
MONITORING MIDDLEW ARE

FOR DISTRIBUTED APPLICATIONS

A THESIS

SUBMITTED TO THE SCHOOL OF COMPUTING SCIENCE

OF THE UNIVERSITY OF NEWCASTLE UPON TYNE

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Simon Parkin

November 2007

NEWCASTLE UNIVERSITY LIBRARY

206 53355 3

.~ 'N2-S \ S. \... <is \o~ 1.

ABSTRACT

MONITORING MIDDLEWARE

FOR DISTRIBUTED APPLICATIONS

Simon Parkin

Ph.D. in Computing Science

Supervisor: Dr. Graham Morgan

November 2007

With growing maturity Internet services are proving integral to the provision of

computer services. To provide consistent end-user experiences these services are

increasingly augmented with some notion of 'Quality-of-Service' (QoS), which

typically requires the management of computing resources to maintain a predictable

level of service performance.

It is difficult to guarantee consistent servIce provision In dynamic and open

environments such as the Internet. However service monitoring can be used to inform

compensatory actions by collecting meaningful service performance data from

strategic points in an active service environment.

Due to the unpredictable nature of the Internet distributed monitoring mechanisms

face challenges with respect to the various communication protocols, application

languages, and monitoring requirements associated with a service environment. With

the growing popularity of Internet services creation of monitoring solutions on a per

service basis becomes time-consuming and misses opportunities to re-use existing

logic. Ideally monitoring solutions would be domain-agnostic, automatically

generated and automatically deployed.

This thesis progresses these ambitions by providing a generic, distributed monitoring

and evaluation framework based on Metric Collector (MeCo) components. These

components can transparently gather measurement data across a range of service

technologies as used within E-Commerce service environments. MeCo components

form part of a framework which can interpret Service Level Agreements (SLAs) to

automatically provide tailored service monitoring.

The evaluation paradigms of the Meeo Framework are re-appropriated for use in

Distributed Virtual Environments (DYEs). Quantifiable QoS requirements are

established for Interest Management mechanisms (which limit message production

based on object localities within a DYE). These are then incorporated into a DVE

Simulator application. This application allows DYE application developers to

evaluate Interest Management configurations for their suitability. Extensions to the

DVE Simulator are exhibited in the Evolutionary Optimisation Simulator (EOS),

which provides automated optimisation capabilities for DVE configurations through

utilisation of genetic algorithm techniques.

11

Acknowledgements

I would like to thank my mother Marilyn and my brother Ross for being there for me

regardless

I would like to thank my supervisor, Dr. Graham Morgan, for his immeasurable

advice and encouragement throughout my studies

I would like to thank my close friends for reminding me of my humanity in so many

ways

III

Table of Contents

ABSTRACT .. i

Acknowledgements ... iii

1. Introduction .. 1

1.1 Internet Services ... 1

1.2 Competition & Quality ... 2

1.3 Monitoring .. 3

1.4 Evaluation ... 4

1.5 The Heterogeneous Nature of the Internet ... 5

1.6 Contribution of Thesis .. 6

1.7 Summary .. 8

2. Background .. 9

2.1 Service Provision and Consumption over the Internet.. 9

2.1.1 Overview of Service Provisioning ... 9

2.1.2 Realising the Provider/Consumer Relationship 11

2.2 Observing the Quality of Service Interactions ... 12

2.2.1 Quality of Service ... 13

2.2.2 Monitoring of Service Quality ... 15

2.2.3 Monitoring Concerns .. 16

2.2.4 Monitoring Service Performance in the Internet.. 17

2.2.5 Monitoring Service Traffic ... 19

2.2.6 Creating an Overview of System Performance - Gathering
Monitoring Information .. 20

2.2.7 Making Monitoring Information Meaningful- Electronic Contracts .. 21

2.2.8 QoS Evaluation - Accountability ... 23

2.3 Message Dissemination Mechanisms ... 24

2.3.1 The Client/Server Model & Socket Layer....................... 24

2.3.2 Remote Procedure Calls ... 25

2.3.3 Web Services .. 26

IY

2.3.4 Message-Oriented-Midd1eware (MOM) .. 28

2.3.5 Summary .. 30

2.4 A Different Service Domain - Distributed Virtual Environments 31

2.4.1 Introduction .. 32

2.4.2 Interest Management .. 33

2.4.3 Message Exchange ... 34

2.4.4 Missed Interactions .. 36

2.4.5 Avoiding Missed Interactions .. 38

2.5 QoS Provision - Case Studies .. 39

2.5.1 E-Commerce Systems .. 40

2.5.2 Distributed Virtual Environments .. 43

2.6 Related Work .. 45

2.6.1 E-Commerce & Web Services ... 45

2.6.2 Commercial Research .. 47

2.6.2.1 Pruyne .. 47

2.6.2.2 QuO .. 48

2.6.2.3 WSLA Monitoring & Evaluation Framework 49

2.6.2.4 Business Management Platform (BMP) Agent Network 52

2.6.2.5 QoS Monitoring Framework for Traffic Engineering in IP
Differentiated Services ... 55

2.6.3 Academic Research .. 57

2.6.3.1 Nahrstedt et al .. 57

2.6.3.2 Smart Proxies ... 58

2.6.3.3 CQoS .. 59

2.6.3.4 SLAng .. 60

2.6.4 SLA Monitoring Requirements .. 62

2.6.4.1 Contractual Heterogeneity ... 62

2.6.4.2 Domain Heterogeneity ... 63

2.6.4.3 Accommodation of Enabling Technologies 64

2.6.4.4 Scalability towards Participant Entities and Service
Contracts .. 65

2.6.4.5 Transparent Deployment and Operation 66

2.6.4.6 Ease of Deployment and Modularity 67

2.6.5 Distributed Virtual Environments .. 68

2.6.6 Summary .. 68

2.7 Outline of Goals ... 70

2.8 Summary .. 71

3. E-Commerce ... , 73

3.1 Introduction .. 73

3.2 SLA Monitoring Architecture .. 75

3.2.1 Monitoring Architecture ... 75

3.2.2 Scalability Considerations .. 77

3.2.3 Deployment Considerations ... 79

3.2.4 Heterogeneity Considerations .. 80

3.3 Implementation ... 81

3.3.1 Overview .. 81

3.3.2 Implementation Assumptions ... 83

3.3.3 Metric Collector (MeCo) Interceptors (Provider-Side) 85

3.3.3.1 MeCo Interceptor Implementations 87

3.3.3.2 Provider Environment .. 88

3.3.3.3 Provider-Side MeCo Deployment and Initialisation 90

3.3.4 Metric Collector (MeCo) Probe ... 94

3.3.4.1 Probe Descriptors ... 96

3.3.5 Messaging Service .. 97

3.3.5.1 Event Notification within the Messaging Service 98

3.3.5.2 Implementing the Messaging Service 99

3.3.6 Measurement Service ... 102

3.3.6.1 The Contract Manager .. 103

3.3.6.2 Measurement Service Contract Configuration 105

vi

3.3.6.3 The Measurement Service Configuration File 108

3.3.6.4 Measurement Service Visual Component.. 109

3.3.6.5 Additional Scalability Measures in the MeCo Framework .. 111

3.4 Satisfaction of Requirements ... 114

3.4.1 Contractual Heterogeneity .. 115

3.4.2 Domain Heterogeneity ... 116

3.4.3 Accommodation of Enabling Technologies 116

3.4.4 Scalability towards Participant Entities and Service Contracts 117

3.4.5 Transparent Deployment and Operation .. 118

3.4.6 Ease of Deployment and Modularity ... 118

3.5 Summary .. 119

4. Distributed Virtual Environments .. 122

4.1 Re-Appropriating the MeCo Framework ... 122

4.1.1 Achievements in SLA Monitoring ... 122

4.1.2 A Different Domain - Distributed Virtual Environments 123

4.2 Implementation ... 124

4.2.1 Implementation Assumptions ... 124

4.2.2 The DYE Simulator.. .. 125

4.2.3 Object Classes .. 126

4.2.4 Simulating Object Behaviour ... 128

4.2.5 Modeling Resource Constraints ... 129

4.2.6 The DYE Simulator Interface .. 130

4.2.7 DYE Configuration .. 131

4.2.8 Interaction Detection .. 133

4.2.9 DYE Simulator Interface .. 134

4.3 DVE Simulator - Evolutionary Component .. 136

4.3.1 Evolutionary Optimisation Simulator Overview 13 7

4.3.2 Evolutionary Optimisation - Fitness Function 138

4.3.3 Evolutionary Optimisation - Crossover, Mutation and Elitism 139

vii

4.3.4 The Evolutionary Optimisation Algorithm .. 1-+0

4.3.5 Evolutionary Optimisation Simulator Interface 142

4.4 Application ofDVE QoS Measures ... 144

4.4.1 Assumptions ... 145

4.4.2 Monitoring DVE Performance ... 146

4.4.3 Monitoring DVE Provision .. 148

4.4.4 Augmenting the DVE Evaluation Framework 150

4.4.5 Different DVE Configurations ... 151

4.5 Summary .. 152

5. Experimental Results ... 154

5.1 MeCo Framework .. 154

5.1.1 Test Configuration .. 154

5.1.2 Experiments .. 156

5.1.2.1 Deployment Profiling - Provider-side MeCo 156

5.1.2.2 Deployment Profiling - Measurement Service 157

5.1.2.3 Operational Performance Profiling - Multiple Services 158

5.1.2.4 Accuracy Testing - Correctness of Measurements 160

5.1.3 Experimental Results .. 161

5.1.3.1 Deployment Profiling - Provider-side MeCo 161

5.1.3.2 Deployment Profiling - Measurement Service 162

5.1.3.3 Operational Performance Profiling - Multiple Services 165

5.1.3.4 Accuracy Testing - Correctness of Measurements 169

5.1.4 Performance Analysis '" .. 170

5.2 DVE Simulator ... 172

5.2.1 Experiments .. 172

5.2.2 Experimental Results .. 174

5.2.2.1 Heartbeat Interval ... 175

5.2.2.2 Object Aura Size .. 178

5.3 Evolutionary Optimisation Simulator .. , 180

viii

5.3.1 Simulator Settings .. 181

5.3.2 Population Size ... 182

5.3.3 Mutation ... 184

5.3.4 High-Frequency Message Interval ... 187

5.3.5 Different Scenarios ... 188

5.4 Summary .. 191

6. Conclusion ... 192

6.1 Thesis Summary ... 192

6.2 Contribution of Thesis .. 194

6.3 Future Work ... 195

6.4 Summary .. 198

7. Bibliography .. 199

8. Appendix A - MeCo Installation Guide .. 209

8.1 Provider-Side MeCo Deployment .. 209

8.1.1 Apache Axis Configuration .. 209

8.1.2 JBoss Configuration ... 209

8.2 Measurement Service Deployment .. 211

8.2.1 Measurement Service Installation Files ... 211

8.2.2 Additional Files .. 212

8.2.3 Using the Measurement Service ... 213

8.3 SLAng Contract Configuration .. 214

8.3.1 Service Clients .. 215

8.3.2 Provider Defmition ... 215

8.3.3 Contract Schedule .. 215

8.4 Example Configuration Files ... 216

8.4.1 measurement-service.xml.. ... 216

8.4.2 EJB Probe Configuration-Fibonacci_EJB.wsdl 217

8.4.3 Probe Descriptor - Fibonacci EJB Service .. 218

9. Appendix B - Sample SLAng Contract File...................................... 219

ix

Table of Figures

Figure 1 The basic elements of a computer network (computer users, network

elements such as routers, and application servers) .. 9

Figure 2 Provider/consumer relationship ... 11

Figure 3 Communication patterns: (a) direct addressing; (b) service endpoints; (c)

indirect messaging ... 11

Figure 4 How different machines make up a network ... 13

Figure 5 Low-level monitoring techniques: (a) local to an end-system device; and (b)

local to a router .. 17

Figure 6 Application-level monitoring techniques .. 18

Figure 7 (a) passive and (b) active monitoring techniques .. 19

Figure 8 Collection of monitoring data at a centralised location 20

Figure 9 Gathering service-oriented data ... 21

Figure 10 Socket communication .. 24

Figure 11 Remote Procedure Calls (RPCs) ... 25

Figure 12 Web services provide an abstraction layer between the application client

and the application code [Snell02] ... 27

Figure 13 How Message-Oriented Middleware (MOM) may be deployed [HaefalOl]

.. 28

Figure 14 (a) one-to-one and (b) publish/subscribe MOM communication 29

Figure 15 Areas-of-influence ... 33

Figure 16 An object crossing region boundaries ... 35

Figure 17 Example of a missed interaction .. 36

Figure 18 Illustration of a binary session involving two objects with auras 37

Figure 19 Communication pattern in an E-Commerce environment40

Figure 20 Various approaches to QoS integration in middleware42

Figure 21 Machine users within a virtual environment .. .43

Figure 22 Peer-to-peer (P2P) communication pattern in a DYE43

Figure 23 Centralised communication pattern in a DVE ... 44

Figure 24 Applying a generic contract representation to dissimilar business

relationships ... 62

x

Figure 25 Applying a monitoring framework to different communication and

r' hn 1 . app lcatlon tec 0 ogles ... 64

Figure 26 Service clients dynamically entering and leaving a service environment... 65

Figure 27 The system components that must be considered when deploying a

monitoring infrastructure ... 67

Figure 28 How contracts bind service participants .. 73

Figure 29 Enforcing an electronic contract .. 74

Figure 30 Architecture for the unilateral monitoring and enforcement of inter-

organisational SLAs ... 75

Figure 31 SLA monitoring architecture ... 81

Figure 32 Provider-side MeCo placement ... 85

Figure 33 Implementation of Provider-side MeCo 's ... 87

Figure 34 MeCo Provider Environment .. 88

Figure 35 How the Measurement Service configures the Provider Environment 92

Figure 36 How the Provider Environment is configured based on Measurement

Service initialisation actions .. 93

Figure 37 Sample Probe Descriptor File .. 96

Figure 38 Probe initialisation process .. 97

Figure 39 How measurement data is processed between the Provider-side MeCo and

the Measurement Service ... 99

Figure 40 The Measurement Service and its sub-components 102

Figure 41 The G UI chart window .. 109

Figure 42 The GUI Violation Data window .. 110

Figure 43 The GUI Message Contents window ... 111

Figure 44 Staged and coupled metric processing .. 112

Figure 45 Generic object pooling .. 113

Figure 46 Users interacting within a Distributed Virtual Environment (DYE) 123

Figure 47 Different forms of simulated object movement... 127

Figure 48 Influencing object movements by assigning targets 128

Figure 49 The DYE Simulator interface .. 130

Figure 50 Interaction detection logic ... 133

Figure 51 A chart of true aura overlaps produced by the DVE Simulator 134

Figure 52 A chart of high-frequency message exchange produced by the DYE

Simulator .. 135

xi

Figure 53 EOS internal algorithm logic ... 141

Figure 54 The Evolutionary Optimisation Simulator interface 14~

Figure 55 Chart of aura-size against heartbeat interval ... 143

Figure 56 Enlarged segment of aura-size against heartbeat interval chart 143

Figure 57 Chart of missed interactions against messages .. 144

Figure 58 How DYE monitoring would work in practice ... 147

Figure 59 How DVE provision would be monitored .. 148

Figure 60 Incorporating contract evaluation into the DYE monitoring infrastructure

.. 150

Figure 61 Memory usage during deployment of the Measurement Service 163

Figure 62 Memory usage in the Measurement Service ... 166

Figure 63 Chart update duration during operation of the Measurement Service 168

Figure 64 Average server response time measurements with introduced delays 169

Figure 65 Round-trip-time measurements with introduced delays 169

Figure 66 Object and target distribution within a sample DVE simulation 174

Figure 67 Number of messages sent as function of heartbeat interval 175

Figure 68 Quotient of missed interactions as function of heartbeat interval 176

Figure 69 Quotient of partial missed interactions as function of heartbeat interval .. 177

Figure 70 Number of messages sent as function of aura size 178

Figure 71 Quotient of complete missed interactions as function of aura size 179

Figure 72 Quotient of partial missed interactions as function of aura size 180

Figure 73 Chart of generations against average fitness for different population sizes

.. 183

Figure 74 Chart of generations against variance for different population sizes 184

Figure 75 Chart of generations against average fitness for different mutation levels 185

Figure 76 Chart of generations against variance for different mutation levels 186

Figure 77 Chart of generations against average fitness for different high-frequency

messaging intervals .. 187

Figure 78 Chart of generations against variance for different high-frequency

messaging intervals .. 188

Figure 79 Chart of generations against average fitness for different DVE scenarios 189

Figure 80 Chart of generations against variance for different DYE scenarios 190

XII

1. Introduction

This work describes a generic, distributed SLA monitoring framework and its

constituent features. This framework is built around the principles of application

provision over the Internet. As such it is necessary to first discuss how people use the

Internet, and how the experiences of users and service providers alike can be

improved through service monitoring.

1.1 Internet Services

The Internet and network services have become an important part of many people's

lives, influencing how they work as well as how they choose to spend their free time.

Computers are commonplace in the developed world, and the prevalence of

networked computer applications is only set to keep growing. People choose to use

the Internet for many different tasks. These include accessing e-mails, transferring

files (perhaps within the workplace, or through a file-sharing application), and

generally reading the countless millions of web pages currently available on the

World-Wide Web.

One aspect of the Internet (and networked environments in general) that is gaining in

importance is that of providing network services to users. Here a network-accessible

artefact allows a computer-user to essentially delegate some task to an application

residing on another machine elsewhere. Examples of Internet services include

currency-converSIOn applications, RSS feeds [Rsswiki], and Internet-based

multiplayer games (such as Unreal Tournament [Unreal] and World of Warcraft

[Wow]). These examples follow a model of providing something to the end-user that

they have asked to have provided to them (i.e. that they have 'requested'). For

example, in the case of currency-conversion applications, it is feasible that someone

can carry out their own research into current currency-conversion rates. However, this

could be negated if there were an Internet service available with access to up-to-date

conversion rates, and which is accessible directly from the user's home computer.

Such examples of effort being moved to a service provider illustrate why Internet

services are becoming ever-more widespread.

1.2 Competition & Quality

With respect to networked services the growth of the Internet is evident m many

ways. More people are using networked services, and more services are appearing to

both meet existing needs and provide new ways of using the Internet. With this.

competition between similar services becomes more of an inherent factor in how

successful networked services are.

Modem networked service applications can adapt to their environment in ways that

preserve transparent, simple and problem-free interactions with their respective users.

Service developers are finding that they have to offer greater consistency guarantees

to prospective users in order to remain competitive. A potential customer might

hesitate to use an online store again if their order takes too long to be processed, just

as a computer games enthusiast might choose to go elsewhere if their connection to a

game server is sporadically slow and prone to failure. With this premise in mind,

service developers need to be able to ensure the 'quality' of their offerings. Provision

of a service is meaningless if users cannot connect to the associated web server, hold a

connection with it, and conduct meaningful and timely communications with that

server.

Service developers need a means to guarantee consistency III the way that their

services behave, while ensuring that the experiences of end-users reflect their

intentions. There has been great interest in how the underlying resources supporting

Internet services can be manipulated in order to provide for greater 'Quality-of

Service' (QoS). This umbrella term covers a great number of network and service

management mechanisms, such as the allocation of computing (i.e. processing)

resources to match the demands of incoming service requests. Another application of

QoS is the provision of additional service extensions, for example to provide security

and transactional support (for when business partners request said facilities).

It is meaningless to define the quality of a service in arbitrary terms, and just as

meaningless to ignore the expectations of service participants when doing so. The

QoS defmition of a particular network service must be meaningful and serve a

purpose. The QoS associated with a service typically defines quantifiable

characteristics that represent the desired performance attributes of the service. These

may include qualities such as request completion latency (how long service requests

take to go from their point of origin, to the target server, and back again as response

2

messages), server availability etc. Such characteristics may be defmed by interacting

parties (in those cases where a direct business relationship has been agreed between

them). Alternatively they may be dictated by a service developer before deployment

to provide an idealised, predictable, and consistent model of behaviour that it is

believed the service must adhere to. Service providers can then use QoS defmitions to

manage their computational resources effectively.

1.3 Monitoring

To be able to regulate the quality of a servIce m a large and unpredictable

environment such as the Internet, there is a need to know how well it is actually

performing in relation to its ideal (i.e. expected) performance. This knowledge allows

for informed action to be taken when there is a need to compensate for shortcomings

in service provision. For example additional server machines may be added to a server

cluster to meet increased service demand. As another example, without knowing

specifically what is wrong with a service that is serving requests slower than

expected, a service provider may believe that processing resources are expended.

They may then choose to add a single extra server at a time to their server cluster to

provide additional processing power and alleviate request loads. However, it could be

the case that service monitoring processes indicate that two servers must be added to

the machine cluster in order to compensate for the lack of processing capabilities.

This simple example illustrates that without an accurate view of how the end-to-end

system is performing any compensatory actions are essentially reliant on guesswork,

and can potentially confuse or compound already inconsistent service behaviour.

Service monitoring in a large networked environment such as the Internet cannot rely

on human perception alone. So that a measured course of action can be prescribed

service monitoring must be carried out, in such a way that it quantifiably represents

quantifiable aspects of the service behaviour (with respect to both the provider and the

service consumer, and even the network that connects them).

The performance of participants within a service environment IS monitored to

determine the levels of QoS provision evident within its bounds. In the simplest cases

low-level characteristics may be monitored, such as network latency and jitter (the

variance in latency over time). As services and service monitoring become more

complex, the same is required of the processes that observe them. In some cases

3

monitoring logic must be capable of providing a composite VIew of the system

environment and the performance of interacting parties in a way that identifies the

actions of individual entities in the network. This is particularly important with

respect to accountability. For instance, a situation could arise wherein a service

provider is found to be processing client requests particularly slowly, but here the

blame may lie with another client that is overloading the server with requests and

taking up more computational resources than they were allocated.

If monitoring data is to be gathered from a service environment, it must be useful. It is

ineffectual to try to determine the inner workings of an application server by directly

observing a client machine. Specialised monitoring techniques need to be employed

across the network, potentially alongside or even within the machines that are

interacting in an active service environment. Use of such techniques allows

monitoring mechanisms to gather data directly from within network entities (for

example by inserting monitoring agents within an application server), or to infer

information through other less direct methods (such as sending fabricated requests to

a server and observing their behaviour across the network).

1.4 Evaluation

When monitoring data has been collected it must be evaluated in a meaningful way to

determine if service performance is as expected. This could be carried out local to

each monitoring component, for example within an application server or at a router

node. Alternatively data could be gathered at a centralised point for post-processing,

perhaps if a number of distributed monitoring components are actively collecting

monitoring data within an observed service environment. Processing such as this

would typically involve collation of monitoring data so that it represents the

behaviour of the participating network entities in relation to each other. This would

more accurately reflect overall system performance. Evaluation processes can

potentially be automated, so that measurement data is automatically analysed to

determine whether any aspects of proposed service QoS are not as they should be.

Some services incorporate tightly-coupled interactions between participating

organisations. This can be seen in E-Commerce services, for instance between an

electronic bookstore provider and the operators of an online publications warehouse.

In these cases the QoS expectations pertaining to each party are typically agreed upon

4

by both parties, thereby constituting their performance obligations. These obligations

can be recorded in an electronic contract referred to as a Service Level Agreement

(SLA). An SLA provides a machine-readable electronic representation of the QoS

attributes for a particular service, as well as details of the participant organisations and

how QoS obligations relate to them. For instance, a warehouse provider may agree to

provide 99.999% uptime on their servers, while a bookstore operator might agree to

only forward requests for stock information between the hours of 9 a.m. and 5 p.m.

Machine-readable representations of these obligations would be recorded in the

associated SLA. Identifying information about the warehouse providers and bookstore

operators would also be included, such as their company names and website

addresses.

1.5 The Heterogeneous Nature of the Internet

Testament to the open standards of the Internet, not every service provided over the

Internet is the same. Services may rely upon application logic written in a particular

language, delivered to consumers using a particular communication protocol. Even

the way entities interact with each may differ across individual services (for instance

if participants are providing services to each other at the same time). Interacting

parties may want specific measurements to be made at specific locations within the

service environment. However just as QoS requirements can change dramatically

from service to service, similarities may also be found. Monitoring and evaluation

mechanisms cannot be effective without first taking into account the characteristics of

the individual systems they are applied to.

Monitoring and evaluation logic may be written on a per-service basis, but this would

require a great deal of time. It would prove more efficient to re-use existing logic,

especially considering that many services share commonalities. The capacity to apply

monitoring and evaluation components over different enabling technologies would

also limit the need to re-write code on a case-by-case basis. Care must be taken

however to ensure that monitoring constructs are deployed in such a way that they do

not interfere with the services they are observing. Otherwise the measurement data

being collected would potentially be inaccurate.

5

1.6 Contribution of Thesis

Existing QoS monitoring and evaluation software for Internet applications suffers

from a number of limiting factors. Each monitoring system tends to be domain

specific, applicable only to certain types of Internet applications. Monitoring

frameworks also require manual effort to generate monitoring logic to measure

service characteristics, and further manual effort to deploy monitoring components

within an observed service environment.

Monitoring software for Internet applications should ideally be suitable for all service

domains. It should also be capable of automatically generating monitoring logic as

required by an observed service. Deployment of monitoring components should also

be automated, to alleviate further effort on the part of interacting parties and

monitoring agents.

This thesis attempts to make progress on the journey from "what monitoring software

is now" to "what monitoring software should be". The work presented in this thesis

progresses a monitoring infrastructure applicable to various types of distributed

applications, particularly E-Commerce services. This infrastructure aims to

accommodate a variety of monitoring requirements and SLA evaluation engmes,

thereby providing applicability to a wider range of service environments.

The monitoring infrastructure also aims to reduce deployment effort. The capacity to

re-use existing monitoring and evaluation logic removes the need to re-write proven

code on a per-service basis. Furthermore, by considering the respective needs of

interacting parties, the monitoring infrastructure aims to minimise any disruption that

may be causes within an observed service environment during its deployment.

This thesis develops a logical distinction between monitoring and evaluation

components, allowing them to be considered and managed effectively in isolation.

Based upon the monitoring and evaluation model implemented within the monitoring

infrastructure, further work is conducted to exemplify this distinction. Work is carried

out to illustrate how evaluation processes can be developed and extended for

application to different service domains. A means of evaluating Distributed Virtual

Environments (or DYEs), most commonly encountered within Massively Multiplayer

Online Games (MMOGs), is developed. Further work describes a suite of DYE

simulation components capable of automatically configuring DVEs for optimum

performance.

6

The content of this thesis is arranged as follows: Chapter 2 describes services within

large networked environments such as the Internet, while also describing the enabling

technologies and the paradigms that control inter-organisational interactions and

behaviour patterns. The monitoring and evaluation requirements of E-Commerce

applications and Distributed Virtual Environments are outlined prior to detailed work

in these two domains. Examination of associated research is also presented to clarify

the objectives of the applications developed herein.

Chapter 3 describes the implementation of the Metric Collector (MeCo) Framework

[MorganIfip05]. This is a distributed, modular monitoring & evaluation infrastructure

applicable to E-Cornrnerce applications such as Web services. Chapter 4 applies the

evaluation paradigm developed in Chapter 3 to the domain of Distributed Virtual

Environments (DYEs), utilising these constructs to develop processes for the

evaluation of DYE performance. This then acts as the basis for a suite of DYE

simulation tools comprising the DVE Simulator [Parkin06] and Evolutionary

Optimisation Simulator [Parkin07].

Chapter 5 presents performance results for experiments applied to both the monitoring

infrastructure and the DVE simulation suite. These tests assess the capabilities of the

respective applications, and are ultimately used to illustrate how well they achieve

their respective goals. Chapter 6 concludes this work by providing a synopsis of the

thesis, while discussing potential avenues for future research. There are additional

Appendices, one of which details how to deploy and manage the Metric Collector

Framework in practice.

7

1.7 Summary

• Networked services are becoming more popular, both commercially and

for recreational purposes.

• To guarantee that distributed services reach users in their intended form

over unpredictable networks, there is a need to compensate for fluctuations

in the availability of underlying resources. Defining the Quality of Service

(QoS) for a given application provides a means to describe quantifiable

service characteristics that should be adhered to in order to guarantee

meaningful service usage and provision.

• For QoS provision mechanisms to react appropriately to fluctuations in

resource availability there is a need to monitor service provision, primarily

to detect inconsistencies in performance. To guarantee accuracy,

monitoring processes may need to collect and collate information from

service participants, and perhaps from other components across the breadth

of network that connects them.

• In complex scenarios such as E-Commerce service environments there is a

need to define electronic contracts detailing per-participant service

obligations. These electronic contracts are typically referred to as Service

Level Agreements (SLAs).

• The Internet provides numerous challenges to QoS provision and service

monitoring. Monitoring and evaluation processes must be scalable,

transparent, and heterogeneous in order to be successful. There is also a

need to provide simple deployment and logic reuse in light of the growing

demand for distributed services.

• Portions of the work described in this thesis have been published in

internationally-recognised conference proceedings [MorganIfip05,

Parkin06, Parkin07].

8

2. Background

There is a need for a cross-platform, application-agnostic monitoring and e aluation

framework for distributed Internet services. Within this it is necessary to identify the

environments within which such a system may be deployed. This includes

examination of how elements within an observed service environment can interact,

and the nature of the technologies that enable these elements to participate in

meaningful interactions. These investigations will be furthered with an examination of

the monitoring and evaluation requirements that a service environment may ha e

supported by an accompanying discussion of related work (both commercial and

academic).

2.1 Service Provision and Consumption over the Internet

Before approaching the monitoring of Internet services it is first necessary to examine

how service users and providers behave within a service environment, and with thi

how elements within a network achieve meaningful communication.

2.1.1 Overview of Service Provisioning

o
Figure 1 The basic elements of a computer network (computer users, network elements such as routers,

and application servers)

9

The Internet (or any other large network or network-of-networks) essentially acts as a

means to connect potentially disparate computer users via their machines so that they

may communicate with each other. People may explicitly communicate with a

specific person (as in the plethora of personal messenger applications [Yahoomsg.

MicrosoftmsgD· Alternatively they may choose to present information as web pages.

allowing those users with access to a web page the choice of viewing it.

There are users who tum to the Internet in search of specific services. These people

are in essence looking for a web page or network-accessible computer program

containing a functional component capable of carrying out a particular operation. or

solving a particular problem, for which they have a need. Examples of Internet

services include up-to-the-minute currency-converter websites and daily weather

reports. These essentially constitute a piece of logic, accessible over a network, which

can take input from users with access to the same network, perform some amount of

processing on that input data, and produce a result relevant to its context (for instance

telling a user how much a specific amount of money is worth in another currency).

In this sense, some of the communication patterns that come to exist across the

Internet can be regarded as provider/consumer relationships. Herein a person (or an

organisation) makes available a service created to solve a specific problem or address

a need for a specific piece of processing logic. Other users are then able to issue a

request for the service, with the request being directed towards the target service. The

request is subsequently processed by the service, and a suitable response is returned to

the user that sent the original request. As an example, a user wanting to carry out a

currency conversion would query a specialised website with a request describing a

specific amount of money and specific currency types for the original and converted

currencies. The server hosting the website and its associated logic would carry out the

currency conversion while the user waits for the response. Once the conversion has

been completed, the result of the conversion (in this case, how much the amount of

the original currency is worth in the conversion currency specified) will be returned to

the user over the network.

It is possible for services to form chains. One such permutation is when a service must

query another service for the additional information it needs to complete a user's

request (for example when a currency-conversion service needs to query a fmancial

markets service to determine what the current exchange-rate for a particular currency

is).

10

2.1.2 Realising the Provider/Consumer Relationship

Figure 2 Provider/consumer relationship

Just as there are different communication pattern that users can enact when

interacting over large networks, there are also different levels of compl ex ity at which

they can communicate. These range from the physical network itself (by directl y

controlling the data that is sent across the network) up to levels of abstrac tion where

the details of how data is transmitted are delegated to underlying communicati on

protocols, completely hidden from the user (and potentially even the end-user

application) . Here communication processes are dri ven by high-level concepts more

directly understood by the user (such as " find a book about QoS prov ision whi ch is

for sale and can be delivered by tomorrow").

9J..-o -'0 (a)

9J. '0-0 (bJ

9J~(j~O (c)

Figure 3 Communication paf/ems: (a) direcT addressing; (b) service endpoinrs; (c) indirecT messaging

11

At the lowest level (Figure 3a), communicating machines send data across a network

(in what are called 'packets') to a specific port on a target machine. This data

traverses other network elements such as routers, which direct data depending on

where it is in relation to its intended destination. When the packets reach their

destination they are recombined to mirror the original form of the data.

Networked services can alternatively be made available at 'service endpoints' (Figure

3b) where the translation to a specific machine port is hidden from the user behind a

service descriptor (which translates a service address to a network address). This

abstracted approach helps to encapsulate many of the complexities of the

communication process within the enabling technology, while actively

acknowledging the dynamic nature of the Internet.

Another option is to negate direct communication and have machines send and

receive messages to and from abstract endpoints (analogous to a communal mailbox).

These endpoints are then distinguished by the types of messages that they are

intended to hold. For instance an endpoint may receive and store messages relating to

a specific subject such as a service name or data type. These endpoints then correlate

to specific message groups held on dedicated messaging servers (Figure 3c).

Specialised messaging logic running underneath applications at communicating

machines negotiates communication between a user's machine and the messaging

server, and in tum between the messaging server and other machines (whether they

represent services or other users). In this way, the end-user application need not even

be directly aware of how data is transmitted or what it is that the user IS

communicating with. Such communication is described as 'loosely-coupled' as

communicating parties essentially have no direct ties to each other.

2.2 Observing the Quality of Service Interactions

There are any number of different machines active within most large networks

(especially the Internet), and they often have different capacities for processing and

relaying information, in accordance with any number of communication patterns. This

variance in how different parts of a network are represented creates comparable

differences in how they uphold communications between a user and a service. There

are some services which require certain guarantees as to how the environment (and

more importantly how those entities both using and providing the service) wi 11

12

behave. Disparity (and inconsistency) between different sections of a net\.\'ork can

have a detrimental effect on these services. As such there needs to be a mean of

compensating for these differences if such services are to be useful.

2.2.1 Quality of Service

Figure 4 How different machines make up a network

Large networks or networks-of-networks (such as the Internet) are typically made up

of different computer elements, each with their own capabilitie with re pect to the

transmission of data (such as transmission speed, message buffer size etc.). Data

packets may be sporadically dropped as they travel between pair of network node or

may take an unexpectedly long time to traverse the route between their origin and

destination. Such behaviour is not uncommon on the Internet, e pecially a any

actions to compensate for this behaviour are typically initiated at the end- ystem

devices [Qosforurn99] to afford simplicity and scalability. Such behaviour does not

however adversely affect most communications across the Internet.

There are many services which cannot tolerate unpredictable network behaviour.

Where e-mail and file-transfer applications have an inherent capacity to tolerate

infrequent errors at the communication level, real-time or critical services and heavily

data-oriented services do not [KakadiaO 1]. As such, there are cases where there is a

need to compensate for the shortcomings of large networks in order to acme e a more

consistent level of performance for a given service. In this context the performance

and behaviour of a service is known as the 'quality ' of the service. An tep made

towards achieving consistent service quality are then referred to generall as Quality-

13

of-Service (QoS) management [ColourisOI]. QoS management mechanisms do not

necessarily provide additional resources to alleviate shortcomings in the

communication process, but instead provide a means to better manage those resources

that are already available. Simple examples of compensatory actions include the

provision of message-ordering capabilities enabled underneath applications at end

system devices, or message-buffering procedures at network routers.

There are different ways to quantify the Quality-of-Service at different functional

layers. At the low-level network layer, QoS may be measured by the time it takes for

a consumer request to reach a given service (the transmission latency) or the quotient

of data packets that are inadvertently dropped due to physical load factors (e.g. buffer

overflow in router devices), in essence the basic technical measurements of a service.

At the application layer service quality could be represented by how long the

application logic within a server takes to process a single client request, or perhaps the

window of time within which a user is able to access a service. The latter measures

embody abstract concepts that are more in keeping with a user's perception of service

behaviour.

Many organisations charge users to utilise their services. This suggests that there must

be some level of distinguishing quality to their services which justifies the charges

they place on using them, and the use of their services above those of their

competitors. For these and more critical services, the rigid and unambiguous

definition of service performance attributes is of particular importance. Any bounds

on quantifiable QoS characteristics form the QoS requirements of that service

[Tanenbaum02]. These then act as quality guarantees, that service providers must

make efforts to adhere to in order to ensure that their services perform as expected.

Failure to do so could risk penalties associated with underperformance, not least of

which would be a fall in confidence amongst their users.

QoS requirements may also apply to service users. If a user misbehaves, by for

instance overloading a service with requests, or initiating requests outside of an

allotted usage period, they may risk incurring losses or other penalties depending

upon their agreement with the provider.

Some of the difficulties in defining performance guarantees come m trying to

maintain them. If QoS management procedures have been put in place to manage

resources to compensate for changes in the working environment, these procedures

must be alert to fluctuations of quality in both the end-system devices and the

14

underlying network. Delivering QoS over the Internet (with its dynamic and

unpredictable nature) is a significant challenge [Mani02].

In their simplest form, efforts to maintain particular levels of quality across a network

can be directed in two ways. Firstly, network traffic can be assigned priorities

[Qosforum99], to allow the network elements themselves to shape the flow of data or

apply resource management techniques (either on a per-application basis or by

grouping data from similar applications into an aggregated application-flow).

Alternatively, resources can be allocated on a per-application basis, thereby

guaranteeing a certain level of quality for specific services. The drawback here is that

without adequate resources some services will experience diminished QoS levels in

relation to others with a higher priority. Resource reservation such as this can be done

statically (essentially off-line) between end-system devices (so that a fixed collection

of resources is allocated prior to application-specific traffic entering the system).

Reservation of resources can also be conducted dynamically, using a number of

techniques such as flow-shaping and flow-control (i.e. the regulation of network

traffic in accordance with QoS policies) or flow-policing (the observation of how

users adhere to the QoS policies). Dynamic approaches further require monitoring and

maintenance of QoS provision levels, so that there is some capacity to react to

changes in the performance of a particular service.

Examples of QoS control solutions include both the Reservation Protocol (RSVP)

[Rsvp] and the Differentiated Services (DiffServ) protocol [Diffserv], which allow

communicating entities to manage resource usage between them at the network level.

2.2.2 Monitoring of Service Quality

To ensure that QoS provisioning mechanisms effectively adapt the resources available

to a service to match changes in a service environment, there needs to be some

measure of what the QoS characteristics are at any time (i.e. statistical data that

describes the performance and behaviour of the service). Quantifiable characteristics

that indicate the quality of a service at a particular time may include (among others)

server availability, request latency, request processing time, or server usage. The

characteristics that are used to assess service quality depend upon the criteria dictated

by those parties interested in the performance of the service. Quantifiable service

15

properties can also be requested in the event of a service provider or consumer

wishing to know how well a particular service is performing.

To determine how QoS is experienced between a service provider and a servIce

consumer it may be necessary to install monitoring mechanisms at the end-system

devices. There may even be a need to monitor network traffic between them, most

certainly within or adjacent to the intermediary network router devices.

A monitoring infrastructure can be used to gather meaningful data to describe how a

particular part of the network is performing. This data can in tum be used to provide a

view of QoS that properly reflects reality and which can (if necessary) be further

processed and presented to a human user in a comprehensible manner.

2.2.3 Monitoring Concerns

When monitoring a service environment care should be taken in deploying the

monitoring infrastructure so as to minimise disruption to the workings of the existing

system. Interacting parties may otherwise experience undue detrimental effects during

use of the system, perhaps then feeling less inclined to have monitoring mechanisms

in place. QoS monitoring mechanisms that operate in a non-disruptive manner such as

this are said to be capable of 'in-service monitoring' [Chen98].

There are two distinguishable types of non-intrusive QoS monitoring [DilmanOl]:

'Statistical monitoring' relies on the examination of network traffic in an attempt to

discern predictable trends in observed system behaviour, which are then used to

inform how resources are allocated. On the other hand 'reactive monitoring' involves

the deployment of a central management platform. When provided with information

pertaining to the state of the network the platform is capable of building a global view

of the service environment and identifying alarm conditions when they arise (where

such alarm conditions usually pertain to a fault or other anomalous event which has

occurred within the observed system). This allows for more dynamic QoS

management (albeit at the cost of more complex monitoring), and is therefore more

suitable for use in unpredictable service environments such as the Internet.

Using an end-to-end view of a service environment a monitoring platform can

determine how a service provider and its corresponding consumers are behaving in

relation to one another [JiangOO]. As an example, a provider's server platform may be

found to be serving requests at an unacceptably slow rate, but this may be attributable

16

to Improper overuse of the service by another client. In this case although the

provider initially appears to be underperforming, it is in fact a specific client that i

responsible for the loss of service quality. Without correlating consumer requests with

request processing jobs within the server this would not become apparent.

A more detailed system view can be obtained by combining end-to-end monitoring

with data from all of the network elements between a sender and receiver, through

'distributed monitoring' techniques . Such an approach affords greater accurac ,

especially in determining which network elements are responsible for a particular

pattern of events. This does however come at the cost of increa ed monitoring

infrastructure and with this increased interference with the observed network. Most

QoS monitoring systems are of the simpler end-to-end variety, but may in some case

assume that there is access to more detailed monitoring data from interconnecting

network elements, should they require it .

2.2.4 Monitoring Service Performance in the Internet

(a)

(b)

Figure 5 Low-level monitoring techniques: (a) local to an end-system device; and (b) local to a router

When monitoring a dynamic and unpredictable operating environment such as the

Internet, monitoring mechanisms must be adapted to differing systems that behave

differently over time. There are numerous methods for dynamically collecting

monitoring data : at the network-level ' packet sniffing' techniques can be employed,

where the data packets that form the most basic network traffic are directly observed

17

and (albeit simple) performance metrics inferred from them (such as data packet

throughput) . Observation of low-level network traffic in this way may be achie ed b

housing specialised software on a machine close to a router or end-system machine

(Figure Sa), or directly on a network router (Figure Sb). In this way the beha iour at

and around specific points in a network can be observed (e.g . at a specific router or at

the point connecting the underlying network and a service platform). With thi s ba ic

QoS characteristics such as packet throughput and bandwidth usage can be inferred

from the perspective of a specific entity in the network.

(a) (b) (c)

Figure 6 Application-level monitoring techniques

Although low-level monitoring can be used to build a picture of how the underlying

network is being used it does not necessarily describe how a particular service is

performing. Higher-level application-specific morutoring mechanisms may be used to

compose a view of how traffic attributed to a specific application is behaving. Such

mechanisms typically need to be installed directly into software (Figure 6), either (a)

through integration within the application-layer (providing access to application

specific metrics at the cost of altering application logic) ; (b) directly underneath the

application-layer (allowing observation of inter-application communication without

application-specific monitoring logic) , or; (c) between the application-layer and the

underlying network (a simple alternative, albeit offering a reduced depth of

observation data).

18

2.2.5 Monitoring Service Traffic

(a) (b)

Figure 7 (a) passive and (b) active monitoring rechniques

Metrics obtained from network traffic can be based on real user traffic or traffic

injected by a monitoring component simulating the actions of a user (Figure 7) . The

observation of network traffic (otherwise known as ' passive monitoring ') involves

inferring QoS metrics from the behaviour patterns of existing user-generated traffic

within the system (Figure 7a) . Care must be taken in how processes treat network

traffic so as to avoid adversely affecting the performance of the system. For example

if additional information is encoded into user messages to track service interactions,

monitoring objects could contribute to a reduction in message transmiss ion speed

around the system as they process message contents .

The use of injected traffic for monitoring purposes (generally referred to as ' active

monitoring' , as illustrated in Figure 7b) involves the periodic creation of 'probe'

messages (of a format relevant to the service or application family being monitored).

These messages are tracked from the monitoring object in order to determine service

provision metrics (such as request round-trip-time). This form of monitoring is non

intrusive but creates additional network traffic . As such care must be taken when

scheduling the insertion of probe messages into the system so as not to overload the

underlying network.

19

2.2.6 Creating an Overview of System Performance - Gathering Monitoring
Information

Figure 8 Collection of monitoring data at a centralised location

To compose an overview of how an observed system is performing, metric data from

disparate monitoring components must be gathered at a central location (Figure 8) .

This information can either be sent as part of a coordinated system-wide ' event

reporting' procedure [DilmanOI] (where data is periodically sent from all monitoring

components to the central monitoring station) or it can be collected by the monitoring

platform through explicit 'polling ' requests (i.e . requests for monitoring data sent to

each monitoring component in the network). With either method a balance must be

met between the duration of the reporting interval and the amount of monitoring data

that is generated. For instance, short reporting intervals may provide finer granularity

(and more detailed information) but would place the underlying network under greater

strain due to the increase in monitoring traffic [JiangOO].

The amount of data obtained by each monitoring component may need careful

consideration. Data collection could be comprehensive (thereby providing a more

detailed view), but at the cost of greatly increased transmission overhead.

Alternatively data collection could be made scalable by having only a subset of the

measurement data transmitted to the central monitoring station. This would however

require more processing to select the desired subset of metric data before transmission

from each monitoring component [ChanOO].

20

2.2.7 Making Monitoring Information Meaningful - Electronic Contracts

~---------- (j. --(}(}+ ~
~ -.... L-

-----_

I
I

I
I

I
I

I

(]
application server

I
I

I
I

I

~

monitonng
statJOn

+-------+ IeM ce commUOIc:atJon

- - - - + monitOrng data

Figure 9 Gathering service-oriented data

Once metric data has been collected at a central location, it must be collated and

processed in such a way that it provides a system-wide view of machine performance

and service behaviour. In this way different elements and organisations acting within

the service environment can be made accountable for their actions .

The quantifiable QoS requirements of a service can have performance bounds placed

upon them, which service participants should adhere to. It is a matter of computation

to compare measurement data to these bounds to determine if any performance

expectations are not being met (i.e. that one or more terms relating to the service

quality definition for a service have been violated). Automated evaluation of

measurement data allows for uninterrupted monitoring without the need for human

intervention, thereby avoiding any disruption to the monitoring process. It also

provides greater transparency between an observed system and the monitoring

framework.

Parties interacting in a provider/consumer relationship can defme electronic contracts

which formally record the QoS requirements for a particular service wi thin one self

describing, transferable and machine-readable electronic document. Electronic

contracts also provide descriptive information about the participants in a service

relationship . These contracts are commonly referred to as Service Level Agreement

(SLAs) and are becoming increasingly important in enabling enterprise network to

21

operate effectively [Muller99]. SLAs provide unambiguous defmitions of expected

service behaviour and can accommodate loosely-coupled interactions between

organisations [Debusmann03]. Building QoS evaluation procedures around an SLA

document allows for the direct evaluation of a service provider's compliance with the

QoS that their consumers expect, while conversely allowing the provider to observe

the actions of consumers in respect to SLA terms describing permissible behaviour.

A range of SLA standards and taxonomies have been adopted across industry. Within

a typical SLA, information may be arranged in a hierarchical structure, for example

through use of Extensible Markup Language (XML) [Xml] constructs. This

information may then be processed by violation-detection logic associated with the

SLA language. Elements will exist to explicitly identify the supplier of the service,

and the service client or clients expected to use the service. These elements may also

describe participant names and other identifying information such as website

addresses.

There may be a list of service obligation elements defined in an SLA, linked to the

appropriate participant element, which each define a measurable expectation of

behaviour within the scope of the service. For example an obligation may be defmed

that refers to 'threshold for request processing time within the server'. This obligation

would be linked to the service provider description, thereby associating expectations

regarding request processing with the provider. An obligation description may include

further details such as a numerical threshold for request processing time within the

server. Combined with this number there may be an element to indicate the unit of

measurement to associate with it (e.g. milliseconds, days). This then provides

machine-readable terms that can be used as a measure of adherence to the specific

service obligation.

An SLA may include elements detailing the lifetime of the contract (e.g. the contract

commencement and expiry dates, or the duration for which the SLA is applicable),

with measures and units for the associated dates or times provided as required. The

hours within each day during which service provision is applicable may also be stated

within the SLA, again within their own distinct, machine-readable elements. These

definitions then allow for SLA adherence logic to be applied only when required (i.e.

when the governance of a given SLA is in effect).

Despite the aforementioned commonalities, different SLA languages defme differing

groups of elements to associate with participant bodies, service obligations, and the

22

contract itself. Even in those cases where descriptions are similar, the arrangement

and format of SLA contents may differ. For example in one language a generalised

'party' element may exist to describe an organisation, with a sub-element defining

whether it is the 'client' or the 'server'. However in another language there may be

distinct elements identifying the 'client' and 'server' parties in the service

relationship. The logic used to process SLA contents may then differ between SLA

languages, and so each SLA language may have associated with it a distinct SLA

engine for interpreting documents. An SLA engine would be used to determine, for

example, which of the document elements to examine upon receipt of monitoring data

stating that the 'request processing time within the server' was 10 milliseconds.

2.2.8 QoS Evaluation - Accountability

Where SLAs provide binding contractual obligations there are also matters of

accountability to negotiate. The demand for accurate and verifiable performance

guarantees stands in contrast to the great reluctance of service providers to accept

accountability for network elements that exist outside of their perceived domain of

control [Overton02]. For instance, different Internet Service Providers (lSPs) provide

differing levels of QoS over their own networks [Jimenez04], which an organisation

may not believe to be their responsibility when negotiating an SLA with a prospective

service customer. Furthermore, if any of the communicating parties governed by an

SLA offer to host or maintain the components necessary for QoS monitoring,

evaluation and reporting (or otherwise place themselves in an influential position with

respect to the monitoring process) they face a conflict of interest. As contrasting

cases, they could choose to either report QoS metrics with honesty and precision, or

alternatively use their position to manipulate the metrics that are reported. In the latter

case this could allow an organisation to avoid any penalties that they would otherwise

incur through violation of an associated SLA, or misrepresent the actions of their

business partners for their own gain (for instance to justify the nullification of an

unprofitable business partnership). In light of such intractable issues, interacting

organisations frequently choose to delegate QoS monitoring tasks to trusted third

parties that specialise in the provision of monitoring infrastructures.

23

2.3 Message Dissemination Mechanisms

There are various forms of communication that can be used to support the di tributed

systems, and which dictate how messages are disseminated from one entity ill a

network and delivered to another. The choice of communication subsystem al 0

influences how QoS monitoring mechanisms can be integrated into a distributed

system.

2.3.1 The Client/Server Model & Socket Layer

~
o

requesl

response

Figure 10 Socket communication

The simplest and most conventional realisation of a provider/consumer relationship i

characterised within the client/server model [Ince02]. This model i typically

implemented so that a server program (the logic of the application) operate

continuously on a computer at a location remote to that of the client entity or entities

wanting to communicate with it (e.g. a web server that delivers web pages to Internet

users) . Clients are realised as programs (e.g. a web browser) on end-user machines,

which facilitate communication with the server on behalf of the user. The server

program listens for client requests directed towards it over the network (Figure 10),

processing requests when it receives them, and responding accordingly. At the lowest

level, communication between a client and a server is achieved using the TCPIIP

protocol combination [Forouzan03] . A 'socket ' is an abstraction that allows a

program or programmer to direct data to a specific channel in the TCPIIP

communication subsystem of a particular machine, by identifying the IP address of

the machine and the numbered 'port ' to send the data to . For example, port 110

identifies mail sent with POP3 (Post Office Protocol version 3). A server program can

24

monitor a number of assigned communication sockets on its own machine. U ers then

communicate with ports directly or through an associated client-side program. The

server process takes input data from these ports and translates it into program

requests. When processing of a request is complete the results are transmitted back to

the client machine. Since a great deal of the communication is delegated to underlying

network protocols, communication between interacting parties is kept simple, but with

this is relatively limited in its capabilities.

2.3.2 Remote Procedure Calls

Method name
Params (P l ... pN)

Method name
Result object

o
Figure 11 Remote Procedure Calls (RPCs)

In a distributed system functional components are separated between processes that

are not necessarily under the control of the same computer structure. These processes

have to communicate with each other over a network to complete process calls. Such

a system could be implemented with Remote Procedure Calls (RPCs) [Srinivasan95],

specialised calls that directly target applications or methods located elsewhere in

relation to the origin of the call. All of the information relating to the specific method

being invoked by an RPC (as well as information pertaining to the input parameters

required by the method) is wrapped within a client's RPC message (as shown in

Figure 11). This differs from simple socket communication, which does not

encapsulate information in self-describing service requests and responses as RPCs do .

A client can send an RPC to a server to invoke a method with a given set of

parameters, and receive the results of invoking the method in a response mes age. The

transparency between system components is preserved, as the middleware (i .e. the

25

underlying logic enabling communication) translates function calls into inter-process

messages [ColourisOl].

To enable access to RPC-based services from numerous platforms, standardised

service descriptors defined in an Interface Description Language (or IDL) are

typically employed. Language-specific tools (referred to as stub compilers) can then

be used to generate code for use by clients and servers to facilitate communication.

These pieces of code are known as 'stubs', where the client and server processes are

linked to a client-stub and a server-stub respectively. Stubs hide the details of message

passing from higher-level applications. They are responsible for packing

(marshalling) parameters into the respective calls and responses, and unpacking (un

marshalling) the parameters into a form that can be understood by the intended

recipient program. This packing and unpacking of parameters allows for the

standardisation of message contents within inter-process calls, so that rules can be

created mapping the data encodings native to the client and the server process to the

object representations used in the RPC messages. This has the benefit of enabling

communication between processes that do not necessarily run in the same program

language. Examples of RPC systems include the Common Object Request Broker

Architecture (CORBA) [Corba] and the Sun or Open Network Computing (ONC)

RPC system [Srinivasan95].

2.3.3 Web Services

RPCs can be utilised to afford interoperability between different systems, and in this

context they are typically referred to as Web services. However a Web service is

technically any network-accessible interface to application functionality built using

standard Internet technologies [Alonso04]. More and more applications originating

within differing platforms and programming environments need to communicate with

each other to achieve their respective goals. In this context, Web services act as an

interface between application code and any user of that code. They provide an

abstraction layer, separating the platform- and programming language- specific details

of how application code is invoked. The provision of a standardised Web application

layer such as this essentially means that any program written in any language can

access application functionality as long as it is able to access the Web service

associated with that application.

26

~A_P_~_I~_:_~i_on~l~ ~I
Platform and

language specific
communication

Web Service

Platform and
language agnostic

communication

Application
Client

Figure J 2 Web services provide an abstraction layer between (he application client and the application
code [Snel102]

Figure 12 shows how Web servIces are typically employed. The application code

holds all of the logic comprising the system's core functionality . With abstraction

behind a Web service interface, there is scope for cross-platform interoperability in a

way that makes the platform-specific details of the application logic (on both sides of

the interaction) irrelevant. Another way to view Web services is as a messaging

framework - using a platform-agnostic approach the only requirement of a Web

service is that it must be capable of sending and receiving message uSIDg a

combination of standard Internet protocols (which also serves to increa e its potential

user-base).

Examples of Web Service technologies are SOAP (formerl y Simple Object Access

Protocol) [Soap] and the Web Services Description Language [Wsdl]. The fonner acts

as a communication format, while the latter describes services and associated protocol

bindings, defining how entities can communicate.

27

2.3.4 Message-Oriented-Middleware (MOM)

Application A

Messaging API

Messaging Clients Message-Oriented
Middleware

Application B

Messaging API

Messaging Clients

Figure 13 How Message-Oriented Middleware (MOM) may be deployed [Hae/aIG1}

Another form of inter-process communication that allows even greater degree of

abstraction and interoperability is Message-Oriented-Middleware (MOM). MOM i

the generic term for messaging systems that enable application-to-application

communication through message channels, without the need for direct communication

with each other (as shown in Figure 13) [Ince02) . Enterprise messaging systems such

as these allow two or more applications to exchange information ill the form of

messages to inform other applications of particular events or occurrences ill other

parts of the same system. These messages do not necessari ly suggest the instigation of

methods or specific processing tasks, with more focus on the content of the messages.

This approach is particularly useful in situations where processes are driven by raw

information. Open-source examples of MOM systems include the Java Message

Service (JMS) API [lms], and the JBossMQ service [JbossMQ) (soon to be replaced

with JBossMessaging [JbossMessaging)) . Commercial MOM systems include

ArjunaMS [Arjuna], IBM WebsphereMQ [WebsphereMQ) and Microsoft MSMQ

[Msmq).

Using MOM, messages are transmitted from one messaging client to another across a

network through messaging middleware. These middleware platforms typically afford

reliable distribution of messages to their recipients , while also providing configurable

levels of transactional support.

28

Interacting applications exchange messages through virtual message channels or

queues. When a message is sent, it is transmitted through dedicated middleware which

can be used to indirectly transmit the message to a specific application. As opposed to

directly addressing an application, any application that registers an interest in a

particular message channel may receive messages from it. In this way the applications

that send messages and those that receive them can be decoupled. This pattern of

communication can be extended to allow parties to interact without needing to be

available at the same time [EugsterOO]. Any messages that are found at a particular

message channel can be retrieved at a later date without having to wait for them to

arrive. In this respect MOM differs from tightly-coupled technologies such as RPC

systems, which require an application to know the methods exposed by a remote

application and require applications to be available when requested .

A further advantage of asynchronous messaging is that a failure 10 one logical

component does not necessarily impede the operation of other entities in the system.

Transmitted messages are treated as complete autonomous units within themselves,

with each message existing as a self-contained, self-describing encapsulation of all of

the data and state infonnation needed by any application logic that processes it.

(a)

(b)

Figure 14 (a) one-fa-one and (b) publish/subscribe MOM communication

29

A number of messaging paradigms have grown from the basic queuing architecture of

MOM (illustrated in Figure 14). One-to-one (or 'point-to-point') message delivery

allows entities to send and receive messages to each other both synchronously and

asynchronously. Only one receiver can consume each message sent to a given

channel, although there are instances when a channel can have multiple receivers. In

such cases, only one registered recipient will receive each message, as determined by

the middleware [Alonso04].

In contrast to the point-to-point approach, the publish/subscribe paradigm (Figure

14b) is intended for situations that demand a one-to-many broadcast of messages. One

producer can send a message to a number of consumers with the only requirement for

receiving the message being that the consumers must be 'subscribed' to the relevant

message channel (i.e. they have registered an interest in the message channel with the

messaging server). In this way, producers and consumers are anonymous, and may

dynamically publish or receive content to and from different channels. Event

notification systems based on the publish/subscribe messaging model can be used to

build loosely-coupled, autonomous components, as required in large-scale

heterogeneous distributed systems [CarzanigaOO]. There are different schemas that

applications can use to register to receive messages [Eugster03]. Applications can

declare an interest in a specific channel identifier or 'topic' (as in TIBCO Rendezvous

[Tibco]) or in content produced across the channel (e.g. Siena [CarzanigaOl] and

Elvin [SegallOO]). In some systems interest in specific types of messages (such as

message object classes) can also be stated.

2.3.5 Summary

There are numerous ways for components within a distributed system to interact.

These approaches vary in complexity and abstraction and have their own respective

advantages and disadvantages. Such differences must be taken into consideration if

the monitoring and evaluation of QoS within an observed system is to be successful.

When monitoring performance at the low-level socket layer, there is a requirement for

specialised alterations at the hardware level to make the process of monitoring

efficient and non-intrusive. These alterations are usually implemented in network

routers (thereby allowing statistical data to be inferred from the passage of data

around a network). Although accurate, this does not immediately present a picture of

30

the end-to-end system performance. Although this is useful for managrng QoS

compensation actions (by observing changes in network performance) it does not

provide a higher-level view of the system and the services active within it, and with

this any evidence of how interacting parties are behaving in relation to each other.

Some RPC-enabled languages allow transparent insertion of additional logic at the

application-layer, which is then capable of accommodating monitoring functionality.

Where this feature is available it allows for monitoring based on the observation of

messages and their contents as they pass between an application and the underlying

communication sub-system along the request-response chain (e.g. in CORBA

[KimOI, Narasimhan99]). Web Service technologies such as SOAP provide features

for the transparent insertion of additional information into a designated message

header without altering the message payload, which allows for more detailed

monitoring. RPC-Ievel monitoring allows inference of application-layer metrics (e.g.

observation of the methods being called by a specific client, and the amount of time a

request takes to be processed within a server application). Evaluation of contractual

obligations (i.e. quantifiable user-perceivable metrics) can then be realised.

With respect to MOM technologies, messages can only be observed directly within

the messaging middleware, and it is not guaranteed that functionality to do so is

exposed. Without direct access to the messaging medium it is difficult to monitor

MOM applications for higher-level QoS attributes without instead falling back on

network-layer monitoring techniques. Transparent message interception is however

illustrated in the Chameleon framework [Curry04], which was built upon the Java

Message Service (JMS), so there is scope for developments in the future. Matters are

not helped by the nature of MOM communication, which obscures the interactions

between parties. There is no focus on specific services or reciprocal relationships, and

so it is difficult to gather data relating to a system in such a way that individual parties

can be made accountable for their actions.

2.4 A Different Service Domain - Distributed Virtual Environments

The previous discussions regarding communication patterns and enabling

technologies have focused on their use within the context of a provider/consumer

relationship. Though form of communication is widely seen across the Internet,

another form of interaction that is gaining prevalence through distributed systems is

31

Distributed Virtual Environments (DYEs). An examination of DVEs is therefore

worthwhile within the context of this work, to highlight the associated deployment

issues alongside discussion of how the aforementioned enabling technologies can be

used to realise a DYE.

2.4.1 Introduction

A Distributed Virtual Environment (DVE) is a virtual world inhabited by

geographically dispersed computer users. These users interact with each other and the

environment (e.g. terrain) within an instance of the same virtual world, and there may

be hundreds or perhaps thousands of users inhabiting a single world (especially in the

case of Massively Multiplayer Online Games, or MMOGs). Users of virtual worlds

are typically presented with a rich interactive experience, both in terms of graphics

and sound elements, in addition to information regarding the actions of other users.

Ensuring complex interactions are represented in a consistent and timely fashion for

an arbitrarily large number of world participants is a non-trivial problem, which

requires that DVEs are supported by design and deployment techniques that are

inherently scalable. As message exchange is the only way to propagate events to

geographically-dispersed users, care must be taken to prevent exhaustion of the

network bandwidth and available processing resources that support a DVE.

One approach to managing resource and network demands in a DVE application is to

use Interest Management (e.g. [Greenhalgh95, Zyda91]). This approach frees

bandwidth and processing resources through targeted message-passing techniques

(eschewing broadcast-based approaches) to ensure that messages are only sent to

recipients that may be interested in them. Defined areas within a virtual world are

used to restrict message passing, and in this way a message and its receivers are

associated with a specific, bounded area of virtual space. Areas used for restricting

message passing are commonly termed 'areas-of-influence', and an obj ect is said to

exert influence upon (i.e. send messages to) all other objects in its area-of-influence.

When modelling restricted message-passing based on object localities in a virtual

world, there is the possibility that 'missed interactions' may occur. Missed

interactions occur when objects that should be seen to interact with each other do not

due to a lack of message exchange between them. Missed interactions are related to

the consistency-throughput trade-off typified by Singhal and Zyda [SinghaI99]: "It is

32

impossible to allow dynamic shared state to change frequently and guarantee that all

hosts simultaneously access identical versions of the state".

Considering the aforementioned trade-off, missed interactions occur because the

degree of inconsistency present in a DYE is sufficient to allow an object s tra ersal of

an area-of-influence to go undetected by the associated Interest Management cherne.

2.4.2 Interest Management

{ulAun

Figure J 5 Areas-ai-influence

As part of Interest Management objects within a DYE are associated with an area-of

influence within the virtual world, which acts as the criteria for determining whether

other objects may be eligible to receive messages from a particular object. Thi

happens aside from the objectives of the DYE, and is purely a mechanism with in the

processes that control inter-object communication. The use of areas-of-influence

allows the communication subsystem to reduce the subset of objects that are to be

informed of the position (and perhaps also the actions) of the object or objects within

a specific area-of-influence within the virtual world.

Interest Management techniques may be classified into two categories: (i) reglOn

based; or (ii) aura-based (Figure 15). In the region-based approach (e.g. [Zyda91]) the

virtual world is divided into well-defined and uniformly-sized static regions (with

their boundaries defmed during creation of the virtual world). The recipient of a

message resides within the same region as the sender, or one adjacent to it. Because

regions are fixed within the virtual world, objects that move around will pass between

regions, and with tbis the set of objects with which they communicate will al 0

change during the lifetime of a DYE. In the NPSNET-IV virtual en ironment model

[Macedonia94] for example, the world terrain is divided into hexagonal cell . In the

33

aura-based approach (as used in the MASSIVE virtual world system [Greenhalgh95])

each object has associated with it an 'aura', which then defines an area of the virtual

world over which an object may exert influence. An object then communicates its

actions to those objects that are seen to enter its own aura.

The aura-based approach to Interest Management provides a more accurate model of

object interaction on which to base message exchange, especially with respect to

online games (where it is more naturally representative of the activities of the virtual

world participants). Figure 15 illustrates a virtual world scene using both region- and

aura-based Interest Management techniques as described. Using auras it can be

determined that object e (a plane) is capable of influencing objects c and d (both

player avatars). However, in the region-based approach object e may only influence

object d (as object c is regarded as being in another region). This shortcoming could

be addressed by expanding the area-of-influence of object e to encompass additional

regions and so allow it to influence object c, but if this change were permeated across

the DVE it would inadvertently allow object e to influence object/(so that messages

are sent unnecessarily from object e to object j). An alternative to the exertion of

influence over any objects within an aura is to only regard influences between objects

whose personal auras overlap. With this, in the aforementioned model, objects c and d

would be capable of influencing the plane (object e). This particular approach is

commonplace when most objects in the virtual world are similar in nature (e.g. when

they are all human-like avatars). Multiplayer game environments tend to favour this

type of scenario, as the alternative of allowing a player the capacity to enact influence

over another without providing them with the ability to react only serves to detract

from game play (as it is not necessarily fair for all involved players) [Sweeney99].

2.4.3 Message Exchange

To facilitate scalable message exchange between users of a virtual world, a

communication subsystem must exist that is both capable of identifying message

recipients and which can be integrated with an Interest Management scheme. In the

region-based approach message exchange may be achieved by associating each region

with an identifier, which may then be used to send or receive messages to and from a

user. As an example, each region may be identified by an associated IP-multicast

address.

34

Figure 16 An object crossing region boundaries

Using this example (as illustrated in Figure 16), if an object Obja traverses the

boundary of a region by travelling from region 1 to region 2, Obja will then subscribe

as a sender/receiver for region 2 's IP-multicast address, and duly unsubscribe from

region 1 's IP-multicast address as it leaves region 1. In this way, objects need only be

aware of which region they are currently in to enable effective message passing to

occur - there is no need for individual objects to contact each other directly.

Due to the lack of static regions in aura-based Interest Management, the identification

of message recipients is achieved either by the objects themselves (in a peer-to-peer

fashion) or via a centralised management server. In the peer-to-peer approach all

objects within the DYE must register with the communication middleware used by the

application, and must exchange messages periodically notifying other objects of their

position within the virtual world, so as to be aware of when aura influence is being

exerted over them. These messages are commonly referred to as 'heartbeat' messages,

and serve to indicate the location of the sending object. Using positional updates from

all other objects within the DYE, a particular object (or a centralised server acting on

behalf of all DVE objects) can determine if the area-of-influence of any other object

overlaps with its own aura.

Once aura influences have been determined, a phase of high-frequency message

exchange is enacted between interacting objects (so as to provide more detailed and

responsive behavioural information, improving both consistency and timeliness of

updates during object interactions). In the peer-to-peer approach this is achieved

independently between each pair of interacting objects. For example, if object Obja

receives a heartbeat message from Objb and determines that Objb is influencing Obja,

35

Obja will declare an interest in receiving Objb' S high-frequency messages. In the

server-based approach interacting objects send high-frequency messages to a

centralised server instead of each other. The server assumes responsibility for

discovering interactions between objects by considering all aura influences within the

virtual world. Once a server determines the existence of object influences it relay

high-frequency messages between objects .

2.4.4 Missed Interactions

,

" 0. " I A I
I I , . , , ,

'.. ",,;' ,

" 0 " I B I
\ '
\. " '... ..;'

Un-Penetrated Aura

Penetrated Aura o Object

Figure 17 Example of a missed interaction

,,'" ... I'"
I '\ I \ , " 0 \ , 0 " A I I 8 ', I

\ II. / \. ... ,'
, I... ,

'... ,,' .. ,

As an example, Figure 17 illustrates a missed interaction occumng between two

objects under an aura-based Interest Management scheme within a peer-to-peer DYE.

At time tl two objects A and B are travelling on intersecting paths. Objects A and B

have heartbeat message-sending intervals of iA and ia respectively, which may not be

identical. Object A last sent a heartbeat message at lA, and object B last sent a

heartbeat message at tB, where fA < fl & ta < tl . However, both objects have sent

heartbeat messages to each other recently enough so as to be aware that there is no

interaction occurring between them. At time t; objects A and B have progressed along

their paths, and their auras have intersected. At this time I; - IA < iA and I } - ta < ia. A

such neither iA nor ia has elapsed, and so neither object has received a po itional

36

update from the other. Because of this neither object is aware of the interaction taking

place. At time t3 both objects have progressed further along their paths, to such a

degree that their auras are no longer overlapping. Both iA and iB elapse after the point

in time at which the interaction between objects A and B ceases. As such, both objects

send heartbeat messages to each other, but are unaware of the interaction between

them having occurred. This constitutes a missed interaction, contributable to

inappropriately large heartbeat message-sending intervals .

To characterise missed interactions the notion of a 'session ' is introduced. A session

is regarded as an unbroken period of influence exerted by one object 0 er another.

Using a session it is possible to describe two types of missed interactions:

• Complete: throughout a session no messages were exchanged.

• Partial: throughout a session a smaller number of messages were exchanged

than expected. This may be for example because the heartbeat message

sending intervals of two objects do not both happen to elapse exactly when an

interaction between them begins.

A session may be further classified as unary or binary in nature depending on the

expected flow of message exchange between interacting objects. A binary session

occurs when both interacting objects are exchanging messages.

","",' ... ,
I ... f ...

: 0 '-' 0 \ I B 1 A I , . ,
\ . /\ ... / • '... "',... ... "

Figure 18 J/Iustration of a binary session involving two objects with auras

An example of a binary session in an aura-based system is illustrated in Figure 18

wherein objects A and B interact as their paths intersect. Time tx represents the time at

37

which the auras of the two objects first intersect, and ty is the time at which the auras

of both objects cease to overlap. Between tx and ty both objects will send high

frequency messages to each other. A unary session occurs when only one object

should be sending messages. In the region-based approach all sessions are binary (as

objects that share a region influence each other). In the aura-based approach unary

sessions are possible if an object must be within another object's aura in order to be

influenced (assuming different objects can have different aura sizes as in Figure 15).

Missed interactions may manifest themselves as a unary session when a binary

session should have occurred e.g. when two objects should be exchanging messages

during a session but only one of the objects is aware of it. A situation such as this may

occur if objects are sending heartbeat messages at different intervals, and interacting

objects are moving rapidly enough for only one object to receive a heartbeat message

during the session and instigate high-frequency message-sending.

The implementation of a DVE also influences the occurrence of missed interactions.

If a centralised server is used, it must inform objects of sessions taking place before

missed interactions occur. Since messages are sent between all DYE objects and the

server, the occurrence of missed interactions relates directly to the speed (i.e.

scalability) of the server in determining the occurrence of interactions. If the server

does not have the resources to process each interaction in a timely manner, missed

interactions will be seen to occur. In the peer-to-peer approach the occurrence of

missed interactions is regulated by the process of heartbeat message exchange. The

less frequently heartbeat messages are exchanged between objects the more likely it is

that interactions will be missed by one or both objects during a session.

2.4.5 Avoiding Missed Interactions

Approaches to minimising the occurrence of missed interactions within virtual

environments have received little interest in the literature. No attempt has been made

to describe the types of missed interactions that may occur in a virtual world and how

these may relate to different Interest Management schemes given the use of

client/server or peer-to-peer implementation models.

Assuming that networking and processing resources may not be easily altered to

alleviate the problem of missed interactions, current efforts to minimise their

occurrence are managed in an ad-hoc manner. These include reducing the maximum

38

achievable velocities of objects (making it easier to observe their actions) or

increasing the size of the area-of-influence for each object (so there is a greater

chance that an influence may be resolved before auras are completely traversed by

other objects). When considering peer-to-peer implementations, a developer may also

choose to increase the regularity of heartbeat message exchanges to provide more

detailed positional data (albeit at the cost of greater message production across the

system).

Alterations to the aforementioned parameters for a gIven DVE will manifest

themselves as a change in the Quality of Service (QoS) experienced by users.

Decreasing the achievable velocities for world objects may reduce the responsiveness

of a virtual world, whereas increasing areas-of-influence or reducing the interval

between heartbeat message exchanges may result in unnecessary message passing

(thereby potentially slowing the underlying network and the detection of interactions).

The core issue to be addressed in this context is the derivation of optimal values for

those parameters that govern influence and message exchange frequencies between

virtual world objects, in such a way that the associated DYE remains scalable and

responsIve.

2.5 QoS Provision - Case Studies

Distributed systems come in many forms, with the potential for differing relationship

dynamics between interacting parties and the utilisation of various means of

communication. Interactions can be monitored for quality (with respect to both

performance and behaviour) using a variety of methods, depending upon the enabling

technologies that underpin the system. Distributed systems can differ with respect to

how they are structured, and their QoS monitoring requirements.

Case studies are presented examining two contrasting systems: E-Commerce services

and Distributed Virtual Environments (DYEs). In examining these two different

forms of distributed systems, comparisons can be made and conclusions drawn as to

which aspects make each individual system unique, while also providing a view as to

the similarities that may exist between them. This examination will clarify how a

generic monitoring framework will have to adapt to be useful in a variety of contexts.

39

2.5.1 E-Commerce Systems

E-Commerce systems include web-based applications that have to provide some level

of structure and interoperability e.g. Web services and similar data-processing

services. Such services may not necessarily be used at a constant or regular rate,

depending on the changing demands of service consumers. Maintaining valid and

correct working behaviour within an E-Commerce service is of great importance.

Such services are heavily data-oriented, and as such the prevention of loss or

corruption of message data is often a high priority. It is important for these services to

remain available to serve the needs of consumers as and when required by them.

- data '\,
requests requests

Service Provider
Consumer

data / responses / Database

Figure 19 Communication pattern in an E-Commerce environment

When processing service requests it is not uncommon for a service provider to access

some form of back-end legacy system (e.g. a database server) to retrieve information

necessary for the successful completion of client requests (Figure 19). This in itself

can influence the performance of a particular service, depending on the capabilities of

the back-end system and the connection with the service platform.

Communication in an E-Commerce system is typically bidirectional between service

providers and service consumers, and both parties may be capable of participating in

complex multi-part request-chains. This adds further to the demand for reliable

communications between interacting parties.

There are several QoS performance characteristics that are of particular importance

within an E-Commerce environment, and which can influence the success of a given

servIce:

• Availability: whether the service is present for immediate use at a particular

time. If consumers cannot use a service that they have paid for, or a service is

unavailable when prospective customers happen upon it, the service provider

only stands to lose revenue and existing or potential members of its user-base.

40

• Throughput: the rate at which requests are successfully processed by a service,

which can be influenced both by the processing resources available to the

service and the request load produced by service consumers.

• Packet Delay (Latency): any inconsistencies in the timeliness with which

requests are processed may inadvertently affect the quality of the service,

producing outdated or invalid results. One example which would require

reduced latency would be if a provider offers a service that purports to

accurately inform a user of the time in any time-zone across the globe.

• Reliability: refers specifically to the regularity with which consumer requests

are met with correct (i.e. meaningful) responses.

Other factors that can contribute to the perceived quality of an E-Commerce system

include the notion of accessibility (the degree to which a service can serve a request,

focusing on how it allows cross-platform communication between different operating

environments), and any provisions for secure communications if they are requested

(such as confidentiality and non-repudiation). There may also be stringent

requirements with regards to how a service conforms to the law, as well as

compliance with any business practices associated with the service environment.

When such quantifiable needs materialise the QoS requirements and obligations

associated with a service can be encapsulated in a Service Level Agreement (SLA).

Modem E-Commerce systems employ component architectures such as Java Remote

Method Invocation (RMI) [Javarmi] or Web Service technologies such as SOAP.

Combinations of technologies such as these are particularly suited to E-Commerce as

they can be configured to work with an organisation's existing communications

infrastructures (as with Web services), while offering extensions that address

transactional and security demands.

In whichever way QoS is managed in an E-Commerce service environment, it is

desirable that applications active within the system are shielded from the complexity

of the associated QoS provisions [Aurrecoechea96]. Employing a principle of

transparency acts to reduce the additional functionality incorporated at each

41

participating machine. Transparency also hides the details of QoS specification from

the application, delegating QoS management activities to the supporting framework.

There are a number of ways in which QoS management functionality can be realised

[ReO 1], as shown in Figure 20:

(a) (b) (c) (d) (e)

Figure 20 Various approaches to QoS integration in middleware

a) The Service Approach implements QoS enhancements as separate middleware

services, providing portability and interoperability.

b) The Integration Approach directly modifies the middleware platform to

provide enhancements, achieving better performance at the cost of

interoperability.

c) The Interception Approach relies on intercepting messages from either above

the middleware (providing a higher level of abstraction) or;

d) Below the middleware (allowing for the utilisation of efficient transport

protocols) .

e) The Gateway Approach involves the insertion of a QoS-enabled component at

the transport layer between the end-system devices, which is then responsible

for implementing QoS enhancements [Schantz99] .

A combination of these approaches can also be employed, providing a broader range

of control and data gathering from different parts of an observed system.

42

2.5.2 Distributed Virtual Environments

Figure 21 Machine users within a virtual environment

Distributed Virtual Environments (DVEs) may come to exist wi thin Ma ive ly

Multiplayer Online Games (MMOGs) or strategic military applications (e.g. [Karr97 ,

Mastagli095]) . Within these there are potentially many hundreds or even thou ands of

objects interacting within the same vi rtual world, with many directl y representing

human users (as in Figure 21) . Users of an application typically control character and

are able to move their own character within the confines of a virtual environment.

Information relating to their position in the world and their current state (e.g. the

nature of the actions that they are performing at a given time) must be communicated

in real-time to other participant nodes to maintain a consistent world view for all

active users of the virtual world. In this sense the primary concern of each DYE i to

maintain a reasonable level of quality with regards to the experiences of its users.

Figure 22 Peer-to-peer (P2P) communication pattern in a D VE

43

Nodes participating in a DVE application may transmit infonnation directly to all

other nodes active in the virtual world (as in Figure 22), or to a centralised sen'er

which disseminates the data to the applicable network nodes (Figure 23) [Merabti04].

The latter is employed in small-scale multiplayer games such as Half-Life [Halflife].

For larger games that need to support greater client numbers (e.g. Second Life

[Secondlife]), clusters of servers are employed to share the processing load. Most

commercial MMOGs employ a back-end database server to maintain player state

within the virtual world [Hsiao05].

Figure 23 Centralised communication pattern in a DVE

Each node has an obligation to act in a timely and accurate manner, transmitting

positional data for the associated entity (typically a human user) in a reliable fashion

(either directly to other nodes or to a centralised server). The actions of the entity can

then be accurately represented in the virtual world. The low-level QoS requirements

for a DVE application would concern real-time responsiveness (directly relating to

processing latency and transmission delays in the underlying network) and consistent

system-wide behaviour (i.e. reliable and complete transmission of world data to the

relevant set of participants). As an example, if one user walks directly into another

user in the virtual world, both should see this happening at approximately the same

time (i.e. with enough time to absorb and react to the new infonnation and preserve

fairness across all users).

The main thrust of QoS within DVEs is a consistent user experience. Users are

directly involved in the processes that must be regulated, and it is the consequences of

their actions that must be managed. This differs from E-Commerce systems where

processes are transparently automated, predictable, and influenced only by the

44

existence of service data within the system. Also, within an E-Commerce application

the details of each process must be precisely defined, and can remain hidden from

human users. For example, a person browsing a bookseller website doesn't know that

a warehouse is being queried for stock availability, and even less so the nature of the

obligations that the warehouse has with regards to provision of their own service(s).

In contrast, DYE users want to see precisely what other entities participating in the

virtual world are doing, and it is this which must be supported through the application

of QoS mechanisms.

To manage the number of users that could conceivably inhabit a virtual environment,

the underlying communication medium must be scalable, and able to support users

entering and leaving the DVE dynamically (much like they would within Web service

interaction). Existing network-level infrastructures are typically used to provide

communication sub-systems within DVE applications to promote heterogeneity

between differing client platforms. This would mean that network-level monitoring

techniques would be the only means of observing QoS performance in a DVE.

Message Oriented Middleware (MOM) has also been identified as suitable for

providing the basis for message exchange in distributed multimedia applications

[GoreO!], with the Mercury message dissemination system [Bharambe02] providing a

positive assessment of MOM support for networked games (i.e. MMOGs). DVEs may

then employ messaging middleware, such as CORBA (as in [WilsonOI]).

Beyond basic QoS parameters such as network delay and data loss there has been

little research into what constitutes the QoS requirements of a DVE, and therefore

how the underlying communication mechanism affects the realisation of QoS

monitoring in DVEs.

2.6 Related Work

2.6.1 E-Comrnerce & Web Services

In light of the discussion in previous sections relating to E-Commerce systems, there

are a number of requirements that must be satisfied if an SLA monitoring framework

is to be truly useful in practice:

45

• The framework should be generic, so as to facilitate the wide range of service

configurations that exist in the heterogeneous service environments of the

Internet:

o With respect to the application technologies that it can interact with,

both in the collection of data from within existing E-Commerce

systems and when integrated with underlying communication

technologies.

o Towards the range of service domains that it can operate within. This

would increase the usability of the framework within evolving service

environments.

o The framework should be able to accommodate existing QoS

definitions (including SLA languages), along with any contract

terminology that organisations may wish to use. This would reduce the

need to re-interpret existing business logic.

• The framework should be scalable to match dynamic E-Commerce service

environments:

o It must scale to observe an arbitrary number of clients without

adversely affecting the performance of the service environment.

o It must be capable of monitoring and evaluating a growing number of

service contracts without detrimentally affecting the existing system.

• The monitoring framework must be characteristically transparent:

o In its deployment, so a minimum of effort IS required to enable

monitoring within service environments.

46

o In its operation, keeping interference with the workings of the existing

system to a minimum, while also requiring as little maintenance on the

part of the service participants as is possible.

• The framework should reduce the amount of work required to tailor

monitoring and evaluation mechanisms to a particular service environment,

and allow reuse of functional components and evaluation logic.

These requirements shall be considered in the appraisal of the following related

works.

2.6.2 Commercial Research

2.6.2.1 Pruyne

Distributed applications rely on specialised middleware to enable communication.

Pruyne [PruyneOO] highlights the fact that middleware applications in and of

themselves do not naturally provide QoS support. Pruyne proposed extending higher

level QoS provision in middleware components through the notion of 'interceptors'.

These interceptors are intended to act as additional logic components that allow

inspection and manipulation of application-level data as it moves between application

components, most notably for the provision of QoS service extensions. This

infrastructure of re-usable QoS components was designed for use at both the client

and server-side of the end-to-end system. There is the capacity for interceptor

components to be dynamically inserted (potentially in chains) between existing

middleware and the application level above. This allows for dynamic adaptation to

changing service environments, through the insertion of logic that is able to modify

service behaviour to improve performance. The focus is on the need to separate QoS

provision from application-level QoS properties, thereby allowing for the reuse of

functional interceptor components across separate systems. This inherently separates

functionality from any specific application or enabling middleware technology, with

QoS extensions acting as a framework to be deployed around existing services.

A standardised request interface is proposed, encapsulating methods for accessing

interface and method names, as well as obtaining, altering and adding parameter and

47

method return values. These methods can then be accessed by interceptor

implementations to realise QoS behaviours, as request objects adhering to the latter

interface are passed to each interceptor in an interceptor chain.

This work allows for the development of exception catching processes (to manage

behaviour in the face of application errors), as well as a capacity for communication

between separate interceptor components. Examples of interceptor components to

provide high service availability and admission control are discussed in Pruyne's

work. There is however little consideration of factors relating to deployment and

subsequent use in a platform-agnostic system environment where scalability

requirements and ease of placement within an existing system are key factors. Also,

there is no discussion of how interceptors can be integrated into larger frameworks for

the purpose of enabling end-to-end QoS extensions such as service monitoring.

2.6.2.2 QuO

The QuO project [Schantz99] proposes a QoS-aware object gateway that can be

transparently positioned at the transport layer to provide end-to-end QoS

manageability within the underlying middleware (and not within the application

layer). It is intended that as well as providing predictable system behaviour, such

components support the addition of mechanisms to the system environment to

enhance the behaviour of the service participants (without necessarily altering the

existing application constructs already in place). The QuO gateway allows placement

of dynamically reconfigurable and adaptable QoS enforcement components, although

the potential for anything beyond the provided range of available QoS behaviours is

ultimately under the control of the project authors.

The QuO framework augments CORBA Interface Defmition Language (lDL)

interfaces with QuO Quality Description Languages (QDL), providing an

encapsulation of QoS service properties. Two QDLs, Contract Description Language

(CDL) and Structure Description Language (SDL), describe contract information and

selection information respectively. These augmentations allow QuO gateway objects

to operate transparently at both the client- and server-side. Insertion of QuO interfaces

into a system is achieved through use of the Internet Inter-ORB Protocol (HOP).

Client-side and server-side gateway objects then implement QoS-aware transport

protocols and QoS management functions. Examples of existing implementations

48

include provision of assured bandwidth usmg RSVP [Zhang93], and service

dependability using group communication services as part of the AQuA Project

[Cukier98].

With respect to the deployment of gateway objects, although compatibility is offered

with any off-the-shelf Object Request Broker (ORB) products (through the IIOP),

limitations are imposed in the way in which client-side stubs must be explicitly

altered to allow use of the gateway object.

In experimental use the QuO gateway introduced additional latency to the effective

operation times of the existing middleware stacks, suggesting scalability issues that

hinder effective deployment. Also although a simple QoS contract mechanism is

included, it is primarily used to manage the actions of gateway components in

response to specific system events, and as such does not offer any scope for explicitly

defining how the service participants themselves should behave.

2.6.2.3 WSLA Monitoring & Evaluation Framework

An example of a complete QoS infrastructure is the WSLA Framework

[Debusmann03, KellerIbm02, KellerLisa02] developed by IBM to address the need

for management of system-wide SLA specification and monitoring processes within a

Web services environment. The framework acts as a complete application-level QoS

infrastructure, enabling service quality enhancements for stand-alone Web

applications that have varying QoS and business requirements. As such the WSLA

Framework essentially acts as an off-the-shelf solution for realising SLA-managed

service relationships. There is also accommodation for an SLA language that

accompanies the work, described in [Ludwig02].

The WSLA Framework is capable of transparently measuring and monitoring QoS

parameters, and evaluating monitoring data against the terms of an SLA. Interacting

parties can also be notified of SLA violations that occur during the lifetime of the

associated service. An in-built SLA 'Compliance Monitor' evaluates and regulates

system configurations and run-time metrics relevant to an observed SLA.

Components of the monitoring framework are able to operate in a modular fashion,

even across network domains, providing separation of concerns and delegation of

monitoring tasks to different network entities. This relates to scenarios where

communicating parties wish to delegate monitoring tasks to trusted third parties,

49

either because an unwillingness to accept the additional workload or due simply to a

lack of trust between parties. It is feasible to collect monitoring data from numerous

sites and cross-check the data for verification purposes, while at the same time

disseminating SLA contents on a 'need-to-know' basis. This shows consideration of

data confidentiality and the need to reduce unnecessary replication of data across

cooperating and remote monitoring sites.

A 'Measurement Service' component within the Compliance Monitor maintains

information about the state of an observed service, either by probing the seryice or

intercepting client invocations within the observed service platform. This component

can be replicated at different sites to allow multiple third-parties to share monitoring

duties.

There is discussion relating to the classification of QoS parameters within an SLA,

such as network-level measurements and complex metrics (composed from basic

measurements), and how metrics map to contractual obligations (i.e. SLA parameters)

and financial concerns. This shows an approach to generalising the definition of

complex service requirements.

Additional discussion concerns deployment of an SLA monitoring framework in an

industrial context, relating the financial impact of a monitoring framework and the use

of SLAs to govern business practices, as well as resource management and issues of

accountability with respect to monitoring entities. This work also validates the need to

provide unambiguous SLA terminology and consolidate the different definitions of

QoS parameters that may exist across different contract languages (with examples

including 'response time' and 'availability').

There is discussion of the need for all interacting parties to be directly involved in the

SLA deployment process, highlighting a necessity for extensibility and customisation

of contracts. The SLA engine is capable of interacting with various service

technologies through specialised middleware plug-ins that connect the measurement

components with specific technologies. The SLA engine also provides bindings to

different communication protocols (including the SOAP and HTTP protocols) for

obtaining measurements.

The WSLA Framework considers the reuse of contract content across similar service

relationships. Contracts are defmed in XML, and logic for calculating complex

metrics is defined in auxiliary files and subsequently referenced in each contract

where required. Pre-defined evaluation logic can be re-used and more measurement

50

capabilities afforded in the future, allowing interacting parties the capacity to tailor

data monitoring processes to their own needs.

The SLA language that accompanies the WSLA Framework details a number of

elements. A 'Service object' acts as an abstraction of the technical obligations of a

service, representing services or individual service operations. Measurements

associated with an individual service or operation are represented as 'SLA

Parameters' (e.g. 'downtime', 'throughput', 'response time'). An 'SLA Parameter'

definition acts to describe a unit of measurement, its name within the contract, its

metric class, and the service to which it refers. 'Metric' definitions then describe how

a measurement is calculated based upon its metric class. Performance obligations that

must be upheld during service operation are defined in 'Service Level Objectives'.

The latter include reference to a metric, a threshold value for the metric and a period

of validity for the obligation. The violation of a threshold value constitutes a violation

of the contract e.g. if server throughput falls below an agreed lower limit. If a specific

procedure should be followed upon an obligation being violated, an 'Action

Guarantee' can be automatically instigated to perform a pre-defined action within the

WSLA Framework. This may include notifying interested parties of service violations

using the communication subsystem. These SLA evaluation processes are carried out

by the 'Condition Evaluation Service' within the Compliance Monitor.

The WSLA Framework attempts to automate the process of creating and deploying an

SLA. It automates use of Web Service Definition Language (WSDL) [Wsdl]

descriptors to construct an SLA document for a particular Web service. The SLA can

then be coalesced with business requirements (with the consent of the service

participants) using the 'SLA Establishment Service' component. This reflects the

need to simplify SLA monitoring and deployment while considering per-party

requirements. SLA content is then disseminated by the 'Deployment Service' to

monitoring entities.

The WSLA Framework does not fully consider issues of deployment, such as the

capacity to scale with the number of observed entities in a given system and the range

of service domains that can be accommodated. Furthermore, the available contract

language set is proprietary. Users essentially have to utilise the language offered by

the framework or they cannot benefit from any of its functionality.

The way in which monitoring is carried out is not necessarily transparent or scalable.

For instance, there is no consideration of the amount of additional network traffic that

51

monitoring generates with a growing base of service participants and replicated

monitoring components. Little attention is also afforded with regards to the

communication protocols that link service participants. Measurement components

would need to be capable of adapting to these.

2.6.2.4 Business Management Platform (BMP) Agent ~ etwork

Sahai et al [Sahai02] describe an automated SLA monitoring infrastructure for use in

Web services environments. The monitoring components of the infrastructure provide

application-level accountability amongst service participants and a richer view of

high-level service aspects. Proxy components are deployed within the SOAP

communications layer to transparently intercept messages as they pass between

communicating parties, correlating these with application logs so as to put them in

context with the associated business processes. These actions are managed by a

Business Management Platform (BMP) local to each participating machine.

Measurements within a platform are instrumented by attaching a proxy object to the

SOAP 'router' responsible for re-directing messages between a client and a server.

This allows observation of client and service behaviour. It is assumed that there is a

tool available to allow observation of process logs relating to the target service

process within the server platform. Measurements relating to a particular service are

associated with a WSDL or WSFL (Web Services Flow Language [Wsfl]) service

specification. Measurements are collected and stored in a dedicated repository, and

the 'SLA Violation Engine' records information pertaining to service obligation

violations.

One driving factor in this work is the accurate representation of the client experience.

Within each service relationship measurements are taken from both the service

provider and the service consumer so as to determine whether conditions within the

server are reflected at the client-side (with respect to service metrics e.g. response

time). This then provides a valid representation of higher-level application

performance. The work also considers the chaining of Web services, wherein the

satisfaction of a particular request may require communication with additional

services. Accommodating such scenarios extends the adaptability of the work to

differing service environments.

52

With regards to the specification of monitoring criteria the work provides

unambiguous SLA definitions and customisable monitoring logic. This includes

instrumentation in an existing system and the associated evaluation of data. Higher

level abstract concerns are also visited, such as the measurement and evaluation of

complex metrics. Examples include the response time of a Web service operation or

the resource usage of a particular operation.

The accompanying SLA language is described in [SahaiOl]. This language is defined

in XML, with elements describing the obligations of each contract arranged

hierarchically. An SLA is defined by its period of use and a set of 'Service Level

Objectives' (SLOs). Each SLO refers to a set of measurements and a series of

conditional operators. These operators dictate when the objective should be evaluated,

the function to use to evaluate the measurement, and the action to take upon violation

of the function. Each measurement description indicates where the metric is to be

sampled (e.g. within the service platform) and the format of the measurement data.

The SLA language can be extended to include additional object definitions and data

evaluation logic to potentially meet previously unconsidered requirements. Also

although re-use of contract components is possible, it is suggested that only the

administrator of a monitoring framework be entrusted to develop new measurement

component logic when required (which can then, to the work's credit, be stored for re

use within an SLA language library local to each BMP Agent).

There are a number of prevalent scalability issues. In order to provide an end-to-end

view of system performance, monitoring logic is inserted at both the server and client.

This means parties dynamically partaking in service relationships have to consider

maintenance of additional monitoring logic. Also, either the clients themselves or the

providers of the monitoring logic would be ultimately responsible for maintaining the

additional monitoring components. This essentially peer-to-peer approach to SLA

monitoring is not necessarily suitable for deployment across any and all E-Commerce

services (for instance those scenarios wherein a client's SLA obligations are far

outweighed by those ofthe service provider).

There is little mention of scenarios where multiple SLAs exist between a servIce

provider and numerous consumers, or how the maintenance of such a system might be

made scalable. The fact that Business Management Platforms are essentially

responsible for monitoring and regulating themselves and potentially those entities

that interact with them (thereby inviting inefficient overlap of monitoring concerns

53

between BMP components) also affects scalability. This is however offset by

functionality that aggregates monitoring data before it is transmitted between BMPs,

thereby reducing the network traffic that is generated.

This work assumes that the SOAP Web services communication protocol is the only

protocol in use between interacting parties. This validates the use of middleware

proxies to achieve transparency and observation of application-level beha\-iour

(through insertion of proxy objects into the SOAP stack between the sending

application and the network level). However, part of the monitoring process involves

intercepting messages and either altering them to include an additional service

identifier or interrogating them to determine the presence of such an identifier. These

procedures may not scale with the number of clients or services active within an

observed system.

Server-side processes are augmented with a proxy component that reads the internal

server logs and correlates their contents with message identifiers. Although this shows

consideration of application-level monitoring through composition of a high-level

view of system behaviour, it assumes the existence of a specific process-log

consolidation and interrogation application. There is no mention of how BMP Agents

may develop a high-level view of application behaviour in a generic manner i.e. In

service platforms that do not expose service log contents.

It is assumed that all providers and service consumers have a BMP Agent already

installed locally before a service comes into use, and as such there is no mention of

how new clients can choose to participate in a service environment in a naturally

dynamic manner while also enabling service monitoring.

Although BMP Agents can carry out different actions based on SLA evaluation

results, there is no discussion of how to notify interested parties of contract violations.

Such information is maintained in a centralised data store within each BMP Agent,

which must be manually accessed at the site. Associated with this is the fact that the

interface for viewing contract information and evaluation data is only available

locally to the machine that is carrying out SLA evaluation. It is the only machine

loaded with the SLAs and all of the associated measurement data. Such a machine

would act as a potential bottleneck in the system should numerous organisations wish

to view the data (a concern which can also be applied to the provided violation log).

54

2.6.2.5 QoS Monitoring Framework for Traffic Engineering in IP
Differentiated Services

Asgari et al [Asgari03] developed an intra-domain monitoring system to augment

their own previous work in the field of traffic-engineered Differentiated Services.

This allows for reactive adaptation of service quality for different active application

flows within a service environment. One of the core goals of the work was to provide

a scalable means of monitoring service flows i.e. one that does not inhibit the

operation of observed services. As such, before constructing the monitoring

framework, scalability principles were formulated relating to the data-collection

framework, such as minimisation of measurement traffic through event notification

mechanisms, and regulation of the traffic generated by the framework. Qualities

relating to the scalability of the monitoring framework in general were also

considered. These included the ability to scale with an arbitrary number of service

subscribers, and the number of contractual obligations that a monitoring framework

could be capable of evaluating at a given time.

The monitoring framework itself consists of a number of components. Each router

between the interacting service endpoints has a monitor object associated with it. This

monitor is capable of carrying out passive measurements on the associated router, as

well as active measurements of the traffic around both the router and other routers in

the chain. The monitor component is also capable of performing limited data

evaluation and threshold violation detection (augmented with additional violation

notification procedures). With router monitors distributed across the end-to-end chain,

a centralised network monitor object performs network-wide post-processing of

measurement data collected from all of the router monitors, supported by a library of

statistical functions used to process incoming data. This post-processing component

uses the distributed monitoring data to build a logical view of the structure of the

network between service participants. In this sense, the monitoring framework

attempts to gain awareness of changes in network state, by retaining a dynamic view

of the service environment. Because this component does not strictly perform real

time processing of data, it also avoids any responsibility regarding issues of

scalability and processing bottlenecks within the observed network.

An additional component collects data from the router monitor objects and the

centralised monitor to perform service-level monitoring and auditing, taking further

responsibility for creating and deploying the basic router monitoring objects. Cross-

55

examination of system performance against Service-Level Specifications is also

performed in order to detect QoS threshold violations etc. This process is augmented

by a repository for monitoring and configuration data and an interface for presenting

statistical data to end-users. Configuration data includes information about the nature

of the metrics being measured, and measurement operations are scripted in XML

schemas by clients and used to structure statistical evaluation processes. All of these

aspects contribute to how the system can be tailored to suit differing service

requirements.

The components of the monitoring framework are assembled in a modular fashion.

Monitor objects use CORBA interfaces and event notification channels to

communicate with each other. This approach enhances the scalability of the

framework in respect to the number of network routers being monitored, and validates

the use of Message-Oriented Middleware in providing scalability within a distributed

monitoring environment.

The framework incorporates other novel approaches to achieving scalability,

primarily with respect to both the size and speed of the network and the number of

active participants within a service environment. These include minimising cross

component notification transmission overheads and reduction of the synthetic traffic

injected into the system for active measurement purposes. The authors also consider

the scalability of a monitoring framework in relation to the provision of different

classes of distributed service (e.g. real-time services, best-effort services etc.), while

addressing the monitoring requirements of these different service types. However, the

framework only accommodates these scenarios by collecting all available monitoring

information and assuming that in doing so it provides the necessary data for every

service. As part of the data collection process, reports are created based on QoS

measurement data for direct comparison with Service Level Specifications (SLSs).

The authors try to account for the differences in the network elements that may be

monitored in a service environment by providing each per-router monitoring object

with a generic interface component. This enables communication with the associated

router while maintaining a separation with the logical contents of the monitoring

components, thereby showing consideration for interoperability across differing

network entities.

Despite these developments, the system concentrates primarily on the monitoring of

low-level network traffic, and as such does not consider application-level composition

56

of data. Furthermore high-level E-Commerce concerns beyond those of IP-based

services are not considered (such as interoperability with component technologies).

There is also no discussion of SLA languages or how contractual information is

represented. The authors use their own Service Level Specification (SLS) language

and library of evaluation scripts, with no consideration for those parties that may wish

to use pre-defined electronic contracts. There is also no mention of how evaluation or

monitoring logic may be augmented to allow extensions to the framework's

capabilities.

Also, the generic interfaces used to augment network routers with monitoring

components cannot be applied to application servers (for measuring application-level

performance metrics), and the active measurements performed by the monitoring

components cannot accommodate anything beyond the complexity of low-level

network performance.

2.6.3 Academic Research

2.6.3.1 Nahrstedt et al

Nahrstedt et al [NahrstedtOl] describe a middleware approach to QoS provision and

monitoring in heterogeneous environments. Service-specific monitoring, control and

resource allocation mechanisms are managed within component-based 'QoS-Aware

Middleware' inserted below the application level. The middleware identifies separate

aspects of the QoS life-cycle, such as QoS specification, configuration and run-time

adaptation. The system is composed of different functional components divided into

resource-management and service-management groups, capable of operating

transparently in conjunction with the managed application. Service specifications are

generated with the provided QoS language, and compiled into QoS profiles to be used

by the QoS management mechanisms in controlling the service behaviour as viewed

by service users. The QoS-aware middleware is pre-installed at every relevant

machine prior to a service relationship becoming active, with all relevant proxy

objects synchronising when a client initiates a service interaction. This perhaps

assumes that relationships between entities will be long-lived - dynamic business

relationships would otherwise prompt numerous initialisations, contributing to the

processing load placed on proxies and the underlying communication medium alike.

57

The QoS proxies are capable of dynamically adapting to updated user requirements

during the lifetime of an active service instance. Also since the QoS proxies act solely

within the context of resource management, they do not necessarily inhibit the

perfonnance of active service participants, and are capable of operating in a

transparent manner that does not influence the behaviour of the service environment.

The middleware proxy objects provide a generalised QoS provision mechanism with a

very simple notion of what constitutes an electronic contract (referred to as the QoS

profile), being as it is generated from the QoS requirements of application developers

(not necessarily with the inclusion of service clients). Also although the middleware

provides for a range of QoS configurations to meet differing service requirements, it

does not consider the use of existing QoS description languages, requiring users to

employ the authors' own language.

With respect to monitoring capabilities the resource-management components

perfonn some monitoring duties, but there is an assumption that pre-processed

application-level QoS metrics are readily available from the relevant server or client

interface. Since the system is primarily concerned with low-level resource allocation

(albeit with some adaptation of application-level behaviour properties) end-users are

not able to define or observe aspects of higher-level system perfonnance.

There is no practical discussion of how the system would be deployed III a

heterogeneous environment composed of various operating platfonns, and there is no

recognition of inter-organisational or business-oriented issues such as ease of system

deployment, being as there is only a rudimentary consideration of what constitutes a

provider/consumer relationship.

2.6.3.2 Smart Proxies

Another project that utilises proxies is described in [KosterOO]. Here 'smart proxies'

allow service-specific QoS logic to be added to a client-side application to afford

management of QoS properties in situations where service providers offer different

application-level communication fonnats over the same middleware base. These

smart proxies allow clients to adapt to different service modes without having to

change the application code that they use.

This work concerns itself with relatively low-level servIce aspects such as the

effectiveness of the underlying communication protocol, for instance multimedia

58

services that provide different file encodings or discernable levels of stream quality.

As a result application-level QoS properties are not considered.

The developers have made a number of assumptions in their design. They assume that

by providing different QoS logic within the framework of the smart proxies that

similar services can then be treated as identical from the view of the client (which is

not necessarily applicable to E-Commerce services). In addition, there is an

assumption that service- and client-side application logic is developed in isolation. In

trying to make development of client-side logic easier further effort is inadvertently

required of the service developer, who is expected to provide the adaptive logic of the

smart proxies.

A number of factors also work against the effective deployment of these proxies in a

wider context. Client applications are expected to communicate directly with the pre

installed proxy components within client machines, which must be explicitly inserted

into the communication stack as a first step. Service developers are also expected to

develop proxy code on a per-service basis, without scope for automatic reuse of QoS

logic across similar services (although the focus in this work is on providing

adaptability and re-use of logic at the client-side). Such factors limit the deployment

capabilities and potential for scalability during active use, especially with respect to

service-oriented environments such as Web services and E-Commerce services.

2.6.3.3 CQoS

The 'CQoS' project [HeOl] describes platform-specific interceptors used to provide

transparent QoS functionality in applications driven by distributed middleware (e.g.

CORBA, DCOM and Java RMI).

The project provides a framework for the development of complex QoS control

mechanisms which can be deployed in accordance with a standardised interface. This

enables reuse of existing QoS logic to meet the specific needs of a growing range of

distributed applications. The interceptor components house generic QoS 'Service

Component' objects which maintain QoS attributes within the service environment,

suggesting the reuse of QoS functionality across similar services. Portability across

various distributed middleware platforms is also visited. Existing interfaces are

described for use with CORBA and Java RMI, with suggestion that more are feasible.

59

The range of QoS functionality available in CQoS is limited to fault-tolerance.

security and timeliness properties, although there is scope and discussion of providing

more in the future. The work also aims to enable different combinations of QoS

support based on these attributes, thereby satisfying the varying QoS requirements of

different services.

Interceptors are capable of dynamically reconfiguring their QoS capabilities at

runtime. This is further facilitated by the ability to obtain additional QoS logic from a

designated code repository. This reflects the dynamic nature of service environments

within the Internet.

The CQoS interceptors act more as proXIes by directly circumventing existing

application stubs. Although this does not require modification of existing applications,

it does nonetheless require explicit adjustments to the middleware platform.

Component reuse and scalability is made possible through use of the Cactus protocol,

a modular development framework allowing inter-component communication through

event-subscription mechanisms.

2.6.3.4 SLAng

The SLAng project [Skene03, Skene04] attempts to meet the need for a rigorously

defined SLA engine, providing both a means to create electronic contracts and an

engine for evaluating performance data against contracts.

SLAng addresses the need to separate the different concerns typically found in an

SLA. By providing separable definitions of the service participants, contract-specific

information (e.g. lifespan of a contract), and the machine-readable logic governing

service behaviour, it is hoped that organisations will be encouraged to approach the

negotiation phase of the SLA lifecycle more readily. This then minimises the presence

of contradictory terms in an SLA, separating and declaring contract content to aid in

the maintenance of contracts. It also affords a measure of reusability with respect to

the constituent parts of a contract e.g. for organisations negotiating similar contracts

with multiple service customers.

The separation of contract components allows semantic definition data to be used as a

reference for service construction, while accommodating various forms of distributed

systems (e.g. Web services, application outsourcing, storage-hosting). There is also an

60

acknowledgement of the basic contractual requirements within industry, as such

providing applicability in real-world scenarios.

To establish easier deployment of SLAs a choice was made to embed the SLAng

language in XML. As well as enhancing the rigidity of contract defmitions this was a

conscious acknowledgement of the widespread use of XML within distributed

systems. The semantic representations within SLAng are modelled in the Unified

Modelling Language (UML), and behavioural constraints defmed using the Object

Constraint Language (OCL). As an aside, this combination potentially allows for the

development of new contractual languages and associated evaluation criteria other

than those found in the SLAng project. When combined with the Model Driven

Architecture embraced by the developers of SLAng these choices act to separate

business models from technical implementations, thereby enabling reusability of

contract components across various systems.

In consciously addressing the need to make electronic contract development easier for

all involved, the developers of SLAng have provided a robust SLA engine which

reduces the ambiguities in both negotiating and realising a service contract. However,

SLAng does not immediately offer compatibility with existing SLA languages.

There are further issues relating to integration with existing monitoring frameworks;

there is a need to develop 'hooks' to allow established processes to interact with the

SLAng evaluation engine. With regards to scalability there is no discussion of the

capabilities of the evaluation engine with respect to an arbitrary number of contracts

within the same service environment. Considering that the SLAng engine carries out

its own contract evaluation, there is no evaluation of its performance in processing

monitoring data or how scalable it is with respect to an arbitrary number of

(potentially simultaneous) requests for measurement evaluation.

61

2.6.4 SLA Monitoring Requirements

The examinations documented in Sections 2.6.2 and 2.6.3 regarding current SLA

monitoring solutions served to highlight a range of issues that need to be addressed .

2.6.4.1 Contractual Heterogeneity

1
:-----~ contract 1---- -:

t

. .

:------- ~·"------- I · . · '-../'"""" . · .

$) ------., ·0
XI YI

imh--E}hhh_
i · . · ,

xz Y2

ihhh_li!_h h_-
i · . · .

X3 Y3

Figure 24 Apply ing a generic contract representation to dissimilar business relation hip

Existing research into SLA monitoring provIsion highlighted the need to

accommodate both new and existing requirements for QoS measurement within the

terminology of an electronic contract [Kellerlbm02, Sabai02]. Coupled with this is the

consideration of how technical contract content can be measured and evaluated. In

essence this implies a requirement to accommodate the QoS requirements of any E

Commerce scenario.

In practice this can be achieved by creating a contract engrne capable of

accommodating any dynamic service environment through updated measurement

capabilities. Alternatively provisions can be made to allow for any existing contract

specification language to be integrated into the monitoring framework, presumably

through a generic interface. The former approach, although essentially simpler to

envisage, does not consider that organisations may choose to use a variety of product

62

to fulfil their different business requirements. As such, they or their business partners

may already be using a particular contract-specification engine before choosing to

integrate it into a monitoring infrastructure. The latter approach has the potential to

allow organisations to use existing contract specifications without the need to re

interpret contract content for use in a different engine. By its nature this would also

separate contract definition and performance monitoring duties, making maintenance

of the QoS infrastructure more manageable.

Another advantage of generic SLA monitoring is that it would inherently include

some standardisation of terminology. If a monitoring framework is to monitor say, a

metric called 'response time', it needs to know what that means in no uncertain terms

(e.g. response time between client and server, response time between requests

entering the server and being processed and returned, etc.). In this sense, the

framework must accommodate different monitoring requirements without ambiguity.

2.6.4.2 Domain Heterogeneity

Many SLA monitoring solutions are targeted towards specific service dynamics e.g.

Web service-based one-to-one provider/consumer relationships (e.g. [Sahai02]). As

E-Commerce services and Web services evolve it is entirely feasible that more diverse

service relationships will be realised. If a monitoring framework exists that separates

monitoring functionality from service structure, it can be applied to different service

types and different service domains (such as media applications and multiplayer

online games).

A domain-neutral monitoring infrastructure can conceivably change to match the

dynamics of the service that it is monitoring, thereby accommodating the various

service permutations that can be seen in the Internet and other large networks. As an

example, this would negate the need to re-deploy a monitoring infrastructure when

existing service participants engage in interactions using different service dynamics.

63

2.6.4.3 Accommodation of Enabling Technologies

1----------, , , ,
~ --------------- ---:

moni1oring
frameworX , , , , ,

,-------- -, , , bl
, , , ,

I----~---- .., , , , , , , , , , , , , , , , , , '

, , , , , , , ,
I ,
I I
I I
I

'(] , ,
, ~ $)_mmH ~

app1

~~~ (J 
appN 

Figure 25 Apply ing a moni foringjramework fo differen t communication and application technologie 

Many monitoring solutions are targeted towards integration with specific appli cati on 

software and communication technologies e.g. [Sahai02 , Asgari03]. Although thi 

eases monitoring on a per-system basis it does not naturally mirror the heterogeneous 

nature of service environments in large open networks such as the Internet. Tying a 

monitoring framework to specific technologies without scope for adaptation al 0 

reduces the capacity for reuse of monitoring components, 

Another advantage of a monitoring framework that can operate across any 

combination of communication protocol and application software configurations is 

that it is likely to be capable of adapting to serve new and developing technologies as 

they become available. This is especially important in light of the continuing 

evolution of the Internet. By creating a monitoring framework that can be applied to 

different service technologies there is also an inherent capacity to serve a wider range 

of services, thereby potentially increasing adoption of the technology. It also reduces 

the need to modify service hosting platforms to accommodate monitoring capabilities . 

64 



2.6.4.4 Scalability towards Participant Entities and Service Contracts 

Figure 26 Service clients dynamically entering and leaving a service ell vir-Onment 

It has been proposed in the related texts [Asgari03] that if a monitoFing infrastructure 

is to be successful within E-Commerce services (and more notably Web services) it 

must be able to 0bserve an arbitrary number of service elients . It must also be able to 

operate without adversely affecting the perfonnance of the ebserved service 

environment. 

When an organisation chooses to offer a service, the desirable outcome is that the user 

base for that service grows over time . If service monitoring is being carried out, it is 

logical to expect the m0nitoring framework to observe the behavi0Uf of a gr0wing 

number of seFVice clients, whjle at the same time following how services 13efiaves in 

relation to each individual client. Internet-based services have the J30tential to include 

a boundless number of service participants. It is also advantageous when developing 

menitering e0mp0nents to ace0unt fm clients entering and leaving service 

relatienships wfienever they cheose. 

Consideration must 13e given to the activity of collecting meaSUFement data so tfiat it 

does not detrimentally affect the observed system. That is to say that there is potential 

to manage contracts in a scalable way, particularly if management is conductecl from a 

65 



centralised location or if for instance overlapping sets of measurement data are being 

produced from identical sources. 

2.6.4.5 Transparent Deployment and Operation 

When positioning monitoring components around a service and its participants, a 

minimum of effort should be required on the part of the participant organisations. The 

service participants will most likely be concerned with the maintenance of their own 

service infrastructures, and would presumably be unwilling to apply further effort to 

deploy monitoring components. 

Minimum effort on the part of service providers when enabling monitoring would 

ensure a smooth rollout of monitoring infrastructure without slowing the core service 

deployment process. With the dynamic nature of service relationships there is also a 

need to enable monitoring of client behaviour without interrupting the actions of 

individual service clients (for example by requiring them to install monitoring 

software etc). This is especially important considering that clients are typically able to 

enter and leave service relationships at will. By reducing the amount of monitoring 

infrastructure required at both the server- and client-side the process of enabling 

service monitoring can be expedited. 

Once a monitoring infrastructure is deployed it should require as little maintenance on 

the part of the service participants as is realistically possible. Faults do undoubtedly 

occur, and it cannot be guaranteed that the service participants will have the 

knowledge required to fix them. Reducing the number of locations at which 

monitoring components must be installed (while isolating their internal logic from the 

observed service) will ultimately reduce the influence that the monitoring 

infrastructure has on the behaviour of a service environment and its participants. 

66 



2.6.4.6 Ease of Deployment and Modularity 

I Me I Monitoring Component 

monitoring 
station 

----------I I 

: IMCI : 
-- ---- J I MC I : 

I I 

: IMeI : 
I I 
L _________ I 

I 

1 1 
~--. _.(J 

application server 

Figure 27 The system components that must be considered when deploying a monitoring injrastrocture 

A monitoring framework should require as little effort as possible to tailor monitoring 

and evaluation mechanisms to the intricacies of a particular service environment. 

Many services use similar technologies but differ in matters of detail (e.g. named 

service participants, specific specialised monitoring requirements). As such it would 

also be advantageous to allow reuse of functional components and evaluation logic . 

These steps would make deployment simple and efficient, whi le reducing the need to 

rewrite or hand-code component logic repeatedly for each monitored service. 

Modular monitoring infrastructures have already been exhibited by previous solutions 

(e.g. [KellerIbm02]) as a sound means of enabling per-service alterations to a 

generalised monitoring framework. A modular approach allows reuse of monitoring 

logic, reducing the need to recreate large portions of logic for each observed service. 

It also negates alteration of either the service environment that it is being applied to or 

the components of the monitoring framework itself, thereby affording simpler 

dispatch of monitoring capabilities . 

67 



2.6.5 Distributed Virtual Environments 

As Massively Multiplayer Online Games (MMOGs) and other Distributed Virtual 

Environment (DVE) applications grow in popularity, developers are increasingly 

choosing to offer subscription-based provision of online realms ( e.g. [Wow)). There is 

a need to continuously maintain the underlying support infrastructure, meet the needs 

of the growing base of users, and ensure that the service that users are paying for is of 

a reasonable quality. Where there is a need to determine the quality of the service 

provision as in this case, there is scope for monitoring of network- and application

level QoS characteristics within DVEs. Furthermore, there is a need to be able to 

evaluate the gathered monitoring data in a meaningful way (i.e. at the application 

level) so as to determine the quality of the service as perceived by its users. 

There is as yet no concrete definition of how to evaluate the performance of a DYE. 

There has also been little discussion of how system properties relating to performance 

and behaviour can be actively gathered in a meaningful way to demonstrate higher

level quality aspects within a DYE. 

2.6.6 Summary 

Through study of both E-Commerce services and Distributed Virtual Environments a 

number of similarities have been found. The participation of users is inherently 

dynamic in both cases. Entry into a service relationship or a virtual world can be 

initiated and terminated in a loosely-coupled manner where users are essentially able 

to join and leave at will. Such behaviour requires a scalable service environment that 

can accommodate any number of end-users interacting with the system at anyone 

time, which in both domains could run into the hundreds or thousands. Any attempt to 

monitor the behaviour of service participants and providers must be able to scale in a 

similar fashion. 

Another similarity between E-Commerce services and DYEs is that they both have 

application-level QoS requirements to observe. In either domain the preservation of 

service quality is not simply a case of monitoring network-level performance 

characteristics. There is a shared need to gather metric data from various parts of the 

observed system, collate this information, and process it in order to illustrate some 

semblance of how the system is behaving at a higher level that relates to the end-user 

68 



experience. Centralised post-processing such as this would need to be automated in 

such a way that it does not interfere with the workings of the observed system. while 

providing adaptability to the monitoring needs of individual service environments. 

A further consideration in both service domains is that service environments have the 

potential to encapsulate functionality behind cross-platform messaging mechanisms 

(be they Web service protocols or messaging middleware). This requires that a 

monitoring framework be able to adapt to the respective characteristics of the 

application protocols used within a service environment. 

There are a number of differences between E-Commerce systems and Distributed 

Virtual Environments which must also be taken into account. The typical enabling 

technologies in both domains are different. E-Commerce systems employ Web 

service technologies to achieve interoperability between participants, whereas DVEs 

rely mostly on existing network-level protocols, and in some cases Message-Oriented 

Middleware (MOM). There are contrasting differences between these communication 

mediums which must be considered. 

Another aspect to consider is where quality is perceived in each domain. With respect 

to E-Commerce services, the focus is on providing consistent and reliable processing 

of service data, regardless of how it affects the actions of end users. In contrast DVEs 

are directly driven by the quality of the end-user experience, which encompasses 

timeliness and consistency. 

The monitoring of electronic contracts in an E-Commerce environment composed of 

different SLA languages and dissimilar middleware platforms is not possible using 

existing approaches. Furthermore, the automated generation of code specifically for 

metric data gathering, although desirable and progressed by [Asgari03] [Sahai02], is 

not realised as yet. 

With respect to DVEs, it has been shown that the quality of a virtual environment is 

measured by how it reflects changes to the state of the virtual world in real-time, and 

the consistency with which these changes are presented to users. However there is at 

present no means of defining how timeliness and consistency translate to the end-user 

experience in either their constitution or their evaluation. 

69 



2.7 Outline of Goals 

A number of issues have been raised with respect to the provision of QoS monitoring 

and evaluation within scalable, heterogeneous Internet service environments. The 

following goals aim to address these concerns: 

1) Develop a low-cost approach to SLA monitoring that requires a minimum of 

tailoring to match the needs of individual systems, and which maintains a 

minimal level of intrusion with respect to the observed service environment. 

2) When considering the vanous permutations of distributed servIce 

environments, it would be advantageous to develop a general-purpose 

monitoring infrastructure capable of gathering metric data in a platform

agnostic, scalable manner, with scope for application across different service 

domains (i.e. E-Commerce and DYE applications). This would provide an 

alternative to the development of per-service QoS monitoring solutions. 

3) There is a distinct lack of application-level QoS definitions and evaluation 

criteria in the domain of Distributed Virtual Environments. This encompasses 

how missed interactions can be measured and evaluated, and what constitutes 

consistency between users of a virtual world. 

4) If DVEs are to become better regulated with regards to user-perceived quality, 

techniques for evaluating associated QoS parameters (including their higher

level constituents) must be developed to enable automated evaluation of 

service performance. 

70 



2.8 Summary 

• Distributed services are typically realised as provider/consumer relationships 

where the provider creates, deploys and maintains a service that is offered for 

consumption to other entities with access to the same network. 

• The Quality-of-Service (QoS) associated with a service is a declaration of how 

certain characteristics should be maintained to guarantee that the service 

performs as intended. QoS definitions are especially important with Internet 

applications, where combinations of divergent network elements can 

contribute to potentially unpredictable operating environments. QoS 

definitions can refer to basic network-layer properties, or application-layer 

service attributes (in the case of service environments that embody more 

human-perceivable qualities, such as Web services). 

• QoS monitoring provides a VIew of system performance, so that QoS 

compensation processes can be enacted in an informed manner. Monitoring 

usually requires software or hardware components to be inserted in any 

number of locations across the provider/consumer communication path. This 

may include the server or client platform or elements of the underlying 

network, depending on the performance metrics being observed. Monitoring 

of existing or injected service traffic helps to determine the performance of 

different components within the service environment. Careful consideration 

must be taken to ensure that QoS monitoring does not adversely affect the 

performance of the service environment under observation. 

• QoS evaluation involves gathering measurement data from the vanous 

monitoring components within an observed service environment and collating 

the associated performance data into a form that reflects the behaviour of the 

complete service environment. This informs decisions regarding QoS 

provision, and allows for composite metrics to be derived for use in high-level 

evaluation processes, such as Service Level Agreement (SLA) evaluation. 

71 



• Distributed services can be utilised in a number of ways, including socket

layer port addressing and cross-platform Remote Procedure Calls (RPCs). 

Web services focus on interoperability between different service technologies, 

with notable technologies including the SOAP communication protocol and 

Enterprise JavaBeans (EJBs). Communication between participating parties 

can also be enacted using Message-Oriented Middleware (MOM), which 

provides for scalable, loosely-coupled communication. Group-based and peer

to-peer communication can both be achieved using MOM. 

• Distributed Virtual Environments (DYEs) are virtual worlds inhabited by 

geographically-dispersed users who are able to interact with each other. As 

DVEs support greater numbers of users and become more popular, there is a 

need to make them scalable. One means of achieving this is with Interest 

Management techniques, which act to reduce the number of messages sent 

between participating machines by only informing relevant parties of localised 

activities. The use of Interest Management techniques does however have the 

potential to introduce missed interactions into the DYE, wherein insufficient 

messages are transmitted between interacting entities for their interactions to 

be properly recorded. It is conceivable that QoS monitoring could be of use in 

controlling the effects of missed interactions upon DVE performance. 

• E-Commerce services and DVEs share a number of basic QoS requirements, 

but also differ in a number of ways. Their similarities and differences 

highlight the challenges that exist for any QoS monitoring and evaluation 

framework intended for use within heterogeneous service environments. 

Through study of these two service domains and the related work, conclusions 

can be reached as to the qualities required of the monitoring components 

developed within this thesis. 

72 



3. E-Commerce 

Many organisations conduct business with each other over computer networks mo t 

notably the Internet). With strict requirements for order and process , there is a 

growing need for these interactions to adhere to predictable behaviour pattern . Thi 

should be accompanied by clear identification of the respective obligation of each 

participating party. Monitoring of participant behaviour and performance inform 

these processes. 

3.1 Introduction 

contrad 

A 
8 

-------, 
I 
I 
I 
I 

cID ____ 4 --- o~ 
~ ~ 
machine of 

client A 
application server 
of organisation B 

Figure 28 How contracts bind service participant 

The contractual obligations of interacting organisations and the expectation of their 

interactions are increasingly being described within electronic contracts referred to as 

Service Level Agreements (SLAs). SLAs specify the Quality-of-Service (QoS) 

attributes associated with the interactions between a service provider and service 

consumer. 

SLAs can be used to precisely defme the contractual obligations of each party 

involved in a service relationship. For example, it can be stated that a client can send a 

limited number of requests for service in a given timeframe, or a server application 

must process each incoming request within a specified amount of time. Another 

advantage of SLAs is that the evaluation of service-related obligations has the 

potential to be automated. Processes can be developed to gather measurements from 

73 



the service environment and directly compare measurement data to the applicable 

contract content. This then reduces the maintenance demands of enforcing an SLA. 

, , 
I 
I , 
\ 

/ 
I 

I 

\ 
\ , 

/ 

monitoring 
1- station 't , \ , \ , \ 

pertormanee da",' '. oertoonaflCO da\a , \ , \ , \ , \ , \ 

- - ---- ..... " \ .... ------

~ '\\, ,/// 0-..::; "'\, 

AV· ,) I, . ~ ) 
~ " I 

/ \ application server/ 

'" 
" ',,, 

" ........ ....." ----- -----

Figure 29 Enforcing an electronic contract 

Monitoring of a service environment is necessary for collecting metric data, which i 

then used to evaluate the compliance of interacting parties in accordance with an 

associated SLA (Figure 29) . This typically involves the insertion of speciali ed 

monitoring components across the same stretch of network as the service participant , 

to allow observation of the interactions between them . Monitoring logic can also be 

inserted at either end-system to provide a greater perception of how each service 

participant is behaving. Monitoring data is periodically collected from monitoring 

components and gathered at a centralised monitoring station for automated processing 

and comparison against the service-specific terms of the associated SLA. Any 

violations of service terms can be discovered as part of the latter process and (if 

required) appropriate compensatory action taken to rectify problems or alter the 

business relationship . 

74 



3.2 SLA Monitoring Architecture 

Previous research at Newcastle University by Jimenez et al [Jimenez04] de cribe a 

number of the SLA monitoring and evaluation requirements identified in Section 2.6. 

A framework design was proposed that covers the fundamental issues of SLA 

monitoring: SLA specification, separation of computational and communication 

infrastructure, service-related points of presence, and approaches to metric collection. 

There is also description of components that are capable of gathering and proce sing 

system-wide metric data for evaluation against the terms of an SLA. 

3.2.1 Monitoring Architecture 

subscription to 
SLA events 

Provider 

metric data 

r-----------~f~~--------~ 
Evaluation and 

probe calls 

Service Consumer 

Figure 30 Architecturefor the unilateral monitoring and enforcement of inter-organisational SLAs 

The proposed SLA monitoring architecture is shown in Figure 30. Only unilateral 

service provision is considered, as opposed to a bilateral service environment wherein 

interacting parties would provide services to each other simultaneously. With 

unilateral service provisioning there is a need to observe two distinct sets of 

contractual obligations; the QoS obligations of the service provider to the consumer, 

and the service consumer's obligations to the provider (which dictate how the 

consumer is expected to use the service) . 

5 



The components shown in Figure 30 assume responsibility for SLA monitoring and 

evaluation: 

• Metric Collectors (MeCos): these components gather metric data associated 

with the performance and usage of the observed system. 

• Measurement Service: receIves metric data updates from the MeCo 

components and performs limited post-processing. Data is then stored in a 

repository for access by the Evaluation & Violation Detection Service. 

• Evaluation & Violation Detection (EVD) Service: inspects gathered metric 

data to determine if any SLA violations have occurred, and informs interested 

parties of violations. In Figure 30 the interested parties are the service provider 

and service consumer. When an SLA enters the system the EVD service 

propagates SLA parameters to the MeCos and Measurement Service to 

provide per-service monitoring capabilities. 

The MeCo components shown in Figure 30 gather metric data relating to the 

provider's obligations (the MeCo in the Measurement Service) and the consumer's 

obligations (the MeCo placed within the provider's server platform) based on the 

monitoring requirements they receive from the EVD Service. This data is then relayed 

to the Measurement Service. MeCos may be realised as a set of distributed 

components based either in software or hardware. In the system described in Figure 

30 the MeCo component housed within the Measurement Service acts to impartially 

determine the performance of the service provider. Conversely, to infer the behaviour 

characteristics of the service consumer the MeCo component deployed within the 

server platform gathers metric measurements pertaining to request processing. 

Together these two MeCo components provide a composite view of how interacting 

parties acting within a shared service agreement are performing in relation to their 

respective obligations. 

The Measurement Service MeCo utilises active monitoring. Synthetic load is 

generated by a simulated client to determine if the provider is satisfying the 

conditions of the associated SLA contract(s). An alternative to probing of this kind 

76 



would be to have a MeCo co-located with the consumer to gather metric data 

associated with genuine consumer requests. However for various reasons it cannot be 

assumed that monitoring components can be deployed at the client-side. For instance, 

clients may be opposed to maintaining monitoring infrastructure. 

The SLA monitoring infrastructure is designed to minimise the interference caused to 

the existing service environment while at the same time providing meaningful 

monitoring data. The monitoring components are realised as discrete sub-systems that 

can be deployed on relevant platforms while addressing issues of effective component 

placement and deployment discretion. 

There follows discussion of the concerns that the proposed monitoring framework 

needs to address (as detailed in Sections 2.6.1 & 2.6.4). 

3.2.2 Scalability Considerations 

A generic SLA monitoring infrastructure must accommodate vanous servIce 

environment permutations with respect to how the number of constituent entities 

within the environment changes. This includes factors such as the number of service 

clients, active services, monitored contracts, and monitoring components within the 

service environment. 

In the simplest case, within an infrastructure such as the one described in Figure 30, 

there will be one service provider and one service consumer under observation. It may 

be necessary to define an approach to accommodating situations wherein a single 

service provider has agreed to process requests from a single service consumer across 

numerous services. Service operators may negotiate a number of SLAs with a client 

across the same portion of network space, providing numerous different services. 

There is scope for aggregation of measurement updates from monitoring components 

and consolidation of active measurement messages for those services that offer 

identical or extremely similar functionality. These steps could reduce the synthetic 

network traffic and server load generated by the monitoring framework. 

Another permutation includes a single provider serving multiple service consumer 

entities. A single SLA is then defined for each (potentially identical) service 

negotiated between the service provider and each service consumer. If all of the 

provider/consumer relationships refer to services with identical internal logic, active 

monitoring could be carried out on behalf of all of the consumer bodies (essentially 

77 



sharing a probe component between all of them}. It is assumed with this however that 

the Measurement Service MeCo component is directly connected to the same network 

as all of the clients, and it is then able to approximate an experience similar to that of 

each client [Jimenez04]. There is then a stipulation that the Measurement Service 

MeCo can only conduct measurements on behalf of multiple clients if they are all 

connected to the same network. To make use of this opportunity there would however 

need to be an agreement between service consumers to use the same MeCo unit 

within the same Measurement Service instance. 

It is possible that in this scenario each consumer would want its OW11 view of service 

provider performance concerning satisfaction of their own requests. This would 

require scheduling of active measurements on behalf of each consumer, potentially 

from distinct MeCo units within separate Measurement Service components. There is 

also the issue of how to deploy a MeCo (or set of MeCo units) within the server 

platform to enable monitoring of a set of consumers that can potentially grow or 

shrink arbitrarily. The core issue here is whether each service consumer should be 

afforded its own MeCo inside the service provider platform, or whether it could be 

argued that the functionality required within a MeCo will be identical for all services 

with identical observation criteria. This also again depends on whether the internal 

logic of the service(s) associated with each client is identical. Sharing a MeCo 

between identical services would save monitoring resources and make the system 

more manageable. Service participants may ultimately demand an individual MeCo 

on principle if a competitor is using an identical service on the same server and does 

not wish for performance metrics to be indirectly exposed (since the performance of 

one service would then be indicative of the performance of the other). 

Rudimentary replication of Measurement Service components and Evaluation & 

Violation Detection (EVD) Service components associates a single Measurement 

Service with each Evaluation & Violation Detection (EVD) Service. Such 

infrastructures may exist if parties delegate monitoring to trusted third parties capable 

of both metric measurement and SLA evaluation. These third parties may be entrusted 

with monitoring of separate sets of QoS metrics or may act to cross-check 

performance data. 

A specialised version of the latter arrangement is where there are multiple 

Measurement Service instances and a single EVD Service. In this case each 

Measurement Service should only have access to the contractual information it needs 

78 



to operate, separating concerns and reducing the existence of extraneous contract 

information in the system (as discussed in [Kellerlbm02]). Also, extra strain may be 

placed upon the MeCo component within the service provider platform if it is 

required to identify and transmit metric data intended for a number of Measurement 

Service instances. 

Each one of the Measurement Service nodes may also need to probe the service 

provider at intervals (with their combined timetables potentially intersecting). The 

network activity attributable to probe calls should be managed responsibly as it will 

increase with the number of Measurement Service nodes. Otherwise performance 

within the service environment may be degraded. 

Another specialised system permutation has one Measurement Service collecting 

information on behalf of a number of Evaluation & Violation Detection (EVD) 

Service components (which may be evaluating different portions of the same SLA). 

Parties requesting SLA violation notifications will require a scalable subscription 

management platform to cope with any number of EVD Service notification events. 

For instance an organisation may be partaking in a large number of service 

relationships with different business partners. 

3.2.3 Deployment Considerations 

There may be numerous parties interested in SLA violations associated with a single 

service, such as different departments of the same company, shareholders etc. These 

parties should be able to dynamically receive violation notifications and process them 

in whichever way they choose. SLA violation data may be used to alter resource 

allocations or may simply be logged for future reference in business negotiations. 

Interested parties should not be tied to specific application logic in this context, and as 

such a Message-Oriented Middleware (MOM) notification mechanism seems most 

appropriate (not forgetting also that MOM technologies are naturally scalable). 

There is the issue of how the monitoring framework can facilitate the changing 

characteristics of an E-Commerce service environment. As participants enter and 

leave a (potentially evolving) service relationship different monitoring capabilities 

may be required to monitor a service. If the monitoring framework is required to stay 

online at all times it must be capable of dynamically updating the set of contracts and 

metrics it is monitoring. 

79 



The proposed monitoring framework is modular in nature. This provides potential for 

monitoring and evaluation logic to be reused across different services (e.g. the same 

metrics can be monitored in different server software using the same previously

written logic components). 

3.2.4 Heterogeneity Considerations 

Monitoring components should be able to operate transparently over any application 

technology within a service platform. With respect to the MeCo within the 

Measurement Service it should also be adaptable to any E-Commerce communication 

protocol. This would allow it to emulate service client calls to a service provider in 

any given E-Commerce service environment. 

Once metric data has been collected by the Measurement Service it must be organised 

into a suitable format for handling by the EVD Service. However organisations may 

use different SLA languages, so the EVD Service must be capable of interfacing with 

any variety of SLA languages (e.g. [Ludwig02], [SahaiOI), SLAng [Skene04]). This 

should be accomplished in a manner that does not require changes to the core logic of 

the Measurement Service. An appropriate approach would be to construct the 

Measurement Service to work with arbitrary SLA languages with minimum tailoring. 

Each SLA identifies the types of metric data to be evaluated within the associated 

service. Therefore, automatic generation of code to translate metric data to a format 

suitable for processing by an SLA-language dependent evaluation tool is required. 

Processes for the translation of metric measurements to SLA obligation terminology 

can be embodied in a specialised interface class. Such an interface class can then be 

loaded into the Measurement Service to form a bridge with the appropriate SLA 

language or associated contract engine (through exposed data retrieval and update 

methods). Characteristics such as obligation definition and measurement criteria differ 

between SLA languages, and would need to be considered on an individual basis. 

There is an additional need to consolidate the different monitoring requirements of 

disparate service environments i.e. a mechanism should be created to map different 

obligation terminology to monitoring component logic. 

80 



3.3 Implementation 

I implemented and developed an SLA monitoring infrastructure [MorganIfip05] based 

upon the framework design outlined in [Jimenez04] and described in Section 3.2.1. In 

this section the implementation is described in detail, with reasoning given for the 

structure of the monitoring framework and its components. 

3.3.1 Overview 

A monitoring framework was developed as illustrated in Figure 31: 

subscription to 
SLA events 

violation 
notrfications 

I 

I~::I 
Measurement 

Service 

I I 
I I 

I I 
I I 

" I I I ~"'IIS 
I I 

I I 

i I 

mlllf;c : 
qata : 
I I 

I I I 
I I I 

I I I 
I I I 

subscnptXln to 
SLA events 

vlOlabon 
notJIications 

" I : .~ : I ~ 

Provider L;it~~~~~~~~Gf------1 SeNlce Consumer I 

Figure 31 SLA monitoring architecture 

The focus of this implementation is the monitoring of unidirectional Web servIce 

provision and the provider/consumer relationship encapsulated therein. It is assumed 

that the provider and consumer are linked via a single Internet Service Provider (lSP). 

Multiple ISPs are not considered as there are no guarantees that inter-ISP service 

quality can be maintained or reliably monitored and attributed to anyone participant. 

The SLA monitoring framework illustrated in Figure 31 is a set of separate, modular 

components which when combined allow per-system tailoring of SLA monitoring 

processes. A modular approach to implementation allows for component 

modification, to meet various monitoring requirements without the need to alter and 

redeploy the monitoring framework as a whole. 

81 



Each of the components in this architecture has a specific purpose: 

• Provider-side Metric Collector (MeCo): intercepts consumer requests (and 

associated service responses) and records measurements relating to a service 

consumer's usage of the provider platform. These measurements are sent to 

the Measurement Service component for post-processing and evaluation. See 

Section 3.3.3. 

• Measurement Service Metric Collector (MeCo) / MeCo Probe: observes the 

performance of a service provider by assuming the role of a simulated service 

consumer. Using active measurement this MeCo component emulates an 

actual service client, periodically generating synthetic client load. This allows 

monitoring of the service provider's obligations (i.e. QoS provision) by 

observing the conditions inherent in the client experience. With this approach 

there is no need for clients to maintain monitoring logic, which in itself would 

be impractical with an arbitrary number of service consumers with the 

potential to dynamically enter service relationships. See Section 3.3.4. 

• Messaging Service: the underlying messaging infrastructure across which 

metric data and SLA violation notifications are propagated. See Section 3.3.5. 

• Measurement Service: collates metric data gathered from the Provider-side 

MeCo and MeCo Probe then interprets and evaluates it against the relevant 

SLAs (and if need be informs service participants of any associated SLA 

violations). Returning to the conceptual system described in Section 3.2.1 and 

illustrated in Figure 30, the implemented Measurement Service incorporates 

the Evaluation & Violation Detection Service and the 'data store'. See Section 

3.3.6. 

• Contract Manager: a sub-system of the Measurement Service that reads 

contract-specific configuration data into the framework from monitored SLAs. 

This data is used to calibrate the various components towards monitoring of 

specific metrics. The Contract Manager is also capable of detecting SLA 

82 



violations gIven metric data supplied by the Measurement Service. See 

Section 3.3.6. 

In the following sub-sections there are descriptions of the components of the 

implemented framework, with explanations of how different components collaborate 

to provide SLA monitoring, evaluation and violation notification capabilities. 

3.3.2 Implementation Assumptions 

A number of assumptions are made regarding the environment within which the 

MeCo Framework is deployed, and the application technologies, communication 

protocols and services it interacts with: 

• It is assumed that the MeCo Probe is connected to portions of network 

maintained by the same Internet Service Provider (ISP), and is free to probe 

the service provider from any location as long as it does not leave the domain 

of this ISP [Jimenez04]. It is assumed that probe calls instigated from the same 

ISP domain would be indicative of the client experience. It is assumed with 

this that the QoS properties of the service participants are all that is required to 

evaluate the terms of an SLA: the performance of individual network nodes or 

routers along the communication path between the provider and consumer is 

not of concern. 

• It is assumed that in every observed service environment the Measurement 

Service and all its internal components are maintained and operated by a 

Trusted Third Party (TIP) agreed upon by all service participants. This 

ensures that the service participants will respect the SLA evaluation results 

generated by the framework. The TIP may also take responsibility for keeping 

the capabilities of the Provider-side MeCo up-to-date. 

• It is assumed that each SLA engme exposes methods to allow other 

technologies to interface with it. This includes permitting other programs to 

obtain SLA details and to input monitoring data into the engine for evaluation. 

83 



• The actions of service clients can be correlated with their SLA obligations 

through identification of their IP address (including specific port address if 

required). 

• The service platform is assumed to be maintained by and under the control of 

a service provider or affiliate. It is also assumed that the monitoring data 

collected by the Provider-side Metric Collector will not be manipulated by the 

operator of the service platform. 

• Service providers can be identified from within their respective server 

platforms, and that text-string identifiers can be assigned to each server 

platform. It is also assumed that the latter identifiers are unique across all 

provider platform instances under observation. 

• SLA contract files can be uniquely identified amongst all other contracts. It is 

assumed that this is achieved through a globally unique entry in each contract 

file, which can be obtained using the associated SLA contract engine. 

• Any Provider-side MeCo wrapper implementations exploit message 

interception features built into the enabling technology. It is assumed that the 

communication between service participants is enacted over middleware 

technologies that support transparent message interception. This is a valid 

assumption as all major middleware technologies used in E-Commerce 

applications provide a mechanism for message interception e.g. interceptors in 

CORBA [CorbaNS], handlers in SOAP [Axis], and interceptors in Enterprise 

lavaBeans (EJB) containers [Ejb D. It is also assumed that wrapper 

implementations can infer any QoS metrics required by service contracts. 

• It is assumed that the Measurement Service MeCo Probe is able to simulate 

and thereby observe typical client behaviour accurately through the use of 

active measurement techniques. However only single-part requests are 

replicated by the MeCo Probe. 

84 



• Any communication protocols being observed through the Meeo Probe can be 

accessed through Web Services Invocation Framework (WSIF) [W if] 

interfaces. See Section 3.3.4. 

• Performance measures relating to server-side QoS can be inferred through 

active measurements conducted by the Meeo Probe. 

• If multiple services are being monitored by a single probe instance, the arne 

probing interval is required by all of the associated SLA . 

• It is assumed that no two consumer requests are proces ed at the same time 

within the observed server platform, and with this that the Provider-side Meeo 

does not need to accommodate concurrent monitoring of multiple requests . 

3.3.3 Metric Collector (Me Co) Interceptors (Provider-Side) 

server platform 

request 

response 

Figure 32 Provider-side Meeo placement 

There are aspects of SLA evaluation that require a view of server-side performance, 

and of how client behaviour affects this performance. To provide this vi ew, localised 

measurements can be taken from within the server platform hosting the observed 

services. These measurements can then be gathered for further analysis against SLAs . 

The Provider-side Meeo (Figure 32) gathers metric data from within an observed 

server platform based on service usage, and propagates it to the Measurement Service 

85 



for evaluation against the relevant SLA(s). A Meeo unit is deployed within the 

service platform of the service provider (as identified in the SLA), to monitor usage of 

the associated service(s) by service consumers. 

Arbitrary application technologies are supported with the use of Meeo 'hooks'. It is 

assumed that 'interceptor' mechanisms (as discussed at various points in Section 2.6) 

are available to allow transparent and non-intrusive examination of request and 

response messages for each observed service. With this it is assumed that a 

specialised interface implementation can be derived for any application technology 

being used (in Figure 32 this refers to the 'Interceptor' at the entry point to the 

internal server logic). 

Once deployed, additional monitoring logic (contained within the 'Provider 

Environment' as shown in Figure 32 - see Section 3.3.3.2) determines which QoS 

metrics to gather. This is achieved through consultation of an internal configuration 

core initialised remotely from the Measurement Service component (see Section 

3.3.3.3). The configuration information governs which metric measurement classes to 

load from the associated class repository. Tailored monitoring capabilities are 

provided through the creation of measurement class instances based on SLA contents. 

A Provider-side Meeo exists as a combination of platform-specific 'wrappers' and a 

series of metric data classes, coordinated by centralised processing logic (the 

'Provider Environment'). 

Each Meeo wrapper interface includes a specialised implementation of the 

'MecoInterceptor' interface, which is a template for the operations that a Meeo 

should be able to perform. Interceptors are registered to be included in the 

request/response stack of their native application language, and are given access to 

request objects as they pass in and out of the server. Two methods are included in the 

generic interface: 

public abstract void setRequestResult(String metricName, Object requestValue); 

public abstract Object getRequestResult(String metricName); 

These methods respectively associate a metric measurement with a specific identifier, 

and recall a measurement through its identifier. Initialisation methods within the 

native application technology are exploited to initialise the Meeo Interceptor 

implementation and the 'Provider Environment' upon server start-up. 

86 



3.3.3.1 MeCo Interceptor Implementations 

server platform 

EJB request 

Figure 33 Implementation of Provider-side Meeo 's 

The use of Meeo hooks has been demonstrated to support Web services using SOAP 

and Enterprise JavaBeans (EJBs) using Java Remote Method Invocation (Java RMI) 

[Javarmi], as shown in Figure 33. This preliminary set of MeCo implementation 

mirrors the combination of these two approaches in many complex E-Commerce 

applications working within the Java 2 Enterprise Edition (J2EE) architecture [J2ee] 

(a popular open-source system used for the development of enterprise computing 

solutions). This combination also provides evidence to illustrate how different 

measurement capabilities can be enabled both in isolation and in combination to 

satisfy monitoring requirements (with further details provided in Section 5.1). 

The J2EE specification describes a generalised platform for Web-enabled applications 

using Java Server Pages (JSPs) [Jsp] , Servlets [J2eeservlet] and EJBs. Java 

application servers (referred to as J2EE servers) must cater for all of these 

technologies. J2EE Web services present services for inter-organisational 

communications with back-end application logic based in EJBs. 

A specific implementation of the J2EE server platform (the JBoss application server 

[Jboss]) was used to act as the test-bed server. JBoss can be used to combine J2EE

compliant technologies and other Java-based server technologies (e .g. SOAP-based 

services) in a single server instance. 

87 



JBoss Interceptors are used to implement MeCo hooks suitable for interception of 

Java RMI invocations (the 'EJBMecoInterceptor' implementation used to ob erve 

EJB messages) . With this approach EJB application logic need not be modified to 

enable service monitoring. Only small modifications are required within the JBos 

Interceptor stack declarations. 

The SOAP implementation of the MeCo wrapper is based on the Apache eXten ible 

Interaction System (Axis) [Axis]. Axis provides interceptors (referred to a Axis 

Handlers) that can be used for request and response interception, and alteration of 

message contents. This includes the addition or removal of SOAP message header 

and the manipulation of message body content. Interception can be carried out at 

specific points in the protocol stack e.g. before requests are processed by server- ide 

logic or before responses are received by a service client. 

Axis Handlers enable redirection of SOAP messages to a MeCo component for metric 

data gathering (via the 'SOAPMecoInterceptor' class) . The use of Axis Handlers doe 

not require alterations to existing application logic. Only slight modification of the 

Axis Handler declarations described within the supporting server platform are 

required. Other SOAP-based MeCo wrapper implementations could potentially be 

employed, but must provide transparent message interception mechanisms analogous 

to Axis Handlers . Deployment to a J2EE server platfonn should also be possible . 

3.3.3.2 Provider Environment 

MeCe Provider Environment 

Configuration Metric Metric 
Core Notifier Classloader 

XMBean MOM Class 
Interface System Repository 

Figure 34 Meeo Provider Environment 

88 



The MeCo wrappers integrated into an observed service platform are tied to the same 

core component, the Provider Environment (shown in Figure 34). This component has 

knowledge of the QoS metrics to be monitored (through remote configuration from 

the Measurement Service - see Section 3.3.6.1 for further details). It is also able to 

use this information to load the required metric-measurement classes from a known 

class repository (a 'library' of Java class files within the JBoss file system). This 

approach enables dynamic creation of MeCo functionality on a per-SLA basis, as 

additional classes can be added to the server file library and retrieved by the Provider 

Environment on demand. 

The MeCo Provider Environment contains a number of sub-components: 

• MeCo Configuration Core: calibrated through communication with the 

Measurement Service (see Section 3.3.3.3). The configuration core holds 

information about the operations being monitored and the measurements to be 

taken within the Provider-side MeCo. Once initialised the core disseminates 

relevant calibration information to other parts of the Provider-side MeCo. 

• Metric Notifier: manages message-passing events and message channels 

between the Provider-side MeCo and the Measurement Service. The Metric 

Notifier packages and transmits QoS measurements to the Measurement 

Service once they have been gathered. See Section 3.3.5 for more information. 

• Metric Class loader: creates instances of the requisite metric measurement 

classes as requested by the MeCo Configuration Core. Each class instance 

represents a metric type as specified by the SLA within the contract engine 

(e.g. response time measured in milliseconds). This is further described in 

Section 3.3.6.1. 

Upon initialisation of the MeCo Configuration Core the Provider Environment 

informs the Metric Classloader of the measurements to take regarding incoming and 

outgoing service messages. The Classloader obtains class definitions with names 

matching those of the associated metrics, and create instances of these classes 

dynamically using Java reflection techniques. Each such class is an implementation of 

the 'DynamicMeasurementInterface', which has the following methods: 

89 



public Object requestChannel(); 

public Object responseChannel(); 

public Object getResult(Object request, Object response); 

When a request is intercepted by the MeCo the 'requestChannel' method of each 

measurement class instance is called, and the results of calling this method 

temporarily stored in the associated MecoInterceptor instance. Responses are 

processed by the 'responseChannel' method of each measurement class instance, with 

the final metric measurement obtained using the 'getResult' method. The latter is a 

single measurement for a completed request that can be delivered to the Measurement 

Service for analysis. The measurements taken from the request and response channels 

are given to the 'getResult' method once a request leaves the server, for final 

measurement calculations to be conducted. 

When measurement classes are dynamically loaded into the Provider Environment 

they are stored upon initialisation and referenced as instances of the interface, 

negating further use of Java reflection and thereby reducing reference overheads. This 

approach also allows the monitoring capabilities of the MeCo to be updated while it is 

operational, thereby maintaining availability of monitoring capabilities. 

3.3.3.3 Provider-Side MeCo Deployment and Initialisation 

The server-side MeCo component is deployed on the JBoss platform in a specialised 

manner, exploiting specific features of the JBoss platform to provide greater 

functionality for the MeCo Framework. The deployment consists of a small set of 

core files: 

• 'meco-corejar ': stores the general processmg logic of the Provider 

Environment. 

• 'meco-dynamicjar ': file library containing measurement class defInitions. 

90 



• 'measurement-service-mbean.sar': a packaged application that enables remote 

access to the MeCo Configuration Core from the JBoss JMX console [Jboss] 

from any location with an active Measurement Service instance. 

The latter files are 'dropped' into the relevant locations within the JBoss server 

instance and automatically loaded, persisting until they are explicitly removed. If the 

server instance is shut down and subsequently restarted they are automatically 

reloaded. In packaging MeCo functionality in this way it is hoped that deployment is 

made relatively simple in the eyes of prospective users of the monitoring framework. 

This approach also allows for simple updating of core files, as files can simply be 

replaced with newer versions which are automatically loaded by the JBoss server. It is 

for this reason that the 'meco-dynamic.jar' class library is separated from the core 

files. It is envisaged that the measurement capabilities of the MeCo will be augmented 

as more services are supported, even allowing application developers to add their own 

measurement classes. 

Additional configuration steps may be required to enable monitoring of a particular 

communication medium. For instance, the MeCo Framework identifies clients using 

their network IP addresses. To achieve identification within EJB services the 

'ClientIPInterceptor' class is declared in the JBoss Interceptor stack configuration 

alongside a reference to the 'EJBMecoInterceptor' class. For SOAP services the 

'SOAPMecoInterceptor' is declared as an Axis Handler for observed services within 

the 'server-config.wsdd' Axis [Axis] deployment file. Client identification in SOAP 

can be achieved by interrogating request objects as they are passed through the stack. 

A Java Management eXtensions (JMX) service [jrnx], the 'MecoMBean Control', is 

deployed within the same JBoss server instance as the MeCo Interceptor(s). This 

allows limited external control of MeCo Interceptor configuration. The service 

contains a JBoss XMBean [Jbossxmbean] that facilitates control of some basic MeCo 

characteristics from a JBoss JMX Console [Jbossjrnx]. This enables, for example, 

service monitoring to be switched on and off from the Measurement Service. 

Each service provider must be given an identity in the co-located Provider 

Environment, to identify it in SLA clauses during SLA evaluation and for verifying 

the origin of messages that arrive at the Measurement Service. The MeCoMBean 

provides the means to remotely configure the service provider identifier in the MeCo. 

91 



Automated configuration of Provider Environment attributes e.g. client identifier lists 

and operation-to-SLA bindings (described in Section 3.3.6.1) occurs when the 

Measurement Service is activated. This maintains the principle of centralised control 

and dissemination of configuration information, thereby reducing inconsistency 

within configuration information across the distributed monitoring components of the 

MeCo Framework. Although this means that there is no permanent record of 

configuration data at the service-side (in case of server failure), in such circumstances 

failure would be 'graceful'. The result of a server failure would be a halt in updates to 

the Measurement Service, thereby indirectly suggesting that the service had ceased 

operation. Active measurements from the MeCo Probe (see Section 3.3.4) would also 

detect a non-responsive server, potentially constituting a potential violation of the 

associated SLA. Also, the lack of dedicated Provider-side MeCo configuration files 

reduces the resource footprint within the server platform. 

Determine ONi 
OFF status 01 

MeCo 

Send metnc 
configuration 
InformatJon to 

MeCo 

Are securrty 
features enabled? 

n 

Send messag"'9 
configuratJon to 

MeGo 

yes 

Send sea.Jnty 
ronfiguration to 

MeCo 

Figure 35 How the Measurement Service configures the Provider Environment 

The initialisation of the Provider-side MeCo from the Measurement Service is 

described in the flowchart of Figure 35, with additional details of how the Provider 

Environment behaves during initialisation calls shown in Figure 36. 

92 



New configuration 
data received from 

Measurement 
Service 

Has a new 
contract been 

added? 

no 

yes Has MOM been 
initialised? 

no 

Update offline 
client 

configurations 

Update offline 
operation binding 

configuraUons 

yes 

UpdaleMOM 
operation binding 

configurations 

Monitoring yes 
enabled & contracts >----, 

configured? 

I Bring MOM onUne 

no 

disabled enabled 
Are contracts 

yes 
Take MOM offline Has monitoring been 

and offline MOM Bring MOM online enabled or disabled? 
configured? 

no 

no Component yes no Is a helper sub-Configuration Is MOM being 
complete configuration 

configured? component being 
received? configured? 

yes yes 

Configure the 
Configure MOM helper sub-

component 

Figure 36 How the Provider Environment is configured based on Measurement Service initialisation 
actions 

93 

no 



If monitoring is disabled the messaging sub-component is taken offline so that undue 

localised processing within the Provider Environment is avoided (along with 

unnecessary use of MOM resources). However active probing measurements can still 

be carried out from the Measurement Service, enabling service monitoring in those 

instances where internal server performance is not considered (i.e. probe calls alone 

can be used to infer the QoS measurements described in the associated SLA). 

3.3.4 Metric Collector (MeCo) Probe 

Active measurements from the MeCo Probe provide a means of assessing the 

experience of service clients without requiring them to deploy and maintain 

monitoring components. Simulated service requests are sent to an observed service 

platform and QoS measurements inferred from the condition of the response. 

Examples include whether a response is late in arriving or whether the response 

content contains an HTTP error etc. 

The MeCo component in the Measurement Service differs from the MeCo Interceptor 

located within the service platform in that it periodically sends probe messages to the 

service provider. This allows collection of metric data related to how a service 

provider appears to be behaving from the viewpoint of a service consumer, without 

interfering in the workings of the consumer entity. Alterations to the consumer 

platform would inhibit dynamic service behaviour and require the service client to 

maintain part of the monitoring infrastructure. In this respect the Measurement 

Service MeCo Probe acts much like a synthetic client, but need not be regarded as a 

real one. MeCo Interceptors are coded so as not to process requests that are identified 

as having come from the MeCo Probe. 

The probing strategy associated with each active probe is located in a Web Service 

Definition Language (WSDL) file [Wsdl]. This file describes how to enact automated 

communication with a Web service, and as such can be used to configure the MeCo 

Probe to send valid messages to the target service. The Java class instances required 

to enact probing are determined by parsing additional extensibility elements in the 

given WSDL file. These elements also allow a finite set of input parameters to be 

configured, which the MeCo Probe can select from at random with every invocation 

(thereby modelling client behaviour more realistically). Complex request interactions 

94 



that use context-sensitive information are not modelled (e.g. if a single request is a 

sequence of messages that depend on intermediate responses from the service). 

Along with service configuration data, the WSDL configuration file for each MeCo 

Probe contains specialised message-parsing configuration information: 

• Probe Format: the communication protocol used by the service (e.g. EJB). 

• Probe Method: the specific method that the probe should target. 

• Return Type: for when a response is returned by the service provider, so the 

contents can be properly processed. 

• Probe Arguments: these include (for each argument) a parameter name, 

parameter value, and indication of the object type (to ensure correct encoding). 

After synthetic requests have been dispatched responses are processed by the 

Measurement Service to provide additional measurement data for potential use In 

evaluation of contractual obligations. 

As with the platform wrapper in the Provider-side MeCo, a platform-specific wrapper 

is used for implementing the MeCo Probe (for example EJBIRMI or Web 

services/SOAP). The MeCo Probe was built using the Web Services Invocation 

Framework (WSIF) [Wsif]. The WSIF framework uses protocol-specific WSDL 

extensions to provide heterogeneous access to Web services through WSDL service 

descriptors. This allows the MeCo Probe to be configured to match any service type 

that WSIF can support (including scope for support of additional protocols). 

An XML-based configuration file associated with each MeCo Probe (the 'probe 

descriptor file') indicates which service it is monitoring (i.e. which WSDL 

configuration to use) and which service platform to send service requests to. The 

contents ofa sample probe descriptor file are show in Figure 37. 

95 



<?xml version "1.0" encoding "UTF 8"?> 
<probe-config 
xmlns:xsi=''http://www.w3.org/200:/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:/eclipse/workspace/MeCo/misc/probe-con:ig.xsd"> 

<!-- FIBONACCI EJB --> 

<wsdlDefinition>file:///C:/eclipse/workspace/MeCo/misc/WSD:IFlDonacci Evl3.wsj~</wsdlDe 
finition> -
<wsdlNarnespace>urn:Fibonacci_EJB</wsdlNamespace> 
<service>FibonacciEJBService</service> 
<contractIDs>fibonacciSLA EJB</contractIDs> 
<providerID>A</providerID> 
<probeMetrics> 

<probeMetric> 
<rnetricNarne>ejbResponseTime</metricName> 
<rnetricTitle>EJBResponseTimeCLIENT</metricTitle> 
<rnetricUnit>rnS</metricUnit> 

</probeMetric> 
</probeMetrics> 

</probe-config> 

Figure 37 Sample Probe Descriptor File 

To aid scalability in scenarios where multiple clients use identical services with the 

same service provider, a MeCo Probe can be configured to send messages on behalf 

of all of the clients. Multiple contract identifiers can be listed in the <contractIDs> 

element of a probe descriptor. This can help to reduce unnecessary duplication of 

probe calls and results. 

3.3.4.1 Probe Descriptors 

A probe descriptor file can describe additional measurement data to be gathered. This 

works much in the same way as the dynamic measurement classes used in the 

Provider-side MeCo component. For each type of measurement there are descriptions 

of the action to perform both before a request is sent and once a response arrives, as 

well as how to correlate the request and response data into a meaningful result. This 

accommodates dynamic configuration of the measurement capabilities of the MeCo 

Probe. The probe initialisation stage also ensures that probes only activate once the 

associated contract(s) have been read into the system. 

96 



Probe Service 
Manager Probe , , , 

, ,-----
( Service WS~L lDCation ) : 

( SLA 'de~er(S) ) (~~~ ) 
, , I 

BOB 
Figure 38 Probe initialisation process 

Figure 38 describes the amalgamation of probe configuration information during 

creation of a new service probe. A top-level Probe Manager inside the MeCo Probe 

component manages all 'Service Probe' instances. When a new 'Probe Descriptor' 

file is added to the file system the Probe Manager extracts information from the 

descriptor. This includes the identifier( s) of the SLA contract( s) that will evaluate the 

probe measurements, and the location of the WSDL file that describes how to interact 

with the observed service. The Probe Manager creates a Service Probe configured to 

contact a specific service method using a particular set of input parameters. These are 

obtained from additional extensibility elements within the 'Service WSDL' file 

identified in the probe descriptor. This configuration information is then encapsulated 

in a 'Probe Method Info' object and associated 'Arguments' inside the Service Probe. 

In the implementation the interval between Service Probe activations (the 'Probe 

Period' as in Figure 38) is dictated by the maximum acceptable server down-time 

defined in the SLAng SLA language (see Section 3.3.6.1). 

3.3.5 Messaging Service 

Measurements taken from the observed service platform must be propagated to the 

Measurement Service for analysis. There is also a need to be able to notify interested 

parties when SLA violations occur. Both of these must be achieved in a scalable and 

reliable manner. The Messaging Service is provided to enact communication between 

the distributed components of the MeCo Framework. The Messaging Service passes 

97 



metric data from the Provider-side MeCo to the Measurement Service. It also supports 

the transmission of SLA violation notifications to interested parties. 

The MeCo Framework is built upon a Message Oriented Middleware (MOM) design 

paradigm. The software used to enable communication between the distributed 

components of the MeCo Framework must support publish/subscribe communication 

patterns. For the implemented system the Java Message Service (JMS) [HaefalOl] 

was used. This conceptually allows for a great number of Provider-side MeCos and 

Measurement Service instances to communicate with each other, or for numerous 

simultaneously operating third-party agents to monitor the same range of services. 

3.3.5.1 Event Notification within the Messaging Service 

The JMS API supports both point-to-point and publish/subscribe models of 

interaction, with the latter chosen for use with the Measurement Service. 

Publish/subscribe topics are used on a per-operation basis. A 'metric' topic is 

associated with the name of each operation defined in an SLA, to which data re lated 

to that operation is transmitted. This approach balances sending data associated with 

each contract (producing few messages of greater size) and sending each individual 

piece of metric data (resulting in a greater number of fragmented service usage 

updates). Since both the SLA language engine and the MOM interface can be tailored 

to individual systems, it is quite conceivable that a different message-management 

format can be developed other than the operation-based model described. 

The publish/subscribe approach provides the opportunity for multiple SLA engine 

instances to be integrated into the monitoring framework. Existing SLA engines often 

lack scalability when required to evaluate increasing numbers of SLAs. The capacity 

to employ numerous Measurement Service instances connected to message channels 

offers potential to improve scalability and share processing load. In addition, different 

SLA language engines can be used at the same time (which for example could ease 

transitional periods between use of existing and replacement SLA engines). 

The decoupled nature of MOM minimises disruption to the monitoring infrastructure. 

Components simply register as consumers for the metric data topic(s) pertaining to the 

contracts they are monitoring. 

When an SLA evaluation indicates that a contract obligation has been violated, 

interested parties can be made aware of the event. Scalable message dissemination is 

98 



desirable here as it is possible that an arbitrary number of organisations may be 

interested in the performance of a particular service (e.g. business partners, in e tors 

etc.). Propagation of SLA violation notifications again uses message topic . Here, 

topics are used on a per-SLA basis, uniquely identified by any piece of text whi h 

separates one contract from another (it is assumed that the SLA language provide 

this distinction). Organisations then assume responsibility for subscribing to topic 

that refer to the SLAs they are actively participating (or simply have an intere tin. 

SLA violation notifications consist of the name of the metric that was vio lated and the 

value that caused the violation. Additional information generated by the SLA engine 

can also be included if methods to access thi s information are exposed. 

3.3.5.2 Implementing the Messaging Service 

MeCo Provider EnVironment Measurement SeMce 

MetrIC Nollfler 

MOM System 

Figure 39 How measurement data is processed between the Provider-side Meeo and the Measurement 
Service 

Different notification middleware technologies (aside from JMS) can be used for the 

underlying communication mechanism of the MeCo Framework. Integration into the 

Messaging Service is achieved by providing implementations of the 'Metric otifier ', 

'MetricCollector' and 'ViolationDetectorEnvironment' interfaces . These interfaces , 

define inter-component communication methods for the Provider-side MeCo Provider 

Environment the Measurement Service evaluation engine, and the violation , 

notification subsystem of the Measurement Service respecti vely. 

99 



The methods of the 'MetricNotifier' interface are: 

public abstract void updateMeasureService (HashMap metrics, String c~ientID, String 

topiclD, String protocol); 

public abstract void updateClientConfig(String clD); 

public abstract void updateClientConfigurations(HashSet clDs); 

public abstract void updateBindingsConfig(Object slaOpBindings); 

public abstract void updateBindingConfigurations(HashMap slaOpBindings); 

public abstract void updateProviderlD(String provlD); 

public abstract void initialise (Properties props, HashMap helpers); 

The 'updateMeasureService' method is called by the Provider Environment to 

transmit metric measurements. The 'metrics' Java HasbMap object stores key/value 

pairs of metric names and measurement values, while other parameters identify who 

called the service, the publish/subscribe topic that was used, and the service protocol. 

Other methods are used to configure the implemented class (these configuration 

details are further described in Section 3.3.6.1). 

The Messaging Service includes a 'MessageAggregator' sub-component at the 

provider-side that enacts message aggregation policies across relevant metric topics. 

One method exposed by this interface is used to update the contents of a message 

before it is transmitted to the Measurement Service: 

public String updateMessage(String nNotification); 

The policies used to group messages are defined within dynamically-loaded classes 

retrieved through Java reflection techniques, thus allowing for new message 

aggregation policies to be added to the MeCo system over time. The implementation 

already contains aggregation policies defining sequence-based message grouping 

(aggregating a pre-specified sequence of messages before transmission) and temporal 

message grouping (grouping messages over [mite periods of time and transmitting 

them when the time-frame elapses). 

Additional logging and security classes can be configured for use in the messaging 

subsystem. By implementing the 'MecoLoggingHelper' and 'MecoSecurityHelper' 

100 



interfaces tailoring of data logging processes and basic verification features is 

possible. The 'MeCoLoggingHelper' interface declares methods for logging both 

metric notifications and SLA violation data. These methods are: 

public abstract void logMetrics(HashMap logProps, HashMap metricMa~) ~hrows 

MecoLoggingException; 

public abstract void logViolations (HashMap logProps, Set vio~ations) thrO\,s 

MecoLoggingException; 

The 'logMetrics' method takes in configuration information for connecting to the log, 

and a Java HashMap of metric identifiers and measurement values. The 

'logViolations' method takes a list of violations and then disseminates them to 

interested parties. The 'MeCoLoggingHelper' interface has already been implemented 

with MySQL [Mysql] to allow storage of logging data in a database 

The security helper interface has methods for encrypting message text into message 

digests, and verifying digests using key-pair authentication. Its methods are: 

public String encryptText(String messageText) throws Exception; 

public boolean verifyContent(String messageText, String signedDigest, String senderID) 

throws Exception; 

These methods are used to encrypt the content of a message as a digest, and verify the 

origin of a message respectively. The 'encryptText' method uses the local server 

identifier within the Provider Environment to identify the security key to use when 

encrypting a message digest for transmission with monitoring data. The 

'verifyContent' method uses the public key of the entity identified by the 'senderID' 

(the server that sent the message) to verify the 'signedDigest'. 

Digests can be used to determine the authenticity of metric notifications (fortifying 

communication integrity between the observed server and a potentially third-party 

Measurement Service). An implementation of this interface has been created using the 

Java Keystore encryption technology [Javakeystore]. 

101 



3.3.6 Measurement Service 

Measurements from within the observed service platform and from service probe 

must be correlated in a centralised manner to provide a consistent and complete iev 

of service performance. At the same time management of measurement capabilitie 

and SLA evaluation procedures should be centralised, to enable di ssemination of 

consistent configuration state across the monitoring framework. All of this 

embodied in the Measurement Service component. 

The Measurement Service receives measurement monitoring data update from both 

the Provider-side Meeo and its own internal MeCo Probe. Monitoring data i 

evaluated against the relevant contracts . If during the evaluation proces it i found 

that a contractual obligation has been violated, the Measurement Service can noti fy 

any interested parties of the violations (via the relevant SLA topic ). The 

Measurement Service contains a number of specialised sub-components (Figure 40): 

Measurement Service 

Figure 40 The Measurement Service and its sub-components 

• MBean Communicator: connects to the Provider-side MeCo wi thin the JBoss 

service platform, allowing activation/deactivation of server-side measurements 

and transmission of measurement configurations to the Provider-side MeCo. 

• Contract Manager: evaluates metric data received from the Metric Collector, 

MeCo Probe, and the Complex Metric Calculator. The Contract Manager can 

create SLA violation notification messages for transmission by the Violation 

Notifier. 

102 



• Metric Collector: manages subscription to topics associated with observed 

contracts (as instructed by the Contract Manager). It also translates update 

messages into a format suitable for processing by the Contract Manager. 

• Violation Notifier: used by the Contract Manager to format and disseminate 

SLA violation information to those parties registered to receive them. 

• GUI Component: displays measurement and violation information in charts 

and lists that are updated as data is processed by the Measurement Service (see 

Section 3.3.6.4). 

• Complex Metric Calculator: creates composite metrics based on 

measurements from the Provider-side MeCo and the MeCo Probe. See Section 

3.3.6.2 for a description of 'complex' metrics. 

3.3.6.1 The Contract Manager 

The Contract Manager interface (known as the 'SLAManager') provides methods for 

reading new contracts into the monitoring framework, evaluating metrics based upon 

those contracts, and obtaining information about the service provider, service clients 

or observed operations defined in each contract. 

Two contract engines have been implemented. These can be interchanged or replaced 

with future implementations as per the generic SLA language mechanism (as long as 

new implementations adhere to the 'SLAManager' interface). 

Both of the existing implementations use the SLAng modelling language [Skene04] 

as a base. The contract language defined in SLAng is used to interpret contracts and 

obtain configuration information for the monitoring framework. One of the 

implementations relies on the SLA evaluation components of SLAng (the 

'SLAngManager' class). The other (,SLAngSimpleEvaluationManager') uses SLAng 

for contract definition purposes only and augments it with purpose-built evaluation 

logic (thereby avoiding use of the memory-intensive evaluation components of 

SLAng). Just as the Contract Manager is generic in nature it is also capable of 

allowing different features of individual SLA engines to be reused or combined with 

new processing logic. This enables service-specific tailoring of SLA e\"aluation 

103 



processes in the same way that the MeCo monitoring mechanisms can be customised 

to meet individual needs. 

An example of a SLAng contract, as used in the MeCo Framework, is provided in 

Appendix B. More information concerning the layout of SLAng contracts can be 

found in [Skene04]. Contracts such as the one found in Appendix B are read into the 

SLAng contract engine. An interface with this engine then allows the Measurement 

Service to obtain details contained within the contracts. SLAng contracts define one

to-one provider/consumer relationships. The SLAng engine exposes operations for 

evaluating measurement data against contracts stored within an instance of the engine. 

Further information regarding how contract contents are exposed in SLAng can be 

found in [SkeneEdoc04]. 

The SLAng contract language IS capable of measunng 'maximum latency'. 

'maximum time to repair', 'reliability' and 'maximum throughput'. Within the 

context of the MeCo Framework these metrics are taken to mean 'request processing 

time within the application server', 'permissible server downtime', 'server 

availability' and 'maximum permissible client request throughput' respectively. 

Access to these parameters is exposed by the contract engine through provided 

methods. The interfaces to the contract engine were written to use these methods to 

obtain the details of specific metrics. For example, measurements conducted in 

relation to the 'request processing time within the application server' associated with 

a contract will be controlled with those methods that expose access to the 'maximum 

latency' parameter within the SLAng contract engine. Metric units are also declared 

for each measurement type. 

Interfaces that bind the Measurement Service to a specific contract engine must all be 

created so as to knit the metrics exposed by the contract engine to the capabilities of 

the MeCo Framework. There must also be an understanding of the contract engine 

and the terminology of the associated SLA language. This may suggest that only the 

developers of a particular SLA language or SLA engine are in a position to create 

interfaces for use in the Measurement Service, although this is not definite. 

In a SLAng contract threshold values are stipulated for each parameter. A violation of 

one of these parameter thresholds constitutes a violation of the SLA obligations as a 

whole. The 'SLAngManager' interface implementation uses the SLAng contract 

engine to evaluate measurements against the content of a SLAng contract directly. 

This happens retrospectively and does not consider allowances for multiple obligation 

104 



violations, but is also extremely resource intensive. As an alternative. the 

'SLAngSimpleEvaluationManager' interface implementation evaluates measurement 

data through use of its own internal logic, without the SLAng contract engine. It can 

also record multiple obligation violations, thereby sharing responsibility for service 

violations between both the contract engine and the complete monitoring framework. 

Where parameter thresholds are defined for specific service operations, operation 

names are extracted by the Measurement Service. These are then bound to SLA 

identifiers, and used in the Provider-side MeCo to determine which operations are to 

be monitored as they are called by clients. Determining the identity of the client 

associated with the SLA obligation that references each operation allows the 

Provider-side MeCo to observe specific client/server interactions. When received at 

the Measurement Service, measurements are correlated with the appropriate SLA 

content through reference to the aforementioned SLA-to-operation bindings. 

Monitoring logic is written to measure each metric described in an SLA engme. 

Where an SLA engine interface implementation accesses methods exposing SLA 

metrics, it is able to communicate to the Measurement Service the monitoring classes 

that are necessary to monitor the SLA. This information is conveyed to the Provider

side MeCo upon configuration as the 'Measurement Types' (described further in 

Section 3.3.6.2). 

Every contract loaded into a Measurement Service instance is interpreted by the same 

contract engine, and the contract engine is stipulated in the Measurement Service 

configuration file (Section 3.3.6.3). Other Measurement Service instances with 

different contract engines can subscribe to the same topics if there is a demand for 

multi-engine contract verification. 

3.3.6.2 Measurement Service Contract Configuration 

When a new contract is added to the system the MeCo Framework determines which 

measurement classes to load within both the Measurement Service and the Provider 

Environment. Three distinct categories of configuration data are extracted from each 

contract (with data extraction processes dictated by the logic within the associated 

SLA engine interface): 

105 



• Client Identifiers: sent to the Provider-side MeCo so it is aware of the clients 

that must be monitored from the associated server platform. Client 

identification allows correlation of server activities and SLA obligations to 

determine client behaviour. 

• Measurement Types: describe the metrics to be measured within the Provider

side MeCo and the MeCo Probe. The set of measurement classes loaded into 

the system is determined by the metrics identified within each contract. For 

example if an SLA clause includes details of a threshold limit on the 

processing time for client requests as measured in milliseconds at the server, 

and this is referred to as the request 'procTime', the Contract Manager can 

request that an instance of the 'METRlCprocTime_mS' Java class be loaded 

into the Provider Environment. A list of the metrics that are observed within 

the SLAng contract engine is provided in Section 3.3.6.1. 

• Client-Measurement Bindings: these mappmgs allow the Provider 

Environment to carry out per-client performance measurements on top of the 

per-protocol behaviour of the MeCo Interceptors. A list of measurement types 

is associated with each client identifier, which then dictates which metrics to 

observe with each processed request based upon the originator of the request. 

• SLA Operation Bindings: it is assumed that each operation defined in a 

contract is universally unique and with this that each operation (and the 

associated SLA) can be identified as it is being monitored. A reference to the 

associated SLA allows the MeCo system to correlate measurement data with 

contract obligations during the evaluation process. Information regarding 

operation and contract identifiers is also used to configure metric topics and 

SLA topics respectively. 

106 



The measurements initiated within the MeCo Framework are arranged into subsets for 

manageable separation of per-component metric-collection concerns: 

• Basic Metrics: application-level performance measurements taken at the 

server-side. These measurements are transmitted from the Provider-side MeCo 

to the Measurement Service for post-processing and evaluation. The SLAng 

engine interfaces dictate that measurements of 'request processing time' are 

conducted at the server-side. This metric is then referred to as a 'basic' metric. 

• Probe Metrics: measurements taken from the MeCo Probe. These are 

referenced in each probe configuration and linked to specific contracts. The 

SLAng interfaces refer to 'permissible server downtime' as a 'probe' metric. 

• Complex Metrics: composed from basic metrics (and potentially probe 

metrics), these measurements are produced from complex calculations carried 

out within the Measurement Service. In general 'complex' metrics may be 

used to provide a more immediately representative indication of system 

performance within the charts produced by the Measurement Service GUI. 

SLA parameters may be interpreted differently to indicate more obvious trends 

that the end-user (i.e. system administrator) finds easier to read in a data plot. 

Alternatively if the SLA engine implementation incorporates additional 

evaluation logic (as III the 'SLAngSimpleEvaluationManager' 

implementation), complex metrics can be used to calculate per-service metrics 

based on complete service usage. As an example, to assist the 

'SLAngSimpleEvaluationManager' request throughput is calculated as a 

complex metric where otherwise the underlying SLAng engine would have 

conducted the calculation. This approach can also be used to move complexity 

away from the Provider-side MeCo. 

The Contract Manager is capable of monitoring a designated contract folder and 

updating both its own configuration and that of the Provider Environment when a new 

contract has been added to the system. Details of this are found in Section 3.3.3.3. 

107 



3.3.6.3 The Measurement Service Configuration File 

The 'measurement-service.xml' configuration file is arranged to accommodate the 

adaptive nature of the MeCo Framework. A global configuration section within the 

file lists the class-name prefixes of the Java classes used for each sub-component 

implementation in the Measurement Service. Additional configuration sections 

(identified by the same class-name prefixes) contain initialisation parameters for each 

sub-component. For example if the 'messaging' element in the main configuration 

section has the value "JMS", the Measurement Service will create an instance of the 

'lMSMetricCollector' class, and the MeCo Provider Environment will create an 

instance of the 'JMSMetricNotifier' class. The "lMS" section of the configuration file 

will be examined for initialisation parameters for these classes, such as which ports to 

use to connect to the JMS server etc. 

There is a set of general configuration headers within the configuration file which 

point to additional class-specific configuration information: 

• 'slaEngine': describes the SLA contract engme. Within the class-specific 

section there is a parameter to describe the directory which the Measurement 

Service should poll for new contracts. Another parameter controls whether the 

system transmits SLA violation notifications. If this entry is not found it is 

assumed that violation notification mechanisms are disabled. 

• 'messaging': describes which messagmg implementation to use In the 

Messaging Service. 

• 'logging' (optional): the logging class to use. 

• 'security' (optional): the security and authentication class to use when 

transmitting and receiving updates. 

Configuration information is also included for the MeCo MBean Communicator (i.e. 

how to contact the JBoss server - see Section 3.3.6), MeCo Probe sub-component 

(which directory to observe for probe descriptor files - see Section 3.3.4), the set of 

108 



complex metric classes available to the system, and the graphical interface ub

component (see Section 3.3.6.4). 

3.3.6.4 Measurement Service Visual Component 

It is presumed that a single organisation or trusted third party is tasked with managing 

the monitoring and evaluation processes relating to a service relationship . Appropriate 

members of the organisation should be able to observe measurement and e aluation 

events in real-time, so as to be able to react to particular event in a timely manner. 

For this purpose, a graphical component is attached to the Measurement ervice to 

present data as it is received and processed from across the MeCo Framework. 

u_ .. 

1 -

Figure 41 The GUl charT window 

Once the Measurement Service is operational an interface is created as shown in 

Figure 41 . This interface is intended for use by an administrator of the monitoring 

process. If other parties wish to view data appropriate measurement logging feature 

can be enabled accordingly. 

For each contract loaded into the system an individual interface tab is created. For 

each per-contract tab, there is a group of 'Complex Metric Charts ' showing graphs for 

probe metrics and 'complex ' metrics measured by the system (see Section 3.3.6.2). 

There is also a 'Basic Metric Charts ' window tab displaying charts of raw 

measurement data as collected from within the Provider-side MeCo and a tab for the 

'Violation Data ' relating to each contract. Within the charts that are displayed red 

J09 



horizontal lines on a data plot denote the threshold value for the associated metric 

(where a threshold is defined by the associated contract). 

The x-axis of each of the basic and complex metric graphs is request-based (as 

opposed to temporal-based). Charts are updated whenever new measurement data i 

processed by the Measurement Service. The 'Message Contents ' tab howe er 

provides information relating to exactly when measurements were made. If a iolation 

of a metric threshold occurs the colour of the ' traffic light ' associated with the 

relevant chart turns to red as an indicator. Information relating to the SLA violation 

appears briefly under the chart (so as to provide instant notification to a y tern 

administrator). 

The 'Capture Charts' button can be used to create screenshots of all of the chart (the 

destination folder for these screenshots is defined in the 'measurement- ervice.xml 

configuration file) . The Line/Scatter button changes the presentation of data in the 

charts so that each data point is represented as a dot or all of the points in a chart are 

connected by a line. 

... _-'--- -- ,, 0( • 

Figure 42 Th e GUJ Violation Data window 

The 'Violation Data ' tab window (Figure 42) displays information about any SLA 

contract violations that occur for a contract while the monitored service is being used 

during the lifetime of the Measurement Service instance. The left-hand side of the 

window displays information about the time at which each contract violation was 

detected, along with any additional SLA engine-specific information pro ided (such 

as references to violated obligation terminology etc.) . When an individual record i 

110 



selected from the left-hand pane, the right-hand pane displays metric data as ociated 

with the violation (identifying the measurement that caused the violation notice) . 

.. _-

Figure 43 The GUl Message Contents window 

The 'Message Contents ' tab window (Figure 43) displays contract-specific reque t 

details in the left-hand pane. This includes the exact time that a mea urement 

occurred, the name of the operation that was called, the provider identifier, and the 

identifier of the client that sent the original request. The metric data collected during 

the associated measurement is shown in the right-hand pane upon selection of a 

specific message (in the form of a list of metric-name/metric-value pairs) . 

3.3.6.5 Additional Scalability Measures in the MeCo Framework 

A small set of additional mechanisms were prototyped within the Measurement 

Service to provide greater capacity to process incoming data and transfer information 

between the various internal sub-components . 

III 



I 

+ 
MOM Sys1em 

I , 

~ 
~ 

STAGED 

I 
I 

8 
, , 
I , 
I 
I 
I 
I L ________ • ______ ~ 

, , 
1 ______ ------------

COUPLED 

Figure 44 Staged and coupled metric processing 

The notion of distinct 'Staged' and 'Coupled' processor-core components was 

introduced (Figure 44) based on the notion of 'staged components' (as described in 

[WelshOl]). For example if a 'staged' processing core is used within the Metric 

Collector, measurement data is delivered immediately to JMS queues to which the 

Contract Manager and GUI are registered. These sub-components then use the 

message data to carry out contract evaluations and updates to the end-user interface 

respectively. In this way the Metric Collector can continue processing messages 

without waiting for other sub-components to complete actions using measurement 

data. This differs from the 'coupled' approach wherein the Metric Collector would 

have to explicitly call the Contract Manager to process metric data, wait for it to 

complete processing, and then wait for the GUI to draw data to the relevant charts etc. 

To allow a component to participate in 'staged' communication it must implement the 

'StagedComponent' interface and provide suitable logic for the inherited 

'processEvent' method: 

public void processEvent(LinkedList msgParams, JMSStagedComponentNotifier cLnr, String 

methName) ; 

Message parameters are passed in using this method, and the method to be called 

within the staged component is identified. A specialised JMS object is also supplied 

as an argument to allow the object to communicate with other staged components. 

This allows components to be addressed through JMS queues by their Java class

name. The option is given to enable or disable 'staged' processing in the 

Measurement Service configuration file (Section 3.3.6.3). 

112 



module 

' I request object 

i 
Q '" '" '" "-~~s=~ .. - ~~ 

component pool 

Figure 45 Generic object pooling 

'Object pooling' (discussed in [Little99]) was another scalabili ty mechanism i ited 

in the MeCo Framework (Figure 45) , With thi s approach a sub-component become 

in essence a cluster of replicated objects which can each be assigned to proce an 

incoming piece of data. Object pooling was implemented in a limited capac ity in the 

logging 'helper ' sub-component, based upon a generic pooling strategy. 

These extensions were engineered on a small scale for evaluation purpo e , but were 

not deployed across the system. It was determined that they added undue complex ity 

to the deployment and maintenance of the MeCo Framework (i.e. modifi cati on to th e 

MOM subsystem that hindered heterogeneity and a reliance on inherent knowledge of 

optimisation techniques on the part of those using the framework). 

11 3 



3.4 Satisfaction of Requirements 

It is worth revisiting the requirements outlined in Section 2.6.4 to appraise the ~1eCo 

Framework as an SLA monitoring and evaluation infrastructure. A brief outline of the 

achievements of the MeCo Framework is as follows: 

• Any contract engme can be integrated into the Measurement Service 

provided an interface to Java code can be created (see Section 3.4.1). 

• Measurement capabilities can be supported on-demand across the system 

(see Section 3.4.1). 

• The MeCo Probe can support any application technology supported by the 

WSIF Framework, but only simulates single-part request behaviour (see 

Section 3.4.2 & 3.4.3). 

• The Provider-side MeCo can be integrated with any Java-based 

middleware that supports transparent message interception in the 

request/response stack (see Section 3.4.2 & 3.4.3). 

• Any Java-based MOM technology can be used to implement the 

Messaging Service interface provided it accommodates a 

publish/subscribe notification scheme (see Section 3.4.3). 

• Multiple service instances can be monitored from the same Measurement 

Service instance. However, multiple clients can only be monitored if they 

are interacting with the same service provider and are connected to the 

same network (see Section 3.4.4). 

• Deployment of MeCo components at the server-side reqUlres only 

minimal modification to server configuration files (and not to application 

code). Client-side logic does not require modification (see Section 3.4.5). 

114 



• The Meeo Framework is modular - monitoring logic can be re-used 

across different services and new monitoring logic can be created where 

necessary (see Section 3.4.6). 

3.4.1 Contractual Heterogeneity 

The Meeo Framework provides a generic SLA engine that allows framework users to 

integrate any contract specification language, providing that a contract interface can 

be provided to join the monitoring components and the contract evaluation engine 

within the Measurement Service. 

The modular component model accommodates additional measurement capabilities 

on-demand if a contract specification requires it. This provides adaptability to per

service monitoring requirements (as discussed in Section 3.2.3). The Meeo Probe also 

adapts to monitoring requirements, so provider obligations can be observed within 

differing service environments (although only single-message requests are modelled). 

Additional resources are not required to process probe calls, but there is potential for 

service providers to deliberately provide acceptable service to Meeo Probe calls if the 

probing interval is known. For example, a provider may ensure that the service is 

available and working correctly when a probe call is imminent and then allow the 

service availability to suffer at other times when service clients may require it. This 

shortcoming could be resolved in future with (for instance) randomised probing 

intervals, to monitor service provision without the provider having the opportunity to 

prepare for being probed in advance. This would be akin to a 'random inspection' of 

the service. 

Sections 2.6.4.1 & 3.2.4 discuss formalised standardisation of parameter definitions 

within SLA obligations. In the Meeo Framework metrics are referenced by 'global' 

identifiers (i.e. not just the class-name used to obtain the associated measurements). 

For example, measurements of the response time of request processing within the 

Enterprise lavaBeans container in the JBoss server application are referenced by the 

'ejbResponseTime' identifier. This is a composition of an informal 'ejb' prefix 

(indicating the monitored application technology) and a 'ResponseTime' 

measurement descriptor. When 'complex' and 'probe' measurements are read into the 

system (from the Measurement Service configuration file and individual probe 

descriptors respectively) they are encapsulated in a combination of 'metric name'. 

115 



'measurement title' and 'measurement unit'. This combination of attributes allows 

automatic location of measurement classes. The aforementioned 'metric names' 

enable indirect reference to measurement types and units through a set of (albeit 

informal) metric identifiers. Metric identifiers can be referenced in SLA engine 

interfaces, but are not formally standardised - discussion of standardisation is 

included in the Future Work described in Section 6.3. 

3.4.2 Domain Heterogeneity 

The MeCo Probe can simulate any application-level entity based within Web service 

technologies through the WSIF framework and its extensibility features. This includes 

SOAP, Enterprise lavaBeans or even JMS. 

The Provider-side MeCo can monitor any application technology that provides 

interceptor mechanisms for transparent message inspection (as is applicable with most 

major middleware platforms). This adaptability creates potential for the concepts 

developed within the MeCo Framework to be applied to other service domains. To 

prove the latter, applied examples must be presented. For details of an application that 

re-appropriates the logical structure of the MeCo Framework in the domain of 

Distributed Virtual Environments (DVEs) refer to Chapter 4. Integration of the entire 

MeCo Framework into a Distributed Virtual Environment is discussed in Section 4.4. 

3.4.3 Accommodation of Enabling Technologies 

Interfaces to application technologies can be developed for server-side metric 

collection and active measurement. Interfaces have been created to integrate 

monitoring features with SOAP and EJB services. The only stipulation is that an 

interceptor mechanism exists to allow transparent monitoring of high-level 

applications. There is no dependence on application-specific data-gathering 

techniques as data is inferred by the Measurement Service and fed directly into the 

internal contract engine. 

Heterogeneous metric collection IS used extensively in the MeCo Framework, 

including probe measurements, the contract engine interface and the MOM-based 

communications subsystem (which can employ any MOM product with 

publish/subscribe capabilities). 

116 



3.4.4 Scalability towards Participant Entities and Service Contracts 

Multiple contracts can be simultaneously monitored from the same .\1easurernent 

Service instance. In combination with the server-side Provider Environment this 

allows for multiple service clients to be monitored. The MeCo Probe sub-component 

can be shared between similar services (albeit where service clients are connected to 

the same network), potentially reducing the network traffic that it generates. 

The processes of transmitting and receiving metric updates are essentially as scalable 

as the MOM subsystem that connects the Provider-side MeCo and the Measurement 

Service. The scalability of the Provider-side MeCo is further governed by the session 

management facilities within the server platform (which determine how Interceptors 

are deployed). 

Relating to the discussion of service environment permutations in Section 3.2.2, there 

is mixed success. Consolidation of MeCo Probes across services with identical 

internal logic is possible. Also the Provider-side MeCo is capable of gathering 

measurements on behalf of numerous services at once, but only with the assumption 

that the services all use the same application technology and have similar internal 

logic, and that metric-dissemination is structured accordingly. 

Monitoring of multiple contracts from a single Measurement Service instance 

(specifically when contracts refer to more than one service provider) can only be 

achieved if other Measurement Service instances have pre-configured referenced 

provider platforms other than the one that each Measurement Service is in direct 

contact with. This is because a Measurement Service instance can only subscribe to 

metric update channels if they have already been configured. 

Another point is that only one service provider can be configured from each 

Measurement Service instance, and this is discussed in the Future Work (Section 6.3). 

Furthermore, the Measurement Service does not contain functionality for replicating 

internal logic to facilitate measurement updates from an arbitrary number of Provider

side MeCos. 

With reference to support of multiple Measurement Service instances, trusted third 

party monitoring from numerous sites is achievable (through subscription to metric 

topics), with potential for rudimentary load-balancing. In this case it is assumed that 

per-service metrics such as service utilisation are not observed, as this would require 

consolidation of evaluation data from numerous Measurement Service instances. 

117 



3.4.5 Transparent Deployment and Operation 

Deployment of MeCo objects to application server platforms requires only minor 

modifications to server configuration files, without the need to modify server code. 

Also the MeCo Framework does not interrupt the behaviour of service clients (since 

no monitoring logic is deployed at the client-side). 

MeCo Interceptors are specialised towards message interception and processing. Any 

potentially time-consuming post-processing of data occurs at the Measurement 

Service. This avoids any need for additional processing resources within the Provider

side MeCo. The communication channels connecting the Provider-side MeCo and the 

Measurement Service can be deployed across a stretch of network that does not 

interfere with the observed service participants. 

Transparent fault behaviour within end-system devices is discussed in Section 2.6.4.5. 

This applies mainly to the MeCo Interceptor implementations. The EJB- and SOAP

based MeCo Interceptors propagate request data through the JBoss Interceptor and 

Axis stacks respectively regardless of any internal failures. The Interceptors fail only 

in the case of failure of the supporting server (which would be detected by the MeCo 

Probe). Within the Measurement Service database logging can be employed to 

maintain records of service behaviour in case of potential failure. 

If required the Complex Metric Calculator can perform per-service measurements so 

as to shift processing complexity away from the server platform. 

3.4.6 Ease of Deployment and Modularity 

Deployment of the MeCo Framework is achieved through positioning of MeCo 

objects within the service platform, configuration of the MOM subsystem, and 

activation of the Measurement Service. 

The MeCo Framework exists as a set of distributed monitoring components. 

Monitoring capabilities are modularised within specialised per-metric measurement 

classes, and technology-specific metric-sending, notification and interception classes 

are governed by generic interfaces. This affords adaptability to communication 

protocols and measurement capabilities while also providing the capacity to reuse 

existing monitoring logic where applicable. 

118 



Because measurement classes are retrieved from class libraries, it is possible for 

application developers to create measurement classes for deployment in both the 

Provider-side MeCo and the Measurement Service. However, development of SLA 

language interfaces assumes knowledge of the workings of the language or associated 

contract engine. 

3.5 Summary 

• A monitoring architecture was previously proposed [Jimenez04] to resolve a 

number of the SLA monitoring and evaluation issues raised in the related 

work. This formed the foundation for the MeCo Framework [Morganlfip05]. 

• The MeCo Framework alms to provide a heterogeneous, distributed SLA 

monitoring and evaluation infrastructure. It is composed of a number of core 

components. These components are distributed and modular, and can be 

adapted to per-service monitoring requirements. The MeCo Framework 

consists of: 

o A Provider-side MeCo positioned to observe service client behaviour. 

o A MeCo Probe capable of active measurements of service provider 

behaviour. 

o A Measurement Service component that collects and processes 

measurement data. 

o A Contract Manager that can integrate an SLA language and 

processing engine. 

o A Messaging Service that utilises Message-Oriented Middleware 

(MOM) to facilitate data transmission between the Provider-side MeCo 

and the Measurement Service. 

119 



• The Provider-side MeCo has a number of distinct subsystems: 

o Middleware-specific 'interceptors' allow transparent integration of 

monitoring logic into E-Commerce middleware stacks. 

Implementations of MeCo Interceptors exist for the SOAP Web 

service protocol and Enterprise JavaBeans (EJBs). 

o The Provider Environment manages the vanous sub-components 

during configuration and operation. 

o The Metric Classloader can load classes into the Provider Environment 

to provide service-specific measurement capabilities. 

o The Metric Notifier communicates measurement data to the 

Measurement Service via the Messaging Service subsystem. 

• The Messaging Service is the communication backbone of the MeCo 

Framework. It has sub-components of its own, namely the Message 

Aggregator (which can group messages produced by the Provider-side MeCo) 

and the security and logging helpers that perform message authentication and 

logging respectively. The Messaging Service can use any publish/subscribe

capable MOM technology, with the only requirement being that there is some 

concept of event notification topics available. 

• The Measurement Service correlates measurement data from the Provider-side 

MeCo and its own internal MeCo Probe. The sub-components of the 

Measurement Service can be tailored to meet the needs of individual service 

environments: 

o The Contract Manager is an SLA language-agnostic metric evaluation 

component. 

120 



o The Metric Collector collects measurement data from the \10M 

subsystem and extracts metric data for use in contract evaluation. 

o The Violation Notifier transmits notifications of SLA violations to 

interested parties when they occur. 

o The GUI component presents measurement data to framework 

administrators. 

o The MeCo Probe adapts active measurements for transmission across 

any E-Commerce application protocol (through use of the WSIF 

framework and specialised WSDL service descriptions). 

121 



4. Distributed Virtual Environments 

Distributed Virtual Environments (DVEs) allow geographically remote computer 

users to interact in a shared virtual world. Users interact directly with each other and 

the environment itself. Actions are conveyed to other users as they happen so as to 

ensure a consistent view of the world. 

In this chapter there will be a discussion of how the concepts and techniques 

developed within the MeCo monitoring & evaluation framework can be applied to 

resolve QoS monitoring problems in the domain of Distributed Virtual Environments. 

4.1 Re-Appropriating the MeCo Framework 

Before considering QoS-related problems within Distributed Virtual Environments, it 

is first worth summarising the features of the MeCo Framework and how they may be 

re-appropriated to provide consistency guarantees for scalable virtual environments. 

4.1.1 Achievements in SLA Monitoring 

The MeCo Framework exhibits a number of useful features for deployment across a 

variety of E-Commerce service environments. Interoperability between differing 

network entities in heterogeneous environments is possible. The framework also 

respects the need to adapt to dynamically-changing network characteristics, in terms 

of service participants, but also the evolution of deployed services. 

The MeCo Framework provides modular, distributed monitoring capabilities and 

performance evaluation of individual service participants. These features can be 

tailored to meet the SLA monitoring requirements of individual service environments. 

The applicability of the MeCo Framework to divergent services can only be assured if 

it can be shown to provide benefits to services within different domains. It should be 

feasible to apply the conventions that were refmed in developing the MeCo 

Framework to a different kind of distributed service. It was deemed appropriate to 

develop a distinct application of centralised monitoring and evaluation of per

participant behaviour and performance metrics for DYEs. 

122 



4.1.2 A Different Domain - Distributed Virtual Environments 

Figure 46 Users interacting within a Distributed Virlual Environment (DVE) 

A Distributed Virtual Environment CDVE) is a simulation of a virtual world wherein 

geographically dispersed users interact with each other and the world according to the 

rules of the environment. Applied examples include Massively-Multiplayer Online 

Games CMMOGs) and military simulations . DYEs are typically enriched with 

multimedia content so end-users can both see and hear the elements they interact with. 

DYE applications are growing in popularity . It becomes increasingly important to 

ensure real-time consistency within the virtual world, whi le also providing guarantees 

of service quality to an arbitrary number of users which may grow into the hundreds 

or perhaps thousands. 

The need for consistent service quality between a DVE provider and the associated 

end-users acts as a base of comparison to the provision of E-Cornmerce services . Both 

service classes require the service provider to ensure a detenninable level of quality, 

while stipulating that end-users do not intentionally abuse the service. These 

similarities provide a foundation for monitoring and evaluation constructs within 

DYEs, with scope for applications specialised towards solving problems specific to 

DYEs. 

123 



4.2 Implementation 

In Section 2.4 the principles of Distributed Virtual Environments (DVEs) were 

discussed, including Interest Management mechanisms. Interest Management 

techniques are used to limit the number of messages sent between machines 

interacting within a virtual world to aid in achieving scalability. With this there was 

an examination of missed interactions and how their occurrence can affect the 

experiences of a DYE end-user. 

An application was created that can be used to configure a DVE so that the 

occurrence of missed interactions is reduced, and the resource constraints of the 

underlying physical system are respected. 

4.2.1 Implementation Assumptions 

A number of assumptions have been made about the DVEs that the application would 

be to configure: 

• The virtual environment is three-dimensional and cube-shaped. 

• The virtual environment uses a peer-to-peer (P2P) management approach. This 

restriction is applied so as to focus the implementation on a specific DVE 

deployment, while providing a suitable deployment challenge. 

• Aura-based Interest Management techniques are used to reduce message 

production. 

• The Interest Management configuration applies to object aura-sizes and inter

object heartbeat message-sending intervals. 

• A global view of per-entity messaging and configuration events is achievable. 

• All entities within the same object class send heartbeat messages to other 

entities at the same interval and at the same time. This is also assumed to be 

the case with high-frequency messages. 

124 



• 

vIrtual .... (ITld behavHJur A,> ar, '':' a.n:p;::.:: 

((lrTcllly, ,HI lfilcr,h.II"[j rlla y appe,H t" r".: n.' , ~ , 

, r 

\\ IliI II I Ill' qu.dll\ (II Iii" 1)\ I C\PCfH:fh t: 111.!1 :1 

r' 



auras provide a more accurate model of inter-object influence than the region-based 

approach. Furthermore, this permutation provides a more challenging test of the DYE 

Simulator, as the occurrence of missed interactions is dependent upon the exchange of 

heartbeat messages between participating entities (which in itself would need to be 

regulated). Alteration of object velocities as an Interest Management mechanism is 

not considered within the DVE Simulator, as this directly impacts upon the laws of 

the virtual world itself. 

There is a need to be able to assess the merits of a particular Interest Management 

configuration. The DYE Simulator should present criteria by which to determine the 

Quality-of-Service (QoS) of an individual DYE. The derivation of performance 

measures that represent the quality of a DYE would serve as a foundation for 

automatic evaluation mechanisms and measurement-based assessment. 

4.2.3 Object Classes 

In a DVE simulation it is desirable to effectively emulate the behaviour of entities in a 

virtual world. It becomes necessary to simulate object movement in a three

dimensional space (e.g. end-users moving their representative characters around the 

virtual world). It is assumed that the movement of an object is dependent upon its 

'class' (e.g. airplane, person, car) and that instances of more than one object class can 

co-exist in the virtual world at any time. For instance a plane will behave in a manner 

that tends to follow a more deterministic flight path at high velocities, whereas a 

person may exhibit more non-deterministic movement at lower velocities. These two 

object classes should be able to interact in an appropriate and meaningful way. 

The introduction of object classes (and associated styles of movement) is a necessity 

for realistically modelling DVEs. Achievable velocities between different types of 

objects may vary to such an extent that one object is capable of passing another before 

influence between the two can be detected and message passing enacted, depending 

upon the Interest Management configuration. Such events must be modelled 

appropriately if they are to be controlled. 

The style of object movement is also a factor in determining the occurrence of missed 

interactions. Inter-object influences involving objects that have a tendency to stop 

moving for periods of time may be identified more readily in real-time than for those 

126 



objects that are constantly on the move. This would all depend howe er upon the 

regularity of inter-object positional update messages etc . 

Four classes of virtual object (and with this, four distinct styles of movement) were 

derived for use in the simulation application (as shown in Figure 47): 

/ 

o 
11 

/ 

/ 
/ 

11 

a) 

/ 
/ 

11 

o 

o 
/ 

/ 

/ 

11 

b) 

11 
/ 

o 

o 

o 

c) 

Figure 47 Different /arms a/simulated object movement 

o 

o 
d) 

a) Direct: objects of this type move - without stopping - along a linear path at a 
fixed velocity. 

b) Indirect: objects move along a linear path at a fixed speed but may deviate 
from this direct path periodically for short periods of time. 

c) Stuttering: objects move along a linear path at a fixed speed but may pause 
periodically for short periods of time. 

d) Static: objects of this type do not move at all (therefore behaving much like 
stationary, or idle, objects). 

The proposed set of object classes and their identifying characteristics provide a range 

of styles of movement that in combination exhibit an adequate (albeit basic) variety of 

object behaviours suitable for simulating a DVE. By combining instances of these 

object classes there is potential for relatively complex interaction scenarios . 

127 



4.2.4 Simulating Object Behaviour 

In trying to determine how end-users may behave within a DYE, literature regarding 

human behaviour was consulted. Much of this examined 'crowding ' of people within 

the real world. Examples include studies of crowds entering and lea ing stadiums in 

large numbers [Brocklehurst05] and observations of crowd behaviour in urban area 

[Helbing05]. The mathematical models and associated analysis have not been applied 

in the context of virtual worlds. Although there is no proof that what occur in the real 

world may be replicated in a virtual world, in the literature there i an under tanding 

that objects (particularly avatars) will crowd and disperse throughout a imulation 

(e.g. during battles or when following quest markers) . Objects rarely remaill ill 

isolation in a virtual world as there is a drive to interact [Singhal99]. A uch the act 

of crowding amongst simulated users must be emulated. 

--- o 
\0 

\ " 
\ "" 
\ " 
\ "" 
\ " 
\ "" 
\ " \ '4 o 0 +--- 0 

__ -0 
o 

o Target 

o Object 

Figure 48 influencing object movements by assigning targets 

An attempt was made to provide realistic crowding of objects within the virtual world, 

through the positioning of 'targets' (as shown in Figure 48). This would require a 

number of target objects to be positioned within the virtual world, with objects made 

to travel towards them. This creates scope for crowding behaviour amongst sets of 

objects as they travel towards the same target. It would also be conceivable for target 

to relocate during the simulation, and for objects to change the target towards which 

they are travelling. With these characteristics, if the number of targets is strictly Ie 

12 



than the number of objects, objects will effectively cluster and disperse throughout the 

simulation. 

Another consideration is whether a simulated virtual world should include obstacles 

that restrict the movements of objects as they move around the environment. These 

include terrain such as mountains or impassable areas such as lakes, and impenetrable 

objects such as walls. In this case the decision was made to allow objects to roam 

freely around the virtual world without hindrance. This was rationalised by the need 

for the preliminary results derived from DVE simulations to be free from any 

influences contributable to environmental constraints (such as space limitations 

introduced by the existence of particular obstacles). It would be easier to attribute 

missed interactions to Interest Management constraints without needing to consider 

the undeterminable influence of virtual world obstacles. 

4.2.5 Modeling Resource Constraints 

In simulating a DVE there is a need to adequately represent both the delays associated 

with processing messages at individual network nodes and the underlying network 

transmission overheads. The influence upon inter-object message transmission and 

processing of both the physical network and the available processing resources should 

be considered when examining how missed interactions occur. 

Introducing network latency and processing overhead into a simulation undoubtedly 

complicates simulated DVE behaviour. The sending of a message by one object and 

the receiving of that message by another are not guaranteed to occur at the same point 

in global time. If the receiver of a heartbeat message is Obh and Obh is the sender, 

Obh will need to determine whether its current aura overlaps with the aura of Obh- It 

may be that when doing this Obh is using positional data that refers to Obj/s aura as 

of the time that Obj 2 sent the message. This is not necessarily the same time as when 

it was received. Obj/s judgement is then made using potentially out-of-date 

positional data for Obj/s aura. 

To adequately model the delays associated with network latency and processmg 

overhead two variables Dial and Dprc are introduced that respectively describe these 

two time periods. Together Dial and Dprc represent the processing time required at 

each network node to resolve peer-to-peer Interest Management issues. As an 

129 



example, for a DYE with few objects and limited networking resource D ial \ ould be 

high and Dprc would be low. 

It is undesirable for a simulation to be influenced by actual processing dela within 

the execution environment of the DYE Simulator itself (e.g. CPU speed. memory 

availability, pre-emptive operations in the operating system). AI> such., the pa age of 

time within each simulation is represented in algorithm iterations. A single iteration 

then constitutes one unit of time, with each object moving once during each unit. 

4.2.6 The DVE Simulator Interface 

OIlM~""""". __ \llf_ -,-- J. _ 

F- ~ l~ I [ ..... - -S'] r:: .. -

~ ="':.:-:.. ~ '8==: n' =~ !,. -....,.~ I r. -....,.~ ~ ...... --.: 
• l.-:. 7t' t...-: ~ l-= · t.-: t.-; , ...... 

.---- ! ----- ~ ....... --

'l .... ~~ ~ .. k......-:.~ ~ =- '" .... _~ ...... 

.... - 1- 0
- I 

l'-''''p.-. 

-'-" C' 1"-'-....... n-_ I . 1----" ... . 

01'11 

;,..j [ ... _ - " 1 

'n=~--:.. :. a...--. 
.-. --

~ ..... -- ~ 
, .............. ........ 

-' 

Figure 49 The D VE Simulator interface 

The DYE Simulator (Figure 49) incorporates a Java-based Graphical User Interface 

(GUI) . This lets users configure and initiate a DYE simulation, and view the result . 

The DYE Simulator interface has a list of menu options to allow DYE configuration 

to be saved to an external file , loaded from a file , reset or re-run, as well as options to 

allow numerical results and chart data to be saved to file . There is also an option to 

record the entire history of each DYE simulation as an XML-based log for external 

analysis (i .e. data regarding how individual objects behaved during each iteration). 

For each simulation, a number of global (or 'world ') parameters can be configured: 

• The size of the world (the length of the equidistant axes in the cube- haped 

virtual environment) . 

130 



• The duration ofthe simulation (measured in iterations). 

• The number of objects inhabiting the virtual world. 

• The number of targets to position in the virtual world. 

A number of parameters may also be configured for each object-class: 

• The quotient of the total number of objects in the simulation that are 

represented as instances of the object class (as a percentage). 

• The upper and lower bounds of the achievable object class velocity. 

• The upper and lower bounds of the radius of the spherical area-of-influence of 

each instance of the object class. 

• The heartbeat interval for all instances of the object class. 

• The high-frequency messaging interval for all instances of the object class. 

The influence of network and processing constraints (Section 4.2.5) can also be 

configured through the DYE Simulator interface. 

4.2.7 DVE Configuration 

Once global, per-object class and network simulation parameters have been 

configured the DYE Simulator constructs a representation of a virtual world based 

upon the configuration parameters. The required number of target objects and 

instances of each object class are created and randomly positioned within the 

boundaries of the virtual environment. The random dispersal of targets and objects 

reflects both how goals or meeting places within a virtual environment are 

131 



geographically distant, but also how DYE users do not necessarily enter the virtual 

world at the same location. 

To model crowding behaviour (as described in Section 4.2.3) individual objects are 

assigned targets to move towards during the course of the simulation. This behaviour 

can be modelled in two ways: 

• Static: each object is assigned one target to follow throughout the entire 

simulation. Such scenarios may arise in DVEs if there are a number of integral 

meeting places within the virtual world that users are encouraged to reach and 

remain within the vicinity of (e.g. battlegrounds, towns). 

• Dynamic: each virtual object can be assigned a target to move towards, and 

upon reaching this target made to pursue another one (assuming there is more 

than one). The order in which targets are visited is rearranged every time the 

entire list of targets has been visited. Such behaviour can be seen in DVEs 

where users are assigned a series of tasks to complete in succession at 

different locations within the virtual world. 

The collision detection algorithm is also configured with a duration value (the number 

of iterations that must be completed within the simulation) and values for any 

processing delays that are being modelled. 

132 



4.2.8 

no 

Interaction Detection 

Determine whlcl1 objects 
are sending heartbeat 
m8SSa\los during thi s 

iteration 

Determine whlcl1 objects 
are sending hlgh

~equency messages 
durtng this Iteration 

I, high·fTequency 
messaging ON and the 

PRIMARY due to sene e ither a. 
heartbeat rness.age or hlgh

equency message? 

Sort throug h the current list 
of Inleracuons 'or complete

missed Interactions and 
partial interactions that nave 

completed 

Do the auras 
of the two ooJOClS 

overtap? 

yes 'Nere tre auras of the two 
object> ovenapplng In tne 

preV1OU! rtefabon? 

De-reg ~ter 

ob;ects from each 
other s hlg h

frequency 
message cnannels 

Is tile PRIMARY 

no 

object 58 , dtng a heartbeat 
message durr:g trJs 

Iteration? yes 

no 

Is the 
SECONDARY 

object se , dl!1g a heart>eal 
message QUr.ng tr.:I s 

itera tK>n? 

yes 

Is .,., 

ECONDARY "",eel '"9" ,.r 
to receIve rnesac;le5 trom tne 

PRI MAR Y ot>,ea7 
yes no 

yes 

Figure 50 interaction detection logic 

133 

yes 



Figure 50 describes the logic for determining object interactions etc. The DYE 

Simulator models interactions that occur between objects in the simulated 

environment. The internal view of each object is modelled (i. e. what it knows of other 

objects and targets within the simulated environment) in conjunction with the global 

view (which provides a means to determine the occurrence of missed interactions 

between objects). The global view allows the DYE Simulator to determine if mis ed 

interactions are occurring. If object activity is correlated and shows that two object 

are interacting, the internal state of the objects can be examined to determine if they 

are aware of the interaction as it is occurring. If an object is known to be interacting 

with another object, but one or both of the objects becomes aware of this after the 

interaction started, it constitutes a partially-missed interaction . If the object are een 

to move away from each other completely (thereby fmishing the interaction) with 

neither object having changed internal state appropriately, the interaction is recorded 

as a completely-missed object interaction. 

4.2.9 DVE Simulator Interface 

----.. ----~----~----~ TMIIn o.or.--. --.• -I: 
J:.: 
J: · · · 

___ :;00. ___ "'_ -

.. " 

Figure 51 A chart of true aura overlaps produced by the D VE Simulator 

During each simulation the DYE Simulator interface updates charts of a number of 

global DYE characteristics (as shown in Figure 51 and Figure 52): 

• True Interactions: a measure of the number of interactions that actually 

occurred during a specific iteration (be they complete or ongoing). 

134 



• Complete Missed Interactions: how many interactions that occurred between 

pairs of objects where neither object was aware of the interaction having 

occurred (due to an inadequate number of messages having been sent between 

them). 

• Unary Interactions: the number of interactions occurring at a particular time 

in the simulation between pairs of objects wherein only one of the object i 

aware of the interaction having occurred. Complete missed interaction and 

unary interactions are detennined from the set of interaction that completed 

during the associated iteration. 

• Number of Messages Sent: includes both heartbeat and higb-frequenc 

messages as sent by all objects during each iteration, acting as a record of the 

complete number of messages sent within the DYE simulation. 

These results allow a DYE application developer to characterise the interaction that 

occur between objects with a given DYE configuration (as described in Section 

2.4.4). They also infonn developers of the volume of messages produced with a 

particular configuration. 

Graphs are drawn in real-time for inspection as a simulation progresses, with time (a 

series of iteration numbers) fonning the x-axis values for all of the charts . 

• ____ ... 1.1. . . .......... --'-..!I!!!!!!!---
-~-__ !.....I!!!!I_-._I_-

r: 
I: 
" . I .. 

Figure 52 A chart of high-frequency message exchange produced by the D VE Simulator 

135 



In addition to charts, an accompanying series of summary measurements are produced 

once a simulation has reached completion. These include a breakdown of the 

combined total of heartbeat and high-frequency messages sent by all objects during 

the simulation, how many complete-missed and unary interactions occurred in total, 

and how many interactions went unobserved by individual objects (either completely 

or partially). This data can be saved to a text-based file for further inspection and 

analysis in other applications (e.g. a spreadsheet package such as Microsoft Excel). 

4.3 DVE Simulator - Evolutionary Component 

The DVE Simulator allows a DYE application developer to examme Interest 

Management configurations in terms of potential resource usage and interaction 

consistency within a virtual world. There is scope to extend this functionality, as the 

DVE Simulator relies upon the intuition of the application developer in determining 

the range and combination of parameter values to examine. This is inherently time

consuming when an optimum configuration is not immediately forthcoming. 

One solution is to incorporate some form of automated evaluation into the DVE 

Simulator, so that different parameter configurations can be examined in succession 

without the need for human intervention. If parameter configurations can be 

automatically fine-tuned towards an optimum configuration, there would be a reduced 

reliance upon the intuition of the DVE application developer. 

An 'evolutionary optimisation' component was combined with the core DVE 

simulation logic to create a separate DVE simulation application, the Evolutionary 

Optimisation Simulator (EOS) [Parkin07]. When given a global DYE configuration 

(world size, number of targets and objects etc.) the EOS automatically assesses the 

merits of different Interest Management parameter values for use with the 

configuration. Genetic algorithm techniques (see Sections 4.3.2 & 4.3.3) are used to 

pursue those solutions that reduce the occurrence of missed interactions while also 

minimising the number of messages sent during a simulation. The EOS is then 

capable of improving upon promising DYE configurations until an optimum set of 

Interest Management parameter values is discovered. 

136 



4.3.1 Evolutionary Optimisation Simulator Overview 

The Evolutionary Optimisation Simulator (EOS) is primed for finding optimum 

solutions through initialisation of a finite set of DYE simulations with the same set of 

global configuration parameters (e.g. world size, number of objects, object class 

quotients, and achievable velocity ranges). Distinct values for heartbeat message 

intervals and aura-size ranges (applied to all object classes) are then assigned to each 

simulation. The DYE simulations are then identical aside from their Interest 

Management attributes. 

Each unique DYE simulation is run to completion and the associated performance 

results observed. This includes the number of missed interactions and messages 

produced over the duration of the simulation. The resulting performance data from 

each DYE simulation is evaluated in a 'fitness function' [FogeI94] (Section 4.3.2) to 

determine the effectiveness of the associated Interest Management parameters. 

The concept of fitness drives the evolutionary optimisation process. Successive sets 

(or 'generations') of DYE simulations are created based on the performance results 

(i.e. 'fitness') of the existing simulation set. Those simulations that exhibit the best 

Interest Management performance (and thereby have the best fitness) form the 

foundation for the generation of simulations that follows. The attributes of the 'fitter', 

more promising simulations are retained and fine-tuned in successive simulations. 

This then acts to improve the suitability of Interest Management parameter values 

with each successive set of DYE simulation configurations. 

Candidate solutions (i.e. Interest Management configurations) are encoded as 

'chromosomes' (i.e. solutions in evolutionary optimisation processes). In this case the 

chromosomes are value-encoded representations of the heartbeat message interval and 

aura-size value-pairs associated with each DYE simulation. There is no need to 

encode other parameters (e.g. world size) into the chromosomes as they are global 

(i.e. shared by all simulations across all generations within the individual EOS 

instance). 

137 



4.3.2 Evolutionary Optimisation - Fitness Function 

To assess each simulation configuration the capability of the associated Interest 

Management parameters to balance (and ideally reduce) both the occurrence of 

missed interactions and message production is evaluated using a specialised fitness 

function. This function and the associated variables are described as follows: 

F = 1I3(J-C) + J/3(J-P) + 1I3(AlE) 

• F: overall fitness of the candidate solution. 

• C: percentage of all interactions that occurred which are missed interactions. 

• P: percentage of all interactions that occurred which are partially missed 

interactions. 

• A: number of messages sent during the simulation. 

• E: number of messages that it is estimated would have been sent during the 

simulation if no missed interactions had occurred. 

The fitness function attempts to balance the number of missed interactions that 

occurred with the number of messages exchanged between objects during the 

simulation. Without seeking a direct balance, it would for instance be feasible to give 

preference to a simulation that produced no missed interactions at the cost of 

producing an unacceptably high number of heartbeat messages. A result such as this 

would undoubtedly have the potential to hinder scalability in practice. 

The fitness function is a formula, the use of which can be automated to assess the 

balance of a defined set of parameter values in one calculation. The closer F (the 

result of the fitness function) gets to a value of 1.00 the better the candidate solution 

being assessed is at striking the desired balance. A simulation configuration can only 

achieve a fitness of 1.00 if no missed interactions (complete or partial) occur and the 

number of messages produced is equal to the predicted number of messages that 

138 



would have been exchanged within the system had no missed interactions occurred (a 

logical expectation). 

A DYE application developer can potentially alter the fitness function based upon 

their own preferences. The fitness function described here balances scalability 

(number of messages exchanged) against the occurrence of missed interactions 

(partial and complete). A small alteration to the fitness function could give preference 

to one of the aforementioned parameters over the other, for instance if there are either 

plentiful resources or relaxed global consistency requirements. Such alterations to the 

fitness function would however require direct alterations to the code within the EOS. 

4.3.3 Evolutionary Optimisation - Crossover, Mutation and Elitism 

When the fitness of each candidate DVE configuration in a solution set has been 

derived, the 'mating potential' of each chromosome is determined in relation to all 

other chromosomes in the same generation. For this, the fitness values of the 

chromosomes are compared in tandem with the standard deviation of all the fitness 

values in the generation. Once the mating potential for each DVE simulation has been 

determined, the most promising chromosomes are chosen to 'mate' with other 

selected chromosomes (i.e. blend their characteristics to form a single hybrid 

offspring). They may also potentially live on into the next generation themselves, 

through a copy of the chromosome inserted into the next working set. 

Mating is achieved through use of the 'crossover' technique [FogeI94]. Two solutions 

are chosen based upon their mating potential. Chromosome parameter values (i.e. 

heartbeat message interval and aura-size parameters) are then randomly selected from 

one or either of the 'parents' to construct a single composite offspring. The hope is 

that in mating two good chromosomes a better one will be produced, although this is 

never guaranteed. 

In order to maintain a level of variance in the parameter values being examined 

throughout the evolutionary process, there is an inherent chance that random 

mutations of varying but limited magnitude are created in the Interest Management 

parameters of an offspring chromosome. These mutations mayor may not then 

contribute to the successes of candidate solutions in subsequent generations. 

The evolutionary process preserves those candidate solutions that show the most 

promise i.e. those chromosomes that may not be the ideal solution but could otherwise 

139 



be regarded as prospective parents in subsequent generations. All chromosomes 

within the existing population with a fitness value above the average are allowed to 

'live on' into the next generation. This is referred to as 'elitism', wherein the best 

chromosomes are chosen to outlive the rest of the population. 

A small subset of each new generation is created from heavily mutated offspring 

spawned by chromosomes randomly selected from those deemed to be of below

average quality. This additional step ensures that the observed solution space does not 

become stale, by essentially giving a second chance to those chromosomes that would 

not have lived on otherwise. This also affords the EOS the capacity to search for 

candidate solutions in other parts of the solution space (by mutating some offspring 

chromosomes away from any solution spaces that are already under investigation). 

Without additional heavily-mutated chromosomes, it is conceivable that as the 

solution space narrows with subsequent generations an equally promising set of 

chromosome configurations goes undetected and ignored. 

4.3.4 The Evolutionary Optimisation Algorithm 

The EOS collects configuration parameters from a graphical user interface (GUI) 

component (see Section 4.3.5). Once parameter values have been set the evolutionary 

optimisation algorithm (which incorporates crossover, elitism and mutation as 

described in Sections 4.3.2 & 4.3.3) is initiated and proceeds as according to the flow 

chart in Figure 53. 

140 



EXIT - optimum 
soluMn NOT 

found 

no 

Initialise I 
configuration data 
with in algorithm 

Create initiaJ DYE 
populabon 

(1~ generation) 

Is generation yes 
number <= generation >--=-----{ 

limit? 

Determine mating 
potenoal for all 

OYEs in 
population 

Add all candidate 
sotulJons wrth fitness 
:> average fitness to 

new generation 

For EACH 
DYE ill 
~ 

until rww 

'-------1 genemion - -
<*I goww-. liD! 

I 1- __ _ __________ _ I 

Figure 53 EOS internal algorithm logic 

141 

no Run DV1:' 
.boo 

yes 

Oetomm._ 
01 DVE 

conti!1Uno",," 

EXIT - optJrnum 
solubon found 

no 

Recot'"d new yes 
current best ' htneu d06ef to , 

sotUbon 
than osrent DeSt7 

no 

Choose two 
parent solutions 

based upon 
matmg poten-nat 

I Sekta chranosome \ 
paramelMS --I randomly from _or I 

parent 

® ,~-" DYE 10 _ SMALL chance 01 
UGHT mutatlOO 

~ L-___ _ 

ChoOse two I Select cI1romosome ' 
patent solUtIOnS parameter! 

with frtness < '"I randomly from etther 
average fitness pare nl 

Incorporale 
MEDIUM cI1ance 

of HEAVY 
mutalJon 



4.3.5 Evolutionary Optimisation Simulator Interface 

B--_-... u.t -
o ~ l l a._ ~ l l a._ . I la .. ~_ 

Figure 54 The Evolutionary Optimisation Simulator interface 

The EOS is configured through a Java-based interface (Figure 54) . 'World ' parameter 

values can be configured which are applied to every candidate simulation in each run 

of the EOS algorithm. Further static parameters such as per-object class velocity and 

quotient characteristics can also be calibrated in this way. Users can also specify the 

number of simulation generations the algorithm should generate (so as to avo id the 

potential for the algorithm to run indeflllitely). 

Once configured the EOS interface initialises the genetic algorithm logic (see Section 

4.3.4) with the appropriate parameter values and in itiates it. As the algorithm 

progresses the interface actively updates a number of results: the current active 

generation; the current best fitnes s value of all the simulations so far analysed, and ; 

the current stage in the algorithm logic (e.g. "analysing DYEs", "generating new 

offspring"). 

Once the algorithm finishes (or is halted by the user prematurely through explicit 

cancellation) the interface produces a pair of linked charts describing the results 

produced by all chromosome variations visited in the algorithm run (Figure 55 and 

Figure 57). 

142 



100 

00 

~ 80 

GI 70 :5 
~ 60 
c 
GI 50 ::: c:r 
GI 40 
.:r 
J 30 
.e 

20 

10 

0 

. ,. .. 
.1. 

· · 
.. . 

. · .-. - . . ~ . '. I' , 

. :1--... 

. .... 
. .. 

· . 

· • · 
25 50 75 100 125 150 175 200 225 250 275 300 

aura-size (lower bound) 

Figure 55 CharI of aura-size against heartbeat inten'al 

• 

Figure 56 Enlarged segment of aura-size against heartbeat interval chart 

The first chart (Figure 55) draws a point to represent each candidate olution analysed 

by the algorithm. Each point is positioned by the heartbeat int rval and aura ize 

va lues used during the assoc iated simulation. The quality of the candidate so luti on 

with respect to its 'fitness' is also illustrated: the darker the point, the better the 

associated chromosome values were for both reducing the occurrence of mi ed 

interactions and minimising message exchanges . This can be seen more clearly in 

Figure 56, where different points of varying grade have built up around and over each 

other. The darkness (i.e. quality) of each point is determined with respect to all other 

DYE configurations visited in the algorithm run, and as such may not repre nt an 

' ideal solution'. There is an assumption that users wish to find the most promi ing 

143 



solutions amongst all possible Interest Management configuration, and not 

necessarily the optimum solution alone . 

The second chart (Figure 57) draws a point for each candidate simulation to rela t th 

number of missed interactions that occurred with the number of me age produ d 

during the simulation: 

260.000 

225.000 ,.:. 
200 ,000 

~ 175,000 . . 
1:1) • )X 150,000 
!II E 125,000 

iii 
'0 

100,000 

... 75,000 

50 ,000 

25 .000 .. 
0 2 ,500 5,000 7 ,500 10 ,000 12,500 15 ,000 

no. of missedlpartial interactions 

Figure 57 Chart a/missed interactions against messages 

Both of the charts are linked - when a user holds the mouse pointer 0 e r a pecific 

point in either chart, the assoc iated point in the adjoining chart is a l 0 highlightcd 

(with both points then coloured red). Text is also displayed next to the mou e pointer 

to describe the fitness and configuration values for the associated simulation . Thi 

allows a DYE developer to pursue their own criteria, such as chromo orne fitnc s, 

levels of message production or the avoidance of miss d interaction . For example , if 

a DYE application is being run across a high-performance network where in the 

number of messages produced is less critical to system performance than the 

occurrence of missed interactions, these values can be examined accordingly . 

4.4 Application of DYE QoS Measures 

The DYE Simulator and Evolutionary Optimisation Simulator (EOS) create scope to 

find v irtual environment configurations that reduce message production while 

reta ining consistency within the end-user experience of all user . It is worth 

examining how the DYE evaluation logic developed for use in these application an 

144 



be deployed in a QoS monitoring infrastructure similar to the MeCo Framework 

described in Chapter 3. 

To combine the constructs of the MeCo Framework with the QoS metric defmitions 

and monitoring logic derived within the DYE Simulator, there must first be an 

examination of the deployment issues involved. Here there is discussion of how 

MeCo components can be applied to a DYE infrastructure, as well as how DYE QoS 

logic can be incorporated to provide DVE performance monitoring. 

4.4.1 Assumptions 

In the first instance, a number of assumptions are made about the environment to 

which MeCo constructs and DVE QoS logic would be applied. These include the 

assumptions described for the DVE Simulator (see Section 4.2.1), with additional 

restrictions: 

• Message-Oriented Middleware (MOM) IS being used to provide 

communication between entities. This is validated in [MorganAcm05], and 

better reflects the needs of a peer-to-peer DVE with aura-based Interest 

Management. 

Some DVEs already use Message-Oriented Midd1eware to facilitate 

communication of world events. As an example, Sun Microsystems' Project 

Darkstar [Darkstar] is an open-source MMOG server platform that illustrates 

use of publish/subscribe message channels to communicate information 

between clients through a central server. It can be envisaged that the use of 

MOM to support DYE applications in this way will become more prevalent in 

the future. 

• It is assumed that monitoring components can subscribe to receive messages 

from an application-controlled message channel without needing to navigate 

application-specific subscription logic. This is analogous to the assumption 

that the MeCo Probe (Section 3.3.4) is capable of probing a service provider. 

• If a monitoring component needs to sample system messages it can connect to 

the same Internet Service Provider (ISP) as the DVE nodes. 

145 



• Each user is associated with a messaging application or server that is in no 

way shared with any other users active within the DYE. This simplifies the 

process of determining accountability for individual system messages. 

• To provide complexity it is assumed that an observed DYE is providing a 

Massively Multiplayer Online Game (MMOG). This then incorporates issues 

of fairness (e.g. discovery of malicious behaviour), reliability, resource usage, 

and consistency of end-user experience, which must all then be considered. 

4.4.2 Monitoring DVE Performance 

The DVE Simulator and EOS tool assume a peer-to-peer approach to DVE 

management, but evaluate system behaviour by accumulating performance data in a 

centralised manner. The actions of simulated user objects are collated in one place 

(the simulator algorithm, as in Section 4.2.8), from which the occurrence of missed 

interactions is determined. Monitoring and evaluation is enacted in this way as there is 

no means for individual end-user nodes to determine the occurrence of missed 

interactions based only on the messages that they would normally receive. 

In order to determine the quality of the end-user experience (or essentially the quality 

of the DVE provision itself), there would be a need to correlate events from all end

user machines to create a global view of DVE performance. A global view such as 

this could then be used to determine QoS measures as described by the DVE 

Simulator (e.g. the occurrence ofrnissed interactions). 

Centralised monitoring processes would ideally have some means of monitoring the 

behaviour of user entities within the virtual world, directly at the point at which user 

actions are imprinted upon the observed system. In the peer-to-peer approach this 

would be the messaging server or application associated with each DYE user. This is 

analogous to the monitoring of client behaviour within an application server as in the 

Provider-side MeCo (Section 3.3.3). In DVEs the 'client behaviour' would in fact be 

the behaviour of the shared DYE as managed collectively by all of the 'clients' (end

users). 

In order to achieve a global view of DYE behaviour all of the messages produced by 

individual messaging applications (associated with individual end-users) would have 

146 



to be observed. One approach may be to have a monitoring application ubscribe to 

the message channels associated with each user. However high-frequency message 

are transmitted to specific entities within the DYE (i.e. those objects that are 

interacting with the sender). A monitoring station does not represent any object within 

the shared environment and so could not observe the complete set of messages (as it 

would not receive any high-frequency messages). 

Another means of observing all messages produced during the lifetime of a DVE in a 

transparent manner would be to exploit an interceptor mechanism in the MOM 

subsystem. The use of interceptor-capable MOM platforms is illustrated ill 

[MorganAcm05] and envisaged in [Banavar99]. It could be envisaged that use of 

interceptor mechanisms to extend DVE functionality will increase to provide greater 

customisation of game behaviour in open-source DYE platforms such as the one in 

Project Darkstar. Extensions could then include the provision of QoS control 

capabilities such as resource management and performance monitoring. 

I Me I Monitoring Component 

--- ---------- + {J + --------------------i 
I 
I 
I 
I 
I 
I 
I 
I 

I 
monitoring : 

station I 

• I 
I I 
I I 
I I 

,------- I 
I I 
I I 

I : 
I I 

: I o i 
m.:,g,", ~ i 

~ 'P/~~ (j 
messaging ID ~ ~;;:i::: 
application ~ , ~ 
~ . ~~ 
~ end-user 

end-user 

Figure 58 How D VE monitoring would work in practice 

147 



With this premise MOM servers or applications could incorporate an interceptor' 

mechanism similar to that described for MeCo Interceptors (Section 3.3.3 . Additi onal 

functionality in the message processing stack could then be used to transparentl 

monitor inter-object messages (as shown in Figure 58). The behavioural and 

positional properties of entities could then be determined from the message that are 

being sent on their behalf. Individual object profiles could be collected centrall and 

then observed to determine how objects are interacting. Other observation proce e 

could then be added afterwards if required, for example to establi h Intere t 

Management properties such as the occurrence of missed interactions. 

4.4.3 Monitoring DVE Provision 

sample 
messages 

I Me I Monitoring Component 
end-user 

Figure 59 How D VE provision would be monitored 

It may be necessary to monitor aspects of DVE provision outside of the irtual world 

experience. These include properties such as message availability and me age 

148 



processmg time within messaging servers (as opposed to Interest Management 

consistency properties as discussed previously). DYE provision in a peer-to-peer 

system should be observed as the view a system node has of other nodes. This is most 

readily achieved by determining the performance of message-sending between DYE 

nodes. To this end a dummy user machine could conceivably be integrated into the 

monitoring framework, similar to the MeCo Probe (Section 3.3.4). This probe 

machine could for instance be configured to receive heartbeat messages from all of 

the end-user messaging servers or applications. 

As previously stated, when comparing a DYE monitoring infrastructure to the \1eCo 

Framework the end-user entity within the DVE could be compared to a 'service 

client'. Users would be most readily affected by properties such as DVE consistency 

i.e. the occurrence of missed interactions etc. The collection of network nodes 

supporting the DVE is then analogous to a 'service provider'. Each 'provider' node is 

then concerned with 'service provision' metrics. For example if the probe machine 

receives heartbeat messages from nodes at set intervals, the arrival times of messages 

at the probe machine could be used to infer qualities such as message transmission 

jitter (i.e. fluctuation in latency). Messaging server availability and reliability could 

also be determined from the percentage of anticipated heartbeat messages that arrive 

at the probe machine. 

In a DVE there is a need to control message production so as to maintain scalability as 

an arbitrary number of end-users enter and leave a DVE application. Just as artificial 

probe calls in the MeCo Framework add to network traffic, extra positional updates 

sent from messaging servers to a dummy machine could potentially flood the network 

and degrade DYE performance. As such care must be taken when deploying a 'probe' 

component in a DVE. 

Monitoring data from the dummy machine and central monitoring station could be 

correlated and used to attribute system behaviour to specific parties. As an example, it 

could be determined whether performance degradation is attributable to an individual 

messaging server or end-user. 

149 



4.4.4 Augmenting the DYE Evaluation Framework 

metric data / / 
/ 

/ 
I 

I 
I 

/ 
I 

I 
I 

I 
I 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ sample 
I messages 

I 
I 

I 
I 

I 

~ ::::@ 
end-user 

Measurement Service 

monitoring 
station 

, , , , , , 

sample 
messages 

, , , , 
\ 

SLA 

\ metTle data 
\ 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

~ 
~:;~:.g~ 

end-user 

Figure 60 incorporating contract evaluation into the D VE monitoring infrastructure 

If monitoring of both application and system performance were reali sed, contract 

evaluation components could feasibly be incorporated into the DYE monitoring 

infrastructure (as in Figure 60). Service Level Agreements (SLAs) or simple 

performance expectations could be incorporated to manage the actions of interacting 

entities and DYE nodes . For example the concept of dynamic QoS management 

within a DYE for the management of resource allocation is discussed in [NuttOO] . 

SLAs may also be used where end-users pay to enter a DYE or MMOG and expect a 

certain quality of DYE provision. Conversely SLAs could be put in place to dictate 

expected end-user behaviour while participating in DYEs that require expensive 

infrastructure. 

Logic for the evaluation of DYE performance is exemplified in the DYE Simulator 

and Evolutionary Optimisation Simulator (EOS). It has been shown that a centrali ed 

monitoring approach can be used to infer measurements relating to the performance of 

150 



both individual user machines and the DYE as a whole. Performance properties could 

potentially be inferred on a per-user or per-server basis, providing a foundation for 

accountability in service provision. Automated evaluation of performance metrics 

against per-party SLA obligations is then feasible, and could be incorporated into 

license or subscription agreements for a particular DYE application (e.g. an MMOG). 

For example, SLA logic could stipulate that a process to provide a refund to paying 

end-users is instigated automatically under conditions of diminished application 

quality, but only when it can be unambiguously proven that network performance 

metrics were below determinable thresholds. In this sense if a DYE experience is of 

inferior quality through no fault of end-users, they can be suitably reimbursed. 

It would be entirely feasible that SLA violation notification mechanisms could be 

incorporated into a MOM-based DYE monitoring infrastructure. Violation 

notification channels have the potential to provide personalised and precise 

notifications of application events, perhaps beyond the capabilities of messaging 

channels in existing DVE and MMOG applications. DVE users could for instance be 

informed of an identified degradation in system performance, whether it is attributable 

to a portion of the communication subsystem or a specific end-user. Users could also 

be alerted of individuals who have been found to have altered the end-user application 

to change the behaviour of the DVE for their own gain. An example of such DYE 

disruption is when a game participant intercepts system messages within a P2P DYE 

that are not intended for them [Kabus05]. 

4.4.5 Different DVE Configurations 

Different DVE configurations may affect how a DYE monitoring framework is 

deployed. If a DVE is managed by a centralised server (and not between peer nodes) 

the server alone could be monitored for application-level and service provision QoS 

properties. If a cluster of servers is used (as is the case with larger MMOGs) 

performance measurements would need to be taken within separate server machines. 

These separate views of application or server performance would then be coordinated 

centrally at a monitoring station. 

Network-level protocols are used to support communication m most DVE 

applications today. To enable monitoring in these cases specialised hardware would 

151 



be required at the network level or within the DYE application itself. which is an 

impractical expectation. 

4.5 Summary 

• Distributed Virtual Environments (DYEs) are shared virtual worlds inhabited 

by geographically remote users. Users of a virtual world are able to interact 

with the generated environment and other entities such as in-game characters 

and other users. Data referring to user actions is propagated to other users 

through positional update messages. 

• To achieve some measure of operational scalability DYEs incorporate Interest 

Management techniques to reduce the number of messages sent between users. 

Messages are then only exchanged between entities that are interacting. With 

the use of Interest Management it is however possible for interactions between 

entities to be missed. 

• In order to examine the missed interaction problem on a per-DYE basis the 

configuration of the associated Interest Management mechanisms should be 

analysed. Through the application of principles developed in the MeCo 

monitoring & evaluation framework, a means of observing how a DYE 

configuration contributes to the occurrence of missed interactions has been 

created. This is presented in the form of the DYE Simulator [Parkin06]. 

• The DYE Simulator allows an application developer to configure simulated 

world parameters such as size and entity characteristics. Entity objects are 

created according to a configured set of behaviours. Their movements are 

followed throughout the DYE simulation as they travel towards assigned 

targets. During a simulation a number of parameters are observed including 

the number of messages that each object sends to other objects, and the 

number of missed interactions that have occurred between objects. This data 

allows an application developer to determine the performance of Interest 

Management attributes for a particular DYE configuration. 

152 



• The DYE Simulator relies upon informed knowledge of Interest Management 

on the part of the application developer. A desirable alternative would be to 

have a tool that can automatically determine optimum configurations for 

individual DYEs. The Evolutionary Optimisation Simulator (EOS) [Parkin07] 

was developed as an extension to the DYE Simulator. The EOS incorporates 

genetic algorithm techniques to discover and optimise promising Interest 

Management configurations for a given DYE. 

153 



5. Experimental Results 

The effectiveness of the MeCo monitoring & evaluation framework (as described in 

Chapter 3) and both the DVE Simulator and Evolutionary Optimisation Simulator 

(EOS) (described in Chapter 4) must be assured through meaningful testing. For each 

application a series of tests was devised and conducted, with reasoning and test results 

presented here. 

5.1 MeCo Framework 

A series of tests was conducted with an instance of the MeCo Framework to 

determine how well it performed in operation, while also considering the 

requirements of the framework (as described in Section 2.6.4 and further discussed in 

Section 3.2). 

5.1.1 Test Configuration 

The MeCo Framework was tested across a LAN network using two machines. One 

machine acted as a server running the JBoss 3.2.7 Application Server with a Provider

side MeCo installed. The other machine managed instances of the MeCo 

Measurement Service. Both machines ran the Eclipse IDE (Version 3.0.2) with 

Version 0.5.33 of the Eclipse Colorer Profiler Plug in [Eclipsecolorer] integrated into 

the IDE. This allowed remote and local profiling of application components. The 

Profiler Plugin measured method call durations within the MeCo classes (with 

millisecond accuracy) and system memory usage for either set of observed classes 

(i.e. either the whole Provider-side MeCo or the Measurement Service). Relevant 

class packages were explicitly included within the profiling scheme, to allow 

observation of per-method timings and method call ratios. As a result of the Pro filer 

Plugin co-existing on the same machines as the MeCo components, an 

undeterminable (but assumedly small) portion of the resource usage results can be 

attributed to the profiling tools. 

154 



The specifications of the two test machines were as follows: 

• Server Machine: 

o Model: 

o OS: 

o Processor: 

o Memory: 

DELL Dimension 5150 

Windows XP Home Edition 

Intel Pentium-4 2.80 Ghz 

512 MB RAM 

• Measurement Service Machine: 

o Model: 

o OS: 

o Processor: 

o Memory: 

IBM ThinkPad T 40p 

Windows XP Professional Edition 

Intel Pentium-M 1400 Mhz 

512 MB RAM 

EJB support is provided by default as part of the JBoss server installation. The JBoss 

server used Version 1.2.1 of the Axis API to provide SOAP support. The 

Measurement Service used the SLAng contract engine developed at University 

College London (UCL) [Skene04] to process contracts within instances of the 

'SLAngSimpleEvaluationManager' class (see Section 3.3.6 for more information). 

The Provider-side MeCo and Measurement Service used the Java Message Service 

(JMS) [lms] to communicate. For simplicity and observational purposes the JBoss 

server machine also acted as the JMS server. 

Metric collection was restricted to a small number of service parameters to make it 

easier to discern the actions of different system components. A single metric 

calculation class was deployed in the JBoss server for each observed service protocol. 

This class measures how long a request takes to enter and leave the target application. 

A measurement class within the MeCo Probe (Section 3.3.4) determined the round

trip-time of fabricated requests for each service protocol (i.e. the time between each 

request leaving the probe and it returning). A 'complex measurement' class (see 

Section 3.3.6.2) within the Measurement Service calculated the average number of 

requests processed per minute for each observed protocol. 

A number of services were deployed for testing purposes. Derivatives of a service that 

calculated the first ten numbers of the Fibonacci sequence were used. Computational 

155 



costs could then be observed while providing service logic simple enough to be 

deployed within both Enterprise lavaBeans (EJBs) and SOAP services. This provided 

consistent service behaviour when comparing monitored services using different 

application technologies. 

5.1.2 Experiments 

Experiments were conducted to establish whether the MeCo Framework satisfied its 

requirements (as in Sections 2.6.4 & 3.2) and to uncover any further notable 

performance characteristics. Analysis of the test results is provided in Section 5.1.4. 

5.1.2.1 Deployment Profiling - Provider-side MeCo 

It is useful to determine the resource requirements of deploying a Provider-side MeCo 

within the JBoss server. In the Provider-side MeCo deployment tests the initialisation 

stage of the supporting JBoss server was observed with different MeCo 

configurations. Results are discussed in Section 5.1.3.1. 

The initialisation costs of the Provider-side MeCo and Provider Environment (see 

Section 3.3.3.2) were measured primarily as the time required to complete notable 

configuration processes, and the amount of system memory resources the overall 

system required (i.e. the JBoss server and integrated Provider-side MeCo). The 

Profiler Plugin was configured to exclusively monitor the complete set of Provider

side MeCo class packages and the main lBoss program (but not any specific lBoss 

class packages). This provided MeCo-specific performance data relative to the 

performance of the JBoss server. 

The test configurations visited during deployment profiling of the Provider-side 

MeCo are as follows: 

A.I A standard JBoss server deployment with additional Axis SOAP libraries. 

This provided a base of comparison relative to the performance of a server 

with a Provider-side MeCo installed (as in tests A.4-A.6). 

156 



A.2 A standard JBoss server deployment as for test A.l, with a single EJB-based 

service deployed to the server to provide measurements of resource usage 

attributable to an individual service. 

A.3 A standard JBoss server deployment as for test A.l, with a single SOAP

based service deployed to the server. In conjunction with test A.2 this would 

illustrate any inherent differences in resource requirements between E

Commerce technologies. 

AA A standard JBoss server deployment (as for test A.l) augmented with a 

Provider-side MeCo with no MeCo Interceptors attached to it. This would 

illustrate the basic resource requirements of the Provider Environment. 

A.S A Provider-side MeCo deployment with an EJB-enabled MeCo Interceptor 

configured from the Measurement Service (including details for a single EJB 

service contract). This would indicate the resource requirements of 

specialised MeCo Interceptor initialisation. 

A.6 As for test A.5 but with a SOAP-enabled MeCo Interceptor and a SOAP 

service contract deployed. Both tests A.5 and A.6 would illustrate any 

differences across MeCo Interceptor deployments. 

To compensate for discrepancies between observations each test was carried out three 

times and average performance results calculated from the complete result set. 

5.1.2.2 Deployment Profiling - Measurement Service 

Tests were performed to determine the initialisation cost of a Measurement Service 

instance. This cost was measured in terms of both memory usage and the time taken 

to complete configuration of the Measurement Service. The Profiler Plugin was 

calibrated to exclusively observe all class packages within the Measurement Service. 

The test scenarios visited during profiling of the Measurement Service deployment 

were: 

157 



B.1 Initialising the Measurement Service with an empty contract set. This would 

illustrate the basic configuration costs of its core components. 

B.2 Initialising the Measurement Service with an SLA pre-positioned in the file 

system ready for loading prior to initialisation. The SLA describes an EJB

based service. This would reveal the costs of per-contract configuration. 

B.3 As with test B.2, but with 2 SLAs describing identical EJB-based services. 

This would show how deployment cost increases with an additional 

monitored service. 

BA As with test B.2, but with 3 SLAs describing identical EJB-based services. 

The results of this test may suggest trends concerning increased numbers of 

monitored service contracts. 

B.5 As for test B.2 but with an SLA that describes a SOAP-based service. 

Comparison of the results for tests B.2 and B.5 would reveal differences in 

configuration cost attributable to different application technologies. 

B.6 As with test B.5 but with 2 SLAs describing identical SOAP-based services. 

B.7 As with test B.6 but with 3 SLAs describing identical SOAP-based services 

Results for the aforementioned tests are found in Section 5.1.3.2. As with the 

experiments described in Section 5.1.2.1 tests were carried out three times and 

average results obtained. 

5.1.2.3 Operational Performance Profiling - Multiple Services 

Profiling of the MeCo Framework was conducted as it monitored multiple service 

contracts simultaneously. This allowed observations to be made as to how the system 

behaved over a meaningful space of time as the number of monitored services and 

service types increased. A number of contracts and services were deployed across the 

158 



MeCo Framework. This included a combination of both EJB- and SOAP-based 

services. 

Tests were conducted over ten minute periods to demonstrate system behaviour over a 

short but meaningful period of time. The MeCo Probe registered as a 'client' to each 

observed service, generating the service requests that were monitored (with a 15 

second probing interval). This illustrated the capabilities of the Measurement Service 

to simulate valid service consumer activity. The Profiler Plugin applications in both 

the Provider-side MeCo and the Measurement Service provided reciprocal sets of 

performance results. 

The tests were as follows: 

C.l A single EJB-based service. 

C.2 Two EJB-based services. It is desirable to determine how monitoring 

processes operate when multiple (but similar) services are monitored. 

C.3 Three EJB-based services. The results of this test may serve to illustrate how 

the MeCo Framework scales to observe multiple services. 

CA A single SOAP-based service. The results for both E1B- and SOAP-based 

services provide a comparison between the two technologies. 

C.5 Two SOAP-based services. 

C.6 Three SOAP-based services. 

C. 7 One EJB-based service & one SOAP-based service. This would illustrate 

any notable behaviour that arises when different service technologies are 

monitored simultaneously. 

The MeCo Framework was evaluated in terms of processing time and system memory 

requirements. One intention of this set of tests was to determine how monitoring data 

is managed over time. Results pertaining to method call durations are also described 

in terms of their average cost over the observation period. As with previous tests 

159 



profiling data for each test was obtained from averages oyer three distinct 

observations. The results for this group oftests are discussed in Section 5.1.3.3. 

5.1.2.4 Accuracy Testing - Correctness of Measurements 

A set of tests was conducted to determine whether the measurement data retrieved bv 

the different components of the MeCo Framework can be regarded as valid. To test 

the validity of MeCo measurements, the metric data gathered from the Provider-side 

MeCo and MeCo Probe was observed with a number of altered services. 

Measurements of server processing time and request round-trip-time were recorded, 

from the Provider-side MeCo and MeCo Probe respectively. Direct measurements of 

accuracy cannot be made at the exact points at which the MeCo components operate 

without essentially mimicking their functionality, and so a series of services were 

monitored with differing artificial delays inserted within the internal logic. These 

services are derivatives of the Fibonacci service described in Section 5.1.1, and so 

also include logic to calculate a series of numbers in the Fibonacci sequence. This 

process should take a measurable amount of time to complete, and should also register 

within the timing measurements. The tests that were conducted are described as 

follows: 

0.1 An EJB-based Fibonacci service with no additional delay. 

0.2 An EJB-based Fibonacci service with a 100 millisecond delay incorporated 

into the service logic. 

0.3 An EJB-based Fibonacci service with an added 2 second delay. 

0.4 An EJB-based Fibonacci service with an added 5 second delay. 

0.5 A normal SOAP-based Fibonacci service, with no additional delay. 

0.6 A SOAP-based Fibonacci service with an added 100 millisecond delay. 

0.7 A SOAP-based Fibonacci service with an added 2 second delay. 

160 



0.8 A SOAP-based Fibonacci service with an added 5 second delay. 

No system profiling was conducted as part of these tests. The simple aim of these tests 

was to determine if consistent measurements were obtained both within the server and 

from the MeCo Probe, and whether the artificial delays were accurately observed by 

the MeCo Framework components. As such, the measurements taken by the MeCo 

Framework itself were the product of each test. As with previous tests, results were 

obtained as averages across three distinct instances of each test configuration. 

5.1.3 Experimental Results 

5.1.3.1 Deployment Profiling - Provider-side MeCo 

The results for tests A.i-6 (see Section 5.1.2.1) are described here. In test A.i a basic 

server requires on average 25.5MB of memory to operate. In test A.2 (a single EJB 

service) once the JBoss server is configured with an EJB-based service it requires 

approximately 2-3MB of memory over that found in test A.i. However when a single 

SOAP-based service is deployed (as in test A.3) system memory requirements are 

directly comparable to those of a basic server. In test A.4 the JBoss server has a 

Provider-side MeCo installed, which demands approximately 2.5-3MB of additional 

system memory. 

In test A.5 monitoring logic is deployed to the Provider-side MeCo for a single EJB

based service. This accounts for an approximate 5.5MB of additional memory usage 

over the basic deployment of test A.i. This correlates with the combined deployment 

costs of a single EJB service and a standalone Provider-side MeCo. Deployment of 

monitoring logic for a SOAP-based service (test A.6) registers memory usage 

comparable to that of the basic server and Provider-side MeCo combined. The results 

for tests A.5 & A.6 indicate that monitoring logic for a single service requires 

negligible resources. 

In tests A.4-6 configuration of the Provider-side MeCo consistently took less than 5% 

of the total server start-up time (which itself ranged between 16 and 22 seconds). 

During tests A.4-6 the MeCo XMBean (see Section 3.3.3.3) took 83ms to initialise 

(less than 1 % of start-up time). In test A.4 the Provider Environment (see Section 

161 



3.3.3.2) took 26ms to initialise without a contract. In tests A.5 & A.6 the Provider 

Environment took 42ms (0.35% of the start-up time) to complete configuration 

through update calls from the MeCo XMBean. When configuring the JMS messaging 

component (see Section 3.3.5) the JMS subsystem took 120ms to deploy during tests 

A.5 & A.6. An additional 39ms was also required in the latter tests to register the 

relevant JMS topics. Configuration of a Provider-side MeCo therefore appears to take 

little time in relation to the requirements of the associated server. 

When deploying an EJB-based MeCo Interceptor (test A.5) the 'ClientIPInterceptor' 

(see Section 3.3.3.3) took close to zero milliseconds to initialise. Both the EJB-based 

MeCo Interceptor in test A.5 and the SOAP-based MeCo Interceptor deployed in test 

A.6 took close to zero milliseconds to configure. These results illustrate that MeCo 

Interceptor configuration is relatively inexpensive independent of the associated 

application technology. 

5.1.3.2 Deployment Profiling - Measurement Service 

The results accompanying tests B.1-7 (see Section 5.1.2.2) are detailed here. In test 

B.1 (a basic Measurement Service deployment) memory resource requirements settled 

at approximately 10MB once initialisation of the Measurement Service was 

completed. This sustained draw on memory can be attributed to the SLAng engine 

within the SLA Manager instance, the Measurement Service GUI and the parser 

objects used to read XML-based configuration files. These objects must all be held in 

memory during the lifetime of the Measurement Service. 

162 



Memory Usage in Measurement Service Deployment 

15.5 r---------------------------------------------------

~ 15 t-----------------------------------~ 

~ 
.&l 
<0 
CI i 14.5 t-----------------------------------~ 

GI 
CI 
<0 
:g 14 ~--------------------I 
~ 
o 
E 
GI 

::E 13.5 

13 +----''----

2 

No. of CO~onitored Contracts 

3 

Figure 61 Memory usage during deployment o/the Measuremenl Service 

c EJB 

• SOAP 

In tests B. 2-7 there are increased memory demands over those of a ba ic Measurement 

Service deployment (as shown in Figure 61) . In tests B.2-7 the increases in memory 

usage can be attributed to the SLA engine reading in and retaining data relating to 

service contracts. In both tests B.2 (a single EJB service contract) & B.5 (a ingle 

SOAP service contract) the system required around 13 .8-13 .9MB after a contract wa 

loaded. This suggests each contract requires a sustained amount of system memory 

relative to a basic Measurement Service deployment. It also indicates that 

initialisation costs for application-specific components (i.e . the MeCo Probe) are 

similar across different service technologies . 

In tests B.3 (two EJB services) & B.6 (two SOAP services) memory usage was again 

comparable. Memory usage when deploying two EJB-based service contracts 

averaged 14.13MB, whereas for two SOAP-based service contracts memory usage 

reached an average of 14.4MB. These results indicate increased memory usage 

attributable to storage of data pertaining to additional contracts . This is further 

validated in tests B.4 (three EJB services) & B.7 (three SOAP services), where 

memory usage increases to an average of around 15.24-15 .25MB for both service 

types . These results indicate that the memory required to retain a contract is relati ely 

small compared to the requirements of the Measurement Service itself. 

163 



During tests B.1-7 initialisation of the SLA Manager (see Section 3.3.6.2) took 

approximately 170ms (3.39% of the overall initialisation time), and initialisation of 

the MeCo Probe (see Section 3.3.4) took approximately 65ms. 

Other notable configuration processes contributed to the initialisation time. These 

include creation ofa Complex Metric Calculator instance, fmalisation of helper object 

configurations (described in Section 3.3.5.2), and calibration of the configuration file 

polling system. In combination these elements required 198ms to initialise. 

Initialisation ofXML-parser sub-components took 703ms (13.97% of the initialisation 

time) in all tests. These results suggest that configuration of MeCo-specific classes is 

relatively inexpensive, but that the configuration ofXML-parsing classes constitutes a 

sizeable portion of the initialisation time of the Measurement Service. 

In tests B.1-7 the SLAng engine in the SLA Manager instance took approximately 

1.3s to initialise (contributing 25.92% of the total initialisation time). In tests B.2 & 

B.5 (which involved a single EJB- and SOAP-based service contract respectively) the 

SLAng engine took 200ms (approximately 3.98% of the total time) to read a single 

contract. This is contrasted with a configuration time for the internal contract store of 

close to zero milliseconds. The SLAng engine therefore contributed greatly to the 

initialisation time of the Measurement Service. However, the processing of an 

individual contract and subsequent contract-specific configuration of monitoring and 

evaluation processes is relatively cheap in terms of processing resources. 

In tests B.1-7 the MeCo MBean Communicator (see Sections 3.3.3.3 & 3.3.6) took 

around 350ms to initialise (6.5% of total initialisation time), including time to 

communicate with the JBoss server to determine the status of the MeCo Interceptor. 

Another 20ms were required to configure the Provider-side MeCo to monitor an 

individual service in tests B.2 & B.5. During test B.1 JMS server lookup operations 

took 191 ms (3.78% of the total initialisation time) while creation of a single metric 

topic in tests B.2 & B.5 took 21.67ms. As with other measurements that include time 

for processes to communicate over the network, these figures are subject to the 

conditions of the supporting network environment. The processing time required by 

the JMS communication subsystem is small, and calibration of individual 

communication channels is inexpensive. 

During test B.1 the GUI component (see Section 3.3.6.4) was a major contributor to 

the initialisation time, requiring 252ms to initialise and 221 ms to create the GUI 

window. In tests B.2 & B.5 per-contract data displays and chart instances derived 

164 



from the third-party API [Jfreechart] took 226ms to configure. For a single contract 

GUI initialisation constituted approximately 15% of the entire :\1easurement Service 

initialisation. 

In tests B.2-7 the top-level Probe Manager instance within the MeCo Probe (see 

Section 3.3.4) took 15ms (0.30% of the total initialisation time) to read data from each 

probe descriptor (see Section 3.3.4). In test B.2 a single EJB 'Probe Activator' 

instance (a simulated service consumer) took 363ms (approximately 8% of overall 

time) to configure and l3ms to become operational. In test B.5 a single SOAP 'Probe 

Activator' instance required 343ms to configure and 20ms to become operational. 

This indicates that the resource requirements of both EJB- and SOAP-based Probe 

Activators are comparable. These results also illustrate that the MeCo Probe only 

requires a minimum of resources to configure. 

5.1.3.3 Operational Performance Profiling - Multiple Services 

The results for tests C.J-7 (see Section 5.1.2.3) are described in this section. 

When considering memory usage patterns within the JBoss server, the various test 

configurations required similar amounts of system memory (ranging between 25-

32MB across all scenarios). This is in line with the results of the deployment tests in 

Section 5.1.3.1. The amount of memory required by the Provider-side MeCo 

remained constant throughout each test run. This is because the Provider Environment 

requires a small, static amount of configuration data to observe a service, and 

measurement data is not retained on the server-side during service monitoring. 

During request interception the EJB-based MeCo Interceptor (tests C. J -3 & c. 7) took 

close to zero milliseconds to process a single request (regardless of the number of co

monitored EJB services). The SOAP-based MeCo Interceptor used in tests C.4-6 & 

C. 7 required a similar amount of time to process a request. This indicates that 

different MeCo Interceptor implementations require a comparable amount of time to 

monitor individual service requests. 

165 



180 

160 

iii 140 

~ 
~ 120 
Cl 
Gl 

~ 100 
Gl 
Cl 
." 80 III 
;:) 

~ 
0 

60 

E 
Gl 40 ::E 

20 

0 

Memory Usage in the Measurement Service 

2 3 

No. of Co-Monitored Contracts 

Figure 62 Memory usage in the Measurement Service 

c EJB 

. SOAP 

Figure 62 illustrates memory usage after 10 minutes of operation within the 

Measurement Service for tests CJ-6. Memory usage for both a single EJB ervice 

(test CJ) and a single SOAP service (test C 4) are comparable. After 10 minute of 

deployment both service types reach a level of memory usage of approximately 

23MB. The amount of memory being used is significantly higher than at initial 

deployment (described in Section 5.1.3.2). This suggests that extra memory is being 

used by some of the components of the Measurement Service. As the Contract 

Manager and SLA Manager do not store any information relating to service usage, the 

graphical interface is the greatest potential contributor to the increased memory 

requirements. The GUJ retains measurement data but also presents the data in chart 

and plot objects which must be held in memory. 

Increases in memory usage are also evident across tests C2 & C5 (two co-monitored 

EJB- & SOAP-based services respectively), and tests C3 & C6 (three co-monitored 

EJB- & SOAP-based services respectively). Memory usage may be expected to 

increase as additional services are co-monitored, as more service usage data must be 

maintained by the Measurement Service, but also displayed in the graphical 

component. 

166 



The memory usage results for two ElB- and two SOAP-based services (tests C2 & 

C5) both range between 62-66MB, which again indicates that memory requirements 

across dissimilar monitored service types are comparable. The same can be said of 

three monitored services of either type, which require between 151 and 158MB of 

system memory. 

The results for co-monitored ElB- and SOAP-based services (test C 7) show similar 

memory usage patterns to those of two co-monitored services of either technology 

type (reaching approximately 64.6MB after a 10 minute period of observation). This 

again indicates that differences in observed service technology do not necessarily 

affect the memory requirements of the Measurement Service. 

The average time taken to evaluate a single metric measurement against a single SLA 

document ranged between 0.08ms and 0.75ms. Processing of single per-probe 

measurements and calculation of 'complex metric' measurements took close to zero 

milliseconds in test scenarios CJ-7. These results indicate that per-measurement 

evaluation is inexpensive. 

For ElB-based services (tests CJ-3 & C 7) a single activation of the MeCo Probe 

took close to zero milliseconds, whereas for SOAP-based services (tests C4-6 & C 7) 

a single probe activation took between 20 and 100 milliseconds. This indicates that 

service technology influences the processing demands of the MeCo Probe. 

Within the server the 'ClientIPlnterceptor' used in the ElB-based configurations (tests 

CJ-3 & C 7) consistently required around 45ms when called. This can be attributed to 

negotiation between the client and server across the network. 

Measurement updates from the Provider Environment took between 0.12ms and 

O.5ms to create and deliver to the MOM subsystem in all test cases. In all tests CJ-7 

the time required to process metric information within the MOM component of the 

Measurement Service varied between 0.6ms and 2.5ms. The time required to 

communicate measurement data between remote components of the MeCo 

Framework can be regarded as minimal in light of the latter results. 

167 



Figure 63 Chart update duration during operation of the Measurement Service 

Figure 63 illustrates the average duration of update calls to the Measurement Service 

GUI chart objects after 10 minutes of activity for tests C.J-6. The processing time 

required to update the interface can be seen to increase with the number of 

simultaneously monitored services . This is logical as there will be more service 

activity to be presented to observers. Considered in combination with the memory 

usage results in Figure 62, it may be concluded that as time progresses the interface 

charts are the largest contributor to resource demands within the Measurement 

Service. 

168 



5.1.3.4 Accuracy Testing - Correctness of Measurements 

The results of tests D.1-8 (Section 5.1.2.4) are described here . 

Delavems) 0 100 2000 5000 
EJB Measurement 6.67 109 2007 501 0 
SOAP Measurement 8 109 2008 5008 

Figure 64 Average server response time measurements with introduced delays 

Figure 64 shows the server response time measurements taken by the MeCo 

Interceptors across tests D.1-8. These results show that for both EJB-based service 

(tests D.1-4) and SOAP-based services (tests D.5-8) there is an average additional 

reading of around 8-9 milliseconds over any injected delay. This suggest that on 

average the observed service logic takes just under 10 milliseconds to compute the 

requested chain of numbers within the Fibonacci sequence . 

In all of the tests the measurements that were taken account for the delays that were 

introduced, suggesting that the Provider-side MeCo is capable of collecting accurate 

metric measurements. The consistency of the readings across all of the te t cenario 

also indicates that the measurements are valid. The simi lari ty of results between 

service types also indicates that both the EJB-based and SOAP-based 

implementations of the MeCo Interceptor are able to take mea urements at point that 

are equally close to the observed service logic . This suggests that there is no 

disadvantage from applying monitoring to one service technology over another. 

Delavems) 0 100 2000 5000 

EJB Measurement 10 110 2010 5008 

SOAP Measurement 10 110 2008 5009 

Figure 65 Round-trip-time measurements with introduced delays 

Figure 65 shows round-trip-time measurements for tests D.1-8. The results suggest 

that when taking into account any artificial delays and the time to process numbers in 

the Fibonacci sequence, the round-trip-time (RTT) of requests is between 0 and 2 

milliseconds. 

169 



The results are consistent across both service types, suggesting that the service 

technology being observed does not alter the accuracy of measurements compared to 

any other. 

5.1.4 Performance Analysis 

The results in Section 5.1.3.1 (Provider-side MeCo deployment) show that resource 

requirements during configuration of the Provider Environment are minimal. It was 

found that with a basic JBoss server the Provider-side MeCo requires at most 3MB of 

system memory (of an approximate 30MB total used by the server). The results in 

Section 5.1.3.1 illustrate that deployment of protocol-specific MeCo Interceptors and 

per-metric measurement capabilities is relatively inexpensive. The same can also be 

said of the MOM subsystem. 

The Measurement Service exhibits sustained system memory resource demands (as 

seen in Section 5.1.3.2). This is due to the SLA Manager, the contracts being 

observed and the GUI component, which must all be maintained in memory. Within 

the SLA Manager the SLAng engine retains contracts once they have been read into 

the system. From Figure 61 (depicting memory demands during deployment of the 

Measurement Service) it can be seen that the storage of data relating to an individual 

contract requires little system memory. This suggests that once the SLAng engine and 

SLA Manager have been configured they are relatively inexpensive to maintain. The 

observations of Measurement Service deployment suggest that memory requirements 

depend in part upon the contract engine that is used. The SLA Manager 

implementation can also influence how long the Measurement Service takes to 

become operational. 

Additional results from Section 5.1.3.2 illustrate that initialisation costs of different 

protocol-specific MeCo Probes are equivalent. As such, the service technology being 

observed does not affect the deployment readiness of the Measurement Service. 

Meaningful load testing of service participant scalability was planned through use of 

the Apache JMeter load-testing application [Jmeter]. This could not be conducted due 

to the memory requirements of the profiling tool under intensive observation 

conditions. However, resource requirements based on service load were inferred from 

Section 5.1.3.3 (multiple service monitoring). Memory usage within the Measurement 

Service over time is governed primarily by the aggregated costs of displaying 

170 



monitoring data in the GUI. As more data associated with more services is collt!{;ted, 

charts and tables in the interface must retain more usage information. These trends are 

natural as more data held within the system equates to greater requirements for svstem 

memory. Applied scalability engineering (as recommended in St!{;tion 2.6'+'+) may be 

employed to ease such demands. There is potential for such features to be 

incorporated into the Measurement Service in the future. 

It is worth noting that the resource demands of the GUI are governed by not just the 

number of services being monitored, but also the regularity with which monitored 

services are both probed by the MeCo Probe and used by consumers. For instance. if 

service clients use an observed service more, there will be more measurement data to 

present. Also, if service probes are conducted less often, active measurement updates 

will be presented with reduced regularity. As such it may be difficult to gauge the 

resource requirements of the Measurement Service before it becomes operational. 

The contract engine that is used also has the potential to contribute to memory 

demands during extended use of the MeCo Framework. If a contract engine is chosen 

which retains a great deal of information about service usage (much in the same way 

that the GUI does), it will require more memory to maintain records of usage data. It 

would therefore be preferable to employ a contract engine which has been designed to 

accommodate extended use (e.g. through data-archival techniques that reduce the 

resource footprint of old monitoring data). 

In the results of Section 5.1.3.3 it is apparent that within the Measurement Service 

memory usage is comparable between service configuration instances using different 

protocols (e.g. two EJB- or two SOAP-based services). Any differences in system 

performance are encountered in the first instance from the activation of probe calls. 

The average durations of individual probe activations suggest that different activation 

costs and processing loads are exhibited depending on the nature of the service 

technology being used. This ultimately means that processing requirements could 

differ when monitoring different types of services. 

The results in Section 5.1.3.3 regarding the Provider-side MeCo showed that once 

metric collection components were calibrated the memory requirements remained 

constant and did not exceed the original deployment costs. Monitoring data remains in 

the Provider Environment only until it is transmitted to the Measurement Service and 

as such is short-lived. This helps to restrict the memory demands of the Provider-side 

MeCo during deployment. The limited and constant resource requirements of the 

171 



Provider-side Meeo indicate that it is relatively simple to manage on a server 

platform, and would therefore require little in the way of resource management on the 

part of the server operator. 

During long-term service monitoring the Meeo Framework was relatively fast at 

collecting and processing metric data. This can also be said of the ThiS interface. 

which proved to be very fast at packaging, transmitting, and unpacking metric updates 

as they moved around the system. 

The results of the accuracy tests III Section 5.1.3.4 indicate that no one servIce 

technology is more or less accurate for measuring service behaviour within the Meeo 

Framework. The results also indicate that the MeCo Framework can accurately 

measure metrics such as server response time and request round-trip-time. 

Finally, it is worth noting that outside of this thesis an earlier version of the \1eCo 

Framework had been successfully deployed to monitor an existing auction-style 

Internet application (as part of the "Trusted and QoS-Aware Provision of Application 

Services" project [Tapas]). This provides an example of the framework in operation 

with a complete and complex system. 

5.2 DVE Simulator 

Experiments were conducted with the DYE Simulator to determine appropriate values 

for Interest Management parameters for a particular DYE configuration. The goal was 

to determine the optimal time interval at which heartbeat messages should be sent and 

to what size object auras should be set. Optimal values for these parameters would 

minimise the occurrence of missed interactions and limit the use of networking and 

processing resources, so as to maintain consistency and scalability. Experiments with 

the Evolutionary Optimisation Simulator (EOS) are described in Section 5.3. 

5.2.1 Experiments 

Two sets of experiments were conducted to determine the influence of various object 

aura sizes and heartbeat message intervals upon the occurrence of missed interactions 

(both complete and partial, as described in Section 2.4.4) and the number of messages 

sent during a DYE simulation. In each experiment the majority of global and object

class-specific parameters kept the same values: 

172 



• Number of objects: 

• Virtual world size: 

• Number of iterations: 

• Number of targets: 

• Distribution of object types: 

• Achievable object velocity: 

• High-frequency message interval: 

• Network latency: 

• Processing latency: 

50 

50003 

500 

2 

25% (equal distribution) 

ranging between 10-20 for all objects 

5 (for all objects) 

2 (for all objects) 

1 (for all objects) 

These values were selected so as to model an environment with a low number of 

objects in a high performance network (i.e. latency effects are present but small). 

Objects move relatively quickly in the given simulation - objects will be generated 

that are capable of traversing the world within the execution time of the experiment. 

An object that enters the world at one corner of the virtual space then has the potential 

to reach a target that may be positioned at the opposite comer before the simulation 

completes. The low number of targets increases the chance of interactions occurring 

between objects as the simulation progresses, while the object-type distribution 

introduces a degree of variety in object behaviours within the simulation. 

Targets do not relocate during the experiments, giving most objects a reasonable 

chance of reaching their designated targets during the execution period. This 

guarantees that aura overlaps will be common, increasing in regularity as a simulation 

progresses (thereby modelling DVE performance during increased object activity). 

In the first series of experiments the heartbeat message interval was gradually 

increased from 5 through to 50 inclusive, leaving aura sizes for all objects at 80 for all 

tests. In the second series of experiments the aura size was increased from 5 through 

to 300 inclusive for all objects, with heartbeat message intervals fixed at 25 for all 

objects. To account for inherently random object behaviour, in each experiment ten 

simulations were conducted and averaged results derived. 

Sample object and target distribution at the start of a DYE simulation is shown in 

Figure 66. Entity distribution along the X and Y axes is described in the left-hand 

diagram, with distribution along the Y and Z axes shown in the right-hand diagram. 

173 



ObjectPoslions on X and Y Axes Object Posllons on Y and Z Ax .. 
5!IIl () <> 

5!IIl 0 
0 () 

. 
01 10~j!QS1 0 o 0 

0 .. .. .. .. " i .TlWgeIS 
0 0 " ..aIJ • 4IIJ .. 0 00 

0 0 0 
0 0 <> 0' 

0 

" " 
0" 

lDll 
= 0 0 

0 
$0 0 • Dll . Qr;O • 0 0 0 i t1> : 0 <> ... <> .. 0 

!ml ~ml 
0" 

0 .. .. 
I 

" 0 
g 0 

N "0 0 

~ 
0 0 

0 
0 .. " " 1(1Il 0 0 1(DJ 0 ·0· 

0 
.. ~ <> 0 0 0 

A" 0 

0 0 
0 1(DJ ml Dll 4IIJ 5IDJ 0 1000 2IDJ Dll 4IIJ 5!IIl 

X-Aldo ..... 111 •• V -Aldo Pas lb. 

Figure 66 Object and target distribution within a sample D VE simulation 

5.2.2 Experimental Results 

Experimental results are shown in Figure 67-Figure 72. First to be considered are the 

graphs of different heartbeat message intervals (Figure 67-Figure 69). 

174 



5.2.2.1 Heartbeat Interval 

.. 
CD 

300000 

250000 

i 200000 .. :: 
~ 150000 
o 

~ 100000 
E ,. 
Z 50000 

Different Heartbeat Rates (Messages Sent) 

o+-----~----~--------~----------_ 

o 10 20 30 40 50 60 

Heartbeat rate 

Figure 67 Number of messages sent as function of heartbeat interval 

In Figure 67 it is observed that as the heartbeat message interval increases the number 

of messages sent decreases. This decrease is significant in that at a heartbeat interval 

of 5 there are -250,000 messages sent, compared with -50,000 when the heartbeat 

interval is 50. This indicates that heartbeat messages dominate the number of sent 

messages. This is to be expected since a heartbeat message from one object is 

broadcast to all other objects. The following calculation approximates an estimation 

that a DYE application developer may make when determining how many messages 

are sent in the lifetime of a DVE with this particular configuration: 

1) Determine number of messages sent if all objects send messages to all other 

objects: 

Number of objects * Number of objects -1 = 50 * 49 = 2450 

2) Determine the number of times all objects would send messages to all other 

objects (using heartbeat intervals of 5 and 50 for these examples): 

Number of iterations I heartbeat interval = 50015 = 100 (interval = 5) 

175 



Number o/iterations / heartbeat interval = 500/50 = 10 (interval = 50) 

3) From the above calculations determine, approximately, how many heartbeat 

messages are sent overall: 

No. o/messages * No. o/message-sends = 2450 * 100 = 245, 000 (interml = 5) 

No. o/messages * No. o/message-sends = 2450 * 10 = 24,500 (interval = 50) 

Figure 67 approximates the estimate of a heartbeat interval of 5 as in the above 

calculations. However as the heartbeat interval increases to 50 the difference between 

the associated estimate and the actual values deviates significantly. This indicates that 

high-frequency message exchange (dictated by aura overlap detection) constitutes a 

greater quotient of the messages produced as the regularity of heartbeat messages 

decreases. With respect to messages sent, Figure 67 indicates that the simulator 

provides results equivalent to those that a developer can best estimate and is not, 

therefore, revealing any unexpected results. The graph is most informative as 

heartbeat messages become less dominant among all of the messages sent. The results 

show that the estimates that a DYE application developer may make as to the number 

of messages produced during the lifetime of a DYE may not correlate with the actual 

performance of the DYE itself. Furthermore these results validate use of the DYE 

Simulator over ad-hoc developer estimates in determining optimal Interest 

Management configurations. 

Different Heartbeat Rates (Complete Missed Interactions) 

45 -.. 
S 40 -

'0 35 -

~- 30-
-!..~ 
~ .g 25 -

~ ~ 20 .. 
:;:.s .!.E 15 -

" - 10-.... 
II 
.. 5 -
.!! 
~ o------~----__ ---------------------

o 10 20 30 40 50 60 

Heartbeat rate 

Figure 68 Quotient of missed interactions as function of heartbeat interval 

176 



The graph in Figure 68 relates the heartbeat interval to the quotient of missed 

interactions that occurred with specific DYE configurations. The latter quotient is 

arrived at by determining how many object interactions occurred during a completed 

simulation, and how many of these interactions were completely missed by the 

interacting objects. 

Figure 68 shows a rise of missed interaction occurrence from 20% to almost 40° 0 for 

heartbeat intervals of 5 to 10. After an interval value of 10 the graph flattens out. 

rising only a few percentage points between heartbeat interval values of 10 and 50. 

This indicates that if a developer wants to avoid complete missed interactions for this 

particular DVE configuration, heartbeat message intervals lower than 10 should be 

considered. Figure 68 also indicates that a heartbeat interval of 50 could be used over 

a value of 15 with comparable results (thereby saving networking and processing 

resources ). 

18 
__ 16 

0" 
~ ~ 14 

::: 1l 12 -I! .. . 
g E 10 

~ ~ 8 
~ <: 

f:c 6 -..., 
!! ~ 4 

Different Heartbeat Rates (Partial Mi_d Interactions) 

1:: • 
: i 2: 

o~i----~----------------~----------
o 10 20 30 40 50 60 

Heartbeat rate 

Figure 69 Quotient of partial missed interactions as function of heartbeat interval 

In Figure 69 the percentage of partial missed interactions rises in correlation with the 

heartbeat interval. This graph does not flatten out in the same manner as the complete 

missed interactions graph of Figure 68. Although the number of complete missed 

interactions that occurs differs little between heartbeat rates of 10 and 50, there is an 

associated increase in occurrence from 4% to 16% for partial missed interactions in 

the same range. 

177 



5.2.2.2 Object Aura Size 

The graphs of Figure 70-Figure 72 show the effects of varying object aura size in 

relation to the number of messages sent during a simulation, together with the number 

of complete missed interactions and partial missed interactions that occur. For DYE 

application developers, estimating appropriate object aura size values is not as 

straightforward as estimating how many messages will be sent (as in Section 5.2.2.1). 

Application developers could assume the worst-case scenario when determining aura 

size by envisaging how far two objects can travel directly towards and past each other 

at full speed during a heartbeat message interval. It can then be argued that object 

auras must be large enough to cover this distance. In the observed scenario this would 

give a large aura size, greater than 200. Such an estimate might not prove useful 

however, as objects may not necessarily be moving towards each other. Even if this 

were the case it cannot be assumed that movement is directed towards a specific 

object. 

Different Aura Sizes (Messages Sent) 

80000 I 
70000 l 

~ 60000 --------~ .. 
:: 50000 
G> 

~ 40000 
o 
Q; 30000 
~ 

§ 20000 
z 10000 

o 
o 100 200 

Aura Size 

300 

Figure 70 Number of messages sent as function of aura size 

400 

Figure 70 indicates that the number of messages sent increases slightly as object aura 

size increases. This suggests that heartbeat messages contribute heavily to message 

counts (given the earlier estimate based around Figure 67). As the heartbeat interval 

remains unchanged the rising curve illustrates how high-frequency messages form a 

178 



larger portion of all the messages sent as object aura size increases. As size of the 

virtual environment remains the same across all of the simulations, this can be 

reasoned with the increase in aura sizes for all objects. As aura size is increased it is 

more likely that object aura overlaps will occur, and with this that high-frequency 

message sending will be enacted while object interactions persist. Varying object aura 

sizes is then shown to have little impact on the volume of messages sent. 

CD 

1: .... o ..,. 
!~ 
1ft 0 
c .. 

~ ~ 
u CD co
o.. C s
.E 
1:1 

CD .. .. 
~ 

Different Aura Sizes (Complete Missed Interactions) 

100 -

80 ~\ 
60 -

40 - L_----------
20 -

o -----r--

o 100 200 300 400 
AUra Size 

Figure 71 Quotient of complete missed interactions as function of aura size 

Inspection of Figure 71 shows that the fewest number of missed interactions for the 

observed DVE configuration occurs when object aura size is just under 40 (at the 

bottom of the downward curve). The quotient of missed interactions at this point 

stands at just under 40%. As object aura size grows from this point there is only a 

minor rise (1 % - 3%) in the occurrence of complete missed interactions. This may be 

explained by an increase in object aura overlaps for objects that briefly experience 

overlapping auras as they pass each other on their way towards different targets. The 

optimum object aura size discovered as a result of these tests is much smaller than the 

worst case estimate. Had the estimated aura size been used in practice it would have 

resulted in an increased regularity of missed interactions in the DYE. This discovery 

again validates the use of a DYE Simulator in determining optimum Interest 

Management configurations. 

179 



• 90 l 

5 80-
'0 70 
#. 
III .. 60 -
.. c 
-; ~ 50

1 c u : 
~ f 40 -I 
~ ~ 30 l 

Different Aura Sizes (Partial Missed Interactions) 

i ~~ 1 l"'---------
o 100 200 300 

Aura Size 

400 

Figure 72 Quotient of partial missed interactions as function of aura size 

Figure 72 depicts the number of partial missed interactions occurring across a range 

of object aura sizes. A similar curve can be seen to that of complete missed 

interactions (as in Figure 71), but in Figure 72 there is a small reduction in the 

quotient of partial interactions after the curve (as opposed to the small rise seen with 

complete missed interactions). 

If a trade-off was sought between complete missed interactions and partial 

interactions, the optimum aura size for complete missed interactions of just under 40 

(as found in Figure 71) would also provide near-optimal reduction of partial 

interactions. 

5.3 Evolutionary Optimisation Simulator 

A series of experiments was conducted to evaluate the Evolutionary Optimisation 

Simulator (EOS) component of the DVE simulation suite. The main focus of these 

experiments was to determine how variations in the evolutionary techniques that were 

employed would contribute to the derivation of optimum Interest Management 

parameter values. This would be measured by how chromosome fitness (see Section 

4.3.2) across successive generations of simulation configurations is improved and 

maintained throughout a run of the EOS. In the majority of the experiments virtual 

world parameters have fixed values, allowing comparisons to be made between 

different evolutionary-algorithm configurations. The final experiment (Section 5.3.5) 

180 



tests different world configurations to ascertain if the EOS works as expected with 

different virtual world models. 

All experiments are conducted three times and average results obtained. 

5.3.1 Simulator Settings 

The simulator was assessed using a base set of global configuration parameters: 

• World size: 5000 

• Number of iterations: 500 

• Number of objects: 50 

• Number of targets: 2 

• Generation limit: 100 

• Networking latency: 2 

• Processing latency: 

Fixed parameter values were applied to all object-class instances in all of the tests: 

• Object class quotient: 25% 

• Lower velocity bound: 10 

• Upper velocity bound: 20 

• High-frequency message interval: 5 

A series of experiments was enacted to evaluate different aspects of the simulator: 

• Population Size (Section 5.3.2): varying the population size to determine how 

it affects the capacity to retain promising solutions. 

• Mutation (Section 5.3.3): varying the levels of mutation incorporated into the 

elite offspring, determining any effects upon the variety and fitness of 

subsequent candidate solutions. 

181 



• High-Frequency Message Interval (Section 5.3.4): varying the global high

frequency message interval to see how the quality of generated solutions is 

affected. 

• Different Scenarios (Section 5.3.5): consideration of how the simulator solves 

the configuration problem for different DVE scenarios (wherein the base set of 

global parameters is changed). 

A set of measurements was taken in each experiment to ascertain effectiveness of the 

simulator. This comprised the average fitness values and the variance of the fitness 

values across all of the chromosomes in each generation. These measurements were 

derived from the point when all chromosomes in a generation had been evaluated 

(through DVE simulation runs). The measurements would serve to show how the 

quality of the solution set changes over time, both in the level of quality achieved and 

also in the consistency of the candidate solution set. The focus is not only on the 

suitability of optimised solutions, but also how long it takes to derive improved 

solutions and how the quality of candidate solutions varies with each generation. 

5.3.2 Population Size 

The simulator was tested with a small set of different population sizes, specifically 10, 

30, 50, 70 and 90 chromosomes. The results are shown in Figure 73 and Figure 74. 

182 



II 
3 
III 

~ 
c: 
0 

i 
3 
E 
iii .... 
0 

:l! 
QI 
c: .. 
~ 
c: 
til 
QI 
~ 

0.87 

0.865 

0.86 

0.855 

0.85 

0.845 

0.84 

11 21 31 41 51 61 71 81 91 
Number of Generations 

Figure 73 Chart a/generations against average fl tness/or different population izes 

__ 10 

__ 30 

50 

70 
___ 90 

In Figure 73 for all population sizes the simulator quickly starts to converge on hi gher 

quality solutions and for the most part is able to pursue these promising solutions. 

Referring to the simulated DYE, increasing the population size above 30 

chromosomes does not affect the capacity to retain viable solutions as the a erage 

fitness remains relatively unifonn in such instances. A low population size of 10 

chromosomes shows frequent and sizeable fluctuations in the average titnes of the 

population, suggesting that a working population thi s small would be unsui table fo r 

retaining promising candidate solutions. 

183 



0.0014 

!!l 
0.0012 

-; 
on 
III 

0.001 Q: 

~ 
0 
;: 

"' 0.0008 -; 
.E 
I/) -0.0006 0 
III 
U 
~ 

"' 0.0004 ~ 

"' > 
0.0002 

0 

11 21 31 41 51 61 71 81 91 

Number of Generations 

Figure 74 Chart of generations against variance for different population sizes 

I • 10 
--30 

I 50 1-:-70 
--.- 90 

Figure 74 shows how the variance in the solution set is quickly reduced a each 

instance progresses. This illustrates how the simulator focuses on promising olution 

to increase the quality of the population, maintaining th is level of quality throughout 

the run. Results for all population sizes show infrequent spikes in variance, attributed 

to the simulator searching out new solution spaces usi ng heavi ly mutated offspring. A 

population size of 30 shows greater but less frequent spikes than a population size of 

70 for instance. Despite these spikes the general level of variance is kept constant, 

again proving that the simulator is able to refine the solution space and maintain 

improvements to the solution set. 

A population size of 50 (the default value) appears to provide the most consistent 

results , with little variance in the simulation results as generations progress and 

chromosome fitness improves . 

5.3.3 Mutation 

Mutation affords examination of specific solution spaces by essentially fme-tuning the 

solution set with minor random mutations (in the case of offspring created from elite 

chromosomes). Mutation also provides a rapid means of evaluating unexplored 

184 



solutions through heavy mutation of offspring generated from non-elite chromo orne . 

Mutations are created by varying the values of the aura size and heartbeat me age 

sending interval for a particular chromosome. Different levels of mutation in the elite 

offspring were examined, to determine how alterations affect the di sco ery and 

improvement of promising solutions. The level of mutation is controlled by both the 

probability of mutation and the maximum achievable extent of any mutations that 

occur (represented as a quotient of the overall parameter range). A small et of 

mutation configurations was examined, represented as the probability of an off pring 

being mutated and the upper limit of an enacted parameter mutation: 

• A probability of 5% with a bound of 1% 

• A probability of 15% with a bound of 1/75th 

• A probability of 25% with a bound of 2% 

• A probability of 40% with a bound of 5% (the default configuration) 

• A probability of 50% with a bound of 10% 

The results of these tests are shown in Figure 75 and Figure 76: 

0.87 ,----,--,---,---,---,------------1 

~ 0.865 +---t---\---i--+--t---!...------
'" ~ 
g 0.86 +----t.o::--:~ 
~ 
:J 

E 
Ii; 0.855 

'" 

, __ 0.15 / 75 

0.25 1 so 
0.40 / 20 

_o___ o.so 1 10 

~ 0.85 -1----.Il~t+J_-lA+_+_+------>i~--+------r_----1t--1 

Ii: 
c: 
:ll 0.845 -l-~-,g--~~~--+--t__-------------=---1 
~ 

0.84 -I--~J-_+_--+-----+----+------------' 
11 21 31 41 51 61 71 81 91 

Number of Generations 

Figure 75 Chart of generations against average fitness for different mutation levels 

185 



In Figure 75 for a mutation level of 5% with a 1 % bound the average fitne quickly 

converges on a set of promising solutions . The simulator is however relati el 10 at 

fine-tuning the solution set and increasing the average fitness albeit with no fall ill 

overall quality. With the two most extreme levels of mutation it is e ident that the 

solution set in general suffers lasting (and in some places severe) dips in fitnes , 

affecting the ability to retain and tune solutions . When considering the DYE 

configuration observed within these tests, it appears that a chance of mutation of 

around 15-25%, with a bound of 1175",-1/50", of the parameter range is the mo t 

suitable choice. Also, it appears that extremes of mutation (either too mall or too 

large) generally restrict the discovery of optimised solutions and shou ld not be u ed. 

~ 
~ 
III 

0.002 

~ 0.0015 
c: 
.g 
IV 

~ 

! 0.001 

Q) ... 
c: 
IV 
~ 
.;: 0.0005 

o 

I 
! 

I 

I 
I 

, 

I 
I-

~ 
~ \~ q 

:i/'< s J ~ 

~ Jt.c~~~ ... ~ -~ 

11 21 31 41 51 61 

Number of Generations 

-

" - - I 
~. ~ 

. ~ 
~.F- ~J 

71 81 91 

-+- 0.05 1 100 
__ 0.15 / 75 

0.25 1 50 

0.40 / 20 

--<>- 0.50 1 10 

Figure 76 Chart of generations against variance fo r different mutation levels 

In Figure 76 for the lesser three mutation levels variance is relatively low once the 

values converge upon a minimum. However fo r the two most severe levels of 

mutation there is a more pronounced fluctuation in fitness variance. This suggests that 

the ability of the simulator to retain and tune its solution set is hampered by extreme 

levels of mutation. As such it is recommended that only moderate to small levels of 

mutation are employed. 

186 



5.3.4 High-Frequency Message Interval 

Experiments were conducted to test the capacity of the simulator to find optimum 

solutions given variability in one of the fitness function parameters (in thi case the 

number of messages sent). DYEs were configured with the same base ,"orld 

parameters but with varying high-frequency messaging intervals . The pecific te t set 

ranged across high-frequency messaging intervals of I iteration, 2 iterations, 5 

iterations, and 8 iterations . 

0.88 
J!l 
:; 
III 

0.87 .. 
0:: 
c: 
.~ 
~ 0.86 

'" E 
II) 

0.85 
'0 
III 
III .. 

0.84 .~ 
u. 
c: .. 

0.83 .. 
~ 

0.82 

11 21 31 41 51 61 

Number of Generations 
71 81 91 

-+- 1 

2 

5 

8 

Figure 77 Chart of generations against average fitness for different high-frequency messaging 
intervals 

From Figure 77 it is evident that the simulator can quickly converge OD promising 

solutions across the different scenarios. The graph also indicates that the simulator is 

able to find more promising solutions as the high-frequency messaging interval is 

decreased. For messaging intervals of I and 2 iterations the average fitness is similar, 

and the same can be said of 5 and 8 iterations. For the smaller pair of values results 

suggest that the DVE configuration being observed is improved if the high-frequency 

message interval is decreased. These results suggest that it may be worthwhile in 

future to automatically evaluate different high-frequency messaging intervals during 

evolutionary optimisation of DYE configurations. 

187 



0 . 0016 T1r---r-------------r----~--------~------------

!J 0.0012 :; 
!II 
0» 
It: 
c: 
0 

~ 
:; 

0.0008 E 
(f) 

'0 
B 
c: 

.~ 0.0004 co 
> 

o +----+----+---------+-------______ -+ ____________ ~ 
11 21 31 41 51 61 71 81 91 

Number of Generations 

Figure 78 Chart of generations against variance for different high-frequency messaging intervals 

Figure 78 shows how the simulator quickly fme-tunes the solution set and maintain a 

relatively consistent level of variance for all test instances. The results for hjgh

frequency messaging intervals of2 and 8 units show intermittent (but relati vely small) 

spikes in variance, which can be attributed to the algorithm searching out promising 

solutions. It is also possible in these cases that the algorithm has found the be t 

solutions that it can with the given DYE configuration early on in the algorithm runs, 

without them necessarily being optimal solutions. As such the algorithm would spend 

much of the time during the runs looking for new solution spaces through 

chromosome mutation . The variance measurements for 2 and 8 unit messaging 

intervals also correlate with the small deviations in associated average chromosome 

fitness as illustrated in Figure 77 . 

5.3.5 Different Scenarios 

To test the simulator under varying DYE conditions different virtual world parameters 

were tested (i.e. world size, number of iterations, number of objects, and number of 

targets) . The set of scenarios tested was as follows: 

• A world size of 2500, with 500 iterations, 50 objects , and 10 targets . 

188 



• 
• 
• 

A world size 5000, with 500 iterations, 50 objects, and 2 targets . 

A world size 5000, with 500 iterations, 100 objects, and 5 targets . 

A world size 7500, with 750 iterations, 100 objects , and 10 targets . 

0.87 ,----r--,----,--,---,----------~ 

II 0.865 t-- + - -t----t--j--+-------..------'-----1 
:; ., 
~ 0.86 +---~F_ 
c: 
o 
i 0.855 r---t1r;r':----+----l; __ -t----;&-+-:~
:; 
E 
in 0.85 t---tik-~rt.,...-W---=.-W-~f~&-H--:~+1I_~-~~~~ 

1 __ 2500 1 500 I SO 1 10 

-Q- 5000 I 500 I SO I 2 

5000 I 500 I 100 I 5 

7500 / 7SO / 100 / 10 '0 
: 0 .M5 t-~~~-~-~--r_-+_-------~-~ 

S 
iL O.M H-t---t----+--+--j---+--~--------I 
c: 
:g 
~ 0.835 H+---t---t---+--j---+--~-----~------l 

0.83 +'H.+--+---t---+--j---+---r----r-----r--~-----1 

11 21 31 41 51 61 71 81 91 

Number of Generations 

Figure 79 Chart of generations against average fi tness fo r different D VE cenario 

Figure 79 shows that for a range of different DYE scenarios the simulator quickJ y 

converges on promising solutions and maintains a consistently high-quali ty et of 

candidate solutions. The theoretical maximum achievable fitness is a value of 1, and 

the fitness of the observed chromosomes is improved to around 0.86 for all but the 

smallest world. It could be speculated that alterations to the genetic algorithms or 

fitness criteria that were used could produce chromosomes with fitness values closer 

to l. 

The lower average fitness for the smallest world can be attributed to the fi xed 

heartbeat message frequency interval, which is perhaps not low enough to 

accommodate the limitations of the environment (i.e. in reali ty such a DYE could be 

regarded as badly configured) . There may be an increased chance of objects needing 

to interact as they would be in closer proximity to each other more often, resulting in 

more missed interactions. This shows that the EOS is capable of highlighting 

improper Interest Management configurations, just as it is able to find optimi ed one . 

189 



0.0016 

0.0014 

~ 0.0012 :::I 
II> 
CI> 

0:: 
c: 0.001 .g 

.!!! 
:::I 0.0008 .E 

I/) ... 
0 0.0006 
CI> 
u 
c: 

"' '':: 0.0004 
"' > 

0.0002 

0 

11 21 31 41 51 61 

Number of Generations 

71 81 91 

-+-- 2500 I 500 150 I 10 

-G--- 5000 1500 I 50 12 

5000 I 500 I 100 I 5 

7500 / 750 / 100 / 10 

Figure 80 Chart o/generations agains t variance/or different D VE scenarios 

In Figure 80 the vanance quickly reduces, with a relatively low level maintained 

throughout each run . A small number of noticeable spikes are visib le, perhap 

attributable to the simulator upon occasion seeking out solutions elsewhere in the 

solution space which ultimately lack promise. The generally higher variance seen in 

the first scenario could be attributed to the lower average fitness achieved, which 

would prompt the algorithm to search out more promising solutions. If the imulator 

requires a sufficiently long time to determine an optimum solution it is more like ly to 

test a greater range of candidate solutions. In all other test cases variance is kept low 

after approximately 10 generations, with only occasional spikes in variance a 

alternate solutions are sought. 

190 



5.4 Summary 

• The MeCo Framework was subjected to a series of experiments to determine 

its effectiveness. The Provider-side MeCo, Messaging Service. and 

Measurement Service all operated with a notable level of efficiency, although 

the resource requirements of the GUI component had the potential to hinder 

scalability when monitoring an increased number of services. The 

performance of the MeCo Probe was found to be directly governed by the 

communication protocol of the observed service. 

• A number oftests were conducted upon the DVE Simulator to ascertain how it 

could inform the configuration of Interest Management mechanisms within a 

DVE. The simulator was able to determine more appropriate configuration 

values than would have been discovered through the intuitive deliberation of a 

DVE application developer. That is to say, basic estimations of the sort that a 

DVE application developer may deduce are not necessarily sufficient for 

determining appropriate values for Interest Management parameters within a 

DVE. The DVE Simulator acts to provide performance-related information 

that is not readily determinable using estimation alone. 

• A series of experiments was conducted with the Evolutionary Optimisation 

Simulator (EOS) to observe how aspects of the evolutionary optimisation 

process could be altered to optimise the discovery of optimal DVE 

configurations. The EOS tool was capable of rapidly improving a candidate 

solution set by retaining and fine-tuning promising solutions. At the same time 

the EOS tool demonstrated a capacity to search out previously unknown areas 

of the solution space for further investigation. 

191 



6. Conclusion 

Through experimental evidence and reasoning it has been shown that the ~leCo 

Framework and both the DYE Simulator and Evolutionary Optimisation Simulator 

(EOS) tools have made progress towards their respective aims. It is worth re\;siting 

their achievements, while also looking beyond to how the work could be progressed 

in the future. 

6.1 Thesis Summary 

The work described in this thesis is aimed at providing heterogeneous QoS 

monitoring and SLA evaluation mechanisms for use in complex Internet service 

environments. With respect to the MeCo Framework there were a number of issues 

that needed consideration, as determined through examination of the existing 

technologies and related work: 

• Distributed services do not all rely on the same communication technologies 

or application languages, and this must be taken into account when deploying 

a monitoring and evaluation framework. This is especially important in SLA

driven service environments where the behaviour and performance of 

individual service entities must be represented in a meaningful way. 

• The QoS monitoring requirements of a service environment may be unique or 

may have attributes similar to existing services. There needs to be a way to re

use existing, proven monitoring and evaluation logic while also providing the 

capacity to dynamically introduce new capabilities where required. 

• A prospective SLA monitoring and evaluation framework should cause as 

little disruption as possible to the service environment it is monitoring, in its 

deployment and in its continued operation and maintenance. 

192 



To address these issues the Metric Collector (MeCo) monitoring & evaluation 

framework [MorganIfip05] was developed, as described in Chapter 3. The framework 

consists of a series of components: 

• Provider-Side Metric Collector (MeCo): monitors server-side performance i.e. 

what is happening inside the application server with respect to client 

behaviour. This allows observation of client adherence to SLA obligations. 

• Metric Collector (MeCo) Probe: simulates client requests to the application 

server, as a means to determine how an observed service is performing in 

satisfying both client requests and the provider's own SLA obligations. In this 

way it is hoped that there is no need to directly monitor service clients. 

• Measurement Service: gathers and evaluates measurement data against SLAs. 

using an internal Contract Engine. 

• Messaging Service: manages transmission of measurement data from the 

Provider-Side MeCo to the Measurement Service, and from the Measurement 

Service to those parties interested in receiving violation notifications. The 

Messaging Service is built upon Message-Oriented Middleware (MOM). 

The components of the MeCo Framework were developed to be generic. For instance 

the Provider-Side MeCo and MeCo Probe are capable of dynamically loading 

measurement classes for specialised per-service data-gathering. The MeCo Probe can 

also be configured to probe services built upon various communication protocols. The 

Measurement Service can be connected to any SLA evaluation engine with an 

exposed interface, and the backbone Messaging Service can be deployed across any 

Java-based Message-Oriented Middleware (MOM) technology that supports the 

publish/subscribe event notification paradigm. All that is required is that component 

implementations adhere to the appropriate interfaces. This adaptability means the 

MeCo Framework can be deployed to a wide variety of application environments, 

with the capacity to tailor monitoring and evaluation processes to the respective needs 

of a service relationship. 

193 



To further utilise the monitoring and evaluation constructs developed in the MeCo 

Framework, the same mechanisms were applied to another service domain other than 

E-Commerce. The same centralised approach to data evaluation was applied to 

Distributed Virtual Environments (DVEs) as described in Chapter 4. 

Quantifiable measures for determining the performance of a DYE were developed in a 

centralised evaluation model, specifically the capabilities of DVE Interest 

Management mechanisms to detect missed object interactions. These performance 

criteria were incorporated into the DYE Simulator [parkin06]. The simulator allowed 

a simulated DVE to be created and used to determine how best to configure the 

Interest Management mechanisms therein. Realistic modelling of participant activities 

in the DVE Simulator was achieved by simulating the behaviour of human crowding. 

in combination with a variety of object behaviour patterns. The DYE Simulator 

provides the capability to test and optimise Interest Management configurations while 

reducing the reliance upon the experience (i.e. ad-hoc estimations) of a D\·E 

application developer. 

As an extension of the DVE Simulator the Evolutionary Optimisation Simulator 

(EOS) [Parkin07] was created. The EOS is capable of automatically determining 

optimum values for Interest Management parameters for a particular 0 \·E 

configuration by utilising genetic algorithm techniques. Through these techniques the 

EOS removes any need for human intervention or guesswork during the process of 

optimising Interest Management configurations. 

The suite of DYE simulation tools is also novel III that it re-appropriates the 

centralised evaluation paradigm developed in the MeCo Framework not just for 

monitoring and evaluating simulated DYEs, but also to solve outstanding problems in 

the domain of DVEs. 

6.2 Contribution of Thesis 

Ideally monitoring and evaluation software for Internet applications would be suitable 

for use over a range of service domains. Monitoring software should also be able to 

automatically generate internal logic as required to monitor an observed service. This 

includes the ability to re-use existing monitoring code and accommodate new types of 

data measurements. Such features would save time and effort during development of a 

monitoring framework, and allow dynamic tailoring of the framework to meet the 

194 



needs of differing service environments. The deployment and maintenance of a 

monitoring framework should also be automated, so as to reduce the contributions 

required of both the administrator of the monitoring framework and those parties 

directly involved in the monitoring process. 

The work described in this thesis has made some progress with these goals. The 

MeCo Framework (described in Chapter 3) interprets electronic service contracts to 

automatically generate monitoring and evaluation capabilities, as dictated by the 

requirements of each contract. These capabilities can also be automatically and 

dynamically deployed where required, for instance in the Provider-side \feCo 

(Section 3.3.3) and MeCo Probe (Section 3.3.4). Minimal preparation is required at 

the server-side for deployment, and no effort is required by service clients when 

deploying the framework. It is also possible to use new and existing monitoring logic 

across the MeCo Framework. 

While investigating the monitoring of other domains an unexplored area was 

uncovered. This centred on the use of monitoring and evaluation techniques to better 

accommodate user influence and interest in a scalable Distributed Virtual 

Environment (DVE) in real-time. This work (described in Chapter 4) achieved some 

success. Evaluation techniques were used to provide a means of optimising DYE 

configurations where user influences are used to limit message production within the 

DVE. These techniques were incorporated into a suite of DYE simulation and 

optimisation tools. There is however still scope for further work in this area of 

research. 

6.3 Future Work 

A number of avenues for further work are evident based upon the achievements of the 

MeCo Framework, DYE Simulator and EOS: 

• The MeCo Framework could be integrated with an existing DYE application 

in conjunction with recently developed scalability measures [Lu06, 

MorganAcm05]. The DYE evaluation logic that was developed within the 

DVE Simulator could be incorporated into the Measurement Service 

evaluation engine (see Section 3.3.6). This would require suitable Metric 

Collector (MeCo) implementations to be created to determine per-participant 

195 



performance in a shared DYE. The potential issues involved in this work are 

discussed in Section 4.4. 

• Investigations into scalability measures in the MeCo Framework (see Section 

3.3.6.5) could be revisited and extended. Further to this, the MeCo GUI 

component could be permanently decoupled from the MeCo Framework and 

other (less resource-intensive) graphical interface technologies employed. This 

would be worthwhile considering the findings of Section 5.1 with regards to 

the resource requirements of the MeCo GUI during extended use. 

• The MeCo Framework uses informal names to refer to metric measurements 

(e.g. 'ejbResponseTime', 'soapClientThroughput'). To structure this 

convention, formalised metric mappings could be defined in a self-describing 

format such as can be achieved with the Resource Descriptor Framework 

(RDF) specification [Rdf] (see Sections 2.6.4.1 & 3.2.4). 

Metadata could be created to unambiguously describe the basic elements of 

QoS measurement. Examples include "the time between a request entering the 

network and it reaching the server processing stack" and "the number of 

requests received into the application server from clients during the previous 

minute". Protocol-specific metric definitions could also be described, such as 

"the length of time between an Enterprise lavaBean (EJB) request reaching 

the EJB container within the application server and the associated response 

leaving the EJB container". These building blocks could then be combined to 

describe composite metric measurements, clearly defining the applicability of 

measurements and which entities they refer to within the service environment. 

• Although the Measurement Service allows monitoring of multiple servIce 

contracts, in its current state each Measurement Service instance can only 

communicate with a single Provider-side MeCo. There is an assumption that 

any other providers that are being monitored are managed from other 

Measurement Service instances. This could be remedied by extending the 

system to allow configuration of multiple provider connections from the 

Measurement Service (i.e. multiple MeCo MBean Communicator instances -

196 



see Section 3.3.6). This would require more detailed remote-communication 

configurations to allow dynamic addition of mUltiple servers to the monitoring 

process as new contracts are added. A directory of known service providers 

would also have to be retained within each Measurement Service instance to 

enable communication of SLA measurement configurations when required. 

• The MeCo Framework can adapt to new service contracts entering the system, 

configuring the various measurement and evaluation processes appropriately 

(as described in Section 3.3.6.2). The existing functionality could be extended 

to accommodate the modification of service contracts during active 

monitoring of the associated service environment. This may include complett' 

contract termination, either as a part of the lifecyc1e of the service or as a 

result of disagreements relating to service provision. 

Alterations would need to be made to the configuration logic of the MeCo 

Framework (to dynamically update or disable measurement capabilities) and 

the internal contract-polling mechanisms (to detect changes in the set of 

monitored contracts). 

• The DVE Simulator and EOS tools could be extended to provide richer 

simulated entity behaviour. This could include distinct behaviour patterns 

assignable to individual objects within a simulation, such as propensities to 

confront, avoid, accompany or ignore other objects. This would model social 

factors within group-based scenarios more closely. It may also be worthwhile 

to include the ability to describe a 'landscape' within a DVE simulation, 

which would influence how and where objects within the simulation move. 

• The defming constructs of the MeCo Framework could be applied to other 

service domains such as Peer-to-Peer (P2P) applications (e.g. BitTorrent 

[Cohen03], Skype [Skype]), streamed-media applications [Lee05], or 

interactive media applications. Each service domain would have its own 

respective requirements and intricacies to consider, much as there was a need 

to consider the differences between E-Comrnerce applications and DYEs in 

applying techniques across these two domains. 

197 



• A visual component could be created for the DVE Simulator (and perhaps the 

EOS tool) to provide a three-dimensional representation of the movements and 

per-iteration behaviour traits of objects within a DVE simulation. The tools are 

already capable of recording per-simulation object trace information, so such 

an extension is feasible. A visual component would allow observation of entity 

behaviour in a simulated DVE. If coupled with configurable object behaviours 

and DVE landscapes, application developers would have the potential to 

model their applications more directly, and observe how their own application 

design decisions directly affect the performance of a DVE before deployment. 

6.4 Summary 

• The MeCo Framework (described in Chapter 3) made progress towards its 

goals of providing domain-agnostic, tailored and simple-to-deploy monitoring 

and evaluation capabilities for Internet applications. 

• The DVE Simulator and Evolutionary Optimisation Simulator (EOS), both 

described in Chapter 4, provided monitoring and evaluation techniques to 

assist in the configuration of DVE Interest Management components. There is 

potential for a great deal of further research into the monitoring and evaluation 

of distributed virtual worlds. 

• Suggested avenues for future work based on the MeCo Framework include the 

development of formalised metric mappings, the investigation of scalability 

features, and deployment of the framework within service domains such as 

peer-to-peer data-sharing applications. 

• Potential future work based upon the DVE Simulator and EOS tools includes 

integration of the internal monitoring and evaluation logic into the MeCo 

Framework for deployment within a real DVE application. It is also possible 

that richer simulation content and visualisation components could be 

developed and integrated with the existing applications. 

198 



[Alonso04] 

[Arjuna] 

[Asgari03] 

[ Aurrecoechea96] 

[Axis] 

[Banavar99] 

[Bharambe02] 

[Brocklehurst05] 

[CarzanigaOO] 

[Carzaniga01] 

[ChanOO] 

7. Bibliography 

Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju, 
"Web Services: Concepts, Architectures and Applications", 
Springer-Verlag, 2004 

Arjuna Technologies, "Arjuna Messaging Service", 
http://www.arjuna.com/products/arjunams/index.html.as 
viewed November 2004 

Abolghasem Asgari, Panos Trimintzios, Mark Irons, Richard 
Egan, George Pavlou, "Building Quality-of-Service Monitoring 
Systems for Traffic Engineering and Service Management". 
Journal of Network and Systems Management, Vol. 11, No.4, 
2003 

Cristina Aurrecoechea, Andrew T. Campbell, Linda Hauw, "A 
Survey of QoS Architectures", Multimedia Systems, 1996 

Apache Software Foundation, "Apache Axis Toolkit", 
http://ws.apache.org/axis/, as viewed 22109/06 

Guruduth Banavar, Tushar Chandra, Robert Strom, Daniel 
Sturman, "A Case for Message Oriented Middleware" , in 
Proceedings of the 13th International Symposium on 
Distributed Computing, Pgs. 1-18, 1999 

A.R. Bharambe, S. Rao, S. Seshan, "Mercury: A Scalable 
Publish-Subscribe System for Internet Games", In Proceedings 
of the Is Workshop on Network and System Support for 
Games, ACM Press, p. 3-9, 2002 

D. Brocklehurst, D. Bouchlaghem, D. Pitfield, G. Palmer, K. 
Still, "Crowd circulation and stadium design: low flow rate 
systems", Structures & Buildings, (2005), Volume 158, Issue 5 

Antonio Carzaniga, David S Rosenblum, Alexander L. Wolf, 
"Achieving Scalability and Expressiveness in an Internet-Scale 
Event Notification Service", Symposium on Principles of 
Distributed Computing, 2000 

Antonio Carzaniga, David S Rosenblum, Alexander L. Wolf, 
"Design and Evaluation of a Wide-Area Event Notification 
Service", ACM Transactions on Computer Systems, Vol. 19, 
No.3, August 2001, Pages 332-383 

Mun Choon Chan, Yow-Jian Lin, Xin Wang, "A Scalable 
Monitoring Approach for Service Level Agreements 
Validation", Proceedings of the 2000 International Conference 
on Network Protocols, 2000 

199 



[Chen98] 

[Cohen03] 

[Colouris01] 

[Corba] 

[CorbaNS] 

[Cukier98] 

[Curry04] 

[Darkstar] 

[Debusmann03 ] 

[Diffserv] 

[Dilman01] 

T. M. Chen, S. S. Liu, M. J. Procanik, D. C. Wang, D. 
D. Casey, INQIRE: A Software Approach to Monitoring QoS 
in ATM Networks, IEEE Networks, Volume 12 Issue 2, 1998 

Bram Cohen, "Incentives Build Robustness in BitTorrent". In 
Workshop on Economics of Peer-to-Peer Systems. 2003 

George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed 
Systems: Concepts and Design (Third Edition)", Addison
Wesley, 2001 

Object Management Group Inc., "Common Object Request 
Broker Architecture (CORBA)", http://www.corba.org.as 
viewed 22109106 

Object Management Group Inc., "CORBA Notification 
Service", 
http://www.omg.orgltechnology/documents/formallnotification 
_service.htm, as viewed 22/09106 

M. Cukier, 1. Ren, C. Sabnis, D. Henke, J. Pistole, W.H. 
Sanders, D.E. Bakken, M. Berman, D.A. Karr, R.E. Schantz, 
"AQuA: An Adaptive Architecture That Provides Dependable 
Distributed Objects", in Proc. Of the 17th IEEE Symposium on 
reliable Distributed Systems, p. 245-253, Oct. 1998 

Edward Curry, Desmond Chambers, Gerard Lyons, "Extending 
Message-Oriented Middleware using Interception", 
International Workshop on Distributed Event-based Systems 
(DEBS 2004) W18L Workshop - 26th International Conference 
on Software Engineering (2004/918), p. 32 -37 

Sun Microsystems Inc., "Project Darkstar Overview", 
http://research.sun.com/projects/dashboard.php?id=168,as 
viewed 01/06/07 

Markus Debusmann, Alexander Keller, "SLA-Driven 
Management of Distributed Systems Using the Common 
Information Model", in Proceedings of the 8 IFIPIIEEE 1M, 
2003 

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, 
"An Architecture for Differentiated Services", 
http://tools.ietf.org/htmllrfc2475, December 1998, as viewed 
22/09106 

Mark Dilman, Danny Raz, "Efficient Reactive Monitoring", 
INFOCOM, 2001 

200 



[Ec1ipsecolorer] 

[Ejb] 

[EugsterOO] 

[Eugster03 ] 

[FogeI94] 

[F orouzan03] 

[GoreOl] 

[Greenhalgh95] 

[Halflife] 

[HaefalOl] 

[HeOl] 

[Helbing05] 

John-Mason P. Shackleford, Konstantin Scheglov, Eduardo 
Perez Ureta, "Eclipse Pro filer Plugin", 
http://www.sourceforge.netlprojects/ec1ipsecolorer.as \'iewed 
22/09/06 

Sun Microsystems Inc., "Enterprise JavaBeans Technology", 
http://java.sun.com!products/ejb/, as viewed 2209/06 

Patrick Th. Eugster, Rachid Guerraoui, Joe Sventek, 
"Distributed Asynchronous Collections: Abstractions for 
Publish/Subscribe Interaction", ECOOP 2000, LNCS 1850, pp. 
252{276, Springer-Verlag Berlin Heidelberg 2000 

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, Anoe
Marie Kerrnarrac, "The Many Faces of Publish Subscribe", 
ACM Computing Surveys (CSUR), Volume 35, Issue 2 (June 
2003), Pages: 114 - 131, 2003 

D. B. Fogel, "An Introduction to Simulated Evolutionary 
Optimization", IEEE Transactions on Neural Networks: Special 
Issue on Evolutionary Computation, Vol. 5, No.1, pp. 3-14, 
1994 

Behrouz A. Forouzan, "TCPIIP Protocol Suite", 2nd Edition, 
McGraw-Hill,2003 

P. Gore, R. Cytron, D. Schmidt, C. O'Ryan, "Designing and 
Optimizing a Scalable CORBA Notification Service", in 
Proceedings of the ACM SIGPLAN Workshop on Languages, 
Compilers and Tools for Embedded Systems, p. 196-204,2001 

C. Greenhalgh, S. Benford, "MASSIVE: a distributed virtual 
reality system incorporating spatial trading", Proceedings IEEE 
15th International Conference on distributed computing 
systems (DCS 95), Vancouver, Canada, (1995) 

Wikimedia Foundation Inc., "Half Life [Valve Software] 
Wikipedia Page", http://en.wikipedia.org/wikilHalf-Life,as 
viewed 22109/06 

Richard Monson-Haefal & David A. Chappell, "Java Message 
Service", O'Reilly, 2001 

Jun He, Mohan Rajagopalan, Matti A. Hitunen, Richard D. 
Schlichting, "Providing QoS Customization in Distributed 
Object Systems", Proceedings of the IFIP/ACM International 
Conference on Distributed Systems Platforms Heidelberg, 2001 

D. Helbing, L. Buzna, A. Johansson, T. Werner, "Self
Organized Pedestrian Crowd Dynamics: Experiments, 
Simulations, and Design Solutions", Transportation Science, 
Vol. 39, No.1, (2005), pp. 1-24 

201 



[Hsiao05] 

[Ince02] 

[Javakeystore] 

[Javarmi] 

[Jboss] 

[JbossMQ] 

[ JbossMessaging] 

[Jbossjrnx] 

[Jbossxmbean] 

[ J freec hart] 

[JiangOO] 

[J imenez04] 

[Jmeter] 

Tsun-Yu Hsiao, Shyan-Ming YllaIl, "Practical ~iddleware for 
Massively Multiplayer Online Games", IEEE Internet 
Computing, Volume 9, Issue 5 (September 2005). Pgs 47 _ 
54,2005 

Darrell Ince, "Developing Distributed and E-Commerce 
Applications", Addison-Wesley, 2002 

Sun Microsystems Inc., "Java Keystore". 
http://java.sun.comlj2se/l.4.2/docs/apiljava/securitylKeyStore. 
html, as viewed 22/09/06 

Sun Microsystems Inc., "Java Remote Method Invocation 
(RMI)", http://java.sun.comlproducts/jdklrmil, as viewed 
22/09/06 

Red Hat Middleware LLC, "JBoss", http://www.jboss.coffil.as 
viewed 22109/06 

Red Hat Middleware LLC, "JBossMQ", 
http://www.jboss.org/wikilWiki.jsp?page=JBossMQ, as viewed 
22109/06 

Red Hat Middleware LLC, "JBossMQ", 
http://wiki.jboss.org/wikilWiki.jsp?page=JBossMessaging.as 
viewed 22/09/06 

Red Hat Middleware LLC, "JBoss JMX Console", 
http://wiki.jboss.org/wikilWiki.jsp?page=JMXConsole.as 
viewed 22109/06 

Red Hat Middleware LLC, "JBoss XMBean", 
http://wiki.jboss.org/wikilWiki.jsp?page=XMBean, as viewed 
22109/06 

Object Refinery Limited, "JFreeChart", 
http://www.jfree.org/jfreechart, as viewed 2209'06 

Yuming Jiang, Chen-Khong Tham, Chi-Chung Ko, 
"Challenges and Approaches in Providing QoS Monitoring", 
International Journal of Network Management, Pg. 323-334, 
2000 

Carlos Molina-Jimenez, Santosh Shrivastava, Jon Crowcroft, 
Panos Gevros, "On the Monitoring of Contractual Service 
Level Agreements", In Proceedings of the IEEE Conference on 
Electronic Commerce CEC\04, San Diego, 2004 

Apache Software Foundation, "Apache JMeter", 
http://jakarta.apache.org/jmeter/, as viewed 22/09/06 

202 



[Jms] 

[Jrnx] 

[Jsp] 

[J2ee] 

[J2eeservlet] 

[J2se] 

[Kabus05] 

[KakadiaO 1 ] 

[Karr97] 

[KellerLisa02] 

[Kellerlbm02] 

[Kim01] 

[KosterOO] 

[Lee05] 

Sun Microsystems Inc., "Java Message Service". 
http://java.sun.comJproducts/jms, as viewed 22109/06 

Sun Microsystems Inc., "Java Management Extensions 
(JMX)", http://java.sun.comJjavase/technologies/core/mntr
mgmt/javamanagement/, as viewed 22/09/06 

Sun Microsystems Inc., "JavaServer Pages Technology", 
http://java.sun.comJproducts/jsp/, as viewed 22109/06 

Sun Microsystems Inc., "Java 2 Enterprise Edition", 
http://java.sun.comJjavaee/, as viewed 22/0906 

Sun Microsystems Inc., "Java 2 Servlet Technology", 
http://java.sun.comJproducts/servlet, as viewed 22/09/06 

Sun Micro systems Inc., "Java 2 Standard Edition", 
http://java.sun.comJjavase, as viewed 22109/06 

Patric Kabus, Wesley Terpstra, Mariano Cilia, Alejandro 
Buchmann, "Addressing Cheating in Distributed Massively 
Multiplayer Online Games", International Workshop on 
NetGames (NetGames'05), NY, October 2005 

Deepak Kakadia, "Tech Concepts: Enterprise QoS Policy 
Based Systems & Network Management", Sun Microsystems, 
2001 

C. R. Karr, D. Reece, R. Franceschini, "Synthetic Soldiers" 
IEEE Spectrum, p. 39-45, March 1997 

Alexander Keller, Heiko Ludwig, "Defining and Monitoring 
Service Level Agreements for Dynamic E-Business", LISA 
2002 

Alexander Keller, Heiko Ludwig, "The WSLA Framework: 
Specifying and Monitoring Service Level Agreements for Web 
Services", IBM Research Report, 2002 

Joong-Han Kim, R.S. Ramakrishna, Yoo-Sung Kim, "LODIN: 
Load Distribution Mechanism in CORBA Using Interceptor", 
IEEE International Conference on Electrical and Electronic 
Technology (TENCON), 2001 

Rainer Koster, Thorsten Kramp, "Structuring QoS-Supporting 
Services with Smart Proxies", Proceedings of the IFIPI ACM 
Middleware Conference (Middleware), 2000 

Jack Y. B. Lee, "Scalable Continuous Media Streaming 
Systems: Architecture, Design, Analysis and Implementation", 
John Wiley & Sons, 2005 

203 



[Little99] 

[Lu06] 

[Ludwig02] 

[Macedonia94 ] 

[Mani02] 

[Mastaglio05] 

[Merabti04 ] 

[Microsoftmsg] 

[MorganAcm05] 

[MorganIfip05] 

[Msmq] 

M. C. Little, S. K. Shrivastava., "A method for combining 
replication with cacheing", International Workshop on Reliable 
Middleware Systems, 1999 

Fengyun Lu, Simon Parkin, Graham Morgan, "Load Balancing 
for Massively M~ltiplayer Online Games", Proceedings of the 
ACM-SIGCHI 5 Workshop on Network & System Support 
for Games, 2006 

H. Ludwig, A. Keller, A. Dan, R. King, "A Service Level 
Agreement Language for Dynamic Electronic Services", in 
Proceedings of the Fourth IEEE International Workshop on 
Advanced Issues of E-Commerce and Web-Based Information 
Systems (WECWIS 2002), 2002 

M.R. Macedonia, M.J. Zyda., D.R. Pratt, P.T. Barham, S. 
Zeswitz, "NPSNET: A Network Software Architecture for 
Large Scale Virtual Environments", MIT Presence 3(4),1994 

Anbazhagan Mani, Arun Nagarajan, "Understanding Quality of 
Service for Web Services", IBM DeveloperWorks, 2002 

T.W. Mastaglio, R. Callahan, "A Large-Scale Complex Virtual 
Environment for Team Training," Computer, p. 49-56, July 
1995 

Madjid Merabti, Abdennour El Rhalibi, "Peer-to-Peer 
Architecture and Protocol for a Massively Multiplayer Online 
Game", IEEE Communications Society Globecom 2004 
Workshops, 2004 

Microsoft Corporation, "MSN Messenger", 
http://messenger.msn.com, as viewed 16111/05 

G. Morgan, F. Lu, K. Storey, "Interest Management 
Middleware for Networked Games", Proceedings of the BD 
2005. ACM SIGGRAPH Symposium on Interactive 3D 
Graphics and Games, Washington, DC, April 3-6, 2005 pp. 
57-63 ACM SIGGRAPH 2005 

G. Morgan, S. Parkin, C. Molina-Jimenez, 1. Skene, 
"Monitoring Middleware for Service Level Agreements in 
Heterogeneous Environments", In the proc. of the fifth IFIP 
conference on e-Commerce, e-Business, and e-Govemment 
(BE 2005), October 26-28, (2005), IFIP Volume 189 pp. 79-93 

Microsoft Corporation, "Microsoft Message Queuing", 
http://www.microsoft.com/windowsserver2003/technologies/m 
smq/default.mspx, as viewed 22109/06 

204 



[Muller99] 

[Mysql] 

[N ahrstedtO I ] 

[Narasimhan99] 

[NuttOO] 

[Overton02] 

[Parkin06] 

[Parkin07] 

[PruyneOO] 

[Qosforum99 ] 

[Rdf] 

[Rsswiki] 

Nathan J. Muller, "Managing Service Level Agreements", 
International Journal of Network Management, Pg. 155-166, 
1999 

MySQL AB, "MySQL", http://www.mysq1.com, as viewed 
22109/06 

Klara Nahrstedt, Dongyan Xu, Duangdao Wichadakul, 
Baochun Li, "QoS-Aware Middleware for Ubiquitous and 
Heterogeneous Environments", IEEE Communications 
Magazine, Volume 39 Issue 11,2001 

Priya Narasimhan, Louise E. Moser, P.M. Melliar-Smith, 
"Using Interceptors to Enhance CORBA". IEEE Computer 
Magazine, p. 62-68, 1999 

Gary J. Nutt, Scott Brandt, Adam J. Griff, Sam Siewert, Marty 
Humphrey, Toby Berk, "Dynamically Negotiated Resource 
Management for Virtual Environment Applications," IEEE 
Transactions on Knowledge and Data Engineering, Vol. 12, 
No.1, January/February 2000, pp. 78-95. 

Chris Overton, "On the Theory and Practice of Internet SLAs", 
Journal of Computer Resource Measurement 106, 32-45, 
Computer Measurement Group (April 2002) 

S. E. Parkin, G. Morgan, "Managing Missed Interactions in 
Distributed V irtual Environments", E UR OG RAPHI C S 
Symposium on Virtual Environments (2006), 2006 

Simon Parkin, Peter Andras, Graham Morgan, "Evolutionary 
Optimization of Parameters for Distributed Virtual 
Environments", IEEE Congress on Evolutionary Computation 
(CEC 2007), 2007 

Jim Pruyne, "Enabling QoS via Interception in Middleware", 
HP-Labs Report HPL-2000-29, February 2000 

QoS Forum, "QoS Protocols & Architectures - White Paper", 
Quality of Service Forum, 1999 

W3C, "RDF IXML Syntax 
http://www.w3.org/TRIrdf-syntax-grammar, 
22109/06 

Specification", 
as viewed 

Wikimedia Foundation Inc., "RSS Wikipedia 
http://en.wikipedia.org/wiki/RSS_(file_format),as 
22109/06 

205 

Entry", 
viewed 



[Rsvp] 

[SahaiOI ] 

[Sahai02] 

[Schantz99] 

[Secondlife] 

[SegallOO] 

[SinghaI99] 

[Skene03] 

[Skene04] 

[SkeneEdoc04 ] 

[Skype] 

[Snell02] 

R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin. 
"Resource ReSerVation Protocol (RSVP) - Version 1 
Functional Specification", http://tools.ietf.orglhtmVrfc:::205. 
September 1997, as viewed 22/09106 

Akhil Sahai, Anna Durante, Vijay Machiraju, "Towards 
Automated SLA Monitoring for Web Service", Research 
Report HPL-2001-310 (R.l), Hewlett-Packard Laboratories, 
Palo Alto, 2001 

Akhil Sahai, Vijay Machiraju, Mehmet Saya!, Li Jie Jin, Fabio 
Casati, "Automated SLA Monitoring for Web Services", 
Proceedings of the 13th IFIPIIEEE International Workshop on 
Distributed Systems: Operations and Management: 
Management Technologies for E-Commerce and E-Business 
Applications, 2002 

Richard Schantz, John Zinky. David Karr, David Bakken, 
James Megquier, Joseph Loyall, "An Object-Level Gateway 
Supporting Integrated-Property Quality of Service", ISORC 
'99, 1999 

Linden Research Inc., "Second Life", 
http://www.secondlife.coml. as viewed 22109106 

Bill Segall, David Arnold, Julian Boot, Michael Henderson. 
Ted Phelps, "Content Based Routing with Elvin4", In Proc. 
AUUG2K, June 2000 

S. Singhal, M. Zyda, "Networked Virtual Environments, 
Design and Implementation", Addison Wesley, (1999) 

1. Skene and W. Emmerich (2003), "Model Driven 
Performance Analysis of Enterprise Information Systems", 
Electronic Notes in Theoretical Computer Science, 82(6), 2003 

James Skene, Davide Lamanna, Wolfgang Emmerich, "Precise 
Service Level Agreements", Proceedings of the 26th 
International Conference on Software Engineering, 2004 

James Skene, Wolfgang Emmerich, "Generating a Contract 
Checker for an SLA Language", in Proc. of the EDOC 2004 
Workshop on Contract Architectures and Languages, 
Monterey, California, IEEE Computer Society Press, 2004 

Skype Limited, "Skype", http://www.skype.comlintVen-gb/.as 
viewed 22/09/06 

James Snell, Doug Tidwell, Pavell Kulchenko, "Programming 
Web Services With SOAP", O'Reilly, 2002 

206 



[Soap] 

[Srinivasan95] 

[Sweeney99] 

[Tanenbaum02] 

[Tapas] 

[Tibco] 

[Unreal] 

[WebsphereMQ] 

[WelshOl] 

[WilsonOl] 

[Wsfl] 

[Wow] 

[Wsdl] 

DevelopMentor, International Business Machines Corporation, 
Lotus Development Corporation, Microsoft. C serLand 
Software, "Simple Object Access Protocol (SOAP) 1.1", 
http://www.w3.org!fRJSOAP/, as viewed 22109/06 

R. Srinivasan, "RPC: Remote Procedure Call Protocol 
Specification Version 2", Sun Microsystems Internet RFC 
1831, August 1995 

T. Sweeney, "Unreal Networking Architecture", 
http://unreal.epicgames.comlNetwork.htm, 1999, as viewed 
0912005 

Andrew S Tanenbaum, Maarten van Steen, "Distributed 
Systems: Principles and Paradigms", Prentice-Hall, 2002 

Trusted and QoS-Aware Provision of Application Services, 1ST 
Project No: 1ST -2001-34069, http://tapas.sourceforge.net,as 
viewed 0912005 

TIBCO Software Inc., "TIBCO Rendezvous". 
http://www.tibco.comlsoftware/messaging/rendezvous/default.j 
sp, as viewed 22109/06 

Epic Games Inc, "Unreal Tournament", 
http://www.unrealtournament.com. as viewed 16/11/05 

International Business Machines Corp., "WebSphere MQ", 
http://www-306.ibm.comlsoftware/integrationlwmq/. as viewed 
22/09/06 

Matt Welsh, David Culler, Eric Brewer, "SEDA: An 
Architecture for Well-Conditioned, Scalable Internet Services", 
18th Symposium on Operating Systems Principles (SOSP-18), 
Chateau Lake Louise, Canada, October 21-24, 2001 

S. Wilson, H. Sayers, M.D.J. McNeill, "Using CORBA 
Middleware to Support the Development of Distributed Virtual 
Environment Applications", in Proceedings of WSCG 
Conference, 2001 

International Business Machines Corp., "IBM Service Oriented 
Architecture (SOA)", http://www-
306.ibm.comlsoftware/solutions/soal, as viewed 22/09/06 

Blizzard Entertainment Inc., "World of Warcraft", 
http://www.worldofwarcraft.com. as viewed 16111/05 

Erik Christensen, Francisco Curb era, Greg Meredith, Sanjiva 
Weerawarana, "Web Services Definition Language (WSDLY·, 
http://www.w3.orglTR/wsdl, as viewed 22109/06 

207 



[Wsif] 

[Xml] 

[Yahoomsg] 

[Zhang93] 

[Zyda91] 

Apache Software Foundation, "Web Services Invocation 
Framework" (WSIF), http://ws.apache.org wsif, as viewed 
22/09/06 

World Wide Web Consortium (W3C), "Extensible Markup 
Language (XML)", http://v..'Ww.w3.org/XML, as viewed 
22/09/06 

Yahoo! Inc., "Yahoo! Messenger", 
http://messenger.yahoo.com, as viewed 16111 05 

L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala, 
"RSVP: a new resource reservation protocol", IEEE Network, 
Sep 1993, p. 8-18 

M. 1. Zyda, D. R. Pratt, "NPSNET: A 3D visual simulator for 
virtual world exploration and experience", In Tomorrow's 
Realities Gallery, Visual Proceedings of SIGGRAPH 91, 
(1991) p. 30 

208 



8. Appendix A - MeCo Installation Guide 

8.1 Provider-Side MeCo Deployment 

To allow MeCo Interceptors to collect observation data on behalf of the Metric

Collector (MeCo) Framework a number of JBoss configuration files must be altered, 

and a small set of additional files added to the JBoss file system. These steps are 

described here (with example configuration files listed in Section 8.4). 

8.1.1 Apache Axis Configuration 

Note: This file alteration is only applicable when enabling SOAP MeCo Interceptors 

Alter WEB-INFlserver-config. wsdd within the SOAP servlce file-set to include 

<request-flow> and <response-flow> element definitions. These declarations should 

include the uk. ac. ncl. cs. meco. interceptors. SOAPMecolnterceptor handler class. 

A further optional step is to alter WEB-INFlweb.xml to include a <listener> 

declaration that triggers pre-loading of the SOAP Interceptor within the JBoss server. 

The uk.ac.ncl.cs.meco.server.listeners.MecoContextListener class should be included in 

this reference. If this change is to be made ensure that the DOCTYPE of the file 

references Version 2.3 of the servlet specification. 

8.1.2 JBoss Configuration 

• jbossmq-destinations.xml (typically found in \deploy\jms) 

Note: This file alteration is only applicable if the JBoss server is acting as the 

JMS server for the MeCo Framework 

Include the names of the JMS topics required for metric transmission. The 

topic names should be in the format <SLA_ID> _<operation_name>, where 

<operation_name> represents a valid contract operation. 

209 



If the JBoss instance is running the messaging server used to transmit SLA 

violations a topic must be created for each SLA, of the format <SLA_ID>. 

• standard-jboss.xml (\conf) 

Note: This file alteration IS only applicable when enabling EJB MeCo 

Interceptors 

Add a reference to the uk.ac.ncl.cs.meco.ejb.interceptors.CllentIPlnterceptor 

class anywhere within the <bean> interceptor stack definitions for both the 

'stateless-rmi-invoker' and 'clustered-stateless-rmi-invoker' < lnvoker-proxy-

binding> elements. Also add a reference to the 

Uk.ac.ncl.cs.meco.interceptors.EJBMecolnterceptor class anywhere in the 

interceptor stack for the 'Standard Stateless SessionBean' and 'Clustered 

Stateless SessionBean' <container-configuration> elements. 

• meco-management-bean.sar 

Deploy this file to the 'deploy' folder to enable management of the Provider

side MeCo from the JBoss JMX Console and the Measurement Service. 

Note: once the MeCo is deployed the 'ProviderID' parameter MUST be set for 

the MeCo XMBean (from the JMX Console) before activating the 

Measurement Service. This is necessary to identify the service provider during 

SLA evaluation - the MeCo system will not function if this is not configured 

• Supplementary Class Libraries 

Copy the meco-corejar and meco-dynamic.jar files to the \lib sub-directory. 

210 



8.2 Measurement Service Deployment 

The Measurement Service collects data transmitted by the MeCo Interceptors and 

evaluates it against the relevant SLAs. Data charts and tabular records are presented. 

detailing metric perfonnance, transmitted data (and associated message parameters) 

and details of any SLA violations that occur during the monitoring of a sen"ice. 

8.2.1 Measurement Service Installation Files 

• meco-meas.zip 

Contains the Measurement Service and required class libraries. This package 

can be deployed to any directory either on the same machine as the supporting 

JBoss server or at a remote location. When deployed, supplementary library 

files are extracted to a \lib sub-directory, with the Measurement Service class 

and configuration files extracted to the base directory. 

• meco-measurement-servicejar 

Contains the necessary class files for running the Measurement Service and is 

deployed as part of the meco-meas.zip package. 

• measurement-service.xml 

This XML file describes configuration details for the Measurement Service. 

Ensure that the <contract> sub-element of the <SLAng> configuration element 

points to the directory that contains the contract file (see Section 8.2.2). 

The <log> sub-element of the <SLAng> configuration element is useful only for 

debugging the internal SLAng checker and is not defmed by default. 

The <remoteConfiguration> parameters must be calibrated to allow configuration 

of the MeCo Interceptors from the Measurement Service. Also ensure that the 

<JMS> configuration allows the Measurement Service to use the same JMS 

server as the MeCo Interceptors. 

211 



The <probe> element should be configured to point to the directory that is to be 

monitored for probe descriptors. The <chartDir> sub-element of the <g'~: > 

configuration should point to a location for storing chart snapshots captured 

during the use of the Measurement Service. 

• measurement-service.xsd 

This is the XML schema for the Measurement Service configuration file. By 

default this file is co-located with measurement-service.xml in the base 

directory of the Measurement Service. If moved from this location, the 

xsi: noNamespaceSchemaLocation attribute in measurement-service.xml should be 

changed accordingly. 

8.2.2 Additional Files 

• Probe Configurations 

Note: If the monitored application is moved to another machine, the WSDL 

probe configuration files will have to be updated to correctly reference the 

appropriate host machine 

Ensure that any additional application-specific class library files required by a 

probe component are copied into the \lib sub-directory of the Measurement 

Service installation. 

Each Probe Configuration contains pre-set parameter values to serve as 

arguments to the target service (detailed in the <mprobe: probeMethodlnfo> 

element). Ensure that if the target service performs data-lookup operations 

(such as a database record search) that probe values reference existing data 

records within the underlying data store(s) of the observed service. 

212 



• Probe Descriptors 

Note: Before a contract is loaded into the system, the associated probe 

descriptor file MUST be placed into the appropriate observed directory 

A Probe Descriptor is associated with at least one contract and must be placed 

in the designated probe-descriptor folder in order to be detected. 

• Contract Files 

Contract files must be accessible from the Measurement Service (with their 

location referenced in the measurement-service.xml configuration file). 

8.2.3 Using the Measurement Service 

• meas.bat / meas.sh 

To start the Measurement Service execute the appropriate file depending on 

whether a Windows (.bat) or Linux (.sh) environment is being used. Ensure 

that the JMS server being used is running before activating the Measurement 

Service otherwise it will fail to connect to the measurement update topics . 

• Graphical User lnteiface 

213 



8.3 

The user interface presents measurement data in a number of formats. The e 

include ' complex ' charts of measurements determined inside the Measurement 

Service, and charts of basic measurement data received from the Pro ider-side 

MeCo. 

SLA violation data can also be viewed, as can the contents of measurement 

updates from the Provider-side MeCo. 

............. 
'-

SLAng Contract Configuration 

,~ . 

Alterations to a service contract file may be necessary in light of any changes in the 

monitored environment. Changes may be required if either the target service platform 

(containing the MeCo Interceptors) is relocated to another machine or the network 

addresses of the service clients need updating. 

2 14 



Note: These configuration steps require knowledge of the SLAng languag~ and 

associated implementation (including the contract-editing suite). 

8.3.1 Service Clients 

The clients of the target service must be identified in the associated SLAng contract 

file. Clients are identified by their IP addresses, and it is important that within each 

contract file there is a <ServiceClient> defmed with a name attribute corresponding to 

the IP address of the client. 

8.3.2 Provider Definition 

Note the value of the name attribute for the linked <Asset> referenced within the 

<ElectronicService> declaration. This value identifies the service provider in metric 

data transmission processes (see Section 8.1.2). 

8.3.3 Contract Schedule 

The schedule constraining the use of the target service should be correctly defined to 

allow monitoring of the service. Note the expected dates of contract initiation and 

completion and convert them to the SLAng date system (where all dates are recorded 

as the number of milliseconds since January 1 sl 2000). 

215 



8.4 Example Configuration Files 

The contents of a sample set of configuration files are included here for reference. 

8.4.1 measurement-service.xml 

<?xml version "1.0" encoding-"UTF 8"?> 
<measurement-service 
xmlns:xsi=''http://www.w3.org/200l/XMLSchema-instance" 
xsi:noNamespaceschemaLocation="C:/eclipse/workspace/Meco/misc/measurement
service.xsd"> 

<config> 
<slaEngine>SLAngSimpleEvaluation</slaEngine> 
<messaging>JMS</messaging> 
<replicationEnabled>false</replicationEnabled> 
<componentDecouplingEnabled>false</componentDecouplingEnabled> 
<logging>MySQL</logging> 
<security>JavaKeystore</security> 

</config> 
<replicationPolicy> 

<managedEventType>REQUEST</managedEventType> 
<noOfObjects>3</noOfObjects> 
<maxObjects>lO</maxObjects> 
<maxIdleTime>lOOOO</maxIdleTime> 
<whenExhaustedAction>WHEN EXHAUSTED GROW</whenExhaustedAction> 

</replicationPolicy> - -
<remoteConfiguration> 

<namingFactoryInitial>org.jnp.interfaces.NamingContextFactory</namingFactoryInitial> 
<namingProviderURL>jnp://localhost:1099</namingProviderURL> 
<namingFactoryURL>org.jboss.naming:org.jnp.interfaces</namingFactoryURL> 

</remoteConfiguration> 
<slaEngine> 

<contract>C:/eclipse/workspace/MeCo/misc/contracts/test/</contract> 
<loggingEnabled>false</loggingEnabled> 
<produceViolationNotifications>false</produceViolationNotifications> 

</slaEngine> 
<JMS> 

<!-- JBoss MQ --> 
<namingFactory>org.jnp.interfaces.NamingContextFactory</namingFactory> 
<providerURL>localhost:1099</providerURL> 
<connectionFactory>ConnectionFactory</connectionFactory> 
<jndiPrefix>topic</jndiPrefix> 
<listenerPrefix>queue</listenerPrefix> 

<produceViolationNotifications>false</produceViolationNotifications> 
<aggregationModel>NONE</aggregationModel> 
<aggregationContext>CLIENT</aggregationContext> 
<aggregationWindow>lOO</aggregationWindow> 
<aggregationCount>l</aggregationCount> 

</JMS> 
<probe> 

<configDir>C:/eclipse/workspace/MeCo/misc/probeConfigFiles/test</configDir> 
</probe> 
<gui> 

<chartDir>file:///C:/eclipse/workspace/MeCo/misc/mecoCharts</chartDir> 
<imageDir>C:/eclipse/workspace/MeCo/misc</imageDir> 

</gui> 
<complexMetrics> 

<complexMetric> 
<metricName>clientThroughput</metricName> 
<metricTitle>ClientThroughputALL</metricTitle> 
<metricUnit>requestsPerM</metricUnit> 

</complexMetric> 
</complexMetrics> 
<MySQL> 

<jdbcDriver>com.mysql. jdbc. Driver</jdbcDriver> 
<connection>jdbc:mysql://localhost/meco</connection> 
<user></user> 

216 



<password></password> 
<metricLog>metric_log</metricLog> 
<violationLog>violation_log</violationLog> 

</MySQL> 
<JavaKeystore> 

<keystoreType>JKS</keystoreType> 
<signatureAlgorithm>MD5withRSA</signatureAlgorithm> 
<keystoreLocation>file:///C:/stores/store A/</keystoreLocation> 
<localAlias>A</localAlias> -
<localPassword>mugwump</localPassword> 
<securityMode>DIGESTS</securityMode> 

</JavaKeystore> 
</measurement-service> 

8.4.2 EJB Probe Configuration - Fibonacci_EJB.wsdl 

<?xml version "1.0" ?> 

<definitions 
targetNamespace="urn:Fibonacci EJB" 
xmlns:tns="urn:Fibonacci EJB" -
xmlns:xsd=''http://www.w3-:-org/1999/XMLSchema" 
xmlns:soap=''http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:format=''http://schemas.xmlsoap.org/wsdl/formatbinding/" 
xmlns:ejb=''http://schemas.xmlsoap.org/wsdl/ejb/" 
xmlns=''http://schemas.xmlsoap.org/wsdl/" 
xmlns:mprobe=''http://homepages.cs.ncl.ac.uk/s.e.parkin/home.formal/meco/meco
probe.xsd"> 

<!-- message declns --> 
<message name="computeRequestMessage"> 

<part name="number" type="xsd:int"/> 
</message> 

<message name="computeResponseMessage"> 
<part name="fibString" type="xsd:string"/> 

</message> 

<!-- port type declns --> 
<port Type name="FiboPort"> 

<operation name="compute"> 
<input name="computeRequest" message="tns:computeRequestMessage"/> 
<output name="computeResponse" message="tns:computeResponseMessage"/> 

</operation> 
</portType> 

<!-- binding declns --> 
<binding name="EJBBinding" type="tns:FiboPort"> 

<ejb:binding/> 
<format:typeMapping encoding="Java" style="Java"> 

<format:typeMap typeName="xsd:string" formatType="java.lang.String" /> 
<format:typeMap typeName="xsd:int" formatType="java.lang.lnteger" /> 

</format:typeMapping> 
<operation name="compute"> 

<ejb:operation 
methodName="compute" 
parameterOrder="number" 
returnPart="fibString" 
interface="remote" /> 

<input name="computeRequest"/> 
<output name="computeResponse"/> 

</operation> 
</binding> 

<!-- service decln --> 
<service name="FibonacciEJBService"> 

<mprobe:probeMethodlnfo> 
<mprobe:probeFormat value="EJB"/> 
<mprobe:probeMethod value="compute"/> 
<mprobe:returnNamespace value="http://www.w3.org/2001/XMLSchema"/> 
<mprobe:returnType value="string"/> 

217 



<mprobe:returnJavaType value-"java.lang.String"/> 
<mprobe:probeArg> 

<mprobe:argName value="number"/> 
<mprobe:argValue value="lO"/> 
<mprobe:argXMLNamespace value="http://www.w3.org/200:/XMLSchema-/> 
<mprobe:argXMLType value="int"/> 
<mprobe:argJavaType value="java.lang.Integer"/> 

</mprobe:probeArg> 
</mprobe:probeMethodInfo> 
<port name="EJBPort" binding="tns:EJBBinding"> 

<!-- Put vendor-specific deployment information here --> 
<ejb:address className="tutorial.interfaces.FiboHome" 

jndiName="ejb/tutorial/Fibo" 
initialContextFactory="org.jnp.interfaces.NamingContextFactory" 

jndiProviderURL="localhost:1099"/> 
</port> 

</service> 

</definitions> 

8.4.3 Probe Descriptor - Fibonacci EJB Service 

<?xml version="l.O" encoding="UTF-8"?> 
<probe-config 
xmlns:xsi=''http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:/eclipse/workspace/MeCo/misc/probe-config.xsd"> 

<!-- FIBONACCI EJB --> 
<wsdlDefinition>file:///C:/eclipse/workspace/MeCo/misc/WSDL/Fibonacci_EJB.wsdl</wsdlDe 
finition> 
<wsdlNamespace>urn:Fibonacci_EJB</wsdlNamespace> 
<service>FibonacciEJBService</service> 
<contractIDs>fibonacciSLA_EJB</contractIDs> 
<providerID>A</providerID> 
<probeMetrics> 

<probeMetric> 
<metricName>responseTime</metricName> 
<metricTitle>ResponseTimeCLIENT</metricTitle> 
<metricUnit>mS</metricUnit> 

</probeMetric> 
</probeMetrics> 

</probe-config> 

218 



9. Appendix B - Sample SLAng Contract File 

<?xml version "1.0" encoding "UTF-S"?> 

<XMI version="1.2" xmlns:SLAng="URI pending"> 

<XMI.header/> 

<XMI.content> 

<SLAng:Party xmi.id="mofid:4221705" name="A"> 

<SLAng: Party. asset> 

<SLAng:Asset xmi.idref="mofid:1S0S5121"/> 

</SLAng:Party.asset> 

<SLAng:Party.providerDefinition> 

<SLAng:ProviderDefinition xmi.idref="mofid:16667599"/> 

</SLAng:Party.providerDefinition> 

</SLAng:Party> 

<SLAng:Party xmi.id="mofid:3033S042" name="client"> 

<SLAng:Party.asset> 

<SLAng:Asset xmi.idref="mofid:11600335"/> 

</SLAng:Party.asset> 

<SLAng: Party. clientDefinition> 

<SLAng:ClientDefinition xmi.idref="mofid:1S005115"/> 

</SLAng: Party. clientDefinition> 

</SLAng:Party> 

<SLAng:Operation xmi.id="mofid:7059772" name="compute"> 

<SLAng:Operation.electronicService> 

<SLAng:ElectronicService xmi.idref="mofid:1S0S5121"/> 

</SLAng:Operation.electronicService> 

<SLAng:Operation.operationDefinition> 

<SLAng:OperationDefinition xmi.idref="mofid:27350423"/> 

</SLAng:Operation.operationDefinition> 

</SLAng:Operation> 

<SLAng: ServiceClient xmi. id="mofid: 11600335" name="169. 254.139. lS" > 

<SLAng:ServiceClient.serviceClientDefinition> 

<SLAng:ServiceClientDefinition xmi.idref="mofid:6S70277"/> 

</SLAng:ServiceClient.serviceClientDefinition> 

<SLAng:Asset.owner> 

<SLAng:Party xmi.idref="mofid:3033S042"/> 

</SLAng:Asset.owner> 

</SLAng:ServiceClient> 

<SLAng:ElectronicService xmi.id="mofid:1SOS5121" name="es1"> 

<SLAng:ElectronicService.operation> 

<SLAng:Operation xmi.idref="mofid:7059772"/> 

</SLAng: ElectronicService. operation> 

<SLAng:ElectronicService.electronicServiceDefinition> 

<SLAng:ElectronicServiceDefinition xmi.idref="mofid:74733S0"/> 

</SLAng:ElectronicService.electronicServiceDefinition> 

<SLAng: ServiceClient. serviceClientDefinition> 

<SLAng:ServiceClientDefinition xmi.idref="mofid:6S70277"/> 

</SLAng:ServiceClient.serviceClientDefinition> 

<SLAng:Asset.owner> 

219 



<SLAng:Party xmi.idref-"mofid:4221705"/> 
</SLAng:Asset.owner> 

</SLAng:ElectronicService> 

<SLAng:Schedule xmi.id="mofid:13572035" name="schedule" 

startDate="mofid:15497l63" duration="mofid:6455597" period="mofid:l1~9-57:" 

endDate="mofid:15755548"> 

<SLAng:Schedule.scheduledClause> 

<SLAng:ScheduledClause xmi.idref="mofid:806126"/> 

<SLAng:ScheduledClause xmi.idref="mofid:32391332"/> 

</SLAng:Schedule.scheduledClause> 

</SLAng:Schedule> 

<SLAng:ProviderDefinition xmi.id="mofid:16667599" description="pDesc"> 

<SLAng:ProviderDefinition.terms> 

<SLAng:Terms xmi.idref="mofid:29519284"/> 

</SLAng:ProviderDefinition.terms> 

<SLAng:ProviderDefinition.party> 

<SLAng:Party xmi.idref="mofid:4221705"/> 

</SLAng:ProviderDefinition.party> 

</SLAng:ProviderDefinition> 

<SLAng:ClientDefinition xmi.id="mofid:18005115" description="cDesc"> 

<SLAng:ClientDefinition.terms> 

<SLAng:Terms xmi.idref="mofid:29519284"/> 

</SLAng:ClientDefinition.terms> 

<SLAng:ClientDefinition.party> 

<SLAng:Party xmi.idref="mofid:30338042"/> 

</SLAng:ClientDefinition.party> 

</SLAng:ClientDefinition> 

<SLAng:ClientPerformanceClause xmi.id="mofid:806126" name="CPC" 

maximumThroughput="mofid:16335556"> 

<SLAng:ClientPerformanceClause.operation> 

<SLAng :OperationDefinition xmi. idref="mofid: 27350423" /> 

</SLAng:ClientPerformanceClause.operation> 

<SLAng:ClientPerformanceClause.conditions> 

<SLAng:ElectronicServiceConditions xmi.idref="mofid:1638183"/> 

</SLAng:ClientPerformanceClause.conditions> 

<SLAng: ScheduledClause. schedule> 

<SLAng:Schedule xmi.idref="mofid:13572035"/> 

</SLAng: ScheduledClause. schedule> 

</SLAng:ClientPerformanceClause> 

<SLAng:ElectronicServiceSLA xmi.id="mofid:13162031" 

uniqueld="fibonacciSLA_EJB"> 

<SLAng: ElectronicServiceSLA.electronicServiceTerms> 

<SLAng:ElectronicServiceTerms xmi.idref="mofid:29519284"/> 

</SLAng: ElectronicServiceSLA. electronicServiceTerms> 

<SLAng: ElectronicServiceSLA. electronicServiceConditions> 

<SLAng:ElectronicServiceConditions xmi.idref="mofid:1638183"/> 

</SLAng:ElectronicServiceSLA.electronicServiceConditions> 

<SLAng: SLA. terms> 

<SLAng:Terms xmi.idref="mofid:29519284"/> 

</SLAng:SLA.terms> 

<SLAng: SLA. conditions> 

220 



<sLAng:Conditions xmi.idref-"mofid:1638183./> 
</sLAng: sLA. conditions> 

</sLAng:ElectronicservicesLA> 

<sLAng:serverPerformanceClause xmi.id="mofid:3239l332. name=.spC" 

maximumLatency="mofid:1286417S" reliability="mofid:1170003" 

maxTimeToRepair="mofid:2S281771"> 

<SLAng: serverPerformanceClause. operation> 

<sLAng:OperationDefinition xmi.idref="mofid:273S0423"/> 

</sLAng:serverperformanceClause.operation> 

<sLAng:serverPerformanceClause.conditions> 

<sLAng:ElectronicserviceConditions xmi.idref="mofid:1638183"/> 

</sLAng:serverPerformanceClause.conditions> 

<SLAng: Scheduled Clause. schedule> 

<sLAng:schedule xmi.idref="mofid:13S7203S"/> 

</sLAng: scheduledClause. schedule> 

</sLAng:serverPerformanceClause> 

<sLAng:ElectronicserviceTerms xmi.id="rnofid:29519284"> 

<sLAng:ElectronicserviceTerrns.operationDefinition> 

<sLAng:OperationDefinition xmi.idref="rnofid:27350423"/> 

</sLAng:ElectronicserviceTerrns.operationDefinition> 

<sLAng:ElectronicserviceTerrns.serviceClientDefinition> 

<sLAng:serviceClientDefinition xmi.idref="rnofid:6870277"/> 

</sLAng:ElectronicserviceTerms.serviceClientDefinition> 

<sLAng:ElectronicserviceTerrns.electronicserviceDefinition> 

<sLAng:ElectronicserviceDefinition xmi.idref="rnofid:7473380"/> 

</sLAng:ElectronicserviceTerms.electronicserviceDefinition> 

<sLAng:ElectronicserviceTerrns.electronicservicesLA> 

<sLAng:ElectronicservicesLA xrni.idref="rnofid:13162031"1> 

</sLAng:ElectronicserviceTerms.electronicservicesLA> 

<sLAng:Terrns.sLA> 

<sLAng:sLA xrni.idref="rnofid:13162031"/> 

</sLAng:Terrns.sLA> 

<sLAng:Terrns.providerDefinition> 

<sLAng:ProviderDefinition xmi.idref="rnofid:16667599"/> 

</sLAng:Terrns.providerDefinition> 

<sLAng:Terrns.clientDefinition> 

<sLAng:ClientDefinition xmi.idref="rnofid:18005115"/> 

</sLAng:Terrns.clientDefinition> 

</sLAng:ElectronicserviceTerrns> 

<sLAng:ElectronicserviceConditions xmi.id="rnofid:1638183"> 

<sLAng:ElectronicserviceConditions.serverPerformanceClause> 

<sLAng:serverPerformanceClause xmi.idref="rnofid:32391332"/> 

</sLAng:ElectronicserviceConditions.serverPerformanceClause> 

<sLAng:ElectronicserviceConditions.clientperformanceClause> 

<sLAng:ClientPerformanceClause xmi.idref="mofid:806126"/> 

</sLAng:ElectronicserviceConditions.clientPerformanceClause> 

<sLAng:ElectronicserviceConditions.electronicservicesLA> 

<sLAng:ElectronicservicesLA xmi.idref="rnofid:13162031"/> 

</sLAng:ElectronicserviceConditions.electronicservicesLA> 

<SLAng:Conditions.sLA> 

<sLAng:sLA xmi.idref="rnofid:13162031"/> 

221 



</SLAng:Conditions.sLA> 

</SLAng:ElectronicServiceConditions> 

<SLAng:OperationDefinition xmi.id="mofid:27350423" description="opDef" 

failureCriteria="null"> 

<SLAng:OperationDefinition.serverPerformanceClause> 

<SLAng:ServerPerformanceClause xmi.idref="mofid:32391332"/> 

</SLAng:OperationDefinition.serverPerformanceClause> 

<SLAng:OperationDefinition.clientPerformanceClause> 

<SLAng:ClientPerformanceClause xmi.idref="mofid:806126"/> 

</SLAng: OperationDefinition. clientPerformanceClause> 

<SLAng:OperationDefinition.terms> 

<SLAng:ElectronicServiceTerms xmi.idref="mofid:29519284"/> 

</SLAng:OperationDefinition.terms> 

<SLAng:OperationDefinition.operation> 

<SLAng:Operation xmi.idref="mofid:7059772"/> 

</SLAng:OperationDefinition.operation> 

</SLAng:OperationDefinition> 

<SLAng:ServiceClientDefinition xmi.id="mofid:6870277" description="scDef"> 

<SLAng:ServiceClientDefinition.terms> 

<SLAng:ElectronicServiceTerms xmi.idref="mofid:29519284"/> 

</SLAng: ServiceClientDefinition. terms> 

<SLAng:ServiceClientDefinition.serviceClient> 

<SLAng:ServiceClient xmi.idref="mofid:1l600335"/> 

<SLAng:ServiceClient xmi.idref="mofid:18085121"/> 

</SLAng:ServiceClientDefinition.serviceClient> 

</SLAng:ServiceClientDefinition> 

<SLAng:ElectronicServiceDefinition xmi.id="mofid:7473380" description="esDef"> 

<SLAng:ElectronicServiceDefinition.terms> 

<SLAng:ElectronicServiceTerms xmi.idref="mofid:29519284"/> 

</SLAng:ElectronicServiceDefinition.terms> 

<SLAng:ElectronicServiceDefinition.electronicService> 

<SLAng: ElectronicService xmi. idref="mofid: 18085121" I> 

</SLAng:ElectronicServiceDefinition.electronicService> 

</SLAng:ElectronicServiceDefinition> 

<SLAng:Duration xmi.id="mofid:24590868" value="100.0" unit="mS"/> 

<SLAng:Duration xmi.id="mofid:25281771" value="15000.0" unit="mS"/> 

<SLAng:Duration xmi.id="mofid:12864175" value="15.0" unit="mS"I> 

<SLAng:Duration xmi.id="mofid:11797571" value="283.0" unit="day"/> 

<SLAng:Duration xmi.id="mofid:10732982" value="1950.0" unit="day"/> 

<SLAng:Duration xmi.id="mofid:6455597" value="283.0" unit="day"/> 

<SLAng:Duration xmi.id="mofid:31226686" value="1667.0" unit="day"/> 

<SLAng:Percentage xmi.id="mofid:1170003" value="1.0"/> 

<SLAng:Date xmi.id="mofid:15755548" sinceJan12000="mofid:10732982"1> 

<SLAng:Date xmi.id="mofid:15497163" sinceJan12000="mofid:31226686"/> 

<SLAng:Frequency xmi.id="mofid:16335556" period="mofid:2459086S"/> 

</XMI.content> 

</XMI> 

222 


	443111_0001
	443111_0002
	443111_0003
	443111_0004
	443111_0005
	443111_0006
	443111_0007
	443111_0008
	443111_0009
	443111_0010
	443111_0011
	443111_0012
	443111_0013
	443111_0014
	443111_0015
	443111_0016
	443111_0017
	443111_0018
	443111_0019
	443111_0020
	443111_0021
	443111_0022
	443111_0023
	443111_0024
	443111_0025
	443111_0026
	443111_0027
	443111_0028
	443111_0029
	443111_0030
	443111_0031
	443111_0032
	443111_0033
	443111_0034
	443111_0035
	443111_0036
	443111_0037
	443111_0038
	443111_0039
	443111_0040
	443111_0041
	443111_0042
	443111_0043
	443111_0044
	443111_0045
	443111_0046
	443111_0047
	443111_0048
	443111_0049
	443111_0050
	443111_0051
	443111_0052
	443111_0053
	443111_0054
	443111_0055
	443111_0056
	443111_0057
	443111_0058
	443111_0059
	443111_0060
	443111_0061
	443111_0062
	443111_0063
	443111_0064
	443111_0065
	443111_0066
	443111_0067
	443111_0068
	443111_0069
	443111_0070
	443111_0071
	443111_0072
	443111_0073
	443111_0074
	443111_0075
	443111_0076
	443111_0077
	443111_0078
	443111_0079
	443111_0080
	443111_0081
	443111_0082
	443111_0083
	443111_0084
	443111_0085
	443111_0086
	443111_0087
	443111_0088
	443111_0089
	443111_0090
	443111_0091
	443111_0092
	443111_0093
	443111_0094
	443111_0095
	443111_0096
	443111_0097
	443111_0098
	443111_0099
	443111_0100
	443111_0101
	443111_0102
	443111_0103
	443111_0104
	443111_0105
	443111_0106
	443111_0107
	443111_0108
	443111_0109
	443111_0110
	443111_0111
	443111_0112
	443111_0113
	443111_0114
	443111_0115
	443111_0116
	443111_0117
	443111_0118
	443111_0119
	443111_0120
	443111_0121
	443111_0122
	443111_0123
	443111_0124
	443111_0125
	443111_0126
	443111_0127
	443111_0128
	443111_0129
	443111_0130
	443111_0131
	443111_0132
	443111_0133
	443111_0134
	443111_0135
	443111_0136
	443111_0137
	443111_0138
	443111_0139
	443111_0140
	443111_0141
	443111_0142
	443111_0143
	443111_0144
	443111_0145
	443111_0146
	443111_0147
	443111_0148
	443111_0149
	443111_0150
	443111_0151
	443111_0152
	443111_0153
	443111_0154
	443111_0155
	443111_0156
	443111_0157
	443111_0158
	443111_0159
	443111_0160
	443111_0161
	443111_0162
	443111_0163
	443111_0164
	443111_0165
	443111_0166
	443111_0167
	443111_0168
	443111_0169
	443111_0170
	443111_0171
	443111_0172
	443111_0173
	443111_0174
	443111_0175
	443111_0176
	443111_0177
	443111_0178
	443111_0179
	443111_0180
	443111_0181
	443111_0182
	443111_0183
	443111_0184
	443111_0185
	443111_0186
	443111_0187
	443111_0188
	443111_0189
	443111_0190
	443111_0191
	443111_0192
	443111_0193
	443111_0194
	443111_0195
	443111_0196
	443111_0197
	443111_0198
	443111_0199
	443111_0200
	443111_0201
	443111_0202
	443111_0203
	443111_0204
	443111_0205
	443111_0206
	443111_0207
	443111_0208
	443111_0209
	443111_0210
	443111_0211
	443111_0212
	443111_0213
	443111_0214
	443111_0215
	443111_0216
	443111_0217
	443111_0218
	443111_0219
	443111_0220
	443111_0221
	443111_0222
	443111_0223
	443111_0224
	443111_0225
	443111_0226
	443111_0227
	443111_0228
	443111_0229
	443111_0230
	443111_0231
	443111_0232
	443111_0233
	443111_0234
	443111_0235

