)k+I(Ft + F2) + Sjl(-l)"'+I(FI + F2) + 8 In(UO, 1 - UO,-I), 

02 = (_l)k+l(GI + O2) - Sj""I(_l)lt+l(FI + F2) - 2ln«l3ul,O - QU(),-I)(OUl,O -l3uo,-I)(I3(l - a 2)Ul,o - UO,-I(a(1 -(32) + (fP - a 2)uo,OUl,O»2), 

@ 
;:t:.: 
'"0 

~ 
~ 
~ 

8 
~ 
~ 
~ 
~ 
~ 
~ 
~ 

~ 
tI:>-



Chapter 3 

Symmetries 

3.1 Symmetries of quad-graph equations 

The general form of the ABS equations on the quad-graph is 

(3.1) 

The transformation 

is a symmetry for (3.1) if 

(3.2) 

whenever (3.1) holds. Lie symmetries are obtained by linearizing the symmetry condition 

about the identity, as follows. We seek one-parameter (local) Lie groups of symmetries of 

the form 

UO,O = Uo,o + e'fJ + O(e2
), 

ak = elk + e~l(k, ak) + O(e2
), (3.3) 

The functions 'fJ, ~l and ~2 are components of the characteristic Q of the one-parameter 

group. The function 'fJ depends on finitely many shifts of U(},O; this is discussed in the next 

45 
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section. By shifting (3.3) in the k and'l directions we obtain 

Ui,j = Ui,j + €S~stTJ + O(€2), 

0k+i = Qk+i + eel(k + i, Qk+i) + O{€2), 

for every i,j E Z. Expanding (3.2) to first order in € yields the linearized symmetry 

condition 

xp=o whenever (3.1) holds, 

where 

3.2 The method 

If we were to seek only Lie point symmetries, then TJ would be of the form 

However, we shall consider higher symmetries that depend upon the values of the depen­

dent variable on a 3 x 3 square that is centred on (k, l). By using the quad-graph equation 

to eliminate the corner nodes (Figure 3.1), we simplify TJ to the following form: 

(3.5) 

As TJ depends on five values of the dependent variable, we call such symmetries five-point 

symmetries. 

In fact TJ can be simplified still further. To show this, we apply a symmetry generator 

(3.4) to (3.1) and obtain the linearized symmetry condition: 

This expression has to be satisfied by all solutions of (3.1). Let 
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UO,l 

• • 

U-l,Oe-----..... ----.... Ul ,0 
uo,o 

• • UO,-l 

Figure 3.1: Form of a five-point symmetry 
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denote the result of solving (3.1) for Uo,O, Ul,O, UO,l and Ul,l respectively. In the follow­

ing, to save space, we suppress the dependence on k, l, Ok and f31, and we use ih,l to 

denote Ul,l (Uo,o, Ul,O, Uo,d. To write out the linearized symmetry condition explicitly, we 

substitute 

UO,-l =uo,o( Ul,-I, Uo,O, Ul,O), 

UI,2 =UI,I (UO,I, UI,I, UO,2), 

Ul,l =Ul,l, 

into (3.6), to obtain 

17(Uo,o(UO.O, U-l,t, UO,I). UO,O(Ul,-t. Uo,o, U1,O). UO,o, Ul,O. UO,l)PuQ,Q 

+ 17(Uo,o, Ul,-I, U1,0. U2,O. ih,l)PUI ,Q + 17(U-l,l. Uo,O, UO,l, ilt,l, UO,2)PUQ ,1 

+ 17(uo,lr UI,O, U1,1, UI,I (UI,O, U2,O, ii l ,l), ih,l (UO,l, ii l ,l, uO.2»PU" , + elPo• + e2Pfjl = 0, (3,7) 

By differentiating (3.7) with respect to U-l,l and Ul,-l, we obtain the necessary condition' 

a2 
PUQ,o a au 77(flo,o(uo,o, U-I,b uo,d, flo,O(Ul,-lr Uo,O. UI,O). UO,O, Ul,O, UO,l) = o. (3.8) 

U-I,l 1,-1 

The coefficient of 77 is nonzero, so the solution of (3.8) shows that." can be split into 

the sum of two functions which have a simpler form than (3.5). New conditions for 77 can 
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be obtained, for instance, by differentiating (3.7) with respect to U-l,O and UO,-l' Taken 

together, all such conditions give a system of PDE's with the following solution 

where 'T]k and 'T]l are functions which have to be found. Therefore we have demonstrated 

that 'fJ is of the form 'T]cro"s, which is the sum of the terms in the k and I direction 

separately. Similarly it is possible to show that for any higher-order symmetry generator, 

if 'T/ is simplified to depend only on values on a cross, it consists of two separate terms in 

the k and 1 direction respectively. 

We now explain the method for calculating the characteristics Q for a given quad­

graph equation. By substituting 'T/cros" into (3.7) we obtain the following determining 

equation for 'T/k, 'TJl, el and 6 (again, we suppress k, l, O!k, f31 for brevity). 

(T)k(iio,o(uo,o, U-l,l, uo,d, Uo,O, 'lLl,O) + 111 (UO,O(UI,-b Uo,O, Ul,O), Uo,O, uo,d)PuQ,Q 

+ (1Jk(UO,O, Ul,O, U2,O) + 11I(Ul,-1, UI,O, ul,d) PU1,Q 

+ (17k ( U-l,l, UO,l> Ul,l) + T)/( UO,O, UO,I. UO,2) PUO,I + ('1k (UO,l, iii ,1> iil,l (Ul,O, U2,O, ul,d) 

+ 111 (Ul,O, iil,l, Ul,l (UO,l> al,l, UO,2)))PU1 ,: + ~lPQ. + 6Pp, = O. (3.9) 

To solve this functional equation we use an idea which is described in Section 2.1, namely 

we reduce it to a PDE. By differentiating (3.9) with respect to U2,O we obtain 

(3.10) 

This is a functional-differential equation, but it contains fewer sets of arguments than 

(3.9) does. The first term can be eliminated by dividing by PUl,o and then differentiating 

with respect to UO,I, to obtain 

8 (PUl 1 8 ( - - ( - ))) 0 -8 -p. '-8 'T/k UO,l,Ul,l,Ul,l Ul,O,U2,O,Ul,l =, 
UO,I Ul,O U2,O 

After making the substitution 



CHAPTER 3. SYMMETRIES 49 

we get a PDE for the function 'flk and solve it. The constraints for the function 'fll can be 

found in a similar way. 

So far, we have differentiated the determining equations (3.9) twice; this has created 

a hierarchy of functional-differential equations that every five-point symmetry must sat­

isfy. The unknown functions 'flk, 'fll, ~1 and ~2 can be found completely by going up the 

hierarchy, a step at a time, to determine more constraints. As the constraints are solved 

sequentially, more and more information is gained about the functions. At the highest 

stage, the determining equation is satisfied. 

3.3 Five-point symmetries of integrable equations on 

the quad-graph 

In this section we present all five-point symmetries for integrable equations on the quad­

graph that are listed in [5]; these were found by the method described in the previous 

section. 

All five-point symmetries for these equation are listed in Table 3.1. In these tables 

cn(a) = cn(a; K) and dn(a) = dn(aj K) are Jacobi elliptic functions with modulus K. 

In [15] it was shown that when K = 0, equation Q4 is equivalent to the case Q36=1' 

When K = 0, all symmetries for equation Q4 are equivalent to the symmetries for 

equation Q36=1' We omit the details of our calculations, which were carried out using the 

computer algebra system MAPLE [74](see Appendix A.2); they are very massive and it 

is impossible to present them in any suitable form. Five-point symmetries for HI, H36=o 

and Q16=o have already appeared in [26, 46, 47, 48, 50, 52, 53, 60, 72, 73J. 

Note that each equation from the ABS classification has two nonpoint symmetries in 

the k direction and two non point symmetries in the l direction. In each case, one of these 

symmetries in the k direction depends explicitly on k; in the next section, we denote this 

symmetry by X km • The other symmetry in the k direction does not depend on kj we will 

denote it by Xk. Similarly, we will denote the nonpoint symmetries in the 1 direction by 

X'm and X" 
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So far we have seen symmetries only for autonomous equations, for which a and f3 

are constants. The same point symmetries occur even when a and f3 are not constant. 

However, there are no other five-point symmetries in the k (respectively l) direction if a 

(respectively (3) is not constant. 



Table 3.1: Symmetry generators for equations from the ABS classification @ 
~ 
~ 

Equations Generators ~ 
-------------------------------------------------------------------------------~ 
Q16=O Xl = aOa + pop, X2 = ouo,o' Xa = UO,oouo,o' X 4 = (UO,O)20uo,0, X5 = (UI,O - uO,o)(uo,o - U-I,O)(Ul,O - U_I,O)-louo,o, 

X6 = (UO,1 - UO,o)(UO,o - UO,-I)(UO,1 - UO,_I)-louo,o, X 7 = k(UI,O - UO,o)(UO,o - U-I,O)(UI,O - U_I,O)-louo,o + aOa, 

Xs = I(Uo,1 - Uo,o)(UO,o - UO,-I)(UO,1 - UO,-l)-louo,o + Pop, 

Q16=1 Xl = ouo,o' X2 = UO,oouo,o + aOa + {3op, Xa = {a2 + (UI,O - UO,o)(UO,o - U-I,O)}(UI,O - U_I,O)-louo,o, 

X4 = {{32 + (UO,1 - UO,o)(UO,o - UO,-I)}(UO,1 - UO,-l)-louo,o, X5 = k{a2 + (Ul,O - UO,o)(UO,o - U-I,O)}(UI,O - U_I,O)-louo,o + aOa, 

X6 = l{{32 + (UO,1 - UO,o)(uo,o - uo,-t}}(UO,1 - UO,-l)-louo,o + Pop, 

Q2 Xl = 2UO,oouo,0 + aOa + {3op, X2 = {(UO,o - UI,O)(UO,O - U-I,O) - a 2(2uo,o + UI,O + U-I,O) + a 4}(uI,O - U_I,O)-louo,o, 

Xa = {(UO,o - UO,I)(UO,O - UO,-l) - P2(2UO,o + UO,I + UO,-l) + p4}(Uo,1 - UO,_t}-louo,o, 

X4 = k{(uo,o - UI,O)(UO,O - U-I,O) - a2(2UO,o + UI,O + U-I,O) + a 4}(uI,o - U_I,O)-IOUO,o - aOa, 

X5 = l{(uo,o - UO,I)(UO,O - UO,-l) - {32(2uo,o + UO,I + UO,-l) + p4}(UO,1 - UO,-I)-18uo,o - {3op, 

Continued on next page 
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Equations Generators @ 
------------------------------------------------------------------------------------------> 

Q36=0 Xl = UO,OO"",O, X 2 = {(I + ( 2)uo,O(UI,O + U-l,O) - 2a«uo,o)2 + Ul,OU-l,O)}(Ul,O - U_l,O)-lO"",o, 

X3 = {(I + ,82)UO,O(UO,1 + uo,-d - 2,8{(UO,O)2 + uo,luo,-d}(uo,1 - UO,_I)-lO"O,o. 

X 4 = k{(1 + ( 2)uo,O(UI,O + U-1,O) - 2a«UO,O)2 + Ul,OU-I,O)}(Ul,O - U_l,O)-10 .. o,o + a(a2 
- 1)0"" 

Xs = 1{(1 + ,82)UO,O(UO,1 + UO,-I) - 2,8«UO,o)2 + 1£O,I1£O,-l)}(Uo,l - UO,-l)-l o"O,o + ,8(,82 - 1)0,8, 

Q36=1 Xl = {2a(1 + ( 2)UO,0(U1,O + 1£-1,0) - 402(1£1,01£_1,0 + (UO,O)2) - (1 - ( 2)2}(1£l,O - 1£_1,O)-10uo,o, 

X 2 = {2,8(1 + ,82)UO,O(UO,1 + UO,-l) - 4,82(Uo,lUO,_1 + (Uo,O)2) - (1- ,82)2}(ua,1 - Uo,-I)-l o"O,o, 

X3 = k{2a(1 +(2)Uo,0(1£1,O +1£-1,0) - 4a2(1£l,01£_1,0 + (1£0,0)2) - (1- ( 2)2}(1£l,O - 1£_1,0)-1°"0,0 +2a2 (a2 -1)0"" 

X4 = 1{2,8(1 + ,82)ua,O(Uo,1 + 1£0,-1) - 4,82 (UO,IUo,-1 + (1£0,0)2) - (1- ,82)2}(Uo,1 - Uo,_I)-10"",o + 2,82(,82 - l)o{3, 

Q4 Xl = {cn(a)dn(a)Uo,O(1£l,o + 1£-1,0) + sn2(a)(1 + J(21£_l,O(Uo,O)21£1 ,O) - 1£-1,01£1,0 - (ua,O)2}(1£l,O - 1£_1,0)-1°"0,°' 

X 2 = {cn(,8)dn(,8)Uo,O(Uo,1 + ua,-I) + sn2(,8) (1 + K21£O,_I(1£O,O)21£o,I) - 1£0,-11£0,1 - (ua,0)2}(1£0,1 - 1£o,-d-10"O,o, 

X3 = k{cn(a)dn(a)1£o,o(1£l,O + 1£-1,0) + sn2(a)(1 + K 2u_l,O(UO,O)21£1,O) - 1£-1,01£1,0 - (1£o,0)2}(1£l,0 - 1£_1,0)-1°"".0 + sn(a)oa, 

X 4 = l{cn(,8)dn(,8)1£o,O(1£o,1 + 1£0,-1) + sn2(J3) (1 + K2UO,_1(UO.0)21£o.d - UO.-l1£o,1 - (Uo,0)2}(Uo,l - 1£o._d-1o"O.o + sn(,8)o{3, 

when K = ±1 Xs = {1 - (Uo,O)2}o"O.o, 

Continued on next page 
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Equations Generators @ 
------------------------------------------------------------------------------------------> '1::1 

~ 
~ 
~ 

HI Xl = ao +8p. X 2 = 8t1(j.o, X3 = (-1)k+18t1(j.o, X4 = UO,oatl(j.O +2a80 + 2/38p, Xs = (-1)k+lUO,o8t1(j.o, 

X6 = (UI,O - U_I,O)-latl(j.O, X 7 = (UO,1 - UO,_I)-18t1(j.o, Xs = k(UI,O - U_I,O)-18t1(j.o - 80 , X9 = I(UO,1 - UO,-I)-18uo•o - 8p, 

tI) 

H2 Xl = 8t1(j.o - 280 - 28p. X2 = (-l)k+latl(j,o' X3 = uo,o8t1(j,o +a80 + /38p. X4 = (UI,O + U-I,O + 2UO,o + 2a)(UI,O - U_l,O)-18t1(j,o. ~ 
tr:I 

H3,s=o 

H3,s=1 

Xs = (UO,l + UO,-l + 2uo,o + 2/3)(UO,1 - UO,_l)-latl(j.o. Xa = k (UI,O + U-l,O + 2UO,o + 2a)(UI,O - U_I,O)-18t1(j,o - ao • 

X7 = I (UO,l + UO,-l + 2UO,o + 21J)(UO,1 - UO,_I)-18t1(j,O - 8p • 

Xl = 000 + paP. X 2 = uo,o8..o.o' Xs = (-l)k+lUO,oa.....D. X. = UO,O(UI,O + U-I,O)(UI,O - U_I,O)-Ia.....D. 

Xs = UO,O(UO,I + UO,-t}(UO,1 - UO.-I)-I8..0.o' Xe = kuo,O(UI,O + U-I,O)(UI,O - U_I,O)-latoo•D + a80 • 

X7 = lUO,o(UO,1 + UO.-I)(UO,1 - UO,-I)-18too•o + paP. 

XI = uoA.o + 2080 + 2{Ja1l. X2 = (-1)k+luo,o8..o.0' Xs = (20 + UO.oUI,O + UO,OU-I,O)(UI,O - U-I,O)-18uo,o. 

X. = (2P + UO.oUO,1 + UO.oUO,-I)(UO,1 - UO,-I)-18uo.o. Xs = k(2a + UO,OUI,O + UO,OU-I,O)(UI,O - U_l,O)-18too•o + 000 • 

X6 = 1(21J + UO,OUO.l + UO.oUO,-I)(UO,l - uo,_t}-18uo.o + paP. 

Continued on next poge 
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· Q Equations Generators ;:x:: 
------------------------------------------------------------------------------------------~ 

A16=o Xl = a8a + P8p, X2 = (-1)k+18uo.o, Xa = uo.o8uo.o, X 4 = (-1)k+I(uo.o)28uo.o, 

Xs = (UO,o +UI,O)(UO,O +U-I,O)(UI,O - U_I,O)-18uo•o, X6 = (UO,o + UO,I)(UO,o +UO,-d(UO,1 - UO,-I)-18uo.o, 

X 7 = k(UO,o + UI.O)(UO,O + U-I,O)(UI,O - U_I,O)-18uo.o + a8a , Xs = l(uo,o + UO.I)(UO,O + UO,-I)(UO.I - UO._I)-18uo.o + pap, 

A16=1 Xl = (-I)k+18uo•o, X 2 = Uo,o8uo•o + a8a + P8p , Xa = {a2 - (Uo,o + UI,O)(UO.o + U-I,O)}(UI,O - U_I,O)-18uo.o, 

X4 = {f32 - (Uo,o + Uo,I)(Uo,O + Uo,-I)}(Uo,1 - Uo,_I)-18uo•o , Xs = k{02 - (Uo.o + UI,O)(Uo,o + U-I,O)} (UI.O - U_I,O)-18uo,o - 08a , 

X6 = I{P2 - (Uo,o + Uo,I)(Uo,O + Uo,-l)} (Uo,l - Uo,_I)-18uo•o - P8p , 

A2 Xl = (-I)k+lUO.o8 ..... o • X 2 = {(I + a2)Uo,O(UI,O + U-l.O) - 20(1 + (Uo,O)2UI,OU-I,O)}(UI,O - U_I,O)-18uo•o • 

X3 = ({I + f32)UO,O(Uo,1 + Uo,-l) - 2P(I + (Uo,O)2UO,IUo,-I)}(Uo,1 - Uo,-I)-18uo.o• 

X4 = k{{1 + a2)Uo,O(UI,O + U-I,O) - 20(1 + (Uo,O)2UI,OU-I,O)}(UI,O - U_l,O)-18uo•o + 0(1 - a2)8a • 

Xs = l{{1 + f32)Uo,O(Uo,1 + Uo,-l) - 2P(I + (Uo,O)2Uo,lUo,-1)}(Uo.l - Uo,-I)-18uo•o + P(I - f32)8p. 
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3.4 Mastersymmetries 

Definition 1. A mastersymmetry for a symmetry generator X is a symmetry generator 

Xm such that 

is an infinite set of linearly independent symmetry generators. 

For continuous integrable systems, FUchssteiner [24, 55, 56] has explained the link 

between mastersymmetries and symmetries that are linear in the independent variables. 

Furthermore, [73] showed that the dKdV equation also has mastersymmetries that are 

linear in the independent variables. For each of the ABS equations with constant a 

and {3, the generators Xkm and X'm have this property, which suggests that they may 

be mastersymmetries. An algebraic approach to mastersymmetries gives the following 

criterion [23, 64, 70]. 

Theorem 3.1. A symmetry Xm is a mastersymmetry for the symmetry X if it satisfies 

[[Xm , Xl , Xl = o. (3.11) 

Here [.,.J denotes the commutator. 

By checking these properties for all symmetries from Table 3.1 we find that Xkm is 

a mastersymmetry for Xk and X'm is a mastersymmetry for X, for each equation in the 

ABS classification. Therefore we can obtain a hierarchy of symmetries in the k direction: 

Similarly, there is a hierarchy of symmetries in the l direction: 

As an example, consider the autonomous equation Ql c5=o' The commutator of sym­

metries X 7 and X5 gives us a new symmetry: 

X - (Ul,Q - Uo,O)2(UO,Q - 1Ll,O)2 ( 1 + 1 ) a 
9 - uo o· 

(Ul,O - U_l,O)2 U2,O - UntO UntO - U-2,O ' 
(3.12) 
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This symmetry cannot be reduced to any lower-order symmetry, for its characteristic 

depends on U2,O, U-2,O. The symmetry (3.12) lies on a line of five points; if we apply the 

mastersymmetry a second time we will obtain an expression which lies on a seven-point 

line, and so on. The same situation occurs for each of the ABS equations, namely the 

order of a symmetry increases by two each time one applies a mastersymmetry, creating 

hierarchies with the following dependencies: 

Xkn = 1Jkn(u-n ,o, U-n+l,O, ... , Un-l,O, Un,o)ouo,o' 

X'n = 'T1ln{Uo,-n, Uo,-n+b ... ,Uo,n-l,'Uo,n)Ouo,o· 



Chapter 4 

Toda type equations 

In this chapter we compute conservation laws and symmetries for an example of the Toda 

type system that corresponds to the autonomous equations HI and QI6=O: 

1 1 1 1 ----+ =0. 
'ltl,-l - Uo,o 'It-l,-l - Uo,o 

(4.1) 
'ltl,l - 'lto,o 'It-l,l - Uo,o 

This equation is the so-called missing identity of Frobenius [25, 76]. 

4.1 Symmetries of Toda type equations 

We can use the connection between integrable quad-graph equations and Toda type sys­

tems to transform symmetries of quad-graph equations into symmetries of the correspond. 

ing Toda type systems. A Toda system can be obtained from any equation in the ABS 

classification 

by the substitution 

S-l­
'ltO,l = k 'ltl,l' S-l- - ( ) 'ltI,O = I 'ltl,l' 'It-I,O = Uo,l 'It-l,-I, Uo,-t. Uo,O . 

(4.2) 

(4.3) 

Here, we are using the notation introduced in §3.2. Note: it is necessary to make the 

substitution 'It_I,O = UO,l('It-I,-l,Uo,-t,Uo,o) after the substitution 'ltO,1 = SklUI,1 because 

equation (4.2) does not depend on 'U-l,O. 

57 
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We have verified that each of listed symmetries for the ABS classification can be 

transformed to a symmetry for the corresponding Toda type system by the substitution 

(4.3). 

The characteristics of symmetries for (4.1) can be obtained by transformation of the 

characteristics of the symmetries for HI and QI6=O by (4.3). Note that for HI and Q16co 

the substitutions (4.3) are different. 

The point symmetries stay the same after substitution (4.3) for both HI and QI6=o; 

they are 

Xl = Quo,o' X 2 = (-I)k+IQuo,o' X3 = Uo,oQ"O,o, 

X4 = (-I)k+IUQ,oouo,o, X" = Uo,02 ouo,0' 

(4.4) 

(We have omitted the components ~l and ~2' because (4.1) does not depend on Q or /3.) 

The commutators of (4.4) yield one more symmetry generator: 

The rescaled remaining five-point symmetries of HI transform by (4.3) to 

X
7 

(Uo,o - u-l,-d( Ul.-l - Uo.o) a 
"0,0' 

Ul,-l - U-l.-l 

Xs (uo.o - u-l.-d(u-l.l - Uo.o) a 
UO,o' 

U-l.l - U-l.-l 

X _k(Uo.o - u-l.-d(Ul.-l - Uo.O} a 
9- uo~, 

Ul.-l - U-l.-l 

X _l(Uo.o - U-l.-l)(U-l.l - Uo,O) a 
10 - uo,o' 

U-l.l - U-l.-l 

The same result is obtained from the symmetries for Q16_0' All these symmetries were 

found in the previous chapter. The Toda system (4.1) also has mastersymmetries. As 

expected, X9 is the mastersymmetry for X7 and X10 is the mastersymmetry for X 8 • Two 

hierarchies of the local symmetries therefore can be constructed. 

In the same way, each Toda system for the other quad-graph equations has mastersym­

metries that can be obtained from the mastersymmetries of the corresponding quad-graph 

equations. 

Note that the five-point symmetries for (4.1) lie on the same ~ve-point cross on which 

the Toda system is defined (Figure 4.1), not on the one which is in Figure 3.1. 
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Figure 4.1: Five-point symmetries for (4.1) 

4.2 Conservation laws of Toda type equations 

The connection between integrable quad-graph equations and Toda type systems is de­

scribed in the Introduction. It follows that a conservation law for a quad-graph equation 

is a conservation law for the corresponding Toda type system. 

Some of the conservation laws for (4.1) are 

• Fl = -(UO,1 - ua,-I)(UO,1 - U_l,O)-I(uo,_1 - 1£_1,0)-1, 

Gl = (Uo,o + UO,-1 - U-l,O - U-l,-I)(UO,O - U_l,_I)-I(UO,_1 - U_I,O)-I, 

• F2 = (-l)k+l(ua,1 - UO,-l)(UO,1 - "'-I,O)-I(UO,_1 - U-l,O)-I, 

G 2 = (-l)k+l(uo,o +U-l,O - UO,-l - U-l,-t>(UO,o - U_l,_I)-l(UO,_1 - U_I,O)-I, 

• F3 = -U-I,O(UO,1 - UO,-I)(UO,1 - U_l,O)-I(UO,_1 - U_l,O)-I, 

G 3 = (ua,OUO,-1 - U-l,OU-l,-I)(ua,O - U_l,_.)-I{uO,_l - U-l,O)-I, 

• F4 = -(-1)k+lu _1,0(UO,1 - uo,-d(UO,1 - U_l,O)-I(UO,_1 - U_l,O)-I, 

G4 = (-l)k+l(uO,OU_l,O - UO,-IU-l,-t}(UO,o - U_l,_tl-1(UO,_1 - 14_1,0)-1, 

• F5 = -U_l,02(UO,1 - uo,-d(UO,1 - U-I,O)-I(uo,-1 - U-l,O)-I, 

G - uO,OUO,_I U _l,O - UO,OU-l,OU-l,-1 + UO,OUO,-IU-I,-1 - UO._IU_I,OU_I._I 
5 - , 

(UO,o - U-l,-I)(UO,-1 - U-I,O) 

• F6 = -(-1)k+lu _1,02(UO,1 - UO,-t}(UO,1 - U-l,O)-I(ua,-1 - U_I,O)-I, 

G - (-l)k+I(ua,oUo,_IU_l,O + UO,OU-I,OU-l,-1 - UO,OUO,-I U-l,-l - UO,-lU-l,OU-l.-d 
6 - ) I 

(UO,o - U-l,-t}(ua,-1 - U-I,O 

• F7 = -21n(U_l,1 - 1£0,0) + In(U_l,1 - "'-1,-1) + In(uo,1 - UO,-I), 

G7 = 21n(uo,0 - Ul,-I) -In(Ul,O - U-l,O) -In(Ul,-1 - U_I,_I), 
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• Fa = _(_1)k+1(21n(u_l,1 - UQ,o) -In(u_l,l - U-l,-I) + In(uO,1 - Uo,-l», 

Ga = (-1)k+I(21n(Uo,o - UI,-l) + In(uI,o - U-l,O) -In(ul,_1 - u-I,-d). 
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The first six were obtained by transforming the conservation laws for HI and QI6=o. 

The other two were found directly. It is known that (4.1) has a variational formulation 

[5, 14, 15, 18] with the Lagrangian 

L = In(ul,l - Uo,o) -In(ul,-l - Uo,o). (4.5) 

Noether's Theorem for difference equations [21, 37, 42, 75] produces conservation laws 

from variational symmetries, it is not known whether the converse is true. However we 

can obtain symmetries for (4.1) from the above conservation laws. If we divide each 

expression 

(4.6) 

by (4.1) we obtain symmetry characteristics. Symmetries which correspond to the first 

six conservation laws are 

Xl = 8uo,0! X 2 = (-I)k+18uo.0 ! X3 = Uo,o8uo,0' 

X 4 = (-1)k+lUo,o8uo•o! Xs = uoi8uo,0! X6 = (-1)k+lUo ,028uo ,0' 

(4.7) 

The -rh and 8th conservation laws have logarithmic form and it is not clear how to factor 

out equation (4.1). However from (4.6) we obtain 

(4.8) 

(4.9) 

It is easy to check that X 7 = Q78uo•o and Xs = Qs8uo,0 are variational symmetries [57] for 

(4.5). On solutions of (4.1) Q7 and Qs are undefined expressions of the form U}. This 

problem can be solved by expanding the characteristics as Taylor series and taking into 

account relation (4.1). So we obtain equivalent not nonvariational symmetries for (4.1): 

X - (UO,O - U-l,-l)(U-l,l - Uo,o) (uo,o - U-I,-l)(UI,-l - UO,O)) !l 
7 - - VUO,O! 

U-I,l - U-l,-l Ul,-l - U-l.-l 

Xs = (_I)k+1 (Uo,O - U-I,-.)(U-I,l - Uo,o) _ (Uo,o - U-l,-l)(Ul,-l - Uo,o)) 811.0.0' 

U-I,l - U-l,-l Ul.-l - U-l,-l 
(4.10) 
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In the previous section we show that (4.1) has two mastersymmetries for X7 and therefore 

these are mastersymmetries for X7: 

Xm1 = 

Xm2 = 

k(Uo.o - 1Ll.-l)(Ul.-l - Uo.o) a 
uo.o' 

Ul.-l - U-l.-l 

l(Uo.o - U-l.-l)(U-l.l - Uo.o)a. 
UO,o' 

U-l.l - U-l.-l 

Since Xm1 and Xm2 depend just upon U-l.-l, Ul.-b U-l.lt Uo.o, Xm1 and Xm2 are also 

mastersymmetries for Xa. So infinite hierarchies of local symmetries can be obtained. 

Then we can check which are variational symmetries. If there is a varia.tional symmetry 

one can construct a conservation la.w from it with the help of the discrete version of 

Noether's Theorem. 



Chapter 5 

Application of conservation laws and 

symmetries 

5.1 High-order conservation laws 

New conservation laws can be obtained by applying the generator of a five-point symmetry 

repeatedly to a known conservation law [10, 11, 57J. For instance, let us consider equation 

HI. By applying the infinitesimal generator (which is found in the previous chapter) 

k 
X = 8'1.100 -8a 

Ul,O - U-l,O • 

to the conservation law 

F = -In (UO,l - U-l,O), G = In (Ul,O - U-l,O), 

then adding a trivial conservation law, we obtain 

At present, there is no proof that this method will always yield a new conservation law 

(that cannot be reduced to a known or trivial one); however, we do not know of any 

counterexamples. 

We know from the previous chapter that each equation from the ABS classification 

has symmetries in the k and l directions. By applying symmetries in the k direction to 
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where Q(k, I) is a solution of 

Q(k + 1, I) - Q(k, I + 1) + A(k, l) = 0, 

and where 

lJ(k, I) = B(k, I) + Q(k + 1, 1+ 1) - Q(k, I). 

This simplification greatly speeds up the computations, without affecting the number of 

independent conservation laws that exist. When the direct method is used we find that 

F = 8u~,OUO.l«k,l) 

+ 4 UO,l (UO,l u~,oll(k, 1) + 2UO,l'UO,oe(k, l) + 4~(k, l)Uo,o - 2 «k, 1 + I)C(k, I) + 2 C(k, l + l)(k, 1 + 1» 

+ 2 uo,lT (lI(k, I)C(k, 1+ 1) - lI(k, l)C(k, 1) + 2 «k, 1 + l)UO,l + 2 ~(k, 1+ 1) - 2 ~(k, I)) + lI(k, 1)'U~.1 T2 

«k,l) «k.l)2 • 

G = -8 uo,o ('Ul,OUO,O - C(k, I» «k, 1) 

- 4Ul,O (2«k, l + I)C(k, 1) + 4~(k, l)uo,o + Ul,Oll(k, I)u~,o - 2 v(k, l)C(k, l)uo,o + 2uI,o{(k, l)uo,o) 

-2 ul,oT (lI(k, l)C(k, I) + lI(k, l)C(k, 1 + 1) - 2/J(k, l) + 2 ul,o«k, l + 1) + 2 /J(k, 1 + 1» _ lI(k, l)utoT2 

«k, l) «k, 1)2 ' 

where T = v(k, l)C(k, l)-II(k, l)C(k, 1+1)-2 J.t(k, l)-2 J.t(k, l+I). Here {(k, l), J.t(k, l), lI(k, l) 

and (k, l) are functions which satisfy the following constraints: 

~(k + 1, I) = -(k, I), (k + 1, l) = (k, 1 + 1), (5.3) 

lI(k + 1, l) = -1I(k, l), lI(k, 1 + 1) = -1I(k,l), (5.4) 

2{(k,I)(k,l) + 2(k, 1+ l)(k, l) = -411(k, l)J.t(k, I) - lI(k,l)2C(k,I), (5.5) 

B(k l) = 4J.t(k,l) + lI(k,I)C(k,l) (5.6) 
, 2(k,ij 

Note: at this stage, we have not completed the direct method calculation of the conserva­

tion laws, but the above necessary conditions lead to a substantial further simplification 

of the problem. 

The general solution of the system (5.3), (5.4) is 

«k, l) = H(k + I), {(k, I) = -H(k + l- 1), lI(k, I) = CI( _1)k+1, (5.7) 
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a conservation law with component F in the k direction we also obtain a conservation 

law with component F in the k direction. In this way we might construct an infipite 

hierarchy of conservation laws with component F in the k direction and another hierarchy 

of conservation laws with component G in the l direction. 

5.2 Conservation laws for generalized dKdV and dpmKdV 

equations 

In this section, we use the existence of three-point conservation laws as an indicator for 

integrability for the generalized nonautonomous dKdV equation 

(UI,1 - Uo,o + B(k, 1))(UI,O - UO,I + A(k, l» = C(k, l), 

and the generalized nonautonomous dpmKdV equation 

[A(k, l) Ul,O - B(k, l)Uo,l] 
UI,I = Uo,o [ _ C(k l) ] . 

Uo,l ,Ul,O 

Namely, we are looking for conservation laws for the generalized nonautonomous dKdV 

and dpmKdV equations by the direct method, which is explained in Section 2.1. During 

the computation we obtain constraints on coefficients of equations which must be satisfied 

if nontrivial three-point conservat~on laws exist. 

5.2.1 The generalized nonautonomous dKdV equation 

The generalization of the nonautonomous dKdV equation 

(UI,1 - uo,o + B(k, l))(Ul,O - Uo,l + A(k, l)) = C(k, l), (5.1) 

where B(k, l), A(k, l) and C(k, l) are arbitrary functions, can be transformed to 

(UI,l - uo,o + B(k, l))(UO,l - Ul,O) = C(k, l), (5.2) 

by the point transformation 

u(k, l) H u(k, l) + Q(k,l), 
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where H(k + l) is an arbitrary nonzero function and Cl is an arbitrary nonzero constant. 

Combining these results with (5.5), and (5.6), we obtain 

B(k,l) = !(-I)k+I(H(k + 1 + 1) - H(k + l- 1». 
Cl 

Therefore three-point conservation laws exist only if the nonautonomous dKdV equation 

is of the form 

(UI'l - Uo,o + ~ (-I)k+I[H(k + 1 + 1) - H(k + l- 1»)) (Uo.l - Ul,O) = C(k, l). (5.8) 

This equation is mapped by the point transformation 

to 

u(k, 1) 1-+ u(k,l) - !(-I)k+IH(k + l-l) 
Cl 

(UI,l - Uo,O)(Uo,l - Ul,O) = C(k,l). (5.9) 

Therefore it is enough to seek conservation laws of (5.9). Applying the full direct method 

to (5.9) gives us one further condition on C(k, l): 

C(k + 1, 1 + 1) - C(k + 1, l) - C(k, 1 + 1) + C(k, 1) = O. 

Consequently all nonautonomous dKdV equations that have nontrivial three-point con­

servation laws can be mapped to 

(UI,l - Uo,O)(Ul,O - Uo,l) = f(k) - gel). (5.10) 

5.2.2 The generalized nonautonomous dpmKdV equation 

In the same way, we apply the direct method to the generalization of the non autonomous 

dpmKdV equation 
[A(k, l) Ul,O - B(k, l)Uo,l] 

Ul,l = Uo,o [ _ C(k l) u J ' Uo,l ,1,0 
(5.11) 

where A(k,l), B(k, l) and C(k, l) are arbitrary functions. Then the components F and 

G are of the form 

F = lI(k,l)Uo,OUo,l - f,(k, l) Uo,l _ «k, 1) Uo,o + ",,(k, l) , 
Uo,o Uo,l Uo,OUo.l 

G = ~(k l)C(k l) Ul,O _ (k l) A(k, l) + «k l) B(k, l) Uo,O _ JJ.(k, l) 
, 'Uo,o 11 , B(k, l) Uo,OUl,O 'A(k, 1) Ul,O C(k,l)Uo,OUl,O' 
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where the functions {, J-t, 11 and ( satisfy the constraints 

{(k + 1, l)(k + 1,1) = {(k, l)(k, I), 

J-t(k+ 1,1)1I(k+ 1,1) = J.I.(k,I)1I(k,I), 

C(k, 1 + 1)IC(k,l) = {(k + l,l)/{(k,1 + 1), 

A(k, I) = (k + I, 1)/{(k,I), 

{(k, 1 + I)Jl(k, 1+ 1) = J-t(k, l)(k, 1), 

1I(k, 1 + 1)(k, 1+ 1) = {(k, 1)1I(k, 1), 

1I(k + 1, l)B(k, 1) = 1I(k,I)C(k,l). 

From (5.12), (5.13) and (5.16), (5.17) we have 

{ 
{(k + 1,I)Jl(k + 1, 1)1I(k + 1, l)(k + 1, I) = {(k,l)J.I.(k,I)1I(k,I)({k,l), 

{(k,l + l)J-t(k,l + 1)1I(k,l + l)(k,l + 1) = {(k, l)J.I.(k, 1)1I(k,I)(k,I), 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

:::} {(k,1)J.I.(k,l)1I(k,l)(k,I) = c, (5.19) 

where c is a constant. Also the conditions (5.12) gives 

e(k, l)(k, 1) = H(I). (5.20) 

Here H(l) is an arbitrary function. So, from (5.19) we have 

c 
J-t{k,I)1I{k,1) = H(l). (5.21) 

Define a new function 'I/J(k, l) by 

t(k I) = 'I/J(k, 1+ 1) 
"', 'I/J{k,l)· (5.22) 

Note that 'I/J(k, 1) is defined up to arbitrary factor that is a function of k only. Then (5.14) 

gives 

C(k l) = 1/J(k + 1,1) 
, 1/J(k, 1+ 1)" 

(5.23) 

From (5.15), (5.20) and (5.22) we have 

H(l) 1/J(k, 1)'I/J{k + 1,1) 
A(k, I) = {(k, l){(k + 1,1) = H(l) 1/J(k, 1+ I)1/J(k + 1,1 + 1)' (5.24) 
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and from (5.17), (5.21) and (5.22) 

v(k, l)¢(k,l + 2) 
H(m + 1)v(k, l + 1) = e(k, l)e(k, 1+ 1)v(k, l) = ¢(k,l)' (5.25) 

Let G(l) be a solution of 

G(l + 1) = H(l 1) 
G(l) + I 

so G(l) is defined up to an arbitrary constant factor. Then (5.25) yields 

G(l + 1)v(k, 1+ 1) = G(l)v(k, I) (k 1) = ¢(k, l)¢{k, l + 1) 
1JI(k, 1+ 1)1JI(k, 1+ 2) 1JI(k, 1)1/J(k, 1+ 1) :} v , G(l)F(k}' 

(5.26) 

Here F(k) is an arbitrary function. From (5.21) and (5.20) we have 

F(k)G(m - I} G(l)¢(k, I) 
f.t{k, I) = c 1JI(k, 1)1JI(k, 1+ 1)' (k,l) = G(l - l)1/J(k, I + I}' 

So far, we have written e(k, I), /-L(k,l), v(k, I), (k, I) in terms of 1JI(k + i, 1 + j) and the 

arbitrary functions F(k), G(l). The condition (5.23) gives C{k, I) in terms of ¢(k+i, l+j). 

The identity (5.24) can written as 

G(l)t/J(k, 1)1/J(k + 1, I) 
A(k, I) = G{l- l)t/J{k, 1+ 1)¢(k + 1, l + 1) 

From (5.18), (5.23) and (5.26), we obtain 

v(k,l) F(k+l)¢(k,l) 
B(k, I) = v(k + 1, I) C(k, l) = F{k)¢(k + 1, l + 1)' 

Therefore, the only equations with nonzero A, B and C that admit three-point conser­

vation laws are of the form: 

u _ 1JI{k, I) (g(l)2¢(k + 1, l)Ul,O - f(k)2¢(k, 1+ I)Uo,I) (5.27) 
1,1 - uo,O ¢(k + 1, 1+ 1) 1/J(k, l + I)Uo,l - t/J(k + 1, I)Ul,O ' 

where g(l)2 = G~~)l) and f(k)2 = Ftctt The transformation 

6(lh(k) 
Uo,o 1-+ Uo,o 'I/J(k, l) , 

where 6~t)1) = gel) and l~-:;)l) = f(k), reduces (5.27) to the standard dpmKdV equation 

[g(I)Ul,O - f(k)Uo,d 
Ul,l = Uo,o [g(l)uO,l - f(k)Ul,Ol' 
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5.3 Similarity solutions 

One way of finding similarity solutions of quad-graph equations was considered in [48, 50J. 

In [6, 7, 13, 15] geometrical aspects are discussed; these papers provide a clear introduction 

to reduction. The authors define three initial points, from which they construct symmetric 

initial conditions for a given quad-graph equation. This approach typically yields an 

integrable map; discrete Painleve equations can be generated in this way. 

Another approach is to reduce the number of variables by requiring that the solution 

is invariant under the symmetries generated by a characteristic. This method is widely 

used for continuous systems [33, 57], and has been applied to the dKdV equation in [73J. 

We shall illustrate the method by seeking nonzero solutions of H36=O that are invariant 

under the symmetries generated by 

Q Q Q Uo,O(Ul,O + U-l,O) 
= 4 - a 2 = - aua,o, 

Ul,O - U-l,O 
a> 1. 

The general solution of the invariance condition Q = 0 (with Uo,O ::/: 0) is 

.... = (ft(l) + (-1)kf,(l)) ( J: ~: r (5.28) 

where it and 12 are arbitrary functions. By substituting (5.28) into H36 .. 0 we find that 

where Cl is an arbitrary constant. If ci ::/: 1 then 12 satisfies the following ordinary 

difference equation: 

aVa2 - 1 (12(1 + 1))2 + 2a(3 12(1 + 1) + ava2 - 1 = 0 (5.29) 
12(l) h(l) , 

which yields a large family of exact solutions, including 
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If Cl = ±1 then there are no further constraints, so there are two families of invariant 

solutions 

Uo,O = 12(1) (-I)' ± (-I)k) ( J: ~:)' {5.30} 

These belong to the following degenerate class of solutions of H3&-o: 

Uo,Q = F(k,l} ((_1)' ± (_1)1:), {5.31} 

where F is an arbitrary function. 



Chapter 6 

Conclusion 

6.1 Conservation laws 

All presented results are obtained with the help of Hydon's method [34]. This method 

is a practical way of determining the conservation laws of a given form. The method of 

invariant differentiation enables the user to obtain closed form solutions of the determining 

equations. Once these solutions have been found, the reconstruction of the conservation 

law is usually easy. The most complicated part of the technique is the derivation of POEs 

by invariant differentiation, but this is not difficult if a reliable computer algebra system 

is used. 

All three-point conservation laws for all equa.tions from NQC equation and the ABS 

classification have been found. For each of the equations from the ABS classification 

we found three five-pOint conservation laws. The effectiveness of Hydon's direct method 

for constructing conservation laws [34] has been improved by using two reductions to 

POEs instead of only one, and by using commuting differential operators to begin the 

reduction. We have used this method as far as possible to calculate conservation laws, as 

this guarantees that all conservation laws of a particular type have been found. However, 

for all but two of the ABS equations, it was necessary to supplement the direct method 

with extra hypotheses, based on the results that we had obtained 80 far. This hybrid 

approach led to the discovery that each of the ABS equations (for constant Q and (3) has 

70 
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three five-point conservation laws. If only one of a and /3 is constant then we can find 

only one five-point conservation law. It seems likely that these are the only five-point 

conservation laws, but we cannot yet be certain that this is so. 

A technique which generates a conservation law from a known one was shown. So far 

it is the only technique which may give an infinite number of conservation laws. This 

technique is easy to use, but it does not guarantee that new conservation law cannot be 

reduced to a known or trivial one. Therefore we cannot say that ABS equations have an 

infinite number of conservation laws. 

An example of conservation laws for a Toda type system is presented. The connection 

between these conservation laws and symmetries is shown. 

We have shown that construction of conservation Jaws provides an efficient tool to 

investigate integrable nonautonomous nonlinear partial difference equations. We used 

these methods to find integrable nonautonomous versions of the dKdV and dpmKdV 

equations. 

ABS equations that are nonautonomous do not admit five-pOint conservation laws 

with G in the k direction when a is not constant; similarly there are no five-point conser­

vation laws with F in the l direction when /3 is not constant. A similar situation arises for 

symmetries: there are no five-point symmetries in the k (respectively I) direction when 

a (respectively /3) is not constant. Recently Levi and coworkers used isospectral and 

nonisospectral deformations of the Lax pair to find symmetries for two of the ABS equa­

tions [38, 39]. They found that the local mastersymmetries disappear if the equations are 

nonautonomous. If the same is true for the other non autonomous ABS equations, this 

may well be the reason why there are no five-point conservation laws. 

We show the program for deriving three-point conservation laws for quad-graph equa­

tions. 

6.2 Symmetries 

The result of this work is the derivation of the complete set of symmetries on a five­

point cross for equations from the ABS classification. We found all symmetries by a 
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generalization of the method which is described in [32]. This confirms that this method 

can be used in a systematic way without making restrictive assumptions about the form 

of symmetries. 

The symmetries that we have found have various applications. For instance, symme­

tries can be used to obtain group-invariant reductions that lead to exact solutions of the 

quad-graph equations. We have only considered a single example of such a reduction (for 

H36=o). However we have shown that all ABS equations have infinitely many symmetries, 

any of which could be used to construct invariant solutions. Five-point and other higher 

symmetries can also be used for the generation of new conservation laws. It is notable 

that all equations from [5] have four five-point symmetries that have similar forms. 

Mastersymmetries for integrable equations on the quad-graph have been derived. 

These mastersymmetries allow us to construct infinite hierarchies of local symmetries. 

It is important to allow mastersymmetries to act on a and /3; otherwise the mastersym­

metries for Q3 and Q4 would not have been found. The existence of mastersymmetries 

shows the similarity of structures for continuous and difference equations. 

We have discussed the relation between the symmetries of quad-graph equations and 

symmetries for Toda type systems. We have also verified that for each symmetry of the 

integrable quad-graph equation there is a corresponding symmetry of the related Toda 

type system. It is not yet known whether this relationship is true for all symmetries of 

integrable quad-graph equations. 

A program for deriving five-point symmetries for quad-graph equations is presented. 

Our results show that the set of symmetries of integrable quad-graphs has similar 

features to the continuous integrable case. It is likely that the same is true for conservation 

laws. 

A general question that arises from Chapters 2 and 3 is how conservation laws and 

symmetries for Q4 coalesce to those of the other ABS equations in appropriate limits of 

the parameters. 

There are large classes of difference equations which have not been considered in this 

thesis, such as multicomponent quad-graph equations or equations that involve more 
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points (for instance the Boussinesq lattice equation which involves 9 points). Looking for 

conservation laws and symmetries for these classes of equations would be a good topic for 

future research. 

The results presented in this thesis have been published in [65, 66, 67, 68, 71]. 



Appendix A 

Maple programs 

A.I Program for deriving three-point conservation 

laws for quad-graph equations. 

This program helps the user to find three-point conservation laws for quad-graph equa­

tions. These conservation laws satisfy a functional equation, which we solve by reducing 

it to a system of partial differential equations. The theoretical part of the program was 

explained before. 

Packages that we use in this worksheet 
> restart; 

> with(DEtools,rifsimp): 

> with(LREtools): 

Input the equation which must depend upon all four values u[k,l], u[k + l,l], u[k,l + 
1], u[k + 1, 1+ 1]. The equation should be linear with respect to u[k + 1, II. u[k + 1, l + 1J 

and polynomial with respect to u[k, I], u[k, l + 1). The equation may involve constants or 

functions, which should be written a, p, ... or ark, l], .a[k, I]' ... , as appropriate. 
> eq:-(u[k+l.1+l]-u[k,l]).(u[k+l,l]-u[k,l+1])+(beta-alpha).(u(k+l,l+l]+u(k+l,l)+u[k 

,l+1)+u[k,l)+beta-2-alpha-2i 

> U[k+l,l):-u[k+l,lJ-aolve(eq,u[k+l,l): 

> U[k+l,1+1]:-u[k+l,l+1]-solve(eq,u[k+l.1+1): 
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eq := (Uk+1,I+l - Uk,l) (Uk+l,l - Uk,l+l) + (/3 - Q) (Uk+l,l+l + Uk+l,' + Uk,l+l + Uk,,) 

Components of throo-point conservation laws 
> f:-F(u[k,l].u[k.l+l]); 

> g:-G(u[k,l],u[k+l.l); 

f := F (Uk,l, Uk,l+l) 

9 := G (Uk", Uk+l,l) 

+ /32 _ 0i2 
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We provide a procedure which differentiates A with respect to C until A is not a 

polynomial in B. For instance if an expression A is a polynomial in two functions Pl(C); 

P2(B) then an expression that does not involve B can be obtained by repeated differen­

tiation with respect to C. 
> SSplit:-proc(A.B,C) 

> local POL; 

> POL:-A: 

> while (type (POL, polynom(anything,B»-falae) do 

> POL:-numer(simplify(diff(POL.C»)i 

> end do; 

> return (POL) ; 

> end proc: 

The three-point conservation la.ws can be determined directly by substituting the quad­

graph equation eq into R = 0, where 

> R:-f-Shift(f,k)+g-shift(g,l); 

and solving the resulting functional equation. In order to solve this functional equation 

we have to reduce it to a. system of partial differential equations. To do this, first elimina.te 
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functional terms by applying (commuting) differential operators L[l], L[2}. After that we 

obtain equation which has two unknown functions with different arguments. In order to 

eliminate one of the functions we use the procedure SSplit. We repeat all this process 

two times, first when we solve eq with respect to u[k + 1,11 and plug it into R and second 

when we solve eq with respect to u[k + 1, 1 + 11 and plug it into R. We derive a system of 

PDE's on F(u[k, i], u[k, i + 1]) 
> for j from 0 by 1 to 1 do 

> assign(U[k+l,l+j]), 

> L[l]:aA->diff(A,u[k,l+j])-diff(u[k+l,l+j),u[k,l+j])/diff(u[k+l.1+j],u[k,l+1-j])* 

diff(A,u[k,l+l-j]): 

> L[2]:-A->diff(A,u[k+l,l+1-j])-diff(u[k+l,l+j],u(k+l,l+l-j)/diff(u(k+l,l+j],u[k, 

l+l-j])*diff(A,u(k,l+l-j): 

> R2:-L[2] (L(l] (R»: 

> unassign('u(k+l,l+j)'): 

> R3:-numer(simplify(R2»: 

> R4:-SSplit(R3,u[k+l,1+1-j],u[k,l+j])j 

> u[k,l]:-a:u[k,l+l]:-b: 

> R5:-numer(primpart(R4,(D(l,2](F)(a,b),D(l,2,2)(F)(a,b),D[l,l,2)(F)(a,b»)): 

> sys[j):-coeffs(RS,u(k+l,l+l-j); 

> unassign('u[k,l]', 'uCk,l+l) '), 

> end do: 

> sysl:-convert({sys[oJ,sys[l]},diff): 

The order of this system can be decreased by two with help of the substitution 
> F(a,b):-int(int(Fl(a,b),a),b): 

> sys2:-simplify(sysl): 

The resulting equations are easy to solve 
> RS:-rifsimp(convert(sys2,diff»: 

> sol:-simplify(convert(pdsolve(RS('Solved']),int»; 

> assign(sol): 

sol := {F1 (a, b) = _C202 + 2 _C2 oa + 2_C2 Q.b + _C2 a2 + 2 _C2 ab + _C2 b2 + _C1 } 
(Q + a + b)2 

It can cause some problems if this solution has arbitrary functions; do not expect 
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the program to find conservation laws in this case. However the preliminary form of 

FI(a, b) can be used for further calculations which can be done with input from the user. 

By integrating back we obtain two arbitrary functions FA(a) and FB(b). The function 

F A(a) can be removed (without loss of generality) by adding the trivial conservation law 
> F(a,b):-int(int(Fl(a,b),a),b)+FB(b)i 

> F:-unapply(F(a,b),a,b): 

F (a, b) := _02 ab - _01 In (a + a + b) + FB (b) 

So far we did not use the fact that f explicitly depends on k, l. Now we redefine 

constants to make them depend upon k,l. 
> f:=subs(_Cl=Cl[k,l],_C2=C2[k,l],_C3-C3[k,l],_C4-C4[k,l],(F(u[k,l],u[ 

k,l+1] ))): 

Now we derive and solve the system of PDE's for G(u[k, ll, u[k, I + I}}. The ex­

pression for F(u[k, l), u[k, 1 + 1]) which we just obtained is used to derive an equation 

for G(u[k, ll, u[k, 1 + 1]). That is why the following procedure is not so difficult as for 

F(u[k, lJ, u[k, 1 + 1]). We use just one differential operator L[1] in order to obtain a POE 
> R:-f-shift(f,k)+g-shift(g,l): 

> assign(U[k+l,l+l]): 

> L[l]:-A->diff(A,u[k+l,l])-diff(u[k+l,l+l),u[k+l,l)/diff(u[k+l,1+1],u[k,l]).d1ff 

(A,u[k,l]): 

> Rl:-simplify(L(l] (R»: 

> unassign('u[k+l,l+l]'): 

> R2:-primpart(SSplit(numer(Rl),u[k,l+1),u[k+l,l]),D[2)(G)(u[k,l],u[k+l,l]»: 

> sysl:-coeffs(R2,u[k,l+1]): 

> RS2:-rifsimp(convert({syal},d1ff»: 

> so:-simplify(convert(pdaolve(aelect(haa,RS2('Solved'],G(u(k,l],u(k+l,l]»),int»; 

> assign(so): 

8012 := {G (Uk,l, Uk+l,l) = - C2k,ICX Uk,1 - Uk,IC2k"Uk+l" + {302k"Uk,,+ 

C1 k"ln (Uk+l,1 + Uk,' + (3) + C2k"{3uk+l,, - C.ek"a Uk+l,' + _C1} 

So far we did not use the fact that 9 explicitly depends on k, l. Again we redefine 
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constants to make them depend upon k, l. 

Now we derive equations for Ci[k,l],i = 1..8 and for FB(u[k,l + 1]) 
> for j from 0 by 1 to 1 do 

> R:-f-shift(f,k)+g-shift(g,l); 

> assign(U[k+l,l+l); 
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> L[1]:-A->diff(A,u[k+j,l+1-j])-diff(u[k+l,l+1],u[k+j,l+1-j])/dift(u[k+l,l+l],u[k, 

l)*diff(A,u[k,l): 

> Rl:-numer(simplify(L(l] (R»): 

> unassign('u(k+l,l+l)'): 

> R2:-numer(simpIify(primpart(Rl,{Cl[k,1),C2[k,1),C3[k,l)}»): 

> sys[j]:-coeffs(R2,{u[k,l],u[k+l,l+1],u[k+l-j,l+jl,u(k+l,Il}); 

> end do: 

> sys3:-convert({sys[O),sys[l]},diff): 

These equations can be simplified to 
> RS3:-rifsimp(sys3); 

> sl:-subs(_CI-0,_C2-0,dsolve(select(has,RS3['Solved'l,FB(u[k,l+l]»»: 

> assign (sl) : 

RS3 d 
.- TAHLE([Solved = [d FE (Uk,l+d = 0, e1 k+I,1 = -C1 Ic,l, 

UIc,HI 

C1 k,l+1 = - C1 k,l, Ctk+I,1 = - Ctk,l, Ctlc,l+1 = - Ctlc,,]]) 

The final form of f and 9 is 
> f:-simplify(combine(f,ln,symbolic»i 

> g:-simplify(combine(g,ln,symbolic»; 

f := C2k,IUk,IUk,l+1 - C1 k,lIn (I) + UIc,I + Uk,I+1) 

9 := - C2k,ll) Uk,l - Uk,leek,lUlcH,1 + {3 C21c,IUIc,l + e1 1c,IIn (Uk+l,1 + Uk,l + (3) + 

C2k,I{3Uk+I,l - C2k,ll)UkH,I + 05k,I 

We obtained expressions for functions f and g. Oi[k, II, i = 1..8 can be derived 

from RS3 and by direct substitution for / and 9 in f - shift(j, k) + 9 - shift(g, I) = 
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O. When this equation is satisfied the only remaining unknowns are the constants that 

multiply each conservation law. Pivots in RS3 should be taken into account because they 

can lead to special cases. 

A.2 Program for deriving five-point symmetries for 

quad-graph equations. 

This program helps the user to find five-point symmetries for quad-graph equations. Sym­

metry characteristics satisfy a functional equation, which we solve by reducing it to a sys­

tem of partial differential equations. The theoretical part of the program was explained 

before. 

Packages that we use in this worksheet: 
> restart; 

> with(LREtools): 

> with(DEtools,rifsimp): 

Input the equation which must depend upon all four values u[k, Il, u[k + 1,1], u[k, 1 + 
1], u(k + 1, l + 1]. The equation should be linear with respect to u[k + 1, I], u[k + 1, 1+ 1] 

and polynomial with respect to u[k, I], u[k, l + 1]. The equation may involve constants or 

functions, which should be written 0.,/3, ... or o.[k,I],/3[k,l], ... , as appropriate. 
> eq:-alpha*(u[k,l]*u[k+l.1]+u[k.l+l].u[k+l.1+l])-beta*(u[k.l].u[k.l+l)+u(k+l.1].u[ 

k+l,l+1])+(alpha-2-beta-2); 

> U[k+l,l+1]:-u[k+l,l+1]-solve(eq.u[k+l.1+l]): 

> UCt,l] :-u(k.l]-solve(eC!,u[k,l): 

> U[k+2,l+1]:-shift(u(k+l,l+1)-solveCeq,u[k+l.1+l),k): 

> U[k+l,l+2]:-shift(u(k+l,l+1)-solve(eq,u[k+l,l+1),l): 

> U[k-l,l]:-shift(u[k,lJ-solve(eq,u[k,l]),k.-l): 

> U(k,l-l):-shift(u[k,l)-solve(eq,u[k,l]),l,-l): 

> U[k+2,l):-shift(u[k+l,l]-aolve(eq,u(k+l,l]),k): 

> U(k,l+2):-shift(u[k,l+1]-solve(eq,u[k,l+1]),1): 

> U[k-l,l+l]:-shift(u[k,l+l]-solve(eq,u[k,l+l]),k,-l): 

> U[k+l,l-1]:-shift(u[k+l,l]-solve(eq,u[k+l.1),l,-1): 
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Five-point symmetry characteristic: 

> q:"Q1(u[k-l,l] ,u[k,l] ,u[k+l,l] )+Q2(u[k,l-1] ,u[k,l] ,u[k,l+1]); 

The infinitesimal generator is 
> X:"A->q*diff(A,u[k,l)+shift(q,k)*diff(A,u[k+l,l)+ahift(q,l)*diff(A,u[k,1+1)+ah 

ift(shift(q,l),k)*diff(A,u[k+l,l+1)+xi[2] (beta)*diff( l,beta): 

The linearized symmetry condition can be reduced to four POE's. 
> assignCU[k+l,l+1),U[k+2,l+l],U[k+l,l+2],U[k+l,1-l],U[k-1,1+1]): 

> R21:-diff(-1/diff(u[k+l,l+1],u[k+l,l]).diff(Ql(u[k,1+1],u(k+l,l+1],u[k+2,l+1]),u[ 

k+2,l]),u[k,l+1): 

> R22:-diff(-1/diff(u[k+l,l+1],u[k,l+l]).diff(Q2(u[k+l,l] ,u[k+l,l+l],u[k+l,l+2]),u[ 

k,l+2]),u[k+l,l]): 

> R23:-diff(diff(u[k+l,1+1),u[k+l,l)/diff(u[k+l,l+1].u[k.l])*diff(Q2(u[k+l,l-1).u[ 

k+l,l],u[k+l,l+l),u[k,l-l]),u[k+l,l]): 

> R24:=diff(diff(u[k+l,l+l].u[k.l+l])/diff(u[k+l.1+1].u[k,l])*diff(Q1(u[k-l,l+1],u[ 

k,l+1),u[k+l,l+1]),u[k-l,l]).u[k.1+l]): 

> unassign('u[k+l,l+1)'):unassign('u[k+2,l+l]'):unaaa1gn('u[k+1,1+2]'):un ... ign('u[ 

k-l,l+l]'):unassign('u[k+1,l-l]'): 

> assign(U[k,l] ,U[k+2,l] ,U[k,l+2] ,U[k-l,l] ,U[k,l-l]): 

> R31:-primpart(numer(simplify(R21»,D[3](Ql)(u[k,1+1],u[k+1,l+1],u[k+2,1+1]»: 

> R32:-primpartCnumer(simplify(R22»,D[3](Q2)(u[k+l,l],u[k+l,l+1],u[k+l,l+2]»: 

> R33:-primpart(numerCaimplify(R23»,D[l) (Q2)(u[k+l,l-1).u[ k+l,1],u[k+1.1+1)): 

> R34:-primpart(numer(simplify(R24»,D[l] (Q1) (u[k-l.1+1) ,u[k ,l+1].u[k+l.1+1]»: 

> unassign('u[k,l)'):unassign('u[k+2,l]'):unaa.ign('u[k.l+2]'):unaaaign('u[k-l.1]') 

:unassign('u[k,l-l]'): 

Each of these equations can be split into a system of POE's. After splitting of all the 

equations we obtain 
.> sysl:-coeffs(shift(shift(R31,k,-1).l,-1),{u[k.l+1),u[k-1,1+1] ,u[k+1,l-l] ,u[k+1,l+ 

i)}) : 
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> sys2:-coeffs(shift(shift(RS2.k.·1).1.·1).{u(k+1.1).u[k·1.1+1].u[k+1.1·1].u(k+1.1+ 

1]}) : 

> sys3:-coeffs(shift(R33,k,·1),{u(k+1.1].u(k·1.1+1].u(k+1,1·1].u(k+1.1+1]}): 

> sys4:-coeffs(shift(R34,1.·1).{u[k.l+l).u[k·l.1+1).u(k+1.1·lJ.u[k+l.1+1)}): 

> SYS:={sys1,sys2.sysS.sys4}: 

The solution of this system is obtained after simplification with rifsimp. 
> RS1:-rifsimp(convert(SYS.diff»: 

> soll:-convert(pdsolve(RS1('Solved']),list)j 

Further calculations very much depend on QI and Q2. The next procedure helps us 

to find unknown functions in Q1 and Q2. It works in the case when each of Q1 and 

Q2 depend upon one unknown function of u[k, 1]. So far we did not use the fact that 

q explici,tly depends on k,l. Now we redefine constants to make it depend upon k, l. 

Without loss of generality one of unknown functions in Q1 and Q2 is zero and another is 

denoted as FI 
> assign(subs(.C1-C1[k.l) •. C2-C2[k.l) •• C3-CS[k.1J •• C4-C4[k.1] •• CS-CS(k,1] •. C6-C6(k, 

1],.F1(u[k.l])-O._F2(u[k.l)-O •• FS(u(k.l)-o •• F4(u(k.l))-O •• FS(u(k.l])-O •• F6(u[k.l) 

-O,.F7(u[k,1])-O._F8(u(k.l)-O •• F9(u[k.l])-O.lol1(l))j 

> assign(subs(_C1-C1[k.l] •. C2-C2(k.l) •• CS-CS[k.l) •. C4-C4(k.l]._CS-CS(k.l) •• C6-C6[k. 

1),.F1(u(k.l)-F1(u[k.l),.F2(uCk.l)-Fl(u[k.l) •• FS(u(k,l)-Fl(u[k,1])._F4(u(k,l)­

F1(u[k,1]),.F5(u[k,1])-F1(u[k,1),.F6(u[k.l])-F1(u(k.l]) •• F7(u[k.l)-Fl(u(k.l) •• F8( 

u[k,1])-F1(u(k,1),_F9(u(k,1])-F1(u(k.l).8011(2]»j 

> 'q'-qj 

q = (-Uk+l,l + Uk-I,,) Fl (Uk,l) - 01 k,l (a + Uk-l"Uk,l) + C2k" (f3 + Uk,I-IUk,z) 

-Uk+l,l + Uk-l,l -Uk,l-l + Uk,l+l 

By differentiating the linearized symmetry condition we obtain intermediate conditions 

which simplify our calculations 
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> R:=X(u[k+l,l+l]-solve(eq,u[k+l,l+l]»: 

> assign(U[k+l,l+l] ,U[k+2,l+1] ,U[k+l.1+2] ,U(k+l,l-lJ ,U(k-l,l+lJ): 

> RR:=simplify(R): 
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> Rl:-primpart(numer(simplify(diff(R,u(k+2.1]»).{Cl(k+l.1].C2(k+l,1],C3(k+1,1],C4( 

k+1 ,1] .C5 [k+1,l] ,CS [k+l ,I]}); 

> R2:-primpart(numer(simplify(diff(R.u[k,1+2]»),{Cl[k,l+1],C2[k,1+1],C3[k,l+1],C4[ 

k,1+1],C5[k,l+1],C6[k,1+1]}): 

> unassign('u(k+l,l+lJ'):unassign('u(k+2,1+1]'):unaasign('u[k+l,1+2]'):unaaaign('u[ 

k-l,l+l]'):unassign('u[k+l,l-l]'): 

> sys:-{coeffs(R2.{u[k,1],u[k,1+1].u[k+1,1].u[k-l,1],u[k,1-1],u[k,l+2]}),coeffa(Rl, 

{u[k,lJ • u [k.l+1J ,u(k+1, 1] , u(k-l ,1J , u[k,l-lJ , u(k+2,1J})}; 

> RSl:-rifsimp(convert({sys},diff»j 

> &ssign(RS1('Solved']): 

R1 .- - C1 k+l,l + C1 k+l,IH 

RSl .- TABLE ([Solved = [CllcH,IH = CllcH,I, C2kH,IH = C2k,l+d]) 

We find the function FI 
> Rll:-simplify('if'(haa(RR,Fl(u[k,l))-true,diff(RR!eoeff(RR,Fl(u[k,l]»,u[k,l+l]) 

,RR» : 

> R12:-simplify('if'(has(Rl1,Fl(u[k+l,lJ»-true,diff(Rl1!eoeff(Rl1,Fl(u[k+l,1]»,u( 

k,l]) ,Rl1»: 

> R13:-'if'(has(R12,Fl(u[k, 1+1]»-true,diff(R12!coeff(R12,Fl(u(k,1+1]»,u(k,l]),R1 

2): 

> assign(U(k,l): 

> R2:-primpart(numer(simplify(R13»,[Fl(u[k+l,1+l]),D(F1)(u(k+l,l+l]),'GO'(D, 2)(Fl 

)(u[k+1 ,1+lJ)]): 

> unassign('u[k,l]'): 

> sys3:-coeffs(shift(shift(R2,k,-1),1,-1),{u(k+l,1+1],u[k,l+l],u[k+l,l),u[k-l,l),u( 

k,l-lJ}) : 

> RS2:-rifsimp(convert({sys3},diff»j 

> sol:-subs(_Cl-C7[k,lJ,_C2-C8[k,1),_C3-C9[k,lJ,_C4-C10[k,1],daolve(RS2('Solved']»; 

> assign(sol): 
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rP 
RS2 := TABLE([Solved = [;rrFl (Uk,l) = 0], 

Uk,l 
rP 

Case = [[.8:f: 0, -d 2 Fl (Uk,I)]], Pivots = [,B:f: 0]]) 
uk,1 

Now we derive the final conditions on the unknown functions. This procedure works 

if q is a polynomial. All other cases should be considered individually. 
> simp1ify(Q1(u[k-1,l],u[k,l],u[k+1,1])+Q2(u[k,l-1],u[k,1],u[k,1+1]»: 

> q:-simpIify(%): 

> R:-X(u[k+1,l+1]-solve(eq,u[k+1,l+1)): 

> assign (U [k+1 ,1+1] ,U[k+2,l+1) ,U[k+1,l+2] ,U[k+l,l-l) ,U[k-l ,1+1]): 

> Rl:-primpart(numer(simp1ify(R»,u[k,l): 

> sysl:-coeffs(Rl,{u[k,l),u[k,l+l],u[k+l,l),u[k-l,l),u[k,1-l],u(k+2,l],u[k,l+2]}): 

> RS3:-rifsimp(convert{{sysl},diff»: 

The final form of q with all conditions is 
> 'q'.convert(convert(q,parfrac,u[k+l,l]),parfrac,u[k,l+l]); 

> cond:-[RS1['Solved'],RS3['Solved']]; 

cond := [[CllcH,1 = CllcH,I, C2k,l+1 = C2",I+l], 

[~1 (a) = -a (C2k,1 + Clk,l - C7k,l - C7k+1,,) , 

e2 ({3) = -{3 C21c,I - {3 Cl k,l + {3 C7k,l + {3 C7",1+1' 

Cl lc+1,1 = -C7k,l+1 + C7k+1,I+1 + 07k+l,I + 01k,l- C7k,l' 

OIIc,IH = Clk,l, C2kH,l = 02k,l, C8k+l,l+l = 0, C8k+l,/ = 0, 08k,/+1 = 0, 

C81c,l = 0, C2k,l+l = -C7k,1 - 071c+1,1 + 071c+1,l+1 + C71c ,l+l + C2k,lJ] 

We obtained expressions for the function q. Ci[k, l], i = 1..9 can be derived from condo 

Pivots in RS3 should be taken into account because they can lead to special cases. 
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