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Abstract

In this thesis techniques are developed for the simulation of partially ionised

plasmas in the fluid approximation. These techniques are used to model the evolution

of magnetic fields in the partially ionised regions of the solar atmosphere. Single fluid

equations for a partially ionised plasma are derived based on the individual equations for

each species. A Lagrangian Remap MHD code is then adapted to simulate a plasma of

arbitrary degree of ionisation.

The effects of the presence of neutrals on the propagation and damping of Alfvén

waves in the solar atmosphere are investigated. Ion-neutral collisions are shown to be

an efficient damping mechanism for outwardly propagating Alfvén waves of frequencies

greater than 0.1 Hz, showing that high frequency waves in the outer solar atmosphere

cannot originate at the surface of the Sun.

Next simulations to show the effects of neutrals on the emergence of magnetic

flux from beneath the solar surface into the outer atmosphere are performed. Results

from 2D and 3D numerical experiments show that the presence of neutrals increases

the amount of magnetic flux that can emerge into the corona. Furthermore, ion-neutral

collisions are strong enough to dissipate currents perpendicular to the magnetic field

as it emerges. This shows that ion-neutral collisions are a viable mechanism for the

formation of force-free (j ∧B = 0) coronal magnetic field from sub-surface field, which

is not the case when the plasma is assumed to be fully ionised.
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Chapter 1

Introduction

1.1 The Sun

The Sun is a dwarf star lying on the main sequence of the Hertzprung-Russel diagram,

roughly halfway through its lifetime as a main sequence star, which is about 1010 years.

It has a mass of 2 × 1030 kg, and a radius of 7 × 108m. 74% of the mass is made up

of Hydrogen, 25% Helium and the rest heavier elements. The main source of energy

generation is the fusion of Hydrogen into Helium.

The Sun has played a major role in the advancement of physics and mathemat-

ics for the past several centuries. These advancements include Keplers laws, Newtonian

theory and gravitation, as well as general relativity. Due to its closeness to the Earth,

more is known about the Sun than any other star, which has lead to it being referred to

as the Rosetta stone of astronomy. The Sun is a ready made laboratory for the study

of a wide range of processes and phenomena. These studies have allowed better under-

standing of the structure and evolution of other stars. Although direct measurements

of the interior of the Sun are not possible, a combination of self-consistent models and

surface observations have enabled a very detailed understanding of the solar structure

to be built up.

The outer layers of the Sun exhibit many interesting and dynamic phenomena

which influence our own climate on earth. These phenomena are closely related to

the magnetic field of the Sun, which exists on many spatial and temporal scales. The

1



regeneration of large scale field in the Sun appears to be driven by a combination of

differential rotation and turbulent convection. This is commonly referred to as the solar

dynamo. The dynamics of the outer layers of the Sun are a direct consequence of the

manifestation of these dynamo fields on smaller scales.

The Sun is thus a perfect astrophysical laboratory for the testing of not only

atomic and nuclear physics, but high temperature plasma physics and magnetohydro-

dynamics.

1.2 The Solar Interior

Apart from neutrinos there are no direct observational tools for gleaning information re-

garding the Sun’s internal structure. Therefore models must be constructed to estimate

this structure which can be then refined to coincide with known parameters gained from

observations, such as mass, radius and luminosity at the surface. This process is called

the standard solar model (SSM). It consists of solving the equations of mechanical and

thermal equilibrium (e.g., Christensen-Dalsgaard et al. (1996); Bahcall et al. (2001)),

and modifying the free parameters to match results with observations. Figure 1.1 shows

results from a typical solution, taken from Stix (2002), of temperature, density, pressure

and the mean mass of each particle in terms of proton mass, all as functions of radius.

The surface of the Sun undergoes a series of mechanical vibrations with periods

around 5 minutes. They can be observed in Doppler shifts on the surface (Leighton

et al., 1962). They have been identified as acoustic modes of global pulsations (p-

modes), being a superposition of millions of standing waves, each mode having an

amplitude of a few cm/s (Ulrich, 1996; Leibacher and Stein, 1971).

Using these observations, information regarding the internal structure of the Sun

can be obtained, such as density and sound speed. This process has become known

as helioseismology. Although helioseismology is a relatively old technique (25 years),

there is still some gaps in the knowledge regarding the excitations of these global modes.

Excitation and damping of p-modes is though to be due to the convective transfer of

energy that occurs in the solar interior from about 0.7 to 1 solar radii from the centre
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Figure 1.1: The temperature, pressure, density and mean mass calculated from the
standard model as a functions of radius for the interior of the Sun.
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of the Sun.

Observations of these global oscillation frequencies can provide very stringent

constraints on the allowable solar models. There are generally two ways to analyse the

data. The first is forward method and uses an equilibrium SSM, which is then perturbed

in a linearised theory to obtain eigenfrequencies of solar oscillations, which are then

compared to accurate measured frequencies (Elsworth et al., 1990). The fit is rarely

accurate, but this kind of method has been used to obtain estimates on the depth of

the convection zone, and Helium abundance.

Inversion techniques allow the use of measurements of solar oscillation frequen-

cies to infer the internal structure of the Sun (Gough et al., 1996; Kosovichev et al.,

1997). Typical inferred variables are the sound speed and density. These are very

accurate, with typical errors for the sound speed being 0.1%. In order to infer the

internal temperature, the thermodynamic equilibrium equation must also be included

in the SSM. In this way the inverted internal sound speed, density, temperature and

composition profiles can match the SSM to high levels of accuracy.

1.2.1 Internal Structure

The core of the Sun extends from the centre to about one quarter of the solar radius.

The temperature is 1.5×107 K and the density is 1.6×105kg/m3, conditions conducive

for the nuclear fusion of Hydrogen into Helium. The majority of the energy release is

in the form of gamma rays. At such high densities, these short wavelength photons are

quickly absorbed. As a result it takes a particular packet of photons of the order of 107

years to reach the surface via absorption and emission in the radiative zone.

Travelling outwards the next region is the radiative zone. The energy generated

in the core is transported as photons which suffer consecutive absorption/emission.

Photons are heavily absorbed at a radius of about 0.7 solar, and the subsequent heating

drives convection above.

The convection zone extends from 0.7 solar radii to the surface. Convection is

where internal energy is transported along with the motion of matter. At a depth of

about 200 000 km below the surface, convection becomes the dominant mechanism of
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Figure 1.2: A parcel of gas is adiabatically lifted to a region of different density.

transport of energy.

One way of describing convection is known asmixing length theory, where parcels

of gas travel a certain distance and then deposit their excess heat. This simple way of

thinking about convection gives a way of describing the convective flux of energy. In this

approach, convective motion is overturning. Parcels of gas are heated, rise and deposit

their energy and then fall back down.

When a parcel of gas is lifted from it’s position, it is either heavier or lighter

than its surroundings. In the latter case it continues to rise (this is called convectively

unstable), in the former case it falls back down (convectively stable). The criteria for

convective instability was first derived by Schwarzschild in 1906.

Consider a parcel of gas at height r which has risen to a distance r + δr (see

figure 1.2). The density of the parcel is now ρ∗ = ρ+ δρ, and must be compared to the

density of the surrounding gas ρ0
∗ = ρ +△ρ. The condition for convective instability

is simply

δρ < △ρ. (1.1)

It is assumed that the motion is sufficiently fast that the parcel behaves adiabatically,

but still sufficiently slow so that at each point the internal pressure is matched to the

local ambient pressure. This is reasonable whenever the time scale of energy exchange

is longer than the sound transit time across the parcel. The adiabatic condition implies
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that

δρ

ρ
=

1

γ

δP

P
(1.2)

where γ is the ratio of specific heats. The atmosphere is assumed to be an ideal gas

P = ρkT/µm, where µm is the mean mass so that

△ρ

ρ
=

△P

P
−

△T

T
(1.3)

where changes in the mean mass have been neglected. The effects of changes in µm are

stabilising, but the interior of the Sun can still be stable against convection even when

these effects are ignored. The condition for instability can now be written as

1

γ

δP

P
<

△P

P
−

△T

T
. (1.4)

As the pressure in the gas parcel responds quickly to match the surroundings, δP = △P

and the criteria becomes

△T

T
<

γ − 1

γ

△P

P
(1.5)

and the critical temperature gradient for convection is

dT

dr
<

γ − 1

γ

T

P

dP

dr
=

(

dT

dr

)

a

(1.6)

where the RHS is called the adiabatic temperature gradient.

In the Sun the temperature gradient and adiabatic gradient are both negative.

Hence for instability to occur, the temperature gradient must be steeper than the adia-

batic gradient.

If the temperature gradient is not steeper than the adiabatic gradient, then the

original equilibrium is stable and the parcel effectively oscillates about the equilibrium

position with a frequency N , called the Brunt-Wäisälä frequency which is given by

N2 = −g

[

(γ − 1)

γ

1

P

dP

dr
−

1

T

dT

dr

]

(1.7)

so that the condition for instability is equivalent to N2 < 0. A gas that is convectively

unstable is also called super-adiabatic, and one that is stable sub-adiabatic.
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Figure 1.3: Left panel: The rotation rate in nHz at five different latitudes as functions
of depth. Right Panel: The rotation rate as a function of radius and latitude. Courtesy
National Solar Observatory.

1.2.2 Internal Rotation

Helioseismology has also made it possible to determine the rotation rate in the interior

of the Sun from the rotational splittings of oscillation frequencies (for a comprehensive

review see Antia (2003)). The splitting coefficients can be used to obtain the rotation

rate as a function of height and latitude.

The differential rotation seen on the surface of the Sun continues through the

convection zone, while in the interior the rotation rate appears to be relatively uniform

(Thompson et al., 1996; Schou et al., 1998). As can be seen in figure 1.3, there is a

transition region near the base of the convection zone, at radius R = 0.705R⊙, where

there is strong shear flows due to the change from differential rotation to solid body

rotation. This region is called the tachocline, and is important for the Sun’s dynamo,

the regeneration of magnetic field in the interior of the Sun. There is also a shear layer

at r = 0.94R⊙, where the rotation rate increases with depth, and this could also play a

role in the solar dynamo.
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1.3 The Solar Atmosphere

The Solar atmosphere is a rarefied, hot (up to MK) plasma which shows a large amount

of interesting phenomena. The radiation from the solar atmosphere can be observed in

the visible range, UV and X-rays. This means its structure can be inferred from direct

imaging using various observational instruments, both ground based and space based.

The atmosphere of the Sun is generally split into three distinct regions: the photosphere,

chromosphere and corona (see figure 1.4).

The photosphere (from the Greek for light) is a thin region, some 500 km thick,

through which the temperature falls from the surface value of 6500 K to the minimum

value in the atmosphere of 4300 K. A typical photospheric density is about 10−4kg/m3.

The radiation goes from optically thick to optically thin in the visible spectrum in this

region, which is why it can be seen with the naked eye.

The chromosphere (Greek for colour) is the coloured sphere that can be seen

just before and after an eclipse. It is between two and three thousand km thick and got

its name from the prominent red emission of the Hα line of neutral Hydrogen at 6563

Å. The temperature here rises from the minimum to about 2× 104 K.

Further up, the temperature rises sharply to about 2 MK, in a very thin region

known as the transition region. This is the start of the corona. The corona is so hot it is

now observable in soft X-rays. It is also very sparse, being some 8 orders of magnitude

less dense than the photospheric plasma.

This inversion in the temperature gradient in the chromosphere and subsequent

large increase in temperature in the solar corona raises some important questions. One

would expect the temperature to fall off with radius from the surface, as energy is

radiated away. However, there is a rise in temperature from a few thousand K to MK.

There must be some mechanism which heats the plasma at these radii.

The heating of the chromosphere is thought to be related to acoustic modes

generated in the solar interior. The convection zone beneath the surface is a turbulent

flow and therefore capable of generating acoustic waves which propagate in all directions.

Because of the strong density decrease with radius, outwardly propagating waves will

increase in amplitude due to energy conservation. These waves will eventually form
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shocks, and these shocks dissipate their energy into the chromosphere and heat the

plasma there. The upper chromosphere requires more heating and other types are waves

are thought to provide this heating. It has long been known that strong magnetic fields

exist in the solar atmosphere (Hale, 1908). Indeed as will be shown in later sections, the

strong activity seen in the solar atmosphere is due to the magnetic fields present. In the

presence of magnetic field, there is a new class of waves called magnetohydrodynamic

(MHD) waves, which can carry energy from the surface into the upper chromosphere

and dissipate their energy by various mechanisms.

The heating of the corona is far from understood and is a topic of much interest

today. Both wave related and non-wave heating mechanisms have been suggested as

possible mechanisms for the coronal heating problem (Erdélyi, 2005). One of the main

candidates is magnetic reconnection. The magnetic fields present in the solar atmosphere

are displaced by motions of the plasma and this can cause field lines of nearby fields to

approach one another and reconnect. At the point of reconnection energy is dissipated

into the plasma, and this heats it up.

There is still some debate as to which is the most likely candidate for coronal

heating. As well as reconnection the damping of MHD waves by various mechanisms

such as resonant absorption and mode-coupling, as well as turbulent and viscous heating

have all been suggested. It is most likely that all the proposed mechanisms contribute

to the heating in some way which gives the corona the temperatures observed. For a

review of the coronal heating problem as it stands today see Ulmschneider and Musielak

(2003); Erdélyi (2005); Klimchuk (2006).

The temperatures in the solar atmosphere can be inferred directly from observa-

tions. Vernazza et al. (1981) used extreme ultra violet (EUV) observations to determine

models for the photosphere, chromosphere, and transition region. This was done by

solving the statistical equilibrium, hydrostatic equilibrium and radiation equations to

obtain the temperature and density stratification, as a function of height, which gave

spectrum closest to the observed ones. Figure 1.5 shows calculated temperature and

density profiles based on observations of EUV wavelength emission of the quiet Sun

(referred to in Vernazza et al. (1981) as the VALC model).
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Figure 1.4: The temperature and density in the solar atmosphere. Courtesy Eugene
Avrett, Smithsonian Astrophysical Observatory.

Figure 1.5: Density (left panel) and temperature (right panel) profiles in the low solar
atmosphere showing the photosphere, chromosphere and transition region (TR). Values
were obtained from the VALC model of the quiet Sun.
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1.4 Plasma Physics

If the temperature of a gas is increased beyond a certain limit, it does not remain a gas:

it enters a regime where the thermal energy of its constituent particles is so great that

the electrostatic forces which ordinarily bind electrons to atomic nuclei are overcome.

Instead of a hot gas composed of electrically neutral atoms, there are two populations

composed of electrons and ionised nuclei. This is a plasma, and its most notable feature

is its high electrical conductivity.

The Sun is made of plasma, as are most stars. In addition, the Earth is sur-

rounded by the plasma of the magnetosphere. On earth, plasmas occur naturally in

lightning and the aurora. Indeed the plasma state can be said to dominate the visible

universe. The practical terrestrial applications of plasmas are also extensive ranging from

small scale production of electrical components to thermonuclear fusion power gener-

ated in magnetically confined plasmas. The study of plasmas is therefore a worthwhile

field in modern physics.

There has been much development in theoretical techniques to describe plasmas.

These techniques can be broadly split into two regimes. The first is based on treating

a plasma in a similar way as a gas is treated. A plasma is a collection of charged

particles, each moving under the influence of the magnetic fields created by all the

other particles. This leads to plasma kinetic theory, which has been extremely useful in

applications where particle interactions are important. The second regime is provided

by fluid dynamics. Looking at the macroscopic properties of a plasma, it resembles a

fluid with a high electrical conductivity, eg. a liquid metal. This fluid interacts with the

electromagnetic fields permeating it, and can be described by the equations of Magneto-

Hydro-Dynamics (MHD). This approach is useful for studying large scale phenomena in

plasmas. The MHD description can be obtained from the kinetic theory, and requires a

number of assumptions and consequently drops certain physics as macroscopic properties

are obtained from averaged microscopic properties of the plasma.

Before describing the MHD approach to plasmas it is pertinent at this point to

introduce some basic plasma properties which will be useful in later sections.
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1.4.1 Plasma Properties

Single particle motion

The charged particles that constitute a plasma are influenced by the electro-magnetic

(EM) fields present in the plasma. One way of looking at plasmas is as a collection

of particles, each subject to its own governing EM fields which are created by the

summation of EM fields due to the motion of other particles, as well as by external

drivers. The equation of motion for each particle of charge q, having velocity v, in

external electric field E and magnetic field B is

mv̇ = q(E + v ∧B) (1.8)

ẋ = v. (1.9)

Consider the motion of a single charged particle in a uniform magnetic field, with E = 0.

Splitting the equation of motion into components parallel (‖) and perpendicular (⊥) to

the magnetic field gives

v̈⊥ = −ωc
2v⊥ (1.10)

v̈‖ = 0 (1.11)

with

ωc =
eB

m
(1.12)

known as the gyrofrequency. This motion consists of circular motion about a fixed point

known as the guiding centre, and the constant motion of this guiding centre along the

field line. In other words the particle traces a helix about the magnetic field-line. The

gyro-radius is the radius of this helix and is

rL =
v⊥
ωc

(1.13)

When other forces are present such as the electrostatic force, or when the magnetic field

is not constant, the guiding centre undergoes more complex motions.
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Collective behaviour

Plasmas exhibit collective behaviour. To exhibit what is meant by collective behaviour,

it is necessary to introduce the concept of Debye screening. If a positive test charge

Ze is placed in a plasma, it will attract electrons and repel ions in such a way that its

Coulomb potential φc = Ze/4πǫ0r is attenuated at distance beyond a certain distance

which is called the Debye length. To calculate the Debye length the potential φ(r)

generated by this test charge needs to be found. Assuming the plasma is in thermal

equilibrium, the ion and electron distribution distributions are of the Maxwell-Boltzmann

form

fj(x,v) = n0exp

(

−
mv2

2kBT
+

ejφ

kBT

)

(1.14)

where j = i, e and the densities are nj(r) = n0exp(ejφ(r)/kBT ), with kB Boltzmann’s

constant. The potential must satisfy Possion’s equation

∇2φ =
1

ǫ0
ρr (1.15)

where ρr =
∑

j ejnj(r). Assuming spherical symmetry and that eφ/kBT << 1 this has

solutions

φ =
A

r
exp

(

−
r

λd

)

(1.16)

where A is a constant and

λd =

(

ǫ0kBT

2n0e2

)
1

2

(1.17)

is the Debye length. To find the constant A the solution must be matched to the bare

potential of the test charge at a distance r which is small compared to the interparticle

distance n
− 1

3

0 . This gives A = Ze/4πǫ0 provided the condition

n
− 1

3

0 << λd (1.18)

holds. This condition stipulates that the number of particles in a debye sphere (sphere

of radius λd) is much greater than one. This condition needs to be satisfied if an ionised

gas is to be called a plasma. Another condition is that the typical length scale of the

plasma L must be greater than the Debye length

L >> λd. (1.19)
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Another example of collective behaviour in plasmas is plasma oscillations. Con-

sider a collection of ions and electrons, where me << mi, such as a Hydrogen plasma.

Now imagine that an electron distribution in a quasi-neutral collection of ions and elec-

trons is displaced by a small amount x. The electrons will experience a restoring force

F = −eE where the electric field E is created by a higher concentration of positive

charge, Q, left by the electrons. The electron will oscillate about their equilibrium

position. Using Gauss’ law
∫

S
E.dS =

Q

ǫ0
(1.20)

where S is a Gaussian surface enclosing the displaced electron distribution, dS its normal,

and ǫ0 the permittivity of free space, the restoring electric field can be found.

E =
enx

ǫ0
(1.21)

The equation of motion of the electron distribution is then

meẍ = −eE (1.22)

or

ẍ+
e2n

ǫ0me
x = 0 (1.23)

which represents simple harmonic motion about the equilibrium position with frequency

ωpe =

(

e2n

ǫ0me

)

1

2

(1.24)

which is known as the electron plasma frequency and is the fundamental frequency of

plasmas. If

τ >>
1

ωpe
(1.25)

where τ is a characteristic timescale, then these oscillations can be ignored and the

plasma is said to be quasi-neutral ni = ne.

1.4.2 The MHD Approximation

The evolution of particles in a plasma is formally described by the Boltzmann equation,

which details the evolution of a distribution function in phase space and time.

∂fα
∂t

+ v.∇rfα(r,v, t) +
Fα

mα
.∇vfα(r,v, t) =

(

∂fα
∂t

)

coll

= Cα (1.26)

14



fα(r,v, t) is the density of particles having velocity v at position r at time t. The forces

acting on the particles can be separated into the EM forces due to electric and magnetic

fields Fα = qα(E+vα∧B) and forces due to collisions Cα. ∇r and ∇v are the gradient

vectors in space and velocity respectively.

A complete study of a plasma involves solving the Boltzmann equation for the

particles and the Maxwell equations for the EM fields. Once these are solved the macro-

scopic quantities of interest can be found by integration of fα over velocity space.

The full set of Boltzmann-Maxwell equations are virtually impossible to solve

except for trivial cases. The situation is very complicated when collisions are important,

as the Boltzmann equation is actually an integro-differential equation. Thus simpler

models, albeit with a smaller scope of applicability, have been adopted. The MHD

approximation is such an approach. Magneto-Hydro-Dynamics on a basic level treats a

plasma as a conducting fluid permeated by magnetic field. This magnetic field may be

externally applied, produced by currents flowing in the fluid, or a combination of both.

The governing equations of MHD resemble the equations describing a fluid, such as the

Euler equation, but with the action of the magnetic field on the plasma flows included

(the Lorentz force).

The MHD equations are arrived at by taking moments of the Boltzmann equation

and integrating over velocity space. This gives fluid equations for each species of the

plasma. These fluid equations can be combined into single fluid equations for the whole

plasma by averaging over parameters such as velocity and momentum. For a fully ionised

plasma this is relatively simple as the heavy ions carry almost all the momentum, and

the average velocity is determined by their velocity. The MHD equations are given here

in eulerian form.

∂ρ

∂t
= −∇.(ρv) (1.27)

∂ρv

∂t
= −∇.(ρv) + j ∧B−∇P +∇.Π (1.28)

∂B

∂t
= ∇∧ (v ∧B)−∇ ∧ (ηj) (1.29)

∂ρǫ

∂t
= −∇.(ρǫv)− P∇.v + ηj2 +ΠijSij (1.30)

ρ is the mass density of the plasma as a whole, v is the centre of mass velocity, P is
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the gas pressure, B is the magnetic field, and j = ∇∧B
µ0

the current density, where µ0

is the permeability of free space. ǫ is the total specific internal energy density, given

by ǫ = P
(γ−1)ρ . Π is the stress tensor which, in the absence of magnetic field, has

components

Πij = ν(sij −
1

3
δij∇.v) (1.31)

and

sij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

). (1.32)

When magnetic field is present, the stress tensor is slightly more complicated (Braginskii,

1965).

Equation (1.27) is the conservation of mass, equation (1.28) is the conservation

of momentum which looks similar to the Navier Stoke’s equation for a fluid but with

the Lorentz force added. Equation (1.30) is the conservation of internal energy density.

The Lorentz force can be split into two terms via

j ∧B =
1

µ0
[(∇∧B) ∧B] =

(B.∇)B

µ0
−∇

(

B2

2µ0

)

. (1.33)

The first ismagnetic tension, which resists bending of magnetic field lines and the second

is magnetic pressure which represents the magnetic fields pressure on the plasma.

An important parameter in MHD is the so-called plasma β. Consider the the

Lorentz force and the pressure gradient in the momentum equation. The plasma β is

defined as

β =

∣

∣

∣

∣

∇P

j ∧B

∣

∣

∣

∣

∼
P
B2

µ0

. (1.34)

If the magnetic pressure is greater than the gas pressure, then β is much less than

unity. So for a low beta plasma in equilibrium, the momentum equation, neglecting

gravitational and viscous terms reduces to

j ∧B ≈ 0. (1.35)

Equation (1.29) is known as the induction equation. It is a result of combining

Faraday’s law of induction
∂B

∂t
= −∇ ∧E (1.36)

16



and a closing equation called Ohm’s law. Ohm’s law describes how the currents in the

plasma are driven by EM fields and retarded by collisions between particles. It can be

thought of as simply relating the current density to the electric field. As will be shown

in future chapters, this can be extremely complicated. In resistive MHD the only terms

retained are the electric field in the rest frame of the fluid, the current density and the

resistivity, which is related to the momentum transfer between particles during collisions.

E+ v ∧B = ηj (1.37)

Combining Ohm’s law and Faraday’s equation gives the resistive induction equation.

This can be recast using the definition of current density j = ∇∧B
µ0

.

∂B

∂t
= ∇∧ (v ∧B) +

η

µ0
∇2B (1.38)

An important parameter of resistive MHD is the magnetic Reynolds number, given by

the ratio of the two terms in the induction equation. The first is the advection term

v ∧B and the second is the diffusion term η∇2B
µ0

.

Rm ≈
µ0Lv

η
(1.39)

where L and v are characteristic lengths and velocities. If Rm is high then the diffusion

term is negligible and the evolution of the magnetic field is determined by advection

by the fluid velocity. In this regime, called ideal MHD, the magnetic field lines are

essentially frozen in to the field. If Rm is low then the advection term is negligible and

equation (1.38) becomes a diffusion equation for the magnetic field.

In addition to these equation, an equation of state is needed, which relates the

pressure, specific internal energy density and mass density. A simple example would be

the ideal gas equation, which, within the context of MHD can be written as

P = ρǫ(γ − 1). (1.40)
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The MHD equations (1.27)-(1.30) can also be written in Lagrangian form

Dρ

Dt
= −ρ∇.v (1.41)

ρ
Dv

Dt
= j ∧B−∇P +∇.Π (1.42)

DB

Dt
= (B.∇)v −B(∇.v) −∇ ∧ (ηj) (1.43)

ρ
Dǫ

Dt
= −P∇.v + ηj2 +ΠijSij (1.44)

where

D

Dt
=

∂

∂t
+ v.∇ (1.45)

is the Lagrangian derivative.

Conditions of applicability of MHD

The MHD equations treat a fully ionised plasma as a single fluid threaded by magnetic

field lines. Hence the general condition for a fluid approach should be satisfied in that

the plasma be collision dominated. This means that the smallest scale δx considered

must be much larger than the mean free path of collisions λf .

λf << δx (1.46)

This smallest scale would typically be the scale over which the fluid variables change.

If condition (1.46) is satisfied then the MHD timescale δt is long enough for there to

be sufficient collisions between particles. This also means that δt is longer than the

time required for light to cross the system, and justifies the neglect of the displacement

current in the equation for the current density

j =
∇∧B

µ0
. (1.47)

The MHD approach also assumes the plasma is quasi-neutral in that there is no local

build up of charge. This is satisfied if the Debye length λD is much smaller than the

MHD length scale.

λD << δx (1.48)
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In addition MHD also assumes that the current is carried by mobile electrons, while the

fluid momentum is carried by the heavier ions. This is true if the length scale is much

larger than the ion gyro-period.

rLi << δx (1.49)

In order to justify modeling the Sun in the MHD limit these criteria must be

satisfied for the solar plasma. The requirement that relativistic effects are negligible is

generally true in the solar plasma as thermal velocities are at most two orders of mag-

nitude smaller than the speed of light. The ion-gyrofrequency in the solar atmosphere

is about 50 kHz for protons, and as the processes and phenomena investigated in this

thesis occur on time scales greater than a second, typical time scales are longer than the

gyro-period, and therefore typical length scales are longer than the gyro-radius so that

(1.49) is satisfied. In addition condition (1.48) is satisfied due to the large length scales

of the solar plasma. In the solar corona, the low densities mean that the mean free path

can be very large, so that condition (1.46) is not strictly applicable. However, as the

plasma is of low density, collisions are generally not a significant contributor to the be-

haviour of the plasma, and MHD is still a good working model for the solar atmospheric

plasma.

1.5 Solar Activity and Magnetism

For 2000 years astronomers have been attracted by solar activity: At first by observations

of sunspots, including the variation in number and appearance. Later by actual sunspot

structure, and later still by observations in ultraviolet of structures in the atmosphere

above sunspots. It is well accepted that the activity seen on the surface and in the

atmosphere (the chromosphere, corona and solar wind) is almost entirely caused by the

magnetic field of the Sun.

1.5.1 Sunspots

Perhaps the simplest and most easily observable activity one can observe on the solar

surface are sunspots. When viewing the Sun with the naked eye, the observer sees the
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photosphere. This is where the majority of white light radiation from the Sun originates

from. The plasma here goes from optically thick to optically thin in the visible spectrum

over a thin region (500 km). Rather than being homogeneous the surface of the Sun

has several dark spots, known as sunspots. They are observed by Zeeman splitting of

spectral lines. It was suggested by Hale (1908) that these spots appear dark because

of the presence of magnetic fields. Magnetic fields of intensities of the order of KG

can produce such a splitting of the observed lines. In more recent times, the Zeeman

effect has been used to detect weaker magnetic fields (Babcock, 1953), as well as all 3

components of the field (Severny, 1964).

Sunspots are typically 2− 6× 107m in size. They appear dark because they are

actually cooler than their surroundings. Typical sunspots temperatures are 3700K with

the photospheric temperature being 6000K. Sunspots are cooler because the presence of

magnetic field can inhibit the flow of energy by convection in the underlying convection

zone.

The sunspot can be divided into two regions: the umbra, where the magnetic

field is mostly vertical, and the penumbra, where the field is almost horizontal. These

regions can be seen in figure 1.6. The cool dark umbra is at the centre, and a distinct

radial structure can be seen in the penumbra. Sunspots can be explained by foot points

of vertical flux tubes which extend into the atmosphere above. The plasma pressure

drops off with height in the solar atmosphere, and since total horizontal pressure balance

must be maintained, the magnetic pressure must also decrease. In order that the total

magnetic flux in the tube be constant, then the radius of the tube must increase with

height. Thus the sunspot must expand outwards rapidly with height, which explains the

existence of the penumbra.

1.5.2 Granulation

Looking at the surface of the Sun, with a telescope of around 20cm or greater in

diameter, a cellular pattern is seen on the surface of the Sun. This pattern, called

granulation, was first observed back in the 19th century by Sir William Herschel. A

typical granular pattern is shown in figure 1.6. Bright granules are seen on top of a
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Figure 1.6: Sunspot structure showing the dark umbra in the centre of the filamentary
penumbra and the background granulation pattern. Courtesy Vacuum Tower Telescope,
National Solar Observatory and National Optical Astronomy Observatory.

background of dark inter-granular lanes. Granules are hot upward moving parcels of

gas, while the inter-granular lanes are cooler, downward flowing plasma. Granulation is

merely a consequence of the convection going on in the convection zone beneath the

surface. Typical granule sizes go up to 1000 km. Granulation is a continuously ongoing

process. Granules merge, die out and new ones reform, with a typical lifetime of a

granule being up to 20 minutes.

Looking over larger and larger scales, other scales of granulation can be seen. By

tracking ’active’ granules, i.e regions which have continuous reproduction of granules, a

bigger scale of granulation known as meso-granulation can be detected. The reason for

this larger scale is not exactly known, but it is merely thought of as a larger version of

granulation.

Leighton et al. (1962), using Doppler shift measurements of radiation from the

surface, found a cellular pattern distributed uniformally over the Sun with a typical

spacing of 30000km between cell centres. This super-granulation is generally interpreted

as large scale convection currents that originate deep in the convection zone (Simon and
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Figure 1.7: SOHO-EIT image from 14 September 1997 showing a huge eruptive promi-
nence in the resonance line of singly ionised helium (He II) at 304 Angstroms in the
extreme ultraviolet. The material in the eruptive prominence is at temperatures of 60,000
- 80,000 K, much cooler than the surrounding corona, which is typically at temperatures
above 1 million K. Courtesy European Space Agency and NASA.

Leighton, 1964).

1.5.3 Coronal Structures

As the temperature of the solar atmosphere increases with height, the plasma under-

goes the transition to optically thin in the ultra-violet wavelength range, and so UV

observations are required to observe the plasma at these heights. Figure 1.7 shows an

image from the Extreme ultraviolet Imaging Telescope (EIT) on the Solar Heliospheric

Observatory spacecraft (SOHO). The regions directly above sunspots appear as bright

regions, showing that the plasma is either denser or hotter and hence visible in the EIT

bandpass.

These active regions are directly related to the magnetic fields associated with

the sunspots below. Looking more closely at these active regions in the corona a large

amount of structure can be seen. Figure 1.8 shows a UV image taken from the Transition

Region and Coronal Explorer (TRACE). Hot plasma is being held in loop-like structures
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Figure 1.8: A coronal arcade taken by TRACE on November 15th 2000. Courtesy
TRACE consortium and NASA.

called coronal loops. These loops are caused by the magnetic field lines of the magnetic

field in active regions. Typical loop lengths are 107 m. As can be seen in figure 1.8 these

loops can form arcade structures. The motions of the plasma at the solar surface cause

the footpoints of these loops to move around which can cause field lines to entangle

and reconnect. This reconnection is a possible source of heating of the solar corona.

1.5.4 Prominences

Prominences (also called filaments) are regions of cool dense plasma supported high in

the corona by magnetic field. They appear as dark-ribbon like structures on the disk

of the Sun, but when observed on the limb they are brighter than the surroundings

as the corona is of such low density, and the intensity of radiation is proportional to

the square of the density. Prominences can be split into two broad types. Quiescent

prominences are located away from active regions, and have lifetimes of about 200 days.

They have temperatures between 5000 and 10000 K, and typical number densities of

1016 − 1017m−3. Typical dimensions of quiescent prominences are lengths of 2× 108m,
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widths of 6× 106m and heights of 5× 107m. Active region prominences have a much

smaller lifetime, and are denser (> 1017m−3) and smaller by factors of about 3-5.

Typical measurements of the lines of sight magnetic field for prominences are around

10G. A limb prominence can be seen in figure 1.7.

For prominences that exist for many Alfvén time scales, they can be regarded as

globally stable equilibria. When critical conditions are met, they can become unstable

and erupt. Oscillations have also been observed in prominences (Oliver and Ballester,

2002).

One problem associated with prominences is to explain how a cool plasma can

be formed in the surrounding hot plasma. A possible mechanism is a thermal instability,

originally suggested by Parker (1953). This is based on that fact that, for certain

temperatures, a small amount of cooling can actually increase the radiative loss of

energy, thus causing a run-away instability. The instability stops when the radiative loss

function no longer increases with decreasing temperature.

1.5.5 Flares

Solar flares are rapid brightenings in Hα in the chromosphere due to the release of a

large amount of magnetic energy. The largest of flares are amongst the most violent

events in the solar system. A typical large flare releases 1025J of energy in the period

of about an hour. The only possible source of this energy in the corona is the magnetic

field (Hood, 1996). Flares come in two categories, two-ribbon flares and simple-flare

loops.

Two-ribbon flares are large events associated with the eruption of active-region

filaments where there is significant restructuring of the magnetic field. Two bright bands

of emission in Hα are seen, which give the two-ribbon flare its name. This phase of the

flare involves the most energy release. Afterwards, post-flare loops are seen connecting

the two regions of emission.

Simple-loop flares are much smaller, releasing only 1023J . They consist of single

loops or groups of loops that brighten without any major change in their overall shape.

The modeling of flares is an active areas of solar physics, as there exist no detailed
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models that can predict all the features present in a typical flare. One common feature

of flare models is that the energy is stored in coronal magnetic field. Motions on the

surface can inject stress into the magnetic field associated with coronal loops. Current

models suggest that an MHD instability can trigger magnetic reconnection, which will

accelerate particles and release energy into the plasma.

1.5.6 CME’s

Coronal mass ejections, or CME’s, were first observed by OSO-7 (Orbiting Solar Ob-

servatory) in 1973, and later by Skylab in 1974, and are now seen by SOHO (Solar

Heliospheric Observatory). CME’s are essentially large scale magnetic structures being

expelled from the Sun. They are caused by MHD processes in closed magnetic field

regions, such as active regions, prominences and coronal arcades. It has been suggested

that the emergence of new flux near closed magnetic field regions is directly linked to

the onset of CME’s (Feynman and Martin, 1995; Wang and Sheeley, 1999). CME’s have

been detected along the entire Sun-Earth distance (Manoharan et al., 1995), and can

influence the interplanetary medium.

The initiation of CME’s is still a strong topic of debate. Some CME’s are asso-

ciated with flares, and some have no associated chromospheric activity. A large number

of flares are associated with eruptive prominences, and the eruption of prominences is a

strong candidate for the onset of CME’s (Wu et al., 2000). Another view is that CME’s

result from an untwisting of magnetic field lines, such as the kink instability.

Typical ejection speeds are > 1000 km/s for energetic CME’s, but as low as

10 km/s for CME’s with no associated chromospheric activity, such as those seen near

solar minimum. Typical mass ejected in a CME is 1013kg, giving a kinetic energy of

1032 ergs, combining this with the magnetic energy gives a total energy comparable to

or larger than the energy released in flares.

For flare-related CME’s, it is not the flare that causes the onset of ejection, as

CME’s sometimes precede flares. However, flares, erupting prominences and CME’s may

all be caused by a loss of MHD equilibrium.
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Figure 1.9: The ’Butterfly’ diagram. Top panel shows latitude of emerging sunspots as
a function of time. Bottom panel shows total averaged number of sunspots. Courtesy
NASA.

1.5.7 The Solar Cycle

The activity on the solar surface and in the atmosphere above undergoes temporal vari-

ations on time scales much longer than the individual phenomena previously mentioned.

This was first noticed in the number of sunspots appearing on the solar surface. The

number of sunspots appears to wax and wane on an 11 year cycle, first discovered by

Schwabel in 1844, and can be seen in figure 1.9.

Sunspots appear at latitudes below ±35o. Another interesting feature of the

sunspot cycle is that at the start of the cycle, new sunspot groups appear at 30o − 35o

latitude, and towards the end of the cycle new groups appear at lower latitudes. This

latitude migration can be seen in figure 1.9.

Sunspots usually occur as two bipoles of opposite polarity. The imaginary line

connecting the two bipoles is always angled at to the equator, with the leading sunspot

closest to the equator. This is known as Joy’s law. The polarity of the leading sunspot is

opposite for the northern and southern hemisphere. However, every 11 years, the polarity

of a leading sunspot in a given hemisphere reverses (Hale’s law). This 11 year switch

coincides with the reversal of the Sun’s general poloidal field, which can be measured
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by summing up the small scale poloidal field on the surface.

It is not only sunspots that exhibit cyclic behaviour, EUV observations of the

solar corona show that the number of active regions is larger at times of solar maximum

than at solar minimum. At times of maximum more flares and CME’s are observed.

Furthermore the Sun’s global field resembles a simple dipole structure at solar minimum,

but is extremely complicated at solar maximum.

1.5.8 The Solar Dynamo

The fact that the magnetic field of the Sun, on both small and large scales, exhibits cyclic

behaviour, with minima and maxima occurring regularly suggests that there is some kind

of regeneration of magnetic field going on. Any ’fossil’ field left over from the formation

of the Sun must by now have dissipated away, as the time scale for magnetic diffusion

for the whole Sun is much less than its age. This leads to the idea of a solar dynamo

which regenerates magnetic field.

The idea of a dynamo in the context of MHD is based on the concept that motion

of an electrically conducting fluid across magnetic field induces currents which generate

more magnetic field. This regeneration acts against the continuous drain of energy due

to the resistance of the fluid. Looking at the resistive induction equation (1.38), if the

inductive process (represented by the advection term) outweighs the resistance to the

currents (represented by the diffusive term), then magnetic field can be amplified by the

velocity flows of the electrically conducting fluid.

An ideal investigation into the dynamo of the Sun would consist of large scale

numerical simulations treating the entire Sun in the MHD approximation, However, this

is difficult due to the vast range of scales and parameter regimes. It is more instructive

to consider basic dynamo properties and then try to apply them to the Sun to see where

they can operate.

The dynamo problem is often simplified by neglecting the feedback of the mag-

netic field on the flow (Lorentz force). By then specifying a velocity field, a small ’seed’

field can be amplified if certain conditions are met. This is the well-known ’kinematic

dynamo’. Problems lie even in this idealised set-up, however. Cowling, in 1934 derived
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the ’anti-dynamo’ theorem, which shows that a steady axi-symmetric magnetic field

cannot be maintained by a dynamo. Other anti-dynamo theories followed shortly after,

showing that other simple cases can be ruled out.

The solution for the kinematic dynamo came about by considering dynamo action

in a different way by splitting the magnetic field into two components, poloidal (N-S)

and toroidal (E-W). The kinematic dynamo can be made to work provided that a velocity

field can be found which regenerates both the toroidal field and the poloidal field.

Thinking about the Sun, an obvious velocity flow to consider is the differential

rotation observed at the surface and in the convection zone below. Differential rotation,

if the plasma is highly conducting (High Rm), is able to ’stretch out’ poloidal field into

toroidal field. This is known as the ω-effect. Now all that is required is to find a reverse

process, a way of converting toroidal field into poloidal field, and the cycle is complete.

This reverse process is much more complicated, and still under considerable

debate today. In 1955, Eugene Parker suggested that small scale helical motions, which

are present in convection in a rotating body such as the Sun, can twist toroidal field into

loops of field in the meridional plane. The sum of these loops gives rise to a large-scale

poloidal field, therefore completing the cycle. This process is known as the α-effect.

Having described the basic process of how a dynamo can operate, these now need

to be related to the Sun, to determine where the solar dynamo can operate. As these

processes involve convection and differential rotation, the convection zone appears to

be an ideal choice. Models which distribute the solar dynamo over the whole convection

zone have been successful in reproducing qualitative features of large scale field in the

Sun (Stix, 1976). However, a dynamo which operates solely in the convection zone is

incapable of producing the strong magnetic fields which are found within active regions.

Parker (1979) showed that regions of concentrated magnetic field will buoyantly rise

to the surface on time scales much shorter than the solar cycle period, and that it is

doubtful that magnetic field can be held in the convection zone until it is concentrated

to the observed field strengths.

Turbulent motions also inhibit dynamo actions, as they tend to expel magnetic

field from regions of high concentration. However, because of this expelling these helical
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motions are also capable of concentrating magnetic field beneath the convection zone in

a convectively stable region (Spiegel and Weiss, 1980). This leads to a modified model

for the dynamo, with the regeneration process occurring beneath the convection zone

(Galloway and Weiss, 1981). Magnetic field will be less susceptible to buoyancy, and

can be concentrated to stronger values. However, it will also be less amplified by the

turbulent convection. This is called α-quenching.

It remains to see if large scale field can be generated at the base of the convection

zone. The solution to this problem comes from helioseismology, which can infer the

internal rotation of the Sun. The tachocline, a region of large radial shear, where the

rotation of the Sun goes from differential to solid body rotation in a small shell, is of

particular importance. It is the strongest site of velocity shear in the Sun, and thus an

ideal candidate for the seat of the ω-effect. Parker (1993) came up with the interface

dynamo. The two processes are spatially separated, with the α-effect occurring in the

turbulent convective layer, and the ω-effect occurring in the shear layer below. This

model circumnavigates the α quenching issue as it allows strong toroidal field to be

generated away from the seat of the α-effect (Charbonneau and MacGregor, 1996).

The interface dynamo has since been developed further. Magnetic field can

be driven up from the tachocline into the convection zone by an instability called the

magnetic buoyancy instability (MBI). The MBI is a Rayleigh-Taylor like instability that

occurs when magnetic field can hold up denser gas due to magnetic pressure. A mecha-

nism is needed to return this flux to keep the interface dynamo efficient. The mechanism

suggested is the downward expulsion of flux by turbulent convection (called magnetic

pumping). Numerical simulations have tested this mechanism and shown it to be im-

portant for the interface model (Tobias et al., 2001).

This leads to the current solar dynamo model. Toroidal field is generated by

shearing in the tachocline. This field is then susceptible to the magnetic buoyancy

instability and rises into the convection zone, where poloidal field is generated by the α-

effect. The convection zone acts as a filter. If the field is strong enough, it continues to

rise though buoyancy to the surface, giving rise to the active regions observed. Weaker

field is churned up by convection, and is returned to the tachocline by magnetic pumping.
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The entire process is repeated, and gives rise to the observed solar cycle of magnetic

phenomena on the surface.

It is important to know that this is far from the final answer. As yet full numerical

simulations of a complete dynamo do not exist. Instead each process is being investigated

separately (Ossendrijver, 2003). Also, many aspects of the α-effect are still under

considerable debate. One of the main problems is that results from numerical simulations

(Cattaneo and Hughes, 1996) show that α-quenching is more severe than once thought,

this has lead to other mechanisms being suggested for the generation of poloidal field.

Suggestions to date include the α effect operating at the surface, the Leighton-Babcock

model (Babcock, 1961; Leighton, 1969), and even a tachocline based α-effect. For a

full review see Bushby and Mason (2004). What is generally accepted is that the ω-

effect is seated in the tachocline at the base of the convection zone, and that strong

enough fields are unstable and rise to the surface to give the observed active regions

and associated phenomena such as sunspots and coronal loops.

1.6 Magnetic Flux Emergence

It is now accepted that the active regions on the Sun are a result of the buoyant rise

of magnetic flux from the convection zone. Parker (1955) was the first to suggest that

sunspots could be formed from an underlying toroidal magnetic flux concentration, and

as a result introduced the concept of magnetic buoyancy.

Imagine a magnetic flux tube in the convection zone. In equilibrium the total

pressure must balance internally(i) and externally(e) so that

Pe = Pi +
B2

2µ0
(1.50)

which means that the tube has less gas pressure inside than outside pi < pe. Assuming

that the flux tube is in thermal equilibrium with the surrounding plasma this means that

ρi < ρe and the tube is less dense than its surroundings and therefore buoyant.

The flux that rises to the surface and forms sunspots must also be the field that

forms active regions. Dynamo actions can occur on the surface, but they are not strong

enough to produce KG fields, so cannot produce the strong magnetic fields associated
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with large scale active regions. Predictions from current dynamo models suggest that

strong (105G) magnetic fields is capable of rising to the surface from the convection

zone., and this is the magnetic field that forms these active regions.

This idea of flux rising to the surface and into the atmosphere is known as flux

emergence, and is of considerable interest to both the study of the solar dynamo and

the study of magnetic field in the solar atmosphere. It provides a way of coupling these

two manifestations of the Sun’s magnetic field, and can give insight into the structure

and behaviour of various atmospheric phenomena.

Large scale field in the tachocline is unstable to the magnetic buoyancy instability,

and can give rise to the formation of loops or flux tubes, which can rise up to the surface

on time scales of months (Moreno-Insertis, 1986; D’Silva and Choudhuri, 1993; Caligari

et al., 1995; Fan et al., 1994). As mentioned in the previous section (1.5.8), large fields

can continue to rise, while small fields are ’pumped’ back into the tachocline.

Magnetic flux tubes will tend to rise in the convection zone, because the initial

magnetic buoyancy pushes plasma upwards, and due to the super-adiabatic nature of

the convection zone (section 1.2.1), they continue to rise to the surface. During the

rise, the roots of the flux tube remain close to the base of the convection zone, while the

apex rises across the convection zone and eventually erupts at the photosphere (Zwann,

1978; van Ballegooijen, 1982; Moreno-Insertis, 1986).

Figure 1.10 shows a cartoon picture of flux emergence, along with its place in

the current solar dynamo model. In this model a flux tube rises to the surface while its

roots remain tied to the original layer at the base of the convection zone.

Since Parker (1955) suggested that sunspots could be formed from toroidal field

at the base of the convection zone, there has been much interest in flux emergence. As

in the majority of studies of fluid dynamics, numerical experiments must be performed,

as the governing equations cannot be solved analytically. An ideal experiment would

simulate the full evolution of a rising magnetic flux tube, which begins with unstable

magnetic field at the base of the convection zone, and ends with the erupting flux forming

new active regions at the surface. However, a simple look at the problem throws up some

difficulties in this approach. The density stratification drops by 6 orders of magnitude
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Figure 1.10: Schematic diagram showing the idea of flux emergence and its relation
to the solar dynamo. (0) and (1) show the generation and destruction of small scale
magnetic field in the convection zone. (2) and (3) show the transport of magnetic field
from the tachocline into the convection zone and flux pumping in the reverse direction.
(4) shows the formation of flux tubes from the toroidal field. (5) and (6) show the
generation of poloidal field by helical turbulence. (7) shows the emergence of the flux
tube into the atmosphere and the formation of an active region. Courtesy N H Brummel.
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from the base of the convection zone to the surface, and the density drops off further

in the atmosphere also. In addition the convection zone is turbulent in nature, and an

ideal simulation must also be three dimensional. These factors make a full simulation

almost impossible with today’s computing power. In the past different approaches have

been used to investigate flux emergence.

Some of the properties of rising flux tubes can be well expressed through one-

dimensional models. For most of the evolution of a flux tube in the convection zone,

its radius is much less than the local scale height. The thin flux tube approximation

allows calculation of interesting properties of the rise of a flux tube in the convection

zone. For more on properties that can be extracted from one-dimensional studies see

Moreno-Insertis (1986); Choudhuri (1989); Moreno-Insertis (1992); D’Silva and Choud-

huri (1993); Fan et al. (1993). One of the most useful results from these kinds of studies

relates to the tilt angle of emerging active regions. The tilt angle is the angle between

the equator and the line connecting the two poles of the bipolar structure. For rising flux

tubes to give the correct tilt angle at the surface, the initial magnetic field concentration

must be between 105 and 106 G (D’Silva and Choudhuri, 1993; Fan et al., 1994; Caligari

et al., 1995; Fisher et al., 1995).

The thin flux tube approximation has been successful in explaining observed

properties but fails near the top of the convection zone where the radius becomes

comparable to the scale height. As a result two and three-dimensional studies become

the best way to investigate flux emergence. This allows the inhomogeneity in the tube

radius and along the tube axis to be included.

2D simulations by Schüβler (1979); Longcope and Fisher (1996) showed that

a flux tube with only a longitudinal component of magnetic field will suffer significant

deformation during its rise in the convection zone. The tube forms two vortex rolls and

a following wake which engulfs a large fraction of the rising tube. This can be likened

to a rising gas bubble that has no surface tension (Moreno-Insertis, 1997). A simple

solution to this is to use an azimuthal component of magnetic field, and the stresses

associated with this field can play the role of surface tension. The origin of this twist

has been considered by Moreno-Insertis (1997), and is related to the formation of the
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flux tube in the tachocline (Matthews et al., 1995). There are other effects which can

prevent fragmentation, such as rotation, but twist is thought to be the most likely.

The effect of twist on the buoyant rise of flux tubes in the convection zone has

been extensively studied (Moreno-Insertis and Emonet, 1996; Moreno-Insertis, 1997;

Emonet and Moreno-Insertis, 1998; Wissink et al., 2000). Without sufficient twist, a

flux tube will fragment and not survive the crossing of the convection zone. The twist

of a flux tube can be defined in terms of the axial (BA) and azimuthal (BT ) magnetic

field.,

q =
BA

rBT
(1.51)

where r is the radial distance from the centre of the tube.

A first order estimate of the minimum amount of twist q for a flux tube of radius

a to have to survive the crossing of the convection zone is

|qmin| =
1

a
. (1.52)

However, there is also an upper limit on the amount of twist a flux tube can have. Linton

et al. (1996) investigated the kink instability of isolated twisted flux tubes. The tubes are

stable provided that the twist is less than the critical value which depends inversely on

square root of the tube radius. Tubes that are created in the lower convection zone with

twist greater than this value will be destroyed by the kink instability during their rise.

This gives a range of twist that flux tubes must have to be able to survive the crossing

of the convection zone to the surface. However, a tube that is initially created with an

amount of twist within this range can become unstable to the kink instability for two

reasons. As the tube rises the drop in density in the convection zone cause significant

expansion of the tube radius. Firstly this causes the critical value of twist for onset of the

kink instability qcr to decrease due to the increase in a (Linton et al., 1996). Secondly

in order to conserve magnetic flux the average axial field decreases as the inverse of the

radius squared while the azimuthal field decreases much less, typically with the inverse

of the radius. This means that the amount of twist in the tube increases linearly with

the radius. These two effects mean that as a flux tube rises to the surface it can become

unstable to the kink instability. It is for this reason that the kink instability has been
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suggested as a mechanism for the formation of δ sunspot groups (Linton et al., 1998;

Matsumoto et al., 1998; Linton et al., 1999; Fan et al., 1999). These active regions

are characterised by large tilt angles upon emergence, and subsequent rotation and

development of large magnetic shear. If a stable tube can survive the convection zone

and then become kink unstable it could be a mechanism for the formation of δ-spots.

Given that a sufficiently twisted flux tube will reach the surface by buoyancy,

much work has been done to discover how the tube then expands into the atmosphere

above. The photosphere is convectively stable, so that buoyancy cannot drive flux into

the atmosphere. Magara (2001) showed that as the flux tube reaches the surface, its

vertical motion stops and a significant amount of horizontal deformation occurs. It is

this horizontal deformation which gives a possible emergence mechanism. A horizontal

layer of magnetic field is capable of holding up denser gas (by total pressure balance)

and therefore is unstable to a Rayleigh-Taylor like instability.

The emergence of magnetic field from the photosphere into the atmosphere

above has been studied extensively in recent years (Matsumoto and Shibata, 1992;

Matsumoto et al., 1993; Magara, 2001; Shibata et al., 1989; Shibata et al., 1989).

These authors studied the emergence of magnetic field held at the photosphere by

the convectively stable stratification. It was shown that these fields were unstable to

mixed modes of the magnetic buoyancy instability. The resulting expansion of magnetic

field was shown to match certain observational data of active regions. Nozawa et al.

(1992); Matsumoto et al. (1993); Shibata et al. (1990) modified the analysis by looking

at the effect of convection on the instability, showing how field held just beneath the

photosphere could emerge into the atmosphere above.

More recent simulations have combined the buoyant and expansive phases of the

emergence process, simulating rising magnetic flux tubes in the convection zone followed

by the expansion through the photosphere into the corona via the magnetic buoyancy

instability (Fan, 2001; Magara, 2001; Magara and Longcope, 2003; Manchester, 2001;

Manchester et al., 2004). In these simulations an isolated twisted flux tube is inserted

into the upper part of the convection zone which rises by magnetic buoyancy until it

reaches the stable layers of the photosphere. The resulting, predominantly horizontal,
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expansion leads to the formation of a magnetic layer which is unstable to the magnetic

buoyancy instability and this drives magnetic field into the atmosphere above.

Archontis et al. (2004) and Galsgaard et al. (2005) showed how this emerging

field would interact with a pre-existing coronal field, with the formation of current sheets

and jets occurring as a by-product of reconnection. This reconnection with coronal field

helps the flux tube to emerge through the lower atmosphere as field lines from beneath

the surface are reconnected to coronal field lines.

All these numerical simulations use a standard model for the solar atmosphere.

The model consists of an adiabatically stratified convection zone, isothermal photo-

sphere/chromosphere, isothermal corona and a transition region between the two isother-

mal regions. Furthermore the simulations are performed under the MHD approximation.

The MHD approach treats the plasma as fully ionised, so that the fluid momentum is

carried with the ions. However, the first ionisation potential of Hydrogen corresponds to

a temperature of 1.6 × 105K. Calculations of the temperature in the solar atmosphere

(Vernazza et al., 1981) show that the temperature minimum in the lower chromosphere

is well below this, about 4000 K. The plasma here is not fully ionised but weakly ionised.

The fluid now contains neutral atoms as well as ions and electrons. This means that in

these weakly ionised regions, the fully ionised approximation of MHD is not applicable.

The presence of neutrals in the plasma may have an important effect on the

evolution of magnetic fields in the solar atmosphere. The collisions between ions and

neutrals must now be considered in the governing equations. The evolution of magnetic

field is affected by collisions, and the inclusion of neutrals may have an strong effect on

this evolution.

All this means that the effect of partial ionisation on the evolution of mag-

netic field and therefore the plasma in the solar atmosphere could be very significant.

Moreover the emergence of magnetic fields through the partially ionised regions of the

solar atmosphere may well be very different to the fully ionised models used so far.

This warrants a full investigation into the effects of partial ionisation on magnetic flux

emergence.

This thesis aims to develop techniques to simulate the evolution of magnetic
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fields in a partially ionised plasma using a single fluid approach akin to MHD. Simulations

will be performed to see how partial ionisation effects flux emergence and what it means

for the evolution of the magnetic field and the subsequent structures formed in the solar

atmosphere.

1.7 Overview of the Thesis

This introduction has hopefully explained why the study of flux emergence is important

in solar physics, and given a sufficient introduction to the approach of MHD simulations

of flux emergence. The aim of this thesis is to develop numerical techniques and perform

simulations which include the effect of partial ionisation in MHD studies of flux emer-

gence, as to date all previous work assumes the solar atmosphere to be fully ionised. It

is hoped that the results presented will show the importance of these effects, and show

the consequences for the subject of flux emergence.

Chapter 2 contains a derivation of single fluid equations for a partially ionised

plasma, analogous to the equations of MHD, for a plasma of arbitrary ionisation. Chap-

ter 3 consists of calculations of the ionisation levels in the atmosphere of the Sun,

and simplifications of the single fluid equations based on certain justified assumptions.

Chapter 4 describes the numerical code used in these simulations, and how it has been

adapted to include the effects of partial ionisation. Chapter 5 contains numerical inves-

tigations into the damping of Alfvén waves in the partially ionised plasma of the solar

atmosphere. Chapter 6 and chapter 7 show results from 2D and 3D simulations of flux

emergence in the partially ionised atmosphere of the Sun. This includes the simula-

tion of buoyant flux tubes in the convection zone and the subsequent evolution in the

atmosphere above. Chapter 8 summarises the main conclusions of this thesis. There

follows an appendix which explains some numerical methods used in the solution of the

governing equations.
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Chapter 2

Partially Ionised Plasmas

2.1 Introduction

The equations of MHD describe the evolution of a completely ionised plasma in the fluid

approximation. In this approximation the state variables such as velocity, density and

energy density are averaged over the ions and the electrons. However, if the temperature

is not high enough the kinetic energy of the constituent particles is small compared to

the energy binding the outer electrons to the nucleus. In this situation collisions do not

provide enough energy to strip an atom completely of its electron and as a result there

will also be neutral atoms present as well as ions and electrons.

74% of the Sun’s mass is accounted for by Hydrogen, and 25% by Helium. The

remaining 1% is made up of heavier ions. The first ionisation potential of Hydrogen is

13.6 eV, which corresponds to a temperature of 1.6 × 105 K, and that for Helium is

24.6 eV or 2.9 × 105 K. The surface temperature of the Sun is about 5700 K, so that

the temperature in this region is well below the ionisation temperature, and the plasma

here is weakly ionised.

The ratio of neutral atoms to the total number of particles can be considered

as a continuous function of temperature, varying from 1 when the temperature is at

absolute zero, to close to 0 when the temperature is much larger than the temperature

associated with ionisation of the atom. If the plasma is only partially ionised, the motion

of the neutral atoms must be taken into account in the fluid description of the plasma.

38



Neutral atoms do not experience the Lorentz force, whereas ions and electrons

moving in a magnetic field do. This causes a relative motion of charged and neutral

species. This relative motion is sometimes called ion-neutral slip, or ion-neutral drift.

This has implications for the momentum of the fluid as a whole. For a fully ionised

plasma the heavy ions carry the momentum, as opposed to the electrons. In a partially

ionised plasma the momentum is now shared between the ions and neutrals, which have

similar masses.

In addition the added collisions of neutrals with electrons and ions must be con-

sidered. The evolution of currents in a plasma is determined by a competition between

the driving electro-magnetic fields and the collisions between different components of

the plasma. Collision rates between species affect the relationship between electric fields

and currents. This relationship is called the generalised Ohm’s law. Combining Ohm’s

law with Faraday’s equation gives the evolution of the magnetic field (e.g the resistive

induction equation (1.29)). The ion-neutral collisions may have a significant impact if

the relative motion of ions and neutrals is large. This may be the case if the Lorentz

force is large, because ions are affected by this force, whereas neutral atoms are not.

In this chapter, single fluid equations are derived for a partially ionised plasma,

analogous to the MHD equations. The starting point is the multi fluid equations, i.e

the fluid equations for each individual components of the plasma (ions, electrons and

neutrals). These single fluid equations are obtained by taking different moments of the

Boltzmann equation and integrating over velocity space.

These single fluid equations are used to derive governing equations for the plasma

as a whole. These will be analogous to the MHD equations but with additional terms

related to the conservation of mass, momentum and energy for the neutral components

as well as the added collisions of electrons and ions with neutrals. The main difference

to the MHD equations will be in the momentum equation and the generalised Ohm’s

law. These single fluid equations are combined with Maxwell’s equation, the modified

generalised Ohm’s law and the equation of state to give the full set of equations needed

to model a partially ionised plasma in the fluid approximation.
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2.2 Single Fluid Equations Describing Partially Ionised Plas-

mas

2.2.1 The Continuity Equation

An incompletely ionised plasma is a three-component mixture containing ions (i), elec-

trons (e) and neutral atoms (n). The motion of the three components of a partially

ionised plasma can be specified by three velocities vi, ve and vn. The plasma as a

whole has a centre of mass velocity specified by

v =
1

ρ
(minivi +mnnnvn +meneve) (2.1)

where ma and na are the mass and number density of each species (a = i, e, n). The

density is defined by

ρ = mini +mnnn +mene (2.2)

= ρi + ρn + ρe.

Treating each component as an individual fluid, the continuity equation for ions, elec-

trons and neutrals can be used separately. However the three equations will couple via

a source/drain term corresponding to ionisation and recombination.

∂ρi
∂t

+∇.(ρivi) = Ri (2.3)

∂ρn
∂t

+∇.(ρnvn) = Rn (2.4)

∂ρe
∂t

+∇.(ρeve) = Re (2.5)

Where Rn is the rate of production (by recombination) of mass density of neutrals, Ri is

the rate of production (by ionisation) of mass density of ions, and Re is the source/drain

term for electrons. Summing all three continuity equations gives

∂(ρi + ρn + ρe)

∂t
+∇.(ρivi + ρnvn + ρeve) = 0 (2.6)

∂ρ

∂t
+∇.(ρv) = 0 (2.7)

as the sum of the source/drain terms must cancel. This equation is the same as the

continuity equation for a fully ionised plasma but the centre of mass velocity and total

mass density are defined by equations (2.1) and (2.2).
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As the electron mass is much smaller than the ion and neutral masses, the

approximation

ρ = mini +mnnn (2.8)

can be used and so the centre of mass velocity of the fluid can be approximated by

v =
1

ρ
(minivi +mnnnvn). (2.9)

Defining the fractional density ξi of each species a = i, e, n by

ξa =
ρa
ρ

=
mana

∑

j=i,e,nmjnj
(2.10)

the centre of mass velocity can be rewritten as

v = ξivi + ξnvn. (2.11)

2.2.2 Equation of Motion

In order to derive the equation of motion for the entire plasma, each species (i,e,n) is

treated as a single fluid, so the equation of motion for each is given by the single fluid

equation.

ρa
da
dt

va = −∇Pa + qana (E+ va ∧B) +
∑

b,b6=a

Rab − Sa. (2.12)

The total derivative on the left hand side is the time derivative in a rest frame travelling

with the species fluid velocity
da
dt

=
∂

∂t
+ va.∇ (2.13)

The electric field and magnetic field are given by E and B respectively, and the second

term on the right hand side is the Lorentz force, with the charge of species a being qa.

Rab is the momentum change due to collisions of species a with species b. Sa is the

source of momentum due to changes in ionisation.

This approach assumes isotropic pressure tensors and no viscosity. In general the

pressure term in the absence of magnetic field is ∇.P where P is the pressure tensor

(Braginskii, 1965) and can be written as

P = Pδij −Πij (2.14)
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where P is the scalar pressure and Πij is the stress tensor, which has components

Πij = ν(sij −
1

3
δij∇.v) (2.15)

and sij is the strain tensor and is given by

sij =
1

2

(

∂vj
∂xi

+
∂vi
∂xj

)

. (2.16)

ν is the kinematic viscosity and δij is the Kronicker-delta function. Including these

terms in the momentum equation at this point is simple enough, but adds no more

understanding to how partial ionisation affects the momentum equation. They are

added to the single fluid momentum equation later in this chapter. Rab is the average

change in momentum of fluid a due to the collisions with fluid b. It derives from the

first moment of the collision terms in the Boltzmann equation (1.26).

Rab =

∫

mvCab. (2.17)

Following the approach of Braginskii (1965), in the high collision frequency limit of MHD

the species a and b can be assumed to have Maxwellian distributions. The collisional

momentum change is therefore proportional to the relative velocity of the two species.

Rab = αab(vb − va) (2.18)

where αab depends on the number density and mass of species a and b.

αab = manaν
′

ab (2.19)

As in Cowling (1957), the factor αab is expressed in terms of the effective collisional

frequency ν
′

ab. This takes into account the reduce mass of the system and is related

to the collisional frequency between species a and b, νab by

ν
′

ab =
mb

ma +mb
νab. (2.20)

By momentum conservation,

Rab = −Rba. (2.21)
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Using the definition of the collisional forces Rab they can be explicitly written for

the three-component partially ionised plasma consisting of ions, neutrals and electrons

(i,n,e).

Ren = αen(vn − ve) = meneν
′

en(vn − ve)

Rne = αne(ve − vn) = mnnnν
′

ne(ve − vn)

Rin = αin(vn − vi) = miniν
′

in(vn − vi)

Rni = αni(vi − vn) = mnnnν
′

ni(vi − vn)

Rei = αei(vi − ve) = meneν
′

ei(vi − ve)

Rie = αie(ve − vi) = miniν
′

ie(ve − vi)

(2.22)

The following expressions are for a pure Hydrogen plasma, so that the ions are merely

protons and the neutrals are hydrogen atoms. Thus mi ≈ mn and

ξn ≈
nn

ni + nn
. (2.23)

For electrons the equation of motion is

neme
de
dt

ve = −∇Pe − en (E+ ve ∧B) +Rei +Ren − Se (2.24)

= −∇Pe − en (E+ ve ∧B) (2.25)

+αei(vi − ve) + αen(vn − ve)− Se.

The relative velocity of electrons and neutrals (vn−ve) can be expressed in terms of the

current density j = en(vi−ve) and the drift velocity of ions and neutrals w = vi−vn.

vn − ve = (vi − ve)− (vi − vn)

=
j

ene
−w (2.26)

Here the quasi neutral nature of plasmas has been used, ni = ne = n. Using relation

(2.26), the equation of motion of electrons can be written in terms of j and w.

−neme
de
dt

ve −∇Pe − en (E+ ve ∧B) = −αe
j

en
+ αenw + Se (2.27)

where

αe = αei + αen = mene(ν
′

ei + ν
′

en). (2.28)

43



The equation of motion for ions is given by

nmi
di
dt

vi = −∇Pi + en (E+ vi ∧B) +Rie +Rin − Si (2.29)

or

−nmi
di
dt
vi −∇Pi + en (E+ vi ∧B) = αei

j

en
+ αinw + Si. (2.30)

In the same vein the neutral equation of motions is given by

nnmn
dn
dt

vn = −∇Pn +Rne +Rni − Sn (2.31)

(2.32)

or

−nnmn
dn
dt

vn −∇Pn = αen
j

en
− αnw + Sn (2.33)

with

αn = αen + αin = meneν
′

en +miniν
′

in. (2.34)

This approach means that the collisional terms in the equations of motion of the

three components can all be expressed in terms of the current density j and ion-neutral

drift w.

−neme
de
dt

ve −∇Pe − en (E+ ve ∧B) = −αe
j

en
+ αenw + Se (2.35)

−nimi
di
dt
vi −∇Pi + en (E+ vi ∧B) = αei

j

en
+ αinw + Si (2.36)

−nnmn
dn
dt

vn −∇Pn = αen
j

en
− αnw + Sn (2.37)

By relating these to the EM fields permeating the plasma, the set of equations can be

closed.

From these equations of motion it is now possible to construct an equation

of motion for the bulk plasma in terms of the centre of mass velocity v. Using the

continuity equations (2.3)-(2.5) allows the inertial terms in the momentum equations
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to be converted into conservative form.

mini
di
dt
vi =

∂

∂t
(ρivi) +∇.(ρivivi)− Si (2.38)

mnnn
dn
dt

vn =
∂

∂t
(ρnvn) +∇.(ρnvnvn)− Sn (2.39)

mene
de
dt

ve =
∂

∂t
(ρeve) +∇.(ρeveve)− Se (2.40)

(2.41)

Adding together all three equations of motion for the components of the plasma, and

noting that collision terms cancel, and that the electron inertial term is negligible, gives

the equation of motion for the plasma centre of mass velocity.

∂

∂t
(ρivi + ρnvn) +∇.(ρivivi + ρnvnvn) = −∇(Pi + Pe + Pn) + j ∧B (2.42)

Using the definition of the centre of mass velocity and defining the gas pressure as

P = Pi + Pn + Pe this becomes

∂

∂t
(ρv) +∇.(ρivivi + ρnvnvn) = −∇P + j ∧B. (2.43)

Using the relations

vi = v + ξnw (2.44)

vn = v − (1− ξn)w (2.45)

where ξn = ρn/ρ is the neutral fraction, and ξi is the ion fraction and ξi + ξn = 1, the

divergence term in equation (2.43) can rewritten as

ρivivi + ρnvnvn = (ρivi + ρnvn)v (2.46)

+ξnρiviw − (1− ξn)ρnvnw (2.47)

= ρvv + ρξnξiviw − ρξn(1− ξn)vnw (2.48)

= ρvv + ρξn(1− ξn)ww. (2.49)

Hence the equation of motion for the centre of mass for a partially ionised plasma is

∂

∂t
(ρv) +∇.(ρvv) = −∇P + j ∧B−∇.(ρξn(1− ξn)ww). (2.50)
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If the last term in this equation is zero then the equation of motion is identical

to that for a fully ionised plasma. Indeed, if ξn becomes zero, representing a neutral

gas, or 1, representing a fully ionised plasma, the last term disappears. Then one is left

with the familiar Euler’s equation for a neutral gas, or the momentum equation for a

fully ionised plasma (which contains the Lorentz force). If the ionisation level is neither

zero or unity then this term can not necessarily be ignored.

2.2.3 The Energy Equation

Taking the second order moment of Boltzmann’s equation for each species gives the

equation for the temporal evolution of specific internal energy density. As in the deriva-

tion of the single fluid momentum equation, all viscous effects are left out for the sake

of simplicity, but included in the final equations. Also, any effects due to thermal con-

duction have been ignored. Summing over the three species gives the single fluid energy

equation.

∂

∂t
(ρǫ) +∇.(ρǫv) = −P∇.v +E. (j− nqv)− (j ∧B) .v (2.51)

The last two terms of this equation can be written as

E. (j− nqv)− (j ∧B) .v = [E+ (v ∧B)] .j (2.52)

Which is the scalar product of the electric field in the rest frame of the fluid (E
′

=

E + v ∧ B) with the current density. This can be found using the generalised Ohm’s

law for a partially ionised plasma which will be derived in the next section. This term is

called the Ohmic heating term. It represents the rate of energy dissipated from currents

in the plasma due to collisions. The energy equation is thus

∂

∂t
(ρǫ) +∇.(ρǫv) = −P∇.v+ [E+ (v ∧B)] .j (2.53)

2.3 EM fields for a Partially Ionised Plasma

2.3.1 Ohm’s Law

As mentioned in the previous section equations are needed to relate the current density

and the ion-neutral drift velocity to the plasma variables. For a fully ionised plasma this
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usually takes the form of relating the current density to the electric field by considering

the motion of electrons. This will be the approach used here. The equation of motion

for the electrons was given in equation (2.35).

−∇Pe − en (E+ ve ∧B) = −αe
j

en
+ αenw (2.54)

The first step is to rewrite the electron velocity in terms of the current density and

ion-neutral drift velocity using the definition of the fractional densities.

ve = vi −
j

ne

= v + ξnw −
j

ne
(2.55)

This gives

E+ v ∧B = −
∇Pe

en
+

αej

(en)2
−

αenw

en

+
j ∧B

en
− ξnw ∧B (2.56)

This is similar to the Ohm’s used in section 1.4.2 in that it relates the electric field

as experienced by a particle in the rest frame of the fluid (E + v ∧B), to the current

density. However, an equation forw is also needed. This equation can be found using the

difference between the equations of motions for the charged components of the plasma

and that for the neutrals (equations (2.36) + (2.35) and (2.37)). This difference is

ρiρn

[

di
dt
vi −

dn
dt

vn

]

= −ρn∇(Pe + Pi) + ρi∇Pn + ρnj ∧B (2.57)

+ρ
αenj

en
− ραnw (2.58)

which can be rearranged to give an equation for the ion-neutral drift velocity w.

w = −
G

αn
+ ξn

j ∧B

αn
+

αen

αn

j

en
−

ρ(1− ξn)ξn
αn

[

di
dt
vi −

dn
dt

vn

]

(2.59)

where

G = ξn∇(Pe + Pi)− ξi∇Pn. (2.60)

This equation for w can be substituted into Ohm’s law to relate E to j. The last term

on the right hand side of equation (2.59) can be neglected if terms of order dw
dt are
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small compared with terms of order w
τ in the collision terms. This is the same as saying

that the time between collisions τ is small in comparison to a typical time scale dt over

which plasma variables change, which is exactly the condition required for MHD to apply

(Braginskii, 1965). This inertial term is therefore dropped from the equation for w. It

is trivial to see that this term is zero for either a fully ionised plasma or a completely

neutral gas, as ξn is either 0 or 1.

Inserting the equation for w into equation (2.56) gives the generalised Ohm’s

law for a partially ionised plasma.

E+ (v ∧B) = −
1

en
[∇Pe + ιG]−

ξn
αn

G ∧B+ (1− 2ιξn)
j ∧B

en
(2.61)

+
(αe − ιαen)

(en)2
j− ξn

2 (j ∧B) ∧B

αn
(2.62)

with ι = αen

αn
.

Now that an equation for w has been derived, the additional divergence term in

the equation of motion (2.50) due to the ion-neutral drift w can be estimated.

∂

∂t
(ρv) +∇.(ρvv) = −∇P + j ∧B−∇.(ρξn(1− ξn)ww). (2.63)

As mentioned, if the plasma is entirely neutral or completely ionised the last

term on the right hand side is zero. If it is partially ionised it needs to be evaluated.

However, looking at the equation for w (2.59), it can be shown that

w ∼
j ∧B

αn
for β << 1

∼
∇P

αn
for β >> 1.

Using the definition of αn the condition for neglecting the divergence term compared to

the other dominating terms in the momentum equation (2.50) becomes

(
τin
τA

)
2
<< 1 for β << 1 (2.64)

(
τin
τth

)
2
<< 1 for β >> 1 (2.65)

where τA is a typical Alfvén time scale and τth a thermal time scale. This condition

means that if the timescale for collisions is much smaller than both the Alfvén time and
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the thermal time (which is equal to the length scale over the sound speed) then the last

term can be neglected from the equation of motion. This is indeed the case, as MHD

assumes the plasma is collision dominated. As a result the extra divergence term in the

equation of motion is left out of all subsequent studies.

2.3.2 Maxwell’s Equations

These are of course unchanged from ideal MHD.

∇.B = 0 (2.66)

∇∧E = −
∂B

∂t
(2.67)

∇∧B = µ0j (2.68)

Where the displacement current is neglected, as mentioned in chapter 1 (see equation

(1.47)).

2.4 Equation of State

Generally speaking, an equation of state is a way of relating the macroscopic thermal

properties of a state of matter. A typical example is the ideal gas law for a monatomic

gaseous material, which relates gas pressure (P), number density (n), and temperature

(T), P = nkBT . In ideal MHD there is a simple relationship between temperature

and specific internal energy density (ǫ), in fact they are proportional, so that only one

equation of state is needed

P = ρǫ(γ − 1) (2.69)

where γ is the ratio of specific heats. However, for a partially ionised plasma there

is a more complicated relationship between ǫ and T , due to the energy contained in

ionisation.

For an expression of the gas pressure of a partially ionised plasma the ideal gas

formula is used

P = nTkBT (2.70)
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where T is the temperature, kB is Boltzmann’s constant and nT is the total number

density of the plasma. For a partially ionised plasma

nT = ni + ne + nn. (2.71)

The definition of pressure P can be rewritten using the definition of the neutral fraction

ξn =
nn

ni + nn
(2.72)

so that

P = nTkBT =
ρkBT

µm
(2.73)

where

µm =
mi

2− ξn
(2.74)

is the reduced mass. As can be seen, when the ionisation level is unity (a fully ionised

plasma), the reduced mass is mi/2 which is the expected value for a fully ionised

hydrogen plasma. When the plasma tends towards fully neutral, the reduced mass is

mi.

The equation of state used here for a partially ionised hydrogen plasma is, as in

the work of Vögler et al. (2005),

ǫ =
P

ρ(γ − 1)
+

niXi

ρ
(2.75)

which can be expressed in terms of temperature using equations (2.73) and (2.72).

ǫ =
kBT

µm(γ − 1)
+ (1− ξn)

Xi

mi
(2.76)

and Xi is the ionisation level of Hydrogen. This expression for the internal energy den-

sity ǫ, contains two separate terms, the ionisation term and the gas pressure term. Any

mechanism which changes the internal energy of the plasma will not only affect the

temperature of the plasma but also its ionisation level. Conversely, when the plasma

temperature is increased, some of this temperature increase will also increase the ionisa-

tion level of the plasma, and some will raise the internal energy. This is different from a

fully ionised plasma or a neutral gas, where changes in temperature and specific energy

density are proportional.
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The equations of MHD solve for the specific energy density, ǫ and the density,

ρ. Hence any numerical scheme must then use equations (2.73) and (2.76) to calculate

the gas pressure and temperature from these two variables. For a partially ionised

plasma, equation (2.76) contains an ionisation term (1 − ξn)
Xi

mi
, which is a function

of temperature. As a result, solving equation (2.76) for temperature T is an implicit

equation. How this will be performed is shown in later sections which describe the

numerical code used in these studies.

2.5 Summary

These, as derived in this chapter, are the equations governing a partially ionised plasma

in the single fluid approach.

∂

∂t
ρ+∇.(ρv) = 0 (2.77)

∂

∂t
(ρv) +∇.(ρvv) = −∇P +∇.Π+ j ∧B (2.78)

∂

∂t
(ρǫ) +∇.(ρǫv) = −P∇.v −Πijsij +E+ (v ∧B) .j (2.79)

∂B

∂t
= −∇ ∧E (2.80)

E+ (v ∧B) = −
1

en
[∇Pe − ιG] +

ξn
αn

G ∧B

+(1− 2ιξn)
j ∧B

en
+

(αe − ιαen)

(en)2
j

−ξn
2 (j ∧B) ∧B

αn
(2.81)

where

ǫ =
kBT

µm(γ − 1)
+ (1− ξn)

Xi

mi
(2.82)

and

P =
ρkBT

µm
(2.83)

The viscous terms have been added into the equation of motion (2.78) and the energy

equation (2.79). The assumptions made were the same as for MHD (1.46). In the

next chapter these equations will be applied to the partially ionised plasma of the solar

atmosphere.
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Chapter 3

The Partially Ionised Plasma of

the Solar Atmosphere

3.1 Introduction

The large length scales associated with structures and dynamics in the solar atmosphere

are typically much larger than the gyro-radius (a typical length scale is 105 − 106 m

whereas the gyro-radius in the corona is a metre for protons). This allows the use of

the MHD approximation for the study of the plasma of the solar atmosphere.

MHD assumes the plasma to be completely ionised, i.e it is assumed only ions

and electrons are present. The assumption that the plasma is fully ionised is justified in

the corona as the extremely large temperatures, typically MK, mean that the electrons

are completely stripped from their atoms.

Figure 3.1 shows the density and temperature profile with height for a model of

the quiet Sun (Vernazza et al., 1981). The density and temperature were calculated by

solving the non-LTE radiative transfer, statistical equilibrium and hydrostatic equilibrium

equations. These are solved for heights of up to 2500km, which corresponds to the

transition region. As can be seen in figure 3.1, the temperature reaches a minimum of

4000 K at approximately 500 km above the surface. The temperature at this height

corresponds to an energy of 0.34 eV which is much less than the first ionisation potential

of Hydrogen (13.6 eV). The plasma here is weakly ionised. In these regions it is clearly
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Figure 3.1: The density (left) and temperature (right) stratification taken from the
VALC model of the quiet Sun (Vernazza et al., 1981).

not valid to assume that the plasma is fully ionised, and the single fluid approach must

now include averages of fluid variables such as velocity and momentum over neutral

atoms as well as electrons and ions.

In this chapter the full equations for a partially ionised plasma, as derived in the

previous chapter, are simplified based on the conditions in the solar atmosphere. The

ionisation levels as functions of temperature and density are calculated based on simple

models of the Hydrogen atom. Once the ionisation levels are known, calculations of the

momentum transfer during collisions between all three species can be calculated. With

these calculations, the governing equations can then be solved numerically to model

atmospheric processes, but with the effect of the presence of neutrals directly included.

3.2 Approximations to Ohm’s Law for the Solar Atmosphere

The generalised Ohm’s law for a partially ionised plasma derived in Chapter 2 is

E+ (v ∧B) = −
1

en
[∇Pe − ιG] +

ξn
αn

G ∧B+ (1− 2ιξn)
j ∧B

en
(3.1)

+
(αe − ιαen)

(en)2
j− ξn

2 (j ∧B) ∧B

αn
.

However, this can be simplified for the partially ionised plasma of the solar atmosphere

by using a few justified assumptions.
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The j∧B term in equation (3.1) is called the Hall term. Comparing this to the

fourth term on the right hand side of equation (3.1), it can be neglected if

|j ∧B|/en

|αej|/(en)
2 ≈

B2en/µ0L

menνie
′

B/µ0L
<< 1 (3.2)

where ν
′

ie is the effective frequency of electron ion collisions. Using the definition of the

Larmour frequency ωc, this condition can be rewritten as

ωc

νie
′
<< 1 (3.3)

This is equivalent to stating that the timescale of collisions is much less than a typical

time for gyro-rotation of particles around the magnetic field. As the fluid approximation

assumes that the plasma is dominated by collisions, then this condition is always upheld.

The term which contains ∇Pe in equation (3.1) is called the battery term. It is

the electric field that tries to counteract the motion of electrons driven by the pressure

tensor, and acts to keep the plasma electrically neutral. Again, comparing to the fourth

term in equation (3.1) gives the condition to neglect it as

|∇P/en|

|αej|/(en)
2 << 1 (3.4)

which can be written, using Pe = Pi = nimivt,i
2, as

vt,i
2enµ0

νie
′B

<< 1 (3.5)

which, using the definition of the electron plasma frequency ωpe, the Larmour radius

rL, and the skin depth δ = c/ωpi, as well as c
2 = 1/mu0ǫ0 for the speed of light, can

be written as
rL

2

δ2
ωc

νie
′
<< 1 (3.6)

it is not clear if this is true in this case. Although ωc

νie
′ << 1 as before, rL

2

δ2
> 1 as

the skin depth is usually smaller than the Larmour radius. However, for simplicity, the

battery term, as in resistive MHD is left out of Ohm’s law when studying the solar

atmosphere.

In a similar fashion the ιG term in equation (3.1) can also be dropped, as

G ∼ ∇P , and ι << 1, as

ι =
αen

αn
∼

me

min
<< 1. (3.7)
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Returning to equation (3.1), neglecting the Hall term and battery terms, there

are three terms left to evaluate in the generalised Ohm’s law.

E+ (v ∧B) =
ξn
αn

G ∧B+
(αe − ιαen)

en2
j− ξn

2 (j ∧B) ∧B

αn
(3.8)

The two terms containing current density can be rewritten using the definition of the

Coulomb resistivity (Spitzer, 1962)

η =
(αe − ιαen)

(en)2
(3.9)

and the Cowling resistivity (Cowling, 1957)

ηc = η +
ξn

2|B|2

αn
. (3.10)

Using the relation

(j ∧B) ∧B = −j⊥|B|2 (3.11)

where j⊥ is the component of the current density perpendicular to the magnetic field

this generalised Ohm’s law becomes

E+ v ∧B = ηj+ (ηc − η)j⊥ +
ξn
αn

G ∧B

= ηj‖ + ηcj⊥ +
ξn
αn

G ∧B (3.12)

where j‖ is the component of j parallel to the magnetic field. The third term in equation

(3.12) can be compared to the other two by recalling the definition of G in equation

(2.60).

G = ξn∇(Pe + Pi)− ξi∇Pn (3.13)

Using the equations for the pressure of each species Pa = ρaξakBTa

mi
for a=i,e,n, and

assuming that Te = Ti = Tn (which is not always the case) and that ni = ne (which is

true for length scales longer than the Debye length), this can be rewritten as

G = ξn(1− ξn)∇

(

ρkBT

mi

)

. (3.14)

This is zero for very weakly ionised or fully ionised plasmas (ξn = 0, 1). The sharp rise in

temperatures in the transition region suggest that the plasma changes very quickly from
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weakly ionised at the temperature minimum to fully ionised in the corona and G = 0.

It is also worth noting that G is negligible compared to the j ∧B if the plasma is cold

(β << 1), which is the case in the low-β corona.

For the solar atmosphere, the generalised Ohm’s law simplifies to

E+ v ∧B = ηj‖ + ηcj⊥. (3.15)

which contains an advection term v ∧B and an anisotropic dissipative term.

The relative importance of advection and dissipation in resistive MHD is related

to the magnetic Reynolds number, which comes from comparing the terms in the resistive

induction equation (1.29).

Rm =
µ0Lv

η
(3.16)

At high magnetic Reynolds numbers, the evolution of the field is dominated by advection

by the fluid, and at low magnetic Reynolds numbers, the evolution is dominated by

dissipation. In order to evaluate Rm for the solar atmosphere, estimates for the Coulomb

and Cowling resistivities are needed, and are performed later in this chapter.

In fully ionised MHD the dissipation of currents by collisions is isotropic, which

leads to isotropic dissipation in the induction equation. This leads to a diffusive term

for the magnetic field (see equation (1.38)). Now, for a partially ionised plasma, there is

an anisotropy in the current dissipation, where the electron collisions dissipate currents

parallel to the field (η), and ion-neutral collisions dissipate currents perpendicular to the

field (ηc). This will have consequences for the evolution of the magnetic field in the

solar atmosphere.

For a magnetised, cold, partially ionised plasma, the Joule heating term in the

energy equation (2.51) is now

(E+ v ∧B).j = (ηj‖ + ηcj⊥).j (3.17)

= ηj‖
2 + ηcj⊥

2.
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3.3 Governing Equations for the Solar Atmosphere

Adding the simplified Ohm’s law (3.15) in to Faraday’s equation and adding to the single

fluid equations derived in chapter 2 gives the governing equation for the partially ionised

plasma of the solar atmosphere, which have been converted here into Lagrangian form.

Dρ

Dt
= −ρ∇.v (3.18)

ρ
Dv

Dt
= j ∧B−∇P +∇.Π = ρg (3.19)

DB

Dt
= (B.∇)v −B(∇.v) −∇∧ (ηj‖)−∇ ∧ (ηcj⊥) (3.20)

ρ
Dǫ

Dt
= −P∇.v+ ηj‖

2 + ηj⊥
2 +ΠijSij +H (3.21)

The acceleration due to gravity ρg has been included in equation (3.19). These equations

are very similar to the MHD equations (1.41)-(1.44). In fact the mass and momentum

equations are the same. The energy equation has a different form for the Joule heating,

as well as a term H representing all the extra heating effects in the solar atmosphere,

such as radiative losses. The most significant difference is in the induction equation.

The anisotropy in the Ohm’s law used for the partially ionised solar atmosphere (3.15)

gives an anisotropy in the dissipation of currents in the induction equation. When the

plasma is fully ionised, the neutral fraction ξn is zero, and ηc = η and the equations

return to the resistive MHD equations.

In resistive MHD the isotropic dissipation of currents translates into a diffusive

term for the magnetic field (1.38). However in a partially ionised plasma, no longer can

the induction equation be cast as a diffusion equation for the magnetic field, due to

the anisotropy in the dissipation of currents. The two resistivities, η and ηc represent

electron collisions (with both ions and neutrals) and ion-neutral collisions, respectively.

Whereas in MHD the dissipation term ηj represented the dissipative effect of electron-

ion collisions, the electron collisions now only affect the current parallel to the field, via

ηj‖. The ion-neutral collisions affect the current perpendicular to the field, via ηcj⊥.

In other words the electron collisions dissipate parallel (or field-aligned) currents and

ion-neutral collisions dissipate perpendicular (or cross-field) currents.

In order to simulate the partially ionised solar atmosphere, the values of ηc and
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η need to be estimated as functions of space. To do this an estimate of the neutral

fraction, ξn, as a function of space is needed. Using this and estimates of the collisional

frequencies (νin etc.), η and ηc can then be estimated.

Having calculated the resistivities, the importance of these dissipative terms can

be estimated relative to other effects. As mentioned in chapter 1, if the Reynolds

number is large then dissipative terms are negligible in the induction equation. This has

been the case in the majority of MHD studies of solar atmospheric dynamics (Magara,

2001; Archontis et al., 2004, 2005; Galsgaard et al., 2005). The dissipation of currents

is assumed to be negligible compared to advection of the magnetic field. However, in

a partially ionised plasma, the momentum transfer upon collisions between ions and

neutrals may become important.

This may lead to the Cowling resistivity being much larger than the Coulomb

resistivity. This would have two effects. Firstly the magnetic Reynolds number would

decrease, and dissipation by ion-neutral collisions may become more important. Sec-

ondly, a large anisotropy would develop in the dissipation of currents. If ηc >> η then

the dissipation of current only perpendicular to the magnetic field is important. This will

have repercussions for solar atmospheric dynamics. In the next section the ionisation

levels in the solar atmosphere are estimated, as are the collision times for ions, neutrals

and electrons, and hence the Coulomb and Cowling resistivities.

3.4 Estimating the Ionisation of the Solar Atmosphere

To estimate the ionisation level, a method is needed to calculate the ratio of ionised to

neutral atoms as a function of the temperature of the plasma. For a plasma such as

the solar atmosphere, this would involve solving the ionisation equilibrium equation for

not only Hydrogen, but Helium and other heavier elements. This exercise is beyond the

scope of this work. For simplicity, the ionisation level is estimated assuming the solar

atmosphere is pure Hydrogen. A simple model for the Hydrogen atom is then used to

estimate the ionisation level as a function of temperature.
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3.4.1 The Saha Equation

In 1920 the Indian physicist Meghnad Saha derived an equation that gave the fraction of

atoms in each excited state of a gas in thermal equilibrium at a given temperature and

total mass density. When a gas is in thermal equilibrium a single value of temperature

is enough to describe the thermodynamic state everywhere. So the velocity distribution

for the particles is a Maxwellian with the value of this temperature, T, and the radiation

field has the isotropic black-body profile given by the Kirchoff-Planck equation. It is

obvious that this rarely happens throughout the whole gas, but it may be true in certain

regions. In this case the region is said to be in local thermodynamic equilibrium (LTE).

In this certain region a single temperature is enough to describe the local emission and

absorption rates of radiation.

The Saha equation for a gas in LTE is

n+ne

nn
=

(

2πmekBT

h2

)3/2

2
U+

U0
exp

[

−
Xi

kBT

]

(3.22)

where nn is the number density of atoms, ne the number density of electrons and n+

the number density of singly ionised ions. U+ = 2 is the degeneracy of singly ionised

ions, and U0 = 1 the degeneracy of the neutral atom. Xi is the first ionisation energy

of Hydrogen 13.6 eV, kB is Boltzmann’s constant, me is the mass of an electron and h

is Planck’s constant. For pure Hydrogen, n+ = ni = ne, and Saha’s equation becomes

n2
i

nn
= f(T ) =

(2πmekBT )
3

2

h3
exp

[

−
Xi

kBT

]

(3.23)

From this the neutral fraction

ξn ≈
nn

ni + nn
(3.24)

can be found via

r =
nn

ni
=

1

2

(

−1 +

√

(

1 +
4ρ/mi

f(T )

)

)

(3.25)

and then

ξn =
r

1 + r
. (3.26)
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3.4.2 Non-LTE

The Saha equation is valid for a gas in local thermodynamic equilibrium (LTE). A

plasma is in LTE if the length scale over which the temperature changes is larger than the

thermalization length LT . The thermalization length is defined by the distance a particle

or photon emitted by a collision or transition travels before it has undergone enough

further collisions or absorption/emissions so that it no longer can be distinguished within

the distribution. Examples of plasmas in non-LTE are solar flares, spicules, and the lower

chromosphere of the Sun (Brown, 1979; Pottasch and Thomas, 1959; De Pontieu et al.,

2001). In this case local distributions are affected by photons originating from larger

distances than the temperature change scale, where these protons are described by a

different temperature. The plasma is then said to be ’non-local’ or in ’non-LTE’. Hence

the equilibrium can no longer be described by a single temperature.

The modified Saha equation

As stated, the chromosphere cannot be characterised by one temperature alone. The

radiation temperature and the thermodynamic temperature cannot be assumed to be

the same. This is because the mean free path of the solar radiation becomes large

above the photosphere and the radiation field is of photospheric temperatures. Thus

the standard Saha equation (3.23) is no longer valid.

Calculation of ionisation degrees in a non-LTE situation requires solution of

the radiative transfer and statistical equilibrium equations. This would be very time

consuming in simulations, as it would need to be done at each time step. It happens

that approximations to non-LTE effects on Hydrogen ionisation have been developed,

and it is to these this work now turns.

Using a two-level model of the Hydrogen atom Brown (1979) calculated non-

steady state and non-LTE effects on the ionisation equilibrium of Hydrogen in optical

flares. The ionisation equation is described by spontaneous recombination to the second

level and by photoionisation for the return route (Ambartsumyan, 1958). Using this

model, the modified Saha equation can be derived (Brown, 1979). The steady state
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solution to the ionisation equation is given by (Thomas and Athay (1961))

ni
2

nn
=

f(T )

b(T )
(3.27)

f(T ) =
(2πmekBT )

3

2

h3
exp(−

Xi

kBT
) (3.28)

b(T ) =
T

wTR
exp

[

Xi

4kBT
(
T

TR
− 1)

]

(3.29)

where TR is the temperature of the photospheric radiation field (the temperature at the

surface) and w = 0.5 is its dilution factor (Brown, 1979).

Whether the Saha equation or the modified Saha equation is used to calculate ξn,

both the density and temperature of the plasma are required as a function of space. The

calculation presented here adopts a model atmosphere of the quiet Sun, as determined

by Vernazza et al. (1981), hereafter referred to as the VALC model. This will show how

the profiles of η and ηc look for the quiet Sun. Of course, dynamical simulations must

calculate the local values depending on local plasma variables.

3.4.3 Ionisation Levels in the Quiet Sun

Using the density and temperature profiles taken from the VALC model of the quiet Sun

(Vernazza et al., 1981), and the modified Saha equation (3.27)-(3.29), the profile of
n2

i

nn

is calculated and shown in figure 3.2. The ratio of nn

ni
is then given by equation (3.25)

and is also shown in figure 3.2. The neutral fraction ξn = nn

nn+ni
is then calculated and

is shown in figure 3.3.

3.5 Estimating Cowling and Coulomb Resistivities in the So-

lar Atmosphere

Having estimated the ionisation level using the VALC model density and temperature

stratification, the resistivities can now be calculated. Recall that

η =
(αe − ιαen)

(en)2
(3.30)

and

ηc = η +
ξn

2|B|2

αn
(3.31)
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Figure 3.2:
n2

i

nn
(left) and nn

ni
calculated using the density and temperature from the

VALC model. The solid line is from the Saha equation, and the dashed line is from the
modified Saha equation.

Figure 3.3: The neutral fraction ξn = nn

nn+ni
calculated using the density and tempera-

ture from the VALC model. The solid line is from the Saha equation, and the dashed
line is from the modified Saha equation.
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where

αn = αen + αin = meneν
′

en +miniν
′

in (3.32)

αe = αei + αen = mene(ν
′

ei + ν
′

en). (3.33)

ι = αen/αn and due to the ratio of electron mass and ion mass is very small. Hence

η ≈
mene(νei

′

+ νen
′

)

e2n
(3.34)

3.5.1 Collisional Frequencies

Following the example of Spitzer (1962), the neutral collisions are estimated by

νin = nn

√

8KBT

πmin
Σin (3.35)

νen = nn

√

8KBT

πmen
Σen, (3.36)

while

νei = 3.7.10−6 niΛZ
2

T 3/2
. (3.37)

Σin = 5.10−19m2 and Σen = 10−19m2 are the ion-neutral and electron-neutral cross-

sections respectively. Here Λ is the Coulomb logarithm (Spitzer, 1962).

3.5.2 Resistivities

Profiles of the Coulomb and Cowling resistivities can now be found as functions of

height, for various magnetic field profiles using equations (3.31) and (3.34). This will

enable a better understanding of the anisotropy in the dissipation of currents in the

plasma. This is done for various magnetic field profiles, which are shown in figure

3.4. The profiles consist of both constant profiles of differing values and monotonically

decreasing profiles. They are crude representations of the magnetic field in open field

regions in the photosphere and chromosphere. The magnetic fields have a power law

dependency on density so as to maintain magnetic flux within the tube.

As can be seen in figure 3.5, the Cowling resistivity is larger than the Coulomb

resistivity in the chromosphere (heights of 2000 km) for various strengths of magnetic
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Profile Constant Profile Bph

(

ρ
ρ0

)α

A 1000 G D α = 0.1
B 100 G E α = 0.2
C 10 G F α = 0.4

Figure 3.4: A list of the magnetic field strength profiles used to calculate the resistivities.
Profiles A-C are constant values. Profiles D-F have a power law dependence on density
to maintain magnetic flux with height. Bph = 1200G and ρph = 2.7× 10−4kg/m3

field. Even though the plasma is most neutral at lower heights, near the temperature

minimum (see figure 3.2), the anisotropy in resistivity is most apparent at chromospheric

heights. This is due to the inverse dependency of ηc on density (3.31), which falls rapidly

off with height in the Sun’s atmosphere.

The stronger the field, the larger the ratio of ηc
η , as is obvious from the definition

of ηc. The magnetic field in the solar atmosphere is highly inhomogeneous. The actual

value for the ratio ηc/η will depend on the local magnetic field used. Simulations

performed in later chapters will show how this ratio develops for dynamic events in the

solar atmosphere.

Now that typical values of the Coulomb and Cowling resistivity have been calcu-

lated, the relative importance of dissipation with respect to advection in the generalised

Ohm’s law (3.15) can be evaluated. Taking a typical value of η and ηc, the magnetic

Reynolds number can be evaluated, assuming typical timescales and lengths scales in

the atmosphere. The magnetic Reynolds number for a fully ionised plasma is usually

defined as

Rm =
µ0Lv

η
. (3.38)

and an equivalent number can be specified for partially ionised plasmas

Rm
p =

µ0Lv

MAX(η, ηc)
. (3.39)

Using a typical value from these calculations of η = 1×10−3 Ωm at a height of 2000 km,

this gives a value of Rm = 1×106, so that when only considering electron collisions in a

full ionised plasma, the advection term in Ohm’s law dominates the dissipative term and

the evolution of the magnetic field is dominated by advection. This is the reason that
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Figure 3.5: The Cowling (solid lines) and Coulomb (dashed lines) resistivities as functions
of height for the different magnetic field profiles in figure 3.4. The top left panel is profile
A, top right B, middle left C, middle right D, bottom left E, bottom right F.
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the majority of numerical simulations of solar atmospheric dynamics use ideal MHD.

However, for a partially ionised plasma the situation is different, using a typical value of

ηc = 1×104 Ωm, the new magnetic Reynolds numberRm
p has a value of 0.05. Obviously

these calculations are just estimates which depend on the magnetic field strength, but

what they show is that it is possible for the Cowling resistivity to be stronger than

the Coulomb resistivity. More importantly, they show that the new magnetic Reynold’s

number can be less than unity, so that the dissipative effect of ion-neutral collisions is a

dominant effect on the evolution of the magnetic field. This manifests itself in a large

anisotropy in the induction equation which favours the dissipation of cross-field currents

rather than field-aligned currents.

As the evolution of the atmosphere is strongly influenced by magnetic field, this

new anisotropy in the dissipative mechanisms due to the presence of neutrals in the

plasma will have a strong effect on dynamic events in the solar atmosphere. In order

to investigate these events, a numerical code is used to solve the governing equations

for the partially ionised plasma of the Sun’s atmosphere. The next chapter details the

basic methods used in this code.

3.6 Heating Mechanisms in the Solar Atmosphere

The energy equation used thus far (equation (3.21)) has only included the adiabatic

terms and the joule heating term. To simulate the solar atmosphere realistically the

heat transfer effects that are present there must be included. The most obvious of these

is radiative losses. The radiation given out from the surface interacts with the hot,

sparse plasma of the atmosphere, and this in turn emits electromagnetic radiation.

As mentioned in chapter 1, one of the main problems in solar physics today is

the problem of how the outer atmosphere of the Sun is heated. The temperature of the

Sun falls with radius from the centre until it reaches the minimum in the photosphere,

about 500 km above the surface. Then there is a sharp rise to several million K in a

small region known as the transition region. The chromosphere and corona must be

heated by some other mechanism or mechanisms.
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The equation for the temporal evolution of the internal energy density should

include all of these mechanisms

ρ
Dǫ

Dt
= −P∇.v+ ηj‖

2 + ηcj⊥
2 +ΠijSij + Sh −∇.q− LR +M (3.40)

The non-adiabatic terms on the right hand side include the Joule heating, as derived in

chapter 3. The other non-adiabatic terms are viscous heating, shock heating, thermal

conduction, radiative transfer and the mechanical heating terms. Thermal conduction

is given by ∇.q, where q = κ∇T is the heat flux, and κ the thermal conductivity.

Sh represents small scale shock dissipation Sh present in the chromosphere. This is

caused by waves generated by convective motions at the top of the convection zone

which propagate upwards, and due to the stratification, shock, dissipate and heat the

local plasma (Narain and Ulmscneider, 1990). LR represents all radiative losses. As well

as these diagnosed heating effects there are many others associated with the coronal

heating problem, which include reconnection, and the propagation and dissipation of

MHD waves, all represented here by M .

In the next chapter the numerical methods used to solve the governing equations

of a partially ionised plasma are presented.
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Chapter 4

The Lagrangian-Remap code

4.1 Introduction

The Lagrangian Remap code (Arber et al., 2001), hereafter called Lare is a multidi-

mensional code which solves the resistive MHD equations (1.27)-(1.30). The method is

based on control averaging and a staggered grid. In a Lagrangian code the grid moves

with the fluid, which allows higher resolution in areas of interest. However, for rotations

or shocks this causes problems if the grid folds in on itself. A Lagrangian Remap code

takes a Lagrangian step but then the variables are mapped conservatively back onto the

original grid. The Lare code correctly handles shocks without the need for a Riemann

solver, which can develop errors in low-beta simulations. The code itself is written in

Fortran90 in a set of modules, and is parallelised using MPI to run on multiple pro-

cessors. This allows domain decomposition and reduces run times. This chapter briefly

explains the methods used in the code. The modifications to the code needed for solving

equations describing a partially ionised plasma (3.18)-(3.21) are then presented.
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4.2 The Lagrangian Remap code

4.2.1 Equations

The Lare code solves the resistive MHD equations, given here in Lagrangian form and

with dimensionless variables.

Dρ

Dt
= −ρ∇.v (4.1)

Dv

Dt
=

1

ρ
j ∧B−

1

ρ
∇P (4.2)

DB

Dt
= (B.∇)v −B(∇.v)−∇ ∧ (ηj) (4.3)

Dǫ

Dt
= −

P

ρ
∇.v +

η

ρ
j2 (4.4)

The equations (4.1)-(4.4) are made non-dimensional by writing each variable as

A = ÂA∗ (4.5)

where Â is the dimensionless variable and A∗ is a typical value of the variable in the

simulation. In the above set of equations the tildas have been dropped from the dimen-

sionless variables.

In practice the continuity equation (4.1) is not used. Instead the density change

is related directly to volume changes using mass conservation. Formally, if a plasma

fluid element is at position X = (X1,X2,X3) and moves to position x = (x1, x2, x3),

then x is a function of X and time. Hence the change in element length dxi is

dxi =
∂xi
∂Xj

dXj (4.6)

with summation convention on j, and i, j = 1, 2, 3. This means the new density ρ is

related to the old density ρ0 by

ρ =
ρ0
△

(4.7)

where △ is the determinant of the transformation matrix which has elements

Ji,j =
∂xi
∂Xj

. (4.8)

In Lare △ is evaluated by

△ = 1 + (∇.v)dt+O(dt2). (4.9)
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Figure 4.1: The computational domain in the x direction, showing cell boundaries (xb)
and cell centres (xc).

which means that the Lagrangian step is second order. This approach of relating density

changes to volume changes and using those volume changes elsewhere in the code

guarantees exact conservation of mass.

As well as the Lagrangian equations (4.1)-(4.4), the code also needs to use

the Lagrangian equations for the control volume averaged magnetic field and the flux

through the cell face. These come from integrating equation (4.3) over the volume of

a control volumed cell (dτ) and the cell face surface (dS) respectively.

D

Dt

∫

Bidτ =

∫

viB.dS−

∫

(∇∧ (ηj))idτ (4.10)

D

Dt

∫

B.dS = −

∫

ηj.dl (4.11)

where dl is the line integral around surface dS.

4.2.2 The Grid

The grid in the x direction is shown in figure 4.1. The variables are staggered on a

computational cell as shown in figure 4.2. The scalars are defined at the centre of the

cell, the velocities at the cell vertex. The magnetic field components are defined at cell

faces. This allows the supplemental equation ∇.B = 0 to be maintained to machine

precision using the Evans and Hawley constrained transport method (Evans and Hawley,

1988).

4.2.3 The Lagrangian Step

The Lagrangian step is second order in time and space, and is fully three dimensional.

It is a simple predictor-corrector scheme and comprises two steps. Firstly the half time
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Figure 4.2: The staggered grid showing magnetic field and velocity components.

step pressure, energy density and magnetic field are found, and used to find the half

time step vector force F = −∇P + j ∧B. Then the full time step density and energy

density are calculated from the half time step vector force, along with the full time step

velocities.

At the start of the step, all variables are defined at the same time. In the notation

to follow a subscript * represents predictor (12 time step) values and a superscript 1

represents corrector (full step) values. At several points in the scheme, variables need

to be calculated at different locations. Control volume averaging is used to calculate,

for example, the density at the cell vertex, or the magnetic field at the vertex. One

complication with at this stage is viscosity, and is dealt with in a later section.

Firstly, the thermal pressure is found from

P = ǫ(γ − 1)ρ. (4.12)

The predictor value of the internal specific energy density is

ǫ∗ = ǫ−
δt

2

P∇.v

ρ
(4.13)

The Jacobian of the predictor step is

△∗ = 1 +
δt

2
∇.v +O(dt)2 (4.14)
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and the half time step density and pressure can be found from

ρ∗ =
ρ

△∗
(4.15)

P ∗ = ǫ∗(γ − 1)ρ∗ (4.16)

To find the predictor value for the vector force F, the magnetic field B must be updated

so that the Lorentz force is time-centred. The core solver of Lare is ideal, i.e. η = 0.

The predictor step B field is cell-volume centred. and follows from taking the ideal part

of equation (4.10) and performing a finite difference scheme.

Having obtained the predictor pressure and magnetic field the predictor vector

force F at the vertex can be calculated.

F∗ = j∗ ∧B∗ −∇P ∗ (4.17)

Control volume averaging is needed as B∗ is defined at cell faces. The calculation of

the half time step velocity completes the predictor step, (in the x direction)

v∗x = vx +
δt

2

Fx
∗

ρv
(4.18)

The corrector step is straightforward as the B field does not need to be updated.

The B field components are converted into fluxes. The core solver is for ideal MHD

and so fluxes remain constant through the Lagrangian step (Alfvén’s theorem). The

corrector step is simply an update of the density control volume

△1 = 1 + δt∇.v∗ (4.19)

followed by

ǫ1 = ǫ− δt
P ∗Fx

∗

ρ
(4.20)

ρ1 =
ρ

△1
(4.21)

vx
1 = vx + δt

Fx
∗

ρv
(4.22)

with similar equations in x and y. All variables have been updated a full time step and

are defined on the Lagrangian grid, and the next stage is to remap them back onto

the original Eulerian grid to complete the entire process. This remap is a completely

geometric process.
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4.2.4 The Remap Step

The variables are mapped back onto the Eulerian grid in one-dimensional sweeps. This

remap step is purely geometrical and is designed to maintain monotonicity. The process

follows that of van Leer (1979), using Lagrangian variables to remap ρ and then mass

co-ordinates to remap v and ǫ. The magnetic flux is remapped using a ∇.B preserving

scheme. For further details see Arber et al. (2001) and references therein.

4.2.5 Viscous Effects

So far no viscous effects have been mentioned. The viscosity is added during the

predictor step. Recall that the viscous terms in the velocity and energy equation are

Dv

Dt
=

1

ρ
∇.Π+ ..... (4.23)

Dǫ

Dt
=

1

ρ
ΠijSij + ..... (4.24)

respectively.

Πij = ν(Sij −
1

3
δij∇.v) (4.25)

and

Sij =
1

2

(

∂vj
∂xj

+
∂vi
∂xj

)

(4.26)

are the stress and strain tensors. These terms are added in to the predictor step, and ν

is calculated by

ν = ν3ρcfL (4.27)

where cf is the local fast speed, L is the smallest of the cell dimensions and ν3 is a

dimensionless number which is constant throughout the simulations.

In addition to the standard viscosity, Lare also include shock viscosities. Shock-

capturing codes such as Lare are used when there is little diffusion present, such as

viscosity, but the evolution of sharp gradients is needed. This cannot be done with finite

difference codes, which develop Gibb’s overshoot with sharp gradients. It is prudent,

however to include artificial viscosities in shock-capturing codes to avoid generic nu-

merical problems (Quirk, 1994). These artificial viscosities are applied only at shocks
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and are zero in highly resolved smooth regions. The artificial viscosities in Lare follow

Wilkins (1980) via the additional viscous pressure

q = ν1ρcfL|△v|+ ν2ρL
2△v2 (4.28)

where △v is the difference in velocity across the cell in the direction of acceleration.

This viscous pressure is simply added to the thermal pressure P = ǫ(γ − 1)ρ in the

predictor and corrector update of ǫ (equations (4.13) and (4.20)). Practically, the two

shock viscosities and the background viscosity are controlled by ν1, ν2, ν3.

4.2.6 Resistive Effects

The core solver in Lare is ideal and includes no resistive effects. These effects are

included as a separate routine within the main Lagrangian step. The integral of the

resistive induction equation around the cell surface is given by equation (4.11) which

can be written as an update of the magnetic flux through the cell face Φ =
∫

B.dS.

DΦ

Dt
= −

∫

ηj.dl (4.29)

A first order time difference scheme is used for the update of the flux. In the x direction

this would be
Φx

n+1 − Φx
n

dt
= −

∫

ηj.dl. (4.30)

The integral is performed around the cell face, using (in the update of of Φx) the lengths

dyc and dzc and the resistivity η at each of the four vertexes. The criteria for stability

of this scheme is given by

∆t < ∆tres =
∆x2

η
(4.31)

Ideally this scheme should be 2nd order and time centred, but this would involve

half time step calculations of j and dS which is very difficult. This first order scheme is

sufficient as resistive effects are diffusive.

Ohmic heating

The Ohmic heating term is given by

Dǫ

Dt
= ..... +

η

ρ
j2. (4.32)
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The current density j = ∇∧B and resistivity are defined at the cell vertex, whereas the

internal specific energy density ǫ is defined at the cell centre. This means that the total

Ohmic heating at each vertex is split eight ways and shared between the eight adjacent

cell centres. This way each cell centre receives 8 contributions to its Ohmic heating

from the 8 surrounding vertexes.

4.3 Adapting the Lare Code

4.3.1 The Resistive Step

In chapter 2 the governing equations for a partially ionised plasma in the single fluid

equations were derived using the equations of motion for the ion, neutral and electron

components, and Maxwell’s equations for the EM fields, along with a generalised Ohm’s

law and equation of state. Then in chapter 3 the generalised Ohm’s law for the solar

plasma was simplified and the resulting equation for the magnetic field was shown to

differ for that of standard MHD by an anisotropy in the dissipation of currents. This

equation in Lagrangian form is

DB

Dt
= (B.∇)v −B(∇.v) −∇ ∧ (ηj‖)−∇ ∧ (ηcj⊥). (4.33)

The resistive update of the magnetic flux (4.30) must be modified to include this

anisotropy,
Φx

n+1 − Φx
n

dt
= −

∫

ηj‖.dl−

∫

ηcj⊥.dl (4.34)

where j‖ and j⊥ are calculated at the beginning of the Lagrangian step using the vector

identities

j‖ =
(j.B)B

|B|2
(4.35)

j⊥ =
B ∧ (j ∧B)

|B|2
. (4.36)

These are calculated on the numerical grid in the same way that the Lorentz force is in

the velocity update. The criteria for the stability of this 1st order update now depends

on the Cowling and Coulomb resistivities.

∆t < ∆tres =
∆x2

MAX(η, ηc)
(4.37)
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However, as shown in chapter 3, the Cowling resistivity is dominant in the chromosphere

(ηc >> η). As well as this, the timestep condition for the stability of the resistive update

can be much less than the CFL condition for the Lagrangian update.

∆x2

MAX(η, ηc)
<<

∆x

C
(4.38)

Using typical values of the Cowling resistivity ηc taken from chapter 3 and typical speeds

and grid spaces, a typical ratio of ∆tres/∆tadv = 0.1

This means that the overall limitation on the timestep of the code is determined

by the resistive condition, which will causes unnecessary slowing of the core solver of the

code. The Lagrangian step does not need to be limited by this condition. To increase

the efficiency of the code the resistive update is subcycled within the Lagrangian step.

Firstly, the Lagrangian update is only subject to the CFL condition. Secondly, for every

Lagrangian step, the resistive step is performed n times, where

n = INT

(

∆tadv
∆tres

)

+ 1. (4.39)

In this way if the advection condition is smaller than the resistive condition, there is

no subcycling, and if the resistive condition is the smaller then the resistive update is

subcycled within the main step. In this way both conditions are satisfied where needed.

There is no guarantee that subcycling will be accurate using a 1st order resistive update

within a 2nd order Lagrangian scheme. Simple numerical tests were performed to check

whether subcycling introduced any errors. For a variety of problems, there were no

stability issues, and the subcycling increased the speed of the code, close to the order

of ∆tadv/∆tres.

Ohmic heating

The Ohmic heating term is now

Dǫ

Dt
= .....+

η

ρ
j‖

2 +
ηc
ρ
j⊥

2. (4.40)

where the parallel and perpendicular components of the current are found from equations

(4.35) and (4.36). The heating is split between adjacent cell centres as in the fully ionised

case.
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4.3.2 The Equation of State

As shown in chapter 2 the equation for the internal specific energy density for a partially

ionised plasma can be written

ǫ =
kBT

µm(γ − 1)
+

(1− ξn)Xi

mi
(4.41)

where ǫ is the specific energy density and T is the temperature. Xi is the ionisation of

the ion and

µm =
mi

2− ξn
(4.42)

is the reduced mass.

The Lare code solves, among others, the time evolution of the specific internal

energy density and mass density. The temperature can then be found from this equation

of state

T =
ǫ(γ − 1)mi

kB(2 − ξn)
−

(1− ξn)(γ − 1)Xi

(2− ξn)kB
(4.43)

However, the neutral fraction, which is calculated by the Saha or modified Saha equation,

depends on temperature and density ξn(ρ, T ). So, provided the energy density and

density are known, the equation for temperature is an implicit one.

T = F (T ) (4.44)

where

F (T ) =
ǫ(γ − 1)mi

kB(2− ξn(T ))
−

(1− ξn(T ))(γ − 1)Xi

(2− ξn(T ))kB
(4.45)

and the ionisation level ξn is given by the modified Saha equation. This implicit equation

is solved at each time step using a simple bisection method to iteratively find the roots

of the equation.

Y (T ) = T − F (T ) (4.46)

The upper and lower limits of the bisection method are found from the previous calcu-

lation of the temperature, so that this method can be kept as fast as possible.

This calculation of the temperature at each step ensures the correct response of

the plasma temperature to changes in energy. Once the temperature is found from ǫ,
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the thermal pressure can be calculated. For fully ionised plasmas this was

P = ρǫ(γ − 1) (4.47)

but at all points in the code where the pressure is needed, such as the predictor update

of ǫ, or the calculation of the vector force F, must now be replaced by

P =
ρkBT

µm
(4.48)

where µm is the reduced mass and depends on the ionisation level, and therefore on the

temperature.

4.4 Modeling Heating in the Lower Atmosphere

As already mentioned, the full evolution equation for the internal specific energy density

must include all the heating and cooling effects present in the solar atmosphere. All

these heating effects give the observed temperatures in the solar atmosphere. Thus a

complete numerical study must include them to accurately simulate the emergence of

magnetic flux from the convection zone through the photosphere, chromosphere and

into the corona. However, simulating these effects directly is extremely problematic.

Small scale effects are difficult to include in large scale MHD simulations. Although

effects such as thermal conductivity could be added to the governing equations, the

undiagnosed effects such as those associated with coronal heating, which are not known

explicitly, would be almost impossible to simulate directly.

For this reason a simplified approach to modeling these effects is suggested,

following the work of Abbet and Fisher (2003). The non-adiabatic heating and cooling

terms mentioned above act to force the temperature profile of the Sun to that which

is observed. Rather than include the terms individually it would be simpler to model

their effects, namely that of forcing the temperature to the observed profile, by applying

a forcing or relaxation term to the temperature profile. When the local temperature

of the plasma deviates form the pre-defined value, it is forced back to this value, on

a time-scale which reflects the different mechanisms of heating/cooling present locally.
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This can be done by a simple Newton-cooling equation, which given in terms of the

specific energy density, ǫ, is

dǫ

dt
= −

ǫ− ǫ0(ρ(t = 0))

τ
(4.49)

where τ is the time-scale of the relaxation. The equilibrium specific energy density ǫ0 is

chosen to be a function of the density ρ.

A form for the time-scale of this relaxation is required. For this the approach of

Gudiksen and Nordlund (2005) is adopted. In simulating coronal heating they chose τ

to depend on some power of the density

τ =

(

ρ

ρph

)−1.7

(4.50)

so that at the relatively dense photosphere (ρ = ρph) the time-scale is about 0.1s and

is large enough that the effect becomes negligible in the sparse corona.

Now the equation for the evolution of the specific internal energy density is

Dǫ

Dt
= −

P

ρ
∇.v +

η

ρ
j‖

2 +
ηc
ρ
j⊥

2 +
1

ρ
Πijsij −

ǫ− ǫ0(ρ(t = 0)

τ
(4.51)

A numerical method is needed to implement the Newton-cooling term in the

code. A first order implicit finite difference scheme on equation (4.49) is used here,

ǫn+1 − ǫn

dt
= −

(

ǫn+1 − ǫ0(ρ)
)

τ
(4.52)

where the superscript represent the discrete time sequence. The update of ǫ due to this

Newton-cooling term is given by

ǫn+1 =
ǫn + dt

τ ǫ0(ρ)

1 + dt
τ

. (4.53)

The reason for choosing this scheme becomes obvious when considering the stability.

Applying the standard Von-Neumann stability analysis shows that the multiplication

factor is

g =
1

1 + dt
τ

< 1 (4.54)

and the scheme is therefore unconditionally stable. The update of ǫ due to this extra

term is performed at the end of each Lagrangian step. Whether it is performed at the

start or the end has no effect on the solution.
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In the next three chapters simulations of events in the solar atmosphere using

the adapted Lare code are presented. The next chapter details studies of the evolution

of waves in the partially ionised chromosphere. The two following chapters present

methods and results from simulations of the emergence of magnetic flux through the

partially ionised regions of the solar atmosphere.
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Chapter 5

Collisional Damping of Alfvén

Waves

5.1 Introduction

The inclusion of neutral species in the MHD treatment of plasmas has modified the col-

lisional dissipation mechanism. As already stated this dissipation mechanism is caused

by the relative velocities of ions and neutrals, which is large in regions of strong mag-

netic fields as neutrals are not driven by the Lorentz force. This relative velocity causes

momentum transfer upon collisions between ions and neutrals and hence increased dis-

sipation of energy into the plasma.

This dissipation mechanism manifests itself in the anisotropic dissipation of cur-

rents. As was shown in section 3.5, in the Sun this leads to preferential dissipation

of currents perpendicular to the magnetic field, and is most prominent in the quiet

chromospheric plasma, but is also dependent on the local magnetic field strength.

This dissipation mechanism also provides a mechanism for the damping of os-

cillations in the solar atmosphere. Any dissipation mechanism can convert energy of

oscillations into energy in the medium in which the oscillations are present.

The magnetically dominated corona is an elastic and compressible medium which

can support various types of waves. For waves with wavelengths above the Larmour

radius and periods longer than the gyroperiod, these waves can be described by MHD.
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These MHD waves perturb the macroscopic variables of the plasma such as density

and pressure. Observations of oscillations of these variables have been observed with

wavelengths comparable to characteristic sizes of coronal loops, plumes, active regions

etc, and with periods from a few seconds to a few minutes.

The study of MHD waves is an important field in solar physics. Some of the

unanswered questions such as the mechanisms for coronal heating, and flares, require

detailed knowledge of the plasma parameters. These parameters cannot yet be directly

measured to the required degree of accuracy. In particular the local magnetic field cannot

be obtained accurately enough by Zeeman spitting or gyroresonant emission, or by less

direct methods such as extrapolation from photospheric/chromospheric sources. Other

parameters such as viscosity, resistivity, and thermal conduction cannot be determined

accurately enough from observational data.

The detection of coronal waves provides a tool for determining these parameters,

coronal seismology. Using a combination of theoretical modeling and observed properties

of waves such as periods, damping rates and wavelengths, estimates of magnetic field

strength and plasma transport coefficients can be made to a higher degree of accuracy.

For a thorough review of the theoretical treatment of MHD waves see Roberts (2000,

2002); Goossens et al. (2002); Roberts and Nakaraiakov (2003); Roberts (2004).

5.1.1 Theory of MHD Waves

Plasmas can support coherent phenomena such as waves. In the low-frequency, large

length-scale approximation of MHD, waves are driven by the Lorentz force and the

pressure force.

By linearising the equations of MHD about a static equilibrium, and deriving

dispersion relations, the wavemodes of MHD can be found. In the absence of magnetic

field, the plasma pressure and compressibility generate sound waves. When the mag-

netic field is non-zero, the Lorentz force plays a part in the generation of MHD waves.

The wavemodes of MHD are more complicated in nature than the acoustic modes of

fluid dynamics, due to an induced anisotropy caused by the equilibrium magnetic field

direction. Neglecting the effect of gravity, there are three types of MHD waves. The
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three types of waves are called Alfvén, slow magneto-acoustic and fast magneto-acoustic

waves.

Linear Alfvén waves displace magnetic field and velocity, but not plasma pres-

sure or density. Moreover the displacement is incompressible and perpendicular to the

magnetic field and the direction of propagation k. They are a purely magnetic wave

driven solely by magnetic tension. If k‖ is the component of the wave vector parallel

to the magnetic field, and θ is the angle between the wave vector and the equilibrium

magnetic field B0, then the dispersion relation for Alfvén waves is given by

ω2 =
(k.B0)

2

µ0ρ0
=

k‖
2B0

2

µ0ρ0
= k2‖vA

2 = k2vA
2cos2θ (5.1)

Here vA = B0
2

µ0ρ0
is the Alfvén velocity, and a 0 in the subscript represents equilibrium

values. Alfvén waves are highly anisotropic. As can be seen from equation (5.1), the

frequency depends only on the component of the wave vector parallel to the equilibrium

magnetic field k‖. So although the wave vector can have components perpendicular to

the magnetic field, the group velocity is always directed along the field. This means

that Alfvén waves transport energy along the magnetic field and in no other direction.

The other two wavemodes, slow and fast magneto-acoustic waves, are solutions

of the dispersion relation

(

ω2 − k2vA
2cos2θ

) (

ω2 − Cs
2k2
)

− k2ω2vA
2sin2θ = 0. (5.2)

The slow magneto-acoustic wave is a longitudinal wave, and is characterised, to first

order, by oscillations in the perturbed magnetic field parallel to the equilibrium field, as

well as density and plasma pressure. In low-β plasmas, the slow mode is essentially an

acoustic mode modified by the presence of the magnetic field. The group speed for the

slow mode is finite for only small θ and so energy is transported in a narrow cone centred

about the direction of the equilibrium magnetic field. The fast magneto-acoustic wave

is also longitudinal, but characterised by oscillations in the perturbed magnetic field

perpendicular to the equilibrium field, as well as density and plasma pressure. Moreover,

the group speed is finite for all values of θ and therefore can transport energy in any

direction.
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5.1.2 Waves in the solar atmosphere

There is now a wealth of evidence of oscillations and waves in the atmosphere of the Sun.

With the launch of the SOHO and TRACE satellites, detailed observations have been

obtainable. In particular observations of EIT waves/coronal Moreton waves (Thompson

et al., 1998), compressible waves in solar plumes (Ofman et al., 1997; Deforest and

Gurman, 1998; Ofman et al., 1999) and in coronal loops (Berghmans and Clette, 1999;

De Moortel, 2000; Robbrecht et al., 2001). Also flare-generated global kink oscillations

of coronal loops (Aschwanden et al., 1999, 2002; Nakariakov et al., 1999; Schrijver et al.,

2002) and longitudinal standing waves in loops (Kliem et al., 2002; Wang et al., 2002)

have been observed. This large diversity in wave phenomena in the Sun can be explained

by different modes of MHD waves. For a thorough review see Nakariakov et al. (2003);

Aschwanden (2003, 2004) and references therein.

Alfvénic disturbances have been observed in the solar wind by various spacecraft,

as close as 0.3 AU from the Sun and it is accepted that solar wind disturbances are of solar

origin. Direct observations of Alfvénic oscillations closer to the Sun have proven difficult

to find. However, magnetic field oscillations in the 5 minute period band have been

interpreted as outgoing Alfvén waves (Ulrich, 1996). Waves of frequencies up to 0.1 Hz

have been detected in the upper chromosphere and transition region (DeForest, 2004).

These waves were visible in the TRACE 1600 Angstroms passband. The exact source of

these waves is uncertain and they are not energetically significant to the chromosphere.

Higher frequency waves (> 0.1 Hz) in the lower chromosphere have proved harder to find

(Fossum and Carlsson, 2005). It has been suggested that high frequency Alfvén waves in

the range 1 to 800 Hz can be created by small scale reconnection in the chromospheric

network, and their dissipation was considered as a possible heating mechanism for the

corona above (Marsch and Tu, 1997).

The convection zone, like any turbulent flow, generates acoustic waves of a wide

range of frequencies which propagate in all directions, and as mentioned in Chapter 3, the

subsequent shocking of these waves in the strong density stratification of the atmosphere

above causes heating of the solar plasma. The continuing evolving convection below the

photosphere is also a possible source for a wide range of MHD fluctuations, including
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Figure 5.1: A cartoon diagram of how Alfvénic disturbances can be generated by hori-
zontal motions at the surface and propagate upwards along open field structures which
build up in inter-granular lanes.

Alfvén waves. As with the majority of atmospheric phenomena this effect is closely

connected to the structure of the magnetic field.

It is well established that isolated strong vertical magnetic fields exist outside

sunspots, in particular at the boundary of supergranulation cells (Proctor, 2004). In open

field regions the solar wind is fed by oscillations originating in the convection zone, in

particular Alfvén waves (Belcher, 1971; Hollweg, 1975; Tu, 1995; Goldstein et al., 1995).

Open field structures can be formed by the concentration of vertical field at downdrafts

at the edges of convection cells on the solar surface, and further magnification of the

magnetic field occurs due to the convective instability (Stix, 2002). Horizontal motions

at the surface can propagate upwards along these open flux tubes and reach the outer

solar atmosphere, thus feeding the solar wind (see figure 5.1).

Typical frequencies of Alfvénic oscillations at the surface, derived from the hori-

zontal motion of bright spots associated with magnetic fields, are in the range 3 seconds

to 3 days, which correspond to frequencies of 1 Hz down to 1× 10−6 Hz (Cranmer and

Van Ballegooijen, 2005).

Not only is the study of the generation and propagation of Alfvén waves im-
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portant for the solar wind but it is also important in the heating of the lower solar

atmosphere. Waves generated at the photosphere can deposit their energy in the atmo-

sphere above due to various damping mechanisms.

5.1.3 Damping of Alfvén Waves

The heating effect of MHD waves is connected with dissipation by a particular mecha-

nism which converts the energy of the waves into energy of the background plasma. In

the solar atmosphere the main damping mechanisms are collisional friction dissipation,

viscosity and thermal conductivity. Viscous damping of MHD waves is caused by the

momentum transfer of the thermal motion of particles. Collisional friction is caused

by the relative velocities of the species in the plasma, while thermal conductivity is

also related to kinetic effects and momentum transfer. These three energy dissipation

mechanisms in the solar atmosphere have been studied in previous work (Khodachenko

et al., 2004; Khodachenko et al., 2006). For a partially ionised plasma collisional friction

damping is enhanced due to the ion-neutral drag which is driven by the Lorentz force.

The efficiency of these mechanisms were compared for solar conditions by estimating

effective damping timescales in the linear damping approximation. For waves propagat-

ing in the partially ionised chromosphere, the most dominant mechanism was shown to

be the collisional friction due to ions and neutrals.

The passage of Alfvén waves through both the chromosphere and corona has

been studied using measurements of magnetic bright point (MBP) positions in the pho-

tosphere. A frequency power spectrum for horizontal motions (Cranmer and Van Balle-

gooijen, 2005) at the photospheric level was derived in the frequency range 10−5 to 0.1

Hz. Using this as a lower boundary condition, a WKB approximation was applied to de-

rive power spectra at different heights in the atmosphere to show the effective damping

of waves in different regions. It was shown that waves in this range (10−5 to 0.1 Hz)

may be evident up to a few solar radii which suggests that horizontal perturbations in

this frequency range may be unaffected by the partially ionised chromosphere.

The damping of Alfvén waves, among other mechanisms, has been suggested

as the driving mechanism behind spicules. Spicules are high, thin jet like structures
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consisting of chromospheric plasma. They can reach heights of between 5000 and 9500

km whereupon they either fall back or fade in the hot corona. It has been suggested

that they are driven by the dissipation of upwardly travelling Alfvén waves in open

magnetic field structures, with the main damping mechanism being the collision friction

transfer between ions and neutrals in the partially ionised chromosphere (De Pontieu

and Haerendel, 1998; De Pontieu, 1999). Numerical simulations of Alfvén waves of

frequencies around 0.5 Hz damped by ion-neutral collisions have been conducted in the

WKB approximation. This approximation assumes that over a single wavelength there is

no spatial variation of variables. More specifically, the wavelength itself does not change

much on its own scale and the damping scale is much larger than the wavelength.

De Pontieu et al. (2001) analytically calculated the damping time for Alfvén waves of

varying frequencies in model chromospheres of various solar structures, given estimates

for the plasma parameters in these regions. They estimated that frequencies above about

0.1 Hz are unable to penetrate through to the corona from the photosphere. In addition

waves of these frequencies were able to provide enough momentum to the chromospheric

plasma to cause upwards velocities which matched observations of spicules.

In other studies, James et al. (2003) obtained similar results by relaxing the WKB

approximation, with waves with periods of 20s (0.05Hz) experienced little damping,

while waves with periods of 2s (0.5Hz) were significantly attenuated. However, the

ionisation levels were calculated using the Saha equation assuming local thermodynamic

equilibrium (LTE). As chromospheric plasma is not in LTE these results need to be

verified for non-LTE calculations, as outlined in Chapter 3.

In this Chapter MHD simulations of Alfvén waves are performed to find out

which frequencies of Alfvén waves generated at the surface are damped by ion-neutral

collisions in the partially ionised chromosphere. The simulations use realistic models for

the solar atmosphere, and use the modified Saha equation to estimate the ionisation

levels and therefore the profile of the Coulomb and Cowling resistivities. Filter functions

are created which give the attenuation, or efficiency of damping of this mechanism as

a function of frequency. The numerical results are then compared to analytic estimates

of damping efficiency based on the linear damping approximation (Braginskii, 1965),
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as well as the calculations made in the WKB approximation by the authors mentioned

herein (De Pontieu et al., 2001; Cranmer and Van Ballegooijen, 2005) and in the MHD

simulations also mentioned (James et al., 2003). The results contained in this chapter

have been published in Astronomy and Astrophysics (Leake et al., 2005).

5.2 The Efficiency of Collisional Frictional Damping of Alfvén

Waves

5.2.1 Analytic Approach

To obtain analytic expressions for the damping efficiency of ion-neutral collisions, the

profiles of the Cowling and Coulomb resistivities for the quiet Sun, as derived in chapter

3, are used along with a model magnetic field. By using linear damping MHD analysis,

the efficiency of damping of Alfvén waves which propagate through the partially ionised

atmosphere of the Sun can be estimated.

Magnetic field model

The propagation of Alfvén waves is assumed to be restricted to propagation upwards

along a vertical flux tube, which spreads out with height due to the decreasing gas

pressure in the surrounding plasma (see figure 5.1). As Alfvén waves propagate along

field lines the analysis can be restricted to one spatial dimension, along the field lines.

Hence only the variation of the total magnetic field strength in this direction is needed.

By varying this magnitude in such a way so that the total flux through the cross-section

of such a flux tube is constant, the horizontal expansion does not enter explicitly into

the calculations. A power law dependence on density is chosen

B = B0

(

ρ

ρph

)α

(5.3)

where ρph is the photospheric density 2.7 × 10−4 kg/m3 taken from the VALC model

of the quiet Sun and B0 is 1200 G. This profile is chosen so that at the base of the

domain the magnetic field is approximately 1000 G and falls to a value of about 10 G at

a height of 3000km. This is a simplistic model for the magnetic field but captures the
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Figure 5.2: The variation of the model background magnetic field with height. The four
curves relate to the value of the exponent α = 0.2 (small dash line), 0.35 (large dash
line), 0.4 (thick solid line) and 0.6 (thin solid line).

observed decrease with height and enables comparison of analytic and numerical results.

Martinez-Pillet et al. (1997) showed that the field strength in flux tubes can drop to

as little as 300 G at heights of only 800km so this is used as the minimum value of

magnetic field at this height for the model. The magnetic field profile for four different

power law profiles are shown in figure 5.2.

As in chapter 3, using this field model, ηc can be calculated as a function of

height in the quiet Sun, and can be compared to η. Figure 5.3 shows the resistivities

for a magnetic field profile given by equation (5.3) and with α = 0.2.

Linear damping

Braginskii (1965) derived damping length-scales for various damping mechanisms in a

partially ionised plasma, for fast, slow and Alfvén waves . These damping length-scales

or damping decrements can be used to express the inverse timescale of damping of

propagating waves, and hence be used to gain an estimate of the efficiency of the

damping mechanism. An Alfvén wave propagating with angular frequency ω and with

89



Figure 5.3: Cowling (solid line) and Coulomb (dashed line) resistivities as a function of
height calculated using ionisation levels from the modified Saha equation using varying
|B| with height, with α = 0.2.

wave number k can be expressed by the harmonic expression

exp (−i(k.r− ωt)) (5.4)

for the perturbations in magnetic field and velocity.

The damping decrement δ for collisional friction damping, as calculated by Bra-

ginskii (1965) is given by

2ωδ ≡
1

τ
= η‖k⊥

2 + ηck‖
2. (5.5)

k‖ is the wavenumber parallel to the magnetic field B, and wavenumber k⊥ is perpen-

dicular.

The linear MHD analysis used to obtain these damping decrements (Braginskii,

1965) assumes that the damping decrement δ is much less than 1. This implies that

δ =
ηck‖

2

2µ0ω
≪ 1 (5.6)

or that

ω ≪ ωcrit =
2µ0cA

2

ηc
. (5.7)
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For the model used here both ηc and the Alfvén speed

cA =
B

(µ0ρ)
1

2

(5.8)

are functions of height so the damping decrement also varies with height. Over a small

timestep dt the amplitude A of the propagating wave changes by

A = A0 exp

(

−
dt

τ

)

(5.9)

= A0 exp

(

−dt
ηc(z)

µ0
k||(z)

2

)

= A0 exp

(

−dz
ηc(z)

µ0cA(z)
3ω

2

)

By integrating over the entire vertical domain an estimate for the total change in am-

plitude due to the damping can be made

E =
A0 −A

A0
= 1− exp

[

−ω2

∫

ηc(z)

µ0cA(z)
3dz

]

(5.10)

where the integral can be performed numerically. The results from this approximation

are shown in figure 5.4 for the four different magnetic field models (different α). From

these estimates it appears that in the absence of any other damping mechanisms and

stratification effects, high frequency Alfvén waves are unable to pass through this par-

tially ionised region without being completely damped. For the magnetic field model

with α = 0.2 this upper limit can be as low as 0.1 Hz.

5.2.2 Numerical Simulations

Alfvén wave propagation is simulated by numerically solving the governing equations

for a partially ionised plasma derived in chapter 2. In this way a realistic model for

the atmosphere can be constructed, which includes gravitation and stratification. The

propagation of Alfvén waves can be simulated by driving waves in the model photosphere

and following their evolution through the partially ionised region. The values of the

ionisation level and resistivities are obtained using the modified Saha equation. This

method thus represents a more realistic approach to modeling the propagation of Alfvén

waves in the chromosphere. This approach does not rely on the WKB approximation,
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Figure 5.4: Analytical estimates for the damping efficiency of Alfvén waves in the par-
tially ionised region of the solar chromosphere, as a function of frequency. The four
lines represent the four magnetic field profile given by α = 0.2 (thin solid line). 0.35
(dashed line), 0.4 (dot-dashed line) and 0.6 (thick solid line).

and so the results can be compared with the work of De Pontieu et al. (2001) to verify

their results.

To simulate the motion of waves in the chromospheric region of the solar atmo-

sphere, the magnetic field model used is a spreading vertical flux tube representing an

open magnetic structure with its footpoint in the photosphere (see equation (5.3)). The

footpoint is assumed to be the generation point of Alfvén waves and the propagation

to be vertical upwards.

Model atmosphere

In order to define the model atmosphere the temperature profile in the VALC model

(Vernazza et al., 1981) is used as a guide for the model temperature in these simulations.

The temperature profile used is

T (y) = Tph +
(Tcor − Tph)

2

[

tanh

(

y − ycor
wtr

)

+ 1

]

. (5.11)
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This represents two isothermal regions (models of the photosphere/chromosphere at

temperature Tph and corona at temperature Tcor) separated by a transition region of

width wtr. The values used in these simulations are

Tph = 5700K (5.12)

Tcor = 150Tph (5.13)

ycor = 3750 km (5.14)

wtr = 750 km (5.15)

Assuming the unperturbed atmosphere is in hydrostatic equilibrium gives

d

dy

(

ρkBT

µm

)

= −ρg. (5.16)

It was shown in chapter 2 that for a Hydrogen plasma of varying ionisation

µm =
mi

2− ξn
. (5.17)

However, the solar atmosphere also contains Helium. As the first ionisation of Helium

is higher than that for Hydrogen, there will also be neutral Helium present. A full

calculation of the pressure would include the relative number of neutral Helium to Helium

ions, but this is over-complicated. To account for the effect of Helium on the mean

mass a prefactor of 1.2 is used (the value represents the fractional increase in mean

mass using the relative abundances of Hydrogen and Helium). This is a simplification,

but the relative number of Helium to Hydrogen is small (around 0.1), so the effect of

neutral Hydrogen on the mean mass calculation is small.

Equation (5.16) is a differential equation for the density, provided the mean mass

and the temperature are known. However, the mean mass depends on the ionisation

level and hence, via the modified Saha equation, on both density and temperature.

µm =
mi

2− ξn
= f(ρ, T ) (5.18)

In order to solve for the density using equation (5.16), the mean mass must

already be known, which is itself a function of density, meaning an implicit method

must be used. A simple iterative method is used to simultaneously find the density and
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Figure 5.5: Model atmosphere showing density (thin solid line), temperature (dashed
line), gas pressure (dot-dashed line) and neutral fraction (thick solid line). The height
is in units of photospheric scale height.

mean mass profiles, given the temperature profile. This is done by initially setting the

mean mass to a constant profile and then iteratively solving (5.16) and recalculating µm

until both profiles of µm and ρ converge.

The hydrostatic equation (5.16) must be solved numerically. The details of this

are given in appendix A. The resultant density, temperature and gas pressure are shown

in figure 5.5 along with the neutral fraction. As can be seen, the neutral fraction falls to

zero as the temperature passes the ionisation temperature of Hydrogen. The magnetic

field profile is the same as used in the analytic approach.

Alfvén wave initialisation

To initiate Alfvén waves at the base of the domain, the horizontal velocity vx is driven

with a sinusoidal function continuously at the bottom of the domain. The frequency of

the sinusoidal function represents the frequency of the travelling wave. The amplitude

of the driving function varies with typical driving velocities of 600 m/s and a range of

80 to 800 m/s being used. The amplitudes had little effect on the results presented
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here.

Numerical method

The propagation of Alfvén waves in a partially ionised plasma is modeled in 1D by numer-

ically solving the non-ideal partially ionised MHD equations, given here in dimensionless

form.

Dρ

Dt
= −ρ∇.v (5.19)

Dv

Dt
= −

1

ρ
∇P +

1

ρ
j ∧B+ g (5.20)

DB

Dt
= (B.∇)v −B(∇.v) −∇ ∧ (ηj‖)−∇ ∧ (ηcj⊥) (5.21)

Dǫ

Dt
= −

P

ρ
∇.v +

1

ρ
ηj‖

2 +
1

ρ
ηcj⊥

2

+
1

ρ
ΠijSij −

ǫ− ǫ0
τ

(5.22)

which also include the Coulomb and Cowling resistivities. B is the magnetic

field, j = ∇ ∧ B is the current density, and j‖ and j⊥ are its components parallel and

perpendicular to the magnetic field, respectively. v is the velocity, P is the thermal

pressure, and ǫ is the specific internal energy density. The constants µ0 and γ have the

standard meanings of magnetic permittivity of free space and the ratio of specific heats

respectively. Although for a partially ionised plasma γ < 5/3 the value had little effect

on the results so 5/3 was used in all simulations.

It is worth noting that no viscous effects are included in these model equations

as only collisional damping is being investigated in this work. However, as mentioned at

the start of this chapter, the main damping mechanism in the partially ionised regions

of the solar atmosphere is ion-neutral collisions.

The simulations are carried out using the 2D Lare code, adapted as in chapter

4. Although the code is run in 1D all vector variables have 3 components.

The simulation domain extends 3000 km vertically, while the computational grid

consists of 2000 cells. The number of cells vertically is restricted by the need to resolve

the smallest wavelengths in the parametric study. The grid is stretched so that higher

resolution is used at the lower part of the domain where the wavelengths are shorter
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(the wavelength of the upwardly propagating wave increases with height due to the

change in the Alfvén speed. The vertical boundary conditions are line-tied which are

perfectly reflecting, and the simulation ends when the Alfvén waves have reached the

upper boundary.

All quantities are non-dimensionalised by using values at the photosphere.

r∗ = 150 km

ρ∗ = 2.7 × 10−4 kg/m3

v∗ = 6515m/s

t∗ = 23 s

T ∗ = 6420K

P ∗ = 1.17 × 104 Pa

B∗ = 1000G

Conversion to variables with dimensions merely requires the multiplication of internal

variables by these values.

As has been shown in chapter 3 the Cowling resistivity ηc is much larger than the

Coulomb resistivity η at chromospheric heights. In fact over the domain being simulated,

the calculated value of η using the density and temperature values for the plasma never

exceeds the value of numerical roundoff in the code, and hence all simulations are run

with η = 0.

Results

The dissipation of these waves can now be investigated by observing the change in

amplitudes of the Alfvénic perturbations as they propagate upwards along the field lines

of the vertical flux tube. Figure 5.6 shows a typical profile of the perpendicular velocity

and magnetic field perturbations with height for a driving frequency of 0.07 Hz, for two

cases. The first is when there is no damping mechanism present and the second is when

collisional friction damping is applied with the given profile of ηc with the value of α

being 0.2.
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Figure 5.6: Velocity (top panels) and magnetic field (bottom panels) perturbations as
a function of height for a typical run with f = 0.07Hz, The left hand panels are for the
case of ηc = 0 and the right hand panels are for the ηc calculated at each step. The
velocity and magnetic field are given in dimensionless units.
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By comparing the propagation of Alfvén waves in the presence of a partially

ionised region and without, the efficiency of damping due to collsional friction of ions

and neutrals in the partially ionised chromosphere can be estimated.

As can be seen from the two left panels from figure 5.6, the gravitational strat-

ification causes an increase in amplitude of the velocity perturbation and a decay in

the corresponding magnetic field perturbations. This is a consequence of energy con-

servation in the travelling wave. For a rigorous mathematical treatment of this see

De Moortel and Hood (2004). This makes a direct calculation of the efficiency of the

collisional frictional damping non-trivial.

In order to obtain an estimate for the efficiency of collisional friction damping

the Poynting flux carried by the waves is compared for the two simulations. Poynting

flux is given by

S =
E ∧B

µ0
. (5.23)

Hence the time-averaged Poynting flux for the Alfvén waves is given by

< S >=
B0 < bxvx >

µ0
(5.24)

where B0 is the vertical background magnetic field and bx, vx are the perturbations

in magnetic field and velocity. By calculating the ratio of Poynting flux at a height

above the partially ionised region of the model chromosphere for the two simulations

the efficiency of the damping mechanism is found. The ratio of damped to undamped

Poynting flux at a height of 2500km above the surface (i.e. above the region of high

Cowling resistivity) is given by

γr =
< S >damped

< S >undamped
(5.25)

and for direct comparison with the analytic results the efficiency of damping is estimated

simply by

E = 1− γr. (5.26)

Figures 5.7-5.10 show this estimate as a function of frequency, along with the

estimate from the analytic approach. The four different plots are for the four different

magnetic field profiles, with α being 0.2, 0.35, 0.4 and 0.6 respectively. As the power
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Figure 5.7: Estimates of the efficiency of damping due to ion-neutral collisions for the
magnetic field profile with power law α = 0.2. The solid line is the estimate due to
analytic approaches and the triangles represent the estimates obtained from numerical
data.

law for the magnetic field changes so does the estimate for the damping efficiency, as

the value of ηc is dependent on |B|.

The numerical data agrees best with the analytical estimates when α is smallest

(see figure 5.7). For this profile the two approaches agree in the middle of the frequency

range, but disagree at low and high frequencies. The differences at low frequencies are

due to limitations in the procedure outlined in equations (5.24)-(5.26). The differences

at high frequencies are due to the fact that the analytic approach is only applicable

when the driving frequency is well below the critical value (criteria (5.7)), i.e in the

linear damping approximation.

The difference between numerical and analytic data increases as the value of

α increases (figures 5.7-5.10). By increasing the power in the magnetic field profile in

equation (5.3), the effect of ion-neutral collsional friction damping is decreased, as ηc

becomes smaller. This increases the relative importance of any other effects on the wave

amplitude, such as stratification. Thus the difference in numerical and analytic data is

due to the fact that the numerical approach includes the stratification effects on the
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Figure 5.8: Estimates of the efficiency of damping due to ion-neutral collisions for the
magnetic field profile with power law α = 0.35. The solid line is the estimate due to
analytic approaches and the triangles represent the estimates obtained from numerical
data.

Figure 5.9: Estimates of the efficiency of damping due to ion-neutral collisions for the
magnetic field profile with power law α = 0.4. The solid line is the estimate due to
analytic approaches and the triangles represent the estimates obtained from numerical
data.
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Figure 5.10: Estimates of the efficiency of damping due to ion-neutral collisions for the
magnetic field profile with power law α = 0.6. The solid line is the estimate due to
analytic approaches and the triangles represent the estimates obtained from numerical
data.

wave amplitudes, whereas the analytic approach does not.

From both analytical and numerical data it can be seen that Alfvén waves with

frequencies below 0.01 Hz are unaffected by this damping mechanism, and propagate

through the partially ionised region with little diffusion. Waves with frequency above

0.6 Hz are completely damped by this mechanism.

5.3 Conclusions

The efficiency of the partially ionised solar chromosphere in damping Alfvén waves gen-

erated at the surface has been estimated. The estimates are based on analytic and

numerical approaches, which agree in the linear damping approximation. The damping

mechanism is the collisional friction between neutral and ion species in a model partially

ionised Hydrogen plasma with temperature and density values based on the VALC model

of the quiet Sun (Vernazza et al., 1981).

Alfvén waves of frequencies above 0.6 Hz are completely damped by the partially
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ionised layer in the chromosphere, whereas waves of frequency below 0.01 Hz are unaf-

fected by the presence of neutrals and experienced no damping due to this mechanism.

This lower value agrees with work conducted on MBP’s and power spectra of horizontal

motions at different heights in the atmosphere (Cranmer and Van Ballegooijen, 2005).

They showed that using the WKB approximation the power spectra for motions with

frequencies below 0.01 Hz are essentially unchanged as one progresses up the chromo-

sphere to the transition region. This suggests that there is very little damping of low

frequency waves due to any kind of dissipation mechanism in the solar chromosphere.

The form of the dissipation efficiency calculated from numerical data differs from

that obtained from linear analytic approximations. Small differences could be seen at low

frequencies (due to errors in the estimation of small damping decrements). Differences

also occurred at higher frequencies, although both analytic and numerical estimates of

the efficiency converge to 1 at high frequencies. The difference at higher frequencies is

due to the fact that the linear damping approximation is not valid (5.7).

The numerical simulations were performed in the non-ideal MHD approximation

with an additional term relating to the Cowling resistivity in the generalised Ohm’s law.

Previous work on Alfvén wave propagation in the lower solar atmosphere has used the

WKB assumption, as used by (De Pontieu et al., 2001). This assumes that the change

in wavelength, as well as plasma variables, is small over a typical wavelength. They

estimated that in this regime the ion-neutral collisions in the chromosphere damped

waves of frequencies above 0.1 Hz. However, the WKB approximation fails at low

frequencies when the wavelength is larger. These results show that high frequency

waves are heavily attenuated by ion-neutral collisions but as is clear from figures 5.7-

5.10 the result is very sensitive to the spreading out of the flux tube and decrease in

|B|. Over the range of values of α, chosen to match estimates of |B| from observations,

the damping is very effective over a range 0.1 to 0.6 Hz depending on α. This work

is also in broad agreement with the work of James et al. (2003), which gives similar

upper limits on the frequency that can propagate through the partially ionised regions

of the solar atmosphere. However, these simulations used non-LTE calculations of the

ionisation whereas pervious work did not.
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Although higher frequency waves are difficult to observe directly, photospheric

motions can theoretically generate a large spectrum of Alfvén waves. The fact that

the partially ionised layer completely damps any waves above 0.6 Hz for these magnetic

field models means that any high frequency waves present in the upper atmosphere must

have been created by other sources than photospheric motions.

This work is based on upward travelling waves generated at the photospheric

level. Downward travelling waves from the corona would be reflected at the density

contrast above the chromospheric region where the Cowling resistivity is large and it is

unclear whether this damping mechanism would be important. The case of downward

propagating waves will be subject to further investigation.

The model atmosphere is assumed to be magnetised, and thus the Generalised

Ohm’s law does not include the Hall term. In the upper photosphere, the electrons

are tightly bound to the magnetic field whereas the ions are not. In this case there is

a separation electric field due to the neutrals drag on the non-magnetised ion, which

should be taken into account in the single fluid equations. However, it was shown that

the damping of Alfvén waves is most efficient at heights of 1000 km to 2000 km and in

this region the plasma can be regarded as magnetised.
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Chapter 6

2D Simulations of Emerging

Magnetic Flux

6.1 Introduction

The study of the emergence of magnetic field into the solar atmosphere is important

for understanding the coupling of dynamo fields in the interior of the Sun not only with

active regions on the surface, but also with the associated events in the atmosphere

above.

It is well established that magnetic flux can be lifted from the base of the con-

vection zone in the form of thin twisted flux tubes (Matthews et al., 1995). These

flux tubes can rise to the surface due to the super-adiabatic nature of the convection

zone. The emergence of these flux tubes is thought to be the cause of new active

regions being formed (Parker, 1955; Zwann, 1978). The flux tubes at the base of the

convection zone are thin in the sense that the tube radius is small compared to the

local scale height, which is not true in the upper regions of the convection zone. More

importantly, the temperature gradient at the surface becomes sub-adiabatic, so that

buoyancy cannot drive the flux tubes from beneath the surface into the atmosphere

above. Another mechanism must do this, and the most likely candidate is the magnetic

buoyancy instability (Parker, 1979; Matsumoto and Shibata, 1992; Matsumoto et al.,

1993; Magara and Longcope, 2001; Shibata et al., 1989; Shibata et al., 1989).
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Current models of flux emergence have very simple treatments of the energy ex-

change in the solar atmosphere. This is due to the complications involved in including in

the models all the heating/cooling mechanisms in the solar atmosphere. While previous

work on flux emergence has given valuable insight into the nature of flux emergence

into the solar atmosphere, the effect of heat transfer as flux emerges though the lower

atmosphere and into the corona is still unknown.

Previous work on flux emergence has modeled the solar atmosphere as a fully

ionised plasma of high magnetic Reynold’s number (Archontis et al., 2004; Fan, 2001;

Manchester, 2001). In previous chapters it has been shown that the solar atmosphere

cannot be assumed to be fully ionised everywhere, but that the ionisation level changes

with height. The presence of neutrals introduces an additional dissipation mechanism,

which manifests itself in anisotropic dissipation of currents. For the quiet Sun, it was

shown that this dissipation can become important relative to advective effects. The

partially ionised region can have low magnetic Reynolds numbers and thus the evolution

of the magnetic field can be dominated by diffusion rather than advection. Furthermore

it has been shown that given solar parameters, this additional dissipation mechanism

can heavily attenuate high frequency upflowing Alfvén waves

In this chapter the importance of including the additional effects of partial ion-

isation in flux emergence models is investigated. The results presented here are from

2.5D simulations, i.e 2 independent spatial variables and 3D vector dependent variables.

In this way the evolution of a flux tube’s cross-section can be simulated. This obviously

includes no phenomena which occurs along the tube axis, which may be important for

the emergence of flux into the atmosphere (Manchester, 2001; Manchester et al., 2004).

Results from 3D simulations are presented in chapter 7. Some of the work presented in

this chapter has been published in Leake and Arber (2006).

6.2 Numerical Simulations

The simulations presented in this chapter model the evolution of magnetic field in

the upper convection zone and atmosphere of the Sun. Firstly, a simple model for
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the unperturbed solar atmosphere is constructed. This model comprises the upper

convection zone, photosphere/chromosphere, transition region, and corona, and is based

on values taken from the VALC model of the Sun (Vernazza et al., 1981). Secondly

a magnetic flux tube is superimposed on this background atmosphere. This magnetic

field profile will have a number of free parameters, which in principle can be varied

systematically to investigate the effect of the initial model on the results. The buoyant

rise of this flux tube can be initiated in a variety of ways, mentioned later in this chapter.

The evolution of this flux tube is then simulated by numerically solving the governing

equations.

6.2.1 Model atmosphere

The model temperature profile for these simulations is similar to that used in chapter 5,

comprising an isothermal photosphere/chromosphere, transition region and isothermal

corona. In addition the upper convection zone immediately beneath the surface is

modeled by a linear polytrope. The temperature profile is

T (y) = Tph − a
g

m+ 1
y , y < 0 (6.1)

= Tph +
Tcor − Tph

2

[

tanh

(

y − ycor
wtr

)

+ 1

]

, y > 0. (6.2)

The photospheric temperature, Tph is 5700K, the coronal temperature Tcor is 8.5×105K.

The width of the transition region wtr is 750km. The vertical domain (y) extends from

3000 km below the surface to 10000 km above the surface.

The polytropic index is given by m and is set to the adiabatic value 1
γ−1 . The

parameter a is used to control how superadiabatic the model convection zone is. If

a = 1 then the temperature profile is on the critical value for convection to occur

dT

dy
<

(

dT

dy

)

a

=
(γ − 1)

γ

T

P

dP

dy
. (6.3)

If a > 1 then the temperature gradient satisfies the condition for instability and any

initial buoyancy of a parcel of plasma will persist until the atmosphere becomes stable.

This temperature profile is shown together with values taken from the VALC

model of the quiet Sun (Vernazza et al., 1981) in figure 6.1. Although a simplistic
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Figure 6.1: The initial temperature profile of the model background atmosphere (solid
line), along with values taken from the VALC model of the quiet Sun (diamonds).

version of the real solar atmosphere, it captures the main features of the temperature

profile.

As in Chapter 5, the density and pressure of the background atmosphere are

found from solving the hydrostatic equation

dP

dy
= −ρg (6.4)

where

P =
nTkBT

µm
. (6.5)

For a fully ionised Hydrogen plasma, µm =
mp

2 . Previous simulations of flux emergence

have used a value of µm = mp, which is designed to account for the effect of heavier

elements and neutral atoms on the mean mass (Archontis et al., 2004; Magara, 2001).

For comparison with these simulations, this is the value used here for the fully ionised

model of the solar atmosphere. For a partially ionised Hydrogen plasma, it was shown

in chapter 2 that µm = 1
2−ξn

. As in chapter 5, the following form for µm is used.

µm =
1.2

2− ξn
(6.6)

The mean mass depends on the neutral fraction ξn which is a function of temperature.

The factor 1.2 represents contribution from heavier elements. As in chapter 5, given the
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Figure 6.2: The initial stratification of the background atmosphere. The dashed line is
the temperature, the solid line is the density and the dot-dash line is the gas pressure.
All values are normalised to values at the surface, y=0. The height is normalised to the
scale height at the surface.

temperature profile of the background atmosphere, the hydrostatic equation and mean

mass equation are solved simultaneously to obtain the stratification, which is shown in

figure 6.2.

6.2.2 Initial Magnetic Field Profile

To simulate the evolution of a magnetic flux tube in the convection zone, a magnetic

field profile is superimposed on the background stratification. This is done by defining

a magnetic field profile which represents a twisted flux tube, having axial field Ba and

azimuthal field BT . There are generally two choices of magnetic field profile.

The first is the Gold-Hoyle force-free flux tube. This is force-free (j ∧ B = 0)

and therefore exerts no force on the surrounding plasma, and the entire initialisation is

in equilibrium. In previous literature this initialisation is commonly called mechanical

equilibrium (MEQ). To initiate the rise of the flux tube, vertical velocities must be

imposed upon the flux tube (Magara, 2001; Manchester et al., 2004).

However, the plasma β in the convection zone is much greater than unity and
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gas pressure dominates over magnetic pressure. In this case the equilibrium equation

reduces to ∇P = ρg not j ∧B = 0 as it does in the low β corona. Therefore there is

no reason to specify the magnetic field in the convection zone as force-free.

The second choice is to use a non-force free field, so that the tube will exert a

force on the plasma (j∧B 6= 0). A typical non-force free profile, as used by Fan (2001)

is

Ba = B0 exp

(

−
r2

a2

)

(6.7)

BT = qrBa (6.8)

where r is the radius from the centre of the tube’s cross-section, a is the width and q

is known as the twist.

q =
BT

rBa
(6.9)

The plasma pressure inside the tube differs from the field-free pressure (p0(r)) by p1(r),

where
dp1(r)

dr
êr = j ∧B, (6.10)

so that the pressure gradient matches the Lorentz force. The change in density inside

the flux tube relative to the field free atmosphere is specified by assuming the tube to

be in thermal equilibrium with its surroundings.

T0(y) =
p0(y)µm

ρ0(y)
=

(p0(y) + p1(r))µm

ρ0(y) + ρ1(r)
(6.11)

Hence the density inside the tube differs from the field-free atmosphere (ρ0(y)) by

ρ1(r) =
p1(r)µm

T0(y)
. (6.12)

It has been argued that MEQ is preferable to TBL as an initialisation (Caligari

et al., 1998), as it has less free-parameters. TBL is used here because there is no specific

reason to assume the sub-surface field as force-free. Also the level of buoyancy in the

tube in TBL initialisations can be varied to match observations of motions of emerging

active regions (Caligari et al., 1995).

As mentioned in chapter 1, there is a range of twist which a flux tube can have

to survive the convection zone. The minimum value is

|qmin| =
1

a
. (6.13)
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For these simulations, a value of B0 = 5 is used which corresponds to 6000 G,

using the gas pressure from the model at the tube depth, this corresponds to a value

of plasma β of 10. The width is set to 2, which corresponds to a value much smaller

than the typical size of sunspots. However, as the flux tube reaches the less dense

atmosphere there will be significant expansion. The twist is set to the minimum value

required to avoid fragmentation (6.13). As only a small amount of convection zone is

being modeled, the tube will experience little deformation. For a full investigation into

the effect of initial magnetic field models on the buoyant rise in the convection zone see

Magara (2001).

6.2.3 Equations

The equations used to model the partially ionised plasma of the convection zone and

atmosphere are given here in Lagrangian dimensionless form, with all the usual meanings.

Dρ

Dt
= −ρ∇.v (6.14)

Dv

Dt
= −

1

ρ
∇P +

1

ρ
j ∧B+ g +∇.S (6.15)

DB

Dt
= (B.∇)v −B(∇.v) −∇ ∧ (ηj‖)−∇ ∧ (ηcj⊥) (6.16)

Dǫ

Dt
= −

P

ρ
∇.v +

η

ρ
j‖

2 +
ηc
ρ
j⊥

2 +
1

ρ
ΠijSij −

ǫ− ǫ0(ρ)

τ
(6.17)

The energy equation includes the ad-hoc heating term which represents all heating

mechanisms which cannot be included directly into the code but are present in the

atmosphere of the Sun. As in chapter 5, these equations were normalised to values at
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the photosphere,

r∗ = 150 km

ρ∗ = 2.7 × 10−4 kg/m3

v∗ = 6515m/s

t∗ = 23 s

T ∗ = 6420K

P ∗ = 1.17 × 104 Pa

B∗ = 1000G.

Unless stated all values are in dimensionless units and should be multiplied by these

values to recover dimensional units.

Equations (6.14)-(6.17) reduce to the equations for a fully ionised plasma when

ξn = 0 and ηc = η, so comparison between fully ionised and partially ionised simulations

is straightforward.

6.2.4 Numerical Method

The computational domain extends from -20 to 80 in the vertical direction (correspond-

ing to heights of -3000 km to 12000 km) with the surface being defined by y = 0.

The horizontal domain extends from -50 to 50 (-7500 km to 7500 km). The horizontal

domain is a uniform grid with open boundaries at each side. These open boundaries

allow the flow of matter and magnetic field out of the domain. The vertical domain

is stretched so that more grid points are located within the region -20 to 20 so as to

capture the structure of the magnetic field better. The vertical boundary conditions

are open at the top and line-tied at the bottom, representing the denser plasma in the

convection zone beneath the simulation domain.

The total number of grid points used varies, and resolution is increased to check

that the results converge. A typical run has a maximum resolution of 5122 grid points.

By stretching the vertical domain the cell size can be as low as 0.1 in regions where the

magnetic flux tube is located and goes up to 0.5 at the top of the domain. By using
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larger cells at the top of the domain the CFL condition for advection

∆t <
∆x

Cs
(6.18)

can be kept reasonable even though the sound speed Cs increases with temperature

towards the top of the simulation domain.

6.3 Evolution of the Magnetic Field in the Convection Zone

and Photosphere

The flux tube is initially buoyant as there is a density deficit which is stronger in the

centre of the tube. As a convectively unstable atmosphere will allow upward buoyant

motions to continue, the tube should continue to rise until the stratification becomes

sub-adiabatic, or drag forces have fragmented the tube.

Magara (2001) reasoned that if a flux tube’s cross section remains constant

during the rise, its evolution in this region can be modeled by a rigid cylinder rising in a

gravitationally stratified layer. As a result the rise speed of the flux tube should increase

linearly with time,

vy = Mt (6.19)

where M is a constant which depends on the initial set-up of the tube. Figure 6.3 shows

the rise speeds at the centre of the tube as a function of time along with the theoretically

calculated values. The tube is initially at rest but then its rise speed approaches the

theoretical value. As the tube reaches the stable photosphere, its velocity begins to fall

away from the theoretical value due to the stable stratification halting further motion.

Magnetic flux in the tube must be conserved, in this 2D situation this gives

BaA = const (6.20)

where A is the area of the cross-section of the tube. In addition mass must be conserved

in the tube

ρA = const (6.21)
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Figure 6.3: The rise speed at the centre of the flux tube (triangles) along with the
theoretical linear evolution (solid line). Velocity is normalised to the Alfvén speed at the
surface, and the time is normalised to t0 = Hp/vA.

which means that
Ba

ρ
= const (6.22)

Hence as the tube rises the axial field strength falls as

Ba(y) = Ba(y0)
ρ(y)

ρ(y0)
(6.23)

where y0 is the height of the tube initially. This means that the axial field strength will

diminish as the tube gets further up the convection zone. Figure 6.4 shows the axial

field strength Ba as a function of height through the centre of the horizontal domain at

five different times in the rise of the flux tube. The field strength at the centre of the

tube is proportional to the fall in density as the flux tube rises up the convection zone.

At later times this proportionality falls away as the evolution of the flux tube becomes

no longer determined by buoyancy.

The flux tube will only continue to rise as long as the stratification is supera-

diabatic. The photosphere is convectively stable (being almost isothermal), and this

inhibits the buoyant rise of the flux tube. This can be seen in figure 6.3 which shows

the rise speed fall at later times in the rise. This halt in the vertical motion of the flux
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Figure 6.4: The axial field component though the centre of the tube as a function of
position at five different times at t=0,10,20,30,40,50, shown by the solid lines in order
from left to right. The dashed line shows the ratio of the density to the density at the
tube’s initial height.

tube causes it to expand more in the horizontal direction. This can be seen in figure 6.5

which shows the magnetic pressure at four different times in the simulation. The initially

circular cross-section is now flattened out to form a magnetic layer at the surface, and

no further rise due to buoyancy occurs.

This horizontal layer forms a contact surface with the plasma above. This layer is

effectively holding up denser plasma due to magnetic buoyancy, as can be seen in figure

6.6. This magnetic layer, which is holding up denser gas, is unstable to an instability

similar to the Rayleigh-Taylor instability, where the destabilising effect is the gradient

in the magnetic field. This instability is commonly referred to as the Parker instability

or a mixed mode of the magnetic-buoyancy instability, or MBI (Archontis et al., 2004;

Newcomb, 1961; Thomas and Nye, 1975; Acheson, 1979).

Criteria for the onset of this instability for a magnetic field in an isothermal adia-

batic atmosphere has previously been derived (Newcomb, 1961; Gilman, 1970; Acheson,

1979; Parker, 1979). The criteria for onset of the magnetic buoyancy instability can

be regarded as a competition between the destabilising effect of the gradient in the
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Figure 6.5: The magnetic pressure at 4 different times in the simulations. Top left:t=28,
top right:t=32, bottom left:t=36, bottom right:t=40.
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Figure 6.6: The magnetic pressure (dashed line), gas pressure (thin solid line) and
density (thick solid line) as functions of height in the centre of the horizontal domain
at time t=30. The density is depleted at the top of the layer, and consequently the
magnetic field is holding up denser gas.

magnetic field and the stabilising effect of the convectively stable temperature gradient.

For modes that do not twist field lines the criteria for onset is given by

−
g

γCs
2

d

dy
ln

(

B

ρ

)

>
N2

CA
2 . (6.24)

Modes that do twist the field lines are more easily generated (Acheson, 1979) and the

criteria for onset is given by

−
g

γCs
2

d

dy
ln(B) > k2

(

1 +
l2

n2

)

+
N2

CA
2 . (6.25)

Here B is the magnetic field strength, ρ the density, γ the ratio of specific heats, Cs

the sound speed, CA the Alfvén speed. N is the Brunt-Wäisälä frequency which can be

written as

N2 =
g

γ

d

dz
ln
(

pρ−γ
)

(6.26)

which is equivalent to the definition given in (1.7). k is the wave number in the x

direction (along the field), l is the wave number normal to the field in the horizontal

direction and n is the wave number in the vertical direction. The perturbations are
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assumed to be of the form

sin(lz) exp(i(kx+ ny − ωt)). (6.27)

Criteria (6.25) can be rewritten as (Archontis et al., 2004)

−Hp
d

dy
ln(B) > k2

(

1 +
l2

n2

)

−
γ

2
βδ (6.28)

where HP is the local scale height and δ is called the super-adiabatic excess, which is

the difference between the logarithmic temperature gradient and the adiabatic value and

is always negative in the solar atmosphere (Stix, 2002).

In order for the mixed mode of the MBI to develop the destabilising effect of the

presence of magnetic field holding up dense plasma, represented by the LHS in (6.28),

must outweigh the stabilising term on the RHS. The stabilising term, which depends

on δ and the plasma β, prevents further rise of magnetic field above the contact layer.

However, after the upper part of the flux tube forms the horizontal magnetic layer at

the base of the photosphere, more and more flux from the bottom of the tube is pushed

up below it, as the buoyantly unstable convection zone is still pushing the lower part of

the tube upwards. As more flux rises, the local plasma β decreases and the effect of

the stabilising term in (6.28) becomes less and less important. There reaches a stage

when the local β is sufficiently small so that the dominant term is the destabilising term.

When this happens any perturbations in the magnetic layer will grow exponentially as

the instability develops.

6.4 The Effect of Heating in the Lower Atmosphere

As mentioned in chapter 3 there are various heating mechanisms in the solar atmosphere

that cannot be included directly in the simulations of the solar atmosphere, and some

are not specifically known, such as the coronal heating term. Rather than attempt to

simulate theses heating mechanisms directly, it is easier to model them. The effect of

these heating mechanisms is to give the observed temperature profiles in the quiet Sun.

In chapter 4 a simple ad-hoc model was introduced which models these effects using a

Newton-cooling approach. An extra term for the time variation of the specific internal
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energy density was then included which causes the local value of the plasma temperature

to relax to the value it had initially. The mechanisms are modeled to be more effective

in the denser photosphere and negligible in the corona.

The effect of this heating on simulations of flux emergence is now investigated.

These effects are investigated separately from the effects of partial ionisation, which are

investigated in the following section.

The previous section shows how the magnetic buoyancy instability can occur

when a flux tube is halted at the convectively stable photosphere and spreads horizontally

to form a magnetic layer holding up denser plasma. With this expansion comes an

associated cooling, related to the P∇.v in the energy equation (6.17). If the effects of

the extra heating mechanisms in the photosphere are not included, then the flux tube

cools (assuming the magnetic Reynolds number is high and Joule heating is negligible)

and produces temperatures in the magnetic layer well below anything observed on the

Sun (Archontis et al., 2004). Indeed for the simulations shown so far this is indeed

what happens. Dense matter is brought up in the flux tube and cools to very low

temperatures, due to the lack of heating mechanisms present in the model. Figure 6.7

shows the temperature and density as a function of height in the centre of the horizontal

domain for a typical simulation.

The inclusion of the Newton cooling term

Dǫ

Dt
= ....−

ǫ− ǫ0(ρ)

τ
(6.29)

representing the combined effect of all the extra heating mechanisms, should reduce this

unrealistic cooling. By comparing simulations with and without this additional term, this

can be verified. If the timescale for the modeled heating mechanisms is quicker than the

timescale of the adiabatic cooling associated with the expansion, then the dense matter

brought up in the flux tube should remain at photospheric temperatures. The timescale

τ is made to depend on density via

τ(ρ) = ρ−α. (6.30)

In this way the term is negligible in the sparse corona but most effective in the lower

atmosphere. Figures 6.8 and 6.9 show the final temperature and density for three
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Figure 6.7: Left panel: The initial (dashed line) and final (solid line) density as a
function of height in the centre of the horizontal domain, for the adiabatic case where
no heating/cooling terms are included. Right panel: The initial (dashed line) and final
(solid line) temperature as functions of height for the same simulation. All values are
normalised to values at the photosphere.

different simulations. The first is with α = ∞ (no Newton-cooling), the second is when

the Newton-cooling term is implemented with a timescale power law of α = 1.67, and

the third is when α = 1.

As can be seen, dense matter is still emerging into the atmosphere, but now

this matter is not being cooled to sub-photospheric temperatures, but remains at pho-

tospheric temperatures.

As well as affecting the temperature of emerging plasma, the inclusion of heating

mechanisms in the atmosphere will also affect the instability which forces magnetic field

from the photosphere into the corona. The simple interchange derivation for the onset

of the magnetic buoyancy instability (Newcomb, 1961; Gilman, 1970; Acheson, 1979;

Parker, 1979) assumes that as a parcel of gas moves upwards into its new surroundings,

the motion is adiabatic and no heat transfer occurs. However by attempting to simulate

the effects of various non-adiabatic terms in the energy equation the criteria for the

instability to occur must be modified. Gilman (1970) applied the same argument as

Acheson (1979) but instead of assuming adiabatic motion, the displaced parcels of gas

instantaneously acquire the temperature of their new surroundings (this corresponds

to the thermal conductivity being infinite). The criteria for the onset of the magnetic
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Figure 6.8: The temperature in the centre of the domain as a function of height for
t=0 (thick solid line). Also shown are the final temperature profiles for the case when
α = ∞ (dashed line), for α = 1.67 (dot-dashed line) and α = 1 (thin solid line).

Figure 6.9: The density in the centre of the domain as a function of height for t=0
(lower solid line). Also shown are the final density profiles for the case when α = ∞
(upper solid line), for α = 1.67 (dot-dashed line) and α = 1 (dashed line).
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buoyancy instability for modes that twist field lines is then

−
g

γCs
2

d

dy
ln(B) > k2

(

1 +
l2

n2

)

. (6.31)

It can be seen by comparison with equation (6.25) that the stabilising effect of the

convectively stable gradient of the photosphere has been destroyed by this instantaneous

heat transfer.

In these simulations, although the heat transfer is not instantaneous, there is

heat transfer on a finite time-scale, represented by the relaxation term for the energy

(see equation (6.17)). So it is expected that with the heat transfer present in these

simulations the stabilising term in the criteria for stability (6.25) will be reduced by

some amount, just as for instantaneous transfer the stabilising term is negligible. So the

onset of the magnetic buoyancy instability should occur earlier in the simulation than in

the adiabatic case. This is because less magnetic field is needed to decrease the effect

of the competing stabilising term, which is now less important.

The magnetic field in the centre of the unstable magnetic layer bends upwards

and flux is forced into the atmosphere above. Thus to measure the growth of the

instability the vertical velocity at the centre of the domain just above the magnetic layer

at a height of 10 (1500 km) is plotted as a function of time. Figure 6.10 shows these

plots for both the adiabatic case and the non-adiabatic case. As can be seen the non-

adiabatic atmosphere allows onset of the instability much earlier in the simulation. This

is because less magnetic field has to build up to nullify the stabilising term in equation

(6.25). The growth rates are also different, the one for the non-adiabatic case being

larger. The instability quenches earlier for the non-adiabatic case. The magnetic field

is emerging at a greater rate than the adiabatic situation and so the velocities at this

height will decrease quicker to background values as the instability quenches.

6.5 The Effect of Partial Ionisation

It has been shown how magnetic field can emerge from the photosphere, where its

buoyant rise has been stopped by stable stratification, into the corona, via the magnetic
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Figure 6.10: Plasma velocity at a height of 1500 km above the surface as a function
of time showing the onset of the magnetic buoyancy instability. The solid line is the
adiabatic case and the dashed line is the case non-adiabatic case.

buoyancy instability. It has also been shown how heating/cooling effects in the lower

atmosphere can affect the onset and development of this instability.

The effect of partial ionisation is now investigated by comparing results from two

simulations, one where the atmosphere is modeled as a fully ionised plasma (FIP), and

one where it is modeled as a partially ionised plasma (PIP), with the ionisation level

ξn and Cowling resistivity ηc calculated locally as functions of density and temperature,

using the methods described in previous chapters.

In a partially ionised plasma, the dissipation of currents is anisotropic, where

cross-field currents are dissipated by ηc, and field-aligned currents are dissipated by η.

Using the equations for η, in these simulations the value of η never exceeds the numerical

round-off value in the code, and so all simulations are run with η = 0. The value of ηc

depends on local density, temperature, ionisation level and magnetic field strength and

is calculated at each time step in the simulations.

As magnetic field emerges through the partially ionised atmosphere, ηc will vary.

If this value gets high enough so that the local magnetic Reynolds number, Rm, is less

than unity then the evolution of the magnetic field will be diffusion dominated. This
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Figure 6.11: The value of ηc in Ωm as a function of height in the centre of the horizontal
domain at times t=40 (lower solid line), t=44 (dot-dash line), t=48 (dash line) and t=52
(upper solid line). The height is normalised to the scale height at the surface.

is in contrast to the fully ionised case, where η = 0 and the evolution is dominated by

advection. This difference in the evolution of magnetic field as it emerges though the

atmosphere may effect the rate of emergence of magnetic flux into the corona.

Moreover, the anisotropy in the dissipation of currents in a partially ionised

atmosphere will affect the currents that emerge with the field. If ηc becomes large

enough, then this anisotropy becomes important because cross-field currents will be

preferentially dissipated as opposed to field aligned currents. This may have important

consequences for the nature of the magnetic field that forms in the corona.

6.5.1 Emergence of Magnetic Flux

As the buoyancy instability develops, magnetic field emerges from the photosphere into

the chromosphere. In chapter 5, it was shown that given varying magnetic field strengths,

perpendicular dissipation of currents was most prominent in chromospheric plasma. Fig-

ure 6.11 shows the value of ηc as a function of height, calculated in the centre of the

horizontal domain, for different times in the simulation, as magnetic field emerges into

the partially ionised atmosphere.
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Figure 6.12: Total unsigned flux at two different heights as a function of time in the
simulation. The two left plots are at heights 1500km, and the two right plots are at
4500 km above the surface. The solid lines are for the FIP model and the crosses are
for the PIP model.

The values of the magnetic Reynold’s number for these values of ηc reach a

minimum of 0.01-0.1. Thus figure 6.11 represents a region of approximately 10 photo-

spheric scale heights (1500 km) in extent where the evolution of the magnetic field is

dominated not by advection but by diffusion.

As magnetic field emerges through the atmosphere, the presence of a diffusive

layer will affect the rate of emergence, as the time-scale for diffusion will be much smaller

than that for advection.

By comparing the amount of flux emerging through various heights of the at-

mosphere for the two models, the importance of this diffusive layer can be evaluated.

This is done using the amount of unsigned vertical flux

Φ =

∫

|By|dx (6.32)

where the integral is over the horizontal extent of the domain. Figure 6.12 shows the

total flux emerging at two different heights for the two models, as a function of time.

The lower height is y = 10 (1500km), which corresponds to a height where ηc = 0
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for both the PIP and FIP models. The upper height is y = 30 (4500 km), above the

diffusive layer. At the lower height the flux emerging for the FIP model and the PIP

model are almost identical, as at this height ηc = η = 0. At 4500 km the flux emerging

is greatly increased by the presence of the diffusive layer in the PIP model compared

to the FIP model. As the magnetic field passes through this layer it is diffused on a

time-scale

td =
L2µ0

ηc
(6.33)

where L is the vertical extent of the region. The profile of ηc is changing during the

simulation as the plasma variables change. Using the maximum values of ηc in these

simulations gives a diffusive time-scale of td ≈ 5s which compares to the local transit

time of flux across this region of tt ≈ 500s. Hence the magnetic field takes many

diffusive time-steps to transit the partially ionised layer. Hence, locally, the magnetic

Reynolds number (using ηc rather than η) is well below unity, even though the majority

of the computational domain is high Reynolds number.

The amount of magnetic flux has been greatly increased by considering the

partial ionisation in the solar atmosphere. It follows that the resultant structure will be

different. Figure 6.13 shows isocontours of the total magnetic field strength at t=75 for

the two models. Clearly the resultant field is stronger higher up in the partially ionised

model due to the diffusion caused in the partially ionised region. This can be seen more

clearly in figures 6.14 and 6.15. Figure 6.14 shows a slice of these isocontours along the

centre of the horizontal domain. Figure 6.15 shows 2D field-lines in x and y for the two

different models. The field-lines are given by the contours in Az where B = ∇∧A.

As can be seen from figures 6.13-6.15, the magnetic field in the PIP model is

much more diffuse, as it’s evolution has been dominated by diffusion as it emerged

through the partially ionised atmosphere. As a result, the field-lines extend further into

the corona, and more flux emerges in the upper atmosphere.

6.5.2 Cross-Field and Field-Aligned Currents

Observations of magnetic fields in the solar atmosphere suggest that the solar corona is

predominantly force-free (Georgoulis and LaBonte, 2004). The low β plasma of the solar
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Figure 6.13: Magnetic field strength at t=75 for the fully ionised model (left panel) and
partially ionised model (right panel).

Figure 6.14: Magnetic field strength in the centre of the domain at t=75 for the fully
ionised model (solid line) and partially ionised model (dashed line).
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Figure 6.15: Field-lines in x and y given by contours in Az where B = ∇∧A. The left
panel is the FIP model, the right is the PIP model. Both plots use the same contour
levels.

corona is magnetically dominated, and the pressure and gravity terms in the momentum

equation are small in comparison to the Lorentz force. The equilibrium equation is given

simply by

j ∧B = 0. (6.34)

This is equivalent to saying that the current is aligned with the magnetic field j ‖ B, or

that there are no cross-field currents, j⊥ = 0.

Beneath the surface the plasma β becomes greater than unity, and therefore

pressure forces dominate magnetic forces. The field in this region cannot be assumed

to be force-free.

If active regions are the product of emerging sub-surface field as evidence sug-

gests (Zwann (1978)), then the force-free coronal field must be formed from non force-

free fields. This raises an important question. How is the magnetic field of sub-surface

flux tubes converted into force-free magnetic coronal field?

For a partially ionised plasma, the current is not diffused isotropically. The

Coulomb resistivity η acts parallel to the field, and ηc acts perpendicular to it. However,

it has been shown that for the solar chromosphere ηc/η can be orders of magnitude.

In fact η is less than numerical round-off and η = 0 is used in these simulations. This

means that as the magnetic field emerges through the partially ionised region of the
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model atmosphere, the only component of the current to be diffused directly is the

cross-field current.

This gives a mechanism for the formation of force-free current during flux emer-

gence. As magnetic field is driven though the partially ionised layer by the magnetic

buoyancy instability, the energy of cross-field currents are dissipated by the ion-neutral

interactions, while the field-aligned currents are not directly affected. Hence if the value

of ηc is large enough the field that emerges through the partially ionised region will have

no cross-field currents and will therefore be force-free.

By comparing the amount of cross-field current emerging into the corona for

the two models, the efficiency of this mechanism in forming force-free currents can

be investigated. A measurement of the amount of cross-field current is obtained by

performing the integral

J⊥(y) =

∫

|j⊥(x, y)| dx, (6.35)

over the horizontal extent of the domain. The same can be done for the parallel current,

J‖(y) =

∫

∣

∣j‖(x, y)
∣

∣ dx. (6.36)

Figure 6.16 shows these as a function of height for the initial magnetic field

profile representing the magnetic flux tube in the convection zone. As can be seen the

magnitude of the perpendicular and parallel currents is comparable.

After magnetic field has emerged into the corona, the same calculation can be

performed on the final magnetic field profile. Figure 6.17 shows the total perpendicular

current magnitude J⊥ as a function of height at t=75, for both the fully ionised model

and the partially ionised model. Figure 6.18 shows the same for the total parallel current

magnitude J‖.

As can be seen from figures 6.17 and 6.18, when the atmosphere is partially

ionised, even though magnetic field is emerging into the corona, currents perpendicular to

the field are not emerging. However, when the atmosphere is fully ionised, perpendicular

current is allowed to emerge with the field. The presence of neutrals in the partially

ionised model causes dissipation of perpendicular currents before they can emerge into

the corona.

128



Figure 6.16: Total perpendicular (dashed line) and parallel current (solid line) integrated
across the horizontal domain as a function of height for the initial flux tube configuration
All values are normalised.

Figure 6.17: Total perpendicular current across the domain as a function of height for
the FIP model (dashed line) and the PIP model (solid line). All values are given in
normalised units.
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Figure 6.18: Total parallel current across the domain as a function of height for the FIP
model (dashed line) and the PIP model (solid line). All values are given in normalised
units.

Although η = 0 in both models, there is a difference in J‖(y) in figure 6.18.

The equations for the evolution of j‖ and j⊥ are coupled to each other, and as the two

models have different values of ηc, it is expected that the amount of j‖ emerging will

differ slightly between the two models.

Evidently, the presence of a partially ionised region in the solar atmosphere has

destroyed the cross-field current but allowed similar amounts of field-aligned current to

emerge as in the case for a fully ionised plasma. Hence the field has been converted from

a general configuration to one approaching a force-free state. The ion-neutral collisional

dissipation has given a direct mechanism for the formation of force-free magnetic field

in the corona.

Calculations of the force-free nature of atmospheric magnetic field have been

made based on observations using the Michelson Doppler Imager (MDI) on the SOHO

spacecraft (Georgoulis and LaBonte, 2004), (Metcalf et al., 1995) where vector magne-

tograms were extrapolated to reconstruct the coronal field. Estimates of the height at

which the field becomes force-free are typically 400-1000 km (y=3-6) above the pho-

tosphere. A typical height for these simulations based on figure 6.17 is much larger

130



Figure 6.19: Vertical profile of estimates of the terms in Ohm’s law in the centre of the
horizontal domain at t=75. The solid line is the advection term, the dashed line is the
Hall term, and the dash-dot line is the diffusive term due to ion-neutral collisions.

than this, around 3000 km (y=20). This discrepancy may lie in the 2D nature of the

simulations, and further 3D work will be performed to better diagnose the height at

which field becomes force-free. However, these results show that in 2D at least, the

emerging field is not force-free unless the partially ionised regions of the atmosphere are

included in the models.

Throughout these simulations the Hall term has been neglected from Ohm’s law.

Figure 6.19 shows the magnitudes of the Hall term (| j∧Bene
|), the advection term (|v∧B|)

and the diffusive term for ion-neutral collisions (|ηcj⊥|), as functions of height at the

centre of the horizontal domain for a simulation run at t=75. These plots represent

typical values for the entire domain. The Hall term is always orders of magnitude lower

than the advection term. Figure (6.19) also shows that the magnetic Reynolds number

for the partially ionised plasma can reach values less than unity, as previous calculations

in chapter 3 have inferred.
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6.6 Conclusions

2D simulations of the emergence of magnetic flux into the solar atmosphere have been

performed. The standard model used was that of a weakly twisted flux tube inserted into

a model convection zone. The atmosphere of the Sun was modeled by two isothermal

layers, representing the photoshere/chromosphere and corona, separated by a transition

region. The flux tube evolution was initiated by dropping the density inside to start a

buoyant rise to the surface. The resultant evolution agrees with previous work of flux

tubes in the convection zone (Magara and Longcope, 2003; Fan, 2001).

Having briefly investigated the emergence mechanism, the effects of heating

and cooling mechanisms in the solar atmosphere were added to the model. Rather than

simulate these effects (such as radiative heating, thermal conduction and shock heating)

directly, a simple approach was used to model there effects. Direct simulation of these

effects is difficult in large scale models, and as already stated, not all heating mechanisms

are known well enough to simulate directly. The combination of these mechanisms, both

known and unknown, give the temperature observed through emission lines (Vernazza

et al., 1981). Thus, a simple ad-hoc approach to modeling these effects is to relax

the temperature to these observed values, or in the case of these simulations, the initial

model temperature profile. This was done using a Newton-cooling term in the equations.

By modeling these heating/cooling terms, it was shown that the criteria for the

onset of the magnetic buoyancy instability was modified. The onset of the instability,

which drives flux into the corona, occurred earlier. Also the resultant rate of expansion

of magnetic field into the corona was greater for this new model, and the reaction of the

plasmas to the expansion was much more realistic. In the adiabatic case (no external

heating/cooling present), there were no competing terms to the cooling of plasma from

the P∇.v expansion. This lead to vastly lower temperatures of the photospheric plasma,

which are not observed. By including heating/cooling mechanisms through this ad-hoc

approach, the expansion of the plasma as the magnetic buoyancy instability developed

did not lead to unrealistic cooling when dense plasma was brought up through the

photosphere. The resultant temperature profile was more realistic for this new model.

The next set of simulations investigated the effect of the partially ionised regions
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of the solar atmosphere on flux emergence. The relatively low temperatures (4× 103K)

mean that the fully ionised approximation used in standard MHD is not valid everywhere

in the domain. The model was modified to include the effects of a partially ionised

region. Assuming the solar atmosphere to be composed only of Hydrogen, ionisation

levels and neutral fractions were calculated using the equations in chapter 3. The

governing equations used were the single fluid equations derived in chapter 2.

For a partially ionised plasma the Coulomb resistivity η acts parallel to the mag-

netic field, and the Cowling resistivity ηc acts perpendicular to it. Using the model

profiles for density and temperature, η and ηc were calculated locally, with η effec-

tively zero throughout the simulations, and ηc being largest at chromospheric heights,

depending on the local magnetic field strength.

The effect of partial ionisation was investigated by comparing the fully ionised

plasma (FIP) and partially ionised plasma (PIP) models for the solar atmosphere. The

region of high ηc in the partially ionised model represented a region dominated by

dissipation, and as the magnetic field emerged through this region, the field became

more diffuse than in the FIP model, where ηc = 0. The resultant field structure was

more diffuse, with field lines extending further into the corona for the PIP model.

Coronal field is force-free, as the plasma is low β. However, field originating in

the high β convection zone is not necessarily force-free. The main aim of this work is

to find a mechanism for the conversion of non force-free sub-surface magnetic field into

force-free coronal field. In the FIP model, substantial cross-field currents emerged into

the corona. However, in the PIP model little to no cross-field currents emerged. Thus in

the PIP model, the magnetic field emerges with no cross-field currents, i.e. force-free.

The presence of neutrals in the PIP model lead to a large resistivity perpendicular

to the field, ηc, and so dissipated the cross-field currents as they emerged with the

magnetic field. Conversely η = 0 in both models meant that similar amounts of field

aligned current emerged.

It has been shown that the presence of neutrals is very important when investi-

gating the nature of emerging magnetic fields. The ion-neutral collisions in the partially

ionised plasma increased the resistivity perpendicular to the field. The dissipation of
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cross-field currents by these ion-neutral collisions is a viable mechanism for the conver-

sion of a generic magnetic field configuration to one approaching force-free.

The work presented here is a first attempt at simulating flux emergence through

a partially ionised atmosphere. The initial stratification is an over-simplified model of

the Sun, with no pre-existing convection beneath the surface. In addition these results

are 2D simulations. To fully understand flux emergence it is necessary to work in 3D.

The importance of shear forces and plasma drainage along field lines in a flux tube

which is emerging into the atmosphere has already been shown to be important for flux

emergence (Manchester, 2001; Manchester et al., 2004), as has the interaction with

pre-existing coronal field (Archontis et al., 2004).

The next chapter will include simulations of flux emergence in 3D, in order to

verify if this mechanism for the formation of force-free coronal field is relevant for the

emergence of magnetic flux into the solar atmosphere.
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Chapter 7

3D Simulations of Emerging

Magnetic Flux

7.1 Introduction

The 2D model of emerging magnetic flux in the solar atmosphere fails to capture any

phenomena that occur along the tube axis. However, emerging active regions are far

from simple structures, as can be seen in so called δ-spots. δ-spots are active regions

where the bipolar structure remains very compact during emergence, and rather than

drift apart the two sunspots rotate about a common point. These active regions develop

a large amount of magnetic shear, and the amount of twist is an important feature of the

emerging magnetic field. It is for this reason that the kink instability has been suggested

as a mechanism for the formation of δ-spot active regions (Linton et al., 1998, 1999;

Fan et al., 1999). For these reasons the realistic modeling of flux emergence requires a

full 3D approach.

Previous work on flux emergence has shown the importance of the 3D nature

of emerging flux tubes (Fan, 2001; Magara and Longcope, 2001; Manchester, 2001;

Magara and Longcope, 2003; Magara, 2004; Manchester et al., 2004; Gibson and Fan,

2006). The main feature of these simulations is the later expansion of magnetic flux

into the atmosphere, which does not occur in 2D simulations. Plasma is able to drain

down Ω-shaped tubes and allow further lifting of fieldlines. This has been suggested as
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a way of getting the body of the flux tube into the atmosphere, rather than just the

upper part, as was seen in chapter 6.

In this chapter 3D numerical simulations of flux emergence are carried out, based

on the work done in chapter 6. The emergence of a magnetic flux tube from beneath

the surface into the solar atmosphere is modeled. The effect of neutrals present in

the weakly ionised plasma of the lower solar atmosphere is investigated. In particular

the effect of ion-neutral collisions on the rate of flux emergence and the nature of the

emerging fields.

7.2 3D Model

The background atmosphere is a 1D hydrostatic model with a temperature profile based

on the observed values taken from the VALC model (Vernazza et al., 1981). z is now

the vertical coordinate with x and y being horizontal co-ordinates. The temperature

dependence on height is defined as in equation (6.2). As in previous simulations, the

density and mean mass are found from solving the hydrostatic equation using the def-

inition of pressure (see equations (6.4) and (6.5)). The resultant 1D stratification is

exactly the same as in chapter 6 (see figure 6.2).

The initial magnetic field profile is given by a twisted flux tube, consisting of

axial and azimuthal components (BA and BT respectively)

BA = B0 exp

(

−
r2

a2

)

(7.1)

BT = qrBa (7.2)

with the twist q defined by

q =
Ba

rBT
, (7.3)

a is the width of the tube and r is the radial distance from the centre of the tube. The

tube is aligned along the x-axis. The choice of twist is more important in 3D simulations,

as now the kink instability is allowed to develop if the tube becomes kink unstable. As

mentioned in section 1.6, if a flux tube has too much twist it will become kink unstable

as its radius increases during the rise and it cannot have survived the convection zone.
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Figure 7.1: Isovolume of magnetic field strength showing the initial tube configuration.
Also shown is a vertical slice of the initial temperature profile. All values are normalised
to values at the surface.

For this reason the amount of twist given to the flux tube is the minimum required to

avoid fragmentation in the convection zone

|q| =
1

a
(7.4)

where a is the radius of the tube, and as in chapter 6, is set to 2. The initial magnetic

field profile is shown in figure 7.1, along with the initial 1D temperature profile.

Again, a choice must be made as to how to initialise the rise of the flux tube

in the convection zone. It is thought that flux tubes formed from the toroidal field in

the tachocline remain connected to the large scale field by their roots (Zwann, 1978),

while the apex of the tube rises to the surface, as shown in figure 1.10. As a result a

flux tube which reaches the surface will be significantly ’bent’ into an Ω-shape. In order

to force the tube into this shape in these simulations, the centre is made buoyant while

the ends are left in mechanical equilibrium. This is done by setting the pressure in the

tube different to the field-free atmosphere (p0(z)) by p1(r) where

dp1(r)

dr
êr = j ∧B, (7.5)
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so that the pressure gradient matches the Lorentz force. The density in the tube differs

from the field-free density (ρ0(z)) by ρ1(r) where

ρ1(r) =
p1

p0(z)
ρ0(z) exp

(

−
x2

λ2

)

(7.6)

In this way the centre of the tube, at x = 0, is buoyant while for x > λ the tube is in

mechanical equilibrium (ρ1 = 0). The value of λ is chosen to be 20, as in Fan (2001).

The equations solved are the governing equations derived for the solar atmo-

sphere

Dρ

Dt
= −ρ∇.v (7.7)

Dv

Dt
= −

1

ρ
∇P +

1

ρ
j ∧B+ g +∇.S (7.8)

DB

Dt
= (B.∇)v −B(∇.v)−∇ ∧ (ηj‖)−∇ ∧ (ηcj⊥) (7.9)

Dǫ

Dt
= −

P

ρ
∇.v +

η

ρ
j‖

2 +
ηc
ρ
j⊥

2 +
1

ρ
ΠijSij −

ǫ− ǫ0(ρ)

τ
(7.10)

with the same definitions as in the 2D case. The variables are now dependent on all

three spatial variables. These have been normalised to values at the photosphere.

r∗ = 150 km

ρ∗ = 2.7 × 10−4 kg/m3

v∗ = 6515m/s

t∗ = 23 s

T ∗ = 6420K

P ∗ = 1.17 × 104 Pa

B∗ = 1000G.

The computational domain extends from -20 to 80 (-3000 to 12000 km) in the

vertical and -50 to 50 in both horizontal directions (-7500 to 7500 km). To help resolve

the flux tube better the grid is stretched in the vertical direction so that there are more

grid cells in regions of high B. A typical value of dz at the centre of the flux tube is 0.1,

rising to 0.5 at the top of the vertical domain. All results were tested for convergence

by increasing the resolution. A typical maximum resolution simulation used 5123 grid

points.
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Figure 7.2: Isovolume of magnetic field strength at t=30 showing the Ω-shape formed
due to the centre of the tube being more buoyant than the feet. Also shown is a 1D
slice of the temperature.

7.3 Emergence of Magnetic Field into the Atmosphere

A flux tube which has enough twist to survive the convection zone should keep its

cross section regular during the rise in the convection zone. Also the total magnetic

flux should be conserved in the tube. The apex, being buoyant, rises and due to the

super-adiabatic nature of the convection zone continues to rise until it meets the stable

atmosphere (see figure 7.2). For a more rigorous treatment of the initial phase of a 3D

flux tube in the convection zone see Archontis et al. (2004).

The tube apex continues to rise in the convection zone until it meets the con-

vectively stable photosphere. Figure 7.3 shows simulated magnetograms at the surface

As can be seen, the vertical component of the magnetic field forms a bipolar structure

initially (t=40). As time proceeds, the bipoles separate as more of the flux tube emerges

through the surface.

At this point in the evolution of the magnetic field, the vertical motion halts and

a large amount of horizontal expansion can be seen. Figure 7.4 shows this expansion

which occurs mainly in the x direction (along the tube axis).
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Figure 7.3: Simulated magnetograms of flux emergence, showing vertical magnetic field
in the z=0 plane. The left panel is at t=40 and the right panel is at t=49. All values
are normalised to non-dimensional units.

Figure 7.4: Isosurface of magnetic field strength at t=50, shown from two different
angles. All values are normalised to values at the photosphere.

140



This horizontal expansion causes a 3D magnetic layer to be formed. The presence

of magnetic field in this layer causes the density to be less due to total pressure balance.

As a result the magnetic layer is holding up denser gas and is unstable to a mixed mode

of the magnetic buoyancy instability.

As in the 2D case, the magnetic layer remains stable until enough flux is pushed

up into the layer that the local plasma β becomes small enough that the destabilising

effect of the magnetic field outweights the stabilising stratification (Archontis et al.,

2004). Once this happens flux expands into the atmosphere above. This expansion can

be seen in figure 7.5.

The expansion of the magnetic field into the atmosphere can cause velocity shear

to build up. As the top part of the tube expands into the corona, the rest of the tube

remains compact at the photosphere (figure 7.5). This causes a large vertical gradient

in the magnetic field, in particular the axial field. Manchester (2001) suggested that

this vertical gradient could lead to a velocity shear about the apex of the tube, caused

by the Lorentz force being negative on the left side of the tube apex and positive on the

right side. This shear can lead to plasma draining down the field line. Figure 7.6 shows

the velocity along the tube axis at different times in the simulation. To the left of the

apex it is negative and to the right it is positive, which shows that plasma is indeed

capable of draining from the apex. This reduces the amount of mass at the apex and

helps further expansion into the atmosphere.

7.4 The Effect of Partial Ionisation

The effect of partial ionisation is investigated by comparing results from two sets of

simulations. The first is using the fully ionised plasma model (FIP) where ξn = 0 and

ηc = 0. The second is the partially ionised plasma model (PIP) when the ionisation

level ξn is calculated as a function of temperature, and the Cowling resistivity calculated

locally as a function of temperature, density and magnetic field strength. As in the 2D

case, the Coulomb resistivity η, which depends on electron collisions with both neutrals

and ions, is negligible and all simulations are run with η = 0.
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Figure 7.5: Isosurface of the magnetic field strength in the y=0 plane showing the
expansion of the top of the flux tube into the model corona. Top left panel is for t=50,
top right t=55, bottom left t=60 and bottom right t=65. All values are normalised to
non-dimensional units.
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Figure 7.6: Horizontal velocity along the tube axis. The left panel shows a surface plot
of vx in the x,y plane at the height of the tube axis at t=55. The right panel shows
a plot of vx along the tube axis (y=0) at three different times. Dot-dashed line is for
t=45, dashed line is for t=50, solid line is for t=55.

The previous chapter showed how the ion-neutral collisions are sufficient enough

that the dissipation of cross-field currents forces the emerging magnetic field to be force-

free. It also increased the rate of emergence of flux. In 3D, motions along the tube axis

are now allowed, and this may cause a faster emergence because material is allowed to

flow down the tube axis and thus increase buoyancy in the centre of the tube. This may

cause the effect of ion-neutral collisions to be less important. If magnetic field moves

faster through the partially ionised region, dissipation may be less important relative to

advection (this corresponds to a higher Rm).

Figure 7.7 shows the development of the Cowling resistivity during the simulation.

As time goes by more magnetic field rises from the photosphere due to the magnetic

buoyancy instability and the value of ηc increases.

The Cowling resistivity reaches a maximum of about 3× 104Ωm which is larger

than in the 2D case. A typical timescale for diffusion is approximately 2.5 s, which is less

than the 2D case. However, as mentioned emergence in 3D is faster, and estimates of

typical timescales for the transit of magnetic fields across the partially ionised region of

the atmosphere are about 200 s. This gives an estimate of the Reynolds number similar

to the 2D case. Even though the emergence is faster in 3D the relative importance of

ion-neutral collisions appears to be the same as in 2D.
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Figure 7.7: The Cowling resistivity in Ωm as a function of height in the centre of the
horizontal domain. The solid line is for t=45, the dashed line is for t=48 and the
dash-dotted line is for t=53. The height is given in dimensionless units.

This large increase in the Cowling resistivity means the magnetic field that passes

through this region will be strongly affected by ion-neutral collisions. The evolution of

the field will be diffusively dominated and the amount of flux emerging into the corona

will increase. This can be seen in figure 7.8, which shows the total unsigned vertical

flux

Φ =

∫

xy
|Bz|dxdy (7.11)

at different heights in the simulation. The partially ionised model has more flux emerging

at coronal heights than the fully ionised model.

As in the 2D case, the region of large ηc in the partially ionised model means

that the dissipation of currents is anisotropic, with only perpendicular currents being

dissipated. If the emergence of magnetic field is slow enough then the dissipation of

cross-field currents is enough that the only current to emerge with the magnetic field

will be force-free. The total amount of field-aligned and cross-field current emerging
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Figure 7.8: Total unsigned vertical flux (in dimensionless units) as a function of time at
two different heights. The upper panel is for z = 10 and the lower panel is for z= 30.
Solid lines are for PIP and asterisks are for FIP.
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Figure 7.9: The total parallel (solid line) and total perpendicular currents at t=0 as a
function of height.

with the field can be measured by the integrals

J‖(z) =

∫

x,y
|j‖(x, y, z)|dxdy (7.12)

J⊥(z) =

∫

x,y
|j⊥(x, y, z)|dxdy. (7.13)

The integrals are performed numerically over the horizontal domain. Figure 7.9

shows these integrals for the initial magnetic field profile at t=0. This calculation can

be performed again at the end of the simulation. The total amount of perpendicular

and parallel current that has emerged in the fully ionised case and the partially ionised

case are shown in figure 7.10.

As can be seen, in the fully ionised case equivalent amounts of perpendicular

and parallel current have emerged. However, in the partially ionised case, there is hardly

any perpendicular current at coronal heights even though there is significant amounts

of parallel current.

Again, as in the 2D case, parallel current is allowed to emerge in both simulations.

However perpendicular current emerges only in the fully ionised model, whereas in the

partially ionised model, perpendicular current is destroyed at heights of about z=15. In
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Figure 7.10: The two components of current as functions of height for the fully ionised
model (top panel) and partially ionised model (bottom panel). Solid lines are total
perpendicular current and dashed lines are total parallel current.
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the partially ionised case, the magnetic field that has emerged has become force-free

as the only currents to emerge with the field are aligned with the field, and therefore

j ∧B = 0.

7.5 Conclusions

3D simulations of the emergence of magnetic field from the convection zone into the

corona have been performed. The evolution of the tube in the convection zone and

lower atmosphere was similar to that in previous work (Fan, 2001; Archontis et al.,

2004) with the magnetic buoyancy instability providing the mechanism for emergence

into the atmosphere. The development of velocity shear provided further emergence by

allowing plasma to drain down the tube axis and increase buoyancy, as in Manchester

(2001) and Manchester et al. (2004).

As in chapter 6, the effect of the presence of neutrals on the emergence of

magnetic flux was investigated by comparing two models. The first was the fully ionised

plasma (FIP) model, as used by previous simulations, and the second was the partially

ionised plasma (PIP) model, which included the effect of neutrals.

The results that were shown in chapter 6 also held in the 3D case. The presence

of a region of large ηc lead to the magnetic field that emerged into the corona being

much more diffuse. In addition the amount of flux reaching coronal levels was increased

in the PIP model, as the evolution of the magnetic field was dominated by dissipation not

advection, which was the case in the FIP model. Furthermore, the large anisotropy in

dissipation in currents, caused by a large value of ηc, meant that perpendicular currents

were preferentially dissipated. This anisotropic dissipation meant that only field aligned

currents emerged with the field, and so the field became force-free.

Estimates at the height at which field becomes force-free were y = 15, which

were lower than the values obtained in the 2D simulations. (Georgoulis and LaBonte,

2004) and (Metcalf et al., 1995) estimated that magnetic field becomes force-free about

400-1000 km (3-6 in dimensionless units) above the photosphere, based on extrapola-

tions of vector magnetograms. The difference in observed values and ones from these
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simulations may be due to the fact that observations were based on current active re-

gions rather than newly forming ones, and as such the magnetic field will be in a less

energetic state and more likely to be force-free at lower heights than in these simulations.

The results in this chapter support the notion that the presence of neutrals in

the partially ionised atmosphere of the Sun has a strong effect on the emergence of

magnetic fields. In particular the rate of emergence and the formation of force-free

coronal field due to ion-neutral collisions.
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Chapter 8

Conclusions and Future Work

8.1 Thesis Summary

The work in this thesis lead to the development of numerical techniques to simulate

partially ionised plasmas in the fluid approximation. Using the multi-fluid equations

for each species of a partially ionised plasma, single fluid equations were derived for a

general Hydrogen plasma of arbitrary ionisation, along with a generalised Ohm’s law.

These governing equations were then recast for the partially ionised plasma of the Sun’s

atmosphere, and estimates of transport parameters were made. A Lagrangian Remap

MHD code was then adapted to simulate the evolution of a partially ionised plasma.

The code was applied to the simulation of the propagation of Alfvén waves in

the solar atmosphere in chapter 5. The efficiency of ion-neutral collisions in damping

upwardly propagating Alfvén waves was investigated. Results from 1D simulations were

in agreement with theoretical estimates based on linear damping, with ion-neutral col-

lisions, being the most efficient damping mechanism, attenuating waves of frequencies

greater than 0.1 Hz. Filter functions were derived for the efficiency of damping. These

results were in broad agreement with previous work performed in the WKB approxi-

mation, and showed that the damping is heavily dependent on the local magnetic field

strength. The simulations showed that Alfvén waves which are generated at the surface

with frequencies greater than 0.5 Hz will be completely damped by ion-neutral collisions.

One consequence is that any waves with frequencies greater than this detected in the
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upper solar atmosphere cannot have originated at the surface.

Chapter 6 showed simulations and results from 2D simulations of the emergence

of magnetic field from the convection zone of the Sun into the corona. One particular

question regarding flux emergence is how magnetic field emerges through the convec-

tively stable atmosphere, where buoyancy no longer operates. The magnetic buoyancy

instability was shown to be a possible mechanism for emergence, caused by the develop-

ment of a magnetic layer when a flux tube reaches the stable photosphere. Additional

heating and cooling mechanisms, present in the lower atmosphere, where shown to af-

fect the onset of this instability, and increased the growth of the instability which forces

magnetic field into the corona. Further simulations investigated the effect of neutrals

present in the partially ionised regions. Two important results came out of these simu-

lations. The first was that the presence of neutrals introduced an additional dissipation

term, and this term was significant enough that the evolution of the magnetic field in the

partially ionised atmosphere was dominated by dissipation rather than advection. Mag-

netic field emerging into the corona was therefore more diffuse, and greater amounts of

flux appeared at coronal levels. The second result, and arguably the more important,

was that the ion-neutral collisions caused anisotropic dissipation of currents as magnetic

field traversed the partially ionised region. This lead to the destruction of cross-field

currents of the resultant coronal field. The presence of neutrals were shown to provide

a mechanism for the formation of force-free coronal field from sub-surface field. This

gives an answer to the question of how non-force-free field in the convection zone can

become force-free in the corona.

Chapter 7 contains the details of 3D simulations, analogous to the 2D ones. In

3D, the mechanism for emergence was shown to be the same, but the presence of shear

flows allows the magnetic field to emerge faster. The results of chapter 6 were verified

in 3D, it is important to stress that the effectiveness of ion-neutral collisions depends on

the speed of the emergence, and these simulations are for the emergence of magnetic

flux due to the magnetic buoyancy instability. Flux tubes with greater amounts of twist

may be less affected if the emergence mechanism is something other than the magnetic

buoyancy instability.
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The combined results in this thesis show that the solar atmosphere cannot be

assumed to be fully ionised, as has been done in many simulations to date, and that

the presence of neutrals has an important effect on the evolution of magnetic fields and

therefore on the evolution of plasma in the solar atmosphere. The additional dissipation

mechanism, provided by ion-neutral collisions, gives a mechanism for the conversion of

sub-surface magnetic field in the convection zone into force-free coronal field. It has

always been known that this change occurs, as the corona is a β << 1 plasma, while

the convection zone is β >> 1. The work presented here shows a mechanism for this

to occur, simply by treating the solar atmosphere as partially ionised.

8.2 Suggestions for Future Work

Having now developed a numerical code to simulate partially ionised plasma in the

large length scale regime of the solar atmosphere, here are a few applications, based

on simulations of magnetic fields in the solar atmosphere. However, it is important to

note that any simulations which couple the surface magnetic field and the coronal fields

should include partial ionisation, as it has been shown that if the evolution of the field is

slow enough then all currents perpendicular to the field can be destroyed by ion-neutral

collisions.

The increased dissipation due to ion-neutral collisions has applications in other

studies of the solar atmosphere. In particular the coronal heating problem. It has been

shown previously that the braiding of magnetic field by footpoint motions causes de-

position of energy into the corona. Previous studies have investigated the dissipation

of current sheets formed by considering random footpoint motions on initially homoge-

neous magnetic field. The subsequent, predominantly Joule dissipation leads to heating

which is dependent on the footpoint motions, as well as the strength of the magnetic

field. The additional Joule heating cause by partial ionisation will have an important

effect on the Poynting flux provided to the corona.

This approach can be coupled to studies of magneto-convection at the surface.

Rather than using random footpoint driving of initially homogeneous field, the driving
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can be obtained from simulations of magneto-convection. Magnetic field can become

twisted, stretched and concentrated by the convective motions of the plasma. Using

the motions and magnetic fields as boundary conditions for simulations of flux braiding

in the atmosphere, new heating rates can be calculated for the partially ionised regions

above.

The work in this thesis has shown that the partially ionised regions of the solar

atmosphere can transform emerging magnetic field into force-free field by the time it

reaches the corona. However, it is still unclear as to the exact mechanism which forces

magnetic field into the corona. In order to understand the subsequent coronal structures

formed, detailed studies must be performed which model the emergence of magnetic

field. Simulations must include the magneto-convection at and below the surface, as

well as the effects of ionisation in the photosphere and chromosphere shown here, in

order to realistically simulate the emergence of large scale fields.

By including magneto-convection in the models, and partial ionisation, the evolu-

tion through a more realistic atmosphere can be simulated. By varying the parameters of

the magnetic field structure, different mechanisms can be simulated. For weakly twisted

fields, the mechanism is a mixed mode of the magnetic buoyancy instability, for strong

twist it is the kink instability. Using the models of magneto-convection coupled to the

partial ionised regions, rates of emergence can be found and matched to observations.

In addition the thermal effects in the atmosphere must be investigated. Previous

simulations of magnetic flux emergence have not been able to include energy transfer

such as thermal conduction and radiative transfer. These must be included if the ther-

modynamic response to flux emergence in the solar atmosphere is to be accurately

simulated. This is important in the partially ionised regions where ion-neutral collisions

lead to an increased amount of Joule heating.
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Appendix A

Numerical Integration of the

Hydrostatic Equation

This appendix briefly describes the numerical scheme used for the numerical integration

of the hydrostatic equation.

d

dy

(

ρkBT

µm

)

= −ρg (A.1)

Density (ρ), temperature (T ) and mean mass (µm) are defined at the cell centres

(yc), while gravity g is defined at the vertexes (yb), as shown in figure A.1.

The partial derivative on left hand side of equation (A.1) is estimated by the

first order difference
ρikBTi

µmi
− ρi−1kBTi−1

µmi−1

dyciy
(A.2)

while the right hand side can be averaged at the cell vertex yb(i − 1). If the grid is

stretched so that dyb(i − 1) 6= dyb(i) this averaging may be inaccurate so the average

must be weighted by the size of the two contributing adjacent cells. Defining the average

at the cell centre yb(i− 1) as

ρav = ρi−1
dybi−1

dybi−1 + dybi
+ ρi

dybi
dybi−1 + dybi

(A.3)

gives a more accurate average. Defining

dg =
1

dybi−1 + dybi
(A.4)
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yc(iy-1) yc(iy)

dyc(iy-1)

yb(iy-1)

g(iy-1)
ρ(iy-1),T(iy-1) ρ(iy),T(iy)

dyb(iy-1) dyb(iy)

Figure A.1: Numerical grid showing the positions of the variables needed to solve the
HS equation

then the numerical solution of (A.1) is then

ρikBTi

µmi
−

ρi−1kBTi−1

µmi−1

dyci
= −ρi−1gi−1

dybi−1

dg
− ρigi−1

dybi
dg

(A.5)

or

ρi = ρi−1

[

kBTi−1

µmi−1dyci−1
− g(i−1)dybi−1

dg

]

[

kBTi−1

µmi−1dyci−1
+ g(i−1)dybi

dg

] . (A.6)

This gives a method to integrate the density in the vertical direction and only requires

the value of the density at the base of the numerical domain. This can be found by

using the VALC model to give the density at the height that the base of the domain

represents (e.g. y=0 at the surface).

Although the Lagrangian remap code used in these simulations is second order

in space, this first order method gives an equilibrium that is numerically stable, with

typical velocities generated being at machine precision round-off.
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S.P. James, R. Erdélyi, and B. De Pontieu. Can Ion-Neutral Damping Help to Form

Spicules? Astronomy and Astrophysics, 406:715–724, 2003.

M. L. Khodachenko, H. O. Rucker, R. Oliver, T. D. Arber, and A. Hanslmeier. On the

Mechanisms of MHD Wave Damping in the Partially Ionized Solar Plasmas. Advances

in Space Research, 37:447–455, 2006.

M.L Khodachenko, T.D Arber, H.O Rucker, and A. Hanslmeier. Collisional and Vis-

cous Damping of MHD Waves in Partially Ionized Plasmas of the Solar Atmosphere.

Astronomy and Astrophysics, 422:1073–1084, 2004.

B. Kliem, I.E. Dammasch, W. Curdt, and K. Wilhelm. Correlated Dynamics of Hot and

Cool Plasmas in the Main Phase of a Solar Flare. Astrophysical Journal Letters, 508:

L61–L65, 2002.

161



J. A. Klimchuk. On Solving the Coronal Heating Problem. Solar Physics, 234:41–77,

2006.

A. G. Kosovichev, J. Schou, P. H. Scherrer, R. S. Bogart, R. I. Bush, J. T. Hoeksema,

J. Aloise, L. Bacon, A. Burnette, C. de Forest, P. M. Giles, K. Leibrand, R. Nigam,

M. Rubin, K. Scott, S. D. Williams, Sarbani Basu, J. Christensen-Dalsgaard, W. Dap-

pen, Jr. Rhodes, E. J., Jr. Duvall, T. L., R. Howe, M. J. Thompson, D. O. Gough,

T. Sekii, J. Toomre, T. D. Tarbell, A. M. Title, D. Mathur, M. Morrison, J. L. R.

Saba, C. J. Wolfson, I. Zayer, and P. N. Milford. Structure and Rotation of the Solar

Interior: Initial Results from the MDI Medium-L Program. Solar Physics, 170:43–61,

1997.

J.E. Leake and T.D. Arber. The Emergence of Magnetic Flux Through a Partially Ionised

Solar Atmosphere. Astronomy and Astrophysics, 450:805–818, 2006.

J.E. Leake, T.D. Arber, and M.L. Khodachenko. Collisional Dissipation of Alfvén Waves

in a Partially Ionised Solar Atmosphere. Astronomy and Astrophysics, 442:1091–1098,

2005.

J. W. Leibacher and R. F. Stein. A New Description of the Solar Five-Minute Oscillation.

Astrophysical Letters, 7:L191–L192, 1971.

R. B. Leighton. A Magneto-Kinematic Model of the Solar Cycle. Astrophysical Journal,

156:1–26, 1969.

R.B. Leighton, R.W. Noyes, and G.W. Simon. Velocity Fields in the Solar Atmosphere.

I. Preliminary Report. Astrophysical Journal, 135:474–499, 1962.

M.G. Linton, D. W. Longcope, and G.H. Fisher. The Helical Kink Instability of Isolated,

Twisted Magnetic Flux Tubes. Astrophysical Journal, 469:954–963, 1996.

M.G. Linton, G.H. Fisher, R.B. Dahlburg, and Y. Fan. Nonlinear Evolution of Kink-

Unstable Magnetic Flux Tubes and solar δ-Spot Active Regions. Astrophysical Journal,

507:404–416, 1998.

162



M.G. Linton, R.B. Fisher, G.H.a dn Dahlburg, and Y. Fan. Relationship of the Multimode

Kink Instability to δ-Spot Formation. Astrophysical Journal, 522:1190–1205, 1999.

D. W. Longcope and G. H. Fisher. The Effects of Convection Zone Turbulence on the

Tilt Angles of Magnetic Bipoles. Astrophysical Journal, 458:380–+, 1996.

T. Magara. Dynamics of Emerging Flux Tubes in the Sun. Astrophysical Journal, 549:

608–628, 2001.

T. Magara. A Model for Dynamic Evolution of Emerging Magnetic Fields in the Sun.

Astrophysical Journal, 605, 2004.

T. Magara and D. W. Longcope. Injection of Magnetic Energy and Magnetic Helicity into

the Solar Atmosphere by an Emerging Magnetic Flux Tube. Astrophysical Journal,

586:630–649, 2003.

T. Magara and D.W. Longcope. Sigmoid Structure of an Emerging Flux Tube. Astro-

physical Journal, 559:L55–L59, 2001.

W. I. Manchester. The Role of Nonlinear Alfvén Waves in Shear Formation during Solar

Magnetic Flux Emergence. Astrophysical Journal, 547:503–519, 2001.

W. IV. Manchester, T. Gambosi, D. Dezeeuw, and Y. Fan. Eruption of a Buoyantly

Emerging Magnetic Flux Rope. Astrophysical Journal, 610:588–596, 2004.

P. K. Manoharan, S. Ananthakrishnan, M. Dryer, T. R. Detman, H. Leinbach, M. Ko-

jima, T. Watanabe, and J. Kahn. Solar Wind Velocity and Normalized Scintillation

Index from Single-Station IPS Observations. Solar Physics, 156:377, 1995.

E. Marsch and C.-Y. Tu. The Effects of High-Frequency Alfven Waves on Coronal

Heating and Solar Wind Acceleration. Astronomy and Astrophysics, 319:L17–L20,

1997.

V. Martinez-Pillet, B.W Lites, and A. Skumanich. Active Region Magnetic Fields I.

Plage Fields. Astrophysical Journal, 474:810–842, 1997.

163



R. Matsumoto and K. Shibata. Three-Dimensional MHD Simulation of the Parker

Instability in Galactic Gas Disks and the Solar Atmosphere. Astronomical Society of

Japan, Publications, 44:167–175, 1992.

R. Matsumoto, T. Tajima, K. Shibata, and M. Kaisig. Three-Dimensional Magnetohy-

drodynamics of the Emerging Magnetic Flux in the Solar Atmosphere. Astrophysical

Journal, 414:357–371, 1993.

R. Matsumoto, T. Tajima, W. Chou, A. Okubo, and K. Shibata. Formation of a Kinked

Alignment of Solar Active Regions. Astrophysical Journal, 493:L43–L46, 1998.

P.C. Matthews, D.W. Hughes, and M.R.E. Proctor. Magnetic Buoyancy, Vorticity, and

Three-Dimensional Flux-Tube Formation. Astrophysical Journal, 448:938–941, 1995.

T.R. Metcalf, A. Jiao, A.N. McClymont, R.C. Canfield, and H. Uitenbroek. Is the

Solar Chromospheric Magnetic Field Force-Free? Astrophysical Journal, 439:474–

481, 1995.

F. Moreno-Insertis. Nonlinear Time-Evolution of Kink-Unstable Magnetic Flux Tubes in

the Convective Zone of the Sun. Astronomy and Astrophysics, 166:291–305, 1986.

F. Moreno-Insertis. Sunpots, Theory and Observations, page 385. Kluwer Academic

Publ., 1992.

F. Moreno-Insertis. Multidimensional Simulations of the Rise of Magnetic Flux Tubes.

In Advances in the Physics of Sunspots, volume 118, pages 45–65, 1997.

F. Moreno-Insertis and T. Emonet. The Rise of Twisted Flux Tubes in a Stratified

Medium. Astrophysical Journal, 472:L53–L56, 1996.

V.M Nakariakov, L. Ofman, E.E. DeLuca, B. Roberts, and J.M. Davila. TRACE Ob-

servations of Damped Coronal Loop Oscillations: Implications for Coronal Heating.

Science, 285:862–+, 1999.

V.M. Nakariakov, V.F. Melnikov, and V.E. Reznikova. Global Sausage Modes of Coronal

Loops. Astronomy and Astrophysics, 412:L7–L10, 2003.

164



U. Narain and P. Ulmscneider. Chromospheric and Coronal Heating Mechanisms. Space

Science Reviews, 54:377–445, 1990.

W.A. Newcomb. Convective Instability Induced by Gravity in a Plasma with a Frozen-In

Magnetic Field. Physics of Fluids, 4:391–+, 1961.

S. Nozawa, K. Shibata, and R. Matsumoto. Emergence of Magnetic Flux from the Con-

vection Zone into the Solar Atmosphere. I - Linear and Nonlinear Adiabatic Evolution

of the Convective-Parker Instability. Astrophysical Journal Supplement, 78:267–282,

1992.

L. Ofman, M. Romoli, G. Poletto, G. Noci, and J.L. Kohl. UltraViolet Coronagraoh

Spectrometer Observtaions of Density Fluctuations in the Solar Wind. Astrophysical

Journal, 491:L111–L114, 1997.

L. Ofman, V.M. Nakariakov, and C.E. Deforest. Slow magnetoacoustic waves in coronal

plumes. Astrophysical Journal, 514:441–447, 1999.

R. Oliver and J. L. Ballester. Oscillations in Quiescent Solar Prominences Observations

and Theory (Invited Review). Solar Physics, 206:45–67, 2002.

M. Ossendrijver. The Solar Dynamo. Astronomy and Astrophysics Review, 11:287–367,

2003.

E. N. Parker. Instability of Thermal Fields. Astrophysical Journal, 117:431–436, 1953.

E. N. Parker. A Solar Dynamo Surface Wave at the Interface Between Convection and

Nonuniform Rotation. Astrophysical Journal, 408:707–719, 1993.

E.N. Parker. The Formation of Sunspots from the Solar Toroidal Field. Astrophysical

Journal, 121:491–507, 1955.

E.N. Parker. The Instability of a Horizontal Magnetic Field in an Atmosphere Stable

Against Convection. Astrophysics and Space Science, 62:135–142, 1979.

S.R. Pottasch and R.N. Thomas. Departures From the Saha Equation Under Varying

Conditions of Lyman Continuous Opacity. Astrophysical Journal, 130:941–953, 1959.

165



M.R.E. Proctor. Magnetoconvection: Solar Convection and Magnetic Fields. Astronomy

and Geophysics, 45, 2004.

J.J. Quirk. Int. J. Numeric. Meth. Fluids, 18:555, 1994.

E. Robbrecht, E. Verwichte, D. Berghmans, J.F. Hochedez, S. Poedts, and V.M Nakari-

akov. Slow MagnetoAcoustic Waves in Coronal Loops: EIT and TRACE. Astronomy

and Astrophysics, 370:591–601, 2001.

B. Roberts. Waves and Oscillations in the Corona: Theory - (Invited Review). Solar

Physics, 193:139, 2000.

B. Roberts. Waves and Oscillations in the Corona: Theory. In A. Wilson, editor,

Solar Variability: From Core to Outer Frontiers, volume SP-506 of ESA Conference

Proceedings, page 481. ESA, 2002.

B. Roberts. MHD Waves in the Solar Atmosphere. In H. Lacoste, editor, Waves,

Oscillations and Small-Scale Transient Events in the Solar Atmosphere, volume SP-

547 of ESA Conference Proceedings, page 1. ESA, 2004.

B. Roberts and V.M Nakaraiakov. Theory of MHD Waves in the Solar Corona. In
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