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Abstract 

This thesis introduces efficient numerical techniques for the analysis of novel 

electromagnetic metamaterials. The modelling is based on a Method of Moments 

modal analysis in conjunction with an interpolation scheme, which significantly 

accelerates the computations. Triangular basis functions are used that allow for 

modelling of arbitrary shaped metallic elements. Unlike the conventional methods, 

impedance interpolation is applied to derive the dispersion characteristics of planar 

periodic structures. 

With these techniques, the plane wave and the surface wave responses of fractal 

structures have been studied by means of transmission coefficients and dispersion 

diagrams. The multiband properties and the compactness of the proposed structures 

are presented. Based on this method, novel planar left-handed metamaterials are also 

proposed. Verifications of the left-handedness are presented by means of full wave 

simulation of finite planar arrays using commercial software and lab measurement. 

The structures are simple, readily scalable to higher frequencies and compatible with 

low-cost fabrication techniques. 

Key words: metamaterial, electromagnetic band gap (EBG), artificial magnetic 

conductor (AMC), left-handed material (LHM), fractal, method of moments 

(MoM), impedance matrix interpolation, dispersion diagram. 
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1. Introduction 

1.1 Metamaterials 

Electromagnetic metamaterials are artificial structures that can be designed to exhibit 

specific electromagnetic properties not commonly found in nature. The prefix "meta" 

means "beyond" in Greek. These structures are regarded as metamaterials because 

they are beyond our experience and the descriptions we give to normal bulk materials. 

They are usually fabricated as periodic arrays of metal elements embedded in 

stratified dielectric substrates. A large variety of elements can be used such as dipoles, 

tripoles, patches and rings. Some examples of element geometries are shown in Fig. 

1.1. These elements may be arranged in a rectangular double-periodic grid or an 

off-axis triangular lattice. 
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Dipole Tripple Cross Dipole 

Square Loop Ring Square Patch 

Fig. 1.1 Some array element geometries. 

In recent years, these structures are widely applied in antennas for fixed and mobile 

communications system because of their interesting features when interacting with 

electromagnetic waves. According to the different responses to electromagnetic waves, 

metamaterials are classified as follows: 

" Frequency Selective Surfaces (FSS) 

" Electromagnetic Band Gap Materials (EBG) 

" Artificial Magnetic Conductors (AMC) 

" Left-handed Materials (LHM) 

Frequency Selective Surfaces (FSS), which have band gap characteristics for an 

incident plane wave, have been analyzed by many researchers in the past several 

decades [1]-[10]. Fig. 1.2 is the typical response of an FSS made of conducting 

elements. The band gap (or stopband) has been highlighted with grey colour. The 

resonant frequency fo depends on the dimensions of the elements as well as the 
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periodicity. Approximately, the wavelength of resonance is twice the element length 

for a dipole array, four times of arm length for a tripole array, and equals to the 

perimeter of the element for a loop array, as is shown in Fig. 1.3. For this frequency 

selectivity, the Frequency Selective Surfaces are normally used as plane-wave filters 

and antenna radomes. 

The concept of Electromagnetic Band Gap (EBG) materials was formerly introduced 

by Yablonovitch as Photonic Band Gap (PBG) crystals [11], which prevent the 

propagation of electromagnetic waves in specified frequency bands. Traditional PBG 

crystals are made of two different dielectric materials with a periodicity in one, two or 

three dimensions. Extending this concept, electromagnetic materials named 

Metallodielectric Photonic Band Gap (MPBG) materials based on metallic elements 

have emerged, which show characteristics of frequency band gaps for microwaves 

and millimetre-waves [12], [13]. These materials are generally classified as 

Electromagnetic Band Gap materials[14]. Unlike FSS, EBG materials are utilised for 

filtering bounded surface waves. The dispersion diagram of an tripole EBG array on a 

triangular lattice with skewed angle of 60 degrees is shown in Fig. 1.4. The bold lines 

in the dispersion diagram indicate the propagation modes along the contour of the 

irreducible Brillouin zone. The frequency ranges, in which there are not any 

propagation modes, are the surface wave band gaps of the EBG material. Many 

applications of EBG materials have been made in antenna and microwave designs in 

order to enhance antenna gain, and achieve lower back radiation and lower mutual 

coupling [15]-[20]. 
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Fig. 1.4 (a) Dispersion diagram, (b) reciprocal lattice and (c) irreducible Brillouin 

zone. 

Artificial Magnetic Conductors (AMC), also named as "High-Impedance Surfaces" 

[21], are special types of periodic surfaces based on FSS. They are grounded periodic 

arrays (metallic element arrays printed on metal-backed dielectric substrates) showing 

a high surface impedance under plane wave incidence. The common metal surface, 

which is a good electric conductor, has low impedance. With plane wave incidence, 

the electric field has a node at the surface, and the magnetic field has an antinode. In 

contrast, for the High-Impedance Surfaces, the electric field has an antinode at the 

surface, while the magnetic field has a node. The surface acts like a good magnetic 

conductor. Fig. 1.5 shows the reflection phase of the incident plane wave by a 

square-patch AMC. It fully reflects the incident wave with a zero degrees reflection 

phase at the resonant frequency fo. The useful bandwidth of an AMC is in general 

defined as +90° to -90° on either side of the central frequency, since these phase 

values would not cause destructive interference between direct and reflected waves. 

With these features, AMCs have been applied to low-profile resonant cavity antennas 

and microstrip patch antennas [22]-[24]. 

-. 
Oooý Direct Lattice 
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Fig. 1.5 Reflection phase of AMC. 

Left-Handed Materials (LHM) were first theorized by Veselago as double negative 

materials (DNG) for their simultaneously negative permittivity (e) and permeability (p) 

[25]. The term "left-handed" describes the fact that the vectors E, H and k form a 

left-handed triplet, instead of a right-handed triplet, as is the case in conventional 

right-handed (RH) media. Inside this kind of materials, the unique electromagnetic 

properties as reversal of Snell's Law, the Doppler Effect and the Cerenkov Effect are 

anticipated. Although Veselago's prediction was brought out in 1967, experimental 

verifications of the effective permeability and the left-handedness were presented by 

Pendry [26] and Smith [27] three decades later. Smith's LHM is three dimensional 

multi-layered arrays of metallic split ring resonators (SRR) and thin metallic wires. In 

recent years, based on the transmission line approach, planar LHM have been 

designed by other researchers [28]-[30]. Compared with Smith's LHM, these 

structures have much broader bandwidth and lower profile, and are more suitable for 

microwave applications [31]-[35]. 
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1.2 Computational Electromagnetics 

1.2.1 Numerical Methods 

Electromagnetic scattering problems could be described by either integral equations 

or differential equations. Method of Moments (MoM) is the most general and widely 

used approach for integral equations. By applying MoM, the unknown quantity 
(usually the surface current density) is approximated as a linear series of known 

functions (basis functions) multiplied by unknown coefficients. After substituting the 

approximation into the field integral equation, both sides of the equation are 

multiplied by suitable functions (testing functions) and are integrated in the testing 

domain. In order to yield the unknown coefficients, the linear system can be solved 

using either matrix inversion or an iterative method. 

Since the unknown quantity is formulated with integral equations in MoM, it also 

could be approximated using differential equations. Finite Difference (FD) method, 

Finite Element Method (FEM) and Transmission Line Method (TLM) are of this type. 

Not like those for integral equations, basis functions for differential equations must 

satisfy the boundary conditions and must be differentiable at least of the same order as 

is the order of the differential operator. To meet this requirement, an adaptive mesh is 

usually used to discrete the region of interest. Basis functions are selected based on 

the mesh nodes or the mesh edges. Once the discrete unknown values are determined, 

other unknown values can be obtained by interpolation. 

Differential equation techniques are powerful in solving 3D complex problems. 

However, they have the disadvantage that the absorbing boundary conditions (ABC) 
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are required to produce a finite computational domain when analysing open structures, 

and they will lose much of the accuracy in solving the electric large problems. Integral 

equation techniques possess the advantage that open regions do not need the ABC, 

while the large amount of basis functions for complex geometries may lead to dense 

and large matrices, which make the simulation program to be a time-consuming 

monster. Each method has its own advantages and drawbacks. No matter which 

method we use, the final aim is always yielding the most accurate results with the 

least cost. 

1.2.2 Commercial Software Packages 

Commercial electromagnetic simulation software packages are used in the following 

chapters as the comparison and the validation of the numerical technique proposed in 

the thesis. These software packages are based on the numerical methods mentioned 

above. 

Ansoft Designer' [36], which is formerly Ensemble, is well known as software for 

microstrip structures and planar circuits. The simulation technique used in Designer is 

based on the mixed potential integral equation (MPIE) and Method of Moments 

(MoM). With the periodic Green's function, Designer becomes a powerful tool for 

two-dimensional (2D) periodic structures such as FSS and EBG. Surface current, 

transmission and reflection response can be plotted in the post-processing procedure. 

Ansoft HFSSr" [37], which is one of the strongest three-dimensional (3D) simulators 

in computational electromagnetics (CEM), is another famous simulation tool by 

Ansoft Corporation. It brings the power of Finite Element Method (FEM) to the 

simulation of complex 3D electromagnetic structures by leveraging advanced 
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techniques such as automatic adaptive mesh generation and refinement, tangential 

vector finite elements, and Adaptive Lanczos Pade Sweep (ALPS) [38]. HFSS 

automatically computes multiple adaptive solutions until a user-defined convergence 

criterion is met. Field solutions to predict high frequency behaviours such as 
dispersion and the using of Periodic Boundary Conditions (PBC) enable HFSS to be 

the especial tool for EBG and LHM. 

Micro-Stripes' [39] is a 3D electromagnetic simulation software package distributed 

by Flomerics and is the most extensively used TLM based simulator. The most recent 

version, Micro-Stripes v6.5, offers a complete set of features that are usually required 
for electromagnetic simulations. Some of them are the advanced modelling interface, 

S-parameters calculation, non-uniform meshing (multi-gridding), Perfect Matched 

Layer (PML) absorbing boundary conditions and symmetry conditions such as 

electric and magnetic walls. By using features as multi-gridding and symmetry 

conditions, depending on the simulated geometry, the solution time can be 

significantly reduced. Good visualisation tools such as surface current, near field and 

3D radiation patterns are also available. 

1.3 Overview of the Thesis 

This thesis begins with proposing an efficient numerical technique for 

electromagnetic metamaterials. This technique is based on the mixed potential integral 

equations (MPIE) and Method of Moments (MoM). Triangular patch sub-domain 

basis functions are adopted because they are more versatile in modelling of 

arbitrary-shaped elements than entire-domain basis functions and rooftop sub-domain 

basis functions. Considering the configurations of the metamaterials, periodic Green's 

function based on the Bloch-Floquet theorem and closed-form Green's function for 

9 



stratified dielectric media are used in setting up the MoM equations. Since the 

analysis of the metamaterials is mainly in the frequency domain, impedance matrix 

interpolation technique is applied to drastically speed up the computations in a wide 

frequency range. 

With these methods, the research effort in this thesis focuses on the analysis and 

design of novel electromagnetic metamaterials. Miniaturised and multiband EBG, 

miniaturised and multiband AMC and planar LHM are proposed and investigated. 

These structures are arrays of compact and complex-shaped elements, such as fractal 

and spiral elements, over grounded dielectric substrates. To provide a description of 

the main properties of the EBG and LHM, dispersion diagrams of surface waves are 

produced by solving the homogeneous form of MoM equations. Leaky waves are not 

considered or investigated in this thesis. Finally, the calculated results are validated by 

the simulations using commercial software Ansoft HFSS and experimental 

measurements. 

The outline of the chapters of the thesis is as follows: 

Chapter 1 gives out a brief introduction to the background of this thesis. Classification 

and characterization of metamaterials are mentioned in this chapter. Commercial 

software packages used to compare with the proposed approach and their related 

numerical techniques are also introduced. The organisation of this thesis is outlined. 

Chapter 2 introduces an efficient algorithm based on MPIE and MoM to solve the 

scattering problems of metamaterials. The goal of this algorithm is to model the 

arrays' arbitrary-shaped elements in stratified dielectric substrates. Periodic Green's 

functions are used for this modelling. Impedance Matrix Interpolation is applied to 

save the computing time. Surface current, plane-wave response and dispersion 
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diagram are plotted to visualize the output data in the post-processing procedure. 

Chapter 3 applies the algorithm to EBG and AMC material designs. The goal of this 

chapter is to design miniaturised and multiband EBG and AMC surfaces. Several 

shapes of elements, such as fractal tripoles, convoluted tripoles and periodically 
loaded tripoles, are discussed in this chapter. The research focuses on the fractal 

tripoles EBG and AMC arrays. Transmission magnitude of FSS surfaces, dispersion 

diagram of EBG surfaces, and reflection phase of AMC surfaces are produced in the 

analysis. The miniaturised and multiband features are proved by these simulations and 

validated by the measurement results. 

Chapter 4 introduces the rationale of LHM and describes the application of the 

analysis method in order to produce LHM designs. The goal of this chapter is to 

design planar LHM in the absence of grounding vias. The investigation includes a 

closed rectangular loop, a split rectangular loop and two variations of the split loop 

that increase magnetic and electric effects according to the dual transmission line 

concept for LHM. Further to these structures, an isotropic design of spiral arrays in 

square unit cells is presented. The left-handedness of these designs is proved by the 

dispersion diagrams and validated by a full-wave simulation of finite structures using 

HFSS. 

Chapter 5 describes the design of the experiment as well as the measured results that 

confirm that this left-handed propagation can be observed in practice. The 

measurement is based on microstrip transmission line models, which are partly 

replaced by the planar left-handed materials. According to the dispersion diagram, 

power can be delivered through these structures in the frequency ranges where there 

are the left-handed and right-handed modes. While in the other frequency ranges, the 

structures show band-gap features. The left-handed propagation is proved by 
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measuring the phase difference between the two ports of these structures. 

Chapter 6 finally draws the conclusions from the work presented in this thesis. Results 

in the previous chapters are discussed. Further improvements of the numerical scheme 

for more requirements in modelling and computing are considered and future 

developments are proposed. 
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2. Modelling Techniques for Metamaterials 

2.1 Introduction 

As is discussed in Chapter 1.2, Method of moments (MoM) is a versatile approach for 

open region problems of stratified planar structures. A general model of metamaterials 

is analysed in this chapter using MoM to solving mixed potential integral equation 

(MPIE). The MPIE requires a less singular vector potential to evaluate the mutual 

impedance integral, while in the electric field integral equation (EFIE) the 

two-dimensional infinite integrals with highly oscillating and slowly decaying 

integrands cannot be avoided. Surface current on the simple regular-shape element, 

such as dipole, tripole and ring, can be expanded by the entire domain basis functions. 

For elements with complex shapes, sub-domain basis functions have to be applied. 

Two kinds of sub-domain basis functions are introduced in this chapter, namely the 
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rooftop basis function and the triangular patch basis function. Compared with rooftop 

basis functions, the triangular patch basis functions have a better adaptability for 

arbitrary-shape elements. To meet the requirement of modelling periodic metamaterial 

structures, the generally formed free-space Green's function is modified to be the 

periodic Green's function that accounts for the periodicity. The analyses of 

metamaterials are usually in frequency domain. To derive the responses versus 

frequency, MoM equations have to be solved once at each frequency point. When the 

frequency range of interest is wide, or the number of basis functions is large due to 

complex element geometries, the calculation will cost much time such as several days 

even weeks. Fortunately, unlike the resonant behaviours and rapid frequency 

variations of the currents and fields, the impedance matrix elements usually have a 

regular and smooth variation versus frequency. That enables us to calculate the 

impedance matrix at only few frequency points and get the impedance matrix at other 

points of the remaining frequency range of interest using interpolation, which could 

drastically speed up the computing. This technique can applied to derive the 

transmission and reflection responses for plane waves as well as the dispersion 

diagrams for surface waves. Finally, different types of output data in different formats, 

such as surface current, plane wave response and dispersion diagram, are provided in 

the post-processing. 

2.2 Method of Moments 

Electromagnetic problems usually involve linear integral equations. The general form 

of such linear equation is the operator equation 
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Lf=g (2.1) 

where L is a linear operator (boundary conditions), g is a known function (excitation), 

and f is an unknown function. MoM is the most popular approach to solve the 

problem in (2.1) [1]. By applying MoM, f is expanded in a series of function 

f,, 
... in the domain of L, as 

n 

f=Ya; f (2.2) 

where a; are unknown coefficients to be determined, f. are known expansion 

functions or basis functions. The expansion in (2.2) has to satisfy the boundary 

conditions required in (2.1). Substituting (2.2) into (2.1), we have 

aiLf, =g" (2.3) 

In order to derive the coefficients {a, }, we take the inner products of (2.3) with a set 

of suitable weighting functions wj , which are usually chosen to be the same as the 

basis functions f (Galerkin's method). 

a, (wj, Lf; } = 
(w;, gý, 

The equation (2.4) can be written in matrix form as 

(2.4) 
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[1ji] [aiI =[gj 

(w1, Lf ) 

where 

\'"n 
Lf, ) 

(2.5) 

... 
(w1ILf ) 

a, 
(w,, 

g) 

[ai ]=, and [gj ]= 

a� (w�, g) 

Thus, the operator equation can now be solved by deriving {a; } using either a direct 

matrix inversion or an iterative method. 

2.3 Integral Equation 

A general geometry of double-periodic infinite array used as a metamaterial surface is 

presented in Fig. 2.1. The figure also shows the wave vector k' of a linearly 

polarised plane wave incident in an arbitrary direction. 0 and cp are the longitude 

and latitude angles of vector k'. The lattice is over the x-y plane with periodicities of 

DD and DD in two arbitrary directions u and v, skew angle of which is a. 
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a 

Fig. 2.1 General geometry of 2D metamaterials. 
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Based on the model in Fig. 2.1, the scattered electric field k of the array can be 

expressed with respect to the distribution of the electric surface current J, using 

what is known as the electric field integral equation (EFIE) 

ES --Js ds' (2.6) 

where S' is the integral domain of the metal surface, and G is the well-known 

dyadic Green's function. In order to avoid the two-dimensional infinite integrals with 

highly oscillating and slowly decaying integrands that must be evaluated in the EFIE, 

the mixed potential integral equation (MPIE) [2] is applied in the analysis instead of 

the EFIE 

ES(r)=-jo)pA- 
1 

0(v" (2.7) 
wE 

where A is the magnetic vector potential 

Ä= fs J(r')G(r, r')dS' (2.8) 

where G denotes the non-periodic free space Greens function given by 

G exp(-jkITI) (2.9) 
47rIrI 

Applying (2.3) into (2.1), the MPIE can take the form of 
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ES (r) _ -f jwýcJ(r')G(r, r') + 
V, J(r, ) 

0'G(r, r') S' (2.10) Js J 'we 

Applying the boundary condition nx (E' + Es) =0 on S', we obtain 

E'= -ES (2.11) 

According to the MoM, the unknown surface current is expanded as a summation of 

products of known basis functions and unknown coefficients. 

J(r') I... (2.12) 
m 

After the testing procedure, the matrix equation can be derived. 

Zit ... ZuM Il Vi 

(2.13) 

ZMI ... 
ZMM IM- VM 

The elements are defined as 

(ý) (P)G(r, r) z;,, = 
ýý f (F')V'G(ý 'ý, ) dS dS (2.14) Jt; 

[Jiwdf 
+ 

, C, 6 

Vi = 
fTj (r) " E' (r)dS (2.15) 
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where tj(i) is the jth testing function and f; (r') is the ith basis function. Now, the 

unknown coefficients can be obtained using matrix inversion. 

[I] = [Z]' " IV] 

2.4 Sub-domain Basis Functions 

(2.16) 

A conventional method to expand the surface current in (2.12) is using entire-domain 

basis functions. This kind of basis functions applies to the elements with simple 

regular shapes, such as dipole, tripole, and ring [3], [4]. In modelling of 

arbitrary-shape geometries, sub-domain basis functions have been found to be more 

versatile. 
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2.4.1 Rooftop Basis Function 

A well-known type of sub-domain basis functions is the rooftop basis function [5]-[9]. 

To employ the rooftop basis function, the conductor domain is divided into 

sub-domains by an MxN grid (Fig. 2.2, (a)). The summation in (2.12) takes the 

form of 

JX =Ix (m, n)j (m, n) (2.17) 
mn 

Jy=1: 1: Iy (m, n) fy (m, n) (2.18) 
mn 

The basis functions shown in Fig. 2.2, (b) are described as 

fX (m, n) = 
4m+H(n) 

(2.19) 
2 

fy (m, n) = II(m)A n+ (2.20) 
2 
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Ax 

(b) (c) 

Fig. 2.2 Representation of surface current using rooftop basis functions. 

where 

Ix 
- mOxl<Ax 

2 [0, 
elsewhere 

[I- Iy-nay 

A(n) = Ay 
0, 

y-noyj<oy 
elsewhere 

(2.21) 

(2.22) 

Thus, as is shown in Fig. 2.2, (c), the continuous current functions in both directions 

can be matched very well by the summations of (2.17) and (2.18). 

To make the computing more efficient, rooftop basis function is usually used together 

with the spectral-form integral equations [6]. Applying the forward and inverse 

Fourier transforms, EFIE (2.1) is re-written in the spectral domain as 

2 ExS 
=-ý7 F-' 

k -k, 2 
zkXkv2 

G(k. 
�ky)F'(J(x, y» 

ES k -kykx k- ky 
v 

(2.23) 
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where k is free space wave number, q is modal impedance, F and F-' denote 

the forward and inverse Fourier transforms respectively, 

P ýu (x, y» -u 
(ks, kyý =J 

Jü(x, 
y)e4dxdy (2.24) 

-00 -<ýo 

+j(kx+k y) P (u(k, ky))=ü (x, y)= 
12 ff (k, ky)e y dkxdky (2.25) 

4/7 
-00 --00 

and G (k ky) is the spectrum of the Green's function 

2 
,22, k2>kx+ky 

2k -kx -ky 
(kX, ky) (2.26) 

1 k2 < kx + ky 
2 kX +ky -k2 

Fourier transforms of the rooftop basis functions are listed below to represent the 

surface current in spectral domain. 

fx (m, n) = since 
a2 

sinc 21 

fy (m, n) = sinc 
a2 

since 2ß 

(2.27) 

(2.28) 
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where a=k Ax ,6=k,, noy , and sinc = sin (x) /x. 

2.4.2 RWG Basis Function 

According to the analysis in section 2.3.1, we can find that the rooftop basis function 

can be readily applied to elements consisting of rectangular shapes. Other shapes, 

such as triangle, circle and polygon, seem difficult to be analyzed using rooftop basis 

function, because rooftop basis function requires the sub domains to be same sized 

rectangular unit cells placed along x and y directions. 

In order to model the more complex elements accurately, another type of basis 

function, triangular patch basis function, is applied in this paper. Because this kind of 

basis function has been firstly introduced by Rao, Wilton and Glisson [10], it is also 

known as RWG basis function. It has been widely applied in recent years [11]-[15]. 

Unlike the rooftop basis function, there is no requirement of unit size and mesh layout 

for the RWG basis function, an example of which is shown in Fig. 2.3 (a). 

Each RWG basis function is based on each triangle pair. The basis function associated 

with the nth edge is: 

in 
Pn ý 

YET + 

2An 

2 29 fn= In rET- 
2A, -, 

Pn 

0, elsewhere 
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1n 
P. 

V 

(a) (b) 

Fig. 2.3 Representation of surface current using RWG basis functions. 

where, as shown in Figure 2.3 (b), the centre points of triangles Ti may be 

designated either by the position vector -I defined with respect to global coordinate 

origin 0, or by the position vector pn± defined with respect to the free vertex of T± 

1� is the length of the edge and An are the areas of triangle T}. 

Applying the formula (2.29) into (2.10)-(2.15), we can get the matrix elements of 

(2.13): 

Zmn = -- 

V '7 V 'G 

d'ý. 
J 

ffm JJWJI7GP 

jWE 

p P. 
= 

im Ja Amn 
.+A.,, . +(Ymn -(1)mn 

(2.30) 

22 

Vm = 
Ji7rn 

" 
E' S 
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-c+ -c- 

=1m Ent P2 + Em P. 
(2.31) 

where 

P e-ikRm P1__ A, »" = 4, T 
ffn 

R± 
dS' - 4n 2 

"+ f P"gmdS'+ 
l"_ jP"gmdS' (2.32) 

m A" 
T. 2 An T� 

_jkRm 
V m" JV'i"e 

+ 
dS' =-1l+f gdS'+ rdS' (2.33) 4jwe R4jwe An- J 

Tn Tn 

+ I~C± 
Rm = rm -r (2.34) 

- jk rm -PI 

pm e 
, C± _ 

(2.35) O 

rm -r/ 

E. 
= E' (r. ) (2.36) 

To numerically compute the integral of function g over a triangle in (2.32) and (2.33), 

a so-called barycentric subdivision method is employed [16], [17]. As is shown in 

figure 2.4, a primary triangle is divided into nine equal small sub-triangles by use of 

the 1 /3 rule. The integral of function g is approximated by the average of mid-point 

values of the nine sub-triangles instead of the originally centric value of the primary 

triangle in [16]. The numerical formula is given in (2.37). 

9 
fg6)dS 

=mý gurk) (2.37) 
Tm 

9 
k=1 
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Fig. 2.4 Subdivision of the primary triangle. 

2.5 Periodic Green's Function 

Green's function is known in electromagnetism as the relation of the charge density 

and the potential of the scattered electromagnetic field. The free-space Green's 

function is shown in (2.7). This function applies in the scattering problem of perfect 

conductors in three-dimensional free space. Considering the scattering problem of 

metamaterials, Green's function has to be modified to be in the periodic form [18], 

[ 19] because of the periodicity of the structure. 
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Grating lobes appear in the scattering of metamaterials because of the periodic layout. 

Side lobes, which are equal in amplitude to the main lobe, are repeated along the 

directions of the periodicity [20]. According to the Floquet theorem [21], [22], if the 

incident plane wave propagates in the direction k, the amplitude of all element 

currents of the array will be the same. Having the model in Fig. 2.1 as an x- and 

y-directional array, the element current in column p and row q is 

I 
m, n 

IO, 
Oe-jk(pDxx+gDyy) 

Thus, the surface current J (x, y) can be expressed with Floquet modes as 

00 00 
J\x, yl 

1 
CP, 

9fp, 9 \'x,. 
y) 

p=_O0 q=--co 

where Cp q 
is the coefficient, fp 

q 
(x, y) is the Floquet mode: 

x y\ _ e-jk, 
"(x-x, )e_ jky 

Pý9 

Jý 
= 

2'ßp 
+ksin9sino. kp°9 = 

21-cp 
+ksin9cosO kp'9 

Dz X z 

(2.38) 

The free-space Green's function in (2.9) can then be re-written as the periodic Green's 

function 

00 00 ; k,, q(x-x, )jky9(y_y, )jkp, q 

p, g D (2.39) Gp = 
1: 

., 
1: 

p=-oo q=-ý 
2jkZ Dx 

y 
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where 

k2 
_ 

(kP, q )2 
+ 

(ký 
,q 

12 

' 

kp, q_ 
JJ 

_j 

-Pq 
y+ (kPqy) 

- 
k2' 

P, 9 )2 k2> (kXJ 

` 

k2<_ 
((kp, 

q )2 

2 
+ 

(kP, 9 1 

yJ 

2' 
+ 

(kp, q 1 

YJ 

The periodic Green's function in (2.39) is expressed as a summation of Floquet modes. 
Since the p and q are infinite series, it is not numerical in real problems. A finite 

truncation must be applied to approximate the summations. Choosing proper orders of 

the series to truncate is important for solving the MPIE. If too many orders are chosen, 
it will waste too much of the computing time. On the other hand, the results will loose 

accuracy if the orders are not enough. For that purpose, the decaying property of the 

coupling between two basis functions is studied. 

The coupling between basis functions is studied to decide how many terms of Floquet 

modes in (2.39) need to be chosen to meet the accuracy requirement. Generally 

speaking, the numbers of terms to represent the Green's function depends on the size 

of the basis functions. In other words, when increasing the number of the basis 

functions for a fixed-size element, the coupling between two basis functions will 

decay more slowly. A fixed-length dipole array is considered here as an example. The 

variations of the coupling between two basis functions for different number of basis 

functions along the dipole are shown in Fig. 2.5. From the figure, we can find that the 

coupling is decaying more and more slowly with increasing number of the basis 

functions. Nevertheless, the variation is kept similar when the number of the basis 

functions is large enough (greater than 15). Thus, when analyzing periodic structures 

with complex elements (consisting of large number of basis functions), Floquet terms 
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of 81 by 81 (-40 to 40 for each direction) are enough for required error less than 2%, 

and Floquet terms of 161 by 161 for required error less than 1%. For other element 

geometries, similar convergence analysis can be made to meet the requirement of the 

accuracy. 
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Fig. 2.5 Coupling between basis functions with different number of Floquet modes. 
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2.6 Impedance Matrix Interpolation 

Since the surface currents and the scattered fields show irregular variations versus the 

frequency because of the resonant behaviours, a great amount of time has to be spent 

to calculate these quantities at every frequency of interest in order to analyze a 

metamaterial surface. However, unlike the resonant behaviours and rapid frequency 

variations of the currents and fields, the impedance matrix elements usually have 

regular and smooth variations versus frequency. That enables us to calculate the 

impedance matrix at only few frequency points and get the impedance matrix at other 

points of the remaining frequency range of interest using interpolation. 

The typical frequency variation of the impedance matrix elements of an EBG array is 

shown in Fig 2.6. Here we used the dipole geometry in Fig. 2.5 as an example. 

Because the elements in metamaterials act approximately as half wavelength 

resonators, we chose the functions [23] 

R(f) =A Rf2 +B Rf +CR (2.50) 

I(f) -- A' 1f +B' f +C' (2.51) 

as the interpolation functions for the impedance matrix elements, where R(f) and 

I (f) are real part and imaginary part of the impedance matrix elements respectively 

(z, (f) = Rj, (f) +j" Ij, (f)) 
. After calculating the impedance matrices at three 

frequency points, the interpolation coefficients are derived by solving (2.50) and 

(2.51): 
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AR _ 
(Re[Zj1(f1)]( 2 -f3)+Re[Zj1(f2)](f3 -J, )+Re[Z1r(f3)](J1 -f2)) 

J` 
Jý2(f2 -J3)+J22(ß -JI)+ß2(J1 -f2) 

(2.52) 

R- Re[Z1i(f )] -Re[Zj; (1i)J-AR(f2 -1i ) B;; - (2.53) Al 
- 

f2 

CR =Re[Zj; (f, )]-ARf, 2-BRf, (2.54) 

J1f2f3(Im[Z1i(f)](f2 -f3)+'M[Zji(f2)](f3 -ft)+1m[Zji(f3)](J1 -f2)) 
A.. - ll f2(f2 

-f3ý+J22(ß _f 
ß2(J1 

-f2) 

(2.55) 

B, _'M[Z;, 
(f)]-'M[Z; i (. f2)I -A;, (1_ f, -1/ f2) 

(2.56) 
Bý f- 

. 
f2 

Cji I -Im[Zji(Jl)]-Aji 
/J1 -Bjif (2.57) 

With (2.50) - (2.57), the impedance matrices at every frequency, which are used to 

calculate the surface currents and scattered fields, can be derived by using the 

interpolation with (2.50) and (2.51). 
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2.7 Solving of Homogeneous MoM Equation 

In the analysis of EBG and LHM structures, it is required to determine the band gap 
properties of the structure on the two-dimensional plane of periodicity. Thus it is 

essential to explore all possible propagation modes that may exist for all possible 
directions along the two-dimensional plane of the array. The dispersion characteristics 
of the array for its two-dimensional plane of periodicity can be calculated by solving 
the homogeneous version of MoM equation (2.13) [1] 

Zi 
l ... ZuM Ii 0 

ZM 
1 ... 

ZMM IM0 

(2.58) 

For the analysis of the surface-wave propagation in the x-y plane, the angle 9 in Fig. 

2.1 is 90 degrees, and the propagation constant ,ß is set to be 

ßX=kO, ß, =kß, 0 (2.59) 

for lossless cases. The excitation matrix V in (2.13) is set to zero and the values of 

frequency, f, and propagation constants ßX and 8, that satisfy the equation are 

identified. For the set of homogeneous linear equations expressed in (2.59) to have 

non-trivial solutions, the determinant of the impedance matrix Z must be zero. The 

pairs off and ß values (real) for which the determinant becomes zero correspond to 

propagating modes. By varying 8 from zero to the boundary of the irreducible 

Brillouin zone a number of frequency sweeps are carried out. All the corresponding 
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determinants of Z are calculated and plotted versus frequency for different values of ß. 

From the determinant plot at 2.5GHz of a tripole array, of which element arms are 
5mm long and 0.2mm wide and the periodicity is 10mm, zeros are identified as sharp 

minima as what Fig. 2.7 shows [24]. Complex values of ß that describe leaky modes 

are not considered in this thesis. 

The method mentioned above is the conventional way to generate the dispersion 

diagram. To make it faster and more efficient, a new method is given out in this thesis. 

With this new method, the scanning of the propagation constant range is replaced by 

that of the frequency range, and the impedance interpolation technique can be applied 

to accelerate the calculation. Details of this method will be introduced in Chapter 3. 
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Fig. 2.7 Characteristic determinant versus frequency; mode is identified as a sharp 

minimum. 
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2.8 Visualisation of the Results 

According to the approaches in the sections above, a systematic procedure to analyze 

metamaterials has been set up. In order to make a good electromagnetic analysis of 

the metamaterials, visualisation of the output data is very important. In the 

post-processing procedure, visualisations of various types of results, such as the 

surface current, the plane-wave response and the dispersion diagram, are given out in 

the following for the designs of different kinds of metamaterials. 

2.8.1 Surface Current 

Current visualization adds tremendous value as a design troubleshooting aid, and is a 

source of valuable insight into the structure behaviour. Once the MoM equations are 

solved, the surface current density within each RWG triangle can be derived by 

applying equation (2.12). An example of the surface current distribution on the 

element of a square-loop array is given out in Fig. 2.8. In order to apply the RWG 

basis functions, the element is decomposed by a triangular mesh. A normal-incident 

plane wave is applied as what is shown in Fig. 2.8. Since each RWG basis function is 

related to the common edge of a triangle pair, the surface current within the triangle 

can be expressed as the summation of the currents flowing through the edges, which 

are shared with its neighbours. Considering of a triangle T, which have the common 

edges, lQ , 
lb and 1, , with its three adjacent triangles, once the solution of the 

unknown coefficients in (2.16) are obtained, the surface current density over T is 

derived as 
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Fig. 2.8 Surface current distribution on the element of a square-loop array. 

Jn Iafa+Ibfb+Icfc (2.60) 

After all the surface current densities in triangles are calculated, colours in greyscale 

fill in the triangular mesh in representation of the normalised magnitudes of the 

surface current densities. 

2.8.2 Plane-Wave Response 

Transmission and reflection coefficients are the most typical parameters of the 

plane-wave response, which are widely used in the analysis of metamaterials. The 

transmission (reflection) coefficient is defined as the ratio of the transmitted (reflected) 

field strength to the incident field strength of an electromagnetic wave when it is 

incident upon an interface surface between media with two different refractive indices. 

For metamaterials, the interface surface is the plane where the metal elements lie on. 
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Fig. 2.9 shows the magnitudes of the transmission and reflection coefficients of a 

frequency selective surface (FSS) array in response to plane-wave incidence. The 

resonant frequency is approximately at 17 GHz, where the total reflection of the 

incident wave can be observed from the reflection coefficient curve. A transmission 

band-gap near the resonant frequency can also be found from the transmission 

coefficient curve. 

In order to characterise the Artificial Magnetic Conductor (AMC) surfaces, the phase 

of the reflection coefficients are usually plotted as in Fig. 2.10. Because of the 

high-impedance feature of the AMC surfaces, the phase at the resonant frequency (8.5 

GHz in Fig. 2.10) is equal to 0. The working frequency range is normally taken as at 

the range where the phase is within -90 to 90 degrees. 
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Fig. 2.10 Typical phase of the reflection coefficients of an AMC surface. 

2.8.3 Dispersion Diagram 

20 

The dispersion diagram of an EBG array on a triangular lattice with skewed angle of 

60 degrees is shown in Fig. 2.11. By exploring the whole two-dimensional irreducible 

Brillouin zone, all the possible modes that exist on the x-y plane could be found [25]. 

The bold lines in the dispersion diagram indicate the propagation modes (i. e. the 

modes that are supported by the structure). For the range of frequencies where there is 

an absence of any propagation mode, that range of frequencies is considered as a band 

gap. 
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Fig. 2.11 Typical dispersion diagram, direct lattice, reciprocal lattice and irreducible 

Brillouin zone. 

2.9 Conclusions 

Efficient modelling techniques for producing the plane wave response and the 

dispersion diagram of metamaterials have been presented in this chapter. The method 

is based on solving the mixed potential integral equation using method of moments, 

RWG basis function is applied in modelling of the arbitrary-shaped array elements. 

Periodic Green's function is used for the periodic features of metamaterials. An 

impedance matrix interpolation technique is applied in order to significantly 

accelerate the computations, especially when a large number of basis functions are 

required due to the complex geometry of the array elements. Finally the visualisation 

of the results using surface currents, transmission/reflection coefficients and 

dispersion diagrams is described. 
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3. Analysis and Design of EBG and AMC Surfaces 

3.1 Introduction 

Using the efficient modelling technique presented in chapter 2, electromagnetic 

band-gap (EBG) structures and artificial magnetic conductor (AMC) surfaces are 

analysed and designed in this chapter. In recent years, the EBG property of metallic 

arrays, whereby the surface waves are suppressed by the emergence of the band gap 

has been studied [I]-[10]. Metallic arrays printed on grounded dielectric substrates 

have also been presented as AMC surfaces that exhibit zero-phase-shift reflections of 

incident plane waves [1l]-[14]. Because of the requirement for small microwave 

components in integrated designs and the trend of multiple frequency bands in 

modern wireless communication systems, miniaturised and multiband metamaterials 

have drawn the attention of recent research effort. EBG and AMC surfaces based on 
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tripole arrays are presented in the following sections and novel designs are studied 
that achieve miniaturisation and multiband performance. In the analysis, large 
impedance matrices are built in order to derive accurate results for these complex 
element geometries. Impedance matrix interpolation is used to accelerate the 

computations that produce the plane-wave responses as well as the dispersion 
diagrams that characterise surface-wave propagation along the arrays. The accuracy of 
the results for different interpolation step values are compared and discussed. 

3.2 Fractal EBG and AMC Surfaces 

There are two different methods to achieve miniaturisation of EBG and AMC surfaces. 

As was mentioned in chapter 1, the elements of the metamaterial arrays act 

approximately as half-wavelength resonators for the incident electromagnetic waves. 

The first method is achieving more electrical length packed in fixed available space of 

the unit cell in order to miniaturise the resonant elements. Alternatively, 

miniaturisation can also be achieved by close coupling of two or more arrays in a 

multi-layer configuration [15]. Compared with the first method, closely coupled 

structures could give a better miniaturisation ratio. Details of the closely coupled 

structures are not discussed in this thesis. 

Fractal EBG arrays are studied here to with the aim to miniaturise the unit cell and to 

produce multiband responses. Several fractal geometries may exist. Here we study the 

fractal EBG array shown in Fig. 3.1. It is comprised of tripole-based fractal elements 

that emerge after multiple-order loading of single tripole elements [16]. The lengths of 

the main arms and the branches are 5mm, 2.5mm, 1.25mm and 0.625mm respectively. 

The width of all the arms is 0.1mm. The elements are placed on a hexagonal lattice 

with periodicity 10mm. 
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Fig. 3.1 Section of fractal EBG array and enlarged view of a section of the fractal 

element with basis functions. 

3.3 Ungrounded Fractal EBG Surfaces 

To study the characteristics of the fractal metamaterials, ungrounded fractal EBG 

surfaces are first analysed. These surfaces are tripole based arrays over a dielectric 

substrate with Cr = 2.2 and thickness 1.13 mm as is shown in Fig. 3.2. 

E0 
/"' 0 

E. 
1 1U. 1 

Fig. 3.2 Array with ungrounded dielectric substrate. 
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3.3.1 Plane-wave Response 

Following the formulation of chapter 2, the matrix equation (2.13) is derived. RWG 
basis functions are used to model the fractal elements with 21 by 21 Floquet modes. 
An enlarged view of a section of the fractal element is depicted in Fig. 3.1 showing 
the triangular facets used to model the induced current. The elements of the Z matrix 

are calculated for a range of frequencies. As an example the values of a random Zj, 

element are shown in Fig. 3.3. It is evident that the Z matrix element values, both real 

and imaginary, vary smoothly and regularly with frequency. This allows for the 
implementation of the interpolation technique described in section 2.6. 

The interpolation scheme is employed to compute the fractal EBG array response 

under plane wave incidence. We consider a dielectric substrate for the array with 

Sr = 2.2 and thickness 1.13 mm. The Z matrix is calculated only at three frequency 

points at 5,10 and 15GHz, and the remaining matrix values are interpolated using 

equations (2.50) and (2.51) for the whole frequency range. 

In order to show how the miniaturised and multiband features are achieved, we start 

the study with the plane-wave response of the original tripole array, where the fractal 

tripole array of Fig. 3.1 is based upon. The tripole element, as shown in Fig. 3.4, has 

the same size with the main arms of the fractal array element, the length and the width 

of which are 5 mm and 0.1 mm respectively. Following that, the first-, the second- and 

the third-order branches with the lengths of 2.5mm, 1.25mm and 0.625mm are added 

into the geometry step by step (Fig. 3.5 - Fig. 3.7). 
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The efficient modelling technique used here allows for fast calculation and 
investigation of the array plane-wave responses. For example, in the analysis of the 
two-order-fractal array in Fig. 3.6,84 basis functions and 41 by 41 Floquet modes are 
applied. To produce a smooth response and identify the resonance-stopband between 
6GHz to 9GHz, 30 points are required to be calculated without impedance 

interpolation, which takes about 90 minutes in a Dell workstation with 2GHz CPU 

and 1 GB memory. However, with interpolation, we need calculate only three points in 

584 seconds. Therefore, the computing is accelerated by about 10 times. 

The transmission coefficients of the original tripole array and the multi-order fractal 

arrays are presented in Fig. 3.4 - Fig. 3.7. It can be seen that when the higher-order 

branches are added into the tripole element, the fractal arrays exhibit a floating of the 

first-order resonant point from about 13GHz to the lower frequencies of 9GHz, 8GHz 

and 6GHz. The resonant frequency of the three-order-fractal tripole array is at 

approximately half the frequency of the simple tripole resonance. Moreover, with the 

increase of the branch orders, additional resonances are obtained at higher frequencies 

within the interested frequency range between 0 to 20GHz, yielding multiband 

responses. The small circles in Fig. 3.7 are results calculated without interpolation as 

a comparison. 

According to the transmission coefficients in Fig. 3.4 - Fig 3.7, surface current 

distributions on the elements are plotted in Fig. 3.8 - Fig. 3.14 to show how the 

elements work at their resonant frequency points. The tripole and the one-order-fractal 

elements in Fig. 3.8 and Fig. 3.9 act as the half-wavelength resonators introduced in 

chapter 1. Because the branches increase the electrical length of the fractal element, 

the one-order-fractal array makes the resonant frequency point move to a lower 

frequency at 9GHz while the original tripole array works at 13GHz. Current 
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distributions on the element of the two-order-fractal array are given out in Fig. 3.10 

and Fig. 3.11. It is found that the first-order resonance is mainly contributed by the 

main arms while the second-order resonance owes to the first-order branches. 

Similarly with the three-order-fractal array element in Fig. 3.12 - Fig. 3.14, the main 

arms, first-order branches and second-order branches generate the first- to the 

third-order resonances respectively. 

min 

Iý 
i 

Fig. 3.8 Current distribution on the element of tripole array at 13GHz. 
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Fig. 3.9 Current distribution on the element of one-order-fractal array at 9GHz. 

ý, 

min 

E 

Fig. 3.10 Current distribution on the element of two-order-fractal array at 8GHz. 
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Fig. 3.11 Current distribution on the element of two-order-fractal array at 16 GHz. 
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E 

Fig. 3.12 Current distribution on the element of three-order-fractal array at 6GHz. 
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Fig. 3.13 Current distribution on the element of three-order-fractal array at 13GHz. 
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E 

Fig. 3.14 Current distribution on the element of three-order-fractal array at 17GHz. 
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3.3.2 Dispersion Characteristics 

To study the response of the structures to surface wave incidence, the dispersion 

characteristics of the three-order-fractal array in Fig. 3.1 for its two-dimensional plane 

of periodicity can be calculated by solving the homogeneous version of MoM 

equation (2.58). The excitation matrix V in (2.13) is set to zero and the values of 

frequency, f, and propagation constants 83x and 6y that satisfy the equation are 

identified. For the set of homogeneous linear equations expressed in (2.58) to have 

non-trivial solutions, the determinant of the impedance matrix Z must be zero. The 

pairs off and ß values (real) for which the determinant becomes zero correspond to 

propagating modes. 

As mentioned in section 2.7, conventional method finds the determinant minima by 

scanning the range of ß for each selected frequency. However, for the flat part of 

the dispersion curve, as is shown in Fig. 3.15, very small frequency step (fZ - f, 

has to be chosen to find the corresponding ß1 and X32. It is very difficult to choose 

the proper frequency steps when the propagation modes are hard to be predicted, 

which makes the calculation lack of efficiency. Moreover, when the propagation 

bands are narrow, modes might be missed by choosing large frequency steps. 

Studying the impedance matrix of the fractal array with surface-wave excitation (B 

to be 90°), smooth variation of Zj, versus frequency is also derived similar to that 

with plane-wave excitation. This makes it possible to apply the impedance 

interpolation in creating the dispersion diagrams as well as the plane-wave responses. 

As is indicated in Fig. 3.15, for a selected 80, the homogeneous version of MoM 
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equation is solved at just a few frequency points. The impedance matrices are then 
interpolated with very small frequency steps in the frequency range. 

The algorithm is presented in steps as the follows. 

1. Decide the frequency range we are working with (i. e. 0-10GHz). 

2. Calculate three frequency points (fl, f2, f3) of Z matrix. 

3. Apply the interpolation functions to these three points to derive Z(f). 

4. Calculate the determinants of Z(/) to find the minima. 

5. Roughly locate the modes. 

6. Repeat 1-5 around each model frequency. Three new points are chosen around 

each model frequency. 

The variation of Zj, versus frequency for the fractal element is plotted in Fig. 3.16. 

An interesting characteristic, different to that of the plane-wave excitation case, is that 

both variations of real part and imaginary part of Zj., versus frequency have the 

inverse function form. Therefore, both parts of Zj, are interpolated using the 

inversion functions as 

R(f) = AR If +B Rf + CR (3.1) 

I(f)=A'! f+B'f+C' (3.2) 

where R(f) and I (f) are for real part and imaginary part of the impedance matrix 

elements respectively 
(z, (f) = Rj1(f) +j" Iii (f )). 

63 



AR 
_ 

ff2f3(Re[Z; 

r(J1)](f2 -f3)+Re[Zj; 
(f2)](f3 

-f)+Re[Zi; 
(f3)](J1 

- 
f2)) 

J` f2(f2 
-f3)+f2 

(f3 
-f)+f32( Jý -f2) 

(3.3) 

Re[Zj1(. f, )]-Re[Z,, (f2)]-AR(l/. f, -1/f2) BR =f 
. 
%z 

(3.4) 

CR = Re[Zj; (fl)] - 
AR If, 

- 
BRf (3.5) 

A1_ 
J1f2J3(Im[Zj1(Jl)](f2 -f3)+Im[Zji 

(f2)](f3 
-Jj)+Im[Zji(f3)](Jl -f2)) 

J .. - fl) {' (A 
-A)+A 

(A 
-+f3ýJ1 -f2) J12 

2 

(3.6) 

BI -'MLZ 
ji (AA -'M[Zji (f2)1- A; i (1 / f, -11 f2) (3.7) 

CI = lmLZji (f )l - A; i f-B; if, 
(3.8) 

64 



Ü 

C 
4) 

t3` 
N 
U- 

f2 

f1 

Iß, Iß2 ßo 

N 
O 

CU 

N 
4) 

0 

A, 

0 

f0 I 

Determinant of Z 

ß 

V 
ß2 ß 
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Tripole and certain tripole-like elements, such as the fractal element studied here, 

exhibit symmetrical two-dimensional band gap properties when arranged on a 
hexagonal lattice [3]. This is because the symmetry of the elements in conjunction to 
the lattice yields an irreducible Brillouin zone on the reciprocal lattice (shown as inset 

in Fig. 3.18). The grey area has an aperture angle of 30°. The values of 8 and x 
8y 

are changed accordingly in order to scan the I'-X, X-M, and M-I' directions of the 
Brillouin zone. The interpolation technique has been applied in order to accelerate the 

frequency sweeps for each pair of /3x and X31, values. Unlike the plane wave 

response case, large interpolation steps have not produced successful results. The 

plots of the determinant with frequency were smooth and it was not possible to 

identify any minima. However, when smaller interpolation steps were used, the 

minima started appearing as sharp notches, similar to the way they appear on the plots 

when interpolation is not used. This observation paved the way for a thorough study 

on the accuracy of the position of the minima as a function of the interpolation step. 

The full range of frequencies was broken down to smaller sections where 

interpolation was applied. An error value defined as the difference between the 

spectral positions of a minimum with and without interpolation has been calculated 

for different interpolation steps. Fig. 3.17 shows the percentage error value in 

calculated roots of the determinant of the Z-matrix due to the application of the 

interpolation technique with different interpolation steps. When the step is 2 GHz the 

error varies with frequency between 2.5-6%. For an interpolation step equal to 1 GHz 

the error becomes substantially smaller, less than 1% which corresponds to a 

relatively good accuracy of the final result. Further reduction of the step to 0.5GHz 

improves the accuracy slightly. 

It is worth noting that the frequency step applied in the dispersion analysis is much 

smaller than that in the plane wave analysis, because there is a larger sensitivity of the 
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homogeneous equation to interpolation errors. This can be explained as follows: 
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Fig. 3.17 Error in calculated roots of the determinant of the Z-matrix due to the 

application of the interpolation technique with different interpolation steps. 

Consider that the error for each element in an N-by-N impedance matrix is 

e __ 
Z; n; (f)- Zj, 1 

(f) 
, (0< e« 1) (3.9) (f) 

Z1, l 
(f 

When analysing the transmission response, we solve the matrix equation [Z] [I] = [V 
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as PL = [z] 'N [VIN 
, Solving the homogeneous equation [z] [I ]_ [0] for the 

dispersion diagram, we calculate the determinant of the Z matrix as 

N 

C11 1= 
(-1)1+' M1 (3.11) 

where Mj 
; is the minor of the Z matrix. 

An estimate error of the determinant in this case is 

E=N(1-(1-e)N) Nee (3.12) 

According to the analysis above, when the number of the basis function N is large, 

errors in the dispersion diagram will be much greater than that in the transmission 

response if we choose the same interpolation step. 

Based on the above study an interpolation step of 1 GHz has been used to produce the 

dispersion diagram of the fractal EBG array as shown in Fig. 3.18. The first few TE 

propagating modes are shown. TM modes always lie on the light line for ungrounded 

planar arrays. For comparison purposes, some random points derived without 

applying interpolation are also shown in the same graph. A very good agreement is 

observed between the results with and without interpolation. The fractal array exhibits 

multiple band gaps. Compared to the simple tripole-element array response, a 

significant reduction of the first band gap frequency has been achieved. This property 

is advantageous for the implementation of miniaturized and multiband planar EBG 

structures. 
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3.4 Grounded Fractal Surfaces 

A grounded structure model is shown in Fig. 3.19. The dielectric layer in this model is 

sandwiched between the array and the ground plane. This type of structure can work 

as an EBG surface, an AMC surface or both of them. Recently several applications of 
EBG and AMC surfaces (also called high impedance surfaces) have been proposed for 

the improved design of microwave components (e. g. various microstrip devices). On 

this section both properties are studied for the grounded fractal surface. 

E0 PO 

Fig. 3.19 Array with grounded dielectric substrate. 

3.4.1 Grounded Fractal EBG Surfaces 

Similar to the ungrounded EBG surfaces, grounded EBG surfaces can show band-gap 

features with respect to surface waves. The dispersion diagram of a grounded EBG 

surface with the array of Fig. 3.1 is presented in Fig. 3.20. The dielectric constant and 

the thickness are the same with those of the ungrounded structures studied above. 

Compared with the dispersion diagram of ungrounded fractal EBG structure in Fig. 18, 

it can be found that that band-gaps move to higher frequencies of about 9GHz and 

15GHz when the ground plane is applied. 
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3.4.2 Grounded Fractal AMC Surfaces 

Recently, Artificial Magnetic Conductor Surfaces have been used in various antenna 

designs [121-[14]. Fig. 3.21 - Fig. 3.24 present the AMC responses of tripole and 

fractal tripole arrays for normal plane wave incidence. These arrays are placed over a 

grounded dielectric substrate with Er = 2.2 and the thickness of 1.13 mm. Sizes and 

two-dimensional layouts of the arrays are the same with those of the EBG arrays in 

the previous section. Similar with that of the fractal EBG deigns, miniaturized and 

multiband features are achieved by introducing the multi-order fractal branches into 

the tripole elements according to Fig. 3.21 - Fig. 3.24. The AMC working bandwidths 

are about 1.5 GHz around the central AMC frequencies. Approximately 45% 

reduction of the central AMC frequency is observed comparing the three-order-fractal 

array with the original tripole array. 
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Fig. 3.21 Reflection phase of the original tripole array. 
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Fig. 3.23 Reflection phase of the two-order-fractal tripole array. 
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3.4.3 Experimental Verification 

The measurements of tripole and two-order-fractal tripole arrays are made using a pair 

of broadband horns. The measured EBG and AMC responses for the tripole and the 

two-order-fractal tripole arrays are shown in Fig. 3.25 and Fig. 3.26. The accordance 

of the EBG locations can be observed comparing with the results in Fig. 3.4, Fig. 3.6 

and Fig. 3.20. Computed AMC responses are also included in Fig. 3.26 as a 

comparison, which show a good agreement with those derived in the measurements. 

Frequency, GHz 
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Fig. 3.25 Measured EBG performance of tripole and fractal tripole arrays (in FX 

direction). 
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Fig. 3.26 Computed and measured AMC responses for two-order-fractal tripole 

arrays. 

3.5 Other Types of Miniaturised and Multiband EBG 

Surfaces 

As shown in Fig. 3.27, two extra mechanisms for the miniaturisation of the resonant 

elements are considered, namely periodic-loaded tripoles and convoluted tripoles. 

They are arranged on triangular unit cells of the same size as above. The transmission 

responses of these arrays are presented in Fig. 3.28 and Fig. 3.29. First order resonant 

frequencies of these designs are found to be lower than that of the tripole array. This 

indicates that these arrays will have smaller size unit cells if they are working on the 

frequency point where the tripole array works. Moreover, the multiband resonances of 

these arrays are also observed. 

computation 4 

0 measurement 
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Fig. 3.27 Geometries of miniaturised elements. 

0 

-10 

m 
-)o r 

C 
O 

.N 
N 

N 

-30 

Convoluted Tripole 

-40 

_; 
o L 

10 
Frequency, GHz 

Fig. 3.28 Transmission coefficient of the periodic-loaded tripole array. 
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Fig. 3.29 Transmission coefficient of the convoluted tripole array. 

3.6 Conclusions 

The modelling technique discussed in chapter 2 has been applied in this chapter for 

the fast and accurate design of miniaturised and multiband EBG and AMC surfaces. 

Three tripole-based examples namely periodic-loaded tripole, fractal tripole and 

convoluted tripole arrays are introduced to meet the requirement of miniaturisation 

and multi-resonance. Fractal tripole arrays have been studied in detail and the 

accuracy of the numerical technique is investigated with regards to plane wave as well 

as surface wave dispersion characterisation. A faster and more effective algorithm to 

derive the dispersion diagram has been proposed in this chapter, which locates the 

determinant minima by scanning the frequency range instead of scanning the 

propagation constant (fi) range. It has been found that smaller interpolation steps are 
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required for the accurate calculation of the dispersion diagrams than those required in 

the plane wave responses. Furthermore, surface currents have been presented and an 

explanation was given to how miniaturisation can be achieved and how the higher 

order resonances are generated by adding higher order fractal branches into the 

original tripole array. Plane-wave responses, surface currents and dispersion diagrams 

are presented and the computational predictions are verified by comparing with 

experimental results. 
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4. Analysis and Design of Left-Handed Materials 

4.1 Introduction 

There has been increased interest in the past few years on composite media 

(metamaterials) that support left-handed (LH) propagation. They were first theorized 

by Veselago as double negative (DNG) materials for their simultaneously negative 

permittivity (e) and permeability (p) [1]. The term "left-handed" describes the fact 

that the vectors E, H and k form a left-handed triplet, instead of a right-handed triplet, 

as is the case in conventional right-handed (RH) media (Fig. 4.1). Thus, in LH media 

the Poynting vector ExH (that points at the direction of energy propagation and the 

group velocity) is anti-parallel to the wave vector k (that points at the direction of 

phase velocity). 
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Fig. 4.1 Wave properties. (a) Right-handed media. (b) Left-handed media. 

As a result, unique electromagnetic properties, such as the reversal of Snell's Law and 

the Doppler Effect, are anticipated with the left-handed materials. The negative 

refraction and the sub-wavelength focusing phenomenon can be observed inside this 

type of material as shown in Fig. 4.2 and Fig. 4.3. The lines indicate the directions 

along which the waves propagate. 
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Fig. 4.2 Wave refraction. (a) Right-handed media. (b) Left-handed media. 
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(a) 

(b) 

Fig. 4.3 Sub-wavelength focusing of waves. (a) Right-handed media. (b) Left-handed 

media. 
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Recently, artificial LH media have been synthesized and their unusual properties of 

negative refraction and sub-wavelength focusing have been experimentally 

demonstrated [2]-[14]. These LH materials possess a negative effective refractive 

index n (NRI) related to the phase velocity according to 

U) C 
Vp =-_- 

ý3 n 
(4.1) 

where vp is the phase velocity, co is the frequency and ß is the propagation constant. 

For NRI metamaterials, the dispersion relation of the first order mode has negative 

gradient. This indicates that the phase velocity (vP = w//ß) and the group velocity 

(Vg = aw i aß) are anti-parallel. 

4.2 Transmission Line Concept 

A brief outline of the dual transmission line (TL) concept for LH media is given here 

in order to explain its relation to the modal E and H fields that are studied in chapter 

4.3. As has been shown recently, a periodic structure with a unit cell that can be 

described by the equivalent circuit of Fig. 4.4(c) exhibits LH properties, i. e. 

antiparallel group and phase velocities, and negative index of refraction [4]-[6]. The 

LH nature is provided by the series capacitors and the shunt inductor, as opposed to 

the series inductors and the shunt capacitor of the conventional RH-TL in Fig. 4.4(b). 
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Fig. 4.4 Equivalent modal circuits. (a) General TL. (b) RH-TL. (c) LH-TL. 
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The propagation constant of a general TL in Fig. 4.4(a) is given by 

7 =a+ j, 3= ZY (4.2) 

where Z and Y are the impedance and admittance per unit cell. In the RH-TL case of 
Fig. 4.4(b) 

Z= jWLR (4.3) 

Y=j wCR (4.4) 

and in the LH-TL case of Fig. 4.4(c) 

Z=- 
1 

(4.5) 
J WCt 

Y=-1 (4.6) 
J WLL 

In the frequency range where ß is purely real, propagation occurs since y= jß . 

Therefore, the dispersion relation for a homogeneous TL is 

-ZY =w LRCR RH-TL 

19 _ 
(4.7) 

- -Zy =-1 LH-TL 
Co LLCL 
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CO 

(4.8) 

-w2 LLCM , LH-TL 

and 

LR CR 

RH-TL 

C 
n=-= (4.9) 

VP 
1 

LH-TL 
0) 

Z JLL CL PO--0 

Based on this approach, it is instructive to study the distribution of the electric and 

magnetic field in the unit cell taking into account the requirement for shunt inductance 

and series capacitance. Shunt inductance is related to the magnetic field that would be 

produced by an ideal shunt inductor, i. e. the z-component of the magnetic field (HZ) 
. 

Similarly, a series capacitor would produce electric field along the y-axis (assuming 

that E-field is parallel to the y-axis and therefore "voltage is applied" along y). The 

y-component of the electric field (Ej is therefore a measure of the equivalent series 

capacitance. The distributions of HZ and E}, for the first resonant mode of the 

proposed arrays are presented and discussed in the following section. 
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4.3 Planar Left-Handed Materials 

Planar distributed LH structures, which are compatible with photolithographic 

techniques, have been presented in [4]-[6]. The distributed planar NRI structures 

proposed thus far require either grounding vias or elements embedded vertically in a 

planar grounded dielectric substrate, which can be applied in microwave circuit and 

antenna designs [15]-[26]. In this section, novel planar left-handed metamaterials are 

proposed. Variations of the split rectangular loop element printed on grounded 

dielectric substrate are demonstrated to exhibit left-handed propagation properties. In 

order to explain their performance, the modal field distribution of the unit cell is 

studied in conjunction with the emerging dispersion relation. In conducting this study, 

emphasis is given to the distributions of the E and H fields and how they satisfy the 

requirement of LH media for shunt inductance and series capacitance. The proposed 

structures are simple to fabricate and are scalable to higher frequencies [27]. Similar 

element geometry for LH metamaterials has been introduced by Erentok et. al. [28]. 

However, the proposed structure in [28] is stratified volumetric arrays for plane-wave 

applications, and our structures given here are planar structures working with surface 

waves. 

The techniques described in chapter 2 are evaluated and applied in order to model the 

dispersion characteristics and modal fields of planar left-handed metamaterials. An 

initial investigation has shown that moving from the square split loop element to the 

rectangular split loop the first resonant mode changes from right-handed to 

left-handed. Therefore the study is focused on a rectangular unit cell with an edge 

ratio of 2: 1. The investigation presented here includes a closed rectangular loop, a 

split rectangular loop and two variations of the split loop that increase magnetic and 

electric effects according to the dual transmission line concept for left-handed media. 
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The arrays are placed on grounded dielectric substrate. The dispersion properties of all 
four planar arrays are presented. The dispersion results presented have been verified 
with commercial software Ansoft HFSS [29] throughout this section. Finally, an 
isotropic design is also presented. 

4.3.1 Dispersion Characteristics 

The unit cells of the arrays discussed hereafter are shown in Fig. 4.5. Fig. 4.5 shows 

the unit element of (b) a split rectangular loop, (c) a capacitive-loaded split 

rectangular loop and (d) a spiral-loaded rectangular loop arrays. For completeness, the 

closed rectangular loop (Fig. 4.5(a)) is also discussed. The unit cell is kept constant 

throughout (3mmx 6mm). All metallic line widths are 0.2mm and the gaps in the split 

loop variations are s=0.2mm, t=0.4mm, in order to be compatible with conventional 

photolithographic techniques. The element dimensions are L=5.8mm and W=2.8mm. 

The grounded dielectric substrate has a dielectric constant of 2.2 and thickness 

1.13mm. 

In order to validate the application of the interpolation technique, the elements of the 

Z matrix have been calculated for a range of frequency points and element geometries. 

As an example the values of a random Zj1 element are shown in Fig. 4.6 for the 

array with unit element depicted in Fig. 4.5(d). It is evident that the Z matrix element 

values, both real and imaginary, vary smoothly and regularly with frequency. This 

allows for the implementation of the interpolation technique described in chapter 2. 

Similar with what has been discussed in chapter 3, both variations of real part and 

imaginary part of Zj; versus frequency have the inversion function form. Therefore, 

both parts of Zj1 are interpolated using the inversion functions as 
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R(f)=ARIf+BRf+CR (4.10) 

I(f)=A'/f+B'f+C'. (4.11) 
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Fig. 4.5 Unit cells of the (a) rectangular loop, (b) split loop, (c) loaded loop and (d) 

spiral loop (e) reciprocal lattice and irreducible Brillouin zone. 
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The simulations showed that large interpolation steps have not produced successful 

results for the dispersion characterisation of metallodielectric arrays. We, thus, 

performed a detailed study of the effect of the interpolation step on the accuracy of the 
dispersion results. The range of frequencies was broken down to smaller sections 

where interpolation was applied. An error value defined as the difference between the 

spectral positions of a minimum of Z with and without interpolation has been 

calculated for different interpolation steps. Initially we have used the quadratic (2.78) 

and inverse (2.79) functions for the real and imaginary parts of the Z-matrix elements 

respectively (referred to as Qd). Subsequently, we used (4.10) and (4.11) as the 

interpolation function for both real and imaginary parts (referred to as Inv). Fig. 4.7 

shows the percentage error of the phase constant for different frequencies and 

interpolation steps for the element depicted in Fig. 4.5(d). It is evident that the inverse 

function approximates better both real and imaginary parts. For an interpolation step 

equal to 1 GHz the error becomes substantially small, well below 1%, which 

corresponds to a relatively good accuracy of the final result. Based on this study, an 

interpolation step of 1 GHz and only the inverse interpolation function has been used 

to produce the dispersion diagrams. For higher values of dielectric constant, 

corresponding to typical commercially available PCB substrates, similar accuracy can 

be achieved with the same interpolation step. 

In order to demonstrate the acceleration achieved by the proposed technique for 

band-gap characterisation, Fig. 4.8 shows a typical variation of the determinant of the 

impedance matrix with frequency. The zero of the determinant, which is the solution 

that we want to identify, corresponds to the sharp minimum at 4.31 GHz. As shown in 

the inset graph, in order to have 1% accuracy in determining this value, the step for 

producing a graph such as the one shown in Fig. 4.8 would require about 100 

frequency points in the range of 4.2GHz to 4.4GHz. Employing the interpolation 
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technique, we can produce the same number of points with the computational cost of 

only 3 frequency points. The time required for each matrix generation using 

interpolation together with the calculation of the determinant is negligible compared 

to the time required to generate the matrix without interpolation. Hence the 

interpolation technique accelerates the computations by about 30 times. 

Following the evaluation of the interpolation scheme, the dispersion characteristics of 

the elements depicted in Fig. 4.5 can now be calculated by locating the zeros of the 

impedance matrix Z in the fl -f space, as discussed in the previous section. By varying 

ßx and ß, along the boundary of the irreducible Brillouin zone, a number of 

frequency sweeps are carried out. All the corresponding determinants of Z are 

calculated and plotted versus frequency for different values of 83X and ß1, . From the 

determinant plots, zeros are identified as sharp minima. The dispersion relation of the 

first resonant mode of these arrays is shown in Fig. 4.9, where the light line is also 

shown. 

From the dispersion relation, we can readily calculate the equivalent refractive index n 

according to 

n=c"ß 
0) 

(4.12) 

where c is the speed of light and co/ß the phase velocity of the mode. Fig. 4.10 shows 

the refractive index for the loaded split-loop and the spiral split-loop as calculated 

from the dispersion relation of Fig. 4.9. 
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4.3.2 Dispersion Properties and Field Distributions 

Following Fig. 4.9 one can observe that as we move from the rectangular loop to the 

spiral-loaded loop, the frequency of the first resonant mode drops significantly. It is 

worth noting that there is an essential difference between the closed rectangular loop 

(Fig. 4.5(a)) and the variations of the split loop (Fig 4.5(b), (c), (d)). In the first case, 
the current flows co-directionally along the two longer parallel sides, with zeros at the 

centres of the short sides. However in all the variations of the split loop, the current 
flows co-directionally along the metalisation of the elements from end to end, 

resulting in longer electrical length. This in turn results in lower frequency of the first 

resonant mode. Among the elements of Fig 4.5(b) - (d), we can attribute the reduction 

of the resonant frequency to the increase of the resonant length of the element. 
Alternatively, in an equivalent circuit model of the structure, the capacitance between 

end-loaded elements and the inductance (in the case of the spiral) increase and hence 

the resonant frequency decreases. The spiral element array has a unit cell of about 

A124 in the I'X direction, where k is the centre wavelength of the first resonant mode. 

This allows an effective medium description of the structure. 

The gradient of the f-ß curve (Fig. 4.9) changes from positive in the case of Fig. 

4.5(a) to negative in all the remaining cases of Fig. 4.5. As discussed in section 4.1, 

this indicates a left-handed (LH) medium when homogeneousness is permitted . 
The 

first resonant mode corresponds to electric field polarisation parallel to the larger 

dimension of the element and aligned with the gap in the split loop variations. 

Therefore, in the I, X direction the first resonant mode is a predominantly TE and in 

the I'Y direction the first mode is predominantly TM. In the XM and MY sections of 

the Brillouin contour the modes are hybrid. The bandwidth of the LH mode can be 

determined from the dispersion diagram. It is worth noting however that as we move 
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away from the light line towards increasing propagation constant and decreasing 

frequency, the effective refractive index increases significantly. This makes it harder 

to couple energy in the negative mode from free space (or a RH medium with small 

value of n). 

Following the dual transmission line concept for LH media, it is instructive to study 

the distribution of the electric and magnetic field in the unit cell taking into account 

the requirement for shunt inductance and series capacitance. Shunt inductance is 

related to the magnetic field that would be produced by an ideal shunt inductor, i. e. 

the z-component of the magnetic field (HZ) 
. Similarly, a series capacitor would 

produce electric field along the y-axis (E-field is parallel to the y-axis and therefore 

"voltage is applied" along y). The y-component of the electric field (Ex) is therefore 

a measure of the equivalent series capacitance. The distributions of HZ and E, for 

the first resonant mode of the arrays studied in this section are shown in Fig. 4.11. 

As mentioned earlier, the current in the closed rectangular loop flow in parallel on the 

two long edges with a zero at the middle of each shorter edge. Therefore opposite 

charges accumulate on closely spaced short sides of successive elements, resulting in 

an equivalent capacitance between the edges of successive elements (Fig. 4.11(a)). 

The currents on the two long edges create magnetic field components along the z axis, 

which corresponds to shunt inductance (Fig. 4.11(e)). However, both series 

capacitance and shunt inductance are weak and the structure supports a RH mode. 

The situation is different in the case of the split loop and its variations. Additional 

capacitance emerges in the gap, where opposite charges gather on either side (Fig. 

4.11(b)). Furthermore, the current now circulates along the open loop resulting in 

stronger magnetic fields that also appear along the short edges (Fig. 4.11(f)). The 
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structure at the first resonant mode is therefore LH for the TE mode propagating in the 

I'X direction. However, it is still positive for the TM modes that propagate in the FY. 

This is attributed to the fact that the polarisation of the electric and magnetic field 

components of TM modes result in a weaker excitation of currents on the loops, as 
has been readily observed in corresponding field plots obtained from our simulations. 

Further enhancement of the series capacitance is obtained for the loaded split loop 

(Fig. 4.5(c)). In this topology we have introduced larger re-entrant faces where 

opposite charges accumulate and the capacitance values are increased. This is indeed 

confirmed by the field distribution of Fig. 4.11(c). Furthermore, current now also 

flows along the re-entering loads, with results in further increase of HZ (Fig. 

4.11(g)). The structure is more miniature and supports LH propagation in both 

directions. 

In order to further enhance the LH effect, we extend the capacitive loads to spirals. 

The flow of current on the spirals acts as a planar inductor and thus increases the 

magnetic field H, 
-. 

This is indeed confirmed in Fig. 4.11(h). In addition, stronger 

electric fields in the gap and hence higher series capacitance are also obtained (Fig. 

4.11(d)). The structure supports LH propagation throughout the Brillouin zone, and 

the bandwidth of the LH mode is now wider as compared to the previous geometries. 
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of the loop, split-loop, loaded split-loop, spiral split-loop element arrays at the first 

resonant mode in the ['X. 

4.3.3 Isotropic Planar Left-Handed Materials 

Extending the element geometry in Fig. 4.5(d), a more isotropic design of 

single-spiral element is studied as shown in Fig. 4.12. The element is laid in a 

2.2mmx 2.2mm square unit cell. All metallic line widths and gaps are 0.2mm. The 

grounded dielectric substrate has a dielectric constant of 2.2 and thickness 1.13mm, 

which is the same with the previous designs. According to the LH-TL model in Fig. 

4.4(b), the series capacitors correspond here to the gaps between two adjacent lines 

and elements instead of the gaps inside the elements of Fig. 4.5(d). The dispersion 

diagram of the structure and the effective refractive index are plotted in Fig. 4.13 and 

Fig. 4.14. The isotropy is demonstrated by comparing the refractive indices along fX 

and FY directions in Fig. 4.14. The left-handed mode which is at around 10GHz is 

much higher than that of the double-spiral design in Fig. 4.5(d) at 4GHz 

approximately. 
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Fig. 4.12 Unit cell of isotropic spiral element. 
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Fig. 4.14 Refractive index of the spiral element in Fig. 4.12. 

4.4 Validation of Planar LH Propagation 

4.4.1 Finite Structure of Left-Handed Materials 

10.6 

In order to validate LH propagation in the proposed structure we carried out full wave 

FEM simulations (HFSS) of finite structures. To ease of the computational effort 

required, the simulations were made for the loaded split loop rather than the spiral 

split-loop. One-dimensional arrays with 4,5 and 6 elements have been simulated 

respectively. As shown in Fig. 4.15, the elements are aligned in a single column along 

the FX direction, where LH propagation occurs for the first TE mode. Perfect electric 

conductor (PEC) boundary condition has been imposed on either side in order to 
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ensure that TE polarization is maintained. The structure is fed with a waveguide mode 
of the same polarisation and the transmission coefficients (magnitude and phase) are 
obtained for the three arrays. The electric field distribution on the ports is shown in 
Fig. 4.16. 
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Fig. 4.15 Finite structure model in HFSS. 
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4.4.2 Software Simulation 

Fig. 4.18 shows the magnitude of the transmission coefficient for the three arrays. The 

pass-band is identified as the LH mode and extends between 4.2GHz to 5.8GHz. To 

ensure the propagation modes are contributed by the arrays, the model in Fig. 4.15 but 

without any metal elements is simulated. No supported propagation wave can be 

found according to the transmission response in Fig. 4.17. The lower edge of the 

pass-band in Fig. 4.18 is in good agreement with our prediction (Fig. 4.9). The upper 

edge is higher than what presented in Fig. 4.9 due to the leaky part of the mode, which 

can carry energy but is not shown in the dispersion diagram. The pass-band shown in 

Fig. 4.18 is a very good indication of the existence of the predicted LH mode. 

In order to validate the LH properties of the mode, Fig. 4.19 shows the calculated 

phase of the transmission coefficient for the arrays with 4,5 and 6 elements. In 

general, the difference of the transmission phase between two transmission lines of 

lengths dl and d2 is [30] 

Q(Pw n(cy)( d2-d1) 
c 

(4.13) 

For d2>dl and RH media with positive refractive index (n>O) the difference in the 

transmission phase is negative. However in the case of LH medium (n<O) the phase 

difference is expected to be positive. The transmission phases in Fig. 4.19 are plotted 

with every complete cycle added to the total phase shift, so that an actual comparison 

of the phase is possible. In agreement to the predicted LH nature of the mode, it is 

observed that within the bandwidth of the LH mode the transmission phase of the 

6-element array is higher than that of the 5-element, which in turn is higher than that 
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of the 4-element. In the band-gap between the modes, where a standing wave is 

formed, these phases are all equal to zero. Then at higher frequencies the transmission 

phases interchange, corresponding to a positive second order mode that exists for this 

array. Note that the transmission phase of the finite structure is in very good 

agreement to the phase predicted from the refractive index (Fig. 4.10) using equation 

(4.13). 

n(w) =- 
c"0O 

ß(d2-d, ) 
(4.14) 

The comparison of the refractive index calculated from the dispersion diagram and the 

transmission phase is shown in Fig. 20. Fig. 4.18 and Fig. 4.19 are therefore a good 

verification of the LH nature of the first order mode of the presented arrays. 
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Fig. 4.17 HFSS simulation of the transmission magnitude of Fig. 4.15 without any 

array element. 
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4.5 Conclusions 

Based on the method presented in chapter 2, novel planar LH metamaterials have 

been designed. A study was carried out with regards to the effect of the interpolation 

step on the accuracy of the results. The dispersion diagrams of the proposed structures 

have been produced with an interpolation step of 1 GHz which resulted in a good 

accuracy. The method was validated by comparison with commercial software 

(HFSS). The refraction index of the structures has been derived. Pretty high values of 

refractive index can be obtained. A thorough investigation of the modal field 

distribution provided a detailed explanation of the LH properties of the structures 

based on the dual transmission line concept. A full-wave based validation of the 

left-handedness has been presented. The unit cell is as small as ? %124 which allows for 

an equivalent effective medium model. The structures are simple, compatible with 

low-cost fabrication techniques and scalable to higher frequencies. Compared with the 

previous LHM designs by other researchers, these structures can support horizon 

polarized TE waves other than TM waves in microstrip LHM and take the advantages 

of coplanar transmission lines in microwave integrated circuit designs. 
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5. Measurements of Planar Left-Handed Materials 

5.1 Introduction 

Novel planar left-handed materials have been introduced and validated by a full-wave 

software simulation in Chapter 4. The left-handed propagation has been theoretically 

proved. In order to confirm that the proposed structures support left-handed 

propagation in practice and thus verify that they are suitable to be used in practical 

microwave designs, experimental measurements are described in this chapter. The 

measurements are based on a microstrip transmission line feeding model, which is 

partly replaced by the planar left-handed materials. Full-wave 3D simulations (in 

HFSSTM) of the proposed topologies are carried out prior to the experimental testing. 

According to the dispersion diagram in Chapter 4.3.3, power can be delivered through 

these structures in the frequency ranges where the left-handed (first) and right-handed 
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(higher) modes exist. In the remaining frequency ranges, the structures show band-gap 

features as those obtained in general from discontinued microstrip lines. The 

difference between the propagation in the frequency ranges of left-handed mode and 

right-handed mode is the following: the phase velocity of the surface-wave through 

the planar materials is negative in the left-handed mode, and in the right-handed mode, 

the wave is a slow wave but with a positive phase velocity. This enables us to prove 

the left-handed propagations by measuring the phase difference between the two ports 

for different lengths of these structures, as has been described in chapter 4.4. 

5.2 Design of Left-Handed Materials Measurement 

5.2.1 Initial Design 

(a 

(b) 

Fig. 5.1 Planar LHM with discontinued microstrip transmission line. (a) Top view. (b) 

Side view. 
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A microstrip transmission line feeding method is used here to measure left-handed 

materials [1]-[3]. Based on this idea, the initial design of the planar left-handed 

material measurement is as shown in Fig. 5.1. The 5052 microstrip transmission line, 

with 3.5mm line-width and over a 1.13mm-thick grounded dielectric substrate (E=2.2), 
is partly replaced by the isotropic planar left-handed material introduced in Chapter 
4.3.3.. The frequency ranges of the S21 pass bands are expected to be corresponding 
with those of the propagation modes in the dispersion diagram in Fig. 4.13. Using a 
similar method to that of Chapter 4.4, the left-handed propagation can be 
differentiated with the right-handed propagations by comparing the S21 phases for 
different number of planar LHM unit cell insertions. 

5.2.2 Impedance Matching and Tuning 

Unexpected wave reflection between interfaces due to impedance mismatch, is an 

important consideration in the design of microwave components. In the design of Fig. 

5.1, since the characteristic impedance of the planar left-handed material is other than 

50Q, there will be a reflection occurring at the interface between the material and the 

5052 microstrip line. Little power could be delivered through the structure even at 

frequencies inside the range of propagation modes. In order to improve the quality of 

the transmission and maximum power delivery, impedance matching plays an 

important role in microwave designs. 

Given the dimension of the microstrip line, the characteristic impedance can be 

calculated as [4] 
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Fig. 5.2 Planar left-handed material with tapered microstrip transmission line. 
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Z° 1207r W/d>_1 
[W /d +1.393+0.6671n(W/d + 1.444] 

(5.1) 

where d is the substrate thickness, W is the conductor width, and the effective 

dielectric constant of the microstrip line is given approximately by 
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(5.2) 

Thus, the characteristic impedance of the microstrip transmission line can be changed 

by varying its line-width. The width of the microstrip line near the planar left-handed 

material should be changed in order to match the impedance. The tapered line method 

[4] can be applied to achieve this transformation as Fig. 5.2 shows. 

However, unlike that of the microstrip lines, the characteristic impedance of the planar 

left-handed material is difficult to be derived by calculation because of the irregular 

geometry of the elements. In order to choose the proper tapered microstrip line-width 

for the impedance matching, Ansoft HFSSTM and its Optimetrics" environment [5] are 

used to simulate the structures in Fig. 5.2 with different tapered microstrip 

line-widths. 
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Fig. 5.3 S-parameter with different tapered microstrip transmission line widths w. 
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The exciting frequency in the simulation is chosen at 9.6GHz, which is inside the 

range of the left-handed mode. The result of S-parameter with different tapered 

microstrip transmission line widths is shown in Fig. 5.3. The line width varies from 

0.2mm to 3mm. At width value of 1.3mm, there are simultaneously an S1l valley and 

an S21 peak. This is the proper line-width for impedance matching, because the return 
loss at this point is less than others. 

5.2.3 Left-Handed Propagation 

To verify the feasibility of the design in Fig. 5.2, simulations of the structures have 

been carried out in Ansoft HFSSTM. The excitations are set to be wave ports on both 

ends of the substrate boards. The electric field distribution of the wave ports used in 

the model are shown in Fig. 5.4. 

Fig. 5.5 shows the simulated S-parameters for two and three elements insertions. The 

first propagation mode at 9-l0GHz and the second propagation mode at 20-23GHz 

can be clearly observed from the graph, which has a good agreement with the 

dispersion diagram in Fig. 4.13. It is worth noting that there are losses in transmission 

in the lower frequency range of the left-handed mode as Fig. 5.5(b) shows. This 

corresponds to impedance mismatch effects that degrade the S21. Only a small 

frequency band exhibits a relatively good transmission response, due to the narrow 

bandwidth of the LH mode (Fig. 4.13). The ripples in the passband are attributed to 

standing wave effects produced by the mismatches. 
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Fig. 5.5 Simulated S-parameters for two and three elements. (a) From 5GHz to 

25GHz. (b) From 8.5GHz to 10.5GHz. 

122 



An animated plot of the electric field distribution inside the dielectric substrate for the 

three element design is also presented in Fig. 5.6. The excitation here is chosen to be 

9.65GHz, which is inside the frequency range of the first mode and also corresponds 

to the best S21 value. Port 1 and port 2 are set on the left and the right side of the 

board respectively. Port 1 is the excitation and surface waves travel from the left side 

to the right side as they are excited. Three graphs are shown in Fig. 5.6 which are time 

samples from a complete animation within one period. The large cyan clouds on the 

sides are wave peaks supported by the transmission line and the small clouds with red 

and yellow colours in the middle are wave peaks supported by the planar left-handed 

material. It can be found from the graphs that the wave peaks supported by the 

transmission line travel from left to right and the wave peaks supported by the planar 

left-handed material travel from right to left. Since the power flow goes from the left 

side to the right side, it is proved that the waves have a positive phase velocity 

through the transmission line and have a negative phase velocity over the planar 

left-handed material. 
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5.3 Experimental Measurement 

5.3.1 Measurement Setup 

In the fabrication of the structures, Taconic"' TLY Printed Circuit Board (PCB) is used, 

with a thickness of 1.13mm, relative permittivity of 2.2 and dielectric loss tangent of 

0.009. Two different boards with 2 and 3 left-handed material elements are made. The 

microstrip transmission lines and the planar left-handed materials are printed on the 

top layer of the boards which are grounded at the back. Photographs of the fabricated 

structures are shown in Fig. 5.7. The SMA connectors used here are RS Tab Contact 

End Launcher for 1.57mm PCB. The structures have been measured with the Anritsu 

Lightning"' 37000D Vector Network Analyser (Fig. 5.8), which is a high performance 

two-port vector network analyser for passive structures with a broadband frequency 

range up to 65GHz. Before measurements, the system is calibrated in the frequency 

range between 5GHz to 25GHz, where the first two propagation modes of the planar 

left-handed materials are expected. 

40 mm 

Fig. 5.7 Structures under measurement. 

125 



L-L- 

LLL 

Fig. 5.8 Anritsu Lightning TM 37000D Vector Network Analyser. 

5.3.2 Measurement Results 

Initially, the measurement uses structures with 2,3,4 elements and 15mm-long 

transmission lines. Magnitude and phase of S-parameters are shown in Fig. 5.9 - Fig. 

5.12. Unexpected modes appear at about 14GHz and 18GHz because of the existence 

of the connectors and the direct coupling between the two lines at these frequencies. 

To minimise these effects, the feeding transmission lines are shortened to be 11mm. A 

vertical metal plate is also placed between the two "monopole antennas" at a distance 

from the board to reduce the coupling through the air 

The measured magnitude of S-parameters for the 2-element structure with 11 mm 

feeder lines and vertical metal plate is displayed in Fig. 5.13. The first mode at 

9-10GHz and the second mode at 20-23GHz clearly appear as they are estimated in 

the software simulation. Reduced transmission in the lower frequency range of the 

left-handed mode can be observed as was described in Chapter 5.2.3. The extra mode 

produced by the connector effect can still be found at about 17 GHz, however it is 

now weakened. . 
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Similarly, measured S-parameters of the 3-element structure with l lmm feeder lines 

and vertical metal plate are also shown in Fig. 5.14. Compared with that of 2-element 

structure, greater insertion loss occurs for every mode, which is because of the longer 

distance between the ends of microstrip lines and more left-handed material elements 
inserted. 
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Fig. 5.9 Measured S-parameters of 2-element structure. 

0 

-5 

-10 

Fß-1 

-15 

1) 
j -20 

-25 

�% 
-30 

-35 

-40 

-45 
8 

Fig. 5.10 Measured S-parameters of 3-element structure. 
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Fig. 5.11 Measured S-parameters of 4-element structure. 
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Fig. 5.12 Measured S21 phase of 2-, 3- and 4-element structures. 
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Fig. 5.13 Measured S-parameters of 2-element structure with metal plate. 
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Fig. 5.14 Measured S-parameters of 3-element structure with metal plate. 
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Using the method in Chapter 4.5.2, the phase responses of S21 for these two 

structures are compared in Fig. 5.15. According to the formula 

w"n(w) Aý (d2-d1) (5.3) 

in the range of 9-10GHz, Aco >0 proves the negative refractive index (n<0) for 

left-handed propagation, and in the range of 20-23GHz, z\cp <0 proves the positive 

refractive index (n>O) for left-handed propagation. It is worth noting that there is a 

distortion of phase response between 15-19GHz. This is caused by the interference of 

the "monopole antennas" signals and should be ignored in the analysis. 
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Fig. 5.15 Measured S21 phase of 2- element and 3-element structures with metal 

plate. 
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5.3.3 Highlighted LH Transmission 

To highlight the LH transmission of the LH metamaterials, longer LH 

transmission-line structures like those in Fig. 5.7 are simulated in the commercial 

software HFSS. With the same configuration corresponding to Fig. 9 to Fig. 12, the 

LH transmission-line structures are fed by 15mm-long microstrip-lines. The numbers 

of the spiral elements are 2,6 and 10. The phases of the transmission responses are 

presented in Fig. 5.16. Larger step of the element numbers makes the LH transmission 

more clear than those in Fig. 12 and Fig. 15. 
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Fig. 5.16 Simulated S21 phase of 2-, 6- and 10-element structures. 
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5.5 Conclusions 

The measurement of the planar left-handed materials are designed and set up in this 

chapter to validate the negative phase velocity propagation. Practical structures 

comprised of microstrip lines with the planar left-handed materials in the middle are 

used to assess surfaces wave propagations within the frequency ranges of the 

left-handed and right-handed modes. To meet the requirement of impedance matching, 

the microstrip lines are tapered at the ends towards the left-handed materials. S 

parameters are obtained in the simulations and measurements. Left-handed 

propagation through the planar left-handed materials is proved in two ways: the 

simulated animation of the electric fields inside the dielectric substrate that clearly 

shows a wavefront travelling in reversed direction with the energy flow, which 

indicates that the phase velocity and the group velocity are anti-parallel; and the 

comparison of the transmission phase in actual measurements similar with those in 

chapter 4. Parasitic modes are found in the experimental measurement. To weaken 

these unwanted effects, the feeding microstrip lines are shortened, and a vertical metal 

plate is putting between the feeders to impair their coupling. A software simulation of 

the measured structures with larger step of the elements is also given out to highlight 

the LH transmission better. 
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6. Conclusions 

6.1 Summary 

Novel advanced numerical techniques are introduced in this thesis to analyse the 

properties of novel planar metamaterials. Metamaterials are periodic metallodielectric 

structures and functionally classified as Frequency Selective Surfaces (FSS), 

Electromagnetic Band Gap Materials (EBG), Artificial Magnetic Conductors (AMC) 

and Left-handed Materials (LHM). Traditional methods to analyse these structures in 

frequency domain usually adopt Method of Moments (MoM) with electric field 

integral equations (EFIE) using entire-domain and rooftop sub-domain basis functions 

in the modelling of the elements. Periodic Green's function in spectral domain is used 

for the periodicity. The MoM equations are solved at every point in the studied 

frequency range. Recently, some new-type metamaterials with complex element 
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shapes, e. g. the miniaturised electromagnetic band-gap materials and the left-handed 

materials, have been introduced into the metamaterial family by other researchers. To 

model these complex-shape elements exactly, sub-domain triangular-patch basis 
function, which is also known as Rao-Wilton-Glisson (RWG) basis function, is used 
in replacement of the entire-domain and rooftop basis functions. Moreover, 

homogeneous version of MoM equations is solved to analyse the surface-wave 

responses of these materials by plotting the dispersion diagrams. Unlike the resonant 
behaviours and rapid frequency variations of the currents and fields, the impedance 

matrix elements usually have a regular and smooth variation versus frequency. That 

makes it possible to calculate the impedance matrix at only few frequency points and 

get the impedance matrix at other points of the remaining frequency range of interest 

using interpolation, which could drastically accelerate the computing. This technique 

can be applied to derive the transmission and reflection responses for plane waves as 

well as the dispersion diagrams for surface waves in this thesis. The research work to 

analyse and design novel electromagnetic metamaterials is mainly based on these 

techniques. 

Miniaturised and multiband EBG and AMC surfaces were designed in Chapter 3. 

Three tripole-based examples as periodic-loaded tripole, fractal tripole and convoluted 

tripole arrays were introduced to meet the requirement of miniaturisation and 

multi-resonance. Fractal tripole arrays were studied in detail to explain how the higher 

order resonances are generated by adding higher order fractal branches into the 

original tripole array. Plane-wave response, surface current and dispersion diagram 

were derived in the analysis using the efficient modelling techniques introduced above. 

The features of miniaturisation and multiband were achieved according to the results 

of the calculation and the measurement. The numerical errors were discussed. 

Computational predictions were also verified by comparing with experimental results. 
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In Chapter 4, novel planar left-handed metamaterials were designed. A study was 
carried out with regards to the effect of the interpolation step on the accuracy of the 
results. According to the error analysis, the dispersion diagrams of the proposed 
structures have been produced with an interpolation step of 1GHz which resulted in a 
good accuracy. The method was validated by comparison with commercial software 
(HFSS). The refraction index of the structures has been derived. A thorough 
investigation of the modal field distribution provided a detailed explanation of the 
left-handed properties of the structures based on the dual transmission line concept. A 
full-wave based validation of the left-handedness has been presented. The unit cell is 

as small as x/24 which allows for an equivalent effective medium model. The 

structures are simple, compatible with low-cost fabrication techniques and scalable to 

higher frequencies. 

In order to prove the feasibility of the designs in Chapter 4, a measurement of the 

planar left-handed materials are designed and set up in Chapter 5 to validate the 

negative phase velocity propagation. Microstrip lines with the replacement of the 

planar left-handed materials in the middle are used to support the surfaces wave 

propagations within the frequency ranges of the left-handed and right-handed modes. 

To meet the requirement of impedance matching, the microstrip lines are tapered at 

the ends towards the left-handed materials. S parameters are obtained in the 

simulations and in measurement. Left-handed propagation through the planar 

left-handed materials is proved by means of the simulated animation of the electric 

fields inside the dielectric substrate and the comparison of the transmission phases for 

sections of different length in the measurement. 

135 



6.2 Future Work 

Advanced numerical techniques in modelling of novel electromagnetic metamaterials 
have been introduced in this thesis. The techniques are concerned with single-layer 
planar periodic structures over grounded dielectric substrate. However, with the rapid 
development of the radio design, more requirements have been brought out to the 

numerical approaches for the analysis and design of metamaterials. 

Large-scale integrated circuit in radio frequency is a trend in modern radio system 

design. Multi-layered structures play more and more important roles especially in the 

area of Microwave Monolithic Integrated Circuit (MMIC) and Multi-Chip Module 

(MCM) designs. This requires the modelling techniques to be applicable to 

multi-layered metamaterials. To meet this requirement, the Green's functions (2.41) 

and (2.42) need to be improved as the closed-form Green's functions of multi-layer in 

[1]-[5]. 

Moreover, as what has been introduced in Chapter 3, miniaturised and multiband 

features are required in modern wireless communication systems. With the growth of 

the printed circuit techniques, much more complex and finer metamaterials appear in 

recent years. This brings a heavy burden to the frequency-domain numerical 

techniques to deal with enormous impedance matrices with tens of thousands 

elements. Computing time and computer memory will face big challenges even at a 

single frequency calculation. Thus, techniques such as Multilevel Fast-Multipole 

Algorithm (MLFMA) [6], [7] and Adaptive Basis Functions / Diagonal Moment 

Matrix (ABF/DMM) [8] should be adopted to create sparse or diagonal impedance 

matrices, which could greatly reduce the size of the problems. 
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Besides, due to the novelty of the metamaterials especially the left-handed materials, 

the application of these materials in radio frequency design is a key point to be 

regarded. Although some applications have been proposed recently [9]-[18], the 

remaining potential of metamaterials is still to be exploited. 
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