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ABSTRACT

Assessment of river rehabilitation and restoration projects, as well as the monitoring

of morphological changes in rivers requires collection of hydromorphological

parameter data (i.e. depth, velocity and substrate). Field data collection is highly time

and cost consuming and thus, effective and efficient monitoring programmes need to

be designed. Interpolation techniques are often used to predict values of the variables

under study at non measured locations. In this way, it is not necessary to collect

detailed data sets of information. The accuracy of these predictions depends upon (i)

the method used for the interpolation and/or extrapolation procedure and (ii) the

sampling strategy applied for the collection of data. Even though the design of

effective sampling strategies are of crucial importance when applying interpolation

techniques, little work has been developed to determine the most effective way to

collect hydromorphological data for this purpose.

This project aimed to define a set of guidelines for effective and efficient

hydromorphological data collection in rivers and relate this to the type of river site

that is being sampled and to the objective for which the data are being collected. The

project is structured in three main sections: spatial problem, the scaling problem and

the temporal problem. Spatial problem refers to the location and number of points that

need to be collected. Scaling problems focus on the study of the river length that

needs to be sampled to characterise the spatial variability of a river site, whilst

temporal problems determine how often a river site needs to be sampled to

characterise the temporal variability associated with changes in discharge. Intensive

depth data sets have been collected at a total of 20 river sites. These data sets have

been used to investigate the spatial, temporal and scaling problems through

geostatistical theory.
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1.1. The need for hydromorphological sampling and monitoring in rivers

Rivers change their characteristics throughout their length, from the point of origin

onwards, following what is described as the continuum concept (Vannote et al.,

1980). This theory describes the structure and function of communities along a river

system; physical, chemical and biological changes occur on a longitudinal gradient

from the headwater to the lower reaches. Stream communities are located in those

areas with physical and chemical characteristics for which they are biologically

adapted. The characteristic producer and consumer communities at a given reach of

the river continuum conform to the manner in which the river system utilizes its

kinetic energy in achieving a dynamic balance. Figure 1.1 illustrates the continuum

concept. Physical characteristics of the river change towards lower reaches and so, the

communities of vertebrates, invertebrates and flora are different at each stage.

The river continuum concept has been commented and discussed from many aspects,

a summary of which can be encountered in Statzner and Higler (1985). The simplified

way of describing river dynamics used by Vannote et al (1980) presented the

following limitations (Statzner and Higler, 1985): (i) the concept was developed for

natural, unperturbed stream ecosystems, (ii) streams with characteristics different to

those for which the concept was developed may deviate from the general pattern, (iii)

the concept does not consider the various types of stream types and (iv) it does not

This chapter describes the need for hydromorphological
data collection in rivers. It also briefly identifies and describes
the main problems of current hydromorphological sampling
strategies, states the aim and objectives of this research project
and describes the contents of the thesis, chapter by chapter.
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ose of this study it will be considered that natural channels conform to the

uum concept. Therefore, the comparison of physical, chemical and

haracteristics of a river reach with those expected from the continuum

l help to determine the ecological quality of the system (i.e. its proximity

status). The study of the complete river is not possible as this would be

the river from headwaters to lower reaches.



Chapter 1 4 The needs

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

highly time and cost consuming. Instead, representative reaches of the river may be

selected and characterised. The main variables used to describe or asses river reaches

include; biological, chemical/physico-chemical and hydromorphological elements

(Directive 2000/60.EC). The first group defines the community structure present at

the site and it is defined by variables such as composition and abundance of aquatic

flora, composition and abundance of benthic invertebrate fauna and composition &

age structure of fish fauna, among others.

Chemical and physico-chemical elements define the water quality at the river reach

under analysis. The main variables measured to identify the chemical / physico-

chemical composition are: thermal conditions, oxygenation conditions, salinity,

acidification status, nutrient concentration and presence of specific pollutants.

Finally, hydromorphological parameters define the shape and structure of the river

channel, this is the physical structure described in the continuum, which provides

information on the physical characteristics of the river and therefore, information on

the potential stream communities that could be encountered at the site. Variables that

are measured in this group are: river depth and width variation, structure & substrate

of the river bed and structure of the riparian zone. Many other variables can be

considered for river characterisation, such as: catchment characteristics (geology,

climate, hydrology, flow regime, erosion rates) and habitat characteristics (i.e.

mesohabitat types and flow types), among others.

Hydromorphological data are collected for three main purposes: modelling, river

assessment and research studies. River models are developed to simulate the status of

variables under interest for selected scenarios. The range of variables under interest

depends on the final objective of the study and includes, for example, water quality

(San Martin et al., 2004), fish habitat (Hardy & Addley, 2003) and consequences of

changes in discharge or fluvial bank erosion (Darby et al., 2004). By modelling the

status of the river site for a specific scenario (i.e. dam construction, increase in the

pollution, flow change or river restoration) it is possible (i) to understand how the

system will improve or degrade under specific conditions and (ii) to undertake

decisions on river management and river appraisal methods. The development of

these models may include either a hydraulic or a hydrodynamic component that
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requires the description of the hydromorphological variables of the river site under

study.

Assessment and monitoring of hydromorphological characteristics is carried out to

analyse the physical status of a river system at a specific time or over a time period for

ecological and management purposes. Some of the objectives for which

hydromorphology is assessed are (i) to categorise the change of the river physical

status according to consequences of anthropogenic measures that will be taken in the

future or that have been undertaken in the past and (ii) to evaluate the remoteness of

the river from a potential natural form (Bizjak & Mikos, 2004). Hence, the impact of

dam constructions (Woo et al., 2004), flow regulation (Hauer et al., 2004) or the

improvement achieved after developing a river restoration project (Muhar et al., 2004)

are some of the changes that can be assessed through the monitoring of

hydromorphology variables. These objectives are in agreement with those defined for

model development. Therefore, assessment and monitoring of rivers is a useful tool to

validate a model and determine whether the model results are simulating the system as

expected.

Finally, hydromorphological data may be collected during the development of

research projects. Research studies are carried out (i) to increase the knowledge of

river dynamics described in the continuum concept and (ii) to propose new and more

efficient methodologies for river characterisation - representation at chemical,

physical and community structure level. This in turn will help to develop more

accurate and sophisticated river models. Examples of studies that can be considered

under these frameworks are provided by several authors (Alfredsen et al., 2004a,

Alfredsen et al., 2004b, Hauer et al., 2004 and Magdaleno et al., 2004).

Hydromorphological data collection in rivers is necessary for many purposes, some of

which have been described above. Effective and efficient sampling strategies need to

be applied in each case in order (i) to reduce the time and economic costs and (ii) to

achieve a specific accuracy level. The next section briefly states the problems of

current hydromorphological sampling strategies and assesses whether they meet these

two requirements.



Chapter 1 6 The problems

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

1.2. The problems of current hydromorphological sampling strategies

Rivers occur in a wide range of forms and shapes determined by the catchment

characteristics in which the river flows. Development of a common

hydromorphological sampling strategy that can be easily applied for all rivers is

difficult, if not impracticable, due to the variety of rivers that can be found. Current

hydromorphological sampling strategies have been designed for specific purposes and

river sites. These sampling strategies have been applied to other objectives or study

areas without adaptation. As a result three main problems can be identified: spatial

problems, scaling problems and temporal problems.

1.2.1. Spatial problems

Spatial problems describe the limitations of current sampling strategies when trying to

characterise the hydromorphological features of a selected river reach at a specific

time, as if a picture was taken. Five main spatial problems can be identified: (i) no

consideration of the spatial variation of the river, (ii) lack of consensus on the sample

strategy to be applied, (iii) inability to provide levels of accuracy for the characterised

river reach, (iv) lack of consensus on the length of river reach to be sampled and (v)

subjectivity in the determination of specific hydromorphological features.

Generally, hydromorphological features are measured by placing regularly or

irregularly spaced cross-sections in the selected river reach. Cross-sections are

distributed at the river site by analysing visible river features (e.g. mesohabitats, flow

types or river bed shape) that describe the variability of the site. Information is

collected at equidistantly distributed points across each cross-section and later on

interpolated between cross-sections. The general and easy way of interpolating the

collected data is by considering that the inter-cross-sectional space does not change

between cross-sections (e.g. Waddle, 2001). This introduces errors in the

characterisation of the site since (i) cross-sections can be located at intervals that do

not represent all the spatial information and (ii) detail can be lost in the interpolation

procedure.
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An example of potential errors is shown in Figure 1.2, which identifies three cross-

sections (red dots) placed in a river reach and their respective sampling points. The

low concentration of suspended sediments in the river site allows visual determination

of the river bed features and therefore, placing of the cross-sections in the adequate

spots. However, if the turbidity was high enough to obscure the channel bed, the

intermediate features defined by cross-section 2 may not be identified and therefore,

cross-sections 1 and 3 could be considered sufficient for the hydromorphological

characterisation, when they are not.

The lack of consensus on the sampling strategy to be applied implies that there is no

agreement on the number of points that need to be collected and where they need to

be located. It also reflects the variation in physical structure between different rivers.

Therefore, many possible combinations of location and number of points may be

applied at a selected river site. Figure 1.3 shows two sampling densities and two

strategies for point distribution that could be implemented at the selected reach.

Which one is better? The question does not have an easy answer as this will depend

on the final objective for which the data are collected and the level of accuracy

required from the study.

Figure 1.2: example of three equidistant cro
characterisation of hydromorphological featu

1

at Silsoe

ss-sections placed at the river
res.

2

PhD Thesis 2006

site for the

3
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Current hydromorphological sampling strategies provide a simplified representation

of the river site since parameters are measured at specific locations to either (i) obtain

representative values of the reach features or (ii) to interpolate the results to the whole

sampled reach later on. In the latter case, the error needs to be considered and

accounted for when analysing the interpolated results. This can be achieved by

determining the difference between the interpolated representation of the

hydromorphological features and the true characteristics of the site. This difference

between observed and predicted (interpolated) values is known as the prediction error.

The accuracy level of the sampling and interpolated procedure can be obtained

through the calculation of this prediction error. Accuracy values are not usually

provided since (i) this requires more data collection to calculate the error between

interpolated and measured values, (ii) it is assumed that the inter-cross-sectional

variability is small or (iii) the interpolation technique applied does not allow the

determination of the standard error of the predictions (e.g. Inverse Distance

Weighting).

F

h

Figure 1.3: comparison of two sampling densities (top) and two strategies for point distribution
(bottom) at a selected river site.
onica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

inally, further issues associated with the lack of a common framework for

ydromorphological characterisation of rivers are: (i) the lack of consensus on the
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length of the river reach to be sampled and (ii) the subjectivity and lack of consensus

on the determination of river features for hydromorphological characterisation (i.e.

mesohabitat/habitat types and flow types).

1.2.2. Scaling problem

Several spatial scales can be identified in rivers according to the level of detail that is

being analysed. These spatial scales are defined differently in relation to the objective

for which they are being considered and to the author establishing the classification.

Even though there are differences between classifications, it is clear that there is a

need for development of a methodology that will allow scaling of information

collected at a river site from small to large spatial scales (up-scaling) and vice versa

(down-scaling) (Figure 1.4). This is known as the river-scaling concept (Habersack,

2000).

Figure 1.4: spatial scales defined by Habersack (2000). This is a
diagrama of the full range of scales analysed for freshwater
ecosystems. This does not imply that hydromorphological
parameters are characterised at all the scales shown.
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1.2.3. Temporal Problem

Monitoring of rivers is also carried out to study changes in river characteristics over

time. Data are collected at the same river reach repeatedly over a time period and

results obtained are analysed to determine if the river hydromorphology has improved

or degraded. The difficulty of designing spatio-temporal sampling strategies for river

monitoring is due to the need to achieve two main requirements: (i) the strategy

applied needs to provide a satisfactory degree of information for a sampled time and

(ii) the data needs to be collected in such a way that allows comparison between

sampled times. The sampling strategy not only has to be efficient, defining the spatial

variability of the reach for each sampled time, but also needs to be efficient in

collecting data at those locations that are going to provide most information about

hydromorphological change.

Figure 1.5 exemplifies the concept explained above. The visual hydromorphological

features of the selected reach have been identified through the delineation of flow

types (red dotted lines). Flow types are the features that can be observed in the water

surface when walking along the river reach. With increasing discharge, the features

identified will change and therefore, it is necessary to develop sampling strategies

which address the requirements mentioned above in order to characterise these

changes.
Figure 1.5 the spatio-temporal problem in hydromorphological monitoring. Changes
in hydromorphological features (i.e. mesohabitat/flow types defined by the red lines);
a Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

Change due to changes in flow (blue line).
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1.3. Aim and objectives of this research project.

1.3.1. Overall Aim

The aim of the proposed project is to define a methodology for effective and efficient

collection of hydromorphological data and to relate this to other characteristics of the

site under observation. This can be expressed as the following research goal:

“To determine if it is possible to develop a set of guidelines for effective (cost-time-

accuracy) collection of hydromorphological data for different purposes and relate

this to other characteristics of the sites under observation.”

1.3.2. Objectives

The specific objectives of the study were to:

a. identify the main limitations of current hydromorphological sampling strategies.

b. identify potential analytical tools to address the above limitations.

c. explore the application of geostatistical techniques for the resolution of the

problems identified in current hydromorphological sampling strategies.

i. compare different sampling strategies and determine the differences between

them in terms of accuracy for nine selected indicators (spatial problem:

methodological strategies).

ii. compare different sampling densities and determine the differences between

them in terms of accuracy for nine selected indicators (spatial problem: data

density).

iii. explore the application of the combined techniques of geostatistics and

spectral analysis for the resolution of scaling problems (up-scaling/down-

scaling).

iv. assess the utility of the variogram for the identification of hydromorphological

differences between river sites (spatial problem) and link the results with the
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characteristics of the river sites for three different spatial scales (scaling

problem).

v. Explore the hydromorphological changes occurring in two river sites due to

changes in discharge.

d. create a set of guidelines for the development of effective and efficient

hydromorphological sampling strategies in space, time and for the scaling concept

linked with the observable characteristics of each river site.

1.4. Layout of the thesis

The thesis has been structured in nine chapters plus references and appendixes. The

chapters which contain the data analysis (chapters 3 to 8) have been developed to

facilitate the writing up of future scientific papers: introduction, methodology, results,

discussion and conclusions. A brief description of the contents and purpose of each

chapter is provided below.

Chapter 2 constitutes the literature review of the research project. It describes the

current hydromorphological sampling strategies applied for data collection in rivers. It

assesses the relevance of hydromorphological parameters in the Water Framework

Directive and describes the requirements of hydromorphological data collection for its

implementation. The problems listed in chapter 1 are described in detail and a set of

appropriate solutions is proposed. Finally, in the discussion section, geostatistics is

proposed as an approach to meet the objectives described in chapter 1.

The analysis developed in Chapter 3 has as its main objectives (i) to identify the

differences when measuring depth parameters with two commonly used methods: a

metric staff and a total station and (ii) to compare two possible ways of sampling

depth values with the total station. This allows identification of the level of inaccuracy

inherent to the equipment that is being used and to set a reference level of data error

for further chapters.

Chapter 4 analyses the spatial problem by comparing five different sampling

strategies for the collection of three hydromorphological parameters: depth, velocity
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and substrate. The objective is to define which of these five sampling strategies gives

better results when applying geostatistical techniques for prediction of values at non

measured locations. Afterwards, levels of accuracy and implementation constraints

are compared and a sampling strategy is recommended.

Chapter 5 focuses on the spatial problem and links the results with the scaling

concept. The spatial pattern of depth is analysed for twelve river sites. The way that

the rivers group together according to their spatial characteristics is then compared to

the way that they group according to the characteristics defined for different spatial

scales. Conclusions on how similar the rivers are according to their spatial pattern and

the spatial scale analysed are used in chapter 6.

Chapter 6 continues with the analysis of spatial problems through consideration of

data density. Chapter 4 provided a partial answer to the spatial problem as it only

provided a solution to the spatial pattern for which data points need to be collected.

Chapter 6 provides a set of guidelines to identify the sampling density at which the

sampling strategy selected in chapter 4 could be implemented.

In Chapter 7 the different classifications and characterisations of river spatial scales

are discussed. Here the possibility of applying a combination of geostatistical and

spectral analysis to address the scaling problem i.e. the length of river which needs to

be measured to correctly represent spatial variability over larger sections is

considered. Conclusions are established on how far apart sampled reaches should be

in order to interpolate the intermediate distance.

Chapter 8 focuses on the temporal problem. The analysis is developed considering

the spatio-temporal character of the variables. Hydromorphological data collected or

simulated for different discharges at two different river sites are analysed and

conclusions are established on how data should be collected to obtain maximum

information on hydromorphological changes due to changes in discharge.

Finally, chapter 9 summarises the conclusions established for each chapter and

presents a discussion about the contribution to knowledge of this research project.
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Recommendations for further research and potential applications of the findings are

described.

In addition to the nine chapters described, appendices and a list of references have

been included to support the study. A Compact Disk with a copy of the thesis in pdf

format (for Acrobat reader) has been attached at the end of the thesis.

1.5. The river sites

Data for twenty river sites have been collected as part of this project or provided by

different organisations to develop the analysis required for the objectives defined in

section 1.3.2. Therefore, data have been collected with different equipment, different

sampling strategies and for different objectives. Hence, these data sets were studied

and analysed according to their characteristics: the data sets that had the best

characteristics for analysis of each objective were selected.

Table 1.1 summarises the data sets available and provides a guide to the river sites

that were analysed in each chapter. It also includes the name of the organisation that

provided the data, as well as the location where the data was collected.
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Table 1.1: river sites analysed in each chapter of this study. (HM and LM refer to Highly Modified and Low Modified, respectively). Catchment area refers to the
area between the origin and the sampled site (except for the Brazos, Sulphur, Peris, Senni and Seiont site which are not included in Chapter 5 analysis and for
which the full catchment area has been identified).

River site Location Data Source Chapter in which
data are used

Catchment area
(km2)

Reason for choice

Austrian
channel

Vienna, Austria, BOKU University 4 - Artificial channel with alpine characteristics. Very
detailed data set of depth and velocity.

Brazos Texas, USA Texas Water
Development Board

7 16000 River length sampled adequate for the analysis of the scale
problem.

Bere Dorset, UK. CEH 5, 8 48 Lowland site.
Blackwater Surrey, UK CEH 8 46 Lowland site with intensive depth data set. Site sampled

up to the bankfull level.
Cruick North East

Scotland
CEH 5, 6 72 Upland site.

Highland
Water

Hampshire, UK CEH 5, 6 13 Lowland site.

Lambourn Berkshire, UK CEH 5, 6 185 Lowland site.
Leigh Brook Gloucestershire,

UK
Worcester College 4, 5, 6, 8 41 Depth, velocity, mesohabitat and flow type data available.

at two different discharges.
Peris North Wales Data collected for thesis 3 10 Upland river site. High mesohabitat diversity.
Pang Fenced Berkshire, UK CEH 5, 6 84 Lowland site.
Pang
Unfenced

Berkshire, UK CEH 5, 6 84 Lowland site.

Pang Old
Fenced

Berkshire, UK CEH 5, 6 84 Lowland site.

Seiont North Wales Data collected for thesis 3 220 Upland river site. High mesohabitat diversity.
Senni Brecon, Wales CEH 5, 6 28 Upland river site. High mesohabitat diversity.
Sulphur Texas, USA Texas Water

Development Board
7 891737 River length sampled adequate for the analysis of the scale

problem.
Tame HM Birmingham, UK CEH 5, 6 183 Lowland site.
Tame LM Birmingham, UK CEH 5, 6 187 Lowland site.
Tarf North East

Scotland
CEH 5, 6 22 Upland site.

Windrush Gloucestershire CEH 3, 5, 6, 8 174 Lowland site
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2.1. Current sampling and monitoring strategies of hydromorphological

parameters in rivers.

Hydromorphological sampling strategies have been applied over time in order to

obtain data sets for different purposes, such as assessing the habitat quality of rivers

(Booker et al., 2004b), appraisal and impact assessment (Woo et al., 2004), habitat

modelling (Waddle, 2001), hydraulic modelling (e.g. Hec-Ras software (Brunner,

2002)), planning habitat improvements and hydromorphological quality assessment of

rivers (Raven et al., 1998), among others. Different methodologies have been applied

for collection of hydromorphological data according to the spatial scale of the

objective, the accuracy required in the measurements, the country where the study is

being carried out and economic and temporal factors. Two main sources of

hydromorphological sampling strategies can be identified; those developed for the

assessment of hydromorphology in rivers and those developed for fish habitat models.

2.1.1. Strategies derived from methods for hydromorphological assessment.

Since a wide range of hydromorphological sampling strategies have been derived

from methods for hydromorphological assessment and many of them are not

documented, only the most relevant ones developed in Europe will be reviewed in this

section, these are: River Habitat Survey (RHS) from the UK, the Systeme

d’Evaluation de la Qualite du Milieu Physique (SEQ-MP) from France and the

Landerarbeitsgemeinschaft Wasser (LAWA-vor-Ort) from Germany. Other European

Depth, velocity and substrate data sets need to be
collected in rivers for different purposes. This chapter
summarises the hydromorphological sampling strategies that are
currently being applied for data collection. Problems and
limitations of the sampling procedures are highlighted and a
range of possible solutions considered. Geostatistical techniques
are identified as the analytical methodology for this research
project.
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countries such as Austria, Italy, Spain and Switzerland have developed

hydromorphological sampling protocols for river habitat assessment but these

methodologies are relatively recent and have very little documentation and

development (Raven et al., 2002).

River Habitat Survey (RHS).

RHS is a methodology developed to broadly characterise and assess the physical

structure of freshwater streams and rivers (Environment Agency, 2003). The need for

the development of a system to assess the value of the physical structure of rivers was

identified after reviewing the existing survey methods (Habscore and River Corridor

survey, among others) none of which provided a system which could be directly

applied, was simple to apply, representative of the structural diversity, capable of

providing consistent data and results and statistically sound (Fox et al., 1998).

RHS characterises the physical structure along a 500 m length of river channel and

data are collected at 10 equidistant “spot-check” reaches and a “sweep-up” summary

(Raven et al., 2002). At each “spot-check” the following information is collected:

predominant bank material, bank modifications, predominant substrate, channel

modifications, flow type, land use within 5 m and 50 m of the banktop, banktop and

bankface vegetation structure and channel dimensions. The “sweep-up” process is

carried out along the 500 m and information regarding artificial features, the valley

form, number of riffle-pools and point bars, land use, bank profiles, vegetation,

channel and bank features, channel dimensions and features of special interest is

collected.

The data collected following the RHS characterise the hydromorphological features of

the rivers broadly. Objectives such as modelling will need more detailed data sets to

obtain representative results and so the RHS data cannot be used. Aspects such as the

mesohabitat types are briefly identified in the methodology and the lack of collection

of depth-velocity data at a cross-section scale restricts the application of RHS data for

other purposes.
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The SEQ-MP method

The SEQ-MP method for hydromorphological assessment of rivers records

information regarding channel geometry, substrate, channel vegetation, organic

debris, flow, longitudinal continuity, structure - vegetation of river banks, description

of the riparian zone and floodplain characteristics. Maps are used to determine the

boundaries for the selection of individual survey units according to significant breaks

in slope, valley form, junctions with large tributaries and major changes in land-use

(Raven et al., 2002). The method describes broadly the hydromorphological features

at the selected river site and, as in the RHS case the application of the method is

difficult for purposes other than hydromorphological assessment of rivers.

The LAWA-vor-Ort method

The LAWA-vor-Ort method was developed to assess the hydromorphology of small

and medium-size rivers. Hydromorphology is characterised through the measurement

of 25 single attributes which are grouped into six main categories: development of the

stream course, longitudinal profile, river-bed structure, cross-section profile, bank

structure and riparian surroundings. The length of the stream surveyed is a function of

the river width (Raven et al., 2002). The attributes are characterised according to

options available, i.e. “low” and “very high” are options for flow diversity.

Limitations defined in the methodologies described above are also present in the

LAWA-vor-Ort method.

2.1.2. Strategies derived from habitat models

Hydromorphological sampling strategies defined for fish habitat simulation models

have represented the basis of hydromorphological data collection in many studies (e.g.

river restoration (Parasiewicz, 2001)). Random sampling (Parasiewicz, 1996), fractal

geometry (Nestler & Sutton, 2000), geodetic sampling (Parasiewicz & Dunbar, 2001),

stratified random reaches (Parasiewicz, 1996) and systematic sampling (Parasiewicz,

1996) are some of the strategies applied for the measurement of hydromorphological

data for habitat modelling.
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Fish habitat models require the description of hydraulic characteristics which can be

obtained through (i) direct measurement of hydraulic factors, (ii) one dimensional

hydraulic models, (iii) two and three dimensional hydraulic models and (iv) statistical

hydraulic models (Harby et al., 2004). The first type relies on the direct measurement

of hydromorphological parameters at specific locations and flow conditions of the

river site under study. The second rely on reach sampling of hydromorphological

parameters and the application of standard hydraulic equations. Two and three

dimensional hydraulic models apply the principles of conservation of mass and

momentum on a spatial computational grid, whilst statistical models provide estimates

of frequency distributions of hydraulic variables. A brief description of the

hydromorphological sampling strategies of the most common fish habitat models used

is given below:

PHABSIM - RHABSIM

PHABSIM is a habitat model developed for the prediction of micro-habitat conditions

in rivers as a function of streamflow. The suitability of these conditions for aquatic

life is assessed by the software (Waddle, 2001). RHABSIM follows the same

principles as PHABSIM but the software is more user friendly.

PHABSIM has two major sub-systems: river hydraulics simulation and physical

habitat simulation. The habitat simulations are carried out for a selected study area

which has been segmented according to one of three possible approaches that is

selected according to the individual study objectives and may involve a combination

of the above approaches.

Once the segmentation approach has been applied, cross-sections are placed within

each study site using a stratified random or stratified systematic sampling scheme

(Figure 2.1). Cross-sections are also placed at each hydraulic control (gauging point).

The number of cross-sections at the river sites is determined according to habitat

diversity, the extent of the study area and the resources available (U.S. Geological

Survey , 2004).
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Figure 2.1: diagram representing the hydromorphological sampling strategy (left) and the habitat
simulation concept applied in P-Habsim. (d) and (v) are depth and velocity, respectively. Image
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

A topographic survey of channel morphology is carried out at each cross-section.

Mean column velocities, substrate and cover are also measured at each topographical

sampling point. Field notes describing the stream and water surface levels are

recorded at each cross-section and data are collected at three different flows in order

to model the physical habitat “correctly”. The surveyor moves between cross-section

by walking along the river banks.

The data collected are used to create the hydraulic and habitat simulations. Habitat

modelling transforms the hydraulic simulation into the Weighted Usable Area index,

which characterises the quantity and quality of available habitat for each cell across

each cross-section.

RYHABSIM

Several habitat simulation programs, such as RYHABSIM, have been developed from

the U.S.G.S version of PHABSIM, following the same basic principles for the

determination of river habitat suitability but introducing specific modifications to the

methodology.

RYHABSIM characterises hydromorphology through the measurement of cross

sections separated by one channel width interval. Extra cross-sections are added

extracted from P-Habsim user manual (Waddle, 2001).
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where flow is markedly non-uniform (Mosley & Jowett, 1985). Measurement points

across the cross-section are equally spaced (around 15 to 20 points per cross-section).

Depth and velocity (at 0.6 of total depth) are measured at each point. The number of

points per cross-section is progressively reduced according to the width of the cross-

section and additional points are located on changes in cross-slope or at deepest points

to properly define the cross-sections. Water levels are measured at both banks on

every cross-section and interpolated between banks. The river bed is mapped into

areas according to the substrate. Values of depth and velocity are used to calculate the

Weighted Usable Area (WUA).

MESOHABSIM

MESOHABSIM is a methodology developed for habitat simulation at larger scale

levels (mesoscale) by setting the precision of hydraulic sampling to large units and

increasing emphasis of system scale mapping (Parasiewicz, 2001). Physical attributes

used for model calibration are commonly measured at only a few sampling sites and

model predictions are then extrapolated to larger segments of rivers and streams. This

is supported by rapid habitat mapping of a larger area to weight the spatial distribution

of habitat features. Rapid habitat mapping consists of the visual characterisation of the

habitat features of a river reach. Aerial photographs are used for this purpose. The

biggest uncertainty associated with this method is the feasibility and accuracy of data

sampling procedures.

CASIMIR – MESOCASIMIR

CASIMIR uses a similar methodology to PHABSIM but establishes the relationship

between the physical habitat and biological variables through application of fuzzy

rules. Hydromorphological parameters are obtained at cross-sectional level (Jorde et

al., 2001). Water surface levels are either measured or calculated and a three

dimensional digital river bed model is generated. Velocities are determined with an

approach considering bottom roughness, water depth and water surface slope. Habitat

suitability is calculated through fuzzy rules that consider the relationship between

water depth, substrate, flow velocity and cover. Weighted Usable Area (WUA) is

obtained from the habitat quality maps as an integral value. Figure 2.2 shows the
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output of CASIMIR for a river site; habitat units are represented by rectangular cells

that do not allow the identification of irregular shapes for habitat.

MESOCASIMIR was developed for the application of CASIMIR at mesoscale level.

Depth, velocity and substrate are measured at each mesohabitat type by locating one

sampling point in a representative zone for each mesohabitat type.
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Figure 2.2: example of habitat suitability map for brown trout (Salmo trutta)
obtained with CASIMIR. Image extracted from Jorde et al (2001). No scale of the
sampled river site was provided. The output cells show the regularity of the
predictions.
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HAMOSOFT

abitat Modelling Software (HaMoSoft) is currently under development but a

version of the software is available (Mader et al., 2005). Up to now habitat

ls have assessed fish habitat by calculating the Weighted Usable Area (WUA),

is obtained from hydraulic simulation. WUA is calculated by averaging the

ity data in verticals or reaches. HaMoSoft assesses the fish habitat available at a

site through the analysis of Weighted Usable Volume (WUV). The main

ence with existing models is that the measures or simulated velocity base data

ot reduced to mean values in verticals or reaches.

nput data required consist of bathymetry of the river reach (3D terrain model),

velocity data (point sampling, profile sampling or velocity data from 3D

ulic models), substrate and cover data (longitudinal and lateral extension)

er et al., 2005). The model was developed to apply linear interpolation for the
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prediction of hydromorphological parameters at non measured points. However, after

analysing the first results of this study a geostatistical data processing module was

included in the software. Geostatistical techniques are applied to obtain the depth and

habitat distribution at the sampled river site. Finally, graphical outputs of the cross-

sectional velocities and the WUV are produced.

HYDROSIGNATURE

Hydrosignature is a habitat model that divides the river site into cells using a

Triangular Irregular Network (TIN) and calculates the number of different

combinations of depth and velocity that exist (Le Coarer, Y. 2005, pers. Comm, April

2005). The output, called the Hydrosignature of the river site, consists of a diagram

showing the combinations of depth and velocity available at a specific cross-section

or river site. Figure 2.3. is a diagram of the Hydrosignature of the Leigh Brook river

site. The output highlights the diversity of conditions present.

hw(m) Surface hw(m) Volume
3 3

1.4 1.4

1.2 1.2

1 0.1 1 0.2

0.8 1.1 0.1 0.0 0.0 0.0 0.0 0.8 3.9 0.2 0.0 0.0 0.0 0.0

0.6 5.6 2.0 0.4 0.1 0.0 0.0 0.0 0.6 13.9 4.7 0.9 0.2 0.1 0.1 0.0

0.4 14.3 12.0 4.4 1.6 0.3 0.1 0.0 0.4 21.4 18.1 6.4 2.3 0.4 0.2 0.0

0.2 36.4 12.0 6.8 2.1 0.5 0.1 0.0 0.0 0.2 13.8 7.1 4.3 1.4 0.4 0.1 0.0 0.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 5 v(m/s)

Hydrosignature is also still under development. A first version of the software is

available for downloading at the official web site (Le Coarer, 2005). However, the

user manual needs to be completed. The input data are the hydraulic measurements of

verticals described by their depth and average velocity (Scharl & Le

Figure 2.3: hydrosignature of the Leigh Brook river site. The habitat suitability is given by the
number in each cell. The coloured scale indicates the degree of suitability. The hydrosignature
is given for the total volume of the river site and for the surface characteristics.
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Coarer, 2005). Substrate and cover data are not required for the model to be

implemented (Le Coarer, Y. 2005, pers. Comm, April).

The hydrosignature can be calculated with georeferenced and non georeferenced data.

Depth and velocity data collection can be carried out following three different field

data collection procedures: (i) depth and velocity are measured at unspecified

locations, (ii) data is collected following cross-sections and (iii) data is collected

following a Triangular Irregular Network (TIN). In the first case, vertical

measurements of depth and velocities are collected at unspecified locations. In the

second case, velocity and depth measurements are recorded along a cross-section: the

distance between measured points is also recorded. Finally, in the last case, a Digital

Elevation Model (DEM) is created to obtain topographical information, to apply

advanced interpolation methods for depth and to implement 2D and 3D models for

habitat assessment. Values of depth can be interpolated and predicted at non measured

locations with an equation that considers the curvature of the river and the spatial

variation of the parameter interpolated (Le Coarer, Y. 2005, pers. Comm, April).

2.2. The role of hydromorphology in the Water Framework Directive (WFD)

The implementation of the WFD (Directive 2000/60.EC) requires the development of

monitoring programmes to obtain a comprehensive overview of water status. The

monitoring programme will inform the classification of status, the long term changes

in natural conditions, the changes in status of those bodies identified as being at risk

and determine the causes of water bodies failing to achieve environmental objectives

(Working Group 2.7, 2003).

These monitoring programmes may “quantify the temporal and spatial variability of

quality elements and the parameters indicative of the quality elements in the water

surface bodies being considered. Those that are very variable may require more

sampling (and hence cost) than those that are more stable or predictable. Alternatively

variability might be reduced or managed by an appropriate targeted or stratified

sampling programme which collects data in a limited but well-defined sampling

window” (Working Group 2.7, 2003). In addition, estimates of the confidence and
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precision attained by the monitoring systems have to be accounted for so limits of

how much uncertainty can be expected in the results of monitoring programmes. This

can be compared with acceptable uncertainty or error levels.

Hydromorphological elements to be monitored are hydrological regime, river

continuity and morphological conditions (river depth and width variation, structure

and substrate of the river bed and structure of the riparian zone) (Chovanec et al.,

2000 and Directive 2000/60.EC). There is no common sampling methodology

consistent across the EU for the hydromorphological elements and the existing

classification systems do not meet the requirements of the WFD (Working Group 2.7,

2003).

The need for a standardised way to assess morphological conditions of rivers in order

to obtain a common interpretation of river quality and classification in future stream

assessment in the whole of Europe has been identified (Buffagni & Erba, 2002).

Details about hydromorphological monitoring requirements for the WFD can be

found in a series of documents (Johnson, 2000; REFCOND, 2001; REFCOND, 2003;

Owen et al., 2001 and Nixon, 2002).

Finally, the WFD requires the development of status maps (Working Group 2.7, 2003)

that will be represented with GIS techniques. These maps shall cover the networks

established for the purpose of monitoring and the results of the monitoring

programmes carried out (Nixon, 2002) in order to propose a programme of measures

in the River Basin Management Plans (Directive 2000/60.EC). The problem arises

when trying to propose the programme of measures at a river basin scale from

measurement obtained at a reach scale. Hence, the concept of river scaling

(Habersack, 2000) needs to be considered in the development of the

hydromorphological monitoring programme. The river scaling concept (RSC)

(Habersack, 2000) is an integration of two procedures: down and up-scaling. The

down-scaling procedure starts at a catchment scale and goes through sectional and

local scale to point scale. The up-scaling procedure follows the down-scaling one in

reverse, in order to aggregate the data for local scale, derive sectional results and

suggest regional catchment management.
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2.3. The problems identified

Three sources of uncertainty arising during the selection and application of

hydromorphological sampling strategies have been identified: spatial, scaling and

temporal (Table 2.1). These problems are summarised below:

Table 2.1: problems identified for design of hydromorphological sampling strategies.

Problem
type

Limitations

Spatial No consensus on the sampling strategy to be followed or the number of points to be
collected.

No consensus on the length of river to be sampled.
Loss of spatial information when applying linear interpolation between measured

cross-sections in habitat models.
Need for quantifying the spatial variability of hydromorphological parameters.
Lack of consistency when defining mesohabitat types.
Lack of studies on comparison of sampling strategies.
Hydromorphological sampling strategies proposed have been designed for specific

purposes. They cannot be used for different objectives.
No estimation of the level of accuracy/error associated with the current sampling

strategies.
Need for the development of adequate sampling strategies

Scaling Need for data collection at high spatial scales.
The accuracy of the prediction declines with the extrapolation procedure.
Results may vary according to the sampling strategy.
Need for the development of adequate sampling strategies.

Temporal Temporal issues are not considered in some of the current sampling strategies.
Need for quantifying the temporal variability of hydromorphological parameters.
Need for the development of adequate sampling strategies.
Need to differentiate between different sources of hydromorphological variation.

2.3.1. Spatial problems

The use of interpolation techniques for the prediction of values at non measured

locations and for the creation of maps of depth, velocity or substrate is widespread,

especially in the context of habitat modelling. Little work has yet been carried out to

determine the best location for sampling points for the application of interpolation.

Furthermore, there is no consensus on which sampling strategy should be followed,

where the sampling points should be located and how many points need to be

collected.
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Available hydromorphological sampling strategies for habitat models such as

PHABSIM require data collection at cross-sections and consider that the variance

between consecutive cross-sections is null. Thus, the less homogeneous the stream

segment is in terms of geomorphologic characteristics, the less accurate the

generalisation from study site simulations to the entire study area will be.

Other limitations associated with the PHABSIM software are the existence of

different options available to select the sampling sites and their length. Sanz-Ronda et

al. (2003) summarise different researchers’ opinions regarding the best river length

for the application of the PHABSIM methodology, which (i) is considered to be 35

times longer than the channel width under average flow conditions (Simonson et al.,

1994 cited in Sanz-Ronda et al., 2003), (ii) should include three complete riffle-pool

sequences or two consecutive meanders (Lyons, 1992 cited in Sanz-Ronda et al.,

2003), (iii) may include 10% of habitat units (Overton et al. 1993 cited in Sanz-

Ronda et al., 2003) and (iv) should analyse two randomly selected mesohabitats

(Bovee, 1997). Additional to the lack of consistency in the sampling methodology,

there is a difficulty in accurately defining and identifying the mesohabitat types

(Sanz-Ronda et al., 2003) and in validating the model outputs.

Little work has been published regarding the accuracy of the predicted physical

habitat when applying different sampling strategies and sets of equipment, an example

of which is provided by Scruton et al. (1998) Previous works developed for the

comparison of sampling strategies for habitat modelling stated that stratified sampling

strategies (i.e. reaches) typically applied for this purpose are relatively crude and do

not properly reflect the curvilinear distribution of hydromorphological parameters (Le

Coarer & Dumont, 1995 cited in Parasiewicz, 2001).

Recent work has been carried out in order to improve the representation of the depth

hydromorphological parameter in two and three dimensions (Legleiter & Kyriakidis,

2006, Merwade, 2002; Carter & Shankar, 1997 and Osting, 2004). The objective of

these studies was to obtain a suitable representation of the river bathymetry for

hydrodynamic models by creating rectangular bathymetric grids. Carter & Shankar

(1997) state the increasing interest in using hydrodynamic models for habitat

modelling and the importance of defining the problem domain (i.e. river bathymetry)
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to obtain accurate results. The gridding methodology applied by Carter and Shankar

(1997) is based on geostatistics (ordinary kriging). The geostatistical approach was

preferred to triangulation techniques since (i) the technique is able to deal with

irregular data, (ii) it is possible to consider a specific number of points for the

prediction of values at non measured points, (iii) the spatial variability of the

interpolated parameter is considered and (iv) the residual variance is minimised when

interpolating. One problem needs to be highlighted in Carter and Shankar’s (1997)

study: anisotropy was not considered or analysed because they considered that

“although there may be changes across the reach, the braids do not maintain a

constant direction and an anisotropic direction will not be valid for all the data”. The

study of anisotropy is really necessary when applying geostatistical analysis and

therefore results obtained in Carter & Shankar’s (1997) study should be viewed with

some caution.

Merwade (2002) solved the previous limitation for anisotropy analysis by developing

a tool for straightening the river. The method recognised that (i) results of

hydrodynamic models for instream flow studies are dependent on the accurate

representation of river geometry and (ii) the river bathymetry is generally created with

GIS by applying the interpolation module (Geostatistical Analyst). Current GIS

interpolation tools have been designed for the land surface and do not allow the

creation of adequate river bathymetry. According to Merwade (2002) this is due to the

different behaviour of this parameter across and along the river. Further explanations

for the inadequacy of GIS for river bed interpolation could be: (i) high degree of

accuracy and detail is required for the bathymetry, (ii) lack of transparency when

applying the interpolation processes and (iii) decrease of the accuracy when

interpolating meandering areas (curvature) due to the distortion caused by points that

are close in space but are not spatially correlated. Merwade (2002) developed a new

GIS tool in order to (i) consider the river as a linear feature, (ii) transform it into a

regular mesh for further data analysis and (iii) provide continuous information of the

bathymetry at a resolution finer than the source of data (Osting, 2004). However, the

project does not include any study regarding the sampling strategy and density

required to apply the developed tools effectively.
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Hydromorphological sampling strategies can be successfully designed when properly

combining the number of points to be sampled and the sampling strategy with the

interpolation technique to be applied. Furthermore, specific levels of accuracy or

confidence intervals can be proposed for the prediction of values at non measured

locations by comparing different interpolation techniques, different sampling

strategies and a range of sampling densities. Similar studies have been developed in

other research fields to define adequate sampling strategies (Webster & Oliver, 1992)

2.3.2. Scaling

One of the problems in fish habitat modelling is the need for data collection at high

spatial scales which is time and cost consuming (Parasiewicz, 2001). Several

strategies for mesoscale habitat mapping and/or modelling such as, MesoHabsim

(Parasiewicz, 2001), MesoCasimir (Jorde et al., 2001) and Rapid Habitat Mapping

(Maddock & Lander, 2002) are being developed in order to deal with the up-scaling

concept (Habersack, 2000). The general approach is to consider impractical the

application of models that increase the accuracy by increasing the number of sampled

points (Parasiewicz, 2001). Thus, the strategy followed in order to reduce the effort to

a feasible level is to take measurements at a few short sampling sites and extrapolate

them to larger segments of rivers and streams.

The extrapolation or interpolation of collected values may introduce considerable

errors if data have not been collected adequately for the interpolation technique that is

going to be applied. Furthermore, the accuracy of a river-wide assessment strongly

declines during the extrapolation procedure due to variations in stream morphology

among sampled sites (Dolloff et al., 1997 cited in Parasiewicz, 2001) and results may

vary according to the selected sampling strategy or location of the sampled locations

(Gore & Nestler, 1998 and Williams, 1996 cited in Parasiewicz, 2001).

Research studies need to be undertaken to identify which sampling strategy should be

used and how many points need to be collected in order to achieve a specific level of

accuracy in the extrapolation procedure. Furthermore, further research has to be

undertaken in order (i) to improve scaling methods in general (Habersack, 2000;
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Nestler & Sutton, 2000 and Hilderbrand et al. 1999) so detailed river scaling can be

developed and (ii) to determine whether existing methods can be up-scaled or an

entirely new approach needs to be developed (Booker et al., 2004a).

2.3.3. Temporal problems

In addition to the spatial issues of data collection, it is necessary to consider the

variation of the hydromorphological characteristics of rivers over time due to

variations in flow. Work developed by Dunne & Leopold (1978 cited in Parasiewicz,

2001) indicates that as flow rises, the distribution of hydro-morphological units will

change from riffle-pool towards homogeneous run-type habitats.

Temporal scale should play a major role in the design of sampling strategies for the

monitoring of hydromorphological parameters of rivers. Monitoring of rivers can be

undertaken to analyse the evolution of the quality (i.e. water quality, ecological status,

hydromorphological parameters) of the river site over time. Therefore, it would be

necessary for the sampling strategies applied (i) to maximise the information obtained

from the river site at a specific time and (ii) to obtain comparable information

between sampled times. Although temporal uncertainties are broadly recognised

(Parasiewicz, 2001), some fish habitat models do not take these into account when

calculating the physical habitat available in the river site. An example is PHABSIM,

which assumes that the shape of the channel does not substantially change with

discharge over the range of flows simulated (U.S. Geological Survey , 2004 and

Leopold et al., 1964); when geomorphic changes are significant between data

collection field trips, the data are treated as independent data sets.

2.4. Brief overview of analysis methods

2.4.1 Solutions for the spatial problems

Spatial problems can be analysed with the application of geostatistical analysis, which

can be used as a tool (i) to determine the maximum or adequate distance between

sampled points, (ii) to predict values of a selected variable at non measured points and

(iii) to determine the level of accuracy of the predicted values. Geostatistics use the

semivariogram (also called variogram) to represent the spatial pattern of variation of a
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selected variable. Semivariograms have been proved to be a useful tool for detection

of scales of spatial variability in the landscape (Meisel & Turner, 1998).

Software, such as ArcGIS, is a powerful tool for the interpolation (kriging) of

collected data and creation of maps and 3D outputs. However, results may be erratic if

the suitable parameters are not introduced in the dialogs. The spatial behaviour of the

variance (variogram) for hydromorphological parameters can be analysed in order to

identify an adequate sampling strategy for the application of kriging interpolation

techniques. Several studies have been developed in soil science for this purpose

(Webster & Oliver, 1992; Muller, 1999; Lark, 2002; Burgess & Webster, 1984;

Burgess, 1980; Bogaert and Russo, 1999; Russo, 1984 and McBratney & Webster,

1983, among others), showing that this research issue has to be considered before

interpolating.

Spatial variability of hydromorphological parameters can also be characterised with

remote sensing techniques. Remote sensing allows the collection of information of a

specific variable from a distance, without coming into physical contact with it. The

energy reflected from the earth is measured with a sensor and the information is

displayed either as a digital image or a photograph (Figure 2.4). These sensors can

either be located in satellites, planes or other airborne structures. Gilvear & Bryant. R.

(2003) give a very detailed description of remote sensing techniques that are currently

being applied for the study of rivers.

Limitations of remote sensing are (Gilvear & Bryant. R., 2003): (i) results obtained

depend upon the earth’s location relative to the Sun, time, geometry of observation

and waveband, (ii) scattering and distortion occurs due to atmospheric moisture,

pollution and dust, (iii) the resolution of the methodology requires the application of

special equipment for the analysis of small streams (<20m wide), (iv) many aerial

photographs are necessary for the study of a river site which increases the cost of the

technique, (v) aerial photographs need to be matched together to obtain the complete

image of a river site; this produces mismatch in geometry results and (vi) no detail can

be obtained when the scale is smaller than the pixel size of the image.
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Winterbottom & Gilvear (1997) analysed the potential for mapping depth in rivers

within a shallow gravel-bed river using airborne multispectral imagery and aerial

photography. Values of depth obtained from remote sensing were compared to depth

data collected at several cross-sections. Although the methodology is useful for

habitat mapping and quick characterisation of the river under study, results show that

(i) at depths greater than 60 cm the error of the estimations increases as the intensity

of the radiation decreases exponentially with distance, (ii) results depend upon the

water turbidity, colour, substrate reflectance and water surface back-scatter and (iii)

differences between measured and predicted water depth can be equal to or higher

than 40 cm in shallow areas.

Multi-spectral video imaging systems have also been applied to classify water depth

and mesohabitat types (Hardy et al., 1994 cited in Gilvear & Bryant. R., 2003).

Limitations encountered when applying this methodology were: (i) erroneous values

of depth when collecting information in areas with submerged/floating/emerging

vegetation, (ii) errors associated to water turbidity and (iii) decreases of the level of

accuracy in deep areas.

Artificial neural networks (ANN) have recently been applied as a tool for spatial

interpolation (Rigol et al., 2001). ANN try to simulate the processes of brain cells

Figure 2.4: example of aerial photograph of a river reach. The patterns
of the river site are shown with different colours.
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(neurons) (Russell & Norvig, 2003). This technique works with a collection of units

that are connected through a specific pattern to allow communication between the

units (Callan, 1999). The components necessary for the application of the technique

are: (i) a set of simple processing units that constitute the input and the output

variables, (ii) a pattern of connectivity between the units which will define their

interactions, (iii) a set of rules for controlling the signals through the network and

calculating the output signal and (iv) a set of learning rules to adapt the interaction

between the network nodes.

The main advantages of ANN (Rigol et al., 2001) are: (i) the technique is able to

incorporate additional data and expert knowledge within the estimation process to

guide the interpolation, (ii) no critical assumption about the nature of the data is taken

and (iii) non-linear modelling tasks can be handled. The main disadvantage is the

failure to incorporate neighbourhood data and trend within the network structures. As

an alternative to geostatistics (kriging), Rigol et al. (2001) propose feed-forward

backpropagation ANN, with the advantages of (i) avoiding the need of specifying the

variogram model and (ii) reproducing multiple anisotropic spatial structures.

Geostatistics is applied for the analysis of the spatial problem in this research project

since Rigol et al. (2001) recognises the need for further studies on comparison of

interpolation methods using identical data sets, little work has been yet developed and

published on geostatistical interpolation techniques applied to hydromorphological

parameters, aerial photographs are expensive to obtain and present limitations

associated with the turbidity and depth of the river site and geostatistical techniques

consider the spatial variability of the variable.

2.4.2 Solutions for the scaling problem

The scaling problem can be analysed with different methodologies such as stochastic

and deterministic models, dimensional analysis (Habersack, 2000) or even habitat

mapping surveys (Maddock & Lander, 2002).

Stochastic and deterministic techniques aggregate the results in order to derive

average values for larger time-space scales. Deterministic models describe
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relationships between different scales by distributing small-scale modelled values,

resulting in a spatial or temporal pattern. Stochastic models apply covariance and

distribution functions (Habersack, 2000).

Dimensional analysis uses fractals (or tessellation methods) to determine spatial and

temporal structure (Nestler & Sutton, 2000). The methodology characterises the

objects which repeat in space on a proportional scale following a regular or irregular

pattern (Figure 2.5). The methodology is usually linked to remote sensing (i.e.

analysis of satellite images (Emerson et al., 1999)) which provides the basis for

pattern detection.

Fractals are present in the organisation of the river network structure at different

scales (Rodriguez-Iturbe & Rinaldo, 2001) and therefore, it may be possible that this

pattern is also repeated for hydromorphological features. Nikora et al. (1993) studied

the fractal properties of single thread channels and concluded that the assumption that

self-similar properties extend up to the largest river scales is incorrect.

Habitat mapping is a strategy followed in order to reduce the effort of data collection

to a feasible level. Measurements taken at few short sampling sites are extrapolated to

larger segments of rivers and streams (Parasiewicz, 2001), usually with the help of

aerial photographs.

Parasiewicz (2003) identified three main types of up-scaling that need to be

considered for management practices at the river and watershed scale: biological,

spatial and temporal up-scaling. This indicates that when solving any of the spatial,

scaling or temporal problems, the interrelation between them will need to be

considered.

A combination of geostatiscal and spectral analysis has been selected to explore the

spatial pattern of river depth along a river reach and link the results to the scaling

concept in this project. Spectral analysis is based on the study of the fluctuations,

cyclic patterns or periodic behaviour of a selected variable (e.g. sound waves, soil

properties) across the space or time domain (Nielsen & Wendroth, 2003).
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Figure 2.5: computer simulated fractal (left) and satellite image of a catchment area (right). Fractals can
be identified in both images. The methodology characterises the objects which repeat in space on a
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

The methodology employed in Chapter 7 has been developed and based on a

geostatistical approach in order to apply a consistent and comparable method of

analysis for both spatial and scaling problems. In addition, geostatistical and spectral

analysis have been selected since (i) fractal analysis has mainly been applied to river

basin patterns and self-similar properties may not be extended to larger scales (ii)

habitat mapping lacks consistency when determining the mesohabitats and does not

allow the prediction of values at non measured points and (iii) remote sensing has

limitations of data availability and interference due to water colour and water depth.

2.4.3 Solutions for the temporal problem

Temporal variability of hydromorphological parameters is mainly represented by

changes in discharge, which modifies the vegetation, the channel morphology and the

mesohabitat units of the river sites (Hilderbrand et al. 1999). Sampling strategies for

the monitoring of rivers should: (i) maximise the information at a specific time and

(ii) provide comparable information between sampled periods.

Temporal variability can be characterised through the application of spectral analysis

(Webster & Oliver, 2001), geostatistical analysis (usually combined with spectral

proportional scale following a regular or irregular pattern
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analysis: i.e. (Skoien & Bloschl, 2003) or remote sensing (Gilvear & Bryant. R., 2003

and Gilvear et al., 1998).

Spectral analysis is useful for determining periodicity patterns of linear sequences

(Webster & Oliver, 2001). Linear sequences can either be represented by a set of

equally distributed spatial points that follow one single direction or by the value of a

variable at a point that has been measured periodically over time. Data points need to

be located in the same longitudinal profile and separated by equal distances in space

when analysing spatial characteristics. If temporal characteristics are analysed, points

need to be collected at equal time intervals. Spectral analysis requires large data series

so cyclic patterns can be identified and thus, other methodologies have been preferred.

The temporal issues encountered with hydromorphological parameters are not

associated with just a single point in space. Generally, the objective is to characterise

the changes through time for a set of data collected, which includes many spatial

points (Emery et al., 2003). Therefore, it is necessary to consider spatial and temporal

components jointly. Figure 2.6 shows a diagram of the spatio-temporal problem; three

different data sets have been collected at three different times at the same river site.

The sampling strategy applied has to be designed in such a way that the spatial

variation of each time and the temporal variation of each sampled point can be

compared.
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TIME 2

TIME 3

TIME 1
Figure 2.6: diagram of the spatio-temporal problem. The three images represent the interpolated surface of
the depth variable for a sampled river site at a specific time. Each black dot is one measurement of depth.
Each black dotted line informs on the location of a selected point at each time Dashed blue lines represent the
hypothetical change of depth value in time for the selected sampled point. Depth not only varies in space
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

(interpolated surface) but also in time (dashed blue lines).
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Generally, space-time data are analysed with models developed for temporal or spatial

distributions (Kyriakidis & Journel, 1999). Geostatistical analyses have usually been

applied to either spatial or temporal analysis (Skoien & Bloschl, in press). Results are

presented by either producing interpolated attribute maps of the parameters analysed

for all the time instants of interest, so comparisons between times can be obtained

(Kyriakidis & Journel, 1999), or prioritising time over space and modelling time

series of the attribute of interest (Kyriakidis & Journel, 1999).

Recently, spatio-temporal geostatistical analyses have been successfully developed

and applied in environmental sciences, some examples of which are referenced in

Kyriakidis and Journel (1999). The spatial and temporal dimensions are combined in

one single analysis and therefore, it is possible to compare the behaviour of the

selected variable in both dimensions and to determine which one introduces a higher

degree of variability.

Other methodologies for spatio-temporal analysis include spatio-temporal modelling

via Gaussian process models (Banerjee et al., 2004) or Bayesian Maximum Entropy

Space/Time analysis (Christakos, 2000). Christakos (2000) introduces the concept of

“modern geostatistics” to solve the spatio-temporal limitations of geostatistics by

recognising that the spatiotemporal geometry is not purely mathematical and relies on

physical knowledge for the description of reality. Spatio-temporal geostatistics have

been selected as a key methodology for this research project to combine results

obtained for the spatial and scaling problems with the temporal dimension through a

common analysis procedure.

2.5. Brief introduction to geostatistics

There are various techniques for generating surfaces from measured values. A brief

introduction to these technique is given here.

Geostatistics is an interpolation technique that allows the prediction of a variable at

non measured locations by determining its spatial variation pattern. Another

interpolation technique available is the use of deterministic models (Table 2.2).
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Table 2.2: description of deterministic interpolation techniques and their limitations (Jhonston et al., 2001)

Method Interpolation Technique Description Limitations
Inverse Distance Weighting The method assumes that each measured point

has a local influence that diminishes with
distance. Points closer to the prediction have
higher weights than those farther away.

 Exact interpolation technique: maximum and minimum
values in the interpolated surface can only occur at sample
points.

 The output is sensitive to clustering and the presence of
outliers.

 It assumes that the local variation can be captured through
the neighbourhood.

Global Polynomial Interpolation This method fits a smooth surface that is defined
by a polynomial function fitted to the input
sample points. The result is a surface that varies
slowly over the area of interest.

 Inexact interpolation technique: the predicted surface will
not pass through all the measured points.

 It is necessary to determine the degree of the polynomial
function to be used. The more complex the polynomial, the
more difficult it is to ascribe physical meaning to it.

 The predicted values are susceptible to outliers, especially at
the edges of the measured site.

Local Polynomial Interpolation This method works like Global Polynomial
Interpolation but fitting many polynomials, each
within specified overlapping neighbourhoods.

 Sensitive to the neighbourhood distance.
 Same limitations as for the Global polynomial Interpolation

technique.

D
et

er
m

in
is

ti
c

Radial Basis Functions Exact interpolation technique: the predicted
surface goes through each measured sample
value. Splines, splines with tension,
multiquadratic functions and inverse
multiquadratic functions are some of the
functions applied for the prediction of values at
non measured locations. These methods are able
to predict values above the maximum measured
or below the minimum measured.

 This technique provides good results when the parameter
predicted changes gradually in space. It is not adequate
when there are large changes in a short horizontal distance.
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Deterministic interpolation techniques obtain predictions from measured points based

on either the extent of similarity (i.e. Inverse Distance Weighting) or the degree of

smoothing (i.e. radial basis functions). Geostatistical interpolation (i.e. kriging)

obtains predictions based on the statistical properties of the measured points,

calculating the autocorrelation among measured points and accounting for the spatial

configuration of the sample points around the prediction (Johnston et al., 2001). Since

deterministic interpolation methods do not provide enough information regarding the

spatial behaviour of the parameters analysed whilst kriging does, geostatiscal analysis

and kriging interpolation have been selected as methodologies for this study. Figure

2.7 summarises the available interpolation techniques, a basic description of their

procedure and the limitations for the scope of this research project.

(b)

(c)

(a)
Figure 2.7: diagram representing the output of three deterministic interpolation techniques: (a) Inverse
Distance Weighting, (b) Global Polynomial Interpolation and (c) Radial Basis Functions. Red points indicate
sampled location, the dotted line represents the real surface and the black solid line the interpolated result.
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

This diagram is just a simplification of the interpolated results (Johnston et al., 2001).
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Geostatistics relies on spatial models and considers the spatial dependence of the

variable studied; it assumes that the variable studied is random and is the outcome of

one or more random processes. Spatial correlation is represented through a variogram

in which the variance between measured values is estimated at increasing intervals of

distance and in several directions (Webster & Oliver, 2001).

The experimental variogram is the first step for the calculation of the empirical

variogram. Experimental variograms are a display of the variance (gamma) between

pairs of points in relation to their relative distance (Figure 2.8), commonly called lag

distance (h). The empirical variogram (Figure 2.8) is the result of fitting a continuous

function to the experimental variogram. This function is fitted in order to describe the

spatial variation so that values can be estimated or predicted at non sampled locations

(Webster & Oliver, 2001).
Figure 2.8: experimental (red dots) and empirical (blue line) variograms. Gamma represents the
semivariance.
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

Three main parameters define the empirical variogram: range, sill and nugget (Figure

2.9). Range is the maximum distance over which pairs of observations remain

correlated (Nielsen & Wendroth, 2003). Sill is the maximum value obtained for a

transitional or bounded semivariogram. Nugget defines the spatially dependent

variation that occurs over smaller distances than the smallest sampling interval and

the measurement errors. Table 2.3 summarises possible models for the variogram

modelling procedure.
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Figure 2.9: variogram parameters (sill, range and nugget).

rediction of values at non measured points is obtained by interpolating with a kriging

rocedure. Kriging estimates the value of a random variable, Z, at one or more

nsampled locations (Webster & Oliver, 2001). The estimation is done by applying a

eighted average of data:
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redicted values depend upon the empirical variogram modelled and therefore, the

ore accurate the variogram is, the better the predicted result. Accuracy of the fitted

odel for the variogram increases with the number of points collected (Webster &
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Oliver, 1992). Webster and Oliver (1992) determined that 30-50 point-to-point (pairs

of points), regarded by some authorities as adequate for the variogram calculation,

were not enough for the prediction of non erratic variograms.

Table 2.3: authorized functions for the experimental variogram modelling procedure (Webster &
Oliver, 2001). Parameters included in the equations are: a=range, c=sill, c0=nugget, h=lag
distance, α=curvature descriptor, =descriptor of the intensity of variation, r=distance
parameter that defines the spatial extent of the model.
Classification Model Equation
Unbounded Power
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The approach selected for the PhD is geostatistics. Many analytical techniques have

been explored and discussed for the resolution of spatial, scaling and temporal

analysis. Although any of the analytical approaches mentioned could provide methods

for analysis, it was necessary to find a common approach that was useful for the

resolution of the three stated problems. Geostatitical techniques have been selected as

the approach for this research project because: (i) geostatistics provides a viable and

comparable analytical procedure for the spatial, scaling and temporal issues, (ii) the

technique considers the spatial variation of the variable under study, (iii) it allows the
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combination of spatio-temporal variables and (iv) little work has been published

using this analytical tool for hydromorphological parameters.

2.6. Discussion and conclusions

Three different concepts need to be considered when defining effective and efficient

hydromorphological sampling strategies for rivers: spatial patterns, the scaling

concept and temporal changes.

The need to design effective and efficient sampling strategies for hydromorphology

has been recognised in many studies. Several analytical tools have been applied for

the resolution of similar issues in different research fields. However, little work has

been done on applying those tools to hydromorphological parameters.

Further research projects need to be developed to determine the application of such

methods to help us to understand the spatial and temporal pattern of

hydromorphology, contributing to understanding of spatial issues, the scaling concept

and the temporal variation. Furthermore, spatial, scaling and temporal issues are

interrelated and therefore, research studies will need to be developed to find a solution

that considers the correlation and interrelation of these processes. This research

project has selected geostatistical analysis as the starting point and potential tool for

the resolution of the mentioned concepts separately. Correlation or interrelation

between processes will be difficult to establish if the spatial, scaling and temporal

pattern are not first understood independently.

Geostatistics has been selected for the methodology of the research due to three main

advantages: (i) geostatistical analysis and kriging interpolation techniques provide a

common framework for the three problems identified, which will allow the

comparison of results between spatial, scaling and temporal analysis, (ii)

semivariograms (geostatistics) have been proved to be a useful tool to solve spatial,

scaling and temporal issues in many research areas and (iii) little work has been

developed and/or published on geostatistical interpolation techniques applied to

hydromorphological parameters.
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3

3.1. Introduction and objectives of Chapter 3.

3.2. Methodology

3.3. Results

3.4. Discussion and Conclusions

Comparison of the accuracy of
depth measurements for two

sampling strategies and two sets of
equipment.
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3.1. Introduction and objectives of Chapter 3.

3.1.1. Data collection possibilities for the 3D characterisation of the channel bed:

Two equipment types available: Total Station (TS) and the Metric Staff (MS).

River depth can be determined with different methodologies such as aerial

photographs, echosounds or a simple walk along the selected reach. Usually, the

selected reach is waded to take direct measurements of depth at specific locations.

Two main sets of equipment can be used for this purpose: the total station (TS) and

the metric staff (MS).

TS are topographical equipment that provide x, y and z coordinates of a measured

point. The measurements are obtained by placing the telescopic range pole (Figure

3.1) at the point that is going to be measured. Data collected are stored in the internal

memory and downloaded with the appropriate software later on. Measurements of bed

channel topography (TO) and water surface level (WSL) are required for the

calculation of river depth, which is the result of subtracting TO from WSL. Figure 3.1

shows a diagram of the components of the TS and some pictures of the data collection

procedure.

River depth is generally measured with either a metric
staff or a total station. Measurements obtained with this
equipment can differ due to the characteristics of the equipment.
This chapter describes the differences between depth
measurements associated with the type of equipment that is
being used.
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The MS is used to directly measure depth when wading in rivers. The measurements

are obtained by placing the MS on the channel bed and recording the reading given by

the water surface level. Figure 3.2 shows the MS located at two sample points.

(a) (b)

(c) (d) (e)
Figure 3.1: Depth data collection with the Total station (Trimble 5600). (a) Frontal view of the total station, (b)
components of the total station, (c) total station placed in the river for data collection, (d) positioning of the telescopic
range pole at a topographical point and (e) positioning of the telescopic range pole at the water surface level.
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Both sets of equipment can be alternated during data collection in the field. The MS is

generally used when no TS is available or for those locations where the measurements

are impracticable with the TS. TO measurements cannot be obtained at locations
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where depth is high (>2m), due to the difficulty accessing the location, and/or to the

inadequate length of the telescopic range pole (Figure 3.3). Such points can be

measured from the river bank with a MS long enough or with special equipment

developed for the purpose.

A TS is preferable when high numbers of points need to be collected; the

mechanisation of the process and the digital storage of the data allows increased data

collection efficiency. The MS requires the writing down of depth measurements, as

well as, the annotation of the distance between points to obtain the relative point

coordinates. Also, measurements are difficult to take with the MS when the surface

water velocity is high due to (i) the oscillations that the water surface produces around

a reading (Figure 3.2) and (ii) the difficulty of maintaining the metric staff vertically;

the problem with maintaining verticality with TS is overcome through use of levelling

device. Thus, MS is preferable when relatively few points are measured, when there is

not a TS available or when the river is not too deep to wade.

Since (i

accurate
Figure 3.2: metric staff located at a point with low water surface velocity (left) and at
a medium water surface velocity (right).
vas Casado Cranfield University at Silsoe PhD Thesis 2006

) water surface velocity makes the reading of depth when using the MS less

and (ii) this can have an effect on the increase in difference between
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measurements taken with the two types of equipment, an analysis will be undertaken

to determine how the flow characteristics affect the differences in depth readings

obtained with both equipment types. Depth was measured with both types of

equipment at areas with different water flow characteristics. These characteristics

were assessed and associated with mesohabitats and flow types.

Chapter
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WSL ca

(Figure
Figure 3.3: difficulties when measuring depth with the total station at deep
points. The metric staff cannot be placed at deepest points because the data
collector cannot walk any further (Windrush river site).
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s 4 and 6 have as main objectives the analysis of spatial patterns of river depth

comparison of the accuracy level obtained with different sampling

s/densities for eight defined indicators. In order to achieve these objectives, it

sary to first understand the possible measurement error associated with the

nt that is being used. This Chapter focuses on providing a reference level to

he differences encountered between sampling strategies/densities considered

compared. Differences between sampling strategies/densities will be

nt if they are larger than the measurement error encountered.

eterotopic and Isotopic measurements with the TS

n be either collected following a heterotopic or an isotopic sampling strategy

3.4). In heterotopic sampling strategies, WSL is measured at different points
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than the TO. WSL is interpolated (e.g. kriging) and predicted at the TO points. Depth

is then calculated by subtracting TO from WSL. A second interpolation is required to

predict depth value at non measured locations.
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SL for heterotopic sampling strategies can be either measured at points located in

river channel or at points located at the river banks (Figure 3.5). The last option is

s time consuming but may introduce higher errors when predicting WSL values at

TO locations. Since the data sets available for this study included river sites

pled in both ways, the differences between both sampling strategies were

alysed.

the isotopic case (Figure 3.4), TO and WSL are measured at the same vertical

ints. Depth is then calculated by subtracting TO from the WSL. Interpolation

hniques are then applied to obtain depth measurements at non sampled locations.

ta collected following isotopic sampling strategies have the potential of including

ors in the positioning of the telescopic range pole when measuring the WSL; WSL

d TO points may not be located on the same vertical line (Figure 3.6) due to (i) lack

visibility of the bed channel because of a high water turbidity or (ii) instability at

waded point due to high water velocities. Thus, it was necessary to analyse the

proximate deviation between TO and WSL points in isotopic data sets in order to

termine the practicality of isotopic sampling strategies.

Figure 3.4: Isotopic (left) versus Heterotopic (right) sampling strategies for river depth.
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3.1.3. P

WSL da
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Figure 3.5: two possibilities for water surface level data collection: random
along the reach (yellow dots) or following the river banks (red dots).
α

Figure 3.6: deviation of the telescopic range pole when measuring isotopic WSL and
TO points.
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rediction of WSL at non measured locations.

ta collected following a heterotopic sampling strategy were predicted at the

ts measured to obtain the correspondent depth. This interpolation can either

mented with kriging (geostatistics) or with descriptive geometry, also known

ulation. Kriging requires the measurement of a high number of values of the

that is going to be predicted so its spatial variation can be characterised.

ive geometry requires the measurement of fewer points for its application and

s that the variable measured behaves linearly and therefore, predictions can

ed at non measured locations by defining the planes that link three measured
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points (see section 3.2). These two methodologies were compared for the scope of this

chapter.

Spatial WSL variation is considered low and thus, descriptive geometry can be

applied to predict values at non measured locations. However, it is necessary to

characterise the differences between various WSL sampling strategies in order to

determine how far apart WSL points can be located along the bank for the application

of descriptive geometry. Also, it is necessary to analyse if this methodology gives

good predictions of WSL for points located in the river channel.

3.1.4. Objectives for Chapter 3.

The objectives of the data analysis included in this chapter are:

a. first objective: to determine the differences between depth measurements

obtained with two sets of equipment: a TS and a MS.

b. second objective: to relate the differences between equipment to the mesohabitat

and flow type characteristics of the sampled points.

c. third objective: determine the difference between depth calculated from

heterotopic and isotopic sampling strategies.

d. fourth objective: to assess the level of deviation of the telescopic range pole of

the total station, when trying to collect depth data following an isotopic sampling

strategy.

e. fifth objective: to assess the differences between predicting WSL at non measured

locations with triangulation and a kriging approach.

3.2. Methodology

Data were collected in SI units at three river sites (the Windrush, the Peris and the

Seiont – see Appendix 1 for a full description of the river sites) using two different

methods; a Trimble 5600 TS with autolock and a MS. The three sites were selected to

compare results obtained at rivers with different hydromorphological characteristics.

Sampling strategies applied at each river site were different since the data required

different characteristics for each of the objectives listed. Hence, heterotopic, isotopic,

MS and TS were combined in the data collection procedure.
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Table 3.1 shows data collected at each river site for each sampling strategy,

equipment and objective. The sampling strategies were applied during the same field

visit (low flow). Therefore, it was assumed that no bed movement occurred during

sampling.

The sampled reach at the Windrush river site is 30 m long, with one single

mesohabitat type (a run). The reduced number of WSL points collected in the

Windrush did not allow the application of interpolation techniques such as Kriging or

Inverse Distance Weighting. The WSL data set was triangulated; six triangles, each of

which defined a plane in the space, were created. The WSL value for each TO point

was calculated by applying descriptive geometry (Ayres, 1958). The following

sections describe the data analysis developed for each of the objectives.

Table 3.1: number of data points collected at the Windrush, Peris and Seiont river sites for each
set of equipment and each sampling strategy (MS=Metric Staff, TS=Total Station). Note that
points collected with both MS and TS have just been added once to the total. The objective
column corresponds to the objectives identified in section 3.2.

Heterotopic IsotopicRiver site Objective Variable
MS TS MS TS

Total

TO 214 214 - - 214Windrush a WSL - 9 - - 9
TO - 266 58 183 449Peris a,b,c,d,e WSL - 193 - 183 376
TO - - 106 106 106Seiont a,b,d,e WSL - - 106 106

3.2.1. Differences between depth measurements obtained with two sets of

equipment: a total station and a metric staff.

The differences between MS and TS measurements were calculated for specific

indicators. The indicators selected were: Mean Squared Error (MSE), Mean Error

(ME), descriptive statistics, frequency distribution (Kolmogorov Smirnov test),

regression analysis and channel volume. A description of the selected indicators for

the analysis in this chapter is given below:

Mean Squared Error (MSE): MSE is a measure of the difference between values

measured with the TS and those measured with the MS. The MSE has been calculated



Chapter 3 55 Methodology

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

as expressed in equation (3.1) where yi = depth TS;
i

y = depth MS and N = total

number of points sampled.

(3.1)

Mean Error (ME): MSE provides the mean squared value of the difference between

values measured with MS and values measured with TS. The ME has been calculated

to provide a measure of the mean absolute difference between measured values. The

following equation (3.2) was used for the calculation of ME. Where: y = depth TS; y

= depth MS; N = total number of points.

(3.2)

Mean Difference between predicted and observed values was also calculated as an

indicator of the error/difference between methodologies or equipments. Mean

Difference was calculated as shown for the ME but without considering the absolute

values of the differences. Therefore, Mean Difference presented positive or negative

values whilst ME was always positive. Mean Difference has been calculated when it

was necessary to identify which equipment/methodology provided higher estimations

or readings of depth.

Descriptive statistics: maximum, minimum, average, median and standard deviation

were calculated for the difference between depth measurements obtained with the MS

and the TS. Box plots and histograms were plotted to complete the descriptive

statistics analysis.

Regression analysis: a linear model was fitted for the depth values collected with the

metric staff and those collected with the total station. The coefficient of determination

or r-squared quantified the proportion of variation explained by the model created

(Montgomery et al, 2001) indicating how similar the measured values of both
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equipment types were. The slope and the intersection value of the regression line was

also analysed.

The Pearsons correlation coefficient, as well as R-squared, measures a linear

relationship but fails to detect any departure from the 45line (Lin, 1989 and

Nickerson, 1997). The concordance correlation coefficient (Lin, 1989) was calculated

to evaluate the agreement between two readings (obtained with different equipment or

sampling methodology) by measuring the variation from the 45line through the

origin (or concordance line). The concordance correlation coefficient is scaled

between the range -1 and 1, as this gives a complete concordance with the 45line.

The concordance coefficient was calculated following equation 3.3:

(3.3)

Where:

c is the concordance correlation coefficient,

Yij is the value of observation i with the equipment or methodology j (j= 1 and 2) and

n is the number of independent pairs of samples.

Frequency distribution (Kolmogorov Smirnov Test): frequency distribution of depth

can be used to characterise the diversity of features present at a river site. A two

sample non parametric test was applied in order to compare the depth distribution of

measurements obtained with the MS and measurements obtained with the TS.

Channel Volume: since channel volume is an indicator of the potential capacity of the

channel to hold suitable habitat for target species, it was necessary to determine if

both types of equipment provide the same channel volume with the values measured.

Channel volume, the two dimensional surface area (2D surface area is the mapped

surface as if it was being observed from a aeroplane) and the 3D surface area (this is

the are including all the changes in slope as if the wetted perimeter was being
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calculated), were calculated for the depth values obtained with the TS and MS

methods. The results obtained were compared.

3.2.2. Relation between the differences of depth obtained with two equipment types

and the mesohabitat/flow type characteristics of the sampled points.

The differences between equipment were related to the mesohabitat and flow type

where the measurements were subjected to General Linear Model (GLM) analysis.

Surface velocity (flow type), mesohabitat type and substrate were recorded for each of

the depth data points collected at the Peris and Seiont river sites.

Flow types and mesohabitats were defined as described below. The classification was

developed by defining the more common features defined in the wide range of

mesohabitat and flow type classifications. Flow types were assigned according to the

typology used within the River Habitat Survey (Environment Agency, 2003). The

flow types considered were Barely Perceptible Flow (BPF), Smooth, Unbroken

standing Waves (UW), Broken standing Waves (BW) and Chute. Mesohabitats

considered are listed below:

 No perceptible flow (NPF): no visible flow.
 Pool: smooth, low gradient water surface. Usually of limited downstream

extent with shallower water evident both upstream and downstream.
 Riffle (RI): relatively steep water gradient, coarser bed material than local

vicinity, some broken water. Usually of limited downstream extent with
deeper water evident both upstream and downstream.

 Run: relatively smooth and low gradient water surface. Visible flow: clearly
evident.

 Chute: bedrock slides, with water remaining in contact with the bed (velocity
range > 0.45 ms-1).

Substrate was visually identified and classified according to the dominant size type.

The classes considered and their diameter were the following: not visible, clay

(<1/256 mm), silt (1/256 mm to 1/16 mm), sand (1/16 mm to 2 mm), gravel (2 mm to

4 mm), pebble (4 mm to 64 mm), cobble (64 mm to 256 mm), boulder (>256 mm),

bedrock and artificial.
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3.2.3. Differences between depths calculated with heterotopic and isotopic

sampling strategies.

WSL measured at heterotopic locations were predicted with geostatistical techniques

(kriging) at the location of the isotopic WSL measured. The same statistics described

in section 3.2.1 were calculated for the difference between predicted and measured

WSL. Depth was calculated with both data sets (predicted and observed) for a total of

444 TO measured points at the Peris river site. The methodology applied in section

3.2.1. was applied to the difference between depth obtained with the isotopic and

heterotopic data sets.

3.2.4. Deviation of the position of the telescopic range pole between TO and WSL

for isotopic measurements.

Descriptive statistics were obtained for the value of horizontal distance (Figure 3.6)

that separates the TO reading from the WSL reading. The analysis was carried out

with the Seiont (106 points) and the Peris (183 points) data sets.

3.2.5. Differences between prediction of WSL at non measured locations with

Triangulation and Kriging approach.

Different sampling densities were compared for the Peris and Seiont data sets to

determine how far apart WSL points could be located along the river banks. WSL

sampling strategies compared included WSL points collected every 2 m, 5 m, 10 m,

15 m and more than 20 m along both banks.

A total of 316 WSL points measured at the Peris and 106 measured at the Seiont were

predicted with descriptive geometry with each sampling strategy. Statistics described

in section 3.2.1 were calculated for the difference between measured and predicted

WSL.
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3.3. Results

3.3.1. Differences between depth measurements obtained with two sets of

equipment: a total station and a metric staff.

MSE and Mean Difference: Results (Table 3.2) indicated that the Mean Difference

was less than 1.3 cm for the Windrush and less than 3 cm for the Peris and Seiont data

sets. The higher values of MSE and ME obtained for the Peris and Seiont could be

due to the combination of mesohabitat, surface velocity, substrate and depth present at

this river site.

Table 3.2: values of MSE and ME obtained for
the Windrush, Peris and Seiont data sets.
River Site MSE Mean Difference (cm)
Windrush 0.115 1.21
Peris 0.0019 -2.77
Seiont 0.0017 -2.778

Descriptive statistics: the box plot for the Windrush showed that the mean difference

between equipment was 0.4 cm and that the quartiles were between 1 cm and -1 cm.

Similar interpretation can be obtained when analysing the histogram. Maximum and

median differences identified were equal to 3.8 cm and 0.4 cm (Table 3.3)

respectively. This indicated that measurements obtained with the TS were larger than

those obtained with the MS, since the average difference obtained was positive.

Table 3.3: descriptive statistics calculated for the Windrush, the Seiont
and the Peris (Depth TS – Depth MS) river sites.

Statistics Windrush Seiont Peris
Total number of points 213 104 55
Maximum Difference (m) 0.03836 0.062 0.064
Minimum Difference (m) -0.02126 -0.085 -0.080
Average Difference (m) 0.00395 -0.031 -0.027
Standard Deviation of Difference (m) 0.01124 0.025 0.026
Median of the differences (m) 0.00376 -0.028 -0.028

The values of descriptive statistics (Table 3.3) obtained for the Peris and Seiont river

sites presented more extreme values than those obtained for the Windrush. Results for

the Peris data sets showed that the averaged difference between values obtained with

the TS and those obtained with the MS, was equal to 2.7 cm. The median value of the
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difference between equipment was 2.8 cm, a value that was equal to that obtained for

the Seiont river site. The maximum difference identified was 8 cm (negative value

since MS gave a higher reading than the TS). The box plot did not show the existence

of any extreme or outlier value for the Peris river site (Figure 3.7).

The descriptive statistics for the Seiont data set (Table 3.3) indicated that the averaged

difference between equipment was 3.1 cm, with a maximum difference of 6 cm and a

median of 2.8 cm. The box-plot results obtained for the Seiont indicated that higher

differences between equipment types were encountered than in the Windrush.

Results showed that TS gave lower values than MS in 35%, 88% and 94% of the

cases for the Windrush (data set with 214 points), Peris (data set with 58 points) and

Seiont (data sets with 106 points) data sets respectively. There are two possible

explanations for this behaviour: (i) the TS gives higher depth readings in some types

of mesohabitats, which had a high representation in the studied area or (ii) TS

systematically gives higher measurements due to the inherent characteristics of this

Figure 3.7: box-plot obtained for the difference between depth measured with the Total Station
and depth measured with the Metric Staff. (Depth TS – Depth MT). From left to right the plots
represent: the Windrush, the Seiont and the Peris data sets.
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technique. Results also showed that differences between equipment were not

systematic and they depended on other factors, such as depth, velocity surface,

substrate and mesohabitat type.

Figure 3.8 (c) shows (i) that TS depth measurements were higher than MS depth

measurements in deep areas for the Windrush and (ii) that higher differences between

equipment were encountered in deep areas at the Windrush river site. A different

pattern was identified for the Peris and Seiont data sets (Figure 3.8 (a) and (b)). The

Seiont data set did not show differences between equipment in relation to the depth at

the river site, whilst the Peris data set indicated that differences between equipment

decrease with decreasing depth.
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determination (Table 3.4) indicated that 99.53%, 82.71% and 90.9% of the variability,

for the Windrush, the Peris and the Seiont respectively, were explained by the

regression model when considering TS depth as the explanatory variable. The

Windrush showed better agreement between values measured with the two

techniques, whilst the Peris showed worst r-squared values. This may be due to the

contrasts in the type of mesohabitat and flow types at the data collection sites. The

same conclusion can be obtained by analysing the slope and the interception point.

This indicated that TS depth values did not differ significantly from the MS depth

values.

Table 3.4: results obtained for the regression analysis
for two sets of equipment: TS and MT.

Regression analysis Windrush Peris Seiont
R-squared 0.9953 0.8271 0.9098
Slope 0.9813 0.934 1.0076
Interception 0.0047 0.0433 0.0307
Concordance
correlation coefficient

0.982 0.890 0.897

The concordance correlation coefficient was close to 1 for all the data sets analysed

(Table 3.4). This indicated that the variation from the 45line through the origin was

small and that both sets of equipment provided very similar readings.

Frequency distribution (Kolmogorov Smirnov Test): results indicated that it can be

accepted that both data sets collected at one specific river site, had similar

distributions (Ks = 0.0419, p-value = 0.9898) for the Windrush and for the Peris (Ks =

0.2241, p-value = 0.1086), but they had different distributions for the Seiont (Ks =

0.217, p-value = 0.01).

Channel Volume: volumes of 79.29 m3 and 78.51 m3 were obtained for the TS and

MS techniques, respectively, for the Windrush river site. The wetted surface areas

were 193.93 m2 for the TS and 194.21 m2 for MS (two dimensional surface area equal

to 191.25 m2 in both analysis). The results obtained for the “channel volume” study

showed that higher values of volume were obtained when using the TS equipment

(due to the fact that depth measurements obtained are also greater). The same analysis

was developed for two mesohabitats (chute and pool) in the Peris river site and one

mesohabitat (run) in the Seiont. The results, which are summarised in Table 3.5,
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indicated that the differences encountered between mesohabitats were not relevant

since the surfaces and volumes obtained were very similar.

The maps obtained for the Windrush river site (Figure 3.9) indicated that MS depth

values were higher than TS depth values in shallow areas (riffles), with the TS

measurement being higher in deep areas. The Peris and Seiont rivers were analysed

according to the mesohabitat type: one pool and one chute for the river Peris and a run

for the river Seiont (Figure 3.9). The maps showed that MS usually presents higher

values of depth than those obtained with the TS for the mesohabitats studied at the

Peris and Seiont river sites.

Table 3.5: 2D surface area, 3D surface area and volume for the Peris-Seiont data sets.

River Site Mesohabitat Methodology 2D surface area
(m2)

3D surface area
(m2)

Volume
(m3)

TS 344.41 345.76 45.42Seiont Run
MS 344.41 346.13 45.76
TS 13.43 14.01 1.40Peris Pool MS 13.63 14.29 1.53
TS 4.49 5.11 0.56Peris Chute
MS 4.50 5.26 0.67

3.3.2. Relation between the differences of depth obtained with two types of

equipment and the mesohabitat/flow type characteristics of the sampled points.

Figure 3.10 shows the combinations of depth, mesohabitat type, surface velocity and

substrate obtained from the collected data. Some combinations were not represented

due to the low probability of occurrence that they had at the studied sites. The results

obtained for the Windrush river site, whose substrate was mainly dominated by a

combination of gravel-and-silt and clay, did not show relevant differences between

sets of equipment (Table 3.3). Differences between methodologies remained constant

along the studied river site and so, no differences between substrate, surface velocity,

depth and mesohabitat type were identified.
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eiont river site (bottom right). Shallow areas (≈7cm) are represented in red whilst deep areas are blue (≈50cm).
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Alternative grouping of the flow types were made and investigated. The difference between

Depth TS - Depth MS was analysed for the different flow types to determine if there was

evidence to reject the null hypothesis that differences between depth measurements obtained

with TS and MS did not depend on the flow type. Flow type was classed as fast, slow and

UW. The significance level (p=0.048) indicated that there was evidence to reject the null

hypothesis (Figure 3.11). The p-values obtained for hierarchical nested GLM indicated that

there was no evidence to reject the null hypothesis that considers differences in depth for the

two methodologies at two river sites (p=0.55 for the mesohabitat test, p=0.17 for the surface

velocity test and p=0.44 for the substrate test).

Figure 3.10: mean plot for the combinations of substrate, mesohabitat type and flow type represented by the
three data sets (Windrush, Seiont and Peris). Each plot shows data from all river sites as relevant. The
variables are coded as follows: No Perceptible Flow (NPF), Boulder (B), Gravel (G), Pebble (P) and Cobble
(C), Barely Perceptible Flow (BPF), Broken Standing Waves (BW) and Unbroken Standing Waves (UW).
Red dots show the mean value and blue lines the 0.95 confidence interval. Data has been joined for visual
purposes.
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3.3.3. Differences between depth calculated with heterotopic and isotopic sampling

strategies.

The geostatistical analysis of the WSL heterotopic data set was carried out in order to obtain

predictions of WSL at the isotopic measured points. The anisotropy study, which analysed the

change of the variogram characteristics according to the spatial direction being analysed,

indicated that there were no differences in the spatial variance according to the direction

analysed (Figure 3.12). The models analysed for the calculation of the variogram were the

exponential, the spherical and the Gaussian. The values of range obtained were very high

which indicates that there was a spatial relation between WSL measurements for long lag

distances (more than 27 m) and that a reduced number of WSL data needed to be collected to

predict values at non measured points. The Gaussian model was the best fitting model and

was selected to predict WSL at the isotopic WSL points. Predicted points were compared to

those measured at the same locations. The results are summarised below.

Figure 3.11: mean plot obtained from the GLM [(Depth TS-Depth MS) ~ flow type,
where flow type is coded as slow, fast, unbroken standing waves] for the fast – slow flow
types. Data has been joined for graphical purposes.
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Descriptive statistics: Results show that there was a higher proportion of points where the

predicted value was higher than the measured one (59.6 %). This indicated that heterotopic

data sets tended to overestimate the WSL isotopic readings. The same pattern was observed

for the differences of depth calculated with the original isotopic data set and the predicted

one.

Results obtained when calculating depth with both methodologies showed that mean

differences between data sets were equal to -1.2 cm, where the sign indicates that the

predicted values are higher than the TS readings. Maximum differences were around 12.3 cm

for overestimations of the predictions and 8.6 cm for underestimations of the predictions

(Table 3.6). Therefore, the overestimations of the predicted values were higher than the

underestimations. The absolute averaged difference (ME) was 3.3 cm. Maximum and

minimum absolute differences were 12.36 cm and 0.014 cm respectively.

Table 3.6: descriptive statistics for the measured and predicted WSL (m) and depth (m). “Iso” refers to
Isotopic and “Hetero” to Heterotopic.

Parameter WSLHetero WSLIso WSL Iso-WSLHetero DepthIso DeptHetero DepthIso-DepthHetero
Min 8.94 8.92 -0.12365 0.000 -0.0161 -0.1236

Mean 9.27 9.26 -0.01081 0.2025 0.2145 -0.0120
Median 9.24 9.22 -0.00805 0.2200 0.2201 -0.0093

Max 9.75 9.67 0.086224 0.4300 0.4708 0.0862
Total N 188 188 189 444 444 444
Std Dev. 0.19 0.18 0.040149 0.0859 0.0985 0.0398
SE Mean 0.01 0.01 0.00292 0.0063 0.0072 0.0029
Skewness 0.28 0.20 -0.108 -0.0138 -0.0816 -0.0936
Kurtosis -0.86 -0.90 -0.08785 -0.1305 -0.1704 -0.0538

Regression analysis: results indicate that there is a strong correlation between predicted and

observed values (R2 = 0.95). The residuals plot indicated that the predicted WSL with the

heterotopic data set were usually higher than the isotopic measurements when increasing the

WSL value. Overestimations were encountered for predicted values in the deepest areas

selected for neighbourhood search is very small and therefore, anisotropy would be easier to detect.
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whilst underestimations were found in shallower parts. Differences between sampling

strategies were smaller for depths around 10 cm. The concordance correlation coefficient for

depth and WSL was equal to 0.909 and 0.976, respectively. This indicated that there was a

high agreement between the readings obtained with isotopic and heterotopic data sets since

the variation from the 45line through the origin was low.

Frequency distribution (Kolmogorov – Smirnov test): the results of the non-parametric test

indicated that observed and predicted distribution of water surface level (Ks = 0.1277 and p-

value = 0.0778) and depth (Ks=0.1202, p-value=0.1195) were not different.

Channel Volume: The total volume obtained (above plane 0 cm) differed by around 3 m3 from

the original isotopic depth data set to the predicted one (Table 3.7). Higher differences were

encountered when calculating the volume above the plane of 10 cm, which indicates that

volumes between the planes of 10 cm and 30 cm were introducing the majority of the

variation. This may be due to the overestimation encountered when predicting the WSL and

depth data with the heterotopic data set; the residual plot showed a wider range around 10 cm

to 30 cm. The same pattern can be described for 2 dimensional and 3 dimensional areas.

The depth maps obtained with both sampling strategies (Figure 3.13) showed that deeper and

shallower areas were identified in the heterotopic data set due to the differences obtained

when predicting the WSL values.

Figure 3.13: comparison between depth calculated with the isotopic (left) and heterotopic
(right) data sets.
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Table 3.7: 2D surface area, 3D surface area and volume obtained with the measured and predicted
isotopic depth (m). Row “Plane” indicates at which depth the horizontal plane was located for the
calculation of surface area and volume.

Depth Heterotopic (m) Depth Isotopic (m)
Depth isotopic-depth heterotopic

(m)
Plane (m) 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
2D AREA (m2) 470.4 446.4 205.2 11.2 0 470.4 457.6 162 1.6 0 0 11.02 -43.3 -9.6 0
3D AREA (m2) 471.4 447.3 205.7 11.3 0 471.6 458.5 162 1.6 0 0.3 11.22 -43.4 -9.7 0
VOLUME (m3) 89.1 42.8 6.6 0.3 0 86.3 39.4 3.5 0.01 0 -2.8 -3.43 -3 -0.3 0

3.3.4. Deviation of the position of the telescopic range pole between TO and WSL for

isotopic measurements.

The descriptive statistics obtained for the 183 and 106 points studied at the Peris and Seiont

river sites, respectively, are presented in Figure 3.14. The results indicated that horizontal

mean deviation of 10 cm can be observed between TO and WSL measurements. Note that

there are few extreme values or outliers (Figure 3.14) that have not been deleted from the data

set since they were not associated to any measurement error but to the difficulties of

measuring the data in the field.

Descriptive statistics Peris (m) Seiont (m)
Mean 0.10 0.10
Standard Error 0.008 0.005
Median 0.09 0.09
Mode 0.05 0.11
Standard Deviation 0.12 0.06
Kurtosis 70.2 43.13
Skewness 7.9 5.3
Minimum 0.01 0.01
Maximum 1.2 0.60
Count 183 106

Figure 3.14: histograms and descriptive statistics for the vertical deviation between TO
and WSL measurements in isotopic data sets. Note the extreme values for both data sets.
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3.3.5. Differences between prediction of WSL at non measured locations with

Triangulation and Kriging approach

The WSL sampling distances studied at the Peris river site were 2 m, 5 m, 10 m and 15 m,

whilst only 5 m and 10 m distances were analysed at the Seiont river site due to the length of

the sampled reach. Both data sets include the analysis of WSL predicted when only measuring

four WSL points located at the extremes of the sampled area. The results obtained are now

described.

Descriptive statistics:

Table 3.8 summarises the descriptive statistics obtained for both river sites. Results showed

that (i) maximum absolute differences between predicted and observed values can be larger

than 30 cm for some of the WSL sampling distances analysed, (ii) maximum and mean

differences decreased when increasing the distance between WSL sampled points, (iii) mean

differences between observed and predicted values were approximately 5 cm in the majority

of the distances analysed and (iv) minimum and maximum differences between observed and

predicted were approximately 1 cm and 6 cm, respectively. Mean values of difference (either

absolute or not) between predicted and observed measurements were higher than the mean

values of difference between heterotopic and isotopic sampling strategies presented in Table

3.6 and those obtained for the differences between depth measurements obtained with MS and

TS.

Table 3.8: descriptive statistics for the differences between measured and predicted WSL (units in
metres). Absolute values have been calculated to observe the global difference without considering if they
are over or underestimations. Extremes refer to the maximum distance sampled at the site.

Peris SeiontDescriptive Statistic
2m 5m 10m 15m Extremes 5m 10m Extremes

Mean -0.0238 -0.0490 -0.0440 -0.0328 -0.0094 -0.0265 -0.0253 -0.0244
Standard Error 0.0033 0.0047 0.0034 0.0027 0.0035 0.0058 0.0028 0.0030
Standard Deviation 0.0590 0.0837 0.0622 0.0486 0.0627 0.0594 0.0286 0.0314
Minimum -0.2196 -0.3200 -0.2308 -0.1839 -0.1450 -0.2573 -0.0899 -0.1003
Maximum 0.1435 0.1341 0.1419 0.0990 0.1833 0.0748 0.0410 0.0517

S
T

A
T

IS
T

IC
A

L
V

A
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E

Count 316 316 316 316 316 106 106 106
Mean 0.0445 0.0629 0.0561 0.0445 0.0514 0.0412 0.0297 0.0299
Standard Error 0.0025 0.0041 0.0029 0.0021 0.0020 0.0048 0.0023 0.0025
Standard Deviation 0.0454 0.0738 0.0521 0.0382 0.0371 0.0502 0.0240 0.0261

A
B

SO
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U
T

E
V
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ue

Maximum 0.2196 0.3200 0.2308 0.1839 0.1832 0.2573 0.0899 0.1003
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The analysis of box-plots obtained for both rivers showed that when increasing the number of

WSL points included for the prediction of WSL, the range of extreme values increased whilst

the mean of the predicted values remained relatively constant.

Conclusions that can be obtained from this analysis indicate that, for the river sites and

sampling strategies analysed: (i) descriptive geometry tends to overestimate the observed

measurements; (ii) distances of around 15 to 20 m between WSL points give WSL predictions

that provide mean accuracy of around 5 cm; (iii) distance less than or equal to 5 m between

WSL do not give as good predictions as distances of more than 10 m for the range of

distances studied (from 2 to 20 m); and (iv) the higher the distance between WSL points, the

better are the predictions.

Kolmogorov-Smirnov test: the non-parametric tests carried out for each river showed that all

the predicted WSL distributions can be considered different to the observed one (p<0.05) and

that the distributions of residuals did not belong to the same population (p<0.05).

Regression Analysis: in general the relation between observed and predicted values gave high

values of R2 for all the sampling distances analysed (Table 3.9). No pattern can be defined

when comparing the R2 values between them, although it was possible to identify an increase

in the R2 values between predictions and observed depth when decreasing the number of WSL

collected. The R2 for the residuals between observed and predicted were better distributed for

distances between WSL points higher than 5 m. The same trend for the R2 between predicted

and observed values can be identified; better values of R2 and better distributions of residuals

were obtained when decreasing the number of WSL points included to obtain the WSL

predictions.

Table 3.9: values of R2 obtained for observed vs. predicted and observed vs.
residuals for different WSL sampling distances.

Distance between WSL points 2 m 5 m 10 m 15 m Extremes
Peris 0.7342 0.8249 0.9106 0.9438 0.9162
Seiont - 0.5398 0.8813 - 0.8636
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3.4. Discussion and Conclusions

Different analyses have been carried out in order to determine the differences between

sampling equipment and techniques for depth measurements; metric staff vs. total station and

heterotopic vs. isotopic data sets. Data have been collected at three different river sites: the

Windrush, the Seiont and the Peris. The main conclusions obtained are summarised below:

Differences encountered between the two sets of equipment analysed (i.e. metric staff and

total station) are slightly smaller than those differences encountered between depth obtained

from heterotopic and isotopic data sets. Absolute mean differences between total station and

metric staff are 0.4 cm for the Windrush river site and 3 cm for the Peris and Seiont river

sites, whilst absolute averaged differences 3.3 cm are obtained between heterotopic and

isotopic data sets. Maximum differences between measurements obtained with the total

station and the metric staff are 3.8 cm for the Windrush and 6 cm for the Peris and Seiont.

This difference reaches values of 12.3 cm when comparing heterotopic and isotopic depth

data sets.

Larger differences than those encountered between measurements taken with total station and

metric staff or between heterotopic and isotopic data sets can be observed when predicting

WSL with descriptive geometry at non measured locations. Mean absolute differences (ME)

are 5 cm, with maximum absolute differences that can be larger than 30 cm.

Descriptive geometry can be applied for the prediction of WSL at non measured points since

WSL points are highly spatially related (i.e. spatial correlation can be appreciated over long

distances (more than 27 m)). Thus, a reduced number of WSL points need to be collected to

predict values at non measured points. However, it needs to be taken into account that the

application of this methodology may contribute to increase the range of error (or difference)

between depth values obtained with different equipment types and sampling strategies.

WSL predicted with descriptive geometry at non measured locations overestimates the

observed measurements. Distances from 15 to 20 m between WSL points provide mean

accuracy of 5 cm for the predicted locations; distance less than or equal to 5 m between

WSL do not give as good an accuracy as distances of more than 10 m for the range of

distances studied (from 2 to 20 m).The higher the distance between WSL points, the more
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accurate the predictions are. This can be due to the fact that a higher number of planes are

created when sampling points are every 5 m. Each plane is defined by three points and is in

contact with either one or two more planes. Differences in the orientation of consecutive

planes might increase the error in the prediction of WSL. Instead, when considering points

that are separated by higher distances, the WSL becomes a smooth surface defined by a

smaller number of planes. In this way, there are less changes in the orientation of each WSL

plane defined.

Table 3.10 summarises the differences encountered between (i) two sets of equipment (MS &

TS), (ii) heterotopic vs. isotopic data sets and (iii) observed vs. WSL values predicted with

descriptive geometry. The values have been calculated by averaging the results of all the river

sites analysed in each independent study. The differences encountered have been assumed to

be independent and therefore, a total figure has been provided by adding up the differences

encountered in each study.

Table 3.10: values of differences encountered for the three studies developed in chapter 3. TS vs. MS
shows the averaged difference between depth measured with TS and depth measured with MS for all the
river sites analysed. Heterotopic vs. Isotopic shows the difference between depth collected following these
two sampling strategies. Triangulation refers to the difference between observed and predicted WSL with
descriptive geometry when locating the WSL 10 m apart from each other.

Parameter TS vs. MS
(cm)

Heterotopic vs.
Isotopic (cm)

Triangulation
(cm)

Total
(cm)

ME 2.25 3.3 4.29 9.84
Maximum absolute difference 6.20 12.36 16.03 34.6
Mean difference 2.00 1.08 3.40 6.48

Differences between metric staff and total station are not systematic; they depend on factors

such as mesohabitat. TS depth measurements are higher than MS depth measurements in deep

areas whilst MS provides larger readings in shallow areas. Differences between

methodologies, MS and TS, are independent of the substrate where depth measurements are

collected. However, these differences are not independent of the mesohabitat type at the

measured location. Riffles and chutes are the features with highest differences between

methodologies (4 cm) and are significantly different from runs and pools. Higher differences

are presented for coarse materials (when analysing the trend of the substrate results) and high

flow types. These results can be explained by the fact that it is more difficult to obtain

accurate readings when using the metric staff in these systems. Thus, it is suggested to take

measurements with MS in deep areas and measurements with TS at shallow points.
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Depth differences between TS and MS can be calculated as differences in channel volume.

The results show that differences in volume 3 m3 are obtained for the sampled areas (80 m2).

Difficulties in collecting isotopic data sets can be observed since deviations of 10 cm are

encountered between WSL and TO isotopic points. This indicates that even isotopic data sets

can be considered as heterotopic; a horizontal deviation of 10 cm between TO and WSL

isotopic measurements can introduce high error in depth measurement. The shape of the

channel may change considerably over distances 10 cm in areas with coarse material.

Heterotopic data sets are therefore recommended for depth data collection since (i) the error

introduced is not much larger than that obtained between sampling equipment (MS and TS)

(ii) they are easier to collect and (iii) isotopic data sets have horizontal deviation between

WSL and TO 10 cm.
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4.1. Introduction and objectives of Chapter 4

4.1.1. Brief overview of the problem

Hydromorphological variables are monitored for different purposes such as river

restoration and habitat assessment. One of the difficulties of implementing monitoring

programmes is the time and cost requirements of the sampling procedure. Efficient

and effective sampling strategies need to be developed in order to reduce these

constraints.

Time and economic requirements associated with data collection make the application

of intensive sampling strategies impracticable. Thus, data are collected at some

locations and then used to predict the value of the variable under interest at non

measured locations. These predictions can either be obtained through remote sensing

techniques, river mapping or interpolation procedures, among others. Even though

interpolation techniques are commonly applied for the prediction of

hydromorphological variables at non measured locations, little work has been done on

determining which sampling strategy is adequate for their application.

Monitoring of hydromorphological parameters is time
and cost consuming. Interpolation techniques, such as kriging,
are usually applied in order to predict values of the variable
under study at non measured locations. This chapter focus on
the comparison of the prediction error obtained with several
sampling strategies when applying geostatistical interpolation
techniques (kriging).
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4.1.2. Objectives of Chapter 4

This chapter aims to analyse the accuracy obtained with different sampling strategies

when predicting values at non measured locations with geostatistical methods. The

first objective of the study is to assess the prediction error of each sampling strategy

when predicting values at non measured locations with geostatistics. The second

objective is to study the spatial distribution of the error encountered for the predicted

values and the third objective is to identify if the prediction error is equally

distributed between mesohabitat types and flow types.

Two data sets were analysed: the first one was collected from a full-scale laboratory

physical model of a natural channel run by the Department of Water Management at

the University of Agricultural Sciences, Vienna (Hydrology and Hydraulic

Engineering; BOKU) and the second was collected on the Leigh Brook river site

(Worcester, UK) by the Department of Applied Sciences, Geography and Archeology

at University College Worcester (see Appendix 1 for a detailed description of the river

sites and the data collected). Five sampling strategies have been compared for the

artificial Austrian channel through the calculation of nine indicators. Those sampling

strategies that proved to be more successful have been compared for the Leigh Brook

river site. The artificial Austrian channel was analysed first since it has a more

detailed data set than the Leigh Brook.

The study was developed for three hydromorphological parameters (i.e. depth,

velocity and substrate) for the Leigh Brook data set and only depth and velocity for

the Austrian channel (substrate was not determined for this river site). Mesohabitat

and flow types were characterised for both river sites.

4.2. Notes on the data collected

Flow types are defined by observing the characteristics of the water surface, whilst

mesohabitat types are defined through the characterisation of depth, water surface

velocity (i.e. flow types) and substrate. The diversity and number of mesohabitat or

flow types provide information on the different biological conditions that are present.
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Mesohabitat and flow types are qualitative variables and thus, they are associated with

a degree of subjectivity. Results for the characterisation of a river site may vary

depending on the experience/training of the surveyor and the range of features

encountered at a site. The wide range of typologies available for the characterisation

of mesohabitat and flow types (Bovee, 1997, Hawkins et al., 1993; Thomas and

Bovee, 1993 cited in Bovee 1997, Frissell et al., 1986, Maddock, 1999, Borsany, P.,

Rowntree & Wadeson, 1998, Thomson et al., 2001, Brierley and Fryirs (2000 cited in

Thomson et al., 2001) and Taylor et al. (2000 cited in Thomson et al., 2001) makes

the selection of a typology for research projects difficult. Mesohabitat and flow type

data collected for this research project were provided by Ian Maddock who had

already developed his own typology for the characterisation of mesohabitats

(Maddock, 1999). Figure 4.1 and Figure 4.2 show examples of the classes of

mesohabitat and flow types identified at the Leigh Brook river site.

S

f

T

c

b

(

Riffle
Riffle

Shallow glide

Deep Glide

Shallow glide
onica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

ubstrate was classified by determining the dominant (>80%) substrate size present

or the observed area. A second size was noted if it occupied > 20% of the bed area.

hree sizes were noted if they occurred in approximately equal proportions. The

lasses considered and their diameters are fine (F), coarse (C), boulder (B) and

edrock (R). Fine includes clay, silt and sand sized particles (clay (<1/256mm), silt

1/256 mm to 1/16 mm), sand (1/16mm to 2mm)), coarse includes gravel and cobble-

Figure 4.1: mesohabitat types identified at the Leigh Brook river site.
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sized particles (gravel (2mm to 4 mm), pebble (4mm to 64 mm), cobble (64mm to

256mm)), boulders represent particles >256mm and bedrock represents exposed rock.

4.3. Methodology

4.3.1. The sampling strategies compared

Five different sampling strategies were compared (Table 4.1 and Figure 4.3) for the

Austrian channel. These sampling strategies were derived from the original data set

which was based on a regular grid of 0.05 m x 0.07 m: (i) random grid points were

created by random selection of points without replacement, (ii) stratified grids by

selection of points included at a specific depth, velocity or Froude number interval,

(iii) regular grids by dividing the sampled area into regular cells, (iv) regular transects

by selection of equally spaced cross-sections and (v) irregular transects

UW

RP NPF

BW

Figure 4.2: example of four flow types defined according to the River Habitat Survey. The abbreviations
stand for Unbroken Standing Waves (UW), Rippled (RP), Broken Standing Waves (BW) and No
Perceptible Flow (NPF).



Chapter 4 80 Methodology

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

Figure 4.3: sampling strategies compared for the Austrian channel. Repetitions have been considered for some of the sampling strategies according to their
characteristics. This image is an schematic diagram of the strategies compared for depth.
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by identifying the mesohabitats at the river sites and locating the transects at

“representative” sites of these mesohabitats.

Table 4.1: hydromorphological sampling strategies tested for the artificial Austrian channel
(descriptions proposed after reviewing Parasiewicz, 1996; Parasiewicz and Dunbar, 2001 and
Mader & Laaha, unpublished).

Sampling strategy Description

Regular
transects

The study area (stream) is represented by a mosaic of cells. The stream is
divided into regularly spaced cross sections. The hydromorphological
parameters are sampled at regular distances within each cross section. The
whole stream is represented by interpolation between transects.

Discrete cell
representation Stratified

transects
(Mesohabitat

types)

The study area (stream) is represented by a mosaic of cells. The stream is
divided into several-cross sections according to the morphological
homogeneity of the habitat. The hydromorphological parameters are
sampled according to their homogeneity in each cross section. Each cell
represents a homogeneous hydromorphological unit. The whole stream is
represented by interpolation between transects.

Random
Sampling

The hydromorphological parameters are measured at points distributed in
the studied area on an irregular grid. The whole stream representation is
obtained by interpolation techniques.

Regular Grid
The hydromorphological parameters are measured at points distributed in
the studied area on a regular grid. The whole stream representation is
obtained by interpolation techniques.Grid

Stratified Grid
(Hydromorpho

logical
changes)

The hydromorphological parameters are measured at points distributed in
the studied area according to the identified hydromorphological changes.
The whole stream representation is obtained by interpolation techniques.

Different sampling densities were considered for each sampling strategy in order to

identify the number of points to be selected for the definition of each sampling

strategy. Subsets of data with different numbers of points were extracted from the

original data set in order to compare the variogram characteristics (i.e. sill, range and

nugget) obtained for each sampling strategy and variable (depth, velocity and Froude

Number). Differences between the variograms of each sampling strategy were

identified when decreasing the data sets to 428 points for the Leigh Brook and around

520 points for the Austrian channel. Thus, these used to define the size of the

sampling data sets. Only 2583 points were selected for the data analysis for the Leigh

Brook river site as those were the ones with measured values of velocity, depth and

Froude number for the two flows considered. The study was carried out for the data

obtained at both flows for the Leigh Brook river site (Q=0.344 m3s-1 and Q=0.517

m3s-1).

The following points were also included in the analysis: (a) how the random selection

of points, (b) how the intervals for the stratified sampling strategies and (c) how the
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location of the regular transects affected the results by replicating the selection

process of the subsets up to six times for the Austrian channel (Table 4.2). Results

obtained were used to select the most successful sampling strategies for the repetition

of the study at the Leigh Brook river site (Table 4.3). The six replications considered

for the random sampling strategy at the Austrian channel were selected after

observing the changes in variogram values obtained from a total of 10 different

random selections of points created. Since values of sill, range and nugget did not

present a high difference between randomly selected points, a reduced number of

replications were selected.

4.3.2. Depth

The sampling strategies selected for the Austrian channel, their codes and the number

of points used is shown in Figure 4.3 and Table 4.2. Two different sampling densities

were compared (5% and 10% of the original data set) for each sampling strategy, with

three replications for each sampling density. Transect sampling strategies have been

replicated only twice due to the low number of transects that could be included with

sampling densities of 5% and 10%. Replications analysed for regular grids considered

two different distributions of points: corner and centre. Corner represents a regular

grid defined by locating the points at the lower left corner of a 5 cm x 5 cm or a 3 cm

x 3 cm (depending on the grid considered - see Table 4.3) grid and Centre located the

points at the centre of each grid cell. The difficulties in selecting the same number of

points following grids/transects and regular/irregular patterns introduced slight

differences to the number of points considered for different the sampling strategies.

This was considered when analysing the results.

A total of three sampling strategies were compared for the Leigh Brook river site

(Table 4.3). Sampling densities selected for the Leigh Brook and Austrian channel are

not comparable. Results obtained for the Leigh Brook river site will only be used to

support those obtained for the Austrian channel since the artificial channel presented a

more detailed data set.

Depth was measured in metres at the Leigh Brook river site and in millimetres at the

Austrian channel. Variance, semivariance, Mean Squared Error and Mean Error were
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calculated for the units in which data were collected in each case, unless the units of

these parameters are specified.

Table 4.2: sampling strategies studied for depth hydromorphological parameter for the artificial
Austrian channel.
Sampling
strategy
group

Sampling
strategy

Percentage of
original data set

(sampling density)

Grid size - repetition sample (or
random seed) / point location in

the grid (cm).
Code Num.

Points

11.0 5x5-Centre GRe5x5Ce 1151
4.0 5x5-Corner GRe5x5Co 409

11.0 3x3-Centre GRe3x3Ce 1151Regular

11.2 3x3-Corner GRe3x3Co 1168
5.0 10 GRa5x10 522
5.0 20 GRa5x20 522
5.0 30 GRa5x30 522

10.0 10 GRa10x10 1044
10.0 20 GRa10x20 1044

Random

10.0 30 GRa10x30 1044
5.0 10 GStrat5x10 522
5.0 20 GStrat5x20 522

10.0 10 GStrat10x10 1044

G
ri

d

Stratified

10.0 20 GStrat10x20 1044
5.0 1 TRe5x1 521
5.0 2 TRe5x2 523

10.0 1 TRe10x1 1044
Regular

9.7 2 TRe10x2 1014
5.0 1 TStrat5x1 527
4.9 2 TStrat5x2 517

10.0 1 TStrat10x1 1050

T
ra

ns
ec

ts

Stratified

10.0 2 TStrat10x2 1052

Table 4.3: sampling strategies studied at the Leigh Brook river site for depth, velocity and
Froude number measurements obtained at two flows (Q=0.344 m3/s and Q=0.517 m3/).

Sampling strategy
group

Sampling
strategy

Percentage of original data
set. Abbreviation

Num.
Points

Random 16.5 GRa 428
16.5 GStrat1 428Grid

Stratified 16.5 GStrat2 428
16.5 TRe1 428Transects Regular
16.5 TRe2 428

4.3.3. Velocity

The velocity data sets provided for the artificial Austrian channel were divided into

depth layers in order to work with two dimensional data sets. Layers of velocity were

defined by considering all the velocity values located at the same depth level (Figure

4.4), parallel to the bed channel. Those layers with less than 200 points were not

analysed as it is necessary to have a high number of measured points (Webster &

Oliver, 2001) in order to obtain accurate predictions with geostatistical techniques.
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The data characteristics only allowed the comparison of regular and stratified grid

sampling strategies at the artificial Austrian channel (Table 4.4). Repetitions were

considered for these two sampling strategies. Since the geostatistical analysis showed

that the variogram was more stable for regular grids than for stratified ones, three

repetitions for stratified sampling strategies and two repetitions for regular sampling

strategies have been considered.

Table 4.4: percentage and number of points (referred to the original data set) included in
each velocity sampling strategy analysed at the Austrian channel.

Sampling
Strategy

Layer 1 Layer 2 Layer 3 Layer 4

% No. of
Points

% No. of
Points

% No. of
Points

% No. of
Points

Int5 70 159 75 170 74 149 69 136
Int10 60 136 59 133 62 126 60 117
Int20 42 95 42 95 47 94 37 73
RE50 50 112 50 113 50 101 50 96
RE25 25 58 25 56 25 53 25 51

Total number
of pointa

100 227 100 226 100 203 100 197

Stratified grids were obtained by selecting the points which identify velocity changes

of 5 ms-1 (Int5), 10 ms-1 (Int10) and 20 ms-1 (Int20). Regular grids were defined by

selecting 50% (RE50) and 25% (RE25) of the original measured points. Conclusions

about the differences between sampling strategies were established according to a

series of indicators and the number of points included in each strategies. The same

sampling strategies that were considered for the depth hydromorphological parameter

(Table 4.3) were also considered for velocity at the Leigh Brook river site. Velocity

data were collected in ms-1. The results obtained were calculated in these units.

Figure 4.4: layers of velocity defined for the artificial Austrian
channel, parallel to the bed channel (top).

5 cm

20 cm
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4.3.4. Substrate

Substrate data were only available for the Leigh Brook river site. Since substrate was

measured at each depth sampled point, the same sampling strategies that were

analysed for depth were considered for substrate (Table 4.3).

4.3.5. The indicators

Different indicators were calculated in order to compare sampling strategies when

predicting hydromorphological parameters with geostatistical analysis (i.e. ordinary

kriging). The indicators selected were quantitative and qualitative. The first type is the

objective result of a mathematical equation whilst the second type is the result of

subjective observations. The indicators were calculated for the straightened data sets.

Quantitative indicators

Variogram model assessment: Exponential, Gaussian and Spherical variogram

models were compared. The goodness of fit was analysed through the Objective

function (Cressie, 1993) and the percentage of variance accounted for. The smaller the

value of the objective function, the better the fitted model. The “percentage of

variance accounted for” is the adjusted R2 statistic. The higher the percentage of

variance accounted for, the better the fitted model at describing the measured data.

The azimuth and azimuth tolerance were determined after analysing the degree of

anisotropy in the data set. The azimuth determines the direction for the search and

selection of neighbours. The azimuth tolerance is a range in direction that also

determines the search of neighbours. Values of azimuth tolerance are delimited by the

interval 0to 180. The variogram created by the azimuth tolerance of 180is called

the omnidirectional variogram (Webster & Oliver, 2001). Other azimuth tolerances

define directional variograms.

Anisotropy is present when the spatial behaviour of the parameter changes according

to the direction analysed. This means that it is possible to identify different

variograms according to the direction studied. The directions of main interest for this

study are along and across the river. The variables analysed to determine the existence

of anisotropy at a river site are range, sill and nugget. Different azimuth tolerances

and lag distances were compared to determine at which point there was a compromise
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between loss of directional information and capacity to represent anisotropy of the site

(Webster & Oliver, 2001). The variance (or semivariance) obtained at specific lag

distances have been compared for the two directions of interest to provide a

quantitative reference for the determination of the “anisotropy level”.

Mean Squared Error (MSE) and Mean Error (ME): The Objective function

analyses the difference between observed values and fitted values for those points

included in the variogram calculation. The MSE is a statistic that tests the capacity of

the variogram to predict values from a validation data set, whilst ME also tests the

capacity of the variogram to predict values but considers the mean absolute difference

which gives a result that is directly related to the original data (Webster & Oliver,

2001).

Descriptive statistics: the mean, standard deviation, median, mode, minimum,

maximum, skewness and Kurtosis values were calculated for the original data sets and

the selected points for each sampling strategy analysed. The spatial distribution of the

prediction errors was also analysed and related to the flow types/mesohabitat types

identified at the Leigh Brook river site.

Frequency distribution: Frequency distributions of depth and velocity obtained for

each sampling strategy were compared with those calculated for the original data set.

A Kolmogorov-Smirnov test was carried out for this purpose.

Regression analysis: the relation between predicted and observed values were

obtained through the application of linear regression analysis. Values of R-squared,

slope and intercept were considered in the analysis.

Qualitative indicators

Mapping resolution: This indicator was used to determine which sampling strategies

gave better approximations in terms of mapping resolution of the sampled area and to

assess the differences that can be encountered between sampling strategies in terms of

mapping resolution.

The variogram calculated with data from each sampling strategy was used to create an

interpolated surface of the variable under study with ArcGIS 9 software. The

resolution of each interpolated surface was compared with that obtained with the
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original data set. Mapping resolution was not accepted as adequate when the map

failed to differentiate the patterns shown in the original data set.

A regular grid was placed on top of each map to corroborate the differences

encountered by visual assessment. The mean value of the points included in each cell

was calculated and associated to the respective grid cell. The size of the cells was

determined by the characteristics of the data sets collected. The area covered by the

total grid was calculated and the sampling density of each sampling strategy was

determined in relation to this area value. The size of the grid cells was obtained by

dividing the total surface area between the total number of points in such a way that a

mean of 2 points were included in each cell. Each river site and sampling strategy

therefore had a specific grid cell dimension. Thus, results obtained for this indicator

would not be comparable between river sites and sampling strategies.

Differences between grid cells of the original and predicted data sets were calculated

by subtracting the mean values of the same grid cells. These differences were

categorised with a binary system (0, 1), where 0 represents no difference between grid

cell values and 1 represents the existence of differences between grid cell values. Two

grid cells were considered different when the mean values of each cell differ more

than twice the minimum standard error obtained for each hydromorphological

parameter. The number of cells of each category was calculated to compare the results

obtained for each sampling strategy.

Map of Standard Error: this indicator shows the distribution of the SE of the

predictions across the interpolated surface obtained with each sampling strategy. The

SE maps indicate which locations have the highest errors in prediction and which

sampling strategies have higher errors. Maps that display a random pattern of SE were

not considered suitable as spatial representations of the river site.

Predicted-Observed cross-sections and longitudinal profiles: The sampling strategies

that gave better approximations to the original cross-section in terms of shape (i.e.

depth) or trend (i.e. velocity) were visually identified. The percentage of times that a

sampling strategy was more successful than the rest of the strategies was noted down

to establish comparisons.
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Channel Volume: the volume of the channel created by interpolating the data points

defining each sampling strategy, as well as the wetted 2D and 3D surface areas were

calculated for the studied sampling strategies with ArcGIS 9 software. Results

obtained were compared with those obtained for the original data set.

4.4. Results

4.4.1. Variogram model assessment

DEPTH FOR THE AUSTRIAN CHANNEL

The variograms presented in Figure 4.5 are an example of the directional differences

(azimuth tolerance of 30 degrees) detected. The variance is higher across than along

the direction of river flow. This directional difference of variance decreases when

increasing the azimuth tolerance since more area is considered for the determination

of the neighbourhood of each variogram point. Anisotropy decreases when reaching

azimuth tolerances 60, independently of the lag distance selected.

The sym

is due

sections

separate
Figure 4.5: anisotropy study. Variograms for along (red) and across (blue) the
river directions (Depth data set for the Austrian channel). In this example,
azimuth tolerance is equal to 30 degrees.

Lag distance (mm)
ivas Casado Cranfield University at Silsoe PhD Thesis 2006

metry of the variogram representing the cross sectional direction (Figure 4.5)

to the similarity of depth encountered at both ends of the measured cross

. Thus, points that are very close have similar variances to points that are

d by the width of the cross section.
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One requirement for the determination of the variogram is to have “sufficient”

numbers of pairs of points to define a specific lag interval. Since the number of pairs

of points available in the cross-sectional variogram decreased for lag intervals higher

than 2.5 m (Figure 4.5), it can only be compared with the longitudinal variogram up to

a lag of 2.5 m. Up to this distance the cross-sectional variogram was very similar in

shape to that obtained for the longitudinal direction. Therefore, it can be assumed that

the omnidirectional variogram defines the spatial behaviour of depth for both cross-

sectional and longitudinal directions at the Austrian channel.

The directional variograms obtained for each sampling strategy were distorted (Figure

4.6 and Figure 4.7) in comparison to that obtained for the original data set. Cross-

sectional variograms did show higher modifications than longitudinal variograms due

to the fact that only few points were included for the calculation of the semivariance

at a specific lag distance. Therefore, it is recommended to use the omnidirectional

variogram to predict values across and along the river.
distance
Figure 4.6: anisotropy for the sampling strategy defined by transects distributed regularly
(including 10 % of the original depth data set). Direction 0 and 90 represent across and along the
river, respectively (orange box). Numbers in the green box represent azimuth tolerance (values of
2, 1.75, 1.50 and 1.25 from top to bottom) . Depth data set for the Austrian channel. Distance is the
Lag distance in mm and gamma represents the semivariance.
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006
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Strong directional differences were identified for sampling strategies defined by

regular and stratified transects (Figure 4.6). Differences in the directional variograms

were more dependent on the location of transects rather than the number of points

included. Variograms with the same number of transects were different when locating

those transects at different places; this did not happen (or at least it was not observed)

with regular, stratified and random grids. Thus, grids should be preferred to transects

for the determination of depth variograms. Random selection of points did not seem to

affect the directional variograms and thus, differences identified can be associated to

the number of points rather than to their location. The same principle is applied for

stratified and regular grids.

The best fitted models were obtained for sampling strategies developed following

random grids. The variance accounted for (Appendix 2) did not change between

random grids with the same number of points but it changed when decreasing the

number of points. This indicated that for random grids the number of points included

in the analysis was more relevant than their location. The same principle can be

observed in regular and stratified grids but not in transect sampling strategies.

Values of Range were between 4 m and 5 m, which indicated that spatial correlation

for depth was lost at distances higher than this interval. Therefore, when defining

sampling strategies for the Austrian channel it would be necessary to locate the points

at distances smaller than 5 m. Values of sill were smaller than 0.02, which indicated

that the variance between sampled points was not high. Finally, nugget values were 

0 for all the sampling strategies.

VELOCITY FOR THE AUSTRIAN CHANNEL

The velocity data set presented differences in the variogram for both directions

analysed. This was due to the distribution of the measured points in space. The

velocity data set was collected following cross sections separated by 1 m intervals and

thus, the variograms showed groups of points at 1 metre intervals (Figure 4.8). This

indicated that the directional differences obtained were just the result of the lack of

intermediate points between cross sections. The anisotropy was not so visible when

considering higher azimuth tolerances. The cross-sectional variogram cannot be

successfully determined due to the spatial distribution of the points and so, it was

necessary to use the omnidirectional variogram in order to make predictions.
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The lack of points separated by small distances can produce a bad estimation of the

nugget (inherent variance of the parameter studied). It would be necessary to carry out

a study at a micro scale level in order to determine the inherent variance of velocity

measurements.

The variance explained by the variogram models fitted was very low in all the cases

(from 0.8% up to 63%) (Appendix 2). This could be due to (i) a low number of points

collected, (ii) a high distance between sampling points, (iii) a bad sampling strategy or

(iv) a poor relationship between velocity and space. Values of percentage of variance

accounted for were lower than those obtained for the depth data set.

Figure 4.7: anisotropy for the sampling strategy defined by regular grid (3x3 Centre). Direction 0
and 90 represent across and along the river, respectively (orange box). Numbers in the green box
represent azimuth tolerance (values of 2, 1.75, 1.50 and 1.25 from top to bottom). Depth data set
for the Austrian channel. Distance is the Lag distance in mm and gamma represents the
semivariance.
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The ranges obtained for the selected models were very small (from 0.482 m to 2.05

m), which indicates that the spatial relation between velocity measurements was

small. Therefore, high sampling densities were necessary in order to obtain good

predictions when kriging this variable. The sill was small for all the selected models

(from 0.04 to 0.06), which indicated that the maximum variance between points was

not high. The nugget or inherent variance of the parameter was 0 in the majority of the

models.

T

T

L

r

distance

Figure 4.8: anisotropy for Velocity - Layer 1 (direction 0 = across the river & direction 90 =
along the river). Values included in the green box indicate ratio of aperture for neighbourhood
or azimuth tolerance and are: 2, 1.75, 1.5 and 1.25 from top to bottom. Austrian artificial
channel. Distance represents lag distance and it is measured in mm. Gamma represents the
semivariance.
onica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

HE LEIGH BROOK

he analysis of the variograms obtained for depth, velocity and Froude number at the

eigh Brook showed that the variance had the same behaviour along and across the

iver and so, no anisotropy was identified.
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The exponential variogram presented the best results of “variance accounted for”

(94.1% for depth at Q1 and 95.6% for depth at Q2) for depth and velocity (less than

60% in all cases for velocity – Appendix 2). The spherical model was the best

variogram defining the spatial behaviour of Froude Number, with constant values of

“variance accounted for” in all sampling strategies (57.6% for Froude at Q1 and

69.6% Froude at Q2).

The range (Table 4.5) was the parameter that best identified changes of the variogram

shape, whilst sill and nugget values oscillated within a small interval. This suggests

that the range could be a good variable to identify hydromorphological changes in

rivers due to water abstraction. Grid sampling strategies presented the best

approximations of range to the original variogram and thus, these sampling strategies

can be considered as the ones that best define the variogram. Regular transects gave

the worst approximations for range, sill and nugget.

Table 4.5: variogram descriptors for each sampling strategy and flow
analysed at the Leigh Brook river site.

Variable Flow Variogram GRa Gstrat1 GStrat2 TRE1 TRE2 Original data set
Range 2.57 2.68 3.15 1.70 1.91 3.09

Sill 0.019 0.019 0.023 0.018 0.017 0.019Q1

Nugget 0 0.0001 0 0.0006 0 0.0008

Range 3.22 3.21 3.26 2.02 1.86 3.33

Sill 0.019 0.022 0.017 0.018 0.016 0.019D
ep

th
(m

)

Q2

Nugget 0 0.0016 0.0007 0.00017 0 0.0006

Range 3.16 5.44 8.73 1.79 2.21 5.00

Sill 0.042 0.046 0.048 0.041 0.070 0.052Q1

Nugget 0.015 0.0144 0.019 0.008 0.006 0.016

Range 2.73 8.57 2.11 26.88 8480 6.26

Sill 0.048 0.031 0.041 0.10 216.0 0.048

V
el

oc
ity

(m
s-1

)

Q2

Nugget 0.0034 0.011 0 0.015 0.022 0.013

Range 9.80 8.99 7.04 95800 8.15 9.16

Sill 0.022 0.038 0.022 176.0 0.037 0.042Q1

Nugget 0.013 0.010 0.010 0.0083 0.012 0.008

Range 9.24 6.144 10.13 50326.14 18.55 9.17

Sill 0.027 0.033 0.041 126.00 0.065 0.050

F
ro

ud
e

N
um

be
r

Q2

Nugget 0.017 0.0077 0.0063 0.011 0.012 0.0098

4.4.2. Mean Squared Error and Mean Error

DEPTH FOR THE AUSTRIAN CHANNEL

The MSE and ME for regular and stratified transects could not be calculated due to

the distribution of points obtained with these sampling strategies. Best results were
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obtained for regular and random grids. In general, stratified grids gave worse results

than random and regular grids. The number of points included in each grid sampling

strategy did not seem to affect the MSE and the ME value for random grids, although

it slightly affected sampling strategies with regular grids and transects (Appendix 2).

VELOCITY FOR THE AUSTRIAN CHANNEL

MSE obtained for the velocity data set increased when decreasing the number of

points measured (Appendix 2). Differences in the MSE value were not high between

comparable sampling strategies (i.e. RE50%, Int10 and Int20). RE25% showed the

worst results, which may indicate that the points were located at a distance higher than

the variogram range and thus, the predictions were not good as there was no spatial

relation between measured points.

Best results for all sampling strategies of velocity were provided by Int5, which

included the higher number of points. RE50% showed better results than Int10

although it had a higher number of points. This indicated that the changes in the MSE

values were not just associated with the number of points included but also to the

location (sampling strategy) of those points.

ME was also higher for stratified sampling strategies than for comparable regular grid

sampling strategies (Appendix 2). ME was between 0.008 ms-1 and 0.19 ms-1. Higher

values of ME were obtained for RE25 due to the low number of points included in

this sampling strategy.

THE LEIGH BROOK

MSE obtained for all the predicted values were low for velocity (from 0.025 to 0.05),

depth (from 0.00003 to 0.0016) and Froude Number (from 0.016 to 0.034)

predictions, which indicated that the predictions were accurate. It needs to be noted

that, even employing the same number of points for the variogram calculation of

depth, velocity and Froude number, velocity gave higher errors in the predictions.

This indicates that more points need to be collected when trying to define the spatial

pattern of velocity.
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Random grids were the best sampling strategies for velocity and Froude number

measurements when analysing the MSE, whilst stratified grids and regular transects

oscillated in their behaviour. TRE2 was the sampling strategy with the largest MSE

and TRE1 the one with the smallest MSE for depth (Appendix 2) and velocity

measurements. This pattern indicated that the results of “regular transect” sampling

strategies depended on the location of the transects. Random or stratified grids, which

were not so sensitive to the location of the points, are preferable for the prediction of

depth and velocity values with geostatistical analysis.

ME obtained for the values predicted with the depth variogram were between 1 cm

and 6 cm. The maximum mean errors were for TRE2 for depth measurement (6 cm),

whilst the minimum ME results were obtained for TRE1. Maximum errors or

differences between observed and predicted reach values of 44 cm (depth at Q1) and

51 cm (depth at Q2) and were produced by the TRE2 sampling strategy.

Velocity predictions gave ME between 0.10 ms-1 and 0.17ms -1. The maximum values

of ME were with regular transects and smallest ME values were for random grids. The

value of ME oscillated between stratified grids and regular transects. This made it

difficult to propose a final pattern for these sampling strategies. The range of

maximum values of ME was between 0.90 ms-1 and 1.33 ms-1.

Froude number predictions presented smaller values of ME for random grids. The

same lack of pattern between regular transects and stratified grids observed in velocity

predictions appeared in the predictions of Froude number. ME values oscillated

between 0.083 and 0.15, with maximum errors of 1.07.

4.4.3. Descriptive Statistics

Results for the Austrian channel and Leigh Brook river site indicated that the sample

obtained were representative of the original data set in terms of depth and velocity.

Results showed that the spatial location of extreme values was approximately the

same for all the sampling strategies.

The GLM analysis carried out to identify the relationship between error and habitat

type/flow type indicates that there was evidence to reject the null hypothesis Ho: all

the habitat types/flow types have the same prediction error (p<0.05). This showed that
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the prediction error of depth, velocity and Froude number was not evenly distributed

between mesohabitat nor flow types.

The mean-plots (Appendix 2) obtained for the Leigh Brook river site indicated that

the error increased from riffle to pool habitat types for depth, velocity and Froude

number. Riffles and shallow glides had approximately the same range of absolute

error (around 1 cm for depth, 0.03 ms-1 for velocity and 0.02 for Froude number)

whilst deep glides and pools could be grouped together (with errors around 6 cm for

depth, 0.10 ms-1 for velocity and 0.16 for Froude number). This pattern was observed

for the habitat types identified for both discharges.

The relationships were not as clear between flow types; velocity and Froude number

present higher errors for Unbroken standing Waves (UW) and Broken standing Waves

(BW), whilst it was not possible to define a pattern for the error of predicted depth vs.

flow type. The maps of prediction error obtained for the different sampling strategies

presented the outliers and extreme values always at the same locations, which

coincided with the location of BW and UW. The maps obtained also showed that

there were more extreme/outlier values for stratified and regular transect sampling

strategies. This indicated that the location of the extreme values was preserved for all

sampling strategies whilst the value of error changes between them. The results

obtained indicate that more points have to be collected in deep areas in order to

identify the peaks of variability in the semivariogram. The variogram was able to

identify a range of variability but the peaks were not well predicted, maximum

differences (errors) were coincident with the deepest areas (peaks) when analysing the

spatial distribution of the prediction errors. Higher sampling densities also need to be

applied in areas with UW and BW when trying to define the velocity and Froude

number variogram, as these areas also presented higher errors in the predictions.

4.4.4. Frequency Distribution

None of the sampling strategies analysed for the depth data sets gave frequency

distributions similar to the original data set for the Austrian channel (Appendix 2).

Comparable stratified sampling strategies (i.e. Int10 and Int20) presented differences

from the frequency distribution of the original measured velocities. This indicated that
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the sampling strategy and the number of points measured were a key influence on the

determination of the “real” frequency distribution.

There was evidence to reject the null hypothesis (H0: predicted and observed values

provide the same frequency distribution) and consider the predicted data sets of

velocity, depth and Froude number to be different to the measured ones (p=0) for the

Leigh Brook. No conclusions could be established regarding differences between

sampling strategies as the values of significance level were 0 for all the tests run.

4.4.5. Regression Analysis

DEPTH FOR THE AUSTRIAN CHANNEL

The maximum values of R2 were obtained for random grids and stratified grids, whilst

the lowest values belonged to regular and stratified transects (Appendix 2). Values of

R2 were affected by the number of points included in regular and stratified grid

sampling strategies whilst the location of the points seemed to modify the R2 value in

random grids. Stratified and regular transects gave low values of R2 since there was a

lack of precision for certain intervals of depth; predictions were usually approximated

to a constant value (around 200-300 mm depth – Figure 4.9). Plots of SE showed

inconsistency in the distribution of the SE for regular grids, regular and stratified

transects
DEPTH (mm)

Figure 4.9: R-Squared for Regular Grid 3x3Ce (left) vs. original for depth (DEPTH) and plot of the
Standard Error of the predictions for the same sampling strategy the Austrian channel. Red lines
represent the fitted linear regression model with 95% confidence interval.
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006
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VELOCITY FOR THE AUSTRIAN CHANNEL

Regular grids provided better results than stratified sampling strategies with the same

number of points. However, the differences were not notable as R2 is significant at

small values when the number of points analysed is high enough. The values of R2

were between 0 and 0.98 and RE25% presented the worst results (Appendix 2).

THE LEIGH BROOK

Grid sampling strategies for depth predictions gave better values of R2 (R20.7) than

regular transects (R20.6). Random grids also provided better R2 values (R20.55)

for Froude number, whilst stratified grids provided the worst relationship (R20.45)

for the same variable. Velocity did not show a clear pattern of preference between

sampling strategies. Residual plots obtained did not present good distributions for

stratified grid sampling strategy when predicting Froude number; values appeared in

clusters.

4.4.6. Mapping Resolution

DEPTH FOR THE AUSTRIAN CHANNEL

Sampling strategies defined by grids gave better mapping resolution than those

defined by transects. Stratified transects gave worse mapping resolutions than regular

transects and regular grids predicted better maps than random and stratified grids. The

number of points included in the sampling strategy and the location of the sampled

points affected the mapping resolution for random grids whilst regular and stratified

grids were just affected by the location of the points. Mapping resolution of transect

sampling strategies were mainly affected by the location of the sampled transects

(Figure 4.10).

VELOCITY FOR THE AUSTRIAN CHANNEL

Stratified sampling strategies gave similar or even better approximations of the real

situations than those obtained with regular grids. RE25% did not give acceptable

approximations of the real situation as the patterns of deep-shallow areas were not

conserved. The analysis of the number of grid cells that represent significant change

from the original situation (Table 4.6) supported the conclusions reached from visual

comparison of maps. Note that sampling strategy RE25 provided the best results for
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Figure 4.10: mapping resolution for depth original data set (top left), GRE3x3Ce (bottom left), GRa10x10 (top right) and TStrat10x1 (bottom right)
at the Austrian channel.
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the number of grid cells that were not changing. This is due to the fact that all the

predictions obtained for the Re25 sampling strategy had the same value, which

implies a constant value of prediction error. Therefore, the values obtained with this

sampling strategy were not sufficiently representative of the original situation even

though it gave low prediction errors.

Table 4.6: number of grid cells that presented significant change (mean +/- 2SE;
SE=0.0122) from the original situation for the Velocity data sets for the
Austrian channel.

Strategy Layer 1 Layer 2 Layer 3 Layer 4
Re50 66 68 63 51
Re25 5 9 8 6

L1Int5 62 64 35 50
L1Int10 33 30 22 28
L1Int20 5 4 5 4

THE LEIGH BROOK

Sampling strategies that gave better spatial representations were those that followed

regular and stratified grids. Random grids were more successful than stratified for

velocity, depth and Froude number. Different results were obtained for the grid cell

analysis (Table 4.7); stratified grids provided worse results on mapping resolution

than random grids and regular transects for the velocity data set. Differences between

depth sampling strategies were not consistent for the two discharges analysed. Froude

Number and velocity data sets have a higher number of grid cells that have significant

change from the original situation than depth (Table 4.7).

Table 4.7: sampling strategies studied at the Leigh Brook river site for depth, velocity and
Froude number measurements obtained at two flows (Q=0.344 m3s-1 and Q=0.517 m3s- 1).

Sampling
strategy group

Sampling
strategy

Number of
significantly

different grid
cells

Velocity

Number of
significantly

different grid
cells

Froude Number

Number of
significantly
different grid

cells
Depth

Abbreviation

Discharge m3s- 1 0.344 0.517 0.344 0.517 0.344 0.517
Random 20 16 31 30 2 1 GRa

27 32 30 30 2 2 GStrat1Grid
Stratified 29 20 30 30 1 2 GStrat2

15 21 27 26 1 0 TRe1Transects Regular
13 17 26 23 0 0 TRe2
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4.4.7. Standard Error Maps

Results for the velocity data from the Austrian channel show that regular grids gave

better approximations to the mapping distribution of errors obtained with the “real

situation”, as the original data set was collected following a regular grid. Results

obtained for the depth data set showed that the pattern observed for mapping

resolution, in terms of best and worst sampling strategies for the indicator, can be

attributed to the standard error maps. Results obtained for the Leigh Brook river site

show that regular and stratified grids were the sampling strategies that provide maps

of SE with a closer pattern to that identified for the original data set. Random grids

were more successful than stratified grids for the three hydromorphological variables

analysed.

4.4.8. Predicted-Observed cross-sections and longitudinal profiles

DEPTH FOR THE AUSTRIAN CHANNEL

Sampling strategies defined by transects did not give good approximations to the

values of depth (Figure 4.11). Some predictions along the longitudinal profile were

very close to the measured values; these “good predictions” matched with the position

of the selected transects used for the calculation of the semivariogram. This pattern

was observed in each of the fifty longitudinal profiles created. Regular grids gave the

best results when predicting longitudinal profiles, followed by stratified and random

grids. Random grids presented more oscillations than the two first types of grids

studied, but still gave very good approximations.

Differences between regular grids can be identified according to the location of the

points selected when analysing the cross-sections created. Random grids did not give

as good a numerical prediction as regular grids. Stratified grids gave worse

predictions than regular and random grids, although the predictions were much better

than those obtained with transects. Differences were also identified according to the

number of points included; sampling strategies with higher number of points gave

better predictions (Figure 4.11).
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Figure 4.11: example of longitudinal profiles (top) and cross sections (bottom) predicted with the
different sampling strategies studied for the Austrian channel.
onica Rivas Casado Cranfield University at Silsoe PhD Thesis

ELOCITY FOR THE AUSTRIAN CHANNEL

ross sections predicted from all the sampling strategies, except RE25% and Int20

ave good approximations of the measured cross sections (Figure 4.12).

pproximations were better for longitudinal profiles than for cross-sections. There

ere not significant differences between comparable regular and stratified grids. The

umber of points included seemed more relevant than the sampling strategy applied

hen determining longitudinal profiles and cross-sections. However, conclusions

ould not be established for the longitudinal profiles as only two sections along the

iver were analysed for each layer.

HE LEIGH BROOK

esults showed that depth is better predicted with random grids for more than 95 of

he 200 cross sections. Stratified grids were better than regular transects at 55 of the
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Figure 4.12: example of velocity predicted at one cross section (layer 1) for the
Austrian channel.

200 cross-sections, whilst transect sampling strategies were good for only 40 cross

sections. Transect sampling strategies predicted with high accuracy the value and

shape of those cross-sections where transects were measured; the predictions were

usually poor in value and shape in the remaining cross-sections.

Figure 4.13: example of Froude Number predictions for different sampling
strategies for the Leigh Brook river site.

Velocity prediction showed good approximations in value and shape adjustment at the

200 cross sections studied, although there were underestimations of the predicted

values at all the cross sections and for all sampling strategies. Regular transect

sampling strategies represented the majority of cases where the predictions were not

adjusted in shape to the measured cross-section values; the two regular transect

replicates studied gave different outputs. One replicate gave the best approximation of
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all the sampling strategies and the other replicate gave the worst approximation. Since

the results were so dissimilar, it could not be accepted that regular transects give good

predictions to the “real situation” and so, it may be preferable to apply grid sampling

strategies.

Froude number (Figure 4.13 & Appendix 2) values predicted for the cross-section did

not approximate to the real observations as well as velocity predictions did. The

majority of cross-sections do not present neither a good estimation of the real value

nor an adjustment on shape. Regular transects gave better approximation than the

other sampling strategies.

4.4.9. Channel Volume

AUSTRIAN CHANNEL

Results indicate that overestimations of 2 dimensional and 3 dimensional surface area

were made from all sampling strategies except those defined by transects. Volume

results did not significantly change between sampling strategies; that may indicate

that volume is just affected by changes in the number of points collected rather than

the sampling strategy applied. Best results were obtained with regular grids whilst

underestimation was obtained with transects and overestimation with random grids.

THE LEIGH BROOK

Differences in volume between sampling strategies were higher than 100 m3 between

grids and transect sampling strategies. Transect strategies gave the most similar values

of volume to those obtained with the whole data set. 2D and 3D wetted surfaces did

not present high differences between sampling strategies although stratified sampling

strategies gave more comparable values to those obtained with the original data set

(Table 4.8).

Table 4.8: water volume, 2D surface and 3D surface (wetted surface) for each sampling strategy
and flow studied.

Q1 Q2Sampling strategy
Volume 2D Surface 3D surface Volume 2D Surface 3D surface

Original Data set 562.72 2490.95 2504.15 479.11 2593.27 2606.01
GRa 868.64 3398.72 3407.44 723.69 3398.72 3406.54
Gstrat1 871.39 3371.14 3379.71 471.76 2172.74 2179.99
GStrat2 878.95 3322.96 3331.25 452.35 2182.35 2187.82
TRE1 867.04 3376.07 3385.32 825.28 3312.94 3321.01
TRE2 729.54 3376.07 3385.32 691.01 3312.94 3320.91
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4.5. Discussion and Conclusions

DEPTH

It is recommended that the omnidirectional variogram be calculated when

characterising the spatial pattern of depth. The anisotropy detected when comparing

longitudinal and cross-sectional variograms is either due to (i) the symmetrical shape

of the cross-sections or (ii) the sampling strategy applied. The omnidirectional

variogram reduces both effects by considering all the information provided by points

collected in both directions and by increasing the azimuth tolerance up to the

maximum.

It is recommended that grid sampling strategies be applied when characterising the

spatial pattern of depth rather than applying any type of transect sampling strategies.

Results obtained with regular or stratified transects have been proved to be highly

sensitive to the number of points sampled, as well as to the location of these transects.

In general, regular grids provided better results than random and stratified grid

sampling strategies, the latter being the worst in the grid sampling range. However,

the use of random grids should be prefered to the use of stratified and regular grids

since (i) results obtained for random grids did not significantly differ from those

obtained with regular grids and (ii) random sampling strategies (i.e. random walk) are

less time consuming sampling strategies.

VELOCITY

It is recommended to collect high resolution data sets for velocity when trying to

apply kriging interpolation techniques since (i) the spatial correlation between points

can be lost at very short distances (between 0.5 m to 2 m for the Austrian channel and

between 3 to 5 m for the Leigh Brook) and (ii) worse results were obtained for

velocity than for depth when applying the same sampling strategy.

Velocity data collection is more cost and time consuming than depth and so, smaller

sampling densities are usually applied for its characterisation. Thus, it is

recommended to use different interpolation procedures to ordinary kriging for the

prediction of velocity values at non measured locations when low sampling densities
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are being applied (i.e. points are separated more than 3 m between each other). As

an alternative option using three dimensional hydraulic modelling is suggested.

Results obtained with regular transect sampling strategies depend on the location of

the transects for the majority of indicators and so, grid sampling strategies, which are

not so sensitive to the location of the points, are preferable. Results obtained with

irregular grids (i.e. random and stratified grids) do not significantly differ from those

obtained with regular grids and so, it is recommended that irregular grids are applied

as they are less time consuming. Stratified grids cannot be applied for velocity

measurements as it is difficult to visually identify velocity changes at the river site.

Instead, random grids are preferred as the sampling strategy.

Further analysis should be developed for different sampling densities and spatial

scales in order to (i) determine the relationship between sampling density and specific

accuracy levels in the predictions and (ii) define the spatial behaviour of velocity,

depth and substrate at different spatial scales.

FROUDE NUMBER

It is recommended that grid sampling strategies are used for the calculation of the

variogram since these sampling strategies better characterise the spatial pattern.

Regular transects proved to be worse than grid sampling strategies for the

characterisation of the spatial pattern.

It is recommended to space sampling points less than 9 m from each other when

designing Froude Number sampling strategies as this is the point at which the spatial

correlation between points is lost.

GENERAL CONCLUSIONS

The range is the variogram parameter that best identified changes in the variogram

shape. This may indicate that the range is the best variogram parameter to identify

hydromorphological changes in rivers due to water abstraction.

It is recommended to apply higher sampling densities in deep areas when measuring

depth, and in broken-unbroken standing waves, when measuring velocity or Froude

number. The prediction error (i.e. difference between observed and predicted values)

is higher in deep glides and pool habitat types for depth, velocity and Froude number.
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Higher errors are also located at unbroken and broken standing waves for velocity and

Froude number. By increasing the sampling density in deep areas and at broken –

unbroken standing waves, the peaks of variability in the semivariograms will be

identified and therefore, higher levels of accuracy will be achieved when predicting

hydromorphological parameters in these areas.
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5.1. Introduction and objectives of Chapter 5

Hydromorphological data from fourteen river sites were analysed. River sites were

separated into validation and test data sets. The test data sets were analysed to provide

a set of sampling strategies for the collection of hydromorphological parameters.

Results were validated with the validation data sets. The first objective of Chapter 5

is to group the river sites according to (i) their catchment characteristics, (ii) their

reach characteristics, (iii) the data collection procedure and (iv) their spatial structure.

Differences and similarities of spatial structure were determined through the analysis

of the variogram characteristics. Several variables need to be determined for the

fitting of the variogram model (e.g. lag distance and azimuth tolerance). The second

objective of Chapter 5 focuses on the development of a sensitivity analysis of the

variogram model for those variables that are required for its calculation. This will

define the value of the variables for the variogram calculation and how sensitive the

variogram model is to changes of these variables. The third objective of Chapter 5 is

to fit the variogram model for each of the river sites.

Comparable river sites among the available data sets for
this research project need to be identified in order to define
which sites are going to constitute the validation data sets for
results obtained in Chapter 6. Chapter 5 identifies which river
sites are comparable in terms of (i) catchment characteristics, (ii)
reach characteristics, (iii) percentage of flow exceedance and (iv)
spatial structure, among other criteria. Chapter 5 also includes a
sensitivity analysis for the modelled variograms defining the
spatial structure of the river sites.
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The fourth objective of Chapter 5 is to analyse which physical descriptors of the

river site and parameters used for the first objective have most influence in defining

the variogram.

5.2. The river sites and the data collected at each site

Fourteen river sites were analysed in this Chapter. The majority of the river sites are

lowland and thus, this research project will focus on the development of effective and

efficient sampling strategies for this type of river. A few examples were included to

represent river sites that were not typical lowland sites. These river sites were: Tame

Less Modified, Tame Highly Modified and Tarf. The first two had a high degree of

hydromorphological modification and the Tarf is an upland river.

5.3. Methodology

5.3.1. Limitations of the available data sets and approach taken to address them.

The data sets were collected for different purposes and by different surveyors. It was

necessary to investigate these differences before proceeding to the data analysis. The

limitations identified were:

Insufficient WSL data sets: in some cases the WSL data sets did not include enough

points for the application of interpolation techniques (Webster & Oliver, 2001;

Webster, 1992). Table 5.1 shows the interpolation technique applied to obtain the

WSL at each river site according to the characteristics of the data set. Two approaches

were selected: inverse distance weighting and descriptive geometry.

Short river length sampled: The reduced sample length of some rivers could result in a

lack of information on river characteristics. Work developed by Ian Maddock

(personal comment) showed that the distance necessary to characterise the spatial

variability of a river site in terms of mesohabitat structures is between 50 m and 100

m. The sampled length of the river sites also affects the geostatistical analysis since

the variogram cannot be accurately calculated for lag distances higher than the

sampled distance. The variogram calculation was reduced to the minimum length

sampled (i.e. 30 m) to provide comparable variogram results without losing the extra

information provided by the points located at higher lag distances.
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Table 5.1: limitations of the data sets analysed in chapter 5 (TO=Topographic, IDW=Inverse Distance Weighted and DG=Descriptive Geometry; Density in points
per square metre). “Wet” refers to those points below the water surface level whilst “dry” points refer to those points above the WSL.
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Different sampling strategies and sampling conditions: different sampling strategies

(density and location of points) were applied at each river site. Data were also

collected at different discharge conditions. Groups of comparable data sets were

established according to the sampling densities of the river sites and to the percentage

of flow exceedance at which they were sampled (Table 5.1) to minimise the following

problems:

i. The total number of TO and WSL points was different for each river site and

thus, the information was not directly comparable.

ii. Differences in the number of dry points (dry points = negative depth; wet

points = positive depth) indicated that the river banks were not equally defined for all

the river sites (Table 5.1 and Figure 5.1)

iii. The information provided by the data sets was not comparable in terms of

water depth characterisation since the discharges at which the data were collected

were different.

River sinuosity: interpolation techniques calculate the value of variables at unknown

points through the analysis of the value of the neighbouring points. Curvilinear shapes

create false neighbours, specially at the internal face of the curve, where points that

are located a long distance away along the flow path are found relatively close in

geometric space (Figure 5.2). This can be solved by straightening techniques (e.g.

Brunner, 2002, Wadzuk, undated, Merwade, 2004, Merwade, 2002 and Legleiter &

Kyriakidis, 2006). The straightening procedure was carried with the River Channel

Morphology Model (RCMM) tool (Merwade, 2004; Merwade, 2002)

Data sets collected at different periods: the majority of WSL data sets were not

collected simultaneously with the TO data sets. River sites that presented this

limitation were carefully analysed since the TO could have changed between the TO

sampling period and the WSL sampling period.

Lack of data : Velocity and substrate were only measured at the Leigh Brook river

site. Therefore, only depth will be analysed in this chapter.
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Figure 5.1: number of wet and dry points measured at each river site. The number given in
the label refers to the number of wet points.

Figure 5.2: example of straightened river site (Bere river site). Note the differences in
distances between the selected red points when straightening has been applied.
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5.3.2. Grouping the river sites to find comparable data sets and river sites

Four different criteria were considered: (i) catchment characteristics, (ii) reach

characteristics, (iii) percentage flow exceedance and (iv) depth spatial structure.

Catchment and reach characteristics were defined through physical descriptors that

were selected according to their relevance for the geostatistical analysis. Only

variables that could have an influence on the variogram shape were considered.

Percentage of flow exceedance was calculated from the discharge at which the data

measurements were collected and spatial structure was determined after analysing the

variogram obtained for each river site.

Comparable river sites in terms of (i) catchment characteristics, (ii) reach

characteristics and (iii) spatial structure were defined using cluster analysis. Cluster

analysis was developed by considering the Euclidean distance as a measure of

dissimilarity between data points and Ward’s method of cluster formation (Lattin et

al., 2003). Ward’s method has a tendency to produce equal sized clusters (i.e. clusters

with approximately the same number of observations in each) that are convex and

compact which is due to the strategy followed when identifying differences between

data points for the cluster classification. Ward’s approach seeks to join the two

clusters whose merger leads to the smallest within cluster sum of squares (Lattin et

al., 2003). Data were normalised for the performance of cluster analysis.

5.3.3. The selected physical descriptors

Physical descriptors were defined for different spatial scales which allowed the

properties of depth spatial structure to be linked with the scaling concept defined in

Chapter 1. Spatial scales for rivers have been defined in different studies (Rowntree &

Wadeson, 1998; Thomson et al., 2001; Thomson et al., 2003; Wadeson & Rowentree,

1998; Maddock et al., 2001; Maddock & Bird, 1996; Muhar, 1996; Frissell et al.,

1986; Petts & Amoros, 1996). Two spatial scales were selected for the determination

of physical descriptors after reviewing the works listed above: catchment and reach

scales. Spatial scales smaller than reach scale were not considered since the sampling

densities applied for the data collection procedures did not allow characterisation at

this level. The selected physical descriptors for the catchment and reach scales are

shown in Table 5.2 and Table 5.3.
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Catchment Scale

Table 5.2 summarises the catchment descriptors used in the Flood Estimation

Handbook (FEH) (Bayliss, 1999). Descriptors included at this spatial scale were

characteristics of the river catchment that could be derived from a map (ordnance

survey) and that could have an influence on the variogram characteristics.

Table 5.2: physical descriptors included at the catchment scale.
Code Catchment descriptor

AREA Catchment drainage area (km2). It influences the characteristics of the runoff and river
discharge. This has an influence on the shape of the river (e.g. bankfull,
maximum/minimum depth) and therefore on the slope of the variogram.

ALTBAR Mean catchment altitude (m above sea level). This affects the slope of the river site,
which is going to have an influence on the energy of the discharge and therefore, on
the erosion/shape of the channel.

ASPBAR Index representing the dominant aspect of catchment slopes. This variable was
considered for the same reasons as for ALTBAR.

BFIHOST Base flow index derived using the HOST classification. This may influence the shape
of the channel through characteristics of the depth data sets.

DPLBAR Index describing catchment size and drainage path configuration (km).
DPSBAR Index of catchment steepness (m/km).
LDP Longest drainage path (km).
SPRHOST Standard percentage runoff (%) derived using the HOST classification.
QX Exceedance flow for the X flow percentile. Corresponds to the flow at which WSL

was collected. This will define the characteristics of the bankfull and depth data sets.
Flow
Exceedance

Percentage of flow exceedance calculated from the measured flow during the data
collection procedure.

QMin 0 Average Annual Mean Flow m3s-1

DistSorc Distance from the river site to the origin of the river.
SOrd Stream Order. The methodology applied for the determination of river orders is the

one developed by Horton (Chow, 1964). Data were obtained from 1:25000 maps of
the Ordnance Survey.

HSorc Height of the river at the origin (m). HSorc and HSite give an approximation to the
slope which has influence on the runoff, erosion rates, discharge and finally, channel
shape.

HSite Height of the river at the river site (m).

Reach Scale

Physical descriptors describing reach scale characteristics were derived from the data

collected at the site. Table 5.3 summarises the physical descriptors selected for the

reach scale. Cluster classes were identified in order to determine the river sites that

were comparable in terms of these physical descriptors for the data sets with the dry

and wet points and data sets with only the wet points.
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Table 5.3: physical descriptors for the reach scale.
Code Catchment descriptor

Subs Substrate was categorised for the application of multivariate analysis. The classes
and categorical values considered were: Category 1-GravelCobble &Pebble,
Category 2- Gravel-Cobble & Sand, Category 3-Gravel and Category 4-Gravel,
Silt & Sand (see Chapter 3 for the associated substrate sizes).

DV Depth Variance of the data set. The variogram may be influenced by extreme
values (maximum and minimum values of depth). This was represented with the
depth variance.

Minimum Width
Minimum width identified. Maximum and minimum width were obtained through
the analysis of the river banks in ArcGIS software.

Maximum Width Maximum width identified.
Mean Depth Average of all the depth points measured. Depth was calculated as the difference

between the water surface level and the topography measurement.
Minimum Depth Minimum depth collected. Negative values were obtained for the data sets that

include dry points whilst positive values were obtained for the data sets with only
wet points.

Maximum Depth Maximum depth collected.
Hab Number of mesohabitat types identified. The characterisation of the river sites

into mesohabitats for the scope of this study was established following the types
considered by Maddock (Maddock et al., 2001; Howard & Hemberger, 1991)
which is based on Hawkins (1993) and Maddock & Bird (1996) and included all
the types considered in the RHS methodology (see section 4.3 for more detail).
For those river sites where mesohabitat types were not identified during the data
collection, the number of habitats was determined by assessing the
hydromorphological characteristics of the river site.

L Reach length. Defines the length of the sampled river site following the central
axis of the river once the reach has been straightened.

Sin Sinuosity coefficient. Measures of sinuosity can be obtained by applying different
criteria and equations (Howard & Hemberger, 1991). Sinuosity was measured as
the path length divided by the straight-line distance, D, between the initial and
final points of the measured path.

PoRiS Averaged distance between consecutive pool or riffle features.

5.3.4. Descriptive statistics

Descriptive statistics were calculated to characterise and compare the different data

sets collected and included: number of points, minimum and maximum depth,

median, mean, standard deviation, 1st quartile and 3rd quartile. Analysis of normality

was also carried out (Kolmogorov-Smirnov and chi-squared tests). Histograms,

boxplots and QQplots were plotted. A comparison was established between

duplicated data sets analysed for the same river site to determine the

hydromorphological differences between discharges analysed for a single river site.

5.3.5. Sensitivity analysis

Four main variables need to be determined before proceeding to calculate the

variogram: lag distance, azimuth tolerance, azimuth and maximum distance of
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analysis. The lag distance is the interval for which the search of neighbours is carried

out, the azimuth defines the direction of the search and the azimuth tolerance is the

angle that determines the range of search at each side of the azimuth line. The

maximum distance of analysis determines the distance at which the variogram

provides information that has been calculated with an increasing and adequate number

of pair of comparisons. Since the four variables are interrelated, it is necessary to fix

three of the variables when carrying out a sensitivity analysis of the fourth one. The

sensitivity analysis was carried out for each variable as follows:

Lag distance: the analysis included: (i) changes in the omnidirectional variogram

shape (the experimental variogram not the modelled variogram) when changing the

lag distance and (ii) the change in the number of pairs of points used for the

variogram calculation when changing the lag distance. The objectives of these

analyses were to determine (i) the smallest lag distance that can be considered (i.e. at

which point analysis of the variogram can start) and (ii) the lag interval for the

variogram calculation. The smallest lag distance depends on the sampling strategy

applied. The selection of the lag distance for the variogram calculation is a balance

between (i) selecting a lag distance that is well represented by the sampling strategy

and (ii) selecting a lag distance that provides a sufficient number of pairs of points for

the variogram calculation; the smaller the lag distance, the higher the number of

points that will be represented on the experimental variogram; and the higher the lag

distance, the higher the number of points that will be included in the calculation of

each point of the experimental variogram. Seven lag distances were compared (i.e. 0.1

m, 0.3 m, 0.5 m, 0.7 m, 0.9 m, 1.5 m, 2 m). The analysis was carried out twice; the

first time for the dry & wet points and the second time for the wet points only (i.e. wet

points being below the WSL and dry points above the WSL).

Azimuth tolerance: the higher the azimuth tolerance, the wider the neighbourhood

area is and the more information on directional behaviour is lost (Webster & Oliver,

2001). The differences between the cross-sectional and longitudinal variograms when

changing the azimuth tolerance value were analysed. The decrease in directional

information when increasing the number of comparisons was observed. The azimuth
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tolerances considered for the sensitivity analysis went from 20to 90in intervals of

10, 90being the azimuth tolerance of the omnidirectional variogram.

The sensitivity analysis also considered the differences between results obtained for a

specific azimuth direction (Figure 5.3) and the change in the number of pairs of points

obtained when changing the azimuth tolerance (Figure 5.3). The lag distance and the

azimuth direction were kept constant for the data analysis (i.e. 1 m lag distance and 0

azimuth direction). The values of lag distance and azimuth direction were chosen after

iterative runs of sensitivity analysis.

Azimuth or anisotropy analysis: the directional differences of depth spatial structure

were analysed by comparing the variogram shape for four directions: 0, 45, 90 and

135 degrees. The azimuth tolerance for this study was fixed at 60, the lag distance at 1

m and the maximum distance of analysis at 50 m. The azimuth tolerance and the lag

distance were selected after carrying out the sensitivity analysis for these parameters.

The analysis also included the study of the change in number of pairs of points used in

the variogram calculation for each azimuth direction.

Maximum distance of analysis: the number of pairs of points was analysed for all

the variables previously included in the sensitivity analysis. The number of pairs of

Figure 5.3: Example of output obtained for the sensitivity analysis of the azimuth tolerance:
number of pairs of points (left) and experimental variogram (right) obtained for different
azimuth tolerances analysed (Blackwater river site). “NP” is the number of pairs of points whilst
gamma represents the semivariance. The legend on the right hand image is valid for both plots.
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points included in each directional variogram was compared and conclusions were

established according to (i) results obtained in this comparison and (ii) results

obtained in the previous sensitivity analysis. The maximum distance for which the

variogram can be analysed corresponds to the distance at which the maximum number

of pairs of points is identified (Bellamy, P. personal comment).

Sensitivity analysis for the empirical variogram: The variogram was modelled for

a combination of lag distances (from 0.1 to 2 in steps of 0.1) and maximum distances

(from 10 to 100 in steps of 10 m) to determine the effect of these two factors on the

variogram variables. Only these two variables were considered since the number of

total combinations of lag distance, azimuth tolerance, tolerance and maximum

distance would be too high to clearly interpret the results

A total of 200 combinations were tested for each river site. The analysis was

undertaken for both, (i) data sets with dry and wet points and (ii) data sets with only

wet points for all the river sites. Two variogram models were analysed: the spherical

and the exponential and results for each model were compared.

5.3.6. Determining the effect of bankfull information in the variograms.

The influence of wet and dry points on the variogram was analysed. This helped to

understand whether the variogram provides information on the structure of banks at

each river site. The analyses focused on the study of the variogram cloud. The

variogram cloud is the scatter diagram that shows the semivariance for each pairs of

points against the lag distance. It shows the spread of values at the different lags and it

enables detection of outliers or anomalies. The tighter this distribution is, the stronger

the spatial continuity in the data (Webster & Oliver, 2001).

Three variogram clouds (for (i) the dry points, (ii) the wet points and (iii) the dry and

the wet points together.) were calculated and superimposed in one single plot. Figure

5.4 is an example of the output obtained. The analysis of these plots helped in

understanding the influence that the wet and dry points had, either independently or

by interaction, on the final variogram output.
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. Geostatistical analysis

third objective of Chapter 5 is to calculate the variogram for all river sites

dered for analysis. The model (either spherical or exponential) was selected

gh the analysis of the Objective function in Splus. The lag distance, azimuth,

th tolerance and the minimum/maximum distance were determined according to

sults obtained for the sensitivity analysis. Range, sill and nugget values were

ned from each variogram. Conclusions on the spatial behaviour of the depth

le for each river site were obtained after analysing the results.

. Variables with more influence on the variogram

ourth objective of Chapter 5 is to determine which variables of those considered

is study were most related to the degree of spatial variation present at a river

This determined the characteristics of the data set or the characteristics of the

site that need to be defined with higher accuracy in order to obtain lower errors

diction (e.g. is the maximum depth value more important than the adequate

cterisation of the frequency distribution?). Results may provide a set of

lines for the design of effective-efficient sampling strategies: e.g. if maximum

is one of the most relevant parameters for the variogram calculation, then pools

eed to be sampled with more detail than other areas.

Figure 5.4: variogram cloud analysis for the Tame Less Modified data set.
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Several variables that could be related to the spatial structure of hydromorphological

parameters at a site were selected. The list of variables selected did not pretend to be a

comprehensive compendium of all the factors that could affect the spatial structure of

a site, since this could be a whole new area of research by itself. The variables

selected for the catchment and reach scales described in section5.3.3 were considered.

A complementary set of variables describing the main characteristics of the data sets

collected was analysed (Table 5.4). The parameters were calculated for data sets

including wet and dry points and data sets including only wet points.

The correlation coefficients (Pearson’s coefficient) were calculated for each

variogram parameter (range, sill and nugget) and each descriptor considered (Table

5.2, Table 5.3 and Table 5.4). The variables that were significantly correlated were

selected for more detailed study in Chapter 6. Multiple regression analysis was not

possible as the descriptors are not independent.

Table 5.4: data sets parameters considered for the correlation analysis.
Code Description

Stdev Standard deviation of the depth values measured.
miD Minimum depth measured.
FirstQ First quartile interval.
MedianD Median depth
meD Mean depth
ThirdQ Third quartile interval
maD Maximum depth
DV Variation for the depth data sets measured.
Skewness Skewness coefficient for the depth depth
Kurtosis Kurtosis coefficient for the depth distribution

5.4. Results

5.4.1. Grouping the river sites to find comparable data sets and river sites

The groups identified for each cluster analysis developed are shown in Figure 5.5 and

Table 5.5. The flow exceedance classification provided information on which river

sites were sampled at similar conditions and therefore, it had preference on the

establishment of comparable river sites. The rest of the classification criteria were

used to determine which river sites were comparable inside each group of percentage

of flow exceedance. Two river sites were considered comparable when they were

classified in the same group for the four classification criteria. The river sites that
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were comparable for the 90% flow exceedance were Lambourn, Pang Old Fenced,

Pang Unfenced and Pang Fenced. The Lambourn river site was selected as a

validation data set since the other three river sites corresponded to the same system;

the Pang.

Table 5.5: groups identified according to each selected criterion after developing the each cluster
analysis (except for the classification obtained for the percentage of flow exceedance).

Site
Percentage of Flow

Exceedance
Catchment

scale
Reach
Scale

Spatial
structure

Sampling
density

Pang Old fenced 1 1 1 1 3
Pang fenced 1 1 1 1 2.3

Pang Unfenced 1 1 1 1 2
Lambourn 1 1 1 1 6.4

Leigh Brook 1 2 2 1 1.8

Bere 2000 2 1 1 1 3.7
Pang Old fenced 2 1 1 1 3
Pang Unfenced 2 1 1 1 2

Leigh Brook 2 2 2 1 1.8
Senni 2 3 2 1 2.5

Highland Water 3 2 1 1 2.5
Cruick 3 2 2 1 6.7

Tarf 3 3 2 2 4.7
Blackwater 3 2 1 1 6.7
Tame LM 3 4 2 3 1.3

Tame HM 4 4 2 2 1.1
Windrush 4 - 2 2 0.98

Comparable river sites for the 80% flow exceedance classification were the Bere,

Pang Old Fenced and Pang Unfenced. Sampling densities applied for the first two

river sites were similar and, therefore, this pair of river sites constituted the test and

validation data sets. The Bere was used as the validation data set. Only two river sites

were comparable for the 40% flow exceedance interval: the Highland Water and the

Blackwater. The sampling densities for these two river sites were not similar, with the

Blackwater having a more detailed data set than the Highland Water. In this case, the

Highland Water was used for validation. Conclusions were drawn taking into account

the differences in sampling densities between these two river sites.

Note that the Windrush river site was not classified for catchment scale

characteristics. This is because no discharge and percentage flow exceedance data

were available. Note also that the variables for reach scale were defined for the data

sets with dry and wet points and for the data sets with only wet points. The cluster
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analysis for reach scale was performed with only variables related to the wet data sets

since only these will be analysed in Chapter 6.

5.4.2. Descriptive statistics

Results for the analysis of the data sets including dry and wet points showed that

depth values were not normally distributed at any of the river sites analysed. The

same results were obtained for the data sets with only the wet points.

Cluster Classes for the Catchment Charactersitics
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Figure 5.5: cluster classes identified for the catchment and reach physical descriptors. The numbers
shown inside the circles show the groups identified at each cluster analysis. The abbreviations used for
each river site are: BR=Bere, BW=Blackwater, CR=Cruick, HW=Highland Water, LB=Leigh Brook,
LM=Lambourn, PF=Pang Fenced, POF=Pang Old Fenced, PUF=Pang Unfenced, SN=Senni, TF=Tarf and
WR=Windrush. The numbers after the river name indicate the percentage of flow exceedance of those
river sites that have been considered more than once in the data analysis. Vertical lines have been drawn
according to the type of cluster analysis developed (Euclidean distances & Ward’s method)
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Results for the wet-dry data sets provide information on the characteristics of both the

channel and data set (Appendix 3.1). Negative mean values of depth indicated that the

river banks were more elevated (i.e. rivers more incised) than in those rivers with

positive mean depth values (Appendix 3.1). The combination of positive and negative

values of depth created frequency distributions with values either side of 0. River sites

with higher proportions of negative values show higher river banks or a higher

number of boulders. Those sites whose banks were considerably higher than the river

bed were Highland Water, Pang, Tame and Windrush. These sites have a higher range

of depth values.

Results for the wet points gave information on the topographical shape of the bed

channel. Mean values of depth were between 0.15 m and 0.42 m. Deeper areas were

encountered for (i) Leigh Brook and Pang Fenced for the 90% flow exceedance

group, (ii) Senni and Leigh Brook for the 80% flow exceedance group and (iii) Tame

LM and Cruick for the 40% flow exceedance rate. Appendix 3.1 contains all the

graphical and numerical outputs obtained for the descriptive analysis.

5.4.3. Sensitivity analysis

Lag Distance: Table 5.6 shows the minimum lag distances encountered and the

number of pairs of points separated by this distance. The final variograms modelled

were not analysed for lag distances smaller than those in Table 5.6 since no values

were available for the calculation of the variogram at such distances.

The selected lag distance should (i) be the same for all the data sets so comparable

variograms are obtained, (ii) provide sufficient numbers of pairs of points for the

calculation of the variogram values and (iii) provide sufficient intervals for the

variogram. Figure 5.6 shows some examples of experimental variograms calculated

with the same data set for different lag distances (results for all the river sites can be

seen in Appendix 3.2). The smoothness of the variogram disappears as lag distance

decreases due to an increase in the number of intervals considered for the variogram

calculation. It is proposed that lag distances of 1 m be used for the data sets with wet

points and distances of 0.5 m be used for the data sets with dry and wet points since

(i) the number of pairs of points used for the calculation of each variogram value was
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considerably lower for lag distances smaller than 0.2 m than for other lag distances

analysed (Figure 5.6) and (ii) results for the experimental variograms were erratic

when selecting lag distances smaller than 0.4 m.

Table 5.6: minimum lag distance encountered at each river site analysed. NPP indicates the
number of pairs of points separated by the minimum lag distance.

Azimuth tolerance: the selected azimuth tolerance should provide sufficient

information about the cross-sectional anisotropy but it should avoid the influence of

symmetry and the reduced number of pairs of points (Chapter 4). An azimuth

tolerance of 60 degrees was selected because:

(i) Differences between variograms calculated for a specific azimuth direction

decreased when increasing the azimuth tolerance from 60to 90. This reduced

the effect of the anisotropy since cross-sectional and longitudinal variograms

became more similar (Appendix 3.3).

(ii) The number of pairs of points available for the calculation of each value in the

variogram decreased considerably for azimuth tolerances smaller than 40. From

60upwards the number of pairs of points increased, being more than 2000 for all

the data sets (Appendix 3.3).

Site Min Lag
Dry & wet

NPP
Dry & Wet

Min Lag Wet NPP
Wet Measured Discharge

Pang Old fenced 0.25 31 0.45 47 0.27
Pang fenced 0.30 34 0.5 32 0.27

Pang Unfenced 0.30 38 0.40 35 0.27
Lambourn 0.05 133 0.05 133 0.67

Leigh Brook 0.40 65 0.40 65 0.344
Bere 2000 0.05 42 0.14 34 0.36

Pang Old fenced 0.25 31 0.39 32 0.32
Pang Unfenced 0.30 34 0.40 35 0.32

Leigh Brook 0.40 65 0.40 65 0.517
Senni 0.15 61 0.15 61 0.44

Highland Water 0.35 35 0.80 31 0.09
Cruick 0.04 45 0.04 42 0.61

Tarf 0.01 38 0.01 36 0.34
Blackwater 0.01 49 0.05 224 0.46
Tame LM 0.05 37 0.80 46 1.46
Tame HM 0.10 61 0.74 32 2.52
Windrush 0.25 45 0.25 43 ?
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Figure 5.6: variogram calculated for different lag distances (left) for two river sites, the Highland Water (top) and the Lambourn (bottom). Graphs on
the right represent the respective number of pairs of points (np) used for the calculation of each variogram value at each lag distance. Gamma
represents the semivariance.
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Azimuth or anisotropy analysis: the variograms were calculated for four azimuth

directions (0, 45, 90, 135,) (Figure 5.7). Results showed that the cross-sectional

variogram (90) was more likely to be symmetric (Appendix 3.4), probably due to the

symmetry of the channel cross-sections. Cross-sectional variograms presented a

higher degree of variance than longitudinal variograms but the number of pairs of

points included for the calculation of the variogram was considerably smaller; cross-

sectional variograms were not as reliable as longitudinal variograms. Azimuth

directions of 45 and 135 degrees did not present significant differences to the

longitudinal variogram.

Maximum distance of analysis: variograms were calculated for all the data sets with

the following characteristics: azimuth tolerance = 60, azimuth = longitudinal direction

and lag distance = 0.5 m (dry and wet points) or 1 m (wet points). The distance for

which the maximum number of pairs of points was identified has already been noted

in Table 5.7. (Appendix 3.4). This is the maximum potential distance that was

considered for the variogram interpretation.

Table 5.7: maximum number of pairs of points (NPP) and distance at which they were encountered
for two azimuth directions (Direction 90 = across the river; Direction 0 = along the river).

Site
Distance (m) Max

NP*
Direction 0

Distance (m) Max
NP*

Direction 90

NP
Direction 0

NP Direction
90

% Low Flows
2000

Pang Old fenced 5 4 5768 4297 1

Pang fenced 12 7 19508 11686 1

Pang Unfenced 10 7 18853 12873 1

Lambourn 7 5 109627 69932 1
Leigh Brook 8 5 46340 27804 1
Bere 2000 8 5 30048 18657 2

Pang Old fenced 5 4 5768 4297 2

Pang Unfenced 10 7 18853 12873 2

Leigh Brook 8 5 46340 27804 2
Senni 7 5 18715 12092 2
Highland Water 5 4 3942 2394 3
Cruick 9 3 25440 14047 3

Tarf 8 3 148315 86455 3

Blackwater 7 4 252143 154152 3

Tame LM 16 11 23502 14762 3

Windrush 9 6 14380 9718 0
TamesHM 16 13 17614 10931 0
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Figure 5.7: example of results obtained for the anisotropy study (wet & dry points). The rivers shown are Highland Water (top left), Lambourn (top right), Leigh
Brook (bottom left) and Pang Old Fenced (bottom right). Results for all the river sites can be found in Appendix 3.4.
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Sensitivity analysis for the empirical variogram: there were certain combinations

of lag and maximum distance that provided distorted values of range, sill and nugget

for the variogram fit (Figure 5.8 bottom). These combinations could not be identified

at all the river sites and did not always correspond to the same lag and maximum

distance. Extreme values encountered were always associated to bad fitting of the

variogram model and either provided extreme high values of range (e.g 36584586 m

for the Bere) or very low values (0) (Table 5.8).

Figure 5.8: values of range obtained for the specified combinations of lag and maximum distance for the
Lambourn river site. The top image represents the values obtained for the spherical variogram whilst the
bottom image represents those obtained with the exponential. Each line represents a maximum distance
selected. The legend defines which maximum distance was used for the variogram calculation.
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Data sets with only wet points presented more cases of failure when fitting the

variogram than data sets with dry and wet points. This may be due to the decrease of

spatial variation between points: the variance between pairs of points remained more

or less constant and thus, the points represented in the variogram followed a

horizontal pattern which made it difficult to fit the variogram model. Those

combinations that did not present extreme values of range, sill and nugget show

consistency in the results obtained at the same river site (Figure 5.8).

Table 5.8: values of deviation encountered for each variogram parameter at each river site.
“Total” refers to the deviation encountered for the total number of variograms calculated for the
sensitivity analysis of the combinations of maximum distance and lag distance. “Selected” refers
to the deviation calculated for the same criteria but excluding the extreme values of Range
encountered. Only values for the spherical variogram have been considered.
DEVIATION Range (m)

Total
Sill Total Nugget

Total
Range
(m)
Selected

Sill
Selected

Nugget
Selected

Bere 2586960 902 0.04 0.09 0.00 0.00
Blackwater 4.08 0.11 0.10 0.13 0.00 0.00
Lambourn 0.43 0.00 0.00 0.43 0.00 0.00
Leigh Brook Q283 1.35 0.00 0.00 0.66 0.00 0.00
Leigh Brook Q294 4.01 0.01 0.01 1.33 0.00 0.00
Pang Fenced 692692 114 0.04 0.42 0.00 0.00
Pang Old Fenced Q281 0.08 0.00 0.00 0.08 0.00 0.00
Pang Old Fenced Q291 0.58 28.79 0.08 0.08 0.00 0.00
Pang Unfenced Q281 4645 38.93 0.04 5.60 0.04 0.00
Pang Unfenced Q291 2150 18.04 0.04 7.92 0.06 0.00
Senni 0.19 0.00 0.00 0.19 0.00 0.00
Cruick 0.58 28.79 7.09 7.09 0.00 0.00
Highland Water 125081 79.10 0.04 0.23 0.01 0.00
Tames HM 6.76 0.04 0.04 1.72 0.01 0.00
Tames LM 1.42 0.01 0.02 1.42 0.01 0.02
Tarf 7.14 0.00 0.00 4.41 0.00 0.00
Windrush 14.59 0.03 0.01 14.59 0.03 0.01

The adequate fitting of the variogram function is necessary to obtain smaller errors in

the predictions and thus, special effort needs to be invested in determining if the

empirical model represents the experimental variogram. The Objective function may

be useful for this purpose but it may be misleading if there is not any reference value

to be compared to. A sensitivity analysis is required for the fitting of the variogram

model.

Results were more dependent on the maximum distance than on the lag distance

(Figure 5.8 and Figure 5.9). Figure 5.9 shows a stable pattern for the range value from

a maximum distance of 50 m to 100 m. This pattern was repeated for the three
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variogram model parameters analysed: range, sill and nugget. Similar results were

obtained for the majority of data sets (Appendix 3.5.1 to 3.5.5) although those

intervals where the range was stable were not the same between river sites (Figure

5.9).
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Figure 5.9: Left: changes in the range value for different lag distances and maximum distances
for the Windrush river site (data set includes dry and wet points). Right: interval of maximum
distance considered for which the variogram is stable. Orange areas indicate stable values of
range, blue areas are non stable values and red dots show the distance sampled. Sampled
distances higher than 100m have not been included in the plot.
onica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

he possibility of linking the distance at which the variogram stabilised with the

ampled river length and the sampling density applied was considered. Results

howed (Figure 5.9) that in general the variogram stabilised when reaching the total

ampled distance (e.g. Lambourn, Pang Old Fenced, Senni, Highland Water). This

ay be due to the lack of ability to calculate the spatial pattern in areas that had not

een sampled. River sites which presented stable values of spatial structure before the

otal length of sampled distance (e.g Bere, Blackwater, Leigh Brook and Pang

enced) suggested that (i) either the spatial correlation of depth was smaller than the

otal sampled reach and therefore, the variogram was adequately defined or (ii) that

alues obtained for the variogram at non stable distances included a lot of noise due to

he decrease in the number of pairs of points separated by a specific lag distance. The

econd option was more probable since the stable values were always encountered for

istances greater than that at which the maximum number of pairs of points was

dentified. Since no pattern could be identified in the results for the combination of

ag distance and maximum distance, it is suggested that the same criteria defined in

he previous sections (maximum distance = 30 m) is applied.
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It was observed that the exponential model always presented smaller values of range

than the spherical model (Figure 5.8). Selection of different variogram models for the

objective of Chapter 6 will result in misinterpretation of the results since it would not

be possible to determine whether, the differences obtained between sampling densities

are due to the fitted variogram model or to the sampling density applied. The

spherical model will be selected for this purpose due to the fact that it presented fewer

cases of failure in the sensitivity analysis (Figure 5.8).

Values of nugget and sill did not differ between models to the same extent as the

range. Extreme values were produced using different combinations of lag and

maximum distance for the two models tested and a higher rate of failure was observed

for the exponential variogram.

5.4.4. Determining the effect of bank-full information in the variogram.

In general, wet points presented lower variance than dry points, except for the

Windrush, Cruick, Lambourn and Tarf. This indicated that for these river sites, the

spatial variability encountered for the bank information was smaller or similar to the

spatial variability of the bed channel. The variogram cloud indicated the relationship

between bed channel (wetted surface) and banks (dry points) since (i) it was able to

differentiate them in terms of variance encountered and (ii) it was able to find the

relationship between both sets of data. The variogram cloud can therefore be used as a

tool for describing the shape characteristics of the river channel. Temporal changes in

the shape of the river channel could also be detected through analysis of the

variogram cloud. Results are summarised in Figure 5.10 and Appendix 3.6.

The differences encountered between the dry and wet variogram clouds indicated that

it was necessary to develop the study separately for (i) wet points only to describe the

spatial pattern of the wet channel and (ii) for wet & dry points to describe the spatial

pattern of the river channel. The first analysis provided information on the usefulness

of the variogram for the description of hydromorphological features such as changes

in the physical habitat available for fish, whilst the second analysis informed on the

suitability of the variogram for the description of the shape of the channel for

structural purposes. Only data sets with wet points are analysed in Chapter 6.
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Figure 5.10: example of results obtained for the variogram cloud analysis. The rivers shown are Highland Water (top left), Lambourn (top right), Pang Old Fenced (bottom left)
and Tames Highly Modified (bottom right). Blue represents the relation between wet & dry points, pink represents the relation between dry points and green shows the relation
between wet points. Results for all the river sites can be found in Appendix 3.6.
results for the variogram cloud analysis.
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5.4.5. Geostatistical analysis

The variogram results (Table 5.9 and Figure 5.11) showed that the spatial structure of

the river sites did not have the same properties for all the data sets. Differences were

encountered between river sites when considering (i) only wet points and (ii) dry and

wet points. Variograms obtained with only wet points were also different to those

obtained with wet & dry points. These differences in terms of variogram range were

not consistent because (i) there were no significant differences between the spatial

structure of the wetted channel and the spatial structure of the river with banks or (ii)

the empirical variogram is not able to detect the differences between these two data

sets.

The range (Table 5.9) indicated that the spatial correlation for depth was between 4 m

to 30 m depending on the river site and data set analysed. This suggested that different

sampling strategies should be applied for each river site according to their spatial

structures. Results obtained for the sill variable (Table 5.9) were between 0.01 and

0.46. The sill had higher values for data sets with dry and wet points than for the same

Table 5.9: variogram values (i.e. range, sill and nugget) obtained for the data sets analysed. Spher
and Exp refer to the spherical and exponential variogram model respectively.

Selected Model Wet Dry & wet

River site W
et

D
ry
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et
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ec
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Bere Spher Spher 6.56 0.03 0.00 2442.03 4.98 0.10 0.02 603.56
Blackwater Spher Spher 2.46 0.01 0.00 2560.48 8.26 0.22 0.01 1632.51
Cruick Exp Exp 9.44 0.03 0.00 1011.28 9.18 0.03 0.00 949.80
Highland Water Spher Spher 4.79 0.02 0.00 181.94 5.27 0.10 0.20 139.25
Lambourn Spher Spher 6.83 0.01 0.00 3790.36 6.95 0.01 0.00 4908.52
Leigh Brook Q82 Exp Exp 4.41 0.02 0.00 1017.88 4.41 0.02 0.00 1017.88
Leigh Brook Q93 Exp Exp 5.07 0.03 0.00 1158.48 5.07 0.03 0.00 1158.48
Pang Fenced Q91 Spher Spher 4.08 0.01 0.00 389.42 8.96 0.10 0.00 1605.16
Pang Old Fenced
Q80 Spher Spher 4.10 0.02 0.00 697.75 7.76 0.18 0.00 773.77
Pang Old Fenced
Q90 Spher Spher 4.23 0.02 0.00 766.91 7.76 0.18 0.00 773.77
Pang Unfenced
Q80 Spher Spher 5.64 0.01 0.00 444.99 10.61 0.10 0.00 2579.75
Pang Unfenced
Q90 Spher Spher 5.55 0.01 0.00 515.63 10.57 0.10 0.00 2601.24
Senni Spher Spher 6.27 0.04 0.01 809.86 6.30 0.04 0.01 761.78
Tames HM Spher Spher 15.09 0.01 0.00 1729.24 14.86 0.10 0.10 1077.56
Tames LM Spher Spher 13.17 0.46 0.07 2789.10 9.12 0.04 0.00 664.48
Tarf Spher Spher 13.37 0.00 0.01 9147.43 16.88 0.01 0.01 8007.83
Windrush Spher Spher 28.60 0.07 0.02 25410.17 26.23 0.07 0.03 26218.00
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Figure 5.11: variograms obtained for the data sets analysed with wet and dry points (left) and wet points only (right). The top image shows the 17 data
sets analysed. The bottom images are a detail of the variograms with lower values of range, sill and nugget represented in the top image.
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river sites analysed with only the wet points. This indicated that higher spatial

variation was encountered for the former due to the representation of the banks. Only

one exception was encountered which corresponds to the Tame Less Modified river

site. No obvious explanation can be found for this exception.

The empirical variogram did not give as much information on the spatial structure as

the variogram cloud did. The empirical variogram was a “summary” of the results

obtained for the variogram cloud and it simplified the spatial relationship between

variance and lag distances by calculating the mean value of specific intervals. It is

suggested to use the variogram cloud as a complementary tool to the empirical

variogram when analysing the spatial pattern of hydromorphological variables.

Results for the nugget parameter (Table 5.9) were close to 0 for all the sites analysed.

This indicated that the intrinsic spatial variance of depth was close to 0. However, it is

necessary to note that the sampling strategies applied at the different river sites did not

taken into account lag distances smaller than 0.2 m, which indicates that no

conclusions can be established regarding the spatial structure of depth at microscale

level. It is suggested that research studies are developed to analyse the spatial

structure of depth at microscale level.

Nugget values did not show a consistent pattern of differences between data sets with

only wet points and data sets with dry and wet points. In general, nugget values were

higher for those data sets with dry and wet points. This may be due to the bank

information introduced by the dry points but no conclusions could be established

since the pattern was not observed for all the data sets.

Three cluster classes were obtained for the variogram model parameters for those data

sets with only wet points and for the dry & wet points. Figure 5.12 shows the

differences between both the classification obtained for dry and wet points and the

classification obtained for only wet points. The river sites have been colour coded

according to the groups obtained for the “wet points” data analysis. Results show that

there are differences in the way that the river sites distribute in each of the cluster

classes. Tame Low Modified is classified as a single group when considering wet

points only and it is included in a more general group for the second analysis.
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Blackwater and Pang Old Fenced form a single group for the wet and dry analysis

whilst they are grouped with a higher number of river sites for the wet data analysis.

Finally, for the wet and dry data analysis, the Highland Water is classified with the

Tarf, Windrush and Tame Highly Modified group identified in the wet point data

analysis.

Figure 5.12: cluster analysis for the variogram values of the data sets including dry & wet points
(bottom) and only the wet points (top). The number after the river name indicates the percentage
of flow exceedance at which the data were collected. The rivers in each cluster class for the wet
points analysis have been identified by a colour code. The rivers for the wet and dry analysis have
been identified with the same colour as in the wet points analysis to identify the differences between
cluster groups.
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Multivariate analysis (cluster analysis in this case) is highly sensitive to the data used

in the analysis. Results obtained are always associated with a degree of subjectivity on

their interpretation. The groups identified for the “wet” and the “wet and dry” data set

need to be interpreted according to the information obtained for the variogram

analysis; wet points only inform the structure and characteristics of the bed channel

whilst dry and wet points also include information on the structure and characteristics

of the river banks. It is suggested that wet and dry points information should be used

for classification purposes. It needs to be noted that for a correct classification of the

river sites according to their spatial structure of bed channel and banks it would be

necessary to collect comparable information for all the river sites. The groups

identified in this study do not accomplish this criterion and therefore need to be

carefully interpreted.

5.4.6. Variables with more influences on the variogram

Table 5.10 and Table 5.11 show the correlation values obtained for the reach scale

and catchment scale physical descriptors. Those correlation coefficients that proved to

be significant (p<0.05) have been highlighted in green. Both analyses (catchment and

reach scale) showed a decrease in the number of significant correlation values when

including the bank information in the variogram calculation.

Table 5.10: Pearson’s coefficient (correlation coefficients) between the catchment descriptors and
the variogram parameters. Wet refers to the data set with wet points only. Significant correlation
values (P<0.05) have been highlighted in green.

Catchment Descriptors Range Wet Sill Wet Nugget Wet Range Sill Nugget
AREA 0.46 0.47 0.42 0.21 -0.14 -0.15
ALTBAR 0.44 -0.07 0.12 0.54 -0.43 -0.21
ASPBAR -0.44 -0.23 -0.21 -0.44 -0.04 -0.12
BFIHOST -0.61 -0.32 -0.40 -0.28 0.43 -0.45
DPLBAR 0.22 0.26 0.18 0.04 -0.09 -0.37
DPSBAR 0.12 -0.24 -0.09 0.10 -0.50 -0.17
LDP 0.11 0.19 0.08 -0.00 -0.03 -0.42
SPRHOST 0.57 0.23 0.31 0.28 -0.51 0.32
DistSorc 0.81 0.59 0.56 0.32 -0.36 0.14
Sord 0.82 0.51 0.56 0.54 -0.40 0.11
Hsorc 0.47 -0.05 0.11 0.43 -0.53 -0.12
Hsite 0.39 0.02 0.22 0.50 -0.30 -0.21
Qx 0.74 0.38 0.37 0.44 -0.12 0.18
Flow Exceedance -0.58 -0.26 -0.29 -0.46 -0.11 -0.52
QMIN_0 0.61 0.53 0.56 0.26 -0.26 -0.05
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Range appeared most strongly correlated with Stream Order (Table 5.10) for both the

wet points and the wet & dry analysis for the catchment descriptors. High values of

correlation were also encountered for the distance to the source and the flow at which

the data were collected. Results for the dry and wet points indicated that the mean

catchment altitude was significantly correlated to the variogram range. The continuum

concept explains that rivers in their lower reaches have a wider cross-section, a higher

flow and a higher sedimentation rate. The increase in the sedimentation rate gives

uniformity to the bed channel (especially in respect of fine sediments). This

uniformity results in lower roughness on the bed and therefore, a higher spatial

correlation (i.e. a higher range).

Sill was significantly correlated to the distance to the source, the stream order and the

average annual mean flow for the wet points analysis. These catchment descriptors

did not coincide with the significant correlations identified for the wet and dry points

analysis, where the index of catchment steepness, the standard percentage runoff and

the height at the river source were the significant correlated catchment descriptors.

Table 5.11: Pearson’s coefficient (correlation coefficients) between the reach descriptors and the
variogram parameters. Wet refers to the data set with wet points only. Significant correlation
values (P<0.05) have been highlighted in green.

Reach Descriptors Range Wet Sill Wet Nugget Wet Range Sill Nugget
Substrate 0.21 -0.16 -0.10 0.44 0.42 -0.03
Minimum Depth 0.28 -0.10 -0.09 0.01 -0.45 -0.13
Mean Depth 0.40 0.29 0.31 0.24 -0.37 -0.44
Maximum Depth 0.72 0.48 0.58 0.45 -0.53 -0.09
Mean Width 0.08 0.01 0.01 0.32 0.11 0.15
Minimum Width 0.16 0.00 0.00 0.24 0.08 0.12
Maximum Width 0.11 0.03 0.06 0.38 0.04 0.04
Depth Variation 0.62 0.38 0.47 -0.07 0.32 0.30
Number of habitat types 0.13 0.02 0.04 -0.08 -0.72 -0.17
Length of the reach 0.19 0.09 0.12 0.17 -0.44 -0.27
Reach Sinuosity 0.77 -0.07 0.14 0.83 -0.18 0.03
Pool – Riffle spacing 0.22 -0.03 0.11 0.32 -0.52 -0.25

Nugget was significantly correlated to the distance to the source, the stream order and

the average annual mean flow for the data sets with only wet points. Percentage of

flow exceedance was the only catchment physical descriptor that was significantly

correlated with the nugget parameter for wet and dry points. The correlation was

negative for this physical descriptor and thus, the higher the percentage of flow

exceedance, the smaller the nugget value.
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High correlations were encountered between the range (for the data sets with only wet

points) and the following reach physical descriptors: reach sinuosity, maximum depth,

and the depth variation. Reach sinuosity was also highly correlated with the range

calculated with the data set including dry and wet points. This suggested that during

the data collection procedure it was necessary to identify the deeper areas of a reach

since they could have a strong influence on the modelling of the variogram; not so

much effort needs to be invested on data collection in shallow areas.

There were fewer significant correlated values for the sill and the nugget variogram

parameters. The number of habitat types was negatively correlated to the sill which

indicated that the more diverse the habitat, the smaller the variation encountered. This

suggested that the higher the number of habitats encountered, the higher the

continuity between habitat types, and therefore, the smaller the sampling density that

needs to be applied (i.e. this assumes the habitats are present at the site as a

continuity, otherwise, it is necessary to characterise each habitat and thus, it would be

necessary to increase the sampling density). River sites located near the river origin

can present pools and riffles close together due to the substrate and the steepness

present at the site. Instead, in lowland rivers the gradient between riffles and pools

will be more smooth, going through intermediate habitats such as shallow glides and

deep glides.

Table 5.12 shows correlations between variogram parameters and summary data

statistics. High correlation coefficients were encountered between the range

(calculated for the data sets that only include wet points) and the maximum depth and

depth variation. The analysis showed that maximum depth values were more

important than the determination of depth frequency distribution for the variogram

calculation. This suggested that it is necessary to characterise the deepest areas of the

river site in more detail (i.e. more effort needs to be invested in the characterisation of

pools) in order to obtain representative values of maximum depth.

Note that for all correlation analysis carried out the highest correlation values

identified belonged to the catchment or reach scale, with the former giving a higher

number of high correlation values (i.e. >0.7).
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Table 5.12: Pearson’s coefficient (correlation coefficients) between the data descriptors
and the variogram parameters. Wet refers to the data set with wet points only.
Significant correlation values (P<0.05) have been highlighted in green.

Data Variables Range Wet Sill Wet Nugget Wet Range Sill Nugget
Stdev 0.52 0.41 0.47 -0.05 0.52 0.36
miD 0.28 -0.10 -0.09 0.01 -0.45 -0.13
FirstQ 0.15 0.13 0.10 0.16 -0.40 -0.54
MedianD 0.25 0.25 0.25 0.23 -0.09 -0.34
meD 0.40 0.29 0.31 0.24 -0.37 -0.44
ThirdQ 0.42 0.29 0.33 0.27 -0.05 -0.26
maD 0.72 0.48 0.58 0.45 -0.53 -0.09
DV 0.62 0.38 0.47 -0.07 0.32 0.30
Skewness 0.42 0.39 0.42 0.09 -0.68 -0.03
Kurtosis 0.33 0.68 0.65 0.08 0.20 -0.48

5.5. Conclusions

 River sites that will be used for the Test and Validation data sets for the analysis

in Chapter 6 are as follows:

o Group of 90 percent flow exceedance includes the river sites Lambourn,

Pang Old Fenced, Pang Fenced and Pang Unfenced. The Lambourn was

selected as a validation data set.

o The 80 percent flow exceedance group is made up of the river sites Pang Old

Fenced, Pang Unfenced and Bere. The latter one was selected as the

validation data set.

o Finally, the 40 percent flow exceedance group includes the Highland Water

and the Blackwater. Highland Water was selected as a validation data set.

 The analysis developed in Chapter 6 will focus on data sets that include only wet

points. Dry points will not be considered for the data analysis since the main

interest is to determine the relationship between the variogram and the structure of

the wetted channel.

 The variables used for variogram calculation will be: minimum number of pairs of

points equal to 30, lag distance equal to 1 m, azimuth tolerance equal to 60

degrees, azimuth equal to 0and maximum distance equal to 30 m. The

variograms determined with these characteristics will be the basis for the

prediction of regular grids in Chapter 6.
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 The maximum distance that can be considered for variogram calculation is a

limiting factor when determining the spatial structure. The maximum distance that

can be considered is always smaller than the total distance sampled (from 50% to

33% of the total distance sampled). This means that the distance sampled needs to

be longer (two to three times longer) than the maximum distance to be considered

for the analysis of the spatial structure.

 The spatial structure along the river differs from that encountered for the cross-

sectional direction. The cross-section presents more variability than the

longitudinal profile due to (i) a reduced number of pairs of points available for the

calculation and (ii) the symmetrical shape in this direction. The cross-sectional

variogram is misleading when interpreting the spatial structure. It is suggested to

give priority to the longitudinal variogram when analysing the spatial structure of

depth at a river site. The longitudinal variogram will need to be calculated with a

wide (>60) azimuth tolerance in order to include the information provided for the

cross-sectional direction.

 It is necessary to develop a sensitivity analysis when fitting the variogram model.

The sensitivity analysis should focus on the study of the number of pairs of points

available, the lag distance, the maximum distance, the azimuth tolerance and the

azimuth.

 Spherical and exponential variogram models can give different results for the

same data. Chapter 6 will focus on the comparison of results of the spherical

variograms obtained for different sampling densities and different river sites. Only

one variogram model will be selected for the comparison of results obtained

between river sites and sampling densities.

 The variogram cloud is able to detect differences between the spatial structure of

the bed channel and the spatial structure of the river banks. This suggests that the

variogram cloud could be used as a tool (i) to describe the hydromorphological

characteristics (depth) of the channel and (ii) to detect the temporal changes in the

hydromorphological characteristics of the river.

 The variogram cloud is more informative than the experimental variogram when

studying the spatial structure of a site. The experimental variogram is an average

of the values obtained in the variogram cloud. It is suggested that the variogram

cloud is used as a complementary tool to the experimental variogram.
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 The variogram has been able to detect differences in the spatial structure of the

river sites. Results suggest that different sampling densities should be applied at

each site; river sites with a high degree of variation in space will need higher

sampling densities in order to obtain the same level of information in comparison

with river sites with low spatial variation.

 During the data collection procedure it is necessary to invest special effort in

characterising the deepest areas of the river site to be sampled since this could

have an impact on the variogram calculation.

 The higher the hydromorphological uniformity and continuity of the river site, the

lower the sampling density that needs to be applied.

 Catchment descriptors appear to be more correlated to the variogram values than

the reach descriptors. This may suggest that characteristics at catchment level are

more relevant than characteristics at reach level in determining the spatial

structure of a river site.

 Further research projects should focus on the microscale level in order to analyse

the spatial structure at this spatial scale and on the sensitivity analysis of the

predictions.
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6.1. Introduction and objectives of Chapter 6

The spatial problem is constituted of two main components: the type of sampling

strategy that needs to be applied and the sampling density that is required to obtain a

specific level of accuracy in the predictions. Chapter 4 focused on the comparison of

several sampling strategies. Chapter 6 will focus on the comparison of different

sampling densities to meet the following objectives:

(i) the first objective is to determine which level of accuracy is associated with a

specific sampling density where accuracy is measured by different indicators and

(ii) the second objective is to determine whether the accuracy depends upon the

characteristics of the river site, in order that a common methodology for data

collection could be developed.

6.2. Methodology

6.2.1. Analytical procedure

Fifteen sites were analysed in this Chapter. These river sites corresponded to those

considered in Chapter 5 and were: Bere, Blackwater, Cruick. Highland Water,

Lambourn, Leigh Brook (Q82 and Q93), Pang Fenced, Pang Unfenced (Q80 and

Q90), Senni, Tame Less Modified, Tame Highly Modified, Tarf and Windrush.

This chapter deals with the design of effective sampling
densities for depth data collection. Three different tools will be
provided in this chapter in order to relate the sampling density
and the level of accuracy of predicted depth with geostatistical
techniques. These tools are provided in terms of confidence
intervals, graphs and plots that relate sampling density, river
site and accuracy obtained. Results can be used to identify the
sampling density required for a specific objective.



Chapter 6 146 Methodology

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

Chapter 5 also includes the Pang Old Fenced river site, which was not considered in

Chapter 6 (see below).

The depth data collected at these sites were used to create a 0.5 m x 0.5 m regular grid

of depth. Points were randomly selected from the 0.5 m by 0.5 m regular grid to

obtain different sampling densities. Nineteen different sampling densities per river site

were obtained. The selected points were analysed with geostatistical techniques to

obtain the variogram and to characterise the spatial structure of each data set. The

variogram was used to predict the value of depth at all points on the 0.5 m x 0.5 m

regular grid. The accuracy of the predicted values was assessed with a set of

quantitative and qualitative indicators described in Chapter 4 (channel volume was not

used). Pang Old fenced could not be included in the analysis since the 0.5 m x 0.5 m

grid created did not represent the variability of depth at the site. The majority of depth

points in the regular grid had very similar value.

6.2.2. Comparison of two software packages: ArcGIS and SPLUS

Depth predictions at the 0.5 m x 0.5 m regular grid could not be obtained with SPLUS

software for all the river sites due to the different sampling strategies that were

originally applied in data collection, which meant the resultant covariance matrix was

not positive definite. This means that even though the mean sampling density for

these river sites was high enough to properly calculate the variogram, some of the 0.5

m x 0.5 m regular grid points were not surrounded by measured points. Thus,

predictions could not be properly obtained. Depth was predicted with ArcGIS

software at these river sites, which were: Blackwater, Cruick, Highland Water,

Lambourn, Tame Less Modified and Tarf. ArcGIS was able to solve this by

combining geostatistical and extrapolation methods (see section 7.3.2 for more detail

on limitations for this methodology).

Since two different methodologies and software were used to obtain the predictions

on the regular grid, it was considered necessary to compare the results obtained with

ArcGIS and SPLUS. The comparison was carried out for the following river sites:

Bere, Pang Fenced, Pang Unfenced (both flows), Pang Old Fenced (both flows),

Leigh Brook (both flows), Windrush, Senni and Tame Highly Modified. The
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variogram was initially calculated with SPLUS as output from this software was more

informative regarding the type of adjustment required to fit the variogram. Lag

distance, maximum distance, azimuth tolerance, azimuth, range, sill and nugget were

determined with SPLUS. These values were used in the geostatistical module of

ArcGIS to define the variogram. Predictions were obtained with both software

packages at the 0.5 m x 0.5 m points of the regular grid. A comparison of the

predicted values was obtained through the calculation of the maximum absolute

difference between predicted and observed values, the Standard Error (SE) and Mean

Squared Error (MSE) of the predictions.

6.2.3. The indicators defining the different objectives

The different objectives for which hydromorphological sampling strategies may be

applied are diverse and include purposes such as river restoration or morphological

quality assessment. Each objective for which hydromorphological data are being

collected should require a specific level of accuracy in the representation of the “real

environment”. There is a need to determine which sampling strategy and density is

required for each objective. Since the list of purposes for which data are collected is

wide and the level of accuracy selected is still associated with subjective criteria, a

more practical approach was taken. A set of tables that relates the sampling density

with the accuracy of the predicted values was produced so the end user can relate

these variables. Accuracy was measured with the qualitative and quantitative

indicators already described in previous chapters. Quantitative indicators (variogram

assessment, frequency distribution, prediction error, mean squared error, regression

analysis) were obtained for all the river sites analysed in Chapter 6 whilst qualitative

indicators (cross-sections & longitudinal profiles, mapping resolution and SE maps)

were only calculated for specific river sites as they are only qualitative.

6.2.4. Finding a relationship between the river descriptors and the results

obtained.

The rivers analysed were grouped according to the criteria described in Chapter 5.

General Linear Models were considered as an appropriate analysis technique to

determine whether or not these groups were representative of the pattern that the

indicators showed when decreasing the sampling density. However, the data violated
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the assumptions of normality and homogeneity of variance. The normality assumption

requires that the residuals (after fitting the model) are normally distributed. This was

examined by looking at the QQ-plot and the histogram. Results obtained showed that

the majority of the data did not follow a normal distribution and that the same

indicator had a different distribution according to the river site being analysed. Thus,

data transformations were not a feasible solution.

The homogeneity of variance assumption states that the variance in the different

groups of the design is identical. This was checked visually through the inspection of

the boxplots of each data group. Results indicated that the variances were not

homogeneous for many of the indicators and that with the non normal residuals a

General Linear Model was not an appropriate analysis.

A non-parametric alternative test (the Kruskal – Wallis test) was used to determine if

there were differences between the groups and within them. This test compares

several independent random samples and can be used as a non parametric alternative

to the one way ANOVA. The analysis was repeated several times:

To determine if there were differences between rivers grouped according to each

grouping criterion mentioned in Chapter 5: (i) the flow exceedance criterion, (ii) the

catchment descriptors, (iii) the reach descriptors, (iv) the spatial structure

descriptors and (v) the final classification proposed.

To compare differences between sampling densities within each of the groups

obtained for each grouping criterion.

Finally, the coefficients of correlation (Pearson’s coefficient) were obtained for the

relationships between (i) each catchment descriptor, reach descriptor and spatial

descriptor of each river site and (ii) the indicators analysed for each site, grouped

according to the sampling density. This determines which descriptors had a higher
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influence on the behaviour of the indicator analysed and therefore, which descriptors

should have the highest relevance when designing the sampling strategy.

6.3. Results

6.3.1. Comparison of two software packages: ArcGIS and SPLUS

Figure 6.1 shows the difference between the depth values obtained with ArcGIS

software packages and those obtained with SPLUS. The mean difference between

methods corresponded to less than 10 cm for all the river sites analysed. Maximum

difference reached values of up to 70 cm. Maximum differences were typically less

than 30 cm. Minimum differences were all less than 20 cm. Table 6.1 shows the

number of points with a positive and a negative difference between ArcGIS and

SPLUS. The percentage of points associated with positive or negative differences was

close to 50% for all the river sites, which indicated that no pattern of overestimation

or underestimation could be identified between the methods. The Mean Squared

Errors obtained are presented in Figure 6.2. Note the high MSE obtained for the Tame

Highly Modified site, which is associated to the results shown in Figure 6.1. The high

MSE was due to a large difference between predictions using SPLUS and predictions

using ArcGIS depth values at the edge of the reach. These points did not have a high

number of neighbours that can be used to calculate the predicted values and thus,

higher errors were found.

The differences encountered between software packages indicated that (i) different

processes were being applied to obtain the predictions, (ii) it was necessary to specify

which software was used to obtain the predicted values and (iii) further studies were

required to understand and identify the differences between the analytical procedures

used. Statistical packages such as SPLUS or Genstat are recommended for the

implementation of geostatistical analysis since the settings allow the user to control

the interpolation processes and variables.

Even though differences were encountered between methodologies, this did not affect

the purpose of the analysis. The predicted depth values may not represent the total

variability of depth at a river site since the predictions at the 0.5 m x 0.5 m regular
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grid were obtained from significantly smaller sampling densities (less points per

square metre) for the majority of river sites. However, this representation provided at

least as much information on the variability of depth as it was provided with the

original situation and thus, it was assumed that the predicted values represented the

variability of the sites.

Table 6.1: number of points that provide a positive and negative difference between ArcGIS and
SPLUS predictions. Tame HM refers to Tame Highly Modified river site. Pang OF and Pang UF
refer to Pang Old Fenced and Pang UnFenced. Q80 and Q90 refer to the flow exceedance group
to which the river site belongs.

River Site Positive difference Negative Difference Total Number of points

Bere 848 812 1660
LeighQ80 3228 3262 6490
LeighQ90 3228 3262 6490
PangFenced 1210 1234 2444
PangOFQ80 298 322 620
PangOFQ90 71 552 623
PangUFQ80 1349 1551 2900
PangUFQ90 1309 1591 2900
Senni 698 711 1409
TameHM 2602 2023 4625
Windrush 2767 2146 4913

Figure 6.1: maximum (Max), minimum (min) and mean differences encountered between
predictions obtained with ArcGIS and Splus software. Tame HM refers to Tame Highly
Modified river site. Pang OF and Pang UF refer to Pang Old Fenced and Pang UnFenced.
Q80 and Q90 refer to the flow exceedance group to which the river site belongs.
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Figure 6.2: Mean Squared Error (MSE) obtained between ArcGIS predictions and SPLUS
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site. Pang OF and Pang UF refer to Pang Old Fenced and Pang UnFenced. Q80 and Q90 refer
to the flow exceedance group to which the river site belongs. Note that Tame Highly Modified
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.3.2. The indicators defining the different objectives

esults for the quantitative indicators considered are shown in Figure 6.3 to Figure

.6. The rivers analysed were ordered differently depending on the indicator that was

eing analysed. Thus, it was difficult to define a pattern that defines a river site for all

he indicators; for the MSE between predicted and observed values (Figure 6.4), the

ivers with highest errors were the Bere, the Pang Fenced and the Blackwater, in

ecreasing order. In contrast, different results were obtained when considering the p-

alue (Figure 6.5); the rivers with higher accuracy using this indicator were the

lackwater, the Leigh Brook, the Pang Fenced and the Tame Highly Modified in

escending order.

he general pattern showed that the discrepancy in representing each river site

ncreased when decreasing the sampling density and that the sampling density at

hich the dispersion started increasing differed according to the indicator considered.

hus, it could be observed that different sampling densities should be applied for

ifferent sampling objectives (indicators). To determine whether these differences

ere statistically significant, the Kruskal-Wallis test was used (section 6.3.3).

exceeds the represented scale; its MSE value is 0.04.
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From the pattern observed in Figure 6.3 to Figure 6.6 it was possible to divide the

quantitative indicators into two main categories; (i) indicators highly dependent on the

sampling density and (ii) indicators less dependent on the sampling density. The first

group included all the indicators that show a clear pattern change when decreasing the

sampling density. The second group included all the indicators that did not show such

a distinct pattern. Indicators highly dependent on the sampling density were:

maximum difference between predicted and observed values (Figure 6.3), minimum

difference between predicted and observed values (Figure 6.4), mean difference

between predicted and observed values (Figure 6.4), Maximum Squared Error (Figure

6.4), MSE (Figure 6.4), p-value (Figure 6.5), R-squared (Figure 6.5) and objective

function value.

Sampling densities need to be carefully chosen when trying to characterise indicators

that change sharply with a change in sampling density. The pattern identified showed

that the lower the sampling density, (i) the lower the accuracy of the indicators

defining data characteristics (e.g. mean depth value) and (ii) the higher the value of

the indicators describing the error of the predictions (e.g. maximum difference

between predicted and observed values).

Table 6.2 shows the equation that was obtained to characterise the change of the

indicator value in relation to the change in the sampling density (model fitted included

all the river sites). These equations provide a guideline to understanding the behaviour

of each indicator and they must not be interpreted as an exact relationship. Absolute

maximum and minimum differences between observed and predicted values, as well

as, maximum, minimum and mean squared error and objective function value showed

an exponential relation between the value of the indicator and the sampling density

selected. Mean difference between observed and predicted values also showed an

exponential pattern when considering the absolute value of this indicator. R-squared

and p-value indicators were not described by an exponential function; a logarithmic

function better described the R-squared values whilst a polynomial function was used

for the p-value. The equations obtained for each river site and indicator are presented

in Appendix 4.1.
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Figure 6.3: results obtained for five different indicators, 20 different sampling densities and 15 different river sites. The indicators
represented are: maximum depth observed (m), minimum depth observed (m), Standard deviation of the observed data set, mean
depth observed (m), and maximum difference between observed and predicted values (m). Note that the scales for each indicator
are different and that some of the indicators represent the difference between original and predicted points, whilst others
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represent a characteristic of the data set that needs to be compared to the original value (e.g. mean depth observed).
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Figure 6.4: results obtained for five different indicators, 20 different sampling densities and 15 different river sites. The
indicators represented are: minimum difference between predicted and observed (m), mean difference between predicted
and observed (m), Maximum squared error, Mean Squared Error (MSE) and maximum predicted value. Note that the
scales for each indicator are different and that some of the indicators represent the difference between original and
predicted points, whilst others represent a characteristic of the data set that needs to be compared to the original value (e.g.
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maximum predicted and MSE).
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Table 6.2: equations obtained for the relation between the sampling density (x) and the indicator
value (y) for those indicators that showed a clear pattern when changing the sampling density.

Indicator Model Equation Correlation (r)
Maximum Difference exponential y=0.364*exp(-0.6684*x) -0.6842
Minimum Difference exponential y=0.3013*exp(-0.6465*x) -0.6687
Mean Difference exponential y=0.0379*exp(-3.2402*x) -0.5218
Maximum Squared Error exponential y=0.1565*exp(-1.3306*x) -0.6061
MSE exponential y=0.0046*exp(-1.8527*x) -0.4833
P-value polynomial y=-0.2033+0.6964*-0.044*x2 0.7687
R-squared logarithmic y=0.9125+0.1908*log10(x) 0.4763
Objective function exponential y=295.0299*exp(1.0559*x) 0.6522

The fact that some indicators did not visually show a strong relationship between

sampling density and the indicator value might be related to the type of graphs

presented in Figure 6.3 to Figure 6.6. Note that (i) the scales of each indicator are

different and that (ii) some indicators represent the difference or error between

predicted and observed values (e.g. maximum difference between predicted and

observed values and MSE) whilst other indicators present characteristics of the data

set (e.g. maximum depth of the observed data set) that need to be compared to the

value obtained for the original data set (4 points/m2). These comparisons are presented

in Appendix 4.2.

Note that the objective function value increases when increasing the sampling density.

The smaller the value of the objective function the better the variogram model was

fitted. Higher sampling densities include more points for the calculation of the

variogram function and therefore, provide better variogram models. However, this is

associated with an increase of the objective function. The objective function fitting

criterion is sensible from the point of view that the more pairs of observations there

are the more weight the residual receives (Cressie, 1993). Further research is needed

to determine what value of the objective function represents “good” fitting of the

variogram model for a specific number of sampled points.

Results obtained for the quantitative indicators are presented in Appendix 4.2. A table

was produced for each river site that related the sampling density applied with the

value of the indicator obtained. The table was accompanied by pictures of the river

site and its description so that the end user could appreciate how the decrease of the

sampling density affected each indicator at each river site. In this way, when trying to

determine the sampling density that is needed for a river site, it should be possible (i)

to identify which river site of those presented in Appendix 4.2 is most similar to the
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one that is going to be sampled, (ii) to define which indicator better describes the

objectives for which data are being collected and (iii) to relate this to the sampling

density that is needed for a specific level of accuracy. The final objective of this work

was to produce a table for each type of river site. This will be discussed further in

section 6.3.3.

Qualitative indicators were calculated for some of the river sites to have an idea of the

behaviour of these parameters. Cross-section and longitudinal profiles were obtained

for the Cruick river site, one of the sites that presented high maximum differences

between observed and predicted values. Results were difficult to interpret since more

than 250 cross sections and 20 profiles were obtained. The general pattern

encountered showed that the shape of the cross-sections was predicted by all the

sampling densities except for 0.2 points/m2. The shape of the longitudinal profiles was

more accurately predicted than those obtained for the cross-sections (0.2 points/m2

being the only density not identifying the longitudinal pattern).

Depth maps were produced for the Bere, Highland Water and Lambourn at sampling

densities 0.2 points/m2, 1 points/m2, 3.8 points/m2 and 4 points/m2, as a reference for

the rest of the river sites included in the same group (Chapter 5 grouping criteria).

Figure 6.7 to Figure 6.9 show the results obtained for the depth indicator. Depth

patterns obtained with sampling densities 1 point/m2 were similar to those obtained

with the maximum sampling density (4 points/m2), although small differences could

be seen regarding the surface defined by each contour line and the volume associated

with each depth class. Maps obtained for sampling densities smaller than 1 point/m2

presented higher differences in terms of pattern. Shallow and deep areas were not

properly represented, especially when considering the dry areas that appeared in some

of the river sites represented. These areas were not adequately defined or represented

when decreasing the sampling density down to 0.2 points/m2. The lower the sampling

density, the smaller the width of the river that could be predicted; the number of

neighbours that were available to obtain the prediction at the edge of the river were

not sufficient to obtain the complete profile of depth. The decrease in resolution and

the lack of representation of specific patterns could have consequences for the

assessment of the ecological suitability of a river site for specific species, whichever

methodology is being considered.
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Figure 6.7: depth maps obtained for the Bere river site at four different sampling densities. From
left to right: 0.2 points/m2, 1 point/m2, 3.8 points/m2 and 4 points/m2. Note the changes in depth
pattern when decreasing the sampling density to the lowest value.

The length of the sampled
reach without
straightening is 80 m
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The length of the sampled
reach without
straightening is 50 m
Figure 6.8: Depth maps obtained for the Highland Water river site at four different sampling densities.
From left to right: 0.2 points/m2 , 1 point/m2, 3.8 points/m2 and 4 points/m2. Note the changes in depth
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

pattern when decreasing the sampling density to the lowest value.
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SE maps, which were calculated for the Lambourn river site are shown in Figure 6.10.

The highest values of SE were located around the edges, where the number of

neighbours available to calculate the prediction was significantly smaller. The SE

increased when decreasing the sampling density and it became larger in the centre of

the river.

Figure 6.9: Depth maps obtained for the Lambourn river site at four different sampling
densities. From left to right: 0.2 points/m2, 1 point/m2, 3.8 points/m2 and 4 points/m2. Note the
changes in depth pattern when decreasing the sampling density to the lowest value.

The length of the sampled
reach without
straightening is 46 m
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6.3.3. Finding a relationship between the river descriptors and the results

obtained.

This section focus on (i) determining if the grouping criteria described in Chapter 5

can be used to identify differences in the behaviour of indicators when decreasing the

sampling density and (ii) establishing the relationship between the indicators analysed

and the physical characteristics described in Chapter 5. Table 6.3 shows the grouping

criteria and the rivers included in each group.

re 6.10: map of SE obtained for the Lambourn river site at four different sampling densities. From left
ight: 0.2 points/m2, 1 point/m2, 3.8 points/m2 and 4 points/m2 . Note the increase of the SE when
easing the sampling density to the lowest value.

The length of the sampled
reach without
straightening is 46 m
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Relation between the physical descriptors and the grouped river sites.

Results obtained for the Kruskal-Wallis test showed that the validation river sites

selected in Chapter 5 were significantly different (p<0.05) to those sites that were

selected as test data sets. However, these differences were encountered between

validation and test data sets that were supposed to be similar (i.e. from the same

group). Moreover, when comparing the validation data sets with their respective test

data sets it was possible to observe that there were more similarities between the test

data sets than the respective validation and test data sets. This showed that (i) the

groups identified according to the general criteria (mainly based on the flow

exceedance criteria) did not represent the variability encountered for the indicators,

and that (ii) the grouping criteria selected was not representative for the development

of a sampling methodology.

Table 6.3: groups identified according to each selected criterion described in Chapter 5. Q90 and
Q80 refer to the flow exceedance at which data were collected. Codes in the catchment
descriptors, reach descriptors and spatial structure columns correspond to the groups identified
with multivariate techniques in Chapter 5. Finally, codes in the validation –test column show the
rivers that have been used to develop the guidelines (test data sets = T) and those selected to
validate these guidelines (validation = V). The number associated to the validation – test code
shows the flow exceedance group that the river belongs to.

Site
Percentage of Flow

Exceedance
Catchment

scale
Reach
Scale

Spatial
structure

Validation-
Test

Pang Old fenced Q90 C1 R1 S1 T90
Pang fenced Q90 C1 R1 S1 T90

Pang Unfenced Q90 C1 R1 S1 T90
Lambourn Q90 C1 R1 S1 V90

Leigh Brook Q90 C2 R2 S1 -

Bere 2000 Q80 C1 R1 S1 V80
Pang Old fenced Q80 C1 R1 S1 T80
Pang Unfenced Q80 C1 R1 S1 T80

Leigh Brook Q80 C2 R2 S1 -
Senni Q80 C3 R2 S1 -

Highland Water Q40 C2 R1 S1 V40
Cruick Q40 C2 R2 S1 -
Tarf Q40 C3 R2 S2 -

Blackwater Q40 C2 R1 S1 T40
Tame LM Q40 C4 R2 S3 -

Tame HM Q0 C4 R2 S2 -
Windrush Q0 - R2 S2 -

For the majority of indicators analysed, the rivers included in group V80 and V90

were significantly different to those included in T80 and T90, respectively. These
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indicators were: maximum depth, minimum depth, mean depth, standard deviation,

maximum difference between predicted and observed values, mean difference

between predicted and observed values, minimum depth predicted, sill and objective

function. Moreover, there was no significant difference between groups T80, T90 and

T40 for some of the indicators. This suggests that the differences between validation

and test groups (e.g. T90 and V90) were higher than those encountered between

different test groups (i.e. T40, T90 and T80), when it would have been expected to

find the opposite result. Therefore, it could be concluded that the groups created in

Chapter 5 did not identify nor explain the indicator behaviour when decreasing the

sampling density. Therefore, the sampling strategies defined according to the general

grouping criteria of Chapter 5 were not the best to characterise the effects of changes

in sampling density on the selected indicators.

The same study was repeated for each of the individual grouping criteria considered

(i.e. catchment descriptors, reach descriptors and spatial descriptors – Table 6.3) to

complete the analysis. Results showed that there were not consistent differences

between groups obtained for each grouping criteria (i.e. flow exceedance, catchment

descriptors, reach descriptors and spatial descriptors) for some of the indicators. For

example, rivers included in the flow exceedance Q80 group, were not different to

those rivers included in the flow exceedance Q90 group for all the indicators

analysed.

The grouping criteria that best identified the variability between the results obtained

were those developed using the catchment descriptors, where a higher number of

indicators had a different behaviour for each of the groups considered (the number of

indicators that showed differences between the groups was as follows: 16 for the flow

exceedance groups, 18 for the catchment descriptors, 13 for the reach descriptors and

13 for the spatial descriptors). The indicators that did not show significant differences

between grouping criteria are shown in Table 6.4.

The Kruskal-Wallis tests carried out to determine if there were differences between

results obtained for each sampling density within each group considered in Chapter 5

are summarised in Table 6.5, which shows at which sampling density each group is

significantly different (p<0.05) to the original sampling density (4 points/ m2). Those



Chapter 6 165 Results

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

indicators for which no significant difference was encountered were not included in

Table 6.5. Table 6.5 summarises the results for all the grouping criteria considered.

Table 6.4: indicators that did not show significant differences between groups for the Kruskal-
Wallis test (p<0.05). The codes for the indicators are as follow: MinTran=minimum depth of the
data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MSE=Mean Squared Error,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, , P-value=p-value of the
non parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between
predicted and observed values.

Grouping
criteria

Flow
Exceedance

Catchment
descriptors

Reach
descriptors

Spatial
descriptors

Final grouping

Indicators
not
significantly
different

MinTran
MinPred
Nugget

Nugget MinPred
MinTran
MeanDiff
P-value
MSE
Nugget

MinPred
MinTran
MeanTran
MeanPred
MaxDiff.

Nugget
R-squared
P-value

Table 6.5: sampling density (points/m2) at which the Kruskal-Wallis test (p<0.05) starts
identifying significant differences between the value of the indicator at the listed sampling density
and the value obtained at sampling density 4 points/m2. Q90 and Q80 refer to the flow
exceedance at which data were collected. Codes in the catchment descriptors, reach descriptors
and spatial structure columns correspond to the groups identified with multivariate techniques in
Chapter 5. Finally, codes in the validation –test column show the rivers that have been used to
develop the guidelines (test data sets = T) and those selected to validate these guidelines
(validation = V). The number associated with the validation – test code shows the flow
exceedance group that the river belongs to.

Grouping
criteria

Flow Exceedance Catchment
descriptors

Reach
descriptors

Spatial
descriptors

Final grouping

Code Q40 Q80 Q90 C1 C2 C3 C4 R1 R2 S1 S2 T40 T80 T90
Maximum
Difference

0.6 0.8 0.4 1 1 / / 1.6 1.2 2 / / / 0.2

Minimum
Difference

0.4 0.8 0.4 1 0.8 / / 1.4 1.2 2 / / / /

Maximum
Squared
Error

0.6 0.8 0.4 1 1 / / 1.4 1.2 2 / / / /

MSE 0.6 0.8 1 1.2 1 / / 1.6 1.4 2 / / / 0.2
P-value 0.2 0.8 0.4 0.8 0.8 / / 1.6 0.6 1.8 / / / /
R-
squared

0.4 0.8 1 1.2 1 / / 1.6 1 2 / / / 0.2

Objective 0.2 0.8 0.4 0.8 0.4 / / 1 1.4 1.6 0.2 / / /

In general, no differences were observed between consecutive values of sampling

densities; the change in the value of the indicator could be visually identified (Figure

6.3 to Figure 6.6) but this difference was not statistically significant (p>0.05).

However, when considering all the sampling strategies analysed, it was possible to

observe that there was a statistically significant difference between sampling

strategies that were not consecutive. Differences between sampling densities were not
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significant for all the indicators as described in previous paragraphs. Only maximum

difference, minimum difference, maximum squared error, mean squared error, p-

value, R-squared and the objective function showed differences between some of the

grouping criteria. Significant differences were encountered for a higher number of

indicators when analysing the flow exceedance and reach physical descriptor

grouping criterion. The highest sampling density at which differences started to be

encountered for some of the indicators was 2 points/m2. This suggests that special

consideration needs to be placed on the value of the indicators when applying

sampling densities smaller than 2 points/m2.

Results showed that even though the sampling density at which the Kruskal-Wallis

tests starts identifying significant differences differed between grouping criteria

(Table 6.5), a similar pattern could be observed for all the groups considered: mean

squared error and R-squared, followed by maximum squared error and maximum

difference between observed and predicted values, were the indicators that were more

sensitive to a decrease in sampling density and, therefore, the indicators that required

a higher sampling density to be applied, if they were the objective for which data were

being collected. In other words, when the objective of the data collection procedure is

to decrease the error of the predicted values at specific locations in terms of MSE,

maximum difference, R-squared or maximum squared error, higher sampling densities

are required than when the objective is to statistically characterise the data set (e.g. to

determine mean depth, minimum depth or maximum depth of the sampled reach).

Note that the Kruskal-Wallis test did not show differences between sampling densities

for some of the indicators that showed a trend as the sampling density was being

decreased. For these indicators it is recommended to observe the general trend (Figure

6.3 to Figure 6.6 and Appendix 4.2) and estimate what the potential results of

decreasing the sampling density could be.

A table of confidence intervals was calculated for each indicator. The confidence

interval was related to the sampling density to be applied, in such a way that the end

user can identify the Standard Error that should be associated with each sampling

density to obtain a specific level of confidence. Each confidence interval was

calculated with equation 6.1:
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CI=*SE (6.1)

where,

CI is the confidence interval

Z is a function of the Level of Confidence (LOC) derived from the Normal Curve. It

corresponds to the area that is under the two-tailed standard Normal distribution curve

for a specific associated probability level (p-value) (e.g. for 95% CI the Z value is

1.96).

and SE is the Standard Error of the indicator that is being analysed at a specific

sampling density.

Since there were no clear results on how to group the rivers according to the

behaviour of the indicators at different sampling densities, a global table relating

confidence interval with sampling density was created for each indicator. That is, the

Confidence Interval (CI) calculated including the values obtained for a specific

indicator and sampling density for all the river sites. These tables are presented in

Appendix 4.3. The values shown in these tables are the CI that needs to be added to

the value of the indicator obtained for a specific sampling density. Then, for data at a

river site with a sampling density equal to 0.4 points/m2, where the maximum

predicted depth value is equal to 0.5 m (for example) and a 75% confidence in this

“real” maximum depth is required, in this case a CI equal to 0.018 must be used (see

table of maximum predicted depth in Appendix 4.3). Then, the maximum depth can

be stated as 0.5 m 0.018 m. Note that these tables were designed in relation to the

“real” situation equal to 4 points/m2.

Confidence intervals differed in magnitude according to the indicator being analysed.

For those indicators that were measured in depth units (m), which were: (i) maximum,

minimum & mean depth observed, (ii) maximum, minimum & mean depth predicted,

and (iii) maximum, minimum and mean difference between predicted and observed

values, indicators defining maximum and minimum characteristics presented higher

confidence intervals than mean indicators.
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Correlation between the physical descriptors and the variogram model

parameters.

A correlation matrix was calculated to analyse the relationship between the indicators

and the physical descriptors listed in Chapter 5. The analysis was repeated for each

sampling density tested, including all the river sites in each analysis. Pearson’s

coefficient was obtained and those descriptors that showed a significant correlation

(p<0.05) with the indicators considered were identified. The correlation values that

were statistically significant for the catchment and reach physical descriptors

considered are summarised in Table 6.6 and Table 6.7. The interpretation of these

results is presented in the following paragraphs.

Catchment Descriptors

Results for the catchment descriptors showed that just a few catchment physical

descriptors (ASPBAR, DPSBAR, SPRHOST, Sord, HSorc, HSite and Qx – see Table

6.6 for explanation of these abbreviations) and indicators were correlated. Four main

catchment descriptors seemed to be related to the degree of error in the predictions:

mean catchment altitude, index of catchment steepness, height at the river source and

height at the river site. Thus, it could be observed that, in general, the higher these

physical descriptors were, the higher the error of the prediction was. In other words,

the higher these values were, the smaller the correlation (Pearson’s coefficient)

between predicted and observed values was.

The four catchment descriptors associated with an increase in error of the predictions

were associated with the steepness of the catchment where the data were collected.

The degree of catchment steepness could also be expressed as the relationship

between the height at the river site, the height at the river origin and the mean

catchment altitude. According to the results, the steeper the catchment was, the higher

the sampling density that needs to be applied. This can be explained by the fact that

steeper catchments present longitudinal profiles characterised by coarser bed material

and higher capacity to evacuate fine sediments. The bed channel therefore is usually

composed of gravel and/or boulders, with little fine sediment. This means that the

variability of depth in space is higher and, therefore, a higher number of points need

to be measured to characterise depth variability with the variogram. Thus, higher

sampling densities are required.
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Table 6.6: catchment descriptors and indicators that proved to be significantly correlated
(p<0.05). The value shown in the table is the Pearson’s correlation coefficient (r).
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Minimum observed depth - - - - - - -.7944
Maximum difference predicted vs.
observed

- - - .5757 - - -

Minimum difference predicted vs.
observed

-.8020 -.7203 - - -.6288 -.7380 -

Maximum Squared Error .5780 - .5232 .5656 - - -
Mean Squared Error .9330 .7875 - - .7851 .8417 -
Minimum predicted value - - - - - - -.7860
p-value -.8224 -.6397 - - -.6825 -.6332 -
R-squared -.8300 -.6424 - - -.6729 -.6479 -

Reach Descriptors.

A higher number of reach descriptors were found to be significantly correlated with

the indicators than for the catchment descriptors (Table 6.7). This might indicate that

the characterisation of the reach scale is more useful for the design of the sampling

density (or strategy) suggesting that a field visit is necessary before detailed data are

collected.

Indicators related to the quantification of error in the predicted values (i.e. maximum,

minimum & mean difference between predicted and observed values and maximum &

mean squared error) were correlated with the pool riffle spacing (r0.80), the type of

substrate (r0.50), the depth variation of the reach (r0.77), the sinuosity (r0.80) and

the maximum depth measured (r0.70). Indicators that defined data characteristics

(e.g. maximum depth predicted) were more related to the actual characteristics of the

river site (i.e. maximum, mean and depth variation). Finally, p-value and R-squared

were more associated to the riffle-pool spacing.
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Table 6.7: reach descriptors and indicators that proved to be significantly correlated (p<0.05).
The value shown in the table is the Pearson’s correlation coefficient.
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Maximum difference predicted vs. observed - - - 0.53 - 0.83 - -
Minimum difference predicted vs. observed - - - - - -0.84 - -
Mean difference predicted vs. observed 0.52 - 0.77 - 0.80 - - 0.67
Maximum Squared Error - - - - - 0.84 - -
Man Squared Error - - - - - 0.84 - -
Maximum predicted value - 0.57 0.59 - - - 0.61 0.55
Mean predicted value - - 0.64 - - - 0.95 -
Standard deviation predicted values - 0.56 0.87 - - - 0.80 0.77
p-value - - - - - -0.84 - -
R-squared - - - - - -0.84 - -

The relationship between the substrate and the error in predictions could be explained

by the increase of depth variability when increasing the coarseness of the bed

materials; when boulders and gravel are present, points that are separated by a small

distance present higher differences in depth than two points separated by the same

distance but located in a fine sediment channel. The same principle could be applied

to the maximum depth and sinuosity criteria: the higher the maximum depth identified

and the higher the sinuosity, the higher the error obtained. High maximum depths

indicated an increase in variability of depth values; the sampling density needs to

cover the whole range of depth from 0 to the maximum depth identified in order to

calculate an accurate variogram. This, of course, is associated with the degree of

variability of depth in space; if changes are gradual in space, smaller sampling

densities are required. Sinuosity and pool-riffle spacing are the factors which control

the spatial variability of this.

6.4. Discussion

This study has shown the degree of error associated to sampling density and the

influence of the software package on the calculation of predicted values.

The reduction of depth sampling density results in a decrease in the accuracy of the

data characterisation (e.g. mean depth) and an increase in the error of the predicted

values (e.g. maximum difference between predicted and observed values). The
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decrease in the sampling density affects each indicator analysed differently: some

indicators show a higher variability between sampling densities than between river

sites (e.g. mean squared error), whilst others show a higher variability between river

sites than between sampling densities (e.g. mean depth). The general pattern shows

that the accuracy of the predictions is reduced considerably when applying sampling

densities with less than 2 points/m2. Qualitative indicators decrease in accuracy for

sampling densities less than 1 point/m2, where the patterns of deep and shallow areas

appear mixed, unclear and do not represent the “real situation”.

Several options have been presented in this chapter in order to determine which

sampling density is necessary to obtain a specific level of accuracy for a selected

indicator when sampling a particular river site. These options are summarised in the

following guidelines:

1. It is suggested that the characteristics of the river site that is going to be

sampled are compared with the descriptions of the sites analysed in this

project (Appendix 4.2) to find the river that best represents the reach that is

going to be sampled. This river can be used as a reference to determine the

sampling density that is required.

2. Then, it will be necessary to determine the objective for which data are being

collected and the indicator (of those presented in Appendix 4.2) that best suits

the final objective (e.g. calculation of the maximum depth of the river or

calculation of the frequency distribution of depths).

3. Decide on the accuracy that is required for the type of study that is going to be

undertaken and check how the value of the indicator changes for the reference

river type when decreasing the sampling density.

4. Select the sampling density that provides a change in the indicator value that

can be accepted for the purpose of the study. Obtain this information from the

tables and plots provided in Appendix 4.2, the plots shown in Chapter 6

(Figure 6.3 to Figure 6.6) and the equations provided in Appendix 4.1 and

Table 6.2.

5. Choose the confidence interval that is necessary for the final objective for

which the data are being collected (e.g. river restoration) according to the

sampling density that has been selected.
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6. Calculate the value of the indicator selected and account for the confidence

interval when providing the final result.

7. Alternatively, it is possible to select any of the criteria described (i.e. tables

and plots in Appendix 4.2, equations in Appendix 4.1, confidence interval in

Appendix 4.3., plots and equations in Chapter 6 - Figure 6.3 to Figure 6.6 and

Table 6.2) to work backwards to the sampling density required or from the

sampling density required to the described criteria.

When applying these guidelines several limitations need to be taken into account. The

indicators, the confidence interval and the accuracy required need to be selected

according to the objective for which the data are being collected (e.g. river restoration,

hydromorphological assessment or quantification of habitat). However, little work has

been developed in this study (i) to determine which accuracy is needed for each

objective or (ii) to identify which indicator or indicators are best suited for each

objective. Moreover, it is possible that there is not an adequate indicator that suits the

final objective for which data are being collected. An example might be habitat

quantification; it might be adequate to have information on how the volume of habitat

available for fish decreases according to the sampling density. Further work could be

developed in order to (i) include a higher number of indicators in the results obtained

in Appendix 4.1. Appendix 4.2 and Appendix 4.3 and (ii) relate each indicator to each

objective.

Results have been obtained by considering sampling density equal to 4 points/m2 as

representative of the real situation. It is necessary to take this into account when

applying the proposed guidelines. Density equal to 4 points/m2 corresponds to a

distance of 0.5 m between sampled points distributed in a regular grid. Spatial

variation at smaller distance has neither been considered nor characterised. Thus,

information at smaller distances (e.g. sampling density equal to 5 or 6 points/m2) has

not been included in the final results. Further research will need to be developed to

widen the range of sampling densities for which results have been obtained.

The guidelines have been proposed to test whether it was possible or not to develop a

methodology that helped to characterise the accuracy obtained for different indicators

at different sampling densities. The project has proven that it is possible to develop
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the methodology, but further research needs to be carried out in order to consolidate

the results obtained and to apply the methodology to a wider range of river sites.

Further research projects need to account for the fact that (i) the analysis in this study

has only been carried out once per sampling density and no replication has been

considered and (ii) the range of river sites is limited to those available. The first

limitation refers to the fact that points have been selected only once from the original

regular grid of 0.5 m for 0.5 m through random selection of points. This was decided

adequate as it was seen in previous chapters (Chapter 4) that multiple random

selections of the points did not introduce a significant change in the indicators.

Information on how the random selection process affects the variogram model

parameters has been included in Appendix 4.4.

The second limitation is associated with the characteristics that define the river sites

analysed. Differences in terms of morphological characteristics can be observed

between the analysed river sites. This differentiation helps to classify the rivers

according to their characteristics, so one of the sites can be selected as a reference

when designing the sampling density of a new reach. However, these differences do

not cover all the possible river types and so, situations will arise where the end user

will not be able to find a river in Appendix 4.2 that matches the reach that needs to be

sampled. Further research needs to be developed in order to widen the number of river

types for which the methodology has been developed.

Regarding the different river types that need to be represented, it has to be noted that

many river typologies have been developed over the past few decades, examples of

which are described by Rosgen (1994). Three possibilities are available to solve the

previous limitation: (i) to select one of these typologies and reproduce the

methodology for each river type identified, (ii) to develop a summary of all the

typologies and select a river corresponding to each type in each typology or (iii)

create a new typology that characterises the river according to the behaviour of the

indicators when decreasing the sampling density. An attempt to develop a typology

that classifies the rivers according to the change of the descriptors when changing the

sampling density has been described in this Chapter. Results indicated that not enough

variability between river sites was encountered to define different types. This might

be due to (i) a lack of adequate physical descriptors for the creation of the typology,
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(ii) a restrictive statistical criteria applied when determining the differences between

rivers (p<0.05) or (iii) a low degree of variability between river sites. It is suggested

that a wider list of physical descriptors to be used and that river sites that are more

representative of morphological and physical characteristics be selected. Analysis of

different typologies can help to identify more indicators that could be useful for the

creation of a new typology based on the change of the indicators according to changes

in sampling density. This study has divided the physical descriptors into two main

groups: catchment and reach descriptors. Catchment descriptors proved to be more

successful when trying to classify the river sites into types. However, when analysing

the indicators independently with the correlation values, reach descriptors appear to

be more significant than catchment descriptors. Thus, it is suggested that analysis with

more physical descriptors be developed for a wider range of river sites to determine if

a suitable typology can be developed.

It is necessary to determine if it would also be possible to detect differences between

river sites that show higher morphological variation in terms of physical descriptors.

If this is possible, it will be useful to quantify these differences so it is possible to

identify which variogram represents each river type and to use it as a target reference

condition for hydromorphological characteristics.

Summarising, it is necessary to account for error when characterising depth in rivers.

This chapter provides a tool to do so but the information and results presented here

need to be interpreted only as guidelines and not as definitive conclusions. New

results could be provided by developing or implementing a river typology so that a set

of results (i.e. equations, confidence intervals, tables and plots presented in Appendix

4.1, Appendix 4.2, Appendix 4.3 and Chapter 6) can be provided for each river type

.
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6.5. Conclusions

A decrease in the sampling density applied for depth data collection has consequences

for the information provided by values predicted with geostatistical techniques. The

lower the sampling density the higher the error obtained in the different indicators

analysed. Three different tools have been developed to understand how the accuracy

of each indicator changes when decreasing the sampling density. These tools are:

confidence interval values, equations relating the indicator value with the sampling

density and tables showing the relationship between sampling density and indicator

value.

The tools provided are as simple guidelines for the selection of an adequate sampling

strategy since they have been developed considering 4 points/m2 as representative of

the real situation. The three tools can be used separately, although it is preferred to

combine the three of them for a more consistent result.

When determining the sampling density that is going to be applied it is necessary to

identify the objective for which the data are being collected and the indicator that best

defines that objective. Then, confidence intervals and accuracy levels can be selected

to obtain the required sampling density. Different sampling densities need to be

applied for different objectives.

A degree of error needs to be considered when calculating any of the indicators

considered. This error is related to the sampling density applied as well as to the type

of software selected for the prediction of depth values. The first type of error can be

quantified through the application of the confidence intervals provided in this

Chapter. The second source of error (from choice of software) reaches mean values of

10 cm, with maximum values that can be up to 70 cm.

Results obtained for sampling densities lower than 2 points/m2 for quantitative

indicators and 1 point/m2 for qualitative indicators need to be carefully interpreted as

these seem to be the thresholds at which the characteristics of the indicators are

affected.
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Further research is necessary to develop a typology that groups the river sites

according to the behaviour of the indicators when changing the sampling density. The

grouping criteria and physical descriptors selected in this study do not properly

characterise the behaviour of the indicators. A strong relationship was encountered

between reach descriptors and the variability of the indicators, which suggests that the

data collection needed to define the adequate sampling strategy must be assessed in

the field. More indicators, physical descriptors and river types need to be considered if

the developed tools are to be applied at a more general level.
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7.1. Introduction and objectives of Chapter 7

The need to explore the spatial and temporal distribution of hydromorphological

variables to facilitate scaling in data was identified in Chapter 2. Spatial scales for

rivers have been defined in different studies (Rowntree & Wadeson, 1998; Thomson

et al., 2001; Thomson et al., 2003; Wadeson & Rowentree, 1998; Maddock et al.,

2001; Maddock & Bird, 1996; Muhar, 1996; Frissell et al., 1986; Petts & Amoros,

1996). Frisell et al (1986) considered six main system levels dependent on the spatial

scale (watershed, stream, segment, reach, pool/riffle and microhabitat) and defined

their spatial scale, the boundaries and the variables that should be measured at each

level. The hierarchy is spatially nested; the system at one level forms the environment

of its subsystems at lower levels and the spatio-temporal scales are defined through

the description of variables related to geomorphic processes and forms (Frissell et al.,

1986) (Table 7.1).

Petts & Amoros (1996) defined the fluvial hydrosystem approach, where the

longitudinal and temporal dimensions focused on the downstream variation of flow,

temperature, channel form, unidirectional fluxes of energy/material and biotic

communities. The spatial-temporal scale was defined as a nested five level hierarchy

of subsystems: drainage basin, functional sectors, functional sets, functional units and

mesohabitats.

This chapter focus on the scaling problem described in
Chapter 2. Several classifications are available to determine
spatial scales in rivers. This makes it difficult to select a specific
sampling length for the analysis of the spatial structure with
geostatistical techniques. The objectives of this chapter are to
assess if spectral analysis is a useful tool for recognising
patterns of periodicity (spatial scales) in rivers and to determine
if the combination of spectral and geostatistical analysis is
useful for the up-scaling of depth data.
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Maddock (Maddock, 1999; Maddock & Bird, 1996) considered a scale classification

based on the proposals introduced by Frissell et al (1986) and Petts & Amoros (1996).

The classes considered (drainage basin, type, sector, reach, site/reach and patch) are

identified according to a scale defined by spatial, sensitivity and recovery

characteristics. This classification can be reduced down to 3 main classes: reach or

segment scale, macrohabitat/mesohabitat scale and microhabitat scale. Alternatively,

Muhar (1996) modified the classification developed by Frissell (1986) and that given

by Naiman et al (1992 in Muhar, 1996) into five classes: micro-habitat, macro-

habitat, reach scale, segment scale and stream-system. Habersack (1997 in Habersack,

2000) provided a classification with five hierarchical levels according to spatial and

geomorphological characteristics: regional-continental, catchment-wide, reach, local

and point level.

Rowntree & Wadeson (1994, in Rowntree & Wadeson, 1998) developed a

classification based on a geomorphological hierarchy. The classes identified were:

catchment, zone, segment, reach, morphological units and hydraulic biotope. This

approach has been considered limited by some authors (Newson and Newson, 2000 in

Thomson et al., 2001) because important habitat variables (variation in substrate

character, macrophytes and organic matter) are not readily taken into account. Finally,

the River Styles Framework (Brierley and Fryirs, 2000 in Thomson et al., 2001)

introduces the concept of ecology to previous classifications considering five different

geo-ecological scales: catchment, landscape, river style, geomorphic unit and

hydraulic unit. Table 7.1 summarises some of the spatial scales above described.

Spatial scales were defined differently by each of the authors.

The first objective of chapter 7 is to assess if spectral analysis is a useful tool for

recognising patterns of periodicity (spatial scales) in rivers. The second objective of

this Chapter is to determine if a combination of spectral and geostatistical tools is

useful for the up-scaling of depth pattern along the river.
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Table 7.1: Hierarchical spatio-temporal classification (after Rowntree & Wadeson (1998) and Frissell et al. (1986))

System level
(Frissell et
al., 1986)

(Rowntree &
Wadeson, 1998)

Lineal
spatial

scale (m)
(Frissell

et al.,
1986)

Boundaries (Frissell et al., 1986) Description (Rowntree & Wadeson, 1998) Variables (Frissell et al., 1986)

Watershed Catchment >1000 Biogeoclimatic region, geology,
topography, soils, climate, biota

Land surface which contributes water and
sediment to any given stream network.

Biogeoclimatic region, geology,
topography, soils, climate, biota

Stream Zone 1000 Watershed class, long profile,
slope, shape, network structure

Areas within the catchment which can be
considered as homogeneous with respect to flood
runoff and sediment production.

Watershed class, long profile,
slope, shape, network structure

Segment Segment 100 Stream class, channel floor
lithology, channel floor slope,
position in drainage network,
valley sideslopes, potential

A length of channel along which there is no
significant change in the imposed flow discharge
or sediment load.

Stream class, channel floor
lithology, channel floor slope,
position in drainage network,
valley sideslopes, potential

Reach Reach 10 Segment class, bedrock relief,
slope, morphogenic structure or
process, channel pattern, local
sideslopes floodplain, bank
composition, riparian vegetation
state.

A length of channel within which the constraints
on channel form are uniform so that a
characteristic assemblage of channel forms or
morphological units occur; respective sequences
of reaches of alternating characteristics may be
grouped into macroreaches.

Segment class, bedrock relief,
slope. Morphogenic structure or
process, channel pattern, local
sideslopes floodplain, bank
composition, riparian vegetation
state.

Pool/riffle Morphological
unit

1 Reach class, bed topography,
water surface slope, morphogenic
structure or process, substrates,
bank configuration

The basic structures recognised by fluvial
geomorphologists as comprising the channel
morphology, formed from the erosion of bedrock
(rapids, waterfalls, plunge pools, etc…) or from
the deposition of alluvium (sand or gravel bars,
riffles, pools…)

Reach class, bed topography,
water surface slope, morphogenic
structure or process, substrates,
bank configuration

Microhabitat Hydraulic
biotope

0.1 Pool/riffle class, underlying
substrate, overlying substrate,
water depth, velocity,
overhanging cover.

Spatially distinct instream flow environments
determined by the temporally variable hydraulic
and substrate characteristics associated with each
morphological unit.

Underlaying substrate, overlying
substrate, water depth, velocity,
overhanging cover.
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7.2. Methodology

7.2.1. The river sites and the collected data set

Two river sites were analysed for the scope of this Chapter; the Brazos and the

Sulphur. The data set for the Brazos site included 37288 topographical data points

collected along a 7.5 km reach. Maximum depth at the Brazos site is equal to 12.95 m,

with a mean depth of 2.57 m and a variance equal to 1.83. Mean width is equal to 100

m which provides a depth-width ratio of 0.025. The sinuosity index is equal to 3.2.

The Sulphur data set had 8490 topographical data points collected along a 1.5 km

reach. The maximum and mean depth at the Sulphur site is equal to 22.8 m and 12.86

m, respectively, with a variance equal to 22.13. Mean width is equal to 35 m, which

provides width – depth ratio equal to 0.36. The sinuosity index is equal to 1.81.

Data were collected using a single beam depth sounder for both river sites. A more

detailed description of both river sites is provided in Appendix 1.

7.2.2. Detecting spatial scales

i) De-trending the data sets

The data needed to be formatted before further analysis. The raw topographical data

referred to the distance from a base horizontal line to the topographical (TO) point

measured (Figure 7.1). Depth had to be calculated for all the measured points by

considering the slope factor and the Water Surface Level (WSL).

The slope factor was taken into account by applying Equation 7.1 and Equation 7.2

where: TO is the raw topographical value, WSL is the Water Surface Level, DEPTH

is the river depth at the measured TO point, LENGTH is the sampled length, SLOPE

is the slope of the sampled length according to the measured water surface level, TO1

is the de-trended TO value and N is the maximum TO1 value recorded. WSL was

calculated from the analysis of all the points located at the bank edges, where WSL

was considered 0. WSL points where interpolated along the surface and depth
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predicted at each TO point. WSL was assumed to be at the point were the single beam

depth sounder was located.

TO1 = (TO + LENGTH * SLOPE) (7.1)

DEPTH = N- TO1 (7.2)

ii) Sensitivity Analysis for the Variogram

The sensitivity analysis described in Chapter 5 was applied to the Brazos and Sulphur

data sets. The objectives of the analysis were to (i) study the anisotropy level, (ii)

determine the lag distance for the variogram calculation and (iii) define the maximum

distance to be used in the variogram calculation. Sensitivity analysis for the azimuth

tolerance was considered unnecessary according to the results obtained in Chapter 5.

Seven lag distances (0.1 m, 0.3 m, 0.5 m, 0.7 m, 0.9 m, 1.5 m and 2 m) and four

azimuth directions (0, 45, 90 and 135) were compared. The variogram was calculated

for several maximum distances ranging from 20 m to the maximum sampled length of

each river site with increments of 50 m.
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Figure 7.1: data transformation procedure to obtain depth at the Brazos and Sulphur river
sites. The upper image shows the original data provided, the slope factor a longitudinal
profile and the water surface level. The lower image shows the same information after
transforming the TO data to Depth data.
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iii) Spectral Analysis

Spectral analysis is used to recognise cyclical pattern of series of data by applying a

modification of Fourier analysis {Chatfield, 1996}, which is based on approximating

a function by a sum of sine and cosine terms, called the Fourier series representation.

The periodogram, which is the output result of the spectral analysis, provides

information on the pattern of the variation of the data set in the spectral domain

{Webster & Oliver, 2001}. The spectrum and the variogram are complementary ways

of viewing the spatial/temporal periodicity and estimating the period.

The calculation of the periodogram requires input values equally spaced and

distributed along a longitudinal line. Since data collected did not meet these

requirements, the variogram was calculated to predict depth values at the appropriate

locations. The spherical model was used for this purpose, with a lag distance equal to

1.5 m, azimuth tolerance of 60 and maximum distance equal to 150 m. Depth values

were predicted at three longitudinal profiles at each river site separated by 5 m

intervals for the Sulphur and 10 m for the Brazos site. Points were predicted every 20

m along each longitudinal profile. Periodic cycles at distances smaller than 20 m were

not considered within the scope of this study.

The Brazos river site was divided into reaches of 2000 m in length so that similar

lengths were analysed for the Sulphur and Brazos river sites. Three different reaches,

with three different longitudinal profiles, were analysed for the Brazos site.

7.2.3. Comparison of sampled reach length

The total length of the surveyed river was divided into equally spaced segments. Data

included in the defined segments were consecutively classified into two groups: (i) a

training data set and (ii) a test data set. The training data was used to calculate the

variogram whilst the test data was used to validate the predictions obtained for the

calculated variogram.

Accuracy obtained for the predicted values was assessed through the analysis of

quantitative indicators, which were: variogram assessment, descriptive statistics, mean
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squared error and mean error, frequency distribution and regression analysis. These

indicators were described in detail in Chapter 5.

7.3. Results

7.3.1. Detecting spatial periodicity

i) De-trending the data sets

The slope factors obtained for the Sulphur and Brazos river sites were 0.0029 and

0.00012 respectively. The trend factor, which is defined by the slope, is smaller than

20% of the variance encountered for the depth data sets at both river sites. This

indicated that the trend would not significantly affect the variogram results and

therefore, it did not need to be taken into account. However, since spectral analysis

was going to be carried out data were de-trended.

The descriptive statistics obtained for each river site after de-trending the raw data are

presented in Table 7.2. The Sulphur river presents a deeper and narrower channel bed

than the Brazos river site. The Kolmogorov-Smirnov test indicated that depth for both

river sites did not follow a normal distribution but the skew and kurtosis were less

than 1. Thus, data could be assumed to be normal for the purposes of this analysis.

Table 7.2: descriptive statistics obtained after de-trending the raw data set.
River Site 1st Qu Median Mean 3rd Qu. Max St Dev Num. Points Length Width
Sulphur 8.47 11.43 11.92 15.43 25.98 4.84 8490 1395 36
Brazos 1.62 2.54 2.57 3.35 12.95 1.35 37288 7828 150

ii) Sensitivity Analysis for the Variogram

The minimum distance between pairs of points encountered for the Sulphur and

Brazos sites were 0.75 m and 0.065 m, respectively. The variogram was not analysed

for lag distances smaller than the minimum lag distances encountered since no

information was available for the variogram calculation at such lag intervals.

Results indicated that for both river sites, a lag step size of 1.5 m offered a suitable

balance between the number of pairs of points obtained for the variogram calculation
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and the number of lags considered. Thus, the variogram was calculated with a lag step

size equal to 1.5 m. The anisotropy analysis showed that no directional difference in

the spatial pattern could be identified for the Brazos site and that only direction 135

presented differences to the others for the Sulphur site (Figure 7.2). This anisotropy

started at intervals higher than 27 m, which coincided with the decrease in the number

of pairs of points included in the calculation. The longitudinal direction was used for

the variogram calculation of both river sites.
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Figure 7.2: results for the anisotropy analysis for the Brazos site. The top plot shows the number of
pairs of points obtained for each lag distance and the bottom plot shows the experimental variogram
obtained for four different directions (0,45, 90and 135, 0 being the longitudinal direction)
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The number of pairs of points available for the variogram calculation decreased for

lag intervals equal to 90 m and 27 m for the Brazos and Sulphur sites, respectively.

The number of points collected was high and thus, the number of pairs of points

available for the variogram calculation remained significantly high (>2000) for

intervals close to the total length sampled (80% sampled length). The resulting

experimental variograms calculated for the total sampled distance are shown in Figure

7.3.

The experimental variogram obtained showed the difference in spatial pattern

encountered between both river sites. The Sulphur river presented a higher value of

variance (gamma) over a smaller range of distance than the Brazos river. This

supported the results obtained with the descriptive statistics presented in Table 7.2. It

was also possible to identify a sinusoidal pattern in both experimental variograms

which suggested a repetition of the spatial characteristics. The variograms presented a

monotonic increase in variance with increasing lag distance and fluctuated

periodically.

The values of range, sill and nugget obtained for the maximum distances analysed

showed that there were irregularities in the results obtained for some of the maximum

distances considered (Figure 7.4). The irregularities encountered occur for maximum

distances associated with a decreasing number of pairs of points. The range values

Figure 7.3: experimental variogram calculated for the Brazos (left) and the Sulphur (right) river sites.
Note that the maximum distance for which the variogram has been calculated is different for each
river site.
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obtained for maximum distances of analysis from 50 m to 600 m (Figure 7.4) showed

a more stable pattern than thase obtained for higher distances. A maximum distance of

150 m provided a good compromise between (i) the distance represented by the

variogram and (ii) the number of pairs of points obtained for the calculations. Table

7.3 shows the number of pairs of points and the variogram values obtained for a

maximum distance equal to (i) 150 m and (ii) the distance at which the maximum

number of points was encountered.

Table 7.3: range, sill Nugget and Number of Pairs of Points obtained for the variogram
calculated at two different distances; the distances at which the maximum number of pairs of
points is encountered and the reference distance (150 m)

River Site Range Sill Nugget NPP Distance
Sulphur 25.52 22.2 0 70494 150
Sulphur 39.13 32.19 0 87012 26
Brazos 75.23 1.73 0.016 292644 150
Brazos 68.69 1.63 0.013 371073 89

Figure 7.4: results obtained for the range when calculating the variogram for different
maximum distances. The lower images are a detail of the values represented in the upper
images.
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iii) Spectral Analysis

The periodogram, which is a measure of smoothness of the periodogram function, was

computed for several bandwidths (i.e. 1, 10, 20, and 50). The higher the bandwidth,

the less detail was provided by the periodogram (Figure 7.5). Bandwidth 1 represents

the raw periodogram, without smoothing. The bandwidth needs to be narrower than

the features that one wishes to reveal (Webster & Oliver, 2001). Choosing bandwidths

of 10 seemed to show the principal features of the periodogram most clearly whilst

the information provided by the raw periodogram was too detailed. The estimated

periodogram was judged rather too smooth when using bandwidths above 20.

Figure 7.5: example of periodograms obtained for different bandwidths (1, 10, 20 and 50). The
higher the bandwidth, the less detail is provided by the periodogram.
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Peaks in the periodogram were identified from sampled lengths of 20 m up to the total

sampled length. Figure 7.6 summarises the frequencies at which the peaks where

identified, the corresponding wavelength (number of sampling intervals) and the

extension of the cycle in terms of sampled river length for one of the longitudinal

profiles analysed for the Sulphur site. Since the variograms were calculated for lag

distances equal to 20 m and the periodograms were calculated with the variogram

results, the sampling interval of the periodogram corresponds to 20 m. Frequency was

transformed into sampled length through Equation 7.3, where L is the length of the

cycle (m) and F is the frequency.

L = (1/F) * 20 (7.3)

Thus, a peak identified at 0.014 cycles for the Sulphur river, corresponds to a

wavelength of 71.42 sampling intervals or 1428 m, each sampling interval being 20

m. Each peak identified corresponds to the wavelength of a cycle of the spatial pattern

defined by the variogram. The area under the spectrum curve represents the total

variance of the observations from their mean value (Nielsen & Wendroth, 2003).

Results indicated that it was possible to recognise specific spatial occurrences for the

longitudinal profiles analysed but that these occurrences were not common to both

river sites. For the Brazos site, depth seemed to follow a pattern of repetition every

750 m, 500 m, 170 m and 110 m. Cycles of repetition could also be observed at

smaller scales but they were not consistent between the analysed longitudinal profiles.

For the Sulphur river site it was possible to identify common patterns of repetition of

depth at 350 m, 87 m and 60 m.

The total length sampled for both river sites was divided into reaches of equal length.

The spatial occurrences identified by the spectral analysis were used for this purpose.

The pattern of repetition identified in the Brazos site at 750 m was not considered

since it only allowed the creation of two reaches for the Sulphur river site.
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7.3.2. Comparison of sampling reach length

The range, sill, nugget and objective function values were obtained for each training

data set and compared with those obtained for the original data set (maximum

distance = 150 m, lag distance = 1.5 m, azimuth tolerance = 60 and azimuth =

longitudinal direction). The number of points and the variogram values obtained are

shown in Table 7.4.

Results showed that for the Brazos river site reaches of 60 m, 87 m and 500 m length

provided the best fits for the variogram functions, as indicated by the objective

function value (Table 7.4). Thus, values of range, sill and nugget were closer to those

obtained for the reference variogram. Similar results were obtained for the Sulphur

river site (except for the 87 m reach length), where reaches of 350 m also presented a

relatively good fit of the variogram function. For both river sites intermediate reaches

of 110 m and 170 m provided irregularities in the modelling of the variogram function

Point number Cycle Wavelength Distance
1 0.05714 17.50 350.0
2 0.1285 7.78 155.5
3 0.2285 4.37 87.5
4 0.3285 3.04 60.8

Figure 7.6: periodogram obtained for one of the longitudinal profiles analysed in the Sulphur
river site. Values on the table show the cycle, wavelength and distance at which each peak has
been identified.
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(Figure 7.7). This may be explained by the fact that small distances (i.e. 60 m)

allowed the division of the reach length into many equally spaced reaches, which

provided a high number of pairs of points for all the lag distances of the variogram.

Thus, the variogram can be calculated with more accuracy. Figure 7.7 shows the

disturbances caused to the variogram when considering 60 m and 110 m length

reaches for the Sulphur river site. The peak observed was present in all the variograms

obtained for the Sulphur river site and it was always located at the lag distance that

corresponds to the reach length. Similar results were encountered for the Brazos river

site.

Table 7.4: range, sill and nugget values obtained for the variograms calculated for each of the
spatial scales identified.

River Reach length (m) Range Sill Nugget Objective
60 31.88 9.12 0 31928.4
87 102.47 6.98 1.16 47155.7

110 208.17 5.08 2.16 44709.3
170 75317648 1064486 2.56 69083.3
350 20.78 7.64 0 12652.9
500 19.97 2.65 0.37 10391.8

S
u

lp
h

u
r

Reference – 150 m 25.52 22.2 0 6966.2
60 90.74 1.27 0.017 31020.7
87 99.09 1.69 0.028 25341.8

110 2378321 10576.3 0 171029
170 2163754 16240.1 0 55897.0
350 175.21 0.62 0 64535.6
500 89.65 1.12 0.007 29308.7

B
ra

zo
s

Reference – 150 m 75.23 1.73 0.016 24742.1

Predictions of depth for the test data sets were not calculated since the statistical

packages used (Genstat and SPlus) were not able to apply kriging to the training data

sets. For example, the resulting SPLUS output indicated that the covariance matrix

was not positive defined while calling subroutine ssukrige. This indicated that not

enough neighbours were available for the prediction of depth values at non measured

locations. The sampled reaches were separated from each other a longer distance than

the variogram range value, the point at which the spatial correlation is lost. Thus,

predictions could not be calculated.
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Different results were obtained when using the geostatistical extension of ArcGIS 9.

Even though small differences were encountered between the range values fitted with

ArcGIS and the other software used, ArcGIS was able to predict depth values for the

test data sets by adjusting the area of the neighbourhood. This increased the number of

data points, creating a positive definite covariance matrix. However, there remained

the problem of lack of spatial correlation that was reflected as a high value for the

error estimated at that point. This means that even though (i) the spatial correlation

was lost at this point and (ii) the variance between pairs of points was constant, the

neighbours selected were different at each new calculation of the depth value. Thus, it

was still possible to observe some degree of variation in the predicted depth values

where a constant value of depth should be expected. As stated by (Burrough &

McDonnell, 1998), “the range of the variogram provides clear information about the

size of the search window that should be used. If the distance from the data point to an

unsampled point exceeds the range, then it is too far away to make any contribution; if

all data points are further away than the range, the best estimate is the general mean”.

Figure 7.7: spherical variograms obtained for the training data sets of sampling distances 60 m (top
left), 110 m (top right) and 500 m (bottom).



Chapter 7 193 Discussion & conclusions

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

Stochastic imaging (conditional simulation) helps to solve the problem (Journel 1996

in Burrough and McDonnell, 1998, Gomez Hernandez and Journel, 1992 in Burrough

and McDonnell, 1998 and Deutsch and Journel, 1992 in Burrough and McDonnell,

1998). It combines the data at the observation points with the information from the

variogram to compute the most likely outcomes as a function of the variogram

parameters.

Results obtained with ArcGIS were not analysed since it was impossible to determine

(or control) the methodology used within ArcGIS. Further studies are needed to

investigate and compare the methodologies in ArcGIS with other statistical software

packages.

7.4. Discussion and Conclusions

Application of spectral analysis allowed the detection of cyclical patterns in the

longitudinal spatial dimension at both river sites. The spatial lengths (scales) defined

by each cyclic pattern differ between river sites. This suggests that spatial scales

might not correspond to a fixed sampling distance and that they need to be defined

according to the characteristics of each river site.

The spatial scales identified for the Brazos and Sulphur river site with the spectral

analysis did not correspond to those identified with geostatistics. However, the cyclic

patterns corresponding to distances equal to 500 m coincide with the sampling

distance proposed for some methodologies, such as River Habitat Survey. This

indicates that the selection of reaches of 500 m could well be justified from a

statistical point of view. Note also that in previous studies, Ian Maddock (personal

comment) identified that the necessary distance to characterise the mesohabitats of a

river site was between 50 m and 100 m. The cyclic patterns identified every 60 m and

110 m correspond to the distances that Maddock identified as adequate for the

characterisation of habitat features.

Reaches equal to 60 m, 350 m and 500 m define variograms that better simulate

obtained with the original data sets. This suggests that these distances were more

adequate for the characterisation of depth spatial pattern at the Brazos and Sulphur
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river site. To determine whether these distances could be associated with a repetition

of patterns of hydromorphological features (e.g. mesohabitat and flow types), it was

suggested that the study be repeated and results compared with aerial photographs

taken during the data collection procedure.

Lack of information between measured reaches (i.e. non measured reaches that

separate two consecutive measured reaches) have a consequence on the variogram

calculation; variance values calculated for lag distances around the reach length break

the continuity of the variogram model, providing extremely high values of variance.

This is due to a decrease of the number of pairs of points available for these distance

intervals.

Geostatistics is not a suitable tool for the up-scaling of depth data (pattern) in rivers

since the spatial correlation of this parameter is lost at short lag distances (less than 80

m). In Chapter 5 it was concluded that there was a limitation regarding the sampled

length, which was less than 250 m for all the river sites. There was a possibility that

the spatial correlation between pairs of points was lost at higher distances than that

encountered but was not identified by the variogram due to the shortness of the

sampled reach. The lengths sampled at the Brazos and Sulphur river sites were long

enough to mitigate this problem. The spatial correlation for depth is lost for distances

smaller than 80 m, which determines the up-scaling distance for which predictions can

be obtained. The possibility of obtaining predictions for higher distances is available

in software packages like ArcGIS, where the neighbourhood area can be adapted to

the requirements and conditional simulations can be implemented. Further research

projects need to be developed in order to compare and determine the differences

between predictions obtained with different software packages.

Finally, it is suggested that further research be developed which concentrates on

developing a sinusoidal variogram function that models the spatial variance of the

data collected. This will provide higher accuracy for the predictions and a

characterisation of the spatial pattern for distances higher than the range determined

by the spherical model, allowing the up-scaling processes to be implemented for

larger distances.
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8.1. Introduction and objectives of Chapter 8

Hydromorphological variables may change in time as well as space. Temporal

changes can be caused by changes in discharge, changes in the sediment regime or

vegetation changes. There is a need to determine which areas of a river are more

sensitive to changes in discharge so that monitoring programmes can be designed

efficiently. The first objective of this study is to identify which mesohabitat types and

flow types better characterise hydromorphological changes due to variations in flow.

The second objective is to determine if mesohabitat types are better than flow types

for assessing hydromorphological changes associated to changes in discharge and the

third objective is to determine if the variogram is able to identify temporal changes

in depth due to changes in discharge.

8.2. The river sites and the data collected at each site

The Leigh Brook and the Windrush river sites were analysed (i) to determine changes

in hydromorphological parameters due to discharge variation and (ii) to study the

Temporal changes in rivers conditions affect results
from monitoring of hydromorphological variables. To develop
effective and efficient monitoring programmes it is necessary to
understand how the hydromorphological features change over
time. Little work has been developed on hydraulic functioning
of hydromorphological features. This chapter focuses on the
study of changes in hydromorphological parameters associated
with changes in discharge. The chapter aims to determine which
mesohabitat and flow types are more sensitive to discharge
change and whether the monitoring of mesohabitat types are
more relevant than flow types for this purpose. The chapter also
investigates the suitability of the variogram for quantification
of temporal changes in hydromorphology
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relationship between these changes and mesohabitat and flow types. The analysis of

the variogram at different discharges was carried out for the Cruick, Lambourn, Leigh

Brook, Bere, PangOld Fenced, Senni, Blackwater, Highland Water, Tame Highly

Modified, Tame Less Modified, Pang Fenced, Pang Unfenced, Windrush and Tarf. A

complete description of these river sites is presented in Appendix 1. Details of the

data collected and analysed are provided in the following sections.

8.3. Methodology

8.3.1. Hydromorphological changes due to variations in discharge for the Leigh

Brook site.

Depth, substrate, velocity, mesohabitat and flow types were measured at the Leigh

Brook river site for two different discharges: Q1 = 0.52 m3s-1 and Q2 = 0.34 m3s-1. A

total of 2583 points were selected from the original data set for this analysis. The

analysis of those points that dried out when decreasing the discharge was developed

separately. The variables included in the analysis were defined by the rate of change

encountered between the two discharges and were: mesohabitat change, depth change,

velocity change, flow change and Froude number change (Table 8.1). Depth, velocity,

Froude number and flow type were measured at each single point. Mesohabitat was

determined for each cross-section by analysing the dominant mesohabitat type. Cross-

sections were separated 1 m in the downstream direction. Points across each cross-

section were collected at 0.5 m intervals.

Table 8.1: parameters identifying change that were included in the data analysis of Chapter 8.
Note that the categories for the flow type change were quantified according to the code given to
each type.

Parameter Data Type Units Codes Categories
Froude
changes

Continuous - - -

Depth
changes

Continuous m - -

Velocity
changes

Continuous ms- 1 - -

Habitat Type
Change

Binary - DG=Deep Glide; SG=Shallow Glide;
RI=Rippled; POOL=Pool

0=no change; 1=Habitat Change

Flow Type
Changes

Categorical - 1=No flow (NO); 2=No perceptible
flow (NPF);3=Smooth (SM);
4=Rippled (RP); 5=Unbroken
Standing waves (UW); 6=Broken
standing waves (BW); 7= Boulder
(BO – no flow type characterisation)

0=no change; 1=increase of flow
intensity of 1 unit, -1=decrease of
flow intensity of 1 unit, 2=
increase of flow intensity of 1
unit, -2=decrease of flow intensity
of 1 unit
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Two different situations were considered in this analysis: one identifying the changes

from Q1=0.52 m3s-1 to Q2=0.34 m3s-1 and a second characterising the

hydromorphological changes from Q2 to Q1. The first study was developed by taking

the categorical parameters of the Q1 as a reference, whilst the second study used those

at Q2. The relationships between the different quantitative parameters measured

(velocity, depth and Froude change) and the categorical parameters (habitat and flow

type) were established through the application of multiple regression techniques

(general linear model). Descriptive statistics (QQ plots, histograms, Kolmogorov-

Smirnov test and Chi-squared test) were calculated for each parameter to determine

whether it was necessary to standardise the data set.

Discriminant function analysis was carried out to determine which variables among

velocity change and depth change discriminated between the (i) mesohabitat and (ii)

flow types encountered at Q2. The variables included in the discriminant analysis are

shown in Table 8.1. Each variable was standardized (i.e. normalised) prior to

discriminant analysis. Maps of velocity, depth, Froude number, mesohabitat and flow

type changes were created in order to associate the spatial distribution of quantitative

parameters with mesohabitat and flow type changes.

The analysis for the Windrush site was developed to compare the results with those

obtained for the Leigh Brook study explained above. Data were collected following

the same methodology applied at the Leigh Brook river site (except for the fact that

cross-sections were separated 2 m in the downstream direction instead of 1 m).

Mesohabitat type, flow type and substrate were the categorical variables measured.

Mesohabitat types identified were Riffle (RI), Shallow Glide (SG), Deep Glide (DG)

and Pool. Flow types identified were Ripple (RP), Smooth (SM), No perceptible flow

(NPF) and Unbroken standing Waves (UW). Substrate types identified were Gravel

(G), Silt (SI), Sand (SA), Clay (CL) and Cobble (CO). Only depth was recorded as a

quantitative variable. Points across each cross section were collected at 1 m intervals.

Data were collected at two different flows: Q1 = 1.4 m3s-1 and Q2 = 0.53 m3s-1 along a

105 m reach. The cross-sections were not marked in the field and so, the location of

the points collected at the two discharges did not match. Information from the first

discharge was extrapolated to those points collected during the second discharge. The

methodology applied for this purpose was based on the digitisation of polygons that
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identified the mesohabitat types, flow types and substrate types of the data collected at

the first discharge. The polygons were independently created for each criterion and

were digitised with ArcGIS. Points collected during the second discharge described

the habitat, flow and substrate type of the polygon in which they were included. Thus,

each point of the data sets associated to the second discharge had two values of depth

and two values of each categorical variable (mesohabitat, flow and substrate type)

corresponding to the first and the second discharge. A total of 366 points, defining 42

cross-sections, were analysed. The methodology for the data analysis was the same

for both the Leigh Brook and the Windrush.

Note that values representing Q1 were obtained through the digitisation of polygons.

These values might not represent the situation encountered during Q1 since they were

a product of an extrapolation methodology. Conclusions were drawn having regard to

this limitation

8.3.2. The variogram as a tool to detect temporal changes

The variogram of depth was calculated for different discharges at each river site to

analyse whether the range, sill and nugget were sensitive to changes in discharge. A

plot relating discharge with each variogram model parameter was presented and

conclusions were drawn having regard to results obtained in previous chapters. The

analysis was carried out for (i) wet points and (ii) wet and dry points at each river site,

wet points being those that had positive depth and dry points those whose depth value

was negative. Note that the number of wet points decreased when decreasing the flow

and therefore, changes in the variogram values may be due to this rather than to a

sensitivity of the variogram to a change in discharge.

Values of depth used for the Windrush river site were simulated with the SSIIM CFD

hydraulic model (Olsen, 1996; Olsen 2000) by staff at CEH. The model used a finite

difference approach to solve the three-dimensional Navier-Stokes equations, with a

two-equation k-turbulence closure model. The model had previously been applied to

simulate hydraulics in several natural rivers (Olsen and Stokseth, 1995; Booker et al.,

2001; Harby and Alfredsen, 1998; Booker, 2003; Booker et al., 2004b). A calibration

process was used to set roughness height (e.g. Booker 2003) by comparing observed
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and calculated water surface elevations at a discharge of 1.1 m3s-1. This method

assumes that there are no significant spatial changes in roughness. A roughness height

of 0.1 m gave an average difference between observed and calculated of -0.00015 m

for 20 measurements of water surface elevation. Having been calibrated using data

from a high discharge the model was then run using the same value of roughness

height for a discharge of 0.61 m3s-1 and compared with 173 measurements of water

surface elevation distributed throughout the reach. For this independent test of the

roughness calibration 82% of the predictions were within 0.025 m of their

corresponding observations. The procedure was repeated again for a discharge of

0.75 m3s-1 using 136 measurements. For this simulation 90% of measured water levels

were predicted to be within 0.025 m. The biggest differences between observed and

calculated water levels for all simulations were under predictions of water level at

discrete locations on a riffle.

8.3.3. Analysis of river width

Changes in channel width due to changes in discharge were analysed for the four

discharges simulated at the Windrush river site (0.61 m3s-1, 0.75 m3s-1, 1.14 m3s-1 and

1.37 m3s-1). Width was obtained at 586 cross-sections for the four discharges. The

value of width at each cross-section was graphically compared between discharges.

Differences encountered were analysed in relation to the morphological characteristics

(e.g. channel shape, location of the cross-section in relation to the meander bend) at

the site. Results were interpreted taking into account that the data was the product of a

modelled environment and not field data

8.4. Results

8.4.1. Hydromorphological changes due to variations in discharge for the Leigh

Brook river site.

1. Descriptive statistics

The QQ plots and histograms obtained for the depth, velocity and Froude number

collected for the first discharge and for the quantitative variables characterising the
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hydromorphological changes (depth change, velocity changes and Froude changes)

indicated that the variables did not follow a Normal distribution. The Kolmogorov-

Smirnov and Chi-square test provided evidence to reject the null hypothesis of

Normality for all parameters tested.

Values of descriptive statistics for the continuous parameters are presented in Table

8.2. It is necessary to note that the two discharges analysed correspond to typical low

flow conditions and so, the changes in hydromorphological parameters were not

considerable (Table 8.2); only 9% of the data points changed their mesohabitat type

and 39% their flow type (Figure 8.1). The values of change in depth, velocity and

Froude Number were obtained as the difference between the value of the variable at

Q2 and the value of the variable at Q1. In this way, positive values of change always

indicated an increase of depth, velocity or Froude number, and negative values of

change indicated a decrease in these parameters.

Table 8.2: descriptive statistics for the continuous parameters measured at the Leigh Brook river
site. Values of change in depth, velocity or Froude Number were calculated considering an
original discharge = 0.52 m3s-1 and a final discharge = 0.34 m3s-1 (decrease in discharge). Positive
changes indicated an increase of the value of the parameter and negative changes a decrease.

Parameter Mean Median Minimum Maximum Std.Dev. Skewness Kurtosis
Depth Change (m) -0.039 -0.04 -0.50 0.58 0.06 0.5 7.9
Velocity change (m3s-1) -0.057 -0.04 -1.12 0.98 0.16 -0.04 6.5
Froude Change -0.014 -0.01 -0.91 1.27 0.13 1.1 12.6
Depth 1st Flow (m) 0.245 0.21 0.00 0.94 0.15 0.8 0.7
Velocity 1st Flow (m3s-1) 0.294 0.25 -0.39 1.53 0.25 0.8 0.9
Froude 1st Flow 0.212 0.16 -0.00 1.19 0.19 1.4 2.6
Depth 2nd Flow (m) 0.206 0.18 0.00 0.85 0.15 0.8 0.4
Velocity 2nd Flow (m3s-1) 0.237 0.18 -0.24 1.51 0.23 1.1 1.8
Froude 2nd Flow 0.196 0.13 -0.00 1.35 0.21 1.8 4.0

Histograms were plotted in order to determine which mesohabitat and flow types were

more prevalent at the Leigh Brook river site. Results (Figure 8.2) showed that shallow

glides and riffles were the dominant mesohabitat types identified and rippled surfaces

were the most common surface flow types for both discharges.

Figure 8.3 shows the mesohabitat types and flow types that were more affected by the

discharge change; mesohabitat changes were considered equal to 1 when a change

appeared and equal to 0 when no change was registered whilst the rate of flow change

was calculated as the difference between flow type codes (positive changes indicated
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Figure 8.2: histograms obtained for the categorical parameters (habitat (left) and flow (right)
types identified for Q=0.52 m3s-1). Results obtained for the first discharge (Q=0.344 m3s-1) did
not present significant differences to those obtained for the second discharge. Table 8.1
summarises the flow type classification. SG = Shallow Glide, RI = Riffle and DG = Deep Glide.
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Figure 8.1: histogram and percentage of mesohabitat (left) and flow type (right)
identified at the Leigh Brook river site. For the mesohabitat change: 0 is equal to no
change and 1 indicates change. For the Flow type change: 0 indicates no change and 1,
2, -1, -2 indicate change of flow category, the category being indicated by the code in
Table 8.1.
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The majority of the mesohabitat changes were in deep glides when decreasing the

discharge. Three significantly different groups could be distinguished for the flow

types: (1) unbroken standing waves & broken standing waves group, (2) smooth &

rippled group and (3) no perceptible flow group. Higher changes were identified in no

perceptible flow and rippled smooth flow types, which were strongly associated to the

habitats identified with the highest rates of change (deep-shallow glide and pool

mesohabitat types). Note that the plots shown in Figure 8.3 represent the mean and its

95% confidence interval and they were not the result of an analysis of variance. The

flow and mesohabitat types in Figure 8.3 correspond to those identified for Q1

(0.52m3s-1).

Table 8.3 shows the percentage of points that changed from one mesohabitat type to

another when increasing/decreasing the flow. The majority of habitats that changed

when decreasing the discharge are transformed into shallow glides, those changes

being more frequent from deep glides. Additionally, the discharge increment

transformed the majority of affected points into shallow and deep glides. Thus, for

these data, discharge increments transformed shallow areas into deeper and more

smooth habitats (shallow & deep glides), whilst discharge decrements mainly

transformed deep areas (deep glides & pools) into shallower and less smooth habitats

(shallow glides). Comparing these results with these obtained in Figure 8.3 it was

possible to conclude that when the discharge decreases the deepest areas (deep glides

and pools) experienced higher changes whilst, when the flow increases, shallow areas

(riffles-shallow glides) were more affected.

Figure 8.3: mean plot for mesohabitat (left) and surface flow type (right) changes. See Table 8.1 to identify the
flow type codes. Vertical lines denote 95% confidence interval. Note that these plots represent the mean and the
95% confidence interval and they are not the result of an analysis of variance (i.e. the plots represent the raw
data). Points included in the flow and mesohabitat type categories correspond to those identified as such for
Q1=0.52m3s-1 .
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Table 8.3: percentage of points that change from the original mesohabitat to
the mesohabitat at altered flow for the Leigh Brook river site.

Original Situation Q=0.52 m3s- 1

Deep Glide Pool Riffle Shallow Glide
Deep Glide 58 - - -
Pool - 90 - -
Riffle 3 - 97 6

Final
Situation

Q=0.34m3s-1

Shallow glide 39 10 3 94
Original Situation Q=0.34 m3s- 1

Deep Glide Pool Riffle Shallow Glide
Deep Glide 100 - - 7
Pool - 100 - 3
Riffle - - 91 2

Final
Situation

Q=0.52m3s-1

Shallow glide - - 9 88

Figure 8.4 shows that flow type usually increased when increasing the discharge and

decreased the intensity when decreasing the discharge. Table 8.4 and Table 8.5 show

the percentage of points that changed flow type when changing the discharge;

increments of discharge (Table 8.5) transformed smooth and broken standing waves

into rippled flow type and unbroken standing waves into smooth flow type. Table 8.4

shows the result of discharge decrements; rippled areas were transformed into no

perceptible and smooth flow types, whilst smooth flow type was converted into no

perceptible/rippled/unbroken standing waves. It is important to note that discharge

changes in one direction (increase or decrease) produced flow type changes in two

directions (increase and decrease of categorical value of flow type).

Figure 8.4: change of flow type from the original to the final situation. Negative values of change
indicate a decrease on the intensity of flow type, whilst positive values indicate the opposite. Q1=
0.34 m3s-1 and Q2 = 0.52 m3s-1.
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Table 8.4: percentage of points that change from the original flow type (Q=0.52m3s- 1) to the flow
type at reduced discharge (Q=0.34m3s-1) for the Leigh Brook river site.

Original Situation Q=0.52 m3s-1

No
flow
(NO)

No perceptible
flow

(NPF)

Smooth
(SM)

Rippled
(RP)

Unbroken
Standing

(UW )

Broken
Standing

(BW)
BO

NO 0 0 0 0 0 0 0
NPF 0 83 27 2 0 0 0
SM 0 11 36 12 0 0 0
RP 0 6 14 85 0 0 0
UW 0 0 23 0 100 0 0
BW 0 0 0 1 0 100 0F

in
al

S
it

ua
ti

on
Q

=
0.

34
m

3 s-1

BO 0 0 0 0 0 0 100

Table 8.5: percentage of points that change from the flow type at the original (Q=0.34m3s- 1) to
the flow type at increased discharge (Q=0.52m3s-1) for the Leigh Brook river site.

Original Situation Q=0.34 m3s-1

No
flow
(NO)

No perceptible
flow

(NPF)

Smooth
(SM)

Rippled
(RP)

Unbroken
Standing

(UW )

Broken
Standing

(BW)

BO

NO 0 0 0 0 0 0 0
NPF 0 26 1 0 0 0 0
SM 0 35 30 1 13 0 0
RP 0 39 69 99 0 8 0
UW 0 0 0 0 87 0 0
BW 0 0 0 0 0 92 0F

in
al

S
it

ua
ti

on
Q

=
0.

52
m

3 s-1

BO 0 0 0 0 0 0 100

2. General Linear Model Analysis

The analysis of variance was based on the following hypotheses:

Ho: the classes of each categorical parameter have the same rate of change for a

specific hydromorphological variable (i.e. depth, velocity or Froude number).

H1: the classes of each categorical parameter do not have the same rate of change

(there is at least one difference between them) for a specific hydromorphological

variable (i.e. depth, velocity or Froude number).

The General Linear Model analysis tested the hypothesis between one categorical

parameter and one quantitative parameter, creating the combination of tests presented

in Table 8.6. The results indicated that the null hypothesis could be rejected for the

following analysis when considering Q2=0.34 m3s-1 as the reference discharge to

classify flow and mesohabitat types: depth vs. mesohabitat type, velocity vs.

mesohabitat type, velocity vs. flow type and Froude number vs. mesohabitat type. If
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discharge Q1=0.52 m3s-1 was considered for the classification, the null hypothesis was

only rejected for the depth changes vs. flow type analysis (p=0.0053).

Table 8.6: analysis of variance between categorical and continuous
parameters after standardisation. Red coloured p-values indicate
rejection of null hypothesis.

Velocity change Depth Change Froude Num. Change
Habitat Type 0 0 0.0029
Flow Type 0 0.1456 0.571

Figure 8.5 shows the LS means plot (plot of the least squares means which are the

best linear-unbiased estimates of the marginal means for the design) obtained for the

standardised parameters included in these analyses (mesohabitat and flow types

classified according to Q2=0.34 m3s-1). The LS mean plot of depth change vs.

mesohabitat showed that depth changes were significantly different between deep

glides and shallow glides, whilst pools and riffles did not present significant

differences between them. Deep glides presented the higher depth changes followed

by shallow glides. Deep glides could not be considered significantly different to riffles

and pools, whilst shallow glides represented differences from both, riffles and pools.

The mean depth changes were located between 0.037 m (riffles) and 0.048 m (shallow

glide) (Table 8.7).

Since (a) the group made up of pool-riffles did not experience large depth changes

with flow and (b) deep and shallow glides presented higher depth changes than the

rest of the mesohabitat types, it was possible to conclude that depth changes for the

Leigh Brook river site were mainly located at deep and shallow glides, which usually

are habitats that link pools and riffles. Similar results were obtained when considering

Q1=0.52 m3s-1 as the reference discharge for the mesohabitat and flow type

classification.

Figure 8.5 shows two significantly different groups regarding velocity changes (Q2 =

0.34 m3s-1 was considered for the mesohabitat and flow type classification): the first

one constituted by deep glides and riffles and the second one with pool and shallow

glides. The results indicated that shallow and deep glides were those mesohabitat

types that alternatively represented the maximum and minimum changes for the

different quantitative parameters analysed. Velocity changes seemed to follow an
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inverse pattern to depth changes; mesohabitat types that presented higher changes in

depth did not have significant changes in velocity. The opposite situation was

encountered when analysing mesohabitat types with small depth changes. Since

shallow and deep glides were never included in the same group, it was possible to

consider them as the extremes of the hydromorphological changes. Pools and riffles

switched between extremes according to the parameter analysed, but it is difficult to

establish a pattern in their grouping preferences.

Table 8.7: descriptive statistics for the different parameters of change
grouped by mesohabitat types encountered at discharge = 0.52 m3s-1 at
the Leigh Brook river site. None standardised parameters.

Descriptive Stat. Shallow glide Riffle Pool Deep glide

Absolute Mean 0.048 0.037 0.039 0.026
Absolute Maximum 0.33 0.37 0.58 0.19

Depth
Change

(m) Std. Dev. 0.05 0.053 0.07 0.048
Absolute Mean 0.045 0.076 0.036 0.089
Absolute Maximum 0.762 1.12 0.780 0.707

Velocity
Change
(m3s-1) Std. Dev. 0.105 0.205 0.198 0.115

Absolute Mean 0.008 0.011 0.017 0.044
Absolute Maximum 0.838 1.273 0.486 0.388

Froude
Number
Change Std. Dev. 0.089 0.198 0.103 0.067

Figure 8.5: mean plots with 0.95 confidence interval obtained for the standardised parameters. Vertical lines
denote the 95% confidence interval. Codes can be obtained from Table 8.1. Flow types are represented on
the right bottom corner. The types represented correspond to those encountered at discharge 0.34 m3s- 1.
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Changes in Froude number encountered when considering Q2=0.34m3s-1 as a

discharge reference for the mesohabitat and flow type classification, were different

between at least two mesohabitat types (Table 8.2 and Figure 8.5). Pools, riffles and

shallow glides did not present significant differences. Deep glides were different to

the rest of the mesohabitat types although there was some overlapping between this

mesohabitat and pools. Maximum Froude number changes were identified in deep

glides and minimum changes in shallow glides, which supports the observations noted

earlier regarding the representation of extremes values by these two mesohabitat

types.

Depth and Froude number changes were not significantly different between flow

types (Table 8.6) if Q2=0.34 m3s-1 was considered as the discharge reference for the

mesohabitat and flow type classification. However, there were significant differences

between flow types for the velocity change (Figure 8.5); unbroken standing waves

were significantly different to the rest of the flow types which did not present

significant differences between them. Differences between flow types were also

encountered for depth changes when considering Q2 =0.52 m3s-1 as a discharge

reference for the mesohabitat and flow type classification (Figure 8.6). However, the

overlapping between flow types was considerable and just rippled flow type could be

considered significantly different to the rest (except flow type 7).

Figure 8.6: mean plot for flow type changes vs. depth change.
Flow change from 0.52 m3s-1 to 0.34m3s-1. See Table 8.1 to
identify the code for each flow type. Vertical bars denote 95 %
confidence interval.
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Since mesohabitat types were able to identify changes in depth and velocity whilst

flow types just determine differences in velocity, mesohabitat types seemed a better

tool for rapid habitat assessment as more information could be extracted from their

classification. Further studies should be carried out to determine the relationship

between flow type and velocity; velocity measurements are time consuming and it

would be necessary to determine if it is possible to establish a relationship between

flow type (visually identified) and velocity at 0.6 x depth.

1. Factorial analysis.

The factorial General Linear Model designs contain variables representing

combinations of the levels of 2 or more categorical predictors (e.g: the study of depth

changes in relationship to mesohabitat and flow types, resulting in a 4 (habitat types)

x 6 (flow types) design). The combinations studied were those between each of the

continuous parameters (depth changes, velocity changes or Froude number change)

and the 2 categorical ones (habitat type and flow type). The null hypothesis tested was

H0 = the classes of each combination of categorical parameters (i.e. flow type and

mesohabitat type) have the same rate of change for a specific hydromorphological

variable (i.e. depth, velocity or Froude Number). The combinations that gave evidence

for rejecting the null hypothesis were: depth changes vs. mesohabitat x flow types (for

Q2=0.34m3s-1), Froude changes vs. flow x mesohabitat type (for Q1=0.52m3s-1) and

velocity changes vs. flow x mesohabitat type (for Q1=0.52m3s-1) (p<0.05 in all cases).

Figure 8.7 shows the factorial combinations that gave evidence for rejecting the null

hypothesis. Velocity changes were different between mesohabitat types for flow type

4 (rippled) and flow type 5 (unbroken standing waves). Rippled surfaces showed three

significantly different groups when analysing the velocity changes; (1) deep glides &

riffles,
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Figure 8.7: Mean plot of factorial general linear model
analysis for the continuous standardised parameters vs.
the combination of mesohabitat x flow type. Vertical
bars denote 95% confidence interval. Codes for flow
type are explained in Table 8.1. Classification of
mesohabitat and flow types have been obtained
according to Q1=0.52m3s-1 for velocity and Froude
number changes and Q2=0.34m3s-1 for depth change.
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(2) pools and (3) shallow glides. Rippled surfaces presented higher changes of

velocity in pools and deep glides, the small changes being represented by riffles

habitats. Unbroken standing waves showed two significantly different groups; (1)

pools and (2) shallow glides & riffles. The amplitude of the confidence interval for

deep glides did not allow this mesohabitat type to be included into any of the previous

groups. Maximum velocity changes were presented in pools and deep glides.

Depth changes were different between mesohabitat types for smooth, rippled and

unbroken standing waves. Smooth surfaces showed two significantly different groups;

one made up of riffles and the other of shallow glides. Riffles showed higher depth

changes than shallow glides and pools, the latter being the mesohabitat with smallest

changes. Mesohabitat types in rippled surfaces were distributed in three groups: (1)

deep glides, (2) pools & riffles and (3) shallow glides. The first mesohabitat type

showed higher depth changes whilst shallow glides did not seem to be affected.

Finally, unbroken standing waves showed two groups: (1) pools and (2) shallow

glides & riffles, the first group being the one with higher depth changes.

Froude number changes were just identified for flow type 5 (unbroken standing

waves). The parameters were distributed in two significantly different groups: (1)

riffles and (2) pool & deep glides - the latter with higher Froude number changes.

General observation from the factorial analysis can be summarised in the following

points:

Just unbroken standing waves, smooth flow and rippled surfaces showed

differences in the changes of the continuous parameters when grouping them by

mesohabitat types. Habitats with these flow types showed the highest proportion

of temporal change.

Shallow and deep glides always presented opposite rates of changes when

differences were detected and thus, they were always included in significantly

different groups. However, they did not identify the extremes of the classification

as in previous analysis.
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2. Discriminant Analysis.

Table 8.8 shows the classification functions obtained for the discriminant analysis

carried out with depth change and velocity change as independent variables and

mesohabitat types at Q2 as grouping variable. The classification function can be used

to determine to which group a new observation will belong. In this case, for example,

it would be possible to determine to which mesohabitat type the new observation

belongs after considering the values of velocity and depth change. The classification

scores are calculated for this purpose and are the result of applying the classification

function to the values of depth and velocity change observed. Once the classification

scores have been computed, the case (new observation) is classified as belonging to

the group that presents higher classification score. Velocity and depth change showed

similar values of coefficients in the classification function (except for shallow glides,

where depth change presents a higher coefficient), which meant that both variables

were equally relevant for the prediction of the mesohabitat type at which they

belonged in Q2. The percentage of points classified correctly when applying the

classification function was equal to 96.4% for deep glides, 4.2% for riffles and 0% for

shallow glides and pools.

Table 8.8: coefficients for the classification functions for
mesohabitat types encountered at Q2 . Classification scores are =
Depth Change coefficient *(depth change) + (velocity change
coefficent *(velocity change) + constant.

Discriminant
Groups

Coefficients

Shallow Glide
p=0.50

Riffle
p=0.32

Pool
p=0.12

Deep Glide
p=0.04

Depth Change -0.131 0.088 0.108 0.478
Velocity Change 0.074 -0.095 0.106 -0.393

Constant -0.702 -1.119 -2.115 -3.212

Table 8.9 shows the classification functions obtained for the discriminant analysis

carried out with the flow types encountered at Q2 as grouping variable and depth

change and velocity change as independent terms. Results showed that the

coefficients obtained for velocity changes for Unbroken standing Waves (UB) and

Broken standing Waves (BW) were higher than those encountered for depth change.

These results were consistent with those obtained for the General Linear Model

analysis in section 8.4.1-2. Results obtained for the classification of new observations
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need to be interpreted carefully for the flow type grouping criteria since the

percentage of points correctly classified with the functions provided in Table 8.9 were

0% for all the flow types except for ripples (100%).

Table 8.9: coefficients for the classification functions for the
mesohabitat types encountered at Q2. Classification scores are = Depth
Change coefficient *(depth change) + (velocity change coefficent *
(velocity change) + constant. See Table 8.1 for flow type codes.

Discriminant
Groups

Coefficients

NPF
p=0.045

SM
p=0.12

RP
p=0.70

UW
p=0.09

BW
p=0.03

Depth Change -0.290 -0.143 0.0427 -0.059 0.164
Velocity Change 0.348 0.134 -0.0372 -0.124 0.193

Constant -3.196 -2.151 -0.3557 -2.329 -3.371

Maps of rate of change were produced for the categorical values and compared with

the spatial distribution of mesohabitat and flow type parameters (Figure 8.8 to Figure

8.11).

.

Q1=0.52 m3s-1 Q2=0.34m3s-1
Figure 8.8: mesohabitat types identified at the two different flow rates, Leigh Brook
Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006
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Q1=0.52 m3s-1 Q2=0.34m3s-1
Figure 8.9: flow types identifies at the two different flow rates, Leigh Brook.
Mon

Original
ica Rivas Casado Cranfield University at Silsoe PhD Thesis 2006

Figure 8.10: points where mesohabitat type changes where detected (red), Leigh Brook.
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Analysis of dry points

A total of 175 points presented dry conditions during the second monitoring field

work. Results presented in this section include only those points that became dry

when decreasing the discharge (from Q1 to Q2).

Riffles were the most frequent mesohabitat type to become dry for both discharges,

followed by pools and shallow glides. Figure 8.12 shows the histograms of the

mesohabitat types encountered for each discharge. Riffles and Pools were the

mesohabitat types that had their cross-section more affected by a decrease in the

discharge. Only 11 points from the 175 analysed changed their mesohabitat

characterisation when decreasing the discharge, all of them being transformed from

pools to shallow glides. No other changes were identified.

Figure 8.11: points where flow type changes where detected (red), Leigh Brook.

Original
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The mean value of depth change (depth Q2 – depth Q1) was equal to -0.0023 m, with a

variance of 0.00048, a maximum difference of 0.1 m and a minimum difference in

depth equal to -0.06 m. The distribution of depth change was slightly skewed to the

left (skewness coefficient = -0.8) and highly peaked (kurtosis = 28.74).

Figure 8.13 shows the histogram of the flow types encountered for the 175 points

analysed. Rippled, Smooth and No Perceptible Flow were the flow types that were

more likely to become dry for this decrease in discharge, becoming dry when this

happened.

Figure 8.13: histograms of the flow types that become dry when
decreasing the discharge. 1=No Flow, 2=No Perceptible Flow,
3=Smooth, 4=Rippled, 5=Unbroken Standing Waves and 6=Broken
Standing Waves.

Figure 8.12: histogram of the mesohabitat types that become dry when
decreasing the discharge (Habitat type 1) and histogram of the haitat
types for the same points at the second discharge (Habitat type 2).
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8.4.2. Hydromorphological changes due to variations in discharge for the

Windrush river site.

1. Descriptive statistics

Results obtained for the Kolmogorov-Smirnov and Chi-square Normality tests

showed that depth at discharge Q1 = 1.4 m3s-1, depth at discharge Q2 = 0.53 m3s-1 and

change of depth from Q1 to Q2 did not follow a Normal distribution (p-value<0.01).

Values of skewness and kurtosis indicated that it could be accepted that the data

followed a Normal distribution, except for the variable depth change, where the

kurtosis exceeds 3 units. This means that the distribution had a distinct peak near the

mean, had heavy tails and declined rather rapidly. The QQ-plots and histograms

analysed indicated that the distribution for these data sets approximated to Normal but

failed to pass the Chi-square and Kolmogorov-Smirnov test (see skewness and

kurtosis values in Table 8.2 and compare them with those obtained in Table 8.10),

even for the variable depth-change. No transformation was applied for the

implementation of General Linear Models; it will be assumed that depth distribution

is Normal.

Table 8.10 summarises the values of descriptive statistics obtained for the Windrush

river site. The change of discharge produced a decrease in mean depth equal to 0.07

m. Maximum and minimum depth changes were equal to 0.73 m and -0.42 m,

respectively.

Table 8.10: descriptive statistics for the continuous parameters measured at the Windrush river
site. First flow corresponds to 1.4 m3s-1 and second flow to 0.53 m3s-1.
Parameter Mean Median Minimum Maximum Std.Dev. Skewness Kurtosis
Depth 2nd Flow (m) 0.39 0.29 0.00 1.40 0.32 0.93 0.06
Depth 1st Flow (m) 0.45 0.39 0.09 1.15 0.26 0.87 -0.07
Depth Change (m) 0.07 0.08 -0.42 0.73 0.13 -0.13 3.48

Figure 8.14 shows the histograms for each qualitative variable characterised at both

discharges. Mesohabitat types encountered were mainly represented by shallow glides

followed by deep glides for both discharges. Riffles only appeared for the first

discharge whilst pools only appeared for the second discharge. Thus, the system was

mainly dominated by a sequence of deep and shallow glides, with a few pools and

riffles.
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Figure 8.14: histograms obtained for the qualitative variables measured at the Windrush river site for both discharges
Q1=1.4 m3s-1 and Q2 = 0.53 m3s-1. The codes used are as follow: SG=Shallow Glide, DG=Deep Glide, RI=Riffle,
BW=Broken standing waves, UW=unbroken standing waves, RP=rippled, ED=edge, SM=smooth NPF=no perceptible
flow, BO=Boulder, CO=Cobble, GR=Gravel, SI=Silt, CL=Clay and SA=Sand.
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165 points of 366 (45%) presented change of mesohabitat type between discharges.

Table 8.11 and Table 8.12 show the percentage of points that changed from one class

to another for both discharges. The mesohabitat types that showed the highest

percentage of change were pools for a decrease in discharge (Table 8.11) and riffles

for an increase in discharge (Table 8.12). This did not coincide with the results

obtained for the Leigh Brook river site, where shallow and deep glides were the

mesohabitat types showing highest percentage of change. A decrease in discharge

(Table 8.11) transformed deep glides into shallow glides, pools into both, deep and

shallow glides and shallow glides into riffles. An increase in discharge transformed

deep glides into pools, riffles into shallow glides and shallow glides into deep glides

or pools. Results suggested that the sequence of mesohabitat type changes went from

pool to deep glide to shallow glide and to riffle when decreasing the flow and in the

opposite direction when increasing the flow. The sequence was respected except for

the relationship pool-shallow glide; some points collected in pools became shallow

glides instead of deep glides when decreasing the flow and some shallow glides

became pools when increasing the flow.

Table 8.11: percentage of points that change from the original
situation mesohabitat (Q=1.4 m3s-1) to the mesohabitat at the final
situation (Q=0.53m3s-1 ) for the Windrush river site.

Original Situation Q=1.4 m3s-1

Deep Glide Pool Shallow Glide
Deep Glide 70 75 0
Riffle 0 1 34
Shallow glide 30 24 66

Final
Situation

Q=0.53 m3s-1

Total Num. Points 93 68 205

Table 8.12: percentage of points that change from the original situation
mesohabitat (Q=0.53m3s-1) to the mesohabitat at the final situation (Q=1.4
m3s-1 ) for the Windrush river site.

Original Situation Q=0.53 m3s- 1

Deep Glide Riffle Shallow Glide
Deep Glide 56 0 16
Pool 44 1 8
Shallow glide 0 99 76

Final
Situation

Q=1.4 m3s-1

Total Number of points 116 70 180

Flow types (Figure 8.14) observed were mainly characterised by rippled and smooth

areas. Broken standing Waves (BW) were the only flow type present only in one data

set (second discharge). Unbroken Standing Waves (UW), Rippled (RP), Smooth (SM)

and No Perceptible Flow (NPF) were present for both river discharges and did not
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change their proportions considerably. Note that for the second discharge it was

possible to observe Edge (ED) points (9 points) which were not present for the first

discharge. The river width at the first discharge was higher than the river width for the

second discharge and thus, there were not dry points for the second discharge. “Edge”

points were not considered for the data analysis.

A total of 147 data points (40%) changed their flow type due to the changes in

discharge. Table 8.13 and Table 8.14 show the percentage and total number of points

that changed from one flow type to another when increasing and decreasing the

discharge. Decrease in discharge generated a change of smooth flow type into rippled,

no perceptible flow into rippled, rippled into smooth and unbroken standing waves

into broken standing waves. Increase in discharge produced a change from no

perceptible flow to rippled, smooth to rippled, rippled to smooth and unbroken

standing waves to ripple. Broken standing waves were not analysed since there were

just two points representing this flow type. The pattern identified for flow types was

not as clear as that identified for mesohabitat types and thus, it was difficult to define

a sequence of change for increase and decrease in discharge. This lack of pattern

might be a result of the methodology applied to obtain information at the same

locations for both discharges but since similar results were encountered for the

previous analyses at the Leigh Brook river site, it can be concluded that mesohabitat

types are a better tool to predict how a change in discharge is going to affect a river

site and how the different hydromorphological features are going to be distributed.

Table 8.13: percentage of points that change from the original flow type (Q=1.4 m3s-1) to the flow
type at the final situation (Q=0.53 m3s-1) for the Windrush river site.

Original Situation Q=1.4 m3s-1

No perceptible flow
(NPF)

Smooth
(SM)

Rippled
(RP)

Unbroken Standing
(UW )

NPF 89 3 6 0
SM 0 67 29 0
RP 11 25 55 7
UW 0 5 10 67
BW 0 0 0 16

F
in

al
Si

tu
at

io
n

Q
=

0.
53

m
3
s-1

Total Number of points 9 159 183 6
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Table 8.14: percentage of points that change from the original flow type (Q= 0.53 m3s-1) to the
flow type at the final situation (Q= 1.4 m3s-1) for the Windrush river site.

Original Situation Q=0.53 m3s- 1

No perceptible
flow

(NPF)

Smooth
(SM)

Rippled
(RP)

Unbroken
Standing

(UW )

Broken
Standing

(BW)
NPF 32 0 0 0 0
SM 24 67 27 26 0
RP 44 33 73 59 50
UW 0 0 0 15 50

F
in

al
Si

tu
at

io
n

Q
=1

.4
m

3 s-1

Total Number
of points 25 159 142 29 2

Finally, substrate types showed the highest number of changes between discharges

(Figure 8.14). Gravel (GR) remains the dominant substrate type at both discharges,

followed by Silt (SI) at the second discharge and Sand –Silt at the first discharge.

Boulders were only present for the second discharge. Only 33% (124 points) of the

points showed a change in substrate type. The changes did not follow a clear pattern

of numbers of points changing from one class to another. No conclusions could be

drawn from the analysis of substrate types.

2. General Linear Models

Figure 8.15 shows the results (LS mean plots) for the categorical variables and the

change of depth from Q2 = 0.53 m3s-1 to Q1 = 1.4 m3s-1. Results for all the General

Linear Models [Change in depth ~ mesohabitat type where mesohabitat type is coded

as Deep Glide, Shallow Glide and Riffle], [Change in depth ~ flow type, where flow

type is coded as Smooth, Ripple, No perceptible flow, unbroken standing waves and

broken standing waves] and [Depth changes~ substrate type, where substrate is coded

as gravel, silt, clay, cobble, sand and boulder] showed that there was evidence to

reject the null hypothesis (p<0.001). The analysis was based on the qualitative

variables characterised at the second discharge measured since these data included the

real values obtained during the field data collection procedure.

Mesohabitat types showed differences in depth change for the three mesohabitat types

analysed. Higher depth changes were observed in riffles, whilst deep glides show the

smallest changes in water depth (Table 8.15). This behaviour did not coincide with the

behaviour observed at the Leigh Brook river site for all points.
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15: results obtained for the following GLM [Change in
mesohabitat type where mesohabitat type is coded as
e –DG-, Shallow Glide –SG- and Riffle –RI-], [Change

~ flow type, where flow type is coded as Smooth –SM-,
RP-, No perceptible flow –NPF-, unbroken standing
W- and broken standing waves-BW-] and [Depth

substrate type, where substrate is coded as gravel –GR-,
lay-CL-, cobble-CO-, sand-SA- and boulder-BO-]. D1
ds to depth at discharge Q1 = 1.4 m3s-1 and D2
ds to discharge Q2= 0.53 m3s-1.
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Results for the flow types indicated that unbroken standing waves (UW) presented the

highest change in depth when increasing the discharge and that smooth, rippled and

no perceptible flow type did not significantly differ in the increase of water depth due

to changes in discharge. Note that broken standing waves (BW) presented the widest

confidence interval due to the few points that were identified for this flow type.

Therefore no discussion on this flow type is included in this section.

Table 8.15: descriptive statistics for the different parameters of change
grouped by mesohabitat types (Q= 0.53 m3s-1) for the Windrush river
site. None standardised parameters.

Descriptive Stat. Shallow glide Riffle Deep glide
Mean 7.6 16.4 -1.6
Minimum -18.6 -17.2 -42.4
Maximum 24.0 35.6 61.9

D
ep

th
C

ha
n

ge
(c

m
)

Std. Dev. 5.8 11.5 16.11
Total number of points 180 70 116

Finally, the General Linear Model analysis for substrate types showed that boulders

can be considered significantly different to the other substrates in terms of increase of

depth when changing the discharge. Boulders were followed by Gravel substrate type

in terms of increase of depth. Gravel is different to boulder, silt, clay and sand. Silt,

clay, cobble and sand did not present significant differences between them in terms of

depth change originated by changes in discharge.

8.4.3. The variogram as a tool to detect temporal changes

Figure 8.16 shows the values of range, sill and nugget obtained for each river site at

the different discharges. The discharges at which data were collected were not

coincident for all the river sites. This made comparison of the results between river

sites difficult. The variograms were fitted with the spherical model, azimuth tolerance

= 60, azimuth = 0 (along the river), maximum distance = 30 m and lag distances equal

to 0.5 m and 1 m for wet points and wet & dry points, respectively. These values were

selected according to the sensitivity analysis carried out in Chapter 5. Extreme values

were found for some of the river sites and excluded from the analysis.
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Figure 8.16: values of range obtained for the analysed river sites at different discharges. Left top – results for the wet points, where wet corresponds to
positive depth. Right top – results for the dry + wet points, where dry and wet are negative and positive depths respectively. Images on the bottom show
the number of points used for each variogram calculation.
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Results for the analysis with only wet points indicated that for the majority of river

sites, the range increased when decreasing the discharge. The variability of depth

seemed to increase between points when decreasing the discharge. The Windrush and

the Blackwater presented different behaviour: here range values decreased when

decreasing the discharge.

Range values for the analysis with wet and dry points showed the same pattern as that

observed for the wet points. Windrush and Blackwater, accompanied by Pang Old

Fenced, followed the opposite pattern than that observed for the majority of the river

sites. The fact that the patterns were respected for both analyses indicates that the

changes detected by the variogram were a consequence of changes in depth variation

encountered when changing the discharge and not a consequence of the sensitivity of

the variogram to the number of points sampled.

For all of the analyses the pattern of change depended upon the river site being

analysed. Modified river sites such as the Tame Highly Modified and the Tame Less

Modified presented smaller variation of range, sill and nugget values. This was not

associated with the number of points used for the data analysis.

No clear pattern was identified for the sill and nugget values for analyses of wet and

dry points and only wet points. The variation between different discharges was not as

significant as that encountered for the range parameter. No values of variation are

provided since there were just few points represented for each river site.

Note that for this study, the channel bed was considered constant for all the discharges

analysed. Thus, changes identified by the variogram only represented the variation

introduced in the system by a decrease/ increase of water level as a consequence of

the discharge, without considering the actual modification of the channel bed

produced by this increase (e.g. erosion of the bank or bed channel, deposition of

debris, vegetation growth, among others).
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8.4.4. Analysis of river width

Figure 8.17 (top) shows the width from bank to bank obtained at each discharge for

each of the cross sections considered for the Windrush. Results show that width did

not change for the majority of cross-sections except for those located at distances

downstream between 80 m to 120 m (Figure 8.17 bottom), where an island was

located. Figure 8.18 shows the Windrush at two different sections of the sampled

reach

Figure 8.17: width obtained at each of the 586 cross-sections calculated (top) and a
detail for those cross sections where the changes in width can be observed between
discharges (bottom). Note that the x axis represents the distance downstream where the
cross-section is located. Changes have been considered linear between two consecutive
cross-sections.
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Table 8.16 summarises the changes in width obtained when comparing the width at

discharge 0.61 m3s-1 with the others (width at Qx - width at Q=0.61 m3s-1). Mean

differences increased when increasing the discharge, except when considering widths

at discharge 1.37 m3s-1 where mean width increase was smaller than for discharge

Figure 8.18: photograps taken at the Windrush river site at two different sections of the sampled reach
(top) and map with the simulated data (bottom).
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1.14 m3s-1. The distribution of the width changes were not Normal when assessing the

skewness and the kurtosis coefficients. The distributions were significantly peaked

and shifted to the right. The mean width values for each discharge are presented in

Figure 8.19.

Table 8.16: descriptive statistics width obtained for the difference between width measured at
discharge 0.61 m3s-1 and with at the specified discharge. Positive values indicate increase of width
and negative values decrease in width.

Discharge compared Mean
(m)

Minimum
(m)

Maximum
(m)

Variance Skewness Kurtosis

0.75 0.15 -0.37 4.84 0.50 5.17 26.10
1.14 0.22 -0.18 5.60 0.75 4.76 22.31
1.37 0.21 -0.18 5.55 0.71 4.83 22.93

0.61 m3s-1 0.75 m3s-1 1.14 m3s-1 1.37m3s-1
6.15

6.20

6.25

6.30

6.35

6.40

6.45

6.50

6.55

6.60

6.65

Mean Mean±0.95*SE

Figure 8.19: mean width obtained for each discharge considered. Vertical lines denote
0.95 times the Standard Error.
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8.5. Discussion

8.5.1. Hydromorphological changes due to variations in discharge.

Two different river sites, the Leigh Brook and the Windrush, were analysed to

determine how specific changes in discharge affected mesohabitat and flow types.

The Leigh Brook river site was characterised by a sequence of shallow glides, deep

glides, riffles and pools whilst the Windrush was mainly represented by a sequence of

shallow glides and deep glides. Two different discharges were considered for each

river site: 0.52 m3s-1 and 0.34 m3s-1 for the Leigh Brook and 1.4 m3s-1 and 0.53 m3s-1

for the Windrush.

Mesohabitat and flow types that were most affected by the change in discharge were

not consistent for both river sites. Shallow and deep glides showed the most

significant changes for the Leigh Brook river site, whilst riffles, deep glides and pools

were the most affected for the Windrush river site for the discharges investigated.

These differences might be related to the type of river analysed and the two

discharges considered at each river site. The differences in sequences of mesohabitat

types, the surface occupied by each mesohabitat type and the physical characteristics

of each river site might explain the differences encountered between the rivers.

Different typologies have identified the fact that changes in discharge have different

effects according to the river type that is being analysed (Leopold, 1994, Brierley and

Fryirs, 2000, Rosgen, 1994, Rosgen 1994, Brierley and Fryirs, 2005) Changes in

discharge do not affect to the same extent all rivers (Leopold, 1994)); small rivers

accommodate an increase in discharge by increasing both depth and velocity in nearly

equal amounts whilst large rivers (e.g. the Amazon) show a clear increase in velocity

only. However, for both river sites it was possible to identify the following sequence

of changes: pool – deep glide – shallow glide – riffle that defined the changes that

could be expected when increasing or decreasing the discharge. This is in agreement

with the theory explained by Leopold (1994); at low flow the pool-riffle sequence is

more evident and it is characterised by alternating flat reaches of low gradient and

steeper reaches involving white water. When discharge increases the longitudinal

profile of the water surface becomes less stepped and the riffle is “drowned out”

changing to glide mesohabitat type.
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The fact that pools changed to both deep and shallow glides when decreasing the

discharge at the Windrush site might be explained by the quantity of change of

discharge considered. The change in discharge at the Windrush was high enough to

make some points located in the pools decrease two consecutive steps on the proposed

sequence, down to shallow glides. This might indicate that thresholds of change

between consecutive mesohabitat types depend on the mesohabitat type considered

and the change in discharge.

In general, when discharge decreases, the deepest areas experience higher changes (in

terms of depth) whilst when discharge increases, shallow areas were more affected.

Increases in discharge transformed shallow areas into deeper and smoother (in terms

of surface flow type) mesohabitat types whilst decrease of the discharge transformed

deepest areas into shallower and less smooth mesohabitat types in terms of surface

flow type.

The combined analysis of velocity and depth change results for the Leigh Brook river

site indicated that shallow and deep glides were the mesohabitat types that present

higher changes in depth and velocity, respectively. Changes in flow were dissipated

through depth or velocity increments; those habitats that absorbed flow energy

through depth (shallow glides) did not present velocity changes, whilst habitats that

dissipate the energy through velocity changes (deep glides) did not show significant

changes in depth. This is related to the fact that at low flow the gradient of the WSL is

small over the pool and steeper over the riffle Leopold (1994). Increase in discharge

causes a decrease in the slope of the riffle WSL whilst the gradient over the pool

increases. This pattern continues until the discharge is high enough to straighten the

water surface profile. The gradient of the WSL is a direct measure of the rate of loss

of potential energy associated to the frictional resisting forces Leopold (1994).

Results obtained for surface flow types at both river sites did not show such a clear

pattern as those identified for mesohabitat types. In general, flow type increases its

intensity when increasing the discharge and decreases intensity with decrease in

discharge. However, these relationships could not be identified as the general rule

since the opposite pattern was also observed. This suggested that mesohabitat types
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were a better tool to predict how a change in discharge is going to affect a river site

and how the different hydromorphological features are going to be distributed.

Changes in qualitative classification of the substrate associated with changes in

discharge do not present a clear pattern on the direction of change at the Windrush

river site. Areas with coarser material (boulders and gravel) present the highest

changes in depth. Substrate changes might be due to different causes such as substrate

composition (interaction between heterogeneous substrate particles (Leopold, 1994)),

channel structure, supply from upstream as well as discharge changes. Channel

roughness decreases as discharge increases, which indicates that finer sediments

should be encountered when increasing the discharge (Leopold, 1994). However, no

pattern could be observed when analysing the changes in substrate. This might be

associated with the extrapolation procedure used to assign the substrate type for the

first discharge analysed at the Windrush site. Substrate presented more variability in

space than depth and velocity. Therefore higher errors might be expected when

obtaining the substrate classification for the first discharge as these values might not

represent the true situation during the first discharge.

The analysis of dry points at the Leigh Brook river site showed that riffles and pools,

followed by shallow glides, were the mesohabitat types that are more affected when

decreasing discharge. The fact that pools were one of the mesohabitat types more

affected was the most relevant since this mesohabitat type was not predominant at the

Leigh Brook river site, which was characterised by a sequence of riffles and shallow

glides. Flow types that were more affected when decreasing the discharge at the Leigh

Brook river site are ripple, smooth and no perceptible flow.

8.5.2. The variogram as a tool to detect temporal changes.

Temporal variation in rivers could be caused by different factors: changes in the

sediment regime, changes in the energy distribution, change in discharge or

anthropogenic changes to channel structure, among others. The analysis carried out in

this chapter to determine if the variogram was a useful tool to detect temporal changes

only considered changes in the system due to variations in discharge. The bed channel

was considered constant and invariable for all the discharges analysed at each river .
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site. Results show that it was possible to observe changes between river sites and

discharges in terms of variogram model parameters. However, the number of

discharges considered was not enough to quantify the changes of the variogram for

specific changes in discharge. It would be necessary to develop the study for a higher

range of discharges that was comparable between river sites.

8.5.3. A brief analysis of river width.

Width analysis was carried out with data obtained from a hydraulic model for the

Windrush. Results indicate that higher changes in river width were identified where

the island was located. No conclusion could be established for this study since the

data analysed were only from a short river reach.

8.6. Conclusions

Hydromorphological features such as mesohabitat and flow types respond to changes

in discharge differently according to the characteristics of the river site and the

increment of discharge being considered. A clear sequence of change was identified

for mesohabitat types. This sequence steps from pool to riffle in the following order:

pool – deep glide –shallow glide – riffle for decrease in discharge and vice versa for

increase in discharge. The rate of change of discharge at which each mesohabitat type

is transformed into a consecutive class depends on the mesohabitat type being

considered. Further studies should be addressed to assess at which discharge

increment/decrement the mesohabitat change is observed.

Riffles and pools are the mesohabitat types which present a higher number of dry

points when discharge decreases. The monitoring of these mesohabitat types in terms

of changes of the wetted perimeter or river width would be necessary if the sensitivity

of river to water abstraction were to be assessed.

Flow type presents more spatial variation in space than mesohabitat types and thus, it

is not possible to identify a clear sequence of change. The spatial variation of flow

type is equal or even higher than the temporal variation. Mesohabitat types are a
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better tool to assess how hydromorphological features are affected by changes in

discharge (e.g. water abstraction). Further research is also needed to understand the

hydraulic performance of mesohabitat and flow types.

The variogram could be a potential tool for the quantification of temporal changes in

rivers. Further studies need to be developed for a more complete set of discharges.
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9.1. Introduction

Collection of data on the physical habitat of rivers can be required for several

purposes; for example the assessment of the ecological implications of water

abstraction, historical habitat degradation or river restoration. Collection of such data

can be costly and time consuming, so it is necessary to design effective and efficient

sampling strategies, both in terms of spatial intensity and extent, and in terms of

repetition of sampling (e.g. at different discharges).

This study has focused on the study of the uncertainties associated with the design of

effective sampling strategies and monitoring programmes. Three main uncertainties

were addressed in previous chapters: spatial, scale and temporal uncertainties. The

spatial uncertainty refers to optimal sampling strategies in terms of trade-off between

acceptable error and location and number of points. The scaling uncertainty focuses

on assessing the river length that needs to be sampled to characterise spatial

variability of a river site. The temporal problem examines how many times a river site

needs to be sampled to characterise the temporal variability associated with changes

in discharge.

The methodology applied to examine these uncertainties relies mainly on

geostatistical theory (interpolation techniques). Interpolation techniques can be used

This chapter discuss the outputs obtained from the
research developed in this study focusing on the different sources
of random error that can be encountered when characterising
hydromorphological parameters. A set of guidelines are presented
for the design of sampling strategies for depth, velocity and
substrate. The scaling and temporal uncertainties are also
discussed in this chapter. Further research ideas are proposed
and conclusions drawn in the last section of this chapter.
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to predict values of the variables under study for non-measured locations or occasions.

In this way, it may not be necessary to collect detailed data sets of information in time

and/or space. This chapter discusses and summarises the output of this research. A set

of guidelines for hydromorphological data collection are presented.

9.2. Discussion and recommendations for further research

9.2.1. Guidelines for hydromorphological data collection

Different sources of error or uncertainty are associated with the characterisation of

hydromorphology in rivers as well as to the application of interpolation techniques

(i.e. geostatistics). Table 9.1 summarises the sources of uncertainty that are associated

with the different steps of measurement error when characterising hydromorphology.

Measurement error is divided into systematic and random error. Systematic errors are

biases in measurement which lead to measured values being systematically too high

or too low whilst random error is present every time that a point is measured but

varies unpredictably in size and direction (Muste, 2002). It is necessary to define and

quantify these different sources of error/uncertainty to better interpret the data

collected. This study has focused on the analysis of some components of the random

error. The following sections discuss as a set of guidelines the uncertainty associated

with (i) the equipment that is being used for depth data collection, (ii) the sampling

strategy applied for the collection of data and (iii) the sampling density applied.

Systematic error values can be obtained from the information on the equipment

performance.

Table 9.1: components of measurement error associated to hydromorphological data collection.
Action Measurement Error Description

Systematic Error Equipment used
Equipment used
Expertise of the surveyor
River type

Depth -Velocity - Substrate
measurement and mesohabitat - flow
type identification.

Random Error

Sampling conditions
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a. Random error associated to the equipment type: Guidelines for the equipment

to be used.

The first source of random error identified is that associated with the type of

equipment that is being used. Only the analysis of the equipment available for depth

data collection (i.e. total station and metric staff) was carried out. There was only one

set of equipment available for the measurement of velocity and thus, the random error

associated to this procedure could not be calculated. However, studies have already

been developed on the performance of different set of equipment for velocity

measurements. Results indicated that velocity data when measured by an Acoustic

Doppler Current Profiler (ADCP) are inherently noisy because of the turbulence,

instrument noise and variation in environmental factors such as water and scattered

properties (Shields and Rigby, 2005). The different sources of noise associated to

velocity data collection with ADCP are described by Muste et al (2004a, 2004b) and a

set of guidelines provided for its quantification. River velocity profiles obtained from

moving boats varied 20% to those measurements obtained with the same set of

equipment at a fixed location (Muste et al, 2004b in Shields and Rigby, 2005). Studies

on the comparison of two different laser-based velocimeters have also been carried

out (Muste et al, 1998).

Random error associated to the “equipment” or in this case, methodology, applied for

the characterisation of mesohabitat and flow types was not analysed. Different

methodologies are available for the characterisation of these qualitative variables as

described in Chapter 2. Each methodology is based on different thresholds levels of

velocity, depth and substrate for the establishment of mesohabitat and flow types.

Moreover, different types are defined by each methodology. The typologies proposed

are based on the visual observation of hydromorphological features and therefore a

degree of subjectivity in the classification is expected. Thus, mesohabitat and flow

type classifications depend upon (i) the methodology applied for the classification, (ii)

the expertise of the surveyor (it varies between surveyors and even for the same

surveyor – low reliability) and (iii) the variability, in terms of mesohabitat and flow

types, encountered at the river site. A study (Maddock et al, 2006) is currently being

developed in order to identify the differences encountered between four different

mesohabitat mapping methodologies (Norwegian Mesohabitat Classification Method,
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River Habitat Survey, Rapid Habitat Mapping and MesoCasimir), different surveyors

(comparison of 2 surveyors) and to determine the reliability of each surveyor (two

repetitions for each methodology). Results for the comparison between the

Norwegian Mesohabitat Classification Method and River Habitat Survey are already

available (Borsanyi et al, 2005).

The following paragraphs discuss and summarise the results obtained for the

quantification of the random error associated with two different sets of equipment for

the measurement of depth: the metric staff (MS) and the total station(TS). It also

includes the random error associated with two different methodologies (i.e. sampling

strategies) for data collection with the total station: heterotopic and isotopic (described

in Chapter 3). The discussion presented in this section focuses on the reliability of

depth data collection in rivers. Reliability refers to the reproducibility of a

measurement and quantified by taking repetitions of the same measurement. In this

study the reliability was analysed for the two different types of equipment and

associated to the morphological characteristics (i.e. mesohabitat and flow types) of the

measured site. Validity, which is the agreement between the value measured and its

true value, could not be tested as it was not possible to determine the real value of

depth at the sampled locations.

It is necessary to consider the reliability of depth measurement since this can have an

effect on the objective for which data were collected. For example, it was found that

differences between isotopic and heterotopic depth measurements can give results of

channel volume that differ by more than 3 m3 (volume varied between 89.1 m3 to

86.3 m3 depending on the sampling strategy for an area of 470 m2).

Reliability of depth measurements according to the equipment and sampling

strategy applied.

Table 9.2 summarises the differences encountered between (i) the two sets of

equipment, (ii) heterotopic vs. isotopic data sets and (iii) observed Water Surface

Level values vs. WSL values predicted with descriptive geometry. The values in

Table 9.2 were calculated by averaging the results of all the river sites analysed. The

differences encountered were assumed to be independent and therefore, a total value
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was provided by adding up the differences encountered in each study. This value

corresponds to the measurement/calculation of depth for heterotopic data sets. For

isotopic data sets it is not necessary to consider the random error associated to WSL

calculation.

Table 9.2: values of differences encountered between metric staff (MS) vs. total station (TS), and
heterotopic vs. isotopic data sets. TS vs. MS shows the averaged difference between depth
measured with TS and depth measured with MS for all the river sites analysed. Heterotopic vs.
Isotopic shows the difference between depth collected following these two sampling strategies.
Triangulation refers to the difference between observed and predicted WSL with descriptive
geometry when locating the WSL 10 m apart from each other.

Parameter TS vs. MS Heterotopic vs.
Isotopic

WSL
calculation

Triangulation
Total

Mean Error (cm) 2.25 3.3 4.29 9.84
Maximum absolute
difference (cm) 6.20 12.36 16.03 34.6

Mean difference (cm) 2.00 1.08 3.40 6.48

Differences between the sets of equipment were not as large as those encountered

between sampling strategies (Table 9.2). Isotopic data sets require a measurement of a

WSL on the same vertical line as the topographical points measured. This makes the

measurement of WSL more difficult than for heterotopic data sets since there is an

added source of random error associated to the collection of WSL data. Sampling

conditions (e.g. weather conditions), surveyor expertise (e.g. accuracy in the readings

associated to the proper application of the equipment), surveyor physical

characteristics (e.g. height and weight of the surveyor are associated to the ability to

stay still at the site during the measurement and to the accuracy with which the

measurement is being taken) and characteristics of the river type (e.g. substrate or

discharge are important when locating the staff vertically for the measurement of the

water surface level) make it difficult to locate the total station staff in the same

vertical line as the measured topographical point. Isotopic data sets are difficult to

collect and do not provide any advantage in relation to the heterotopic data sets;

points are difficult to locate on the same vertical line and therefore, the same

procedure and source of error as that associated with the heterotopic data sets is

encountered. Heterotopic data sets are recommended for depth data collection since

(i) the error introduced is not much larger than that obtained between sampling

equipment (MS and TS) (ii) they are easier to collect and (iii) isotopic data sets have

horizontal deviation between WSL and topographical (TO) points of about 10 cm.
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Reliability of depth measurements depending on the mesohabitat and flow type at

the sampled point

All natural rivers are characterised by unsteady (depth and velocity vary in time),

nonuniform (depth and velocity vary along the reach) flow that present super-critical

(high velocity and low depth, described as rapid or shooting) and sub-critical flow

conditions (low velocity and high depth, described as calm and tranquil) (Mount,

1995 and Julien, 2002). When throwing a stick into flowing water at super-critical

flow conditions, the ripples formed are swept in the downstream direction whilst in

sub-critical flow conditions the ripples move upstream from the source of

disturbances Pools and runs are characterised by sub-critical flow conditions whilst

super-critical flow conditions are representative of riffles (occasionally) and chutes.

Rippled surfaces are encountered under turbulent, unsteady, non-uniform and

generally supercritical flow which corresponds to situations such as hydraulic jump

and flow separation processes. In the hydraulic jump situation, there is a change from

supercritical to sub-critical conditions that transforms the kinetic energy (velocity) of

the flow into gravitational energy (depth). This change from Froude number >1 to

Froude Number <1 creates turbulence on the water surface (Mount, 1995). Flow

separation processes occur when an obstacle is present on the channel bed. In the

presence of an obstacle such as a boulder (i.e. increase of pressure), the friction of the

system increases, decreasing the kinetic energy of the laminar layer. The laminar layer

is characterised by low kinetic energy and a reduced depth. Thus, the fluid

immediately upstream of the turbulent boundary layer collapses with the fluid on the

laminar layer and it is displaced outwards (separation point), separating it from the

bed. This fluid is reattached to the bed channel downstream (reattachment point). A

separation bubble is created between the separation and the reattachment point. This

separation bubble creates eddies, vortices and/or rollers on the surface as a

consequence of the loss of direction in the separated flow (water detached from the

bed enters the main current as a free shear stress layer with sub-critical turbulent flow

conditions and this causes water to go in all directions (Mount, 1995)).

The rippled surfaces produced by the eddies, vortices and rollers make it difficult to

(i) position the total station staff on the water surface level, (ii) vertically position the
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total station staff on the channel bed for the topographical measurement and (iii)

accurately obtain readings from the metric staff. In addition, deep areas present the

difficulty of positioning the total station staff at high level which makes it difficult to

hold the staff vertically for the reading.

Results obtained were consistent with the above explanations. The metric staff

provided larger readings than the total station in shallow areas and lower readings in

deep areas; measurements obtained with the total station could be up to 12 cm larger

than those detected with the metric staff when collecting data in shallow areas and 10

cm lower when collecting data in deep areas (> 0.5 m). This is due to the difficulties

identified when obtaining the readings with the metric staff in fast flow shallow areas

and when positioning the total station staff in deep areas. Mesohabitat types

characterised by fast flow (riffles and chutes) were the features with highest

differences between equipment types (4 cm), whilst mesohabitat types characterised

by slow flow and smooth flow type showed the lowest differences between equipment

sets. This is explained by the eddies, vortices and rollers that are encountered in chute

and riffle mesohabitat types. Similarly, flow types that characterise chutes and riffle

mesohabitat types presented the highest differences (4 cm) between sets of

equipment. Thus, it is suggested to take measurements with MS in deep areas (> 0.5.

m) and measurements with TS in shallow points.

Reliability of depth measurements depending on the methodology applied for Water

Surface Level interpolation.

The value of depth also varies according to the methodology that is used to represent

the water surface level (WSL) along the reach analysed. The gradient of the water

surface changes along the reach being sampled according to the diversity of

hydromorphological features present at the site and the discharge during the data

collection. At low flows, pools have a lower gradient than riffles. This gradient

becomes more homogeneous as discharge increases (Leopold, 1994). Different

methodologies to determine the WSL at non measured locations provide different

levels of accuracy in determining the changes of WSL gradient. When comparing

geostatistical interpolation with descriptive geometry it was possible to observe that

mean absolute differences (ME) are 5 cm, with maximum absolute differences that
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can be larger than 30 cm in depth. It was not possible to determine the validity of the

measurements as no true value of the location of the water surface level and its

steepness could be calculated.

When applying geostatistics (kriging) for the prediction of WSL, it was found that the

gradient of the WSL could be ignored at the river sites analysed since WSL was

highly spatially correlated (i.e. spatial correlation is high over long distances (more

than 27 m)). These results were consistent with those obtained for the prediction of

WSL with descriptive geometry; the further apart the points were located, the higher

the accuracy in the predictions (maximum distance between points equal to 20 m).

This may be explained by the fact that a higher number of points sampled along the

reach defines a higher number of triangles for the calculation of the WSL. Three WSL

sampled points create a triangle that defines a slope gradient on the WSL. Each

triangle is associated to a source of random error and therefore, when considering the

whole water surface level at the sampled reach, the WSL is defined by a set of

triangles of different slope orientation that might not show any continuity between

consecutive triangles. A smoother surface is defined when spacing the WSL sampled

points further apart from each other. However, it is necessary to consider the different

morphological features present in the reach that is going to be sampled when applying

descriptive geometry for the calculation of the WSL; reaches where changes in WSL

slope are present (e.g. chutes or cascades) would require a more intensive sampling

strategy.

It is recommended to apply descriptive geometry (or any form of linear interpolation)

for the prediction of WSL at non measured locations since (i) a smaller number of

measurements is required and (ii) the difference between predictions obtained with

geostatistical interpolation (kriging) and descriptive geometry have been quantified

and show similar values to those differences obtained between total station and metric

staff.
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b. Random error associated to the sampling strategy: Guidelines for the

design of a sampling strategy

Predictions of depth obtained with geostatistical interpolation techniques (kriging)

depend upon different factors such as the position of the points along the sampled

reach. The distribution of the sampled points determine the lag distance required for

the variogram calculation, the goodness of fit of the variogram model as well as the

distance of neighbourhood search required for the kriging procedure. This section

summarises and discusses the results obtained for the comparison of different

sampling strategies carried out in Chapter 4.

It is recommended that grid sampling strategies be applied when characterising the

spatial pattern of depth, velocity and Froude number rather than applying any type of

transect sampling strategy. Results obtained with regular or stratified transects have

been shown to be highly sensitive to the number of points sampled, as well as to the

location of these transects. In general, regular grids provided better results than

random and stratified grid sampling strategies, the latter being the worst in the grid

sampling range. The use of random grids should be preferred to the use of stratified

and regular grids since (i) results obtained for random grids do not significantly differ

from those obtained with regular grids and (ii) random sampling strategies (i.e.

random walk) are less time consuming sampling strategies. Also, it should be noted

that in many cases, stratified grids cannot be applied for velocity measurements as it is

difficult to visually identify velocity changes at the river site. Instead, random grids

are the preferred sampling strategy.

It is recommended that high resolution data sets be collected for velocity when trying

to apply kriging interpolation techniques since (i) the spatial relationship between

points is lost at very short distances (between 0.5 m to 5 m) and (ii) worse results are

obtained for velocity than for depth when applying the same sampling strategy.

Economic factors are the main restriction when proposing the sampling design to be

carried out in a river reach and since velocity data collection is more costly and time

consuming than any other hydromorphological variable, small sampling densities are

usually applied for its characterisation. This makes it impossible to properly calculate

the velocity variogram for application of kriging (geostatistics) where more than 50
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measurements are required (Webster and Oliver, 2001). Thus, it is recommended that

different extrapolation procedures be used for the prediction of velocity values at non

measured locations when (i) low sampling densities are being applied and (ii) points

are separated by more than 3 m.

The use of two and three dimensional hydraulic models such as Depth Integrated

Velocity and Solute Transport model (DIVAST) (Falconer et al, 1998) and the SSIIM

Computational Fluid Dynamics model (Olsen, 1996, 2000 in Booker et al, 2004b and

Wilson, C.A.M.E., 2000) for the prediction of velocity at non measured locations can

overcome the above limitations. These models have already been successfully applied

in ecohydraulics (Bockelmann et al, 2004 and Booker et al, 2004b) and although they

have some limitations, they provide “acceptable” results for velocity and depth. For

example, results for different applications of the SSIIM model showed that when

testing predicted velocity against field observations the correlation value was R2 =

0.688 (Booker et al, 2004) and R2 = 0.77 (Nicholas and Sambrook, 1999).

The limitations encountered for the interpolation of velocity with geostatistical

techniques can also be overcome with the application of the co-kriging of depth and

velocity. Co-kriging is “a natural extension of kriging when a multivariate variogram

or covariance model and multivariate data are available” (Wackernagel, 2003). This

means that if there is a spatial relationship between the variables the measurement of

the first variable (depth) can be used to improve the prediction of the second variable

(velocity), which has been sampled at a lower density. Heterotopic or isotopic co-

kriging are potential solutions since depth can be easily measured at those points

where velocity has been sampled.

For Froude number characterisation it is recommended to space sampling points less

than 9 m from each other as this is the point at which the spatial correlation between

points is lost. Similarly to velocity, it would be possible to apply co-kriging to Froude

number due to the relationship that exists between this variable and depth and

velocity.
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The differences that could be encountered between sampling strategies in terms of

Mean Error between predicted and observed values are equal to 7.6 cm for depth (ME

between 8.4 cm and 16 cm for the Austrian channel and between 1 cm to 6 cm for the

Leigh Brook), 0.18 ms-1 for velocity (ME between 0.008 ms-1 and 0.19ms-1 for the

Austrian channel and between 0.10 ms-1 and 0.17 ms-1 for the Leigh Brook) and 0.067

(ME oscillates from 0.083 to 0.15 for the Leigh Brook) for Froude Number. These

ranges were calculated as the difference between the Mean Error for the best sampling

strategy for this indicator and the Mean Error for the worst sampling strategy for the

same indicator; only the highest difference of both river sites has been represented.

These ranges of difference encountered between sampling strategies are just a

guideline since the ranges proposed do not only show the differences between

sampling strategies but also the random error associated with the mesohabitat types

where the data was sampled, the sampling conditions or the river type analysed. It was

not possible to separate these sources of error from the effect that the sampling

strategy has on the predicted values.

The comparison of the results in Table 9.2 with the ranges obtained between sampling

strategies indicate that differences associated to the type of equipment used for depth

data collection, the type of sampling strategy (heterotopic or isotopic) applied for the

characterisation of the WSL are less significant than the differences encountered

between sampling strategies. No conclusions can be drawn from this comparison

since the results obtained for the characterisation of the random error associated to the

type of equipment, the sampling strategy for Water Surface Level and the

interpolation procedure for WSL represent the situation encountered at two rivers with

very different characteristics to those river sites used for the comparison of sampling

strategies. Moreover, the equipment used for the measurement of depth and velocity

were not the same in both studies. This makes it difficult to establish definitive

conclusions regarding the relevance of the different sources of random error. Similar

results should be obtained in order to determine the relation between velocity

sampling equipment and sampling strategy.

The approach selected to determine the most efficient location of the sampled points

consisted of the comparison of different sampling strategies such as regular transects

and regular grids. Other potential methodologies for determining the best distribution
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of sampled points for the application of geostatistics are available and research should

be carried out to compare methodologies. For example, Russo (1984) studied the

problem of the sampling network design for the variogram estimation of soil

properties (i.e. how best to locate the sampling points in the field in order to obtain a

minimum value of MSD (Mean Square Deviation) for the entire domain of lag

classes). Bogaert and Russo (1999) expressed the covariance matrix of the parameter

estimator as a function of the sampling design. An optimization algorithm was

proposed so the way that variogram model parameters are influenced by the choice of

a set of sampling locations can be analysed. The issue of defining an effective

sampling design has been approached by many other authors as discussed in Chapter

2.

c. Guidelines for the design of a sampling density.

The different objectives for which hydromorphological sampling strategies are

defined are diverse and include purposes such as river restoration or morphological

quality assessment. Each objective for which hydromorphological data are being

collected requires a specific level of accuracy in the representation of the “real

environment”. For example, for post-project appraisal of river restoration projects

(Downs and Kondolf, 2002 in Legleiter and Roberts, 2005) and for morphological

estimation of sediment transport (Ashmore and Church, 1998 and Gaeuman et al,

2003 in Legleiter and Roberts, 2005), accurate characterisation of channel topography

is critical (Lane, 1998 in Legleiter and Roberts, 2005) whilst less accuracy is required

for purposes such as river habitat mapping. Since the list of purposes for which data

are collected is wide and the level of accuracy selected is still associated with

subjective criteria, a more practical approach has been taken. A set of tables that

relates the sampling density to the accuracy of the predicted values have been

developed so the end user can relate the level of accuracy wanted with the sampling

density required. This accuracy was measured with a series of quantitative indicators.

A set of tables with rows describing sampling densities tested and columns describing

the indicators analysed, has been provided for each river site (Appendix 4.2). A

general table that informs on accuracy obtained for each indicator (e.g. maximum

difference between predicted and observed values) and each sampling strategy is also

included to summarise the results obtained for all the river sites.
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The general pattern for the nine indicators analysed showed that the accuracy of the

predictions decreases with sampling density. The point at which the value of a

specific indicator starts changing with the sampling density applied differs according

to the indicator considered. For the majority of indicators analysed, sampling densities

smaller to 0.4 points/m2 are not detailed enough to provide “real” representations of

the river site. Different objectives for which hydromorphological data are collected

require different accuracy in each of the nine indicators presented. Therefore, different

sampling densities should be applied for different sampling objectives. A set of tables

relating sampling density and confidence interval obtained for each indicator are

presented in Appendix 4.3.

From the pattern observed it is possible to divide the indicators into two main

categories; (i) indicators highly dependent on the sampling density and (ii) less

dependent indicators. The indicators which are highly dependent on the sampling

density are: maximum difference between predicted and observed values; minimum

difference between predicted and observed values; mean difference between predicted

and observed values; Maximum Squared Error; MSE; p-value; R-squared and

objective function value.

It is necessary to consider that the values shown in Appendix 4.3 are the result of a

single random selection of points for each sampling density. No repetitions of the

random selection were carried out since results obtained in Chapter 4 indicated that

the changes associated with the random selection process were not significant for the

final value of the indicator. It was not possible, therefore, to plot the standard

deviation associated with each sampling density, river site and indicator. A brief study

is presented in Appendix 4.4 where it was possible to observe the reliability of the

variogram when selecting different sets of random points for a given sampling

density. Webster and Oliver (1992) developed a similar study for an isotropic

normally distributed soil property. Results indicated that the variogram variation

stabilised when calculating the variogram with more than 225 points. A higher

number of points might be required for an adequate determination of the depth

variogram since depth is a more variable parameter than soil properties. For example,

similar results to those presented by Webster and Oliver (1992) were obtained for the

Bere river site when analysing the stability of the range deviation which occurs at a
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sampling density of 1.4 points/m2 (249 points). However, a higher number of points

were necessary to properly determine the variogram for the Tame Highly Modified

(1618 points for a sampling density of 0.6 points/m2). It is recommended that the

analysis to be repeated in order to account for the reliability of the depth variogram at

the highest sampling densities tested; the deviations (standard error) calculated for

these sampling densities are not representative since the points selected in each

repetition represented a high percentage of the original data set (4 points/m2) making

it impossible not to include the same sampled points in the majority of the repetitions.

Table 9.3 shows the equation that has been obtained to characterise the change in the

indicator value in relation to the change in the sampling density. These equations

provide a guideline to understand the behaviour of each indicator and they must not

be interpreted as an exact relation or a method to generalise to other rivers. The

equations obtained for each river site and indicator are presented in Appendix 4.4.

Appendix 4.3 summarises the values of mean difference and maximum difference

between predicted and observed depth measurements for different confidence

intervals and sampling densities. Even for the most restrictive Confidence Intervals

considered (99.9%) and the smallest sampling densities tested (0.2 points/m2) the

confidence interval of mean difference of depth value (between predicted and

observed values) is smaller (0.05 cm) than the random error associated to the type of

equipment used, the sampling strategy for WSL (heterotopic or isotopic), the method

for the interpolation of WSL or the sampling strategy applied. Nevertheless, when

analysing the values of maximum difference between predicted and observed depth

values it is possible to conclude that for the most restrictive confidence intervals

analysed (97.5%) and the smallest sampling densities considered (1.4 points/m2) ,

the confidence interval value is higher (4.3 cm) than the differences between sets of

equipment used for depth characterisation. Therefore, it can be concluded that (i) it is

extremely important to adequately select the equipment that is going to be used to

obtain depth measurements, (ii) sampling densities need to be appropriately selected

when trying to decrease the maximum error in the predictions and (iii) it is essential to

consider the random error that this is going to introduce in the final depth

measurements.
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Table 9.3: equations obtained for those indicators that were highly dependent
on the sampling density, where x is the sampling density applied in points per
square metre and y is the value of the indicator.

Indicator Model Equation
Maximum Difference (m) exponential y=0.364*exp(-0.6684*x)
Minimum Difference (m) exponential y=0.3013*exp(-0.6465*x)
Mean Difference (m) exponential y=0.0379*exp(-3.2402*x)
Maximum Squared Error exponential y=0.1565*exp(-1.3306*x)
MSE exponential y=0.0046*exp(-1.8527*x)
P-value polynomial -0.2033+0.6964*-0.044*x2

R-squared logarithmic Y=0.9125+0.1908*log10(x)
Objective function exponential Y=295.0299*exp(1.0559*x)

During the data collection procedure it is necessary to apply higher sampling densities

in deep areas (deep glides and pools) of the reach when measuring depth. This is due

to the fact that the variogram is not able to predict the extreme values of the depth

frequency distribution. The measurement of deep areas in more detail will allow the

identification of the peaks of variability in the semivariograms and so, higher levels of

accuracy will be achieved when predicting hydromorphological parameters in these

areas.

The variogram has been able to detect differences in the spatial structure of the river

sites analysed. Different sampling densities should be applied at each site; river sites

with a high degree of variation in space will need higher sampling densities in order to

obtain the same level of accuracy as river sites with low spatial variation or in other

words, the higher the hydromorphological uniformity and continuity of the river site,

the lower the sampling density that needs to be applied.

It is necessary to take into account that the analysis of sampling densities did not

consider sampling densities smaller than 0.2 points/m2 and considered that sampling

densities of 4 points/m2 represented the “real” hydromorphological situation for the

reach. Therefore, the Confidence Intervals obtained can only be applied when the

objective for which data are being collected allows consideration of sampling

densities of 4 points/m2 detailed enough for the representation of the real situation. In

those cases where more detailed information is required a further analysis and set of

tables should be developed. Similarly, higher spatial scales than those considered in

this study will require less degree of detail in the information collected. The general
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scale sampled in this study corresponds to 200 m, which corresponds to mesoscale

level. Therefore, further analysis should be developed to identify the adequate

sampling density required at macroscale level.

d. Guidelines for the interpolation procedure.

The spatial structure up and down a river differs from that encountered for the cross-

stream direction. Rivers present different characteristics in terms of shape, vegetation,

location and form of bars for each cross-section being analysed (Leopold, 1994). The

characterisation of the cross-sectional spatial pattern (i.e. anisotropy) is difficult

unless intensive data sets are collected. Therefore, it is suggested to give priority to

the longitudinal variogram when analysing the spatial structure of depth at a river site.

The longitudinal variogram reduces the above limitations by considering all the

information provided by points collected in both directions. Using an azimuth

tolerance up to 60is necessary to understand the differences in the spatial pattern

across and along the river.

Results obtained showed that it is necessary to carry out a sensitivity analysis when

fitting the variogram model (see Chapter 5). The sensitivity analysis has to focus on

the study of the number of pairs of points available, the lag distance, the maximum

distance, the azimuth tolerance and the azimuth.

The variogram cloud is able to detect differences between the spatial structure of the

channel bed and the spatial structure of the river banks. This suggests that the

variogram cloud could be used as a tool (i) to describe the hydromorphological

characteristics (depth) of the channel and (ii) to detect the temporal changes of the

hydromorphological characteristics of the river. The variogram cloud is more

informative than the empirical variogram when trying to study the spatial structure of

a site. The empirical variogram is an average of the values obtained in the variogram

cloud. It is suggested to use the variogram cloud as a complementary tool to the

empirical variogram.
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e. Guidelines to determine the length of the reach to be sampled.

The maximum distance that can be considered for the variogram calculation is a

limiting factor when determining the spatial structure. The maximum distance that can

be considered is always smaller than the total distance sampled (from 1/2 to 1/3 of the

total distance sampled). This means that the distance sampled needs to be longer

(from two to three times longer) than the maximum distance that needs to be

considered for the analysis of the spatial structure.

Spectral analysis has proved to be useful for detecting cyclical patterns in the

longitudinal spatial dimension at the two U.S. river sites analysed. The spatial scales

defined by each cyclical pattern differ between river sites. This suggests that spatial

scales might not correspond to a fixed sampling distance and that they need to be

defined according to the characteristics of each river site. Results obtained for the two

rivers in Texas indicate that there are repetitions in the spatial characteristics of depth

every 500 m, 350 m, 110 m and 60 m. Note that the cyclical patterns corresponding to

distances equal to 500 m coincide with the sampling distance proposed for some

methodologies, such as River Habitat Survey. This indicates that the selection of sites

of length 500 m could be justified from a statistical point of view. The reaches

sampled for the scale analysis correspond to river sites that are wider and longer than

any of the UK rivers analysed in this study. If a distance equal to 500 m was enough

to detect cyclical patterns at river sites of such magnitudes, it is logical to think that

this same length would be sufficient to identify the cyclic patterns at UK river sites of

smaller or similar dimensions.

Reach lengths equal to 60 m, 350 m and 500 m define variograms that better simulate

the one obtained with the original data sets. This suggests that these distances are

more adequate for the characterisation of depth spatial pattern at the studied river

sites. To determine whether these distances can be associated to a repetition of

patterns of hydromorphological features (e.g. mesohabitat and flow types), it is

suggested to repeat the study and compare the results with aerial photographs taken

during the data collection procedure. Previous work (Leopold et al, 1964, Leopold,

1994, Leopold and Maddock, 1953, Osterkamp et al, 1983, Milne, 1982, Milne 1983

and Hedman and Osterkamp, 1982) focused on the analysis of the hydraulic geometry
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of stream channels. Results showed that it was possible to identify a cyclic pattern of

deeps and shallows that corresponds to a repeating distance of 5 to 7 widths. The

cyclic patterns identified for the Brazos reach with spectral analysis correspond to 5

and 7 times the mean river width determined (river width = 100 m; cyclic patterns at

500 m and 750 m). Thus, it can be concluded that it is possible to detect the sequences

of deep-shallow areas (pools and riffles) with spectral analysis.

A close relationship is always present between the wavelength, channel width and

radius of curvature (Leopold, 1994) of a river. This relationship is encountered in

channels of all sizes. Since spectral analysis was able to identify the relationship

between the repetition (cyclic pattern) of deep and shallow areas for the sampled

length, there is no reason to think that the periodogram would not be able to detect

deep-shallow patterns in rivers of smaller sizes (e.g. the Bere, Lambourn or Cruick)

providing that an adequate distance is sampled.

Those cycles identified at distances that do not correspond to 5 to 7 times the reach

width might be associated to the relation identified by Leopold (1994) for the angle of

deviation of a meander at each point from the downstream direction, which varies

following a sine-generated curve. When plotting the value of the deviation angle it is

possible to observe that the apexes are located at one-quarter and two-thirds

wavelength as corresponds to a sine function. If we consider that for the Brazos river

site the cycle of 750 m identifies the wavelength (one cycle of deep and shallow

areas) it is possible to observe that one-quarter of this length is 187 m and three-

quarters corresponds to 562 m, which are consistent with the 170 m and 500 m cycles

identified by the periodogram. The same relationship can be encountered for the

Sulphur river site when considering the cycle at 350 m as representative of the deep-

shallow pattern; one-quarter of the cycle corresponds to 87.5 m, which is consistent

with the cycle identified by the periodogram at 87 m. In this case, the periodogram

was not able to identify the three-quarters cycle.

The division of a river into consecutive sampled reaches that combine with non

sampled reaches has a consequence in the variogram calculation; variance values

calculated for lag distances around the sampled reach length break the continuity of

the variogram model, providing extremely high values of variance and therefore,
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misleading values of predicted depth. This is due to a decrease in the number of pairs

of points available for these distance intervals. Thus, geostatistics is not a suitable tool

for the “extrapolation” (interpolation between reaches separated by a distance equal to

or higher than the sampled reach) of depth data in rivers since the spatial correlation

of this parameter is lost for distances larger than 80 m, which determines the up-

scaling distance for which predictions can be obtained. Other techniques such as

conditional simulation may provide more suitable means for interpolation.

The scales identified in this analysis constitute the first step to determine the sampling

density that is required at macroscale level. As described in previous sections,

sampling densities considered in this study have focus on the study at mesoscale level.

Further research should focus on the analysis of an efficient sampling density and

strategy at the spatial scales identified with spectral analysis.

f. Guidelines for monitoring of hydromorphological parameters

The implications of the temporal change study in Chapter 8 for design of monitoring

programmes for mesohabitat assessment and sensitivity of rivers to water abstraction

is summarised in the following paragraphs.

Results obtained showed that changes in hydromorphological features, such as

mesohabitat and flow types, differ depending on the river type that is being analysed

(e.g. sequences of mesohabitat types, the surface occupied by each mesohabitat type

and the physical characteristics of each river site) and the change in discharge that is

considered. This is consistent with results obtained in previous studies (Leopold,

1994, Brierley and Fryirs, 2000, Rosgen, 1994, Rosgen 1994, Brierley and Fryirs,

2005) as described in Chapter 8. However, it is possible to identify the following

sequence of changes: pool – deep glide – shallow glide – riffle that defined the

changes that could be expected when increasing or decreasing the discharge. Leopold

(1994) determined that at low flow the pool-riffle sequence is more evident and it is

characterised by alternating flat reaches of low gradient and steeper reaches involving

white water. When discharge increases, the longitudinal profile of the water surface

becomes less stepped and the riffle is “drowned out” changing to glide mesohabitat

type.
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The threshold of change between consecutive mesohabitat types of the proposed

sequence depend upon the mesohabitat type considered and the change in discharge.

Therefore, the first step to understand the changes that occur at a river site due to

changes in discharge is to determine the instream geomorphic units (i.e. mesohabitat

and flow types) present at the river site and associate this to the percentage flow

exceedance at which the characterisation is being carried out. Then, it is possible to

identify the complexity of the spatial structure in terms of these variables and to

determine the expected sequence in mesohabitat/flow types that can be expected when

changing the discharge. For rivers with limited ranges of instream geomorphic units

(e.g. laterally-unconfined low energy rivers (Brierley and Fryirs, 2005)) where pools,

glides or runs are dominant, changes are expected to be more noticeable in the whole

mesohabitat type. On the other hand, for more diverse rivers (in terms of geomorphic

units) (e.g. laterally-unconfined medium energy rivers (Brierley and Fryirs, 2005)),

changes are expected to occur in those mesohabitat types that link pool and riffle

features. This simplification of the results obtained needs to be understood in the

context of the discussion presented in Chapter 8.

Characterisation of mesohabitat and flow types is necessary since the changes

observed for these variables were more significant than those observed for the river

width. In this study river width does not change much as discharge increases

(Leopold, 1994) and thus it was considered that it was not an indicative variable to

assess the sensitivity of rivers to water abstraction.

9.2.2. Further research

a. The link between random error of depth measurement and hydraulic

characteristics.

This study analysed the relation between (i) the random error in depth measurement

associated to two different set of equipment and (ii) the mesohabitat/flow type where

data were being collected. However, this study failed to properly identify the relation

between different hydraulic conditions and the random error encountered in depth
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measurements according to the set of equipment that is being used. Further research

should focus on determining the reliability and validity of depth measurement that

could be encountered for a range of discharges at each of the following hydraulic

conditions:

(i) hydraulic jump

a. sub-critical turbulent flow

b. super-critical turbulent flow

c. eddies at the hydraulic jump

(ii) separation flow

a. separation bubble

b. attachment point

c. separation point

d. eddies at the separation point

e. vortices and rollers

The relation between increase in discharge and decrease of reliability/validity of depth

measurements could be established through regression analysis. The study should be

carried out in a flume under controlled conditions. Results could be linked later on to

morphological characteristics (e.g. mesohabitat and flow types) according to the

hydraulic features that are more frequent in specific mesohabitat and flow types. A

complementary study could be carried out at a natural river site to test whether the

results obtained for the flume conditions are consistent with results obtained in a

natural channel.

b. Stochastic spatio-temporal modelling of hydromorphological parameters

Rivers are never static (Brierley and Fryirs, 2005). Brierley and Fryirs (2005) identify

different sources of temporal variation which can be classified into (i) reach

behaviour, (ii) river change or (iii) natural capacity of adjustment. The likelihood that

adjustment takes place depends upon the river type, which is the ultimate reflection of

the degrees of freedom of the river (e.g. geomorphic units, bed characteristics).

Prediction of responses of fluvial geomorphology due to temporal changes can be

carried out through hydraulic based models (Brierley and Fryirs, 2005) which assume
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that equilibrium channel morphology is quickly achieved. These assumptions are not

adequate for longer-term trends or changes. A more stochastic approach is required to

represent complex-interactive systems that are subject to different sources of

perturbations, which reflect the different sources of temporal variation (river

behaviour, change and natural capacity of adjustment).

Landscape evolution (e.g. changes in river morphology) does not follow deterministic

processes moving to an equilibrium (Brierley and Fryirs, 2005). Several degrees of

freedom can be identified at each river site, defining a specific sequence of spatial and

temporal changes. “Whilst simulation models may be used for predictive purposes,

their ultimate value may be little more than their role as tools for probing the depths

of uncertainty” (Lane and Richards, 1997).

Previous studies have demonstrated that stochastic processes are a way of

supplementing the already existent deterministic hydrodynamics models (Clifford et

al., 2005). Furthermore, it has also been suggested that stochastic processes are of

particular relevance to eco-hydraulic applications (e.g. river habitat quantification),

where some degree of spatial and temporal dynamism (or uncertainty) is a

characteristic (Clifford et al., 2005).

Habitat quantification is generally carried out through deterministic habitat models

such as PHABSIM (Waddle, 2001 and U.S. Geological Survey , 2004), RYHABSIM

(Mosley & Jowett, 1985), MesoHABSIM (Parasiewicz & Dunbar, 2001), CASIMIR

(Jorde et al., 2001), HAMOSOFT (Mader et al., 2005) and HYDROSIGNATURE

(Scharl & Le Coarer, 2005 and Le Coarer, 2005), amongst others. Only

methodologies like HAMOSOFT (Mader et al., 2005) consider the spatial variability

of the system as a stochastic process but none has focused on the statistical analysis of

the temporal variability and the statistical interactions between spatial and temporal

dimension. Modellers in eco-hydraulic science are starting to introduce higher

statistical rigour into their models for the characterisation of the spatial or temporal

pattern. However, most work has concentrated on simple separable models; a

limitation that is also encountered in a wider range of applications (e.g. Skoien and

Bloschl (2006)). In PHABSIM for example, which has been used in the UK since the

1980s and is now being used by the Environment Agency to support water resource



Chapter 9 257 Discussion

Monica Rivas Casado Cranfield University at Silsoe PhD Thesis 200

decision making in England and Wales (Spence & Hickley, 2000), the suitability of

the micro-habitat conditions for aquatic life is assessed through a one-dimensional

hydraulic approach applied to consecutive measured cross-sections. The number of

cross-sections at the river sites is determined according to habitat diversity, the extent

of the study area and the resources available (U.S. Geological Survey , 2004) but there

are no clear guidelines in the Instream Flow Incremental Methodology (IFIM)

literature describing how many transects are necessary to produce a reliable flow-

habitat relationship (Payne et al, 2003). Data are collected at three different flows in

order to model the physical habitat “correctly”. Results obtained in this study show

that cross-sectional measurements do not account for the variability of the

morphological features and that this has a significant effect on the assessment of the

hydromorphological quality of a river site. Other studies have shown that the number

of transects sampled significantly modifies the results obtained with PHABSIM

(Gard, 2005 and Payne et al., 2004) A significant improvement in understanding of

the variance in space and time is critical to determining the frequency at which

sampling and monitoring are required.

There is a need to (i) apply the existing theory on spatio-temporal stochastic processes

to hydromorphological parameters and (ii) assess the differences between the habitat

quantification obtained through spatio-temporal modelling and deterministic habitat

models. There are various approaches to solving spatio-temporal problems

(Kyriakidis and Journel,1999) which are based on geostatistics and these have been

extended using Bayesian inference to hierarchical modelling (Banerjee et al, 2004).

The limitation of the application of spatio-temporal analysis is the data required to

understand the temporal dimension. For example, more than 40 temporal

representations of the system are needed to understand the temporal variation of any

parameter (Webster & Oliver, 2001). The selection criteria for a methodology that

integrates the spatio-temporal variation has focused on the number of samples

required. A geostatistical framework for dealing with temporal change of spatially

varying properties was proposed by Papritz and Fluhler (1994). They discussed two

situations: one where a few sites are measured at frequent intervals of time, and the

other where a set of spatial data is collected simultaneously at few sampling times

(less than ten). In the second case, a multivariate spatial random process is a suitable

simplification of the general space-time process. Papritz and Fluhler (1994) illustrate
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their method by developing the kriging equations for linear estimation of the change

in two sets of observations measured at two different times.

The methodology proposed by Papritz and Fluhler (1994) is based on the pseudo cross

variogram calculation. The cross variogram is half the expectation of the product of

the increment of two variables. In order to calculate the cross variogram, it needs to be

assumed that the spatial distribution of a hydromorphological property at any one time

is a realization of a separate random process. If this hydromorphological property

cannot be measured at identical points on two or more occasions, the experimental

cross variogram between times cannot be obtained. In this situation it is necessary to

calculate the pseudo cross variogram for which the spatial distribution of each

hydromorphological property needs to be assumed to be a realization of a second

order stationary random process; this signifies that the mean of the

hydromorphological property is a constant, independent of any time shift. The

methodology was developed for soil properties but hydromorphological parameters

are characterised by more rapid changes and the assumption of a constant mean is not

realistic so a trend must also be included in the model (Snepvangers et al, 2003). This

trend can be modelled as a linear trend function consisting of the sum of products of

coordinates in space and time and some unknown coefficients (universal kriging).

The analysis carried out in this chapter to determine if the variogram was a useful tool

to detect temporal changes only considered changes in the system due to variations in

discharge. The channel bed was considered constant and invariable for all the

discharges analysed at each river site. Further research should consider the possibility

of quantifying the different sources of variability that constitute the river system by

isolating one variable (degree of freedom) at a time and applying geostatistical

analysis.

c. Limitations of Habitat Simulation Models (PHABSIM): Incorporating

geostatistics to habitat models

The guidelines given in previous paragraphs should be considered when applying

transect sampling strategies for physical habitat models such as PHABSIM. The

traditional PHABSIM methodology requires the description of the river site through
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the measurement of transects at the selected reach (Bovee, 1997). As described in

previous sections, results obtained in this study show that the characterisation of a

river site (at least the spatial characterisation) is not captured when collecting data

following cross-sections. Information, which should contribute to the habitat

characterisation of the river site, can be lost. In PHABSIM, the problem can only be

solved by increasing the number of sampled cross-sections, which has a time/cost

implication. The incorporation of geostatistical analysis and kriging interpolation to

methodologies such as PHABSIM may help to characterise the variability of the

physical habitat by obtaining a more realistic “picture” of the sampled river reach.

Another issue associated with the application of PHABSIM is the use of habitat

suitability indices (HSIs). PHABSIM uses HSIs to determine suitable intervals of

depth, velocity, (and potentially substrate) for specific developmental stages of target

species. For example, consider the suitability range for the spawning rainbow trout

(Raleigh, 1986), where intervals are: [0.3048 m to 2.438 m] for depth, and [0.3048

ms-1 to 0.9144 ms-1] for velocity. With this information one can determine if areas of

the river reach under study have suitable depths and velocities. Errors, in terms of SE,

ME and MSE, are associated with the prediction of hydromorphological values at non

measured locations: values of mean error encountered for the analysed river sites are

[0.008 ms-1 to 0.19 ms-1] for velocity, [1 cm to 14 cm] for depth and [0.083 to 0.15]

for Froude number. This indicates that the errors encountered (ME), especially for the

velocity variable, could be high compared with the suitability intervals identified,

making it difficult to accurately define the status of the habitat at the sampled reach. It

is necessary to account for the sources of random error described in this study; if the

sources of random error for depth are considered independent, it is possible to add the

errors associated to the type of equipment used, the methodology used for WSL

calculation, the sampling strategy applied and the sampling density selected. This can

be used as a tool to identify the uncertainty associated to the habitat suitability

indices; if depth or velocity values are close to the limits of the suitability index, the

value of random error calculated may change the final decision on whether a reach is

suitable or not in terms of depth or velocity.

The procedure used for the characterisation of habitat through the application of

PHABSIM is also associated to several other limitations; (i) The number of transects
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sampled significantly modifies the results obtained with PHABSIM. The 95%

confidence intervals for the predicted habitat can vary from 9% to 73% depending

upon the species and the number of transects (Gard, 2005). (ii) The model does not

take into account water quality, sediment transport, or other constraints on habitat

suitability and population (Spence & Hickley, 2000). (iii) The use of a single

preference curve across a range of discharges has also been discussed. Ideally, this

preference curve should vary according to the discharge that is being considered. The

model output is highly sensitive to changes in the preferences curves and therefore, it

has been stated that large errors can be encountered when applying PHABSIM and

other models that use similar principles (Holm et al., 2001). (iv) PHABSIM has

focused upon prediction of available habitat for life stages of target fish species. It has

been demonstrated that the single target-species approach is probably not appropriate

to many temperate river and stream ecosystems that are species rich (Freeman 1998

and Leonard and Orth, 1988 in Gore et al., 2001). Moreover, benthic communities are

considered as a surrogate of fish species (Gore et al., 2001). (v) The model is difficult

to calibrate and cannot be applied to areas that are frequently uncovered during low-

flow periods (Ghanem et al, 1996 in Merwade, 2004; Merwade, 2002). (vi) The river

reach is divided into trapezoidal cells, which even though being convenient for

conceptualization, is not accurate. A single measurement of depth and velocity is

collected for each trapezoidal cell. The fact that depth and velocity do not remain

constant over any distance from the vertical or along the stream has been widely

discussed as a limitation (Kondolf et al, 2000 and Payne, T.R., unpublished). Velocity

can fluctuate turbulently over short time frames (Bhowmik and Xia, 1994). (vii)

Depth, velocity, substrate and temperature are not the only variables that control the

distribution of specific species, populations or communities (Payne, T.R.,

unpublished) and (viii) There are three different methodologies for obtaining the

Weighted Usable Area which produce different result of WUA (Gan and McMahon,

1990) but only one is in common practice due to tradition and simplicity.

The use of mean velocity as a measure of habitat suitability for fish has been

questioned (Shirvell and Dungey, 1983 in Jowett, 2003 and Scott and Shirvell, 1987

in Jowett, 2003). The first phase of habitat modelling is the characterisation of the

hydraulic environment through the application of hydraulic models. Depending upon

the main variations in the flow, models are simplified by integrating over depth to

give a two-dimensional model (Bockelmann et al, 2004). Two dimensional hydraulic
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models fail to represent the refugia created at the laminar layer by microscale features;

only refugia associated with big boulders are represented, overestimating their

relevance for habitat creation (Lane et al., 2006 and Crowder & Diplas, 2000). In 2D

models only two-dimensional velocity and bed shear stress fields are predicted and

results of depth stage and velocity predictions depend upon how well the

hydromorphological characteristics of the river site have been defined (Brierley &

Fryirs, 2000; Brierley & Fryirs, 2005).

Three dimensional hydraulic models can help to overcome the problems above

mentioned by providing a better representation of the river system. Previous sections

have already discussed the application of models such as DIVAST and SSIIM to

ecohydraulic science. Booker et al (2004b) applied the SSIIM model for the creation

of a three dimensional hydraulic-bioenergetic model with 835 topography points

(sampling density = 1points/0.32m2 = 3.12 points/m2) and obtained results of

differences between predicted and observed water surface elevations <0.01 m,

differences that are very small in comparison to measurement error (Booker et al,

2004b). It is always necessary for this purpose to apply an interpolation procedure in

order to predict the bathymetry of the bed channel all along the reach that is going to

be simulated. The results obtained in this study provide a set of guidelines for the

interpolation of such bathymetry with geostatistical techniques. The main limitation of

three dimensional models is the required data inputs. Although advances in

technology make it easier to collect larger and more accurate data sets, the process is

still time and cost consuming. Numerical modelling is being used to simulate the

shape of the channel bed so less field data is required (Tsujimoto & Klaassen, 2006

personal comment). It is necessary to determine (i) whether it is necessary to use three

dimensional hydraulic models for habitat modelling, (ii) what are the larger and

smaller scales required to obtain ecologically meaningful information with three

dimensional hydraulic models and (iii) how it is possible to better integrate biological

and behavioural understanding into habitat models (Lane et al., 2006). Biological

knowledge about river habitat species behaviour is still a limitation for the

development of more accurate habitat models.

Habitat models in future need to take into account the effect that the vegetation has on

the ecosystem in terms of habitat availability and hydraulic characteristics. Hydraulic
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models that include the effect of the vegetation have been developed in laboratory

flumes and therefore lack a component that explains the real distribution of the

vegetation in nature. Generally, in hydraulic flume experiments vegetation is

represented through a regular distribution of plants without considering different

species and their interactions in space (e.g. processes of competence, temporal change

in growth and death among others). These limitations can be assessed through the

application of geostatistical theory. Geostatistics can be combined with general theory

on plant ecology to quantify the spatial distribution of vegetation along a desired river

site.

River habitat models generally do not consider the temporal morphological changes

that occur in the system. Morphodynamic models are able to predict the change of the

morphological characteristics of the system and they are starting to be combined with

habitat models for the characterisation of the temporal variability of the system

(Wieprecht et al., 2006). However, there is still a need to carry out a validation of the

models so confidence intervals can be calculated.

Finally, recent work for the modelling of river habitat is based on the application of

fuzzy logic (Lane et al., 2006). This methodology substitutes the preference curves

applied in the Instream Flow Incremental Methodology (PHABSIM) for a set of rules

defined through logistic regression that are based on deterministic equations. A more

stochastic approach is necessary in order to include the natural variability of the river

ecosystem.

d. Other research possibilities - limitations of this project that could be addressed

in further projects

Zig-Zag sampling strategies can be compared with those already analysed in this

study. Zig-Zag design is usually applied when collecting data with an acoustic beam

from a boat.

Further analysis could be carried out to accurately characterise the levels of

anisotropy that could be encountered between the cross-sectional and the

longitudinal direction.
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It is suggested to repeat the analysis developed for the scope of this study for river

sites that represent a wider range of hydromorphological characteristics. Results

currently obtained are mainly focused on lowland rivers. This makes it impossible

to extrapolate the proposed guidelines to reaches with different characteristics.

Geostatistical analysis (kriging) has been successfully applied in many

environmental-ecology studies (Rossi et al, 1992) and ecological spatial dependence

studies. It is suggested to apply geostatistical analysis to better understand the

interaction between the physical habitat and the existent biology at a site (e.g.

macroinvertebrates, fish population or vegetation).

There is a need to determine the level of accuracy that associated with each

objective for which hydromorphological characterisation is being carried out so

recommendations on sampling density and strategy can be provided.

The variogram or variogram cloud could be a useful tool to define the spatial or

temporal variability that is expected for a specific river type. Therefore, it could be

used as an indicator of specific reference conditions which degraded reaches should

aim for.

Further analysis should be carried out to determine the effect that changes on

sampling density have on the final output of models that require

hydromorphological input (e.g. hydraulic or habitat models).

The Water Framework Directive requires the characterisation of the

hydromorphology in freshwater ecosystems for the assessment of the ecological

status. This characterisation is usually carried out through visual assessment (see

Chapter 2). Results obtained in this study showed that hydromorphological

characterisation is associated to several sources of uncertainty which have an effect

on the final output of the characterisation procedure. Further research is required
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to determine the effect of these uncertainties on the final output of the ecological

assessment procedure.

9.3. Conclusions

The following paragraphs summarise the main conclusions obtained. The conclusions

need to be understood in relation to the concepts explained in the discussion section of

each chapter and in Chapter 9. The information is presented as a set of guidelines that

can be used for the design of hydromorphological sampling schemes in rivers. It

needs to be noted that these guidelines primarily refer to lowland river sites with

characteristics that are similar to those rivers analysed for this study. The conclusions

are summarised below.

Hydromorphological data collection is associated with different sources of random

error. These sources of random error need to be quantified and considered in the final

measurement obtained so the level of uncertainty of the measurement can be

determined. Random error of the measurements depends upon the type of equipment

used, the sampling strategy applied and the type of interpolation technique used to

predict the Water Surface Level (WSL) at non measured locations. As general

guidelines, it is recommended to (i) use heterotopic data sets of WSL and

topographical information for the characterisation of depth, (ii) to take depth

measurements with metric staff in deep areas (> 0.5 m) and total station in shallow

points (0.5 m) and (iii) apply descriptive geometry for the prediction of WSL.

Interpolation techniques are a useful tool to predict hydromorphological variables at

non measured locations. However, the error or accuracy associated with the

predictions need to be taken into account when analysing the final values obtained.

The sampling strategy selected for the data collection has an influence on the accuracy

of the predictions. It is recommended that grid sampling strategies be applied when

characterising the spatial pattern of depth, velocity and Froude number rather than

applying transect sampling strategies. The use of random grids (random walk) are

preferred to the use of stratified and regular grid sampling strategies.
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The sampling density applied during the field data collection has an effect on the

accuracy of the predicted values. Accuracy decreases when decreasing the sampling

density applied. A set of tables that relates the sampling density to the accuracy of the

depth predictions have been developed under the scope of this study. A

complementary set of tables that that relates accuracy, sampling density and

confidence interval for the predicted values has also been developed. Accuracy has

been measured in term of nine different qualitative indicators.Values obtained have

been related to the characteristics of the river site at macroscale and mesoscale level.

The end user is therefore able

 to relate both accuracy and sampling density, and associate the confidence

interval to the selection.

 to identify the objective for data collection and the variables of relevance

(e.g. characterisation of the frequency distribution or characterisation of the

mean depth).

 to use the data provided to identify the most similar river type.

 to use the guidelines for the identified river to determine the sampling

density required for a specific level of accuracy on in indicator.

The accuracy in the predictions has a different behaviour according to the qualitative

indicator that is being considered. The indicators that are highly dependent on the

sampling density analysed are: maximum / minimum / mean difference between

predicted and observed values, maximum squared error, MSE, p-value, R-squared and

objective function value. Different objectives for which hydromorphological data are

collected require different specification for the level of accuracy required for each

indicator. Therefore, different sampling densities should be applied for different

objectives. The set of tables developed under the scope of this study provide a

framework to identify the level of accuracy that will be provided for a specific

sampling strategy applied.

It was observed that the spatial correlation for velocity and Froude number is lost at

distances larger than 3 m and 9 m, which is the recommended spacing distance

between sampled points. Velocity presents higher variability than depth and Froude
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number and thus, higher resolution data sets are required for its characterisation when

applying interpolation techniques (geostatistics). It was also observed that the

variogram is not able to predict the extreme values (i.e. deepest/shallowest areas) of

the river sites. The measurement of deepest and shallowest areas in detail will allow

the variogram to predict these areas with higher accuracy.

The analysis carried out for the different sampling densities is based at mesoscale

level. Results presented need to be carefully interpreted when a detailed

representation of the system is required (densities higher than 4 points/m2 required) or

spatial scales > 200 m need to be analysed.

When considering the values of mean error obtained for each study it is possible to

observe that the differences associated with the type of equipment used during the

data collection procedure are less significant than the differences encountered

between sampling strategies used to collect topographical and water surface level data

(heterotopic or isotopic). Similarly, the type of sampling strategy applied for the

collection of topographical and WSL (heterotopic or isotopic) is less significant than

the general sampling strategy applied for the data collection (e.g. regular grid or

transect). Random errors associated with the sampling strategy and the type of

equipment are higher than the confidence intervals associated with any of the

sampling densities considered.

Several considerations need to be taken into account when calculating the variogram

for depth interpolation. These considerations are associated to the parameters that

define the variogram equation and can be summarised as follow: (i) it is

recommended the longitudinal variogram is used for depth predictions, (ii) it is

suggested that azimuth tolerances be 60, (iii) a sensitivity analysis of the variogram

parameters that define the variogram (i.e. azimuth, azimuth tolerance, lag distance,

maximum distance and number of pairs of points) is recommended.

The accuracy of the predictions always decreases around the edges of the sampled

area and therefore, it is necessary to monitor a greater length of river than that of

concern (i.e. the reach of interest should be from 1/2 to 1/3 of the total distance
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sampled). Spectral analysis is a useful tool to detect the cyclic patterns that occur in

rivers. This methodology provides results that are consistent with the more traditional

description of the morphological structure of rivers defined by previous authors.

Results obtained suggested that reach lengths of 500 m appear to provide satisfactory

data for the characterisation of spatial pattern (i.e. identification of the sequences of

deep and shallow areas defined by the habitat features).

Interpolation through geostatistics has been proved to be useful to reduce the number

of points that need to be collected during the field data collection. However, less

successful results were obtained when analysing the ability of geostatistics to

extrapolate (i.e. interpolation between sampled reaches) information from the sampled

reaches to higher scale levels.

The calculation of the temporal variogram for the interpolation of

hydromorphological variables over time is difficult since it requires the repeated

sampling of the site that is being characterised. The analyses carried out in this study

focus on the hydromorphological differences observed between two discharges at two

different river sites. Results were related to the mesohabitat and flow types identified

at the river site. A sequence of change for the mesohabitat types has been identified

and is described as follows: pool – deep glides – shallow glides - riffles. The

sensitivity of each mesohabitat to changes in discharges is not equal for the four types

identified. Therefore, it is necessary to characterise the mesohabitat types and the

change in discharge occurred to better predict temporal changes for rivers with a low

variation in the mesohabitat types, hydromorphological changes occur at the same

level at all the mesohabitat types. In contrast, rivers with a higher variety of

mesohabitat types, present higher changes in those types that link pools and riffles. It

is suggested these mesohabitat types be sampled with higher detail to better

characterise the temporal changes.

The work developed for the scope of this study provides a set of findings for the

characterisation of depth, velocity and substrate in lowland rivers. In order to confirm

these findings more work is needed and a wider range of river types need to be

sampled. Ideas for further research projects have been developed in the discussion

section.
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Appendix 1

The following appendix gives a brief description of the characteristics at each river
site. A total of sixteen rivers (Austrian Channel, Bere, Blackwater, Brazos, Cruick,
Highland Water, Lambourn, Leigh Brook, Pang, Peris, Seiont, Senni, Sulphur, Tame,
Tarf and Windrush) have been described. Multiple reaches were analysed in some of
the rivers and thus, the number of river sites to be analysed is nineteen.

Description of the river sites
analysed.



Artificial channel in Austria

The data obtained for the laboratory channel (Figure A 1.1) have been provided by the

Department of Water Management at University of Agricultural Sciences, Vienna

(Hydrology and Hydraulic Engineering; BOKU). The channel was created in order to

reproduce a natural straight stream and thus, woody debris were included along the

stream. The simulated channel is 17 m long, 2.5 to 4m width, has a 5% of slope and

includes two different mesohabitats classified as riffle and pool.

The topography was measured in a regular grid of dimension 5cm x 5cm. The woody

debris were also measured, with special effort being invested in the definition of the

border. A total of 17 cross sections were identified along the reach in order to obtain

detailed topography and velocity values. The number of topographical measurements

taken is equal to 13809 points, of which 116 defined the debris.

The discharge was maintained constant (210 ls-1) in steady hydraulic conditions and

was regulated by a weir located at the channel end. The water levels were measured at

the left (17 points) and right (17 points) side of the creek. Several velocity

measurements were obtained at each cross section as a result of the mean 1-minute

reading (25Hz). Velocity was measured at different levels up to 7 cm below surface

water level. Problems arise when trying to obtain velocities above this point, and so

there are no velocity values belonging to this depth range. The velocity measurements

were applied every 20 cm at each cross section and a reading was taken every 5 cm

depth at each selected point. A total of 1238 velocity measurements were obtained for

the channel
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0 3 61.5 Meters

Simulated Austrian Channel River Site

Legend

!( WSL data points

Depth (mm)
-286.51 - -90.31

-90.30 - 129.49

129.50 - 321.29

321.30 - 522.29

522.30 - 851.89

Figure Appendix 1.1: Data sets collected at Simulated Austrian channel River Site. Depth values have been represented in mm.



Bere stream

The Bere stream is one of the main tributaries of the Piddle catchment in Dorset. The

Piddle catchment has an extension of approximately 190 km2, of which 48 km2

contribute to the Bere stream at the river site. The water quality of the rivers in the

Piddle catchment is very good due to the character of the catchment which is mainly

rural, with very little industrial development. In addition to this, the flood plain areas

have been managed to maintain suitable water levels in riparian meadows and wetland

areas. Thus, the rivers have remained clean enough to support thriving populations of

brown trout and salmon, yet have the habitat characteristics in their lowland reaches

to also sustain a healthy population of coarse fish. Currently, the status of the rivers is

moving towards a trophic threshold due to several changes in the catchment area and

this could significantly change the ecology in future.

The geology of the catchment is composed of Jurassic limestone, Upper Greensand,

Chalk, sands of the Tertiary deposits, superficial sands or gravels, which provide the

likelihood of large groundwater storage, and clay with flints. The dominant substrate

at the Bere stream is a combination of sands, gravels and clay. The proximity of the

Piddle catchment to the Frome and the chalk character of the geology point towards

the possibility of groundwater interchange between these two areas. In addition, the

chalk aquifer presents extensive karst development that contribute to the water

interchange. The existence of faults provides constraints on groundwater and

influences the contributions to outflows. Mean annual rainfall in the Bere area is

around 800 mm.

The water quality information has been obtained from the station located at the

confluence between the Bere at Chamberlaynes. The water quality has been classified

(GQA classification) as grade A for Biological Oxygen Demand, ammonia and

dissolved oxygen content. The nitrate content was considered grade 5 whilst the

phosphate content was 3. These results indicate that the river has a very good water

quality and that the main problems are due to high nutrient levels. The water quality

indicates that water abstraction is possible for all uses and that salmonid and cyprinid

fisheries could be supported in this area. The biology has been classified as grade A

and thus, it can be considered as similar to that expected for an unpolluted river.



Figure A1.2: Data sets collected at Bere 1 (top and bottom) and Bere 2 (bottom) River Sites..
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The Bere river site (Figure A1.2) is located at coordinates 385900E, 92015N. Data

from the river section should be straightened for further data analysis due to the fact

that it does not present a straight shape. The topographical data collected at the Bere

stream was measured in September of 1998 (Q=0.365 m3s-1), January of 2000 and

July of 2000 (Q=0.45 m3s-1). The data sets measured in September 1998 and January

2000 correspond to a different location to the data set measured in July 2000. The

total number of points measured for the first location (Bere 1) in September and

January is 2759 over a total river length of 80m, whilst 794 points were measured

over a distance of 45m in the second location (Bere 2) in July. The mean width of

these river sites is 5.8 m. The water surface level was only measured in the second

location and so no depth measurement can be obtained for the first location. Two

different methods where applied for the WSL measurement; a total station and wading

rod. A total of 43 points were collected for the water surface level representation; 20

randomly located points with a total station and 23 points with the wading rod

method, describing 5 complete cross sections.

Blackwater

The Blackwater river rises in Rowhill Nature Reserve, which is on the Surrey and

Hampshire border between Aldershot and Farnham. The Blackwater river is the centre

piece of the Blackwater Valley. The main tributaries are Cove Brook and the

Whitewater.

The geology of the valley is defined at the southern end by the Hogs Back, a ridge of

chalk that forms the southern limit of the London Basin. Tertiary deposits of London

Clays, Bagshot formation, Bracklesham Beds and Barton Beds are found in the

surrounding valley. The current land uses for the catchment area include gravel and

sand extraction and urban expansion.

The water quality values for the Blackwater river site have been obtained from the

station located at Aldershot. The GQA classifies the BOD as grade B, ammonia as

grade A, DO as grade C, nitrate and phosphate as grade 3 and biology as C. These

results indicate that advanced treatment is required if the water is used for potable

supply and that the biology is worse than that expected for unpolluted rivers. The

closest gauging station to the river site is located at Farnborough (39123). The station
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Figure A1.3: Data sets collected at Blackwater River Site. Depth values have been represented in metres.



defines a catchment area of 35.5 km2, defining a mean, Q10 and Q95 flows equal to

0.51 m3s-1, 0.926 m3s-1 and 0.144 m3s-1.

The river site (Figure A1.3) is located at coordinates 488390E, 150725N, with a

length of 155 m and an averaged width of 5.8 m. The data set available is constituted

of two topographical files of 4876 and 886 points. The first one defines the

topography of the channel bed (4876 points) whilst the second defines the bankfull

shape. The Water Surface Level has been described through a data set of 476 points,

collected following the wetted edge of the river bed. Data were collected at three

different discharges: Q=0.46 m3s-1, Q=0.79 m3s-1 and Q=0.92 m3s-1 .

Brazos

The Brazos River (Rio Brazos de Dios) is a 2060 km river. Its catchment area is equal

to116,000 km². The Brazos is the longest length of river stretching through Texas.

Amongst the tributaries of the Brazos we can encounter the Clear Fork of the Brazos,

Bosque River; Little River; Yegua Creek; and Navasota River. The Brazzos passes

through Dallas-Fort Worth, Waco, Bryan-College Station, Sugar Land, and the Gulf

of Mexico where its mouth is located. There are three dams and nineteen major

reservoirs along the Brazos. The Brazos is primarily important today as a source of

water for power and irrigation. The water is administered by the Brazos River

Authority. The geology of the Brazos is formed by Permian strata which is

characterised by a high content of thick salt bed that dissolve into waters increasing

the salinity.

The data set for the Brazos site (Figure A1.4) included 37288 topographical data

points collected along a 7.5 km reach. Maximum depth at the Brazos site is equal to

12.95 m, with a mean depth of 2.57 m and a variance equal to 1.83. Mean width is

equal to 100 m which provides a depth-width ratio of 0.025. The sinuosity index is

equal to 3.2. Data were collected using a single beam depth sounder for both river

sites. The site is characteristics of a lowland meandering river.



Figure A1.4: Data sets collected at Brazos River Site.



The Cruick

The Cruick Water is located in Angus (Scotland) and is a tributary of the North Esk

river. It rises on Mowat’s Seat in the Braes of Angus and flows south into the valley

of Strathmore and then east to join the river North Esk. The total length of the river is

26 km.

The geology at the Cruick is mainly composed of a combination of highly permeable

aquifer at the surface (with areas overlayed by a clay layer of unknown thickness) and

weakly permeable rocks. Thick beds of marine and estuarine clay overlie Devonian

sandstone and form an effective barrier between the aquifer and the surface activities.

The Lower Devonian sandstone aquifer forms part of an elongate structural feature in

which the strata have been extensively folded. Mudstones and igneous rocks can be

found between the sandstone layers.

The land use in the catchment is mainly agricultural which depends on irrigation for

successful crop production. The Cruick Water catchment area is considered to be at

high risk due to the combination of a high permeable aquifer system and a high level

of water abstraction.

The Cruick river site (Figure A1.5) is located at coordinates 418745E, 215725N. The

sampled stream is 230 m long and approximately 5m wide, with a strong curvature

that justifies the application of straightening techniques before further data analysis.

Both, topographic and WSL data sets, were collected in August 2002 (Q = 0.61 m3s-

1). A total of 2432 points were collected for the topographical data set, whilst only 83

were measured for the WSL. Irregular grids were applied in both data sets.



!(!(!(
!(!(

!(!(

!(!(

!(
!(

!(!(
!(!(!(!(

!(!(

!(

!(
!(!(!(!(!( !(

!(
!(

!(!(
!(!(

!(

!(!(

!(
!( !(

!(
!(!(!(

!(

!(!(!(

!(
!(!(!(!(!(

!(
!(

!(

!( !(
!(!( !(

!( !(
!(

!(
!( !(

!( !(
!( !(

!( !(!( !(!(!(!( !( !( !( !( !(

0 30 6015 Meters

Cruick River Site

Legend

!( WSL data points

Depth (m)
-0.55 - 0.00

0.01 - 0.06

0.07 - 0.36

0.37 - 0.66

0.67 - 0.97

0.98 - 1.27

Figure A1.5: Data sets collected at Cruick River Site. Depth values have been represented in metres.



Highland Water

The Highland Water is located in the New Forest catchment in Hampshire and is a

meandering gravel-bed river with an active bedload of fine-coarse gravels, and a

suspended load of silts and clays. The Highland Water has two main tributaries; the

Long Brook and the Bagshot Gutter.

The river is characterised by a large number of organic debris dams and a damp

riparian forest floodplain that regulate the equilibrium between sedimentation and

erosion, storing bedload upstream and forcing water and suspended sediments

downstream (floodplain).

The water quality of the Highland Water river obtained at the Bank stream station

(Environment Agency, 2002) defines the contents of ammonia and BOD as grade A,

the dissolved oxygen content as grade C, the nitrates as grade 2, the phosphates as

grade 5 and the biology as B. According to the values obtained for the Environment

Agency classification, the water from Higland Water river site can be used as potable

supply after advanced treatment and is good for cyprinid fisheries. Additionally, the

content of nitrates is very low, the content of phosphates is very high and the biology

is a little short of that expected for an unpolluted river.

The extension of the New Forest catchment area is 12km2 approximately and is

located to the Northwest of the town of Lyndhurst. The geology is composed of an

underlying Eocene Barton group (marine clays and sands) capped by older River

Gravels. In the valley floor, the deposits bordering the channels are dominated by

sands and gravels laid down as alluvium, that sometimes are overlain by peat. The

characteristic types of soils are podsols for the older river gravel geological areas and

peat soils at some points of the valley floor.

The climate for the Highland Water river site is oceanic, characterised by mild wet

winters and wet warm summers. Rainfall is around 750mm per year and temperature

oscillates between 2 degrees Celsius in winter to 21 degrees Celsius in summer. The

small catchment area and the geology result in a very flashy regime for the Highland

Water. The flow regime is temperate oceanic, with a maximum in January and a

minimum in August. No gauging stations are available from the National Water



Archive. However, there is a gauging station at Millyford (SU 268077) which records

values of mean daily flow equal to 0.12m3s-1.

The Highland Water river site is located at coordinates 426500E, 107500N, at 30 m

AOD and 6.5 km from the river origin, with a length of 50 m and mean width of

approximately 6.5 m. The nearest villages to the river site are Millyford, Bank, Emery

Down and Lyndhurst. The selected stream presents a smooth curvature along the river

and hence, it would be convenient to straighten it in order to apply further data

analysis. The data set collected at the Highland Water river site in July of 1999 is

constituted of two topographical and three different water surface level data sets. The

topographical data sets represent the bed channel topography (392 points) and the

river bank (117 points). The water surface level data sets have been collected for three

different flows; 0.09 m3s-1, 1.88 m3s-1 and 0.91 m3s-1 in March and April of 1999

with 16, 17 and 24 points respectively. The points have been collected in the central

area of the river for the first and third WSL data set, and at the river edge for the

second one (Figure A1.6).
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Figure A1.6: Data sets collected at Highland Water River Site.



Lambourn

The river Lambourn is located in the Thames Region and it rises near the village of

Lambourn, in the chalk of the Berkshire Downs at an altitude of about 152m. Three

stations (CEH Wallingford, 2000) are located in the Lambourn at; East Shefford,

Welford and Shaw. The two first stations are located upstream of the studied river site

whilst the last one is located downstream. The river altitude at East Shefford is

101.9m and 75.6m at Shaw. The mean flow of the Lambourn at East Shefford is 0.76

m3s-1 and 1.76 m3s-1 at Shaw with Q95 equal to 0.113 m3s-1 and 0.762 m3s-1,

respectively. Q10 is equal to 1.57 m3s-1 at East Shefford and 2.92 m3s-1 at Shaw. The

catchment area at the river site is approximately 185 km2, with 154km2 at East

Shefford and 234 km2 at Shaw.

The Lambourn flows through the Kennet Valley in a south-easterly direction to

Newbury, with a total length of 26 km. Bagnor, Boxford, Speen and Newbury are the

closest urban areas to the selected river site. The river joins the Kennet at an altitude

of 85 m. The Winterbourne stream is the most important tributary of the Lambourn.

This tributary flows into the Lambourn from the north-east (upstream of Newbury).

The catchment is mainly rural characterised by farming activities, with deciduous

woods along the catchment boundary. The river Lambourn is considered to have one

of the least modified catchments in southern England, with one of the lowest rates of

abstraction.

Water quality, water quantity and habitat quality are all considered high according to

the Natura 2000 data form for the selection of Special Protection Areas (SPA), Sites

of Community Importance (SCI) and Special Areas of Conservation (SAC). The river

is classified as General Quality Assessment (GQA) biological class “B” and chemical

class “A” at the Boxford station. Water abstractions are possible for any use according

to the chemical quality level and the water quality is excellent for salmonid and

cyprinid fisheries. The main problems identified in the river are localised higher

nutrient levels and siltation due to the presence of sewage treatment works.

Most of the river has been designated a Site of Special Scientific Interest (SSSI) and

Special Area of Conservation (SAC). The extension of the protected site is 27.27 ha,

characterised by alluvial soils, basic geology, lowland geomorphology and valley



landscape. The catchment area has been included in the Atlantic biogeographic

region. The habitats considered as a primary reason for the selection of the site are

water courses of plain to montane levels with Ranunculion fluitantis and Callitricho-

Batrachion vegetation. The species that is a primary reason for selection of this site as

a SSSI is Cotus gobio (Bullhead). The Lampetra planeri (Brook Lamprey) is also

present as a qualifying feature for the SSSI selection but it is not considered as a

primary reason. The Bullhead is a small-bottom living fish that appears to favour fast-

flowing, clear shallow water, with a hard substrate (gravel/cobble/pebble). It is

frequently found in upland streams. The Brook Lamprey is a non-migratory

freshwater species, found in streams with clean gravel beds for spawning and soft

marginal silt or sand for the ammocoete larvae.

The coordinates for the Lambourn river site (Figure A1.7) are 444565E, 169280N.

The selected site is a straight short stream (46 m ) with a mean width of 7.5 m, located

at 90 m AOD and 19 km from the river origin. The stream is characterised by a gentle

slope of approximately 0.4% and a mean depth around 30 cm. The river topography

has been described (July 2002; Q = 0.67 m3s-1) through two different sets of

topographical data with 1916 and 289 points, respectively. The first set corresponds to

topographical points measured in non vegetated areas whilst the second one has been

collected in vegetated areas. Both data sets are distributed irregularly along the river.

The water surface level data set for this river site consists of 4 points measured in the

central area of the river.
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Figure A1.7: Data sets collected at the Lambourn River Site.



Leigh Brook

The Leigh Brook is a tributary of the river Teme and rises on the Malvern Hills in

Worcestershire. Data was collected in a 198 m reach (Figure A1.8) within the Knapp

and Papermill Nature reserve, which is managed by the Worcestershire Wildlife

Trust. The reach is 10 m to 15 m wide and 2 m to 3 m deep from streambed to

bankfull. The catchment area upstream the selected reach is approximately 80 km2 .

Data was collected by the Department of Applied Sciences, Geography and

Archeology at University College Worcester (Worcester, UK). The variables

characterised at the 5429 georeferenced points collected are quantitative (i.e. Froud

Number, Velocity, Depth) and qualitative (i.e. Habitat Type and Flow Type). Data

was collected for two different flow rates for a period of three days following dry

weather and steady flow conditions. The first survey occurred at a flow of 0.517 m3s-1

(Q82), whilst the second was carried out under a discharge of 0.344 m3s-1 (Q93)

(Maddock & Lander, 2002).

The measured points were distributed following 200 cross-sections located at 1 m

interval. Points were distributed across each cross-section by a 0.5 m interval. The

topographical survey was carried out with a Nikon NPL-820 Reflectorless total

station. Average water velocities were recorded at 0.6 x depth at those points located

inside the wetted width of each transect.

Habitat types were defined for each point following the typology developed by

Maddock & Bird (Maddock & Bird, 1996). The categorisation of the habitat types

was obtained by association of the dominant type of each cross section to the points

measured. Flow types were assigned according to the typology used within the River

Habitat Survey (Environment Agency, 2003).



Figure A1.8: Data sets collected at the Leigh Brook River Site.



The Pang Old-fenced, The Pang Unfenced and The Pang Fenced.

The Pang, which drains 170 km2 , is a small tributary of the Thames and rises south of

Compton. The catchment is located in central southern England and is characterised

by a gentle slope and a maximum height of 186m (Lowbury Hill). The Pang flows in

a southerly direction in the upper parts and then north easterly before joining the

Thames.

The geology of the area is predominantly chalk which facilitates groundwater

interchange between the Pang and the adjacent Lambourn catchment.. The higher land

is formed of the Upper Chalk, which contains layers of flint nodules and patches of

clay with flints in the surface that influence recharge on hill tops. In contrast, the

floodplain is characterised by clays and sands of the Reading Beds.

The Pang has its origins in the Chalk aquifer of the West Berkshire Downs and thus,

the river presents the characteristics of a chalk groundwater dominated river system,

with slow, damped responses to rainfall and ‘bourne’ behaviour of headwater reaches

when the water table is low.

The land use in the Pang catchment is mainly agricultural (farming and Christmas tree

growing). Water pumping for water supply has been one of the main activities in the

catchment and this dried the upper reaches of the Pang in the mid-1960s. The

pumping also affected the lower reaches which became shallow and sluggish.

However, recent changes in the abstraction regime have reduced groundwater losses,

improving the river flows.

The closest monitoring stations to the selected river site are located at Bucklebury

(39115), Frilsham (39114) and Pangbourne (39027), defining catchment areas of 109

km2, 89.8 km2 and 170.9 km2, respectively. There is no gauging data available for

these stations but the record of mean flow, Q10 and Q95 gives results equal to 0.27 m3s-

1, 0.64 m3s-1 and 0.001 m3s-1 for the Bucklebury station, 0.23 m3s-1 , 0.552 m3s-1 and 0

m3s-1 for the Frilsham station and 0.65 m3s-1, 1.17 m3s-1 and 0.19 m3s-1 for

Pangbourne. The annual rainfall for the Pang area is close to 700 mm.



The Pang Fenced river site (Figure A.1.9) can be located by the coordinates 453625E,

175250N. The length of the stream is 155m, with a channel width of approximately

10.5 m. The curvature present in the selected stream indicates that straightening

processes will be necessary before any further data analysis. Three different

topographical data sets are available for the description of the bed channel at the Pang

Fenced river site. Two topographical data sets were collected in January 2003 whilst

the last one was collected in February of the same year. The January monitoring was

used to obtain a detailed irregular data set of the area (1587 points), as well as a

detailed cross section (148 points). The data set collected in February describes 9

different cross-sections and is composed of a total of 1225 points. The cross section

measured in January was sampled again as one of the 9 sections measured in

February.

The WSL is described through three different data sets collected in January, March

and April 2003 with 37, 19 and 24 points, respectively. The flows for the two last data

sets, whose points were distributed irregularly along the river, were 0.47688 m3s-1 and

0.404 m3s-1. No gauging data are available for the first WSL data set whose points

were distributed following a hypothetic axis along the river. The extent of this data set

falls outside the limits of the topographical data set.

The coordinates for the Pang Old-fenced river site (Figure A1.10) are 453790E,

174635N. The selected stream is 31 m long, with a channel width of 7.5 m and it is

characterised by a straight shape. Two different topographical data sets were collected

for the Pang Old-fenced river site on the same day in February 2003 (Q = 0.48 m3s-1).

The first one with 474 points was distributed following an irregular grid whilst the

second, with 279 points, defines 4 detailed cross-sections of the river site. The three

WSL data sets were collected in two different periods: February 2003 (on the same

day as the topography data set Q = 0.48 m3s-1) and May 2003 (Q = 0.32 m3s-1 and Q =

0.27 m3s-1) The data set collected in February 2003 is composed of 13 points located

at the edge of the channel WSL. The data sets collected in May are composed of 7 and

9 points distributed along the central area of the river channel.

The Pang Unfenced river site (Figure A.1.11) is 107m long and 7.5 m wide. The river

site is located at coordinates 453690E, 174550N and is characterised by a meandering

shape that indicates that the data sets need to be straightened before further data



analysis. The topography of the river bed in the Pang Unfenced stretch is described by

two data sets collected in February 2003 (Q = 1.02 m3s-1). The first one is formed by

1971 points distributed following an irregular grid along the river site. The second

data set, which has a total of 1068 points, describes 9 detailed cross-sections spaced

irregularly along the river site. The WSL has been monitored through out the three

different data sets: two of them collected in February 2003 (Q = 1.02 m3s-1) and the

last collected in May 2003 (Q = 1.020.32 m3s-1). The points collected in February, 23

and 25 for each data set were located at both edges of the WSL, whilst the data set

collected in May was distributed randomly along the river.
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Figure A.1.11: Data sets collected at Pang Unfenced River Site.



Peris and Seiont

The rivers Seiont and Peris belong to the same catchment area, which is located in

North Wales, Snowdonia. Afon Seiont or river Seiont is a tidal river that flows for

20km from Llyn Padarn to the menai straits at Caernarfon. The site was classified Site

of Special Scientific Interest in 2003. The Peris is a small tributary of the river Seiont,

characterised by a stepper gradient and coarser material than the Seiont. (Figure

A.1.12)

The isotopic data set collected at the Seiont river site is constituted of 106

topographical points and 106 water surface level points. Depth was measured at each

topographical point with the total station and the metric staff to allow the comparison

of both sets of equipment. The data set collected at the Peris river site has 449

topographical points and 376 water surface level, from which 183 TO and 183 WSL

points have been collected following an isotopic sampling strategy. Depth was

measured with both, a metric staff and a total station, at 58 TO points of the Peris

river sites respectively. The rest of the sampled points were measured with the total

station following a heterotopic sampling strategy.



Figure A.1.12: topographical and water surface points measured at the Seiont (left) and Peris (right) river sites. Blue boxes show a detail of the sampling strategy
applied, which is isotopic for the Peris and isotopic & heterotopic for the Seiont



The Senni

The Senni is a small tributary of the river Usk which is located in Wales, has a

catchment area of 1007 km2 and has been declared a Special Area of Conservation.

The habitats present as a qualifying feature are the watercourses of plain to montane

levels with Ranunculion fluitantis and Callitricho-Batrachion vegetation. In addition,

the species that are a primary reason for the selection of this site are: Sea Lamprey

(Petromyzon marinus), Brook Lamprey (Lampetra planeri), River Lamprey

(Lampetra fluviatilis), Twaite Shad (Alosa fallax), Atlantic Salmonid (Salmo salar),

Bullhead (Cottus gobio) and Otter (Lutra lutra).

The Senni catchment is fully contained in the Brecon Beacons National Park, which

covers an area of 1347 km2. The geology of the Senni catchment is composed of Old

Red Sandstone. The uses of the land are mainly restricted to livestock farming, with

approximately 5% of the surface occupied by forest. The dominant soils in the area

are peat and the bed channel is composed of a combination of gravel-pebble-cobble

with marginal areas composed of sand and silt.

The flow regime at the Senni site can be characterised using data from the station

located at Pot Hen Hafod (56007). There are no flow series available at this station

throughout the National River Flow Archive but values of mean flow, Q10 and Q95,

which respective values are 1.03 m3s-1, 2.37 m3s-1 and 0.104 m3s-1, have been

registered. The station is located upstream of the selected river site and includes a 20

km2 catchment area. The water quality for the Senni river has been classified (GQA)

as grade A for BOD, DO and ammonia, grade 1 for nitrate and phosphate and grade B

for biological parameters. Thus, the system allows water abstraction for all uses and

gives the possibility to support salmonid and cyprinid fisheries.

The coordinates for the Senni river site are 292980E, 226940N. The river site (Figure

A.1.13) is 40m long, 8.8 m wide, defines a 28 km2 catchment area and is characterised

by a smooth curvature at the centre of its length. However, due to the shortness of the

river site, straightening has not been considered necessary for the data analysis. A

total of 895 topographical points were measured for this river site following an

irregular sampling strategy. Five consecutive cross sections were surveyed in detail.



The WSL data set was measured in October 2000 with a flow of 0.44 m3s-1. The 24

points measured were located randomly along the river site.
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Figure A.1.13: Data sets collected at the Senni River site.



Sulphur

The Sulphur River is created in eastern Delta County (Texas) The river provides most

of the water for Wright Patman Lake. The river flows through Miller County for 15

miles (24 km) until it joins with the Red River

The Sulphur data set (Figure A.1.14) had 8490 topographical data points collected

along a 1.5 km reach. The maximum and mean depth at the Sulphur site is equal to

22.8 m and 12.86 m, respectively, with a variance is equal to 22.13. Mean width is

equal to 35 m, which provides width – depth ratio equal to 0.36. The sinuosity index

is equal to 1.81. Data were collected using a single beam depth sounder for both river

sites.



Figure A.1.13: Data sets collected at the Sulphur River site.



Tame HM and Tame LM

The river Tame catchment covers an area of 1490 km2 at its confluence with the Trent

river, with a catchment area of 183 km2 and 188 km2 at the Tame HM and Tame LM

river sites, respectively. The length of the river is 285 km, with the highest point at

270m (Brecon Hill) and a lowest point at 50m (Chetwynd Bridge), rising at 150m

AOD. The main tributaries are Oldbury Arm, Hockley Brook, Cole, Blythe and

Black/Bourne Brook.

The geology of the Tame catchments is composed of Lower, Middle and Upper

Carboniferous Coal Measures (between Dudley and Wolverhampton) in the upper

area of the catchment. Triassic Mercia Mudstones and Triassic Sherwood Sandstones

are also present in lower down the Tame catchment. The substrate for the majority of

the river Tame is composed of a gravel-pebble combination, with limited presence of

vegetation in the banks and channel.

The geology has promoted the abstraction of coal and clay in the past, which played a

major role in the modification of the structure of the river Tame. Currently, the land

use is divided between agricultural (55%), urban (41%) and woodland and rough

grass (4%). The straightening of several parts of the river, pollution of running waters,

flow alteration and the separation of the floodplain from the river are consequences of

the activities in the Tame catchment over time. Thus, several research projects are

being developed in the catchment area, such as LOCAR (Environment Agency,

2002), to study key water resource issues.

The mean annual rainfall in the Tame catchment is 740 mm of which approximately

450 mm constitutes runoff. The catchment is characterised by a flashy response to

rainfall events due to the geology, the amount of water imported from outside the

catchment (Wales) and the presence of several navigable waterways. Four gauging

stations are located in the Tame river at Portwood (69027), Broomstair Bridge

(69041), Bescot (28081) and Water Orton (28003). Bescot station is the closest to the

selected river site, with a catchment area of 169 km2 and mean flow, Q10 and Q95

equal to 2.37 m3s-1, 4.1 m3s-1 and 0.92 m3s-1, respectively. The stations located

upstream of the selected river sites in the Tame are Broomstair Bridge and Portwood

with catchment areas of 113 km2 and 150 km2, respectively. The mean annual flow is



between 4.10 m3s-1 and 3.55 m3s-1 whilst Q95 is between 1.09 m3s-1 at Broomstair and

1.31 m3s-1 at Portwood. The Q10 values are 7.78 m3s-1 at Portwood and 6.82 m3s-1 at

Broomstair. Water Orton station is located downstream of the monitoring sites, with

a catchment area of 408 km2 and mean flow, Q10 and Q95 equal to 5.62 m3s-1, 9.85

m3s-1 and 2.45 m3s-1, respectively.

The water quality at the Tame HM and Tame LM river sites has been determined

from data obtained from the station at the junction of arms-Bescot to Sandwell PK

(Tame river). The GQA classifies the BOD and DO content as grade D, the ammonia

as grade C, nitrate content as grade 5 and phosphate content as grade 6. The values

indicate that the Tame river has nutrient problems due to the high and excessively

high contents of nitrate and phosphate, respectively. In addition to this, the values

indicate that the water could be abstracted for water supply after advanced treatment

and that cyprinid fisheries could be supported in the area. The biological water quality

has been classified as E and this indicates that the biology is restricted to pollution

tolerant species.

The Tame HM river site (Figure A.1.15) is located at 402935E, 292890N coordinates.

Tame HM is composed of one topographical set with 1206 points that were collected

approximately following cross sections at the river site. The length of the selected

river site is 112m, with a mean cross section width of approximately 13m, with a total

of nearly 60 cross sections measured. The water surface level data set were collected

for 4 different flows; 2.526 m3s-1, 3.693 m3s-1, 4.78 m3s-1 and 4.25 m3s-1 between

November of 1999, July of 1999, and May 2001. The eight points measured in each

WSL data set were located at the same coordinates on the edge of the river. The

exception to this is the last WSL data set, where only four of these eight points were

measured.

The Tame LM (Figure A.1.16) river site is located at coordinates 403020E, 292395N.

The selected stream is 140m long, 13 m wide and is characterised by a straight shape.

The topographical data set for this site consists of 1726 points collected following

approximated cross sections. The WSL data were collected for six different flows

between September of 1999 and November of 2000. The flows measured for the

different WSL data sets are 2.559 m3s-1, 2.096 m3s-1, 2.559 m3s-1, 2.838 m3s-1, 1.4569



m3s-1 and 4.372 m3s-1, each of them with 5 points located at the centre of the river

channel, which were collected at the same coordinates in the different campaigns.
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Figure A.1.15: Data sets collected at Tame HM River Site.
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Figure A.1.16: Data sets collected at Tame LM River Site.



The Tarf

The site at the Tarf river is currently being studied by CEH Banchory as part of a

project comparing Salmon productivity in upland and lowland rivers. It is located

upstream of Tarfside and has a catchment area of approximately 15km2 and lies at

around 248 m above sea level. It is a tributary of the North Esk, which is on the

northern edge of the Tayside region of Scotland. The geology is intrusive igneous,

although the river runs over metamorphic rocks and old red sandstone in the lower

reaches. There are no artificial influences to the flow regime. The area is all part of a

large estate and is relatively isolated; access being up the North Esk valley. The main

land uses in the catchment area are rough grazing with little tree cover.

The Tarf river site is considered to be a good status water body according to the study

by the Scottish Protection Environment Agency (SEPA) (SEPA, 2003) although the

site is influenced by human activities such as livestock agriculture, arable cropping,

hill land and forestry. The water quality has been considered to have an overall

classification of level B (2003) (fair) and a biological level A2 (Good).

The Tarf river site is located at coordinates 348765E, 782375N, at an altitude of

240m. The length of river surveyed is 212 m with a mean width equal to

approximately 5.5 m. The catchment area at the river site, which is located 7 km from

the original source, is 22 km2. The data set collected at the Tarf river site

(FigureA.1.17) has a total of 4937 topographical points and 252 water surface level

points. The curvature of the river at the river site complicates the data analysis and

thus, data sets require straightening. WSL and topographical points where measured

during three consecutive days of field work, which had similar weather conditions.

Hence, WSL data collected can be considered at “the same reference water level”

during the complete survey and no adjustment needs to be done. WSL points were

collected following an irregular grid, trying to sample the water level as many times

as possible at both sides of the river banks.
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Figure A.1.17: Data sets collected at the Tarf River Site. Depth values have been represented in metres.



The Windrush

The river Windrush is a meandering river whose source is the Cotswold limestone. It

originates approximately 4 km from Temple Guiting and is joined by a number of

small tributaries (notably the River Dikler at Bourton-on-the-Water and the Sherborne

Brook at Little Barrington). At the study area in Sherborne Park Estate, between

Bourton-on the Water and Burford in Gloucestershire, the river flows through a water

meadow system, belonging to the National Trust.

Land uses in the catchment area include mineral abstraction, especially for the Lower

Windrush. Water abstraction is a major issue; water is abstracted from the river

Windrush at Worsham and studies (Environment Agency, 2001) have been carried out

to investigate the low flow problems on the Windrush.

At the Sherborne Brook station, according to the GQA classification, the water quality

and biology are excellent (grade A) except for the nitrate content that is very high

(grade 6). Thus, the Windrush river site is a natural ecosystem with particular nutrient

problems which presents biology similar to that expected for an unpolluted river and

excellent conditions for all kind of water supply uses and support of fisheries

(salmonids or cyprinids).

The closest gauging station to the river site is the Windrush at Worsham (39076),

which defines a catchment area of 296.0 km2. The data registered by the NRFA at this

location indicates that mean, Q10 and Q95 flows are equal to 2.17 m3s-1, 0.647 m3s-1

and 4.28 m3s-1, respectively.

The Windrush river site (Figure A.1.18) data set is composed of 2259 topographical

points and 380 water surface level points. The river site is located in an area of

meandering 18 km from the river source. The river site defines a catchment area of 17

km2 and is located at an altitude of 250 m. The length of river surveyed is 212 m, with

a mean width of 9.7 m.

The meander area is characterised by pools which are deep enough to make the

measurement of the water surface level impossible with the total station. Hence, WSL



values have been recorded with two different techniques; the total station (320 points)

and immersion (60 points). WSL points recorded by immersion were collected during

a different field monitoring exercise than those recorded with the total station.

djustments need to be made in order to adapt both water surface level data sets to the

same reference level. Note the detailed WSL and topographical data sets available for

the upstream area of the river site. The meandering character of the river at the

selected river sites complicates the application of geostatistical techniques.

Straightening procedures therefore have to be applied in order to decrease the error in

the data analysis.
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Figure A.1.18: Data sets collected at the Windrush River Site.





Appendix 2

This Appendix includes some of the graphical outputs obtained when analysing the
differences between the sampling strategies considered in Chapter 4. Only those
results not included in the text of Chapter 4 have been copied in this Appendix.

Results obtained for the analysis in
Chapter 4
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Figure Appendix 2.5: MSE for the different layers analysed of
the artificial Austrian channel.

Figure Appendix 2.6: percentage of MSE in relation to the mean
velocity value of the different layers in the artificial Austrian
channel.

Figure Appendix 2.4: MSE obtained for the depth sampling strategies
considered for the artificial Austrian channel. 0 value indicates that the
predictions could not be calculated due to the structure of the data (Depth
in mm).
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Figure Appendix 2.8: MSE per sampling strategy and flow analysed for depth measurements at the Leigh
Brook river site. Green columns represent the MSE encountered when predicting depth at all the points
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points.



Figure Appendix 2.9: box-plots for the depth, velocity and Froude number difference between observed and predicted values obtained at Q1. Results obtained for the

Leigh Brook river site.
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Figure Appendix 2.10: p-value for different layers and sampling
strategies in the artificial Austrian channel.

Figure Appendix 2.11: R-squared obtained for the different depth sampling
strategies at the artificial Austrian channel. The higher the R-squared value,
the more accurate the predictions are.

Figure Appendix 2.12: R-squared for different layers and
sampling strategies in the artificial Austrian simulated
channel.



Appendix 3.1

This appendix includes all the graphical outputs obtained for the analysis in Chapter 5

section 5.4.2. Only few examples where included in the explanation given in Chapter

5 in order to reduce the length of the document. The structure of this Appendix

follows this developed in Chapter 5. Plots have been collated in this document

without either giving any explanation regarding the methodology used for the analysis

nor the headings for the Figures. A full explanation is given in the correspondent

section of Chapter 5.

Results obtained for the analysis in
Chapter 5 –descriptive statistics



Box Plots Dry & Wet Points





Box Plots Wet Points





QQplots Dry & Wet points





QQplots Wet Points





Histograms Dry & Wet points





Histogram Wet points





Table Appendix 3.1.1: descriptive statistics for depth at the studied river sites. Data sets include
dry and wet points.

Site
%

F
lo

w
E

xc
ee

d
an

ce
(L

o
w

F
lo

w
s

20
00

)

G
ro

up Num.
Points

Min
Depth

Max.
Depth

Interval
max-
min

Median Mean 1st
Quartile

3rd
Quartile

Std.
Dev

Pang Old fenced 90 1 474 -1.45 0.56 2.01 0.176 0.025 -0.281 0.331 0.407
Pang fenced 91 1 1438 -1.05 0.726 -1.77 -0.011 -0.06 -0.28 0.16 0.314
Pang Unfenced 90 1 1468 -0.96 0.53 1.50 0.035 -0.030 -0.259 0.232 0.311
Lambourn 92 1 2205 -0.26 0.56 0.82 0.29 0.27 0.22 0.33 0.951
Leigh Brook 93 1 2983 0.00 0.85 0.85 0.18 0.20 0.09 0.30 0.148

Bere 2000 79 2 1546 -0.99 0.857 -1.85 0.149 0.094 -0.20 0.36 0.332
Pang Old fenced 80 2 474 -1.44 0.575 2.01 0.189 0.0378 -0.269 0.344 0.407
Pang Unfenced 80 2 1468 -0.95 0.544 4.45 0.050 -0.016 -0.28 0.24 0.311
Leigh Brook 82 2 2983 0.00 0.94 0.94 0.21 0.24 0.13 0.34 0.154
Senni 78 2 895 -0.04 1.04 1.08 0.41 0.42 0.24 0.57 0.219

Highland Water 43 3 501 -1.59 0.66 2.25 -0.11 -0.30 -0.78 0.14 0.531
Cruick 51 3 2431 -0.28 1.10 1.38 0.28 0.30 0.17 0.39 0.184

50 3
52 3

Tarf

54 3
5486 -0.45 0.89 1.34 0.14 0.13 0.06 0.21 0.112

Blackwater 33 3 6100 -2.05 0.578 2.64 0.321 0.099 -0.09 0.39 0.475
Tame LM 43 3 1726 -3.66 1.19 4.86 0.104 -0.19 -0.71 0.352 0.742

Windrush ? ? 1302 -0.76 1.44 2.20 0.33 0.38 0.18 0.55 0.277
TamesHM 20 0 1206 -0.85 0.68 1.53 0.306 0.066 -0.397 0.367 0.441

Table Appendix 3.1.2: descriptive statistics for depth at the studied river sites. Data sets only
include wet points.

Site

%
Fl

ow
ex

ce
ed

an
ce

(L
ow

Fl
ow

s
20

00
)

G
ro

u
p

Num.
Points

Max.
Depth Median Mean

1st
Quartile

3rd
Quartile

Std.
Dev

Pang Old fenced 90 1 299 0.562 0.293 0.286 0.209 0.384 0.129
Pang fenced 91 1 700 0.726 0.171 0.193 0.098 0.279 0.127
Pang Unfenced 90 1 784 0.534 0.222 0.213 0.128 0.291 0.112
Lambourn 92 1 2200 0.569 0.296 0.272 0.226 0.338 0.093
Leigh Brook 93 1 2983 0.85 0.18 0.20 0.09 0.30 0.148

Bere 2000 79 2 924 0.875 0.332 0.332 0.203 0.442 0.173
Pang Old fenced 80 2 306 0.575 0.304 0.292 0.211 0.395 0.135
Pang Unfenced 80 2 801 0.544 0.234 0.222 0.131 0.307 0.116
Leigh Brook 82 2 2983 0.94 0.21 0.24 0.13 0.34 0.154
Senni 78 2 894 1.042 0.414 0.424 0.246 0.574 0.218

Highland Water 43 3 219 0.668 0.182 0.196 0.088 0.291 0.128
Cruick 51 3 2382 1.102 0.286 0.309 0.186 0.400 0.179

50 3
52 3

Tarf

54 3
5045 0.897 0.151 0.158 0.083 0.219 0.093

Blackwater 33 3 4529 0.578 0.364 0.344 0.295 0.344 0.110
Tame LM 43 3 957 1.191 0.330 0.340 0.207 0.439 0.197
Windrush ? ? 1278 1.449 0.341 0.398 0.194 0.560 0.264
TamesHM 20 0 810 0.681 0.352 0.359 0.305 0.393 0.095





Appendix 3.2

This appendix shows the graphical outputs obtained for the sensitivity analysis of lag

distance developed in section 5.4.3. Results are presented in two section; a first one

summarising the results obtained for the data sets with wet and dry points and a

second one including results obtained for data sets with only wet points. Each river

site analysed presents two outputs: (i) the experimental variogram obtained for the

different lag distances and (ii) a comparison of the relation between the number of

pair of points obtained for each lag distance of the variogram for the all the lag

distances tested.

Results obtained for the analysis in
Chapter 5 –sensitivity analysis for

the lag distance



Lag Distance Dry & Wet points



































Lag Distance – Wet points































Appendix 3.3

This Appendix includes all the graphical outputs obtained for the sensitivity analysis of the

azimuth tolerance (section 5.4.3). Two main graphical outputs are shown in this appendix: (i)

the first one identifying the relation between the number of points vs. lag distance and the

variance between points and the lag distance (for two different azimuth directions; 0 and 90)

for several azimuth tolerances and (ii) the second one plotting the differences between

directional variogram 0 and directional variogram 90 for different azimuth tolerances. Each of

these sections is divided in turn in two sub-sections; the first one including the results for the

data sets with wet and dry points and the second one including results for the data sets with

only wet points.

Results obtained for the analysis in
Chapter 5 –sensitivity analysis for

the azimuth tolerance



Azimuth tolerance Wet and dry points
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Azimuth tolerance wet & dry points









































































































































Azimuth tolerance wet points

























































































































Appendix 3.4

This appendix includes the graphical outputs obtained for the sensitivity analysis of

the azimuth direction carried out in section 5.4.3. Results have been presented in two

sections: the first one including the outputs for the data sets with dry and wet points

and the second one showing the results obtained for the data sets with wet data points.

Each data set analysed presents the following outputs: (i) a plot summarising four

directional variograms calculated with azimuth tolerance equal to 60, maximum

distance 30 m (although the plots shows up to maximum distance 50 m) and lag

distance 0.5 m (for the data sets with dry and wet points) and 1 m (for the data sets

with only wet points and (ii) a second plot showing the existent number of pair of

points obtained for each variogram.

Results obtained for the analysis in
Chapter 5 –sensitivity analysis for
the azimuth direction; anisotropy

analysis



Anisotropy for the wet & dry points



































Anisotropy analysis fir the wet points































Appendix 3.5.1

This appendix summarises the results obtained for the sensitivity analysis developed

in section 5.4.3. for the combination of lag distances and maximum distances selected.

Results presented in this section only include the graphical output for the data sets

analysed with dry and wet points. The variogram model analysed is the spherical one.

Three different outputs, one for each variogram variable analysed (i.e. range, sill and

nugget) are presented for each river site. Those river sites that had extreme variogram

values are included twice: the graphical output is presented with two different axis

scales so results can be better analysed.

Results obtained for the analysis in
Chapter 5 –Sensitivity Analysis –

Variogram values for combinations
of lag and maximum distance

considered: spherical variogram for
dry and wet points.
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Appendix 3.5.2

This appendix summarises the results obtained for the sensitivity analysis developed

in section 5.4.3. for the combination of lag distances and maximum distances selected.

Results presented in this section only include the graphical output for the data sets

analysed with dry and wet points. The variogram model analysed is the exponential

one. Three different outputs, one for each variogram variable analysed (i.e. range, sill

and nugget) are presented for each river site. Those river sites that had extreme

variogram values are included twice: the graphical output is presented with two

different axis scales so results can be better analysed.

Results obtained for the analysis in
Chapter 5 –Sensitivity Analysis –

Variogram values for combinations
of lag and maximum distance

considered: exponential variogram
for dry and wet points.
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Lambourn- Sensitivity analysis
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Leigh Brook Q83- Sensitivity analysis
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Leigh Brook Q92- Sensitivity analysis
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Pang Fenced- Sensitivity analysis
(Sill values)
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Pang Fenced- Sensitivity analysis
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Pang Old Fenced Q80- Sensitivity analysis
(Sill values)

0

0.05

0.1

0.15

0.2

0.25

0.3

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2

Lag distance (m)

S
il

l

10 m

20 m

30 m

40 m

60 m

70 m

80 m

100 m

50 m

90 m

Pang Old Fenced Q80- Sensitivity analysis
(Nugget values)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

Lag distance (m)

N
u

g
g

e
t

10 m

20 m

30 m

40 m

60 m

70 m

80 m

90 m

100 m

50 m

Pang Old Fenced Q80- Sensitivity analysis
Range values)

0

1

2

3

4

5

6

7

8

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

Lag distance (m)

R
an

g
e

10 m

20 m

30 m

40 m

60 m

70 m

80 m

100 m

50 m

90 m



Pang Old Fenced Q90- Sensitivity analysis
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Pang unfenced Q80- Sensitivity analysis
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Pang unfenced Q80- Sensitivity analysis
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Pang unfenced Q90- Sensitivity analysis
(Sill values)
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Pang unfenced Q90- Sensitivity analysis
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Windrush- Sensitivity analysis
(Sill values)
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Appendix 3.5.3

This appendix summarises the results obtained for the sensitivity analysis developed

in section 5.4.3. for the combination of lag distances and maximum distances selected.

Results presented in this section only include the graphical output for the data sets

analysed with wet points. The variogram model analysed is the spherical one. Three

different outputs, one for each variogram variable analysed (i.e. range, sill and

nugget) are presented for each river site. Those river sites that had extreme variogram

values are included twice: the graphical output is presented with two different axis

scales so results can be better analysed. The horizontal axis represents the selected lag

distance.

Results obtained for the analysis in
Chapter 5 –Sensitivity Analysis –

Variogram values for combinations
of lag and maximum distance

considered: exponential variogram
for wet points.
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Appendix 3.5.4

This appendix summarises the results obtained for the sensitivity analysis developed

in section 5.4.3. for the combination of lag distances and maximum distances selected.

Results presented in this section only include the graphical output for the data sets

analysed with wet points. The horizontal axis represents the selected lag distance. The

variogram model analysed is the spherical one. Three different outputs, one for each

variogram variable analysed (i.e. range, sill and nugget) are presented for each river

site. Those river sites that had extreme variogram values are included twice: the

graphical output is presented with two different axis scales so results can be better

analysed.

Results obtained for the analysis in
Chapter 5 –Sensitivity Analysis –

Variogram values for combinations
of lag and maximum distance

considered: spherical variogram for
wet points.
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Pang Old Fenced Q80- Sensitivity analysis
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Pang Old Fenced Q80- Sensitivity analysis
(Sill values)

0.0176

0.0178

0.018

0.0182

0.0184

0.0186

0.0188

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2

Lag distance (m)

S
il

l

10 m

20 m

Pang Old Fenced Q80- Sensitivity analysis
(Nugget values)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

Lag distance (m)

N
u

g
g

e
t

10 m

20 m

30 m

40 m

60 m

70 m

80 m

90 m

100 m

50 m

Pang Old Fenced Q80- Sensitivity analysis
Range values)

3 .55

3 .6

3 .6 5

3 .7

3 .75

3 .8

3 .8 5

3 .9

3 .9 5

4

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

Lag distance (m)

R
an

g
e 10 m

20 m



Pang Old Fenced Q90- Sensitivity analysis
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Appendix 3.5.5

This appendix summarises the results obtained for the sensitivity analysis developed

in section 5.4.3. for the combination of lag distances and maximum distances selected.

Results presented in this section only include the graphical output for the data sets

analysed with dry and wet points. The horizontal axis represents the selected

maximum distance. The variogram model analysed is the spherical one. Three

different outputs, one for each variogram variable analysed (i.e. range, sill and

nugget) are presented for each river site. Those river sites that had extreme variogram

values are included twice: the graphical output is presented with two different axis

scales so results can be better analysed.

Results obtained for the analysis in
Chapter 5 –Sensitivity Analysis –

Variogram values for combinations
of lag and maximum distance

considered: spherical variogram for
dry and wet points.
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Cruick- Sensitivity analysis
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Appendix 3.6

This Appendix includes the graphical outputs obtained for the variogram cloud

analysis developed in section 5.4.4. Each plots presents three different variogram

clouds: (i) one representing the total variogram cloud calculated with the wet and dry

points of each data sets (blue colour), (ii) a second one representing the variogram

cloud obtained for the data sets with only dry points (pink colour) and (ii) a third one

showing the variogram cloud for the wet points (green colour). The comparison of

these three variogram clouds allow us to determine the information that is being

introduced by each data sets in terms of spatial structure.

Results obtained for the analysis in
Chapter 5 –sensitivity analysis:

variogram cloud comparison for the
wet & dry points.

















Appendix 3.7

This Appendix includes the graphical outputs obtained when modelling the

variograms in section 5.4.5. The output show the final variogram selected after

analysing the good of fitness of the spherical and exponential variogram models. Two

sections can be identified: a former including the results for those data sets with wet

and dry data points and a second including the results obtained for the data sets with

just wet points.

Results obtained for the analysis in
Chapter 5 –geostatistical analysis –

modelling the variogram



Geostatistical Analysis: variogram fit dry and wet points

















Geostatistical Analysis: variogram fit dry and wet points

















Appendix 4.1

This appendix summarises the equations obtained for those indicators that showed a
pattern of change when decreasing the sampling density. The equations have been
calculated independently for each river site. The “x” and “y” in the equations refer to
the sampling density (points/m2) and the indicator value (in the units shown in the
tables), respectively. It is recommended to use these equations in combination with
the information provided in Annex 6.2 and Annex 6.3. Maximum, minimum and
mean difference refer to the difference between predicted and observed values.

Equations relating sampling density
with indicator values – Chapter 6



Indicator Mean Squared Error P-value R-squared Objective function
Bere 0.0222*exp(-2.3136*x) -0.3934+0.9306*x-0.1491*x^2 0.862+0.3364*log10(x) 365.8153*exp(1.0684*x)
Blackwater 0.0089*exp(-1.5487*x) -0.2174+0.3167*x+0.0082*x^2 0.796+0.4956*log10(x) 151.5419*exp(0.8739*x)
Cruick 0.0039*exp(-1.3909*x) -0.2114+0.9363*x-0.1668*x^2 0.9668+0.0718*log10(x) 506.3296*exp(0.9166*x)
HighlandWater 0.0096*exp(-2.1908*x) -0.4975+1.1048*x-0.1908*x^2 0.8963+0.2342*log10(x) 83.6897*exp(1.0442*x)
Lambourn 0.0045*exp(-1.8274*x) -0.3672+0.9009*x-0.1429*x^2 0.8862+0.2493*log10(x) 88.369*exp(0.9664*x)
LeighQ82 0.0073*exp(-1.5932*x) -0.2688+0.391*x-0.0076*x^2 0.9207+0.1752*log10(x) 214.5544*exp(1.1506*x)
LeighQ90 0.0072*exp(-1.5837*x) -0.2771+0.4167*x-0.014*x^2 0.9212+0.1738*log10(x) 211.4321*exp(1.1481*x)
PangFenced 0.0353*exp(-2.6885*x) -0.426+0.7103*x-0.0828*x^2 0.732+0.4873*log10(x) 351.1401*exp(0.8724*x)
PangUFQ80 0.0018*exp(-1.8587*x) -0.3778+0.9894*x-0.1675*x^2 0.9606+0.0987*log10(x) 306.5785*exp(1.076*x)
PangUFQ90 0.0016*exp(-1.8407*x) -0.3462+0.9823*x-0.1682*x^2 0.9614+0.0966*log10(x) 303.2993*exp(1.0693*x)
Senni 0.012*exp(-2.0318*x) -0.2166+0.9336*x-0.1656*x^2 0.9427+0.1432*log10(x) 210.7293*exp(1.1844*x)
TameLM 0.0009*exp(-1.9265*x) 0.243+0.6704*x-0.1288*x^2 0.988+0.0314*log10(x) 721.3967*exp(1.1546*x)
TameHM 0.0043*exp(-2.1344*x) -0.2938+0.8229*x-0.1268*x^2 0.979+0.0524*log10(x) 499.6575*exp(1.0834*x)
Tarf 0.0009*exp(-0.5893*x) 0.012-0.0248*x+0.0089*x^2 0.8774+0.2104*log10(x) 582.7786*exp(1.1735*x)
Windrush 0.0014*exp(-2.3819*x) 0.4794+0.4702*x-0.0919*x^2 0.9911+0.0241*log10(x) 621.7147*exp(1.1872*x)



Indicator Maximum
Difference (m)

Minimum
Difference (m)

Mean
Difference (m)

Maximum
Squared Error

Bere 0.6391*exp(-0.8158*x) 0.3534*exp(-0.6962*x) 0.107*exp(-3.6255*x) 0.4024*exp(-1.5588*x)
Blackwater 0.435*exp(-0.5212*x) 0.289*exp(-0.4621*x) 0.0326*exp(-3.2724*x) 0.1799*exp(-1.004*x)
Cruick 0.4965*exp(-0.3988*x) 0.3764*exp(-0.4075*x) 0.0074*exp(-2.8216*x) 0.2479*exp(-0.7987*x)
HighlandWater 0.3494*exp(-0.8503*x) 0.4338*exp(-0.8502*x) 0.2455*exp(-3.8518*x) 0.2091*exp(-1.6641*x)
Lambourn 0.2939*exp(-0.6612*x) 0.167*exp(-0.5728*x) 0.0588*exp(-3.1641*x) 0.0864*exp(-1.3224*x)
LeighQ82 0.6204*exp(-0.5859*x) 0.5179*exp(-0.6324*x) 0.0419*exp(-2.7832*x) 0.4529*exp(-1.2292*x)
LeighQ90 0.6182*exp(-0.5809*x) 0.5075*exp(-0.6195*x) 0.0635*exp(-2.93*x) 0.4632*exp(-1.2299*x)
PangFenced 0.4896*exp(-0.9492*x) 0.5855*exp(-0.8536*x) 0.0786*exp(-3.5831*x) 0.3435*exp(-1.7037*x)
PangUFQ80 0.1798*exp(-0.6322*x) 0.23*exp(-0.6827*x) 0.0131*exp(-2.9141*x) 0.0558*exp(-1.3647*x)
PangUFQ90 0.1632*exp(-0.5931*x) 0.2245*exp(-0.6738*x) 0.015*exp(-3.1068*x) 0.0513*exp(-1.3335*x)
Senni 0.4258*exp(-0.8267*x) 0.4889*exp(-0.8427*x) 0.0989*exp(-3.2997*x) 0.2475*exp(-1.6318*x)
TameLM 0.2775*exp(-0.6625*x) 0.2347*exp(-0.7375*x) 0.0186*exp(-3.4503*x) 0.0845*exp(-1.35*x)
TameHM 0.5165*exp(-0.848*x) 0.1749*exp(-0.6988*x) 0.1592*exp(-3.7773*x) 0.2667*exp(-1.696*x)
Tarf 0.1658*exp(-0.1476*x) 0.1592*exp(-0.0904*x) 0.025*exp(-3.0844*x) 0.0295*exp(-0.2291*x)
Windrush 0.2823*exp(-0.9561*x) 0.2339*exp(-0.9176*x) 0.0062*exp(-3.1087*x) 0.0796*exp(-1.8819*x)



Appendix 4.2

This Appendix presents the results obtained at different sampling densities for the
indicators analysed. The Appendix has been structured in two main blocks of
information: (i) a first section on the morphological characteristics of the river site
analysed and the results obtained and (ii) a graphical representation of the results
obtained. The user can, in this way, identify which river site is most similar to the site
to be monitored and select the sampling density that is needed for the characterisation
of the indicator required.

A set of tables with the catchment and reach descriptors described in Chapter 5 has
been included to provide information on the morphological characteristics of the river
sites analysed (see Chapter 5 for more information on how to calculate each
descriptor).

Note that the original sampling density describing the river characteristics of the river
site is 4 points per square metre. To determine the effect of decreasing the sampling
density for each indicator it is necessary to compare this value with the one obtained
for the highest sampling density considered, which describes the original data set. The
values of maximum, mean and minimum differences, as well as the values of
maximum, minimum and mean predicted and observed depth are given in metres.

Tables relating sampling density with
indicator values for each river type

– Chapter 6



Table Appendix 4.2.1: values obtained for the catchment and reach physical descriptors (Chapter 5). Codes for substrate are: 1-GravelCobble &Pebble, Category
2- Gravel-Cobble & Sand, Category 3-Gravel and Category 4-Gravel, Silt & Sand.
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Lambourn 1 7.5 5 7.6 7.5 5 7.6 0.008 0.009 2 46 1.1 31 0.272 0.569 -0.264 0.271

Highland 2 6.5 2 6.5 4 2 3.5 0.016 0.282 2 50 1.15 18 0.196 0.668 -1.594 -0.305

Bere 1 6.9 3.6 5.1 5.8 3.4 4.2 0.030 0.1109 2 80 1.33 60 0.332 0.857 -0.995 0.094

Tame modified 2 14.5 13.5 15.2 12 13 15 0.009 0.1944 1 93 1.01 0 0.359 0.681 -0.851 0.066

Tame less mod 1 9.5 13.1 28.3 9.5 8.2 10 0.038 0.551 2 142 1 50 0.340 1.191 -3.669 -0.198

Senni 1 8.8 6.9 11.5 8.8 6.9 11.5 0.047 0.048 3 40 1.01 25 0.424 1.042 -0.040 0.423

Pang old fenced Q80 3 7.5 5 10 5 3 5.6 0.018 0.166 1 31 1.01 0 0.292 0.575 -1.442 0.038

Pang fenced 3 10.5 9 13.6 5.5 4.5 7 0.016 0.099 2 110 1.06 90 0.193 0.726 -1.051 -0.064

Pang unfenced Q80 3 12.5 9 18.5 6.7 6.3 10.6 0.013 0.097 2 107 1.17 70 0.222 0.544 -0.956 -0.016

Blackwater 1 7.8 2.6 10.7 5.8 2.1 5.6 0.012 0.226 1 155 1.14 0 0.344 0.578 -2.055 0.099

Cruick 1 5.6 4.2 12 5.6 4.2 12 0.032 0.033 3 246 1.01 70 0.309 1.102 -0.283 0.302

Tarf 1 5.5 7 14 5.5 4.3 14 0.008 0.012 2 212 1.97 200 0.158 0.897 -0.450 0.138

Windrush 4 9.7 6 14.3 9.7 6 14 0.069 0.076 3 126 2.48 50 0.398 1.449 -0.766 0.386

Leigh Brook Q82 1 8.1 1 11.5 8.1 1 11.5 0.022 0.022 4 200 1.05 45 0.205 0.850 0 0.205

Leigh Brook Q93 1 8.1 1 11.5 8.1 1 11.5 0.023 0.023 4 200 1.05 45 0.244 0.940 0 0.244

Pang old fenced Q90 3 7.5 5 10 5 3.2 6 0.0168 0.166 1 31 1.01 0 0.286 0.562 -1.455 0.025

Pang unfenced Q90 3 12.5 9 18.5 6.7 6.3 10.6 0.012 0.096 2 107 1.17 70 0.213 0.534 -0.969 -0.030



Table Appendix 4.2.1: values obtained for the catchment and reach physical descriptors (Chapter 5). Codes for substrate are: 1-GravelCobble &Pebble, Category
2- Gravel-Cobble & Sand, Category 3-Gravel and Category 4-Gravel, Silt & Sand (continuation).
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Lambourn 185 169 127 0.86 18.3 62.7 31.01 14.4 16 1 140 90 0.67 92 1.58
Highland 13.2 73 163 0.4 4.06 56.1 8.25 38.9 5.75 2 107 30 0.09 43 0.17
Bere 48.22 105 152 0.908 10.98 82.5 22.04 9.7 7.5 1 41 25 0.36 79 0.71
Tame modified 183.2 147 97 0.399 13.97 28.1 24.07 38.2 30 5 150 100 2.52 20 1.90
Tame less mod 187.8 147 88 0.399 14.16 28.5 24.57 38.2 30 5 150 100 1.46 43 1.94
Senni 28.26 367 324 0.554 6.09 177.4 11.22 35.2 4.3 2 518 240 0.44 78 1.33
Pang old fenced Q80 84.77 146 125 0.886 11.07 56.4 22.39 12.2 4 2 95 80 0.32 80 0.64
Pang fenced 84.54 146 125 0.886 10.71 56.5 21.97 12.2 4 2 95 80 0.27 91 0.63
Pang unfenced Q80 84.93 145 125 0.885 11.22 56.4 22.56 12.2 4 2 95 80 0.32 80 0.64
Blackwater 46.15 89 345 0.648 8.51 34.4 14.5 26.6 3 1 85 80 0.46 33 0.39
Cruick 72.02 159 123 0.57 11.47 73 24.42 40.9 18.5 3 450 50 0.61 51 0.17
Tarf 21.52 528 163 0.338 5.3 184.2 9.46 50.9 7 4 650 240 0.34 50 0.63
Windrush 173.7 210 131 0.795 16.42 70.6 29.75 16.6 18.5 2 250 110 # # 1.81
Leigh Brook Q82 70.41 124 319 0.551 9.68 90.7 18.32 35.4 7.3 3 140 60 0.517 82 0.51
Leigh Brook Q93 70.41 124 319 0.551 9.68 90.7 18.32 35.4 7.3 3 140 60 0.344 93 0.51
Pang old fenced Q90 84.77 146 125 0.886 11.07 56.4 22.39 12.2 4 2 95 80 0.27 90 0.64
Pang unfenced Q90 84.93 145 125 0.885 11.22 56.4 22.56 12.2 4 2 95 80 0.27 90 0.64



THE BERE

The geology of the catchment is compo
sands of the Tertiary deposits, superfici
large groundwater storage, and clay wit
sands, gravels and clay. The proximity
character of the geology point towards
these two areas. In addition, the chalk
contributes to the water interchange.
groundwater and influences the contribu
area is around 800 mm.
The Bere
sed of Jurassic limestone, Upper Greensand, Chalk,
al sands or gravels, which provide the likelihood of
h flints. The dominant substrate is a combination of
of the Piddle catchment to the Frome and the chalk
the possibility of groundwater interchange between
aquifer presents extensive karst development that
The existence of faults provides constraints on
tions to outflows. Mean annual rainfall in the Bere



Table Appendix 4.2.2: results obtained for each indicator at different sampling densities for the Bere river site. Note that the original sampling density is 4 points
per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum depth of
the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.81 0.02 0.32 0.17 0.29 -0.39 -0.01 0.15 0.02 0.59 0.15 0.33 0.08 0.00 0.47 16.68 0.02 0.01 99.10
0.40 0.85 0.02 0.33 0.16 0.29 -0.27 0.00 0.08 0.01 0.61 0.14 0.34 0.09 0.00 0.69 15.26 0.02 0.01 317.37
0.60 0.85 0.02 0.33 0.17 0.27 -0.19 0.00 0.08 0.01 0.71 0.09 0.34 0.11 0.00 0.84 14.47 0.03 0.01 663.59
0.80 0.85 0.01 0.34 0.17 0.26 -0.19 0.00 0.07 0.00 0.78 0.09 0.34 0.12 0.00 0.87 13.70 0.03 0.01 1102.51
1.00 0.85 0.01 0.34 0.17 0.22 -0.13 0.00 0.05 0.00 0.86 0.01 0.34 0.16 0.47 0.97 8.33 0.03 0.00 1329.75
1.20 0.85 0.01 0.35 0.17 0.24 -0.11 0.00 0.06 0.00 0.82 0.06 0.34 0.14 0.00 0.93 13.06 0.03 0.01 2112.32
1.40 0.85 0.01 0.34 0.17 0.22 -0.11 0.00 0.05 0.00 0.86 0.01 0.34 0.16 0.76 0.98 8.33 0.03 0.00 2444.16
1.60 0.85 0.01 0.34 0.17 0.22 -0.09 0.00 0.05 0.00 0.86 0.01 0.34 0.16 0.92 0.99 8.18 0.03 0.00 3104.31
1.80 0.85 0.01 0.34 0.16 0.22 -0.09 0.00 0.05 0.00 0.86 0.01 0.34 0.16 0.97 0.99 7.93 0.03 0.00 3756.48
2.00 0.85 0.01 0.34 0.16 0.22 -0.09 0.00 0.05 0.00 0.86 0.01 0.34 0.16 0.99 0.99 7.88 0.03 0.00 4581.62
2.20 0.85 0.01 0.34 0.16 0.21 -0.09 0.00 0.05 0.00 0.86 0.01 0.34 0.16 0.99 0.99 7.98 0.03 0.00 5481.25
2.40 0.86 0.01 0.34 0.16 0.14 -0.09 0.00 0.02 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.94 0.03 0.00 6977.81
2.60 0.86 0.01 0.34 0.17 0.14 -0.08 0.00 0.02 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.61 0.03 0.00 8118.70
2.80 0.86 0.01 0.34 0.16 0.14 -0.07 0.00 0.02 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.56 0.03 0.00 9013.18
3.00 0.86 0.01 0.34 0.16 0.07 -0.07 0.00 0.00 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.32 0.03 0.00 8475.14
3.20 0.86 0.01 0.34 0.16 0.07 -0.07 0.00 0.00 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.30 0.03 0.00 9827.70
3.40 0.86 0.01 0.34 0.16 0.03 -0.07 0.00 0.00 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.25 0.03 0.00 11030.16
3.60 0.86 0.01 0.34 0.16 0.03 -0.04 0.00 0.00 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.37 0.03 0.00 12345.36
3.80 0.86 0.01 0.34 0.16 0.03 -0.04 0.00 0.00 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.36 0.03 0.00 13634.86
4.00 0.86 0.01 0.34 0.16 0.00 0.00 0.00 0.00 0.00 0.86 0.01 0.34 0.16 1.00 1.00 7.47 0.03 0.00 15491.54



THE BLACKWATER

The Blackwater river rises in
Hampshire border between Aldersho
of the Blackwater Valley. The main t

The geology of the valley is
of chalk that forms the southern lim
Clays, Bagshot formation, Bracklesh
valley. The current land uses for the
urban expansion.
The Blackwater
Rowhill Nature Reserve, which is on the Surrey and

t and Farnham. The Blackwater river is the centre piece
ributaries are Cove Brook and the Whitewater.
defined at the southern end by the Hogs Back, a ridge
it of the London Basin. Tertiary deposits of London

am Beds and Barton Beds are found in the surrounding
catchment area include gravel and sand extraction and



Table Appendix 4.2.3: results obtained for each indicator at different sampling densities for the Blackwater river site. Note that the original sampling density is 4
points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum
depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.
Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.55 -0.01 0.32 0.13 0.38 -0.25 0.00 0.15 0.01 0.32 0.32 0.32 0.00 0.00 0.00 14.76 0.00 0.02 238.92
0.40 0.55 -0.01 0.32 0.12 0.34 -0.19 0.00 0.11 0.00 0.54 -0.01 0.33 0.09 0.00 0.75 5.45 0.01 0.00 232.97
0.60 0.56 -0.01 0.33 0.13 0.28 -0.17 0.00 0.08 0.00 0.57 -0.06 0.33 0.11 0.00 0.86 5.29 0.01 0.00 230.60
0.80 0.56 -0.04 0.33 0.12 0.27 -0.20 0.00 0.07 0.00 0.57 -0.08 0.33 0.11 0.00 0.89 5.15 0.01 0.00 222.36
1.00 0.56 -0.04 0.32 0.12 0.27 -0.16 0.00 0.07 0.00 0.58 -0.07 0.32 0.11 0.00 0.92 5.38 0.01 0.00 297.25
1.20 0.56 -0.04 0.33 0.12 0.20 -0.17 0.00 0.04 0.00 0.58 -0.08 0.32 0.12 0.04 0.94 5.17 0.01 0.00 344.91
1.40 0.56 -0.04 0.32 0.12 0.18 -0.15 0.00 0.03 0.00 0.58 -0.08 0.32 0.12 0.10 0.95 5.10 0.01 0.00 527.98
1.60 0.56 -0.04 0.32 0.12 0.16 -0.15 0.00 0.03 0.00 0.57 -0.08 0.32 0.12 0.25 0.96 5.09 0.01 0.00 527.08
1.80 0.56 -0.04 0.32 0.12 0.16 -0.13 0.00 0.02 0.00 0.57 -0.08 0.33 0.12 0.41 0.96 5.10 0.01 0.00 780.50
2.00 0.56 -0.04 0.32 0.12 0.15 -0.12 0.00 0.02 0.00 0.56 -0.08 0.32 0.12 0.28 0.97 5.11 0.01 0.00 984.36
2.20 0.56 -0.04 0.32 0.12 0.14 -0.11 0.00 0.02 0.00 0.56 -0.05 0.32 0.12 0.38 0.98 5.09 0.01 0.00 1269.14
2.40 0.56 -0.04 0.32 0.12 0.14 -0.11 0.00 0.02 0.00 0.56 -0.06 0.32 0.12 0.61 0.98 5.10 0.01 0.00 1525.84
2.60 0.56 -0.04 0.32 0.12 0.14 -0.11 0.00 0.02 0.00 0.56 -0.06 0.32 0.12 0.84 0.98 5.14 0.01 0.00 1783.33
2.80 0.56 -0.04 0.32 0.12 0.14 -0.11 0.00 0.02 0.00 0.56 -0.06 0.32 0.12 0.99 0.99 5.17 0.01 0.00 2034.07
3.00 0.57 -0.05 0.32 0.12 0.16 -0.09 0.00 0.03 0.00 0.57 -0.06 0.33 0.12 0.99 0.99 5.34 0.01 0.00 2209.81
3.20 0.57 -0.05 0.32 0.12 0.16 -0.09 0.00 0.02 0.00 0.57 -0.05 0.32 0.12 1.00 0.99 5.31 0.01 0.00 2570.47
3.40 0.57 -0.05 0.32 0.12 0.11 -0.08 0.00 0.01 0.00 0.57 -0.05 0.32 0.12 1.00 0.99 5.31 0.01 0.00 2819.04
3.60 0.57 -0.06 0.32 0.12 0.10 -0.08 0.00 0.01 0.00 0.57 -0.06 0.32 0.12 1.00 1.00 5.31 0.01 0.00 3201.89
3.80 0.57 -0.06 0.32 0.12 0.06 -0.08 0.00 0.01 0.00 0.57 -0.06 0.32 0.12 1.00 1.00 5.28 0.01 0.00 3739.24
4.00 0.57 -0.06 0.32 0.12 0.01 -0.01 0.00 0.00 0.00 0.57 -0.06 0.32 0.12 1.00 1.00 5.31 0.01 0.00 4215.03



THE CRUICK

The geology of the Cruick catchmen
permeable aquifer at the surface (with
and weakly permeable rocks. Thick b
sandstone and form an effective barrie
Lower Devonian sandstone aquifer for
strata have been extensively folded. Mu
sandstone layers. The Cruick Water ca
the combination of a high permeable aq
The Cruick
t is mainly composed of a combination of highly
areas overlain by a clay layer of unknown thickness)
eds of marine and estuarine clay overlie Devonian
r between the aquifer and the surface activities. The
ms part of an elongate structural feature in which the
dstones and igneous rocks can be found between the
tchment area is considered to be at high risk due to

uifer system and a high level of water abstraction.



Table Appendix 4.2.4: results obtained for each indicator at different sampling densities for the Cruick river site. Note that the original sampling density is 4 points
per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum depth of
the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 1.00 0.00 0.30 0.18 0.44 -0.26 0.00 0.20 0.00 1.00 0.00 0.32 0.18 0.00 0.89 12.67 0.03 0.00 293.23
0.40 1.00 0.00 0.31 0.19 0.42 -0.21 0.00 0.17 0.00 1.00 0.00 0.32 0.18 0.04 0.94 12.35 0.03 0.00 453.32
0.60 1.00 0.00 0.32 0.19 0.33 -0.20 0.00 0.11 0.00 1.00 0.00 0.32 0.18 0.08 0.96 13.15 0.03 0.00 899.46
0.80 1.00 0.00 0.32 0.19 0.30 -0.18 0.00 0.09 0.00 1.00 0.00 0.32 0.18 0.30 0.97 13.46 0.03 0.00 1433.82
1.00 1.00 0.00 0.32 0.19 0.30 -0.28 0.00 0.09 0.00 1.00 0.00 0.32 0.18 0.77 0.98 13.37 0.03 0.00 1546.40
1.20 1.00 0.00 0.32 0.18 0.29 -0.28 0.00 0.09 0.00 1.00 0.00 0.32 0.18 0.85 0.98 13.19 0.03 0.00 1748.59
1.40 1.02 0.00 0.32 0.19 0.27 -0.28 0.00 0.08 0.00 1.01 0.00 0.32 0.18 0.94 0.99 13.05 0.03 0.00 2096.82
1.60 1.02 0.00 0.32 0.19 0.27 -0.26 0.00 0.07 0.00 1.01 0.00 0.32 0.18 0.98 0.99 12.90 0.03 0.00 2605.41
1.80 1.02 0.00 0.32 0.18 0.27 -0.26 0.00 0.07 0.00 1.01 0.00 0.32 0.18 1.00 0.99 13.02 0.03 0.00 3271.49
2.00 1.02 0.00 0.32 0.19 0.26 -0.22 0.00 0.07 0.00 1.02 0.00 0.32 0.18 1.00 0.99 13.02 0.03 0.00 3986.57
2.20 1.02 0.00 0.32 0.19 0.19 -0.20 0.00 0.04 0.00 1.02 0.00 0.32 0.19 0.99 0.99 12.90 0.03 0.00 4530.27
2.40 1.02 0.00 0.32 0.19 0.20 -0.14 0.00 0.04 0.00 1.02 0.00 0.32 0.19 1.00 1.00 12.90 0.03 0.00 5490.82
2.60 1.02 0.00 0.32 0.19 0.20 -0.14 0.00 0.04 0.00 1.02 0.00 0.32 0.19 1.00 1.00 12.92 0.03 0.00 6096.99
2.80 1.04 0.00 0.32 0.19 0.18 -0.12 0.00 0.03 0.00 1.04 0.00 0.32 0.19 1.00 1.00 12.86 0.03 0.00 7450.78
3.00 1.02 0.00 0.32 0.19 0.19 -0.18 0.00 0.04 0.00 1.02 0.00 0.32 0.19 1.00 1.00 12.84 0.03 0.00 8053.79
3.20 1.06 0.00 0.32 0.19 0.20 -0.18 0.00 0.04 0.00 1.06 0.00 0.32 0.19 1.00 1.00 12.95 0.03 0.00 9040.25
3.40 1.06 0.00 0.32 0.19 0.19 -0.18 0.00 0.04 0.00 1.06 0.00 0.32 0.19 1.00 1.00 12.76 0.03 0.00 10754.18
3.60 1.06 0.00 0.32 0.19 0.19 -0.07 0.00 0.04 0.00 1.06 0.00 0.32 0.19 1.00 1.00 12.88 0.03 0.00 11499.76
3.80 1.06 0.00 0.32 0.19 0.12 -0.07 0.00 0.01 0.00 1.06 0.00 0.32 0.19 1.00 1.00 12.97 0.03 0.00 13025.24
4.00 1.06 0.00 0.32 0.19 0.02 -0.02 0.00 0.00 0.00 1.06 0.00 0.32 0.19 1.00 1.00 12.91 0.03 0.00 14660.04



THE HIGHLAND WATER

The Highland Water is loc
gravel-bed river with an active be
and clays. The river is characteris
riparian forest floodplain that regu
storing bedload upstream and
(floodplain).

The extension of the New
located to the Northwest of the
underlying Eocene Barton group
In the valley floor, the deposits bo
laid down as alluvium, that someti

The Highland Water river
origin, with a length of 50 m an
wetted cross-section is 4 m. The se
between pool and riffles of 18 m
is 18 cm.
The Highland Water
ated in the New Forest in Hampshire and is a meandering
dload of fine-coarse gravels, and a suspended load of silts
ed by a large number of organic debris dams and a damp
lates the equilibrium between sedimentation and erosion,
forcing water and suspended sediments downstream

Forest catchment area is 12km2 approximately and is
town of Lyndhurst. The geology is composed of an

(marine clays and sands) capped by older River Gravels.
rdering the channels are dominated by sands and gravels
mes are overlain by peat.
site is located at 30 m AOD and 6.5 km from the river

d width of approximately 6.5 m. The mean width of the
lected stream presents a smooth curvature with a distance
. Maximum depth observed is 66 cm whilst mean depth



Table Appendix 4.2.5: results obtained for each indicator at different sampling densities for the Highland Water river site. Note that the original sampling density
is 4 points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum
depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.40 0.45 0.01 0.20 0.13 0.21 -0.24 0.01 0.06 0.00 0.45 0.01 0.20 0.09 0.00 0.74 5.23 0.02 0.00 82.46
0.60 0.45 0.01 0.20 0.13 0.21 -0.24 0.01 0.06 0.00 0.45 0.01 0.20 0.09 0.00 0.74 5.23 0.02 0.00 82.46
0.80 0.45 0.01 0.20 0.12 0.22 -0.28 0.00 0.08 0.00 0.45 0.01 0.19 0.09 0.00 0.79 5.21 0.02 0.00 128.28
1.00 0.46 -0.03 0.18 0.11 0.05 -0.09 0.00 0.01 0.00 0.46 -0.03 0.18 0.11 0.97 0.99 4.81 0.01 0.00 684.46
1.20 0.45 -0.01 0.19 0.12 0.22 -0.27 0.00 0.07 0.00 0.45 -0.01 0.18 0.10 0.04 0.87 5.21 0.02 0.00 210.05
1.40 0.46 -0.03 0.18 0.12 0.08 -0.10 0.00 0.01 0.00 0.46 -0.03 0.18 0.11 0.65 0.97 5.21 0.01 0.00 261.91
1.60 0.46 -0.03 0.18 0.12 0.08 -0.10 0.00 0.01 0.00 0.46 -0.03 0.18 0.11 0.93 0.98 4.94 0.01 0.00 404.40
1.80 0.46 -0.03 0.18 0.12 0.07 -0.09 0.00 0.01 0.00 0.46 -0.03 0.18 0.11 0.99 0.98 4.86 0.01 0.00 530.26
2.00 0.49 -0.03 0.18 0.11 0.04 -0.08 0.00 0.01 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 5.04 0.01 0.00 1404.36
2.20 0.46 -0.01 0.19 0.11 0.22 -0.10 0.00 0.05 0.00 0.46 -0.01 0.19 0.10 0.26 0.95 5.05 0.01 0.00 208.82
2.40 0.49 -0.03 0.19 0.11 0.04 -0.09 0.00 0.01 0.00 0.49 -0.03 0.18 0.11 1.00 0.99 4.85 0.01 0.00 1049.05
2.60 0.49 -0.03 0.18 0.11 0.05 -0.08 0.00 0.01 0.00 0.49 -0.03 0.18 0.11 1.00 0.99 4.89 0.01 0.00 1205.84
2.80 0.49 -0.03 0.18 0.11 0.05 -0.08 0.00 0.01 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 4.92 0.01 0.00 1400.96
3.00 0.49 -0.02 0.18 0.11 0.01 -0.02 0.00 0.00 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 5.13 0.01 0.00 3745.95
3.20 0.46 -0.03 0.18 0.11 0.05 -0.09 0.00 0.01 0.00 0.46 -0.03 0.18 0.11 0.99 0.99 4.83 0.01 0.00 909.29
3.40 0.49 -0.02 0.18 0.11 0.06 -0.05 0.00 0.00 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 5.23 0.01 0.00 2750.39
3.60 0.49 -0.02 0.18 0.11 0.04 -0.04 0.00 0.00 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 5.11 0.01 0.00 2986.64
3.80 0.49 -0.02 0.18 0.11 0.04 -0.04 0.00 0.00 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 5.09 0.01 0.00 3234.42
4.00 0.49 -0.03 0.18 0.11 0.00 0.00 0.00 0.00 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 5.13 0.01 0.00 3550.67



THE LAMBOURN

The river Lambourn is locate
Lambourn, in the chalk of the Berksh

The catchment is mainly rur
woods along the catchment boundary
least modified catchments in souther
Most of the river has been designated
Area of Conservation (SAC).
The Lambourn
d in the Thames Region and rises near the village of
ire Downs at an altitude of about 152m.
al characterised by farming activities, with deciduous
. The river Lambourn is considered to have one of the
n England, with one of the lowest rates of abstraction.
a Site of Special Scientific Interest (SSSI) and Special



Table Appendix 4.2.6: results obtained for each indicator at different sampling densities for the Lambourn river site. Note that the original sampling density is 4
points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum
depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.
Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.43 0.02 0.29 0.08 0.00 0.00 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 1.00 7.38 0.01 0.00 3259.27
0.40 0.40 0.09 0.29 0.07 0.21 -0.12 0.01 0.04 0.00 0.40 0.09 0.30 0.06 0.00 0.62 8.50 0.01 0.00 38.05
0.60 0.42 0.03 0.29 0.08 0.23 -0.10 0.00 0.05 0.00 0.42 0.02 0.29 0.07 0.00 0.78 7.12 0.01 0.00 278.07
0.80 0.42 0.03 0.28 0.08 0.18 -0.09 0.00 0.03 0.00 0.42 0.02 0.29 0.07 0.01 0.86 7.13 0.01 0.00 225.82
1.00 0.43 0.03 0.29 0.08 0.09 -0.06 0.00 0.01 0.00 0.43 0.03 0.29 0.08 0.94 0.97 6.65 0.01 0.00 481.40
1.20 0.42 0.03 0.29 0.08 0.13 -0.08 0.00 0.02 0.00 0.42 0.02 0.29 0.07 0.13 0.91 6.50 0.01 0.00 166.58
1.40 0.43 0.03 0.29 0.07 0.12 -0.08 0.00 0.01 0.00 0.43 0.02 0.29 0.07 0.48 0.94 6.66 0.01 0.00 242.91
1.60 0.43 0.03 0.29 0.08 0.12 -0.07 0.00 0.01 0.00 0.43 0.03 0.29 0.08 0.72 0.95 6.38 0.01 0.00 397.27
1.80 0.43 0.03 0.29 0.08 0.10 -0.07 0.00 0.01 0.00 0.43 0.03 0.29 0.08 0.69 0.96 6.64 0.01 0.00 553.77
2.00 0.43 0.02 0.29 0.08 0.07 -0.07 0.00 0.01 0.00 0.43 0.02 0.29 0.08 1.00 0.99 7.24 0.01 0.00 1223.56
2.20 0.43 0.03 0.29 0.07 0.12 -0.08 0.00 0.01 0.00 0.43 0.02 0.29 0.07 0.14 0.92 6.46 0.01 0.00 194.27
2.40 0.43 0.02 0.29 0.08 0.08 -0.06 0.00 0.01 0.00 0.43 0.02 0.29 0.08 0.99 0.98 6.89 0.01 0.00 743.01
2.60 0.43 0.02 0.29 0.08 0.07 -0.06 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 0.99 7.17 0.01 0.00 895.26
2.80 0.43 0.02 0.29 0.08 0.07 -0.07 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 0.99 7.13 0.01 0.00 1151.27
3.00 0.43 0.02 0.29 0.08 0.05 -0.03 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 1.00 7.44 0.01 0.00 3076.79
3.20 0.43 0.02 0.29 0.08 0.08 -0.06 0.00 0.01 0.00 0.43 0.02 0.29 0.08 0.99 0.98 6.89 0.01 0.00 665.08
3.40 0.43 0.02 0.29 0.08 0.06 -0.03 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 0.99 7.36 0.01 0.00 2040.30
3.60 0.43 0.02 0.29 0.08 0.06 -0.03 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 1.00 7.55 0.01 0.00 2587.10
3.80 0.43 0.02 0.29 0.08 0.05 -0.04 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 1.00 7.52 0.01 0.00 2854.93
4.00 0.49 -0.02 0.18 0.11 0.06 -0.05 0.00 0.00 0.00 0.49 -0.03 0.18 0.11 1.00 1.00 5.26 0.01 0.00 2152.67



THE LEIGH BROOK



The Leigh Brook is a tributa
Worcestershire. Data were collecte
Nature reserve. The reach is 10 m to
The catchment area upstream of the
2002). The Leigh Brook is charact
have been eroded over time due to th
The Leigh Brook
ry of the river Teme and rises on the Malvern Hills in
d in a 198 m reach within the Knapp and Papermill
15 m wide and 2 m to 3 m deep at bankfull discharge.
reach is approximately 80 km2 (Maddock and Lander

erised by a sandstone-dominated geology. River banks

e type of geology present at the river.



Table Appendix 4.2.7: results obtained for each indicator at different sampling densities for the Leigh Brook river site. Note that the original sampling density is 4
points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum
depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.89 -0.09 0.23 0.15 0.01 -0.01 0.00 0.00 0.00 0.88 -0.09 0.23 0.15 1.00 1.00 9.25 0.02 0.00 13121.02
0.40 0.84 -0.03 0.23 0.15 0.36 -0.46 0.00 0.21 0.01 0.84 -0.04 0.23 0.12 0.00 0.73 8.22 0.02 0.00 166.20
0.60 0.87 -0.03 0.23 0.15 0.40 -0.48 0.00 0.23 0.00 0.85 -0.03 0.23 0.13 0.00 0.85 9.11 0.02 0.00 145.24
0.80 0.87 -0.04 0.23 0.15 0.42 -0.27 0.00 0.18 0.00 0.86 -0.05 0.23 0.14 0.00 0.91 9.57 0.02 0.00 512.90
1.00 0.89 -0.09 0.23 0.15 0.20 -0.19 0.00 0.04 0.00 0.88 -0.09 0.23 0.15 0.25 0.98 9.31 0.02 0.00 2112.47
1.20 0.87 -0.09 0.23 0.15 0.41 -0.25 0.00 0.17 0.00 0.87 -0.09 0.23 0.14 0.00 0.93 9.07 0.02 0.00 670.24
1.40 0.89 -0.09 0.23 0.15 0.40 -0.19 0.00 0.16 0.00 0.88 -0.09 0.23 0.14 0.02 0.96 9.52 0.02 0.00 1007.86
1.60 0.89 -0.09 0.23 0.15 0.21 -0.20 0.00 0.05 0.00 0.88 -0.09 0.23 0.14 0.05 0.97 9.26 0.02 0.00 1179.75
1.80 0.89 -0.09 0.23 0.15 0.22 -0.18 0.00 0.05 0.00 0.88 -0.09 0.23 0.15 0.14 0.98 9.33 0.02 0.00 1572.97
2.00 0.89 -0.09 0.23 0.15 0.18 -0.10 0.00 0.03 0.00 0.88 -0.09 0.23 0.15 0.90 0.99 9.48 0.02 0.00 6143.13
2.20 0.87 -0.09 0.23 0.15 0.41 -0.25 0.00 0.17 0.00 0.86 -0.08 0.23 0.14 0.00 0.94 9.14 0.02 0.00 768.09
2.40 0.89 -0.09 0.23 0.15 0.19 -0.13 0.00 0.04 0.00 0.88 -0.09 0.23 0.15 0.65 0.99 9.31 0.02 0.00 3128.68
2.60 0.89 -0.09 0.23 0.15 0.19 -0.11 0.00 0.04 0.00 0.88 -0.09 0.23 0.15 0.82 0.99 9.52 0.02 0.00 4543.33
2.80 0.89 -0.09 0.23 0.15 0.18 -0.10 0.00 0.03 0.00 0.88 -0.09 0.23 0.15 0.91 0.99 9.53 0.02 0.00 5311.45
3.00 0.89 -0.09 0.23 0.15 0.10 -0.06 0.00 0.01 0.00 0.88 -0.09 0.23 0.15 1.00 1.00 9.24 0.02 0.00 11610.73
3.20 0.89 -0.09 0.23 0.15 0.20 -0.19 0.00 0.04 0.00 0.88 -0.09 0.23 0.15 0.42 0.98 9.27 0.02 0.00 2763.72
3.40 0.89 -0.09 0.23 0.15 0.12 -0.10 0.00 0.01 0.00 0.88 -0.09 0.23 0.15 1.00 1.00 9.29 0.02 0.00 8742.89
3.60 0.89 -0.09 0.23 0.15 0.12 -0.10 0.00 0.01 0.00 0.88 -0.09 0.23 0.15 1.00 1.00 9.29 0.02 0.00 8742.89
3.80 0.89 -0.09 0.23 0.15 0.12 -0.11 0.00 0.01 0.00 0.88 -0.09 0.23 0.15 1.00 1.00 9.31 0.02 0.00 10671.42
4.00 0.43 0.02 0.29 0.08 0.06 -0.04 0.00 0.00 0.00 0.43 0.02 0.29 0.08 1.00 0.99 7.35 0.01 0.00 1907.39



THE PANG FENCED

The Pang Fenced
The Pang is a small tributary of the Thames and rises south of Compton. The

catchment is located in central southern England and is characterised by a gentle slope and a
maximum height of 186m (Lowbury Hill).

The Pang has its origins in the Chalk aquifer of the West Berkshire Downs and thus,
the river presents the characteristics of a chalk groundwater dominated river system, with
slow, damped responses to rainfall and ‘bourne’ behaviour of headwater reaches when the
water table is low. Water pumping for water supply has been one of the main activities in
the catchment. The annual rainfall for the Pang area is close to 700 mm.



Table Appendix 4.2.8: results obtained for each indicator at different sampling densities for the Pang Fenced river site. Note that the original sampling density is 4
points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum
depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.87 -0.03 0.23 0.15 0.13 -0.11 0.00 0.02 0.00 0.86 -0.04 0.23 0.15 1.00 1.00 9.38 0.02 0.00 7118.21
0.40 0.74 -0.01 0.18 0.12 0.00 0.00 0.00 0.00 0.00 0.74 -0.01 0.18 0.12 1.00 1.00 4.68 0.01 0.00 8101.35
0.60 0.66 0.01 0.19 0.12 0.24 -0.42 0.01 0.18 0.01 0.33 0.08 0.19 0.05 0.00 0.27 12.09 0.00 0.01 135.79
0.80 0.66 0.01 0.19 0.12 0.19 -0.19 0.01 0.04 0.00 0.66 0.01 0.19 0.10 0.00 0.88 4.56 0.01 0.00 285.73
1.00 0.74 0.00 0.19 0.12 0.27 -0.34 0.00 0.11 0.01 0.41 0.06 0.18 0.05 0.00 0.66 12.79 0.00 0.01 3170.32
1.20 0.67 0.00 0.18 0.12 0.16 -0.18 0.00 0.03 0.00 0.67 0.00 0.18 0.10 0.00 0.94 4.12 0.01 0.00 327.22
1.40 0.74 0.00 0.19 0.12 0.26 -0.37 0.00 0.14 0.01 0.38 0.07 0.19 0.05 0.00 0.47 13.39 0.00 0.01 851.52
1.60 0.74 0.00 0.18 0.12 0.27 -0.38 0.00 0.14 0.01 0.38 0.08 0.18 0.05 0.00 0.51 13.70 0.00 0.01 1908.15
1.80 0.74 0.00 0.18 0.12 0.27 -0.36 0.00 0.13 0.01 0.39 0.07 0.18 0.05 0.00 0.59 13.29 0.00 0.01 2448.07
2.00 0.74 0.00 0.18 0.12 0.05 -0.04 0.00 0.00 0.00 0.74 -0.02 0.18 0.12 1.00 1.00 4.72 0.01 0.00 3532.74
2.20 0.74 0.00 0.19 0.12 0.06 -0.09 0.00 0.01 0.00 0.74 0.00 0.18 0.11 0.85 1.00 4.55 0.01 0.00 1852.72
2.40 0.74 0.00 0.18 0.12 0.26 -0.39 0.00 0.15 0.01 0.37 0.08 0.18 0.05 0.00 0.49 13.55 0.00 0.01 1391.37
2.60 0.74 0.00 0.19 0.12 0.05 -0.06 0.00 0.00 0.00 0.74 0.00 0.18 0.12 1.00 1.00 4.67 0.01 0.00 2616.67
2.80 0.74 0.00 0.18 0.12 0.05 -0.06 0.00 0.00 0.00 0.74 -0.02 0.18 0.12 1.00 1.00 4.69 0.01 0.00 3175.86
3.00 0.74 -0.01 0.18 0.12 0.03 -0.05 0.00 0.00 0.00 0.74 -0.01 0.18 0.12 1.00 1.00 4.63 0.01 0.00 6581.02
3.20 0.74 0.00 0.18 0.12 0.03 -0.04 0.00 0.00 0.00 0.74 -0.02 0.18 0.12 1.00 1.00 4.64 0.01 0.00 4179.28
3.40 0.74 0.00 0.19 0.12 0.06 -0.08 0.00 0.01 0.00 0.74 0.00 0.18 0.11 0.97 1.00 4.69 0.01 0.00 2242.57
3.60 0.74 -0.01 0.18 0.12 0.03 -0.07 0.00 0.00 0.00 0.74 -0.01 0.18 0.12 1.00 1.00 4.67 0.01 0.00 5518.81
3.80 0.74 -0.01 0.18 0.12 0.03 -0.05 0.00 0.00 0.00 0.74 -0.01 0.18 0.12 1.00 1.00 4.65 0.01 0.00 5982.58
4.00 0.89 -0.03 0.23 0.15 0.10 -0.07 0.00 0.01 0.00 0.89 -0.03 0.23 0.15 1.00 1.00 9.26 0.02 0.00 12198.01



THE PANG UNFENCED
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Table Appendix 4.2.9: results obtained for each indicator at different sampling densities for the Pang Unfenced river site. Note that the original sampling density is
4 points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum
depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.
Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.74 -0.01 0.18 0.12 0.03 -0.07 0.00 0.00 0.00 0.74 -0.01 0.18 0.12 1.00 1.00 4.66 0.01 0.00 4623.22
0.40 0.56 -0.01 0.26 0.13 0.00 0.00 0.00 0.00 0.00 0.56 -0.01 0.26 0.13 1.00 1.00 4.88 0.02 0.00 2154.82
0.60 0.54 -0.03 0.21 0.11 0.00 0.00 0.00 0.00 0.00 0.54 -0.03 0.21 0.11 1.00 1.00 6.50 0.01 0.00 13901.67
0.80 0.54 -0.03 0.21 0.11 0.00 0.00 0.00 0.00 0.00 0.54 -0.03 0.21 0.11 1.00 1.00 6.50 0.01 0.00 13901.67
1.00 0.54 -0.03 0.20 0.11 0.09 -0.17 0.00 0.03 0.00 0.54 -0.03 0.21 0.10 0.00 0.97 6.64 0.01 0.00 491.64
1.20 0.47 -0.03 0.20 0.12 0.20 -0.18 0.00 0.04 0.00 0.47 -0.03 0.21 0.08 0.00 0.82 5.80 0.01 0.00 118.10
1.40 0.47 -0.03 0.20 0.12 0.20 -0.18 0.00 0.04 0.00 0.47 -0.03 0.21 0.08 0.00 0.82 5.80 0.01 0.00 118.10
1.60 0.54 -0.03 0.20 0.11 0.15 -0.17 0.00 0.03 0.00 0.54 -0.04 0.21 0.10 0.00 0.94 6.12 0.01 0.00 305.04
1.80 0.54 -0.03 0.20 0.11 0.15 -0.17 0.00 0.03 0.00 0.54 -0.04 0.21 0.10 0.00 0.94 6.12 0.01 0.00 305.04
2.00 0.54 -0.03 0.20 0.11 0.05 -0.09 0.00 0.01 0.00 0.54 -0.03 0.21 0.11 0.91 0.99 6.05 0.01 0.00 1869.16
2.20 0.54 -0.03 0.20 0.11 0.09 -0.17 0.00 0.03 0.00 0.54 -0.03 0.21 0.10 0.00 0.97 6.64 0.01 0.00 491.64
2.40 0.54 -0.03 0.21 0.11 0.09 -0.16 0.00 0.03 0.00 0.54 -0.03 0.21 0.11 0.02 0.98 6.56 0.01 0.00 840.09
2.60 0.54 -0.03 0.21 0.11 0.09 -0.16 0.00 0.03 0.00 0.54 -0.03 0.21 0.11 0.02 0.98 6.56 0.01 0.00 840.09
2.80 0.54 -0.03 0.20 0.11 0.06 -0.09 0.00 0.01 0.00 0.54 -0.03 0.21 0.11 0.57 0.99 6.10 0.01 0.00 1492.02
3.00 0.54 -0.03 0.20 0.11 0.05 -0.04 0.00 0.00 0.00 0.54 -0.03 0.21 0.11 1.00 1.00 6.44 0.01 0.00 5382.35
3.20 0.54 -0.03 0.20 0.11 0.05 -0.05 0.00 0.00 0.00 0.54 -0.03 0.21 0.11 0.99 1.00 6.17 0.01 0.00 2508.32
3.40 0.54 -0.03 0.20 0.12 0.05 -0.05 0.00 0.00 0.00 0.54 -0.03 0.21 0.11 1.00 1.00 6.26 0.01 0.00 3086.10
3.60 0.54 -0.03 0.20 0.11 0.10 -0.09 0.00 0.01 0.00 0.54 -0.03 0.21 0.11 0.29 0.99 6.26 0.01 0.00 1158.40
3.80 0.54 -0.03 0.20 0.12 0.05 -0.05 0.00 0.00 0.00 0.54 -0.03 0.21 0.11 1.00 1.00 6.39 0.01 0.00 4599.26
4.00 0.74 -0.01 0.18 0.12 0.03 -0.05 0.00 0.00 0.00 0.74 -0.01 0.18 0.12 1.00 1.00 4.67 0.01 0.00 7189.44
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Table Appendix 4.2.10: results obtained for each indicator at different sampling densities for the Senni river site. Note that the original sampling density is 4 points
per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum depth of
the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.
Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.53 -0.03 0.19 0.11 0.04 -0.04 0.00 0.00 0.00 0.53 -0.04 0.19 0.11 1.00 1.00 6.37 0.01 0.00 6927.53
0.40 0.53 -0.03 0.19 0.11 0.05 -0.05 0.00 0.00 0.00 0.53 -0.03 0.19 0.11 1.00 1.00 6.17 0.01 0.00 3839.05
0.60 0.53 -0.03 0.19 0.11 0.04 -0.04 0.00 0.00 0.00 0.53 -0.03 0.19 0.11 1.00 1.00 6.29 0.01 0.00 8689.46
0.80 0.53 -0.03 0.19 0.11 0.03 -0.04 0.00 0.00 0.00 0.53 -0.03 0.19 0.11 1.00 1.00 6.26 0.01 0.00 9643.14
1.00 0.90 0.05 0.43 0.21 0.45 -0.39 0.01 0.20 0.01 0.86 0.07 0.43 0.16 0.00 0.72 12.11 0.04 0.00 74.23
1.20 0.53 -0.03 0.19 0.11 0.02 -0.03 0.00 0.00 0.00 0.53 -0.03 0.19 0.11 1.00 1.00 6.33 0.01 0.00 11103.66
1.40 0.53 -0.03 0.19 0.11 0.02 -0.03 0.00 0.00 0.00 0.53 -0.03 0.19 0.11 1.00 1.00 6.29 0.01 0.00 12109.81
1.60 0.53 -0.03 0.19 0.11 0.05 -0.06 0.00 0.00 0.00 0.53 -0.03 0.19 0.11 1.00 1.00 6.39 0.01 0.00 7909.99
1.80 0.98 0.03 0.42 0.21 0.00 0.00 0.00 0.00 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.44 0.05 0.00 14079.47
2.00 0.98 0.03 0.43 0.22 0.12 -0.18 0.00 0.03 0.00 0.98 0.03 0.42 0.21 0.95 0.99 7.50 0.05 0.00 1370.55
2.20 0.91 0.05 0.44 0.21 0.22 -0.25 0.00 0.06 0.00 0.91 -0.01 0.43 0.19 0.00 0.93 8.44 0.05 0.00 300.71
2.40 0.91 0.04 0.43 0.21 0.25 -0.20 0.00 0.06 0.00 0.91 0.04 0.43 0.20 0.06 0.95 8.38 0.05 0.00 450.53
2.60 0.98 0.03 0.43 0.22 0.23 -0.19 0.00 0.05 0.00 0.98 0.03 0.42 0.21 0.45 0.97 8.03 0.05 0.00 589.07
2.80 0.98 0.03 0.43 0.22 0.12 -0.18 0.00 0.03 0.00 0.98 0.03 0.42 0.21 0.81 0.99 7.71 0.05 0.00 1000.81
3.00 0.98 0.03 0.42 0.22 0.07 -0.08 0.00 0.01 0.00 0.98 0.03 0.42 0.21 1.00 1.00 7.85 0.05 0.00 4205.85
3.20 0.98 0.03 0.43 0.22 0.12 -0.12 0.00 0.02 0.00 0.98 0.03 0.42 0.21 0.95 0.99 7.77 0.05 0.00 1629.51
3.40 0.98 0.03 0.43 0.22 0.09 -0.12 0.00 0.01 0.00 0.98 0.03 0.42 0.21 0.99 0.99 8.12 0.05 0.00 2320.24
3.60 0.98 0.03 0.43 0.22 0.18 -0.19 0.00 0.03 0.00 0.98 0.03 0.42 0.21 0.66 0.98 8.25 0.05 0.00 1072.35
3.80 0.98 0.03 0.42 0.22 0.06 -0.08 0.00 0.01 0.00 0.98 0.03 0.42 0.21 1.00 1.00 7.90 0.05 0.00 3499.47
4.00 0.53 -0.03 0.19 0.11 0.04 -0.04 0.00 0.00 0.00 0.53 -0.04 0.19 0.11 1.00 1.00 6.27 0.01 0.00 5879.55
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Table Appendix 4.2.11: results obtained for each indicator at different sampling densities for the Tame High Modified river site. Note that the original sampling
density is 4 points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated,
MinTran=minimum depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to
be interpolated, MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values,
MeanDiff= mean difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value
predicted, MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the
non parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective
refer to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 1.16 -0.01 0.31 0.17 0.04 -0.03 0.00 0.00 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.86 0.03 0.00 18518.86
0.40 1.16 -0.01 0.31 0.17 0.04 -0.03 0.00 0.00 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.87 0.03 0.00 21551.24
0.60 1.16 -0.01 0.31 0.16 0.08 -0.06 0.00 0.01 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.80 0.03 0.00 10560.38
0.80 1.16 -0.01 0.31 0.16 0.07 -0.04 0.00 0.01 0.00 1.16 -0.01 0.31 0.17 1.00 1.00 10.85 0.03 0.00 26874.12
1.00 0.58 -0.34 0.26 0.21 0.49 -0.15 0.01 0.24 0.00 0.58 -0.34 0.27 0.18 0.00 0.90 10.86 0.04 0.00 207.10
1.20 1.16 -0.01 0.31 0.17 0.07 -0.04 0.00 0.01 0.00 1.16 -0.01 0.31 0.17 1.00 1.00 10.87 0.03 0.00 30834.08
1.40 1.16 -0.01 0.31 0.17 0.07 -0.03 0.00 0.01 0.00 1.16 -0.01 0.31 0.17 1.00 1.00 10.90 0.03 0.00 34916.60
1.60 1.16 -0.01 0.31 0.17 0.04 -0.01 0.00 0.00 0.00 1.16 -0.01 0.31 0.17 1.00 1.00 10.84 0.03 0.00 39141.35
1.80 0.59 -0.37 0.26 0.20 0.00 0.00 0.00 0.00 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.11 0.04 0.00 22935.21
2.00 0.58 -0.37 0.26 0.20 0.14 -0.04 0.00 0.02 0.00 0.59 -0.37 0.26 0.20 0.58 1.00 11.39 0.04 0.00 3375.77
2.20 0.58 -0.35 0.26 0.21 0.29 -0.11 0.00 0.08 0.00 0.59 -0.35 0.26 0.19 0.04 0.97 12.24 0.04 0.00 448.54
2.40 0.58 -0.37 0.26 0.21 0.25 -0.09 0.00 0.06 0.00 0.58 -0.37 0.26 0.19 0.12 0.98 12.20 0.04 0.00 795.12
2.60 0.58 -0.37 0.26 0.21 0.19 -0.08 0.00 0.03 0.00 0.59 -0.37 0.26 0.20 0.22 0.99 11.94 0.04 0.00 1364.33
2.80 0.58 -0.37 0.26 0.20 0.14 -0.08 0.00 0.02 0.00 0.59 -0.37 0.26 0.20 0.35 0.99 11.39 0.04 0.00 2422.43
3.00 0.58 -0.37 0.26 0.20 0.11 -0.04 0.00 0.01 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.02 0.04 0.00 8744.38
3.20 0.58 -0.37 0.26 0.20 0.13 -0.06 0.00 0.02 0.00 0.59 -0.37 0.26 0.20 0.67 1.00 11.16 0.04 0.00 4049.53
3.40 0.58 -0.37 0.26 0.20 0.13 -0.06 0.00 0.02 0.00 0.59 -0.37 0.26 0.20 0.90 1.00 11.12 0.04 0.00 5134.01
3.60 0.58 -0.37 0.26 0.21 0.16 -0.08 0.00 0.02 0.00 0.59 -0.37 0.26 0.20 0.29 0.99 11.66 0.04 0.00 1915.26
3.80 0.58 -0.37 0.26 0.20 0.11 -0.06 0.00 0.01 0.00 0.59 -0.37 0.26 0.20 0.99 1.00 11.15 0.04 0.00 7886.10
4.00 1.16 -0.01 0.31 0.16 0.04 -0.04 0.00 0.00 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.85 0.03 0.00 16193.41



THE TAME: LOW MODIFIED

The river Tame catchment co
Trent river. The geology of the Tame
Carboniferous Coal Measures in t
Mudstones and Triassic Sherwood S
catchment. The substrate for the majo
combination, with limited presenc
straightening of several parts of the
the separation of the floodplain from
catchment over time.

The mean annual rainfall in th
450 mm constitutes runoff. The catc
events due to the geology, the am
(Wales) and the presence of several n
The Tame LM
vers an area of 1490 km2 at its confluence with the
catchments is composed of Lower, Middle and Upper
he upper area of the catchment. Triassic Mercia
andstones are also present in lower down the Tame
rity of the river Tame is composed of a gravel-pebble
e of vegetation in the banks and channel. The
river, pollution of running waters, flow alteration and
the river are consequences of the activities in the Tame

e Tame catchment is 740 mm of which approximately
hment is characterised by a flashy response to rainfall
ount of water imported from outside the catchment

avigable waterways.



Table Appendix 4.2.12: results obtained for each indicator at different sampling densities for the Tame Low Modified river site. Note that the original sampling
density is 4 points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated,
MinTran=minimum depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to
be interpolated, MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values,
MeanDiff= mean difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value
predicted, MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the
non parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective
refer to the characteristics of the variogram obtained for each sampling density considered.
Points
per
Square
metre
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Tran

Min
Tran
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Tran
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Tran
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Dif
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Dif
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Dif
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Pred P-value

R-
squared Range Sill Nugget Objective

0.20 0.98 0.03 0.42 0.22 0.04 -0.07 0.00 0.00 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.04 0.05 0.00 6855.11
0.40 0.98 0.03 0.42 0.22 0.06 -0.11 0.00 0.01 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.09 0.05 0.00 3078.46
0.60 0.98 0.03 0.42 0.21 0.05 -0.06 0.00 0.00 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.64 0.05 0.00 9538.66
0.80 0.98 0.03 0.42 0.21 0.05 -0.05 0.00 0.00 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.58 0.05 0.00 11637.51
1.00 1.15 -0.01 0.30 0.16 0.39 -0.22 0.00 0.15 0.00 1.15 -0.01 0.31 0.15 0.00 0.94 10.21 0.03 0.00 299.73
1.20 0.98 0.03 0.42 0.21 0.05 -0.04 0.00 0.00 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.49 0.05 0.00 12984.64
1.40 0.98 0.03 0.42 0.22 0.04 -0.03 0.00 0.00 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.32 0.05 0.00 12765.13
1.60 0.96 0.03 0.42 0.21 0.06 -0.08 0.00 0.01 0.00 0.96 0.03 0.42 0.21 1.00 1.00 8.63 0.05 0.00 8670.47
1.80 1.16 -0.01 0.31 0.17 0.00 0.00 0.00 0.00 0.00 1.16 -0.01 0.31 0.17 1.00 1.00 10.83 0.03 0.00 43566.13
2.00 1.16 -0.01 0.31 0.16 0.08 -0.10 0.00 0.01 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.80 0.03 0.00 5154.24
2.20 1.16 -0.01 0.31 0.16 0.29 -0.18 0.00 0.08 0.00 1.16 -0.01 0.31 0.16 0.22 0.98 10.64 0.03 0.00 677.80
2.40 1.16 -0.01 0.31 0.16 0.30 -0.12 0.00 0.09 0.00 1.16 -0.01 0.31 0.16 0.93 0.99 10.66 0.03 0.00 1287.92
2.60 1.16 -0.01 0.31 0.17 0.11 -0.12 0.00 0.01 0.00 1.16 -0.01 0.31 0.16 0.99 1.00 11.04 0.03 0.00 2020.41
2.80 1.16 -0.01 0.31 0.16 0.10 -0.11 0.00 0.01 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.98 0.03 0.00 3849.27
3.20 1.16 -0.01 0.31 0.16 0.08 -0.06 0.00 0.01 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.88 0.03 0.00 6671.34
3.40 1.16 -0.01 0.31 0.16 0.08 -0.06 0.00 0.01 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.68 0.03 0.00 8712.73
3.60 1.16 -0.01 0.31 0.16 0.11 -0.12 0.00 0.01 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 11.15 0.03 0.00 2686.34
3.80 1.16 -0.01 0.31 0.16 0.04 -0.04 0.00 0.00 0.00 1.16 -0.01 0.31 0.16 1.00 1.00 10.79 0.03 0.00 13172.49
4.00 0.98 0.03 0.42 0.22 0.04 -0.07 0.00 0.01 0.00 0.98 0.03 0.42 0.21 1.00 1.00 8.01 0.05 0.00 5205.85



THE TARF

The Tarf
The site is located upstream of Tarfside and lies at around 248 m above sea level. It

is a tributary of the North Esk, which is on the northern edge of the Tayside region of
Scotland. The geology is intrusive igneous, although the river runs over metamorphic rocks
and old red sandstone in the lower reaches. There are no artificial influences to the flow
regime. The main land uses in the catchment area are rough grazing with little tree cover.



Table Appendix 4.2.13: results obtained for each indicator at different sampling densities for the Tarf river site. Note that the original sampling density is 4 points
per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum depth of
the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.58 -0.37 0.26 0.20 0.06 -0.03 0.00 0.00 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 10.96 0.04 0.00 11703.72
0.40 0.58 -0.37 0.26 0.20 0.13 -0.06 0.00 0.02 0.00 0.59 -0.37 0.26 0.20 0.97 1.00 11.15 0.04 0.00 6454.21
0.60 0.59 -0.37 0.26 0.20 0.04 -0.02 0.00 0.00 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.07 0.04 0.00 14900.13
0.80 0.59 -0.37 0.26 0.20 0.04 -0.02 0.00 0.00 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.07 0.04 0.00 16778.42
1.00 0.45 0.02 0.16 0.06 0.17 -0.17 0.00 0.03 0.00 0.28 0.05 0.16 0.05 0.00 0.65 29.10 0.00 0.00 225.17
1.20 0.59 -0.37 0.26 0.20 0.04 -0.02 0.00 0.00 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.09 0.04 0.00 18900.80
1.40 0.59 -0.37 0.26 0.20 0.04 -0.02 0.00 0.00 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.10 0.04 0.00 21164.88
1.60 0.59 -0.37 0.26 0.20 0.06 -0.02 0.00 0.00 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.08 0.04 0.00 13155.46
1.80 0.45 0.02 0.16 0.07 0.10 -0.11 0.00 0.01 0.00 0.35 0.03 0.16 0.06 0.06 0.98 27.15 0.00 0.00 36619.33
2.00 0.45 0.02 0.16 0.07 0.13 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.94 27.02 0.00 0.00 4433.13
2.20 0.45 0.02 0.16 0.06 0.18 -0.17 0.00 0.03 0.00 0.31 0.04 0.16 0.05 0.00 0.81 28.86 0.00 0.00 473.22
2.40 0.45 0.02 0.16 0.07 0.19 -0.15 0.00 0.04 0.00 0.32 0.03 0.16 0.06 0.00 0.85 28.94 0.00 0.00 1076.86
2.60 0.45 0.02 0.16 0.07 0.14 -0.15 0.00 0.02 0.00 0.33 0.03 0.16 0.06 0.00 0.88 27.69 0.00 0.00 1634.73
2.80 0.45 0.02 0.16 0.07 0.14 -0.12 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.92 27.64 0.00 0.00 3351.57
3.00 0.45 0.02 0.16 0.07 0.11 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.96 27.40 0.00 0.00 12962.72
3.20 0.45 0.02 0.16 0.07 0.11 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.94 27.09 0.00 0.00 5729.96
3.40 0.45 0.02 0.16 0.07 0.11 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.95 26.47 0.00 0.00 7292.62
3.60 0.45 0.02 0.16 0.07 0.14 -0.15 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.91 28.95 0.00 0.00 2659.62
3.80 0.45 0.02 0.16 0.07 0.11 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.96 26.73 0.00 0.00 10789.15
4.00 0.58 -0.37 0.26 0.20 0.11 -0.04 0.00 0.01 0.00 0.59 -0.37 0.26 0.20 1.00 1.00 11.07 0.04 0.00 10519.25



THE WINDRUSH



The Windrush

The river Windrush is a meandering river whose source is the Cotswold limestone. It
originates approximately 4 km from Temple Guiting and is joined by a number of small
tributaries (notably the River Dikler at Bourton-on-the-Water and the Sherborne Brook at
Little Barrington). At the study area in Sherborne Park Estate, between Bourton-on the
Water and Burford in Gloucestershire, the river flows through a water meadow system,
belonging to the National Trust.

Water abstraction is a major issue; water is abstracted from the river Windrush at
Worsham and studies (Environment Agency, 2001) have been carried out to investigate the
low flow problems on the Windrush. The mean, Q10 and Q95 flows are equal to 2.17 m3s-1,
0.647 m3s-1 and 4.28 m3s-1, respectively.

The river site is located in an area of meandering 18 km from the river source. The
river site defines a catchment area of 17 km2 and is located at an altitude of 250 m. The
length of river surveyed is approximately 126 m, with a mean width of 9.7 m. The meander
area is characterised by pools which are deep enough to make the measurement of the water
surface level impossible with the total station. Mean and maximum depth measured are 37
cm and 1.44 m, respectively.



Table Appendix 4.2.14: results obtained for each indicator at different sampling densities for the Windrush river site. Note that the original sampling density is 4
points per square metre. The abbreviations for each indicator are as follows: MaxTran=maximum depth of the data set to be interpolated, MinTran=minimum
depth of the data set to be interpolated, Mean Tran= mean depth of the data set to be interpolated, StdTran=standard deviation of the reach to be interpolated,
MaxDiff=maximum difference between predicted and observed values, MinDiff=minimum difference between predicted and observed values, MeanDiff= mean
difference between predicted and observed values, MaxSE=Maximum Squared Error, MSE=Mean Squared Error, MaxPred=Maximum value predicted,
MinPred=Minimum value predicted, MeanPred= Mean value predicted, Std Pred=Standard deviation of the predicted values, P-value=p-value of the non
parametric Kolmogorov-Smirnov test and R-squared = linear regression coefficient between predicted and observed values. Range, Sill, Nugget and Objective refer
to the characteristics of the variogram obtained for each sampling density considered.

Points per
Square metre

Max
Tran

Min
Tran

Mean
Tran

Std
Tran

Max
Dif

Min
Dif

Mean
Dif

Max
SE MSE

Max
Pred

Min
Pred

Mean
Pred

Std
Pred P-value R-squared Range Sill Nugget Objective

0.20 0.45 0.02 0.16 0.07 0.11 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.96 27.69 0.00 0.00 18595.23
0.40 0.45 0.02 0.16 0.07 0.11 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.95 26.70 0.00 0.00 9020.42
0.60 0.45 0.02 0.16 0.07 0.10 -0.12 0.00 0.01 0.00 0.35 0.03 0.16 0.06 0.02 0.97 27.55 0.00 0.00 22951.41
0.80 0.45 0.02 0.16 0.07 0.10 -0.12 0.00 0.01 0.00 0.35 0.03 0.16 0.06 0.03 0.97 27.40 0.00 0.00 26393.76
1.20 0.45 0.02 0.16 0.07 0.10 -0.11 0.00 0.01 0.00 0.35 0.03 0.16 0.06 0.04 0.97 27.17 0.00 0.00 30026.22
1.40 0.45 0.02 0.16 0.07 0.10 -0.12 0.00 0.01 0.00 0.35 0.03 0.16 0.06 0.05 0.97 27.64 0.00 0.00 33459.43
1.60 0.45 0.02 0.16 0.07 0.11 -0.12 0.00 0.02 0.00 0.35 0.03 0.16 0.06 0.01 0.97 27.85 0.00 0.00 20351.66
4.00 0.45 0.02 0.16 0.07 0.11 -0.13 0.00 0.02 0.00 0.34 0.03 0.16 0.06 0.00 0.96 27.31 0.00 0.00 15752.69
1.80 1.16 0.02 0.37 0.23 0.00 0.00 0.00 0.00 0.00 1.16 0.02 0.37 0.23 1.00 1.00 30.34 0.08 0.00 41015.55
1.00 1.05 0.02 0.37 0.23 0.31 -0.35 0.00 0.12 0.00 1.02 0.04 0.37 0.21 0.00 0.95 33.05 0.08 0.00 206.62
2.20 1.16 0.02 0.37 0.24 0.15 -0.11 0.00 0.02 0.00 1.16 0.02 0.37 0.23 0.82 0.99 31.60 0.09 0.00 629.87
2.40 1.16 0.02 0.37 0.24 0.12 -0.10 0.00 0.01 0.00 1.16 0.02 0.37 0.23 0.97 1.00 30.50 0.09 0.00 1094.32
2.60 1.16 0.02 0.37 0.24 0.11 -0.09 0.00 0.01 0.00 1.16 0.02 0.37 0.23 1.00 1.00 31.83 0.09 0.00 1578.95
2.80 1.16 0.02 0.38 0.23 0.08 -0.07 0.00 0.01 0.00 1.16 0.02 0.37 0.23 1.00 1.00 30.50 0.08 0.00 3620.74
2.00 1.16 0.02 0.37 0.23 0.07 -0.06 0.00 0.01 0.00 1.16 0.02 0.37 0.23 1.00 1.00 31.31 0.08 0.00 5023.68
3.20 1.16 0.02 0.37 0.23 0.07 -0.05 0.00 0.01 0.00 1.16 0.02 0.37 0.23 1.00 1.00 30.64 0.08 0.00 6496.36
3.40 1.16 0.02 0.37 0.23 0.04 -0.05 0.00 0.00 0.00 1.16 0.02 0.37 0.23 1.00 1.00 29.72 0.08 0.00 8615.61
3.60 1.16 0.02 0.37 0.23 0.08 -0.07 0.00 0.01 0.00 1.16 0.02 0.37 0.23 1.00 1.00 31.28 0.08 0.00 2497.90
3.80 1.16 0.02 0.37 0.23 0.04 -0.03 0.00 0.00 0.00 1.16 0.02 0.37 0.23 1.00 1.00 29.04 0.08 0.00 13245.28
3.00 1.16 0.02 0.37 0.23 0.04 -0.03 0.00 0.00 0.00 1.16 0.02 0.37 0.23 1.00 1.00 28.95 0.08 0.00 15854.82



Figure Appendix 4.2.1: graphs representing the results obtained for each indicator at different
sampling densities for all the river sites analysed.

Sampling density: points per square metre
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Figure Appendix 4.2.2: graphs representing the results obtained for each indicator at different
sampling densities for all the river sites analysed.
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Figure Appendix 4.2.3: graphs representing the results obtained for each indicator at different
sampling densities for all the river sites analysed.
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Figure Appendix 4.2.4: graphs representing the results obtained for each indicator at different
sampling densities for all the river sites analysed
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Figure Appendix 4.2.5: graphs representing the results obtained for each indicator at different
sampling densities for all the river sites analysed
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Figure Appendix 4.2.6: graphs representing the results obtained for each indicator at different
sampling densities for all the river sites analysed
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Figure Appendix 4.2.7: graphs representing the results obtained for each indicator at different
sampling densities for all the river sites analysed
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Appendix 4.3

This appendix presents the confidence intervals obtained for the river sites and
sampling strategies analysed. The confidence intervals (CI) have been calculated
according to the methodology explained in Chapter 6. Each value in the table
represents the CI that needs to be added to the indicator calculated to obtain a
specific interval of confidence. Those indicators that provided information on the
characteristics of the data set (e.g. mean predicted depth) have been transformed into
differences between the value of the indicator at a specific sampling density and
density equal to 4 points per square metre. If this transformation were not used, the CI
error for these indicators would have represented the dispersion between values of the
indicator for different river sites instead of the dispersion between the value of the
indicator for original and reduced sampling strategies. Depth values and
corresponding confidence intervals are given in metres.

Confidence Intervals for different
sampling densities and indicators

analysed – Chapter 6



Maximum depth observed (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.88664 0.69239 0.65343 0.60211 0.52661 0.44198 0.38663 0.34418 0.30925 0.27835 0.25095 0.22596 0.20285 0.18109 0.14079 0.10344 0.06798 0.03385
0.4 0.78664 0.61429 0.57973 0.53420 0.46721 0.39213 0.34302 0.30536 0.27437 0.24696 0.22264 0.20047 0.17997 0.16066 0.12491 0.09177 0.06031 0.03004
0.6 0.74377 0.58082 0.54814 0.50509 0.44175 0.37076 0.32433 0.28872 0.25942 0.23350 0.21051 0.18955 0.17017 0.15191 0.11810 0.08677 0.05702 0.02840
0.8 0.70195 0.54816 0.51732 0.47669 0.41692 0.34991 0.30609 0.27248 0.24483 0.22037 0.19867 0.17889 0.16060 0.14337 0.11146 0.08189 0.05382 0.02680
1 0.65827 0.51405 0.48512 0.44702 0.39097 0.32814 0.28705 0.25553 0.22960 0.20666 0.18631 0.16776 0.15060 0.13445 0.10453 0.07680 0.05047 0.02513
1.2 0.61511 0.48034 0.45331 0.41771 0.36534 0.30662 0.26822 0.23877 0.21454 0.19311 0.17409 0.15676 0.14073 0.12563 0.09767 0.07176 0.04716 0.02349
1.4 0.57111 0.44598 0.42089 0.38783 0.33920 0.28469 0.24904 0.22169 0.19920 0.17929 0.16164 0.14555 0.13066 0.11664 0.09069 0.06663 0.04379 0.02181
1.6 0.52714 0.41165 0.38848 0.35797 0.31309 0.26277 0.22986 0.20462 0.18386 0.16549 0.14920 0.13434 0.12060 0.10766 0.08370 0.06150 0.04041 0.02013
1.8 0.48314 0.37729 0.35606 0.32810 0.28696 0.24084 0.21068 0.18755 0.16851 0.15168 0.13674 0.12313 0.11054 0.09868 0.07672 0.05637 0.03704 0.01845
2 0.43915 0.34293 0.32364 0.29822 0.26083 0.21891 0.19149 0.17047 0.15317 0.13787 0.12429 0.11192 0.10047 0.08969 0.06973 0.05123 0.03367 0.01677
2.2 0.39558 0.30891 0.29153 0.26863 0.23495 0.19719 0.17249 0.15356 0.13797 0.12419 0.11196 0.10081 0.09050 0.08079 0.06281 0.04615 0.03033 0.01510
2.4 0.35182 0.27474 0.25928 0.23891 0.20896 0.17537 0.15341 0.13657 0.12271 0.11045 0.09957 0.08966 0.08049 0.07186 0.05586 0.04105 0.02697 0.01343
2.6 0.30783 0.24039 0.22686 0.20904 0.18283 0.15345 0.13423 0.11949 0.10737 0.09664 0.08712 0.07845 0.07043 0.06287 0.04888 0.03591 0.02360 0.01175
2.8 0.26383 0.20603 0.19443 0.17916 0.15670 0.13151 0.11505 0.10241 0.09202 0.08283 0.07467 0.06724 0.06036 0.05389 0.04189 0.03078 0.02023 0.01007
3 0.23454 0.18316 0.17285 0.15928 0.13930 0.11692 0.10228 0.09105 0.08181 0.07363 0.06638 0.05977 0.05366 0.04790 0.03724 0.02736 0.01798 0.00896
3.2 0.17599 0.13743 0.12970 0.11951 0.10453 0.08773 0.07674 0.06832 0.06138 0.05525 0.04981 0.04485 0.04026 0.03594 0.02795 0.02053 0.01349 0.00672
3.4 0.13199 0.10307 0.09727 0.08963 0.07839 0.06579 0.05756 0.05124 0.04604 0.04144 0.03736 0.03364 0.03020 0.02696 0.02096 0.01540 0.01012 0.00504
3.6 0.08800 0.06872 0.06485 0.05976 0.05227 0.04387 0.03837 0.03416 0.03069 0.02763 0.02491 0.02243 0.02013 0.01797 0.01397 0.01027 0.00675 0.00336
3.8 0.04400 0.03436 0.03243 0.02988 0.02613 0.02193 0.01919 0.01708 0.01535 0.01381 0.01245 0.01121 0.01007 0.00899 0.00699 0.00513 0.00337 0.00168
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Minimum depth observed (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.02742 0.02141 0.02021 0.01862 0.01628 0.01367 0.01196 0.01064 0.00956 0.00861 0.00776 0.00699 0.00627 0.00560 0.00435 0.00320 0.00210 0.00105
0.4 0.02257 0.01763 0.01663 0.01533 0.01341 0.01125 0.00984 0.00876 0.00787 0.00709 0.00639 0.00575 0.00516 0.00461 0.00358 0.00263 0.00173 0.00086
0.6 0.02153 0.01681 0.01587 0.01462 0.01279 0.01073 0.00939 0.00836 0.00751 0.00676 0.00609 0.00549 0.00493 0.00440 0.00342 0.00251 0.00165 0.00082
0.8 0.01478 0.01154 0.01089 0.01004 0.00878 0.00737 0.00645 0.00574 0.00516 0.00464 0.00418 0.00377 0.00338 0.00302 0.00235 0.00172 0.00113 0.00056
1 0.01478 0.01154 0.01089 0.01004 0.00878 0.00737 0.00645 0.00574 0.00516 0.00464 0.00418 0.00377 0.00338 0.00302 0.00235 0.00172 0.00113 0.00056
1.2 0.01403 0.01095 0.01034 0.00952 0.00833 0.00699 0.00612 0.00544 0.00489 0.00440 0.00397 0.00357 0.00321 0.00286 0.00223 0.00164 0.00108 0.00054
1.4 0.01100 0.00859 0.00811 0.00747 0.00653 0.00548 0.00480 0.00427 0.00384 0.00345 0.00311 0.00280 0.00252 0.00225 0.00175 0.00128 0.00084 0.00042
1.6 0.01100 0.00859 0.00811 0.00747 0.00653 0.00548 0.00480 0.00427 0.00384 0.00345 0.00311 0.00280 0.00252 0.00225 0.00175 0.00128 0.00084 0.00042
1.8 0.01100 0.00859 0.00811 0.00747 0.00653 0.00548 0.00480 0.00427 0.00384 0.00345 0.00311 0.00280 0.00252 0.00225 0.00175 0.00128 0.00084 0.00042
2 0.00951 0.00743 0.00701 0.00646 0.00565 0.00474 0.00415 0.00369 0.00332 0.00299 0.00269 0.00242 0.00218 0.00194 0.00151 0.00111 0.00073 0.00036
2.2 0.00949 0.00741 0.00700 0.00645 0.00564 0.00473 0.00414 0.00369 0.00331 0.00298 0.00269 0.00242 0.00217 0.00194 0.00151 0.00111 0.00073 0.00036
2.4 0.00917 0.00716 0.00676 0.00623 0.00545 0.00457 0.00400 0.00356 0.00320 0.00288 0.00260 0.00234 0.00210 0.00187 0.00146 0.00107 0.00070 0.00035
2.6 0.00917 0.00716 0.00676 0.00623 0.00545 0.00457 0.00400 0.00356 0.00320 0.00288 0.00260 0.00234 0.00210 0.00187 0.00146 0.00107 0.00070 0.00035
2.8 0.00594 0.00464 0.00438 0.00403 0.00353 0.00296 0.00259 0.00231 0.00207 0.00186 0.00168 0.00151 0.00136 0.00121 0.00094 0.00069 0.00046 0.00023
3 0.00987 0.00771 0.00728 0.00670 0.00586 0.00492 0.00431 0.00383 0.00344 0.00310 0.00279 0.00252 0.00226 0.00202 0.00157 0.00115 0.00076 0.00038
3.2 0.00330 0.00258 0.00243 0.00224 0.00196 0.00164 0.00144 0.00128 0.00115 0.00104 0.00093 0.00084 0.00075 0.00067 0.00052 0.00038 0.00025 0.00013
3.4 0.00330 0.00258 0.00243 0.00224 0.00196 0.00164 0.00144 0.00128 0.00115 0.00104 0.00093 0.00084 0.00075 0.00067 0.00052 0.00038 0.00025 0.00013
3.6 0.00280 0.00219 0.00206 0.00190 0.00166 0.00140 0.00122 0.00109 0.00098 0.00088 0.00079 0.00071 0.00064 0.00057 0.00044 0.00033 0.00021 0.00011
3.8 0.00280 0.00219 0.00206 0.00190 0.00166 0.00140 0.00122 0.00109 0.00098 0.00088 0.00079 0.00071 0.00064 0.00057 0.00044 0.00033 0.00021 0.00011
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Standard deviation of the observed values

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.00633 0.00494 0.00466 0.00430 0.00376 0.00315 0.00276 0.00246 0.00221 0.00199 0.00179 0.00161 0.00145 0.00129 0.00100 0.00074 0.00049 0.00024
0.4 0.00522 0.00407 0.00385 0.00354 0.00310 0.00260 0.00228 0.00203 0.00182 0.00164 0.00148 0.00133 0.00119 0.00107 0.00083 0.00061 0.00040 0.00020
0.6 0.00321 0.00251 0.00237 0.00218 0.00191 0.00160 0.00140 0.00125 0.00112 0.00101 0.00091 0.00082 0.00073 0.00066 0.00051 0.00037 0.00025 0.00012
0.8 0.00292 0.00228 0.00215 0.00198 0.00173 0.00145 0.00127 0.00113 0.00102 0.00092 0.00083 0.00074 0.00067 0.00060 0.00046 0.00034 0.00022 0.00011
1 0.00280 0.00218 0.00206 0.00190 0.00166 0.00139 0.00122 0.00109 0.00098 0.00088 0.00079 0.00071 0.00064 0.00057 0.00044 0.00033 0.00021 0.00011
1.2 0.00277 0.00216 0.00204 0.00188 0.00164 0.00138 0.00121 0.00107 0.00097 0.00087 0.00078 0.00071 0.00063 0.00057 0.00044 0.00032 0.00021 0.00011
1.4 0.00221 0.00173 0.00163 0.00150 0.00131 0.00110 0.00096 0.00086 0.00077 0.00069 0.00063 0.00056 0.00051 0.00045 0.00035 0.00026 0.00017 0.00008
1.6 0.00238 0.00186 0.00175 0.00161 0.00141 0.00119 0.00104 0.00092 0.00083 0.00075 0.00067 0.00061 0.00054 0.00049 0.00038 0.00028 0.00018 0.00009
1.8 0.00215 0.00168 0.00158 0.00146 0.00127 0.00107 0.00094 0.00083 0.00075 0.00067 0.00061 0.00055 0.00049 0.00044 0.00034 0.00025 0.00016 0.00008
2 0.00191 0.00149 0.00141 0.00129 0.00113 0.00095 0.00083 0.00074 0.00066 0.00060 0.00054 0.00049 0.00044 0.00039 0.00030 0.00022 0.00015 0.00007
2.2 0.00180 0.00140 0.00132 0.00122 0.00107 0.00090 0.00078 0.00070 0.00063 0.00056 0.00051 0.00046 0.00041 0.00037 0.00029 0.00021 0.00014 0.00007
2.4 0.00153 0.00120 0.00113 0.00104 0.00091 0.00076 0.00067 0.00059 0.00053 0.00048 0.00043 0.00039 0.00035 0.00031 0.00024 0.00018 0.00012 0.00006
2.6 0.00129 0.00101 0.00095 0.00087 0.00076 0.00064 0.00056 0.00050 0.00045 0.00040 0.00036 0.00033 0.00029 0.00026 0.00020 0.00015 0.00010 0.00005
2.8 0.00092 0.00072 0.00068 0.00063 0.00055 0.00046 0.00040 0.00036 0.00032 0.00029 0.00026 0.00024 0.00021 0.00019 0.00015 0.00011 0.00007 0.00004
3 0.00078 0.00061 0.00058 0.00053 0.00046 0.00039 0.00034 0.00030 0.00027 0.00025 0.00022 0.00020 0.00018 0.00016 0.00012 0.00009 0.00006 0.00003
3.2 0.00075 0.00058 0.00055 0.00051 0.00044 0.00037 0.00033 0.00029 0.00026 0.00024 0.00021 0.00019 0.00017 0.00015 0.00012 0.00009 0.00006 0.00003
3.4 0.00044 0.00035 0.00033 0.00030 0.00026 0.00022 0.00019 0.00017 0.00015 0.00014 0.00013 0.00011 0.00010 0.00009 0.00007 0.00005 0.00003 0.00002
3.6 0.00040 0.00031 0.00029 0.00027 0.00023 0.00020 0.00017 0.00015 0.00014 0.00012 0.00011 0.00010 0.00009 0.00008 0.00006 0.00005 0.00003 0.00002
3.8 0.00040 0.00031 0.00029 0.00027 0.00024 0.00020 0.00017 0.00016 0.00014 0.00013 0.00011 0.00010 0.00009 0.00008 0.00006 0.00005 0.00003 0.00002
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4 0.00004 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000



Mean depth observed (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.00628 0.00490 0.00463 0.00426 0.00373 0.00313 0.00274 0.00244 0.00219 0.00197 0.00178 0.00160 0.00144 0.00128 0.00100 0.00073 0.00048 0.00024
0.4 0.00663 0.00518 0.00489 0.00450 0.00394 0.00331 0.00289 0.00257 0.00231 0.00208 0.00188 0.00169 0.00152 0.00135 0.00105 0.00077 0.00051 0.00025
0.6 0.00445 0.00348 0.00328 0.00302 0.00264 0.00222 0.00194 0.00173 0.00155 0.00140 0.00126 0.00113 0.00102 0.00091 0.00071 0.00052 0.00034 0.00017
0.8 0.00260 0.00203 0.00191 0.00176 0.00154 0.00129 0.00113 0.00101 0.00091 0.00082 0.00073 0.00066 0.00059 0.00053 0.00041 0.00030 0.00020 0.00010
1 0.00150 0.00117 0.00111 0.00102 0.00089 0.00075 0.00066 0.00058 0.00052 0.00047 0.00043 0.00038 0.00034 0.00031 0.00024 0.00018 0.00012 0.00006
1.2 0.00246 0.00192 0.00181 0.00167 0.00146 0.00122 0.00107 0.00095 0.00086 0.00077 0.00070 0.00063 0.00056 0.00050 0.00039 0.00029 0.00019 0.00009
1.4 0.00231 0.00180 0.00170 0.00157 0.00137 0.00115 0.00101 0.00090 0.00080 0.00072 0.00065 0.00059 0.00053 0.00047 0.00037 0.00027 0.00018 0.00009
1.6 0.00204 0.00159 0.00150 0.00139 0.00121 0.00102 0.00089 0.00079 0.00071 0.00064 0.00058 0.00052 0.00047 0.00042 0.00032 0.00024 0.00016 0.00008
1.8 0.00170 0.00133 0.00125 0.00115 0.00101 0.00085 0.00074 0.00066 0.00059 0.00053 0.00048 0.00043 0.00039 0.00035 0.00027 0.00020 0.00013 0.00006
2 0.00200 0.00157 0.00148 0.00136 0.00119 0.00100 0.00087 0.00078 0.00070 0.00063 0.00057 0.00051 0.00046 0.00041 0.00032 0.00023 0.00015 0.00008
2.2 0.00195 0.00152 0.00143 0.00132 0.00116 0.00097 0.00085 0.00076 0.00068 0.00061 0.00055 0.00050 0.00044 0.00040 0.00031 0.00023 0.00015 0.00007
2.4 0.00168 0.00131 0.00124 0.00114 0.00100 0.00084 0.00073 0.00065 0.00059 0.00053 0.00047 0.00043 0.00038 0.00034 0.00027 0.00020 0.00013 0.00006
2.6 0.00170 0.00133 0.00126 0.00116 0.00101 0.00085 0.00074 0.00066 0.00059 0.00053 0.00048 0.00043 0.00039 0.00035 0.00027 0.00020 0.00013 0.00007
2.8 0.00144 0.00112 0.00106 0.00098 0.00085 0.00072 0.00063 0.00056 0.00050 0.00045 0.00041 0.00037 0.00033 0.00029 0.00023 0.00017 0.00011 0.00005
3 0.00102 0.00080 0.00075 0.00069 0.00061 0.00051 0.00044 0.00040 0.00036 0.00032 0.00029 0.00026 0.00023 0.00021 0.00016 0.00012 0.00008 0.00004
3.2 0.00072 0.00056 0.00053 0.00049 0.00042 0.00036 0.00031 0.00028 0.00025 0.00022 0.00020 0.00018 0.00016 0.00015 0.00011 0.00008 0.00005 0.00003
3.4 0.00056 0.00044 0.00041 0.00038 0.00033 0.00028 0.00024 0.00022 0.00019 0.00018 0.00016 0.00014 0.00013 0.00011 0.00009 0.00007 0.00004 0.00002
3.6 0.00037 0.00029 0.00028 0.00025 0.00022 0.00019 0.00016 0.00014 0.00013 0.00012 0.00011 0.00010 0.00009 0.00008 0.00006 0.00004 0.00003 0.00001
3.8 0.00028 0.00022 0.00021 0.00019 0.00017 0.00014 0.00012 0.00011 0.00010 0.00009 0.00008 0.00007 0.00006 0.00006 0.00004 0.00003 0.00002 0.00001
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4 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Maximum difference between predicted and observed values (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.09391 0.07333 0.06921 0.06377 0.05577 0.04681 0.04095 0.03645 0.03275 0.02948 0.02658 0.02393 0.02148 0.01918 0.01491 0.01096 0.00720 0.00359
0.4 0.08417 0.06573 0.06203 0.05716 0.04999 0.04196 0.03670 0.03267 0.02936 0.02643 0.02382 0.02145 0.01926 0.01719 0.01337 0.00982 0.00645 0.00321
0.6 0.08930 0.06974 0.06581 0.06064 0.05304 0.04452 0.03894 0.03467 0.03115 0.02804 0.02528 0.02276 0.02043 0.01824 0.01418 0.01042 0.00685 0.00341
0.8 0.08865 0.06923 0.06533 0.06020 0.05265 0.04419 0.03866 0.03441 0.03092 0.02783 0.02509 0.02259 0.02028 0.01811 0.01408 0.01034 0.00680 0.00338
1 0.09064 0.07078 0.06680 0.06155 0.05383 0.04518 0.03952 0.03518 0.03161 0.02846 0.02565 0.02310 0.02074 0.01851 0.01439 0.01057 0.00695 0.00346
1.2 0.09849 0.07691 0.07258 0.06688 0.05850 0.04910 0.04295 0.03823 0.03435 0.03092 0.02788 0.02510 0.02253 0.02012 0.01564 0.01149 0.00755 0.00376
1.4 0.06418 0.05012 0.04730 0.04359 0.03812 0.03199 0.02799 0.02491 0.02239 0.02015 0.01817 0.01636 0.01468 0.01311 0.01019 0.00749 0.00492 0.00245
1.6 0.06661 0.05201 0.04909 0.04523 0.03956 0.03320 0.02904 0.02586 0.02323 0.02091 0.01885 0.01697 0.01524 0.01360 0.01058 0.00777 0.00511 0.00254
1.8 0.06158 0.04809 0.04538 0.04182 0.03657 0.03070 0.02685 0.02390 0.02148 0.01933 0.01743 0.01569 0.01409 0.01258 0.00978 0.00718 0.00472 0.00235
2 0.06172 0.04820 0.04549 0.04191 0.03666 0.03077 0.02691 0.02396 0.02153 0.01938 0.01747 0.01573 0.01412 0.01261 0.00980 0.00720 0.00473 0.00236
2.2 0.05657 0.04417 0.04169 0.03841 0.03360 0.02820 0.02467 0.02196 0.01973 0.01776 0.01601 0.01442 0.01294 0.01155 0.00898 0.00660 0.00434 0.00216
2.4 0.05104 0.03986 0.03762 0.03466 0.03031 0.02544 0.02226 0.01981 0.01780 0.01602 0.01445 0.01301 0.01168 0.01042 0.00810 0.00595 0.00391 0.00195
2.6 0.05049 0.03943 0.03721 0.03429 0.02999 0.02517 0.02202 0.01960 0.01761 0.01585 0.01429 0.01287 0.01155 0.01031 0.00802 0.00589 0.00387 0.00193
2.8 0.05161 0.04030 0.03804 0.03505 0.03065 0.02573 0.02251 0.02003 0.01800 0.01620 0.01461 0.01315 0.01181 0.01054 0.00820 0.00602 0.00396 0.00197
3 0.04521 0.03531 0.03332 0.03070 0.02685 0.02254 0.01972 0.01755 0.01577 0.01419 0.01280 0.01152 0.01034 0.00923 0.00718 0.00527 0.00347 0.00173
3.2 0.04258 0.03325 0.03138 0.02891 0.02529 0.02122 0.01857 0.01653 0.01485 0.01337 0.01205 0.01085 0.00974 0.00870 0.00676 0.00497 0.00326 0.00163
3.4 0.04199 0.03279 0.03095 0.02852 0.02494 0.02093 0.01831 0.01630 0.01465 0.01318 0.01188 0.01070 0.00961 0.00858 0.00667 0.00490 0.00322 0.00160
3.6 0.04030 0.03147 0.02970 0.02737 0.02393 0.02009 0.01757 0.01564 0.01406 0.01265 0.01141 0.01027 0.00922 0.00823 0.00640 0.00470 0.00309 0.00154
3.8 0.03154 0.02463 0.02324 0.02142 0.01873 0.01572 0.01375 0.01224 0.01100 0.00990 0.00893 0.00804 0.00721 0.00644 0.00501 0.00368 0.00242 0.00120
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4 0.02235 0.01746 0.01647 0.01518 0.01328 0.01114 0.00975 0.00868 0.00780 0.00702 0.00633 0.00570 0.00511 0.00457 0.00355 0.00261 0.00171 0.00085



Minimum difference between predicted and observed values (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.10736 0.08384 0.07912 0.07291 0.06377 0.05352 0.04682 0.04168 0.03745 0.03370 0.03039 0.02736 0.02456 0.02193 0.01705 0.01253 0.00823 0.00410
0.4 0.10001 0.07810 0.07371 0.06792 0.05940 0.04985 0.04361 0.03882 0.03488 0.03140 0.02831 0.02549 0.02288 0.02043 0.01588 0.01167 0.00767 0.00382
0.6 0.05440 0.04248 0.04009 0.03695 0.03231 0.02712 0.02372 0.02112 0.01898 0.01708 0.01540 0.01386 0.01245 0.01111 0.00864 0.00635 0.00417 0.00208
0.8 0.06709 0.05239 0.04944 0.04556 0.03985 0.03344 0.02925 0.02604 0.02340 0.02106 0.01899 0.01710 0.01535 0.01370 0.01065 0.00783 0.00514 0.00256
1 0.07877 0.06151 0.05805 0.05349 0.04678 0.03926 0.03435 0.03058 0.02747 0.02473 0.02229 0.02007 0.01802 0.01609 0.01251 0.00919 0.00604 0.00301
1.2 0.07378 0.05761 0.05437 0.05010 0.04382 0.03678 0.03217 0.02864 0.02573 0.02316 0.02088 0.01880 0.01688 0.01507 0.01171 0.00861 0.00566 0.00282
1.4 0.07406 0.05784 0.05458 0.05030 0.04399 0.03692 0.03230 0.02875 0.02583 0.02325 0.02096 0.01887 0.01694 0.01513 0.01176 0.00864 0.00568 0.00283
1.6 0.07193 0.05617 0.05301 0.04884 0.04272 0.03585 0.03136 0.02792 0.02509 0.02258 0.02036 0.01833 0.01646 0.01469 0.01142 0.00839 0.00551 0.00275
1.8 0.05296 0.04135 0.03903 0.03596 0.03145 0.02640 0.02309 0.02056 0.01847 0.01662 0.01499 0.01350 0.01212 0.01082 0.00841 0.00618 0.00406 0.00202
2 0.04819 0.03763 0.03551 0.03272 0.02862 0.02402 0.02101 0.01870 0.01681 0.01513 0.01364 0.01228 0.01102 0.00984 0.00765 0.00562 0.00369 0.00184
2.2 0.03772 0.02945 0.02780 0.02561 0.02240 0.01880 0.01645 0.01464 0.01316 0.01184 0.01068 0.00961 0.00863 0.00770 0.00599 0.00440 0.00289 0.00144
2.4 0.03050 0.02382 0.02248 0.02071 0.01811 0.01520 0.01330 0.01184 0.01064 0.00957 0.00863 0.00777 0.00698 0.00623 0.00484 0.00356 0.00234 0.00116
2.6 0.03143 0.02454 0.02316 0.02134 0.01867 0.01567 0.01370 0.01220 0.01096 0.00987 0.00890 0.00801 0.00719 0.00642 0.00499 0.00367 0.00241 0.00120
2.8 0.02977 0.02325 0.02194 0.02022 0.01768 0.01484 0.01298 0.01156 0.01038 0.00935 0.00843 0.00759 0.00681 0.00608 0.00473 0.00347 0.00228 0.00114
3 0.03862 0.03016 0.02846 0.02623 0.02294 0.01925 0.01684 0.01499 0.01347 0.01212 0.01093 0.00984 0.00884 0.00789 0.00613 0.00451 0.00296 0.00147
3.2 0.03744 0.02924 0.02759 0.02543 0.02224 0.01866 0.01633 0.01453 0.01306 0.01175 0.01060 0.00954 0.00857 0.00765 0.00595 0.00437 0.00287 0.00143
3.4 0.03837 0.02996 0.02828 0.02606 0.02279 0.01913 0.01673 0.01489 0.01338 0.01205 0.01086 0.00978 0.00878 0.00784 0.00609 0.00448 0.00294 0.00147
3.6 0.02243 0.01752 0.01653 0.01523 0.01332 0.01118 0.00978 0.00871 0.00782 0.00704 0.00635 0.00572 0.00513 0.00458 0.00356 0.00262 0.00172 0.00086
3.8 0.02491 0.01945 0.01836 0.01692 0.01480 0.01242 0.01086 0.00967 0.00869 0.00782 0.00705 0.00635 0.00570 0.00509 0.00396 0.00291 0.00191 0.00095
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4 0.02432 0.01900 0.01793 0.01652 0.01445 0.01213 0.01061 0.00944 0.00848 0.00764 0.00688 0.00620 0.00557 0.00497 0.00386 0.00284 0.00186 0.00093



Mean difference between predicted and observed values (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.00520 0.00406 0.00383 0.00353 0.00309 0.00259 0.00227 0.00202 0.00181 0.00163 0.00147 0.00132 0.00119 0.00106 0.00083 0.00061 0.00040 0.00020
0.4 0.00312 0.00244 0.00230 0.00212 0.00186 0.00156 0.00136 0.00121 0.00109 0.00098 0.00088 0.00080 0.00071 0.00064 0.00050 0.00036 0.00024 0.00012
0.6 0.00144 0.00113 0.00106 0.00098 0.00086 0.00072 0.00063 0.00056 0.00050 0.00045 0.00041 0.00037 0.00033 0.00029 0.00023 0.00017 0.00011 0.00006
0.8 0.00079 0.00062 0.00058 0.00054 0.00047 0.00039 0.00034 0.00031 0.00027 0.00025 0.00022 0.00020 0.00018 0.00016 0.00013 0.00009 0.00006 0.00003
1 0.00112 0.00087 0.00082 0.00076 0.00066 0.00056 0.00049 0.00043 0.00039 0.00035 0.00032 0.00028 0.00026 0.00023 0.00018 0.00013 0.00009 0.00004
1.2 0.00102 0.00079 0.00075 0.00069 0.00060 0.00051 0.00044 0.00040 0.00036 0.00032 0.00029 0.00026 0.00023 0.00021 0.00016 0.00012 0.00008 0.00004
1.4 0.00065 0.00051 0.00048 0.00044 0.00039 0.00032 0.00028 0.00025 0.00023 0.00020 0.00018 0.00017 0.00015 0.00013 0.00010 0.00008 0.00005 0.00002
1.6 0.00050 0.00039 0.00036 0.00034 0.00029 0.00025 0.00022 0.00019 0.00017 0.00016 0.00014 0.00013 0.00011 0.00010 0.00008 0.00006 0.00004 0.00002
1.8 0.00044 0.00035 0.00033 0.00030 0.00026 0.00022 0.00019 0.00017 0.00015 0.00014 0.00013 0.00011 0.00010 0.00009 0.00007 0.00005 0.00003 0.00002
2 0.00041 0.00032 0.00030 0.00028 0.00024 0.00020 0.00018 0.00016 0.00014 0.00013 0.00012 0.00010 0.00009 0.00008 0.00006 0.00005 0.00003 0.00002
2.2 0.00032 0.00025 0.00024 0.00022 0.00019 0.00016 0.00014 0.00013 0.00011 0.00010 0.00009 0.00008 0.00007 0.00007 0.00005 0.00004 0.00002 0.00001
2.4 0.00031 0.00025 0.00023 0.00021 0.00019 0.00016 0.00014 0.00012 0.00011 0.00010 0.00009 0.00008 0.00007 0.00006 0.00005 0.00004 0.00002 0.00001
2.6 0.00026 0.00020 0.00019 0.00018 0.00015 0.00013 0.00011 0.00010 0.00009 0.00008 0.00007 0.00007 0.00006 0.00005 0.00004 0.00003 0.00002 0.00001
2.8 0.00023 0.00018 0.00017 0.00015 0.00013 0.00011 0.00010 0.00009 0.00008 0.00007 0.00006 0.00006 0.00005 0.00005 0.00004 0.00003 0.00002 0.00001
3 0.00013 0.00010 0.00010 0.00009 0.00008 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00001 0.00001
3.2 0.00009 0.00007 0.00007 0.00006 0.00006 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00000
3.4 0.00007 0.00005 0.00005 0.00005 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00000
3.6 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000
3.8 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000
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4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Maximum square error

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.06585 0.05143 0.04853 0.04472 0.03911 0.03283 0.02872 0.02556 0.02297 0.02067 0.01864 0.01678 0.01507 0.01345 0.01046 0.00768 0.00505 0.00251
0.4 0.06078 0.04746 0.04479 0.04127 0.03610 0.03030 0.02650 0.02359 0.02120 0.01908 0.01720 0.01549 0.01391 0.01241 0.00965 0.00709 0.00466 0.00232
0.6 0.04384 0.03423 0.03231 0.02977 0.02604 0.02185 0.01912 0.01702 0.01529 0.01376 0.01241 0.01117 0.01003 0.00895 0.00696 0.00511 0.00336 0.00167
0.8 0.04568 0.03568 0.03367 0.03102 0.02713 0.02277 0.01992 0.01773 0.01593 0.01434 0.01293 0.01164 0.01045 0.00933 0.00725 0.00533 0.00350 0.00174
1 0.04952 0.03867 0.03650 0.03363 0.02941 0.02469 0.02160 0.01922 0.01727 0.01555 0.01402 0.01262 0.01133 0.01011 0.00786 0.00578 0.00380 0.00189
1.2 0.04886 0.03815 0.03600 0.03318 0.02902 0.02435 0.02130 0.01896 0.01704 0.01534 0.01383 0.01245 0.01118 0.00998 0.00776 0.00570 0.00375 0.00187
1.4 0.02862 0.02235 0.02109 0.01944 0.01700 0.01427 0.01248 0.01111 0.00998 0.00898 0.00810 0.00729 0.00655 0.00585 0.00454 0.00334 0.00219 0.00109
1.6 0.02693 0.02103 0.01985 0.01829 0.01599 0.01342 0.01174 0.01045 0.00939 0.00845 0.00762 0.00686 0.00616 0.00550 0.00428 0.00314 0.00206 0.00103
1.8 0.01734 0.01354 0.01278 0.01178 0.01030 0.00864 0.00756 0.00673 0.00605 0.00544 0.00491 0.00442 0.00397 0.00354 0.00275 0.00202 0.00133 0.00066
2 0.01674 0.01307 0.01233 0.01137 0.00994 0.00834 0.00730 0.00650 0.00584 0.00525 0.00474 0.00427 0.00383 0.00342 0.00266 0.00195 0.00128 0.00064
2.2 0.01352 0.01056 0.00996 0.00918 0.00803 0.00674 0.00589 0.00525 0.00471 0.00424 0.00383 0.00344 0.00309 0.00276 0.00215 0.00158 0.00104 0.00052
2.4 0.01163 0.00909 0.00857 0.00790 0.00691 0.00580 0.00507 0.00452 0.00406 0.00365 0.00329 0.00297 0.00266 0.00238 0.00185 0.00136 0.00089 0.00044
2.6 0.01090 0.00851 0.00803 0.00740 0.00647 0.00543 0.00475 0.00423 0.00380 0.00342 0.00308 0.00278 0.00249 0.00223 0.00173 0.00127 0.00084 0.00042
2.8 0.01070 0.00836 0.00789 0.00727 0.00636 0.00533 0.00467 0.00415 0.00373 0.00336 0.00303 0.00273 0.00245 0.00219 0.00170 0.00125 0.00082 0.00041
3 0.00945 0.00738 0.00697 0.00642 0.00562 0.00471 0.00412 0.00367 0.00330 0.00297 0.00268 0.00241 0.00216 0.00193 0.00150 0.00110 0.00072 0.00036
3.2 0.00898 0.00702 0.00662 0.00610 0.00534 0.00448 0.00392 0.00349 0.00313 0.00282 0.00254 0.00229 0.00206 0.00183 0.00143 0.00105 0.00069 0.00034
3.4 0.00842 0.00657 0.00620 0.00572 0.00500 0.00420 0.00367 0.00327 0.00294 0.00264 0.00238 0.00215 0.00193 0.00172 0.00134 0.00098 0.00065 0.00032
3.6 0.00783 0.00611 0.00577 0.00532 0.00465 0.00390 0.00341 0.00304 0.00273 0.00246 0.00222 0.00199 0.00179 0.00160 0.00124 0.00091 0.00060 0.00030
3.8 0.00421 0.00329 0.00310 0.00286 0.00250 0.00210 0.00184 0.00164 0.00147 0.00132 0.00119 0.00107 0.00096 0.00086 0.00067 0.00049 0.00032 0.00016
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4 0.00283 0.00221 0.00208 0.00192 0.00168 0.00141 0.00123 0.00110 0.00099 0.00089 0.00080 0.00072 0.00065 0.00058 0.00045 0.00033 0.00022 0.00011



Mean Square Error

CONFIDENCE INTERVAL %

99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00
0.2 0.004398 0.003435 0.003241 0.002987 0.002612 0.002193 0.001918 0.001707 0.001534 0.001381 0.001245 0.001121 0.001006 0.000898 0.000698 0.000513 0.000337 0.000168
0.4 0.002041 0.001594 0.001504 0.001386 0.001212 0.001017 0.000890 0.000792 0.000712 0.000641 0.000578 0.000520 0.000467 0.000417 0.000324 0.000238 0.000156 0.000078
0.6 0.001184 0.000924 0.000872 0.000804 0.000703 0.000590 0.000516 0.000459 0.000413 0.000372 0.000335 0.000302 0.000271 0.000242 0.000188 0.000138 0.000091 0.000045
0.8 0.001822 0.001423 0.001343 0.001237 0.001082 0.000908 0.000794 0.000707 0.000635 0.000572 0.000516 0.000464 0.000417 0.000372 0.000289 0.000213 0.000140 0.000070
1 0.001733 0.001354 0.001277 0.001177 0.001030 0.000864 0.000756 0.000673 0.000605 0.000544 0.000491 0.000442 0.000397 0.000354 0.000275 0.000202 0.000133 0.000066
1.2 0.001751 0.001367 0.001290 0.001189 0.001040 0.000873 0.000763 0.000680 0.000611 0.000550 0.000495 0.000446 0.000400 0.000358 0.000278 0.000204 0.000134 0.000067
1.4 0.001516 0.001184 0.001118 0.001030 0.000901 0.000756 0.000661 0.000589 0.000529 0.000476 0.000429 0.000386 0.000347 0.000310 0.000241 0.000177 0.000116 0.000058
1.6 0.001349 0.001053 0.000994 0.000916 0.000801 0.000672 0.000588 0.000524 0.000471 0.000424 0.000382 0.000344 0.000309 0.000276 0.000214 0.000157 0.000103 0.000052
1.8 0.000145 0.000113 0.000107 0.000099 0.000086 0.000072 0.000063 0.000056 0.000051 0.000046 0.000041 0.000037 0.000033 0.000030 0.000023 0.000017 0.000011 0.000006
2 0.000118 0.000092 0.000087 0.000080 0.000070 0.000059 0.000051 0.000046 0.000041 0.000037 0.000033 0.000030 0.000027 0.000024 0.000019 0.000014 0.000009 0.000005
2.2 0.000093 0.000073 0.000069 0.000063 0.000055 0.000046 0.000041 0.000036 0.000032 0.000029 0.000026 0.000024 0.000021 0.000019 0.000015 0.000011 0.000007 0.000004
2.4 0.000077 0.000060 0.000057 0.000052 0.000046 0.000038 0.000034 0.000030 0.000027 0.000024 0.000022 0.000020 0.000018 0.000016 0.000012 0.000009 0.000006 0.000003
2.6 0.000065 0.000051 0.000048 0.000044 0.000039 0.000032 0.000028 0.000025 0.000023 0.000020 0.000018 0.000017 0.000015 0.000013 0.000010 0.000008 0.000005 0.000002
2.8 0.000057 0.000044 0.000042 0.000039 0.000034 0.000028 0.000025 0.000022 0.000020 0.000018 0.000016 0.000014 0.000013 0.000012 0.000009 0.000007 0.000004 0.000002
3 0.000050 0.000039 0.000037 0.000034 0.000030 0.000025 0.000022 0.000019 0.000018 0.000016 0.000014 0.000013 0.000011 0.000010 0.000008 0.000006 0.000004 0.000002
3.2 0.000039 0.000030 0.000028 0.000026 0.000023 0.000019 0.000017 0.000015 0.000013 0.000012 0.000011 0.000010 0.000009 0.000008 0.000006 0.000005 0.000003 0.000001
3.4 0.000031 0.000024 0.000023 0.000021 0.000019 0.000016 0.000014 0.000012 0.000011 0.000010 0.000009 0.000008 0.000007 0.000006 0.000005 0.000004 0.000002 0.000001
3.6 0.000027 0.000021 0.000020 0.000019 0.000016 0.000014 0.000012 0.000011 0.000010 0.000009 0.000008 0.000007 0.000006 0.000006 0.000004 0.000003 0.000002 0.000001
3.8 0.000026 0.000021 0.000019 0.000018 0.000016 0.000013 0.000011 0.000010 0.000009 0.000008 0.000007 0.000007 0.000006 0.000005 0.000004 0.000003 0.000002 0.000001
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4 0.000026 0.000020 0.000019 0.000017 0.000015 0.000013 0.000011 0.000010 0.000009 0.000008 0.000007 0.000007 0.000006 0.000005 0.000004 0.000003 0.000002 0.000001



Maximum predicted depth (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.10974 0.08570 0.08088 0.07452 0.06518 0.05470 0.04785 0.04260 0.03828 0.03445 0.03106 0.02797 0.02511 0.02241 0.01743 0.01280 0.00841 0.00419
0.4 0.05225 0.04080 0.03851 0.03548 0.03103 0.02605 0.02278 0.02028 0.01822 0.01640 0.01479 0.01332 0.01195 0.01067 0.00830 0.00610 0.00401 0.00199
0.6 0.03445 0.02690 0.02539 0.02340 0.02046 0.01717 0.01502 0.01337 0.01202 0.01082 0.00975 0.00878 0.00788 0.00704 0.00547 0.00402 0.00264 0.00132
0.8 0.07961 0.06217 0.05867 0.05406 0.04728 0.03968 0.03471 0.03090 0.02777 0.02499 0.02253 0.02029 0.01821 0.01626 0.01264 0.00929 0.00610 0.00304
1 0.08148 0.06363 0.06005 0.05533 0.04839 0.04062 0.03553 0.03163 0.02842 0.02558 0.02306 0.02076 0.01864 0.01664 0.01294 0.00951 0.00625 0.00311
1.2 0.08076 0.06306 0.05952 0.05484 0.04796 0.04026 0.03521 0.03135 0.02817 0.02535 0.02286 0.02058 0.01848 0.01649 0.01282 0.00942 0.00619 0.00308
1.4 0.07724 0.06032 0.05693 0.05246 0.04588 0.03851 0.03368 0.02998 0.02694 0.02425 0.02186 0.01969 0.01767 0.01578 0.01227 0.00901 0.00592 0.00295
1.6 0.07286 0.05689 0.05369 0.04948 0.04327 0.03632 0.03177 0.02828 0.02541 0.02287 0.02062 0.01857 0.01667 0.01488 0.01157 0.00850 0.00559 0.00278
1.8 0.00671 0.00524 0.00494 0.00456 0.00399 0.00334 0.00293 0.00260 0.00234 0.00211 0.00190 0.00171 0.00154 0.00137 0.00107 0.00078 0.00051 0.00026
2 0.00655 0.00512 0.00483 0.00445 0.00389 0.00327 0.00286 0.00254 0.00229 0.00206 0.00186 0.00167 0.00150 0.00134 0.00104 0.00076 0.00050 0.00025
2.2 0.00208 0.00162 0.00153 0.00141 0.00124 0.00104 0.00091 0.00081 0.00073 0.00065 0.00059 0.00053 0.00048 0.00042 0.00033 0.00024 0.00016 0.00008
2.4 0.00191 0.00149 0.00141 0.00130 0.00113 0.00095 0.00083 0.00074 0.00067 0.00060 0.00054 0.00049 0.00044 0.00039 0.00030 0.00022 0.00015 0.00007
2.6 0.00186 0.00145 0.00137 0.00126 0.00110 0.00093 0.00081 0.00072 0.00065 0.00058 0.00053 0.00047 0.00043 0.00038 0.00030 0.00022 0.00014 0.00007
2.8 0.00180 0.00141 0.00133 0.00122 0.00107 0.00090 0.00079 0.00070 0.00063 0.00057 0.00051 0.00046 0.00041 0.00037 0.00029 0.00021 0.00014 0.00007
3 0.00902 0.00705 0.00665 0.00613 0.00536 0.00450 0.00394 0.00350 0.00315 0.00283 0.00255 0.00230 0.00206 0.00184 0.00143 0.00105 0.00069 0.00034
3.2 0.00087 0.00068 0.00064 0.00059 0.00052 0.00044 0.00038 0.00034 0.00031 0.00027 0.00025 0.00022 0.00020 0.00018 0.00014 0.00010 0.00007 0.00003
3.4 0.00030 0.00024 0.00022 0.00020 0.00018 0.00015 0.00013 0.00012 0.00010 0.00009 0.00009 0.00008 0.00007 0.00006 0.00005 0.00004 0.00002 0.00001
3.6 0.00019 0.00015 0.00014 0.00013 0.00011 0.00009 0.00008 0.00007 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00002 0.00001 0.00001
3.8 0.00009 0.00007 0.00007 0.00006 0.00006 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00000
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4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Minimum depth predicted (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.09194 0.07180 0.06776 0.06244 0.05461 0.04583 0.04009 0.03569 0.03207 0.02886 0.02602 0.02343 0.02103 0.01878 0.01460 0.01073 0.00705 0.00351
0.4 0.03716 0.02902 0.02739 0.02524 0.02207 0.01852 0.01620 0.01443 0.01296 0.01167 0.01052 0.00947 0.00850 0.00759 0.00590 0.00434 0.00285 0.00142

0.6 0.02494 0.01948 0.01838 0.01694 0.01481 0.01243 0.01088 0.00968 0.00870 0.00783 0.00706 0.00636 0.00571 0.00509 0.00396 0.00291 0.00191 0.00095
0.8 0.02878 0.02248 0.02121 0.01955 0.01709 0.01435 0.01255 0.01117 0.01004 0.00904 0.00815 0.00734 0.00659 0.00588 0.00457 0.00336 0.00221 0.00110

1 0.02409 0.01881 0.01775 0.01636 0.01431 0.01201 0.01050 0.00935 0.00840 0.00756 0.00682 0.00614 0.00551 0.00492 0.00382 0.00281 0.00185 0.00092
1.2 0.02646 0.02066 0.01950 0.01797 0.01572 0.01319 0.01154 0.01027 0.00923 0.00831 0.00749 0.00674 0.00605 0.00540 0.00420 0.00309 0.00203 0.00101

1.4 0.02107 0.01646 0.01553 0.01431 0.01252 0.01050 0.00919 0.00818 0.00735 0.00662 0.00596 0.00537 0.00482 0.00430 0.00335 0.00246 0.00162 0.00080
1.6 0.01931 0.01508 0.01423 0.01311 0.01147 0.00963 0.00842 0.00750 0.00673 0.00606 0.00547 0.00492 0.00442 0.00394 0.00307 0.00225 0.00148 0.00074

1.8 0.01145 0.00894 0.00844 0.00777 0.00680 0.00571 0.00499 0.00444 0.00399 0.00359 0.00324 0.00292 0.00262 0.00234 0.00182 0.00134 0.00088 0.00044
2 0.00937 0.00732 0.00691 0.00636 0.00556 0.00467 0.00409 0.00364 0.00327 0.00294 0.00265 0.00239 0.00214 0.00191 0.00149 0.00109 0.00072 0.00036

2.2 0.00852 0.00665 0.00628 0.00579 0.00506 0.00425 0.00372 0.00331 0.00297 0.00268 0.00241 0.00217 0.00195 0.00174 0.00135 0.00099 0.00065 0.00033
2.4 0.00782 0.00611 0.00577 0.00531 0.00465 0.00390 0.00341 0.00304 0.00273 0.00246 0.00221 0.00199 0.00179 0.00160 0.00124 0.00091 0.00060 0.00030

2.6 0.00794 0.00620 0.00585 0.00539 0.00472 0.00396 0.00346 0.00308 0.00277 0.00249 0.00225 0.00202 0.00182 0.00162 0.00126 0.00093 0.00061 0.00030
2.8 0.00436 0.00341 0.00321 0.00296 0.00259 0.00217 0.00190 0.00169 0.00152 0.00137 0.00123 0.00111 0.00100 0.00089 0.00069 0.00051 0.00033 0.00017

3 0.00816 0.00637 0.00601 0.00554 0.00485 0.00407 0.00356 0.00317 0.00285 0.00256 0.00231 0.00208 0.00187 0.00167 0.00130 0.00095 0.00063 0.00031
3.2 0.00217 0.00169 0.00160 0.00147 0.00129 0.00108 0.00094 0.00084 0.00076 0.00068 0.00061 0.00055 0.00050 0.00044 0.00034 0.00025 0.00017 0.00008

3.4 0.00219 0.00171 0.00161 0.00148 0.00130 0.00109 0.00095 0.00085 0.00076 0.00069 0.00062 0.00056 0.00050 0.00045 0.00035 0.00026 0.00017 0.00008
3.6 0.00017 0.00013 0.00013 0.00012 0.00010 0.00009 0.00007 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00004 0.00003 0.00002 0.00001 0.00001

3.8 0.00015 0.00012 0.00011 0.00010 0.00009 0.00007 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00003 0.00002 0.00002 0.00001 0.00001
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4 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Mean predicted depth (m)

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.00578 0.00452 0.00426 0.00393 0.00343 0.00288 0.00252 0.00224 0.00202 0.00182 0.00164 0.00147 0.00132 0.00118 0.00092 0.00067 0.00044 0.00022
0.4 0.00323 0.00252 0.00238 0.00219 0.00192 0.00161 0.00141 0.00125 0.00113 0.00101 0.00091 0.00082 0.00074 0.00066 0.00051 0.00038 0.00025 0.00012

0.6 0.00137 0.00107 0.00101 0.00093 0.00081 0.00068 0.00060 0.00053 0.00048 0.00043 0.00039 0.00035 0.00031 0.00028 0.00022 0.00016 0.00010 0.00005
0.8 0.00083 0.00065 0.00061 0.00056 0.00049 0.00041 0.00036 0.00032 0.00029 0.00026 0.00023 0.00021 0.00019 0.00017 0.00013 0.00010 0.00006 0.00003

1 0.00113 0.00089 0.00084 0.00077 0.00067 0.00057 0.00049 0.00044 0.00040 0.00036 0.00032 0.00029 0.00026 0.00023 0.00018 0.00013 0.00009 0.00004
1.2 0.00101 0.00079 0.00075 0.00069 0.00060 0.00050 0.00044 0.00039 0.00035 0.00032 0.00029 0.00026 0.00023 0.00021 0.00016 0.00012 0.00008 0.00004

1.4 0.00066 0.00051 0.00048 0.00045 0.00039 0.00033 0.00029 0.00025 0.00023 0.00021 0.00019 0.00017 0.00015 0.00013 0.00010 0.00008 0.00005 0.00003
1.6 0.00054 0.00042 0.00040 0.00037 0.00032 0.00027 0.00024 0.00021 0.00019 0.00017 0.00015 0.00014 0.00012 0.00011 0.00009 0.00006 0.00004 0.00002

1.8 0.00043 0.00034 0.00032 0.00029 0.00026 0.00022 0.00019 0.00017 0.00015 0.00014 0.00012 0.00011 0.00010 0.00009 0.00007 0.00005 0.00003 0.00002
2 0.00038 0.00030 0.00028 0.00026 0.00023 0.00019 0.00017 0.00015 0.00013 0.00012 0.00011 0.00010 0.00009 0.00008 0.00006 0.00004 0.00003 0.00001

2.2 0.00033 0.00025 0.00024 0.00022 0.00019 0.00016 0.00014 0.00013 0.00011 0.00010 0.00009 0.00008 0.00007 0.00007 0.00005 0.00004 0.00003 0.00001
2.4 0.00032 0.00025 0.00023 0.00021 0.00019 0.00016 0.00014 0.00012 0.00011 0.00010 0.00009 0.00008 0.00007 0.00006 0.00005 0.00004 0.00002 0.00001

2.6 0.00026 0.00021 0.00019 0.00018 0.00016 0.00013 0.00012 0.00010 0.00009 0.00008 0.00007 0.00007 0.00006 0.00005 0.00004 0.00003 0.00002 0.00001
2.8 0.00023 0.00018 0.00017 0.00015 0.00013 0.00011 0.00010 0.00009 0.00008 0.00007 0.00006 0.00006 0.00005 0.00005 0.00004 0.00003 0.00002 0.00001

3 0.00013 0.00010 0.00010 0.00009 0.00008 0.00006 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00001 0.00000
3.2 0.00009 0.00007 0.00007 0.00006 0.00006 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00000

3.4 0.00007 0.00005 0.00005 0.00005 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00000
3.6 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000

3.8 0.00004 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000
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4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Standard deviation of the predicted values

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.03008 0.02349 0.02217 0.02042 0.01786 0.01499 0.01312 0.01168 0.01049 0.00944 0.00851 0.00766 0.00688 0.00614 0.00478 0.00351 0.00231 0.00115
0.4 0.01397 0.01091 0.01030 0.00949 0.00830 0.00696 0.00609 0.00542 0.00487 0.00439 0.00395 0.00356 0.00320 0.00285 0.00222 0.00163 0.00107 0.00053

0.6 0.00987 0.00771 0.00727 0.00670 0.00586 0.00492 0.00430 0.00383 0.00344 0.00310 0.00279 0.00252 0.00226 0.00202 0.00157 0.00115 0.00076 0.00038
0.8 0.01536 0.01199 0.01132 0.01043 0.00912 0.00766 0.00670 0.00596 0.00536 0.00482 0.00435 0.00391 0.00351 0.00314 0.00244 0.00179 0.00118 0.00059

1 0.01461 0.01141 0.01077 0.00992 0.00868 0.00728 0.00637 0.00567 0.00510 0.00459 0.00414 0.00372 0.00334 0.00298 0.00232 0.00170 0.00112 0.00056
1.2 0.01530 0.01195 0.01127 0.01039 0.00909 0.00763 0.00667 0.00594 0.00534 0.00480 0.00433 0.00390 0.00350 0.00312 0.00243 0.00178 0.00117 0.00058

1.4 0.01387 0.01083 0.01022 0.00942 0.00824 0.00691 0.00605 0.00538 0.00484 0.00435 0.00393 0.00354 0.00317 0.00283 0.00220 0.00162 0.00106 0.00053
1.6 0.01314 0.01026 0.00969 0.00893 0.00781 0.00655 0.00573 0.00510 0.00458 0.00413 0.00372 0.00335 0.00301 0.00268 0.00209 0.00153 0.00101 0.00050

1.8 0.00104 0.00081 0.00077 0.00071 0.00062 0.00052 0.00045 0.00040 0.00036 0.00033 0.00029 0.00027 0.00024 0.00021 0.00017 0.00012 0.00008 0.00004
2 0.00083 0.00065 0.00061 0.00056 0.00049 0.00041 0.00036 0.00032 0.00029 0.00026 0.00023 0.00021 0.00019 0.00017 0.00013 0.00010 0.00006 0.00003

2.2 0.00074 0.00058 0.00054 0.00050 0.00044 0.00037 0.00032 0.00029 0.00026 0.00023 0.00021 0.00019 0.00017 0.00015 0.00012 0.00009 0.00006 0.00003
2.4 0.00060 0.00047 0.00044 0.00041 0.00035 0.00030 0.00026 0.00023 0.00021 0.00019 0.00017 0.00015 0.00014 0.00012 0.00009 0.00007 0.00005 0.00002

2.6 0.00052 0.00040 0.00038 0.00035 0.00031 0.00026 0.00022 0.00020 0.00018 0.00016 0.00015 0.00013 0.00012 0.00011 0.00008 0.00006 0.00004 0.00002
2.8 0.00041 0.00032 0.00030 0.00028 0.00024 0.00020 0.00018 0.00016 0.00014 0.00013 0.00012 0.00010 0.00009 0.00008 0.00007 0.00005 0.00003 0.00002

3 0.00041 0.00032 0.00030 0.00028 0.00024 0.00020 0.00018 0.00016 0.00014 0.00013 0.00012 0.00010 0.00009 0.00008 0.00006 0.00005 0.00003 0.00002
3.2 0.00028 0.00022 0.00021 0.00019 0.00017 0.00014 0.00012 0.00011 0.00010 0.00009 0.00008 0.00007 0.00006 0.00006 0.00004 0.00003 0.00002 0.00001

3.4 0.00016 0.00012 0.00011 0.00011 0.00009 0.00008 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00004 0.00003 0.00002 0.00002 0.00001 0.00001
3.6 0.00009 0.00007 0.00007 0.00006 0.00006 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00000

3.8 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000
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4 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



p-Value

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.00116 0.00091 0.00086 0.00079 0.00069 0.00058 0.00051 0.00045 0.00041 0.00037 0.00033 0.00030 0.00027 0.00024 0.00018 0.00014 0.00009 0.00004
0.4 0.18182 0.14198 0.13400 0.12347 0.10799 0.09063 0.07928 0.07058 0.06342 0.05708 0.05146 0.04634 0.04160 0.03714 0.02887 0.02121 0.01394 0.00694

0.6 0.27973 0.21844 0.20615 0.18996 0.16614 0.13944 0.12198 0.10858 0.09756 0.08782 0.07917 0.07129 0.06400 0.05713 0.04442 0.03263 0.02145 0.01068
0.8 0.29245 0.22837 0.21552 0.19860 0.17369 0.14578 0.12752 0.11352 0.10200 0.09181 0.08277 0.07453 0.06691 0.05973 0.04644 0.03412 0.02242 0.01117

1 0.30626 0.23916 0.22570 0.20798 0.18190 0.15267 0.13355 0.11888 0.10682 0.09615 0.08668 0.07805 0.07007 0.06255 0.04863 0.03573 0.02348 0.01169
1.2 0.33295 0.26000 0.24538 0.22610 0.19775 0.16597 0.14519 0.12925 0.11613 0.10453 0.09424 0.08485 0.07618 0.06800 0.05287 0.03884 0.02553 0.01271

1.4 0.35768 0.27932 0.26360 0.24290 0.21244 0.17830 0.15597 0.13885 0.12476 0.11229 0.10123 0.09115 0.08183 0.07305 0.05680 0.04173 0.02742 0.01366
1.6 0.34857 0.27220 0.25688 0.23671 0.20703 0.17375 0.15200 0.13531 0.12158 0.10943 0.09865 0.08883 0.07975 0.07119 0.05535 0.04067 0.02672 0.01331

1.8 0.28455 0.22221 0.20971 0.19324 0.16901 0.14185 0.12408 0.11046 0.09925 0.08933 0.08054 0.07252 0.06510 0.05812 0.04518 0.03320 0.02182 0.01086
2 0.28663 0.22383 0.21124 0.19465 0.17024 0.14288 0.12499 0.11126 0.09997 0.08998 0.08112 0.07305 0.06558 0.05854 0.04551 0.03344 0.02197 0.01094

2.2 0.25731 0.20094 0.18963 0.17474 0.15283 0.12827 0.11220 0.09988 0.08975 0.08078 0.07283 0.06558 0.05887 0.05255 0.04086 0.03002 0.01973 0.00982
2.4 0.23052 0.18001 0.16988 0.15654 0.13691 0.11491 0.10052 0.08948 0.08040 0.07237 0.06524 0.05875 0.05274 0.04708 0.03660 0.02689 0.01767 0.00880

2.6 0.21819 0.17039 0.16080 0.14817 0.12959 0.10876 0.09514 0.08470 0.07610 0.06850 0.06175 0.05561 0.04992 0.04456 0.03465 0.02546 0.01673 0.00833
2.8 0.21868 0.17077 0.16116 0.14850 0.12988 0.10901 0.09536 0.08489 0.07627 0.06865 0.06189 0.05573 0.05003 0.04466 0.03472 0.02551 0.01677 0.00835

3 0.23322 0.18213 0.17188 0.15838 0.13852 0.11626 0.10170 0.09053 0.08135 0.07322 0.06601 0.05944 0.05336 0.04763 0.03703 0.02721 0.01788 0.00890
3.2 0.21566 0.16841 0.15893 0.14645 0.12809 0.10750 0.09404 0.08371 0.07522 0.06770 0.06104 0.05496 0.04934 0.04405 0.03424 0.02516 0.01653 0.00823

3.4 0.21354 0.16676 0.15737 0.14501 0.12683 0.10645 0.09312 0.08289 0.07448 0.06704 0.06044 0.05442 0.04886 0.04361 0.03391 0.02491 0.01637 0.00815
3.6 0.21105 0.16481 0.15554 0.14332 0.12535 0.10521 0.09203 0.08193 0.07361 0.06626 0.05973 0.05379 0.04829 0.04311 0.03351 0.02462 0.01618 0.00806

3.8 0.20951 0.16361 0.15441 0.14228 0.12444 0.10444 0.09136 0.08133 0.07308 0.06577 0.05930 0.05339 0.04793 0.04279 0.03327 0.02444 0.01606 0.00800
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4 0.20644 0.16121 0.15214 0.14019 0.12261 0.10291 0.09002 0.08014 0.07200 0.06481 0.05843 0.05261 0.04723 0.04216 0.03278 0.02408 0.01583 0.00788



R-squared

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.23834 0.18612 0.17565 0.16186 0.14156 0.11881 0.10393 0.09252 0.08313 0.07483 0.06746 0.06074 0.05453 0.04868 0.03785 0.02781 0.01827 0.00910
0.4 0.08225 0.06423 0.06061 0.05585 0.04885 0.04100 0.03587 0.03193 0.02869 0.02582 0.02328 0.02096 0.01882 0.01680 0.01306 0.00960 0.00631 0.00314

0.6 0.05457 0.04262 0.04022 0.03706 0.03241 0.02720 0.02380 0.02118 0.01903 0.01713 0.01545 0.01391 0.01249 0.01115 0.00867 0.00637 0.00418 0.00208
0.8 0.10991 0.08583 0.08100 0.07464 0.06528 0.05479 0.04793 0.04267 0.03834 0.03451 0.03111 0.02801 0.02515 0.02245 0.01745 0.01282 0.00843 0.00420

1 0.10699 0.08355 0.07885 0.07266 0.06355 0.05333 0.04666 0.04153 0.03732 0.03359 0.03028 0.02727 0.02448 0.02185 0.01699 0.01248 0.00820 0.00409
1.2 0.10440 0.08153 0.07694 0.07090 0.06201 0.05204 0.04553 0.04053 0.03641 0.03278 0.02955 0.02661 0.02389 0.02132 0.01658 0.01218 0.00800 0.00399

1.4 0.08673 0.06773 0.06392 0.05890 0.05151 0.04323 0.03782 0.03367 0.03025 0.02723 0.02455 0.02210 0.01984 0.01771 0.01377 0.01012 0.00665 0.00331
1.6 0.07338 0.05731 0.05408 0.04983 0.04359 0.03658 0.03200 0.02849 0.02560 0.02304 0.02077 0.01870 0.01679 0.01499 0.01165 0.00856 0.00563 0.00280

1.8 0.01254 0.00979 0.00924 0.00851 0.00745 0.00625 0.00547 0.00487 0.00437 0.00394 0.00355 0.00319 0.00287 0.00256 0.00199 0.00146 0.00096 0.00048
2 0.01104 0.00862 0.00814 0.00750 0.00656 0.00550 0.00482 0.00429 0.00385 0.00347 0.00313 0.00281 0.00253 0.00226 0.00175 0.00129 0.00085 0.00042

2.2 0.00978 0.00764 0.00721 0.00664 0.00581 0.00488 0.00427 0.00380 0.00341 0.00307 0.00277 0.00249 0.00224 0.00200 0.00155 0.00114 0.00075 0.00037
2.4 0.00890 0.00695 0.00656 0.00605 0.00529 0.00444 0.00388 0.00346 0.00311 0.00280 0.00252 0.00227 0.00204 0.00182 0.00141 0.00104 0.00068 0.00034

2.6 0.00833 0.00650 0.00614 0.00566 0.00495 0.00415 0.00363 0.00323 0.00290 0.00261 0.00236 0.00212 0.00191 0.00170 0.00132 0.00097 0.00064 0.00032
2.8 0.00791 0.00618 0.00583 0.00537 0.00470 0.00394 0.00345 0.00307 0.00276 0.00248 0.00224 0.00202 0.00181 0.00162 0.00126 0.00092 0.00061 0.00030

3 0.00703 0.00549 0.00518 0.00478 0.00418 0.00351 0.00307 0.00273 0.00245 0.00221 0.00199 0.00179 0.00161 0.00144 0.00112 0.00082 0.00054 0.00027
3.2 0.00608 0.00475 0.00448 0.00413 0.00361 0.00303 0.00265 0.00236 0.00212 0.00191 0.00172 0.00155 0.00139 0.00124 0.00097 0.00071 0.00047 0.00023

3.4 0.00579 0.00452 0.00427 0.00393 0.00344 0.00289 0.00252 0.00225 0.00202 0.00182 0.00164 0.00148 0.00132 0.00118 0.00092 0.00068 0.00044 0.00022
3.6 0.00554 0.00433 0.00409 0.00376 0.00329 0.00276 0.00242 0.00215 0.00193 0.00174 0.00157 0.00141 0.00127 0.00113 0.00088 0.00065 0.00043 0.00021

3.8 0.00549 0.00428 0.00404 0.00373 0.00326 0.00273 0.00239 0.00213 0.00191 0.00172 0.00155 0.00140 0.00126 0.00112 0.00087 0.00064 0.00042 0.00021

SA
M

PL
IN

G
D

E
N

S
IT

Y
po

in
ts

pe
r

sq
ua

re
m

et
re

4 0.00528 0.00412 0.00389 0.00359 0.00314 0.00263 0.00230 0.00205 0.00184 0.00166 0.00149 0.00135 0.00121 0.00108 0.00084 0.00062 0.00040 0.00020



Range

CONFIDENCE INTERVAL %

99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00
0.2 3.327499 2.598474 2.452266 2.259675 1.976333 1.658708 1.450991 1.291675 1.160591 1.044633 0.941783 0.848008 0.761292 0.679617 0.528367 0.388208 0.255108 0.12705

0.4 1.768384 1.380947 1.303245 1.200894 1.050313 0.881513 0.771123 0.686455 0.616791 0.555165 0.500506 0.45067 0.404585 0.361179 0.280798 0.206311 0.135576 0.06752

0.6 1.578987 1.233045 1.163665 1.072276 0.937822 0.787101 0.688534 0.612934 0.550731 0.495706 0.446901 0.402402 0.361253 0.322496 0.250724 0.184215 0.121056 0.060289

0.8 2.285417 1.784703 1.684283 1.552006 1.357399 1.139246 0.99658 0.887157 0.797126 0.717483 0.646842 0.582435 0.522876 0.466779 0.362897 0.266632 0.175215 0.087261

1 1.979299 1.545653 1.458684 1.344124 1.175584 0.986651 0.863094 0.768328 0.690356 0.62138 0.560202 0.504421 0.45284 0.404257 0.314289 0.230918 0.151746 0.075573

1.2 2.288422 1.78705 1.686498 1.554047 1.359184 1.140744 0.997891 0.888324 0.798174 0.718426 0.647693 0.583201 0.523563 0.467393 0.363374 0.266983 0.175446 0.087376

1.4 1.965682 1.535019 1.448648 1.334877 1.167496 0.979863 0.857157 0.763042 0.685606 0.617105 0.556348 0.500951 0.449724 0.401476 0.312126 0.22933 0.150702 0.075053

1.6 1.832118 1.430718 1.350215 1.244175 1.088167 0.913283 0.798914 0.711195 0.639021 0.575174 0.518545 0.466912 0.419166 0.374196 0.290918 0.213747 0.140462 0.069954

1.8 0.266401 0.208035 0.196329 0.18091 0.158226 0.132797 0.116167 0.103412 0.092917 0.083634 0.0754 0.067892 0.060949 0.05441 0.042301 0.03108 0.020424 0.010172

2 0.283282 0.221218 0.20877 0.192374 0.168252 0.141212 0.123528 0.109965 0.098805 0.088933 0.080177 0.072194 0.064812 0.057858 0.044982 0.03305 0.021718 0.010816

2.2 0.343219 0.268023 0.252942 0.233077 0.203852 0.17109 0.149664 0.133232 0.119711 0.10775 0.097141 0.087469 0.078524 0.0701 0.054499 0.040042 0.026313 0.013105

2.4 0.37551 0.293239 0.27674 0.255006 0.22303 0.187186 0.163745 0.145766 0.130973 0.117887 0.106281 0.095698 0.085912 0.076695 0.059626 0.04381 0.028789 0.014338

2.6 0.310644 0.242585 0.228935 0.210956 0.184504 0.154851 0.13546 0.120586 0.108349 0.097523 0.087922 0.079167 0.071072 0.063447 0.049327 0.036242 0.023816 0.011861

2.8 0.281867 0.220113 0.207728 0.191414 0.167412 0.140507 0.122911 0.109416 0.098312 0.088489 0.079777 0.071833 0.064488 0.057569 0.044757 0.032885 0.02161 0.010762

3 0.173182 0.13524 0.12763 0.117606 0.10286 0.086329 0.075518 0.067226 0.060404 0.054369 0.049016 0.044135 0.039622 0.035371 0.027499 0.020205 0.013277 0.006612

3.2 0.205266 0.160294 0.151275 0.139394 0.121916 0.102322 0.089508 0.079681 0.071594 0.064441 0.058097 0.052312 0.046962 0.041924 0.032594 0.023948 0.015737 0.007837

3.4 0.200555 0.156615 0.147803 0.136195 0.119118 0.099974 0.087454 0.077852 0.069951 0.062962 0.056763 0.051111 0.045885 0.040962 0.031846 0.023398 0.015376 0.007658

3.6 0.137522 0.107392 0.101349 0.09339 0.08168 0.068553 0.059968 0.053383 0.047966 0.043173 0.038923 0.035047 0.031463 0.028088 0.021837 0.016044 0.010543 0.005251

3.8 0.137105 0.107066 0.101042 0.093106 0.081432 0.068345 0.059786 0.053221 0.04782 0.043043 0.038805 0.034941 0.031368 0.028003 0.021771 0.015996 0.010511 0.005235

SA
M

P
L

IN
G

D
E

N
S

IT
Y

po
in

ts
pe

r
sq

ua
re

m
et

re

4 0.008165 0.006376 0.006017 0.005545 0.004849 0.00407 0.00356 0.003169 0.002848 0.002563 0.002311 0.002081 0.001868 0.001668 0.001296 0.000953 0.000626 0.000312



Sill

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.05572 0.04351 0.04107 0.03784 0.03310 0.02778 0.02430 0.02163 0.01944 0.01749 0.01577 0.01420 0.01275 0.01138 0.00885 0.00650 0.00427 0.00213
0.4 0.12314 0.09616 0.09075 0.08362 0.07314 0.06138 0.05370 0.04780 0.04295 0.03866 0.03485 0.03138 0.02817 0.02515 0.01955 0.01437 0.00944 0.00470

0.6 0.05377 0.04199 0.03963 0.03651 0.03194 0.02680 0.02345 0.02087 0.01875 0.01688 0.01522 0.01370 0.01230 0.01098 0.00854 0.00627 0.00412 0.00205
0.8 0.12145 0.09484 0.08950 0.08247 0.07213 0.06054 0.05296 0.04714 0.04236 0.03813 0.03437 0.03095 0.02779 0.02480 0.01928 0.01417 0.00931 0.00464

1 0.10129 0.07910 0.07465 0.06878 0.06016 0.05049 0.04417 0.03932 0.03533 0.03180 0.02867 0.02581 0.02317 0.02069 0.01608 0.01182 0.00777 0.00387
1.2 0.06364 0.04970 0.04690 0.04322 0.03780 0.03172 0.02775 0.02470 0.02220 0.01998 0.01801 0.01622 0.01456 0.01300 0.01011 0.00742 0.00488 0.00243

1.4 0.03265 0.02549 0.02406 0.02217 0.01939 0.01627 0.01424 0.01267 0.01139 0.01025 0.00924 0.00832 0.00747 0.00667 0.00518 0.00381 0.00250 0.00125
1.6 0.00242 0.00189 0.00178 0.00164 0.00144 0.00121 0.00105 0.00094 0.00084 0.00076 0.00068 0.00062 0.00055 0.00049 0.00038 0.00028 0.00019 0.00009

1.8 0.02460 0.01921 0.01813 0.01670 0.01461 0.01226 0.01073 0.00955 0.00858 0.00772 0.00696 0.00627 0.00563 0.00502 0.00391 0.00287 0.00189 0.00094
2 0.02555 0.01995 0.01883 0.01735 0.01517 0.01273 0.01114 0.00992 0.00891 0.00802 0.00723 0.00651 0.00584 0.00522 0.00406 0.00298 0.00196 0.00098

2.2 0.00210 0.00164 0.00155 0.00143 0.00125 0.00105 0.00092 0.00082 0.00073 0.00066 0.00060 0.00054 0.00048 0.00043 0.00033 0.00025 0.00016 0.00008
2.4 0.00136 0.00106 0.00100 0.00092 0.00081 0.00068 0.00059 0.00053 0.00047 0.00043 0.00038 0.00035 0.00031 0.00028 0.00022 0.00016 0.00010 0.00005

2.6 0.00300 0.00234 0.00221 0.00204 0.00178 0.00150 0.00131 0.00116 0.00105 0.00094 0.00085 0.00076 0.00069 0.00061 0.00048 0.00035 0.00023 0.00011
2.8 0.01015 0.00793 0.00748 0.00689 0.00603 0.00506 0.00443 0.00394 0.00354 0.00319 0.00287 0.00259 0.00232 0.00207 0.00161 0.00118 0.00078 0.00039

3 0.01650 0.01288 0.01216 0.01120 0.00980 0.00822 0.00719 0.00640 0.00575 0.00518 0.00467 0.00420 0.00377 0.00337 0.00262 0.00192 0.00126 0.00063
3.2 0.00894 0.00698 0.00659 0.00607 0.00531 0.00446 0.00390 0.00347 0.00312 0.00281 0.00253 0.00228 0.00205 0.00183 0.00142 0.00104 0.00069 0.00034

3.4 0.03199 0.02498 0.02357 0.02172 0.01900 0.01595 0.01395 0.01242 0.01116 0.01004 0.00905 0.00815 0.00732 0.00653 0.00508 0.00373 0.00245 0.00122
3.6 0.00493 0.00385 0.00364 0.00335 0.00293 0.00246 0.00215 0.00191 0.00172 0.00155 0.00140 0.00126 0.00113 0.00101 0.00078 0.00058 0.00038 0.00019

3.8 0.01435 0.01120 0.01057 0.00974 0.00852 0.00715 0.00626 0.00557 0.00500 0.00450 0.00406 0.00366 0.00328 0.00293 0.00228 0.00167 0.00110 0.00055
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4 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Nugget

CONFIDENCE INTERVAL %
99.90 99.00 98.50 97.50 95.00 90.00 85.00 80.00 75.00 70.00 65.00 60.00 55.00 50.00 40.00 30.00 20.00 10.00

0.2 0.00479 0.00374 0.00353 0.00325 0.00285 0.00239 0.00209 0.00186 0.00167 0.00150 0.00136 0.00122 0.00110 0.00098 0.00076 0.00056 0.00037 0.00018
0.4 0.00285 0.00223 0.00210 0.00194 0.00169 0.00142 0.00124 0.00111 0.00099 0.00090 0.00081 0.00073 0.00065 0.00058 0.00045 0.00033 0.00022 0.00011

0.6 0.00221 0.00172 0.00163 0.00150 0.00131 0.00110 0.00096 0.00086 0.00077 0.00069 0.00062 0.00056 0.00050 0.00045 0.00035 0.00026 0.00017 0.00008
0.8 0.00315 0.00246 0.00232 0.00214 0.00187 0.00157 0.00137 0.00122 0.00110 0.00099 0.00089 0.00080 0.00072 0.00064 0.00050 0.00037 0.00024 0.00012

1 0.00238 0.00186 0.00176 0.00162 0.00141 0.00119 0.00104 0.00092 0.00083 0.00075 0.00067 0.00061 0.00054 0.00049 0.00038 0.00028 0.00018 0.00009
1.2 0.00290 0.00227 0.00214 0.00197 0.00172 0.00145 0.00127 0.00113 0.00101 0.00091 0.00082 0.00074 0.00066 0.00059 0.00046 0.00034 0.00022 0.00011

1.4 0.00227 0.00177 0.00167 0.00154 0.00135 0.00113 0.00099 0.00088 0.00079 0.00071 0.00064 0.00058 0.00052 0.00046 0.00036 0.00026 0.00017 0.00009
1.6 0.00219 0.00171 0.00162 0.00149 0.00130 0.00109 0.00096 0.00085 0.00076 0.00069 0.00062 0.00056 0.00050 0.00045 0.00035 0.00026 0.00017 0.00008

1.8 0.00012 0.00009 0.00009 0.00008 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00001 0.00001 0.00000
2 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2.2 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000
2.4 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2.6 0.00005 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000
2.8 0.00005 0.00004 0.00004 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000

3 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000
3.2 0.00006 0.00004 0.00004 0.00004 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000

3.4 0.00008 0.00006 0.00006 0.00006 0.00005 0.00004 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00000
3.6 0.00005 0.00004 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000

3.8 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000
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4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Appendix 4.4

This appendix is divided into two main sections: a first section containing numerical
results (tables) for values of range, sill and nugget obtained for depth at different river
sites and a second section with a set of graphical output for the mean values of range,
sill and nugget obtained at three specific river sites.

The tables show the range, sill and nugget obtained for the spherical variogram model
for the points selected randomly from the 0.5 m x 0.5 m regular grid (for sampling
densities equal to 0.2 points/m2 and 3.8 points/m2). The values shown in the tables
were the results of repeating the random selection process ten times for each river site
listed. Descriptive statistics were calculated.

The plots show the mean and the Standard Error on the variogram model parameters
obtained for all the sampling densities considered at three river sites. The river sites
where selected according to the rate of variance encountered in the first section of this
Appendix. The variogram was modelled for ten different data sets obtained by random
selection of points from the 0.5 m x 0.5 m regular grid.

Results showed that the change on the variogram model parameters depended on the
river site that was being analysed. High values of range, sill and nugget were the
result of a bad fitting of the variogram model. Those river sites with high values of
variogram model parameters were not considered for the analysis carried out in the
second section of this Appendix.

The plots showed that nugget presented the highest Standard Errors (in relation to the
mean), followed by the sill and the range. The Standard Error increases when
decreasing the sampling density since (i) a smaller number of points is being selected
for the variogram calculation and (ii) the ten randomly selected data sets have a

Effect of random selection of points
on the variogram model parameter –

Chapter 6



smaller chance to include the same points in each of these ten replications. Therefore,
the decrease in Standard Error value observed when increasing the sampling density
needs to be carefully analysed. Low Standard Error encountered for high sampling
densities (> 3.2. points/m2) might not indicate high stability of the variogram model
parameters since higher Standard Errors could be encountered for these sampling
densities when repeating the experiment for more detailed data sets. Further research
is required to determine the effect that the observed variability of the variogram model
parameters has on the value of the depth predictions.

River sites such as the Tame Highly Modified presented smaller Standard Errors than
those encountered for the Tarf and the Bere. This was associated to the variability of
depth that could be observed at each river site.



Range

River

Number
of points

of the
original
data set

Number
of points
for the

selected
sampling
strategy

Sampling
density

(points/m2) Minimum 1stQu Median Mean 3rdQu Maximum SE Variance

Cruick 5552 278 0.2 10.28 12.31 12.87 13.29 14.63 16.35 2.135 4.57
5275 3.8 12.87 12.89 12.95 12.95 13.01 12.059 0.0655 0.004

Bere 1660 83 0.2 9.5 12.07 16.02 15.66 17.68 22.76 4.215 17.8
1577 3.8 7.34 7.42 7.48 7.47 7.52 7.62 0.08 0.0069

Blackwater 3636 181 0.2 5.15 5.6 6.8 8.16 8.38 14.76 3.68 13.56
3454 3.8 5.28 5.3 5.34 5.33 5.35 5.38 0.034 0.0011

HighlandWater 811 122 0.6 4.49 5.11 5.3 5.41 5.81 6.42 0.58 0.339
770 3.8 5.01 5.12 5.13 5.13 5.18 5.19 0.063 0.0039

LeighBrook 6490 324 0.2 7.95 8.37 8.63 10.24 10.87 17.62 3.045 9.28
6165 3.8 9.07 9.2 9.27 9.26 9.34 9.38 0.0955 0.0092

PangFenced 2444 122 0.2 4.9 12.7 16.8 24861.2 35975.2 118345.9 401063.15 1605056350
2321 3.8 4.61 4.67 4.69 4.68 4.7 4.72 0.032 0.001

Senni 1409 71 0.2 6 8 10 1101221 12 10650066 3357051 1.12698E+13
1338 3.8 8.26 8.35 8.45 8.46 8.56 8.68 0.1395 0.0194

TameLM 6168 308 0.2 9.1 10.37 11.15 11.16 11.8 12.56 1.06 1.12
5859 3.8 10.82 10.82 10.82 10.82 10.82 10.82 5.41 0.000000001

TameHM 4625 231 0.2 9.83 9.95 10.65 10.8 11.54 12.41 0.945 0.89
4393 3.8 11.05 11.08 11.12 11.12 11.15 11.22 0.0505 0.00259

Tarf 5450 272 0.2 20.7 24.07 28.19 27 30.2 30.9 4.005 16.06
5177 3.8 14.76 14.76 14.76 14.76 14.76 14.76 0.00004 0.000000002

Windrush 4913 245 27.63 31.87 36.02 1794.13 41.87 17614.66 5558.77 3089964.06
4667 29.81 30.07 30.27 30.28 30.48 30.79 0.64 0.051 0.08



Sill

River

Number
of points

of the
original
data set

Number
of points
for the

selected
sampling
strategy

Sampling
density

(points/m2) Minimum 1stQu Median Mean 3rdQu Maximum SE Variance

Cruick 5552 278 0.2 0.019 0.024 0.028 0.028 0.03 0.037 0.0055 0.000033
5275 3.8 0.029 0.029 0.029 0.029 0.029 0.029 0.0002 0.00000004

Bere 1660 83 0.2 0.0032 0.015 0.021 0.021 0.03 0.036 0.011 0.0001
1577 3.8 0.03 0.031 0.031 0.031 0.031 0.031 0.0002 0.00000004

Blackwater 3636 181 0.2 0 0.005 0.008 0.008 0.013 0.014 0.0054 0.0000294
3454 3.8 0.013 0.013 0.013 0.013 0.013 0.013 0.0000625 0

HighlandWater 811 122 0.6 0.012 0.013 0.014 0.014 0.015 0.015 0.00115 0
770 3.8 0.013 0.013 0.013 0.013 0.013 0.013 0.0001 0.00000002

LeighBrook 6490 324 0.2 0.019 0.02 0.023 0.0229 0.024 0.025 0.0018 0
6165 3.8 0.023 0.023 0.023 0.023 0.023 0.023 0.000143 0.00000002

PangFenced 2444 122 0.2 0 0.005 0.01 1.35 1.75 8.23 2.57 6.61
2321 3.8 0.0126 0.0128 0.0128 0.0128 0.0129 0.0129 0.000085 0.000000007

Senni 1409 71 0.2 0 0.04 0.05 1636.82 0.05 15901.8 5014.3705 25143915.44
1338 3.8 0.049 0.049 0.05 0.049 0.05 0.05 0.0003615 0.00000013

TameLM 6168 308 0.2 0.025 0.027 0.03 0.03 0.031 0.034 0.003125 0.000009
5859 3.8 0 0.029 0.029 0.029 0.029 0.029 0 0

TameHM 4625 231 0.2 0.036 0.037 0.04 0.04 0.04 0.04 0.0035 0.000015
4393 3.8 0.039 0.039 0.039 0.039 0.09 0.039 0.0002 0.00000005

Tarf 5450 272 0.2 0.003 0.004 0.004 0.004 0.005 0.005 0.00085 0.0000007
5177 3.8 0.004 0.004 0.004 0.004 0.004 0.004 0.0000225 5E-10

Windrush 4913 245 27.63 0.063 0.07 0.08 4.02 0.12 39.45 12.4 154.96
4667 29.81 0.08 0.08 0.08 0.08 0.08 0.001 2.05E-07 0



Nugget

River

Number
of points

of the
original
data set

Number
of points
for the

selected
sampling
strategy

Sampling
density

(points/m2) Minimum 1stQu Median Mean 3rdQu Maximum SE Variance

Cruick 5552 278 0.2 0 0 0 0 0 0 0 0
5275 3.8 0 0 0 0 0 0 0 0

Bere 1660 83 0.2 0.0009 0.008 0.013 0.013 0.018 0.024 0.0075 0.00000005
1577 3.8 0 0 0 0 0 0 0 0

Blackwater 3636 181 0.2 0 0 0.004 0.0055 0.008 0.015 0.006115 0.0000374
3454 3.8 0 0 0 0 0 0 0 0

HighlandWater 811 122 0.6 0 0 0 0 0 0 0 0
770 3.8 0 0 0 0 0 0 0 0

LeighBrook 6490 324 0.2 0 0 0 0 0 0 0.0015 0.000006
6165 3.8 0 0 0 0 0 0 0 0

PangFenced 2444 122 0.2 0 0.008 0.01 0.008 0.01 0.01 0.005 0.00002
2321 3.8 0 0 0 0 0 0 0 0

Senni 1409 71 0.2 0 0 0.003 0.01 0.01 0.04 0.015 0.00025
1338 3.8 0 0 0 0 0 0 0 0

TameLM 6168 308 0.2 0 0 0 0 0 0 0 0
5859 3.8 0 0 0 0 0 0 0 0

TameHM 4625 231 0.2 0 0 0 0 0 0 0 0
4393 3.8 0 0 0 0 0 0 0 0

Tarf 5450 272 0.2 0 0.0002 0.0005 0.0005 0.0009 0.001 0.0004 0.0000001
5177 3.8 0 0 0 0 0 0 0 0

Windrush 4913 245 27.63 0 0 0 0.0017 0.0027 0.007 0.0025 0.000007
4667 29.81 0 0 0 0 0 0 0 0
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Tarf

0.2 83 231 272
0.4 166 462 545
0.6 249 693 817
0.8 332 925 1090
1 415 1156 1362

1.2 498 1387 1635
1.4 581 1618 1907
1.6 664 1850 2180
1.8 747 2081 2452
2 830 2312 2725

2.2 913 2543 2997
2.4 996 2775 3270
2.6 1079 3006 3542
2.8 1162 3237 3815
3 1245 3468 4087

3.2 1328 3700 4360
3.4 1411 3931 4632
3.6 1494 4162 4905
3.8 1577 4393 5177
4 1660 4625 5450


