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ABSTRACT 

The goal of structural reliability is to assure that a structure adequately performs its 
intended function when operating under specified environmental conditions. The major 
source of unreliability is the variability that characterizes engineering structures 
subjected to inherent randomness in material properties, loading and geometrical 
parameters. A sensible approach to structural reliability must be able to evaluate and 
control the effects of this variability, quantifying the uncertainties in the design 
variables and measuring their impact on the strength of the final product. 

The objective of this research is to assess the role that uncertainties in material 
microstructure, in particular concerning the presence of defects such as pores, inclusions 
and through-thickness cracks, have in the failure of engineering structures. For this 
purpose, a computational procedure, based on the coupled use of Finite Element 
Analysis and Monte Carlo simulation, is proposed to evaluate the failure probability of 
complex mechanical components containing random flaws. The proposed methodology 
is particularly suited for the structural design of ceramic components, whose strength 
properties are significantly affected by the presence of microstructural defects. 

Material flaws are modelled by a population of volume-embedded micro-cracks 
characterized by different geometrical features and size distributions. For each 
population the number of flaws is assumed to follow a homogenous Poisson process and 
flaws are sampled with a uniform spatial distribution and a random orientation. The 
interaction of a crack with the stress field produced in the component by the applied 
load is determined through a mixed-mode fracture criterion. Several solutions have been 
compared in this respect. 

The study conducted clearly shows how the application of a traditional deterministic 
approach may lead to incorrect conclusions. Due to the stochastic nature of the flaw 
distribution, failure of a component may not be initiated at the point of highest nominal 
stress. The whole component volume contributes to the total probability of failure and 
therefore the entire stress field must be considered. Moreover, the sensitivity analysis 
carried out indicates that the parameters controlling the failure process are strictly 
dependent on loading conditions. In particular, a significant difference in behaviour 
between uniform and non-uniform stress states was identified. 

A new failure criterion for brittle materials is also proposed. The criterion is based on 
the maximum admissible individual probability of failure and is applicable to biaxial 
stress conditions. 
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1 INTRODUCTION 

1.1. Structural Reliability 

The goal of structural reliability is to assure that a structure will adequately perform 
its intended task when operating under specified environmental conditions. The manner 
in which an engineering structure will respond to loading is a function of type and 
magnitude of the applied load and the structural strength and stiffness. If material 
properties or design solutions are not suitable for the prescribed task, the response will 
be unsatisfactory and could result in the ultimate collapse of the structure. 

The traditional deterministic design methodology attempts to guarantee reliability 
through the application of conservative expedients such as the safety factor. This 
approach is based on the deterministic hypothesis that the variables describing the 
strength of a structure take on known values about which there is assumed to be no 
uncertainty. This assumption, however, does not generally hold in reality. As a 
consequence, the lack of a sound quantitative basis to deal with uncertainties does not 
allow the safety factor methodology to correctly measure the level of reliability and 
often results in overly conservative designs. Furthermore, physical parameters that 
control reliability are not identified, nor their importance evaluated. 

The source of unreliability is the variability that characterises engineering structures 
subjected to inherent randomness in material properties, loading and geometrical 
parameters. The deterministic design provides no firm basis in order to deal with this 
variability and therefore is not suitable for a reliability approach.  

In order to gain a better understanding of failure conditions and to be able to 
realistically control the effects that variability has on structural reliability, a different 
approach, able to quantify the uncertainties in the design variables of complex 
engineering components, must be adopted [Freudenthal et al., 1966]. Because of the 
stochastic nature of the quantities controlling the strength of a material or the loads 
acting on a structure, it appears that reliability analysis can only be performed sensibly 
by using a probabilistic approach. According to this approach, the term reliability is 
associated to the probability of failure of a structure at any stage during its life and the 
study of structural reliability is concerned with the calculation and prediction of this 
probability. The probability of occurrence of an event such as the structure collapse is a 
numerical measure of the chance of its occurrence. Thus, the notion of reliability admits 
the possibility of failure. This principle, however, does not imply a reduction of safety 
with respect to the conventional deterministic approach in which any risk of failure is 



CCHHAAPPTTEERR  11                                      IINNTTRROODDUUCCTTIIOONN  

- 2 - 

considered inadmissible. The principle only attempts to place the concept of structural 
safety in the realm of physical reality in which absolute quantities, such as minimum 
strength values, do not exist and knowledge is not perfect. The probability of failure is 
introduced as the quantitative measure in terms of which the reliability of various parts 
of a system can be defined, compared, and enhanced. This methodology is the only one 
that guarantees accurate failure predictions and efficient structural utilization of 
materials and provides quantitative means for dealing with the variability unavoidably 
associated with a design. 

In the research work presented in this thesis, the probabilistic approach is applied to 
the study of brittle fracture in ceramic and metallic structures. In this context, the 
variability in the structural response of a mechanical component is attributed to the 
presence of random defects in the material microstructure. Failure is represented by the 
critical condition in which one of these defects propagates catastrophically causing the 
ultimate fracture of the structure. 

1.2. Background 

1.2.1. WHY STRUCTURES FAIL 

The same structure may fail by different mechanisms according to stress and strain 
conditions and the environmental setting in which it operates. Low carbon steels, for 
example, may show a fibrous and shear type of fracture at room temperature, brittle 
fracture below -80°C., and intergranular creep failure in slow straining at temperatures 
over 600°C. 

The main types of failure for typical engineering materials are [Orowan, 1948]: 

(i) Brittle fracture (or cleavage fracture). – This failure mode is caused by the 
rapid propagation of a crack initiated at a microstructural defect or naturally 
present in the material. After reaching critical conditions, crack extension 
through the surrounding material occurs very rapidly and usually involves 
very little plastic deformation. In most cases this is the worst type of failure 
because it is generally difficult to identify the conditions in which the 
structure is about to break due to the absence of visible damage before 
catastrophic failure. 

(ii) Ductile rupture (by localization of plastic deformation). – Many very ductile 
metals, particularly in sheet form, suffer rupture in tension by continued 
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thinning around one section (“necking”). In very high purity materials, the 
tensile specimen may neck down to a sharp point, resulting in extremely 
large local plastic strain and nearly 100% reduction in area. The parts above 
and below the neck finally separate along a sharp edge or in a point.  

(iii) Fibrous and Shear fracture (cup-and-cone fracture surface). – In ductile 
materials containing impurities (majority of materials of practical use), 
fracture occurs after a limited amount of plastic deformation through a 
mechanism of microvoids nucleation, growth and coalescence. The centre of 
the fracture surface is perpendicular to the maximum tensile stress and has a 
dimpled appearance due to the nucleation of voids only at larger inclusions 
and second phase particles. On the contrary, the outer regions of the fracture 
surface are oriented at 45° from the tensile axis and have a smoother 
appearance. The formation of these fracture bands is due the concentration of 
plastic strain in this direction, caused by the coalescence of the central region 
voids in a macroscopic flaw, which promotes the nucleation and growth of 
voids at the smaller and more numerous particles, until total breakage occur. 
These two failure processes are called fibrous fracture and shear fracture 
respectively and together originate the cup-and-cone matching surfaces 
commonly observed in uniaxial tensile tests. 

(iv) Fatigue. – Material fatigue is a progressive, localized, and permanent 
structural damage that occurs when a component is subjected to cyclic or 
fluctuating loads. Although the resulting maximum stress may often be 
below the ultimate tensile stress, or even the yield stress of the material, a 
sufficient high number of cycles could still cause ultimate failure.  

(v) Intergranular viscous fracture (creep). – This type of failure occurs only if 
the temperature is high and the rate of deformation low enough for the grains 
to slide over one another without considerable intracrystalline deformation. 
As a consequence of the sliding, cavities open up between the grains and 
finally fracture occurs.  

(vi) Intergranular brittle fracture. – In some cases, impurities segregating or 
accumulating along the grain boundaries in metals lower the cohesion 
between grains so much that fracture can occur by intergranular separation 
with little or no plastic deformation even if individual grains are very ductile.  

Due to the rapidity of the mechanisms involved in the fracture process and the limited 
forewarning that characterises catastrophic crack propagation, brittle fracture is 
probably the most interesting failure mode to be analysed within a reliability 
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framework, especially when dealing with early life failures. This has been the main 
motivation that has orientated this research work towards the study of brittle fracture. 

1.2.2. DESIGN FOR RELIABILITY 

While the understanding of material fracture mechanisms has advanced considerably 
over the past several decades, it is still necessary to over-design structures so as to 
maintain safety factors. Moreover, although various statistical models of brittle fracture 
have been developed in the literature during this period, they have rarely been placed 
within a reliability framework and exploited through the development of sound design 
strategies aiming at enhance the reliability of mechanical components.  

The traditional approach to structural design and material selection is still based on 
the comparison of the anticipated design stress with the properties of candidate 
materials. A material is assumed to be adequate if its strength is greater than the 
expected applied stress. Such an approach may attempt to guard against brittle fracture 
by imposing a safety factor on stress, combined with minimum tensile elongation 
requirements on the material.  

This type of approach considerably limits the maximum performances achievable by 
a component, it does not allow the engineer to have control over the variability that 
characterises engineering structures and is not adequate to current industry 
requirements. For this reason, a more accurate design methodology needs to be adopted. 
The new methodology is centred on the concept of reliability and is able to quantifying 
the probability of a component failing under specified loading conditions. A reliability-
based approach will result not only in improvements in product reliability, but it will 
also allow one to achieve a higher cost effectiveness of the design process. In fact, if a 
scientific procedure can be developed for evaluating structural safety, it will be possible 
to study the relationship between the cost of a structure and its reliability and to have 
available different sets of design options according to the requirements of the customer. 

The use of computer-aided engineering (CAE) solutions and simulation tools, such as 
finite element analysis, at an early stage of the design process can improve product 
reliability more inexpensively and in a shorter time than building and testing physical 
prototypes. For this reason, our interest has been focused on the extension of the 
standard computational techniques currently available in the literature, which can be 
employed by structural engineers to assess and enhance a component’s reliability. 
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1.3. Thesis Objectives 

The principal aim of this research work is to provide the basis for a new design 
methodology for mechanical components affected by brittle fracture. The starting point 
of such approach is to assess the effect that uncertainties in material properties, in 
particular concerning microstructural aspects, such as the presence of crack-like defects, 
have on the strength of mechanical components. Through the analysis of the link 
between material variability and component strength distribution, this work aims at 
promoting new engineering strategies and criteria for designing more reliable structures. 

It is widely acknowledged that a key requirement for the consistency of any reliability 
model is a detailed knowledge about the probability distribution of the input parameters, 
in particular of the component strength. It is largely the validity of this input 
information that determines the degree of realism of the design process and the ability 
to accurately predict the behaviour and therefore the success of the design. For this 
reason, this study tries to identify the parameters that have a major effect on the strength 
distribution of a component subjected to different loading configurations. 

This aim has been pursued through the following objectives: 

• The development and implementation of a statistical model of brittle fracture for 
predicting a component’s strength variability and computing probability 
distributions of the fracture stress.  The model proposed incorporates recent 
achievements in the theory of stochastic material behaviour as well as 
established concepts of linear elastic fracture mechanics. In particular, most of 
the analyses are conducted via a computational procedure based on the coupled 
use of Finite Element Analysis and Monte Carlo simulation. 

• To perform a sensitivity investigation on the impact that different variables 
characterising the material microstructure have on the predicted component 
strength distribution. A parametric study on several loading configurations and 
component geometries was performed for this purpose. 

• To identify parameters which play a key role in promoting brittle fracture and to 
assess the influence that the stress state has on the attainment of critical failure 
conditions. This task involved a careful and systematic analysis of the shape of 
the strength distribution focusing, in particular, on the parameters that affect the 
slope of the curve. 
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• To analyse the reliability of complex engineering components and suggest 
measures that allow the reduction of the failure probability associated with a 
particular operational setting. 

1.4. Thesis Structure 

A summary of the content of each chapter is presented as follows: 

Chapter-1 delineates the background on which this thesis is intended. 

Chapter-2 introduces the topic of brittle fracture, highlighting the statistical nature of 
this phenomenon. It also reviews the major works conducted in the area of probabilistic 
fracture mechanics in ceramic and metallic materials and in other closely related fields. 

Chapter-3 describes the methodology employed to derive the strength distribution of 
a component containing randomly distributed flaws and subjected to arbitrary loading 
conditions. Particular attention is reserved for the discussion on the failure criteria 
employed to determine critical conditions for crack propagation and for a detailed 
description of the algorithms implemented to perform the Monte Carlo simulations. 

Chapter-4 examines the mechanisms that control brittle fracture in ceramic materials. 
The effects that material parameters, such as mean and standard deviation of the flaw 
size distribution, and stress conditions have on the material strength distribution are 
analysed. A design criterion for components subjected to a plane stress state is 
proposed.  

Chapter-5 is dedicated to the reliability analysis of a ceramic turbine blade. Several 
loading configurations are considered and the associated component’s strength 
distributions determined. The locations at which failure is most likely to occur are also 
investigated. Finally, the strength distribution relative to an alternative design solution is 
derived and compared with the original results. 

Chapter-6 investigates the phenomenon of brittle fracture in steel structures. Results 
similar to those obtained for ceramic materials are discussed. 

Chapter-7 summarises the main results and gathers the most important conclusions 
drawn from the analyses conducted. Some suggestions for future work are also 
included. 
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2 LITERATURE REVIEW 

2.1. The Cost of Fracture 

Fracture is a problem that society has faced for as long as there have been man-made 
structures. The problem may actually be worse today than in previous centuries because 
of the increasing technological complexity of our society. For this reason, many 
resources have been employed in the past and are still allocated in the present to study 
the causes of fracture and to develop new technologies to guarantee structural integrity. 
In particular, research nowadays is directed towards the better understanding of fracture 
mechanisms, the development of more fracture and fatigue resistant materials, the 
improvement of manufacturing and processing techniques to achieve more uniform 
materials, the advancement of non-destructive evaluation equipment for both inspection 
and preventive maintenance. 

In spite of these efforts to prevent or anticipate fracture, failures do occur and often 
with tragic consequences. The total impact of fracture on the economy is a measure of 
both the costs incurred as direct consequences of failure and the resources expended in 
the attempt of preventing fracture. The former category includes the total or partial loss 
of equipment, repair costs, personal human costs in pain, suffering and death, losses in 
cargo, business costs of delay, environmental damages. Many instances of fracture-
related accidents, which have involved to various degrees all the consequences 
aforementioned, have been experienced in the aircraft, civil and oil industries in the past 
and recent years. 

 In addition to the direct consequences of unintended fracture, many resources are 
expended in applying maintenance and inspection procedures, to assure the safety of 
equipment, and in the stockpiling of redundant equipment which is stored in 
anticipation of fracture. Replacement parts or entire units are held in reserve, freezing 
capital which may be used for other purposes, for little reason other than to ensure the 
continued performance of an activity or function in the event of a component failure.  

The total annual cost of fracture in the United States in 1978 was determined by an 
economic study [Duga, 1983] to be $99 billion (in 1978 US dollars), about 4.4% of the 
gross national product. Furthermore, this study estimated that the full application of the 
technology available at that time could have reduced this amount by $29 billion, and 
that further fracture mechanics research could reduce this figure by an additional $23 
billion. A similar study [Faria, 1990] was conducted in Europe by the European Group 
on Fracture (EGF). The objectives of this work were to evaluate the economic effects of 
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failure due to fracture and assess the future potential in cost reduction achievable by the 
development and application of new design standards. The conclusions of this study, 
once again, indicated the future research in basic and applied sciences as the primary 
source of savings for the productive economy that has to deal with fracture.  

Four broad research areas were identified as the most promising and pertinent to 
fracture: (1) understanding of the basic materials properties and the mechanisms of 
material failure; (2) progress in the effectiveness and accuracy of design methodologies, 
such as stress analysis and development of specialized fracture-prevention designs; (3) 
improvement in the knowledge and application of processing and fabrication 
techniques; (4) advancements in the areas related to inspection, testing and maintenance 
to allow more sensitive detection of flaws and accurate prediction of fatigue life.  

The work presented in this thesis aims at promoting new engineering strategies and 
criteria to design structures that are more reliable by contributing to the first two 
research areas indicated above. The interest is focused in particular on understanding 
and modelling the random factors that determine the mechanical properties of brittle 
materials and ultimately control their fracture behaviour. 

2.2. Brittle Fracture in Ceramics and Metal Alloys 

The phenomenon of brittle fracture affects many of the materials currently employed 
in the most diverse sectors of the industry. The extent to which mechanical components 
are subjected to this type of failure may depend on the specific application and the 
environmental conditions in which the component operates, but, in general, the problem 
of predicting and preventing fracture is one of the main obstacles that a structural 
engineer faces in assessing and ensuring the reliability of a design.  

Two families of materials will be considered in this study. These are ceramics, for 
their specific properties and recognized potential for future application in new 
promising designs, and metal alloys, due to their large presence in all major sectors of 
the industry. Both materials experience brittle fracture as relevant failure mode.  

2.2.1. CERAMIC MATERIALS 

The beneficial properties of structural ceramics include their high melting 
temperature, light weight, high hardness and good corrosion and oxidation resistance. 
These properties provide the potential for the successful application of these materials in 



CCHHAAPPTTEERR  22                                LLIITTEERRAATTUURREE  RREEVVIIEEWW  

- 9 - 

a wide range of highly demanding engineering fields such as the aerospace, automotive 
and petroleum industries [Barsoum, 1997]. Consequently, research has focused on 
improving ceramic properties and processing, as well as on establishing a sound design 
methodology.  

Ceramic materials include oxides, carbides, sulphides and intermetallic compounds, 
which are joined by covalent or ionic bonds. Most ceramics are crystalline, but, unlike 
metals, the high energy of the atomic bond severely limits dislocation motion. Due to 
the impossibility of stress redistribution through plastic deformation, ceramics are brittle 
materials and this undesirable property must be carefully tackled during the design 
process. The lack of ductility and yielding capability leads to low strain tolerance, low 
fracture toughness and a large variation in observed fracture strength. When a load is 
applied, the absence of significant plastic deformation causes large stress concentrations 
to occur at microscopic flaws, which are unavoidably present as a result of material 
processing or in-service environmental factors. The observed scatter in component 
strength is caused by the variable severity of these flaws and by the phenomenon of 
sudden and catastrophic crack growth that may be initiated by the defects. 

Because of the statistical nature of these flaw populations, the size of the stressed 
material volume affects the strength (this effect is known as the size effect). For 
example, suppose a set of samples with a known geometry experiences a load such that 
20 per cent of the specimens break at a stress of 400 MPa or lower. In this case, there is 
a 20-percent chance that a flaw of this strength or lower is present in any given 
specimen. If the specimen geometry is scaled such that the volume is 5 times larger, 
then for the same loading, there is a 100.0 – (1.0-0.2)5·100 = 67.2 percent chance that a 
flaw of strength 400 MPa or lower is present in any given specimen. Clearly, by 
increasing component size, the average strength is reduced because of the increased 
probability of having a weak flaw. Hence, if a ceramic component design is based on 
material parameters obtained form smaller size test specimens, then the effects of 
scaling must be taken into account, otherwise a non-conservative design would result. 

Another consequence of the random distribution of flaws is that failure of a complex 
component may not be initiated at the point of highest nominal stress. A particularly 
severe flaw may be located at a region of relatively low stress, yet still be the cause of 
component failure. For this reason, the entire solution of the stress field must be 
considered in the design assessment process. Clearly, it is not adequate to predict 
reliability based only on the most highly stressed point [Nemeth et al., 1990]. 
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2.2.2. STEEL AND OTHER ALLOYS 

The two most common fast failure mechanisms experienced by steel and other metal 
alloys are ductile failure [Garrison and Moody, 1987], which is the result of nucleation, 
growth and coalescence of numerous microscopic voids that initiate after a significant 
amount of plastic deformation, and cleavage fracture, which is due to the rapid 
propagation of a crack along a particular crystallographic plane. Although both 
mechanisms lead to the total fracture of a component, they involve different physical 
phenomena, ductile failure being a strain driven process, while cleavage is a brittle 
fracture mainly controlled by stress levels. The same material may experience both 
failure modes depending on loading and temperature conditions, and, in some 
circumstances, a phase of microvoid coalescence may precede cleavage in the same 
fracture process. Anyway, the two stages can clearly be distinguished by a careful 
analysis of the fracture surface, with a characteristic fibrous and dimpled appearance in 
case of ductile failure, against a multifaceted surface typical of cleavage fracture. 

In general, cleavage fracture occurs in the presence of macroscopic defects originated 
by material processing or working conditions, such as cyclic loading, and when plastic 
flow is restricted. Face centred cubic (FCC) metals are usually not susceptible to 
cleavage because there have numerous slip systems at all temperatures. On the other 
hand, materials with a body centred cubic (BCC) crystal structure fail by cleavage, in 
particular at low temperatures, because of the limited number of active slip systems. 

The physical principles underling the cleavage process in metals are essentially the 
same as those controlling brittle fracture in ceramic materials and have been extensively 
studied in the past century [Anderson, 2004]. 

2.3. Linear Elastic Fracture Mechanics 

Brittle fracture has long been recognized as a highly localized phenomenon where 
fracture initiation is mainly controlled by the incidence of flaws that inherently occur in 
the material. The fracture mechanics approach has three important variables rather than 
the usual two of stress and strength. The additional structural variable is the flaw size, 
while fracture toughness (or equivalently critical strain energy release rate) replaces 
strength as the relevant material property. Fracture mechanics is therefore a 
methodology that allows one to quantify the critical combinations of these three 
variables (applied stress, flaw size and material toughness) and determine the behaviour 
of the system.  
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Although classical fracture mechanics does not explicitly deal with the randomness 
characterising flaw size, position and orientation, it sets the fundamental principles 
necessary for the further development of more complex statistical models that directly 
examine the random distribution of defects. Since many of the concepts that constitute 
the basis of linear elastic fracture mechanics will be extensively applied in the following 
chapters, some of them are briefly reviewed in the next two sections. 

 Two approaches to fracture analysis exist, which are equivalent in most 
circumstances: the energy criterion and the stress intensity approach. Both approaches 
are discussed hereafter. 

2.3.1. THE ENERGY APPROACH 

The first quantitative approach to fracture able to explain the discrepancies between 
the theoretical strength, estimated through calculations based on molecular cohesion 
considerations, and the actual strength of materials was proposed by Griffith and 
published in 1920. Studying the bursting strength of cracked spherical bulbs and 
circular tubes made of glass, Griffith based his theory on a simple energy balance, 
invoking the “theorem of minimum energy”. According to this principle, the 
equilibrium state of an elastic solid body, deformed by specified surface forces, is such 
that the potential energy of the whole system is a minimum. Therefore, at the 
equilibrium position, the rupture of the solid occurs only if the system can pass from the 
unbroken to the broken condition by a process involving a continuous decrease in 
potential energy. In the specific case of a crack propagating in an elastic solid, the 
formation of new surfaces in the interior of such solid during crack propagation would 
entail an increase in potential energy equal to the product of the material surface energy 
times the area of the new surfaces. For fracture to occur, this increase in potential 
energy must be offset by the net reduction in strain energy stored in the solid resulting 
from an increment of crack growth. Since this model assumes that the work of fracture 
comes exclusively from the surface energy of the material, the Griffith approach only 
applies to ideal brittle materials. 

Several years later, Irwin [1957] rigorously formulated the energy release rate 
concept, which is related to Griffith approach, but is more convenient for solving 
engineering problems. The energy release rate, G, is defined as the rate of change in 
potential energy Π per unit of crack area A, for a linear elastic material, and is a 
measure of the energy available for an increment of crack extension: 
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dA
dΠ

−=     G          (2.1) 

The quantity G represents the 
variation in potential energy, 
supplied by the internal strain 
energy and external forces, 
resulting from a unit increase in 
crack area. The minus sign in 
front of the right-hand side of 
the equation (2.1) is due to the 
fact that, when the crack 
propagates, the change in 
potential energy Π is negative. 
Hence, the minus is necessary 
to have an energy release rate 
that is a positive quantity.   

The energy approach states 
that crack extension occurs 
when the energy available for 
crack growth is sufficient to 
overcome the resistance of the material. In mathematical terms, at the onset of fracture: 

cGG         =          (2.2) 

where Gc is the critical strain energy release rate, which is a measure of the 
material’s fracture toughness. Indicating with Ws the work required to create the new 
surfaces of the crack (Figure 2.1), the critical energy release rate can be written as: 

dA
dWs

c        =G         (2.3) 

 For an ideal brittle solid, the only contribution to the critical energy release rate 
comes from the material surface energy γs. Therefore, considering a unit thickness plate 
where the extension of a crack with length 2·a results in the formation of a total free 
surface of 4·a, Ws = 4·a·γs and Gc = 2·γs.  The same approach can also be extended 

Figure 2.1  Crack energy balance 
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[Felbeck, 1955] to materials that are capable of plastic deformation, such as metals, by 
taking into account the energy per unit area dissipated by local plastic flow, γp, and 
including this term into the expression of Ws such that Gc= 2·(γs+γp). This model, 
however, can be applied only if nonlinear effects, such as plasticity, are confined to a 
small region near the crack tip since, in the foregoing definition of G, it was assumed 
that the global behaviour of the material is elastic. 

One of the fundamental assumptions of fracture mechanics is that Gc is independent 
of the size and geometry of the cracked body and is a material property. 

2.3.2. THE STRESS INTENSITY APPROACH 

The fundamental cleavage failure mechanism postulates that a microcrack produces 
stress concentrations of sufficient magnitude so that unstable crack propagation takes 
place where a local fracture stress exceeds a critical value. 

The stress field in proximity of the crack tip in an elastic material subjected to a 
tensile load perpendicular to the crack plane is completely characterized by a single 
constant, known as the stress intensity factor, KI. Each stress component near the crack 
tip is proportional to this constant, which defines the stress intensification produced by 
the defect. If one assumes that the material fails locally at some critical combination of 
stress and strain, then it follows that fracture must occur when the stress intensity factor 
reaches a critical value, KIC. In practical terms, a failure criterion that predicts fracture 
when the local tensile stress ahead of the crack tip reaches the critical material 
resistance, σf, is equivalent to requiring that the stress intensity factor KI relative to the 
particular load configuration and crack geometry is equal or higher than KIC. Thus, KIC 
is an alternative measure of the material fracture toughness. For linear elastic materials, 
the energy and stress intensity approaches to fracture are essentially equivalent. 

The stress intensity methodology has been largely applied to the study of the different 
stress distributions generated ahead of a crack by the action of one of the three loading 
schemes that a crack can experience. The three so-called fracture modes are shown in 
Figure (2.2) and consist of Mode I, where the principal load is applied normal to the 
crack plane, Mode II, corresponding to an in-plane shear loading which tends to slide 
one crack face with respect to the other and Mode III, which refers to the out-of-plane 
shear. For each of the fracture modes above, a stress intensity factor (KI, KII and KIII 
respectively) can be defined and used to describe the stress field in proximity of the 
cracked area. 
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The actual value of K depends on the crack/structure geometry, magnitude of the 
remote stress and obviously fracture mode. Vast amount of literature deals with the 
problem of determining stress intensity factors and closed-form solutions exist for a 
number of simple configurations. Stress intensity factors can usually be expressed 
according to the general formula [Anderson, 2004]:  

( ), ,       I II IIIK Y aσ π= ⋅ ⋅ ⋅          (2.4) 

where σ is the relevant applied stress, a is a characteristic crack dimension and Y is a 
dimensionless constant that depends on geometry and mode of loading. 

 

Figure 2.2  Fracture modes 

Further work has also been conducted to predict fracture conditions when two or 
three modes act simultaneously. The solutions for these types of problems are generally 
obtained by employing energy criteria, since intensity factors relative to different modes 
are not additive, while energy contributions are. It is possible, however, to convert a 
stress intensity factor into an energy release rate and vice versa since the two quantities 
are directly and uniquely related for a linear elastic material [Irwin, 1957]. The main 
results of these studies will be discussed in the next chapter. 

Mode I 
(Opening) 

Mode II 
(In-Plane Shear) 

Mode III 
(Out-of-Plane Shear) 
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2.4. Statistical Models of Brittle Fracture in Ceramics 

While the classical approach to fracture mechanics may resolve the local stresses 
leading to failure in a large class of problems, it does not take into consideration the 
statistical behaviour of fracture. Due to inhomogeneity in the local characteristics of the 
material, such as flaws orientation and size, fracture is of a random nature and therefore 
should be analysed by statistical methods. The development of suitable models to study 
the probabilistic aspects of fracture started with the formulation of the “weakest link 
theory” (WLT), which was successfully applied to explain the scatter in strength 
inherent to brittle materials subjected to uniform uniaxial tensile stress  [Weibull, 1939]. 
Several statistical models based on the WLT assumptions follow for the analysis of 
brittle failure of components under multiaxial stress states. 

2.4.1. WEAKEST LINK THEORY AND WEIBULL DISTRIBUTION 

According to the weakest link theory, a structural component is represented as a chain 
of n links, each link being associated to a flaw present in the material microstructure. 
Within this framework, the fracture of a brittle material occurs when the critical stress 
associated with the weakest flaw is exceeded. In mathematical terms the failure 
probability (Pf) of a component subjected to a load of magnitude x is given by [Weibull, 
1951]: 

( )1 expfP n xϕ⎡ ⎤= − − ⋅⎣ ⎦        (2.5) 

where ϕ(x) is the probability of rupture of a single link. The term ϕ(x) is a function of  
stress conditions, flaw type and size. Equation (2.5) derives from the simple 
consideration that, if the survival probability of a single link is 1-ϕ(x), the survival 
probability of the whole chain is [1-ϕ(x)]n, which for small value of ϕ(x) can be 
expressed as exp[-n·ϕ(x)].  

Using experimental data as the basis for his assumptions, Weibull proposed a power 
law as the simplest mathematical expression for the function ϕ(x). The result is the 
well-known empirical Weibull distribution for the failure probability of a structural 
component under uniform, uniaxial tension: 
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where V is the volume of the component, σ  the uniaxial tensile stress and m, σ0 and 
σu are the shape, scale and threshold parameters respectively. The three distribution 
parameters can be physically interpreted in the following way: σu is the minimum value 
of stress below which the material probability of failure is supposed to be zero, σ0 is the 
value of stress in excess to σu for which a unit volume specimen has a failure 
probability of approximately 63%, while m determines the shape of the distribution, 
with lower values being associated to wider (and therefore more scattered) distributions 
(Figure 2.3). However, m is not the only parameter controlling the scatter in material 
strength levels since σ0 also affects the slope of the strength distribution and therefore 
the variability associated with it. 
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Figure 2.3  Three parameter Weibull distribution for several values of shape parameter, m 

Despite its empirical nature, the Weibull approach is able to explain the two most 
important experimental observations made when testing the strength of brittle materials: 
the probability of failure increases with load amplitude and with the specimen size. For 
the analysis of uniaxial stress states, this model is considered the most effective and is 
probably the most widely employed in the interpretation of experimental results for 

σu = 100 MPa 

σ0 = 300 MPa 
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uniaxial stress testing configurations such as simple tension and 4-point bending. 
Several examples of Weibull distributions fitted to strength values of alumina (Al2O3) 
and other ceramic materials exposed to different environmental conditions can be found, 
among others, in Hoshide [1996]. 

2.4.2. MULTIAXIAL THEORIES 

Extensions to Weibull’s theory of brittle fracture have been proposed by several 
authors in order to include multiaxial and non-uniform loading schemes in the scope of 
the theory.  The main purpose of these studies has been to find a methodology to 
determine the failure probability of a component under a multiaxial stress distribution 
by using material parameters that have been estimated through uniaxial stress tests. An 
interesting review of the most relevant models developed with this intent is presented by 
Rufin et al. [1984]. 

2.4.2.1. PRINCIPLE OF INDEPENDENT ACTION AND WEIBULL MULTIAXIAL STATISTICS 

The simplest and most immediate application of Weibull’s formula to a general 
triaxial stress state is represented by the Principle of Independent Action. According to 
this model, the survival probability of a isotropic specimen is equal to the product of the 
survival probabilities calculated for each principal stress applied in turn. The final 
equation for the probability of failure corresponding to the Weibull/Principle of 
Independent Action model is (assuming σu = 0): 

31 2

0 0 0

1 exp
m m m

f
V

P dVσσ σ
σ σ σ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= − − + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭∫∫∫    (2.7) 

where σ1, σ2 and σ3 are the principal stresses at each point of the structure. This is a 
very convenient formulation because of its simplicity but, unfortunately, leads to non-
conservative estimates of Pf, since the mutual contribution of combined principal 
stresses to the fracture process is neglected. Despite its limitations, the principle of 
independent action was extended and applied to the analysis of anisotropic brittle 
materials by Margetson [1976]. 

A somehow more sophisticated design methodology for brittle components under 
arbitrary stress conditions can be found in Dukes [1966]. A comprehensive procedure 
for the initial phase of material properties characterization (three-parameter Weibull 
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distribution) and the subsequent stage of component structural design is outlined in his 
work. To predict material response under multiaxial stress by using statistical 
parameters obtained from uniaxial tests, this methodology proposes to calculate the 
probability of failure by averaging the normal component of the stress, σn, across all 
directions of the three-dimensional space.  The failure probability of a small sphere 
characterised by constant values of principal stresses and a volume V is therefore 
written as: 

0

1 exp cos
4

m

n u
f

VP d dσ σ θ θ β
π σ

⎡ ⎤⎛ ⎞−⎢ ⎥= − − ⋅ ⋅ ⋅⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦∫∫   (2.8) 

where θ is the angle with respect to the x-y plane of the principal coordinate system 
and β is the angle with respect to the x-z plane (Figure 2.4), while the constants σu, σ0, 
m are material parameters obtained from a statistical fitting procedure of uniaxial tensile 
test results. The normal component that appears in the integral is a function of principal 
stresses (σ1, σ2, σ3) and the reference direction and is defined by the following 
relationship [Timoshenko, 1955]: 

2 2 2 2 2
1 2 3cos sin cos cos sinnσ σ θ β σ θ β σ θ= ⋅ ⋅ + ⋅ ⋅ + ⋅    (2.9) 

 

Figure 2.4   Averaging of the normal stress component  
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Equation (2.8) is applicable only to uniform stress distributions. For non-uniform 
configurations, the author suggested dividing the structure into a large number of small 
elements, each subjected to a different but approximately constant stress state, and to 
combine the contributions of all elements to the total probability of failure through the 
following expression: 

( ) 1 1 elem
f fP P= − −∏        (2.10)  

Equation (2.10) derives from the weakest link principle, according to which the 
structure fails if at least one of the constituting elements fails. It is valid under the 
assumption that fracture of a single element depends uniquely on the stress state within 
that element and is not affected by the conditions in the surrounding elements 
(independence assumption). 

Although the approach illustrated by Dukes and known in the literature as the 
multiaxial Weibull theory is intuitively appealing, the idea of the failure probability 
depending on the spatial average of the normal stress is somewhat arbitrary and lacks a 
sound physical justification. As observed by other authors [Chao and Shetty, 1990], this 
methodology does not explicitly take into account the physical characteristics of the 
strength-controlling flaws and does not establish a formal link between statistical 
fracture theory and fracture mechanics. Experimental work on the fracture stress of 
alumina round solid rods under combined tension/torsion loads has also showed how 
theoretical predictions obtained via this multiaxial theory are not in complete agreement 
with experimental results [Petrovic and Stout, 1981a/1981b]. Similar conclusions were 
drawn after an equivalent study on the Weibull failure probability of thin- and thick-
walled alumina tubes subjected to various loading configurations [Stout and Petrovic, 
1984a/1984b]. 

2.4.2.2. DENSITY DISTRIBUTION OF CRITICAL FLAWS: BATDORF’S MODEL 

Advancements in the statistical theory of brittle fracture were promoted by a new 
multiaxial model, which, although still based on the weakest link principle, introduced 
the concept of critical flaw density. According to this approach, the probability of 
failure is measured by estimating the density function of the number of defects that lead 
to catastrophic failure under a specified critical stress.  

Batdorf and Crose [1974] assumed the material flaws to be microcracks and modelled 
the mechanical behaviour of a homogeneous isotropic material containing randomly 
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oriented and uniformly distributed microcracks. In their model, the crack density 
distribution, N(σcr),  expressing the number of cracks per unit of volume having a 
critical stress less than or equal to σcr, is considered independent from the stress state 
acting on the structure and therefore is assumed to be a material property. They also 
hypothesised that fracture depends only on the macroscopic stress normal to the crack 
plane. Although this assumption neglects the effect that shear stress acting in the in-
plane and the out-of-plane directions (corresponding to mode II and mode III fracture 
types respectively) has on fracture conditions, it has the advantage that allows one to 
derive an expression for the failure probability without any further knowledge on the 
actual shape of the cracks. The final equation for determining fracture conditions is 
obtained by considering the two different contributions to the overall probability of 
failure: 

(i) the probability that a crack with a critical stress smaller than or equal to σcr 
will be found in the element volume; this quantity is directly related to the 
flaw density function, N(σcr); 

 
(ii) and the probability that the crack will be oriented in such a way that the 

actual normal stress, σn, acting on the crack plane will be greater than σcr; 
this probability is expressed as a fraction of the solid angle Ω(Σ, σcr), 
containing the normals to all orientations for which σn is grater than σcr, and 
is a function of the stress state Σ and the critical stress considered. 

Combining these two contributions, Batdorf and Crose proposed the following 
expression for the probability of failure ΔPf of a small element of volume ΔV, subjected 
to a uniform stress state Σ: 

( )
0

,
4

cr
f cr

cr

dNP V d
d

σ
σ

π σ

∞ ⎛ ⎞Ω Σ
Δ = Δ ⎜ ⎟

⎝ ⎠∫      (2.11) 

As seen before, the weakest link principle implies that the structure ultimately 
fractures when one of its constituting elements fails. This means that, rewriting equation 
(2.10) with the new notation, the overall failure probability can be calculated as: 

( )1 1
V
V

f fP P Δ= − − Δ       (2.12) 
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 where V/ΔV represents the number of elements in the component. The total failure 
probability of a component subjected to a non-uniform stress distribution can therefore 
be obtained by taking the limit for ΔV→0 of equation (2.12). This operation leads to the 
final expression:  

( )
0

,
1 exp

4
cr

f f cr
crV

V

dNP dP dV d
d

σ
σ

π σ

∞⎡ ⎤⎛ ⎞Ω Σ⎢ ⎥= = − − ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫ ∫    (2.13) 

In practical terms, the last integration is often performed numerically by dividing the 
component in a discrete number of small elements within which the stress state is 
known and assumed constant. The different contributions to the component probability 
of failure coming from all elements are then combined together as already seen for 
Duke’s model.  

In subsequent publications, Batdorf extended the model to include not only volume-
distributed cracks, but also surface cracks typical of glass materials [Batdorf, 1978]. The 
new analysis assumes that crack planes are normal to the structure’s surface, but are 
otherwise randomly oriented. The results are basically equivalent to those obtained in 
the treatment of volume embedded flaws. He also proposed several new shear-sensitive 
fracture criteria to be used within the framework of his theory [Batdorf, 1977]. The 
application of a different fracture criterion simply implies a modification to the term 
Ω(Σ, σcr) that appears in equation (2.13). The inclusion of the shear stress contribution 
to the fracture process generally results in a better agreement of theoretical predictions 
with experimental evidence, but requires further knowledge about the shape of the 
crack-like defects. The direct comparison of several failure models suggested that the 
fracture criterion based on the maximum strain energy release rate (which will be 
discussed in the Chapter-3) is the most accurate. 

 Applications of Batdorf’s model to the reliability analysis of alumina and silicon 
nitride disks subjected to a biaxial stress state were discussed by Chao and Shetty 
[1991]. The mathematical expression they employed for the crack density function was, 
in analogy with Weibull’s formulation, of the form: N(σcr) = kσc

m, with k and m being 
the scale and shape parameters respectively. The possibility of cracks having a preferred 
orientation rather than being completely random distributed was also investigated in this 
study, although only the simple case of crack planes normal to the maximum principal 
stress was considered. 
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Despite the sophistication and the general assumptions under which this model has 
been formulated, it suffers some weakness. Specifically, the whole theory is based upon 
a concept, the critical flaw density function N(σcr), that does not seem to have a clear 
and direct link with the real features of the material microstructure, where number, 
shape and orientation of the flaws are the tangible quantities that control material 
mechanical behaviour. The critical flaw density is not a measurable quantity and it does 
not incorporate the actual number of flaws, but it rather seems a mathematical construct 
used to obtain an elegant solution to the multiaxial fracture problem. 

2.4.2.3. THE ELEMENTAL STRENGTH MODEL 

A similar, although mathematically more rigorous, statistical formulation of the 
fracture process of brittle materials was proposed by Matthews et al. [1976]. In deriving 
the expression for the failure probability of a component subjected to an arbitrary stress 
distribution, he also employed the idea of a flaw number density function, named g(S) 
and defined in such a way that the product g(S)·dS expresses the number of flaws per 
unit volume with strength between S and S+dS. If flaws do not interact, the probability 
of fracture, δPf, associated with a small element δV at a stress level S1, equates the 
probability that a flaw with strength equal or smaller than S1 exists in the volume δV and 
is given by: 

( )
1

0

S

fP V g S dSδ δ
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦∫       (2.14) 

The fracture probability of a component of volume V, subjected to a stress S1, can 
then be determined from the product of the survival probabilities (1-δPf) of each 
element into which the volume V has been divided. In the limit V/δV→∞, it is expressed 
as: 
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= − −⎢ ⎥
⎢ ⎥⎣ ⎦∫ ∫      (2.15) 

Equation (2.15) is essentially equivalent to equation (2.13). However, the 
disadvantage of this approach compared with the solution proposed by Batdorf is that, 
since g(S) is not independent of the stress distribution, it cannot be considered as a 
material property, but must be recalculated every time the stress field in the component 
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changes. On the other hand, Matthews claimed that the strength of the new equation lies 
in the fact that, when deriving the expression of g(S) from experimental data, no initial 
assumptions on its functional form are required. He also proposed a rather complex 
procedure to estimate the density distribution of surface flaws from fracture stress 
results in two common testing configurations, 3-point bending and hardness indentation. 
Subsequently, Evans [1978a] extended this approach by deriving equivalent expressions 
of g(S) for surface and volume flaws in various specimen geometries and loading 
schemes frequently used in the uniaxial and biaxial strength testing of ceramics. These 
studies provided analytical solutions for determining the flaw density function, g(S), by 
fitting experimental data of fracture stresses, but did not propose a practical 
methodology for the design of brittle components subjected to arbitrary loading 
conditions. 

Only in a subsequent work [Evans, 1978b], the development of methods for 
transforming the flaw density function associated with an equitriaxial stress state to that 
relative to an arbitrarily combination of principal stresses contributed to the 
applicability of the model to general multiaxial stress configurations. In order to achieve 
this result, Evans assumed that the flaws controlling material strength properties were 
penny-shaped cracks and applied a fracture criterion based on the coplanar strain energy 
release rate to determine critical conditions for crack propagation. Other flaws 
geometries were also considered in subsequent studies. In particular, the same statistical 
methodology was employed to analyse the behaviour of microcracks originated at the 
surface of cylindrical cavities [Evans et al., 1979a] and spherical pores [Evans et al., 
1979b]. A practical application of Evan’s approach to a specific component geometry 
can be fund in Lamon [1983]. In this paper, bending-strength distributions of porcelain 
cylinders obtained at diverse span lengths are investigated under the assumption of a 
population of through-thickness cracks. 

The term “elemental strength model” was attributed to this multiaxial fracture theory 
only by a later work [Lamon, 1988]. The expression refers to the idea that the crack-
strength density function gT(ST), relative to an equitriaxial stress state, is considered as a 
fundamental material property, uniquely related to the flaw population characterising 
the material microstructure. The elemental strength function is then transformed into 
strength distributions in other stress states by employing a suitable fracture criterion and 
by considering the flaw random orientation and the normal and shear stress components 
acting on the flaw surface. 

The elemental strength model, developed at different stages by Matthews, Evans and 
Lamon, is a formal variation of Batdorf’s approach, but is in substance based on the 
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same fundamental assumptions. Although in some occasions the superiority of the 
former model has been claimed [Lamon, 1988], the equivalence of the two 
methodologies was ultimately demonstrated in two separate studies [Chao, 1990 and 
Andreasen, 1993]. The author believes that Batdorf’s approach offers some advantages 
in terms of flexibility and ease of application, but, in general, both models are affected 
by the limitations previously outlined and, in particular, by the lack of a physical 
parameter directly correlated to the measurable features of the material microstructure, 
which control the component strength distribution. 

2.4.2.4. FURTHER WORK IN THE FIELD OF STATISTICAL BRITTLE FRACTURE 

Although a large number of papers in the literature of statistical brittle fracture are 
dedicated to Batdorf’s theory and the elemental strength model, an absolute agreement 
on the best methodology to be used in the reliability analysis of ceramic materials has 
not been reached among scientists. On the contrary, research in this field is still 
extremely active and several alternative approaches have been proposed in the past two 
decades. Some recent developments include the work of Zimmermann [1999] who 
formulated a statistical model of brittle fracture based on the interaction between 
microstructural spherical cavities (pores) and grain size. The model assumes that the 
length of the most severe microcrack nucleating in proximity of a pore is associated 
with the size of the grain located around the pore equator.  

Other authors proposed some relatively significant modifications to the classical 
Weibull theory for multiaxial fracture. Quinn [2003] for example, measured Weibull 
parameters and estimated size effect on the failure probability of unconventional 
specimen geometries (cylindrical rods). Applicability of Weibull statistic to highly 
porous materials was investigated by Pernot [1999] and Hoshide [2003]. While the 
former work confirmed the possibility of applying a Weibull distribution to describe 
fracture data obtained in flexural tests of a porous glass-ceramic material, the latter 
research suggested modifying Weibull formulation of the failure probability by 
multiplying the so-called risk of rupture, i.e. the term in the exponent of equation (2.8), 
by a factor dependent on porosity. 

Attempts to correlated material strength to pore size distribution were made 
separately by Berdin [1996] and Chao [1992]. In both studies, the probability 
distribution of the spherical cavities diameter was estimated by means of quantitative 
image analysis. The relationship between material strength and pore size was 
established by Berdin through a Weibull type of analysis. In determining the critical 
stress associated with each flaw size, Berdin assumed that pores behave as penny-
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shaped cracks. A multiscale approach was then employed to find an analytical 
expression for the defect size density that would fit experimental data. The reason why 
the model is defined as multiscale is that both macroscopic fracture results obtained 
from mechanical tests and microstructural information related to the observed defect 
distribution are used in the fitting procedure. 

Chao, on the other hand, applied the theory of extreme-value statistics to assess the 
reliability of sintered silicon nitride specimens subjected to biaxial stress. In this work, 
annular cracks are assumed to nucleate around the equator of spherical pores. Crack 
extension (ahead of pore surface) and orientation are fixed, while pore size varies 
according to an exponential probability law estimated through image analysis 
techniques. Reasonably good agreement between theory and experiments was observed 
by the author, who also highlighted the strong dependence of the results on the size of 
the annular crack relative to the pore and on the associated stress intensity factors. 

Another interesting investigation on fracture related issues was conducted by Givli 
[2006]. He focused the attention on the statistical characteristics of failure location and 
their relation to strength in brittle materials. A simply one-dimensional component 
subjected to either a uniform tensile stress or a bending load was considered in this 
study. The analysis, which was based on the weakest link principle, confirmed that, in 
materials with random strength, failure does not necessarily initiate at the point of 
maximum stress. In fact, an element with a lower stress may fail first and, in general, 
failure location is a random parameter, which is a functional of the whole stress field. A 
similar type of analysis will be conducted in the following chapters, but on much more 
complex component geometries and loading configurations. 

The proliferation of research papers in the area of statistical brittle fracture, which 
often propose different, if not contradictory, approaches for the reliability analysis of 
ceramic components demonstrates how a unified methodology, accepted among most 
academic researches and industry representatives, has still to be developed. This 
suggests that there exist concrete opportunities for significantly contributing to the 
advancement of this field of the applied sciences. 

2.4.3. SOFTWARE PACKAGES FOR THE RELIABILITY ANALYSIS OF 

CERAMIC COMPONENTS 

Due to the increasing demand coming from the industry for efficient analysis and 
simulation tools to be employed at an early stage of the design process, several research 
institutions have been working at the development of software applications for 
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determining fast-fracture reliability of ceramic components subjected to complex 
thermo-mechanical loadings. These tools are generally based on the coupled use of 
Finite Element Analysis (FEA) and one of the multiaxial fracture theories previously 
discussed. The standard approach followed in these developments involves a two-stage 
process in which FEA is first employed to determine the stress field produced in the 
component by the applied load and then a statistical fracture analysis is performed to 
estimate component reliability. The statistical failure model is generally incorporated 
into the finite element method by assuming that each of the elements in which the 
component is divided is small enough for the stress gradient to be considered negligible. 
Component integrity is computed by calculating element-by-element reliability and then 
by determining the component survival probability as the product of the individual 
element reliabilities. 

Several examples of the successful application of such methodology can be found in 
the literature. NASA developed an integrated software package named CARES 
(Ceramic Analysis and Reliability Evaluation of Structures) [Nemeth et al., 1990], 
which uses Weibull and Batdorf fracture statistics to predict the reliability of isotropic 
ceramic components. The computer program operates as a standard finite element post-
processing tool, which, after calibrating a set of material parameters, automatically 
performs component reliability calculations. Material parameters estimation is 
independent of finite element output and is carried out by fitting experimental data 
obtained from the fracture of simple components (uniaxial or flexural specimens), to a 
two-parameter Weibull distribution. A similar computer code was developed in 
Germany and employed for the reliability analysis of ceramic components for gas 
turbine applications [Sturmer et al. 1991]. The software is known as CERITS and it 
implements Batdorf’s theory for determining the failure probability of structures 
experiencing multiaxial stress states.  

An application of the elemental strength model is represented by the software 
CERAM [Lamon, 1990]. This computer program is based on the same principles 
outlined above. It exploits the output of a finite element analysis to compute comparable 
failure probability distributions obtained by applying Weibull and Evans statistical 
approaches respectively. Another computer program we came across during our survey 
is FAILPROB [Wellman, 2002]. In this case, only the normal tensile stress averaging 
method (Weibull theory) is employed for fast-fracture reliability predictions, but an 
advance algorithm, developed for the treatment of material interfaces (between a 
ceramic and a dissimilar material) which can lead to stress singularities, is included in 
this software. 
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It is believed that, on the basis of the work conducted in this thesis, an equivalent 
commercial software package could be developed in the near future, which would 
benefit from the computationally more efficient approach applied in our investigation 
and discussed in the next chapters. 

2.5. Probabilistic Studies on Cleavage Fracture in Structural Steels 

Probabilistic models have also been developed to explore the fracture behaviour of 
structural steels and to explain the variation in the values of macroscopic fracture 
toughness, KIC, measured experimentally for different temperatures and microstructures. 
In these studies, the weakest link concept is applied to the propagation of a sharp 
macrocrack into the surrounding material in which a statistical distribution of carbide 
particles is assumed. 

2.5.1. CLEAVAGE FRACTURE MECHANISM 

The process of cleavage fracture in mild steels has been attributed to the two separate 
mechanisms of slip-induced cracking (crack nucleation) of carbide particles due to 
dislocation pile-up, and the subsequent extension of the resultant cracks into the 
surrounding ferrite matrix (crack propagation). According to this principle, a steel 
specimen containing a sharp macrocrack fractures when a microcrack, nucleated in a 
carbide particle in proximity of the (macro) crack-tip, propagates.  

Most of the models reviewed in the literature treat crack nucleation as being 
secondary in importance and assume that the critical step in the fracture process is the 
propagation of carbide microcracks. One of the first works that orientated research 
towards this direction was published by McMahon and Cohen in 1965. After a detailed 
metallographic analysis of specimens under progressively increasing tensile stress, they 
concluded that cleavage cracks are initiated predominantly by the cracking of iron-
carbide particles even when the carbon content is as low as 0.007 per cent. The brittle 
carbides crack during loading throughout the temperature range of 30°C to -195°C 
under the influence of the stresses imposed upon them by the plastic deformation of the 
surrounding ferritic matrix. These microcracks would then propagate in the ferrite grain 
only if they are large enough to cause a stress concentration able to overcome material 
resistance. Due to the large number of carbide cracks observed at the moment of 
fracture, they deduced that one does not have to postulate dislocation-interaction 
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mechanisms in the ferrite to account for the initiation of cleavage since the process 
controlling the fracture event is crack propagation. 

In a following study Ritchie, Knott and Rice [1973] formulated the so-called RKR 
model, which postulates that cleavage failure occurs when the local tensile stress ahead 
of the macro crack tip (σYY) exceeds the critical value of material resistance, σf, over a 
characteristic distance dc (Figure 2.5). 

 

Figure 2.5  Carbide particle ahead of crack tip 

Experimental observation on fatigue pre-cracked specimens tested in 3-point bending 
and direct comparison of nominal fracture stresses with a finite element solution of the 
stress field ahead of a sharp crack [Hutchinson, 1968] suggested that this characteristic 
distance is equal, on average, to two grain diameters. Since carbides are generally 
located on grain boundaries, it was recognised by the authors that this was the length 
required for the critical stress to reach the first carbide particle (at the first grain 
boundary) and to propagate the microcrack across the subsequent ferrite grain (second 
grain boundary).  The failure criterion based on a critical value of local tensile stress 
was adopted from previous investigations [Knott, 1967], which measured a σf in the 
range of 820 to 860 MPa for mild steels and also suggested that this value was largely 
independent from loading conditions (temperature and strain rate).  

In a subsequent study, however, it was clarified that there is not a clear relationship 
between critical distance and ferrite grain size valid for any steel chemical composition 
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and microstructure configuration [Curry and Knott, 1976]. On the other hand, a strong 
link was identified between average carbide particle size and fracture stress [Curry and 
Knott, 1978]. The apparent 
dependence on grain size was 
simply justified by taking into 
account the increase in carbides 
size that is observed when 
increasing grain size. It was 
also postulated that, in the 
analysis of the fracture process, 
carbide particles can be treated, 
in first approximation, as 
Griffith defects (ignoring the 
dislocation contribution to 
cleavage initiation). In 
particular, spherical particles 
were assumed to act as penny-
shaped cracks, while grain 
boundary carbide films were 
assimilated to through- 
thickness cracks (Figure 2.6). 
Under these assumptions, the critical conditions for crack propagation in terms of the 
local fracture stress, σf , are: 

 

                                         (2.16) 

 

where γs and γp are ferrite surface energy and plastic energy dissipated by local 
yielding to create a unit area of fracture surface respectively. The other material 
properties are, according to the standard notation, E for the Young’s modulus and ν for 
the Poisson’s ratio. The size parameters r and c0 are particle radius and film thickness 
for spherical particles and carbide films respectively. For the steel under study, a value 
of 14 J/m2 was suggested for (γs + γp) at a temperature of -150°C. 
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Figure 2.6   Grain boundary carbides 
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2.5.2. STATISTICAL CLEAVAGE FRACTURE MODELS 

The preliminary considerations discussed above led to the development of one of the 
first statistical models for cleavage in steels [Curry and Knott, 1979], which gave a 
probabilistic explanation to the RKR characteristic distance. Experimental evidence and 
theoretical developments confirmed that, as was previously postulated, for cleavage 
fracture to occur, the critical stress σf must be exceeded not just at a single point ahead 
of the crack tip, but over a microstructurally-significant (characteristic) distance, whose 
length depends on the probability that a sufficient large carbide particle is found in this 
region. The parameter σf itself is not treated as a deterministic quantity anymore, but 
assumes a distribution of values related to the statistical distribution of carbide particle 
sizes. Employing an image analysis tool, the area number density and the relative 
frequencies of particle radii was obtained and the corresponding values of σf calculated 
through equation (2.16) by assimilating carbides to penny-shaped cracks. The 
underlying mathematical model was not very complex since it assumed a simple 
proportionality relationship between the number of microcracks and the sampled area 
ahead of the (macro) crack tip. It accounted for the random orientation of cracked 
particles by merely applying a correction factor (which was also used to scale the 
proportion of carbides that effectively act as crack nuclei under the local straining 
conditions). 

The basic concepts outlined in Curry’s paper were further developed in a subsequent 
work by Wallin et al. [1984]. In this two-dimensional statistical model of brittle 
fracture, Wallin assumed a population of carbide particles acting as penny-shaped flaws 
and with a size probability density function of exponential form ahead of a macroscopic 
crack in both a bainitic and a ferritic carbon steel. He then calculated the failure 
probabilities relative to progressively increasing stress intensity factors (which in turn 
were associated with increasing load levels) by applying the weakest link principle. 
According to this assumption, for a given stress intensity factor KI,i, the resulting 
fracture probability pf,i is given by one minus the product of the survival probabilities of 
each infinitesimal element of length dX at a distance X from the crack tip. The expected 
value of material fracture toughness was finally determined through the simple 

expression: E[KIf] = Σ[KI,i·(pf,i  – pf,i-1)]. As highlighted by the author himself, the main 

limitations of this approach lie in the two-dimensionality of the model and in the 
assumption that fracture initiates uniquely along the plane of the macroscopic crack. 

A more accurate mathematical formulation of the cleavage fracture process initiated 
by carbide particles in mild steels with a simple ferrite/grain-boundary-carbide 
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microstructure was subsequently presented by Lin et al. [1986a]. The model proposed 
recovers some of the concepts previously developed for the analysis of brittle fracture in 
ceramics. In particular, it is based on the application of the weakest link statistics and it 
expresses the dependence of critical fracture stress on carbide particle size in terms of a 
critical flaw density function g(S)dS, which is defined as the number of particles per 
unit volume having strengths between S and S+dS (strength being inversely related to 
particle size through equation  2.16). Two different solutions of the stress field in 
proximity of the crack tip were employed in conjunction with this statistical 
formulation, a linear elastic approximation for materials tested at extremely low 
temperatures, and an elastic/plastic model [Hutchinson, 1968] for higher temperatures. 
Carbide particles were again assimilated to penny-shaped cracks, although only a 
fraction (5%) of the total number was considered “eligible” to act as crack nuclei (this is 
because not all particles are assumed to nucleate a crack under the action of the local 
strain).  The formula obtained for the calculation of the failure probability (due to 
unstable propagation of the crack in the weakest particle) is essentially equivalent to 
equation (2.15), in which the function g(S) is approximated via a three-parameter 
Weibull distribution.  

This model was applied in a following study [Lin et al. 1986b] to the analysis of the 
cleavage process ahead of sharp cracks and rounded notches, e.g. in fatigue pre-cracked 
and Charpy V-notched specimens respectively. Main objective of the investigation was 
to identify the point in the region ahead of the stress singularity at which fracture 
initiation is most probable. The results confirmed that the critical cracking event occurs 
some distance ahead of the notch or crack tip, consistent with fractographic evidence 
showing probable initiation sites to be particles located a few grain diameters from a 
crack tip. Moreover, the differences between sharp cracks and V-notches in terms of the 
most probable location of the critical fracture event provided an interpretation of the 
role that stress gradients have in governing microscopic fracture behaviour. For failure 
ahead of a sharp crack, where stress gradients are large and local stress decreases with 
progressively increasing distance from the tip, statistical competition exist between the 
decreasing stresses and an increasing probability of finding a sufficient large particle 
when moving away from crack tip. In general, crack initiation locations for this type of 
defect were found at a relative short distance for the crack tip. Conversely, for failure 
ahead of a rounded notch, where the stress gradients are small, characteristic distances 
were found to be much larger. To explain the differences in the observed behaviour, it 
was postulated that the fracture process ahead of a notch is dominated by the larger, 
lower strength particles. Fracture ahead of the sharp crack on the other hand, is 
influenced additionally by the more numerous fine particles, as stresses are largest in the 
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immediate vicinity of the tip. This concept of the relevance of stress gradients in 
determining material fracture behaviour and strength sensitivity to particle size will be 
re-examined in the following developments of this thesis. 

An alternative, statistical treatment of brittle fracture , based on Weibull statistics and 
the critical maximum principal stress as a local criterion for cleavage, was developed by 
Beremin [1983].  He related the critical stress required to propagate a microscopic crack 
to the length of the crack through the classical Griffith relationship and expressed the 
probability density function of microcracks having size c0 with an inverse power law 
relationship: P(c0)·dc0 = α/c0

β·dc0, where α is a constant, β defines the shape of the 
microcrack distribution and P(c0) indicates the probability of finding a crack with length 
between c0 and c0+dc0. This relationship simply states that the probability of a crack to 
have size c0 decreases with increasing c0 at a “speed” β. By integrating this expression 
over the critical length interval (c0 > 4Eγp/π(1-ν2)σ2, where σ is the maximum principal 
stress acting on the microcrack), Beremin derived a two-parameter Weibull distribution 
to describe the cumulative failure probability based on the weakest link statistics: 

( ) 1 exp
m

w
f w

u

P σσ
σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

      (2.17) 

In this equation σu is a constant while σw represent the “Weibull stress” defined as he 
integral of a weighted value of the maximum principal (tensile) stress (σ1) over the 
process zone for cleavage fracture (i.e., plastic zone at the crack tip): 
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σ σ
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⎢ ⎥⎣ ⎦∫        (2.18) 

where Vp is the volume of the cleavage fracture process zone, V0 is a reference 
volume and m is a Weibull modulus related to the modulus of the probability density 
function of microscopic crack sizes in the fracture process zone, β, by the relationship: 
m = 2β - 2. A correction to the expression for calculating the Weibull stress was also 
included for cases in which significant plastic deformation is present at crack tip to take 
into account the effect plastic strain has in increasing the fracture stress. 

Godse and Gurland [1989] proposed one of the few models that incorporate both 
mechanisms of nucleation and propagation in the prediction of fracture conditions. They 
translated mathematically the experimentally determined carbide particle size 
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distribution with a log-normal probability law and assumed that only a fraction of these 
particles are subject to cracking under the crack-tip stress field. Since crack nucleation 
is a process associated with plastic deformation, the fraction of pre-cracked particles 
depend upon the yielding capability of the material and therefore upon temperature.  
They suggested that at very low temperatures (in the range from -200°C to -140°C), 
when dislocation motion is very limited due to the lack of atomic vibrational energy, the 
stress required for crack nucleation is higher than the propagation stress. Under these 
conditions, the process dominating the fracture event is crack nucleation. On the other 
hand, at higher temperatures (-100°C to -80°C) the crack propagation mechanism is 
believed to control fracture conditions. The model seems to fit satisfactorily 
experimental results, however, some drawbacks can be recognized in the fact that it 
does not take into account the random orientation of cracked particles and it assumes 
that only the normal stress acting on the crack plane triggers crack propagation. 

More recent works have essentially followed the path outlined by the previous 
investigations of Curry and Beremin, proposing relative minor modifications to the 
original models. The two-parameter Weibull distribution employed in Beremin’s 
derivations was “upgraded” to a three-parameter distribution by Gao et al. [2005]. Some 
progresses were made in extending the types of the steel microstructures to which the 
Weibull approach could be applied. For example, Valiente et al. [2005] developed a 
modified Weibull model to explain the scatter in fracture toughness of steels with a 
pearlite/ferrite microstructure. Additional propagation criteria for carbide cracks have 
also been proposed. In particular Wang and  Chen, [2001] introduced a dual fracture 
criterion which includes a critical stress level coupled with a critical strain value. 

2.6. A New Equation to Determine the Probability of Failure 
Initiated by Flaws 

A new method for determining the probability of fracture of loaded components with 
complex shape containing internal flaws has recently been suggested by Todinov 
[2005a]. The statistical model proposed in this work is based on the classical weakest 
link principle, but it introduces the new concept of individual failure probability, Fc, as 
the parameter controlling component reliability. 

Todinov assumes a Poisson process as the most appropriate model to simulate the 
number of flaw occurrences within a component of volume V. The three basic 
assumptions for the applicability of the Poisson model are [Parzen, 1960]: 
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(i) the probability of having exactly one defect in an infinitesimal portion ΔV of 
the total volume V is approximately proportional to ΔV ( ( ) VVP Δ⋅≅Δ λ1 ); 

(ii) the probability of having more than one defect in ΔV is approximately zero 
( ( ) 02 ≅Δ≥ VPn ); 

(iii) the event of having a defect in a sub-volume ΔV is not affected by the 
presence of defects in other sub-volumes, but only by the size of ΔV 
(independency assumption). 

The term λ, called mean number density of the process, expresses the proportionality 
factor between the expected number of flaws and the size of the volume considered. For 
a homogeneous Poisson process, the mean number density is constant throughout the 
component’s volume, while it is a function of position in the most general case. The 
probability law of a homogeneous Poisson process establishes that the probability of 
having exactly n defects in the whole volume V is: 

( ) ( )    
!

nV

n

e V
P V

n

λ λ− ⋅ ⋅
=                                                 (2.19) 

By considering the sum of several mutually exclusive events in which failure occurs 
conditionally on the presence of a specified number of flaws (i.e. failure occurs given 
that 1 defect is in the component, failure occurs given that 2 defects are in the 
component, etc.), it is possible to calculate the total probability of failure Pf by applying 
the total probability theorem:  

( ) ( )

0
      n

f n c
n

P P V F
∞

=

= ⋅∑                                             (2.20) 

where Pn(V) is the probability of having n defects in the volume V, while Fc
(n) is the 

probability that a component containing exactly n defects will fail under the specified 
load. The quantity Fc

(n) can in turn be expressed as a function of Fc,  which is defined as 
the conditional individual probability of triggering failure characterising a single flaw, 
given that the flaw is in the component/structure. In fact, applying the weakest link 
principle, it is straightforward to derive that (as seen previously but with a different 

notation) ( ) ( )  1 1 nn
c cF F= − − . Combining the last three expressions together and with a 

few more analytical derivations, Todinov obtained the following equation for the 
probability of failure of a component containing Poisson distributed random flaws: 
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( )      1 expf cP V Fλ= − − ⋅                                         (2.21) 

Equation (2.21) is valid not only for a constant stress, but for a loaded 
component/structure with complex shape for which the stress tensor varies in magnitude 
and sign from point to point. For different magnitudes of the loading forces, which 
change the stress field within the component, the conditional individual probability Fc 
changes too. On the other hand, when comparing the strength distribution of two 
structures with different volumes but the same stress state, the trends predicted by the 
model are consistent with the experimental evidence that the failure probability of a 
brittle component increases when its volume increases.   

In the same paper [Todinov, 2005a], a method based on Monte Carlo simulation has 
been suggested for determining the conditional individual probability of triggering 
failure Fc characterising a single flaw. The aim of the Monte Carlo simulation is to 
collect statistical information from all parts of the component/structure volume, locally 
stressed in different ways, which is necessary to estimate the conditional individual 
probability Fc. Once Fc has been estimated, it is plugged into equation (2.21) to 
determine the probability of fracture of the component. The method works irrespective 
of component’s geometry and the type of load. 

Equation (2.21) permits one to relate in a simple fashion the conditional individual 
probability of failure associated with a single flaw to the probability of failure 
characterising a population of flaws as long as all flaws are assumed to be originated 
from the same population (in terms of shape, size, location and orientation 
distributions). However, thanks to the multiplicative properties of the exponential 
function, equation (2.21) can be easily extended to the case in which several flaw 
populations are present [Todinov, 2000].  

It has also been demonstrated how the classical Weibull distribution could be 
considered as a special case of equation (2.21) for an appropriate choice of the function 
Fc [Todinov, 2005b]. Moreover, in a subsequently work [Todinov, 2006], the model 
was generalised for flaws following a non-homogeneous Poisson process. 

The advantage of Todinov’s approach compared to the other models reviewed so far 
lies in the fact that it takes into account the contribution of all flaws to the failure 
probability and it can be applied to any configuration of applied load and component 
geometry. The only additional information that is required to solve the problem of 
determining the strength distribution of theoretically any structure is a reliable and 
efficient method to estimate the parameter Fc, which, once again, is defined as the 
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probability of failure given that only a single defect is present in the component’s 
volume: 

       / only one defect in the componentc fF P=    (2.22) 

2.7. Motivations for Further Research 

In the present work, the model introduced by Todinov is further developed and 
detailed for evaluating the individual failure probability, Fc, and the associated strength 
distribution of components containing crack-like defects and subjected to multiaxial 
load. The approach proposed is based on a direct simulation procedure, which combines 
finite element analysis of the stress field acting on the component with a Monte Carlo 
simulation of defect random parameters, such as size and orientation. This methodology 
is then applied to the reliability analysis of various component geometries and loading 
configurations and is employed to perform a parametric study. The aim of the 
parametric study is to identify the main factors, such as stress state and flaw size 
variability, that control the fracture strength and to analyse the sensitivity of the failure 
probability to changes in these variables. 

 The motivations that are at the origin of this research work are summarized in the 
following points: 

• To demonstrate that equation (2.21) is a valid alternative to existing micro-
mechanical models for evaluating the strength distribution of brittle materials. 
The methodology developed in this work offers significant advantages 
compare to the best current practice, in terms of computational requirements 
and ease of application to complex structure geometries and loading 
configurations. 

• To overcome the limitations of the other statistical models of brittle fracture 
available in the literature. In fact, most of the models reviewed in the previous 
sections are based on the Weibull distribution and, in particular, on an 
empirical assumption about the strength distribution of individual flaws. On 
the other hand, our approach is more fundamental since it uniquely relies upon 
well-established concepts of fracture mechanics. No a-priori assumptions are 
made concerning the strength of the flaws and all model input parameters are 
associated to directly observable physical quantities, which characterise the 
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material microstructure, such as number density and size of the flaw 
population. 

• To unify the treatment of brittle fracture in ceramic materials and low carbon 
steels and to show how the same simulation procedure can be applied to both 
families of materials. 

• To apply such methodology to investigate the effect that stress state and 
material microstructure variability have on component strength distribution.  

Concrete applications of the proposed methodology to the reliability analysis of 
common engineering components, experiencing various loading schemes, are discussed 
in the following pages. The aim is to evaluate the strength distribution of real 
mechanical components with complex shape and to investigate the sensitivity of such 
distribution to variations in material properties and loading conditions. 

 The results obtained through this analysis allows one to gain a better understanding 
of the random factors that control material response to fracture and provided helpful 
suggestions for the design of more reliable mechanical components. It is important to 
stress at this point that the methodology proposed in this work is thought as an effective 
design tool, to be used by structural engineers to assess and improve the reliability of 
their designs, rather than a simple fitting procedure of experimental results as for most 
of the models encountered so far.  

A detailed discussion of the theoretical assumptions and the numerical methods 
employed in the development of the model is given in the next chapter. 
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3 METHODOLOGY 

3.1. Strength of a Component Containing Random Flaws: Model 
Formulation 

The assessment of the integrity of any flawed mechanical structure requires the 
development of approaches which can deal not only with simple situations such as 
uniform uniaxial load, but also with more complex configurations (stress triaxiality, 
large stress gradients, etc.). 

In Chapter-2, we have discussed a general equation to determine the strength of a 
component containing random flaws under arbitrary loading conditions derived by 
Todinov in 2005. This equation relates structural strength with the component’s volume, 
V, mean number density of flaws, λ, and the individual probability of failure Fc, defined 
as the probability of failure given that only a single defect is present in the component. 
In mathematical terms the equation states that the probability that the component will 
fail under any configuration of the load is: 

( )      1 expS cF V Fλ= − − ⋅                                   (3.1) 

While the parameters λ and V can be determined through direct measurements, the 
quantity Fc must be estimated after further assumptions and theoretical considerations 
concerning the relevant failure criterion. In particular, a mathematical formulation must 
be given to the flaw population present in the material and an appropriate failure 
criterion must be applied to study the interaction between flaw content and the load 
acting on the structure. In the following pages, a straightforward methodology for 
determining Fc is presented. 

3.1.1. MODEL ASSUMPTIONS  

Due to the common statistical nature and the similarities in the mechanisms involved 
in the fracture process, the same mathematical model will be applied to the reliability 
analysis of both ceramic materials and low carbon steels. In deriving the equations and 
the solving algorithms for the calculation of Fc and the associated failure probability of 
a component subjected to an arbitrary multiaxial load, the following additional basic 
assumptions will be made: 
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(i) The only contribution to structural failure comes from the unstable 
propagation of a crack, initiated at the weakest flaw, which results in the 
ultimate fracture of the structure. 

(ii) The flaw population consists of crack-like defects that nucleate at pores 
(typically in the case of ceramics) or second-phase content (in particular at 
carbide particles in low carbon steels). These cracks are naturally present in 
the material as a result of the manufacturing process or, more generally, of 
any stress/strain conditions that the material might have undergone before 
actual loading and are therefore randomly oriented. In the case of steels 
carbide particle, micro-cracking is driven by the high strain regime 
characterising the area ahead of a macroscopic stress intensifier. 

(iii) Microcracks are assumed to exist and are non-interacting. 
(iv) The flaw population is defined in terms of a set of random variables which 

determine size, location and orientation of the flaw. These random variables 
will generally be treated as statistically independent. 

(v) Microcracks are located in a homogeneous matrix whose mechanical 
properties are measurable, deterministic and not affected by the presence of 
the defects. 

(vi) Fracture conditions are determined by a local criterion which establishes if a 
crack in the population is able to propagate into the surrounding material 
matrix causing component failure. 

Under these conditions, the term Fc is a function of several random variables, which 
describe the properties of the flaw population, such as flaw spatial distribution, 
orientation and size. If we indicate with X, Y, Z the random coordinates of a point at 
which a defect is located in an appropriate Cartesian coordinate system, with Θ, Β and 
Φ the angles necessary to completely determine the orientation of the crack in the three-
dimensional space and with Α the random defect size (single parameter for one-
dimensional defects or several parameters for more complex shapes), in the most 
general case, the properties of the flaw population are defined by the joint probability 
density function of the form: 

( ) ( ), , , , , ,;   ;  ...  , , , , , ,X Y Z Ax X x dx y Y y dy a a daP p x y z aθ β φΘ Β Φ< < + < < + < Α < + =       (3.2) 

The function ( ), , , , , , , , , , , ,X Y Z Ap x y z aθ β φΘ Β Φ  expresses the probability density that the 

generic random variable Xi will lie in the interval xi < Xi < xi+dxi, xi being a real number 
belonging to the variable’s sample space. For ceramic materials these variables will 
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represent the position, orientation and size of a crack nucleated at a pore or inclusion, 
while in the case of low carbon steels they will indicate the location, orientation and size 
of a cracked carbide particle in proximity of a macroscopic stress intensification 
(produced by either a notch or a macrocrack). 

If the component (Figure 3.1) is subjected to a specified load, l, the flaws will 
eventually cause failure depending on the mechanical properties of the surrounding 
material and in particular, for an elastic and isotropic body, on the value of the elastic 
modulus, E, the Poisson ratio, ν, and the critical strain-energy release rate, Gcrit. These 
parameters, which are necessary to determine the response of the component to the 
applied load and to describe the material ability to cope with the presence of a defect, 
are, in accordance with our assumptions, deterministic and uniquely defined.  

If the exact position, orientation and size of a crack were known, the strength S, 
which indicates the maximum load level that the component can withstand before 
failing, could be written as a deterministic function of crack parameters and material 
properties: 

( )critEazyxSS G,,,,,,,,, νφβθ=                                        (3.3) 

Flaw parameters however are 
random variables and therefore it 
is not possible to have a 
deterministic evaluation of S. 
Expression (3.3), however, can 
be used within a probabilistic 
framework in order to determine 
the cumulative distribution 
function of the strength (for a 
single defect) Fc. To do so, the 
joint probability density function 
of the random variables on which 
the strength depends must be 
integrated along the whole 
component’s volume, in the 
domain S ≤ l, for a given value of 
load l [Parzen, 1960]: 

Figure 3.1  Mechanical component containing 
random flaws 
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( ) ( ){ }
( )

, , , , , ,  : , , , , , ,   
, , , , , , , , , , , ,          ...

x y z a S x y z a l
c X Y Z A x y z a dx dy dz d d d daF p

θ β φ θ β φ
θ β φ θ β φ

≤
Θ Β Φ= ∫ ∫ ∫    (3.4) 

The dependency of the strength on material parameters E, ν and Gcrit has been omitted 
in equation (3.4) since these quantities are deterministic and do not change during the 
integration operation. Equation (3.4) allows one to calculate Fc once the joint 
probability density function of the flaws population has been determined. Due to the 
large number of variables involved in the integration of (3.4), a Monte Carlo simulation 
will be used to perform the calculation. In the specific case of our application, the task is 
rendered easier by the fact that all random variables are considered to be independent 

and therefore the joint density function, ( ), , , , , , , , , , , ,X Y Z Ap x y z aθ β φΘ Β Φ , can be written 

simply as a product of the marginal probability densities. 

Before discussing the details of the Monte Carlo simulation, an investigation on the 
influence that a defect, with a given size, position and orientation, has on the 
component’s strength is carried out. The maximum value of load that a component is 
able to withstand depends on the mechanism by which the stress field generated in the 
material by the applied load interacts with the defect and by the criterion used to predict 
fracture. 

3.2. Failure Criterion 

3.2.1. STRESS CALCULATIONS 

The greatest difficulty in establishing the relationship existing between flaw 
properties (in terms of location, orientation, size) and the maximum admissible load 
prior to failure derives from the great variety of defect types that may exist in a material 
at the atomic, micro and macro scale. In order to realistically assess the effect of a flaw 
population on material mechanical behaviour and strength distribution, flaws have been 
assumed to be microcracks, whose geometry depends on the particular features of the 
material under study. This assumption is largely in agreement with the other micro-
mechanical models of the fracture process existing in the literature and discussed in the 
previous chapter.  

In order to solve the problem of fracture initiation in the presence of a random 
population of microcracks, a two-stage approach is proposed here. First, the 
macroscopic stress field acting on the body is determined assuming that the material 
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mechanical response is unaffected by the presence of the defects; then, the critical 
conditions for fracture propagation are determined through the application of a failure 
criterion that relates crack geometry to critical stress distribution. Considering a 
component under arbitrarily loading conditions and containing a randomly oriented 
crack, in the most general configuration, the crack will undergo a mixed-mode fracture 
mechanism. This means that the crack will simultaneously be subjected to an opening 
stress normal to the crack plane, an in-plane shear which tends to slide one crack face 
with respect to the other and an out-of-plane shear. A stress intensity factor is associated 
with each of the fracture modes (see Chapter-2 for more details). 

The stress field Σ(x,y,z), acting on a component as the result of a static multiaxial load 
can be determined under the assumptions of elastic and homogeneous material. The 
principal stress tensor [T] is calculated at each point of the body through analytical 
solutions of the theory of elasticity or by a finite element analysis. Once this operation 
has been completed, the interaction between the stress field and the flaw population is 
analysed assuming that the macroscopic stress at a certain point of the component is the 
remote stress acting on the surface of a crack possibly located at that point. 

 

Figure 3.2  Crack orientation relative to principal stress axes 

In order to calculate the stress intensity factors relative to a particular configuration 
and to determine the critical conditions for crack propagation via one of the mixed-
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mode fracture criteria that will be discussed in the next section, it is necessary to know 
the normal and shear components of the stress acting on the crack plane. For this 
purpose, it is convenient to transform the principal stress tensor [T] at crack location, 

P(x, y, z), into a stress tensor [T~ ] corresponding to the local coordinate system of the 
crack. The rotational matrix [R] that transforms the principal coordinate system (ξ, ξ2, 
ξ3) into the crack solid system (m, n, p) is: 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

−

−+

+−−

φϑϑφϑ

φϑβφβϑβφϑβφβ

φϑβφβϑβφϑβφβ

coscossinsincos

cossincossinsincoscossinsincoscossin

cossinsinsincoscossinsinsinsincoscos

R   (3.5) 

where β and θ identify the vector nG  normal to the crack plane while φ gives the final 
orientation of the crack on its own plane (Figure 3.2). Three angles (β, θ and φ) are 
necessary to completely determine the orientation of the crack. In some particular cases, 
such as a penny-shaped crack, due to the polar symmetry, only two angles (β and θ ) are 
sufficient to describe its orientation relative to the principal stress coordinate system. 
For this configuration the rotational matrix [R] assumes a simpler form in which the 
terms containing sinφ disappear and the factor cosφ becomes unity.  

 

Figure 3.3  Crack local stress conditions 
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If we now indicate with [R]T the transpose of the rotational matrix [R], the stress 
tensor referred to crack axes can then be obtained by matrixes multiplication as: 

[ ] [ ] [ ]TT R T R⎡ ⎤ = ⋅ ⋅⎣ ⎦
�                                            (3.6) 

Knowing [T~ ], the values of stress acting on the crack surface, i.e. the out-of-plane 
shear τout, the normal stress σn and the in-plane shear τin are simply given by the first, 

second and third component of the middle column of the tensor [T~ ] respectively 
(Figure 3.3). 

3.2.2. CRACK GEOMETRY 

Besides the three components of the remote applied stress, crack geometry also 
determines the magnitude of the stress intensity factors and consequently affects 
fracture conditions. Two relatively simple configurations, for which analytical solutions 
of the stress intensity factors have been derived under the assumption of linear elastic 
material, have found extensive application in the development of statistical models of 
brittle fracture. These are the through-thickness (or Griffith) crack and the penny-shaped 
crack. As discussed in the previous chapter, the former type of defect has been 
employed in the analysis of fracture initiation mechanisms in ferritic steels. In these 
materials, through-thickness cracks nucleate in carbide films, located at grain 
boundaries, due to plastic deformation. On the other hand, penny-shaped cracks are 
usually employed to approximate defects that develop in spheroidized steels at grain 
boundary carbide particles and in ceramic brittle materials, where the presence of a 
large number of voids and inclusions formed during the manufacturing process is often 
associated with the nucleation of approximately circular cracks. 

Indicating with 2a the length (or the diameter in the case of a penny-shaped crack) of 

a crack remotely subjected to a stress field defined by [T~ ], the stress intensity factors 
for a through-thickness crack [Paris, 1965] and a penny-shaped crack [Kassir, 1966] are 
summarised in Table (3.1). 

Griffith sharp cracks and penny-shaped cracks generally represent the two opposite 
extremes of all possible geometries that actually arise in practical situations. The ratio 
between the stress intensity factors of the two configurations for all three fracture modes 
is approximately (if we assume ν << 1) π/2 = 1.571. It is therefore sensible to define a 
shape factor Y, whose possible values are in the range [1, 1.571], and employ this 



CCHHAAPPTTEERR  33                                  MMEETTHHOODDOOLLOOGGYY  

- 45 - 

parameter to express the stress intensity factors of any geometry in between the two 
extreme cases: 

( ), ,
2      I II IIIK Y aσ π
π

= ⋅ ⋅ ⋅        (3.7) 

where σ is the stress component relative to the fracture mode under consideration and 
a is the crack length. A Y value of 1.571 is associated with a through-thickness crack 
while values close to unity indicate circular cracks. 

 

 

 

 

 

 

 

Table 3.1  Stress intensity factors for through-thickness and penny-shaped cracks 

More complex crack geometries have been considered by some other authors, 
especially in studies concerning ceramic materials, where the nucleation of microcracks 
is often related to the presence of a large number of pores [Evans et al., 1979a and 
1979b]. In these materials, the most appropriate flaw model is believed to be that of a 
crack originated at the surface of a spherical cavity. Three geometries are generally 
considered in this regard. These are an annular crack around a pore surface, a semi-
circular crack and a circular crack located in proximity of a pore (Figure 3.4). 
Comparative investigations showed that the most critical configuration is represented by 
the annular crack, also referred as the circumferential crack [Zimmermann 1998b]. For 
this reason and to maintain a conservative perspective, we will focus our attention on 
this geometry.  

Expressions for the stress intensity factors for this type of defect are relatively 
complex and often rely on numerical solutions of the local stress field obtained by the 
superposition of the pore and the crack stress intensifications [Zimmermann 1998a]. 
The results available show that stress intensity factors can still be expressed in the 
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general form given by equation (3.7). In the case of a annular crack around the pore 
equator, the shape factor Y is a function of the crack/pore relative geometry, and in 
particular of the ratio between pore radius r and peripheral crack extension c, while the 
crack length a, which has to be plugged into the equation, is in fact given by the sum of 
these two quantities [Chao and Shetty, 1992]. 

 

Figure 3.4  Crack geometries in proximity of a spherical cavity 

In order to be able to handle all possible configurations, such as peripheral cracks 
originated on pore surfaces or penny-shape cracks nucleating at inclusions or second 
phase content,  equation (3.7) will be employed in our analysis as a general expression 
to calculate stress intensity factors. The approach used in this respect will be the 
following. Crack length distribution will be estimated by pore size in the case of 
ceramic materials (the peripheral crack extension c will be assumed to be infinitesimal) 
and by carbide particle diameter for low carbon steels. On the other hand, the shape 
parameter Y, will be determined by comparing experimental results of material fracture 
stresses (more precisely the probability distribution of fracture stress) with model 
predictions. Furthermore, since the cracks considered in this discussion and in our 
subsequent investigations are normally developed during the component’s 
manufacturing process due to residual stresses, thermal loading and material processing, 
crack orientation is independent of the in-service applied load and is assumed to have a 
random distribution. 

Once all the parameters describing crack geometry and stress conditions are known, a 
fracture criterion must be applied in order to determine whether the crack propagates 
catastrophically under the given remote stress. 
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3.2.3. MIXED-MODE FRACTURE CRITERIA 

Strength-controlling flaws in load-bearing structures, in general, are inclined at 
random orientations to applied principal stresses. Any design analysis that aims to 
calculate safe loads for ceramic or metallic structures in the presence of crack-like flaws 
must explicitly consider the influence of flaw orientation and multiaxial stress on flaw 
instability. There are several theories that deal with the problem of mixed-mode 
fracture. The most relevant are discussed in the next three sections. 

3.2.3.1. THE COPLANAR ENERGY RELEASE RATE 

The coplanar energy release rate criterion is based on the assumption that a planar 
crack propagates along its initial plane and remains planar. Under these hypotheses, 
indicating the three stress-intensity factors corresponding to the three loading modes 
with KI, KII and KIII respectively, the coplanar strain-energy release rate for plane strain 
configuration is [Paris, 1965]: 

( ) ( ) ( )2 2 2 2 21 1 1I II III
copl

K K K
E E E

ν ν ν− − +
= + +G                              (3.8) 

Fracture occurs when the value of Gcopl exceeds the critical value for the material, 
Gcrit. Despite its simplicity and the fact that it can be considered only a first 
approximation of the actual mixed-mode fracture behaviour, this relationship has found 
interesting applications in the statistical analysis of brittle fracture [Evans, 1978]. 

3.2.3.2. THE MAXIMUM ENERGY RELEASE RATE 

In the presence of multiaxial stress it is more likely that the crack will change its 
direction of propagation, following the path that results in a minimum of the total 
energy of the system. In these circumstances, the crack would in general form a kink at 
angle α from the original crack plane (Figure 3.5). 

The angle α can be determined under the assumption that the crack extends in the 
direction that maximizes the strain-energy release rate (driving force to propagation). 
The angle that satisfies this condition (indicated in the text as α0) will be the angle of 
actual propagation. In order to determine the strain-energy release rate of a branched 
crack, the process of propagation is assumed to be comprised of a first initiation phase, 
during which the crack deviates of the angle α, and a second phase of actual growth. 
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Figure 3.5  Mixed-mode fracture 

If initiation takes place at a generic angle α the crack propagation will continue along 
this plane of the branch-crack. Therefore equation (3.8) can still be used to calculate the 
value of the strain-energy release of the growing crack, but in its expression the nominal 
values of stress intensity factors of the plane crack KI, KII, KIII, must be substituted by 
the stress intensity factors of the branched crack KI

(α), KII
(α), KIII

(α) respectively, 
calculated at the initiation angle α. The strain-energy release rate is now a function, not 
only of the crack dimension and remote stress conditions, but also of the angle α: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 21 1 1I II III
K K K

E E E

α α α
α ν ν ν− − +

= + +G                        (3.9) 

To obtain values for this energy release rate, the stress intensity factors for the 
branched crack are necessary and this, in general, involves the solution of a complicated 
boundary problem. However, since we are concerned only with the initiation of fracture, 
we can follow the approach proposed by Nuismer [1975], who found a solution to the 
problem by assuming that, at initiation, the length of the kink is infinitesimal. As the 
extension of the kink approaches zero, the stress field at the tip of the branch-crack must 
be equal to the stress field at the tip of the original crack before the crack propagation. 
Equating the circumferential and shear components of the local stress at the tip of the 
plain crack to the normal and shear stress at the tip of the infinitesimal kink 
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respectively, the stress intensity factors (for the first two modes) of the branched crack 
at initiation can be written as:    

( ) ( )[ ]

( ) ( )[ ]1cos3sin
2

)2cos(

sin3cos1
2

)2cos(

−+=

−+=

ααα

ααα

α

α

IIIII

IIII

KKK

KKK
          (3.10) 

The maximum strain-energy release criterion establishes that the crack propagates 
along the direction α0 that maximizes the value of G(α) determined in the way described 
above, and only if this value exceeds the critical value of the material, Gcrit. Considering 
the first two loading modes as the predominant modes, the direction of propagation at 
crack initiation is obtained from the solution of equation: 

( ) ( ) ( ) ( ) ( )2 2 2 21 1
0I IIK K

E E

α αα ν ν

α α

⎡ ⎤− −∂ ∂ ⎢ ⎥= + =
∂ ∂ ⎢ ⎥⎣ ⎦

G                 (3.11) 

Using expressions (3.10) for the stress intensity factors of the branched crack, the 
angle α0 that satisfies equation (3.11), resulting in the maximum value of the strain-
energy release rate, turns out to be the angle for which KII(α)=0 and KI(α) is maximum. 
Solution for the case shown in Figure (3.5) are presented in Figure (3.6), where 
B=σ2/σ1. 

The negative values of the propagation angle α0 are due to the fact that the crack will 
tend to deviate towards the direction normal to the maximum stress σ1, unless the 
angular distance between this direction and the crack plane is too big. In any case 
however, the angle of propagation α0 is not exactly perpendicular to the maximum 
stress σ1 (condition shown by the dotted line in Figure 3.6), causing the branch crack to 
be subjected to both normal and shear stress. 
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Figure 3.6  Maximum strain energy release rate fracture criterion 

3.2.3.3. EMPIRICAL MIXED-MODE FRACTURE CRITERION 

Numerous experimental works have been conducted to tackle the problem of mixed-
mode fracture. Most of the results obtained in theses studies have shown that, in 
ceramic materials, the fracture toughness varies with the fracture mode. By comparing 
critical stresses measured in various testing configurations, the pure mode-II fracture 
toughness for ceramics, KIIc, has been found to vary between O.7·KIc and 2·KIc [Tikare 
and Choi, 1993]. 

 Although the maximum strain energy release rate described above is theoretically the 
most appealing mixed-mode fracture criterion, since it directly derives from the 
concepts developed by Griffith and Irwin at the origin of fracture mechanics, it fails to 
predict fracture conditions when the material resistance to crack propagation is not the 
same for all failure modes. For this reason, several authors have preferred an alternative 
criterion for the analysis of mixed-mode fracture situations, based on the following 
empirical relationship [Ikeda and Igaki, 1984]:  
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The empirical equation (3.12), unlike the maximum strain energy criterion, does not 
allow one to predict the direction of crack propagation, but provides greater flexibility 
in determining the stress conditions promoting critical crack extension and has been 
proven to be in very good agreement with experimental results. With simple algebraic 
operations, equation (3.12) can be rewritten as: 

( )
2 2 2 2

2
        

1I I II II I III III Ic
EK K K Kκ κ

ν− −

⋅
+ ⋅ + ⋅ = =

−
critG     (3.13) 

where κI-II and κI-III are the ratios ( )2
Ic IIcK K  and ( )2

Ic IIIcK K respectively. In this 

form, the empirical mixed-mode fracture criterion can be readily employed in the Monte 
Carlo simulation procedure after setting the values of the critical strain energy release 
rate and the ratios between critical stress intensity factors. Typical values for the 
parameters κI-II and κI-III can be found in the literature. For alumina, experimental 
investigations suggested a √κI-II equal to 2.02 [Singh and Shelly, 1989] and a √κI-III of 
2.3 [Suresh and Tschegg, 1987]. These values will generally be assumed in the 
numerical simulations presented in the following chapters. 

 For the sake of completeness, it is important to mention that alternative multiaxial 
fracture criteria, which were developed in the course of the endless research for a 
unified and consistent model of mixed-mode fracture, exist in the literature. Among 
these, there are the maximum tangential stress [Erdogan and Sih, 1963] and the 
minimum strain energy density [Sih, 1974]. These theories were not considered in the 
present work since they are less fundamental than the maximum strain energy release 
rate criterion (as recognized by Sih himself) and provide predictions of critical fracture 
conditions that generally compare less favourably to experimental results than the 
empirical mixed-mode criterion. 

3.3. The Monte Carlo Method 

3.3.1. OVERVIEW 

The Monte Carlo method is a computer-based statistical sampling approach for 
solving numerical problems, such as multidimensional integrals, and simulating 
stochastic processes. It is based on the analogy between probability and volume. 
According to this concept, the intuitive notion of probability associated with the 
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occurrence of a random event can be equated to the volume, or measure, of the event 
relative to that of a universe of possible outcomes. Monte Carlo uses this idea in 
reverse, calculating the volume of a set by interpreting the volume as probability. This 
means sampling randomly from a universe of possible outcomes and taking the fraction 
of random draws that fall in a given set as an estimate of the set’s volume. The law of 
large numbers ensures that this estimate converges to the correct value as the number of 
draws increases, while the central limit theorem provides further information about the 
magnitude of the error in the estimate for a finite number of random draws. 

Consider the problem of estimating the integral of a function f over the unit interval:  

 1

 0
  ( )f x dxα = ∫                                                          (3.14) 

This integral may be represented as an expectation E[f(U)], with U uniformly 
distributed between 0 and 1. Suppose there is a mechanism for drawing points U1, U2… 
independently and uniformly from (0, 1). Evaluating the function f at n of these random 
points and averaging the results produces the Monte Carlo estimate: 

( )
1

1ˆˆ     ( )
n

i
i

f x f U
n

α
=

⎡ ⎤= =⎣ ⎦ ∑E                                              (3.15) 

If f is indeed integrable over (0, 1) then, by the strong law of large numbers, ˆ   α α→  
with probability 1 as   n → ∞ . 

The answer obtained is therefore statistical in nature and subjected to the law of 
probability. However the accuracy of the calculation can be easily determined. In fact, if 
f is square integrable, the quantity σe

2 can be expressed as:  

( ) 2 1
2

 0
   e f x dxσ α⎡ ⎤= −⎣ ⎦∫                                                 (3.16) 

According to the central limit theorem the error (α̂ α− ) in the Monte Carlo estimate 

is approximately normally distributed with zero mean and standard deviation e nσ , 

the quality of this approximation improving with increasing n. The parameter σe would 
typically be unknown in a setting in which α is unknown, but it can be estimated using 
the sample standard deviation: 
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( ) 2

1

1 ˆˆ   
1

n

e i
i

f U
n

σ α
=

⎡ ⎤= ⋅ −⎣ ⎦− ∑                                              (3.17) 

 Thus, from the function values f(U1),… f(Un) not only an estimate of the integral α 
can be obtained, but also a measure of the error in this estimate. 

The form of the standard error e nσ  is a central feature of the Monte Carlo method 

[Glasserman, 2003]. Cutting this error in half requires increasing the number of points 
by a factor of four; adding one decimal place of precision requires 100 times as many 
points. These are tangible expressions of the square-root convergence rate implied by 

the n  in the denominator of the standard error. 

In contrast, the error associated with an alternative numerical integration method such 
as the simple trapezoidal rule is O(n-2), at least for twice continuously differentiable f. 
Monte Carlo is generally not a competitive method for calculating one-dimensional 
integrals. The value of Monte Carlo lies in the fact that it is not restricted to integrals 
over the unit interval. Indeed, the steps outlined above extend to the estimation of 
integrals over the real space Rd for all dimensions d. Of course, when we change 

dimensions we change f and σe, but the standard error will still have the form e nσ  

for a Monte Carlo estimate based on n draws. In particular, the O(n-1/2) convergence rate 
holds for all d. In contrast, the error of a trapezoidal rule in d dimensions is O(n-2/d) for 
twice continuously differentiable integrands; this degradation in convergence rate with 
increasing dimensions is characteristic of all deterministic integration methods. Thus, 
Monte Carlo methods are attractive in evaluating integrals in high dimensions. 

3.3.2. APPLICATION OF THE MONTE CARLO METHOD TO DETERMINE 

STRENGTH DISTRIBUTIONS 

The expectation value of any function f(x1, x2,… xm) of a set of m random variables X1 
X2,…, Xm, characterized by a joint probability density function p(x1, x2, …, xm), is 
defined by: 

( ) ( ) ( )1 2 1 2 1 2 1 2, ,..., ... , ,..., , ,..., ... m m m mf X X X f x x x p x x x dx dx dx
∞ ∞ ∞

−∞ −∞ −∞
⎡ ⎤ = ⋅⎣ ⎦ ∫ ∫ ∫E    (3.18) 

This expression allows us to interpret any integral of the form shown on the right-
hand side of the equation (3.18) as an expectation value. Therefore, making use of the 
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law of large numbers as discussed in the previous section, the integral can be estimated 
by: 

( ) ( ) ( ) ( )
1 2 1 2

1 1

1 1ˆ , ,...,   ( , ,..., ) = ( )
n n

i i i
im m

i i
f X X X f X X X f X

n n= =

⎡ ⎤ =⎣ ⎦ ∑ ∑
JJG

E   (3.19) 

where ( ) ( ) ( ){ }1 2, ,  ..., i i i
i mX X X X=

JJG
 is a random variate sampled from the probability 

density function p(x1, x2, …, xm). 

This formulation is particularly convenient for performing the calculation in equation 
(3.4), which gives the individual probability of triggering failure (i.e. the strength 
cumulative distribution function of a component containing a single flaw), Fc, and 
involves the integration of a large number of variables. Using the notation employed so 
far, Fc can be written as: 
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∫ ∫

G

G
       (3.20)

 

S(x, y, z, θ, β, φ, a, E, ν, Gcrit) is the maximum load that a component, containing a 

flaw with parameters (x, y, z, θ, β, φ, a), can withstand and 

( ), , , , , , , , , , , ,X Y Z Ap x y z aθ β φΘ Β Φ  is the joint probability density function characterizing the 

flaw population. The integral in (3.20) can be solved numerically using equation (3.19), 
simply by sampling a large number of independent variates from 

( ), , , , , , , , , , , ,X Y Z Ap x y z aθ β φΘ Β Φ  and evaluating the function f(x, y, z, θ, β, φ, a) for all 

sampled values.  

The calculation procedure can be summarized in the following steps: 

(i) Select a load level l and determine the resulting stress field in the component. 

(ii) Generate a random sample iX
JJG

 from the probability density function 

( ), , , , , , , , , , , ,X Y Z Ap x y z aθ β φΘ Β Φ . 
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(iii) Calculate the value of strength S for the material under consideration, using 
the sampled values as defect parameters. 

(iv) If the strength S is smaller than the load l, then ( ) 1if X =
JJG

  and the sum Σ is 

increased. If, on the contrary, S > l, ( ) 0if X =
JJG

 and Σ remains unchanged. 

The procedure is reiterated from (ii) for a new trial.  
(v) After an adequate number of iterations (i.e. when the error achieved is lower 

than a target level), Fc is obtained by dividing the sum Σ by the total number 
of samples considered. 

(vi) An estimate of the error associated with the Monte Carlo calculation is given 
by: 

 
( ) ( ) ( ) ( )2

2

1 1

1 1 1ˆ  
1 1

n n

i i
i i

e f X f X
n n n n= =

⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤= ⋅ −⎨ ⎬⎜ ⎟⎣ ⎦ ⎣ ⎦− ⋅ − ⎝ ⎠⎪ ⎪⎩ ⎭
∑ ∑

JJG JJG
                (3.21) 

Once Fc has been computed via the procedure outlined above and the values of flaw 
mean number density λ and component’s volume V measured through direct 
observation, equation (3.1) can be applied to calculate the total probability of failure. By 
repeating this operation for several values of load, the whole component strength 
distribution Fs is obtained. 

3.3.2.1. INDEPENDENT RANDOM VARIABLES 

A general assumption that can be made for practical applications is to consider the 
variables describing defect location and geometry as independent. Under these 
conditions each parameter is not affected by the value assumed by the others and the 
joint probability density function reduces to the product of the individual density 
functions: 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , ...X Y Z A X Y Z Ap x y z a p x p y p z p p aθ β φ θΘ Β Φ Θ= ⋅ ⋅ ⋅ ⋅           (3.22) 

The sampling process from the joint distribution function is now equivalent to the 
independent sampling of each variable from the respective probability law. In the course 
of this study only independent random variables have been considered. In particular, 
uniform distributions were used to simulate defects coordinates (X, Y, Z) and 
orientation, in order to emphasize the randomness of the flaw population, while log-
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normal distributions were adopted to model defect size. Although independent variables 
have been assumed in this work, the framework outlined here can be directly extended 
to cases in which correlation among variables is thought to be significant, as long as the 
appropriate sampling procedure is employed.   

Practical applications of this methodology will be discussed in the next chapters. In 
the remaining part of this chapter, the techniques used to sample random variables from 
specific probability density functions will be illustrated.  

3.3.3. SAMPLING UNIFORMLY DISTRIBUTED RANDOM NUMBERS  

At the core of any Monte Carlo simulation is a sequence of uniformly distributed 
random numbers used to drive the simulation. A random variable, U, is said to have a 
uniform distribution between (0, 1) when: 

{ } ( ),               0,  1P U u u u≤ = ∈                                        (3.23) 

 A source of uniform random numbers is necessary in order to sample other 
probability distributions and carry out Monte Carlo integrations and simulations. A 
generator of random numbers is a mechanism for producing a sequence of random 
variables U1, U2, … with the property that: 

(i) each Ui is uniformly distributed between 0 and 1; 
(ii) the Ui are mutually independent. 

 Some natural phenomena, such as particles emission from radioactive substances or 
some particular electronic mechanisms, could be used to generate a sequence of true 
random numbers. This approach, however, is not practical for two main reasons.  Most 
natural sources of random events do not allow the reproduction of identical sequences 
of random numbers easily. It is often important to be able to rerun a simulation using 
exactly the same inputs used previously, in particular for debugging purposes. 
Furthermore, the rate at which the random numbers are supplied must be very high to 
allow fast simulations and this may not be always possible using natural random 
phenomena. Thus for most computational purposes, pseudorandom numbers have been 
introduced. These apparently random numbers are in reality produced by completely 
deterministic algorithms and therefore they are not truly random. However, under 
certain conditions, the sequence of values {U1, U2,… Uk} satisfy properties (i) and (ii), 
as can be proven by several statistical tests for independence and uniformity. 
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 The algorithms used to generate random numbers may be executed millions of times 
in the course of a simulation. Therefore, it is very important that they are efficiently 
implemented and do not involve excessively complex operations. The simplest and 
most widely used generator is the so-called linear congruential generator. The general 
linear congruential generator takes the form: 

1

1 1

( )   mod  i i

i i

x ax c m
U x m

+

+ +

= +
=

                                           (3.24) 

where the multiplier a and the modulus m are integer constants that determine the 
values generated, given an initial value (seed) x0. The algorithm in this form is 
sometimes called mixed linear congruential generator to distinguish it from a pure linear 
congruential generator for which c = 0. Marsaglia [1972] has demonstrated that little 
additional generality is achieved by taking c ≠ 0. Since a generator with a nonzero c is 
slower than one without, it is often preferred to use pure linear congruential generators. 

 Beside speed, another significant characteristic of a random number generator is its 
period, i.e. the length of the sequence of distinct random values produced by the 
algorithm before repeating itself. In fact, any generator of the form (3.24) will 
eventually repeat itself after a finite number of cycles and therefore it is advisable to 
postpone this event by seeking the longest period possible. For a linear congruential 
generator the maximum period achievable is m-1, in which case the generator is said to 
have full period. For pure linear congruential generators the full period can be achieved 
from any x0 ≠ 0 simply by selecting a prime number as modulus m and imposing the 
following conditions on a: 

(i) (am-1-1) is a multiple of m 
(ii) (aj-1) is not a multiple of m for j = 1, …., m-2 

A couple of values fulfilling these conditions have been proposed by Park and Miller 
[1988] and are a = 16807 and m = 231-1 = 2147483647. The choice of this modulus has 
been made considering the fact that this number is the largest integer that can be 
represented in a 32-bit variable (assuming one bit is used for the sign) and it also 
happens to be a prime, a Marsenne prime. Using an algorithm proposed by Schrage 
[1979], which allows one to compute the modulo of the product of two 32-bit integers 
with a 32-bit constant without using any intermediate variable larger than 32 bits, this 
generator can be implemented on any machine with a 32-bit architecture uniquely via 
integer arithmetic, which is often faster than floating point arithmetic. This generator, 
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which will be subsequently referred as the Park & Miller generator, has been largely 
used in the course of this work to perform most of the simulations.  

Other techniques for generating pseudo-random numbers with longer periods are 
discussed by Glasserman [2003]. They are mainly based on the combination of several 
linear congruential generators. Of particular interest is the generator proposed by 
Ecuyer, which is reported to have a period of approximately 2319 and no lattice structure. 
A computer implementation (in C++) of this generator, together with the classic Park & 
Miller generator in 32-bits integer arithmetic, is given in the appendix (A.1). 

3.3.4. GENERAL SAMPLING METHODS 

3.3.4.1. THE INVERSE TRANSFORM 

Having established a sensible procedure to generate random variates uniformly 
distributed in the interval (0, 1), it is now possible to discuss techniques that employ 
sequences of uniform random numbers to sample from other distributions. 

For univariate distributions, the most widely used technique for this purpose is the 
inverse transform method [Kalos, 1986]. According to this methodology, to sample 
from a cumulative distribution function (CDF) FX(x), i.e. to generate a random variable 

X with the property that ( ) ( ) = P X x F x≤  for all x, it is sufficient to take: 

( ) ( )1  =   ,     with 0,1XX F U U Unif− ∼                                        (3.25) 

This follows from the fact that the cumulative distribution function FX(x) is always a 
non-decreasing function of x. It can be easily shown that, taken a random variable Ψ 
with probability law FΨ(ψ), if Y(Ψ ) is a non-decreasing function of Ψ, then the 

distribution function of Y is ( ) ( )( )      ( )YF y P Y y P Fψ ψΨ= ≤ = Ψ ≤ =  for y = y(ψ). 

In fact the two variables map into each other and ( ) ( )Y y ψΨ ≤  only if ψΨ ≤ . This 

property holds for the two random variables X and U in (3.25), since they are related by 
the non-decreasing function FX(x). Consequently they will both have a CDF F(u) = u, 

which in turn means that ( ) ( ) = P X x P U u u≤ ≤ =  for u = F(x). Substituting the 

expression for u in the last equation, we obtain that ( ) ( ) = P X x F x≤ as required. 

The inverse transform is an extremely practical method to generate variates from 
uniform distributions on intervals (a, b) different from the unit interval (0, 1). A sample 
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can be obtained by simply multiplying the random number Ui by the length (b–a) and 
summing a. Another straightforward application of this technique is the generation of 
samples from exponential distributions. Inverting the analytical expression of the 

exponential CDF, ( ) 1 xF x e λ− ⋅= − , it produces the following sampling equation: 

( )1    ln iX U
λ

= −                                                       (3.26) 

Despite the simplicity and generality of the inverse transform method, it is not 
particularly suitable for distribution functions that are not analytically invertible, such as 
normal and log-normal. When dealing with this family of probability distributions, it 
would be necessary to use approximate expressions of the CDF or to discretize the 
function and store the values in very large look-up tables in order to apply the inverse 
transform method. In this case, it is often convenient to resort to other solutions. In 
particular, in the course of this work, the Box-Muller algorithm [Box and Muller, 1958] 
has been used to sample crack sizes from log-normal distributions. Details on this 
algorithm can be found in the literature, while a computer implementation has been 
included in the sampling functions library in appendix (A.3). 

3.3.4.2. RANDOM CRACK LOCATIONS 

  Besides crack size, three other random variables that appear in the integral (3.4) are 
the Cartesian coordinates (X, Y, Z) identifying crack location. For completely random 
flaw populations, each coordinate is assumed to be independent from the others and 
uniformly distributed within the component’s volume. For simple geometries, such as a 
beam with rectangular cross section, each variable can be individually sampled from a 

uniform distribution in the 
interval (ai, bi), equal to the 
length of the component in 
the direction considered 
(Figure 3.7).  

When dealing with more 
complex and irregular shapes, 
for which the interval (ai, bi) 
is not constant throughout the 
component, the direct 
sampling approach must be Figure 3.7  Simple component geometry 
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coupled with rejection techniques. This implies that the whole component’s volume is 
included within a regular parallelepiped, which is used as initial sampling space. Each 
coordinate is generated individually within the parallelepiped as described above. If the 
crack location resulting from this sampling process actually falls in the component’s 
volume, the simulation can move on to the next step. If, on the contrary, the point 
generated is outside this area, the sampling process must be repeated until a valid 
location is found.  

Although the rejection method 
guarantees that the resulting 
distribution of defects in the 
component is uniform, it may require a 
large number of iterations before a 
suitable sample is obtained. In 
particular, the average number of 
iterations per valid sample is 
proportional to the ratio between the 
parallelepiped’s and the component’s 
volume. For particularly irregular 
shapes, this ratio may be significantly 
large, resulting in a slow sampling 
process and consequently in a time 
consuming simulation. An alternative 

method, which can be used in conjunction with a finite element analysis of the stress 
field, is to divide the component in a large number of elements, small enough for the 
stress state to be consider constant within each element (Figure 3.8). Crack locations 
can then be sampled randomly by simply selecting one of the elements with a 
probability proportional to the ratio between its volume the total component’s volume. 
Each location within the element is then equivalent since all point are subjected to the 
same stress. Another advantage of this approach is that, once a crack location (i.e. an 
element) has been determined, the stress tensor relative to the element can be directly 
imported from the finite element solution. In our calculations, the direct sampling of 
crack coordinates was employed when dealing with simple loading configurations such 
as a rectangular bar subjected to uniaxial or biaxial tension. For more complex 
situations, in which a finite element analysis was required to determined the stress state 
produced in the component by the applied load, the more efficient procedure of element 
index sampling was preferred. 

 

Figure 3.8  FEA representation of 
component geometry 
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3.3.4.3. RANDOM CRACK ORIENTATION 

Three angles are required to uniquely define the orientation of any object in the three 
dimensional space. As shown in Figure (3.2), in the case of a crack, two angles, β and θ, 
are necessary to describe the orientation of the plane on which the crack lies, while the 
third angle φ gives the final orientation of the crack on this plane. In order to simulate a 
completely random flaw distribution, in which every direction has the same probability 
to occur, the angles β, θ and φ must be sampled from the appropriate distribution 
function.  

 

 

Since φ simply represents the random angle between a segment and a reference 
direction on a plane (Figure 3.9) it can be directly sampled from a uniform distribution 
in (0, π). On the other hand, when considering β and θ the situation is more complicated 
and it can not be assumed a priori that they can be sampled from uniform distributions 
before some careful analytical considerations.  

In general, the orientation of a plane in the space is uniquely determined by the 
direction of the vector normal to it. Assuming that the normal vector has unit length, the 
problem of a plane randomly oriented is equivalent to a random distribution of points 
(representing the tip of a vector) on the surface of a sphere with unit radius. The laws of 
probability state that, for this distribution to be uniform, the probability that a point 
belongs to the infinitesimal area dS must be proportional to the ratio of the area to the 

Figure 3.9  Single random angle 
generation 

Figure 3.10  Uniform random orientation 
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total surface S. Since the area dS can be written as   1 cosdS d dθ θ β= ⋅ ⋅ (Figure 3.10), 

it follows that:  

( ) 1 cos;    
4

d dP d d θ θ ββ β β θ θ θ
π

⋅ ⋅
≤ Β ≤ + ≤ Θ ≤ + =                            (3.27) 

where 4π is total area o the sphere. Being Β and Θ two independent random variables, 
it is possible to split their probability density functions as: 

( )

( )
2
cos

2

dp

dp

ββ
π

θ θθ

Β

Θ

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

                                               (3.28) 

Both functions have an integral equal to unity over the variable sample spaces ([0, 
2π] for Β and [-π/2, +π/2] for Θ) as required. 

It results that B can be sampled from a uniform distribution in (0, 2π), while the 
sampling function for Θ can be determined through the inverse transform method. 

Integrating ( )p θΘ
�  from –π/2 to θ  and inverting the cumulative distribution function 

obtained in this way, we finally get: 

( ) ( )
2

cos 1    1 sin         sin   2 1
2 2

F d
θ

π

θθ θ θ θ ξ
−

= = + ⇒ = −∫
� �                  (3.29) 

with ξ uniformly distributed in (0, 1). This expression allows the sampling of sinθ, 
which can be used directly in equation (3.6). 

3.3.4.4. SIMULATING A POISSON PROCESS 

It has already been pointed out how the Poisson process is, in general, the most 
appropriate model to simulate the number of flaws present in a component. Equation 
(3.1), which has been derived under this assumption, allows us to obtain the total 
probability of failure by simply estimating the term Fc, without the need to simulate the 
actual Poisson process that controls the number of flaw occurrences. However, when a 
map of fracture initiation sites is required, for example in the attempt to determine the 
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most probable point at which failure occurs, it might be necessary to generate samples 
from a Poisson probability law. 

The easiest way to perform this operation is to exploit the property of Poisson 
processes according to which the distance between two consecutive events follows an 
exponential probability distribution [Parzen, 1960]. When dealing with a three-
dimensional problem, such as in our case, this property can be applied to volumes rather 
than distances. In practical terms, this means that to obtain a sample from a Poisson 
probability law it is sufficient to iteratively generate variates from an exponential 
distribution using equation (3.26), each variate indicating the volume associated with a 
flaw, and add them up until the total sum is strictly greater than the component’s 
volume.  This condition is equivalent to stating that the last flaw generated falls outside 
the domain of interest and therefore the number of flaws in the sample is equal to the 
number of exponential variates generated minus one. 

3.3.5. VARIANCE REDUCTION TECHNIQUES 

In estimating the function Fc it will often be necessary to determine the probability of 
occurrence of some rare events, especially in the lower range of the load which refers to 
the lower tail of the strength distribution. When dealing with a component subjected to a 
pronounced stress gradient for example, fracture will be triggered only by the small 
fraction of large defects that fall in the highly stressed region, and the probability of this 
condition to be satisfied will obviously be small. In the presence of such rare events it 
may become very time consuming (in terms of computational time) and in general 
difficult to obtain accurate estimates of the probability of failure through Monte Carlo 
simulation. For this reason, in many circumstances it might be necessary to apply some 
sort of variance reduction techniques to improve the convergence (i.e. reduce the 
estimate error) of the simulation. Among all the techniques available in the literature, 
one that has shown very good results in our specific application is importance sampling. 

3.3.5.1.  IMPORTANCE SAMPLING 

Importance sampling attempts to reduce the variance of the Monte Carlo estimate by 
changing the probability law from which samples are generated. The purpose of this 
operation is to give more weight to “important” outcomes that under the real probability 
measure would receive very little relevance during the simulation process.  

To clarify this idea, consider the problem expressed in (3.18) of estimating 
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( ) ( ) ( )1 2 1 2 1 2 1 2, ,..., ... , ,..., , ,..., ... m m m mf X X X f x x x p x x x dx dx dx
∞ ∞ ∞

−∞ −∞ −∞
⎡ ⎤ = ⋅⎣ ⎦ ∫ ∫ ∫E  

where (X1, X2, …, Xm) = X
JJG

 is a random element in Rm with probability density p( x
G

) 

and f( x
G

) is a function in Rm whose expected value must be calculated. Let h( x
G

) be any 
other probability density on Rm satisfying: 

( ) ( )1 2 1 2, ,..., 0      , ,..., 0m mp x x x h x x x> ⇒ >      (3.30) 

Then we can alternatively represent ( )1 2, ,..., mf X X X⎡ ⎤⎣ ⎦E  as Glasserman [2003]: 

( ) ( ) ( )
( ) ( ) 1 2... ... m

p x
f X f x h x dx dx dx

h x

∞ ∞ ∞

−∞ −∞ −∞

⎡ ⎤ = ⋅ ⋅⎣ ⎦ ∫ ∫ ∫
G

JJG G G
GE    (3.31) 

This integral can be interpreted as expectation of the function ( ) ( )
( )

p x
f x

h x
⋅

G
G

G  with 

respect to the probability density h( x
G

), and can be estimated, following the same 
methodology described above, by: 

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
1

1
1 11

( ,.., )1 1 ( )ˆ   ( ,.., )  = ( )
( )( ,.., )

i in n
ii i m

im i i
ii im

p X p X X p Xf X f X X f X
n n h Xh X Xh X = =

⎡ ⎤
⎢ ⎥⋅ = ⋅ ⋅
⎢ ⎥
⎣ ⎦

∑ ∑
JJG JJGJJG JJG

JJGJJGE   (3.32) 

where ( ) ( ) ( ){ }1 2, ,  ..., i i i
i mX X X X=

JJG
 is a random variate sampled from the probability 

density function h(x1, x2, …, xm). 

The value obtained from (3.32) is an unbiased estimator of the expectation (3.18) and 
the variance of this estimator might be larger or smaller than the variance of the original 

estimator (3.16) depending on the choice of h( x
G

). For a proper selection of the density 

function h( x
G

), however,  a significant reduction in the estimate error can be achieved. 

In our specific application, the importance sampling method was applied to the 
generation of crack size samples from a log-normal probability law. In fact, it was 
observed that by generating variates from a distribution with a higher mean and the 
same COV (coefficient of variation defined as the standard-deviation divided by the 
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mean) as the original density function, better estimate of the quantity Fc (and therefore 
of the failure probability) were obtained. Concrete examples of the procedure followed 
will be given in the next chapter.   
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4 INVESTIGATION ON THE BRITTLE FRACTURE OF 
CERAMIC MATERIALS 

4.1. Scope 

This chapter proposes a detailed study on the influence that various parameters 
related to the features of material microstructure and loading conditions have on the 
probability of brittle fracture in ceramic components. The main focus of this initial 
investigation is the fracture behaviour of rather simple component geometries and 
loading schemes for which analytical solutions of the stress field exist in the literature. 
A parametric study is then performed by varying characteristic material parameters such 
as flaw mean number density, mean and variance of the flaw size distribution, and 
evaluating the changes in the failure probability predicted by the model. 

The discussion starts with a comparison between experimental data available in the 
literature for the same material considered in our analysis and predictions obtained by 
the model. A best fitting procedure between experimental and theoretical results is 
performed in order to calibrate the model and estimate the only non-measurable input 
parameter, i.e. the flaw shape factor Y. Component strength distributions are then 
analysed for uniaxial loading conditions, such as simple tension and 3-point bending, 
and the differences in material fracture behaviour between uniform and non-uniform 
stress states are considered. In particular, the effect that the presence of a stress gradient 
has on the failure probability is investigated.  The sensitivity of component’s strength to 
changes in the parameters characterising the flaws population will be examined as well 
as the relationships existing between material response and uniaxial stress distribution. 

Subsequently, the study proceeds with the analysis of biaxial and triaxial stress states 
and the construction of a failure probability diagram which defines critical stress 
conditions in the presence of multiaxial load. This diagram can be used as a design 
criterion aiming at limiting the maximum probability of failure due to brittle fracture.  

The identification of critical conditions for unstable crack propagation in simple 
geometries is an essential step to comprehend the mechanisms that control the fracture 
process. The knowledge and understanding gathered in the parametric analysis can then 
be applied to the study of more complex configurations, such as real engineering 
components under multi-axial load, in which the factors initially examined 
independently act simultaneously. A practical application of this methodology will be 
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presented in the next chapter, where the failure probability of a ceramic turbine blade is 
investigated.  

However, before proceeding with the presentation and discussion of the results 
collected in this study, one last issue needs to be addressed. We have already explained 
how the origin of ceramics brittleness lies in the inevitable presence of defects in the 
material microstructure, but we have not illustrated a practical method to estimate the 
number and the size of these defects. In the next section a quantitative approach to 
image analysis is described and applied for this purpose. 

4.2. Material Properties Characterisation 

It is an explicit objective of this work to directly link the observed component 
strength distribution with the features of the material microstructure. Most of the input 
parameters necessary to the simulation procedure proposed in this work and described 
in Chapter-3 are related to the microstructural characteristics of the material under 
consideration and, in particular, to flaw content. This section shows how parameters 
such as defect mean number density, mean and standard deviation of the flaw size, can 
be determined by direct observation and examination of ceramic microstructures, 
indicating with this term the structure level of the matter from approximately 0.1 to 100 
μm (between the wavelength of visible light and the resolution limit of naked eye). As 
anticipated in Chapter-3, defects in ceramic materials will be assimilated to annular 
crack located around spherical pores and the associated flaw size will be considered, in 
first approximation, equal to the pore diameter. 

4.2.1.  FLAW SIZE DISTRIBUTION INFERENCE BY DIGITAL IMAGE 

ANALYSIS 

A rather comprehensive treatise on the technical aspects of quantitative image 
analysis is given by Chinn [2003]. The first step in performing a quantitative analysis on 
a material specimen is to obtain a high definition image (usually in black-and-white) of 
the material microstructure through the means of a digital camera connected to a 
microscope. A black-and-white digital image consists of an array of pixels (picture 
elements) that have x-y coordinates and a grey level. Generally there are 256 grey levels 
that are associated with each pixel, from zero (all black) to 255 (all while). Knowing the 
resolution of the image in dpi (dots per inch) and the magnification factor, mf, given by 
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the microscope, the dimension in real units of each pixel can be calculated through the 
simple equation:  

1     pixel size
res mf

=
⋅

        (4.1) 

Figure (4.1) shows a microstructural sample of tape-cast alumina (Al2O3) with a 
magnification mf = 120 and a resolution of 300 dpi. The dark spots on the brighter 
background represent pore sections in the ceramic matrix. In these conditions the 
average pixel size in both directions x, y is of 0.706 μm, corresponding to a pixel area of 
0.5 μm2. 

The sample examined was obtained by digitally scanning a hard copy picture of 
alumina microstructure published in the literature [Chinn 2003]. Due to the limitations 
on the accuracy achievable through this procedure, which in turn depends on the 
resolution of the original picture (300 dpi as previously stated), the minimum pore size 
detectable by the image analysis is of about 1.6 μm, corresponding to the area covered 
by four pixels. Smaller defects were not considered in the analysis, since the noise 
present in the picture would have negatively affected the accuracy of the measurement. 
It must be said that the limitations existing in the technique employed to obtain a digital 
sample of alumina microstructure do have an effect on the flaw size distribution 
resulting from the analysis. However, this is believed not to invalidate the results 
obtained on the component’s failure probability since the noise is mainly associated 
with the lower bound of the distribution, whilst are the larger defects that are most 
critical and ultimately control the fracture conditions. 

           

 Figure 4.1  Alumina microstructure 
sample obtained from Chinn [2003] 

Figure 4.2  Alumina microstructure 
image after inverting pixel grey level 
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Using a commercial photo-editing software, the image visualization properties have 
been improved by inverting pixel grey levels (in Figure 4.2 voids are brighter than the 
material matrix) and by removing the artefacts present in the photo background (Figure 
4.3). The image has then been binarized, i.e. converted to a binary image where only 
two colour levels (0 for black and 1 for white) are attributed to each pixel (Figure 4.4). 
This operation is performed by choosing a global threshold value for the original grey 
levels using the Otsu’s method [Otsu, 1979]. All pixels with a grey level above the 
threshold value become white, while all the remaining are black. 

Once these operations have been completed, the material porosity (pores volume 
fraction) can be estimated simply by counting the number of white pixels in Figure (4.4) 
and calculating the ratio with the total number of pixels composing the image. For the 
specimen under consideration, the porosity was measured at 5.54%. A rather more 
complex procedure, which involves an algorithm to determine the connectivity 
properties of white pixels, is required for the estimation of the other microstructural 
characteristics such as defects number and average size. An image analysis tool 
provided by the software package Matlab was employed for this purpose. The algorithm 
implemented in the software tool assumes that two pixels are connected, and therefore 
part of the same object (a defect in this case), if their edges or corners touch. During the 
image analysis, all white pixels are labelled with an index indicating the object to which 
they belong. The area of a given pore section can then be estimated by counting the 
number of pixels labelled with the index relative to the pore under consideration.  

Knowing the pore section area, there are several ways to define the average defect 
size depending on the pore shape. In this work an equivalent diameter (defined as the 

Figure 4.4  Binarized image of 
alumina microstructure 

Figure 4.3  Alumina microstructure 
obtained after image processing 
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diameter of a circle having the same area of the pore section) has generally been used.  
The results obtained in the analysis are shown in Table (4.1).  

 

MATERIAL MICROSTRUCTURE PROPERTIES (2-D SECTION) 

Porosity 5.6171%

Number of Defect Sections 317 / mm2

Defect Section Area Mean 8.3 ·10-11 m2

Defect Section Area Std-Deviation 7.6 ·10-11 m2

Defect Section Diameter Mean 9.4·10-6 m

Defect Section Diameter Std-Deviation 4.2·10-6 m

Table 4.1  Summary of two-dimensional defect section properties computed via image 
analysis of the alumina microstructure sample shown in Figure (4.1) 
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Figure 4.5  Diameters histogram of two-dimensional defect sections computed via image 
analysis of the alumina  microstructure sample shown in Figure (4.1) 
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The histogram of defect size frequencies was also constructed assuming intervals of 
section diameter of 0.5 μm (Figure 4.5). Only pore sections with an equivalent diameter 
greater than 1.6 μm (corresponding to 4 pixels) were considered in the analysis due to 
the limitations imposed by the resolution and magnification of the original image. The 
values shown in the chart express the number of pores per square millimetre found in a 
specimen section for each size interval. 

4.2.2. STEREOLOGICAL CONSIDERATIONS  

The flaw distribution obtained in the previous analysis and shown in Figure (4.5) 
pertains to objects measured in a two-dimensional (2-D) cross section sampled from a 
three-dimensional (3-D) material specimen.  

 

Figure 4.6  Contribution of 3-D particles to 2-D section diameters 
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The cross section cuts through the 3-D structure randomly and the area (and therefore 
the equivalent diameters) of the pore sections observed on the 2-D surface depends on 
the point at which the sampling plane crosses the pores. Since the probability that an 
object is cut along the section of maximum area is small, the measurement of two-
dimensional sections of pores or other types of particles produces size distributions 
which generally underestimate the actual size of the particles. For this reason, the 
measurements performed through the image analysis of a specimen cross section cannot 
be immediately used as input of the Monte Carlo simulation, but must be further 
manipulated. 

 Stereology is the discipline that studies the properties of three-dimensional structures 
and objects based on two-dimensional views of them. Within the field of stereology, 
several analytical methods have been developed for converting distributions of particle 
sections measured in 2-D into the corresponding 3-D size distributions. Generally, most 
of these methods depend on simplifying assumptions on the shape of the objects under 
investigation. In particular, the Schwarzt-Saltykov method [DeHoff, 1968], which we 
will be employing in our analysis, assumes that all particles are spherical and their size 
is uniquely defined by their diameter. 

The basic principle at the origin of this (and other) methodology is that the total 
number of sections with a certain diameter consists of the sum of the separate 
contributions to this section size from spheres of the same size and all larger sizes 
(Figure 4.6). Dividing all measured sections into a discrete number of size groups each 

characterised by an equivalent diameter di and indicating with ( )tot
AN i  the total number 

of sections per unit area with diameter di ( ( )tot
AN i  is the quantity measured through 

image analysis), it is possible to write: 

( ) ( ) ( ) ( ) ( ),1 , 2 ... , ... ,tot
A A A A AN i N i N i N i j N i n= + + + +     (4.2) 

where NA(i, j) represents the number of sections per unit area of diameter di obtained 
from spheres with diameter Dj. 

The relationship existing between NA(i, j) and the number of sphere with diameter Dj 
per unit volume, NV(j), can be determined by probabilistic considerations. In fact, if pi,j 
is the probability of a plane intersecting a sphere of diameter Dj so as to yield sections 
of size di, then: 

 ( ) ( ),,A i j j VN i j p D N j= ⋅ ⋅        (4.3) 
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Note that pi,j is a conditional probability given that the plane actually intersects the 
sphere, while the probability of intersecting the sphere at any point is equal to Dj (in the 
unit volume). Combining these last two expressions and considering all size groups for i 
and j, the problem is reduced to the following system of linear equations: 

{ } { }tot
V AN NP ⋅ =⎡ ⎤⎣ ⎦

JJJJGJJJG
        (4.4) 

where [P] is the matrix of coefficients given by pi,j·Dj, { }VN
JJJG

 is the vector of 

unknown number of particles per unit volume for each size interval and{ }tot
AN

JJJJG
 is the  

vector of measured number of sections. The solution of the system is made simple by 
the fact that [P] is an upper triangular matrix since for i > j, pi,j is equal to zero (a sphere 
with a diameter Dj cannot generate sections of diameter di > Dj). 

 The only issue still to be resolved is the determination of the probabilities pi,j. In 
general, if a sphere of diameter Dj is intersected between distances hi and h(i-1) from the 
centre, circular sections with diameters between di and d(i-1) will result  (Figure 4.7). The 
probability of intersection of a random plane between hi and h(i-1) is equal to the 
thickness h of the circular slice divided by the particle radius. This probability is exactly 
pi,j: 

 ( )1
,

2
2

i i
i j

j j

h hhp
D D

− −
= =        (4.5) 

      

 Figure 4.7  Particle/Section diameter 
relationship 

Figure 4.8  Saltykov’s representation of 
particle/section diameter relationship 
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Saltykov suggested expressing all particle and section diameters in terms of a factor 
Δ, defined as the ratio between the maximum section diameter observed and the number 
of size groups considered. Dj would therefore be equal to j·Δ and di to i·Δ. Since the  
three quantities Dj, di and hi,  are related by the geometrical relationship 

2 21
2i j ih D d= − , all probabilities can be derived from equation (4.5) uniquely as a 

function of the indices i and j (Figure 4.8): 

( ) ( )22 2 2
,

1 1i jp j i j i
j

⎡ ⎤= ⋅ − − − −⎢ ⎥⎣ ⎦
      (4.6) 

 By substitution of these coefficients into equation (4.4), a well defined linear system 
is obtained which can be solved by standard methods. The results obtained by applying 
this methodology to image analysis raw data are summarised in Table (4.2) in terms of 
pore density, mean and standard deviation of pore diameters and visually illustrated in 
Figure (4.6) as histogram of 3-D defect diameters. 

 

MATERIAL MICROSTRUCTURE PROPERTIES (3-D ELEMENT) 

Number of Defects 28,533 / mm3

Defect Diameter Mean 10.6·10-6 m

Defect Diameter Std-Deviation 3.8·10-6 m

Table 4.2  Summary of three-dimensional defect properties computed via image analysis of 
the alumina microstructure sample shown in Figure (4.1) 

The trend shown in Figure (4.9) suggests that the defect size distribution can be 
mathematically represented by a log-normal probability density function. The best fit 
for such function is displayed in Figure (4.10), whose parameters are μ = -5.29196 and 
σ = 0.36014 (the mean and the standard deviation of log(X) respectively). This 
probability law will be considered as the size distribution characterising the material 
flaw population and used as a reference in the subsequent analyses. 
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Figure 4.9  Diameters histogram of three-dimensional defects computed via image analysis 
of the alumina microstructure sample shown in Figure (4.1) 
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Figure 4.10  Alumina flaw size distribution (of the microstructure sample shown in Figure 
4.1) modelled through a log-normal probability density function 
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4.2.3. OTHER MATERIAL MECHANICAL PROPERTIES 

It is probably useful at this stage to discuss in more detail some of the issues 
concerning the other material properties, such as elastic modulus E and critical energy 
release rate, Gcrit, which determine the mechanical response of a structure to loading and 
fracture initiation. As stated in Chapter-3, these parameters are considered as 
deterministic throughout our analysis. They are assumed to be unaffected by the 
presence of defects and measurable by standard material testing techniques. In 
determining the value of Gcrit it is also important to take into consideration the fact that 
we are dealing with microscopic cracks, whose size is of the same order of magnitude, 
if not smaller, than the average grain size. 

 

Figure 4.11  Alumina fracture toughness relative to long and short cracks 

It is a well established concept in the literature of fracture mechanics the difference in 
behaviour between “long cracks” and “short cracks” (also called natural flaws) defined 
in terms of their dimensions relative to the average grain size. In polycrystalline 
ceramics if flaw sizes are of the same order of magnitude as grain sizes (short crack), 
the material resistance to crack growth should be that of a single crystal, which is 
generally lower than that measured by classical fracture mechanics techniques for 
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macroscopic cracks. In fact, the toughness of the material surrounding a single large 
grain is significantly higher than the grain itself, due to the presence of grain boundaries 
and changes in crystal orientation, which make crack propagation energetically more 
demanding. This distinction in toughness properties is shown in Figure (4.11) [ASTM, 
1989]. As a short crack grows, it encompasses more and more grains, leading to fracture 
toughness values which approach the experimental level of a macroscopic crack. 
However, the fracture toughness that governs failure is usually assumed to be that of a 
single grain, since no examples of crack arrest at a grain boundary have been observed 
once a critical propagation velocity has been reached [Cranmer & Richerson, 1998]. 

Based upon this evidence, we will assume that the material toughness pertinent to our 
analysis is that relative to “short cracks” and that, once fracture initiates at a 
microscopic flaw, it propagates catastrophically leading to global failure of the 
structure. As suggested by Figure (4.11) an average value of 2.00 MPa·√m was assumed 
for the KIC of alumina and a corresponding value of 12.32 J/m2 for Gcrit.  

It is generally difficult to obtain accurate values of the critical strain energy release of 
a material, since environmental conditions, non homogeneity of the material sample 
examined and differences in testing procedures might affect the result of the 
measurement. To take into account and cope with potential errors in the assumed value 
of Gcrit, a fitting procedure of experimental fracture stress was developed within the 
statistical framework of our model. As it will be discussed in a subsequent section 
(4.3.1), this procedure allows to estimate the model parameter Y (flaw shape factor) by 
comparing simulation results and experimental data. By a best-fit iterative process this 
parameter is adjusted to match the experimental values of the fracture stress, 
automatically offsetting differences between the assumed Gcrit and the real value 
characterising the material microstructure.  

All relevant material mechanical properties are summarised in Table (4.3). 

 

MATERIAL MECHANICAL PROPERTIES (BULK) 

Modulus of Elasticity, E 304 GPa

Poisson Ratio, ν 0.24

Fracture Toughness, KIC 2 MPa√m 

Critical Strain Energy, Gcrit 12.32 J/m2

Table 4.3  Material mechanical properties summary 
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4.3. Model Validation and Calibration 

This section deals with various technical aspects of the methodology proposed in this 
work to evaluate the failure probability of components containing randomly distributed 
microcracks. Firstly, model calibration is carried out by fitting Monte Carlo results to 
experimental data of alumina fracture stresses. Some considerations on the convergence 
of the numerical algorithm employed to perform calculations are then included, while 
model sensitivity to the main input parameters is investigated at the end of the section. 
Unless otherwise stated, the fracture criterion employed in the simulation procedure to 
determine the critical conditions for crack propagation will be the empirical criterion 
reviewed in Chapter-3 (equation 3.13). The implications and motivations of this choice 
will be discussed in more details at the end of this chapter, where the strength of 
cylindrical rods subjected to a combined tension/torsion load will be investigated. 

Before discussing these topics, however, a review of the model implementation and 
the underlying numerical algorithm (already discussed in Chapter-3) is presented. 

4.3.1. MODEL IMPLEMENTATION AND MONTE CARLO ALGORITHM 

The information gathered on the flaw size distribution and the other material 
mechanical properties can be directly applied within the probabilistic framework 
developed in Capter-3 to model the random nature of the fracture process. The two 
fundamental equations in this framework are: 

 equation (3.1), which allows one to calculate the probability of failure of a 
component once the component’s volume, the average number of flaws and 
the parameter Fc (the individual probability of triggering fracture) have been 
determined; 

 equation (3.4), which gives the value of Fc after an appropriate probability 
distribution for each of the random variables involved in the failure process 
and a suitable fracture criteria have been selected. 

As outlined earlier, a simple numerical procedure, based on a Monte Carlo 
simulation, was employed to solve equation (3.4). The model assumes that all random 
variables in the calculation are independent. 
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Figure 4.12  Flowchart of the model underlying algorithm 

The numerical algorithm implemented to perform the calculations can be summarized 
in the following steps, schematically represented in Figure (4.12): 

(i) select the loading conditions; 

(ii) determine the resulting stress field in the component through analytical 
solutions derived from the theory of elasticity or via Finite Element Analysis; 

(iii) generate a random sample for crack coordinates and orientation such that flaws 
are uniformly distributed and perfectly randomly oriented; 

SELECT LOAD LEVEL 

GENERATE CRACK’S RANDOM 
LOCATION AND ORIENTATION 

MONTECARLO SIMULATION 

GENERATE CRACK’S RANDOM SIZE 

DETERMINE STRESS FIELD IN THE 
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(iv) generate crack random size from the assumed flaw size distribution (Figure 
4.10); 

(v) check if the set of given conditions of stress state at flaw location, crack 
orientation and size are severe enough to trigger fracture; 

(vi) reiterate the procedure from (iii) and count the number of times failure has 
occurred; the number of  simulations performed should be sufficient to 
guarantee that the error achieved in the estimated value of Fc is lower than a 
target level; 

(vii) after an adequate number of iterations, Fc is obtained by dividing the number 
of samples that triggered fracture by the total number of samples considered; 

(viii) an estimate of the error associated with the Monte Carlo simulation is 
calculated through equation (3.21); 

(ix) the estimated value of Fc is then substituted into equation (3.1) to determine 
the component’s probability of failure under the specified loading conditions. 
The calculation must be repeated for several levels of load to generate the 
whole strength distribution. 

 

4.3.2. MODEL CALIBRATION  

Most of the statistical models of brittle fracture developed in the literature thus far 
rely on the assumption of a single crack geometry in the attempt to predict material 
fracture behaviour. The configuration usually considered in these studies is either a 
through-thickness crack or a 
penny-shaped crack. In the 
solution proposed here, a single 
crack geometry is also assumed, 
which characterises all flaws in 
the population, but, differently 
from what was seen before, it is 
not arbitrarily identified with one 
of the standardized configurations 
mentioned above. As discussed in 
Chapter-2, cracks in ceramic 

Figure 4.13  4-point bending 
specimen geometry 
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materials normally nucleate in proximity of pores or inclusions and the most accurate 
model representing these conditions is that of an annular crack located around a 
spherical cavity. In these circumstances, the actual flaw severity depends on the relative 
size of the pore and the crack and can be defined in terms of a shape factor, Y. Although 
in our model crack length is assumed to be equal, in first approximation, to the 
associated pore diameter, the actual value of the parameter Y, which is employed in the 
calculation of the stress intensity factors, is estimated directly from experimental data. 
This value is typically included in the range [1, 1.57], the lower bound being associated 
with a penny-shaped crack, the least critical configuration, and the upper one with a 
through-thickness crack. 

In order to determine the parameter Y, a best-fitting operation between experimental 
results and model predictions computed for various values of the shape factor was 
carried out. Fracture stress data for alumina were obtained from an experimental study 
[Hoshide, 1996] on rectangular specimens tested in 4-point bending. Specimen 
geometry is displayed in Figure (4.13).  
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Figure 4.14  Calibration between model predictions and experimental data 

The best-fitting curve was found through an iterative procedure which minimised the 
sum of square distances of experimental data points from the theoretical curve. A simple 
bracketing method based on the golden section [Press, 1992] was applied on the 
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estimated value of the shape factor to guarantee convergence. The Monte Carlo 
predictions obtained for Y = 1.312 gave very satisfactory results. These are shown in 
Figure (4.14) in terms of the maximum stress, σmax, experienced at the edge of the 
specimen and the corresponding failure probability, Pf. A crack shape factor of 1.312 
indicates that the overall behaviour of the flaw population is more critical than that of a 
population of penny-shaped cracks with the same size distribution.  

4.3.3. MONTE CARLO SIMULATION CONVERGENCE 

The convergence of a Monte Carlo simulation to the unbiased expectation of a 
function of several random variables is controlled, according to the law of large 
numbers, by the number of samples used in the simulation. As discussed in Chapter-3, a 
convergence rate proportional to the square root of the total number of sample points, 
which characterises a brute force Monte Carlo simulation, might not be adequate when 
dealing with the lower tail of the strength distribution, where, for a given load, the 
probability of failure triggered by a critical flaw is generally very low. For this reason, 
an importance sampling procedure was suggested to reduce the error in the estimated 
value of the failure probability. A comparison between the results obtained through a 
brute force and an importance sampling simulation is shown in Figure (4.15). 
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Figure 4.15  Convergence of brute force vs. importance sampling Monte Carlo simulation 
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The loading configuration considered is a simple case of uniaxial tension at a constant 
stress of 300 MPa on the same component illustrated above. Importance sampling was 
implemented by selecting, for the generation of random crack sizes, a log-normal 
density function with a higher mean (generally two or three times larger) and the same 
COV as the original flaw size distribution (Figure 4.10). The value returned at each trial 
of the simulation was then multiplied by the ratio of the two probability density 
functions as described in Chapter-3. 

As directly observable from Figure (4.16), several millions of samples were required 
to achieve a reasonably narrow confidence interval in the case of brute force Monte 
Carlo, while one/two million simulations were sufficient for a satisfactory estimate of 
the failure probability by using importance sampling techniques. In particular, for one 
million samples, the relative error in the estimated value of Pf, calculated via equation 
(3.18), was 5.33% for the former and 0.77% for the latter simulation method. 

The correctness of the actual implementation of the algorithm employed to generate 
random crack coordinates and orientations was also assessed in the following way. 
Since the spatial distribution of flaws and their orientation are assumed to be completely 
random, the same results should be obtained when analysing the fracture strength of a 
rectangular bar subjected to simple tension in the three directions x, y and z respectively.  
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Figure 4.16  Brute force Monte Carlo convergence for different tensile stress orientations 
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ORIENTATION COMPARISON IN IMPORTANCE SAMPLING MONTE CARLO
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Figure 4.17  Importance sampling Monte Carlo convergence for different tensile stress 
orientations 

Both simulation procedures, brute force and importance sampling, predicted the same 
value of Pf for all three axial stress configurations (within the limits of the simulation 
numerical precision). This result was considered as good evidence that the sampling 
algorithm of random orientations had been implemented correctly. However, between 
nine and ten million samples were required by the brute force simulation to achieve 
convergence (Figure 4.16) against a couple of millions needed in the case of importance 
sampling (Figure 4.17). It is clear from these considerations how the implementation of 
an importance sampling algorithm might be beneficial in terms of computational time 
requirements and simulation accuracy. Most of the results that will be presented in the 
next sections have been obtained by exploiting this simulation technique. 

4.3.3.1. MODEL SENSITIVITY TO FLAW MEAN NUMBER DENSITY AND SHAPE FACTOR 

An interesting study carried out during the validation phase, was the analysis of 
model sensitivity to some of the main input parameters. This investigation was 
conducted by direct comparison of several simulation results obtained for different input 
data sets. In particular, model response to changes in the value of flaw mean number 
density, λ, was examined. The sensitivity exhibited by the model was generally low as 
can be directly observed from Figure (4.18), where the theoretical curve of material 
strength undergoes relative small shifts for rather significant perturbations of the 
parameter λ.  
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This behaviour can be easily explained by considering the first derivative of equation 
(3.1), employed to determine the failure probability of the component (a rectangular bar 
subjected to 4-point bending): 

( )      expS
c c

dF V F V F
d

λ
λ

= ⋅ ⋅ − ⋅       (4.7) 

The sensitivity of the strength FS to changes in λ, expressed by this derivative, is, in 
first approximation, proportional to the component’s volume V and the probability Fc. 
For the majority of the loading conditions considered, the term Fc is very small and this 
results in low values of the derivative (4.7). 
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Figure 4.18  Model sensitivity to changes in flaw mean number density 

The same type of analysis was also conducted for the flaw shape parameter Y, giving, 
in certain terms, more interesting insights into the mechanisms involved in the fracture 
process. The results obtained for variations in Y of ±1% are shown if Figure (4.19). 
Model sensitivity to changes in flaw shape seems rather high, although it must be taken 
into consideration that the possible range of variation of Y is relatively small. This 
investigation, however, suggests how important crack geometry is in determining 
critical fracture conditions. This detail was often neglected by the previous statistical 
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models of brittle fracture, which generally assumed an a-priori crack geometry for their 
derivations. The benefit of using a numerical approach is that crack geometry, as well as 
the criterion employed to determine critical conditions for crack propagation, can be 
easily modified according to necessity. 

 Although the absolute value of the failure probability is rather strongly affected by 
the flaw shape factor, the trends in fracture behaviour outlined in the next few sections 
are of general validity and normally independent from the choice of the parameter Y. In 
particular, the analysis conducted on the influence that flaw size parameters and stress 
state have on the component strength distribution gave exactly the same results for 
different values of Y. 
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Figure 4.19   Model sensitivity to changes in crack shape factor  

4.4. Fracture Strength of Components Subjected to Uniaxial 
Loading 

Once all model input parameters relative to the material microstructure have been 
estimated, the simulation procedure outlined in Chapter-3 can be employed to determine 
the probability of failure triggered by brittle facture of any component subjected to 
arbitrary loading conditions (as long as the stress distribution produced by the applied 
load is known). 
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The simplest geometry considered in this preliminary analysis of fracture strength 
distributions is a rectangular bar subjected to a centred tensile force. In this case, the 
only principal stress predicted by the Saint-Venant theory of the elastic body is parallel 
to the direction of the applied load and its value equates the ratio between the force and 
the bar cross section area. The resulting stress distribution is uniform, with every point 
subjected to identical stress conditions. 

Other loading configurations considered are 3-point and 4-point bending on the same 
type of component. In both cases the principal stress is, again, normal to the component 
cross section (ignoring the effect of the shear which, in slim components, is small 
compared to the normal stress), but it varies along the z and y axes (Figure 4.20).  

 

Figure 4.20  Loading configurations 

If the load applied in bending is scaled in such a way that the maximum stress, σmax, 
experienced at the edge of the component is the same in both configurations and equal 
to the stress acting in simple tension, a classical failure criterion, based on the maximum 
principal stress, would predict the same failure conditions for all the three loading 
schemes. However, Figure (4.21) clearly shows that the strength distribution predicted 
via our probabilistic approach varies significantly from one case to another. The reason 
for this behaviour lies in what is generally known as the size effect. This term here does 
not simply indicate that the probability of failure increases by increasing component’s 
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volume (actually the three bars have all the same volume), but, most importantly, that it 
depends on the size of the area on which a given stress operates. 

In particular, looking at our examples, this principle translates into a higher Pf for the 
component subjected to simple tension, since, in this configuration, the maximum 
tensile stress acts on the entire component’s volume. On the other hand, for the case of 
4-point bending, the stress distribution is characterised by a gradient in the z direction, 
due to the variation of the bending moment Mx, and in the y direction as a result of the 
bending moment itself. The size of the area on which the maximum normal stress acts is 
therefore much smaller than for the uniform case, while half of the component is 
effectively under compression, resulting in a lower probability of failure. This condition 
is even more pronounced for the 3-point bending configuration, where the maximum 
stress is nominally reached only at a single point and the strength distribution further 
moves towards higher values of stress. If a design criterion based on a maximum 
acceptable level of failure probability was employed, three different values of maximum 
admissible stress would be recommended. 
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Figure 4.21   Strength comparison between uniform and non-uniform stress states 

By moving from a uniform to a more localised stress state, not only the strength 
distribution shifts towards higher values of maximum stress, but also the slope of the 
curve varies. What was observed in the simulation results (Figure 4.21) is that a uniform 
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stress throughout the component produces a steeper trend of the failure probability, 
while the presence of a stress gradient entails a decrease in the slope of the strength 
distribution. The slope of a probability distribution is generally associated with the 
scatter of the correlated random variable, with flatter curves being affected by a higher 
variability. This means that if the range of variation of fracture strength must be 
expressed with a given confidence interval (for instance, if the maximum and minimum 
values of strength are required with a confidence interval of 95%), a wider stress range 
would result for a component subjected to 3-point bending than one under uniform 
tensile stress. This behaviour is a direct consequence of the statistical nature of the 
fracture mechanism. Since, in the presence of a stress gradient, the zone affected by 
high stress levels is relatively small, there is more uncertainty in the event that a 
sufficiently large defect will be located in this area. 

4.4.1. STRENGTH SENSITIVITY TO FLAW POPULATION PARAMETERS 

The properties of the flaw population characterising a particular material are 
generally described in terms of the average defect size, expressed by the mean of the 
size distribution, and by the statistical dispersion of all possible values of crack length 
around the average level, indicated by the coefficient of variation (COV, defined as the 
ratio between distribution standard deviation and mean). The use of COV is preferred to 
the standard deviation since it gives information about the variability of defect sizes 
irrespectively of the distribution mean. On the contrary, the standard deviation is an 
absolute quantity whose impact on material strength properties is identifiable only if 
compared with the average flaw size. For example, a standard deviation of 5 μm would 
have a very different effect on strength variability depending on whether the mean crack 
size is 10 or 100 μm, while a COV of 0.5 would immediately give a clear indication on 
the width of the distribution independently on the average crack length.  

Since the aim of this study is to identify the main variables that control the fracture 
mechanisms and the associated failure probabilities in a stressed component containing 
random flaws, it is interesting to analyse how the material strength distribution is 
affected by changes in the main flaw population parameters. As it will be demonstrated 
in the next few paragraphs, the material strength sensitivity to variations in the 
parameters characterising the crack size distribution (mean and standard deviation) 
observed for different loading configurations is not uniquely defined, but it also depends 
on the stress state to which the material is subjected. 
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Variations in strength distribution were first evaluated for a uniform stress 
configuration. As it is shown in figure (4.22), an increase in mean flaw size (at constant 
COV) causes a decrease in component strength. The same behaviour was observed for 
an increase in COV (at constant mean flaw size). However, for the same percentage 
change, the increase in mean defect size has generally a smaller impact on the 
probability of failure than the change in COV. The same type of investigation was 
conducted for a non-uniform stress state produced by 3-point bending (Figure 4.23). As 
expected, a strength reduction resulted from an increase in both mean crack length and 
distribution COV. However the sensitivity to variations in average defect size is higher 
than the sensitivity to changes in COV, a situation that is the exact opposite of what was 
observed for uniform stress distributions. The reason for this behaviour is that, in the 
case of uniform stress, it is the largest flaw that triggers failure since all locations at 
which a defect may appear are essentially equivalent. On the other hand, in the presence 
of a stress gradient, only a small number of microcracks located in the highly stressed 
region are likely to promote failure. In the former configuration it is therefore the width 
(determined by the COV) of the flaw size distribution that controls the probability of 
fracture, while in the latter case it is the middle value of the distribution, which defines 
the size of the most numerous defects, that plays the dominant role.  
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Figure 4.22  Strength sensitivity to flaw size distribution parameters in uniform stress state 
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STRENGTH SENSITIVITY TO FLAW SIZE IN 3-POINT BENDING
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Figure 4.23  Strength sensitivity to flaw size distribution parameters in presence of a stress 
gradient 

This behaviour deduced through a direct simulation procedure is in agreement with 
experimental observation (see Chapter-2 and Lin et al. 1986b) according to which 
failure is usually initiated at the largest defect under relatively uniform stress conditions, 
while it is triggered by smaller flaws in the presence of a significant stress gradient. The 
length of the largest crack is obviously controlled by the COV of the size distribution, 
while the finer flaws are those in the average size range. 

4.5. Fracture Strength of Components Subjected to Multiaxial Load 

The loading schemes considered in the previous investigations are characterised by a 
predominantly uniaxial stress field, which is uniform in the case of simple tension, 
while varies along the component in 3-point and 4-point bending. Uniaxial stress 
distributions are very useful in theoretical and experimental studies, allowing direct 
comparison between theoretical predictions and experimental results, but are less 
relevant for design purposes since real structural ceramic components are normally 
subjected to multiaxial stress states in actual operating conditions. This section, 
therefore, deals with multiaxial load configurations, in which at least two non-zero 
principal stresses act on the component and contribute to failure. 
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4.5.1. CYLINDRICAL RODS UNDER COMBINED TENSION/TORSION 

Several experimental studies have been conducted in the past on the strength of 
alumina components, in particular cylindrical rods and thin-walled tubes, subjected to a 
combined tension/torsion load. The stress state resulting from these loading conditions 
in a cylindrical specimen is biaxial, with the principal stresses given by: 
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       (4.8) 

where σ1 is the maximum principal stress, σ2 the minimum principal stress, σz the 
axial stress and τz the torsional shear stress. The axial stress is σz = 4·L/πDs

2, where L is 
the axial load and Ds the specimen diameter (σz = 4·L/π[Ds

2- Dsi
2] in the case of thin-

walled tubes with internal diameter Dsi). The shear stress varies along the specimen 
radius as τz = 32·rs·Mt/πDs

4, (τz = 32·rs·Mt/π[Ds
4− Dsi

4] for thin-walled tubes) where Mt 
is the torsional moment and rs is the radial distance of the point considered from the 
central axis. At the rod surface τz = 16 Mt/πDs

3. Thus, the maximum principal stress in 
combined tension/torsion is found at the rod surface. In pure torsion (σz = 0), the stress 
state is also biaxial with the two principal stresses being equal in absolute value and 
opposite in sign throughout the component. 

Experimental results obtained from fracture tests of cylindrical specimens showed 

that the average component strength sσ , expressed as the average value of maximum 
principal stress σ1 measured at the onset of fracture, is larger in pure torsion than in 
simple tension. In particular, the ratio between the two average values of strength was 

( )s torsionσ / ( )s tensionσ  = 1.3 for alumina cylindrical rods [Petrovic and Stout, 

1981a] and ( )s torsionσ / ( )s tensionσ  = 1.16 for thin-walled tubes of the same material 

[Stout and Petrovic, 1984a]. 

A similar type of analysis was conducted here from a modelling perspective by 
estimating the component strength distribution via the random sampling procedure 
previously discussed. The same material mechanical properties and flaw population 
parameters assumed in the study of uniaxial stress configurations were considered for 
combined tension/torsion conditions. The average value of strength was calculated 
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directly from the component strength distribution, Fs, by solving numerically the 
following integral: 

S       sdF d
d

σ σ σ
σ

= ⋅ ⋅∫        (4.9) 

 The first objective of this study was to evaluate the theoretical strength of alumina 
components, subjected to a tensile/torsional load, by applying different fracture criteria 
in the Monte Carlo algorithm used to perform the calculations, and compare it with the 
experimental data available in the literature. The fracture criterion that gave the best 
results (closest to the experimental measurements) was then identified and selected for 
all other parametric studies. The outcome of such analysis confirmed that the empirical 
fracture criterion (equation 3.13 with parameters √κI-II and √κI-III equal to 2.02 and 2.3 
respectively) was the most accurate in matching the strength ratios measured by 
Petrovic and Stout [1981a, 1984a]. In particular, the simulations conducted on 
cylindrical rods showed that the application of one of the other fracture criteria 
reviewed in Chapter-3 (the coplanar and the maximum strain energy release rate) would 
result in an opposite behaviour to that observed experimentally. The reason for this 
discrepancy is that fracture criteria based on the coplanar, or the maximum, energy 
release rate, overestimate flaw sensitivity to the shear stress, resulting in an average 
torsional strength which is lower than the tensile strength. 

Besides uniaxial tension and pure torsion, other three loading configurations were 
considered. These are characterised by a combined tension/torsion load, defined in 
terms of the ratio between the maximum shear stress, τz, and the axial stress, σz, 
measured at the rod surface. In particular, stress ratios, τz/σz, of 0.5, 1.0 and 4.0 were 
assumed in the course of this investigation. The strength distributions observed for each 
of these loading schemes are showed in figure (4.24). In the charts, the x axis represents 
the maximum principal stress, σ1, (calculated via equation 4.9) and the y axis is the 
estimated probability of failure, Pf. As already mentioned, the component is a 
cylindrical rod with a diameter of 6.35 mm and an axial length of 76.20 mm. Note that 
in the case of cylindrical rods, the component’s volume is larger than the volume of the 
rectangular bar considered in the previous analysis. This results in a strength 
distribution for uniaxial tensile load which differs from that previously measured. 
However, the values of failure probability relative to cylindrical rods are consistent with 
those estimated for rectangular bars and can be directly compared via equation (3.1). In 
fact, the associated values of individual failure probability, Fc, are the same for both 



CCHHAAPPTTEERR  44                    IINNVVEESSTTIIGGAATTIIOONN  OONN  TTHHEE  BBRRIITTTTLLEE  FFRRAACCTTUURREE  OOFF  CCEERRAAMMIICC  MMAATTEERRIIAALLSS  

- 94 - 

components under uniaxial tension. The differences in the probability of failure are 
attributable only to the difference in the expected number of defects. 

 The average values of strength and the ratios between average tensile strength and 
combined tension/torsion strength calculated from the strength distributions above are 
given in table (4.4) for each of the loading schemes considered. The predicted ratio 

( )s torsionσ / ( )s tensionσ  = 1.234 is in good agreement with the value of 1.3 measured 

experimentally. 

 

AVERAGE STRENGTH VALUES OF CYLINDRICAL RODS UNDER 
COMBINED TENSION/TORSION LOAD 

 TENSION τz = 0.5·σz τz = 1.0·σz τz = 4.0·σz 
PURE 

TORSION 

Average Strength, sσ   [MPa] 295.9 307.5 322.3 336.1 365.0 

Ratio sσ  / ( )s tensionσ  1 1.039 1.0891 1.136 1.234 

Table 4.4  Average strength values of alumina cylindrical rods under combined 
tension/torsion load 
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Figure 4.24  Strength distributions of cylindrical rods under combined tension/torsion load 
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Another interesting feature highlighted by the parametric study is the dependency of 

the ratio ( )s torsionσ / ( )s tensionσ  on the parameters characterising the flaw size 

distribution. As Figure (4.25) shows, the ratio between the average tensile strength and 
the torsional strength is practically insensitive to changes in the flaw mean size. On the 
other hand, an approximately linear dependence on the COV of the flaw size 
distribution was observed. This behaviour can be explained via a similar argument 
employed in section 4.4.1 to justify the variation in strength sensitivity to flaw size 
parameters in the case of a uniaxial stress state. 

SENSITIVITY OF CYLINDRICAL ROD STRENGTH RATIO TO FLAW SIZE 
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1.210

1.220

1.230

1.240

1.250

1.260

1.270

60.0% 70.0% 80.0% 90.0% 100.0% 110.0% 120.0% 130.0% 140.0% 150.0%

Flaw Size MEAN/COV Percentage Change

σt
en

sio
n
 / 

σt
or

sio
n  flaw size MEAN change    flaw size COV change 

 

Figure 4.25  Strength ratios for various values of mean flaw size and COV of the flaw size 
distribution 

The model estimated values of failure probability were also in agreement with the 
experimental observation that the average strength, expressed in terms of the maximum 
principal stress, of thin-walled cylindrical tubes is higher in torsion than in tension. For 
this type of component however, the difference in average strength between the two 
loading configurations is much smaller than for cylindrical rods since in thin-walled 
tubes all flaws are at a large radial distance from the central axis and therefore are 
subjected to a high shear stress when loaded in torsion.  

On the other hand, in the case of a cylindrical rod subjected to a pure torsional load, 
most of the microcracks located in proximity of the central axis experience relative low 

__            __ 
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stress levels and therefore do not contribute (or contribute very little) to the total failure 
probability. When loaded in tension on the contrary, all flaws experience the same stress 
conditions and therefore are characterised by the same probability of triggering fracture. 
In particular, for a specified level of maximum principal stress σ1, measured on the 
component’s outer surface, the value of individual failure probability, Fc, is lower in 
cylindrical rods than in thin-walled tubes under torsion, while it is the same and 
maximum for both geometries under simple tension. The strength ratio obtained for 

thin-walled tubes was ( )s torsionσ / ( )s tensionσ  = 1.147, which was again in good 

agreement with the experimental value of 1.16. 

4.5.2. EQUIBIAXIAL AND EQUITRIAXIAL STRESS STATES 

The effect of multiaxial stress states on material strength distribution was evaluated 
here by considering uniform equibiaxial and equitriaxial stress states and by comparing 
fracture probabilities obtained for these loading conditions with those relative to a 
uniaxial load. As expected, stress triaxiality results in an increase of the failure 
probability (Figure 4.26).  
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Figure 4.26  Effect of multiaxial stress states on the strength distribution 
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The simplest explanation for this behaviour is that under an hydrostatic stress state all 
crack orientations are essentially equivalent and the only contribution to strength 
variability comes from the random distribution of crack sizes. On the contrary, in other 
loading configurations, some orientations may be less critical than others and, therefore, 
not all large cracks are likely to trigger fracture. This condition not only results in an 
increase of the failure probability for an equitriaxial stress state, but also in a reduction 
in the scatter of the predicted strength values. This reduction in variability is, once 
again, confirmed by the increase in the slope of the strength distribution. 

A more extensive analysis was conducted for loading conditions in plain stress, for 
which one of the principal stresses is equal to zero. All possible combinations of the 
non-zero principal stresses, indicated with σ1 and σ2, were considered and the entire 
failure probability surface was built under the assumption of stress uniformity. Figure 
(4.27) shows a three-dimensional plot of such surface.  
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Figure 4.27  Strength distribution surface under plain stress loading 

What was observed in the evaluation of critical fracture conditions is that the effect of 
stress biaxiality on the failure probability is rather limited for small values of the 
parameter B, defined as the ratio between the minimum and the maximum principal 
stress: 
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 In particular, when B is smaller than 0.5, the relative change in the failure probability 
between the uniaxial and the biaxial case observed for a fixed level of the maximum 
principal stress σ1 is less than 5%.  On the other hand, for values above the threshold of 
0.5, shifts in the biaxial strength distribution are rather significant, as it is also shown by 
the red curve in Figure (4.26) for which B is maximum and equal to unity. 

4.5.3. A NEW FAILURE CRITERION UNDER PLANE STRESS CONDITIONS 

Equation (3.1) provides a direct relationship between global failure probability and 
the three input parameters characterizing component and material properties and i.e. 
component’s volume, mean flaw number density and individual probability of failure Fc 
(which in turn depends on material microstructural features and stress conditions). In 
particular, if a prescribed level of reliability (equal to one minus the failure probability) 
must be achieved for a component whose volume and material defect number density 
are known, the value of Fc is uniquely defined by equation (3.1). The analysis 
conducted in the next few pages can then be used as a design criterion aiming at 
guaranteeing a prescribed level of reliability for a component subjected to a plane stress 
state. 

For a material with a specified flaw size distribution and a known crack shape factor 
(estimated by fitting experimental data of specimen fracture stresses to model 
predictions), the maximum admissible stress diagram for plain stress loading conditions 
can be built through the simulation procedure described above (Figure 4.28). The 
diagram assigns a single value of Fc for each combination of the two principal stresses 
σ1 and σ2. All curves were obtained by considering the surface of individual failure 
probabilities associated with Figure (4.27) and by taking several horizontal sections of 
such surface for increasing values of Fc.  

When assessing a potential design of a component subjected to a uniform biaxial 
stress state and characterised by a reliability target level Rt, the design will be 
considered satisfactory if the values of the principal stresses σ1 and σ2 fall within the 
region delimited by the curve in Figure (4.28) and associated with the maximum 
admissible level of Fc. The relationship between the reliability target level and the 
maximum individual failure probability can be obtained by simply inverting equation 
(3.1): 
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Figure 4.28  Design curves of maximum admissible stress in plain stress loading 

A similar approach can also be applied to non-uniform biaxial stress configurations 
by simply dividing the whole component into a set of small elements within which the 
stress state can be assumed constant and known. The failure probability of each element 
subjected to the principal stresses σ1 and σ2 can be calculated via equation (3.1) by 
using values of Fc extrapolated from Figure (4.28). The design under assessment is then 
considered satisfactory under a structural perspective if the product of the reliabilities of 
all elements (equal to one minus the failure probability) is greater than the prescribed 
reliability target level Rt: 

 ( )( )1-       
n

i
f t

i

P R≥∏        (4.12) 

 Fc 
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It is believed that, if a similar analysis is carried out on a large number of materials of 
engineering interest and equivalent failure probability diagrams are produced for them, 
the methodology proposed in this work could become a useful tool in the structural 
design of ceramic mechanical components. 
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5 RELIABILITY ANALYSIS OF COMPLEX MECHANICAL 
COMPONENTS 

The previous chapter was dedicated to a parametric study on the fracture resistance of 
components characterised by simple geometries and loading conditions. The main 
objective of this study was to identify the parameters that control the fracture 
mechanisms and the strength distribution of a material containing a random population 
of microstructural flaws.  This chapter, on the other hand, deals with the reliability 
analysis of a real engineering component with a complex shape and subjected to a non-
uniform multiaxial stress state. Since ceramic materials are recognized to have a great 
potential in high temperature applications, especially in aggressive environments, the 
component chosen for this investigation is a turbine blade. 

The superior wear and corrosion resistance of ceramics, together with their creep 
strength, offer substantial advantages compared to traditional metal alloy designs and, in 
several cases, offset the shortcomings deriving from their inherent brittleness. Gas 
turbine engines represent one of the applications in which the use of ceramic 
components could entail significant improvements in system performances, besides 
implying substantial reduction in turbine weight. The interest of the aerospace 
community towards ceramics started more than three decades ago [Burte and Acurlo, 
1980]. Since then, there have been several attempts to demonstrate the applicability of 
such materials to turbine engine components. Among others, it is important to mention 
the work by Wallace et al. [1980], who performed a Weibull analysis on the reliability 
of a silicon nitride turbine blade, together with extensive experimental testing on the 
feasibility of this type of design. 

 The replacement of standard metal alloys with ceramic materials in turbine blade 
manufacturing could allow a substantial increase in the maximum temperature 
achievable in the engine thermodynamic cycle resulting in higher efficiencies [Jeal, 
1988]. However, the exploitation of these materials in such a strength demanding 
application will be possible only if an adequate methodology for the structural design of 
ceramic components is developed. The present work aims at setting the principles of 
such methodology, showing its direct application to the reliability analysis of a complex 
structure subjected to arbitrary loading configurations. 

The approach proposed in this work is based on the coupled use of Finite Element 
Analysis (FEA) and the probabilistic framework developed in the previous chapters. In 
particular, FEA is employed to determine the stress distribution produced in the 
component by the applied load.  As stated in Chapter-3, the global material mechanical 
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response is assumed not to be affected by the presence of microstructural defects. This 
means that the stress field throughout the component can be determined independently 
from the flaw population by employing standard techniques derived from the theory of 
elasticity. 

The stress distribution obtained by FEA can then be used within a Monte Carlo 
simulation to deal with the stochastic nature of the failure event and to assess the local 
conditions for critical fracture initiation. The final results are expressed in terms of the 
failure probability of the structure, quantity that represents the likelihood of a large 
defect to be located within a highly stressed region and to be oriented in such a way to 
satisfy the chosen criterion for catastrophic crack propagation. 

5.1. Component Geometry and Loading Conditions 

The geometry of the component considered in this analysis is shown in Figure (5.1).  

 

Figure 5.1  Turbine blade geometry Figure 5.2  Turbine blade finite 
element mesh 
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The blade airfoil profile was obtained by Fottner [1990] as a series of x-y coordinates 
of the representative points of the blade cross-section. The other relevant geometrical 
features are the cord length, blade height and distance of the blade root from the centre 
of the turbine disk to which it is connected. These were assumed equal to 30 mm, 40 mm 
and 167 mm respectively. The material considered for this study is the same examined 
in the previous chapter (sintered alumina). In particular, the material microstructure is 
characterised by the flaw size distribution previously measured through image analysis 
techniques and the principal material mechanical properties are those given in table 
(4.3). 

The two main sources of stress experienced by a turbine blade during service are the 
centrifugal force, produced by the high rotational speed, and the bending moment 
generated by the pressure difference of the gases flowing on the two sides of the blade 
(the pressure side and the suction side respectively) [Hsiung et al., 1988]. In order to 
study the structural response of the component to different types of load, three loading 
conditions were considered in just as many simulations. First, the effects of centrifugal 
force and pressure difference were analysed separately in order to determine the 
individual contribution of each load to the failure event and to highlight the differences 
between the two configurations. Then, the overall component strength distribution, 
relative to loading conditions similar to those experienced by the turbine blade during 
real operation (when i.e. centrifugal force and bending moment act simultaneously), was 
examined. In all cases the stress field was determined through a linear elastic Finite 
Element Analysis on a uniform mesh of approximately 22,000 tetrahedrical elements 
(Figure 5.2). The stress state computed within each element was assumed to be uniform. 

Examples of the stress distributions obtained for different load magnitudes and 
expressed in terms of the maximum principal stress are shown in Figure (5.3), (5.4) and 
(5.5). In particular, Figure (5.3) displays the stress fields on the blade pressure side 
computed for rotational speeds of 360 rev/s (on the left-hand side) and 460 rev/s (on the 
right-hand side). The two distributions appear very similar, with values of the maximum 
principal stress that increase from the tip to the root of the blade and are almost uniform 
on each cross-section (especially away from the blade root). For a given section height 
then, stress levels are obviously greater for higher rotational speeds.  
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Figure 5.3  Stress distributions produced by the centrifugal force for rotational speeds of 
360 rev/s(left) and 460 rev/s (right) 

On the other hand, Figures (5.4) and (5.5) show the maximum principal stress on both 
sides of the blade produced by pressure differences of 1 MPa  and 1.5 MPa respectively 
(and zero rotational speed). For simplicity, the pressure distribution was assumed to be 
uniform across the blade surfaces. This approximation is believed not to limit the 
validity of the results obtained in our investigation. In fact, the conclusions drawn from 
the analysis of a uniform pressure are generally valid for non-uniform pressure 
distributions as well. Also note that the pressure levels selected for the FEA calculations 
are significantly higher than the values normally associated with actual turbine 
operating conditions. This choice was made in order to be able to individually assess the 
effect that this type of load has on the component strength distribution. 

In all loading configurations examined, the highest stress was found at the blade root, 
in proximity of the trailing edge, where the joint with the support acts as a stress 
intensification feature (similar results were obtained in other finite element calculations 
of a turbine blade subjected to thermo-mechanical loading [McLeod et al., 1980]). The 
main difference between the stress field produced by the centrifugal force and that 
relative to a pressure difference is that in the former case most of the component is 
under tension, while in the latter configuration large volumes are subjected to a 
compressive load. This condition has a direct effect on the measured failure probability. 
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Figure 5.4  Stress field produced by a pressure difference of 1.0 MPa 

 

Figure 5.5 Stress field produced by a pressure difference of 1.5 MPa 
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5.2. Analysis of Component Strength Distribution 

In order to determine the component strength distribution relative to a centrifugal 
load, several finite element analyses were performed for rotational speeds varying in the 
range 300-600 rev/s. The stress values obtained by FEA calculations were then used as 
input of the Monte Carlo simulation. The properties of the material microstructure 
considered in this study (in terms of flaw size distribution and average number of flaws) 
are those previously measured through image analysis techniques and summarised in 
tables (4.2) and (4.3).  

By sampling random defects across the component volume, the individual failure 
probability Fc was estimated. This value was then substituted into equation (3.1) to 
determine the final strength distribution of the structure. The results obtained are shown 
in Figure (5.6) in terms of the cumulative distribution function, CDF, which gives the 
probability Pf that the component fails at a rotational speed equal or smaller than the 
value specified on the x axis. No failure events were observed below 380 rev/s, while 
for higher speeds the probability of failure progressively increases. 
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Figure 5.6  Strength distribution of a turbine blade containing a flaw population with size 
distribution given in Figure (4.10) and subjected to a centrifugal load  
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The effect that variations in the flaw size parameters have on the component strength 
distribution was also examined. Figure (5.7) illustrates the trend of the failure 
probability obtained when the mean of the crack size distribution is increased by 20% 
for a constant value of COV (red curve) and, conversely, when the distribution COV 
changes at a constant mean (green curve). Higher values of flaw average size or COV 
are associated with higher probabilities of finding large defects in the material 
microstructure and therefore cause the component strength distribution to shift towards 
lower levels of load (and consequently lower rotational speeds). Overall, the larger 
variations in failure probability were produced by changing the mean value of the flaw 
size distribution. Only along the lower tail of the strength distribution, i.e. in the range 
of interest for reliable designs, an opposite trend was observed. As discussed in 
Chapter-4, the greater sensitivity of the strength distribution to changes in the average 
flaw size compare to variations in COV is typical of non-uniform stress fields. 
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Figure 5.7  Sensitivity of the blade strength distribution relative to a centrifugal load to 
changes in flaw size parameters  

The same type of analysis was conducted for the second source of structural load. The 
stress states produced in the component by pressure differences ranging from 1.0 to 2.5 
MPa were computed through several finite element analyses and imported into the 
Monte Carlo engine. As in the previous case, the Monte Carlo simulation was based on 
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a total of 1 million samples. This, in conjunction with the application of importance 
sampling techniques, allowed to achieve an estimated relative error on the individual 
failure probability Fc smaller than 5% (for a two standard deviation confidence level). 
The resulting strength distribution is given in Figure (5.8). Under the sole action of the 
pressure load, failures were observed only for pressures higher than about 1.2 MPa. 
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Figure 5.8  Strength distribution of a turbine blade containing a flaw population with size 
distribution given in Figure (4.10) and subjected to a pressure load 

The effect of flaw size parameters on the failure probability was analysed also in the 
case of a pressure load. Figure (5.9) illustrates how, for all configurations examined, a 
variation in the average crack size has a larger impact on the blade strength distribution 
than an equivalent increase in the crack length COV. None of the two loading schemes 
produce a uniform stress distribution, but, in general, the stress field relative to a 
pressure load is characterised by steeper stress gradients and therefore is less affected by 
increases in crack size variability than a centrifugal load. An explanation for this 
behaviour was given in section 4.4.1. 
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Figure 5.9  Sensitivity of the blade strength distribution relative to a pressure load to 
changes in flaw size parameters 

BLADE STRENGTH   - CENTRIFUAL FORCE  vs.  PRESSURE GRADIENT -

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660

Max Principal Stress   [MPa]

P f

centrifugal force  pressure gradient  

 

Figure 5.10  Comparison between the blade strength distribution relative to a centrifugal 
load and that associated with a pressure load 



CCHHAAPPTTEERR  55              RREELLIIAABBIILLIITTYY  AANNAALLYYSSIISS  OOFF  CCOOMMPPLLEEXX  MMEECCHHAANNIICCAALL  CCOOMMPPOONNEENNTTSS  

- 110 - 

The trend followed by the probability of failure is significantly influenced by the type 
of load acting on the component. A traditional design methodology, based on the 
maximum principal stress, would clearly predict the same failure probability for two 
different loads resulting in the same maximum normal stress. However, as Figure (5.10) 
clearly highlights, this is not true when considering the failure probability relative to 
centrifugal force and pressure load. If two loading conditions characterized by the same 
value of maximum principal stress are considered, the failure probability associated 
with the centrifugal force is substantially higher than that relative to the pressure load. 
This is mainly due to the fact that the bending moment produced by a pressure gradient 
puts part of the component under tension, increasing the maximum principal stress, and 
part under compression. Compression is less critical in terms of crack initiation and 
therefore results in a lower probability of failure (it is necessary to point out that the 
load arising from the gas pressure difference is an alternating force and, for this reason, 
it can give origin to dynamic effects, which have not been covered in the present study). 
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Figure 5.11  Strength distribution of a turbine blade containing a flaw population with size 
distribution given in Figure (4.10) under general operating conditions 

Finally, the failure probability associated with the combined action of centrifugal 
force and pressure difference was analysed. The values of pressure assumed in these 
calculations were closer to those experienced during actual operation of the turbine 
blade. The gas velocity distribution along the blade profile was known from 
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experimental data [Fottner, 1990]. An average value of pressure acting on each side of 
the blade was calculated for different velocity of the inlet flow and assumed constant 
along the whole blade length. The speed of the inlet flow was then assumed to be 
proportional to the square of the rotational speed. This procedure allowed the author to 
calculate an average value of pressure difference for each rotational speed. The 
estimated pressure difference started at 0.14 MPa for a rotational speed of 340 rev/s and 
went up to 0.3 MPa at 500 rev/s. The overall blade probability of failure is presented in 
Figure (5.11) as a function of the disk rotational speed. The global blade behaviour is 
compared with the failure probability resulting exclusively from the action of the 
centrifugal force. The combined effect of centrifugal force and pressure difference 
obviously results in higher failure probabilities for each fixed value of rotational speed.  

5.2.1. MOST PROBABLE FAILURE LOCATIONS 

The analysis presented in this chapter is essential for accurate prediction of brittle 
failure initiated in components containing random flaws and subjected to complex stress 
states. The approach proposed in this work can also be used to identify the regions in 
the component that are more likely to fracture. 

 

Figure (5.12) for example, shows the different locations of fracture initiation recorded 
during the Monte Carlo simulation at a rotational speed of 400 rev/s. A higher density 
of crack locations initiating fracture indicates a higher failure probability of that part of 
the component. Critical conditions are not always encountered at the point of maximum 
stress, but are also found in a region where a lower stress is spread over a large volume. 
In particular, in the present case, although the highest stress was found at the blade 
trailing edge, a substantial contribution to the failure probability appears also to come 
from the turbine leading edge, where the stress is smaller but is associated with a larger 
volume. Traditional design methodologies do not take into consideration this 
contribution to the probability of failure. 
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Figure 5.12  Failure locations 

This condition of a large part of the component contributing to the overall probability 
of failure becomes even more pronounced when the crack size COV increases. As 
Figure (5.13) shows, by increasing this parameter by 20%, failure initiation sites 
progressively spread throughout the bulk of the component. In these circumstances, 
larger flaws may be located in the upper part of the blade and be critical even under the 
lower stresses characterising this area. 

The opposite effect is encountered when the variability of the defect size, described 
by the log-normal distribution, is reduced. By reducing the COV by one fifth of its 
initial value, only zones characterised by a high stress substantially contribute to the 
total probability of failure (Figure 5.14). 
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The present methodology not only allows one to adequately predict the reliability on 
demand of a highly complex component, but can also be used to analyse how the 
component’s strength distribution responds to a variation in design parameters and 
material properties. A reduction of the flaw average size obviously produces significant 
enhancement in component’s strength. If a strict quality control is applied to monitor 
material properties especially in the most critical regions of the component (trailing and 
leading edges in the case of a turbine blade), substantial reliability improvements can be 
achieved.  Alternative approaches can be employed depending on the type of load to 
which a component is subjected. For relatively uniform stress states, the maximum 
scatter of the crack length should be kept under control, while, for stress fields 
characterised by steep gradients, the average defect size is the most significant 
parameter and should be closely monitored. Also, depending on the magnitude of the 
flaw size COV, variable portion of the component volume should be subjected to 
careful scrutiny. 

Figure 5.13  Failure locations for 
higher values of COV 

Figure 5.14  Failure locations for 
lower values of COV 
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5.3. Design Modifications 

The final section of this chapter illustrates how the Monte Carlo approach developed 
in this work can be employed to identify opportune design modifications, whose 
implementation could result in significant improvements in a component’s reliability, 
and to quantify the actual changes that such modifications produce on the probability of 
failure. 

A rather common design solution that is often used in turbine blade manufacturing, in 
order to optimise material usage and improve structure performances, is the tapering of 
the blade along its height. This configuration allows a reduction in the component’s 
mass and consequently the magnitude of the centrifugal force to which the blade is 
subjected. By following this strategy, despite the slight increase in rotational speed that 
would be required to obtain the same power output as from a straight blade (due to the 
reduction in the lifting surface area) sections in proximity of the blade root, which are 
the most critical from a structural perspective, experience a substantial decrease in 
maximum axial stress.  

 

          

Figure 5.15  Tapered blade geometry Figure 5.16  Tapered blade finite 
element mesh 
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Component’s geometry was therefore modified with the intent of assessing the 
improvement in reliability resulting from blade tapering. The new geometry is shown in 
Figure (5.15), together with the corresponding finite element mesh, composed of 28,353 
tetrahedrical elements, employed in FEA calculations (Figure 5.16). The reduction in 
blade cross-section area is linear from root to tip and reaches a maximum value of 20% 
at the blade tip. 

Several solutions of the stress field were computed for a wider range of rotational 
speeds (from 340 rev/s to 640 rev/s) than that considered for the original design. The 
results obtained for two representative cases characterized by rotational speeds of 360 
rev/s (left-hand side) and 460 rev/s (right-hand side) are shown in Figure (5.17). The 
reduction in maximum principal stress is clearly visible when comparing Figure (5.17) 
with Figure (5.3), where the stress distributions relative to the same rotational speeds 
were displayed for a straight blade. 

 

Figure 5.17  Stress distributions in tapered turbine blade  for rotational speeds of 360 rev/s 
and 460 rev/s 
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When considering the centrifugal force as the only load to which the blade is 
subjected, the significant reduction in stress levels experienced throughout the 
component volume has a direct beneficial effect on the strength distribution of the 
tapered turbine blade (Figure 5.18). In fact, for the same level of reliability, the increase 
in maximum admissible rotational speed that was estimated via the Monte Carlo 
simulation is of about 20%. 
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Figure 5.18  Tapered blade strength distribution relative to a centrifugal load 

On the other hand, the opposite behaviour was observed when analysing the response 
to a pressure load. The reduction in area of a tapered blade entails smaller moments of 
inertia of the cross-sections and therefore results in higher values of stress when the 
component is subjected to a bending moment. In particular, while the stress experienced 
in proximity of the blade root is not affected by tapering, moving towards the blade tip 
cross-sections are progressively characterised by lower values of the moment of inertia 
and therefore experience higher stress levels. Since the whole component volume 
contributes to the total failure probability, blade tapering has a negative effect on the 
estimated probability of failure relative to a pressure load (Figure 5.19).  

In general, the predominant effect resulting from blade tapering is the reduction in 
stress due to the centrifugal force. The strength distribution under the combined action 
of the centrifugal and the pressure load moves towards higher values of rotational speed 
(Figure 5.20). In particular, for the same probability of failure of about 0.5%, the 
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maximum admissible rotational speed changes from 370 rev/s for a straight blade to 400 
rev/s in the case of a tapered blade. 
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Figure 5.19  Tapered blade strength distribution relative to a pressure load 

TAPERED BLADE STRENGTH   - OPERATING CONDITIONS -

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540

Rotational Speed   [Rev/s]

P f

tapered blade original design  

 

Figure 5.20  Tapered blade strength distribution relative to operating conditions (combined 
action of centrifugal and pressure load) 
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6 PROBABILISTIC STUDY OF CLEAVAGE IN STEEL 
STRUCTURES 

The most accredited model of cleavage fracture in steel structures is the so-called 
RKR model [Ritchie, Knott and Rice,1973]. It postulates that cleavage fracture in mild 
steels occurs (principally at low temperatures) when the local tensile stress ahead of a 
sharp crack exceeds the critical value of material resistance over a characteristic 
distance. A subsequent study [Curry and Knott, 1979] gave a probabilistic explanation 
of the RKR characteristic distance, by assuming that a statistical distribution of carbide 
particles exists ahead of the crack tip. The size of the area in which high stress levels 
must develop for brittle failure to occur depends on the probability that a sufficient large 
carbide particle is found in this region.   

The approach mentioned above is extended in this work by applying the probabilistic 
framework, based on the weakest link concept, developed in the previous chapters. 
Monte Carlo simulation is employed to sample the material ahead of the crack tip and 
gather information about the likelihood of a sufficient large carbide particle to be 
located in this area. The statistical properties of the carbide population and, in particular, 
the mean number density and the size distribution of particles, can be obtained by image 
analysis.  

The carbide films and particles, usually located at the grain boundaries, are readily 
cracked by slip bands in the ferrite matrix since the carbide has a low effective surface 
energy and is brittle. The critical step in cleavage may then become the propagation of 
the carbide crack into the more plastic ferrite [Petch, 1986]. As already attempted in 
other studies, this means that carbide particles can be effectively assimilated to 
microcracks, whose number and size properties can be directly derived from the 
originating population. In the case considered here however, microcracks are 
characterised by a shape factor that generally differs from that of a penny-shaped or a 
through-thickness crack, which were usually assumed in the past. 

In the next sections of this chapter the effectiveness of this methodology will be 
supported by several practical applications. Firstly, the variability in fracture toughness 
of a mild steel will be investigated and the points at which fracture is more probable to 
initiate identified. Then, the strength distribution of a typical steel component will be 
evaluated.  
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6.1. Model Calibration 

6.1.1. MATERIAL PARAMETERS 

 The material considered in this study is a mild carbon steel, AISI 1008, whose main 
mechanical properties [Walsh, 2000] are summarized in Table (6.1). Values for the 
yield stress, σy, and the effective surface energy at -150ºC were obtained by Lin et al. 
[1986a]. As discussed in Chapter-2, the effective surface energy is calculated by adding 
the material surface energy γs to the energy dissipated by local plastic flow γp. The sum 
of these two quantities gives the total energy per unit area that is required by the crack 
to propagate and create new free surfaces. The effective surface energy is immediately 
related to the critical strain energy release rate, Gcrit, by the simple expression:                     

Gcrit = 2·(γs+γp) = 46 J/m2. 

The statistical distribution of carbide particle sizes was also estimated by Lin et al. 
[1986a] through an image analyser. A plot of the relative frequencies measured for each 
size interval is given in Figure (6.1). The estimated average particle size is 2.5 μm while 
the standard deviation is 1.7 μm. In order to use this experimental observation into the 
Monte Carlo engine, the empirical histogram shown in Figure (6.1) was fitted with a 
log-normal probability distribution with parameters μ = -6.1815 and σ = 0.6165 (the 
mean and the standard deviation of log(X) respectively). This analytical function was 
employed to sample the size of randomly located and oriented microcracks ahead of the 
macrocrack tip.  

 

MECHANICAL PROPERTIES OF CARBON STEEL: AISI 1008 

Modulus of Elasticity, E 210 GPa

Shear Modulus 82 GPa

Poisson Ratio, ν 0.27

Yield Strength (at -150ºC), σy 520 MPa 

Density 7871 Kg/m3

Effective Surface Energy :γp+γs 23 J/m2

Table 6.1  Mechanical properties of mild steel: AISI 1008 
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Figure 6.1  Size distribution of carbides measured with an image analyser in AISI 1008 
mild steel [Lin et al. 1986a] 

6.1.2. SPECIMEN GEOMETRY 

The expected value of material fracture toughness was computed by simulating 
fracture conditions on a typical single edge notched bend test-piece (Figure 6.2). A 
fatigue macrocrack with a length of 12 mm was assumed to pre-exist in the component. 
The geometry considered corresponds to a ratio between initial crack length and 
specimen width of a0/W = 0.6. Fracture toughness values relative to this configuration 
were computed by the following formula [Ritchie et al.,1973]: 

�( )3/ 2
0

IC
Y MK

B W a

⋅
=

⋅ −
       (6.1) 

where M is the applied bending moment at failure, W and B are the specimen width 
and thickness respectively, Y is a calibration parameter that for a0/W ≥ 0.6 can be 

assumed equal to 4 and � 0a  is the effective crack length which incorporates the effect of 

plasticity. In particular � 0a = a0 +ry, where ry is the plastic radius given by: 
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For the geometry considered the bending moment M is given by M = 1/2·l·W, where l 
is the fracture load.  

The stress analysis ahead 
of the crack tip was 
performed through an 
elastic/plastic model which 
was already used by other 
authors in similar analyses 
[Curry and Knott, 1976]. 
This solution of the stress 
field gives the stress 
intensification (the ratio of 
maximum tensile stress to 
uniaxial yield stress) at a point x ahead of the crack tip as a function of the 
dimensionless quantity x/(K/σy)2. These values were derived directly from the reference 
given above. The local stress obtained in this way was employed to establish if a 
carbide particle, randomly generated ahead of the crack tip, initiates failure. Due to its 
random orientation, the crack is subjected to a mixed-mode type of failure. Most of the 
analyses conducted in the past have applied a simple maximum normal stress criterion 
to determine critical conditions for crack propagation. In this study, the empirical 
mixed-mode fracture criterion previously discussed is employed.  

6.1.3. FRACTURE TOUGHNESS RESULTS 

Several levels of load were considered in the analysis and the corresponding values of 
fracture toughness were calculated via equation (6.1). For each load, the fraction of 
configurations resulting in a failure was computed and assumed as an estimate of the 
probability of failure.  The average value of fracture toughness was then determined via 
numerical integration of this probability distribution. A value of 28.1 MPa·√m was 
obtained, which compares reasonably well with the value of about 30 MPa·√m 
measured experimentally by Lin et al. [1986b]. The full probability distribution of the 
fracture toughness is given in Figure (6.3) in terms of both cumulative distribution, 
CDF, and density function, pdf. The standard deviation associated with this distribution 

Figure 6.2  Single edge notched bend test-piece 
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is of 2.9 MPa·√m. These estimates were obtained by assuming a crack shape factor, Y, 
equal to 1.27. 

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

20 21 22 23 24 25 26 27 28 29 30 31 32 33

FRACTURE TOUGHNESS   [MPa      m]

PR
O

B
A

B
IL

IT
Y

:  
C

D
F 

  

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

6.0%

PR
O

B
A

B
IL

IT
Y

:  
   p

fd

CDF  pdf  

 

Figure 6.3  Fracture toughness distribution computed via Monte Carlo simulation 

6.1.4. FRACTURE INITIATION LOCATIONS 

Together with the average value of fracture toughness, the model allows one to 
determine the most probable point for fracture to initiate. As explained in Chapter-3, 
when failure locations are investigated via Monte Carlo simulation, equation (3.1) 
cannot be employed. On the contrary, a full simulation of the total number of flaws 
(modelled via a Poisson process) must be performed. This is to be able to identify the 
most critical cracked carbide particle among all those that could possibly trigger 
fracture. Sampling a single defect would allow one to compute the failure probability of 
the component (first by getting Fc and then plugging it into equation 3.1), but would not 
give information about the point at which failure is more likely to occur. 

The histogram of the failures found for a 1,000 sample Monte Carlo simulation is 
shown in Figure (6.4). The average distance of the fracture initiation point from the 
crack tip was estimated to be 146.5 μm. 

·√ 
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Figure 6.4  Fracture initiation locations estimated by Monte Carlo simulation 

6.2. Strength Distribution of Notched Components 

In engineering structures and components, notches are difficult to avoid and some 
notch-like geometries are necessary for structure design. Notches produce stress 
intensifications as well as elastic and plastic constraints, which typically result in 
triaxial stress states (plane strain conditions). All these factors promote cleavage 
fracture. The design methodology of components operating at low temperatures and 
presenting geometrical features which may lead to brittle fracture must reflect the 
statistical nature of the cleavage process. As previously discussed, brittle failure can 
initiate in proximity of a stress intensification feature (such as a crack or a notch), 
particularly when material yielding capability is limited by mechanical constraints or 
environmental conditions. Under these circumstances, in the case of steels, the 
population of microcracks nucleating at grain boundary carbide particles can cause 
global failure. A brief example of a component, in which the presence of severe stress 
intensification features considerably affects its strength properties, is presented in the 
next sections. 
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6.2.1. COMPONENT GEOMETRY AND LOADING CONDITIONS 

The component considered in this analysis is a typical steel shaft for power 
transmission. Component’s geometry is shown in Figure (6.5). The picture also shows 
the way the shaft is attached to its supports. The shoulders to which bearings are 
connected present a notch-like geometry to allow the change in shaft diameter. These 
parts of the component act as stress intensification features and, as it will be shortly 
clear, are liable to brittle fracture.  

 

Figure 6.5  Shaft geometry (left) and displacement  constraints represented by the contact 
surfaces between bearings and shaft shoulders (right) 

A single loading condition was considered in the present investigation. This is 
represented by a uniform transversal force acting on one side of the lateral surface of the 
shaft (along the y direction). The bending moment Mx produced by this load varies from 
a minimum value at the central section of the shaft to a maximum at the extremities, 
where the constraints due to the bearings are applied. The stress in a cross section 
mainly comprises a normal stress in the axial direction z, together with a shear stress τzy 
due to the transversal force. The finite element method was used once again for the 
stress analysis of the body.  The component was divided into a large number of 
tetrahedral elements whose displacement interpolation function prescribes a constant 
stress within each element. The displacement boundary conditions of the model were 
defined through contact surfaces between the bearings, assumed to be fixed in the space, 
and the shaft, along the shaft shoulders. This type of constrain represents a Herzian 
contact between the two solids (bearing-shaft) and prevents the two bodies from 
breaking into each other, while allows them to move apart. An axial rotation constraint 
was also applied to one end of the shaft to simulate the power transmission to the user. 

The typical distribution of the Von Mises stress resulting from the application of a 
total load of 350KN, is shown in Figure (6.6). Clearly, the most stressed regions are in 
proximity of the bearing connections. 
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Figure 6.6  Von Mises stress distribution in a steel shaft subjected to transversal load 

During the Monte Carlo simulation, the elements of the FEA mesh are randomly 
selected with a probability proportional to their volume. At each trial, the element 
selected identifies the location of the random defect and the stress experienced at this 
point is the stress remotely acting on the crack.  

6.2.2. COMPUTATION OF THE STRENGTH DISTRIBUTION 

Several finite element analyses were conducted for a transversal load varying in the 
range 200 – 500 kN. A Monte Carlo simulation was then run for each of these loading 
conditions. Material properties are the same as those considered in the previous 
investigation. In particular, crack size was assumed to follow the log-normal 
distribution previously determined. The component strength distribution (Figure 6.7) 
was therefore determined for three different values of the crack shape factor, Y.  

As seen before, the critical locations characterized by a high probability of triggering 
brittle fracture can be identified by the simulation procedure. Figure (6.8) shows the 
relative frequency of failures occurring in each element during the random generation of 
defects for the loading conditions considered in Figure (6.6). The spatial location of 
these elements in the component structure is displayed in Figure (6.9). Only a very 
small number of elements contribute to failure. This is a direct consequence of the high 
concentration of stresses that characterises this type of component.  
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Figure 6.7  Strength distribution of a steel shaft for different values of crack shape factor 
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Figure 6.8  Failure locations expressed in terms of FEA element IDs 
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Figure 6.9  Failure locations is a steel shaft subjected to transversal load
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7 CONCLUSIONS AND SUGGESTIONS FOR FURTHER 
WORK 

7.1. Conclusions 

A computer-simulation based model has been developed for determining the 
probability of failure initiated by random defects and applied to study the strength 
properties of brittle materials and components. The methodology proposed in this work 
can be employed by structural engineers as an effective tool to assess the reliability of 
brittle components, to estimate fracture strength sensitivity to changes in the main 
material properties and loading parameters, to identify weak spots in the component 
structure and to design out or modify appropriately geometrical features that are at the 
origin of high probabilities of failure. 

Three basic steps are necessary for a full evaluation of the failure probability of a 
mechanical component subjected to specified loading conditions. These are: 

1. The determination of material microstructural features. In particular, the mean 
number density and the size distribution of volume-embedded defects must be 
estimated. In Chapter-4, it was shown how image analysis techniques can be used 
for this purpose. The other material mechanical properties, such as elastic modulus 
and critical strain energy release rate, are assumed to be deterministic and can be 
found in the literature or measured by standard testing methods. A value for the 
flaw shape factor is not arbitrary selected among those most generally used 
(associated with a penny-shaped or a through-thickness crack for example), but 
evaluated through the calibration of the model against available experimental data 
of fracture stresses. 

2. To compute the entire stress field produced in the component by the applied 
load. This operation can be performed by using analytical formula derived from the 
theory of elasticity, if the geometry considered is simple enough for such solutions 
to be applicable, or via finite element analysis for more complex configurations. 

3. To import the stress analysis results into the Monte Carlo engine and run the 
simulation. The combined use of statistical sampling techniques with an appropriate 
fracture criterion allows one to estimate the individual probability of triggering 
fracture, Fc, which represents the failure probability given that a single defect is 
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present in the component. This parameter can then be substituted into equation (3.1) 
to calculate the total failure probability of the component. 

The results obtained from the application of the proposed methodology to a series of 
key studies have suggested the following conclusions:  

 The traditional design approach based on the maximum admissible level of 
the highest principal stress, or of any other equivalent stress obtained as a 
combination of the three principal stresses, fails to predict failure conditions for 
brittle materials and does not guarantee component’s reliability, unless very large 
safety factors are applied. The limitations existing in the current methodology can 
be overcome by the application of a probabilistic approach which expresses 
component’s strength as a quantity related to the probability of failure under 
specified loading conditions. 

 The probabilistic model of brittle fracture developed in this work can be 
calibrated very satisfactorily to experimental data of fracture stresses by choosing 
an appropriate value of the crack shape factor. This parameter in used to calculate 
the stress intensity factors associated with all cracks belonging to the random flaw 
population characterising the microstructure of the material under consideration. 

 Significant differences in the strength properties measured for the same 
component under different loading conditions (simple tension vs. 3-point bending) 
are attributable to what is generally known as the size effect. This term does not 
simply indicate that the probability of failure increases when increasing 
component’s volume, but, most importantly, refers to the dependence of the 
strength distribution on the size of the area on which a given stress operates. 

 Differences in the sensitivity of the strength distribution to changes in the 
material microstructure parameters were observed for different loading conditions.  
In particular, the failure probability of a component subjected to a uniform stress 
state is characterised by high sensitivities to variations in the COV of the crack size 
distribution. On the other hand, in the presence of stress gradients, the main 
parameter in controlling component strength properties is the average defect size. 

 The application of the empirical mixed-mode fracture criterion (equation 
3.13) within the Monte Carlo framework gave the best results in terms of torsional 
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strength. In particular, the ratio between average tensile strength and average 
torsional strength obtained by applying this fracture criterion was the closest to the 
value measured experimentally. Although this approach for predicting critical 
conditions for fracture initiation does not provide information about the direction of 
crack propagation, it is generally applicable to any crack geometry and resulted to 
be the most accurate in modelling crack sensitivity to the shear stress. 

 The ratio between the average tensile strength and the torsional strength is 
practically insensitive to changes in the flaw mean size. On the other hand, an 
approximately linear dependence on the COV of the flaw size distribution was 
observed. 

 The effects of stress biaxiality on failure probability are rather small for low 
values of the ratio between the two principal stresses B = σ2/σ1, with σ1 > σ2.  In 
particular, when B is smaller than 0.5, the relative change in the failure probability 
between the uniaxial and the biaxial case observed for a fixed level of the maximum 
principal stress, σ1, is less than 5%.  On the other hand, for values of B above the 
threshold of 0.5, shifts in the biaxial strength distribution are significant and 
directed towards lower levels of maximum stress. 

 A new failure criterion for brittle components subjected to plane stress states 
was proposed. The criterion is based on the maximum admissible individual 
probability of failure and can be applied to guarantee a target level of reliability 
once the defect mean number density of the material employed and the component’s 
volume are known. 

 Studying the behaviour of a ceramic turbine blade, the differences in the 
response to the stresses originated by blade rotation and gas pressure gradient have 
been analysed. The proposed approach has been used to assess critical physical 
parameters that affect the probability of fracture. It was also demonstrated how 
appropriate modifications of the component geometrical features can entail 
substantial improvements in terms of structural reliability. 

 The results obtained from the reliability analysis of a ceramic turbine blade 
indicate that a significant contribution to the total probability of failure comes from 
a large part of the component and not only from the region of maximum stress. For 
this reason, it is not adequate to predict reliability based only on the most highly 
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stressed point, but the entire solution of the stress field must be considered in the 
design assessment process. The size of the volume involved in promoting failure 
depends on the loading conditions and the defect size variability. 

 A probabilistic approach based on equation (3.1) and Monte Carlo simulation 
was also successfully applied to model fracture toughness variability of mild steels 
at low temperatures. Fracture behaviour was assumed to be controlled by a 
statistical population of carbide particles assimilated to volume-embedded 
microcracks. The stress intensification generated in proximity of a macrocrack or a 
notch-like geometry interacts with this flaw population until catastrophic failure is 
triggered by the most critical particle. The average distance from the crack tip at 
which fracture initiates was investigated. The strength distribution of a steel shaft 
subjected to a transversal load was also analysed under the same assumptions. 

7.2. Suggestions for Further Work 

The analysis conducted in this work has allowed the author to gain interesting 
insights into the fracture behaviour of brittle materials and a better understanding of the 
effect that random factors have on the strength properties of brittle structures. At same 
time however, it has highlighted the necessity for further research and offered ideas for 
future investigations. 

The first issue that needs to be addressed concerns the mixed-mode fracture criterion 
employed to determine critical conditions for crack propagation. Although the empirical 
criterion (equation 3.13) provided satisfactory results in predicting the torsional strength 
of alumina cylindrical rods, its validity to general stressing conditions has still to be 
rigorously proved. Based on experimental evidence, it has been argued that different 
expressions should be employed to identify the critical combination of stresses that 
promotes failure, depending on the stress state analysed. In particular, a mixed-mode 
fracture criterion of general validity has not been developed yet. In this respect, the 
advantage of using a simulation based model, compared to analytical formulations, is 
that it allows to easily employ a different fracture criterion into the Monte Carlo 
algorithm without affecting other elements of the model. The most suitable criterion can 
then be chosen depending on personal experience and the specifics of the application. 

The next step in extending the methodology proposed here would be to consider the 
contribution to the fracture process coming from surface flaws. In our analysis we have 
been concerned exclusively with volume-embedded defects. However, in some cases, 
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fracture is initiated at superficial defects such as scratches or corrosion induced cracks. 
The approach based on the combined use of equation (3.1), FEA and Monte Carlo 
simulation is generally applicable to any type of defect as long as the correct 
formulation of the stress intensity factors and the fracture criterion is employed. The 
probability of failure induced by superficial defects can be estimated by simply 
sampling random cracks across the whole component surface and checking whether 
they undergo unstable propagation. The resulting individual probability of failure Fc is 
then plugged into a equation (3.1) where the component’s volume is replaced by its 
surface and the defect mean number density is expressed per unit area. 

Multi-factor models, where two or more parameters defining crack geometry are 
simultaneously simulated, could also be of some interest. This approach would 
obviously require a much deeper knowledge of the material microstructure, but could 
provide a deeper understanding on how random variables control the fracture event. The 
difficulties in implementing such strategy mainly lie in the fact that fracture conditions 
under arbitrary triaxial stress states cannot be easily determined for complex crack 
geometries. 

Finally, the methodology developed in the course of this work could be extended in 
the near future to include the time dimension of reliability. Fast fracture is concerned 
with the reliability on-demand of a structure, but it does not allow one to make 
predictions on the component’s expected life. Time dependent reliability models would 
need to deal with stable crack propagation and answer to the question of if and how 
material properties deteriorate after several loading cycles. 
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APPENDICES 

A.1. Random Number Generator Classes in C++ 

// Random_Sampling.h file 
//***** CLASSES TO SAMPLE RANDOM VARIATES FROM SEVERAL PROBABILITY DISTRIBUTIONS *************** 
 
 //  (C) 2004 Giuseppe Iacopino 
 //  PhD Student 
 //  Cranfield University, SIMS 
 //  Reliability Engineering and Risk Management Centre 
 
#ifndef SAMPLING_FUNCTIONS_H 
#define SAMPLING_FUNCTIONS_H 
#define PI 3.141592653589 
#define SQRTPI 2.506628274631 
#define IA 16807 
#define IM 2147483647 
#define AM (1.0/IM) 
#define IQ 127773 
#define IR 2836 
#define NTAB 32 
#define NDIV (1+(IM-1)/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
#include <math.h> 
#include<vector> 
 
 
//********************************************************************************************************* 
//********************** THIS CLASS ALLOWS TO GENERATE UNIFORM VARIATES IN (0,1) ********************* 
//********************************************************************************************************* 
class Random_Generator 
 { 
 private: 
  const long int  m, m1,  m2; 
  const long int a12, a13, a21, a23, q12, q13, q21, q23, r12, r13, r21, r23; 
  const double Invmp1; 
  static long int seed; 
  static long int x10, x11, x12, x20, x21, x22; 
 
 public: 
   
  // CONSTRUCTOR OF THE CLASS "Random_Generator": DEFINES THE CONSTANTS IN THE GENERATOR  
  // AND THE INITIAL SEED 
  Random_Generator(long int initial_seed) : m(2147483647), m1(2147483647),  m2(2145483479), a12(63308), 
        a13(-183326), a21(86098), a23(-539608), q12(33921), q13(11714), q21(24919),  
       q23(3976), r12(12979), r13(2883), r21(7417), r23(2071), Invmp1(4.656612873077393e-10) 
          
   { 
   seed = initial_seed; 
   x10 = -initial_seed; 
   x11 = (int) (1033007.0*(1712.0*x10 - ((double)m)*((int)(1712.0*x10/m))) - 
    ((double)m)*((int)(1033007.0*(1712.0*x10 - ((double)m)*((int)(1712.0*x10/m)))/m))); 
   x12 = (int) (1033007.0*(1712.0*x11 - ((double)m)*((int)(1712.0*x11/m))) -  
    ((double)m)*((int)(1033007.0*(1712.0*x11 - ((double)m)*((int)(1712.0*x11/m)))/m))); 
   x20 = (int) (1033007.0*(1712.0*x12 - ((double)m)*((int)(1712.0*x12/m))) -  
    ((double)m)*((int)(1033007.0*(1712.0*x12 - ((double)m)*((int)(1712.0*x12/m)))/m))); 
   x21 = (int) (1033007.0*(1712.0*x20 - ((double)m)*((int)(1712.0*x20/m))) -  
    ((double)m)*((int)(1033007.0*(1712.0*x20 - ((double)m)*((int)(1712.0*x20/m)))/m))); 
   x22 = (int) (1033007.0*(1712.0*x21 - ((double)m)*((int)(1712.0*x21/m))) -  
     ((double)m)*((int)(1033007.0*(1712.0*x21 - ((double)m)*((int)(1712.0*x21/m)))/m))); 
   } 
 
 
// MEBMBER FUNCTION TO UPDATE THE INITIAL SEED OF THE GENERATOR 
   void set_new_seed(long int new_seed)  
   { 
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   seed = new_seed; 
   x10 = -new_seed; 
   x11 = (int) (1033007.0*(1712.0*x10 - ((double)m)*((int)(1712.0*x10/m))) - 
    ((double)m)*((int)(1033007.0*(1712.0*x10 - ((double)m)*((int)(1712.0*x10/m)))/m))); 
   x12 = (int) (1033007.0*(1712.0*x11 - ((double)m)*((int)(1712.0*x11/m))) -  
    ((double)m)*((int)(1033007.0*(1712.0*x11 - ((double)m)*((int)(1712.0*x11/m)))/m))); 
   x20 = (int) (1033007.0*(1712.0*x12 - ((double)m)*((int)(1712.0*x12/m))) -  
    ((double)m)*((int)(1033007.0*(1712.0*x12 - ((double)m)*((int)(1712.0*x12/m)))/m))); 
   x21 = (int) (1033007.0*(1712.0*x20 - ((double)m)*((int)(1712.0*x20/m))) -  
    ((double)m)*((int)(1033007.0*(1712.0*x20 - ((double)m)*((int)(1712.0*x20/m)))/m))); 
   x22 = (int) (1033007.0*(1712.0*x21 - ((double)m)*((int)(1712.0*x21/m))) -  
     ((double)m)*((int)(1033007.0*(1712.0*x21 - ((double)m)*((int)(1712.0*x21/m)))/m))); 
   } 
 
   // "real_random()" AND "real_random_ecuyer()" ARE TWO MEMBER FUNCTIONS THAT RETURN  
   // VARIATES UNIFORMLY DISTRIBUTED IN (0,1)  
   double real_random(), real_random_ecuyer(); 
 
   double display_seed() {return seed;} 
 
 }; 
 
//*** INITIALISE STATIC MEMBERS ********** 
long Random_Generator::seed = 0; 
long Random_Generator::x10  = 0; 
long Random_Generator::x11  = 0; 
long Random_Generator::x12  = 0; 
long Random_Generator::x20  = 0; 
long Random_Generator::x21  = 0; 
long Random_Generator::x22  = 0; 
 
 
//******* MEMBER FUNCTION TO GENERATE UNIFORM RANDOM NUMBERS IN (0,1) ******** 
//******* ACCORDING TO PARK &  MILLER GENERATOR ********************************* 
//* FROM: NUMERICAL RECIPES IN C, P. TEUKOLSKY et al., CAMBRIDGE UNIVERSITY PRESS, 1992 
 double Random_Generator:: real_random() 
 { 
  int j; 
  long k; 
  static long iy=0; 
  static std::vector<long int> iv(NTAB); 
  double temp; 
   if (seed <= 0 || !iy)     //INITIALIZE 
   { 
   if (- seed < 1) seed=1;    //BE SURE TO PREVENT SEED = 0 
    else seed = -seed; 
   for (j=NTAB+7;j>=0;j--)   //LOAD THE SHUFFLEE TABLE (AFTER 8 WARM-UPS)  
    { 
    k=seed/IQ; 
    seed=IA*(seed-k*IQ)-IR*k; 
    if (seed < 0) seed += IM; 
    if (j < NTAB) iv[j] = seed; 
    } 
   iy=iv[0]; 
   } 
 
  k=seed/IQ;      //START HERE WHEN NOT INITIALIZING 
  seed=IA*(seed-k*IQ)-IR*k; 
  if (seed < 0) seed += IM; 
  j=iy/NDIV;      //WILL BE IN THE RANGE 0 TO NTAB-1 
  iy=iv[j];    //OUTPUT PREVIOUSLY STORED VALUE AND REFILL THE SHUFFLE TABLE 
  iv[j] = seed; 
  if ((temp=AM*iy) > RNMX) return RNMX; //BECAUSE USERS DON’T EXPECT ENDPOINT VALUES 
  else return temp; 
  } 
 
//******* MEMBER FUNCTION TO GENERATE UNIFORM RANDOM NUMBERS IN (0,1) ********* 
//******* ACCORDING TO ECUYER GENERATOR ****************************************** 
 double Random_Generator:: real_random_ecuyer() 
  { 
  long int h, p12, p13, p21, p23; 
 
  h=x10/q13; p13= -a13*(x10-h*q13)-h*r13; 
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  h=x11/q12; p12= a12*(x11-h*q12)-h*r12; 
  if(p13<0) p13=p13+m1; if(p12<0) p12=p12+m1; 
  x10=x11; x11=x12; x12= p12-p13; if(x12<0) x12=x12+m1; 
 
  h=x20/q23; p23= -a23*(x20-h*q23)-h*r23; 
  h=x22/q21; p21= a21*(x22-h*q21)-h*r21; 
  if(p23<0) p23=p23+m2; if(p21<0) p21=p21+m2; 
  x20=x21; x21=x22; x22= p21-p23; if(x22<0) x22=x22+m2; 
 
  if(x12<x22) return (double)(x12-x22+m1)*Invmp1; else return (double)(x12-x22)*Invmp1; 
  } 
 
//********************************************************************************************************* 
//********************************************************************************************************* 
 
 



  

- 142 - 

//********************************************************************************************************* 
//************* THIS CLASS ALLOWS TO GENERATE RANDOM UNIVARIATES ACCORDING TO NORMAL ********* 
//************* LOGNORMAL AND OTHER DISTRIBUTIONS, USING PARK & MILLER GENERATOR *************** 
//********************************************************************************************************* 
class Sampling 
 { 
 private: 
  const double pi; 
  const double sqrt_2_pi; 
  Random_Generator generator_1; 
 public: 
  Sampling(long int first_seed); 
  void set_new_seed(long int new_seed); 
  double Normal_pdf(double, double, double); 
  double LogNormal_pdf(double, double, double); 
  double Normal_Generator(double, double); 
  double LogNormal_Generator(double, double); 
  int Poisson_Process(double, double); 
 }; 
 
//*************** CONSTRUCTOR OF THE CLASS "Sampling": DEFINES THE INITIAL SEEDS *********************** 
//*************** OF THE RANDOM GENERATORS AND OTHER CONSTANTS *********************************** 
 Sampling::Sampling(long int first_seed) : generator_1(first_seed), pi(3.14159), sqrt_2_pi(sqrt(2*pi)) 
         {} 
 
//***** MEBMBER FUNCTION TO UPDATE INITIAL SEEDS OF THE GENERATOR ***** 
 void Sampling::set_new_seed(long int new_seed)   
  {  
  generator_1.set_new_seed(new_seed); 
  } 
 
//***** MEMBER FUNCTION THAT RETURNS THE PDF OF A NORMAL DISTRIBUTION ***** 
 double Sampling::Normal_pdf(double x, double mean, double deviation) 
  { 
  double pdf; 
  pdf=(1/(sqrt_2_pi*deviation))*exp(-(pow((x-mean),2)/(2*pow(deviation,2)))); 
  return pdf; 
  } 
 
//***** MEMBER FUNCTION THAT RETURNS THE PDF OF A LOG-NORMAL DISTRIBUTION ***** 
 double Sampling::LogNormal_pdf(double x, double mu, double sigma) 
  { 
  double pdf; 
  pdf=(1/(sqrt_2_pi*sigma*x))*exp(-(pow((log(x)-mu),2)/(2*pow(sigma,2)))); 
  return pdf; 
  } 
 
//*********** MEMBER FUNCTION TO GENERATE NORMAL VARIATES ***** 
//* FROM: NUMERICAL RECIPES IN C, P. TEUKOLSKY et al., CAMBRIDGE UNIVERSITY PRESS, 1992 
 double Sampling::Normal_Generator(double mean, double deviation) 
  { 
  static int iset=0; 
  static double gset; 
  double fac,rsq,v1,v2; 
  if (iset == 0 || generator_1.display_seed() < 0)  //WE DON’T HAVE AN EXTRA DEVIATE, OR IT’S FIRST RUN 
   {  
   do { 
    v1=2.0* generator_1.real_random()-1.0;   //PICK TWO UNIFORM NUMBERS 
    v2=2.0* generator_1.real_random()-1.0; 
    rsq=v1*v1+v2*v2;      //SEE IF THEY ARE IN THE UNIT CIRCLE 
    } 
   while (rsq >= 1.0 || rsq == 0.0); //AND IF THEY ARE NOT, TRY AGAIN 
   fac=sqrt(-2.0*log(rsq)/rsq);  //MAKE BOX-MULLER TRANSFORMATION TO GET NORMAL 
DEVIATES 
   gset=v1*fac; 
   iset=1;      //SET FLAG. 
   return (mean+deviation*v2*fac); 
   }  
  else        //WE HAVE AN EXTRA DEVIATE HANDY 
   {  
   iset=0;      //SO UNSET THE FLAG 
   return (mean+deviation*gset);  //AND RETURN IT 
   } 
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  } 
 
//******** MEMBER FUNCTION TO GENERATE LOG-NORMAL VARIATES *****  
 double Sampling::LogNormal_Generator(double mu, double sigma) 
  { 
  double standard; 
  double variate; 
  standard = Normal_Generator(0.0, 1.0); 
   variate = exp(standard*sigma+mu); 
 
  return variate; 
  } 
 
//*********** MEMBER FUNCTION TO GENERATE THE NUMBER OF OCCURRENCES **************************** 
//*********** OF AN EVENT FOLLOWING A HOMOGENEOUS POISSON PROCESS ******************************** 
 int Sampling::Poisson_Process(double density, double limit) 
  { 
  int n=0; 
  double x; 
 
  x = -((1/density)*log(generator_1.real_random())); 
  while (x<=limit)   
   { 
   n++; 
   x = x - ((1/density)*log(generator_1.real_random()));    
   } 
  return n; 
  } 
 
//********************************************************************************************************* 
//********************************************************************************************************* 
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//********************************************************************************************************* 
//************* THIS CLASS ALLOWS TO GENERATE RANDOM UNIVARIATES ACCORDING TO NORMAL ********* 
//************* LOGNORMAL AND OTHER DISTRIBUTIONS, USING ECUYER GENERATOR ********************** 
//********************************************************************************************************* 
class Sampling_Ecuyer 
 { 
 private: 
  const double pi; 
  const double sqrt_2_pi; 
  Random_Generator generator_ecu1; 
 public: 
  Sampling_Ecuyer(long int first_seed); 
  void set_new_seed(long int new_seed); 
  double Normal_pdf(double, double, double); 
  double LogNormal_pdf(double, double, double); 
  double Normal_Generator(double, double); 
  double LogNormal_Generator(double, double); 
  int Poisson_Process(double, double); 
 }; 
 
 
//*************** CONSTRUCTOR OF THE CLASS "Sampling_Ecuyer": DEFINES THE INITIAL SEEDS **************** 
//*************** OF THE RANDOM GENERATORS AND OTHER CONSTANTS *********************************** 
 Sampling_Ecuyer::Sampling_Ecuyer(long int first_seed) : generator_ecu1(first_seed), pi(3.14159), sqrt_2_pi(sqrt(2*pi)) 
            {} 
 
 
//***** MEBMBER FUNCTION TO UPDATE INITIAL SEEDS OF THE GENERATOR ***** 
 void Sampling_Ecuyer::set_new_seed(long int new_seed)   
  {  
  generator_ecu1.set_new_seed(new_seed); 
  } 
 
//******** MEMBER FUNCTION THAT RETURNS THE PDF OF A NORMAL DISTRIBUTION ***** 
 double Sampling_Ecuyer::Normal_pdf(double x, double mean, double deviation) 
  { 
  double pdf; 
  pdf=(1/(sqrt_2_pi*deviation))*exp(-(pow((x-mean),2)/(2*pow(deviation,2)))); 
  return pdf; 
  } 
 
//***** MEMBER FUNCTION THAT RETURNS THE PDF OF A LOG-NORMAL DISTRIBUTION ***** 
 double Sampling_Ecuyer::LogNormal_pdf(double x, double mu, double sigma) 
  { 
  double pdf; 
  pdf=(1/(sqrt_2_pi*sigma*x))*exp(-(pow((log(x)-mu),2)/(2*pow(sigma,2)))); 
  return pdf; 
  } 
 
//*********** MEMBER FUNCTION TO GENERATE NORMAL VARIATES ********************* 
//* FROM: NUMERICAL RECIPES IN C, P. TEUKOLSKY et al., CAMBRIDGE UNIVERSITY PRESS, 1992 
 double Sampling_Ecuyer::Normal_Generator(double mean, double deviation) 
  { 
  static int iset=0; 
  static double gset; 
  double fac,rsq,v1,v2; 
  if (iset == 0)      //WE DON’T HAVE AN EXTRA DEVIATE, OR IT’S FIRST RUN 
   {  
   do { 
    v1=2.0* generator_ecu1.real_random_ecuyer()-1.0;   //PICK TWO UNIFORM NUMBERS 
    v2=2.0* generator_ecu1.real_random_ecuyer()-1.0; 
    rsq=v1*v1+v2*v2;      //SEE IF THEY ARE IN THE UNIT CIRCLE 
    } 
   while (rsq >= 1.0 || rsq == 0.0); //AND IF THEY ARE NOT, TRY AGAIN 
   fac=sqrt(-2.0*log(rsq)/rsq);  //MAKE BOX-MULLER TRANSFORMATION TO GET NORMAL 
DEVIATES 
   gset=v1*fac; 
   iset=1;      //SET FLAG. 
   return (mean+deviation*v2*fac); 
   }  
  else        //WE HAVE AN EXTRA DEVIATE HANDY 
   {  
   iset=0;      //SO UNSET THE FLAG 
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   return (mean+deviation*gset);  //AND RETURN IT 
   } 
  } 
 
//*********** MEMBER FUNCTION TO GENERATE LOG-NORMAL VARIATES *************** 
 double Sampling_Ecuyer::LogNormal_Generator(double mu, double sigma) 
  { 
  double standard; 
  double variate; 
  standard = Normal_Generator(0.0, 1.0); 
   variate = exp(standard*sigma+mu); 
 
  return variate; 
  } 
 
//*********** MEMBER FUNCTION TO GENERATE THE NUMBER OF OCCURRENCES **************************** 
//*********** OF AN EVENT FOLLOWING A HOMOGENEOUS POISSON PROCESS ******************************** 
 int Sampling_Ecuyer::Poisson_Process(double density, double limit) 
  { 
  int n=0; 
  double x; 
 
  x = -((1/density)*log(generator_ecu1.real_random_ecuyer())); 
  while (x<=limit)   
   { 
   n++; 
   x = x - ((1/density)*log(generator_ecu1.real_random_ecuyer()));    
   } 
  return n; 
  } 
 
//********************************************************************************************************* 
//********************************************************************************************************* 
 
#endif 
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A.2. FEA Results Import Classes in C++ 

// FEA_Library.h file 
//*********** CLASS TO READ AND PROCESS FEA INPUT AND OUTPUT DATA FROM NASTRAN FILES ************ 
  
 //  (C) 2004 Giuseppe Iacopino 
 //  PhD Student 
 //  Cranfield University, SIMS 
 //  Reliability Engineering and Risk Management Centre 
 
#ifndef FEA_LIBRARY_H 
#define FEA_LIBRARY_H 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
 
//********************************************************************************************************* 
//*************** THIS CLASS REPRESENTS A PLANE IN THE THREE-DIMENSIONAL SPACE ********************* 
//********************************************************************************************************* 
 class Plane 
  { 
  double temp; 
   public: 
    int Find_Coefficients(); 
    double a, b, c, d; 
    double x1, y1, z1, x2, y2, z2, x3, y3, z3; 
  }; 
 
// *** THIS FUNCTION FINDS THE PLANE (of equation aX+bY+cZ+d=0) PASSING THROUGH 3 GIVEN POINTS 
// WITH COORDINATES (x1,y1,z1); (x2,y2,z2); (x3,y3,z3)) ************************************************ 
 int Plane::Find_Coefficients() 
  { 
  if(z1==z2)    
   { 
   temp=z2; z2=z3; z3=temp; 
   temp=x2; x2=x3; x3=temp;  
   temp=y2; y2=y3; y3=temp; 
   } 
  if((z1!=z2)&&(((y3-y1)-(y2-y1)*(z3-z1)/(z2-z1))!=0)) 
   { 
   a=1; 
   temp=((y3-y1)-(y2-y1)*(z3-z1)/(z2-z1)); 
   b=((x1-x3)-(x1-x2)*(z3-z1)/(z2-z1))/temp; 
   c=((x1-x2)-(y2-y1)*b)/(z2-z1); 
   d=(-x1-y1*b-z1*c); 
   } 
  else  
   {   
   if(z1==z2)  
    { 
    a=0; b=0; 
    if(((y2-y1)/(x2-x1))!=((y3-y2)/(x3-x2))) {c=1; d=-z1;}  
    else 
     { 
     printf("IMPOSSIBLE TO FIND A PLANE CONTAINING THE THREE POINTS GIVEN\n"); 
     return 0;           // RETURN 0 IF THERE IS A PROBLEM 
     }  
    } 
   else    
    { 
    a=0; b=1; 
    c=(y1-y2)/(z2-z1); 
    d=-y1-c*z1; 
    } 
   } 
  return 1;           // RETURN 1 IF EVERYTHING IS OK 
  } 
//********************************************************************************************************* 
//*********************************************************************************************************
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//********************************************************************************************************* 
//** THIS CLASS ALLOWS TO READ ALL NECESSARY INFORMATION FROM NASTRAN INPUT AND OUTPUT FILES* 
//**** INPUT FILE MUST BE GENERATED WITH THE MESHING AND POST-PROCESSING APPLICATION FEMAP **** 
//********************************************************************************************************* 
 class Nastran 
  { 
  Plane normal_plane; 
 
  void input_file_name(void); 
  void output_file_name(void); 
  int Number_Of_Nodes(void); 
  int Number_Of_Elements(void); 
  void Read_Input_Data(void); 
  void Read_Output_Data(void); 
  double Element_Volume(int); 
  int *node_ID, *element_ID_input, *element_ID_output; 
  double  *node_X, *node_Y, *node_Z; 
    
   public: 
    Nastran(); 
    char nastran_input_file_name[255]; 
    char nastran_output_file_name[255]; 
    int number_of_nodes, number_of_elements; 
    int *element_ID, *element_node_1, *element_node_2, *element_node_3, *element_node_4;  
    double *node_1_X, *node_1_Y, *node_1_Z,*node_2_X, *node_2_Y, *node_2_Z,*node_3_X, *node_3_Y, 
         *node_3_Z,*node_4_X, *node_4_Y, *node_4_Z ; 
    double *x_max, *x_min, *y_max, *y_min, *z_max, *z_min; 
    double *principal_stress_A, *principal_stress_B, *principal_stress_C; 
    double *cos_dir_Ax, *cos_dir_Ay, *cos_dir_Az;  
    double *cos_dir_Bx, *cos_dir_By, *cos_dir_Bz; 
    double *cos_dir_Cx, *cos_dir_Cy, *cos_dir_Cz; 
    double *element_volume, *element_volume_fraction, *sum_element_volume_fraction; 
    double total_volume, max_x, min_x, max_y, min_y, max_z, min_z; 
    void Process_Data(); 
    ~Nastran(); 
  }; 
 
//*** CLASS CONSTRUCTOR *** 
 Nastran::Nastran()  
  {  
  Process_Data(); 
  } 
 
 //*** FUNCTION TO INPUT THE NAME OF THE NASTRAN INPUT FILE THAT HAS TO BE READ *** 
 void Nastran::input_file_name() 
  { 
  printf("\n\n\nInsert the name of the NASTRAN input file\n"); 
  gets(nastran_input_file_name); 
  } 
 
 //*** FUNCTION TO INPUT THE NAME OF THE NASTRAN OUTPUT FILE THAT HAS TO BE READ *** 
 void Nastran::output_file_name() 
  { 
  printf ("\nInsert the name of the NASTRAN output file\n"); 
  gets (nastran_output_file_name); 
  } 
 
 //*** FUNCTION TO COUNT THE NUMBER OF NODES IN THE FEA MODEL IMPORTED*** 
 int Nastran::Number_Of_Nodes() 
  { 
  char sentence_check[255]="GRID"; 
  int n=0; 
  char *pt, buffer[255]; 
 
  FILE *f_input; 
  f_input=fopen(nastran_input_file_name,"r"); 
  if(f_input==NULL){ printf("Cannot open the .NAS file!\n\n\n"); 
      scanf("%*c");     
      exit(EXIT_FAILURE); 
      } 
 
  while ((pt = fgets(buffer, 255, f_input)) != NULL)  
   { 
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   if (strncmp(buffer, sentence_check, 4)==0)  
    { 
    n++; 
    } 
   } 
  fclose(f_input); 
  return n; 
  } 
 
 //*** FUNCTION TO COUNT THE NUMBER OF TETRAHEDRICAL ELEMENTS IN THE FEA MODEL IMPORTED*** 
 int Nastran::Number_Of_Elements() 
  { 
  int n=0; 
  char *pt, buffer[255]; 
  char sentence_check[255]="CTETRA"; 
 
  FILE *f_input; 
  f_input=fopen(nastran_input_file_name,"r"); 
  if(f_input==NULL){ printf("Cannot open the .NAS file!\n\n\n"); 
      scanf("%*c");    
      exit(EXIT_FAILURE); 
      } 
 
  while ((pt = fgets(buffer, 255, f_input)) != NULL)  
   { 
   if (strncmp(buffer, sentence_check, 6)==0) 
   
    { 
    n++; 
    } 
   } 
  fclose(f_input); 
  return n; 
  } 
 
 //*** FUNCTION TO READ NODE AND ELEMENT GEOMETRICAL DATA FROM THE FEA MODEL IMPORTED*** 
 // IT READS: node_ID, node_COORDINATES, element_ID, element_nodes *************************************** 
 void Nastran::Read_Input_Data() 
  { 
  char sentence_check1[255]="GRID"; 
  char sentence_check2[255]="CTETRA"; 
  char string_read[255], *pt, bin[255], char_zero[1]; 
  double zero, data1, data2, data3; 
  int data_int_1, data_int_2, data_int_3, data_int_4, data_int_5; 
 
  FILE *f_input; 
  f_input=fopen(nastran_input_file_name,"r"); 
  if(f_input==NULL){ printf("Cannot open the .NAS file!/n"); 
      scanf("%*c"); 
      exit(EXIT_FAILURE); 
      } 
 
  node_ID = new int[number_of_nodes]; 
  node_X = new double[number_of_nodes]; 
  node_Y = new double[number_of_nodes]; 
  node_Z = new double[number_of_nodes]; 
  element_ID_input = new int[number_of_elements]; 
  element_node_1 = new int[number_of_elements]; 
  element_node_2 = new int[number_of_elements]; 
  element_node_3 = new int[number_of_elements]; 
  element_node_4 = new int[number_of_elements]; 
  while ((pt = fgets(string_read, 255, f_input)) != NULL)  
   { 
   if (strncmp(string_read, sentence_check1, 4)==0) 
    {  
    sscanf (string_read,"%s%d%c%c%c%c%c%c%c%c%lf%lf%lf", &bin, &data_int_1, &char_zero, &char_zero, 
        &char_zero, &char_zero, &char_zero, &char_zero, &char_zero, &char_zero, &data1, &data2 
,&data3); 
    *node_ID = data_int_1; 
    *node_X = data1; 
    *node_Y = data2; 
    *node_Z = data3; 
    node_ID++; 
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    node_X++; 
    node_Y++; 
    node_Z++;  
    }  
   if (strncmp(string_read, sentence_check2, 6)==0) 
    {  
    sscanf (string_read,"%s%d%lf%d%d%d%d", &bin, &data_int_1, &zero, &data_int_2, &data_int_3, 
        &data_int_4, &data_int_5); 
    *element_ID_input = data_int_1; 
    *element_node_1 = data_int_2; 
    *element_node_2 = data_int_3; 
    *element_node_3 = data_int_4; 
    *element_node_4 = data_int_5; 
    element_ID_input++; 
    element_node_1++; 
    element_node_2++; 
    element_node_3++; 
    element_node_4++; 
    } 
   } 
  node_ID -= number_of_nodes; 
  node_X -= number_of_nodes; 
  node_Y -= number_of_nodes; 
  node_Z -= number_of_nodes; 
  element_ID_input -= number_of_elements; 
  element_node_1 -= number_of_elements; 
  element_node_2 -= number_of_elements; 
  element_node_3 -= number_of_elements; 
  element_node_4 -= number_of_elements; 
  fclose(f_input); 
  } 
 
 //*** FUNCTION TO READ TETRAHEDRICAL ELEMENT RESULT DATA FROM THE FEA MODEL IMPORTED*** 
 // IT READS: element_ID, principal_stresses (AT THE CENTRE OF THE ELEMENT), cos_dir (DIRECTORIAL COSINES 
 //       OF THE PRINCIPAL AXES) ***************************************************************** 
 void Nastran::Read_Output_Data() 
  { 
  char sentence_check1[255]="                   S T R E S S E S"; 
  char sentence_check2[255]="  ELEMENT-ID    "; 
  char sentence_check3[255]="                         Z"; 
  char sentence_check4[255]="0GRID CS 10 GP"; 
  char sentence_check5[255]="0                CENTER  ";   
  char  buffer[255], string_read[255], *pt, bin[255]; 
  int dato_int1; 
  double zero, dato1, dato2, dato3, dato4; 
 
  FILE *f_output; 
  f_output=fopen(nastran_output_file_name,"r"); 
  if(f_output==NULL){ printf("Cannot open the .f06 file!/n"); 
     scanf("%*c"); 
     exit(EXIT_FAILURE); 
     } 
 
  element_ID_output = new int[number_of_elements]; 
 
  principal_stress_A = new double[number_of_elements]; 
  principal_stress_B = new double[number_of_elements]; 
  principal_stress_C = new double[number_of_elements]; 
 
  cos_dir_Ax = new double[number_of_elements]; 
  cos_dir_Ay = new double[number_of_elements]; 
  cos_dir_Az = new double[number_of_elements]; 
 
  cos_dir_Bx = new double[number_of_elements]; 
  cos_dir_By = new double[number_of_elements]; 
  cos_dir_Bz = new double[number_of_elements]; 
 
  cos_dir_Cx = new double[number_of_elements]; 
  cos_dir_Cy = new double[number_of_elements]; 
  cos_dir_Cz = new double[number_of_elements]; 
 
  while ((pt = fgets(buffer, 255, f_output)) != NULL)   
   { 
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   if (strncmp(buffer, sentence_check1, 33)==0) 
    { 
    pt = fgets(string_read, 255, f_output); 
    while (string_read[0]!='1')      
     {   
     pt = fgets(string_read, 255, f_output); 
     if ((strncmp(string_read, sentence_check2, 16)==0)||(strncmp(string_read, sentence_check3, 26)==0)) 
      { 
      pt = fgets (string_read, 255,f_output); 
      if ((string_read[22]==sentence_check4[0]) && (string_read[23]==sentence_check4[1]) &&  
           (string_read[24]==sentence_check4[2]) && (string_read[25]==sentence_check4[3])) 
       { 
       sscanf (string_read,"%lf%d",&zero, &dato_int1); 
       *element_ID_output = dato_int1; 
       fgets (string_read, 255,f_output); 
       } 
      if((strncmp(string_read, sentence_check5, 22)==0)) 
       { 
       sscanf (string_read,"%lf%s%s%lf%s%lf%s%lf%s%lf%lf%lf",&zero, &bin, &bin, &zero, 
           &bin, &zero, &bin, &dato1, &bin, &dato2, &dato3 ,&dato4);  
       *principal_stress_A = dato1; 
       *cos_dir_Ax = dato2; 
       *cos_dir_Bx = dato3; 
       *cos_dir_Cx = dato4; 
      
       fgets (string_read, 255,f_output); 
       sscanf (string_read,"%s%lf%s%lf%s%lf%s%lf%lf%lf", &bin, &zero, &bin, &zero, &bin, 
           &dato1, &bin, &dato2, &dato3 ,&dato4); 
      
       *principal_stress_B = dato1; 
       *cos_dir_Ay = dato2; 
       *cos_dir_By = dato3; 
       *cos_dir_Cy = dato4; 
 
       fgets (string_read, 255,f_output); 
       sscanf (string_read,"%s%lf%s%lf%s%lf%s%lf%lf%lf", &bin, &zero, &bin, &zero, &bin,
             &dato1, &bin, &dato2, &dato3 ,&dato4); 
      
       *principal_stress_C = dato1; 
       *cos_dir_Az = dato2; 
       *cos_dir_Bz = dato3; 
       *cos_dir_Cz = dato4; 
 
       element_ID_output++; 
 
       principal_stress_A++; 
       principal_stress_B++; 
       principal_stress_C++; 
 
       cos_dir_Ax++; 
       cos_dir_Ay++; 
       cos_dir_Az++; 
 
       cos_dir_Bx++; 
       cos_dir_By++; 
       cos_dir_Bz++; 
 
       cos_dir_Cx++; 
       cos_dir_Cy++; 
       cos_dir_Cz++; 
       } 
      }   
     } 
    }  
   } 
 
  element_ID_output -= number_of_elements; 
 
  principal_stress_A -= number_of_elements; 
  principal_stress_B -= number_of_elements; 
  principal_stress_C -= number_of_elements; 
 
  cos_dir_Ax -= number_of_elements; 
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  cos_dir_Ay -= number_of_elements; 
  cos_dir_Az -= number_of_elements; 
 
  cos_dir_Bx -= number_of_elements; 
  cos_dir_By -= number_of_elements; 
  cos_dir_Bz -= number_of_elements; 
 
  cos_dir_Cx -= number_of_elements; 
  cos_dir_Cy -= number_of_elements; 
  cos_dir_Cz -= number_of_elements; 
 
  fclose(f_output); 
  } 
 
 //*********** FUNCTION TO CALCULATE TETRAHEDRICAL ELEMENT VOLUME ***************** 
 double Nastran::Element_Volume(int k) 
  { 
  double side_1, side_2, side_3, distance, semiperimeter, area, volume; 
  
  element_ID[k]; 
  side_1= sqrt(pow((node_2_X[k]-node_3_X[k]),2)+pow((node_2_Y[k]-node_3_Y[k]),2)+pow((node_2_Z[k]-  
          node_3_Z[k]),2)); 
  side_2= sqrt(pow((node_3_X[k]-node_4_X[k]),2)+pow((node_3_Y[k]-node_4_Y[k]),2)+pow((node_3_Z[k]-  
          node_4_Z[k]),2)); 
  side_3= sqrt(pow((node_4_X[k]-node_2_X[k]),2)+pow((node_4_Y[k]-node_2_Y[k]),2)+pow((node_4_Z[k]-  
          node_2_Z[k]),2)); 
  
  normal_plane.x1 = node_2_X[k]; 
  normal_plane.y1 = node_2_Y[k]; 
  normal_plane.z1 = node_2_Z[k]; 
  normal_plane.x2 = node_3_X[k]; 
  normal_plane.y2 = node_3_Y[k]; 
  normal_plane.z2 = node_3_Z[k]; 
  normal_plane.x3 = node_4_X[k]; 
  normal_plane.y3 = node_4_Y[k]; 
  normal_plane.z3 = node_4_Z[k]; 
 
  normal_plane.Find_Coefficients();  
  
 distance=(fabs(normal_plane.a*node_1_X[k]+normal_plane.b*node_1_Y[k]+normal_plane.c*node_1_Z[k]+normal_plane.d)) /  
   sqrt(pow(normal_plane.a,2)+pow(normal_plane.b,2)+pow(normal_plane.c,2)); 
  semiperimeter= (side_1+side_2+side_3)/2; 
  area=sqrt(semiperimeter*(semiperimeter-side_1)*(semiperimeter-side_2)*(semiperimeter-side_3)); 
  volume=area*distance/3; 
  return volume; 
  } 
 
 //*** FUNCTION TO IMPORT FEA DATA INTO MEMORY: ONLY PUBLIC METHOD ******************* 
 void Nastran::Process_Data() 
  { 
  int i, j, j1, j2; 
  input_file_name(); 
  output_file_name(); 
  number_of_nodes = Number_Of_Nodes(); 
  number_of_elements = Number_Of_Elements(); 
  Read_Input_Data(); 
  Read_Output_Data(); 
 
  element_ID = new int[number_of_elements]; 
  node_1_X = new double[number_of_elements]; 
  node_1_Y = new double[number_of_elements]; 
  node_1_Z = new double[number_of_elements]; 
  node_2_X = new double[number_of_elements]; 
  node_2_Y = new double[number_of_elements]; 
  node_2_Z = new double[number_of_elements]; 
  node_3_X = new double[number_of_elements]; 
  node_3_Y = new double[number_of_elements]; 
  node_3_Z = new double[number_of_elements]; 
  node_4_X = new double[number_of_elements]; 
  node_4_Y = new double[number_of_elements]; 
  node_4_Z = new double[number_of_elements]; 
  x_max = new double[number_of_elements]; 
  x_min = new double[number_of_elements]; 
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  y_max = new double[number_of_elements]; 
  y_min = new double[number_of_elements]; 
  z_max = new double[number_of_elements]; 
  z_min = new double[number_of_elements]; 
  element_volume = new double[number_of_elements]; 
  element_volume_fraction = new double[number_of_elements];  
  sum_element_volume_fraction = new double[number_of_elements];  
 
  for (i=0; i<=number_of_elements-1; i++)   //SCAN ALL ELEMENTS 
   { 
   if(element_ID_input[i]==element_ID_output[i]) 
    { 
    element_ID[i]=element_ID_input[i]; 
    j1=0; 
    j2=number_of_nodes-1; 
    j=(j1+j2)/2; 
    while (node_ID[j]!=element_node_1[i]) // FIND THE INDEX IN THE NODE POINTER (node_ID) 
             //OF THE FIRST NODE OF THE ELEMENT SELECTED 
     { 
     if(node_ID[j]<element_node_1[i]) j1=j+1; else j2=j-1; 
     j=(j1+j2)/2; 
     } 
    node_1_X[i] = node_X[j]; 
    node_1_Y[i] = node_Y[j]; 
    node_1_Z[i] = node_Z[j]; 
 
    j1=0; 
    j2=number_of_nodes-1; 
    j=(j1+j2)/2; 
    while (node_ID[j]!=element_node_2[i]) // FIND THE INDEX IN THE NODE POINTER (node_ID) 
            //OF THE SECOND NODE OF THE ELEMENT SELECTED 
     { 
     if(node_ID[j]<element_node_2[i]) j1=j+1; else j2=j-1; 
     j=(j1+j2)/2; 
     } 
    node_2_X[i] = node_X[j]; 
    node_2_Y[i] = node_Y[j]; 
    node_2_Z[i] = node_Z[j]; 
 
    j1=0; 
    j2=number_of_nodes-1; 
    j=(j1+j2)/2; 
    while (node_ID[j]!=element_node_3[i])  // FIND THE INDEX IN THE NODE POINTER (node_ID) 
             //OF THE THIRD NODE OF THE ELEMENT SELECTED 
     { 
     if(node_ID[j]<element_node_3[i]) j1=j+1; else j2=j-1; 
     j=(j1+j2)/2; 
     } 
    node_3_X[i] = node_X[j]; 
    node_3_Y[i] = node_Y[j]; 
    node_3_Z[i] = node_Z[j]; 
 
    j1=0; 
    j2=number_of_nodes-1; 
    j=(j1+j2)/2; 
    while (node_ID[j]!=element_node_4[i])  // FIND THE INDEX IN THE NODE POINTER (node_ID) 
             //OF THE FORTH NODE OF THE ELEMENT SELECTED 
     { 
     if(node_ID[j]<element_node_4[i]) j1=j+1; else j2=j-1; 
     j=(j1+j2)/2; 
     } 
    node_4_X[i] = node_X[j]; 
    node_4_Y[i] = node_Y[j]; 
    node_4_Z[i] = node_Z[j]; 
 
    x_max[i] = node_1_X[i]; 
    if(node_2_X[i]>=x_max[i]) x_max[i]=node_2_X[i]; 
    if(node_3_X[i]>=x_max[i]) x_max[i]=node_3_X[i]; 
    if(node_4_X[i]>=x_max[i]) x_max[i]=node_4_X[i]; 
    x_min[i] = node_1_X[i]; 
    if(node_2_X[i]<=x_min[i]) x_min[i]=node_2_X[i]; 
    if(node_3_X[i]<=x_min[i]) x_min[i]=node_3_X[i]; 
    if(node_4_X[i]<=x_min[i]) x_min[i]=node_4_X[i]; 
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    y_max[i] = node_1_Y[i]; 
    if(node_2_Y[i]>=y_max[i]) y_max[i]=node_2_Y[i]; 
    if(node_3_Y[i]>=y_max[i]) y_max[i]=node_3_Y[i]; 
    if(node_4_Y[i]>=y_max[i]) y_max[i]=node_4_Y[i]; 
    y_min[i] = node_1_Y[i]; 
    if(node_2_Y[i]<=y_min[i]) y_min[i]=node_2_Y[i]; 
    if(node_3_Y[i]<=y_min[i]) y_min[i]=node_3_Y[i]; 
    if(node_4_Y[i]<=y_min[i]) y_min[i]=node_4_Y[i]; 
 
    z_max[i] = node_1_Z[i]; 
    if(node_2_Z[i]>=z_max[i]) z_max[i]=node_2_Z[i]; 
    if(node_3_Z[i]>=z_max[i]) z_max[i]=node_3_Z[i]; 
    if(node_4_Z[i]>=z_max[i]) z_max[i]=node_4_Z[i]; 
    z_min[i] = node_1_Z[i]; 
    if(node_2_Z[i]<=z_min[i]) z_min[i]=node_2_Z[i]; 
    if(node_3_Z[i]<=z_min[i]) z_min[i]=node_3_Z[i]; 
    if(node_4_Z[i]<=z_min[i]) z_min[i]=node_4_Z[i]; 
 
    element_volume[i]=Element_Volume(i); 
    } 
 
   else {printf("\n A PROBLEM HAS OCCURRED INT HE ELEMENT INDEX\n' index");} 
   } 
 
  total_volume=0; 
  for (i=0; i<=number_of_elements-1; i++) 
   { 
   total_volume += element_volume[i]; 
   } 
 
  for (i=0; i<=number_of_elements-1; i++) 
   { 
   element_volume_fraction[i]=element_volume[i]/total_volume; 
   if(i==0) 
    sum_element_volume_fraction[i]=element_volume_fraction[i]; 
   else 
    sum_element_volume_fraction[i]=sum_element_volume_fraction[i-1]+element_volume_fraction[i]; 
   } 
 
  max_x = 0; min_x = 0; max_y = 0; min_y = 0; max_z = 0; min_z= 0; 
  for (i=0; i<=number_of_nodes-1; i++) 
   { 
   if(node_X[i] > max_x) max_x = node_X[i]; 
   if(node_X[i] < min_x) min_x = node_X[i]; 
   if(node_Y[i] > max_y) max_y = node_Y[i]; 
   if(node_Y[i] < min_y) min_y = node_Y[i]; 
   if(node_Z[i] > max_z) max_z = node_Z[i]; 
   if(node_Z[i] < min_z) min_z = node_Z[i]; 
   } 
 
  delete []element_ID_input; 
  delete []element_ID_output; 
  delete []node_ID; 
  delete []node_X; 
  delete []node_Y; 
  delete []node_Z; 
  } 
 
 //*** CLASS DESTRUCTOR ******************* 
 Nastran::~Nastran () 
  { 
  delete []cos_dir_Ax; 
  delete []cos_dir_Ay; 
  delete []cos_dir_Az; 
  delete []cos_dir_Bx; 
  delete []cos_dir_By; 
  delete []cos_dir_Bz; 
  delete []cos_dir_Cx; 
  delete []cos_dir_Cy; 
  delete []cos_dir_Cz; 
  delete []element_ID; 
  delete []element_node_1; 
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  delete []element_node_2; 
  delete []element_node_3; 
  delete []element_node_4; 
  delete []node_1_X; 
  delete []node_1_Y; 
  delete []node_1_Z; 
  delete []node_2_X; 
  delete []node_2_Y; 
  delete []node_2_Z; 
  delete []node_3_X; 
  delete []node_3_Y; 
  delete []node_3_Z;  
  delete []node_4_X; 
  delete []node_4_Y; 
  delete []node_4_Z; 
  delete []principal_stress_A;  
  delete []principal_stress_B; 
  delete []principal_stress_C; 
  delete []x_max; 
  delete []x_min; 
  delete []y_max; 
  delete []y_min; 
  delete []z_max; 
  delete []z_min; 
  delete []element_volume; 
  delete []element_volume_fraction; 
  delete []sum_element_volume_fraction;  
  } 
//********************************************************************************************************* 
//********************************************************************************************************* 
 
#endif 
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A.3. Random Function Class in C++ 

// Random_Function.h file 
//********************************************************************************************************* 
//** THIS CLASS IS USED AS INPUT OF THE MONTE CARLO ENGINE TO EVALUATE FUNCTION EXPECTATION **** 
//*********** THE FUNCTION TO BE VALUATED IS IMPLEMENTED IN THE METHOD evaluate() ******************* 
//********************************************************************************************************* 
  
 //  (C) 2004 Giuseppe Iacopino 
 //  PhD Student 
 //  Cranfield University, SIMS 
 //  Reliability Engineering and Risk Management Centre 
 
#ifndef RANDOM_FUNCTION_H 
#define RANDOM_FUNCTION_H 
#include "Random_Sampling.h " 
#include "FEA_Library.h" 
#include "Failure_Criteria.h" 
 
#define IMPORTANCE_SAMPLING 1 
#define FAILURE_CRITERION 3 
#define MAPPING 0 
#define TOTAL_SIMULATION 0 
#define INDEX_GENERATION 1 
 
//*********** ABSTRACT CLASS *********************** 
class Random_Function 
 { 
 public: 
 virtual double evaluate() = 0; 
 virtual ~Random_Function() ; 
 }; 
 Random_Function::~Random_Function(){;} 
 
//********************************************************************************************************* 
//** THIS CLASS EVALUATES THE STRENGTH OF A MECHANICAL COMPONENT **** 
//********************************************************************************************************* 
class Component_Strength : public Random_Function 
 { 
 
 private: 
  const double m_mu;     //FLAW DISTRIBUTION PARAMETERS 
  const double m_sigma; 
 
  const double m_imp_mu;    //PARAMETERS TO BE USED WITH IMPORTANT SAMPLING 
  const double m_imp_sigma; 
 
  const double m_crack_density;    //PARAMETERS TO BE USED IN TOTAL SIMULATION 
  const double m_volume; 
 
  const Nastran& component;    //FEA RESULT OBJECT 
  Random_Generator rg1;     //UNIFORM RANDOM GENERATOR 
  Sampling sample;      //GENERIC RANDOM GENERATOR 
  double x_start, x_range, y_start, y_range, z_start, z_range; 
  const double pi; 
 
  int Index_Generation(); 
  void Gen_Coords_rejection(double &x_point, double &y_point, double &z_point); 
  int Find_element(const double &x_point, const double &y_point, const double &z_point); 
  bool Find_stresses(const double &x_point, const double &y_point, const double &z_point, 
         double& stress_A, double& stress_B, double& stress_C); 
  bool Find_stresses(const int& index, double& stress_A, double& stress_B, double& stress_C); 
  
 public: 
   int num_stores, data_stored; 
  Component_Strength(double mu, double sigma, double imp_mu, double imp_sigma, long int seed, 
         double crack_density, int n_stores,  Nastran& component_FEA); 
  ~Component_Strength(); 
  double *stored_x, *stored_y, *stored_z, *stored_teta, *stored_beta, *stored_fi; 
  double *stress_A, *stress_B, *stress_C, *stored_lengths; 
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  double evaluate(); 
 }; 
 
 
 //*** CLASS CONSTRUCTOR ******************* 
 Component_Strength::Component_Strength(double mu, double sigma, double imp_mu, double imp_sigma, long int seed, 
        double crack_density, int n_stores, Nastran& component_FEA) : 
        m_mu(mu), m_sigma(sigma), m_imp_mu(imp_mu), m_imp_sigma(imp_sigma), 
        m_crack_density(crack_density), component(component_FEA),  
        num_stores(n_stores), m_volume(component_FEA.total_volume), 
        rg1(seed), sample(seed), pi(3.14159) 
         { 
         x_start = component.min_x; 
         x_range = (component.max_x  - component.min_x); 
         y_start = component.min_y; 
         y_range = (component.max_y  - component.min_y); 
         z_start = component.min_z; 
         z_range = (component.max_z  - component.min_z); 
         data_stored = 0; 
         stored_x = new double[num_stores]; 
         stored_y = new double[num_stores]; 
         stored_z = new double[num_stores]; 
         stored_beta = new double[num_stores]; 
         stored_teta = new double[num_stores]; 
         stored_fi = new double[num_stores]; 
         stress_A = new double[num_stores]; 
         stress_B = new double[num_stores]; 
         stress_C = new double[num_stores]; 
         stored_lengths = new double[num_stores]; 
         } 
 
 
 //*** CLASS DESTRUCTOR ******************* 
 Component_Strength::~Component_Strength() 
  { 
  delete []stored_x; 
  delete []stored_y; 
  delete []stored_z; 
  delete []stored_teta; 
  delete []stored_beta; 
  delete []stored_fi; 
  delete [] stress_A; 
  delete [] stress_B; 
  delete [] stress_C; 
  delete []stored_lengths; 
  } 
 
 
//*** THIS FUNCTION USES A NASTRAN OBJECT (component) TO FIND THE ELEMENT IN THE FEA MESH TO WHICH 
//*** A POINT WITH COORDINATES (x_point, y_point, z_point) BELONGS ***************************************** 
int Component_Strength::Find_element(const double &x_point, const double &y_point, const double &z_point) 
 { 
 Plane plane_1, plane_2, plane_3, plane_4; 
 int i; 
 double check1_tedra, check2_tedra, check3_tedra, check4_tedra, check1_point, check2_point, check3_point, check4_point; 
 for (i=0; i<=component.number_of_elements-1; i++) 
  { 
  if((x_point<=component.x_max[i])&&(x_point>=component.x_min[i])) 
   { 
   if((y_point<=component.y_max[i])&&(y_point>=component.y_min[i])) 
    { 
    if((z_point<=component.z_max[i])&&(z_point>=component.z_min[i])) 
     { 
     plane_1.x1 = component.node_2_X[i]; 
     plane_1.y1 = component.node_2_Y[i]; 
     plane_1.z1 = component.node_2_Z[i]; 
     plane_1.x2 = component.node_3_X[i]; 
     plane_1.y2 = component.node_3_Y[i]; 
     plane_1.z2 = component.node_3_Z[i]; 
     plane_1.x3 = component.node_4_X[i]; 
     plane_1.y3 = component.node_4_Y[i]; 
     plane_1.z3 = component.node_4_Z[i]; 
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     if(plane_1.Find_Coefficients())    // FIND THE COEFFICIENT OF A PLANE 
PASSING 
              //THROUGH 3 POINTS OF THE 
TETRAHEDRON 
      { 
      check1_tedra = plane_1.a*component.node_1_X[i] + plane_1.b*component.node_1_Y[i] + 
                plane_1.c*component.node_1_Z[i] + plane_1.d; 
      check1_point = plane_1.a*x_point+plane_1.b*y_point+plane_1.c*z_point+plane_1.d; 
      } 
            //IF THERE IS A PROBLEM THE FUNCTION RETURNS 
-1 
     else {printf("ERROR IN FINDING MESH ELEMENT\n"); return -1;}     
  
     if (((check1_tedra<0)&&(check1_point<=0))||((check1_tedra>0)&&(check1_point>=0))) 
      { 
      plane_2.x1 = component.node_3_X[i]; 
      plane_2.y1 = component.node_3_Y[i]; 
      plane_2.z1 = component.node_3_Z[i]; 
      plane_2.x2 = component.node_4_X[i]; 
      plane_2.y2 = component.node_4_Y[i]; 
      plane_2.z2 = component.node_4_Z[i]; 
      plane_2.x3 = component.node_1_X[i]; 
      plane_2.y3 = component.node_1_Y[i]; 
      plane_2.z3 = component.node_1_Z[i]; 
      if(plane_2.Find_Coefficients())   // FIND THE COEFFICIENT OF A PLANE 
PASSING 
              //THROUGH 3 POINTS OF THE 
TETRAHEDRON 
       { 
       check2_tedra = plane_2.a*component.node_2_X[i] + plane_2.b*component.node_2_Y[i] + 
                 plane_2.c*component.node_2_Z[i] + plane_2.d; 
       check2_point = plane_2.a*x_point+plane_2.b*y_point+plane_2.c*z_point+plane_2.d; 
       } 
            //IF THERE IS A PROBLEM THE FUNCTION RETURNS 
-1 
      else {printf("ERROR IN FINDING MESH ELEMENT\n"); return -1;}    
   
      if (((check2_tedra<0)&&(check2_point<=0))||((check2_tedra>0)&&(check2_point>=0))) 
        { 
       plane_3.x1 = component.node_4_X[i]; 
       plane_3.y1 = component.node_4_Y[i]; 
       plane_3.z1 = component.node_4_Z[i]; 
       plane_3.x2 = component.node_1_X[i]; 
       plane_3.y2 = component.node_1_Y[i]; 
       plane_3.z2 = component.node_1_Z[i]; 
       plane_3.x3 = component.node_2_X[i]; 
       plane_3.y3 = component.node_2_Y[i]; 
       plane_3.z3 = component.node_2_Z[i]; 
       if(plane_3.Find_Coefficients())  // FIND THE COEFFICIENT OF A PLANE 
PASSING 
              //THROUGH 3 POINTS OF THE 
TETRAHEDRON 
        { 
        check3_tedra = plane_3.a*component.node_3_X[i] + 
plane_3.b*component.node_3_Y[i] 
                 + plane_3.c*component.node_3_Z[i] + plane_3.d; 
        check3_point = plane_3.a*x_point+plane_3.b*y_point+plane_3.c*z_point+plane_3.d; 
        } 
            //IF THERE IS A PROBLEM THE FUNCTION RETURNS 
-1 
        else {printf("ERROR IN FINDING MESH ELEMENT\n"); return -1;}   
     
       if (((check3_tedra<0)&&(check3_point<=0))||((check3_tedra>0)&&(check3_point>=0))) 
        { 
        plane_4.x1 = component.node_1_X[i]; 
        plane_4.y1 = component.node_1_Y[i]; 
        plane_4.z1 = component.node_1_Z[i]; 
        plane_4.x2 = component.node_2_X[i]; 
        plane_4.y2 = component.node_2_Y[i]; 
        plane_4.z2 = component.node_2_Z[i]; 
        plane_4.x3 = component.node_3_X[i]; 
        plane_4.y3 = component.node_3_Y[i]; 
        plane_4.z3 = component.node_3_Z[i]; 
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        if(plane_4.Find_Coefficients()) // FIND THE COEFFICIENT OF A PLANE 
PASSING 
              //THROUGH 3 POINTS OF THE 
TETRAHEDRON 
         { 
         check4_tedra = plane_4.a*component.node_4_X[i] + 
                  plane_4.b*component.node_4_Y[i] +  
                  plane_4.c*component.node_4_Z[i] + plane_4.d; 
         check4_point = plane_4.a*x_point + plane_4.b*y_point + plane_4.c*z_point + 
            plane_4.d; 
         } 
            //IF THERE IS A PROBLEM THE FUNCTION RETURNS 
-1 
        else {printf("ERROR IN FINDING MESH ELEMENT\n"); return -1;}   
 
        if 
(((check4_tedra<0)&&(check4_point<=0))||((check4_tedra>0)&&(check4_point>=0)))  
        return i;  //IF THE ELEMENT IS FOUND RETURN ITS INDEX 
        } 
       } 
      } 
     } 
    } 
   } 
  }  
 return -2;       //IF THE ELEMENT HAS NOT BEEN FOUND THE FUNCTION RETURNS 
-2 
 } 
 
 
//*** THIS FUNCTION RETURNS THE PRINCIPAL STRESSES AT A POINT OF COORDINATES (x_point, y_point, z_point)  
//*** BY USING FEA RESULTS STORED IN A NASTRAN OBJECT (component) ************************************ 
bool Component_Strength::Find_stresses(const double &x_point, const double &y_point, const double &z_point, 
                        double& stress_A, double& stress_B, double& stress_C) 
 { 
 int index = Find_element(x_point, y_point, z_point); 
 if(index >= 0) 
  { 
  stress_A = component.principal_stress_A[index]; 
  stress_B = component.principal_stress_B[index]; 
  stress_C = component.principal_stress_C[index]; 
  return true; 
  } 
 printf("INCORRECT MESH ELEMENT INDEX\n"); 
 return false; 
 } 
 
//*** OVERLOADED FUNCTION THAT RETURNS THE PRINCIPAL STRESSES RELATIVE TO AN ELEMENT WITH 
//*** INDEX (index) BY USING FEA RESULTS STORED IN A NASTRAN OBJECT (component) ******************* 
bool Component_Strength::Find_stresses(const int& index, double& stress_A, double& stress_B, double& stress_C) 
 { 
 if(index >= 0) 
  { 
  stress_A = component.principal_stress_A[index]; 
  stress_B = component.principal_stress_B[index]; 
  stress_C = component.principal_stress_C[index]; 
  return true; 
  } 
 printf("INCORRECT MESH ELEMENT INDEX\n"); 
 return false; 
 } 
 
//*** THIS FUNCTION GENERATES A RANDOM INDEX POINTING AT AN ELEMENT IN THE FEA MESH ****** 
//******* THE PROBABILITY OF AN ELEMENT TO BE SELECTED IS PROPORTIONAL TO ITS VOLUME ******* 
 int Component_Strength::Index_Generation() 
  { 
  int index; 
  int j1, j2; 
  double x; 
 
  x=rg1.real_random(); 
  j1=0; 
  j2=component.number_of_elements-1; 



  

- 159 - 

  index=(j1+j2)/2; 
  while ((component.sum_element_volume_fraction[index-1]>x)||(component.sum_element_volume_fraction[index]<x))
                   
   { 
   if(component.sum_element_volume_fraction[index]<x) j1=index+1; else j2=index-1; 
   index=(j1+j2)/2; 
   } 
  return index; 
  } 
 
 
//*** THIS FUNCTION GENERATES A SET OF RANDOM COORDINATES ************************************** 
 void Component_Strength::Gen_Coords_rejection(double &x_point, double &y_point, double &z_point) 
  { 
  x_point=x_start+x_range*rg1.real_random(); 
  y_point=y_start+y_range*rg1.real_random(); 
  z_point=z_start+z_range*rg1.real_random(); 
  } 
 



  

- 160 - 

//*** THIS FUNCTION GENERATES A RANDOM NUMBER OF CRACKS WITHIN THE COMPONENT VOLUME AND 
//*** CHECKS IF ONE OF THE CRACKS TRIGGERS ******************************************************** 
//*** SEVERAL SIMULATION OPTIONS CAN BE SET UP AT COMPILE TIME ********************************* 
 double Component_Strength::evaluate()                            
  { 
  double p_stress_A=0.0, p_stress_B=0.0, p_stress_C=0.0; 
  double bet, sintet, fi, length;  
  int number_of_cracks, cracks=0; 
  double value=0.0; 
  bool already_counted=false; 
  double criticality=0.0; 
  bool valid_element=false, map=false; 
   
  // ***SET INDIVIDUAL OR TOTAL SIMULATION ************************************ 
   #if TOTAL_SIMULATION == 1 
    number_of_cracks = sample.Poisson_Process(m_crack_density, m_volume); 
   #else 
    number_of_cracks = 1; 
   #endif 
  // ******************************************************************************* 
 
  while (cracks<=number_of_cracks)   
  { 
    // *** COORDINATES OR ELEMENT INDEX SIMULATION ******************** 
   #if INDEX_GENERATION == 1 
    int element_index = Index_Generation(); 
    valid_element = Find_stresses(element_index, p_stress_A, p_stress_B, p_stress_C); 
   #else 
    double x_point, y_point, z_point; 
    Gen_Coords_rejection(x_point, y_point, z_point); 
    valid_element = Find_stresses(x_point, y_point, z_point, 
                         p_stress_A, p_stress_B, p_stress_C);   
         #endif 
    // **************************************************************** 
  if (valid_element) 
   { 
   cracks++; 
    
    //*** GENERATE DEFECT ORIENTATION ***** 
   bet=2*pi*rg1.real_random(); 
   sintet=2*rg1.real_random()-1; 
   fi = pi*rg1.real_random(); 
    //****************************************** 
 
    //***** DEFECT SIZE SIMULATION ******************************************************* 
   #if IMPORTANCE_SAMPLING == 1   //IMPORTANCE SAMPLING    
    length = sample.LogNormal_Generator(m_imp_mu, m_imp_sigma);   //[mm] 
   #else         //STANDARD SIMULATION 
    length = sample.LogNormal_Generator(m_mu, m_sigma);     //[mm] 
   #endif 
        //*************************************************************************************** 
 
    //****************** FAILURE CRITERION ********************************* 
   #if FAILURE_CRITERION == 1 
    if(Failure_Maximum_Energy (length, bet, sintet, fi, p_stress_A, p_stress_B, p_stress_C, criticality, map)) 
   #elif FAILURE_CRITERION == 2 
    if(Failure_Coplanar_Energy (length, bet, sintet, fi, p_stress_A, p_stress_B, p_stress_C, criticality, map)) 
   #elif FAILURE_CRITERION == 3 
    if(Failure_Empirical(length, bet, sintet, fi, p_stress_A, p_stress_B, p_stress_C, criticality, map)) 
   #endif   
     //**********************************************************************    
    { 
     // ******* RETURN VALUE FOR FAILURE OCCURRED*********            
   #if IMPORTANCE_SAMPLING == 1 
    if(map)  value = (sample.LogNormal_pdf(length, m_mu, m_sigma)/ 
             sample.LogNormal_pdf(length, m_imp_mu, m_imp_sigma)); 
   #else 
    if(!already_counted) value = 1; 
   #endif 
  // **************************************************  
 
  //*** MAPPING ********************************************************* 
   #if MAPPING == 1 
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    if (data_stored<=(num_stores-1)) 
     { 
     if(!already_counted) data_stored++; 
     already_counted = true;   //TO COUNT THE FAILURE ONLY ONCE 
 
     if(map)   
      { 
      #if INDEX_GENERATION == 1 
        //******* TO STORE ELEMENT INDEX ****************     
       stored_x[(int) (data_stored-1)]=element_index; 
       stored_y[(int) (data_stored-1)]=0.0; 
       stored_z[(int) (data_stored-1)]=0.0; 
        //************************************************** 
      #else 
        //******* TO STORE COORDINATES ********* 
       stored_x[(int) (data_stored-1)]=x_point; 
       stored_y[(int) (data_stored-1)]=y_point; 
       stored_z[(int) (data_stored-1)]=z_point; 
        //***************************************** 
      #endif 
 
       //******* TO STORE ORIENTATIONS *********     
      stored_beta[(int) (data_stored-1)]=180*bet/pi; 
      stored_teta[(int) (data_stored-1)]=asin(sintet)*180/pi; 
      stored_fi[(int) (data_stored-1)]=180*fi/pi; 
       //****************************************** 
 
      stored_lengths[(int) (data_stored-1)]=length;  //[mm] 
      stress_A[(int) (data_stored-1)]=p_stress_A; 
      stress_B[(int) (data_stored-1)]=p_stress_B; 
      stress_C[(int) (data_stored-1)]=p_stress_C; 
      } 
     } 
    #else  
     break; 
    #endif 
   //********************************************************************** 
    } 
   } 
  } 
 return value; 
    } 
//********************************************************************************************************* 
//********************************************************************************************************* 
 
#endif 
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A.4. Monte Carlo Engine in C++ 

//*** THIS FUNCTION RUNS THE MONTE_CARLO SIMULATION 
//*** IT RETURNS THE EXPECTED VALUE OF A RANDOM FUNCTION 
//*** AS INPUT ARGUMENTS IT REQUIRES THE RANDOM FUNCTION TO BE EVALUATED AND THE ALIAS OF 
//*** NUMBER OF TRIALS, CONVERGENCE CHECK AND STANDARD DEVIATION OF THE ESTMATE 
#include "Random_Function.h" 
 
double Monte_Carlo_Simulation (Random_Function& function, int &i, double &check, double &deviation) 
 { 
 double probability_1=0, probability_2=0, probability_3=1; 
 double real_count=0, x; 
 int j=0; 
 
 deviation=0; 
 for (i=1; i<=NUM_TRIALS; i++) 
  { 
  x = function.evaluate(); 
  real_count += x; 
  deviation += sqr(x); 
  if ((i-j)>=INTERVAL_CHECK)     
   {                  
   
   probability_1 = (double) real_count/i; 
   j=i; 
   check=fabs(probability_1-probability_2)+fabs(probability_1-probability_3); 
   if(probability_1!=0) check = check/probability_1; 
   probability_3 = probability_2; 
   probability_2 = probability_1; 
   }   
  } 
 i--; 
 deviation =  sqrt((deviation/NUM_TRIALS-sqr((double) real_count/NUM_TRIALS))/(NUM_TRIALS-1)); 
 return (double) real_count/NUM_TRIALS; 
 } 
//********************************************************************************************************* 
//********************************************************************************************************* 
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A.5. Fracture Propagation Criteria in C++ 

// Failure_Criteria.h file 
//********************************************************************************************************* 
//**** THIS CLASS IS A COLLECTION OF FUNCTION FOR DETERMINING CRITICAL CONDITION FOR CRACK ****** 
//************ PROPAGATION ACCORDING TO SEVERAL MIXED-MODE FRACTURE CRITERIA ****************** 
//********************************************************************************************************* 
 
#ifndef FAILURE_CRITERIA_H 
#define FAILURE_CRITERIA_H 
 
// ***  MATERIAL PARAMETERS ********** 
 const double shp_fact = 0.0; 
 const double g_crit = 0.0; 
 const double poisson_ratio = 0.0; 
 const double elastic_modulus = 0.0; 
 const double ratio_KIc_KIIc = 0.0; 
 double k_1; 
 double k_2; 
 double k_3; 
 const double pi = 3.14159; 
// **************************** ********** 
 
 
// ****** Template Functions ******************* 
 template<typename T> 
 double sqr(T value) 
  { 
  return (value*value); 
  }  
// ****************************************** 
 
 
//*** THIS FUNCTION FINDS THE CRACK PROPAGATION DIRECTION FOR MAXIMUM STRAIN ENERGY CRITERION 
 int Find_Cos_Alfa_Zero(double &x1, double&x2) 
  { 
  double a; 
  a=sqr(k_2)/sqr(k_1); 
  x1=(3*a+sqrt(8*a+1))/(1+9*a); //POSITIVE 
  x2=(3*a-sqrt(8*a+1))/(1+9*a); //NEGATIVE 
   return 2; 
  } 
//******************************************************************************************************** 
 
 
//FAILURE CRITERION 1 
//******* MAXIMUM STRAIN-ENERGY RELEASE RATE CRITERION FOR A THROUGH CRACK***** 
bool Failure_Maximum_Energy(double length, double bet, double sintet, double fi, double p_stress_A, 
      double p_stress_B, double p_stress_C, double criticality, bool map) 
 { 
 double sqrt_length_pi, sinbet, costet, cosbet, sinfi, cosfi;  //CRACK PARAMETERS 
 double sinbet_2, cosbet_2, sintet_2, costet_2; 
 double sigma_normal, tau_in_plane, tau_out_plane;   //STRESSES REFFERED TO THE CRACK PLANE 
  //DIRECTION OF PROPAGATION 
 double alfa_zero1, alfa_zero2, cos_alfa_zero1, cos_alfa_zero2, sin_alfa_zero1, sin_alfa_zero2, k_1_alfa_zero; 
 double temp, g_max=0; 
 bool failure=false; 
 map = false; 
      
  // **** GEOMETRICAL QUANTITIES ******* 
 sinbet= sin(bet); 
 cosbet= cos(bet); 
 sinbet_2= sqr(sinbet); 
 cosbet_2= sqr(cosbet); 
 sintet_2= sqr(sintet); 
 costet_2= 1-sintet_2; 
 costet=sqrt(costet_2); 
 sinfi= sin(fi); 
 cosfi=cos(fi); 
  // *********************************** 



  

- 164 - 

 
 sigma_normal = p_stress_A*costet_2*sinbet_2 + p_stress_B*costet_2*cosbet_2 + p_stress_C*sintet_2; 
 tau_in_plane = (cosbet*sinfi+sinbet*sintet*cosfi)*(-sinbet)*costet*p_stress_A+(sinbet*sinfi-cosbet*sintet*cosfi)* 
    cosbet*costet*p_stress_B+costet*cosfi*sintet*p_stress_C; 
 tau_out_plane = (cosbet*cosfi-sinbet*sintet*sinfi)*(-sinbet)*costet*p_stress_A+(sinbet*cosfi+cosbet*sintet*sinfi)* 
     cosbet*costet*p_stress_B+costet*sintet*(-sinfi)*p_stress_C; 
 
 sqrt_length_pi = sqrt(pi*length/2.0);       // LENGTH IS TOTAL CRACK EXTENSION: 2a 
 k_1 = sigma_normal*sqrt_length_pi; 
 k_2 = tau_in_plane*sqrt_length_pi; 
 k_3 = tau_out_plane*sqrt_length_pi; 
  
 if (sigma_normal>=0) 
  { 
  Find_Cos_Alfa_Zero(cos_alfa_zero1, cos_alfa_zero2);  //FIND PROPAGATION ANGLE 
  if(k_1*k_2>=0) 
   { 
   sin_alfa_zero1=-sqrt(1-sqr(cos_alfa_zero1)); //PROPAGATION ANGLE 1 with positive cos and negative sin 
   sin_alfa_zero2=sqrt(1-sqr(cos_alfa_zero2)); //PROPAGATION ANGLE 2 with negative cos and positive sin 
   } 
  else 
   { 
   sin_alfa_zero1=sqrt(1-sqr(cos_alfa_zero1)); //PROPAGATION ANGLE 1 with positive cos and positive sin 
   sin_alfa_zero2=-sqrt(1-sqr(cos_alfa_zero2)); //PROPAGATION ANGLE 2 with negative cos and negative sin 
   } 
  alfa_zero1= atan2(sin_alfa_zero1, cos_alfa_zero1); //PROPAGATION ANGLE 1 
  alfa_zero2= atan2(sin_alfa_zero2, cos_alfa_zero2); //PROPAGATION ANGLE 2 
  k_1_alfa_zero=k_1*(0.75*cos(0.5*alfa_zero1)+0.25*cos(1.5*alfa_zero1))+k_2*(-0.75*(sin(0.5*alfa_zero1)+ 
            sin(1.5*alfa_zero1)));  //THE FIRST TWO MODES ARE CONSIDERED PREDOMINANT 
  temp=k_1*(0.75*cos(0.5*alfa_zero2)+0.25*cos(1.5*alfa_zero2))+k_2*(-0.75*(sin(0.5*alfa_zero2)+ 
            sin(1.5*alfa_zero2)));  //THE FIRST TWO MODES ARE CONSIDERED PREDOMINANT 
  if((fabs(temp))>(fabs(k_1_alfa_zero))) k_1_alfa_zero=temp; 
   //ADD MODE 3 INTENSITY-FACTOR UNCHANGED 
  g_max=((1-sqr(poisson_ratio))*sqr(k_1_alfa_zero)+(1+poisson_ratio)*sqr(k_3))/elastic_modulus;    
  } 
 else 
  { 
   //IF SIGMA_NORMAL<0, ONLY MODE 2 AND 3 CONTRIBUTE TO FAILURE 
  g_max=((1-sqr(poisson_ratio))*sqr(k_2)+(1+poisson_ratio)*sqr(k_3))/elastic_modulus;     
  } 
 if (g_max>=g_crit)  
  { 
  failure=true; 
  if (g_max-g_crit>criticality) {criticality=g_max-g_crit; map=true;} 
  } 
 return failure; 
 } 
//********************************************************************************************************* 
//********************************************************************************************************* 
 
 
// FAILURE CRITERION 2 
//** COPLANAR STRAIN-ENERGY RELEASE RATE CRITERION FOR A CRACK WITH A SPECIFIED SHAPE FACTOR ** 
//THIS FUNCTION CHECKS WHETHER A PENNY-SHAPED CRACK RANDOMLY GENERATED TRIGGERS FAILURE 
ACCORDING TO THE COPLANAR ENERGY RELEASE RATE CRITERION. 
bool Failure_Coplanar_Energy_Penny(double length, double bet, double sintet, double fi, double p_stress_A, 
        double p_stress_B, double p_stress_C, double criticality, bool map)  
 {  
  
 double sigma_normal, tau_x, tau_z, tau_max, g;     //STRESSES REFERRED TO THE CRACK PLANE 
 double sinbet, cosbet, costet; 
 double sinbet_2, cosbet_2, sintet_2, costet_2; 
 double sqrt_length_pi; 
 bool failure=false; 
 map = false; 
 
  // *** GEOMETRICAL QUANTITIES ***** 
 sinbet= sin(bet); 
 cosbet= cos(bet); 
 sinbet_2= sqr(sinbet); 
 cosbet_2= sqr(cosbet); 
 sintet_2= sqr(sintet); 
 costet_2= 1-sintet_2; 
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 costet=sqrt(costet_2); 
  // ******************************** 
 
 sigma_normal = p_stress_A*costet_2*sinbet_2 + p_stress_B*costet_2*cosbet_2 + p_stress_C*sintet_2; 
 tau_x = -p_stress_A*costet*cosbet*sinbet+p_stress_B*costet*cosbet*sinbet; 
 tau_z = -p_stress_A*costet*sintet*sinbet_2-p_stress_B*costet*sintet*cosbet_2+p_stress_C*costet*sintet;  
 tau_max= sqrt (sqr(tau_x) + sqr(tau_z)); 
 
 sqrt_length_pi = 2*sqrt(length/(2*pi));      //LENGTH IS TOTAL CRACK EXTENSION: 2a
  
 k_1 = shp_fact*sigma_normal*sqrt_length_pi; 
 k_2 = shp_fact*tau_max*sqrt_length_pi*2/(2-poisson_ratio); 
 k_3 = 0.0; 
 
 if (sigma_normal>=0) g = (1-sqr(poisson_ratio))*(sqr(k_1)+sqr(k_2))/elastic_modulus; 
 else     g = (1-sqr(poisson_ratio))*sqr(k_2)/elastic_modulus; 
 
 if (g>=g_crit) {failure=true;} 
 if (g-g_crit>criticality) {criticality=g-g_crit; map=true;} 
 return failure;  
 } 
//********************************************************************************************************* 
//********************************************************************************************************* 
 
 
// FAILURE CRITERION 3 
//***** EMPIRICAL FRACTURE CRITERION FOR A CRACK WITH A SPECIFIED SHAPE FACTOR ******************* 
bool Failure_Empirical(double length, double bet, double sintet, double fi, double p_stress_A, 
       double p_stress_B, double p_stress_C, double criticality, bool map)    
 { 
 double sigma_normal, tau_x, tau_z, tau_max, g;     //STRESSES REFERRED TO THE CRACK PLANE 
 double sinbet, cosbet, costet; 
 double sinbet_2, cosbet_2, sintet_2, costet_2; 
 double sqrt_length_pi; 
 bool failure=false; 
 map = false; 
 
  // *** GEOMETRICAL QUANTITIES ***** 
 sinbet= sin(bet); 
 cosbet= cos(bet); 
 sinbet_2= sqr(sinbet); 
 cosbet_2= sqr(cosbet); 
 sintet_2= sqr(sintet); 
 costet_2= 1-sintet_2; 
 costet=sqrt(costet_2); 
  // ******************************** 
 
 sigma_normal = p_stress_A*costet_2*sinbet_2 + p_stress_B*costet_2*cosbet_2 + p_stress_C*sintet_2; 
 tau_x = -p_stress_A*costet*cosbet*sinbet+p_stress_B*costet*cosbet*sinbet; 
 tau_z = -p_stress_A*costet*sintet*sinbet_2-p_stress_B*costet*sintet*cosbet_2+p_stress_C*costet*sintet;  
 tau_max= sqrt (sqr(tau_x) + sqr(tau_z)); 
 
 sqrt_length_pi = 2*sqrt(length/(2*pi));      //LENGTH IS TOTAL CRACK EXTENSION: 2a
  
 k_1 = shp_fact*sigma_normal*sqrt_length_pi; 
 k_2 = shp_fact*tau_max*sqrt_length_pi*2/(2-poisson_ratio); 
 k_3 = 0.0; 
 
 if (sigma_normal>=0) g = (1-sqr(poisson_ratio))*(sqr(k_1)+sqr(ratio_KIc_KIIc*k_2))/elastic_modulus; 
 else     g = (1-sqr(poisson_ratio))*sqr(ratio_KIc_KIIc*k_2)/elastic_modulus; 
 
 if (g>=g_crit) {failure=true;} 
 if (g-g_crit>criticality) {criticality=g-g_crit; map=true;} 
 return failure;  
 } 
//********************************************************************************************************* 
//********************************************************************************************************* 
 
#endif 
 


