
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40064784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Electronics and Computer Science

Rigorous Design of Distributed

Transactions

by

Divakar Singh Yadav

Thesis for the degree of Doctor of Philosophy

February 2008

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

DEPENDABLE SYSTEMS AND SOFTWARE ENGINEERING

Doctor of Philosophy

by Divakar Singh Yadav

Database replication is traditionally envisaged as a way of increasing fault-tolerance

and availability. It is advantageous to replicate the data when transaction workload

is predominantly read-only. However, updating replicated data within a transactional

framework is a complex affair due to failures and race conditions among conflicting

transactions. This thesis investigates various mechanisms for the management of repli-

cas in a large distributed system, formalizing and reasoning about the behavior of such

systems using Event-B. We begin by studying current approaches for the management

of replicated data and explore the use of broadcast primitives for processing transac-

tions. Subsequently, we outline how a refinement based approach can be used for the

development of a reliable replicated database system that ensures atomic commitment

of distributed transactions using ordered broadcasts.

Event-B is a formal technique that consists of describing rigorously the problem in an

abstract model, introducing solutions or design details in refinement steps to obtain

more concrete specifications, and verifying that the proposed solutions are correct. This

technique requires the discharge of proof obligations for consistency checking and refine-

ment checking. The B tools provide significant automated proof support for generation

of the proof obligations and discharging them. The majority of the proof obligations are

proved by the automatic prover of the tools. However, some complex proof obligations

require interaction with the interactive prover. These proof obligations also help discover

new system invariants. The proof obligations and the invariants help us to understand

the complexity of the problem and the correctness of the solutions. They also provide

a clear insight into the system and enhance our understanding of why a design decision

should work.

The objective of the research is to demonstrate a technique for the incremental con-

struction of formal models of distributed systems and reasoning about them, to develop

the technique for the discovery of gluing invariants due to prover failure to automati-

cally discharge a proof obligation and to develop guidelines for verification of distributed

algorithms using the technique of abstraction and refinement.

Contents

Acknowledgements ix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Data Replication . 1

1.1.2 Broadcast Primitives . 2

1.2 Why use Formal Methods for Data Replication ? 4

1.3 Related Work . 5

1.4 Our Contributions . 8

1.5 Chapter Outline . 8

2 Background 11

2.1 Preliminaries . 12

2.1.1 A Database Transaction . 12

2.1.2 Long Running Transactions and Compensations 12

2.1.3 Distributed Transactions . 13

2.1.4 Updating Distributed Data . 13

2.2 Failures in Distributed Databases . 14

2.2.1 Commit Protocols . 14

2.2.2 Variants of Two Phase Commit Protocol 15

2.3 Message Ordering Properties . 15

2.3.1 Reliable Broadcast . 15

2.3.2 FIFO Order . 16

2.3.3 Local Order . 17

2.3.4 Causal Order . 17

2.3.5 Total Order . 19

2.3.6 Total Causal Order . 20

2.4 Logical Clocks . 21

2.4.1 Lamport’s Clocks . 21

2.4.2 Vector Clocks . 24

2.5 Event-B . 27

2.5.1 Modelling Approach in Event-B . 28

2.5.1.1 An Event-B System . 28

2.5.1.2 Gluing Invariants . 29

2.5.2 Event-B Notation . 31

2.6 Conclusions . 33

ii

CONTENTS iii

3 Distributed Transactions 35

3.1 Introduction . 35

3.2 System Model . 36

3.2.1 Transaction Types . 36

3.2.2 Race Conditions . 37

3.3 Abstract Model of Transactions in Event-B 38

3.3.1 Starting a Transaction . 40

3.3.2 Commitment and Abortion of Update Transactions 40

3.3.3 Commitment of Read-Only Transactions 41

3.4 Refinements of the Transactional Model 41

3.4.1 Overview of the Refinement Chain 41

3.4.2 First Refinement : Introducing the Replicated Databases 42

3.4.3 Events of Update Transaction . 43

3.4.4 Starting and Issuing a Transaction 44

3.4.5 Commitment and Abortion of Update Transactions 45

3.4.6 Read-Only Transactions . 47

3.4.7 Starting a Sub-Transaction . 48

3.4.8 Pre-Commitment and Abortion of Sub-transaction 49

3.4.9 Completing the Global Commit/Abort 50

3.5 Gluing Invariants . 50

3.6 Processing Transactions over a Reliable Broadcast 56

3.6.1 Introducing Messaging in the Transactional Model 57

3.6.2 The Events of Message Send and Delivery 58

3.6.3 Starting a Sub-transaction . 60

3.6.4 Local Commit/Abort . 61

3.7 Site Failures and Abortion by Time-Outs 62

3.8 Conclusions . 65

4 Causal Order Broadcast 67

4.1 Introduction . 67

4.2 Incremental Development of Causal Order Broadcast 68

4.2.1 Outline of the refinement steps . 68

4.2.2 Abstract Model of a Reliable Broadcast 69

4.3 First Refinement : Introducing Ordering on Messages 70

4.3.1 Invariant Properties of Causal Order 72

4.3.2 Proof Obligations and Invariant Discovery 73

4.4 Second Refinement : Introducing Vector Clocks 76

4.4.1 Gluing invariants relating Causal Order and Vector Rules 78

4.5 Further Refinements of Deliver Event . 79

4.6 Conclusions . 81

5 Total Order Broadcast 82

5.1 Introduction . 82

5.2 Mechanism for Total Order Implementations 83

5.3 Abstract Model of Total Order Broadcast 85

5.4 Invariant Properties of Total Order . 87

5.4.1 Proving Total Ordering Property 88

CONTENTS iv

5.4.2 Proving Transitivity Property . 90

5.5 Total Order Refinements . 92

5.5.1 First Refinement : Introducing the Sequencer 93

5.5.2 Second Refinement : Refinement of Order event 94

5.5.3 Third Refinement : Introducing Sequence Numbers 95

5.5.4 Fourth Refinement : Introducing Control Messages 97

5.5.5 Fifth Refinement : Introducing Receive Control Event 99

5.6 Conclusions . 100

6 Causally and Totally Ordered Broadcast 102

6.1 Introduction . 102

6.2 Mechanism for building a Total Causal Order 102

6.2.1 Overview of the Refinement Chain 104

6.3 Abstract Model of Total Causal Order Broadcast 105

6.3.1 Abstract Variables . 105

6.3.2 Events in the abstract model . 106

6.3.3 Verification of Ordering Properties 109

6.4 First Refinement of Total Causal Order 112

6.4.1 Events in the First Refinement . 112

6.4.2 Constructing Gluing Invariants . 114

6.4.2.1 Relationship of abstract causal order and vector clock rules115

6.4.2.2 Relationship of abstract total order and sequence number 116

6.4.2.3 Gluing Invariants . 116

6.5 Second Refinement : Replacing Sequence Number by the Vector Clocks . 117

6.6 Further Refinements . 119

6.7 Conclusions . 120

7 Liveness Properties and Modelling Guidelines 122

7.1 Introduction . 122

7.2 Liveness in the Event-B Models . 122

7.2.1 Feasibility . 123

7.2.2 Non-Divergence . 124

7.2.3 Enabledness Preservation . 127

7.3 Guidelines for an Event-B Development 138

7.3.1 General Methodological Guidelines for Modelling in Event-B . . . 138

7.3.2 Guidelines for Discharging Proof Obligations using B Tools 145

7.4 Conclusions . 147

8 Conclusions 149

8.1 Summary . 149

8.2 Comparison with other Related Work . 153

8.3 Future Work . 154

A Distributed Transactions 157

B TimeOut 174

C Causal Order Broadcast 176

CONTENTS v

D Total Order Broadcast 181

E Total Causal Order Broadcast 188

Bibliography 197

List of Figures

2.1 FIFO order . 16

2.2 Local order . 17

2.3 Broadcast not related by causal precedence 19

2.4 Total Order and a Causal Order . 20

2.5 Total Order but not a Causal Order . 20

2.6 Lamport Clock . 23

2.7 Lamport Clock : Broadcast System . 24

2.8 Vector Clocks . 26

2.9 Event-B Machine . 28

3.1 Abstract Model of Transactions in Event-B 38

3.2 Events of Abstract Transaction Model- I 40

3.3 Events of Abstract Transaction Model- II 41

3.4 Initial part of Refinement . 43

3.5 Events of Update Transaction . 44

3.6 Refinement : Coordinator Site Events-I 45

3.7 Refinement : Coordinator Site Events - II 46

3.8 Refinement : Coordinator Site Events - III 47

3.9 Refinement : Participating Site Events -I 49

3.10 Refinement : Participating Site Events -II 49

3.11 Refinement : Participating Site Events -III 50

3.12 Gluing Invariants-I . 51

3.13 Gluing Invariants -II . 52

3.14 Gluing Invariants -III . 53

3.15 Gluing Invariants -IV . 54

3.16 Gluing Invariants -V . 56

3.17 The New events : A Reliable Broadcast 58

3.18 Events IssueWriteTran and BeginSubTran : A Reliable Broadcast 59

3.19 Gluing Invariants -VI . 61

3.20 Refined Local Commit and Local Abort events : A Reliable Broadcast . . 62

3.21 Event Site Failure . 63

3.22 Event TimeOut . 64

4.1 Abstract Model of Broadcast . 69

4.2 Causal Order Broadcast : Initialization 70

4.3 Causal Order Broadcast : Events . 71

4.4 Causal Order : CASE-I . 72

4.5 Causal Order : CASE-II . 72

vi

LIST OF FIGURES vii

4.6 Invariants-I . 73

4.7 Invariants-II . 75

4.8 Second Refinement : Refinement with Vector Clocks 77

4.9 Invariants-III . 79

4.10 Fourth Refinement . 80

5.1 Unicast Broadcast variant . 84

5.2 Broadcast Broadcast variant . 84

5.3 Unicast Unicast Broadcast . 85

5.4 TotalOrder Abstract Model: Initial Part 85

5.5 TotalOrder Abstract Model : Events . 86

5.6 Invariants-I . 89

5.7 Invariants-II . 92

5.8 TotalOrder Refinement-I . 93

5.9 TotalOrder Refinement-I : Invariants . 94

5.10 TotalOrder Refinement-II : Refined Order Event 95

5.11 TotalOrder Refinement-II : Invariants . 95

5.12 TotalOrder Refinement-III . 96

5.13 TotalOrder Refinement-III : Invariants . 97

5.14 TotalOrder Refinement-IV . 98

5.15 TotalOrder Refinement-IV : Invariants . 99

5.16 Refinement-V : Receive Control . 99

5.17 TotalOrder Refinement-V : Invariants . 100

6.1 Execution Model of a Total Causal Order Broadcast 103

6.2 TotalCausalOrder: Initial Part . 106

6.3 TotalCausalOrder: Events-I . 107

6.4 TotalCausalOrder: Event-II . 108

6.5 Invariants-I : Abstract Model . 110

6.6 Invariants-II : Abstract Model . 110

6.7 Invariants-III : Abstract Model . 111

6.8 First Refinement- Part I . 112

6.9 First Refinement - Part II . 113

6.10 Gluing Invariants-IV : First Refinement 117

6.11 Second Refinement : SendControl . 118

6.12 Second Refinement : TODeliver . 119

6.13 Second Refinement : Gluing Invariant . 119

6.14 Causal Deliver Event . 120

7.1 Feasibility of Initialization and Event . 123

7.2 Concrete Transaction States in the Refinement 125

7.3 Variant . 126

7.4 Events Decreasing a Variant . 126

7.5 Invariant used in variant Proofs . 127

7.6 Transaction States in the Abstract Model 129

7.7 Order and BeginSubTran events . 131

7.8 Transaction States in the Refinement-I . 132

7.9 Transaction States in the Refinement-II 133

List of Tables

2.1 Relational Notations . 32

2.2 Function Notations . 33

3.1 Events Code . 51

3.2 Proof Statistics- Distributed Transactions 65

4.1 Proof Statistics- Causal Order Broadcast 81

5.1 Proof Statistics- Total Order Broadcast 101

6.1 Events Code . 110

6.2 Proof Statistics- Total Causal Order Broadcast 121

8.1 Proof Statistics- Overall . 154

viii

Acknowledgements

I would like to acknowledge my deep sense of gratitude to my supervisor Professor

Michael Butler for his valuable help, guidance and encouragement. He gladly accepted

all the pains in going through my work again and again, and giving me opportunity

to learn essential research skills. His ability to quickly understand the depth of the

problem and suggesting a clear solution has always surprised me. This thesis would not

have been possible without his insightful and critical suggestions, his active participation

in constructing right models and a very supportive attitude.

I am also thankful to Commonwealth Scholarship Commission in the United Kingdom

for funding my studies and British Council for looking after the welfare issues. Specially,

thanks to Irene Costello and Rosalind Grimmit at Commonwealth Commission and Sue

Davis at British Council for their quick attention whenever I was in need. I would also

like to thank Professor Joao Marques-Silva for his constructive comments and useful

advices. Comments of Professor Alexender Romanovsky and Dr. Robert J. Walters

were very helpful in addressing some important issues in the thesis. Also, thanks to

Elisabeth Ball, John Colley and Andy Edmunds for reading parts of the thesis and their

valuable suggestions.

I gratefully acknowledge the support of every one at DSSE group for extending their

cooperation, providing a very stimulating research environment and making my whole

stay at Southampton a memorable experience. Informal discussions on B with Reza,

Andy, Lis, Stephane, John, Colin, K.D., Mar Ya and Shamim were very enjoyable, be

it a coffee room or B user group meetings or B Bay. Last but not the least, I thank

my parents for their blessings, wife Gayatri for her support and daughters Surabhi and

Ankita for bringing cheerful moments at home.

Divakar Singh Yadav

Dependable Systems and Software Engineering Group

School of Electronics and Computer Science

University of Southampton

Southampton, UK

ix

Chapter 1

Introduction

1.1 Motivation

Various modern day distributed transactional information systems based on distributed

databases are large and fairly complex due to their underlying mechanisms for transac-

tion support. These systems, classified as business critical systems, take advantage of

data distribution and are expected to exhibit high degrees of dependability. Any failure

in these systems may lead to financial losses in addition to the potential loss of the trust

of customers. Formal rigorous reasoning about the algorithms and mechanisms beneath

such systems is required to precisely understand the behavior of such systems at the

design level.

1.1.1 Data Replication

Due to the rapid advances in communication technology, the last decade has witnessed

the development of several complex distributed information systems for banks, stock

exchanges, electronic commerce, and airline/rail reservation, to name a few. The emer-

gence of such applications has opened up new opportunities for integrating advances

in database systems with the advances in the communication technology. In such sys-

tems, it is not uncommon to store a copy of a database (replication) or to store part of

the database (fragmentation) at several sites for fault-tolerance and efficiency. A dis-

tributed database system can be thought of as a collection of several sites where data is

distributed across these sites. These sites communicate by exchange of messages and co-

operate with each other for the successful completion of global computation which may

read or write to the data at several sites. With respect to the data distribution, from a

user perspective, a distributed database should behave like a centralized database. This

view of distributed databases implies that the user should be able to query the database

without worrying about the distribution of the data. With respect to the updates, this

1

Chapter 1 Introduction 2

view of a distributed database requires that the transactions must be executed as an

atomic action regardless of fragmentation and replication [105].

Replication improves availability in a distributed database system [53]. A replicated

database system can be defined as a distributed system where copies of the database

are kept across several sites. Data access in a replicated database can be done within

a transactional framework. It is advantageous to replicate the data if the transaction

workload is predominantly read only. However, during updates, the issue of keeping

the replicas in a consistent state arises due to race conditions among conflicting update

transactions. The strong consistency criterion in the replicated database requires that

the database remains in a consistent state despite transaction failures. The possible

causes of transaction failures include bad data input, time outs, temporary unavailability

of data at a site and detected deadlocks.

In addition to providing fault-tolerance due to failures, one of the important issues to

be addressed in the design of replica control protocols is consistency. The One-Copy

Equivalence [19, 97] criteria states that a replicated database is in a mutually consistent

state only if all copies of data objects logically have the same value. The One-Copy

Serializability [19] is the highest correctness criterion for replica control protocols. It

is achieved by coupling the consistency criteria of one-copy equivalence and providing

serializable execution of transactions. In order to achieve this correctness criterion,

it is required that interleaved execution of transactions on replicas be equivalent to

serial execution of those transactions on one-copy of a database. One copy equivalence

and serial execution together provide one-copy serializability which is supported in a

read anywhere write everywhere approach [118]. Though serializability is the highest

correctness criteria, it is too restrictive in practice. Various degrees of isolation to

address this problem have been studied in [63].

1.1.2 Broadcast Primitives

A distributed system is a collection of distinct sites that are spatially separated and

cooperate with each other towards the completion of a distributed computation. The

design and verification of distributed applications is a complex issue due to the fact

that the communication primitives available in these system are too weak. The inherent

limitation of these systems is that there does not exist a system wide common global

clock and they do not share common memory. Due to these limitations the up-to-

date state of the entire system is not available to any process or site. These systems

communicate with each other by exchange of messages which are delivered after arbitrary

time delays [121]. This problem can be dealt with by relying on group communication or

broadcast primitives that provide higher ordering guarantees on the delivery of messages.

The implementations of these group communication primitives has also been investigated

for different distributed systems such as Isis [21], Totem [94], Trans [91], Amoeba [128]

Chapter 1 Introduction 3

and Transis [10]. The protocols in these systems use varying broadcast primitives and

address group maintenance, fault-tolerance and consistency services. Several approaches

have been proposed for the management of replicated data using group communication

primitives [9, 55, 63, 98, 100, 115, 125]. The transaction mechanism in the management

of replicated data is also considered in [9, 14, 98, 114].

There exist several broadcast protocols based on varying group communication primi-

tives that satisfy different higher ordering guarantees for the messages [38, 52, 125]. The

weakest among them is reliable broadcast. A reliable broadcast eventually delivers the

messages to all participating sites and imposes no restriction on the order in which the

messages are delivered to those sites. Stronger variants of a reliable broadcast impose

additional requirements on the order in which messages are delivered such as FIFO order,

local order, causal order, total order and total causal order1. A causal order broadcast is

a reliable broadcast that preserves the causality among the messages and the messages

are delivered to the processes respecting the causality among the messages. The notion

of causality is based on the causal precedence relation (→) defined by Lamport [75].

A causal order broadcast combines the properties of both FIFO and local order. A

total order broadcast is a reliable broadcast that satisfies the total order requirement

and requires that all processes eventually deliver the same sequence of messages [52]

irrespective of their sender(s). Similarly, a total causal order broadcast combines the

properties of both total and causal order and requires that the messages are delivered

to the processes respecting both total and causal order.

The introduction of transactions based on group communication primitives represents

an important step towards extending the power and generality of group communication

for design and implementation of reliable fault-tolerant distributed computing applica-

tions [114]. In a replicated database, users interact with the database using transactions.

A read-only transaction may read the data locally at the site of submission, while an

update transaction needs to access data at several sites. If a replicated database uses

a reliable broadcast without ordering guarantees, the operations of conflicting update

transactions may arrive at different sites in different orders due to race conditions2. This

may lead to the formation of deadlocks among conflicting transactions involving several

sites. The blocking of the update transactions at a site is usually resolved by aborting

the transactions by timeouts. This problem can be addressed effectively by processing

transactions over a stronger notion of reliable broadcast protocol that provides higher

order guarantees on message delivery [9, 125]. The abortion of conflicting transactions

can be avoided by using a total order broadcast which delivers and executes the con-

flicting operations at all sites in the same order, thus ensuring a serial execution of

conflicting update transactions at replicas. Similarly, a causal order broadcast captures

conflict as causality and the transactions executing conflicting operations are executed

1The informal specifications of various ordering properties are given in Chapter 2.
2The race conditions on the conflicting update transactions are explained in Section 3.2 in Chapter 3.

Chapter 1 Introduction 4

at all sites in the same order. Processing update transactions over a total causal order

broadcast not only delivers the operations in a total order at the participating sites, but

also preserves the causal precedence relationship among the update transactions.

1.2 Why use Formal Methods for Data Replication ?

Database replication is traditionally envisaged as a way of increasing fault-tolerance and

availability. There exists a vast literature on the management of replicated data [53] deal-

ing with various aspects such as fault-tolerance, consistency, performance and scalability.

Despite the abundance of work in this area, little work has been implemented in com-

mercial products. One of the important reasons is that most replica control mechanisms

are complex, under-specified and difficult to reason about. As a result many commercial

products take a pragmatic approach for data replication which allows the replicas to

be in inconsistent states [61, 63], tolerates inconsistency among the replicas due to lazy

replication [101] and leaves solving inconsistencies to the user [124]. Group communi-

cation has been proposed as a powerful mechanism for the management of replicated

databases. The existing work on the development of formal specifications of group com-

munications services, ordering and reliability properties is often complicated, difficult to

understand and sometime ambiguous [34, 42, 96]. Application of formal methods to this

problem to provide clear specifications and formal verification of the critical properties

is rare. It is desirable that the models of distributed systems be precise and reasonably

compact, and one expects that all the aspects of the system must be considered in the

proofs.

The dependability of distributed systems is an important design criterion for developing

new distributed services or updating existing ones. In principle, the dependability of a

system is the ability to avoid service failures that are more frequent and more severe than

is acceptable. The dependability of the system encompasses the following attributes [13];

the readiness for service (avialability), the continuity of service (reliability), absence of

catastrophic consequences on the users and environment (safety), absence of improper

system alterations (integrity), and ability to undergo modifications and repairs (main-

tainability). Reliability refers to both resilience of a system to various type of failures

and its capability to recover from them [97]. A resilient system is tolerant of failures and

can continue to provide the service even when failure occurs. A recoverable database

system is one that can get to a consistent state by moving back to a previous consis-

tent state (backward recovery) or moving forward to a new consistent state (forward

recovery). One of the approaches for dealing with the failures in a distributed system

is exception handling. The coordinated atomic action (CA action) [137] concept is a

unified scheme for coordinating complex concurrent activities and supporting error re-

covery between multiple interacting components in a distributed object system. The

Chapter 1 Introduction 5

problem of exception handling in distributed systems where exceptions may be raised

simultaneously in different processing nodes is addressed in [138].

These issues related to dependability must be addressed in the design, architecture and

component infrastructure of a system. It is not possible to simply add a fault-tolerance

module later on to make the system fault-tolerant [57]. A system can be designed

to be fault-tolerant by ensuring that exhibits well defined behavior which facilitates

the actions suitable for recovery. For example, in replicated data updates, the effect

of an update transaction must not be visible until it commits at all sites and a replica

should receive the updates in the same order they were sent. Formal Methods provides a

systematic approach to the development of complex systems. They provide a framework

for specification of the system under development and verification of desirable properties.

Advantages and disadvantages of formal methods in industrial practice and the degree

of formalism to use is considered in [54, 58, 112]. Until now, formal methods were

considered suitable for design and development of safety critical and mission critical

system such as train systems [3, 4], embedded controllers for railways [26], and a steam

boiler [30]. Currently, computer science researchers are collaborating to enhance and

develop the verification technologies that demonstrate high reliability and productivity in

software development. One such long term research project, called the verified software

grand challenge [135], is targeted towards developing a roadmap for integrating tools and

techniques for verification and demonstrating the feasibility of applying formal methods

to large scale industrial software development.

This thesis investigates various mechanisms for the management of replicas in a large

distributed system, formalizing and reasoning about the behavior of such systems. Our

approach to modelling and formal reasoning about fault-tolerant distributed transactions

for replicated databases is based on Event-B [92].

1.3 Related Work

There exists a vast literature in the area of transactional information systems [134],

distributed algorithms [85, 87], concurrency control [19], distributed databases [32] and

group communication [38]. There also exists a plethora of algorithms and protocols

covering several aspects of database transactions, replication and distributed databases

showing the complexity of the problem. However, the application of formal methods for

providing precise specifications of the problem, their solutions and proof of correctness

is still an important issue. Some formal methods have been applied to the problems in

this area and we outline some of that work.

I/O Automata, a formal method, was originally developed to describe and reason about

distributed systems [47, 86]. The I/O automation model is a labelled transition system

consisting of sets of states which also include the set of initial states, a set of actions and

Chapter 1 Introduction 6

a set of transitions. The operations of I/O automation are described by its executions

and traces. Executions in the I/O automation are alternating sequences of states and

actions, while the traces are sequences of input and output actions occurring in the ac-

tions. One automation implements another if its traces are also traces of the other. The

proof method supported in this method for reasoning about the system involves invari-

ant assertions. An invariant assertion is defined as a property of the state of a system

that is true in all executions. Most notably, the work done so far using I/O Automata

has been carried out by hand [42, 47]. Some of the significant work done using I/O

Automata includes modelling and verification of sequentially consistent shared object

systems in a distributed network [41]. In order to keep the replicated data in a consis-

tent state, a combination of total order multicast and point to point communication is

used. In [40], I/O automata are used to express lazy database replication. The authors

present an algorithm for lazy database replication and prove the correctness properties

relating to performance and fault-tolerance. In [42, 104] the specification for group com-

munication primitives is presented using I/O automata under different conditions such

as partitioning among the group and dynamic view oriented group communication. A

series of invariants relating state variables and reachable states are proved using the

method of induction.

Temporal Logic of Actions(TLA) [72, 78] is a method for specifying and reasoning about

concurrent algorithms. In TLA, a system is specified by a formula [77]. Temporal logic

formula contain variables to represent quantities that change with time and constants

to represent the quantities that do not change with time. A TLA formula is defined on

system behavior. A system satisfies a formula if the formula is true for every behavior

corresponding to a possible execution of the system. TLA+ is a language for writing

a TLA specification which includes the operators for defining data structures for large

specifications. TLA+ specifications are supported by tools such as TLC, a model checker

and simulator and SANY, a parser and semantic analyzer for specifications. The major

work carried out using TLA includes formalizing the Byzantine Generals problem and

providing a proof of correctness of the solution [79], the remote procedure call and

memory specification problem [88] and distributed algorithms like lazy caching [70].

The Z notation [123, 136] has also been applied to develop formal specification of a

database system. Z is a formal specification notation based on set theory and first order

predicate logic to express model-based specifications. A notion of schema is central to Z

specifications. A system specification in Z consists of state variables, initialization, and

a set of operations on state variables. The invariants are expressed on state variables

to represent the conditions which must always be satisfied. There exist a number of

industrial-level tools for formatting, type-checking and aiding proofs in Z. In [11, 12],

Z is used to formally specify a database system to illustrate transaction decomposition.

In the Z specifications, they outline the necessary steps to obtain transaction decom-

position to increase concurrency and reason about interleaving with other transactions.

Chapter 1 Introduction 7

The necessary properties are added in the form of invariants and they provide proof of

correctness by hand to show that invariants are preserved by the specifications.

In [67, 68], an approach for modelling long running transactions using the NT/PV

model is presented. In NT/PV, a long running transaction is modelled by a set of sub-

transactions, a partial order among sub-transactions, inputs and outputs. A transaction

is said to execute correctly if it begins execution in a state which satisfies its input

conditions, executes its sub-transactions consistently in a partial order and terminates

by leaving the database in a state which satisfies its output conditions.

In [130], a set theoretic model is proposed to verify ordering properties of a multicast

protocol. Three types of ordering properties, local order, causal order and total order

are considered. Formal results are presented that define a set of circumstances under

which a total order satisfies the causal relationship among the messages. Formal results

in the form of theorems are provided and they can be applied to a system to prove the

ordering properties on messages in that system.

A refinement based approach to developing distributed systems in Event-B is outlined

in [24]. The correspondence between the action-based formalism and the abstract B

machines is outlined in this work. The action system formalism [15] is a state-based

approach to distributed computing. An action system models a reactive system with

guarded actions on state variables. In [24], the author outlines how the reactive refine-

ment and decomposition of action systems can be applied to abstract machines and how

this approach is related to step-wise refinement in Event-B. The refinement approach

has been applied to the development of a secure communication system [25]. The aim

was to carry out a development from initial abstract specifications of security services

to a detailed design in the refinement steps. The authors have also demonstrated an

effective way to combine B and CSP specifications.

In [22] important contributions are made towards development of a refinement rule which

allows actions to be introduced in a refinement step and a decomposition rule which

allows a system model to be decomposed into parallel subsystems. Use of refinement and

decomposition rules in the development of telecommunications systems is outlined in [23].

Other important work carried out using the refinement approach includes the Mondex

purse system in Event-B [31], verification of the IEEE 1394 tree protocol distributed

algorithm [7], development of a train system [4], rigorous development of fault-tolerant

agent systems [71] and modelling web based systems in B [110]. The case study on

Mondex illustrates modelling strategies and the guidelines to achieve a high degree of

automatic proofs.

Chapter 1 Introduction 8

1.4 Our Contributions

In this thesis, we present a model driven approach using Event-B for the construction

of formal models of distributed transactions and broadcast protocols for a replicated

database system. We outline how a refinement based approach can be used for the de-

velopment of a reliable replicated database system that ensures atomic commitment of

update transactions using broadcast primitives. Our approach of specification and veri-

fication is based on the technique of abstraction and refinement. This formal technique,

supported in Event-B, consists of describing rigorously the problem in the abstract model

and introducing the solution or design details in refinement steps. Through the refine-

ment we verify that the detailed design of a system in the refinement conforms to the

initial abstract specifications. We have used the industrial level B tool Click’n’Prove [6]

for the generation of proof obligations and discharge them using the automatic and

interactive prover.

In our approach, we model abstract behavior of a distributed algorithm in the abstract

model and propose the solutions in the refinement step using concrete variables. The B

tool generates proof obligations relating abstract and concrete variables for refinement

checking. In order to discharge these proof obligations we need to add a series of new

gluing invariants to the model. These gluing invariants demonstrate the relationship of

abstract and concrete variables. The discovery of these new gluing invariant provides a

clear insight to the system and support precise reasoning about why a specific solution

proposed in the refinement is a correct solution of abstract problem. The aim of the

work presented in the thesis is outlined below.

– To demonstrate the application of a technique for incremental construction of

formal models of distributed systems and to reason about them.

– To develop the technique for the discovery of gluing invariants due to prover failures

to automatically discharge a proof obligation.

– To investigate the applicability of ordered broadcasts for processing transactions

in a replicated database.

– To develop guidelines for formal design of distributed transactional systems by

means of abstraction and refinement.

1.5 Chapter Outline

The thesis is organized into eight chapters. The summary of each chapter is outlined

below.

Chapter 1 Introduction 9

– In Chapter 2, an overview of replicated data updates and the related problems is

presented. Subsequently, informal specifications of various ordered broadcast are

discussed. Later in the chapter, we address the notion of logical time. A back-

ground of logical clocks, such as Lamport’s clock and the vector clock is presented.

The subtle issues related to the consistency of logical clocks are also addressed.

At the end of the chapter, an overview of an approach to formal development of

distributed systems using Event-B is outlined.

– In Chapter 3, we present a formal approach to modelling and analyzing a dis-

tributed transaction mechanism for replicated databases using Event-B. In our

abstract model, an update transaction modifies the abstract one-copy database

through a single atomic event. In the refinement, an update transaction consists

of a collection of interleaved events updating each replica separately. The transac-

tion mechanism on the replicated database is designed to provide the illusion of an

atomic update of a one-copy database. Through the refinement proofs, we verify

that the design of the replicated database preserves the one-copy equivalence con-

sistency criterion despite transaction failures at a site. The various events in the

refinement are triggered within the framework of the two phase commit protocol.

The system allows the sites to abort a transaction independently and keeps the

replicated databases in a consistent state. A series of invariants discovered while

discharging the proofs is also presented which provides a clear insight into why

our model of the replicated database preserves consistency despite transactions

aborting at a site.

In the subsequent refinement steps, we introduce explicit messaging among the

sites and demonstrate how various messages are exchanged among the sites within

the framework of two phase commit protocol. A notion of a reliable broadcast is

adopted in our model to represent communication among the sites. We also present

the specification of TimeOut operation that aborts a transaction by timeouts.

Chapters 4, 5 and 6 present incremental development of stronger variants of reliable

broadcast protocol and in Chapter 7 (Section 7.2.3) we outline how the stronger

notion of broadcast can be used to define an abstract ordering on the transactions.

– In Chapter 4, abstract specifications of causal order broadcast are presented. The

causal order on the messages is defined by combining the properties of both FIFO

and local order. We also outline how an abstract causal order is constructed by the

sender. In the refinement we introduce the notion of vector clocks. The abstract

causal order in the abstract model is replaced by the vector clock rules. In this

process we also discover some interesting invariants which define the relationship

between abstract causal order and the vector clock rules. This formal study pre-

cisely reasons about how an abstract causal order on the messages can correctly

be implemented by a system of vector clocks.

Chapter 1 Introduction 10

– In Chapter 5, we present an incremental development of a system of total order

broadcast. The key issues with respect to the total order, such as how to build

a total order on the messages and what information is necessary for defining a

total order, are also addressed. In this development we first present the abstract

specifications of the total order broadcast. Subsequently, in the refinement steps,

we introduce a sequencer based approach to implement the total order.

– In Chapter 6, after establishing the invariants for a system of causal order broad-

cast and total order broadcast, we present a formal development of a system of

total causal order broadcast which satisfies both a total and a causal order on the

message delivery. In the refinements we outline how the abstract total order and

causal order can correctly be implemented by a vector clock system. In the further

refinements we also outline how the requirement of the generation of a sequence

number can be eliminated by employing the vector clocks. The various invariants

relating abstract total order, causal order, sequence numbers and vector clocks are

also given.

– In Chapter 7, the liveness issues related to the model of distributed transactions

are addressed. We briefly outline the construction of the proof obligations to

ensure enabledness preservation and non-divergence. Lastly, we present the general

guidelines for formal development of a distributed system using Event-B.

– In Chapter 8, we present our conclusions, compare our approach with other related

work and outline future work.

Chapter 2

Background

The term distributed system has been defined and characterized in number of ways in

various contexts in the past couple of years.

– Ozsu and Valduriez [97] define a distributed system as a collection of autonomous

processing elements (not necessarily homogenous) that are connected by a computer

network and that cooperate in performing their assigned tasks.

– Tanenbaum and Van Steen [129] give a loose characterization of a distributed

system as a collection of independent computers that appears to its user as a single

coherent system.

– Singhal and Shivratri [121] describe a distributed system as a system consisting of

several computers that do not share memory or a clock; communicate by exchange

of messages; and each computer has its own memory and runs its own operating

system

– Korth, Silberschatz and Sudershan [119] define a distributed database system

as a system consisting of loosely coupled sites that share no physical component;

database systems that run on each site are independent of each other; and a trans-

action may access the data at one or more sites.

– Gray and Reuter [50] define a distributed database system as a database system

that provides transparent access to replicated and partitioned data.

We take a collective view of these definitions.

11

Chapter 2 Background 12

2.1 Preliminaries

2.1.1 A Database Transaction

A database transaction can be defined as a collection of actions that make consistent

transformations of database state while preserving system consistency [97]. A database

transaction is a unit of work which contains operations performing reads, writes or

updates to a data object. A typical database transaction is said to have ACID (atomicity,

consistency, isolation, durability) properties. The atomicity property requires either all

or none of the operations of the transaction are executed. The transaction commits

only when all of the operations are done, otherwise it aborts. The consistency property

requires that the execution of a transaction must leave the database in a consistent

state. The isolation property requires that following a schedule in which the execution

of multiple transactions is interleaved has same effect as if they were executed in some

serial order. This also implies that incomplete transaction updates are not visible to

concurrent transactions. The durability condition requires that once the transaction

commits, all of its effects survive system failures and results are permanent.

2.1.2 Long Running Transactions and Compensations

A long running transaction may be defined as a transaction which takes longer time to

complete execution [45] than traditional ACID transactions. In traditional database sys-

tems, an execution is serializable if it is equivalent to a serial execution. The traditional

notion of serializability as a correctness criterion is too restrictive and a bottleneck for

long running transactions [60, 68]. In order to avoid this bottleneck different kinds of

extended transaction models such as nested transactions [95], SAGA [46], cooperative

transactions [68] are suggested which use a relaxed notion of serializability. Compensa-

tion has been proposed as a mechanism for handling failures in long running transactions.

If any activity needs to be rolled back, a compensatory action is taken to semantically

undo the effect of the committed transactions. The transactions that are executed to

semantically undo the effects of a committed transaction are called compensating trans-

actions.

A formal approach for modelling compensation in business processes can be found in [28].

StAC [27] is a formal language developed for the design of component based enterprize

systems which exclusively deals with compensation. Though compensation is an im-

portant concept used for handling failures during long business activities, compensating

transactions are not enough to meet all the requirements of modern business-to-business

interaction. Some of these requirements may be found in [51].

Chapter 2 Background 13

2.1.3 Distributed Transactions

In a distributed database system, a given transaction is submitted at one site, but it

can access data at other sites as well [97, 105]. A distributed transaction (global trans-

action) can be defined as a transaction accessing data located at other sites as well.

Each site maintains transaction coordinator, transaction manager and lock manager

processes. The coordinated actions of all of these processes ensures execution of a dis-

tributed transaction. A transaction coordinator is responsible for starting the execution

of transactions that originate at the site. The coordinator is also responsible for dis-

tributing sub-transactions at appropriate sites for execution. The coordinator monitors

and coordinates the termination of each global transaction that originates at that site,

which may result in the transaction being committed at all sites or aborted at all sites.

The role of transaction manager is to maintain a log for recovery purposes and partici-

pate in coordinating the concurrent execution of the transactions executing at that site.

The role of lock manager is to receive lock requests from the transaction manager and

lock/unlock the data items at that site.

The transactions in a distributed system may be processed over broadcast protocols [8,

56, 64, 65, 99, 102]. Broadcast protocols that provide ordering guarantees have been

proposed as a mechanism to propagate updates to the replicas in a distributed database.

The broadcast protocols also provide serialization to updates at all sites [9, 62, 106].

2.1.4 Updating Distributed Data

The transparency requirement of distributed data requires that the user must view the

distributed data as a centralized database. The issue of fragmentation and replication

should be addressed at the system level. In the case of the update of replicas, it is

necessary to keep the replicas logically in a identical state. Failing to do that may

lead the database into an inconsistent state. There exist two approaches for updating

replicas. In synchronous replication, all the copies of replicas must be updated before an

update transaction commits, while in asynchronous replication, the replicas are updated

in a progressive manner and a transaction may view different values of replicas. Voting

and read one write all (ROWA) [53, 97, 105] are two important techniques for replica

management that ensure all replicas are in identical state.

In the voting technique, a transaction writes to a majority of replicas before it commits.

This ensures that a read-only transaction reads the correct value even though it may

observe the different values for the same data. In ROWA, a read-only transaction reads

one copy, but a write is performed to all copies before a transaction commits. This tech-

nique is suitable when the transaction workload is predominantly read-only. However,

ROWA suffers from an important drawback. If a single copy of the replica is unavailable

then update transactions cannot commit. An alternative to ROWA, which addresses

Chapter 2 Background 14

this problem, is called Read One Write All Available (ROWA-A). In this protocol, all

available copies of the replica are updated when the update transaction commits. The

copies which were unavailable need to enforce the write when they are available. A

review of different variants of ROWA may be found in [53].

2.2 Failures in Distributed Databases

A robust design of a reliable replicated database system needs to identify the type of

failures a system may suffer. There are four types of failure called transaction failures,

site failures, media failures and communication link failures [97, 121].

Transaction Failures : These failures may occur for several reasons. The possible

causes of transaction failures are bad data input, timeouts, race conditions or a formation

of a deadlock. Most deadlock detection protocols require one of the transactions to abort

if a deadlock occurs. The usual approach used to deal with transaction failures is to abort

the transaction. Log based recovery techniques and shadow paging are two important

techniques to facilitate database recovery due to failures.

Site Failures : The main reasons for site failures are hardware failures, processor or

memory failures or failures of system software. Site failures in distributed systems result

in the inaccessibility of resources located on that site. This failure may interrupt any

distributed transaction executions that are accessing the resources located at this site.

Media Failures : These failures occur due to the failure of secondary storage devices

(e.g., disk failure) containing the whole or part of the database. The reason for these

failures varies from errors in the operating system and hardware faults, to faults in a disk

controller. In the event of media failures, the data at that site becomes inaccessible and

this may cause rollback of the transactions attempting to read or write to data objects.

Communication Link Failures : Communication link failures include errors caused

in messaging, improperly ordered messages, loss or duplication of messages or a total

failure of communication links. Failure of communication links may also divide the

distributed system into several disjoint partitions, called network partitioning.

2.2.1 Commit Protocols

In distributed databases a transaction may be processed at various sites. A higher

number of components in a distributed system implies a higher probability of component

failure during execution of a distributed transaction. In order to maintain the global

atomicity of a transaction, it is required that a distributed transaction commit at all

sites or at none of the sites. Gray addressed the issue of ensuring global atomicity despite

failures in [49]. Commit protocols provide a framework to ensure global atomicity in the

Chapter 2 Background 15

presence of failures. The application of commit protocols for distributed transaction

management in Oracle, a commercial database management system, is discussed in [48].

The two phase commit protocol [49] is a basic protocol which provides fault-tolerance for

distributed transactions. This ensures global atomicity through the exchange of messages

among the participating and coordinating sites. This protocol ensures global atomicity

in the presence of transaction failures as every site writes an appropriate record to its

log and can take suitable action in case of recovery. A major limitation of this protocol

is that it is blocking because, in the case of coordinator site failures, participants wait

for its recovery.

2.2.2 Variants of Two Phase Commit Protocol

Many variants of the two phase commit protocol have been proposed to improve its

performance [81, 93, 122]. The presumed commit protocol is optimized to handle general

update transactions while the presumed abort optimizes read-only transactions. Levi and

others presented an optimistic two phase nonblocking commit protocol [81] in which locks

acquired on data objects at a site are released when the site is ready to commit. In the

case of an abort of a distributed transaction, a compensating transaction is executed at

that site to undo the updates. A three phase commit protocol [122] is a nonblocking

commit protocol where failures are restricted to site failures only. All variants of the

two phase commit protocol assume that mechanisms, such as, maintaining the database

log and local recovery, are present locally at each site. There also exist a number

of communication paradigms in which commit protocols may be implemented. In a

centralized two phase commit protocol no messages are exchanged among participating

sites. The exchange of messages takes place only between the coordinator site and

the cohorts. In a nested two phase commit protocol cohorts may exchange messages

among themselves. A distributed two phase commit eliminates the second phase as the

coordinator and cohorts exchange messages through broadcasting.

2.3 Message Ordering Properties

In this section we outline the informal specifications of the message ordering properties

for a broadcast system.

2.3.1 Reliable Broadcast

The concept of a reliable broadcast is central to ordered broadcasts. Various definitions

of the ordering properties have been discussed in [17, 21, 38, 126]. In [52], Hadzilacos

and Toueg say that a reliable broadcast satisfies the following properties :

Chapter 2 Background 16

– Validity : If a correct1 process broadcasts a message m then the sender eventually

delivers m.

– Agreement : All correct processes deliver the same set of messages, i.e., if a process

delivers a message m then all correct processes eventually deliver m.

– Integrity : For any message m, every correct process delivers m at most once and

only if m was previously broadcast by sender(m).

A reliable broadcast is defined in terms of two primitives called broadcast and deliver. A

reliable broadcast imposes no restriction on the order in which messages are delivered to

the processes. However, many applications require a stronger notion of reliable broadcast

that provides ordering guarantees on message delivery. A reliable broadcast can be used

to deliver messages to processes following a fifo order, local order, causal order, total

order or a total causal order, providing ordering guarantees on the message delivery. An

informal specification of these ordering properties is given below.

2.3.2 FIFO Order

If a particular process broadcasts a message M1 before it broadcasts a message M2, then

each recipient process delivers M1 before M2.

A fifo broadcast is defined as a reliable broadcast that delivers the messages in fifo order.

As shown in Fig. 2.1, process P1 first broadcasts M1 followed by M2. The fifo order is

said to be preserved by the system if all processes deliver M1 before delivering M2. The

delayed message M1, shown as a dotted line, violates the fifo order.

M2M1

P3

P2

P1

Figure 2.1: FIFO order

1A correct process is defined as a non failed process [52, 107]. A process may fail due to crash failure,
omission failures or Byzantine failure. It also assumes a reliable communication network i.e., there is no
loss, generation or garbling of messages in the communication network [107].

Chapter 2 Background 17

M2

M1

P3

P2

P1

Figure 2.2: Local order

2.3.3 Local Order

If a process delivers M1 before broadcasting the message M2, then each recipient process

delivers M1 before M2.

As shown in Fig. 2.2, process P2 delivers M1 before it broadcasts M2. The local order

is said to be preserved by the system if all processes deliver M1 before delivering M2.

The delayed message M1, shown as a dotted line, violates the local order.

2.3.4 Causal Order

If the broadcast of a message M1 causally precedes the broadcast of a message M2, then

no correct process delivers M2 unless it has previously delivered M1.

The notion of capturing causality in a distributed system was first formalized by Lamport

in [75] and further extended in [76]. It is based on the notion of the happened before

relationship that captures the causal relationships among the events. The execution of a

process in a distributed system can be characterized by the sequences of the events and

these events can be either internal events or message events. An internal event represents

a computation milestone achieved in a process, whereas message events signify exchange

of messages among the processes. The message send and message receive are message

events respectively occurring at a process sending a message and receiving a message.

The happened before relation(→) [75] between any two events of a distributed compu-

tation is defined as a → b, where event a happened before b. Events a and b are either

of following,

– a, b are internal events of the same process such that a, b ∈ Pi and a happened

before b.

Chapter 2 Background 18

– a, b are message events of different processes such that a ∈ Pi, b ∈ Pj , where a

is a message send event occurring at process Pi and b is a message receive event

occurring at Pj while sending a message m from process Pi to Pj .

The happened before relation (→) can be extended to the causal precedence (or precedes)

relationship to define a global causal ordering on the messages. A message mi precedes

mj if the message send event send(mi) at process Pi happened before the message send

event send(mj) at a process Pj . A message mi causally precedes mj if either of following

holds,

– the broadcast event of mi causally precedes the broadcast of mj .

– the receive event of mi causally precedes the broadcast of mj .

The happened before relation is transitive i.e. if event a happened before b and b hap-

pened before c then a is said to have happened before c.

a → b ∧ b → c ⇒ a → c

Not all events in a system are causally related. Event a causally affects event b only

if a → b. The events which do not causally affect other events are characterized as

concurrent events. Both causally related events and concurrent events can be defined

using this relation. The two events a and b are causally related if either a → b or b

→ a. Two events a and b are concurrent (a ‖ b) if a 9 b and b 9 a. The causally

related events and concurrent events may be defined as follows.

Causally Related Events : a → b ∨ b → a

Concurrent Events(a ‖ b) : ¬ (a → b) ∧ ¬ (b → a)

Therefore for any two events a and b there exist three possibilities i.e., either a → b

or b → a or a ‖ b.

Parallel Messages

The two messages M1 and M2 are defined as parallel messages (M1 ‖ M2) when no

partial ordering exist among them i.e., ¬ (M1 → M2) ∧ ¬ (M2 → M1) holds.

The causal order is defined by combining the properties of both fifo and local order [52].

A causal order broadcast is a reliable broadcast that satisfies the causal order require-

ment. A causal order broadcast delivers messages respecting their causal precedence.

Chapter 2 Background 19

However, if the broadcast of any two messages is not related by causal precedence (par-

allel messages), then it does not impose any requirement on the order in which they can

be delivered. As shown in the Fig. 2.3, the broadcast of messages M1 and M2 are not

related by a causal precedence relationship and the causal order broadcast delivers them

to the processes in arbitrary order.

M2

M1

P3

P2

P1

Figure 2.3: Broadcast not related by causal precedence

2.3.5 Total Order

If two processes P1 and P2 both deliver the messages M1 and M2 then P1 delivers M1

before M2 if and only if P2 delivers M1 before M2.

A total order broadcast2 is a reliable broadcast that satisfies the total order requirement.

The agreement and total order requirements of a total order broadcast imply that all

correct processes eventually deliver the same sequence of messages [52]. Since a total

order defines an arbitrary ordering on the delivery of messages, it does not satisfy causal

relations. The two cases given below illustrate the relationship between causal order

and total order.

In the first case, as shown in Fig. 2.4, all messages are delivered conforming to both

the causal and the total order. The broadcast of a message M1 causally precedes the

broadcast of M2 and each recipient process delivers M1 before delivering M2. Similarly,

the broadcast of message M2 causally precedes broadcast of M3 and each recipient

process delivers M2 before delivering M3. Therefore, the system delivers the messages

respecting the causal order. It can also be noticed that since all processes deliver the

messages in the same sequence, i.e., M1, M2 followed by M3, the delivery order also

conforms to the total order.

2The total order broadcast is also known as atomic broadcast. Both of the terms are used interchange-
ably. The former is preferred over the later as the term atomic suggests the agreement property rather
than total order.

Chapter 2 Background 20

M3M2

M1

P3

P2

P1

Figure 2.4: Total Order and a Causal Order

M3M2

M1

P3

P2

P1

Figure 2.5: Total Order but not a Causal Order

In the second case, as shown in Fig. 2.5, a broadcast satisfies a total order on the

messages, but does not preserve the causal relationships among them. All processes

deliver the same sequence of messages, i.e., each process delivers M1 followed by M3,

and lastly M2. Thus the delivery order conforms to the total order property. However,

the delivery order does not respect the causal order for the following reason. Since the

broadcast of M2 causally precedes the broadcast of M3, each recipient should deliver M2

before delivering M3. It can be noticed that each process delivers M3 before delivering

M2, violating the causal order.

2.3.6 Total Causal Order

A total causal order broadcast3 is a reliable broadcast that satisfies both causal and

total order. A total causal order broadcast is the strongest variant of a reliable broadcast

which has been used as an important mechanism to address fault-tolerance in distributed

systems [74, 116]. An example of a total causal order broadcast is illustrated in the

Fig. 2.4.

3A reliable broadcast that satisfies both causal and total order is also known as a causal atomic

broadcast.

Chapter 2 Background 21

2.4 Logical Clocks

A distributed system is a collection of computers that are spatially separated. A dis-

tributed computation is composed of a finite set of processes where the actions of a

process can be modelled as a collection of events produced by a process during its life

cycle. The concept of temporal ordering of events is integral to the design and devel-

opment of these systems. The causal precedence relation is an important concept for

reasoning, analyzing and drawing inferences about distributed computations. Knowl-

edge of the causal relationship among various events occurring at different processes

helps designers solve a variety of problems related to distributed computation, such as

ensuring fairness of a distributed mutual exclusion algorithm, maintaining consistency

in replicated databases and distributed deadlock detection algorithms. Such knowledge

is also useful in constructing a consistent state for resuming execution in distributed

debugging, building a checkpoint for distributed recovery and detecting inconsistencies

in replicated databases [109].

In distributed systems no built-in mechanism for a system wide clock exists and a causal

precedence relation cannot be captured accurately. Logical clocks have been proposed as

a viable solution to address this problem. Due to the absence of a common global clock

and shared memory, the various processes in distributed systems communicate with

each other by exchange of messages. More precisely, during a distributed computation,

the processes produce and receive the messages from the cooperating processes. These

messages are delivered after arbitrary delays. A class of problems related to such message

passing systems may be solved by defining global ordering on the messages. Logical

clocks such as Lamport clocks [75] and vector clocks [43, 90] provide a mechanism to

ensure globally ordered delivery of the messages. The causal ordering of messages was

proposed and discussed in [20, 75] and the protocols proposed in [21, 113] use logical

clocks to maintain the causal order of messages. A critical review of logical clocks can

be found in [18, 109]. Vector clocks were used by other researchers in [21, 69, 89, 133]

to design and develop distributed systems.

2.4.1 Lamport’s Clocks

In Lamport’s logical clock system [75], a clock is defined as a function which assigns a

number to an event. For every process Pi there exists a clock Ci which essentially maps

an event to an integer. Suppose the set EPi defines the sequence of events produced by

a process Pi as,

EPi = { ei1 , ei2 , ei3 , ei4 ein }

The clock function Ci may be defined as follows,

Ci : EPi → N , where N is a set of natural numbers.

Chapter 2 Background 22

The logical clock present at every process takes monotonically increasing values and

assigns a number to every event, called a timestamp of that event. Formally, a clock Ci

present at a process Pi assigns a timestamp Ci(a) to an event a where a ∈ EPi. The

correctness criterion for this clock may be defined as follows.

– For any two internal events a and b occurring in a process Pi, a → b ⇒ Ci(a)<Ci(b).

– If a and b are message sent and message receive events of a message m occurring

in the processes Pi and Pj respectively then Ci(a) < Cj(b).

In this system every message is also timestamped before sending it to a recipient process.

This timestamp is equal to the timestamp of the message sent event of that message

at the sender’s process. The correctness criterion outlined above can be guaranteed by

following two implementation rules.

– The clock Ci at process Pi is incremented between two successive internal events

as follows.

Ci = Ci + d, where (d=1).

– If a and b are message sent and message receive events of a message m occurring

in the processes Pi and Pj respectively, then the message m is time-stamped as

Cm:=Ci (a). The Ci(a) is obtained by applying the previous rule. The timestamp

Cj of a recipient process of the message is updated as below.

Cj := Max (Cj ,Cm + d), where (d =1).

Consistency of Lamport Clocks

Raynal and Singhal introduced the notion of the consistency of logical clocks in [109].

Let E1 and E2 be any two events generated by a process(es). A logical clock is consistent

if the following criteria is satisfied.

E1 → E2 ⇒ C(E1) < C(E2).

A logical clock is strongly consistent if following criteria is satisfied.

E1 → E2 ⇔ C(E1) < C(E2)

Lamport clocks are consistent due to their monotonically increasing values. However, the

limitation of Lamports clocks is that they are not strongly consistent. By comparing

Chapter 2 Background 23

the timestamp of any two events, which occurred in different processes, it cannot be

guaranteed whether these events are casually related or not, i.e.,

Ci(a) < Cj(b) ; a → b.

Consider Fig. 2.6 where occurrences of the internal and message events happening in

a set of processes are shown. The scalar timestamps of various events are also shown

in the diagram. Consider the message M1 sent from process P1 to P2. The message

sent event E11 in a process P1 happened before message receive event E21 in a process

P2. The timestamp of these two events assigned by the logical clock system are 1 and 2

respectively. Since these events are casually related, it satisfies the following consistency

criterion defined over message events.

E11 → E21 ⇒ TS (E11) < TS (E21)

Similarly, consider events E21 and E31 occurring in process P2 and P3 respectively.

The timestamp generated by the Lamport clock system for these events are 2 and 1

respectively. Since these events are not causally related, it can not be determined if one

happened before another. Therefore, Lamport clocks are not strongly consistent. i.e.,

TS(E31) < TS(E21) ; E31 → E21

The reason for this behavior is that the process does not keep information about whether

advancement in the clock happened due to a internal event or a message event. Clocks

(2)

E11 E12

E31

(4)

E13

E32

(2)

(3)

E23

(4)

M

M M

E22E21

(2)

P1

P2

21

3

(1)

P3

Message EventsInternal Events

(1)

Figure 2.6: Lamport Clock

Chapter 2 Background 24

at each process advance independently due to occurrences of events at that process. De-

spite this shortcoming, Lamport’s clock have been found suitable to solve some classical

distributed computing problems, such as, distributed mutual exclusion [75]. However,

the main advantage of Lamport’s clock is that upon receipt of any message a process

updates its logical time (clock) to more than the time of the previously known event at

the sender process.

The advancement of a Lamport clock is shown in the Fig. 2.6. Time stamps for the events

are obtained by applying the implementation rules. The same rules can be applied to

obtain the timestamp of events in a broadcast system. The advancement due to Lamport

clock in a broadcast system is given in Fig. 2.7.

[2] [4] [5]

M M

P2

1 2

E E E

E E E

[2] [3]

22 23EE
21

E

1211

31 32 33

13

[6][1] [4]

[6]

3M

P3

P1

Figure 2.7: Lamport Clock : Broadcast System

2.4.2 Vector Clocks

One of the major limitations of Lamport clocks is that they are not strongly consistent

which means that by comparing the timestamp of two events it can not be decided

whether the events are casually related. This problem was addressed in the vector

clocks proposed by Fidge and Mattern in [43] and [90]. The vector clock overcomes the

limitation of Lamport clocks and the timestamps generated by the vector clock system

may be compared to decide the causal order of occurrence of two events.

In a system of vector clocks, every process maintains a vector of size N to represent

the logical time at that process, where N is equal to the total number of processes in

that system. Let each process Pi maintain a vector clock VTi. VTi can be defined as a

function which assigns to every event a vector called, a vector timestamp.

Suppose set EPi defines the sequence of events produced by process Pi then a clock

function VTi may be defined as follows,

Chapter 2 Background 25

EPi = { Ei1 ,Ei2 , Ei3 , Ei4Ein }

VTi : EPi → V, where V is set of vector of integers of size N.

On occurrence of an event, a process uses the following two rules to update their clocks.

1. On occurrence of an internal event, process Pi updates its own time (the ith entry

of the vector) by updating VTi(i) as follows :

VTi(i) := VTi(i) + 1

If the event is of sending a message M from process Pi to Pj then a message

timestamp VTM is generated as follows :

VTM (k) :=VTi(k) , ∀ k ∈ (1..N).

2. If the event is of receiving a message M from process Pi to Pj , the recipient process

Pj updates its vector clock VTj as follows :

VTj(k) := Max (VTj(k) ,VTM (k)), ∀ k ∈ (1..N), k 6=j

Process VTj updates its own clock VTj(j) as follows :

VTj(j) := VTj(j) + 1

As mentioned in the first implementation rule, on occurrence of an internal event, a

process Pi updates its own time VTi(i). Therefore, VTi(i) represents a local logical time

at process Pi. The entry VTi(j) (i6=j) represents the process Pi’s latest knowledge of

time at process Pj .

Consistency of Vector Clocks

A system of vector clocks is strongly consistent. In a system of vector clocks, vector

timestamps of two events may be compared to find if these two events are casually

related. Rules for comparing the timestamp of two events were proposed in [90] and these

properties were further investigated by Raynal and Singhal in [109]. They proposed the

following criterion to compare the vector timestamp of two events.

Let the vector timestamp of events a and b be VTa and VTb respectively. The following

holds.

VTa = VTb ⇔ ∀i · VTa(i)= VTb(i)

VTa 6= VTb ⇔ ∃i · VTa(i) 6= VTb(i)

Similarly, the following relations compare timestamps to show if there exists a casual

order among the events or if they are concurrent.

Chapter 2 Background 26

VTa < VTb ⇔ ∀i · VTa(i)≤ VTb(i) and ∃k · VTa(k)< VTb(k)

VTa ‖ VTb ⇔ ¬(VTa < VTb) ∧ ¬ (VTb < VTa)

In the case that two events a and b occurred in the same process Pi, their causality order

satisfies the following property.

a → b ⇔ VTi(a) < VTi (b)

Similarly, if the events a and b occurred in process Pi and Pj respectively, their causality

order satisfies following property.

a → b ⇔ V Ti(a) < V Tj (b)

a ‖ b ⇔ ¬ (V Ti(a) < V Tj(b)) ∧ ¬ (V Tj(b) < V Ti(a))

This also implies that after comparing the timestamp of two events occurring in different

processes we can determine if they causally affect each other or they are concurrent.

Advancement of Vector Clock : An Example

The advancement of the vector clock is illustrated in the Fig. 2.8. Let VT1, VT2 and

VT3 be vector clocks present at processes P1, P2 and P3 respectively.

E11

E23

M3

E32E31

E13

M2

E22

E12

E21

M1

P1

P2

P3

[100] [200] [320]

[120] [132]

[002][001]

[110]

Internal Events Message Events

Figure 2.8: Vector Clocks

The event E11 in process P1 which is a message send event of sending a message M1 to

process P2. Similarly, the event E21 is a message receive event occurring due to receipt

of a message M1 at process P2.

Chapter 2 Background 27

– Since E11 is the first event produced by process P1, it updates its clock VT1

following the first implementation rule of vector clock as VT1(1):= VT1(1)+1.

Therefore, the vector timestamp of event E11 is generated as VT1(E11):=[100].

– The message M1 is timestamped as VTM :=VT1(E11)=[100].

– Upon receipt of message M1, the clock at process P2 is updated as

VT2(k) := Max (VT2(k) ,VTM1(k)), ∀ k ∈ (1..N), k 6= 2

The clock VT2(2) is updated as VT2(2) := VT2(2)+1 according to second imple-

mentation rule. Therefore, the process P2 assigns a vector timestamp to event E21

as VT2(E21):= [110].

The event E12 happened after the occurrence of the message sent event E11 in the process

P1. Process P1 generates the vector timestamp for event E12 by advancing the clock

VT1 as VT1(1) := VT1(1)+1=2. Therefore, the timestamp of event E12 is generated as

VT1(E12):=[200].

Similarly, consider a message M2 sent from a process P2 to a process P1. The event E22

in a process P2 and the event E13 in a process P1 are the outcome of the message sent

and the message receive events of a message M2. The timestamp for message send and

message receive events of M2 are generated as follows.

– The timestamp for E22 is generated by advancing the clock VT2 as VT2(2):=

VT2(2)+1=2. Therefore, the timestamp of event E22 is generated as VT2(E22):=[120].

– The message M2 is timestamped as VTM2 :=VT2(E22)=[120].

– Upon receipt of message M2, the clock at process P1 is updated as,

VT1(k) := Max (VT1(k),VTM2(k)), ∀k ∈ (1..N), k 6=1.

The VT1(1) is updated as VT1(1) := VT1(1)+1=3. Therefore, the process P1

assigns a vector timestamp to event E13 as VT1(E13):= [320].

Event E31 is the first event occurring in the process P3. It is assigned the vector times-

tamp [001] following the first rule. The timestamp for the message M3 and its associated

events E32 and E23 are assigned as [002],[002] and [132] respectively by the vector clock

system as outlined above.

2.5 Event-B

Event-B [2, 7, 92] is a formal technique consisting of describing the problem, introduc-

ing solutions or details in refinement steps to obtain more concrete specifications and

verifying that proposed solutions are correct. Event-B, a variant of B [1], was designed

for developing distributed systems.

Chapter 2 Background 28

2.5.1 Modelling Approach in Event-B

A specific development in this approach is made of a series of further refined models. In

Event-B, a system is modelled in terms of an abstract state space using variables with

set theoretic types and the events that modify state variables. The events consist of

guarded actions occurring spontaneously rather then being invoked. At each refinement

step, new variables may be introduced and abstract variables may be removed. Each

model is made of static properties (invariants) and dynamic properties (events). A

list of state variables is modified by a finite list of events. The events are guarded by

predicates and these guards may be strengthened at each refinement step. The invariants

are properties that must be satisfied by the variables and maintained by the activation

of events.

We have used the Click’n’Prove [6] B tool for proof management which provides an

environment for the generation of proof obligations for consistency checking and refine-

ment checking. This tool also provides an automatic and an interactive prover. The

majority of the proof obligations are proved by the automatic prover. However, some of

the complex proof obligations need to be proved interactively.

2.5.1.1 An Event-B System

The notions of abstract machine and refinement are central to an Event-B system.

An abstract machine consists of sets, constants and variable clauses modelled as set

theoretic constructs. The invariants and properties are defined as first order predicates.

The event system is defined by its state and contains a number of events. The state of

the system is defined by the variables. The constants and variables are constrained by

the conditions defined in the properties and invariant clauses. Each event in the abstract

model is composed of a guard and an action. The events are modelled using generalized

substitution which includes constructs like assignment (x:= E(x)) and guarded statement

(WHEN G THEN S END). A typical abstract machine is outlined in the Fig. 2.9.

MACHINE M
SETS S1,S2,S3...
CONSTANTS C
PROPERTIES P
VARIABLES v1,v2,v3...
INVARIANTS I
INITIALISATION init

EVENTS
E1 ∼= WHEN G1 THEN S1 END ;
E2 ∼= WHEN G2 THEN S2 END ;
.......

END

Figure 2.9: Event-B Machine

Chapter 2 Background 29

In the guarded statement (WHEN G THEN S END), the guard (G) of the event is ex-

pressed as a first order predicate. The actions of an event are specified as simultaneous

assignments of state variables using substitution statements (S). Events occur spon-

taneously whenever their guard holds (true) and they are executed atomically. After

building a model of a system as an abstract machine, it must be proved that a system

is consistent with respect to the invariant properties of the system. The consistency of

the machine is shown by proving that each event of the system preserves the invariant.

2.5.1.2 Gluing Invariants

In an incremental development approach for system modelling we begin with an abstract

definition of the problem. The system is built in several stages by gradually introducing

the details in the refinement steps. An abstract machine can be refined by adding

new events and by adding or removing variables. A refined system state must relate

to the abstract one by an abstraction relation. This abstraction relation is defined

by an invariant known as the gluing invariant. This invariant defines the relationship

between abstract state variables and concrete (refined) state variables. More precisely,

if a statement S that acts on variable x, is refined by another statement T that acts on

variable y under invariants I then we write S ⊑I T. The invariant I is called the gluing

invariant and it defines the relationships between x and y. Each event of the abstract

model is refined to one or more corresponding concrete events. A concrete event is said

to refine a corresponding abstract one, if it is obtained by strengthening the guards

of the abstract one and the gluing invariant is preserved by the joined actions of both

events.

Replacing the abstract variable by the concrete variable in the refinement results in proof

obligations that are generated by the B tools. These proof obligations are associated

with the events in the refinement. The B tool helps to factorize large and complex

proof obligations into simpler proof obligations. In most cases the majority of the proof

obligations are proved by the automatic prover. However, in some cases we need to prove

them by interaction. The B tools also remembers the proved and unproved proofs in

the form of a proof tree. In some cases, in order to prove the unproved proof obligations

we may have to add gluing invariants to the model. In these cases the unproved proof

obligations guide us to construct the gluing invariants. The addition of new gluing

invariants can result in the generation of further proof obligations which may require

the addition of new gluing invariants. After several stages of invariant strengthening we

expect to arrive at a set of invariants which is sufficient to discharge all proof obligations.

In our case studies given in the Chapter 3, 4, 5 and 6, we outline the construction of the

invariants by inspection of the proof obligations, generated by the B Tool. A model is

said to be consistent with respect to a discovered invariant, only if the invariant holds

on the initial state given by initialization clause of B machine, and the activation of

Chapter 2 Background 30

each event preserves the invariant. An invariant constructed incorrectly may discharge

the some of the proof obligations. However, the additional proof obligations generated

by the B Tool associated with other events and initialization, cannot be discharged. In

the modelling guidelines presented in Section 7.3 of Chapter 7, we addressed the issue

of the prover’s failure to discharge a proof obligation and recommend model checking to

precisely understand what is wrong with the newly constructed invariant.

The addition of an appropriate invariant is a key to proving the correctness of the

refinement. In this approach not only do proof obligations and the interactive prover

together guide the construction of new gluing invariants, but it also has the consequence

that the form of gluing invariants closely matches the form of proof obligations, thereby,

making the mechanical proof much easier and in many cases completely automatic.

Consistency and Refinement Checking

Informally, safety properties express that something bad will not happen during sys-

tem execution. With regards to the safety properties, the existing tools generate proof

obligations for following.

1. Consistency Checking : Consistency of a machine is established by proving that

the actions associated with each event modifies the variables in such a way that

the invariants are preserved under the hypothesis that the invariants hold initially

and the guards are true. The existing B tools generate proof obligations for con-

sistency checking. By discharging these proof obligations we ensure that machine

is consistent with respect to the invariants.

2. Refinement Checking : The refinement of a machine consists of refining its state

and events. The gluing invariants relate the state of the refinement, represented by

the concrete variables, to the abstract state, represented by the abstract variables.

An event in the abstraction may be refined by one or more events, and the tool

generates the proof obligations to ensure that gluing invariants are preserved by

actions of the events in the refinement.

Discharging the proof obligations generated due to consistency checking means that

actions of the events do not violate the invariants. Discharging the proof obligations due

to the refinement checking implies that each reachable concrete state is also reachable

in the abstraction.

Non-Divergence and Enabledness Preservation

It is sometimes useful to state that the model of the system under development is

non-divergent and enabledness preserving. The issues relating to these properties are

Chapter 2 Background 31

currently being addressed in the new generation of Event-B tools being developed [44,

92]. These properties are informally defined below.

1. Non-Divergence : In an incremental development approach using Event-B, new

events and the variables can be introduced in the refinement steps. Each new

event of the refinement refines a skip event in the abstraction and defines actions

on the new variables. Proving the non-divergence requires us to prove that the new

events do not take control forever. This constraint requires proof of a condition on a

variant. A variant clause contains a positive integer expression and every new event

introduced in the refinement should decrease the value of this expression. This

mechanism guarantees that new events cannot diverge, since the variant expression

cannot be decreased indefinitely.

2. Enabledness Preservation : By enabledness preservation, we mean that whenever

some event (or group of events) is enabled at the abstract level then the corre-

sponding event (or group of events) is eventually enabled at the concrete level.

This property can be proved by stating that the guards of abstract event implies

the disjunction of the guards of the refined events and the disjunction of the guards

of new events.

The non-divergence and enabledness preservation properties with respect to our model

of transactions are further addressed in the Chapter 7.

2.5.2 Event-B Notation

The Event-B notations are based on set theoretic notation and most of it is self-

explanatory. However, the frequently used notations in our models are outlined here

to increase the readability of the thesis. The Event-B notations are broadly classified as

relational notation (Table 2.1) and function notation (Table 2.2).

Relational Notations

The relation is the most important structure used in Event-B specifications to maintain

the relationship between two sets. Some of the important relational notations and their

meaning is given in following table.

Let A and B be two sets. The notation (↔) defines the set of relations between A and

B as :

A ↔ B = P(A × B)

where × is cartesian product of A and B. A mapping of element a ∈ A and b ∈ B in a

relation R ∈ A ↔ B is written as a 7→ b. The domain of a relation R ∈A ↔ B is the

Chapter 2 Background 32

Notations Meaning

7→ mapping
dom(R) domain of relation R
ran(R) range of relation R

� domain restriction
� range restriction
�− domain anti-restriction
�− overidden operator

R[A] relational image of R over set A

Table 2.1: Relational Notations

set of elements of A that R relates to some elements in B. The domain of R or source

set of R can be defined as :

dom(R) = {a|a ∈ A ∧ ∃b.(b ∈ B ∧ a 7→ b ∈ R)}

Similarly, the range of relation R ∈ A ↔ B is defined as set of elements in B related to

some element in A. The range of relation R may be defined as :

ran(R) = {b|b ∈ B ∧ ∃a.(a ∈ A ∧ a 7→ b ∈ R)}

A relation R ∈ A ↔ B can be projected on a domain U ⊆ A called domain restriction(�)

defined as :

U � R = {a 7→ b | a 7→ b ∈ R ∧ a ∈ U}

Domain anti-restriction (U �− R) is defined as :

U �− R = {a 7→ b | a 7→ b ∈ R ∧ a /∈ U}

Similarly range restriction(�) is the projection of R whose second element is in V ⊆ B.

The range restriction is defined as :

R � V = {a 7→ b | a 7→ b ∈ R ∧ b ∈ V }

The relational image R[U] where U⊆A is defined as :

R[U] = {b | a 7→ b ∈ R ∧ a ∈ U}

The relational inverse (R−1) of a relation R is defined as :

R−1 = {b 7→ a | a 7→ b ∈ R}

If R0 ∈ A ↔ B and R1 ∈ A ↔ B are relations defined on sets A and B, the relational

over-ride operator (R0 �− R1) replaces certain mappings in relation R0 by those in

Chapter 2 Background 33

relation R1.

R0 �− R1 = (dom(R1) �− R0) ∪ R1

Function Notations

Event-B extensively uses the notion of functions. A function is a relation having some

special properties. A partial function from set A to B (A 7→ B) is a relation which

relates an element in A to at most one element in B. A partial function f ∈ A 7→ B

satisfies the following :

∀(a, b1, b2).(a ∈ A ∧ b1 ∈ B ∧ b2 ∈ B ⇒ (a 7→ b1 ∈ f ∧ a 7→ b2 ∈ f) ⇒ b1 = b2))

Similarly a total function f ∈ A → B is a partial function where dom(f)=A. Given f ∈

A 7→ B and a ∈ dom(f), f(a) represents the unique value that a is mapped to by f.

An injective function never maps two different elements of the source set to the same

element of the target set. Injective functions may be of two types, partial injection or

total injection. A partial injection from set A to B (A 7 B) may be defined as :

A 7 B = {f |f ∈ A 7→ B ∧ f−1 ∈ B 7→ A}

A total injection is a partial injective function which is also a total function defined as

A B = (A 7 B) ∩ (A → B)

Some of the important function notations and their meaning is given in Table 2.2. A

more detailed explanation of these operations may be found in [1, 117].

Notations Meaning

7→ partial function
→ total function
7 partial injection

 total injection

Table 2.2: Function Notations

2.6 Conclusions

In this chapter, we outlined the different issues related to replicated data updates, fault-

tolerance, consistency and failures in a distributed database system. Capturing the

causal precedence relation among the different events occurring in distributed systems

is a key to the success of distributed computation. The concept of logical clocks addresses

this problem. Logical clocks such as the Lamport clock and vector clock can be used

Chapter 2 Background 34

to solve a variety of problems relating to distributed mutual exclusion, consistency in

replicated databases, distributed debugging, checkpointing and failure recovery. In a

system of Lamport clocks, a clock at a process is represented by an integer value. The

advantage of Lamport clocks is that messages piggyback less information but they suffer

from the disadvantage that they are not strongly consistent. In vector clocks, a clock at a

process is represented by a vector of integers whose size equals the number of processes in

the system. The advantage of vector clocks over Lamport clocks is that they are strongly

consistent. However, they suffer from the disadvantage that all messages piggyback a

vector and message overheads are likely to increase. An approach to the reduction of

vector timestamp has been addressed in [16, 120].

Finally, we have outlined our approach to modelling and reasoning about distributed

system using Event-B. Event-B [2, 7, 92] is a formal technique consisting of describing

a problem, rigorously introducing the solutions or design details in refinement steps

to obtain more concrete specifications and verifying that the proposed solutions are

correct. The approach to specifying the system and verification is based on the technique

of abstraction and refinement. There exist several industrial level tools to support B

development such as Click’n’Prove [6], Atelier B [127], and the B-Toolkit [33] which

provide an environment for generation of proof obligations for consistency checking and

refinement checking. Recently, a new generation RODIN B tool [5] has been developed

which provides specific support for Event-B development. Applications of the B method

to develop models of distributed systems include modelling a web based systems [110],

a secure communication system [25], verification of one-copy equivalence criterion in a

distributed database system [142], verification of the IEEE 1394 tree protocol distributed

algorithm [7], a Mondex Purse [31]. The general modelling approach for distributed

systems may be found in [24].

Chapter 3

Distributed Transactions

3.1 Introduction

In this chapter, we formally develop an abstract model of transactions in Event-B for a

one-copy database. The notion of a replicated database is introduced in the refinement

of the abstract model. The replica control mechanism considered in the refinement

allows both update and read-only transactions to be submitted at any site. In our

abstract model, an update transaction modifies the abstract one-copy database through

a single atomic event. In the refinement, an update transaction consists of a collection

of interleaved events updating each replica separately. The transaction mechanism on

the replicated database is designed to provide the illusion of an atomic update of a one-

copy database. Through our refinement proof we verify that this is indeed the case. A

read-only transaction reads the values from a replica locally at the site of submission.

Transaction failure is represented by sites aborting transactions. A site may decide

to abort an update transaction due to race conditions among conflicting transactions.

We address the one-copy equivalence consistency criterion through this refinement. By

verifying the refinement, we verify that the design of the replicated database confirms

to the one-copy database abstraction despite transaction failures at a site.

The remainder of this chapter is organized as follows: Section 3.2 describes the sys-

tem model informally, Section 3.3 presents an abstract Event-B model of transactions

considering the database as single logical entity, Section 3.4 presents a refinement of

the abstract Event-B model introducing details of the replicated database, Section 3.5

presents some properties of system given as gluing invariants detailing the relationship

between the single copy and the replicated database, Section 3.6 presents another refine-

ment where explicit messaging is introduced. In this refinement, we show how a reliable

broadcast can be used to ensure transaction execution. In Section 3.7 we address site

failures and transaction abortion using a timeout and finally Section 3.8 concludes the

chapter.

35

Chapter 3 Distributed Transactions 36

3.2 System Model

In this section, we present an informal model of a replicated database. Our system model

consists of a set of sites and data objects. Users interact with the database by starting

transactions. We consider the case of full replication and assume all data objects are

updateable. The read anywhere write everywhere [19, 97] replica control mechanism is

considered for updating replicas. A transaction is considered as a sequence of read/write

operations executed atomically, i.e., a transaction will either commit or abort the effect

of all database operations.

3.2.1 Transaction Types

Let the sequence of read/write operations issued by the transaction Ti be defined by a

set of objects objectset(Ti) where objectset(Ti) 6= ∅. Let the set writeset(Ti) represent

the set of objects to be updated such that writeset(Ti) ⊆ objectset(Ti). The following

types of transactions are considered for this model of a replicated database.

– Read-Only Transactions : These transactions are submitted locally to the site

and commit after reading the requested data object locally. A transaction Ti is

defined as a read-only transaction if writeset(Ti)= ∅.

– Update Transactions : These transactions update the requested data objects.

The effects of update transactions are global, thus when committed, all replicas

of data objects maintained at all sites must be updated. In case of abort, none of

the sites update the data object. A transaction Ti is a update transaction if its

writeset(Ti) 6= ∅.

– Conflicting Update Transactions : Two update transactions Ti and Tj are in

conflict if the sequence of operations issued by Ti and Tj are defined on sets of

objects, i.e., objectset(Ti) ∩ objectset(Tj) 6= ∅.

In order to meet the strong consistency requirement where each transaction reads the

correct value of a replica, conflicting transactions need to be executed in isolation. We

consider the case of general isolation [39], where the sequence of operations issued by

conflicting transactions are executed in isolation at all participating sites. In our model,

we ensure this property by not issuing a transaction at a site if there is a conflicting

transaction that is active at that site. In our model the transactions are executed within

the framework of the two phase commit protocol [48, 49] as follows.

– A read-only transaction Ti is executed locally at the initiating site of Ti (also

called the coordinator site of Ti) by acquiring locks on the data object defined by

objectset(Ti).

Chapter 3 Distributed Transactions 37

– An update transaction Ti is executed by broadcasting its operations to the par-

ticipating sites. On delivery, a participating site Sj initiates a sub-transaction Tij

by acquiring locks on objectset(Ti). If the objects are currently locked by another

transaction, Tij is blocked.

– The coordinator site of Ti waits for the commit/abort vote messages from all

participating sites. A global commit message is broadcast by the coordinator site

of Ti only if it receives local commit messages from all participating sites and a

global abort message is broadcast if there is at least one vote-abort message from

participating sites.

3.2.2 Race Conditions

In a replicated database that uses a reliable broadcast, conflicting operations of the

transactions may arrive at different sites in different orders. Since operations of update

transactions are executed by sending update messages to all participating sites, every

participating site obtains a lock on the requested data object and retains the lock until

the transaction globally commits using a two phase commit. This may lead to the

blocking of conflicting transactions and the sites may abort one or more of the conflicting

transaction by timeouts. For example, consider two conflicting update transactions Ti

and Tj initiated at site Si and Sj respectively. Both of the transactions may be blocked

in the following scenario :

– Si starts transaction Ti and acquires locks on objectset(Ti) at site Si. Site Si

broadcasts an update messages for Ti to participating sites. Similarly, another site

Sj starts a transaction Tj , acquires locks on objectset(Tj) at site Sj and broadcasts

an update messages for Tj to participating sites.

– The site Si delivers an update message for Tj from Sj and Sj delivers an update

message for Ti from Si. The Tj is blocked at Si as Si waits for vote-commit from

Sj for Ti. Similarly, Ti is blocked at Sj waiting for vote-commit from Si for Tj .

In order to recover from the above scenario where two conflicting transactions are

blocked, either or both transactions may be aborted by the sites. This problem can

be removed by assuming a stronger notion of reliable broadcast that provides higher

order guarantees on message delivery [9, 125]. The abortion of the conflicting trans-

action can be avoided by using a total order broadcast which delivers and executes the

conflicting operations at all sites in the same order. Similarly, a causal order broadcast

captures conflict as causality and transactions executing conflicting operations are exe-

cuted at all sites in the same order. Processing update transactions over a total causal

order broadcast not only delivers the operations in a total order at the participating site,

but the causal precedence relationship among the update transaction is also preserved.

Chapter 3 Distributed Transactions 38

3.3 Abstract Model of Transactions in Event-B

The abstract data model of transactions is given in Fig. 3.1 as a B machine. The abstract

model maintains a notion of a central or one-copy database. The abstract database is

modelled as a total function from objects to values :

database ∈ OBJECT → VALUE

In practice a database will be partial, but for simplicity we avoid dealing with the errors

caused by trying to read undefined objects and instead focus on errors caused by sites

failing to commit a transaction. An individual transaction will involve a set of objects

readset ⊆ OBJECT. It will read from a partial projection of the database (pdb) on to

readset, i.e.,

pdb = readset � database

If it is an update transaction it will write to a subset of readset and the new values of

the objects to be written may depend on the existing values of the objects in readset.

Let the set of objects to be written be writeset where writeset ⊆ readset. So we model

an update to a database as function that takes a partial database (representing the

current values of the objects in readset) and yields a partial database (representing the

new values of the objects in writeset).

MACHINE Replica1
DEFINITIONS PartialDB == (OBJECT � VALUE) ;
 UPDATE == (PartialDB � PartialDB) ;
 ValidUpdate (update,readset) == (dom(update)= readset � VALUE
 � ran(update) � readset � VALUE)
SETS TRANSACTION; OBJECT; VALUE;
 TRANSSTATUS={COMMIT,ABORT,PENDING}
VARIABLES trans, transstatus, database, transeffect, transobject

INVARIANT trans � � (TRANSACTION)
 � transstatus � trans � TRANSSTATUS
 � database � OBJECT � VALUE
 � transeffect � trans � UPDATE
 � transobject � trans � � 1 (OBJECT)
 � 	 t.(t� trans
 ValidUpdate (transeffect(t), transobject(t)))

INITIALISATION trans :=� || transstatus :=�
 || transeffect := {} || transobject :={}
 || database :� OBJECT � VALUE

Figure 3.1: Abstract Model of Transactions in Event-B

Chapter 3 Distributed Transactions 39

A transaction is a read-only transaction if its writeset = ∅. Thus, for a read-only

transaction, its update function maps a partial database defined over readset to an

empty set. The update function is defined as below,

UPDATE , PartialDB 7→ PartialDB

where PartialDB , OBJECT 7→ VALUE

An update function update maps a partial database (pdb1) where pdb1 = readset �

database to another partial database (pdb2) where dom(pdb2) = writeset. The update

function update ∈ UPDATE updates the database as follows,

database := database �− update(pdb1)

As shown above, a database is written by reading the values from a partial database

(pdb1) defined over readset. The data objects to be updated in the database are defined

as update(pdb1) which represent the computation associated with the transaction. We

say that an update update ∈ UPDATE is valid with respect to a set of objects readset

whenever,

dom(update) = readset → V ALUE

ran(update) ⊆ readset 7→ V ALUE

A brief description of our abstract data model of transactions in Fig. 3.1 is given below.

– TRANSACTION, SITE, OBJECT and VALUE are defined as a deferred sets. The

TRANSSTATUS is an enumerated set containing values COMMIT,ABORT and

PENDING. These values are used to represent the global status of transactions.

– The database is represented by a variable database as a total function from OB-

JECT to VALUE. A mapping, (o 7→ v) ∈ database, indicates that object o has

value v in the database.

– The variable trans represents the set of started transactions. The variable transsta-

tus maps each started transaction to TRANSSTATUS.

– The variable transobject is a total function which maps a transaction to a set

of objects. The set transobject(t) represents the set of data objects read by a

transaction t. The set of objects written to by t will be a subset of transobject(t).

– The variable transeffect is a total function which maps each transaction to an

object update function UPDATE as previously described.

– A transaction t is a read-only transaction if ran(transeffect(t)) = {∅}, i.e., each

partial database is mapped to the empty partial database.

Chapter 3 Distributed Transactions 40

– The invariant t ∈ trans ⇒ ValidUpdate(transeffect(t),transobject(t)) indicates that

all updates must be valid.

3.3.1 Starting a Transaction

The event StartTran(tt), given in Fig 3.2, models starting a new transaction tt. The

updates and objects are event parameters constrained by the guard of the event. The

guard given in the WHERE statement ensures that tt is fresh. The action of the event

sets the variables transobject(tt) and transeffect(tt) so that transobject(tt) is a non empty

set of objects and transeffect(tt) is some valid update on the objects. A transaction tt

is considered as read-only if ran(transeffect(tt)) is an empty set and it is considered an

update transaction if ran(transeffect(tt)) contains at least one mapping of the form (o

7→ v). The action of the event also sets the status of transaction tt to PENDING.

3.3.2 Commitment and Abortion of Update Transactions

The event CommitWriteTran(tt) models commitment of an update transaction. As a

consequence of the occurrence of this event, the abstract database is updated with the

StartTran(tt� TRANSACTION)
�

 ANY updates , objects
 WHERE tt � trans � updates � UPDATE � objects �

�
1 (OBJECT) � ValidUpdate (updates,objects)

 THEN trans := trans � {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 END ;

CommitWriteTran(tt� TRANSACTION) �
 ANY pdb
 WHERE tt � trans � transstatus(tt) =PENDING � ran(transeffect(tt)) � {� } � pdb = transobject(tt) 	 database
 THEN transstatus(tt) := COMMIT
 || database := database
 transeffect(tt)(pdb)
 END;

 Figure 3.2: Events of Abstract Transaction Model- I

Chapter 3 Distributed Transactions 41

effects of the transaction and its status is set to commit. The B specification of this

event is given in Fig 3.2.

The event AbortWriteTran(tt) models an abort of an update transaction. As a conse-

quence of the occurrence of this event, the transaction status is set to abort and its

effects are not written to the database. The Event-B specification of this event is given

in Fig 3.3.

3.3.3 Commitment of Read-Only Transactions

The event ReadTran(tt), given in Fig 3.3, models commitment of a read-only transac-

tion tt. A pending read-only transaction tt commits after reading the objects from the

abstract database defined by variable transobject(tt). A read-only transaction commits

by returning the values of the objects as a partial database.

AbortWriteTran(tt � TRANSACTION)

�

 WHEN tt � trans � transstatus(tt) = PENDING � ran(transeffect(tt)) � {
�

}
 THEN transstatus(tt) := ABORT
 END;

val � ReadTran (tt� TRANSACTION)

�

 WHEN tt � trans � transstatus(tt) = PENDING � ran(transeffect(tt))= {
�

}
 THEN val := transobject(tt) � database
 || transstatus(tt) := COMMIT
 END;

Figure 3.3: Events of Abstract Transaction Model- II

3.4 Refinements of the Transactional Model

3.4.1 Overview of the Refinement Chain

In the Section 3.3 we outlined the abstract model of transactions. An overview of the

refinement chain is outlined below.

L1 This level consists of the abstract model of transactions. In the abstract model,

an update transaction modifies the abstract one-copy database in a single atomic

event. This level is presented in Section 3.3.

Chapter 3 Distributed Transactions 42

L2 We introduce the notion of replicated databases in this refinement. In this refine-

ment, an update transaction consists of a collection of interleaved events updating

each replica separately. The transaction mechanism on the replicated database

is designed to provide the illusion of an atomic update of a one-copy database.

Through our refinement proof we verify that this is indeed the case. This level is

presented in Section 3.4.2.

L3 In this refinement we outline the simplification of the event of Global Commit.

This is shown by strengthening the guards of CommitWriteTran event. This level

is presented in Section 3.4.5.

L4 In this refinement we introduce the notion of messages. The various messages,

corresponding to the two phase commit protocol, are introduced in this refinement

that illustrates the integration of our transaction model with a broadcast system.

The sites are assumed to communicate using a reliable broadcast. This refinement

is given in Section 3.6.

L5 In this refinement we introduce the notion of site failures. We address the issue

of participating site failures and show that a replicated database remains in a

consistent state even in the presence of site failures. This refinement is outlined in

Section 3.7.

3.4.2 First Refinement : Introducing the Replicated Databases

The initial part of the first refinement of the abstract model is given in Fig. 3.4. The

Event-B specification of events of the refinement is introduced later in this section.

The abstract Event-B model of transactions maintains a notion of an abstract central

database. The variable database represents a central database in this model. In the re-

finement, the notion of replicated database is introduced. The abstract variable database

is replaced by a concrete variable replica in the refinement. It may be noted that in the

abstract model given in Fig. 3.2, an update transaction performs updates on an abstract

central database, whereas, in the refined model, an update transaction updates replicas

at each site separately. Similarly, a read-only transaction reads the data from the replica

at the site of submission of that transaction. A brief description of the refinement is

given below.

– The new variables coordinator, replica, activetrans,freeobject and sitetranstatus are

introduced in the refinement. The variable coordinator is defined as a total function

from trans to SITE. A mapping of form (t 7→s) ∈ coordinator implies that site s is

the coordinator site for transaction t.

– Each site maintains a replica of the database. The variable replica is initialized to

have the same value of each data object at each site. A mapping (s 7→(o 7→v)) ∈

replica indicates that site s currently has value v for object o.

Chapter 3 Distributed Transactions 43

REFINEMENT Replica2
REFINES Replica1

SETS SITE ;
 SITETRANSSTATUS={ commit,abort,precommit,pending}

VARIABLES trans, transstatus, activetrans, coordinator, sitetransstatus,
 transeffect, transobject, freeobject, replica

INVARIANT activetrans � SITE � trans
 � coordinator � trans � SITE
 � sitetransstatus � trans � (SITE � SITETRANSSTATUS)
 � replica � SITE � (OBJECT � VALUE)
 � freeobject � SITE � OBJECT

INITIALISATION trans :=

�
 || transstatus :=

�
 || activetrans :=

�

 || coordinator :=
�

 || sitetransstatus :=
�

 || transeffect := {}
 || transobject := {} || freeobject := SITE � OBJECT
 || ANY data WHERE data � OBJECT � VALUE
 THEN replica := SITE � {data} END

 Figure 3.4: Initial part of Refinement

– Variable activetrans keeps a record of transactions running at various sites, i.e., it

is in the state precommit or pending. A mapping (s 7→t) ∈ activetrans indicates

that site s is running transaction t. The variable freeobject keeps a record of objects

at various sites which are free, i.e., those objects which are not locked by any active

transaction.

– The variable sitetransstatus maintains the status of all started transactions at

various sites. A mapping of form (t 7→ (s 7→ commit))∈ sitetransstatus indicates

that t has committed at site s.

– The new events such as IssueWriteTran, BeginSubTran, SiteAbortTx, SiteCom-

mitTx, ExeAbortDecision and ExeCommitDecision are introduced in operations.

3.4.3 Events of Update Transaction

In this refinement, various events of an update transaction are triggered within the

framework of two phase commit protocol. An informal logical ordering of the occurrence

of various events of the refinement for an update transaction is outlined in Fig. 3.5.

– The events StartTran(tt) and IssueWriteTran(tt) occur at the coordinating site

of tt. Once a transaction is started at the coordinator, the coordinator sends

update messages to the participating sites. The update messages are delivered

Chapter 3 Distributed Transactions 44

to all sites, including the coordinator, in an arbitrary order. Upon delivery of an

update message at the coordinator site, the coordinator site issues a transaction at

the coordinator. The event IssueWriteTran(tt) models the issuance of an update

transaction at the coordinator.

– Upon delivery of an update message, a participating site starts a sub-transaction

at that site. The event BeginSubTran(tt,ss) models starting a sub-transaction of

tt at site ss. The site may independently decide to either commit or abort tt. The

events SiteCommitTx(tt,ss) and SiteAbortTx(tt,ss) are events of the commitment

or abortion of an update transaction tt at the participating site ss. Participating

sites communicate their decision to the coordinator of tt by sending either a Vote-

Commit or Vote-Abort message.

– Upon receipt of Vote-Commit/Abort messages, the coordinator site triggers either

the event AbortWriteTran(tt) or CommitWriteTran(tt). The event CommitWrite-

Tran(tt) occurs when the coordinator site receives Vote-Commit message from

all participating sites, whereas, the delivery of just one Vote-Abort message from

any participating site triggers the AbortWriteTran(tt) event. The coordinating

site communicates its decision by broadcasting a commit/abort decision message

through a global commit or global abort message. Upon receipt of a global com-

mit/abort decision message from the coordinator, a participating site ss decides

to abort or commit tt by triggering either ExeAbortDecision(ss,tt) or ExeCommit-

Decision(ss,tt) event.

3.4.4 Starting and Issuing a Transaction

Submission of a transaction tt is modelled by the event StartTran(tt). The event Is-

sueWriteTran(tt) models the issuing of an update transaction at the coordinator from

a set of started transactions, which are not in conflict with other issued transactions

Participating Sites

Global Commit/Abort Decision Message

Coordinator

Vote−Commit/Abort Message

Update Request Message

AbortWriteTran
CommitWriteTran

IssueWriteTran
StartTran

BeginSubTran

 SiteAbortTx
SiteCommitTx

ExeAbortDecision
ExeCommitDecision

Figure 3.5: Events of Update Transaction

Chapter 3 Distributed Transactions 45

at the coordinator site. The guard of IssueWriteTran(tt) ensures that a transaction tt

is issued by the coordinator when all active transactions tz, running at the coordinator

site of tt, are not in conflict with tt, i.e.,

tz ∈ trans ∧ (coordinator(tt) 7→ tz) ∈ activetrans

⇒ transobject(tt) ∩ transobject (tz) = ∅

The Event-B specification for the events StartTran(tt) and IssueWriteTran(tt) of the

refinement are given in Fig 3.6.

3.4.5 Commitment and Abortion of Update Transactions

Refined specifications for the commit and abort events of update transaction tt are given

in Fig. 3.7 and Fig 3.8. An update transaction tt globally commits only if all partici-

pating sites are ready to commit it, i.e., it has status pre-committed at all sites. As a

StartTran(tt) �
 ANY ss, updates, objects
 WHERE ss � SITE � tt � trans � updates � UPDATE � objects �

�
1 (OBJECT) � ValidUpdate (updates,objects)

 THEN trans := trans � {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 || coordinator(tt) := ss
 || sitetransstatus(tt) := {coordinator(tt) � pending}
 END;

IssueWriteTran(tt) �
 WHEN tt � trans � (coordinator(tt) � tt) � activetrans � sitetransstatus(tt)(coordinator(tt)) = pending � ran(transeffect(tt))� {� } � transobject(tt) 	 freeobject[{coordinator(tt)}] �
 tz.(tz � trans � (coordinator(tt) � tz)� activetrans

 transobject(tt) � transobject(tz) = �)
 THEN activetrans := activetrans � {coordinator(tt)� tt}

 || sitetransstatus(tt)(coordinator(tt)) := precommit
 || freeobject := freeobject - {coordinator(tt)} � transobject(tt)
END;

Figure 3.6: Refinement : Coordinator Site Events-I

Chapter 3 Distributed Transactions 46

consequence of the occurrence of the commit event at the coordinator, the replica main-

tained at the coordinator site is updated with the transaction effects, data objects held

for transaction tt are declared free and the status of the transaction at the coordinator

site is set to commit. The AbortWriteTran(tt) event given in Fig. 3.8 ensures that an

update will abort if it has aborted at some participating site.

CommitWriteTran(tt) �
 ANY pdb
 WHERE tt� trans
 � pdb = transobject(tt) � replica(coordinator(tt))
 � ran(transeffect(tt)) � {

�
}

 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt) = PENDING
 � � s.(s � SITE � sitetransstatus(tt)(s) = precommit)
 � � (s,o) 	 (s � SITE � o � OBJECT � o� transobject(tt) � (s � o)
 freeobject)
 � � s.(s � SITE � (s � tt)� activetrans)
 THEN transstatus(tt) := COMMIT
 || activetrans := activetrans -{coordinator(tt) � tt}
 || sitetransstatus(tt)(coordinator(tt)):= commit
 || freeobject := freeobject � {coordinator(tt)} transobject(tt)
 || replica(coordinator(tt)) := replica(coordinator(tt)) � transeffect(tt)(pdb)
 END;

 Figure 3.7: Refinement : Coordinator Site Events - II

Further Refinement of Commit Event

The event CommitWriteTran(tt) can be further refined under the following observations.

– o ∈ transobject(t) ∧ sitetransstatus(t)(s) = precommit ⇒ (s 7→ o) 6∈ freeobject

– sitetransstatus(t)(s) = precommit ⇒ (s 7→t) ∈ activetrans

– o ∈ transobject(t) ∧ (s 7→t) ∈ activetrans ⇒ (s 7→ o) 6∈ freeobject

These observations can be included as invariants in a further refinement allowing the

guards of the CommitWriteTran(tt) event to be simplified. The simplified guards for

the refined CommitWriteTran(tt) are given below.

[tt ∈ trans

∧ ran(transeffect(tt)) 6= {∅}

∧ transstatus(tt)= PENDING

∧ ∀s.(s ∈ SITE ∧ sitetransstatus(tt)(s)= precommit)]

Chapter 3 Distributed Transactions 47

3.4.6 Read-Only Transactions

The specifications of executing a read-only transaction is given in Fig. 3.8. A pending

read-only transaction tt returns the value of objects in the set transobject(tt) from the

replica at its coordinator. The necessary conditions for occurrence of this event are as

follows.
transstatus(tt) = PENDING

∧ ran(transeffect(tt) = {∅}

∧ transobject(tt) ⊆ freeobject[{ss}]

As a consequence of the occurrence of this event, transaction tt reads the objects from

the replica at site ss as,

val := transobject(tt) � replica(ss)

It may be noted that in the abstract model given in Fig 3.3, a read-only transaction

reads the objects from abstract database as,

val := transobject(tt) � database

AbortWriteTran(tt) �
 WHEN tt� trans
 � ran(transeffect(tt))� {

�
}

 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 � �s. (s� SITE � sitetransstatus(tt)(s)= abort)
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject � {coordinator(tt)} � transobject(tt)
 END;

val 	 ReadTran(tt,ss)

 WHEN tt� trans
 � transstatus(tt)=PENDING
 � transobject(tt) freeobject[{ ss}]
 � ss = coordinator(tt)
 � ran(transeffect(tt)) = {� }
 THEN val := transobject(tt) � replica(ss)
 || sitetransstatus(tt)(ss) := commit
 || transstatus(tt):=COMMIT
 END;

Figure 3.8: Refinement : Coordinator Site Events - III

Chapter 3 Distributed Transactions 48

In refinement checking, we need the following invariant to show that the refinement is

valid.

(ss 7→ oo) ∈ freeobject ⇒ database(oo) = replica(ss)(oo)

This is explained further in section 3.5.

3.4.7 Starting a Sub-Transaction

In our model we assume full replication, i.e., each data object is replicated at all sites.

A global update transaction can be submitted to any one site, called the coordinator

site for that transaction. However, it accesses and updates the data at other sites, called

participating sites. Upon submission of an update transaction, the coordinating site of

the transaction broadcasts all operations of the transaction to the participating sites

by an update message. Upon receiving the update message at a participating site, the

transaction manager at that site creates a sub-transaction. The activity of a global

update transaction at a given site is referred as a sub-transaction.

The BeginSubTran(tt,ss) event models starting a sub-transaction of tt at participating

site ss. The specification of this event is given in Fig. 3.9. The following guard of

BeginSubTran(tt) ensures that a sub-transaction of tt is started at site ss when no

active transaction tz running at ss is in conflict with tt :

(ss 7→ tz) ∈ activetrans ⇒ transobject(tt) ∩ transobject(tz) = ∅

A sub-transaction at a participating site is started when it has precommitted at the

coordinator site of tt. Also, a sub-transaction at a participating site may be started if

the coordinator has already decided to globally abort it. The coordinator may decide

to globally abort an update transaction if it has received any one vote-abort message

from any participating site. In such cases, the rest of the sites go ahead with starting a

sub-transaction when they deliver an update message and the abort of sub-transaction

at that site will take place when it delivers global-abort message from the coordinator.

Therefore, we add following as a guard to the event BeginSubTran.

sitetransstatus(tt)(coordinator(tt)) ∈ {precommit, abort}

The guard ss /∈ dom(sitetransstatus(tt)) prevents starting a sub-transaction again at

the site ss. As a consequence of the occurrence of this event, transaction tt becomes

active at site ss and the sitetransstatus of tt at ss is set to pending.

Chapter 3 Distributed Transactions 49

BeginSubTran(tt,ss)�
WHEN tt � trans
 � sitetransstatus(tt)(coordinator(tt)) � { precommit , abort }
 � (ss� tt)� activetrans
 � ss � coordinator(tt)
 � ran(transeffect(tt))� {

�
}

 � transobject(tt) � freeobject[{ ss}]
 � ss 	 dom(sitetransstatus(tt))
 �
 tz.(tz � trans � (ss � tz)� activetrans
 � transobject(tt) � transobject(tz) =

�
)

THEN activetrans := activetrans {ss� tt}
 || sitetransstatus(tt)(ss) := pending
 || freeobject := freeobject - {ss} � transobject(tt)
END;

Figure 3.9: Refinement : Participating Site Events -I

SiteCommitTx(tt,ss)�
 WHEN (ss� tt) � activetrans
 � sitetransstatus(tt)(ss)= pending
 � ss � coordinator(tt)
 � ran(transeffect(tt))� { � }
 THEN sitetransstatus(tt)(ss) := precommit
 END;

SiteAbortTx(tt,ss)�
 WHEN (ss� tt)� activetrans

 � sitetransstatus(tt)(ss)= pending
 � ss � coordinator(tt)
 � ran(transeffect(tt))� { � }
THEN sitetransstatus(tt)(ss) := abort
 || freeobject := freeobject � {ss}� transobject(tt)
 || activetrans := activetrans -{ss � tt}
END;

Figure 3.10: Refinement : Participating Site Events -II

3.4.8 Pre-Commitment and Abortion of Sub-transaction

A participating site ss can independently decide to either pre-commit or abort a sub-

transaction. The events SiteCommitTx(tt,ss) and SiteAbortTx(tt,ss), given in Fig. 3.10,

model pre-committing or aborting a sub-transaction of tt at ss. Pre-committing a trans-

action at a participating site is considered as a commit guarantee given to the coordinator

by a participating site. In the case of abort, a site sets all objects of transaction tt free

and a related sub-transaction is removed from list of active transactions at that site.

Chapter 3 Distributed Transactions 50

3.4.9 Completing the Global Commit/Abort

We have already seen how the refined CommitWriteTran(tt) and AbortWriteTran(tt)

events model the global commit or abort decision. The events ExeCommitDecision(tt,ss)

and ExeAbortDecision(tt,ss) given in Fig. 3.11 model the commit and abort of tt at

participating site ss once a global abort or commit decision has been taken by the

coordinating site. In the case of global commit, each site updates its replica separately.

ExeAbortDecision(ss,tt) �
WHEN tt� trans
 � (ss� tt)� activetrans
 � ss � coordinator(tt)
 � ran(transeffect(tt))� {

�
} � sitetransstatus(tt)(coordinator(tt)) = abort � sitetransstatus(tt)(ss) = precommit

THEN sitetransstatus(tt)(ss):= abort
 || activetrans := activetrans -{ss � tt}
 || freeobject := freeobject � {ss} � transobject(tt)
END;

ExeCommitDecision(ss,tt) �
 ANY pdb

WHERE tt � trans � (ss� tt)� activetrans � ss � coordinator(tt) � ran(transeffect(tt)) � {
�

} � pdb = transobject(tt) 	 replica(ss) � sitetransstatus(tt)(coordinator(tt)) = commit � sitetransstatus(tt)(ss) = precommit
THEN sitetransstatus(tt)(ss) := commit
 || activetrans := activetrans -{ss � tt}
 || freeobject := freeobject � {ss} � transobject(tt)
 || replica(ss) := replica(ss)
 transeffect(tt)(pdb)
END;

Figure 3.11: Refinement : Participating Site Events -III

3.5 Gluing Invariants

The one-copy equivalence consistency criterion requires us to prove that our refinement

(replicated database) is a valid refinement of the abstract transaction model (abstract

central database). We have replaced the abstract variable database in the abstract model

by the variable replica in the refinement.

Chapter 3 Distributed Transactions 51

RT/ST Read/StartTran IWT IssueWriteTran CWT CommitWriteTran
AWT AbortWriteTran BST BeginSubTran SAT SiteAbortTx
SCT SiteCommitTX ECD ExeCommitDecision EAD ExeAbortDecision

Table 3.1: Events Code

Initially, the only proof obligation that could not be proved using the prover involves

the relationship between database and replica. This proof obligation associated with the

event ReadTran is given below.

ReadTran(PO1)

transstatus(tt) = PENDING ∧

ran(transeffect(tt) = {φ} ∧

oo ∈ transobject(tt) ∧

coordinator(tt) 7→ oo ∈ freeobject ∧

⇒

replica(coordinator(tt))(oo) = database(oo)

This proof obligation states that for a given read-only transaction whose transaction

objects are free at its coordinator site then the value of those objects at the replica

at the coordinator site is same as that in the abstract database. This observation is

generalized in to order to construct a gluing invariant, such that, if any data object is

in the free list at any site then it represents the value of that data object in the abstract

database. Therefore, we added the gluing invariant given as Inv-1 in Fig. 3.12.

The name of various events of our model and their corresponding event code are given

in Table 3.1.

 Invariants Required By

/*Inv -1*/ (ss � oo) � freeobject � database(oo) = replica(ss)(oo) RT,CWT

 Figure 3.12: Gluing Invariants-I

The invariant Inv-1 means that a free object oo at site ss represents the value of oo in

the abstract database. We have omitted the quantification over all identifiers (ss,oo,tt

etc.) to avoid clutter. When invariant Inv-1 is added to the refined machine, the B

tool generates further proof obligations associated with several other events. One of

the important proof obligations associated with the AbortWriteTran event is outlined

below.

Chapter 3 Distributed Transactions 52

AbortWriteTran(PO2)

transstatus(tt) = PENDING ∧

ran(transeffect(tt) 6= {φ}

coordinator(tt) 7→ tt ∈ activetrans ∧

oo ∈ transobject(tt) ∧

⇒

replica(coordinator(tt))(oo) = database(oo)

This proof obligation states that if a pending transaction is active at its coordinator

site then all objects of the transaction in the abstract database have same value in the

replica at the coordinator. Thus, in order to discharge this proof obligation we construct

an invariant given as Inv-2 in the Fig. 3.13.

In order to discharge the proof obligations generated due to the addition of Inv-1 we

add a set of invariants given in Fig. 3.13. A brief description of these invariants is given

in the following :

- Inv-2 : If a transaction t is active at its coordinator then all transaction objects

o ∈ transobject(t) in the abstract database have the same value in the replica at

the coordinator.

- Inv-3 : If two conflicting transactions t1 and t2 are active at a site s, they must

represent the same transaction, i.e., t1=t2 . This also implies that two different

conflicting transactions can not be active at the same time at the same site s.

 Invariants Required By

/*Inv-2*/ (coordinator(t) � t) � activetrans AWT,CWT,EAD,ECD
 � o� transobject(t)
 � database(o) = replica(coordinator(t))(o)
/*Inv-3*/ (s � t1) � activetrans ST,IWT,BST
 � (s � t2) � activetrans
 � transobject(t1) � transobject(t2)�

�

 � t1=t2

Figure 3.13: Gluing Invariants -II

After addition of Inv-2, a new proof obligation associated with the events CommitWrite-

Tran and SiteCommitTx is generated. This proof obligation requires us to prove that if

a committed update transaction is still active at a participating site then the value of all

updateable objects in the abstract database is equal to the values given by transeffect

Chapter 3 Distributed Transactions 53

function of that transaction. A simplified form of the proof obligation is outlined below.

ExeCommitDecision(PO3)

sitetransstatus(tt)(coordinator(tt)) = commit ∧

ss 6= coordinator(tt) ∧

ran(transeffect(tt) 6= {φ} ∧

oo ∈ transobject(tt) ∧

ss 7→ tt ∈ activetrans ∧

oo ∈ dom(transeffect(tt)(transobject(tt) � replica(ss)))

⇒

transeffect(tt)(transobject(tt) � replica(ss))(oo) = database(oo)

In order to discharge the proof obligation PO3, we construct an invariant given as Inv-4.

A brief description of the invariant Inv-4 is outlined below.

- Inv-4 : For a committed transaction t which is active at one of the site s, the new

values of objects defined by transeffect(t) reflects the value of those objects in the

abstract database.

 Invariants Required By

/*Inv-4*/ transstatus(t)= COMMIT CWT,AWT,ECD,SCT
 � (s � t)� activetrans
 � o � dom(transeffect(t)(transobject(t) � replica(s)))
 � database(o) = transeffect(t)(transobject(t) � replica(s))(o)

Figure 3.14: Gluing Invariants -III

Further, due to the addition of the invariant Inv-4 a new proof obligation is generated.

The simplified form of this proof obligation is outlined below.

CommitWriteTran(PO4)

transstatus(tt) = COMMIT ∧

ss 6= coordinator(tt) ∧

ran(transeffect(tt) 6= {φ} ∧

oo ∈ transobject(tt) ∧

ss 7→ tt ∈ activetrans ∧

oo /∈ dom(transeffect(tt)(transobject(tt) � replica(ss)))

⇒

replica(ss)(oo) = database(oo)

Chapter 3 Distributed Transactions 54

This proof obligation associated with the event CommitWriteTran requires us to prove

that for a committed update transaction, which is still active at a participating site, the

value of all non updateable objects of that transaction at that site is equal to that in

the abstract database. In order to discharge the proof obligation PO4 we construct and

add the Inv-5 to the refined model.

Following a similar approach, in order to preserve the invariants in Fig. 3.14, we have

to prove another set of invariants given in Fig. 3.15. The brief description of invariants

in Fig. 3.15 are given below.

- Inv-5 : For a committed transaction t which is still active at a participating site s,

the value of any read-only objects of t is the same in replica(s) as in the database.

- Inv-6,7 : If a transaction t commits or aborts globally, it must have either com-

mitted or aborted locally at its coordinator.

 Invariants Required By

/*Inv-5*/ transstatus(t)= COMMIT CWT,AWT,BST,ECD
 � o � transobject(t) SAT,SCT
 � (s � t) � activetrans
 � o � dom(transeffect(t)(transobject(t) � replica(s)))
 � database(o) = replica(s)(o)
/*Inv-6*/ transstatus(t)=ABORT AWT,EAD,ECD,ST
 � sitetransstatus(t)(coordinator(t))= abort
/*Inv-7*/ transstatus(t)= COMMIT CWT,AWT,EAD,ECD,ST
 � sitetransstatus(t)(coordinator(t))= commit

Figure 3.15: Gluing Invariants -IV

Another important proof obligation associated with ExeCommitDesicion and ExeAbort-

Decision generated due to the addition of Inv-5 requires us to prove that if a transaction

that is either pending or aborted state and still active at a site ss, then all transaction

objects oo in the abstract database have the same value in the replica at that site. A

simplified form of this proof obligation is given below.

ExeCommitDecision(PO5)

sitetransstatus(tt)(coordinator(tt)) = pending ∧

ss 7→ oo /∈ freeobject ∧

ran(transeffect(tt) 6= {φ} ∧

oo ∈ transobject(tt) ∧

ss 7→ tt ∈ activetrans ∧

⇒

replica(ss)(oo) = database(oo)

Chapter 3 Distributed Transactions 55

ExeAbortDecision(PO6)

sitetransstatus(tt)(coordinator(tt)) = abort ∧

ss 7→ oo /∈ freeobject ∧

ran(transeffect(tt) 6= {φ} ∧

oo ∈ transobject(tt) ∧

ss 7→ tt ∈ activetrans ∧

⇒

replica(ss)(oo) = database(oo)

In order to discharge the proof obligations PO5 and PO6 we construct and add Inv-8

to our model and discharge the proof obligations.

Similarly, due to the addition of Inv-8 new proof obligations associated with the event

IssueWriteTran are generated. A simplified form of these proof obligations is outlined

below.
IssueWriteTran(PO7)

transstatus(tt) = COMMIT ∧

ss = coordinator(tt) ∧

ss 7→ oo ∈ freeobject ∧

ran(transeffect(tt) 6= {φ} ∧

oo ∈ transobject(tt) ∧

⇒

(ss 7→ tt) /∈ activetrans

PO7 states that if an update transaction that has committed and all transaction objects

at the coordinator are in the free object list then it is not active at the coordinator site.

IssueWriteTran(PO8)

transstatus(tt) = ABORT ∧

ss = coordinator(tt) ∧

ss 7→ oo ∈ freeobject ∧

ran(transeffect(tt) 6= {φ} ∧

oo ∈ transobject(tt) ∧

⇒

(ss 7→ tt) /∈ activetrans

Similarly, PO8 states that if an update transaction that has aborted and all transac-

tion objects at the coordinator are in the free object list then it is not active at the

coordinator.

In order to discharge proof obligations PO7 and PO8 we add invariant Inv-9 to the

refined model. This invariant states that an update transaction not pending at the

Chapter 3 Distributed Transactions 56

 Invariants Required By

/*Inv-8*/ transstatus(t)� COMMIT CWT,AWT,EAD,
 � (s � t)� activetrans ECD,RT
 � o � transobject(t)
 � database(o)= replica(s)(o)
/*Inv-9*/ transstatus(t)� PENDING ST,IWT, SAT,SCT
 � ran(transeffect(t))� {

�
}

 � (coordinator(t) � t) � activetrans

Figure 3.16: Gluing Invariants -V

coordinator site, is also not active at the coordinator site. Recall that a transaction

which is not pending implies that either it has committed or aborted. Finally the B tool

generates more proof obligations to preserve Gluing Invariant-IV which in turn requires

Gluing Invariants-V in Fig. 3.16. The brief description of Gluing Invariants-V is given

below.

- Inv-8 : For a transaction t which has not globally committed and is still active

at some site s, then for all objects o ∈ transobject(t), the value of object o at

replica(s) is the same as its value in abstract database. Since this refers to the

situations where a transaction is not committed, it also involves the situations

where the transaction global status is either PENDING or ABORT.

- Inv-9 : An update transaction whose global status is not PENDING must not be

active at its coordinator site. This refers to situations where the global status of

an update transaction is either COMMIT or ABORT.

We observe that at every stage new proof obligations are generated by the B tool due to

the addition of new invariants. In this process, at every stage, we also discover further

invariants to be expressed in our model. After five iterations of invariant strengthen-

ing, we arrive at an invariant that is sufficient to discharge all proof obligations. By

discharging the proof obligations we ensure that our refinement is a valid refinement of

the abstract specification.

3.6 Processing Transactions over a Reliable Broadcast

As outlined in the previous sections, our abstract model of a transaction maintains a

notion of the central database. In the refinement we introduce the notion of a replicated

database by replacing the abstract variable database by a concrete variable replica.

Chapter 3 Distributed Transactions 57

In this section, a further refinement of this model, given as replica4, is outlined which

explicitly models messaging among the sites illustrating the integration of the transaction

model with a reliable broadcast.

3.6.1 Introducing Messaging in the Transactional Model

In this section, we outline how various messages of the protocol are represented in the

refinement replica4. The new variables update, voteabort, votecommit, globalabort and

globalcommit are introduced in this refinement to represent the respective messages.

These variables are typed as follows :

update ⊆ MESSAGE ∧ update ∈ dom(sender)

voteabort ⊆ MESSAGE ∧ voteabort ∈ dom(sender)

votecommit ⊆ MESSAGE ∧ votecommit ∈ dom(sender)

globalabort ⊆ MESSAGE ∧ globalabort ∈ dom(sender)

globalcommit ⊆ MESSAGE ∧ globalcommit ∈ dom(sender)

A message mm ∈ update indicates that mm is an update message. Similarly, a message

in the set voteabort, votecommit, globalabort or globalcommit, respectively, indicates that

it is either a vote abort/commit or global abort/commit message. We also introduce

following new variables to relate a message to the transaction as follows :

tranupdate ∈ update trans

tranvoteabort ∈ voteabort 7→ trans

tranvotecommit ∈ votecommit 7→ trans

tranglobalabort ∈ globalabort trans

tranglobalcommit ∈ globalcommit trans

A mapping of the form (mm 7→ tt) ∈ tranupdate indicates that a message mm is an

update message for an update transaction tt. A tranupdate is a total injective function

which indicates that there is only one update message for each update transaction and

vice-versa. tranvoteabort is defined as a total function which indicates that each message

mm ∈ voteabort is related to exactly one update transaction. However, for an update

transaction there will be several votecommit or voteabort messages. The variables tran-

globalabort and tranglobalcommit are defined as a total injective function indicating that

a message is related to exactly one transaction and each update transaction is related

to exactly one globalabort or globalcommit message. The reason for modelling variables

tranupdate, tranglobalabort and tranglobalcommit as total injective functions is that the

respective messages are sent by the coordinating site only once for a given transaction.

The variables sender, deliver and completed are also introduced in this refinement to

model sending a message, the delivery of a message and the completion of an update

Chapter 3 Distributed Transactions 58

transaction as follows :

sender ∈ MESSAGE 7→ SITE

deliver ∈ SITE ↔ MESSAGE

completed ∈ trans ↔ SITE

A mapping of the form (mm 7→ ss) ∈ sender indicates that the site ss is the sender

of message mm. Similarly, a mapping (ss 7→ mm) ∈ deliver indicates that a site ss

has delivered mm. The completion of a transaction is modelled by a variable completed,

where a mapping (tt 7→ ss) ∈ completed indicates that a transaction tt completed its

execution at site ss.

3.6.2 The Events of Message Send and Delivery

In this refinement we introduce two new events given as SendUpdate and Deliver. The

event SendUpdate models the broadcast of an update message for an update transaction.

The event Deliver models the delivery of a message at a site. The specifications of these

events are outlined in the Fig. 3.17.

SendUpdate(ss � SITE , mm � MESSAGE ,tt� TRANSACTION)
�

 WHEN mm � dom(sender) � tt � trans � sitetransstatus(tt)(coordinator(tt)) = pending � ss = coordinator(tt) � tt � ran(tranupdate) � ran(transeffect(tt)
�

 {� }
 THEN sender := sender � {mm � ss}
 || update := update � {mm}
 || transupdate := transupdate � {mm � tt}
 END;

Deliver(ss � SITE , mm � MESSAGE)

�

 WHEN mm � dom(sender) � (ss � mm) � deliver
 THEN deliver := deliver � {ss � mm}
 END;

Figure 3.17: The New events : A Reliable Broadcast

As shown in the specifications, the coordinator site ss of an update transaction tt broad-

casts an update message mm after the submission of the transaction tt at the site ss.

The guard tt ∈ trans indicates that a transaction tt has started. Similarly, the guard

tt /∈ ran(tranupdate) indicates that an update message corresponding to the transaction

tt has not been sent. The variable update and tranupdate are updated accordingly to

Chapter 3 Distributed Transactions 59

indicate that mm is an update message and that update message mm is also related

to the transaction tt. The event Deliver models the delivery of a message mm to the

site ss. The guard of this event ensures that a message is delivered to a site only once.

Since delivery of message does not have any other conditions specified in the guard, as

required for the delivery of ordered broadcasts, the Deliver event models delivery of a

message using a reliable broadcast.

IssueWriteTran(tt� TRANSACTION)
�

 ANY mm
 WHERE mm � update � tt � trans � (mm � tt) � tranupdate � (coordinator(tt) � mm) � deliver � (coordinator(tt) � tt) � activetrans � sitetransstatus(tt)(coordinator(tt))= pending � ran(transeffect(tt))� {

�
} � transobject(tt) � freeobject[{coordinator(tt)}] � 	 tz.(tz � trans
 (coordinator(tt) � tz)� activetrans

 � transobject(tt) transobject(tz) =
�

)
 THEN activetrans := activetrans � {coordinator(tt)� tt}

 || sitetransstatus(tt)(coordinator(tt)):= precommit
 || freeobject := freeobject - {coordinator(tt)} � transobject(tt)
END;

BeginSubTran (tt� TRANSACTION ,ss� SITE)�
 ANY mm
 WHERE mm � update � tt � trans � (mm � tt) � tranupdate
 � (ss � mm) � deliver � (ss� tt)� activetrans � ss � dom(sitetransstatus(tt))

 � ss � coordinator(tt)
 � ran(transeffect(tt))�{� }
 � transobject(tt) � freeobject[{ss}]
 � � tz.(tz � trans � (ss � tz)� activetrans
 � transobject(tt) � transobject(tz) = �)
 THEN activetrans := activetrans � {ss� tt}
 || sitetransstatus(tt)(ss) := pending
 || freeobject := freeobject - {ss} � transobject(tt)

END;

 Figure 3.18: Events IssueWriteTran and BeginSubTran : A Reliable Broadcast

Chapter 3 Distributed Transactions 60

3.6.3 Starting a Sub-transaction

The specifications of IssueWriteTran and BeginSubTran events in this refinement are

given in the Fig. 3.18. The event IssueWriteTran models issuing a started transaction

upon delivery of an update message at the coordinating site if it is not in conflict with

other active transactions at the coordinator. The guards of this refinement assume that a

started transaction is issued only when an update message is delivered to the coordinator

site. It may be noted that in our model of reliable broadcast, a message is eventually

delivered to all sites, including the sender. Also, as outlined in the specifications of

BeginSubTran event, a sub-transaction of tt starts at a site ss upon delivery of an

update message mm corresponding to the transaction tt.

It can be noticed in the specifications of the event BeginSubTran that the following

guard is removed.

sitetransstatus(tt)(coordinator(tt)) ∈ {precommit, pending}

The reason is that it is not possible for a participating site to determine the transaction

state at the coordinating site when an update message is delivered to a participating

site. The removal of the guard generates a new proof obligation PO9 shown below.

BeginSubTran(PO9)

ss ∈ SITE

tt ∈ trans

mm ∈ update

mm 7→ tt ∈ tranupdate

ss 7→ mm ∈ deliver

ss 7→ tt /∈ activetrans

ss /∈ dom(sitetransstatus(tt))

ss 6= coordinator(tt)

transobject(tt) ⊆ freeobject[{ss}]

⇒

sitetransstatus(tt)(coordinator(tt) ∈ {precommit, abort}

In order to discharge the proof obligation PO9, we construct an invariant Inv-10 given

in Fig. 3.191 and add it to the refinement. This invariant is sufficient to discharge the

proof obligation PO9.

Inv-10 states that when an update message m related to the transaction t is delivered

to a participating site s and if site s has not already started a sub-transaction then the

status of transaction t at the coordinator is either precommit or abort.

1For the explanation of codes, see Table 3.1 in Section 3.5

Chapter 3 Distributed Transactions 61

 Invariants Required By

/*Inv-10*/ m � update � t � trans � s � SITE BST
 � (m � t)� tranupdate
 � (s � m)� deliver
 � s � dom(sitetransstatus(t))
 � s � coordinator(t)
 � sitetransstatus(t)(coordinator(t)) 	 {precommit , abort}

Figure 3.19: Gluing Invariants -VI

3.6.4 Local Commit/Abort

The events of commit/abort of a sub-transaction at a participating site in the refine-

ment are given in the Fig. 3.20 as SiteCommitTx and SiteAbortTx. As outlined in the

specifications of SiteCommitTx event, a participating site ss may decide to pre-commit

a transaction tt if it is active at ss. At the time of pre-commit of tt, the participating

site also sends a votecommit message mm. The variable tranvotecommit is also updated

to indicate that the mm is a votecommit message related to the transaction tt. It may

be recalled that both the events SiteCommitTx and SiteAbortTx occur as a consequence

of occurrence of event BeginSubTran. Also, as shown in the specifications of the Site-

AbortTx event that a site ss may decide to abort a transaction tt if it is active at ss. It

does so by sending a voteabort message mm. The variable tranvoteabort is also updated

to indicate that mm is a voteabort message related to the transaction tt.

Instead of presenting all events in similar detail we will briefly outline other events of

this refinement. A global abort/commit event occurs at the coordinator site when a

coordinator delivers voteabort/votecommit messages from the participating sites. The

coordinator then decides to commit or abort a transaction globally and informs the

participating sites by sending globalabort or globalcommit messages. Upon delivery of

either of these message, a participating site either aborts or commits a transaction at

that site. The events ExeAbortDecision and ExeCommitDecision model the abort and

commit of an active transaction tt at a participating site ss. The detailed specifications

of this refinement is given third refinement in Appendix-A.

In this model ordering on the messages is not dealt with explicitly. A transaction may

deadlock due to race conditions in a replicated database. It is our assumption that

ordered delivery of messages may be used to prevent deadlock arising due to two si-

multaneous update requests on the same objects from two different sites. A formal

development of ordering of messages for fault tolerant transactions and their implemen-

tation with logical clock is developed in later chapters.

Chapter 3 Distributed Transactions 62

SiteCommitTx(tt�TRANSACTION,ss�SITE)
�

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender) � tt � trans
 � (ss� tt) � activetrans
 � sitetransstatus(tt)(ss)= pending
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{

�
}

 THEN sitetransstatus(tt)(ss) := precommit
 || votecommit := votecommit 	 {mm}
 || tranvotecommit := tranvotecommit 	 {mm � tt }
 || sender := sender 	 {mm � ss }
 END;

SiteAbortTx(tt�TRANSACTION,ss�SITE)

�

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender) � tt � trans

 (ss� tt)� activetrans

 sitetransstatus(tt)(ss)= pending
 ss � coordinator(tt)
 ran(transeffect(tt))�{� }
 THEN sitetransstatus(tt)(ss) := abort
 || freeobject := freeobject � {ss}� transobject(tt)
 || activetrans := activetrans -{ss � tt}

 || voteabort := voteabort � {mm}
 || tranvoteabort := tranvoteabort � {mm � tt }

 || sender := sender � {mm � ss }
 || completed := completed � {tt � ss }

END;

Figure 3.20: Refined Local Commit and Local Abort events : A Reliable Broadcast

3.7 Site Failures and Abortion by Time-Outs

Our model of a distributed transaction ensures global atomicity despite transaction

failures and preserves the one-copy equivalence consistency criterion. In this section,

we address the issue of participating site failures and show that a replicated database

remains in a consistent state even in the presence of site failures2.

A simple refinement is outlined to illustrate that this model preserves the consistency

of the database when transactions are aborted due to timeouts and site failures. In this

2We assume that a site fails by crash and does not resume operation.

Chapter 3 Distributed Transactions 63

refinement, we explicitly model site failures and assume that a failed participating site

does not communicate with the coordinating site. If the coordinator does not receive a

communication from a participating site then the coordinator aborts a global transaction

by timeout and sends a global abort message to the participating sites. To model the

site failures we introduce new variables oksite and failedsite typed as follows :

oksite ⊆ SITE

failedsite ⊆ SITE

oksite ∩ failedsite = φ

The variables oksite and failedsite are initialized as follows.

oksite := SITE, failedsite := φ

A new event SiteFailure(ss) is introduced in the refinement to model failure of a site.

The specification of this event is given in Fig. 3.21. As shown in the specifications, an

oksite may fail and becomes unavailable.

SiteFailure(ss � SITE)
�

 WHEN ss � oksite
 THEN failedsite := failedsite � {ss}
 || oksite := oksite – {ss}
 END;

 Figure 3.21: Event Site Failure

Since we assume the failure of a site by crash, the non-availability of a failed site during

the rest of computation is also assumed. Also, we do not consider site failures due to

omission, malicious or Byzantine faults3. In our model of a transaction, we also assume

that the coordinating site of a transaction does not fail during a transaction execution.

The failure of sites is restricted to participating site failures due to crash. Since, in the

present work we do not deal with the database recovery, we assume that a coordinator

will recover successfully from the failure when it will resume operations. However, we

plan to address the issue of recovery of the coordinator in the future work.

Before failing, a participating site may be in any one of the following states.

1. It has not yet sent out votecommit or voteabort message to the coordinating site.

2. It has sent votecommit or voteabort message to the coordinating site but did not

deliver global abort or global commit message from the coordinating site.

3It has been argued that the distributed systems with unreliable communication, i.e.,loss of mes-
sages, generation of messages or garbling of messages do not admit solutions to Non-Blocking Atomic
Commitment problem [49, 107]. The problem known as ’Generals Paradox’ is outlined in [49]

Chapter 3 Distributed Transactions 64

3. It has delivered global abort or global commit message from the coordinating site.

In the first case, if a participating site has not sent out votecommit or voteabort message

to the coordinating site, the coordinating site waits for a random amount of time and

aborts the transaction by trigging an timeout event. We have already outlined that

aborting a transaction by its coordinating site still preserves the consistency. In the

second case, if a participating site fails before delivering a global abort/commit message,

it delivers these message when it recovers. If a participating site has already delivered

a global abort/commit message then it does not affect the computation.

To model the abortion of a global transaction at the coordinating site, we introduce a

new event TimeOut to our model. The specification of this event for this refinement is

given in the Fig. 3.22. As shown in the specifications, a coordinating site sends global

abort messages to participating sites and a transaction is globally aborted. Also, a

coordinator is in oksite when event TimeOut is activated.

It can be noted that the effects of the TimeOut event are similar to AbortWriteTran

event. The event AbortWriteTran is activated when a coordinating site delivers a vote-

abort message from a participating site, whilst the event TimeOut may be activated

if the coordinator does not receive any communication from a participating site. In

order to add this event to this refinement, we have to add this event to each level

of the refinement chain. We observe that the addition of this event at each level of

the refinement chain preserves the invariants. The detailed specifications of the event

TimeOut for each level of refinement chain are given the Appendix-B.

TimeOut(tt � TRANSACTION)
�

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender)
 � tt� trans
 � ran(transeffect(tt))�{� }
 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 � coordinator(tt) � oksite
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject 	 {coordinator(tt)}
 transobject(tt)
 || globalabort := globalabort 	 {mm}
 || tranglobalabort := tranglobalabort 	 {mm � tt }

 || sender := sender 	 {mm � coordinator(tt) }
 || completed := completed 	 {tt � coordinator(tt) }
 END;

 Figure 3.22: Event TimeOut

Chapter 3 Distributed Transactions 65

3.8 Conclusions

In this chapter, we have presented a formal approach to modelling and analyzing a

distributed transaction mechanism for replicated databases using Event-B. The abstract

model of transactions is based on the notion of a single copy database. In the first

refinement of the abstract model, we introduced the notion of a replicated database.

The replica control mechanism presented in this refinement allows an update transaction

to be submitted at any site. An update transaction commits atomically updating all

copies at commit or none when it aborts. A read-only transaction may perform read

operations on any single replica. The various events given in the refinement are triggered

within the framework of commit protocols which ensure global atomicity of update

transactions despite site or transaction failures. The system allows the sites to abort

a transaction independently and keeps the replicated database in a consistent state.

The second refinement simplifies the global commit event. In the third refinement, we

explicitly model the messaging among the sites and show how the various messages of

the protocols are sent by various sites. The fourth refinement model introduced the

failure of sites. We have also outlined a timeout event given as TimeOut, which may

be activated by a coordinator site to abort a transaction globally if it does not receive

a communication from a participating site. The preservation of the invariants of the

first refinement ensures that aborting a transaction by the TimeOut event preserves the

consistency of a database.

The system development approach considered is based on Event-B, which facilitates

incremental development of dependable systems. The work was carried out using the

Click’n’Prove B tool. The tool generates the proof obligations for refinement and con-

sistency checking. The majority of proofs were discharged using the automatic prover of

the tool, however one third of the complex proofs required use of the interactive prover.

Proof statistics of this development are outlined in the Table 3.2.

Machine Total POs Completely Automatic Required Interaction

Abstract Model 20 20 00

First Refinement 189 103 86

Second Refinement 36 22 14

Third Refinement 41 32 09

Fourth Refinement 21 14 07

Overall 307 191 116

Table 3.2: Proof Statistics- Distributed Transactions

In this chapter we have also outlined how we construct an invariant after observing

the proof obligations. Due to the large number of proof obligations, it is not possi-

ble to accommodate all proof obligations in this thesis. However, the important and

significant proof obligations and, the invariants we construct after observing them, are

Chapter 3 Distributed Transactions 66

outlined. Also, in many cases the B tool initially generates very large and complex proof

obligations. These proof obligations may be simplified with interaction with the tool

by adding new hypothesis or instantiating the hypothesis containing the quantification.

Our understanding with this development is that a single proof obligation is not always

helpful constructing a right invariant. In most of the cases we have to consider a set of

proof obligations to construct a correct invariant.

Chapter 4

Causal Order Broadcast

4.1 Introduction

The notion of causal order broadcast of messages was introduced in [20] to reduce the

asynchrony of communication channels perceived by the application processes. The

global causal ordering of messages deals with the notion of maintaining the same causal

relationship that holds between message send and message receive events. It states that

the order of the delivery of messages to the processes can not violate the causal order

of corresponding broadcast events in the respective sender processes. If the broadcast

of any two messages is concurrent, then the processes are free to deliver them in any

order. The concept of causal order in distributed system was introduced and formalized

in [75], extended in [76] and it was developed further in ISIS [20] to introduce causal

order broadcast. Its vector clock based implementation is proposed in [21, 108].

For some applications it is not sufficient to deliver the messages in the same order (total

order) at participating sites but it is also important to the deliver the messages in a pre-

determined order [20]. For example, consider the network news application [52] where

users distribute their articles and reviews by a broadcast. For a user in the system, a

review is meaningful only if he has been delivered the main article. Since a broadcaster

of the review delivers the main article before he broadcasts the review, the application

requires that each user delivers the main article before a review is delivered. Similarly,

in an another example, consider a distributed computation in a banking environment

where the accounts of employees are to be updated first by paying salary then by paying

interest on the account balance. This is done by broadcasting a salary message before

broadcasting an interest message. In this case, it is not only important to deliver the

messages in the same total order to all participating sites but also each site must deliver

a salary message before delivering an interest message. The group communication prim-

itive causal order broadcast alleviates this problem by providing higher guarantees that

67

Chapter 4 Causal Order Broadcast 68

messages are delivered to the sites/processes respecting the causality of their broadcast

events.

There exists a vast literature [38] on ordering of messages which shows the complexity

of the problem. It is further reported in [38] that there exist too few algorithms which

provide clear specification of the problem and provide proof of correctness. Some sig-

nificant applications of formal methods include using I/O automata to provide formal

specifications of a broadcast system [42]. The notion of meta-properties to specify and

analyze a protocol which switches between two broadcast algorithms is discussed in [82].

The formal results that define cases where total order satisfies causal relations between

messages is discussed in [130].

In this chapter we formally develop a system of a causal order broadcast using an

incremental development approach in Event-B. We begin with an abstract model of a

reliable broadcast, and in the first refinement, we outline the specification of an abstract

causal order. In further refinements we show how abstract causal order can correctly be

implemented by a system of vector clocks. The gluing invariants discovered in the process

define the relationship between the abstract casual order and vector clock mechanism.

4.2 Incremental Development of Causal Order Broadcast

In this section we outline an incremental development of a system of causal order broad-

cast consisting of five levels of refinement chain.

4.2.1 Outline of the refinement steps

In this development we begin with an abstract model of a reliable broadcast and suc-

cessively refine it to a model with vector clocks. A brief outline of each level is given

below.

L1 This consists of an abstract model of a reliable broadcast. In this model processes

communicate by broadcast and messages are delivered to each process only once,

including the sender. This model is outlined in Section 4.2.2.

L2 In this refinement, we outline how an abstract causal order is constructed by the

sender. An abstract causal order is constructing by combining FIFO and local

ordering properties. This refinement is outlined in Section 4.3.

L3 In this refinement, we introduce the notion of vector clocks. The abstract causal or-

der is replaced by the vector clocks rules. We also discover gluing invariants which

define the relationship of abstract causal order and vector rules. This refinement

is given in Section 4.4.

Chapter 4 Causal Order Broadcast 69

L4 In this refinement, we present a simplification of the vector rules for updating the

vector clock of recipient processes. This refinement is outlined in Section 4.5.

L5 This is another refinement further simplifying the vector rules for updating vector

clocks. This refinement also is outlined in Section 4.5.

4.2.2 Abstract Model of a Reliable Broadcast

The abstract model of a reliable broadcast system is presented as an Event-B machine

in Fig. 4.1. PROCESS and MESSAGE are defined as sets. The brief description of this

machine is given as follows.

MACHINE Broadcast
SETS PROCESS; MESSAGE
VARIABLES sender , cdeliver
INVARIANT
/* I-1*/ sender � MESSAGE � PROCESS

 /* I-2*/ � cdeliver � PROCESS � MESSAGE
 /* I-3*/ � ran(cdeliver) � dom(sender)

INITIALISATION sender := � || cdeliver := �

EVENTS
 Broadcast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 THEN sender := sender � {mm 	 pp}
 || cdeliver := cdeliver � {pp 	 mm}
 END;

Deliver (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 � (pp 	 mm) � cdeliver
 THEN cdeliver := cdeliver � {pp 	 mm}
 END ;
END

Figure 4.1: Abstract Model of Broadcast

– sender is a partial function from MESSAGE to PROCESS defined in invariant

I-1. It contains mappings from MESSAGE to PROCESS. The mapping (m 7→ p)

∈ sender indicates that message m was sent by process p. The partial function

ensures that a message is sent by only one process.

– cdeliver is a relation between PROCESS and MESSAGE defined in invariant I-2.

A mapping of form (p 7→ m) ∈ cdeliver indicates that a process p has delivered a

message m. The sender and cdeliver are initialized as empty sets.

Chapter 4 Causal Order Broadcast 70

– In our model of a broadcast system, a sent message is also delivered to its sender.

It may be noticed that all delivered messages must be messages whose Message

Sent event is also recorded. This property is defined as invariant I-3.

– The events of sending and delivery of messages are shown as the parameterized op-

erations Broadcast(pp,mm) and Deliver(pp,mm). It can be noted that the messages

are not yet ordered in the abstract model. When a Broadcast event is invoked,

variable sender is updated by adding a mapping of a process and a corresponding

message. A sender process also delivers the message at the time of broadcast. It is

shown by updating variable deliver. The Deliver event is guarded by predicates.

These predicates ensure that a process can only deliver a message whose message

sent event is recorded and the message has not been delivered before. Therefore,

on activation of this event a message is delivered to a process other than sender.

A message is delivered to a process if both conditions are satisfied.

4.3 First Refinement : Introducing Ordering on Messages

The refinement of the abstract model of broadcast is given in Fig. 4.2 and Fig. 4.3. A

brief description of the refinement steps is given below.

REFINEMENT CausalOrder
REFINES Broadcast
VARIABLES sender, cdeliver, corder, delorder
INVARIANT
/* I-4*/ corder � MESSAGE � MESSAGE
/* I-5*/ � delorder � PROCESS � (MESSAGE � MESSAGE)
/* I-6*/ � dom(corder) � dom(sender)
/* I-7*/ � ran(corder) � dom(sender)

INITIALISATION sender :=

�
 || cdeliver :=

�

 || corder :=
�

 || delorder :=
�

 Figure 4.2: Causal Order Broadcast : Initialization

– The abstract causal order is represented by a variable corder. A mapping of the

form (m1 7→ m2) ∈ corder indicates that message m1 causally precedes m2. (Inv

I-4)

– In order to represent the delivery order of messages at a process, variable delorder is

used. A mapping (m1 7→ m2) ∈ delorder(p) indicates that process p has delivered

m1 before m2. (Inv I-5)

– Causal order on the messages can be defined only on those messages whose message

sent event is recorded. (Inv I-6,I-7)

Chapter 4 Causal Order Broadcast 71

– The events Broadcast(pp,mm) and Deliver(pp,mm) respectively model the events

of broadcasting a message and the causally ordered delivery of a message. As

shown in the operation of the Broadcast event, a causal order is built by the

sender process following a FIFO order and a local order. When a process pp

broadcasts a message mm, the variable corder is updated by the mappings in

(sender−1[{pp}] × {mm}). This indicates that all messages sent by pp before

broadcasting mm causally precede mm conforming to FIFO order. Similarly, the

mappings in (cdeliver[{pp}]×{mm}) indicate that the messages causally delivered

to the process pp before broadcasting mm also causally precedes mm conforming

to a local order.

– On the occurrence of the Broadcast event, variable sender is updated with cor-

responding entries of the sender process and the message. The guard mm /∈

dom(sender) ensures that each time a fresh message is broadcasted. The delivery

order at the sender process is updated at the time of broadcast. In the Deliver

event, a process pp delivers a message mm only when all messages which causally

precedes mm are delivered. The guards of this event also ensure that a message is

delivered only once.

In order to prove that this is a valid refinement of abstract model of a reliable broadcast,

we need to prove that the invariants in the Fig. 4.2 are preserved by the activation of the

events. For refinement checking, the B tool generates the proof obligations with respect

Broadcast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 THEN corder := corder � ((sender -1[{pp}] � {mm})
 � (cdeliver [{pp}] � {mm}))
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 || delorder(pp) := delorder(pp) � (cdeliver [{pp}] � {mm})

 END;

Deliver (pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �m.(m � MESSAGE � (m � mm) � corder
 � (pp � m) � cdeliver)
 THEN cdeliver := cdeliver � {pp � mm}
 || delorder(pp) := delorder(pp) � (cdeliver [{pp}] � {mm})
 END

Figure 4.3: Causal Order Broadcast : Events

Chapter 4 Causal Order Broadcast 72

to these invariants and corresponding events. These proof obligations are discharged

automatically by the prover.

4.3.1 Invariant Properties of Causal Order

After building the model of the abstract causal order our goal was to formally verify that

this model preserves the causal order properties informally defined in the section 2.3.

It states that the delivery order of the messages at a given process must conform to the

abstract causal order among them. In order to construct an invariant that states the

causal ordering properties are preserved by the model, we consider following two cases

generated by ProB [80], an animator and model checker for B.

M2 M2

M2

M1

M1

P2

M1
P1

Figure 4.4: Causal Order : CASE-I

M2

M2 M1M2

M1

P2

M1
P1

Figure 4.5: Causal Order : CASE-II

As shown in Fig. 4.4, messages M1 and M2 have the same delivery order at processes

P1 and P2 but have different delivery order as shown in Fig. 4.5. This is possible when

M1 and M2 do not have any causal ordering among them. The case-I tells us that

having a same delivery order at the processes does not imply that messages are causally

ordered. Similarly, from case-II we conclude that if the delivery order of the messages at

the processes are different then the messages are not causally ordered. Also [52] reports

that if the broadcast of two messages are not related by causal precedence, a causal

broadcast does not impose any requirement on the order they are delivered and the

Chapter 4 Causal Order Broadcast 73

delivery order of any two messages may be different at various processes. Therefore, we

add following invariant to our model as a primary invariant :

m1 7→ m2 ∈ corder ∧

p 7→ m2 ∈ cdeliver

⇒

m1 7→ m2 ∈ delorder(p))

This invariant states that if two messages are causally ordered then their delivery order

will be same as their causal order only if a process has delivered the later message. In

order to verify that our model also preserves the transitivity property on the messages,

we also add following invariant to our model as a primary invariant:

m1 7→ m2 ∈ corder ∧

m2 7→ m3 ∈ corder

⇒

m1 7→ m3 ∈ corder

4.3.2 Proof Obligations and Invariant Discovery

In this section we outline how we verify that the model CausalOrder given in Fig. 4.2 and

Fig. 4.3 preserves the causal ordering on the messages. We also outline how the proof

obligations generated by the B tool and the interactive prover guide us constructing

new invariants. The primary invariant properties of the model of causal order broadcast

system are given in Fig. 4.6 as predicates which also include transitivity. We have

omitted the quantifications over all identifiers (m1,m2,p etc) to avoid clutter. We first

add the invariant Inv-1 to our model. After addition of this invariant to the model, the

B tool generated two proof obligations associated with events Broadcast and Deliver.

These proof obligations were discharged using the interactive prover without having to

add new invariants.

 Invariants Required By
__

/*Inv-1*/ (m1 � m2) � corder � (p �m2) � cdeliver Primary Invariant
 � (m1 � m2) � delorder(p)

/*Inv-2*/ (m1 � m2) � corder � (m2 �m3) � corder Primary Invariant
 � (m1 � m3) � corder

Figure 4.6: Invariants-I

Chapter 4 Causal Order Broadcast 74

In the next step, we add invariant Inv-2 to our model. This invariant states that our

model of Causal Broadcast preserves transitivity relationship on the messages. When

this invariant is added to the model, the B tool generates the following complex proof

obligation associated with the Broadcast event.

Broadcast(pp,mm)PO1

Inv2 ∧

mm /∈ dom(sender) ∧

m1 7→ m2 ∈ (corder ∪ (sender−1[{pp}] × {mm}) ∪ (cdeliver[{pp}] × {mm})) ∧

m2 7→ m3 ∈ (corder ∪ (sender−1[{pp}] × {mm}) ∪ (cdeliver[{pp}] × {mm}))

⇒

m1 7→ m3 ∈ (corder ∪ (sender−1[{pp}] × {mm}) ∪ (cdeliver[{pp}] × {mm}))

This proof obligation is reduced to following two simple proof obligations using the

interactive prover :

Broadcast(pp,mm)PO2

m1 7→ m2 ∈ corder ∧

m2 ∈ (sender−1[{pp}]) ∧

m1 /∈ (sender−1[{pp}]) ∧

⇒

m1 ∈ (cdeliver[{pp}])

and
Broadcast(pp,mm)PO3

m1 7→ m2 ∈ corder ∧

m2 ∈ (sender−1[{pp}]) ∧

m1 /∈ (cdeliver[{pp}]) ∧

⇒

m1 ∈ (sender−1[{pp}])

The proof obligation PO2 generated by the Broadcast event states that if a message m1

causally precedes m2 i.e., (m1 7→ m2) ∈ order, and that pp is sender of m2 and m1 was

not sent by process pp then process pp must have delivered m1. This corresponds to the

property of local order. Similarly, the proof obligation PO3 states that if m1 causally

precedes m2 and pp is the sender of m2 and pp has not delivered m1 then pp is sender

of m1. It can be noticed that this property corresponds to the FIFO order. Therefore,

to discharge these proof obligations, we add following invariant to the model.

Chapter 4 Causal Order Broadcast 75

 Invariants Required By
__

/*Inv-3*/ (m1�m2) � corder � m2 � sender -1 [{p}] Broadcast, � (m1� sender -1 [{p}] � m1� cdeliver[{p}]) Deliver

/*Inv-4 */ (m1�m2) � corder � (p �m2) � cdeliver Broadcast,
 � (p �m1) � cdeliver Deliver

Figure 4.7: Invariants-II

m1 7→ m2 ∈ corder ∧

m2 ∈ (sender−1[{p}]) ∧

⇒

m1 ∈ (sender−1[{p}]) ∨ m1 ∈ (cdeliver[{p}])

This invariant is given as Inv-3 in the Fig. 4.7. After adding invariant Inv-3 to the

model we discharge the proof obligations PO2 and PO3 associated with the Broadcast

event. However, due to the addition of Inv-3, additional proof obligations associated

with Broadcast and Deliver events are generated. The proof obligation associated with

the Broadcast event is discharged using the interactive prover. The following proof

obligation associated with the Deliver event can not be discharged interactively.

Deliver(pp,mm)PO4

Inv 3 ∧

m1 7→ m2 ∈ corder ∧

m2 ∈ (cdeliver[{pp}]) ∧

⇒

m1 ∈ (sender−1[{pp}]) ∪ (cdeliver[{pp}])

PO4 states that for messages m1 and m2 where m1 causally precedes m2 and a process

pp has delivered m2 then pp has either delivered m1 or broadcasted m1. On simplifying

PO4, it requires us to prove following.

m1 7→ m2 ∈ corder ∧

p 7→ m2 ∈ cdeliver

⇒

p 7→ m1 ∈ cdeliver

In order to prove the above, we add an invariant to our model given as Inv-4 in the

Fig. 4.7. It states that if m1 causally precedes m2 then any process p that has delivered

Chapter 4 Causal Order Broadcast 76

m2, has also delivered m1. After adding invariant Inv-4 to the model we are able to

discharge PO4. The addition of Inv-4 generates new proof obligations associated with

Broadcast and Deliver events. These proof obligations are also discharged interactively

using interactive prover. It can be noticed that invariant Inv-4 also states the causal

order correctness criterion and is discovered during invariant strengthening.

We observe that after three iterations of invariant strengthening we arrive at an invariant

that is sufficient to discharge all proof obligations. By discharging all proof obligations

we ensure that this model preserves the causal precedence relationship on the messages.

4.4 Second Refinement : Introducing Vector Clocks

In this section, we outline how an abstract causal order can be refined by a system of

vector clocks. The goals of this refinement are given below.

– To replace the abstract global variable corder with vector clock rules.

– To refine the Broadcast event to generate the vector timestamp of messages which

realizes the global causal order.

– To refine the Deliver event to include a mechanism by which an early reception

of a message violating the global causal order may be detected at the recipient

process.

In our model, we use Birman, Schiper and Stephenson’s protocol [21] to update the vector

clock of a process broadcasting or delivering a message and to timestamp a message.

I. While sending a message M from process Pi to Pj , sender process Pi updates its

own time(ith entry of vector) by updating VTPi(i) as VTPi(i) := VTPi(i) + 1.

The message timestampVTM of message M is generated as VTM (k) := VTPi(k),

∀ k ∈ (1..N), where N is number of processes in system. Since a process Pi

increments its own value only at the time of sending a message, VTPi(i) indicates

number of messages sent out by process Pi.

II. The recipient process Pj (Pj 6= Pi) delays the delivery of message M until following

conditions are satisfied.

i VTPj(i)= VTM (i) - 1

ii VTPj(k)≥ VTM (k), ∀k ∈ (1..N) ∧ (k 6= i).

The first condition ensures that process Pj has received all but one message sent

by process Pi. The second condition ensures that process Pj has received all

Chapter 4 Causal Order Broadcast 77

messages received by sender Pi before sending the message M. A sender process

need not delay the delivery of a message. These conditions ensures global ordering

on messages.

III. The recipient process Pj updates its vector clock VTPj at message receive event

of message M as VTPj(k) := Max (VTPj(k),VTM (k)). Therefore in the vector

clock of process Pj , VTPj(i) indicates the number of messages delivered to process

Pj sent by process Pi.

This refinement(second refinement) consists of four state variables sender,cdeliver, VTP

and VTM. The new state variables VTP and VTM respectively represents the vector

time of a process and the vector timestamp of a message. These variables are typed as

follows.

 BroadCast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm �dom(sender)
 THEN LET nVTP BE
 nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP
 END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 END ;

 Deliver(pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p 	sender(mm)
 VTP(pp)(p) � VTM(mm)(p))
 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver {pp � mm}
 || VTP(pp) := VTP(pp) �

 ({q | q � PROCESS � VTP(pp)(q) < VTM(mm)(q)} � VTM(mm))
 END;

Figure 4.8: Second Refinement : Refinement with Vector Clocks

V TP ∈ PROCESS → (PROCESS → NATURAL)

V TM ∈ MESSAGE → (PROCESS → NATURAL)

These variables are initialized as follows,

V TP := PROCESS × {PROCESS × 0}

V TM := MESSAGE × {PROCESS × 0}

As shown above, the variables VTP and VTM are initialized by assigning a array of

vectors initialized with zero to each process and messages.

Chapter 4 Causal Order Broadcast 78

The refined specifications of the Broadcast and Deliver events are given in Fig 4.8. A

brief description of the refinement is given in following steps.

– As shown in the BroadCast specifications, operations involving the abstract vari-

able corder are replaced by the vector rules. It can be noticed that at the

time of broadcasting a message mm, process pp increments its own clock value

VTP(pp)(pp) by one. VTP(pp)(pp) represents the number of messages sent by

process pp. The modified vector timestamp of the process is assigned to message

mm giving the vector timestamp of message mm.

– As shown in the event Deliver, messages are delivered at a process only if it has

delivered all but one message from the sender of that message. Vector timestamps

of recipient processes and messages are also compared to ensure that all messages

delivered by the sender of the message before sending it, are also delivered at the

recipient process. These conditions are included as a guard in Deliver operation.

It can be noticed that the guard involving the variable corder in the abstract

model is replaced by the guards involving comparison of the vector timestamps of

messages and processes in the refinement.1, 2

4.4.1 Gluing invariants relating Causal Order and Vector Rules

The replacement of the operations and guards involving variable corder in the abstract

model with operations and guards involving vector clock rules in refinement generates

proof obligations. These proof obligations can be discharged interactively using the

B tool after three rounds of invariant strengthening. A full set of gluing invariants

involving the abstract causal order and the vector clock rules is given in Fig. 4.9. A

brief description of these properties is given below.

– If the vector time of process P is equal or more than the vector timestamp of any

sent message M then P must have delivered message M. (Inv-5)

– For any two messages m1 and m2 where m1 causally precedes m2, the vector

timestamp of m1 is always less than vector timestamp of m2.(Inv-6)

– Since VTP(p)(p) represents the total number of messages sent by process p and

VTM(m)(p) represents the number of messages received by sender of m from

process p before sending m, the number of messages sent by process p will be

greater than or equal to the number of messages received by sender(m) from p.

(Inv-7)

1(f �− g) represents function f overridden by g.
2 (s � f) represents function f is domain restricted by s.

Chapter 4 Causal Order Broadcast 79

 Invariants Required By
__

/*Inv-5*/ m � dom(sender) � VTP(p1)(p2)

�
 VTM(m)(p2) Broadcast, Deliver

 � (p1 � m) � cdeliver

/*Inv-6*/ (m1 � m2) � corder Broadcast, Deliver
 � VTM (m1)(p) � VTM(m2)(p)

/*Inv-7*/ m � dom(sender) Broadcast, Deliver
 � VTM(m)(p) � VTP(p)(p)

/*Inv-8*/ VTM (m) (p) = 0 Broadcast
 � m � (dom(corder) � ran(corder))

/*Inv-9*/ p1 � p2 � VTP (p1)(p2) � VTP (p2) (p2) Broadcast

Figure 4.9: Invariants-III

– A message whose timestamp is a vector of zero’s implies that it is not causally

ordered. (Inv-8)

– For any two separate processes p1 and p2, knowledge of p2 at p1 can not be

greater than the knowledge at p2 itself.(Inv-9)

4.5 Further Refinements of Deliver Event

As outlined in the Rule II of original protocol [21], a recipient process Pj delays the

delivery of message M until following conditions are satisfied.

i VTPj(i)= VTM (i) - 1

ii VTPj(k)≥ VTM (k), ∀k ∈ (1..N) ∧ (k 6= i).

Also, Rule III of the protocol [21] states that in the event of causally ordered delivery

of a message M, the recipient process Pj updates its vector clock VTPj as, VTPj(k)

:= Max (VTPj(k) ,VTM (k)). The protocol requires updating the whole vector of the

recipient process.

Further refinements of Deliver event are outlined here stating that instead of updating

whole vector of the recipient process as outlined in the original protocol, updating only

one value in the vector clock of recipient process corresponding to the sender process is

sufficient to realize causally ordered delivery of the messages.

Chapter 4 Causal Order Broadcast 80

In the second refinement, the vector clock of the recipient process pp is updated as :

V TP (pp) := V TP (pp)�−

{(q | q ∈ PROCESS ∧ V TP (pp)(q) < V TM(mm)(q)} � V TM(mm))

under the following guards :

∀p · (p ∈ PROCESS ∧ p 6= sender(mm) ⇒ V TP (pp)(p) ≥ V TM(mm)(p))

V TP (pp)(sender(mm)) = V TM(mm)(sender(mm)) − 1

It can be noticed that the vector clock of pp is updated by the values wherever the values

in the message vector are greater, while the guard of the event indicates that except the

sender of message, all values of the message vector must be smaller than recipient process

vector. This eventually results in updating only one value of the vector of the recipient

process which corresponds to the sender of the message. Therefore, we replace the above

operation by the following simplified operation in the third refinement which states that

only one value in the vector clock of the recipient process pp corresponding to the sender

process of message is updated.

V TP (pp) := V TP (pp) �− {sender(mm) 7→ V TM(mm)(sender(mm))}

 BroadCast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm �dom(sender)
 THEN LET nVTP BE
 nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP
 END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 END ;

 Deliver(pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p 	sender(mm)
 VTP(pp)(p) � VTM(mm)(p))
 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver {pp � mm}
 || VTP(pp) (sender(mm)) := VTM(mm)(sender(mm))
 END;

Figure 4.10: Fourth Refinement

Chapter 4 Causal Order Broadcast 81

The replacement of the operation generates new proof obligations which are discharged

by the automatic prover. This operation is further refined in the fourth refinement,

which precisely states that only one value in the vector clock of the recipient process

corresponding to the sender of message is updated.

V TP (pp)(sender(mm)) := V TM(mm)(sender(mm))

The fourth refinement is outlined in the Fig. 4.10. In this refinement step we observe

that proof obligations are generated due to the replacement of the operations of the

event Deliver. These proof obligations are automatically discharged by the B prover. A

full chain of refinement with complete set of invariants is given in the Appendix-C.

4.6 Conclusions

In this chapter we have presented Event-B specifications for global causal ordering of

messages. In the abstract specifications of causal order we outlined how a causal order

is constructed by combining both FIFO and local order. In the refinement steps we

outline how an abstract causal order can correctly be implemented by a system of vector

clocks. This is done by replacing the abstract variable corder by vector clock rules. We

have considered the Birman, Schiper and Stephenson protocol [21] for implementing

global causal ordering using vector clocks. In the third and fourth refinements we found

that instead of updating whole vector of a recipient process as outlined in the original

protocol, updating only one value in the vector clock of recipient process corresponding

to the sender process is sufficient to realize causally ordered delivery of the message. In

this approach we have also discovered several invariants which help us to understand

why a causal order broadcast can be implemented using vector clocks. The overall proof

statistics are given in Table 4.1. Approximately sixty eight percent of the proofs were

discharged by the automatic prover, the rest were discharged by using interactive prover

of B tool.

Machine Total POs Completely Automatic Required Interaction

Abstract Model 14 14 00

Refinement1 43 21 22

Refinement2 47 28 19

Refinement3 06 06 00

Refinement4 02 02 00

Overall 112 71 41

Table 4.1: Proof Statistics- Causal Order Broadcast

Chapter 5

Total Order Broadcast

5.1 Introduction

As outlined in the previous chapter, if the broadcast of two messages is not related by the

causal precedence (parallel message) relationship, the causal order broadcast does not

impose any requirement on the order they are delivered to the other processes [52]. For

example, consider a case of replicated databases where the bank accounts of users are

replicated across several sites. Suppose a user deposits amount x to account A, it does

so by broadcasting add x to A to all sites. Suppose at the same time, at another site,

the bank decides to pay interest at the rate y by initiating a broadcast add y percent to

A. As the broadcast of both messages are not causally related, the causal order broadcast

allows delivery of these messages to participating sites in different orders. It may result

in two copies of account A at different sites having different values, thus transforming the

database into an inconsistent state. To prevent this situation, it is required that these

two messages must be delivered to all sites in the same order. The group communication

primitive called total order broadcast1 alleviates this problem by providing guarantees

that messages sent to a set of sites/processses are delivered in the same order.

The total order broadcast has been proposed for implementing active replication (state

machine approach) [74, 116, 103]. The state machine approach is a general method for

implementing fault-tolerant services in distributed systems. It has also been proposed to

improve the performance of replicated databases [9, 102], transactional systems [65, 114],

clock synchronization [132] and crash recovery [111] etc.

The total order broadcast can be defined in terms of two primitives TOBroadcast(m) and

TODeliver(m) where m ∈ M and M is a set of possible messages [38]. It is assumed that

1The total order broadcast is also known as atomic broadcast. Both of the terms are used interchange-
ably, however there is a slight dispute with respect to using one over the other [38]. The term atomic

suggest the agrement property rather than total order.

82

Chapter 5 Total Order Broadcast 83

each message is uniquely identified and carries the identity of the sender. The total order

broadcast is defined as a reliable broadcast which satisfies the following requirement.

If processes p and q both deliver messages m1 and m2, then q delivers m1 before

m2 if and only if p delivers m1 before m2.

The agreement property of a reliable broadcast and total order requirements imply that

all correct processes eventually deliver the same sequence of messages [52].

5.2 Mechanism for Total Order Implementations

The key issues with respect to the total order broadcast algorithms are how to build a

total order and what information is necessary for defining a total order. The algorithms

for building a total order can broadly be classified [38] as sequencer based algorithms,

token based algorithms, communication history based algorithms and the destination

agreement algorithms [21, 36, 37, 38]. In sequencer based algorithms, a specific process

takes the role of a sequencer and becomes responsible for building a total order. In token

based algorithms (also known as privilege based algorithms), a sender can broadcast a

message only when it is granted the privilege (token) to do so. The order is defined by

a group of senders and the privilege to broadcast (and order) is granted to one process

at a time. The communication history based algorithms use logical timestamps. In

these algorithms, as in token based algorithms, the delivery order is determined by the

senders. However, processes are free to broadcast messages at any time. Most of these

algorithms ensure total order by delaying the delivery of a message at the destination

process. In destination agreement algorithms, a delivery order is determined by reaching

an agreement between the destination processes. Our model of total order broadcast is

based on the sequencer based algorithm.

In sequencer based algorithms, a specific process is elected as a sequencer and becomes

responsible for building a total order. It is assumed that each process may broadcast

a message at any time and a message will eventually be delivered to all processes in

the system inclusive of the sender. A sequencer process also takes the role of a sender

and destination in addition to the role of sequencer. There are two class of sequencer

based algorithms called fixed sequencer algorithms and moving sequencer algorithms. In

a fixed sequencer approach [21, 59], to broadcast a message m, a sender sends m to the

sequencer. Upon receiving m, the sequencer assigns it a sequence number and sends its

sequence number to all destinations. Each process delivers the message according the

sequence number assigned by the sequencer process. Moving sequencer algorithms [35,

131] are similar to fixed sequencer algorithms except that they allow the role of sequencer

to be moved from one process to another for load balancing.

Chapter 5 Total Order Broadcast 84

There exist three variants of fixed sequencer algorithms. These are called UB (Unicast

Broadcast), BB (Broadcast- Broadcast) and UUB (Unicast-Unicast Broadcast). In the

unicast broadcast(UB) variant of the fixed sequencer algorithm, in order to broadcast a

message2 m, a process first unicasts m to the sequencer. Upon receiving the message,

the sequencer assigns a sequence number to it and again broadcasts m with the sequence

number. The protocol steps of the UB variant are illustrated in the Fig. 5.1.

P1

P2

P3

computation message (m)

Sequencer

[m,seqno(m)]

Figure 5.1: Unicast Broadcast variant

In the broadcast broadcast(BB) variant [21] of the fixed sequencer algorithm, the protocol

consists of first broadcasting m to all destinations including the sequencer, followed by

an another broadcast of its sequence number by the sequencer. All destination processes

deliver messages according to their sequence numbers assigned by the sequencer process.

As shown in the Fig. 5.2 process P2 broadcasts a computation message m. Upon delivery

of m to a sequencer process, the sequencer assigns a sequence number and broadcasts

its sequence number by a control message(m’). Upon receipt of the control messages, a

destination process delivers its computation message according to the sequence numbers.

Sequencer

control message (m’)

computation message (m)

P3

P2

P1

Figure 5.2: Broadcast Broadcast variant

In the third variant UUB, the protocol consists of three steps. As shown in the Fig. 5.3,

the firstly a sender process unicasts request−seqno(m) requesting a sequence number

from the sequencer for message(m). The sequencer unicasts the sequencer number of

the message (seqno(m)) to the sender. In the third step, the sender broadcasts the

computation message m alongside its sequence number (seqno(m)).

2We use the notion of computation Message to represent the messages to be delivered in a total order.
The control messages are generated by the system to implement ordering on the computation messages.

Chapter 5 Total Order Broadcast 85

computation message (m,seqno(m))

get_seqno(m)request_seqno(m)

Sequencer

P3

P2

P1

Figure 5.3: Unicast Unicast Broadcast

Since our model of transactions for the replicated databases is based on a broadcast

system, we focus on the BB variant only. In [139, 141] we have outlined how to process

update transactions in a replicated database system using a total order broadcast. In

the next section we present a formal analysis of total order broadcast with respect to the

broadcast broadcast(BB) variant of the fixed sequencer approach.

5.3 Abstract Model of Total Order Broadcast

In this section abstract specifications of a total order broadcast are presented. Later

in the refinements we show how a total order on the messages can be implemented by

assigning sequence numbers. The abstract model of a total order broadcast system is

given in Fig. 5.4 and Fig. 5.5. The initial part of the machine is given in Fig. 5.4 and the

specifications of events are given in Fig. 5.5. Types PROCESS and MESSAGE are used

to represent a set of processes and messages. The specification consists of four variables

sender, totalorder, tdeliver and delorder.

MACHINE TotalOrder
SETS PROCESS; MESSAGE
VARIABLES sender, totalorder, delorder, tdeliver
INVARIANT sender � MESSAGE � PROCESS � totalorder � MESSAGE � MESSAGE � delorder � PROCESS � (MESSAGE � MESSAGE) � tdeliver � PROCESS � MESSAGE
INITIALISATION
 sender :=

�
 || totalorder :=

�

 delorder := PROCESS � {
�

} || tdeliver :=
�

Figure 5.4: TotalOrder Abstract Model: Initial Part

A brief description of the machine is given in the following steps.

– sender is defined as a partial function from MESSAGE to PROCESS. The mapping

(m 7→ p) ∈ sender indicates that message m was sent by a process p.

Chapter 5 Total Order Broadcast 86

– The variable totalorder is defined as a relation among the messages. A mapping

of the form (m1 7→m2) ∈ totalorder indicates that message m1 is totally ordered

before m2.

– In order to represent the delivery order of messages at a process, variable delorder is

used. A mapping (m1 7→ m2) ∈ delorder(p) indicates that process p has delivered

m1 before m2.

– The variable tdeliver represents the messages delivered following a total order. A

mapping of form (p 7→ m) ∈ tdeliver represents that a process p has delivered m

following a total order.

– The event Broadcast given in the Fig. 5.5 models the broadcast of a message.

Similarly, the event Order models the construction of a total order on a message

when it is delivered to a process in the system for the first time,i.e., an abstract

global total order is constructed on a message at the first ever delivery of it to

any process in the system. Later in the refinement we show that it is a role of

a sequencer process. The TODeliver models the delivery of the messages to a

process when a total order on the message has been constructed.

Broadcast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}

 END;

Order (pp � PROCESS ,mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � mm � ran(tdeliver)
 � ran(tdeliver) � tdeliver[{pp}]
 THEN tdeliver := tdeliver � {pp � mm}
 || totalorder := totalorder � (ran(tdeliver) � {mm})
 || delorder(pp) := delorder(pp) � (tdeliver[{pp}] � {mm})

END;

 TODeliver (pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � mm � ran (tdeliver)
 � pp � mm � tdeliver
 � �m.(m � MESSAGE � (m� mm) � totalorder
 	 (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 || delorder(pp) := delorder(pp) � (tdeliver[{pp}] � {mm})

END

Figure 5.5: TotalOrder Abstract Model : Events

Chapter 5 Total Order Broadcast 87

Constructing a Total Order

The event Order models the delivery of a message mm at a process pp when it is delivered

for the first time. The following guards of this event ensure that the message mm has

not been delivered elsewhere and that each message delivered at any other process has

also been delivered to this process(pp).

mm /∈ ran(tdeliver)

ran(tdeliver) ⊆ tdeliver[{pp}]

Later in the refinement we show that this is a function of a designated process called

sequencer. As a consequence of the occurrence of the Order event, the message mm is de-

livered to the process pp and variable totalorder is updated by mappings in (ran(tdeliver)

× mm). This indicates that all messages delivered at any process in the system are or-

dered before mm. Similarly, the delivery order at the process is also updated such that

all messages delivered at any process precede mm. It can be noticed that the total order

for a message is built when it is delivered to a process for the first time.

The event TODeliver(pp,mm) models the delivery of a message mm to a process pp

respecting the total order. The guard mm ∈ ran(tdeliver) implies that mm has already

been delivered to at least one process. The guards of this event also ensure that all

messages, which precede mm in the abstract total order, have also been delivered to pp.

5.4 Invariant Properties of Total Order

After building the model of a total order broadcast, our goal was to formally verify that

our model preserves the total ordering properties defined in the section 2.3. The agree-

ment and total order requirements imply that all correct processes eventually deliver all

messages in the same order [52]. Thus, we add following invariant as a primary invariant

to our model.
(m1 7→ m2) ∈ delorder(p)

⇒

(m1 7→ m2) ∈ totalorder

This invariant states that if a process delivers any two messages then their delivery

order at that process corresponds to their abstract total order. Also, to prove that the

total order also preserves transitivity, we add the following as a primary invariant to our

model.
(m1 7→ m2) ∈ totalorder ∧

(m2 7→ m3) ∈ totalorder

⇒

(m1 7→ m3) ∈ totalorder

Chapter 5 Total Order Broadcast 88

Due to the addition of these invariants to our model as primary invariants, the B tool

generates several proof obligations associated with various events. In the next section,

we outline how the proof obligations generated by the interactive prover guide us in

discovering new invariants. Due to the large number of proof obligations generated by

the prover only a few important proof obligations are outlined. A complete list of a set

of primary and secondary invariants is outlined in Fig. 5.6 and 5.7.

5.4.1 Proving Total Ordering Property

In order to prove the total ordering property we add following primary invariant to our

model.

∀(m1, m2, p).((m1 7→ m2) ∈ delorder(p) ⇒ (m1 7→ m2) ∈ totalorder)

When we added this invariant to our model two proof obligations were generated as-

sociated with the events Order and TODeliver. The proof obligation associated with

the event Order was discharged using interactive prover, however the proof obligation

associated with TODeliver could not be discharged. Following is the simplified form of

this proof obligation generated by the interactive prover.

TODeliver(PO1)

p 7→ m1 ∈ tdeliver ∧

p 7→ m2 /∈ tdeliver ∧

m2 ∈ ran(tdeliver)

⇒

m1 7→ m2 ∈ totalorder

This states that if process p has delivered m1 but m2 has been delivered elsewhere

then m1 precedes m2 in total order. In order to discharge this proof obligation, we

add an invariant to our model given as Inv-2 in Fig. 5.6. The addition of Inv-2 was

sufficient to discharge PO1, however a new proof obligation associated with TODeliver

was generated due to the addition of Inv-2. Following is the simplified form of the proof

obligation.

TODeliver(PO2)

m1 ∈ ran(tdeliver) ∧

m2 ∈ ran(tdeliver) ∧

m2 7→ m1 /∈ totalorder

⇒

m1 7→ m2 ∈ totalorder

Chapter 5 Total Order Broadcast 89

This proof obligation required us to prove that if two messages m1 and m2 are delivered

to any process(es) in the system then a total order exists among them, i.e., either m1

precedes m2 or m2 precedes m1 in the abstract total order. In order to discharge the

proof obligation we add another invariant Inv-3 to our model. Addition of this invariant

to the model generate further proof obligations.

After four rounds of invariant strengthening we arrive at the set of invariants given in

Fig. 5.6 which were sufficient to discharge all proof obligations. It may be noted that

the invariant Inv-1 is a primary invariant which states the total ordering property while

the other invariants are discovered when the proof obligations with respect to Inv-1 are

discharged. A brief description of the properties is given below.

– The total ordering property is given as Inv-1. It states that all processes deliver

the messages in the same abstract total order.

– If a process p has delivered m1, but not m2, and if m2 was delivered to at least

one process elsewhere in the system then m1 precedes m2 in total order(Inv-2).

 Invariants Required By
__

/*Inv-1*/ (m1�m2) � delorder(p) Primary Invarinat � (m1 �m2) � totalorder

/*Inv-2*/ (p � m1) � tdeliver � (p �m2) � tdeliver TODeliver
 � m2 � ran(tdeliver) � (m1 � m2) � totalorder

/*Inv-3*/ m1 � ran(tdeliver) � m2 � ran(tdeliver) Order, TODeliver

 � (m2 � m1) � totalorder � (m1 � m2) � totalorder

/*Inv-4*/ (p � m1) � tdeliver � (p �m2) � tdeliver Order, TODeliver

 � (m2 � m1) � totalorder � (m1 � m2) � totalorder

/*Inv-5 */ (p1 � m1) � tdeliver � (p1 �m2) � tdeliver Order, TODeliver
 � (p2 � m1) � tdeliver � (p2 �m2) � tdeliver � (m1 � m2) � totalorder

/*Inv-6*/ m � MESSAGE � m � m � totalorder Order, TODeliver

Figure 5.6: Invariants-I

Chapter 5 Total Order Broadcast 90

– If two messages m1 and m2 have been delivered anywhere in the system then a

total order exists among them, such that, either m1 precedes m2 or m2 precedes

m1 in total order. (Inv-3)

– If a process p has delivered two message m1 and m2 then either m1 precedes m2

or m2 precedes m1 in totalorder(Inv-4).

– Given two processes p1 and p2, then for any two messages m1 and m2 if the

process p2 has delivered both messages and p1 has delivered m1 but not m2 then

m1 precedes m2 in total order(Inv-5).

– A total order is irreflexive (Inv-6).

5.4.2 Proving Transitivity Property

Our next step was to verify that our model of the total order broadcast also preserves

transitive properties on the abstract total order. In order to verify that total order is

transitive, we add following to the list of the invariants.

(m1 7→ m2) ∈ totalorder ∧

(m2 7→ m3) ∈ totalorder

⇒

(m1 7→ m3) ∈ totalorder

Addition of this invariant generates proof obligations associated with the events Broad-

cast, Order and TODeliver. We are able to discharge proofs related to the Broadcast

event using the interactive prover. However, the following Proof Obligation associated

with Order event could not be discharged by the automatic prover.

Order(pp,mm)PO3

(m1 7→ m2) ∈ totalorder ∧

(p 7→ m2) ∈ tdeliver

⇒

(p 7→ m1) ∈ tdeliver

This property on the messages states that for two message m1 and m2 if m1 is totally

ordered before m2 then for any process p which has delivered m2 implies that it has

also delivered m1. In order to discharge this proof obligations, we add Inv-8 given in

Fig. 5.7.

When we add this invariant to our model it generates further proof obligations associated

with the events Broadcast, Order and TODeliver. The proof obligation associated with

TODeliver is discharged using the automatic prover. The simplified form of proof obli-

gation associated with the events BroadCast which cannot be discharged automatically

Chapter 5 Total Order Broadcast 91

is given below.

BroadCast(pp,mm)PO4

Inv-8 ∧

mm /∈ dom(sender) ∧

(pp 7→ m2) ∈ tdeliver ∧

(mm 7→ m2) ∈ totalorder ∧

m1 = mm ∧

m2 6= mm

⇒

(pp 7→ mm) ∈ tdeliver

It can be noticed that there is a contradiction in the hypotheses of this proof obligation,

i.e., the hypothesis mm /∈ dom(sender) and (mm 7→ m2) ∈ totalorder can not be true

simultaneously because of our assumption that a totalorder is built only when a message

has been sent out. Similarly, the goal (pp 7→ mm) ∈ tdeliver cannot be proved under the

hypothesis mm /∈ dom(sender). Thus, we add the following invariant(s) to our model

given as Inv-9,10 in Fig. 5.7.

∀m .(m ∈ (dom(totalorder) ∪ ran(totalorder)) ⇒ m ∈ ran(tdeliver))

∀(m).(m /∈ dom(sender) ⇒ m /∈ ran(totalorder))

∀(m).(m /∈ dom(sender) ⇒ m /∈ dom(totalorder))

ran(tdeliver) ⊆ dom(sender)

Addition of these invariants was sufficient to discharge all proof obligations. Therefore

after four iterations of invariant strengthening we arrive at a set of invariant that is

sufficient to discharge all proof obligations generated due the addition of Inv-7. The full

set of invariants is given in Fig. 5.7. A brief description of these properties are outlined

below.

– A total order is transitive(Inv-7).

– For any two messages m1 and m2 where m1 is totally ordered before m2 then a

process p which delivered m2 has also delivered m1 (Inv-8).

– The total order is built for those messages which have been delivered to at least

one process(Inv-9).

– A total order cannot be build for messages which have not been sent and each

message delivered at any process must be a sent message (Inv-10).

Chapter 5 Total Order Broadcast 92

Invariants Required By

/*Inv-7 */ (m1 � m2) � totalorder � (m2 �m3) � totalorder Primary Invariant

 � (m1 � m3) � totalorder

/*Inv-8 */ (m1�m2) � totalorder � (p�m2) � tdeliver Broadcast,Order
 � (p �m1) � tdeliver TODeliver

/*Inv-9 */ m � (dom (totalorder) � ran(totalorder)) Order
 � m � ran(tdeliver)

/*Inv-10 */ m � dom(sender) � m � dom(totalorder) Broadcast, Order

 m � dom(sender) � m � ran(totalorder) TODeliver
 ran(tdeliver) � dom(sender)

Figure 5.7: Invariants-II

5.5 Total Order Refinements

In the previous section we have given an overview of the abstract model of total order

broadcast. In this section we present a overview of our refinement chain consisting of

six levels. A brief outline of each refinement step is given below.

L1 This consists of an abstract model of total order broadcast. In this model, abstract

total order is constructed when a message is delivered to a process for the first time.

At all other processes a message is delivered in the total order. We have already

outlined this level in section 5.3.

L2 This is a refinement of the abstract model which introduces the notion of the

sequencer. In this refinement we outline how a total order on the messages is

constructed by the sequencer.

L3 This is a simple refinement giving a more concrete specification of the Order event.

Through this refinement we illustrate that a total order can be built using the

messages delivered to the sequencer rather than all sites.

L4 In this refinement we introduce the notion of computation messages and sequence

numbers. Global sequence numbers of the computation messages are generated by

the sequencer. The delivery of messages is done based on the sequence numbers.

L5 In this refinement we introduce the notion of control messages. We also introduce

the relationship of each computation message to the control messages.

Chapter 5 Total Order Broadcast 93

L6 A new event Receive Control is introduced. We illustrate that a process other

than sequencer can deliver a computation message only if it has received a control

message for it.

5.5.1 First Refinement : Introducing the Sequencer

In the first refinement, given in Fig. 5.8, we introduce the notion of a sequencer. The

sequencer is defined as a constant for this model as sequencer ∈ PROCESS.

 Broadcast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 END;

Order (pp � PROCESS ,mm � MESSAGE)

�

 WHEN pp = sequencer � mm � dom(sender) � (sequencer � mm) � tdeliver
 THEN tdeliver := tdeliver � {pp � mm}
 || totalorder := totalorder � (ran(tdeliver) � {mm})
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE)

�

 WHEN pp � sequencer
 � mm � dom(sender)
 � mm � ran (tdeliver)
 � pp � mm � tdeliver
 � �m.(m � MESSAGE � (m� mm) � totalorder
 	 (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

Figure 5.8: TotalOrder Refinement-I

As shown in the refined specification of Order event given in Fig. 5.8, a message is first

delivered to the sequencer process. It can be noticed that the the following guards in

the abstract specification

mm /∈ ran(tdeliver)

ran(tdeliver) ⊆ tdeliver[{pp}]

are replaced by following.

pp = sequencer

(sequencer 7→ mm) /∈ tdeliver

Chapter 5 Total Order Broadcast 94

The replacement of the guards in the Order event generates new proof obligations. Using

the same approach of invariant discovery as outlined in section 5.4, we arrived at a set

of invariants that was sufficient to discharge all proof obligations. These invariants are

given in Fig. 5.9.

 Invariants Required By
__

/*Inv-11*/ (sequencer � m) � tdeliver � m � ran(tdeliver) Order,TODeliver

/*Inv-12*/ m � dom(totalorder) � (sequencer � m) � tdeliver Order

/*Inv-13*/ m � ran(totalorder) � (sequencer � m) � tdeliver Order

Figure 5.9: TotalOrder Refinement-I : Invariants

A brief description of these invariants is given in the following steps.

– A message not delivered to the sequencer has not been delivered elsewhere.(Inv-11)

– If a total order on any message m has been constructed then it must have been

delivered to the sequencer.(Inv-12,13)

Similarly, it can be noticed that a guard pp 6= sequencer is added in the specifications

of TODeliver event. Thus, on occurrence of the event TODeliver, a message mm is

delivered to a process other than the sequencer.

5.5.2 Second Refinement : Refinement of Order event

This refinement outlines a more concrete specification of the Order event. Through this

refinement we illustrate that a total order can be built using the messages delivered to

the sequencer. As shown in the Fig. 5.8, a total order is generated as follows :

totalorder := totalorder ∪ (ran(tdeliver) × {mm})

It states that all messages delivered at any process are ordered before the new message

mm. In the refined Order event the totalorder is constructed as follows :

totalorder := totalorder ∪ (tdeliver[{sequencer}] × {mm})

This states that all messages delivered to the sequencer are ordered before the new

message mm. The specifications of this refinement are given in the Fig. 5.10.

Chapter 5 Total Order Broadcast 95

 Broadcast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 END;

Order (pp � PROCESS ,mm � MESSAGE)

�

 WHEN pp = sequencer � mm � dom(sender) � (sequencer � mm) � tdeliver
 THEN tdeliver := tdeliver � {pp � mm}
 || totalorder := totalorder � (tdeliver[{sequencer}] � {mm})
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE)

�

 WHEN pp � sequencer
 � mm � dom(sender)
 � mm � ran (tdeliver)
 � pp � mm � tdeliver
 � �m.(m � MESSAGE � (m� mm) � totalorder
 	 (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

Figure 5.10: TotalOrder Refinement-II : Refined Order Event

The replacement of the operations in the event Order generates proof obligations which

require us to prove that the message delivered elsewhere in the system has also been

delivered to the sequencer. In order to discharge the proof obligations we add the

invariant Inv-14 given in the Fig. 5.11. This invariant was sufficient to discharge the

proof obligations.

 Invariants Required By
__

/*Inv-14*/ ran(tdeliver)
 tdeliver[{sequencer}] Order,TODeliver

Figure 5.11: TotalOrder Refinement-II : Invariants

5.5.3 Third Refinement : Introducing Sequence Numbers

In the third refinement, given in Fig. 5.12, we introduce the notion of a computation

message and the sequence numbers. The messages broadcast by the the processes which

Chapter 5 Total Order Broadcast 96

need to be delivered in the total order are called computation messages. In this inter-

mediate refinement step, the sequence number of a computation message is assigned by

the sequencer. This refinement introduces the following new variables.

computation ⊆ MESSAGE

seqno ∈ computation 7→ Natural

counter ∈ Natural

The variable seqno is used to assign the sequence number to the computation messages.

The counter, initialized to zero, is maintained by the sequencer process and incremented

by one each time a control message is sent out by the sequencer process. It can be

noted in the specification of the TODeliver event that these messages are delivered to

the processes other than the sequencer in their sequence numbers.

 Broadcast (pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 || computation := computation � {mm}

 END;

Order (pp � PROCESS ,mm � MESSAGE)

�

 WHEN pp = sequencer � mm � dom(sender) � mm � computation � (sequencer � mm) � tdeliver
 THEN totalorder := totalorder � (tdeliver[{sequencer}] � {mm})
 || tdeliver := tdeliver � {pp � mm}

 || seqno := seqno � {mm � counter}
 || counter:= counter + 1
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE)
�

 WHEN pp � sequencer
 � mm � dom(sender)
 � mm � ran (tdeliver)
 � pp � mm � tdeliver
 � �m.(m � computation � (seqno(m) < seqno(mm))
 	 (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

 Figure 5.12: TotalOrder Refinement-III

Chapter 5 Total Order Broadcast 97

It can be noticed that following guard in the abstract TODeliver

(m 7→ mm) ∈ totalorder ⇒ (pp 7→ m) ∈ tdeliver

is replaced by

seqno(m) < seqno(mm) ⇒ (pp 7→ m) ∈ tdeliver

The change of the guards in the TODeliver event generates new proof obligations. These

proof obligations are discharged by adding new invariants given in Fig. 5.13 to the

model. Invariant Inv-15 states that if m1 precedes m2 in the abstract total order then

the sequence number assigned to m1 is less than the sequence number assigned to m2.

The invariant Inv-16 states that if a computation message has been assigned a sequence

number then the sequencer must have delivered it.

 Invariants Required By
__

/*Inv-15*/ m1� m2 � totalorder Order,TODeliver � seqno(m1) < seqno(m2)

/*Inv-16*/ m � computation � m � dom(seqno) Order,TODeliver � sequencer � m � tdeliver

Figure 5.13: TotalOrder Refinement-III : Invariants

5.5.4 Fourth Refinement : Introducing Control Messages

In this refinement we introduce the notion of control messages. A control message is

broadcast by the sequencer process for each computation message. In this refinement, a

process broadcasts a computation message mm to all processes including the sequencer.

Upon delivery of this message, the sequencer assigns it a sequence number and broad-

cast its control message. All processes except the sequencer deliver the corresponding

computation messages in the order of the sequence numbers. This refinement consists of

following new state variables typed as follows :

control ⊆ MESSAGE

messcontrol ∈ control 7 computation

The variables control and computation are used to cast a message as either a computation

or a control message. The set control contains the control messages sent by the sequencer.

The variable messcontrol is a partial injective function which defines the relationship

between a control message and its computation message. A mapping (m1 7→ m2) ∈

messcontrol indicates that message m1 is the control message related to the computation

Chapter 5 Total Order Broadcast 98

message m2. Since messcontrol is defined as a partial injective function, it also implies

that there can only be one control message for each computation message and vice-versa.

The set ran(messcontrol) contains the computation messages for which control messages

have been sent by the sequencer. The refined model is given in the Fig. 5.14.

The guard mm ∈ ran(tdeliver) of the TODeliver event is replaced by the guard mm

∈ ran(messcontrol) in the Refinement-IV. This indicates that a computation message

is delivered to a process other than a sequencer only if its control message has been

sent out by the sequencer. Later in the refinement we replace this guard stating that

a computation message is delivered to a process other than the sequencer only if its

control message has been received by this process. The change in the guards of Order

and TODeliver events generates proof obligations which are discharged by adding a set

of invariants given in Fig. 5.15 to the model.

 Broadcast (pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 || computation := computation � {mm}

 END;

Order (pp � PROCESS ,mm � MESSAGE,mc � MESSAGE)

�

 WHEN pp = sequencer � mm � dom(sender) � mm � computation � (sequencer � mm) � tdeliver � mc � dom(messcontrol) � mm � ran(messcontrol)
 THEN totalorder := totalorder � (tdeliver[{sequencer}] � {mm})
 || tdeliver := tdeliver � {pp � mm}
 || control := control � {mc}

 || messcontrol := messcontrol � {mc � mm}
 || seqno := seqno � {mm � counter}
 || counter:= counter + 1
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE)
�

 WHEN pp � sequencer � mm � dom(sender) � mm � ran (messcontrol)
 � pp � mm � tdeliver
 � �m.(m � computation � (seqno(m) < seqno(mm))
 	 (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

 Figure 5.14: TotalOrder Refinement-IV

Chapter 5 Total Order Broadcast 99

 Invariants Required By
__

/*Inv-17*/ ran(messcontrol) � ran(tdeliver) Order,TODeliver

/*Inv-18*/ ran(messcontrol) � computation Order,TODeliver

Figure 5.15: TotalOrder Refinement-IV : Invariants

5.5.5 Fifth Refinement : Introducing Receive Control Event

A new event ReceiveControl is introduced in this refinement. This event models receiv-

ing a control message at a process. A new variable receive is also introduced in this

refinement typed as follows :

receive ∈ PROCESS ↔ control

A mapping p 7→ m ∈ receive indicates that process p has received a control message m.

The specifications of the refined events are given in 5.16.

 ReceiveControl (pp � PROCESS , mc � MESSAGE) �
 WHEN mc � control � (pp � mc) � receive
 THEN receive := receive � {pp � mc}
 END

 TODeliver (pp � PROCESS , mm � MESSAGE) �
 WHEN pp � sequencer � mm � computation � (pp � mm) � tdeliver � (pp � messcontrol-1 (mm)) � receive �

�
m.(m � computation 	 (seqno(m)
 seqno(mm)

 � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

Figure 5.16: Refinement-V : Receive Control

As shown in the specifications, variable receive is updated when a control message is re-

ceived at a process. The event TODeliver models the delivery of a computation message

to a process. Also, as shown in the TODeliver event given in Fig. 5.16, the guard

mm ∈ ran(messcontrol)

Chapter 5 Total Order Broadcast 100

is replaced by the following :

(pp 7→ messcontrol−1(mm)) ∈ receive

This guard of the TODeliver event ensures that a process pp delivers a computation

message mm only when its corresponding control message has been received by the

process pp. The change in the guards generates proof obligations associated with the

event TODeliver. In order to discharge these proof obligations we add the following to

the list of invariants.

 Invariants Required By

/*Inv-19*/ m� computation � messcomtrol-1(m) � receive Order,TOdeliver
 � m � ran(messcontrol)

Figure 5.17: TotalOrder Refinement-V : Invariants

5.6 Conclusions

In this chapter we presented the abstract specifications of a total order broadcast. The

Broadcast Broadcast variant of a fixed sequencer protocol is used for the development

of a system of total order broadcast. In the abstract model, we outline how an ab-

stract total order is constructed on the messages. Precisely, an abstract total order is

constructed at the first ever delivery of a message to any process in the system. All

other processes deliver that message in the abstract total order. We have also outlined

invariant properties of the abstract total order broadcast and outline how new invariants

are discovered while discharging the proof obligations.

In the first refinement we introduce the notion of the sequencer process and show that a

message is first delivered to the sequencer and a total order is built by the sequencer. In

the second refinement, we precisely outline that an abstract total order is constructed

using the messages delivered to the sequencer rather than all processes. In the third

refinement, we provide further detail of the protocols steps and introduce the notion

of sequence numbers. A process delivers a message based on sequence numbers rather

than using abstract total order. In the fourth refinement, a notion of control messages

is introduced. We also introduce the relationship of computation and control messages.

A control message is sent by a sequencer process for each computation message after

the delivery of a computation message to the sequencer process. In the fifth refinement,

we illustrate how a computation message is delivered to a process using its sequence

number after delivering a control message to that process.

Chapter 5 Total Order Broadcast 101

This case study illustrates how an incremental approach to system development can be

used to obtain more concrete specifications. Powerful tool support helped us to discover

several new invariants that help to understand why a total order broadcast can correctly

be implemented using sequence numbers. A clear relationship between computation and

control messages is outlined to indicate that our system generates exactly one control

message for each computation message. The full refinement chain is outlined in the

Appendix-D. The overall proof statistics are given in Table 5.1. Approximately sev-

enty five percent of the proofs were discharged by the automatic prover, the rest were

discharged by using the interactive prover of the B tool.

Machine Total POs Completely Automatic Required Interaction

Abstract Model 48 29 19

Refinement1 19 16 03

Refinement2 2 2 00

Refinement3 18 14 04

Refinement4 15 14 01

Refinement5 04 04 00

Overall 106 79 27

Table 5.1: Proof Statistics- Total Order Broadcast

Chapter 6

Causally and Totally Ordered

Broadcast

6.1 Introduction

In this chapter we extend the system of a causal order broadcast to a system of total

causal order broadcast1 such that the delivery of the messages also satisfies a total order

on the messages in addition to a causal order. A total causal order broadcast not only

preserves the causality among the messages but also delivers them in a total order. Our

model is based on the Broadcast Broadcast variant of a fixed sequencer algorithm and it

uses a notion of the sequencer that builds a total order on the messages. The advantage

of processing update transactions over a total causal order broadcast is that the database

always remains in a consistent state due to the guarantees of providing a total order on

the delivery of update messages. Also, this broadcast preserves the causality among the

update messages.

6.2 Mechanism for building a Total Causal Order

In this section we outline the mechanism for building a total causal order on computation

messages. In our model, a computation message is first delivered to a process in a causal

order followed by another delivery in a total order. A process is said to codeliver a

message when it is delivered following a causal order. Similarly, a process is said to

todeliver a message when it is delivered following a total order. It may be noted that

in our model, the todelivery of a message also corresponds to the delivery in a total

causal order. The mechanism for implementing a total causal order is outlined through

an example in the Fig. 6.1.

1A reliable broadcast that satisfies both causal and total order is also known as Causal Atomic

Broadcast.

102

Chapter 6 Causally and Totally Ordered Broadcast 103

P3

P2

P1
Sequencer

M1 M2 M1’ M2’

control message(M1) control message(M2)

co broadcast(M1) to deliver(M1) to deliver(M2)

co deliver(M2)co deliver(M1)

co deliver(M2)co deliver(M1) co broadcast(M2)

Figure 6.1: Execution Model of a Total Causal Order Broadcast

Consider a broadcast of messages M1 and M2 by the processes P2 and P3 respectively.

As shown in Fig. 6.1, broadcasts of M1 and M2 are related by a causal precedence

relationship as given below :

broadcast(M1) → broadcast(M2)2

Since the broadcast of M1 and M2 is related with the causal precedence relationship,

they are codelivered at other processes inclusive of the sequencer respecting their causal

order as given below :

codeliver(M1) → codeliver(M2)

Upon codelivery of the computation messages at the sequencer process, the sequencer

assigns computation messages a sequence number and further broadcasts its sequence

number through the control messages. It may be noted that the sequencer broadcasts

the control messages of computation messages in the order they were codelivered at

sequencer. Therefore, upon codelivery of M1 and M2 at the sequencer, the sequencer

broadcasts control messages of M1 and M2 such that :

broadcast(controlmessage(M1)) → broadcast(controlmessage(M2))

As all broadcasts in our model are done through a causal order broadcast, the control

messages are also codelivered at all processes. Therefore, for any recipient of the control

messages of M1 and M2 the following also holds :

codeliver(controlmessage(M1)) → codeliver(controlmessage(M2))

2 ”→” denote precedes relation.

Chapter 6 Causally and Totally Ordered Broadcast 104

When a process codelivers a control message, it also todelivers the corresponding com-

putation message. Thus the following also holds :

todeliver(M1) → todeliver(M2)

It can be noted that todelivery of a computation message represents a delivery following

a total causal order. Since a sequencer assigns sequence numbers to the computation

messages in the order they were codelivered to the sequencer, each computation mes-

sage is todelivered to a process respecting the causality of their respective computation

message.

Therefore, for any two computation messages M1 and M2 related by a causal precedence

relationship, the following relationship holds which states that if the broadcast of M1

precedes the broadcast of M2 then the todelivery of M1 also precedes todelivery of M2.

broadcast(M1) → broadcast(M2) ⇒ todeliver(M1) → todeliver(M2)

If the broadcast of any two computation messages is not related by a causal precedence

relation (parallel messages), causal order broadcast is free to codeliver them in any

order at the sequencer. However, the sequencer will assign them the separate sequence

numbers guaranteeing that they are delivered to all processes in a total order. Therefore

parallel messages are also delivered to a process in a total order in the total causal order

broadcast.

In the following sections we present the incremental development of a system of a total

causal order broadcast.

6.2.1 Overview of the Refinement Chain

The refinement chain for this development consists of five levels. An overview of the

refinement steps is outlined below.

L1 In the abstract model we outline the construction of abstract total and causal

order on the computation messages. This model is outlined in the Section 6.3.

L2 In this refinement we introduce the notion of vector clocks and sequence numbers.

The abstract causal order and abstract total order are replaced with the vector

clock rules and sequence numbers respectively. This refinement is outlined in

Section 6.4.

L3 In the second refinement, we outline how the need for the generation of separate

sequence numbers can correctly be implemented by the vector clock rules. This

refinement is given in Section 6.5.

Chapter 6 Causally and Totally Ordered Broadcast 105

L4 In this refinement, we present a simplification of the vector rules for updating the

vector clock of recipient processes. This refinement is outlined in Section 6.6.

L5 This is another refinement further simplifying the vector rules for updating vector

clocks. This refinement also is outlined in Section 6.6.

6.3 Abstract Model of Total Causal Order Broadcast

In the abstract model we outline how an abstract causal order and abstract total order

on the computation messages are constructed. We also outline how they are delivered

in a total causal order.

6.3.1 Abstract Variables

The initial part of the abstract model of total causal order broadcast is in Fig. 6.2 as

a B machine. The specifications of the events of the machine are given in Fig. 6.3 and

Fig. 6.4. As shown in Fig. 6.2, sequencer is defined as a constant, where a process is

assigned as the sequencer non-deterministically. The variable sender is used to represent

messages broadcast by a process.

The variable cdeliver represents the messages codelivered to the processes following a

causal order. Similarly, the variable tdeliver represents the messages todelivered to the

processes following a total order. This machine also consists of the following state vari-

ables typed as follows :

computation ⊆ MESSAGE

control ⊆ MESSAGE

messcontrol ∈ control 7 computation

The variables control and computation are used to cast a message as either a computation

or a control message. The variable messcontrol is a partial injective function which

defines the relationship between a computation message and its control message. A

mapping (m1 7→ m2) ∈ messcontrol indicates that the message m1 is the control message

related to the computation message m2. Since messcontrol is defined as a partial injective

function, it also implies that there can be only one control message for each computation

message and vice-versa. The set ran(messcontrol) contains the computation messages

for which control messages have been sent by the sequencer.

In order to represent the causally ordered delivery of the messages at a process, variable

cdelorder is used. A mapping of the form (m1 7→ m2) ∈ cdelorder(p) indicates that

the process p has codelivered m1 before m2. Similarly, a mapping (m1 7→ m2) ∈

tdelorder(p) indicates that the process p has todelivered m1 before m2. It may be noted

Chapter 6 Causally and Totally Ordered Broadcast 106

MACHINE TotalCausalOrder
CONSTANTS sequencer
PROPERTIES sequencer � PROCESS

SETS PROCESS; MESSAGE;

VARIABLES sender , cdeliver , tdeliver , computation ,
 control , messcontrol , causalorder ,
 totalorder, cdelorder, tdelorder

INVARIANT sender � MESSAGE � PROCESS � cdeliver � PROCESS � MESSAGE
 � tdeliver � PROCESS � MESSAGE � computation � MESSAGE � control � MESSAGE � messcontrol � control � computation � causalorder � MESSAGE � MESSAGE
 � totalorder � MESSAGE � MESSAGE � cdelorder � PROCESS� (MESSAGE � MESSAGE) � tdelorder � PROCESS� (MESSAGE � MESSAGE)

 INITIALISATION
 sender :=

�
 || cdeliver :=

�
 || tdeliver :=

�
 ||

 computation :=
�

 || control :=
�

 || messcontrol :=
�

 ||
 causalorder :=

�
 || totalorder :=

�
 ||

 cdelorder := PROCESS � {
�

} ||
 tdelorder := PROCESS � {

�
}

Figure 6.2: TotalCausalOrder: Initial Part

that a message may have been codelivered at a process but is still waiting for it to be

todelivered.

6.3.2 Events in the abstract model

The Broadcast event given in the Fig. 6.3 models the broadcast of a computation message.

It can be noticed that a causal order is built by the sender process while broadcasting a

computation message. A message is codelivered to the sender at the time of broadcast.

The event CausalDeliver models the event of causally ordered delivery of a message to a

process. The guards of the CausalDeliver event also ensure that a message is codelivered

only once. The following guards of the CausalDeliver event ensure that a process pp

causally codelivers a message mm only if it has codelivered all messages which causally

precedes mm.

∀m.((m 7→ mm) ∈ causalorder ⇒ (pp 7→ m) ∈ cdeliver)

Chapter 6 Causally and Totally Ordered Broadcast 107

Upon delivery of a message mm in causal order the variable cdelorder is also updated

so that all messages codelivered to process pp are ordered before mm.

BroadCast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 || causalorder := causalorder � ((sender -1[{pp}] � {mm})
 � (cdeliver[{pp}] � {mm}))
 || cdeliver := cdeliver � {pp � mm}
 || cdelorder(pp) :=cdeloder(pp) � (cdeliver[{pp}] � {mm})
 || computation := computation � {mm}
 END;

CausalDeliver(pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �m.(m � MESSAGE � (m � mm) � causalorder
 	 (pp � m) � cdeliver)
 THEN cdeliver := cdeliver � {pp � mm}
 || cdelorder(pp) :=cdeloder(pp) � (cdeliver[{pp}] � {mm})
 END;

Figure 6.3: TotalCausalOrder: Events-I

The specifications of the events SendControl and TODeliver are given in Fig. 6.4. The

SendControl is an event of sending a control message once a computation message is

codelivered at the sequencer. The following guard of this event ensures that a control

message(mc) for a computation message(mm) is broadcasted only when it has already

broadcasted control messages for the computation messages which causally precedes mm.

∀m.((m 7→ mm) ∈ causalorder ⇒ m ∈ ran(messcontrol))

The set ran(messcontrol) contains the computation messages for which control messages

have been sent by the sequencer. In the operations of event SendControl, it can be

noticed that the sequencer also builds the causal order on the control messages and the

variable messcontrol is updated by adding a corresponding mapping. A total order for

the computation messages mm is also built by the sequencer by updating the abstract

variable totalorder as :

totalorder := totalorder ∪ (m × {mm})

where m = ran(messcontrol). This implies that all computation messages, for which the

sequencer has already sent out control messages, are now totally ordered before mm.

Chapter 6 Causally and Totally Ordered Broadcast 108

SendControl (pp � PROCESS ,mm � MESSAGE, mc � MESSAGE)
�

 WHEN pp = sequencer
 � mc � dom(sender)
 � mm � ran(messcontrol)
 � mm � computation
 � (pp � mm) � cdeliver
 � �m. (m � MESSAGE � m � computation
 � (m � mm) � causalorder � m � ran (messcontrol))
 THEN causalorder := causalorder � ((sender -1[{sequencer}] � {mc})
 � (cdeliver[{sequencer}] � {mc}))
 || sender := sender � {mc � sequencer}
 || control := control � {mc}
 || messcontrol := messcontrol � {mc � mm}
 || LET m BE m = ran(messcontrol)
 IN totalorder := totalorder � (m � {mm}) END
 END;

TODeliver (pp � PROCESS ,mc � MESSAGE)

�

 WHEN mc � dom(sender)
 � mc � control
 � (pp � mc) � cdeliver
 � (pp � messcontrol(mc)) � cdeliver
 � (pp � messcontrol(mc)) � tdeliver
 � �m.(m � MESSAGE � m � computation
 � (m � messcontrol(mc) � totalorder) � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � messcontrol(mc)}
 || tdelorder(pp) := tdeloder(pp) � (tdeliver[{pp}] �{messcontrol(mc)})
 END

Figure 6.4: TotalCausalOrder: Event-II

The TODeliver event models a totally ordered delivery of a computation message to

a process. This event is activated when a process pp codelivers a control message mc.

The guard of the event ensures that at the codelivery of a control message mc by a

process pp, it also delivers a computation message in a total order corresponding to the

control message mc if it has already delivered all computation messages which are totally

ordered before a computation message defined as messcontrol(mc). The messcontrol(mc)

represents a computation message corresponding to the control message mc.

Upon todelivery of a message mm, the variable tdelorder is also updated so that all

messages todelivered to the process pp are ordered before mm.

Chapter 6 Causally and Totally Ordered Broadcast 109

6.3.3 Verification of Ordering Properties

In order to verify that our model of total causal order broadcast preserves the abstract

causal order when the messages are todelivered to the processes, we need to prove that

if the broadcast of any two messages is related by a causal precedence relationship then

they are todelivered to all processes in a total order respecting their causal precedence

relationship. Therefore, we add the following to the list of invariants as a primary

invariant.
m1 ∈ ran(messcontrol) ∧

m2 ∈ ran(messcontrol) ∧

m1 7→ m2 ∈ causalorder

⇒

m1 7→ m2 ∈ totalorder

This invariant states that for any two computation messages m1 and m2, whose control

messages have been sent out by the sequencer, and if m1 causally precedes m2 i.e., (m1

7→ m2) ∈ causalorder then m1 also precedes m2 in the abstract total order i.e., (m1

7→ m2) ∈ totalorder. The reasons for adding the clauses m1 ∈ ran(messcontrol) and

m2 ∈ ran(messcontrol) is that an abstract total order on the messages is constructed by

the sequencer only when their control messages are sent out. This invariant also shows

that the causality is preserved while building an abstract total order by the sequencer.

Therefore, if the broadcast of any two messages is related by a causal precedence rela-

tionship then they are todelivered to all processes in a total order respecting their causal

precedence relationship.

The addition of this invariant (Inv-1) as a primary invariant generates several other

proof obligations. In order to discharge these proof obligations we need to add new

invariants to the model. After two rounds of invariant strengthening, we arrive at a set

of invariants that is sufficient to discharge all proof obligations. These invariants are

outlined in the Fig. 6.5. The codes for the events are given in the Table 6.1.

A brief description of these invariants is given below.

- For any two computation messages m1 and m2 whose control message has been

sent out i.e., m1,m2 ∈ ran(messcontrol), if m1 causally precedes m2 then a total

order also exists among them i.e., m1 is totally ordered before m2. (Inv-1)

– A message is codelivered to a process before it is todelivered to that process. This

invariant also states that a message delivered in a total order has also been delivered

in a causal order.(Inv-2)

- For any two computation messages m1 and m2 where m1 causally precedes m2

and the control messages for m2 have been sent out implies that the control mes-

sage for m1 have also been sent. This invariant also indicates that the sequencer

Chapter 6 Causally and Totally Ordered Broadcast 110

Invariants Required By

/*Inv-1*/ m1 � ran(messcontrol) � m2 � ran(messcontrol) Primary Invariant� (m1 � m2) � causalorder
 � (m1 � m2) � totalorder

/*Inv-2*/ (p � m) � tdeliver � (p � m) � cdeliver BC,SC,CD

/*Inv-3*/ m1� computation � m2� computation BC,SC, TOD� (m1 � m2) � causalorder
 � m2 � ran(messcontrol)
 � m1 � ran(messcontrol)

/*Inv-4*/ m � ran(messcontrol) � (sequencer �m)� cdeliver CD,SC

Figure 6.5: Invariants-I : Abstract Model

BC BroadCast CD CausalDeliver

SC SendControl TOD TODeliver

Table 6.1: Events Code

broadcasts the control messages for the computation messages in their causal order.

(Inv-3)

- Each message whose control message has been sent should also have been codeliv-

ered at the sequencer.(Inv-4)

In order to verify that the TotalCausalOrder model also preserves both total order and

causal ordering properties, we add a set of invariants given as Invariant-II in Fig. 6.6 as

primary invariants. Addition of these invariants to the model generates proof obligations.

Following a similar approach given in the Chapter 4 and Chapter 5, we discharge the

proof obligations associated with these invariants.

Invariants Required By

/*Inv-5*/ (m1 � m2) � causalorder � (p � m2) � cdeliver Primary Invariant
 � (m1 � m2)� cdeloder(p)

/*Inv-6*/ (m1 � m2) � tdelorder(p) � (m1 � m2)� totalorder Primary Invariant

Figure 6.6: Invariants-II : Abstract Model

A brief description of these invariants is given below.

– Given two messages m1 and m2, if message m1 causally precedes m2 and a process

p has codelivered m2 then the delivery order at process p must have been m1

Chapter 6 Causally and Totally Ordered Broadcast 111

followed by m2. This invariant states the required property for the causal order.

(Inv-5)

– For two messages m1 and m2 where m1 is todelivered before m2 at a process p (

m1 7→ m2 ∈ delorder(p)) then m1 precedes m2 in the abstract total order. This

invariant states the required property for the total order. (Inv-6)

Invariants Required By

/*Inv-7*/ (m1 � m2) � causalorder Primary Invariant � (m2 � m3) � causalorder
 � (m1 � m3)� causalorder

/*Inv-8*/ (m1 � m2) � causalorder � (p � m2) � cdeliver BC,CD, SC,TOD
 � (p � m1) � cdeliver

/*Inv-9*/ (m1 � m2) � totalorder
 � (m2 � m3) � totalorder Primary Invariant
 � (m1 � m3)� totalorder

/*Inv-10*/ (m1 � m2) � totalorder � (p � m2) � tdeliver SC,TOD
 � (p � m1) � tdeliver

Figure 6.7: Invariants-III : Abstract Model

The invariant properties of the model of total causal order showing the transitivity on

the abstract causal and total order are given in the Fig. 6.7. A brief description of these

properties is given below.

– An abstract causal order is transitive.(Inv-7)

– For two messages m1 and m2, if m1 causally precedes m2 and process p has

codelivered the message m2 then p has also codelivered the message m1.(Inv-8)

– An abstract total order is transitive.(Inv-9)

– For two messages m1 and m2, if m1 precedes m2 in total order and process p has

todelivered the message m2 then p has also todelivered m1. (Inv-10)

The proof obligations associated with these invariants are discharged using the process

outlined in sections 4.3 and 5.4. Discharging these proof obligations was relatively easy,

because we already knew the invariants needed to discharge these proof obligations. A

complete set of invariants for this model is given in the Appendix-E.

Chapter 6 Causally and Totally Ordered Broadcast 112

6.4 First Refinement of Total Causal Order

In this section, we outline the first refinement of the abstract model of total causal order

broadcast. In this refinement we introduce the notion of vector clocks and sequence

numbers. The abstract variables causalorder and totalorder in this refinement are re-

placed with the vector clock rules and sequence numbers respectively. In this refinement

we introduce two new variables VTP and VTM to implement causal ordering. The

variables VTP and VTM respectively represent the vector time of a process and the

vector timestamp of a message. Similarly, in order to implement total ordering we also

introduce variables seqno and counter.

6.4.1 Events in the First Refinement

The events of the first refinement of the machine TotalCausalOrder using vector clocks

and sequence numbers are shown in the Fig. 6.8 and Fig. 6.9. It can be noticed that the

operations of events (Broadcast, CausalDeliver and SendControl) involving the abstract

variable causalorder are replaced by the vector rules. Similarly, the operations of events

SendControl and TODeliver involving the abstract variable totalorder are replaced by

the sequence numbers(seqno).

 Broadcast(pp � PROCESS , mm � MESSAGE)
�

 WHEN mm �dom(sender)
 THEN LET nVTP
 BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}

 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 || computation := computation � {mm}
 END ;

 CausalDeliver (pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p 	 sender(mm)
 VTP(pp)(p) � VTM(mm)(p))
 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 cdeliver := cdeliver {pp � mm}
 || VTP(pp) := VTP(pp) �
 ({q | q � PROCESS � VTP(pp)(q) < VTM(mm)(q)} � VTM(mm))

 END;

Figure 6.8: First Refinement- Part I

Chapter 6 Causally and Totally Ordered Broadcast 113

SendControl (pp � PROCESS , mm � MESSAGE, mc � MESSAGE)
�

 WHEN pp = sequencer
 � mc � dom(sender)
 � mm � ran(messcontrol)
 � mm � computation
 � pp � mm � cdeliver
 � � (m,p) � (p � PROCESS � m � MESSAGE � m � computation
 � VTM (m)(p) � VTM(mm)(p) � m � ran(messcontrol))
 THEN control := control 	 {mc}
 || messcontrol := messcontrol 	 {mc � mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp � VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP
 || VTP(pp) := nVTP
 END
 || sender := sender 	 {mc � pp}
 || LET ncount BE ncount = counter +1
 IN counter := ncount
 || seqno(mm) := ncount
 END
 END;

TODeliver (pp � PROCESS , mc � MESSAGE)

�

 WHEN mc � dom(sender)
 � mc � control
 � (pp � mc) � cdeliver
 � (pp � messcontrol(mc)) � cdeliver
 � (pp � messcontrol(mc)) � tdeliver
 � �m.(m� MESSAGE � m � computation
 � (seqno(m) < seqno (messcontrol(mc)) � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver 	 {pp � messcontrol(mc)}
 END

Figure 6.9: First Refinement - Part II

The events Broadcast and SendControl are the events of sending a message. The event

Broadcast models the broadcast of computation messages and event SendControl models

the broadcast of control messages. In both of the events, the sender process pp incre-

ments its own clock value VTP(pp)(pp) by one. Recall that VTP(pp)(pp) represents

the number of messages sent by the process pp. The modified vector timestamp of the

process is also assigned to message mm giving vector timestamp of message mm.

The CausalDeliver event models causally ordered delivery of a message mm at process

pp. Consider the following guard of this event involving abstract causal order.

∀m.((m 7→ mm) ∈ causalorder ⇒ (pp 7→ m ∈ cdeliver)

Chapter 6 Causally and Totally Ordered Broadcast 114

This guard is replaced by the following guards involving vector clock rules in the refine-

ment.

(1) ∀p.(p ∈ PROCESS ∧ p 6= sender(mm) ⇒ VTP(pp)(p) ≥ VTM(mm)(p))

(2) VTP(pp)(sender(mm)) = VTM(mm)(sender(mm)) − 1

The first condition states that the vector timestamp of a recipient process pp and message

mm are compared to ensure that all messages received by the sender of a message

before sending it, are also received at the recipient process. The second condition states

that process pp has received all but one message from the sender of the message mm.

An operation updating the vector clock of recipient process pp is also shown in the

specification of CausalDeliver event.

The variable seqno is used for building a total order on the computation messages. In the

refined specification of event SendControl, it can be noticed that the operation involving

abstract totalorder is replaced by an operation containing variables seqno and counter.

The counter is incremented each time a control message is sent and it is assigned to the

control messages.

The guards of the event TODeliver are strengthened in this refinement. It can be noticed

that the following guard of the event TODeliver involving abstract totalorder

∀m.(m ∈ computation∧ (m 7→ messcontrol(mc) ∈ totalorder) ⇒ (pp 7→ m) ∈ tdeliver)

is replaced by the following guard involving sequence numbers.

∀m.(m ∈ computation ∧ (seqno(m) < seqno(messcontrol(mc))) ⇒ (pp 7→ m) ∈ tdeliver)

The above states that the process has todelivered all computation messages whose se-

quence number is less than the sequence number of the computation message corre-

sponding to the control message mc.

6.4.2 Constructing Gluing Invariants

In this section we briefly outline how the proof obligations generated due to the re-

placement of the guards and operations containing abstract variables causalorder and

totalorder by the vector clock rules and sequence numbers respectively help us discover

gluing invariants. A few important gluing invariants are given in the Fig 6.10. A com-

plete list of invariants is given in Appendix-E.

Chapter 6 Causally and Totally Ordered Broadcast 115

6.4.2.1 Relationship of abstract causal order and vector clock rules

The replacement of the guards and operations involving the variable causalorder in the

abstract model by the equivalent rules of vector clocks generate several proof obligations

due to refinement checking. Initially, the only proof obligation that can not be proved

is given below in simplified form. It involves the relationship between causalorder and

the vector timestamp of a message generated by the event CausalDeliver.

CausalDeliver(pp,mm)PO1

mm ∈ dom(sender)

(pp 7→ mm) /∈ cdeliver

∀p.(p ∈ PROCESS ∧ p 6= sender(mm) ⇒ V TP (pp)(p) ≥ V TM(mm)(p)

V TP (pp)(sender(mm)) = V TM(mm)(sender(mm)) − 1

m ∈ MESSAGE

m 7→ mm ∈ causalorder

⇒

(pp 7→ m) ∈ cdeliver

In this proof obligation it can be noticed that a message m causally precedes mm i.e.,(m

7→ mm) ∈ causalorder and process pp has not codelivered mm. According to the vector

clock rules, pp can codeliver mm only when it has codelivered all messages which causally

precede mm. If a process pp has codelivered all but one message from the sender of mm

then the following must be hold :

V TP (pp)(sender(mm)) = V TM(mm)(sender(mm)) − 1

Similarly, if a process pp has codelivered all messages sent by the sender of mm before

sending mm and it has also codelivered mm then the following must hold :

V TP (pp)(sender(mm)) ≥ V TM(mm)(sender(mm))

Thus we add an invariant given at Inv 11 in Fig. 6.10 which states that if the vector

time of process p1 is equal or greater than the vector timestamp of any sent message

m then p1 must have codelivered the message m. Adding Inv 11 to the model gener-

ates proof obligations associated with other events. Discharging these proof obligations

required other invariants given as Inv 12,13 and 14. After three iterations of invariant

strengthening we arrive at a set of invariants which is sufficient to discharge all proof

obligations relating abstract causalorder and vector clock rules.

Chapter 6 Causally and Totally Ordered Broadcast 116

6.4.2.2 Relationship of abstract total order and sequence number

Replacing the abstract variable totalorder by the sequence number in the operations of

SendControl and the guards of the TODeliver event generates proof obligations. The

first proof obligation which can not be discharged automatically requires us to prove the

following for the TODeliver event.

TODeliver(pp,mc)PO2

mc ∈ dom(sender)

mc ∈ control

pp 7→ messcontrol(mc) ∈ cdeliver

(pp 7→ messcontrol(mc)) /∈ tdeliver

∀m.(m ∈ computation ∧ (seqno(m) < seqno(messcontrol(mc)) ⇒ (pp 7→ m) ∈ tdeliver)

m ∈ computation

m 7→ messcontrol(mc) ∈ totalorder

⇒

(pp 7→ m) ∈ tdeliver

It may also be noted that this proof obligation appears due to the replacement of the

following guard of TODeliver involving the abstract variable totalorder :

∀m.((m 7→ messcontrol(mc) ∈ totalorder ⇒ (pp 7→ m) ∈ tdeliver)

by the guard involving variable seqno :

∀m.((seqno(m) < seqno(messcontrol(mc)) ⇒ (pp 7→ m) ∈ tdeliver)

Therefore, in order to discharge this proof obligation we add the invariant Inv-15 to

our model which relates the abstract variable totalorder to the concrete seqno. This

invariant states that if two computation messages m1 and m2 are in totalorder then

the sequence number of m1 is less than sequence number of m2. We notice that this

invariant is sufficient to discharge all proof obligations generated by the SendControl

and the TODeliver events.

6.4.2.3 Gluing Invariants

The invariant showing the relationship of the abstract causalorder and totalorder with

the vector rules and sequence numbers is given in the Fig. 6.10. The codes for the events

are given in Table 6.1. A brief description of these properties is given below.

- If the vector time of process P is equal to or greater than the vector timestamp of

any sent message M then P must have codelivered the message M (Inv-11).

Chapter 6 Causally and Totally Ordered Broadcast 117

Invariants Required By

/*Inv-11*/ m� dom(sender) � VTP(p1)(p2)

�
 VTM(m)(p2) BC,CD,SC

 � (p1 � m) � cdeliver)

/*Inv-12* / (m1 � m2) � causalorder � VTM (m1)(p) � VTM(m2)(p)) BC,CD

/*Inv-13*/ m � dom(sender) � VTM(m)(p) � VTP(p)(p)) BC,CD

/*Inv-14*/ VTM (m)(p)=0 � m � (dom(causalorder) � ran(causalorder)) BC,CD

/*Inv-15*/ (m1 � m2) � totalorder � seqno(m1) < seqno(m2) SC,TOD

 Figure 6.10: Gluing Invariants-IV : First Refinement

- For any two messages m1 and m2 where m1 causally precedes m2, the vector

timestamp of m1 is less than the vector timestamp of m2 (Inv-12)

- Since VTP(p)(p) represents the total number of messages sent by a process p and

VTM(m)(p) represents the number of messages received by the sender of m from

process p before sending m, the number of messages sent by process p will be

greater than or equal to the number of messages received by the sender(m) from

p (Inv-13).

- A message whose timestamp is a vector of zero’s implies that it is not causally

ordered(Inv-14).

- If any two computation messages m1 and m2 are in totalorder then the sequence

number of m1 is less than the sequence number of m2 (Inv-15).

6.5 Second Refinement : Replacing Sequence Number by

the Vector Clocks

In the second refinement, we outline how the need for generating separate sequence

numbers can correctly be implemented by the vector clock rules. It can be noticed that

the total order on the messages in the first refinement is realized with the sequence

numbers. The specifications of the Broadcast and CausalDeliver events of the first

refinement remain unaltered as none of these events make use of sequence numbers. The

events SendControl and TODeliver in the first refinement are further refined to eliminate

the need for the sequence number generated by the sequencer. In the second refinement,

the variables seqno and counter are replaced by the vector clock rules. The specifications

of the refined SendControl and TODeliver events are given in Fig. 6.11, 6.12.

As shown in Fig. 6.11, the operation assigning the sequence number to the computation

message is removed in the refined SendControl event. We use the fact that the vector

Chapter 6 Causally and Totally Ordered Broadcast 118

SendControl (pp � PROCESS , mm � MESSAGE, mc � MESSAGE)
�

 WHEN pp = sequencer
 � mc � dom(sender)
 � mm � ran(messcontrol)
 � mm � computation
 � pp � mm � cdeliver
 � � (m,p) � (p � PROCESS � m � MESSAGE � m � computation
 � VTM (m)(p) � VTM(mm)(p) � m � ran(messcontrol))
 THEN control := control 	 {mc}
 || messcontrol := messcontrol 	 {mc � mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp � VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP || VTP(pp) := nVTP END
 || sender := sender 	 {mc � pp}
 END;

 Figure 6.11: Second Refinement : SendControl

timestamp of the control message contains the information required for todelivery of

the messages. Also, as shown in the Fig. 6.12, the guard of the event TODeliver which

contains sequence numbers in the abstract model is replaced by the vector rules. We

use the fact that the sequence numbers for the computation message are generated by

the sequencer each time it sends a control message. Thus, for a given control message

M and the corresponding computation message (M
′

), the following holds :

seqno(M
′

) = V TM(M)(sequencer)

This replacement in the refinement generates proof obligations involving seqno and the

vector timestamp of messages. To prove these proof obligations we add Inv-16, shown

in Fig. 6.13 to our refined model. Adding Inv-16 to the refinement requires us to add

new invariants Inv-17,18 to the refinement. A brief description of these invariants is

given below.

– For a control message m sent by the sequencer, the value VTM(m)(sequencer)

of the vector timestamp of m represents the sequence number of the computation

message corresponding to control message m. In other words, the sequence number

assigned to a computation message is the same as the sequencer’s own logical time

at the time of sending its control message(Inv-16).

– For two control messages m1 and m2, if the vector timestamp of m1 is less than

the vector time stamp of m2 then the sequence number given to the corresponding

computation message of m1 is also less than sequence number of the computation

message of m2 (Inv-17).

Chapter 6 Causally and Totally Ordered Broadcast 119

TODeliver (pp � PROCESS , mc � MESSAGE)
�

 WHEN mc � dom(sender)
 � mc � control
 � (pp � mc) � cdeliver
 � (pp � messcontrol(mc)) � cdeliver
 � (pp � messcontrol(mc)) � tdeliver
 � �m.(m� MESSAGE � m � computation �
 (VTM(messcontrol-1(m))(sequencer) < VTM(mc)(sequencer))
 � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � messcontrol(mc)}
 END

Figure 6.12: Second Refinement : TODeliver

– For two computation messages m1 and m2, if the sequence number given to m1 is

less than the sequence number of m2 then the vector timestamp of the correspond-

ing control message m1 is also less than the vector time stamp of corresponding

control message of m2 (Inv-18).

After discharging the proof obligations generated due to the addition of these invariants

associated with the events Broadcast, SendControl and TODeliver, we ensure that the

events in Fig. 6.11, 6.12 are valid refinements of events in Fig. 6.9.

6.6 Further Refinements

In the third and fourth refinements we simplify the operations of the CausalDeliver event

given in the Fig. 6.8. In the second refinement the vector clock of the recipient process

 Invariants Required By
__

/*Inv-16*/ m � control 	 (m
 sequencer) � sender SC,TOD
 � seqno(messcontrol -1(m)) = VTM(m)(sequencer))

/*Inv-17*/ m1 � control 	 m2 � control BC,SC,TOD
 	 VTM(m1)(p) � VTM(m2)(p)
 � seqno (messcontrol -1(m1)) � seqno (messcontrol -1(m2))

/*Inv-18*/ m1 � computation 	 m2 � computation SC,TOD
 	 seqno (m1) � seqno (m2)
 � VTM(messcontrol(m1))(p) � VTM(messcontrol(m2))(p)

Figure 6.13: Second Refinement : Gluing Invariant

Chapter 6 Causally and Totally Ordered Broadcast 120

is updated as :

V TP (pp) := V TP (pp)�−

{(q | q ∈ PROCESS ∧ V TP (pp)(q) < V TM(mm)(q)} � V TM(mm))

The above operation is replaced by the following simplified operation in the third re-

finement which states that only one value in the vector clock of the recipient process pp,

corresponding to the sender process of the message, is updated.

V TP (pp) := V TP (pp) �− {sender(mm) 7→ V TM(mm)(sender(mm))}

This operation is further refined to the following in the fourth refinement which precisely

states that only one value in the vector clock of the recipient process is updated.

V TP (pp)(sender(mm)) := V TM(mm)(sender(mm))

The refined CausalDeliver event in the fourth refinement is given in Fig 6.14. In each

refinement step we observed that proof obligations are generated due to the replacement

of the operations of the event CausalDeliver. These proof obligations are automatically

discharged by the B prover. A full chain of refinement with a complete set of invariants

is given in the Appendix-E.

 CausalDeliver (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p � sender(mm) � VTP(pp)(p)

�
 VTM(mm)(p))

 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 cdeliver := cdeliver 	 {pp � mm}
 || VTP(pp)(sender(mm)) := VTM(mm)(sender(mm))
 END;

Figure 6.14: Causal Deliver Event

6.7 Conclusions

In this chapter, we have outlined the development of a system of total causal order

broadcast. A total causal order broadcast not only preserves the causal precedence re-

lationship among the messages but also delivers them in a total order. In our model of

a total causal order broadcast, the computation messages are broadcast using a causal

Chapter 6 Causally and Totally Ordered Broadcast 121

order broadcast. These computation messages are first delivered to all processes includ-

ing the sequencer respecting their causal order. Upon causally ordered delivery of a

computation message at the sequencer, the sequencer generates a sequence number for

that computation message and broadcasts its sequence number by a control message.

Similar to our model of a total order broadcast, a process other than the sequencer

delivers a computation message in the order of sequence numbers. It may be noted that

all computation messages are delivered at the sequencer in causal order and their con-

trol messages are sent in the order they were delivered at the sequencer. Therefore, the

sequence number generated by the sequencer also captures the causality among the com-

putation messages. Later in the refinement, we outlined that the generation of explicit

sequence numbers is redundant and it can be implemented using the vector timestamp

of the messages.

In the abstract model of this broadcast we outlined how the abstract causal order and a

total order on the computation messages are constructed. In the first refinement of the

abstract model we replace abstract causal order by the vector clock rules. Similarly, we

also replace the abstract total order with sequence numbers to outline how an abstract

total order can correctly be implemented by sequence numbers. In the second refinement

we show that an abstract system can be implemented by a vector clock system. We also

outline in this refinement, why the generation of sequence numbers is redundant and

how it is related to the vector timestamps. The last two refinements show simplification

of the event of delivery of a message in a causal order.

We notice that proof obligations are generated due to the addition of the primary invari-

ants to the model and refinement checking. These proof obligations help us construct

and discover the new invariants required to discharge the proof obligations. In this

case study, the discovery of new invariants was relatively easy as we already knew the

invariants relating abstract causal order, total order, vector clocks and sequence num-

bers. These invariants were discovered while the discharging proof obligations for the

case studies given in the Chapter 4 and the Chapter 5. Since most invariants added to

the model are predicates with quantification, the average of number of steps involved

with each proof is estimated at about twelve to fifteen. The proof statistics for the

development of a system of a total causal order are given in Table 6.2.

Machine Total POs Completely Automatic Required Interaction

Abstract Model 92 57 35

Refinement 1 50 31 19

Refinement 2 14 04 10

Refinement 3 06 06 00

Refinement 4 04 04 00

Overall 166 102 64

Table 6.2: Proof Statistics- Total Causal Order Broadcast

Chapter 7

Liveness Properties and

Modelling Guidelines

7.1 Introduction

In this chapter, we outline liveness properties that need to be preserved by the B models

of distributed systems. We also outline how enabledness preservation and non-divergence

are related to the liveness properties of the B models of distributed systems. We address

the liveness issues related to our model of distributed transactions. Finally, we present

some general modelling guidelines for the development of the models of distributed

systems in Event-B.

7.2 Liveness in the Event-B Models

Safety and liveness are two important issues in the development of distributed sys-

tems [73]. The distinction between safety and liveness properties was motivated by the

different tools and techniques for proving them and various interpretations of these prop-

erties are discussed in [66]. Informally, as described in [73], a safety property expresses

that something (bad) will not happen during a system execution. A liveness property

expresses that something (good) will eventually happen during the execution.

With regard to safety, the most important property which we want to prove about models

of distributed systems is invariant preservation. The invariant is a condition which must

hold permanently on the state variables. By invariant preservation we mean proving

that the actions of the events do not violate the invariants. With regards to the safety

properties, the existing tools generate proof obligations for consistency checking and

refinement checking. Discharging the proof obligations generated due to consistency

checking means that the actions of the events do not violate the invariants. Discharging

122

Chapter 7 Liveness Properties and Modelling Guidelines 123

the proof obligations for refinement checking also implies that each reachable concrete

state in the refinement is also reachable in the abstraction.

Despite providing strong proof support to aid reasoning about the safety properties, the

existing tools provide weak support for other complex forms of reasoning about liveness

properties, such as enabledness preservation or non-divergence, and feasibility checking.

By enabledness preservation, we mean whenever some events in the abstraction are

enabled then the corresponding events or new events in the refinement are also enabled.

Similarly, non-divergence requires us to prove that the new events in the refinement

do not take control forever. The issues relating to the liveness properties are currently

being addressed in the new generation of Event-B tools being developed [92, 44]. In the

remaining sections we outline these issues and present guidelines to address these issues

in the Event-B development of distributed systems.

7.2.1 Feasibility

With respect to the safety properties of distributed systems, in addition to consistency

and refinement checking, feasibility checking is also an important issue. It is our under-

standing that verifying the feasibility of a valid initial state of a distributed system is

an important step in the development of a distributed system. Consider the following

example B machine given in the Fig. 7.1.

MACHINE temp
CONSTANTS N
PROPERTIES N � NAT
SETS PROC ; MESG
VARIABLES sender
INVARIANTS sender � MESG � PROC
INITIALISATION
 ANY x WHERE x � NAT � x < N � x > N THEN sender :=

�
 END

EVENTS
 Broadcast =
 ANY p , m , y WHERE p � PROC � m � MESG � y � NAT � y < N � y > N
 THEN sender := sender � { m � p} END
END

 Figure 7.1: Feasibility of Initialization and Event

As shown in the initialization clause of the machine, the variable sender is initialized to

a null set only if the guard is true. Since the guards is always false for all values of x,

the initialization of variable sender is not feasible. Therefore, the initialization of the

machine in a consistent state is never possible. Similarly, since the guard of the event

Broadcast is always false for all values assumed by the variable y, the event will never

be enabled. The current B tools generate two trivial proof obligations due to invariant

Chapter 7 Liveness Properties and Modelling Guidelines 124

preservation, one each associated with the initialization and the event broadcast. These

proof obligations are automatically discharged by the existing B tools.

Since the existing tools are not able to generate the proof obligations relating to feasibil-

ity, it is not possible to determine whether a valid initialization of the machine is feasible

or whether an event will ever be enabled. In order to check the feasibility of the ini-

tialization, the use of ProB is highly recommended. To check feasibility, the tools must

generate proof obligations to determine if there exist any contradictions in the guards

of the events. We believe that the new generation B tool e.g., Rodin [44] addresses this

issue and generates proof obligations to ensure the feasibility of of a consistent initial

state and the possibility of activation of events.

7.2.2 Non-Divergence

New events and variables can be introduced in refinement. Each new event of a refine-

ment refines a skip event and defines a computation on new variables. In such cases,

it is useful to prove that the new events do not together diverge, i.e., run forever. If a

new event is allowed to run forever then the abstract event possibly may not occur. For

example, as outlined in the first refinement of the abstract model of transactions given

in Chapter 3, if the new events such as BeginSubTran, SiteAbortTx or SiteCommitTx

take the control forever then the events of global commit/abort are never activated and

a global commit decision may never be achieved.

In order to prove that the new events do not diverge, we use a VARIANT construct.

A variant V is a variable such that V ∈ N, where N is a set of natural numbers. For

each new event in the refinement we should be able to demonstrate that the execution

of each new event decreases the variant and the variant never goes below zero. This

allows us prove that a new event can not take control forever, since a variant can not be

decreased indefinitely. In order to achieve this, the most challenging task is to construct

a variant expression and prove that it is preserved by the activation of the events. The

process of the construction of a variant expression for the first refinement of the model

of transactions is as below.

In the refinement of our model of transactions, the notion of sites and the status of

a transaction at a site is introduced. The new events in the refinement change the

concrete state of the transactions. A transaction state at each participating site is

first set to pending by the activation of BeginSubTran. The activation of the event

SiteCommitTx changes the status from pending to precommit while the activation of

SiteAbortTx sets the status from pending to abort at that site. A transaction in the

precommit state at a site changes the state to either commit or abort by the activation

of event ExeCommitDecision or ExeAbortDecision respectively. The state diagram for

a concrete transaction state transitions at a site is shown in the Fig. 7.2. As shown in

Chapter 7 Liveness Properties and Modelling Guidelines 125

the figure each state is represented by a rank. The initial state represents a state of a

transaction tt at a participating site ss when it is not active, i.e., the sitetranssstatus of

tt at ss is not defined (ss /∈ dom(sitetranstatus(tt))). After submission of a transaction,

a transaction first become active at the coordinator site. Subsequently, due to the

activation of the event BeginSubTran(tt,ss), sub-transactions are started separately at

different sites, i.e., at each activation of this event, tt becomes active at participating

sites ss. As shown in the figure, new events in the refinement change the state of a

transaction at a site such that each time the rank is decreased.

rank = 3

rank = 0

rank = 2

rank = 1

Initial

Pending

Precommit

Commit

ExeCommitDecision(t,s)

SiteAbortTx(t,s)SiteCommitTx(t,s)

ExeAbortDecision(t,s)

BeginSubTran(t,s)

Abort

Figure 7.2: Concrete Transaction States in the Refinement

A variant in the refinement is defined as a variable variant :

variant ∈ trans → Natural

and initialized as variant := ∅.

As shown in the Fig. 7.3, when a fresh transaction tt is submitted by the activation

of the event StartTran(tt), the initial value of variant is set as varinat(tt) := 3 * N,

where N is total number of the sites in the system. Instead of showing all new events

that decrease the variant, the events SiteCommitTx and SiteAbortTx that decrease the

variant are shown in the Fig. 7.4. It can be noticed that both events decrease the variant

and change the status of a transaction from a pending state to precommit or abort state.

Since activation of the new events in the refinement decrease the variant, the rank of

Chapter 7 Liveness Properties and Modelling Guidelines 126

state is changed from three to zero, such that, variant(tt) will always be greater than or

equal to zero.

StartTran(tt) �
 ANY ss, updates, objects
 WHERE ss � SITE � tt � trans � updates � UPDATE � objects �

�
1 (OBJECT) � ValidUpdate (updates,objects)

 THEN trans := trans � {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 || coordinator(tt) := ss
 || sitetransstatus(tt) := {coordinator(tt) � pending}
 || variant(tt) := 3 * N
 END;

 Figure 7.3: Variant

 SiteCommitTx(tt,ss)�
 WHEN (ss� tt) 	 activetrans

 sitetransstatus(tt)(ss)= pending

 ss � coordinator(tt)

 ran(transeffect(tt))�{� }
 THEN sitetransstatus(tt)(ss) := precommit
 || variant(tt) := variant(tt) -1
 END;

 SiteAbortTx(tt,ss)�
 WHEN (ss� tt) activetrans

 sitetransstatus(tt)(ss)= pending

 ss � coordinator(tt)

 ran(transeffect(tt))�{� }
 THEN sitetransstatus(tt)(ss) := abort
 || freeobject := freeobject � {ss}� transobject(tt)

 || activetrans := activetrans -{ss � tt}
 || variant(tt) := variant(tt) - 2

END;

 Figure 7.4: Events Decreasing a Variant

In order to prove that the activation of the new events given in the Fig. 7.2 does not

diverge, we need to prove that the changes in the state of a transaction at a site corre-

sponds to the decrement in the rank from three to zero. The variable variant is decreased

each time a new event in the refinement is activated. Thus, we construct the invariant

Chapter 7 Liveness Properties and Modelling Guidelines 127

∀t · (t ∈ trans ⇒
variant(t) ≥ (3 ∗ card(SITE − activetrans−1[{t}]

+2 ∗ card(sitetransstatus(t)−1[{pending}]
+1 ∗ card(sitetransstatus(t)−1[{precommit}]
+0 ∗ card(sitetransstatus(t)−1[{commit, abort}]
)

)

Figure 7.5: Invariant used in variant Proofs

property involving the variable variant that need to be satisfied by the action of the

events in the refinement. This property is given in Fig 7.5.

In this expression, activetrans−1[{t}] returns a set of sites where transaction t is in active

state. Similarly, sitetransstatus(t)−1[{pending}] returns a set of site where a transaction

t is in pending state. In order to prove that the new events in the refinement do not

diverge, we have to show that the above invariant property on a variable variant holds on

the activation of the events in the refinement. In order to prove this invariant property

we need to add invariants 7.1 and 7.2 to the model. The invariant 7.1 states that if a

transaction t is not active at a site s then the variable variant is greater than or equal

to zero. The invariant 7.2 states that the variable variant is greater than or equal to

zero if the status of a transaction t at site s either precommit, pending, abort or commit.

∀(s, t) · (t ∈ trans ∧ s ∈ SITE ∧ (s 7→ t) /∈ activetrans

⇒ variant(t) ≥ 0) (7.1)

∀(s, t) · (t ∈ trans ∧ s ∈ SITE ∧ sitetransstatus(t)(s) ∈ {pending, precommit, abort, commit}

⇒ variant(t) ≥ 0) (7.2)

Therefore, in order to prove that the new events in the refinement do not diverge, we

need to construct an invariant on variant that holds on the activation of the events in the

refinement such that each new event in the refinement decreases the variant and variant

never goes below zero. Also, to prove an invariant property that includes a variant, we

need to construct new invariants that are sufficient to discharge the proof obligations.

7.2.3 Enabledness Preservation

With respect to liveness, freedom from deadlock is an important property in a distributed

database system. Our model of transactions requires us to prove that each transaction

eventually completes execution, i.e., either it commits or aborts. With respect to Event-

B models, it requires us to prove that if a transaction completes execution in the abstract

model of a system, then it must also complete in the concrete model. We ensure this

property by enabledness preservation.

Chapter 7 Liveness Properties and Modelling Guidelines 128

Enabledness preservation requires us to prove that the guards of the one or more events

in the refinement are enabled under the hypothesis that the guard of one or more events

in the abstraction are also enabled. Precisely, let there exist events Ea
1 , Ea

2 ..., Ea
n in the

abstraction and a corresponding event Er
i in the refinement refines the abstraction event

Ea
i . The events Hr

1 , ..., Hr
k are the new events in the refinement. A weakest notion of

enabledness preservation can be defined as follows:

Grd(Ea
1) ∨ Grd(Ea

2)... ∨ Grd(Ea
n)

⇒

Grd(Er
1) ∨ Grd(Er

2)... ∨ Grd(Er
n) ∨ Grd(Hr

1) ∨ Grd(Hr
2)... ∨ Grd(Hr

k) (7.3)

The weakest notion of enabledness preservation given at 7.3 states that if one or more

events in the abstraction is enabled then one or more events in the refinement are also

enabled. The strongest notion of the enabledness can be defined as below :

Grd(Ea
i) ⇒ Grd(Er

i) ∨ Grd(Hr
1) ∨ Grd(Hr

2)... ∨ Grd(Hr
k) (7.4)

The notion of enabledness preservation defined in 7.4 states that if the event Ea
i in the

abstraction is enabled then either the refining event Er
i is enabled or one of the new

events are enabled.

We have also outlined in Chapter 3 that a concrete model may be deadlocked due to race

conditions. To ensure that all updates are delivered to all sites in the same order, we

need to order update transactions such that all sites deliver updates in the same order.

This may achieved if a site broadcasts an update using a total order broadcast. In the

presence of abstract ordering on the update transactions, all updates are delivered to all

sites in a same order, thus the concrete model does not deadlock. In the next section,

we outline how enabledness preservation properties relates to our model of transactions

in the presence of abstract ordering on the update transactions.

Abstract Transaction States

In our model of transactions, an update transaction, once started, updates the ab-

stract database atomically when the transaction commits, or makes no changes in the

database, when it aborts. We have represented the global state of update transac-

tions by a variable transstatus in the abstract model of the transactions. The variable

transtatus is defined as transtatus ∈ trans → TRANSSTATUS, where TRANSSTA-

TUS={COMMIT,ABORT,PENDING}. The transstatus maps each transaction to its

global state. With respect to an update transaction, activation of the following events

change the global transaction states.

Chapter 7 Liveness Properties and Modelling Guidelines 129

– StartTran(tt) : The activation of this event starts a fresh transaction and the state

of the transaction is set to pending.

– CommitWriteTran(tt) : A pending update transaction commits by atomically up-

dating the abstract database and it status is set to commit.

– AbortWriteTran(tt) : A pending update transaction aborts by making no change

in the abstract database and its status is set to abort.

Initial

Pending

Commit Abort

AbortWriteTran(tt)

StartTran(tt)

Complete(tt)

CommitWriteTran(tt)

Figure 7.6: Transaction States in the Abstract Model

The transitions in the transaction states due to the activation of events in the abstract

model of the transactions are outlined in the the Fig. 7.6. CommitWriteTran(tt) and

AbortWriteTran(tt) together are represented as Complete(tt), as both of these events

model the completion of a update transaction. As outlined in the figure, our abstract

model of transactions is free from deadlock, since an update transaction in the abstract

model commits atomically by updating the database or aborts by doing nothing. How-

ever, in the refinement, update transaction consists of collections of interleaved events

updating each replica separately. Due to the interleaved execution of transactions at

several sites, we need to show that the concrete model does not deadlock in the presence

of a total order broadcast.

Abstract Ordering on the transactions

As outlined in the refinement of the model of transactions given as Replica2 in Chap-

ter 3, in addition to a notion of a replicated database and the sites, new events are also

introduced. It may be recalled that in this refinement conflicting transactions may be

blocked. In order to ensure that our concrete model of transactions does not block and

makes progress, we introduce a new event Order in the refinement. The very purpose

of introducing new event Order(tt) is to ensure that the transactions are executed at all

sites in a predefined abstract order on the transactions. The event Order models gen-

eration of abstract ordering on the update transactions. For the purpose of simplicity,

Chapter 7 Liveness Properties and Modelling Guidelines 130

the event IssueWriteTran(tt) is also merged with BeginSubTran(tt) such that the event

BeginSubTran(tt) models starting a sub-transaction at a site including the coordinator.

In the refined model, the sub-transactions at the participating sites are started in the

order of the abstract ordering on the transactions. This abstract ordering on the trans-

actions can be realized by introducing explicit total ordering on the messages in further

refinements.

To model an abstract order on the transactions we introduce new variables tranorder

and ordered typed as follows:

tranorder ⊆ trans ↔ trans

ordered ⊆ trans

A mapping of the form t1 7→ t2 ∈ tranorder indicates that a transaction t1 is ordered

before t2, i.e., at all sites t1 will be processed before t2. It may be noted that the ab-

stract transaction ordering can be achieved by implementing total ordering on all update

messages. In order to represent the state of a transaction at a site, we use a variable site-

transstatus. The variable sitetransstatus maps each transaction, at a site, to transaction

states given by a set SITETRANSTATUS, where SITETRANSTATUS={pending, com-

mit, abort, precommit}. The Order event models building an abstract transaction order

on the started transactions. The event BeginSubtran models starting a sub-transaction

in the order defined by the abstract variable tranorder. The specifications of the events

Order and BeginSubTran are given in the Fig. 7.7.

Instead of giving the specifications of all events of the refinement in the similar detail,

brief descriptions of the new events in this refinement are outlined below.

– Order(tt) : This event builds an abstract order on the transactions.

– BeginSubTran(tt) : This event models starting a sub-transaction at a site includ-

ing the coordinator. The sub-transactions are started in the order of abstract

transaction order. The status of the transaction tt at site ss is set to pending.

– SiteAbortTx(ss,tt) : This event models a local abort of a transaction at a site. The

transaction is said to complete execution at the site. The status of the transaction

tt at site ss is set to abort.

– SiteCommitTx(ss,tt) : This event models precommit of a transaction at a site.

The status of the transaction tt at site ss is set to precommit.

– ExeAbortDecision(ss,tt) : This event models abort of a precommitted transaction

at a site. This event is activated once the transaction has globally aborted. The

status of the transaction tt at site ss is set to abort. The transaction is said to

complete execution at the site.

Chapter 7 Liveness Properties and Modelling Guidelines 131

Order(tt� TRANSACTION)
�

 WHEN tt � trans � tt � orderd
 THEN tranorder := tranorder � (ordered � {tt})
 || ordered := ordered � {tt}

 END;

BeginSubTran (tt� TRANSACTION ,ss� SITE)�
 WHEN � tt � trans � tt � ordered
 	 (ss
 tt)� activetrans
 	 ran(transeffect(tt))�{ }
 	 transobject(tt) � freeobject[{ss}]

 	 transstatus(tt)=PENDING
 	 � tz.(tz � trans 	 (ss
 tz)� activetrans
 � transobject(tt) � transobject(tz) =) 	 � tx.(tx � trans 	 (tx
 tt)� tranorder

 � (tx
 ss)� completed)
 THEN activetrans := activetrans � {ss
 tt}
 || sitetransstatus(tt)(ss) := pending
 || freeobject := freeobject - {ss} � transobject(tt)

END;

 Figure 7.7: Order and BeginSubTran events

– ExeCommitDecision(ss,tt) : This event models commit of a precommitted transac-

tion at a site. This event is activated once the transaction has globally committed.

The status of the transaction tt at site ss is set to precommit. The replica at the

site is updated with the transaction effects and the transaction is said to complete

execution at this site.

The transaction states in the refinement is outlined in the Fig. 7.8 and 7.9. As shown

in the figure, initially the status of a fresh transaction is set to pending by the acti-

vation of StartTran event. A pending transaction is ordered by the activation of the

Order event, before it starts a sub-transaction at a participating site. A site starts a

sub-transaction in transaction order and independently decides to either abort or pre-

commit the sub-transaction by activation of either SiteAbortTx or SiteCommitTx. These

new events of the refinement set the status of transactions to abort or precommit. The

coordinating site takes a decision of global commit by the activation of either Com-

mitWriteTran or AbortWriteTran events. It can be noticed that both CommitWrite-

Tran(tt) and AbortWriteTran(tt) events together are represented as Complete(tt), as

both of these events model the completion of a update transaction. An update trans-

action then reaches the final state of a global commit or abort. A site implements the

Chapter 7 Liveness Properties and Modelling Guidelines 132

global commit decision to update the replica at that site by the activation of ExeCom-

mitDecision at participating sites. This event takes place only after the activation of

CommitWriteTran. Similarly, a site implements a global abort decision by the activation

of ExeAbortDecision. This event occurs after the activation of AbortWriteTran at the

coordinator. These events set the transaction status at that site to abort or commit.

Initial

Pending

Ordered

StartTran(tt)

Order(tt)

sitetranstatus= pending

SiteAbortTx(tt)

sitetranstatus= abort

SiteCommitTx(tt)

sitetranstatus= precommit

Transaction States
in Refinement

BeginSubTran(tt)

CommitAbort

AbortWriteTran(tt) CommitWriteTran(tt)
Complete(tt)

Figure 7.8: Transaction States in the Refinement-I

Chapter 7 Liveness Properties and Modelling Guidelines 133

Abort/Commit

sitetranstatus= abort sitetranstatus= commit

sitetranstatus= precommit

Transaction States in Refinement

ExeAbortDecision(tt,ss) ExeCommitDecision(tt,ss)

Figure 7.9: Transaction States in the Refinement-II

Proof Obligations for Enabledness Preservation

In this section, we outline the proof obligations to verify that the refinement is en-

abledness preserving. Our objective is to prove that if a transaction completes in the

abstraction then it also completes in the refinement. The weakest notion of enabledness

preservation1 given at 7.3 requires us to prove following :

Grd(StartTran(t) ∨ CommitWriteTran(t) ∨ Grd(AbortWriteTran(t))

⇒ Grd(StartTran∗(t))

∨ Grd(Order(t))

∨ Grd(BeginSubTran(t, s))

∨ Grd(SiteCommitTx(t, s))

∨ Grd(SiteAbortTx(t, s))

∨ Grd(CommitWriteTran∗(t))

∨ Grd(AbortWriteTran∗(t)) (7.5)

The property given at 7.5 is not sufficient as it states that if one or more events in Start-

Tran, AbortWriteTran or CommitWriteTran is enabled in the abstraction then one of

the refined events or the new events is enabled in the refinement. It does not guarantee

that if a transaction t completes in the abstraction then it also completes in the refine-

ment. What we need to prove is that if either AbortWriteTran or CommitWriteTran in

1An event E in the abstract model is defined as E
∗ in the refinement.

Chapter 7 Liveness Properties and Modelling Guidelines 134

the abstraction is enabled then one of the refined events or new events in the refinement

is enabled. According to the strongest notion of enabledness preservation given at 7.4,

it requires us to prove 7.6, 7.9 and 7.10.

Grd(StartTran(t))

⇒ Grd(StartTran∗(t))

∨ Grd(Order(t))

∨ Grd(BeginSubTran(t, s))

∨ Grd(SiteCommitTx(t, s))

∨ Grd(SiteAbortTx(t, s)) (7.6)

The property at 7.6 states that if the guard of the StartTran event is enabled then the

guard of refined StartTran or the guards of new events are enabled. This property is

provable due to following observations.

Grd(StartTran(t)) ⇒ Grd(StartTran∗(t)) (7.7)

In order to prove this property, the following proof obligation needs to be discharged.

This proof obligation is trivial and can be discharged by the automatic prover of the

tool.

∀t(t ∈ TRANSACTION ∧ t /∈ trans ⇒ t /∈ trans) (7.8)

Grd(CommitWriteTran(t))

⇒ Grd(Order(t))

∨ Grd(BeginSubTran(t, s))

∨ Grd(SiteCommitTx(t, s))

∨ Grd(SiteAbortTx(t, s))

∨ Grd(CommitWriteTran∗(t)) (7.9)

The property at 7.9 states that if the guard of the CommitWriteTran event is enabled

then the guards of refined CommitWriteTran or the guards of new events are enabled.

This property is too strong to prove due to following reasons. A transaction may not

commit in the refinement until some other transaction either commits or aborts. There-

fore, the guards of the AbortWriteTran may be enabled, as commit of a transaction

depends on the abort of other transaction. Also, for the same reasons the property

at 7.10 is not provable either.

Chapter 7 Liveness Properties and Modelling Guidelines 135

Grd(AbortWriteTran(t))

⇒ Grd(Order(t))

∨ Grd(BeginSubTran(t, s))

∨ Grd(SiteCommitTx(t, s))

∨ Grd(SiteAbortTx(t, s))

∨ Grd(AbortWriteTran∗(t)) (7.10)

Therefore, we need to reconstruct the properties given at 7.9 and 7.10 given as 7.11

and 7.12 respectively. It can be noticed that we need to prove that if the guards of

the events AbortWriteTran or CommitWriteTran are enabled in the abstract model

then either the guards of new events or the guards of refined AbortWriteTran or Com-

mitWriteTran events are enabled in the refinement.

Grd(CommitWriteTran(t))

⇒ Grd(StartTran∗(t))

∨ Grd(Order(t))

∨ Grd(BeginSubTran(t, s))

∨ Grd(SiteCommitTx(t, s))

∨ Grd(SiteAbortTx(t, s))

∨ Grd(CommitWriteTran∗(t))

∨ Grd(AbortWriteTran∗(t)) (7.11)

Grd(AbortWriteTran(t))

⇒ Grd(StartTran∗(t))

∨ Grd(Order(t))

∨ Grd(BeginSubTran(t, s))

∨ Grd(SiteCommitTx(t, s))

∨ Grd(SiteAbortTx(t, s))

∨ Grd(CommitWriteTran∗(t))

∨ Grd(AbortWriteTran∗(t)) (7.12)

We observe that the proof obligations constructed due to the weakest notion of the

enabledness preservation are not sufficient to prove that if a transaction completes in

abstraction then it also completes in the refinement. Also, we observe that the strongest

notion of enabledness preservation is too strong to prove.

What we really need is a notion of enabledness preservation that is stronger than the

Chapter 7 Liveness Properties and Modelling Guidelines 136

weakest notion(see property 7.3) and weaker than the strongest notion(see property 7.4).

This can be defined as below.

1. If the event StartTran is enabled in the abstraction then it is also enabled in the

refinement.

2. If the completion event, i.e., either CommitWriteTran or AbortWriteTran event

is enabled in the abstract model then these completion events are also enabled in

the refinement.

We have already outlined that the first property is preserved by our model of transactions

given at 7.7. For the second property, we further construct the property given at 7.13.

Grd(CommitWriteTran(t)) ∨ Grd(AbortWriteTran(t))

⇒ Grd(Order(t))

∨ Grd(BeginSubTran(t, s))

∨ Grd(SiteCommitTx(t, s))

∨ Grd(SiteAbortTx(t, s))

∨ Grd(CommitWriteTran∗(t))

∨ Grd(AbortWriteTran∗(t)) (7.13)

We observe that property 7.13 is also not provable because a transaction t cannot com-

plete its execution until some other transaction completes. Therefore, we finally con-

struct the property 7.14.

Grd(CommitWriteTran(tx)) ∨ Grd(AbortWriteTran(tx))

⇒ ∃ty · Grd(Order(ty)

∨ ∃ty · Grd(BeginSubTran(ty, s))

∨ ∃ty · Grd(SiteCommitTx(ty, s))

∨ ∃ty · Grd(SiteAbortTx(ty, s))

∨ Grd(CommitWriteTran∗(tx))

∨ Grd(AbortWriteTran∗(tx)) (7.14)

As shown in 7.14, if the events corresponding to a completion of a transaction tx in

the abstraction are enabled then the new events Order, BeginSubtran, SiteCommitTx,

SiteAbortTx are enabled for other transactions ty or the refined Complete events are also

enabled for tx. Since we allow the interleaving of the transactions in the refinement, if

a transaction tx completes by a commit then another transaction ty may also complete

by an abort.

Chapter 7 Liveness Properties and Modelling Guidelines 137

The proof obligations for the property 7.14 can be simplified as follows. For a given

transaction t that has started but not ordered then the event Order activates before the

activation of other events in the refinement. Therefore, if one or both of the abstract

events CommitWriteTran or AbortWriteTran is enabled and the transaction is not or-

dered then the guard of event Order in the refinement must be enabled. The proof

obligation corresponding to this property is given below :

Grd(Complete(t)) ∧ t /∈ ordered ⇒ Grd(Order(t)) (7.15)

The proof obligation 7.15 can be simplified by replacing Complete(t) by the transaction

completion events shown as below.

Grd(CommitWriteTran(t)) ∨ Grd(AbortWriteTran(t))

∧ t /∈ ordered ⇒ Grd(Order(t)) (7.16)

Similarly, if a transaction t is ordered then the guard of the events BeginSubtran,

SiteCommitTx, SiteAbortTx or the refined Complete must be enabled. The proof obli-

gation corresponding to this property is given below.

Grd(Complete(t)) ∧ t ∈ ordered

⇒ Grd(BeginSubTran(t, s))

∨ ∃ty · Grd(SiteCommitTx(ty, s))

∨ ∃ty · Grd(SiteCommitTx(ty, s))

∨ Grd(Complete∗(t)) (7.17)

The proof obligation 7.17 may further be simplified under following observations. Con-

sider a transaction t that has started, ordered but it is not active at a site s then the guard

of BeginSubTran(t,s) must be enabled. In order to prove this property, the following

proof obligation needs to be discharged.

Grd(Complete(t))

∧ t ∈ ordered

∧ (s 7→ t) /∈ activetrans

∧ ∀tx · (tx ∈ trans ∧ (tx 7→ t) ∈ tranorder ⇒ (t 7→ s) ∈ completed

⇒ Grd(BeginSubTran(t, s)) (7.18)

Further, if a transaction t that has started, ordered and is active at a site s then the

guard of SiteCommitTx, SiteAbortTx or the refined Complete(t) must be enabled. This

Chapter 7 Liveness Properties and Modelling Guidelines 138

proof obligation is given below.

Grd(Complete(t)) ∧ t ∈ ordered ∧ (s 7→ t) ∈ activetrans

⇒ ∃ty · Grd(SiteCommitTx(ty, s))

∨ ∃ty · Grd(SiteAbortTx(ty, s))

∨ Grd(Complete∗(t))) (7.19)

The existing B tools do not generate proof obligations for enabledness preservation.

However, the issue of enabledness preservation and non-divergence is being addressed

in the new generation of B tools, e.g., Rodin [44]. The proof obligations outlined above

are specific to our model of transactions. However, using the same strategy, the proof

obligations for other models of distributed systems may be generated. Discharging these

proof obligations ensures that the model is enabledness preserving. The same strategy

needs to be used to formulate the proof obligations for each level of refinement.

7.3 Guidelines for an Event-B Development

In this section, we briefly outline the guidelines for the incremental construction of a

model of a distributed system in Event-B. It is our understanding that most distributed

algorithms are deceptive and they may allow unanticipated behavior during execution.

There exists a vast variety of problems related to distributed systems. There also exists

several solutions to each of these problems. A formal verification is required to un-

derstand that these algorithms achieve what they are supposed to do. The guidelines

presented here are particularly helpful if the main purpose of the construction of a model

of a distributed system is to specify the abstract problem and to verify the correctness

of a proposed solution or a design decision in the refinement steps.

Firstly, we present the general methodological guidelines for modelling in Event-B. Sub-

sequently, the guidelines for an effective management of the B tools to discharge the

proof obligations, are presented. These guidelines emerged from the experience of our

case studies [139, 140, 141, 142] presented in this thesis and the Mondex case study [31].

7.3.1 General Methodological Guidelines for Modelling in Event-B

In this section, general methodological guidelines for the construction of models of dis-

tributed systems in Event-B, are presented.

Chapter 7 Liveness Properties and Modelling Guidelines 139

Guideline 1 :

Sketch the informal requirements and the safety properties of a system

Before undertaking the development of a large distributed system, it is necessary to

formulate informal definitions and the requirements of a system. Formulation of these

requirements varies with the system. However, each system requires a clear description

of the functional and safety requirements. The functional requirement usually deals

with the main function of the system. The safety requirements underline the critical

properties that a system must meet. Formulation of the informal requirements should

be an iterative process, which should go on together with the development of the formal

models.

In the development of the formal models for the case studies outlined in this thesis, we

considered the protocol steps as functional requirements for the construction of formal

models. For example, we considered the read anywhere write everywhere replica control

protocol for the management of replicas in Chapter 3, vector clocks for implementing

causal ordering in Chapter 4, sequencer based protocol for total order in Chapter 5 and

vector clocks for implementing total causal order in Chapter 6. After the construction

of the formal models, at each refinement step proof obligations are generated by the B

tool for refinement and consistency checking. By discharging these proof obligations, we

ensure that a refinement meets safety requirements. Additionally, in order to prove that

a model also preserves critical properties of the protocol, we further construct and add

primary invariants to the model that represent critical properties of the system. The

addition of these primary invariants to the model generates additional proof obligations.

While discharging the proof obligations, we also discover a set of new invariants called

secondary invariants. These proof obligations and invariants provide a deeper insight

into the system and help us understand why a protocol meets the critical properties.

Guideline 2 :

Use the refinement approach to gain insight

An abstract model is generally regarded as an bird’s eye view of the system. It is

important to make sure that the abstract model appropriately reflects the overall view

of the system under development. The first attempt in the formal devolvement of the

system should be on the modelling of the problem in the abstract model rather than

proposing the solution. Once the abstract problem is defined in the abstract model,

the detailed solutions of the problem should gradually be introduced in the refinement

steps. The modelling assumptions made in the construction of an abstract model are

crucial. The informal process of reconciling the requirements at each level of refinement

Chapter 7 Liveness Properties and Modelling Guidelines 140

help discovering invalid modelling assumptions. A critical view of the proof obligations

generated by the tools also helps discovering invalid modelling assumptions. It should

be remembered that the state of the refined system is largely constrained by the choice

of variables and the events in the abstraction.

Consider our model of transactions in Chapter 3. In the abstract model, an update

transaction performs update on a one-copy database. In the refinement, we introduce

the notion of replicas. Replicas in the refinement are updated within the framework of a

read anywhere write everywhere protocol. The proof obligations and the invariants dis-

covered at this stage provide insight into why a one-copy database is a valid abstraction

of replicated databases, i.e., why a replicated database preserves the one-copy equiva-

lence consistency criterion. Similarly, in Chapter 4, in the abstract model we define

abstract causal ordering on the messages and in a refinement we introduce vector clocks

to implement causal ordering. Both proof obligations and the discovered invariants help

understand why a vector clock mechanism implements abstract causal ordering on mes-

sages. Also, using the same technique in Chapter 5, in the abstract model we outline

how a total order is constructed on the messages and in the refinements we introduce

the details of control messages and sequence numbers. Through the proof and new in-

variants, we understand how the mechanism of generating sequence numbers delivers

the messages correctly in a total order.

Guideline 3 :

Keep abstraction gap as small as possible

During the development of a refinement chain, keep the abstraction gap as small as

possible. Precisely, while adding new events and variables in the refinement, it is good

to keep the state space representation as abstract as possible. Allowing a very detailed

state space in a single refinement step may require discharging lengthy and complex

proof obligations. Keeping the abstraction gap smaller means discharging less complex

proof obligations. Discharging a proof obligation may also require addition of the new

invariants to the model. A large and complex proof obligation may require a huge

amount of work which otherwise could be split into easier and smaller units of work.

Since an invariant for the abstract models is available for free for the refined model,

smaller abstraction gaps in each refinement step help splitting otherwise complex proof

steps into the simpler ones. Also, keeping smaller abstraction gaps may lead to a higher

degree of automatic proofs, since a relatively simple proof obligation is more likely to

be discharged by the automatic prover.

For example, consider the first refinement given in the Chapter 3. Due to the intro-

duction of the replica control mechanism and a large number of concrete variables, we

observe a vary large concrete state space. Therefore, we end up discharging a relatively

Chapter 7 Liveness Properties and Modelling Guidelines 141

large number of complex proof obligations compared to the other refinement steps, as

outlined in the Table 3.2. Also, due to large abstraction gaps in the first two refine-

ments of the refinement chain in the Chapter 6, a relatively large number of complex

proof obligations is generated, as shown in the Table 6.2. However, discharging these

proof obligations was relatively easy as most of the invariant properties were already

discovered as a part of development of the model of a causal order in Chapter 4 and a

total order in Chapter 5.

Guideline 4 :

Tools are critical in managing proofs and the refinement chain

The B tools are central to Event-B modelling. They greatly ease the burden of modelling

efforts by the generation of proof obligations, remembering the proof steps, discharging

the proof obligations and maintaining the refinement chain. The complexity of the proof

obligations generated by the tool are also dependent on the way the B constructs are

used in the modelling. For example, use of the relational override operator may generate

more complex proof obligations than using set union. Similarly, the tool may generate

simple proof obligations if the state of a variable is represented by a set variable construct

rather than using enumerated sets. For example, one way of modelling computation and

control messages is by using a variable mtype ∈ MESSAGE → MTYPE where MTYPE

= {computation, control} and assigning the type of a message as mtype(mm):= compu-

tation. An easier step could be to declare variable computation, control as computation

⊆ MESSAGE and assigning the type of a message as computation := computation ∪ {

mm }. An invariant computation ∩ control = ∅ ensures that both messages are distinct.

The prover generates relatively easier proof obligations for the later and discharges the

proof automatically.

Guideline 5 :

Let the proof obligations guide construction of the gluing invariants

In our case studies we have outlined the construction of the gluing invariants by inspec-

tion of the proof obligations. The proof obligations generated by the B tool contain

sufficient information to construct new invariants. However, in the first instance an at-

tempt should be made to discharge a proof obligation through interaction with the tool

by inspecting available hypotheses and the invariants. In many cases, there may not be

a need to add a new invariant, rather an interaction with the tool e.g., simplifying the

hypotheses and goals or by providing a good instantiation will suffice. The addition of a

new invariant to the model must be seen as a last solution and must be constructed after

a very careful examination of the proof obligations, available hypotheses and the existing

Chapter 7 Liveness Properties and Modelling Guidelines 142

invariants. It should be remembered that each newly constructed invariant needs to be

proved to be consistent for each event in the model. It is also necessary to convince

yourself informally that a newly discovered invariant is expected to be an invariant. In

some cases, a new invariant may also provide a clue that either previously constructed

invariants or the model itself need to be fixed. A blind construction of a new invariant

may result in a growth in the number of proof obligations or may lead to invalid changes

in the model which may result in a situation of proving a wrong invariant for an invalid

model. In the case of an addition of an invariant, efforts should be made to construct a

new invariant which is close to the form of the proof obligations. By adding an invariant

which is close to the proof obligation, the proof efforts are usually eased.

For example, as outlined in the Chapter 4, consider the following two proof obligations

generated by the B tool. The first proof obligation requires us to prove that if a message

m1 causally precedes m2 and that pp is sender of m2 and m1 was not sent by process

pp then process pp must have delivered m1.

m1 7→ m2 ∈ corder ∧ m2 ∈ (sender−1[{pp}]) ∧ m1 /∈ (sender−1[{pp}])

⇒ m1 ∈ (cdeliver[{pp}]) (7.20)

Similarly, the second proof obligation states that if m1 causally precedes m2 and pp is

the sender of m2 and pp has not delivered m1 then pp is sender of m1.

m1 7→ m2 ∈ corder ∧ m2 ∈ (sender−1[{pp}]) ∧ m1 /∈ (cdeliver[{pp}])

⇒ m1 ∈ (sender−1[{pp}]) (7.21)

Therefore, in order to discharge these proof obligations, we add the following invariant

to the model that is close to the form of these proof obligations. This invariant states

that if m1 precedes m2 in causal order, p is sender of m2 , then p has either delivered

m1 or it is a sender of m1. We observe that this invariant is sufficient to discharge these

proof obligations.

m1 7→ m2 ∈ corder ∧ m2 ∈ (sender−1[{p}])

⇒ m1 ∈ (sender−1[{p}]) ∨ m1 ∈ (cdeliver[{p}])

We also outlined the construction of invariants in the chapters 3-6 guided by the proof

obligations.

Chapter 7 Liveness Properties and Modelling Guidelines 143

Guideline 6 :

Frequently use model checker to understand the prover failure

Discharging complex proof obligations using the interactive prover is quite a tricky affair.

In the event of a prover’s failure to discharge a proof obligation, it is not always possible

to determine if the prover could not prove the goal due to the inappropriate selection of

the hypotheses or the goal can not be proved at all under the available hypotheses. One

of the main limitations [6] of the predicate prover of the existing tools is its sensitivity

towards useless hypotheses. The predicate prover may prove a certain statement with a

selection of right hypotheses but may not prove or takes much longer time to prove the

same statement under the selection of a large number of useless hypotheses.

This situation is more of importance if the proof obligation was generated due to the

addition of a new invariant. In such cases it is necessary to determine informally if the

newly constructed invariant is a valid invariant and the model needs to be fixed or the

invariant is violated due to activation of an certain event. The use of a model checker

(ProB) is strongly recommended to precisely understand how the state variables are

changed due to the activation of events and what invariants are violated. The model

checker can also be used to find counter examples which may lead to fixing the model

or invariants.

For example, as outlined in the Chapter 4, a causal order broadcast is a reliable broad-

cast that satisfies the causal order requirement, i.e., a causal order broadcast delivers

messages respecting their causal precedence relationship. In order to verify that our

model of causal order, given as first refinement, preserves causal order properties, we

considered the following two properties relating abstract causal order and delivery order.

m1 7→ m2 ∈ corder ⇒ m1 7→ m2 ∈ delorder(p) (7.22)

m1 7→ m2 ∈ delorder(p) ⇒ m1 7→ m2 ∈ corder (7.23)

The property at 7.22 states that for any two messages m1 and m2 such that m1 precedes

m2 in causal order then the delivery order at a process p is also m1 followed by m2. The

property at 7.23 states that given two messages m1 and m2, and m1 is delivered before

m2 to a process p then m1 precedes m2 in causal order. We use model checking to

precisely understand why and when both of the above are not the invariant properties.

The property at 7.22 is not an invariant property as the causal order is constructed at the

time of sending a message and the messages are delivered after arbitrary time. Similarly,

the property at 7.23, is not an invariant property due to parallel messages, i.e., parallel

messages may be delivered to all processes in same delivery order. After frequent use of

Chapter 7 Liveness Properties and Modelling Guidelines 144

the model checker and animator(ProB), we arrive at the following invariant property.

m1 7→ m2 ∈ corder ∧ p 7→ m2 ∈ cdeliver

⇒ m1 7→ m2 ∈ delorder(p)

Guideline 7 :

Redundancy may be useful

A redundant variable is one whose value may be extracted from other variables of the

model. Using redundant variables may be helpful in constructing the gluing invariants

and the generation of relatively simple proof obligations. These variables may gradually

be removed in the subsequent refinement steps. While removing the redundant variables

in the refinement, the proofs may be easier due to the existing invariants. However, in-

troducing too much redundancy in the model may lead to increased effort in managing

it. For example, variables activetrans, sitetransstatus, freeobject used in the first refine-

ment in Chapter 3 help discharge several complex proof obligations. However, there

exists a strong relationship among them as outlined in the second refinement.

Guideline 8 :

Be aware that Refinement chains are not always top down

Contrary to the general belief, refinement chains are not always top down. Due to

the detection of modelling errors or lack of understanding in the design decisions, the

abstract model may need fixing. In the case of a change in the model, a new refinement

chain may evolve. The detection of errors or omissions at a later stage in the refinement

and fixing them in the abstract model is an integral part of the evolution of a valid

refinement chain. For example, in the third refinement of the model of transactions,

given in Chapter 3, we introduce explicit messaging among the sites that corresponds

to a reliable broadcast. In this refinement, the update transactions may be blocked due

to the race conditions.

In order to deal with blocked transactions, we introduce the timeout strategy that aborts

an update transaction at the coordinating site. We already outlined in the first refine-

ment that our replica control mechanism preserves the consistency of a database in

the event of an abort of an update transaction. The effect of an timeout is similar to

globally aborting a transaction by a coordinating site. While adding this event to the

third refinement, we realized that this event must also exist in the abstract model, as

the activation of this event sets the global status of a transaction to ABORT in the

abstract model. Also, similar to the effects of AbortWriteTran event, activation of the

Chapter 7 Liveness Properties and Modelling Guidelines 145

TimeOut event removes a transaction from a list of active transactions at coordinator

and adds the transaction object to a list of free objects at the coordinator. However,

the differences between these events are visible in the third refinement where activation

of AbortWriteTran requires that the coordinator has delivered at least one vote-abort

message from the coordinator. Therefore, we have to modify the refinement chain and

we introduce TimeOut at each refinement level. The specifications of TimeOut events

for each refinement level of the model of transactions are given in Appendix-B.

7.3.2 Guidelines for Discharging Proof Obligations using B Tools

As outlined above, the tools are critical in managing the proof efforts and the develop-

ment of the refinement chain. Guidelines are presented below outlining effective strate-

gies to discharge proof obligations.

G1. While constructing a gluing invariant after the inspection of the proof obligations,

always try to construct an invariant which is close to the form of the proof obliga-

tion.

G2. Where possible avoid using complex structures in the invariants such as quantifica-

tions, a relational override operator or an inverse function. For example, consider

the following invariant.

∀(p, m).(p ∈ process ∧ m ∈ message ∧ (p 7→ m) ∈ deliver ⇒ m ∈ dom(sender))

Instead of writing this invariant using the quantification, it can be simply be

expressed as ran(deliver) ⊆ dom(sender). The proof obligations generated due to

the use of quantifications in the invariant are more complex than using simple set

theoretic constructs.

G3. There exist three predicate provers in the tools pr, po and p1. p1 is considered to

be the most powerful prover. However, in certain cases, p1 fails to prove a goal

while pr or po are able to prove the same goal. Also, it is much quicker to replay

the proofs discharged using either pr or po than those discharged using the prover

p1.

G4. It is sometimes useful to prove a lemma first (using ah button), which when proved

becomes a new hypothesis. A lemma should be constructed in such a way that it

is close to the goal of proof obligation. For example, consider the following proof

obligation generated during development of a model of total order broadcast.

m1 ∈ dom(sender) ∧ m2 ∈ dom(sender) ∧

(m1 7→ m2) ∈ totalorder ∧ (pp 7→ m2) ∈ tdeliver

⇒ (m1 7→ m2) ∈ delorder(pp)

Chapter 7 Liveness Properties and Modelling Guidelines 146

In order to discharge this proof obligation, the following lemma should be proved

using add hypothesis.

pp 7→ m1 ∈ tdeliver

G5. While interacting with a proof obligation generated due to the addition of an

invariant containing universal quantification, propose a valid instantiation for that

quantification.

G6. While discharging a proof obligation containing existential quantification, always

propose a valid witness to this quantification.

G7. In certain cases the tool allows you to discharge the proof obligations case by

case(using ov button). Performing the proof steps case by case allows you to

interact with simpler proof obligations.

G8. While inspecting the available hypotheses, if any one is found in contradiction,

try to prove the negation of that hypothesis. For example, consider the following

proof obligation generated by the prover due to addition of primary invariants in

the development of a model of total order broadcast.

mm /∈ dom(sender) ∧ (pp 7→ m2) ∈ tdeliver ∧ (mm 7→ m2) ∈ totalorder ∧

m1 = mm ∧ m2 6= mm

⇒ (pp 7→ mm) ∈ tdeliver

It can be noticed that there is a contradiction in the hypotheses of this proof

obligation, i.e., the hypothesis mm /∈ dom(sender) and (mm 7→ m2) ∈ totalorder

can not be true simultaneously, since a totalorder is built only on the sent messages.

Also, the goal (pp 7→ mm) ∈ tdeliver cannot be proved under the hypothesis mm /∈

dom(sender). Therefore, we add an hypothesis mm ∈ dom(sender) and discharge

it after adding an invariant ran(tdeliver) ⊆ dom(sender).

G9. In the case of prover failures, inspect the available hypotheses and remove the

useless hypotheses from the list of available hypotheses. If the model of the system

is fairly large, the most likely cause of the failure of the prover is the presence of

useless hypotheses in the selection.

G10. In most cases it is useful to simplify the goals and available hypotheses by in-

teraction, before attempting to prove a goal (using ov,rm,ri2). The provers are

good at proving the simpler goals. For example, consider following goal in a proof

obligation :

m1 7→ m2 ∈ totalorder ∪ ran(tdeliver) × {mm}

2For explanation of these clause, see [6].

Chapter 7 Liveness Properties and Modelling Guidelines 147

This goal on starting remove membership(rm) can be simplified to following :

(m1 7→ m2 ∈ totalorder) ∨ (m1 7→ m2 ∈ ran(tdeliver) × {mm})

This goal can be reduced to the following by using the remove disjunction (rd)

clause of the tool.

m1 7→ m2 ∈ totalorder

m1 7→ m2 ∈ ran(tdeliver) × {mm}

However, it can be noticed that each time a goal is modified, the available hy-

potheses displayed by the tool also changes. The simpler goals are easily proved

by the automatic prover of the tool.

7.4 Conclusions

In this chapter, we addressed the issue of liveness in the B models of distributed trans-

actions. Safety and liveness are two important issues in the design and development

of distributed systems [73]. Safety properties express that something bad will not hap-

pen during system execution. A liveness property expresses that something (good) will

eventually happen during the execution. With regards to safety properties, the existing

tools generate proof obligations for consistency and refinement checking. Discharging

the proof obligations generated due to consistency checking mean that the activation of

the events does not violate the invariants. Discharging the proof obligations due to the

refinement checking implies that the gluing invariants that relate abstract and concrete

variables are preserved by the activation of the events in the refinement. With regard

to the liveness, it is useful to state that the model of the system under development

is non-divergent and enabledness preserving. By enabledness preservation, we mean

that whenever some event (or group of events) is enabled at the abstract level then

the corresponding event (or group of events) is eventually enabled at the concrete level.

Similarly, non-divergence requires us to prove that the new events in the refinement

do not take control forever. The issues relating to the liveness properties are currently

being addressed in the new generation of Event-B tools being developed [44, 92].

We outlined how enabledness preservation and non-divergence are related to the live-

ness of the B models of distributed transactions. To ensure that a concrete model also

makes progress and does not deadlock more often than its abstraction, it is necessary to

prove that if an abstract model makes progress due to the activation of events then the

concrete model also makes progress due to the activation of the events in the refinement.

We ensure this property by enabledness preservation. In order to prove that a concrete

machine also makes a progress, we need to prove that the guards of one or more events

in the refinement are enabled under the hypothesis that the guard of one or more events

Chapter 7 Liveness Properties and Modelling Guidelines 148

in the abstraction are also enabled. We specified the necessary conditions for enabled-

ness preservation for the model of transactions that need to be preserved. In order to

show that the new events in the refinement do not take control forever we outlined a

construction of an invariant property on a variant. For each new event in the refinement

we should be able to demonstrate that the execution of each new event decreases the

variant and variant never goes below zero. This allows to us prove that a new event can

not take control forever, since a variant can not be decreased indefinitely.

In the later part of the chapter, we presented the guidelines for the development of a

distributed system using Event-B. Since the use of a tool is critical in managing the proof

obligations and the management of the refinement chain, guidelines for discharging the

proof obligations using B tool are also discussed.

Chapter 8

Conclusions

In this chapter, we outline what we achieved in terms of applying Event-B for the

incremental construction of the formal models of distributed transactions and broadcast

protocols for replicated databases. In Section 8.1, we first summarize the research carried

out within different chapters and explain how we meet the research objectives outlined

in Chapter 1. Subsequently, in Section 8.2, we compare our approach of development of

formal models of distributed systems and reasoning about them, with other approaches.

Lastly, in Section 8.3, we explore areas of future research where the knowledge gained

in the thesis can be used to further enhance the understanding of replicated databases.

8.1 Summary

Distributed algorithms are hard to understand and verify. Several approaches exist for

the verification of these algorithms which include model checking, proving theorems by

hand or proving invariant properties on the trace behavior. However, the application

of proof based formal methods for the automated systematic design and development

of such distributed systems and verification of the critical properties is rare. Often dis-

tributed algorithms are deceptive and an algorithm that looks simple may have complex

execution paths and allow unanticipated behavior. There exists a vast variety of prob-

lems related to distributed systems. Also there exist several solutions to each of the

problems. Rigorous reasoning about the algorithms is required to ensure that an algo-

rithm achieves what it is supposed to do. Event-B is a formal technique that consists of

describing rigorously the problem in the abstract model, introducing solutions or design

details in refinement steps to obtain more concrete specifications, and verifying that the

proposed solutions are correct. The B tools provide significant automated proof support

for generating the proof obligations and discharging them. This technique requires the

discharge of proof obligations for consistency checking and refinement checking. These

proofs help us to understand the complexity of the problem and the correctness of the

149

Chapter 8 Conclusions 150

solutions. They also help us to discover new system invariants providing a clear insight

into the system and enhance our understanding of why a design decision should work.

The aim of the thesis is to demonstrate the application of Event-B to the incremental

construction of formal models of distributed transactions and broadcast protocols for

replicated databases, and to reason about them. A brief note of the work presented in

the thesis is outlined below.

Rigorous Design of Distributed Transactions

In Chapter 3, we have presented a formal approach to modelling and analyzing a dis-

tributed transaction mechanism for a replicated database using Event-B. The abstract

model of transactions is based on the notion of a one-copy database. In the refinement

of the abstract model, we introduced the notion of a replicated database. This formal

approach carries the development of the system from an initial abstract specification of

transactional updates on a one-copy database to a detailed design containing replicated

databases in the refinement. The replica control mechanism considered in the refine-

ment allows both update and read-only transactions to be submitted at any site. In the

case of a commit of the transaction, each site updates its replica separately. An update

transaction commits atomically, updating all copies at commit or none when it aborts.

A read-only transaction may perform read operations on any one replica. The various

events given in the Event-B refinement are triggered within the framework of commit

protocols that ensure global atomicity of update transactions despite transaction fail-

ures. The system allows the sites to abort a transaction independently and keeps the

replicated database in a consistent state. The transaction mechanism on the replicated

database is designed to provide the illusion of atomic update of a one-copy database. By

verifying the refinement, we verify that the design of the replicated database conforms

to the one-copy database abstraction despite transaction failures at a site and preserves

one-copy equivalence consistency criterion. In the further refinement, we also outlined

how these transactions can be processed in the presence of a reliable broadcast.

Implementing Causal Ordering on Messages by Vector Clocks

Capturing the causal precedence relation among the different events occurring in a dis-

tributed system is key to the success of many distributed computations. Vector clocks

have been proposed as a mechanism to capture the causality among the messages and

provides a framework to deliver the messages to the sites in their respective causal order.

In Chapter 4, we have presented Event-B specifications for the global causal ordering

of the messages in a broadcast system. In the specifications we have outlined how an

abstract causal order is constructed on the messages. In the refinement steps, we out-

lined how an abstract causal order can correctly be implemented by a system of vector

Chapter 8 Conclusions 151

clocks. This is done by replacing the abstract variable corder in the abstract specifi-

cations by vector clock rules in the concrete refinement. Due to refinement checking,

several proof obligations are generated by the B tool. These proof obligations help us

discover the invariants which define the relationship between abstract causal order and

vector clock rules. We have also outlined how the gluing invariants are constructed after

the inspection of the proof obligations. Our model is based on the Birman, Schiper and

Stephenson’s protocol [21] for implementing global causal ordering using vector clocks.

In the refinement, we found that instead of updating the whole vector of a recipient

process as outlined in the original protocol, updating only one value in the vector clock

of a recipient process corresponding to the sender process is sufficient to realize causally

ordered delivery of the message.

Implementing Total Ordering on Messages by Sequence Numbers

In Chapter 5, we outlined an incremental development of a system of total order broad-

cast. A total order broadcast delivers messages to all sites in the same order. The

advantage of processing update transactions over a total order broadcast is that a total

order broadcast delivers updates to all participating sites in the same order. Unneces-

sary aborts of update transactions due to blocking can be avoided using a total order

broadcast which delivers and executes the conflicting operations at all sites in the same

order.

We have outlined the key issues with respect to the total order broadcast algorithms, such

as, how to build a total order on messages and what information is required to deliver

the messages in a total order. The Broadcast Broadcast variant of a fixed sequencer

protocol is used for the development of a system of a total order broadcast. In the

abstract model, we outline how an abstract total order is constructed at the first ever

delivery of a message to any process in the system. All other processes deliver that

message in the abstract total order. We also identify the invariant properties for total

order and add them to the model as primary invariants. We further discover a set of

secondary invariants that are required to discharge the proof obligations generated by

addition of primary invariants to the model. Later in the refinement, we introduce the

notion of sequencer and control messages and show how sequence numbers are generated

by the sequencer. The gluing invariants discovered in the refinement checking relate

the abstract total order with the sequence numbers. Both gluing invariants and proof

obligations provide a clear insight into the system and the reasons why the delivery

based on the sequence numbers preserves a total order on the messages.

Chapter 8 Conclusions 152

Implementing a Total Causal Order on Messages by Vector Clocks

In chapter 6, we have given the incremental development of a system of total causal order

broadcast. A total causal order broadcast not only preserves the causal precedence

relationship among the messages but also delivers them in a total order. The main

advantage of processing update transactions over a total causal order broadcast is that

the database always remains in a consistent state due to the guarantees of providing

a total order on update messages. Another advantage of this broadcast is that the

causality of the update messages is also preserved.

In this chapter, the Event-B specifications of an execution model of a total causal order

broadcast system are presented. In the abstract model of this broadcast we outlined how

the abstract causal order and a total order on the computation messages are constructed.

In this model, a message is delivered to each process twice, first in a causal order followed

by another delivery in a total order. The second delivery of a computation message in

a total order corresponds to the delivery in a total causal order. In order to verify that

this model satisfies the required ordering properties we add the invariants corresponding

to the causal order and total order to our model as a primary invariants and discharge

the proof obligations generated by the B tool due to the addition of these invariants.

This system is based on a vector clock model and there also exists a specific process

sequencer which sequences the computation messages to implement total ordering on

the messages. In the refinement we outline how both causal and total order can be

implemented using vector clocks.

Liveness Properties and Modelling Guidelines

In Chapter 7, the issue of liveness in a distributed system is addressed. After exploring

the enabledness preservation and non-divergence properties for Event-B development,

we outline how these liveness properties relate to the model of transactions. We also

outlined how the strong variants of the broadcast protocol given in Chapter 4, 5 and 6

can be used to define abstract ordering on the transactions, thus ensuring the delivery of

conflicting operations of update transactions to all participating sites in the same serial

order.

The existing tools currently do not generate proof obligations for ensuring enabledness

preservation and non-divergence. We outlined construction of the proof obligations to

show that the model of transactions is both enabledness preserving and non-divergent.

Lastly, general methodological modelling guidelines for the incremental development of a

distributed system are also presented. We have also presented guidelines for discharging

the proof obligations generated by the B tool.

Chapter 8 Conclusions 153

8.2 Comparison with other Related Work

Though there exists vast literature on distributed algorithms and protocols covering

several aspects of transactions, group communication and distributed databases, the

application of proof based formal methods for precise definition of problems and ver-

ification of the correctness of their solutions is rare. In this section, we compare our

approach with the other significant work on the application of formal methods.

The input/output(I/O) automaton model [83, 84], developed by Lynch and Tuttle, is a

labelled transition system model for components in asynchronous concurrent systems.

In [41], I/O Automata are used for formal modelling and verification of a sequentially

consistent shared object system in a distributed network. In order to keep the repli-

cated data in a consistent state, a combination of total order multicast and point to

point communication is used. In [40], I/O automata are used to express lazy database

replication. The authors present an algorithm for lazy database replication and prove the

correctness properties relating performance and fault-tolerance. In [42, 104] the speci-

fications for group communication primitives are presented using I/O automata under

different conditions such as partitioning among the group and dynamic view oriented

group communication. The proof method used in this method for reasoning about the

system involves invariant assertions. An invariant assertion is defined as a property of

the state of a system that is true in all execution. A series of invariants relating state

variables and reachable states is proved using the method of induction. The work done

so far using I/O Automata has been carried out by hand [47, 42].

In [12, 11], Z is used to specify formally a transaction decomposition in a database

system. The authors present a mechanism to decompose the transactions to increase

the concurrency without sacrificing the consistency of a database. They introduce the

notion of sematic histories to formulate and prove necessary properties, and reason

about interleaving with other transactions. The authors have used the Z specification

language for expressing various models and all analysis is done by hand. The authors

also highlighted the need for powerful tool support to discharge proof obligations.

In [130], a formal method is proposed to prove the total and causal order of multicast

protocols. The formal results provided in the paper can be used to prove whether an

existing system has the required property or not. Their solutions are based on the

assumption that a total order is built using the service provided by a causal order

protocol. The proof of correctness of the results is done by hand.

Instead of model checking, proving theorems by hand or proving correctness of the trace

behavior, our approach is based on defining properties in the abstract model and proving

that our model of the algorithm is a correct refinement of abstract model. The formal

approach considered in our work is based on Event-B which facilitates incremental devel-

opment of systems. We have used the Click’n’Prove B tool for the proof management.

Chapter 8 Conclusions 154

This tool generates the proof obligations due to refinement and consistency checking

and helps discharge proof obligations by the use of automatic and interactive provers.

The majority of the proofs are discharged by the automatic prover. However, some

complex proofs require use of the interactive prover. During the process of discharging

proof obligations, new invariants are also discovered. We have outlined the process of

discovering new invariants by the inspection of the proof obligations. The proofs and

the invariants help us to understand the complexity of the problem, providing a clear

insight into the system.

The overall proof statistics for various developments are given below.

Model POs Automatic Interactive % Automatic
POs POs

Model of Transactions 307 191 116 63 %

Causal Order Broadcast 112 71 41 64 %

Total Order Broadcast 106 79 27 75 %

Total Causal Order Broadcast 166 102 64 62 %

Overall 691 443 248 64 %

Table 8.1: Proof Statistics- Overall

Our experience with the case studies presented in this thesis strengthens our belief that

abstraction and refinement are valuable techniques for the modelling and verification of

complex distributed systems.

8.3 Future Work

In this section, we outline the possible extensions to our work presented in this thesis.

1. Replica control mechanisms can broadly be classified as eager or lazy data replica-

tion. In eager database replication, all replicas are updated within the transaction

boundary. The coordination of all sites takes place before a transaction commits

and conflicts among the transactions are also detected before they commit. Eager

database replication comes with a significant cost in the case of a site or com-

munication link failure. An update transaction cannot commit until all sites are

reachable. An alternative solution is lazy replication where the updates are prop-

agated after an update transaction commits. Lazy replication allows the different

copies of the replica to exhibit different values, therefore sacrificing the data con-

sistency for a period of time. The other copies of the replicas at other sites are

progressively updated after committing a transaction. Lazy replication can be

used in situations where the availability of the data is considered critical. We plan

to extend our model such that an update transaction commits by updating the

replica at its coordinating site and the new values are communicated to the other

Chapter 8 Conclusions 155

sites by a total order broadcast. The sites update the replica when they receive

the update message. This approach is efficient but allows data inconsistencies to

take place. We require rigorous reasoning about this approach to show that the

database is in a consistent state when the reconciliation take place.

2. Our model of distributed transactions is based on the notion of full replication

and the transactions are executed within the framework of the read one and write

all(ROWA) replica control protocol. In this technique, a transaction can read a

local copy but, to update an object, it must update all copies. This technique

is suitable when the transaction workload is predominantly read only. The per-

formance of this mechanism tends to degrade in a system where updates are as

frequent as reads. In a separate study in [60], it is also shown that the interleaving

of more conflicting transactions leads to more abortions due to the timeouts. One

extension to the present work is to use a voting technique [97] instead of ROWA,

where a transaction must write to a majority of the replicas instead of all. The

updates are then propagated to the rest of the replicas. Similarly, a read-only

transaction reads at least enough copies to make sure that one of the copies is up-

to-date. Each copy of replica may have a version number representing the number

of updates it has had. A rigorous reasoning is required to understand, how a voting

technique preserves the data consistency.

3. We also plan to extend the existing model to model explicitly the failure and

recovery of the sites. This requires an extension of the ROWA replica control

mechanism to ROWA-A. ROWA-A (Read One Write All- Available) allows an

update transaction to commit after updating the replicas at all available sites.

Since we use ordering on messages, upon recovery, a failed site executes all updates

in the order they were received. The commit protocol, based on presumed commit,

is proposed for the commitment of an update transaction. This model of replicated

databases brings higher performance for the updates because updates will not be

blocked at a failed site. The explicit modelling of the coordinator and participating

site failure is required to understand precisely how they restore the data consistency

after the recovery.

4. The work presented in this thesis assumes that the data is fully replicated. Full

replication, however, is not the most efficient strategy for all applications. Many

applications require that the data is replicated at only a few sites. In practice,

many applications may require both data fragmentation and partial replication for

the purpose of efficiency. Also, full replication suffers from storage problems. One

of the extensions of the existing model of replicated data is to allow partial repli-

cation. The communication among the sites must allow the combination of a total

order broadcast and a point-to-point communication. The use of point-to-point

communication reduces the communication overhead caused by the broadcast.

Chapter 8 Conclusions 156

The work presented in this thesis focusses on processing transactional updates in repli-

cated databases using ordered broadcasts. We believe that the methodology and the

models presented in the thesis may be extended to enhance our understanding of other

related techniques used in replicated databases such as lazy data replication, voting

techniques, failure and recovery of a site, partial replication and fragmentation.

Appendix A

Distributed Transactions

A.1 Abstract Model

MACHINE Replica1

DEFINITIONS PartialDB == (OBJECT � VALUE) ;
 UPDATE == (PartialDB � PartialDB) ;
 ValidUpdate (update,readset) == (dom(update)= readset � VALUE
 � ran(update) � readset � VALUE)
SETS TRANSACTION; OBJECT; VALUE;
 TRANSSTATUS={COMMIT,ABORT,PENDING}

VARIABLES trans, transstatus, database, transeffect, transobject

INVARIANT trans � �(TRANSACTION)
 � transstatus � trans � TRANSSTATUS
 � database � OBJECT � VALUE
 � transeffect � trans � UPDATE
 � transobject � trans � �1 (OBJECT)
 �	 t.(t� trans
 ValidUpdate (transeffect(t), transobject(t)))

INITIALISATION trans :=� || transstatus :=�
 || transeffect := {} || transobject :={}
 || database :� OBJECT � VALUE
EVENTS

StartTran(tt� TRANSACTION) �
 ANY updates , objects
 WHERE tt trans � updates � UPDATE � objects � �1 (OBJECT) � ValidUpdate (updates,objects)
 THEN trans := trans � {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 END ;

157

Appendix A Distributed Transactions 158

CommitWriteTran(tt� TRANSACTION)
�

 ANY pdb
 WHERE tt � trans � transstatus(tt) =PENDING � ran(transeffect(tt)) � {

�
} � pdb = transobject(tt) � database

 THEN transstatus(tt) := COMMIT
 || database := database � transeffect(tt)(pdb)
 END;

AbortWriteTran(tt � TRANSACTION)

�

 WHEN tt � trans � transstatus(tt) = PENDING � ran(transeffect(tt)) � {
�

}
 THEN transstatus(tt) := ABORT
 END;

val � ReadTran (tt� TRANSACTION) 	
 WHEN tt � trans
 transstatus(tt) = PENDING
 ran(transeffect(tt))= {�}
 THEN val := transobject(tt) � database
 || transstatus(tt) := COMMIT
 END;

A.2 First Refinement

REFINEMENT Replica2
REFINES Replica1

SETS SITE ;
 SITETRANSSTATUS={commit,abort,precommit,pending}

VARIABLES trans, transstatus, activetrans, coordinator, sitetransstatus,
 transeffect, transobject, freeobject, replica

INVARIANT activetrans SITE � trans
 � coordinator trans � SITE
 � sitetransstatus trans � (SITE � SITETRANSSTATUS)
 � replica SITE � (OBJECT � VALUE) � freeobject SITE � OBJECT � ran(activetrans) � trans
 � � (o , s) . (o � OBJECT � s � SITE � (s � o) � freeobject � database(o) = replica(s)(o))

 �
 � (t , o) . (t � trans � o � OBJECT � (coordinator(t) � t) � activetrans � o� transobject(t)

 � database(o) = replica(coordinator(t))(o))
 �

 (s , t1 , t2) . (s ! SITE " t1 ! trans " t2 ! trans
 " (s # t1) $ activetrans % (s & t2) $ activetrans
 ' transobject(t1) (transobject(t2)) *
 + t1=t2)

Appendix A Distributed Transactions 159�
�

(t , s , o) . (t � trans � s � SITE � o � OBJECT
 � transstatus(t)= COMMIT � (s � t)� activetrans
 � o � dom(transeffect(t)(transobject(t) � replica(s)))
 	 database(o) = transeffect(t)(transobject(t) � replica(s))(o))

 � (t , s , o) . (t � trans s � SITE o � OBJECT
 transstatus(t)= COMMIT � o � transobject(t)
 � (s � t) � activetrans
 � o � dom(transeffect(t)(transobject(t) � replica(s)))
 � database(o) = replica(s)(o)

 � � (t) . (t � trans � transstatus(t)=ABORT � sitetransstatus(t)(coordinator(t))= abort)

 �
 � (t) . (t � trans � transstatus(t)= COMMIT sitetransstatus(t)(coordinator(t))= commit)

 !

 " (t , s , o) . (t # trans $ s # SITE $ o # OBJECT
 $ transstatus(t)% COMMIT & (s ' t)(activetrans
) o * transobject(t)
 + database(o)= replica(s)(o)

 , - (t) . (t . trans / transstatus(t)0 PENDING
 1 ran(transeffect(t))0{2}
 3 (coordinator(t) 4 t) 5 activetrans

ASSERTIONS

 6 (t1 , t2) . (s 7 SITE 8 t1 7 trans 8 t2 7 trans
 8 (coordinator(t1) 9 t1) : activetrans
 ; (coordinator(t1) < t2) : activetrans
 ; transobject(t1) = transobject(t2)> ?
 @ t1=t2)

 A
 B (t , s , o) . (t C trans D s C SITE D o C OBJECT

 D transstatus(t) = ABORT E (s F t)G activetrans
 H o I transobject(t)
 J database(o)= replica(s)(o)
 K

 L (t , s , o) . (t M trans N s M SITE N o M OBJECT
 N transstatus(t) = PENDING O (s P t)Q activetrans
 R o S transobject(t)
 T database(o)= replica(s)(o)

INITIALISATION trans := U || transstatus := U || activetrans := U
 || coordinator := U || sitetransstatus := U || transeffect := {}
 || transobject := {} || freeobject := SITE V OBJECT

 || ANY data WHERE data S OBJECT W VALUE
 THEN replica := SITE V {data} END

Appendix A Distributed Transactions 160

StartTran(tt) �
 ANY ss, updates, objects
 WHERE ss � SITE � tt � trans � updates � UPDATE � objects �

�
1 (OBJECT) � ValidUpdate (updates,objects)

 THEN trans := trans � {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 || coordinator(tt) := ss
 || sitetransstatus(tt) := {coordinator(tt) � pending}
 END;

 IssueWriteTran(tt) �
 WHEN tt � trans � (coordinator(tt) � tt) � activetrans � sitetransstatus(tt)(coordinator(tt)) = pending � ran(transeffect(tt))� {�} � transobject(tt) 	 freeobject[{coordinator(tt)}] �
 tz.(tz � trans � (coordinator(tt) � tz)� activetrans

 transobject(tt) � transobject(tz) = �)
 THEN activetrans := activetrans � {coordinator(tt)� tt}

 || sitetransstatus(tt)(coordinator(tt)) := precommit
 || freeobject := freeobject - {coordinator(tt)} � transobject(tt)
END;

 CommitWriteTran(tt) �
 ANY pdb
 WHERE tt� trans
 � pdb = transobject(tt) � replica(coordinator(tt))
 � ran(transeffect(tt)) �{�}
 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt) = PENDING
 �
s.(s � SITE sitetransstatus(tt)(s) = precommit)
 �
(s,o) � (s � SITE � o � OBJECT � o� transobject(tt)
 (s � o) � freeobject)
 �
s.(s � SITE (s � tt)� activetrans)
 THEN transstatus(tt) := COMMIT
 || activetrans := activetrans -{coordinator(tt) �tt}
 || sitetransstatus(tt)(coordinator(tt)):= commit
 || freeobject := freeobject � {coordinator(tt)} � transobject(tt)
 || replica(coordinator(tt)) := replica(coordinator(tt)) � transeffect(tt)(pdb)
 END;

 AbortWriteTran(tt) �
 WHEN tt� trans
 � ran(transeffect(tt))�{�}
 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 � �s. (s� SITE � sitetransstatus(tt)(s)= abort)
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject � {coordinator(tt)} � transobject(tt)
 END;

Appendix A Distributed Transactions 161

val � ReadTran(tt,ss)
�

 WHEN tt� trans
 � transstatus(tt)=PENDING
 � transobject(tt) � freeobject[{ss}]
 � ss = coordinator(tt)
 � ran(transeffect(tt)) = {�}
 THEN val := transobject(tt) � replica(ss)
 || sitetransstatus(tt)(ss) := commit
 || transstatus(tt):=COMMIT
 END;

 BeginSubTran(tt,ss)�

 WHEN tt 	 trans
 � sitetransstatus(tt)(coordinator(tt))
 { precommit , abort }
 � (ss� tt)� activetrans
 � ss coordinator(tt)
 � ran(transeffect(tt)){�}
 � transobject(tt) � freeobject[{ss}]
 � ss � dom(sitetransstatus(tt))
 � � tz.(tz 	 trans � (ss � tz)	 activetrans

 � transobject(tt) � transobject(tz) = �)
THEN activetrans := activetrans � {ss� tt}

 || sitetransstatus(tt)(ss) := pending
 || freeobject := freeobject - {ss} � transobject(tt)

END;

 SiteCommitTx(tt,ss)�
 WHEN (ss� tt) 	 activetrans
 � sitetransstatus(tt)(ss)= pending
 � ss coordinator(tt)
 � ran(transeffect(tt)){�}
 THEN sitetransstatus(tt)(ss) := precommit
 END;

 SiteAbortTx(tt,ss)�
 WHEN (ss� tt)
 activetrans

 � sitetransstatus(tt)(ss)= pending
 � ss coordinator(tt)
 � ran(transeffect(tt)){�}
 THEN sitetransstatus(tt)(ss) := abort
 || freeobject := freeobject � {ss}� transobject(tt)

 || activetrans := activetrans -{ss � tt}
END;

 ExeAbortDecision(ss,tt) �

 WHEN tt	 trans
 � (ss� tt)	 activetrans
 � ss coordinator(tt)
 � ran(transeffect(tt)){�} � sitetransstatus(tt)(coordinator(tt)) = abort � sitetransstatus(tt)(ss) = precommit

THEN sitetransstatus(tt)(ss):= abort
 || activetrans := activetrans -{ss � tt}

 || freeobject := freeobject � {ss} � transobject(tt)
 END;

Appendix A Distributed Transactions 162

ExeCommitDecision(ss,tt) �
 ANY pdb

 WHERE tt � trans � (ss� tt)� activetrans � ss � coordinator(tt) � ran(transeffect(tt)) � {
�

} � pdb = transobject(tt) � replica(ss) � sitetransstatus(tt)(coordinator(tt)) = commit � sitetransstatus(tt)(ss) = precommit
 THEN activetrans := activetrans -{ss � tt}
 || sitetransstatus(tt)(ss) := commit
 || freeobject := freeobject � {ss} � transobject(tt)
 || replica(ss) := replica(ss) 	 transeffect(tt)(pdb)

END;

A.3 Second Refinement

REFINEMENT Replica3
REFINES Replica2

VARIABLES trans, transstatus, activetrans, coordinator, sitetransstatus,
 transeffect, transobject, freeobject, replica
INVARIANT

 (t , s , o) . (t � trans � s � SITE � o � OBJECT o � transobject(t)
 � sitetransstatus(t)(s) = precommit
 � s � o � freeobject)
 �

 � (t , s , o) . (t � trans � s � SITE � sitetransstatus(t)(s)= precommit
 � s � t � activetrans)

 � � (t , s , o) . (t � trans � s � SITE � o � OBJECT � o transobject(t)
 ! s " t # activetrans
 $ s % o & freeobject)

INITIALISATION trans := ' || transstatus := ' || activetrans := '
 || coordinator := ' || sitetransstatus := ' || transeffect := {}
 || transobject := {} || freeobject := SITE (OBJECT
 || ANY data WHERE data) OBJECT * VALUE
 THEN replica := SITE ({data} END
StartTran(tt) +
 ANY ss, updates, objects
 WHERE ss , SITE - tt . trans - updates , UPDATE - objects , /1 (OBJECT) - ValidUpdate (updates,objects)
 THEN trans := trans 0 {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 || coordinator(tt) := ss
 || sitetransstatus(tt) := {coordinator(tt) 1 pending}
 END;

Appendix A Distributed Transactions 163

 IssueWriteTran(tt) �
 WHEN tt � trans � (coordinator(tt) � tt) � activetrans � sitetransstatus(tt)(coordinator(tt)) = pending � ran(transeffect(tt))� {

�
} � transobject(tt) � freeobject[{coordinator(tt)}] � � tz.(tz � trans 	 (coordinator(tt) � tz)
 activetrans

 � transobject(tt) � transobject(tz) =
�

)
 THEN activetrans := activetrans {coordinator(tt)� tt}

 || sitetransstatus(tt)(coordinator(tt)) := precommit
 || freeobject := freeobject - {coordinator(tt)} � transobject(tt)

 END;

 CommitWriteTran(tt) �
 ANY pdb
 WHERE tt� trans
 � pdb = transobject(tt) � replica(coordinator(tt))
 � ran(transeffect(tt)) �{

�
}

 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt) = PENDING
 � �s.(s � SITE � sitetransstatus(tt)(s) = precommit)
 THEN transstatus(tt) := COMMIT
 || activetrans := activetrans -{coordinator(tt) �tt}
 || sitetransstatus(tt)(coordinator(tt)):= commit
 || freeobject := freeobject {coordinator(tt)} � transobject(tt)
 || replica(coordinator(tt)) := replica(coordinator(tt)) � transeffect(tt)(pdb)
 END;

 AbortWriteTran(tt) �
 WHEN tt� trans
 � ran(transeffect(tt))�{

�
}

 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 � �s. (s� SITE � sitetransstatus(tt)(s)= abort)
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject {coordinator(tt)} � transobject(tt)
 END;

 val � ReadTran(tt,ss) �
 WHEN tt� trans
 � transstatus(tt)=PENDING
 � transobject(tt) � freeobject[{ss}]
 � ss = coordinator(tt)
 � ran(transeffect(tt)) = {�}
 THEN val := transobject(tt) � replica(ss)
 || sitetransstatus(tt)(ss) := commit
 || transstatus(tt):=COMMIT
 END;

Appendix A Distributed Transactions 164

BeginSubTran(tt,ss)�
 WHEN tt � trans
 � sitetransstatus(tt)(coordinator(tt)) � { precommit , abort }
 � (ss� tt)� activetrans
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{

�
}

 � transobject(tt) � freeobject[{ss}]
 � ss 	 dom(sitetransstatus(tt))
 �
 tz.(tz � trans � (ss � tz)� activetrans

 � transobject(tt) � transobject(tz) =
�

)
THEN activetrans := activetrans {ss� tt}

 || sitetransstatus(tt)(ss) := pending
 || freeobject := freeobject - {ss} � transobject(tt)
END;

 SiteCommitTx(tt,ss)�
 WHEN (ss� tt) � activetrans
 � sitetransstatus(tt)(ss)= pending
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{

�
}

 THEN sitetransstatus(tt)(ss) := precommit
 END;

 SiteAbortTx(tt,ss)�
 WHEN (ss� tt)� activetrans

 � sitetransstatus(tt)(ss)= pending
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{

�
}

 THEN sitetransstatus(tt)(ss) := abort
 || freeobject := freeobject {ss}� transobject(tt)

 || activetrans := activetrans -{ss � tt}
END;

 ExeAbortDecision(ss,tt) �
 WHEN tt� trans
 � (ss� tt)� activetrans
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{

�
} � sitetransstatus(tt)(coordinator(tt)) = abort � sitetransstatus(tt)(ss) = precommit

THEN sitetransstatus(tt)(ss):= abort
 || activetrans := activetrans -{ss � tt}

 || freeobject := freeobject {ss} � transobject(tt)
END;

 ExeCommitDecision(ss,tt) �
 ANY pdb

 WHERE tt � trans � (ss� tt)� activetrans � ss � coordinator(tt) � ran(transeffect(tt)) � {
�

} � pdb = transobject(tt) � replica(ss) � sitetransstatus(tt)(coordinator(tt)) = commit � sitetransstatus(tt)(ss) = precommit
 THEN activetrans := activetrans -{ss � tt}
 || sitetransstatus(tt)(ss) := commit
 || freeobject := freeobject {ss} � transobject(tt)
 || replica(ss) := replica(ss) � transeffect(tt)(pdb)

END;

Appendix A Distributed Transactions 165

A .4 Third Refinement

REFINEMENT Replica4

REFINES Replica3

SETS MESSAGE

VARIABLES trans, transstatus, activetrans, coordinator, sitetransstatus,
 transeffect, transobject, freeobject, replica,sender,deliver,
 update,voteabort,votecommit,globalabort,globalcommit,
 tranupdate,transvoteabort,tranvotecommit,tranglobalabort,
 tranglobalcommit,completed

INVARIANT sender � MESSAGE � SITE � deliver � SITE � MESSAGE
 � update � MESSAGE � update � dom(sender)
 � voteabort � MESSAGE � voteabort � dom(sender) � votecommit � MESSAGE � votecommit � dom(sender) � globalabort � MESSAGE � globalabort � dom(sender) � globalcommit � MESSAGE � globalcommit � dom(sender) � tranupdate � update � trans
 � tranvoteabort � voteabort 	 trans � tranvotecommit � votecommit 	 trans � tranglobalabort � globalabort � trans � tranglobalcommit � globacommit � trans � completed � trans
 SITE � � (t , s , m) . (t trans � s SITE � m update � (m � t)� tranupdate
 � (s � m)� deliver � s � dom(sitetranstatus(t)) � s � coordinator(t)
 � sitetranstatus(t)(coordinator(t)) � { precommit,abort}

INITIALISATION trans := � || transstatus := � || activetrans := �
 || coordinator := � || sitetransstatus := � || transeffect := �
 || transobject := {} || freeobject := SITE � OBJECT
 || ANY data WHERE data � OBJECT � VALUE
 THEN replica := SITE � {data} END
 || update := � || voteabort := � || votecommit := �
 || globalabort := � || globalcommit := � || tranupdate := �
 || tranvoteabort := � || tranvotecommit := � || tranglobalabort := �
 || tranglobalcommit := �

EVENTS

StartTran(tt) �

 ANY ss, updates, objects
 WHERE ss � SITE � tt � trans � updates � UPDATE � objects � �1 (OBJECT) � ValidUpdate (updates,objects)
 THEN trans := trans � {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 || coordinator(tt) := ss
 || sitetransstatus(tt) := {coordinator(tt) pending}
 END;

Appendix A Distributed Transactions 166

 SendUpdate(ss � SITE , mm � MESSAGE ,tt� TRANSACTION)
�

 WHEN mm � dom(sender)
 � tt � trans � sitetransstatus(tt)(coordinator(tt)) = pending
 � ss = coordinator(tt) � tt � ran(tranupdate) � ran(transeffect(tt) � {�}

 THEN sender := sender � {mm � ss}
 || update := update � {mm}
 || transupdate := transupdate � {mm � tt}
 END;

 Deliver(ss � SITE , mm � MESSAGE) 	
 WHEN mm � dom(sender)

 (ss � mm) � deliver
 THEN deliver := deliver {ss � mm}
 END;

 IssueWriteTran(tt� TRANSACTION) �
 ANY mm
 WHERE mm � update
 tt � trans
 (mm � tt) � tranupdate

 (coordinator(tt) � mm) � deliver

 (coordinator(tt) � tt) � activetrans

 sitetransstatus(tt)(coordinator(tt))= pending
 ran(transeffect(tt))� {�}

 transobject(tt) � freeobject[{coordinator(tt)}] � � tz.(tz � trans � (coordinator(tt) � tz)� activetrans

 � transobject(tt) � transobject(tz) = �)
 THEN activetrans := activetrans � {coordinator(tt)� tt}

 || sitetransstatus(tt)(coordinator(tt)):= precommit
 || freeobject := freeobject - {coordinator(tt)} � transobject(tt)
END;

 AbortWriteTran(tt) �
 ANY m1,m2
 WHERE m1 � voteabort � m1� tt � tranvoteabort
 � coordinator(tt) � m1 � deliver � m2 MESSAGE � m2 ! dom(sender)
 " tt trans
 # ran(transeffect(tt))${%}
 # (coordinator(tt) & tt) activetrans
 # transstatus(tt)=PENDING
 # 's. (s SITE # sitetransstatus(tt)(s)= abort)
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)& tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject ({coordinator(tt)}) transobject(tt)
 || globalabort := globalabort ({m2)
 || tranglobalabort := tranglobalabort ({m2& tt}
 || sender := sender ({m2 & coordinator(tt)}
 || completed := completed ({tt & coordinator(tt)}
 END;

Appendix A Distributed Transactions 167

 CommitWriteTran(tt) �
ANY pdb ,mm

 WHERE mm � MESSAGE � mm � dom(sender)
 � tt� trans
 � pdb = transobject(tt) � replica(coordinator(tt))
 � ran(transeffect(tt)) �{�}
 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt) = PENDING
 � 	s.(s � SITE
 sitetransstatus(tt)(s) = precommit) � 	m.(m � votecommit � m � tt tranvotecommit
 � coordinator(tt) � m deliver)
 THEN transstatus(tt) := COMMIT
 || activetrans := activetrans -{coordinator(tt) �tt}
 || sitetransstatus(tt)(coordinator(tt)):= commit
 || freeobject := freeobject � {coordinator(tt)} � transobject(tt)
 || replica(coordinator(tt)) := replica(coordinator(tt)) � transeffect(tt)(pdb)
 || globalcommit := globalcommit � {mm)
 || tranglobalcommit := tranglobalcommit � {mm� tt}
 || sender := sender � {mm � coordinator(tt)}
 || completed := completed � {tt � coordinator(tt)}

 END;

 val � ReadTran(tt,ss) �
 WHEN tt� trans
 � transstatus(tt)=PENDING
 � transobject(tt) � freeobject[{ss}]
 � ss = coordinator(tt)
 � ran(transeffect(tt)) = {�}
 THEN val := transobject(tt) � replica(ss)
 || sitetransstatus(tt)(ss) := commit
 || transstatus(tt):=COMMIT
 || completed := completed � {tt � ss}
 END;

 BeginSubTran (tt� TRANSACTION ,ss� SITE)�
 ANY mm
 WHERE mm � update � tt trans � (mm ! tt) tranupdate
 � (ss ! mm) deliver " (ss! tt)# activetrans " ss $ dom(sitetransstatus(tt))

 " ss % coordinator(tt)
 " ran(transeffect(tt))%{&}
 " transobject(tt) ' freeobject[{ss}]
 " (tz.(tz trans " (ss ! tz) activetrans
) transobject(tt) * transobject(tz) = &)
 THEN activetrans := activetrans + {ss! tt}
 || sitetransstatus(tt)(ss) := pending
 || freeobject := freeobject - {ss} , transobject(tt)

END;

Appendix A Distributed Transactions 168

SiteCommitTx(tt�TRANSACTION,ss�SITE)
�

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender) � tt � trans
 � (ss� tt) � activetrans
 � sitetransstatus(tt)(ss)= pending
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{

�
}

 THEN sitetransstatus(tt)(ss) := precommit
 || votecommit := votecommit 	 {mm}
 || tranvotecommit := tranvotecommit 	 {mm � tt }
 || sender := sender 	 {mm � ss }
 END;

SiteAbortTx(tt�TRANSACTION,ss�SITE)

�

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender) � tt � trans

 (ss� tt)� activetrans

 sitetransstatus(tt)(ss)= pending
 ss � coordinator(tt)
 ran(transeffect(tt))�{�}
 THEN sitetransstatus(tt)(ss) := abort
 || freeobject := freeobject � {ss}� transobject(tt)
 || activetrans := activetrans -{ss � tt}

 || voteabort := voteabort � {mm}
 || tranvoteabort := tranvoteabort � {mm � tt }

 || sender := sender � {mm � ss }
 || completed := completed � {tt � ss }

 END;

 ExeAbortDecision(ss,tt) �
 ANY mm
 WHERE � mm � globalabort � tt � trans � (mm � tt) � tranglobalabort � (ss � mm) � deliver

 � (ss� tt)� activetrans
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{�} � sitetransstatus(tt)(coordinator(tt)) = abort � sitetransstatus(tt)(ss) = precommit
 THEN sitetransstatus(tt)(ss):= abort
 || activetrans := activetrans -{ss � tt}

 || freeobject := freeobject � {ss} � transobject(tt)
 || completed := completed � {tt � ss }

 END;

Appendix A Distributed Transactions 169

ExeCommitDecision(ss,tt) �
 ANY pdb , mm

 WHERE tt � trans
 � mm � globalcommit � (mm � tt) � tranglobalcommit � (ss � mm) � deliver � (ss� tt)� activetrans � ss � coordinator(tt) � ran(transeffect(tt)) � {

�
} � pdb = transobject(tt) � replica(ss) � sitetransstatus(tt)(coordinator(tt)) = commit � sitetransstatus(tt)(ss) = precommit

 THEN activetrans := activetrans -{ss � tt}
 || sitetransstatus(tt)(ss) := commit
 || freeobject := freeobject � {ss} 	 transobject(tt)
 || replica(ss) := replica(ss)
 transeffect(tt)(pdb)

 || completed := completed � {tt � ss }

END;

A.5 Fourth Refinement

REFINEMENT Replica5

REFINES Replica4

SETS MESSAGE

VARIABLES trans, transstatus, activetrans, coordinator, sitetransstatus,
 transeffect, transobject, freeobject, replica,sender,deliver,
 update,voteabort,votecommit,globalabort,globalcommit,
 tranupdate,transvoteabort,tranvotecommit,tranglobalabort,
 tranglobalcommit,completed
 oksite,faiedlsite

INVARIANT sender � MESSAGE � SITE deliver � SITE � MESSAGE
 � update � MESSAGE � update � dom(sender)
 � voteabort � MESSAGE � voteabort � dom(sender) � votecommit � MESSAGE � votecommit � dom(sender) � globalabort � MESSAGE � globalabort � dom(sender) � globalcommit � MESSAGE � globalcommit � dom(sender) � tranupdate � update � trans
 � tranvoteabort � voteabort � trans � tranvotecommit � votecommit � trans � tranglobalabort � globalabort � trans � tranglobalcommit � globacommit � trans � completed � trans � SITE
 � oksite � SITE
 � failedsite � SITE � oksite � failedsite = �

Appendix A Distributed Transactions 170

INITIALISATION trans := � || transstatus := � || activetrans := �
 || coordinator := � || sitetransstatus := � || transeffect := �
 || transobject := � || freeobject := SITE � OBJECT
 || ANY data WHERE data � OBJECT � VALUE
 THEN replica := SITE � {data} END
 || update := � || voteabort := � || votecommit := �
 || globalabort := � || globalcommit := � || tranupdate := �
 || tranvoteabort := � || tranvotecommit := � || tranglobalabort := �
 || tranglobalcommit := �
 || oksite := SITE || failedsite := �
EVENTS

 SiteFailure(ss � SITE) �

 WHEN ss � oksite
 THEN failedsite := failedsite � {ss}
 || oksite := oksite - {ss}
 END;

StartTran(tt) �

 ANY ss, updates, objects
 WHERE ss � SITE � tt � trans � updates � UPDATE � objects � 	1 (OBJECT) � ValidUpdate (updates,objects) � ss � oksite
 THEN trans := trans � {tt}
 || transstatus(tt) := PENDING
 || transobject(tt) := objects
 || transeffect(tt) := updates
 || coordinator(tt) := ss
 || sitetransstatus(tt) := {coordinator(tt)
 pending}
 END;

 SendUpdate(ss � SITE , mm � MESSAGE ,tt� TRANSACTION) �
 WHEN mm � dom(sender)

 � tt � trans � sitetransstatus(tt)(coordinator(tt)) = pending
 � ss = coordinator(tt) � tt ran(tranupdate) � ran(transeffect(tt) � {�}

 � coordinator(tt) � oksite
 THEN sender := sender � {mm � ss}
 || update := update � {mm}
 || transupdate := transupdate � {mm � tt}
 END;

 Deliver(ss � SITE , mm � MESSAGE) �
 WHEN mm � dom(sender)

 � (ss � mm) � deliver
 � ss � oksite

 THEN deliver := deliver � {ss � mm}
 END;

Appendix A Distributed Transactions 171

IssueWriteTran(tt� TRANSACTION)
�

 ANY mm
 WHERE mm � update � tt � trans � (mm � tt) � tranupdate

 � (coordinator(tt) � mm) � deliver
 � (coordinator(tt) � tt) � activetrans
 � sitetransstatus(tt)(coordinator(tt))= pending
 � ran(transeffect(tt))� {

�
}

 � transobject(tt) � freeobject[{coordinator(tt)}]
 � 	 tz.(tz
 trans � (coordinator(tt) � tz) activetrans

 � transobject(tt) � transobject(tz) = �) � coordinator(tt) � oksite
 THEN activetrans := activetrans � {coordinator(tt)� tt}

 || sitetransstatus(tt)(coordinator(tt)):= precommit
 || freeobject := freeobject - {coordinator(tt)} � transobject(tt)
END;

 AbortWriteTran(tt) �
 ANY m1,m2
 WHERE m1 � voteabort � m1� tt � tranvoteabort
 � coordinator(tt) � m1 � deliver � m2 � MESSAGE � m2 � dom(sender)
 � tt� trans
 � ran(transeffect(tt))�{ }
 � (coordinator(tt) ! tt) � activetrans
 � transstatus(tt)=PENDING � "s. (s� SITE � sitetransstatus(tt)(s)= abort) � coordinator(tt) # oksite

 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)$ tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject % {coordinator(tt)} & transobject(tt)
 || globalabort := globalabort % {m2)
 || tranglobalabort := tranglobalabort % {m2$ tt}
 || sender := sender % {m2 $ coordinator(tt)}

 || completed := completed % {tt $ coordinator(tt)}
 END;

 CommitWriteTran(tt) '
 ANY pdb ,mm
 WHERE mm (MESSAGE) mm * dom(sender)
) tt(trans
 + pdb = transobject(tt) , replica(coordinator(tt))
 + ran(transeffect(tt)) -{.}
 + (coordinator(tt) $ tt) (activetrans
 + transstatus(tt) = PENDING
 + /s.(s (SITE 0 sitetransstatus(tt)(s) = precommit)) /m.(m (votecommit 1 m 2 tt 3 tranvotecommit
 4 coordinator(tt) 2 m 3 deliver)
 5 coordinator(tt) 6 oksite
 THEN transstatus(tt) := COMMIT
 || activetrans := activetrans -{coordinator(tt) 7tt}
 || sitetransstatus(tt)(coordinator(tt)):= commit
 || freeobject := freeobject 8 {coordinator(tt)} 9 transobject(tt)
 || replica(coordinator(tt)) := replica(coordinator(tt)) : transeffect(tt)(pdb)

Appendix A Distributed Transactions 172

 || globalcommit := globalcommit � {mm)
 || tranglobalcommit := tranglobalcommit � {mm� tt}
 || sender := sender � {mm � coordinator(tt)}
 || completed := completed � {tt � coordinator(tt)}
 END;

 val � ReadTran(tt,ss)

�

 WHEN tt� trans
 � transstatus(tt)=PENDING
 � transobject(tt) � freeobject[{ss}]
 � ss = coordinator(tt) � ran(transeffect(tt)) = {	}

 � coordinator(tt)
 oksite
 THEN val := transobject(tt) � replica(ss)

 || sitetransstatus(tt)(ss) := commit
 || transstatus(tt):=COMMIT
 || completed := completed � {tt ss}
 END;

 BeginSubTran (tt
 TRANSACTION ,ss
 SITE)�
 ANY mm
 WHERE mm
 update � tt
 trans � (mm tt)
 tranupdate
 � (ss mm)
 deliver � (ss tt)� activetrans � ss � dom(sitetransstatus(tt))

 � ss � coordinator(tt)
 � ran(transeffect(tt))�{	}
 � transobject(tt) � freeobject[{ss}]
 � � tz.(tz
 trans � (ss tz)
 activetrans
 � transobject(tt) � transobject(tz) =)
 � ss
 oksite
 THEN activetrans := activetrans � {ss tt}
 || sitetransstatus(tt)(ss) := pending
 || freeobject := freeobject - {ss} � transobject(tt)

END;

 SiteCommitTx(tt�TRANSACTION,ss�SITE)�
 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender) � tt � trans
 � (ss� tt) � activetrans
 � sitetransstatus(tt)(ss)= pending
 � ss � coordinator(tt) � ran(transeffect(tt))�{�} � ss � oksite

 THEN sitetransstatus(tt)(ss) := precommit
 || votecommit := votecommit {mm}
 || tranvotecommit := tranvotecommit {mm � tt }
 || sender := sender {mm � ss }
 END;

Appendix A Distributed Transactions 173

 SiteAbortTx(tt�TRANSACTION,ss�SITE)
�

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender) � tt � trans
 � (ss� tt)� activetrans

 � sitetransstatus(tt)(ss)= pending
 � ss 	 coordinator(tt) � ran(transeffect(tt))	{

}

 � ss � oksite
 THEN sitetransstatus(tt)(ss) := abort
 || freeobject := freeobject {ss}� transobject(tt)
 || activetrans := activetrans -{ss � tt}

 || voteabort := voteabort {mm}
 || tranvoteabort := tranvoteabort {mm � tt }

 || sender := sender {mm � ss }
 || completed := completed {tt � ss }

 END;
 ExeAbortDecision(ss,tt) �
 ANY mm
 WHERE � mm � globalabort � tt � trans � (mm � tt) � tranglobalabort � (ss � mm) � deliver

 � (ss� tt)� activetrans
 � ss � coordinator(tt)
 � ran(transeffect(tt))�{�} � sitetransstatus(tt)(coordinator(tt)) = abort � sitetransstatus(tt)(ss) = precommit � ss � oksite

THEN sitetransstatus(tt)(ss):= abort
 || activetrans := activetrans -{ss � tt}

 || freeobject := freeobject {ss} � transobject(tt)
 || completed := completed {tt � ss }
END;

 ExeCommitDecision(ss,tt) �
 ANY pdb , mm

 WHERE tt � trans
 � mm � globalcommit � (mm � tt) � tranglobalcommit � (ss � mm) � deliver � (ss� tt)� activetrans � ss � coordinator(tt) � ran(transeffect(tt)) � {�} � pdb = transobject(tt) � replica(ss) � sitetransstatus(tt)(coordinator(tt)) = commit � sitetransstatus(tt)(ss) = precommit � ss � oksite
 THEN activetrans := activetrans -{ss � tt}
 || sitetransstatus(tt)(ss) := commit
 || freeobject := freeobject � {ss} � transobject(tt)
 || replica(ss) := replica(ss) � transeffect(tt)(pdb)

 || completed := completed � {tt � ss }
END;

Appendix B

TimeOut

TimeOut(tt � TRANSACTION)
�
 /* Abstract Model */

 WHEN tt � trans � transstatus(tt) = PENDING � ran(transeffect(tt)) � {
�

}
 THEN transstatus(tt) := ABORT
 END;

TimeOut(tt � TRANSACTION)

�
 /* First Refinement */

 WHEN tt� trans
 � ran(transeffect(tt))�{

�
}

 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject � {coordinator(tt)} � transobject(tt)
 END;

TimeOut(tt � TRANSACTION)

�
 /* Second Refinement */

 WHEN tt� trans
 � ran(transeffect(tt))�{

�
}

 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject � {coordinator(tt)} � transobject(tt)
 END;

174

Appendix B TimeOut 175

TimeOut(tt � TRANSACTION)

�
 /* Third Refinement */

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender)
 � tt� trans
 � ran(transeffect(tt))�{�}
 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject 	 {coordinator(tt)}
 transobject(tt)
 || globalabort := globalabort 	 {mm}
 || tranglobalabort := tranglobalabort 	 {mm � tt }

 || sender := sender 	 {mm � coordinator(tt) }
 || completed := completed 	 {tt � coordinator(tt) }
 END;

TimeOut(tt � TRANSACTION)

�
 /* Fourth Refinement */

 ANY mm
 WHERE mm � MESSAGE � mm � dom(sender)
 � tt� trans
 � ran(transeffect(tt))�{�}
 � (coordinator(tt) � tt) � activetrans
 � transstatus(tt)=PENDING
 � coordinator(tt) � oksite
 THEN transstatus(tt) := ABORT
 || activetrans := activetrans -{coordinator(tt)� tt}
 || sitetransstatus(tt)(coordinator(tt)):= abort
 || freeobject := freeobject 	 {coordinator(tt)}
 transobject(tt)
 || globalabort := globalabort 	 {mm}
 || tranglobalabort := tranglobalabort 	 {mm � tt }

 || sender := sender 	 {mm � coordinator(tt) }
 || completed := completed 	 {tt � coordinator(tt) }
 END;

 .

Appendix C

Causal Order Broadcast

C.1 Abstract Model

MACHINE C11
SETS PROCESS; MESSAGE
VARIABLES sender , cdeliver
INVARIANT
 sender � MESSAGE � PROCESS

 � cdeliver � PROCESS � MESSAGE
 � ran(cdeliver) � dom(sender)

INITIALISATION sender := � || cdeliver := �

EVENTS
 Broadcast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 THEN sender := sender � {mm 	 pp}
 || cdeliver := cdeliver � {pp 	 mm}
 END;

Deliver (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 � (pp 	 mm) � cdeliver
 THEN cdeliver := cdeliver � {pp 	 mm}
 END ;
END

176

Appendix C Causal Order Broadcast 177

C.2 First Refinement

 REFINEMENT C22
REFINES C11
VARIABLES sender, cdeliver, corder, delorder
INVARIANT

 corder � MESSAGE � MESSAGE � delorder � PROCESS � (MESSAGE � MESSAGE)
 � dom(corder) � dom(sender)
 � ran(corder) � dom(sender) � ran(cdeliver) � dom(sender

 � � (m1,m2,p) . (m1 � MESSAGE � m2 	 MESSAGE � p 	 PROCESS
 (m1 � m2) � corder (p �m2) � cdeliver
 � (m1 � m2) � delorder(p)
 � �

 (m1,m2,m3) . (m1 � MESSAGE � m2 � MESSAGE � m3 � MESSAGE � (m1 � m2) � corder � (m2 �m3) � corder
 � (m1 � m3) � corder
 � �

 (m1,m2,p) . (m1 � MESSAGE � m2 � MESSAGE � p � PROCESS
 � (m1�m2) corder ! m2 sender -1 [{p}] " (m1 sender -1 [{p}] # m1 cdeliver[{p}])

 $ % (m1,m2,p) . (m1 & MESSAGE ' m2 (MESSAGE ' p (PROCESS ' (m1)m2) * corder + (p)m2) * cdeliver
 , (p)m1) * cdeliver

 - . (m1,m2,p) . (m1 / MESSAGE 0 m2 / MESSAGE 0 p / PROCESS 0 (m11m2) 2 corder 3 m22 sender -1 [{p}] 4 m12 sender -1 [{p}] 5 m22 cdeliver[{p}]
 6 7 (m1,m2,p) 8 (m1 9 MESSAGE : m2 9 MESSAGE : p9PROCESS

 ; (m1<m2) 9 corder : m2 9 (sender-1[{p}] = cdeliver[{p}])
 > m1 9 (sender-1[{p}] = cdeliver[{p}])

 INITIALISATION sender := ? || cdeliver := ?
 || corder := ? || delorder := ?

 EVENTS

 Broadcast (pp @ PROCESS , mm @ MESSAGE) A
 WHEN mm B dom(sender)
 THEN corder := corder C ((sender -1[{pp}] D {mm})
 C (cdeliver [{pp}] D {mm}))
 || sender := sender C {mm E pp}
 || cdeliver := cdeliver C {pp E mm}
 || delorder(pp) := delorder(pp) C (cdeliver [{pp}] D {mm})
 END;

Appendix C Causal Order Broadcast 178

Deliver (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 �

�
m.(m � MESSAGE � (m � mm) � corder

 � (pp � m) � cdeliver)
 THEN cdeliver := cdeliver � {pp � mm}
 || delorder(pp) := delorder(pp) � (cdeliver [{pp}] � {mm})
 END

C.3 Second Refinement

 REFINEMENT C33

REFINES C22

VARIABLES VTP, VTM, sender, cdeliver,

 INVARIANT

VTP � PROCESS 	 (PROCESS 	
) � VTM � MESSAGE 	 (PROCESS 	
)
 � � (m,p1,p2) . (m MESSAGE � p1 � PROCESS � p2 � PROCESS

 � m � dom(sender) � VTP(p1)(p2)
�

 VTM(m)(p2)
 � (p1 � m) � cdeliver
 � � (m1,m2,p) . (m1 � MESSAGE � m2 � MESSAGE � p � PROCESS
 � (m1 � m2) � corder
 � VTM (m1)(p) � VTM(m2)(p) � (m,p) . (m ! MESSAGE " p ! PROCESS
 # dom(sender) $ VTM(m)(p) % VTP(p)(p)
 & '

 (m,p) . (m (MESSAGE) p (PROCESS
 * VTM (m) (p) = 0 + m , (dom(corder) - ran(corder))
 . /

 (p1,p2) . (p1 0 PROCESS 1 p2 2 PROCESS
 3 p1 4 p2 5 VTP (p1)(p2) 6 VTP (p2) (p2) 7 8 (m1,m2,p) 9 (m1: MESSAGE ; m2: MESSAGE ; p : PROCESS 7VTM(m1)(p) < VTM(m2)(p) = ((m1>m2) ? (sender-1[{sender(m1)}] @ {m2})

 A (cdeliver[{sender(m2)}] @{m2})))

 INITIALISATION sender := B
 || cdeliver := B

 || VTP := PROCESS C {PROCESS C {0}}
 || VTM := MESSAGE C {PROCESS C {0}}

Appendix C Causal Order Broadcast 179

EVENTS

 BroadCast (pp � PROCESS , mm � MESSAGE)
�

 WHEN mm �dom(sender)
 THEN LET nVTP BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP

 || VTP(pp) := nVTP
 END
 || sender := sender � {mm � pp}

 || cdeliver := cdeliver � {pp � mm}
 END ;

 Deliver(pp � PROCESS , mm � MESSAGE)
�

 WHEN mm � dom(sender)

 � (pp � mm) � cdeliver
 �

�
p.(p � PROCESS � p 	sender(mm)
 VTP(pp)(p)

�
 VTM(mm)(p))

 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver {pp � mm}
 || VTP(pp) := VTP(pp) �

({q | q � PROCESS � VTP(pp)(q) < VTM(mm)(q)} � VTM(mm))
 END;

 C.4 Third Refinement

 REFINEMENT C44
 REFINES C33
 VARIABLES VTP, VTM, sender, cdeliver
 INITIALISATION sender := �
 || cdeliver := �

 || VTP := PROCESS � {PROCESS � {0}}
 || VTM := MESSAGE � {PROCESS � {0}}

 EVENTS

 BroadCast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm �dom(sender)
 THEN LET nVTP BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP

 || VTP(pp) := nVTP
 END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 END ;

 Deliver(pp � PROCESS , mm � MESSAGE) �

 WHEN mm � dom(sender) � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p �sender(mm) � VTP(pp)(p)

�
 VTM(mm)(p))

 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver � {pp mm}
 || VTP(pp) := VTP(pp) ! { sender(mm) " VTM(mm)(sender(mm) }
 END;

Appendix C Causal Order Broadcast 180

 C.5 Fourth Refinement

 REFINEMENT C55
 REFINES C44
 VARIABLES VTP, VTM, sender, cdeliver
 INITIALISATION sender := �
 || cdeliver := �

 || VTP := PROCESS � {PROCESS � {0}}
 || VTM := MESSAGE � {PROCESS � {0}}

 EVENTS

 BroadCast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm �dom(sender)
 THEN LET nVTP BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}
 IN VTM(mm) := nVTP

 || VTP(pp) := nVTP
 END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 END ;

 Deliver(pp � PROCESS , mm � MESSAGE) �

 WHEN mm � dom(sender) � (pp � mm) � cdeliver
 � 	p.(p � PROCESS
 p �sender(mm) � VTP(pp)(p)

 VTM(mm)(p))

 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1
 THEN cdeliver := cdeliver � {pp � mm}
 || VTP(pp) (sender(mm)) := VTM(mm)(sender(mm))
 END;

Appendix D

Total Order Broadcast

D.1 Abstract Model

MACHINE TO11

SETS PROCESS; MESSAGE

VARIABLES sender, totalorder, delorder, tdeliver

INVARIANT sender � MESSAGE � PROCESS � totalorder � MESSAGE � MESSAGE � delorder � PROCESS � (MESSAGE � MESSAGE) � tdeliver � PROCESS � MESSAGE

 � ran(tdeliver) � dom(sender)
 � � (m1,m2,p) . (m1 � MESSAGE � m2 	 MESSAGE � p 	 PROCESS

 (m1�m2) � delorder(p) (m1 �m2) � totalorder)
 � � (m1,m2,p) . (m1 � MESSAGE � m2 � MESSAGE � p � PROCESS � (p � m1) � tdeliver � (p �m2) � tdeliver

 � m2 � ran(tdeliver) � (m1 � m2) � totalorder)
 � � (m1,m2) . (m1 � MESSAGE � m2 � MESSAGE

 � m1 � ran(tdeliver) m2 � ran(tdeliver)
 (m2 ! m1) " totalorder # (m1 ! m2) � totalorder)

 $ % (m1,m2,p) . (m1 & MESSAGE ' m2 (MESSAGE ' p (PROCESS
) (p * m1) + tdeliver , (p *m2) + tdeliver

 , (m2 * m1) - totalorder . (m1 * m2) + totalorder)

181

Appendix D Total Order Broadcast 182� � (m1,m2,p1,p2) . (m1 � MESSAGE � m2 � MESSAGE � p1 � PROCESS � p2 � PROCESS
 � (p1 � m1) � tdeliver � (p1 �m2) � tdeliver

 � (p2 � m1) � tdeliver � (p2 �m2) � tdeliver � (m1 � m2) � totalorder) 	
 (m) . (m � MESSAGE � m � m � totalorder)
 	
 (m1,m2) . (m1 � MESSAGE � m2 MESSAGE � (m1 � m2) � totalorder � (m2 �m3) � totalorder

 � (m1 � m3) � totalorder)
 � � (m1,m2) . (m1 � MESSAGE � m2 � MESSAGE

 � (m1�m2) � totalorder � (p�m2) � tdeliver
 � (p �m1) � tdeliver)

 � � (m) . (m � MESSAGE � m � (dom (totalorder) ran(totalorder))
 ! m " ran(tdeliver))
 # $ (m) . (m % MESSAGE & m ' dom(sender) (m ' dom(totalorder))&) (m) . (m % MESSAGE & m ' dom(sender) (m ' ran(totalorder))
 &) (m) . (m % MESSAGE & m * ran(tdeliver)

 (m * (dom (totalorder) + ran(totalorder))

 INITIALISATION
 sender := , || totalorder :=,
 delorder := PROCESS - {,} || tdeliver := ,

 EVENTS

 Broadcast (pp . PROCESS , mm . MESSAGE) /

 WHEN mm 0 dom(sender)
 THEN sender := sender 1 {mm 2 pp}

 END;

 Order (pp . PROCESS ,mm . MESSAGE) /
 WHEN mm . dom(sender)
 3 mm 0 ran(tdeliver)
 3 ran(tdeliver) 4 tdeliver[{pp}]
 THEN tdeliver := tdeliver 1 {pp 2 mm}
 || totalorder := totalorder 1 (ran(tdeliver) - {mm})
 || delorder(pp) := delorder(pp) 1 (tdeliver[{pp}] - {mm})

END;

 TODeliver (pp . PROCESS , mm . MESSAGE) /
 WHEN mm . dom(sender)
 3 mm . ran (tdeliver)
 3 pp 2 mm 0 tdeliver
 3 5m.(m . MESSAGE 3 (m2 mm) . totalorder
 6 (pp 2 m) . tdeliver)
 THEN tdeliver := tdeliver 1 {pp 2 mm}
 || delorder(pp) := delorder(pp) 1 (tdeliver[{pp}] - {mm})

END

Appendix D Total Order Broadcast 183

D.2 First Refinement

REFINEMENT TO22
REFINES TO11

CONSTANTS sequencer
PROPERTIES sequencer � PROCESS

VARIABLES sender, totalorder, tdeliver

INVARIANT �

 (m) . (m � MESSAGE � (sequencer � m) � tdeliver � m � ran(tdeliver))
 � �

 (m) . (m � MESSAGE � m � dom(totalorder) � (sequencer � m) � tdeliver)
 � �

 (m) . (m � MESSAGE m � ran(totalorder)
 � (sequencer � m) � tdeliver)

INITIALISATION

 sender := � || totalorder :=� || tdeliver := �

EVENTS

 Broadcast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 THEN sender := sender 	 {mm � pp}
 END;

Order (pp � PROCESS ,mm � MESSAGE) �
 WHEN pp = sequencer
 mm � dom(sender)
 (sequencer � mm) tdeliver
 THEN tdeliver := tdeliver � {pp � mm}
 || totalorder := totalorder � (ran(tdeliver) � {mm})
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE) �
 WHEN pp � sequencer
 � mm � dom(sender)
 � mm � ran (tdeliver)
 � pp � mm � tdeliver
 � �m.(m � MESSAGE � (m� mm) � totalorder
 � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

Appendix D Total Order Broadcast 184

 D.3 Second Refinement

REFINEMENT TO33
REFINES TO22

VARIABLES sender, totalorder, tdeliver

INVARIANT ran(tdeliver) � tdeliver[{sequencer}]

INITIALISATION sender := � || totalorder :=� || tdeliver := �

EVENTS

 Broadcast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 END;

Order (pp � PROCESS ,mm � MESSAGE) �
 WHEN pp = sequencer � mm � dom(sender) 	 (sequencer
 mm) � tdeliver
 THEN tdeliver := tdeliver � {pp
 mm}
 || totalorder := totalorder � (tdeliver[{sequencer}] {mm})
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE) �
 WHEN pp � sequencer
 � mm � dom(sender)
 � mm � ran (tdeliver)
 � pp � mm � tdeliver
 � �m.(m � MESSAGE � (m� mm) � totalorder
 � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

D.4 Third Refinement

REFINEMENT TO44
REFINES TO33

VARIABLES sender, totalorder, tdeliver,
 computation, seqno, counter

INVARIANT computation � MESSAGE � seqno � computation � �� counter � �

 � � (m1,m2) . (m1 � MESSAGE � m2 � MESSAGE � m1� m2 � totalorder � seqno(m1) < seqno(m2))
 � � (m1,m2) . (m1 � MESSAGE � m2 � MESSAGE � m � computation � m � dom(seqno) � sequencer � m � tdeliver

Appendix D Total Order Broadcast 185

INITIALISATION
 sender := � || totalorder :=�
 || tdeliver := � || computation :=�
 || seqno := � || counter := 0

EVENTS

 Broadcast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 || computation := computation � {mm}

 END;

Order (pp � PROCESS ,mm � MESSAGE) �
 WHEN pp = sequencer � mm � dom(sender) � mm � computation � (sequencer � mm) � tdeliver
 THEN totalorder := totalorder � (tdeliver[{sequencer}] � {mm})
 || tdeliver := tdeliver � {pp � mm}

 || seqno := seqno � {mm � counter}
 || counter:= counter + 1
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE) �
 WHEN pp

�
 sequencer

 � mm � dom(sender)
 � mm � ran (tdeliver)
 � pp � mm � tdeliver
 � 	m.(m � computation � (seqno(m) < seqno(mm))

 (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

D.5 Fourth Refinement

REFINEMENT TO55
REFINES TO44

VARIABLES sender, totalorder, tdeliver,
 computation, seqno, counter
 messcontrol, control

INVARIANT control � MESSAGE � messcontrol control � computation

 � ran(messcontrol) � ran(tdeliver)
 � ran(messcontrol) � computation

Appendix D Total Order Broadcast 186

INITIALISATION
 sender := � || totalorder :=�
 || tdeliver := � || computation :=�
 || seqno := � || counter := 0
 || messcontrol := � || control := �

 EVENTS

 Broadcast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 THEN sender := sender � {mm � pp}
 || computation := computation � {mm}

 END;

Order (pp � PROCESS ,mm � MESSAGE,mc � MESSAGE) �
 WHEN pp = sequencer � mm � dom(sender) � mm � computation � (sequencer � mm) � tdeliver � mc � dom(messcontrol) � mm � ran(messcontrol)
 THEN totalorder := totalorder � (tdeliver[{sequencer}] � {mm})
 || tdeliver := tdeliver � {pp � mm}
 || control := control � {mc}

 || messcontrol := messcontrol � {mc � mm}
 || seqno := seqno � {mm � counter}
 || counter:= counter + 1
 END;

 TODeliver (pp � PROCESS , mm � MESSAGE) �
 WHEN pp

�
 sequencer � mm � dom(sender) � mm � ran (messcontrol)

 � pp � mm � tdeliver
 � 	m.(m � computation � (seqno(m) < seqno(mm))

 (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � mm}
 END

D.6 Fifth Refinement

REFINEMENT TO66
REFINES TO55

VARIABLES sender, totalorder, tdeliver,
 computation, seqno, counter
 messcontrol, control,
 receive

Appendix D Total Order Broadcast 187

INVARIANT receive � PROCESS � control
 � � (m) . (m � MESSAGE � m� computation � messcomtrol-1(m) � receive

 � m � ran(messcontrol))

INITIALISATION
 sender := � || totalorder :=�
 || tdeliver := � || computation :=�
 || seqno := � || counter := 0
 || messcontrol := � || control := �
 || receive := �

EVENTS

 Broadcast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm 	 dom(sender)
 THEN sender := sender
 {mm � pp}
 || computation := computation
 {mm}

 END;

Order (pp � PROCESS ,mm � MESSAGE,mc� MESSAGE) �
 WHEN pp = sequencer � mm � dom(sender) � mm � computation � mm 	 ran(messcontrol) � mc 	 dom(messcontrol) � (sequencer � mm) 	 tdeliver
 THEN totalorder := totalorder
 (tdeliver[{pp}] {mm})
 || tdeliver := tdeliver
 {pp � mm}
 || messcontrol := messcontrol
 {mc � mm}

 || control := control
 {mc}
 || seqno := seqno
 {mm � counter}
 || counter:= counter + 1
 END;

 ReceiveControl (pp � PROCESS , mc � MESSAGE) �

 WHEN mc � control � (pp � mc) 	 receive
 THEN receive := receive
 {pp � mc}
 END

 TODeliver (pp � PROCESS , mm � MESSAGE) �
 WHEN pp � sequencer � mm � computation � (pp � mm) 	 tdeliver � (pp � messcontrol-1 (mm)) � receive �

�
m.(m � computation � (seqno(m) � seqno(mm)

 � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver
 {pp � mm}
 END

Appendix E

Total Causal Order Broadcast

E.1 Abstract Model

MACHINE tco11
CONSTANTS sequencer
PROPERTIES sequencer � PROCESS
SETS PROCESS; MESSAGE;
VARIABLES sender , cdeliver , tdeliver , computation ,
 control , messcontrol , causalorder ,
 totalorder, cdelorder, tdelorder

INVARIANT sender � MESSAGE � PROCESS � cdeliver � PROCESS � MESSAGE � tdeliver � PROCESS � MESSAGE
 � computation � MESSAGE � control � MESSAGE
 � messcontrol � control � computation � causalorder � MESSAGE � MESSAGE
 � totalorder � MESSAGE � MESSAGE
 � cdelorder � PROCESS� (MESSAGE � MESSAGE)
 � tdelorder � PROCESS� (MESSAGE � MESSAGE)
 � dom(causalorder) � dom(sender)
 � ran(causalorder) � dom(sender) � ran(cdeliver) � dom(sender)

 � dom(messcontrol) � dom(sender) � ran(messcontrol) � dom(sender)
 � � (m1,m2,) . (m1 	 MESSAGE
 m2 � MESSAGE � m1 ran(messcontrol) � m2 ran(messcontrol) � (m1 � m2) causalorder

 � (m1 � m2) totalorder � � (m,p) . (m � MESSAGE � p � PROCESS � (p � m) � tdeliver
 � (p � m) � cdeliver

 � �
 (m1,m2) . (m1 � MESSAGE � m2 � MESSAGE � m1� computation � m2 computation � (m1 ! m2) causalorder � m2 ran(messcontrol)

 " m1 ran(messcontrol)

188

Appendix E Total Causal Order Broadcast 189� � (m) . (m � MESSAGE � m � ran(messcontrol)
 � (sequencer �m)� cdeliver
 � �

 (m1,m2,p) . (m1 	 MESSAGE
 m2 � MESSAGE
 p � PROCESS

 (m1 � m2) causalorder � (p � m2) cdeliver
 � (m1 � m2) cdeloder(p)
 � � (m1,m2) . (m1 � MESSAGE � m2 � MESSAGE
 � (m1 � m2) � tdelorder(p)
 � (m1 � m2)� totalorder � � (m1,m2,m3) . (m1 � MESSAGE � m2 � MESSAGE � m3 � MESSAGE
 �(m1 � m2) � causalorder (m2 � m3) � causalorder
 ! (m1 � m3)� causalorder
 " (m1,m2,p) . (m1 # MESSAGE $ m2 % MESSAGE $ p % PROCESS
 & (m1 ' m2) (causalorder) (p ' m2) (cdeliver
 * (p ' m1) (cdeliver
) + (m1,m2,m3) . (m1 , MESSAGE - m2 . MESSAGE - m3 . MESSAGE
 / (m1 0 m2) 1 totalorder 2 (m2 0 m3) 1 totalorder
 3 (m1 0 m3)1 totalorder
 2 4 (m1,m2,p) . (m1 5 MESSAGE 6 m2 7 MESSAGE 6 p 7 PROCESS
 8(m1 9 m2) : totalorder ; (p 9 m2) : tdeliver
 < (p 9 m1) : tdeliver

 ; = (m1,m2,p) . (m1 > MESSAGE ? m2 @ MESSAGE ? p @ PROCESS A (p B m1) C tdeliver D (p Bm2) E tdeliver
 D m2 C ran(tdeliver) F (m1 B m2) C totalorder)

 G H (m1,m2) . (m1 I MESSAGE J m2 K MESSAGE
 L m1 M ran(tdeliver) N m2 M ran(tdeliver)

 N (m2 O m1) P totalorder Q (m1 O m2) M totalorder)
 R S (m1,m2,p) . (m1 T MESSAGE U m2 V MESSAGE U p V PROCESS

 W (p X m1) Y tdeliver Z (p Xm2) Y tdeliver
 Z (m2 X m1) [totalorder \ (m1 X m2) Y totalorder)

] ^
 (m1,m2,p1,p2) . (m1 _ MESSAGE ̀ m2 a MESSAGE ` p1 a PROCESS ̀ p2 a PROCESS

 b (p1 c m1) d tdeliver e (p1 cm2) f tdeliver
 e (p2 c m1) d tdeliver e (p2 cm2) d tdeliver g (m1 c m2) d totalorder) h i (m) . (m j MESSAGE g m c m f totalorder)

 h i (m) . (m j MESSAGE h m d (dom (totalorder) k ran(totalorder))
 l m m ran(tdeliver))
 n o (m1,m2,p) . (m1 p MESSAGE q m2 p MESSAGE q p p PROCESS r (m1 s m2) t causalorder u (p sm2) t cdeliver
 v (m1 s m2) t cdelorder(p)

Appendix E Total Causal Order Broadcast 190� � (m1,m2,p) . (m1 � MESSAGE � m2 � MESSAGE � p � PROCESS
 � (m1�m2) � causalorder � m2 � sender -1 [{p}] � (m1� sender -1 [{p}] � m1� cdeliver[{p}])

 	
 (m1,m2,p) . (m1 � MESSAGE � m2 MESSAGE � p PROCESS � (m1�m2) � causalorder � m2� sender -1 [{p}]
 � m1� sender -1 [{p}] � m2� cdeliver[{p}]

 � �(m1,m2,p) � (m1 � MESSAGE � m2 � MESSAGE � p�PROCESS
 � (m1�m2) � causalorder � m2 � (sender-1[{p}] � cdeliver[{p}])
 � m1 � (sender-1[{p}] � cdeliver[{p}])
 INITIALISATION
 sender := � || cdeliver := � || tdeliver := � ||
 computation := � || control := � || messcontrol := � ||
 causalorder :=� || totalorder :=� ||
 cdelorder := PROCESS � {�} ||
 tdelorder := PROCESS � {�}

BroadCast (pp � PROCESS , mm � MESSAGE) �
 WHEN mm � dom(sender)
 THEN sender := sender � {mm pp}
 || cdeliver := cdeliver � {pp mm}
 || cdelorder(pp) :=cdeloder(pp) � (cdeliver[{pp}] ! {mm})
 || computation := computation � {mm}
 || causalorder := causalorder �((sender -1[{pp}] ! {mm})
 � (cdeliver[{pp}] ! {mm}))
 END;

CausalDeliver(pp " PROCESS , mm " MESSAGE) #
 WHEN mm " dom(sender)
 $ (pp mm) � cdeliver
 $ %m.(m " MESSAGE $ (m mm) " causalorder
 & (pp m) " cdeliver)
 THEN cdeliver := cdeliver � {pp mm}
 || cdelorder(pp) :=cdeloder(pp) � (cdeliver[{pp}] ! {mm})
 END;

SendControl (pp " PROCESS ,mm " MESSAGE, mc " MESSAGE) #
 WHEN pp = sequencer
 $ mc � dom(sender)
 $ mm � ran(messcontrol)
 $ mm " computation
 $ (pp mm) " cdeliver
 $ %m. (m " MESSAGE $ m " computation
 $ (m mm) " causalorder & m " ran (messcontrol))
 THEN causalorder := causalorder � ((sender -1[{sequencer}] ! {mc})
 � (cdeliver[{sequencer}] ! {mc}))
 || sender := sender � {mc sequencer}
 || control := control � {mc}
 || messcontrol := messcontrol � {mc mm}
 || LET m BE m = ran(messcontrol)
 IN totalorder := totalorder � (m ! {mm}) END
 END;

Appendix E Total Causal Order Broadcast 191

TODeliver (pp � PROCESS ,mc � MESSAGE)

�

 WHEN mc � dom(sender)
 � mc � control
 � (pp � mc) � cdeliver
 � (pp � messcontrol(mc)) � cdeliver
 � (pp � messcontrol(mc)) � tdeliver
 �

�
m.(m � MESSAGE � m � computation

 � (m � messcontrol(mc) � totalorder) � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � messcontrol(mc)}
 || tdelorder(pp) := tdeloder(pp) � (tdeliver[{pp}] �{messcontrol(mc)})
 END

E.2 First Refinement

REFINEMENT tco22
REFINES tco11

VARIABLES sender , cdeliver , tdeliver , computation ,
 control , messcontrol,VTP,VTM,seqno,counter

INVARIANT VTP � PROCESS 	 (PROCESS 	 N)
 VTM � MESSAGE � (PROCESS � N) seqno � computation � N counter � N � � (m,p1,p2) . (m � MESSAGE � p1 � PROCESS � p2 � PROCESS

 � m � dom(sender) � VTP(p1)(p2)
�

 VTM(m)(p2)
 � (p1 � m) � cdeliver
 � � (m1,m2,p) . (m1 � MESSAGE � m2 � MESSAGE � p � PROCESS
 � (m1 � m2) causalorder
 ! VTM (m1)(p) " VTM(m2)(p) # $ (m,p) . (m % MESSAGE & p % PROCESS
 ' dom(sender) (VTM(m)(p)) VTP(p)(p)
 * +

 (m,p) . (m , MESSAGE - p , PROCESS
 . VTM (m) (p) = 0 / m 0 (dom(causalorder) 1 ran(causalorder))
 2 3

 (p1,p2) . (p1 4 PROCESS 5 p2 6 PROCESS
 7 p1 8 p2 9 VTP (p1)(p2) : VTP (p2) (p2)

 ; <(m1,m2,p) = (m1> MESSAGE ? m2> MESSAGE ? p > PROCESS ;VTM(m1)(p) @ VTM(m2)(p) A ((m1Bm2) C (sender-1[{sender(m1)}] D {m2})
 E (cdeliver[{sender(m2)}] D{m2}))) F G (m1,m2) . (m1 H MESSAGE I m2 J MESSAGE K m1L m2 J totalorder M seqno(m1) < seqno(m2))

 K N (m1,m2) . (m1 J MESSAGE I m2 J MESSAGE I m J computation I m J dom(seqno) M sequencer L m J tdeliver
 INITIALISATION
 sender := O || cdeliver := O || tdeliver := O ||
 computation := O || control := O || messcontrol := O ||
 VTP :=O || VTM :=O || seqno := O || counter := 0

Appendix E Total Causal Order Broadcast 192

Broadcast(pp � PROCESS , mm � MESSAGE)
�

 WHEN mm �dom(sender)
 THEN LET nVTP
 BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}

 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 || computation := computation � {mm}
 END ;

CausalDeliver (pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p 	 sender(mm)
 VTP(pp)(p) � VTM(mm)(p))
 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 cdeliver := cdeliver {pp � mm}
 || VTP(pp) := VTP(pp) �
 ({q | q � PROCESS � VTP(pp)(q) < VTM(mm)(q)} � VTM(mm))

 END;

SendControl (pp � PROCESS , mm � MESSAGE, mc � MESSAGE) �
 WHEN pp = sequencer
 � mc � dom(sender)
 � mm � ran(messcontrol)
 � mm � computation
 � pp � mm � cdeliver
 � �(m,p) � (p � PROCESS � m � MESSAGE � m � computation
 � VTM (m)(p) � VTM(mm)(p) � m � ran(messcontrol))
 THEN control := control � {mc}
 || messcontrol := messcontrol � {mc � mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp � VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP
 || VTP(pp) := nVTP
 END
 || sender := sender � {mc � pp}
 || LET ncount BE ncount = counter +1
 IN counter := ncount
 || seqno(mm) := ncount
 END
 END;

TODeliver (pp � PROCESS , mc � MESSAGE) �
 WHEN mc � dom(sender)
 mc � control
 (pp � mc) � cdeliver
 (pp � messcontrol(mc)) � cdeliver
 (pp � messcontrol(mc)) ! tdeliver
 "m.(m� MESSAGE m � computation
 (seqno(m) < seqno (messcontrol(mc)) � (pp � m) � tdeliver)
 THEN tdeliver := tdeliver � {pp � messcontrol(mc)}
 END

Appendix E Total Causal Order Broadcast 193

E.3 Second Refinement

REFINEMENT tco33
REFINES tco22
VARIABLES sender , cdeliver , tdeliver , computation ,
 control , messcontrol,VTP,VTM
INVARIANT

 �(m) � (m� MESSAGE � m � control
 � (m � sequencer) � sender
 � seqno(messcontrol -1(m)) = VTM(m)(sequencer))

 � �(m1,m2,p) � (m1� MESSAGE � m2� MESSAGE � p � PROCESS
 � m1 � control � m2 � control
 � VTM(m1)(p) 	 VTM(m2)(p)

 seqno (messcontrol -1(m1)) 	 seqno (messcontrol -1(m2))

 � �(m1,m2,p) (m1� MESSAGE � m2� MESSAGE � p � PROCESS
 � m1 � computation � m2 � computation
 � seqno (m1) � seqno (m2)
 � VTM(messcontrol(m1))(p) � VTM(messcontrol(m2))(p)

 INITIALISATION
 sender := � || cdeliver := � || tdeliver := � ||
 computation := � || control := � || messcontrol := � ||
 VTP :=� || VTM :=�

Broadcast(pp � PROCESS , mm � MESSAGE) �

 WHEN mm �dom(sender)

 THEN LET nVTP

 BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}

 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 || computation := computation � {mm}

 END ;

 CausalDeliver (pp � PROCESS , mm � MESSAGE) �

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p sender(mm) ! VTP(pp)(p) " VTM(mm)(p))
 # VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 cdeliver := cdeliver $ {pp % mm}
 || VTP(pp) := VTP(pp) & ({q | q ' PROCESS (VTP(pp)(q) < VTM(mm)(q)}) VTM(mm))

 END;

Appendix E Total Causal Order Broadcast 194

SendControl (pp � PROCESS , mm � MESSAGE, mc � MESSAGE)
�

 WHEN pp = sequencer
 � mc � dom(sender)
 � mm � ran(messcontrol)
 � mm � computation
 � pp � mm � cdeliver
 �

�
(m,p) � (p � PROCESS � m � MESSAGE � m � computation

 � VTM (m)(p) � VTM(mm)(p) � m � ran(messcontrol))
 THEN control := control 	 {mc}
 || messcontrol := messcontrol 	 {mc � mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp � VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP || VTP(pp) := nVTP END
 || sender := sender 	 {mc � pp}
 END;

TODeliver (pp � PROCESS , mc � MESSAGE)

�

 WHEN mc � dom(sender)
 � mc � control
 � (pp � mc) � cdeliver
 � (pp � messcontrol(mc)) � cdeliver
 � (pp � messcontrol(mc)) � tdeliver
 �

�
m.(m� MESSAGE � m � computation

 (VTM(messcontrol-1(m))(sequencer) < VTM(mc)(sequencer))
 � (pp � m) tdeliver)
 THEN tdeliver := tdeliver � {pp � messcontrol(mc)}
 END

E.4 Third Refinement

REFINEMENT tco44
REFINES tco33
VARIABLES sender , cdeliver , tdeliver , computation ,
 control , messcontrol,VTP,VTM

 INITIALISATION
 sender := � || cdeliver := � || tdeliver := � ||
 computation := � || control := � || messcontrol := � ||
 VTP :=� || VTM :=�

Broadcast(pp PROCESS , mm MESSAGE) �

 WHEN mm �dom(sender)

 THEN LET nVTP

 BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}

 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 || computation := computation � {mm}
 END ;
 CausalDeliver (pp � PROCESS , mm � MESSAGE) �

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 � �p.(p � PROCESS � p � sender(mm) � VTP(pp)(p) � VTM(mm)(p))
 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 cdeliver := cdeliver � {pp � mm}
 || VTP(pp) := VTP(pp) � { sender(mm) � VTM(mm)(sender(mm)) }

 END;

Appendix E Total Causal Order Broadcast 195

SendControl (pp � PROCESS , mm � MESSAGE, mc � MESSAGE)
�

 WHEN pp = sequencer
 � mc � dom(sender)
 � mm � ran(messcontrol)
 � mm � computation
 � pp � mm � cdeliver
 �

�
(m,p) � (p � PROCESS � m � MESSAGE � m � computation

 � VTM (m)(p) � VTM(mm)(p) � m � ran(messcontrol))
 THEN control := control 	 {mc}
 || messcontrol := messcontrol 	 {mc � mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp � VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP || VTP(pp) := nVTP END
 || sender := sender 	 {mc � pp}
 END;

TODeliver (pp � PROCESS , mc � MESSAGE)

�

 WHEN mc � dom(sender)
 � mc � control
 � (pp � mc) � cdeliver
 � (pp � messcontrol(mc)) � cdeliver
 � (pp � messcontrol(mc)) � tdeliver
 �

�
m.(m� MESSAGE � m � computation

 (VTM(messcontrol-1(m))(sequencer) < VTM(mc)(sequencer))
 � (pp � m) tdeliver)

 THEN tdeliver := tdeliver � {pp � messcontrol(mc)}
 END

E.4 Fourth Refinement

REFINEMENT tco55
REFINES tco44

VARIABLES sender , cdeliver , tdeliver , computation ,
 control , messcontrol,VTP,VTM

 INITIALISATION
 sender := � || cdeliver := � || tdeliver := � ||
 computation := � || control := � || messcontrol := � ||
 VTP :=� || VTM :=�

Broadcast(pp PROCESS , mm MESSAGE) �

 WHEN mm �dom(sender)

 THEN LET nVTP

 BE nVTP = VTP(pp) � { pp � VTP(pp)(pp)+1}

 IN VTM(mm) := nVTP
 || VTP(pp) := nVTP END
 || sender := sender � {mm � pp}
 || cdeliver := cdeliver � {pp � mm}
 || computation := computation � {mm}

 END ;

Appendix E Total Causal Order Broadcast 196

 CausalDeliver (pp � PROCESS , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � (pp � mm) � cdeliver
 �

�
p.(p � PROCESS � p � sender(mm) � VTP(pp)(p) � VTM(mm)(p))

 � VTP(pp)(sender(mm)) = VTM (mm)(sender(mm))-1
 THEN
 cdeliver := cdeliver 	 {pp � mm}
 || VTP(pp)(sender(mm)) := VTM(mm)(sender(mm))

 END;

SendControl (pp � PROCESS , mm � MESSAGE, mc � MESSAGE)

�

 WHEN pp = sequencer
 � mc � dom(sender)
 � mm � ran(messcontrol)
 � mm � computation
 � pp � mm � cdeliver
 �

�
(m,p)
 (p � PROCESS � m � MESSAGE � m � computation

 � VTM (m)(p) � VTM(mm)(p) � m � ran(messcontrol))
 THEN control := control 	 {mc}
 || messcontrol := messcontrol 	 {mc � mm}
 || LET nVTP BE nVTP = VTP(pp) + { pp � VTP(pp)(pp)+1}
 IN VTM(mc) := nVTP || VTP(pp) := nVTP END
 || sender := sender 	 {mc � pp}
 END;

TODeliver (pp � PROCESS , mc � MESSAGE)
�

 WHEN mc � dom(sender)
 � mc � control
 � (pp � mc) � cdeliver
 � (pp � messcontrol(mc)) � cdeliver
 � (pp � messcontrol(mc)) � tdeliver
 �

�
m.(m� MESSAGE � m � computation

 � (VTM(messcontrol-1(m))(sequencer) < VTM(mc)(sequencer))
 (pp � m) � tdeliver)

 THEN tdeliver := tdeliver � {pp � messcontrol(mc)}
 END

Bibliography

[1] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University

Press, 1996.

[2] J.-R. Abrial. Extending B without changing it (for developing distributed sys-

tems). In H. Habrias, editor, First B Conference, November 1996.

[3] Jean-Raymond Abrial. Formal methods in industry: achievements, problems,

future. In Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors,

ICSE, pages 761–768. ACM, 2006.

[4] Jean-Raymond Abrial. Train systems. In Butler et al. [29], pages 1–36.

[5] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin.

An open extensible tool environment for Event-B. In Zhiming Liu and Jifeng

He, editors, ICFEM, volume 4260 of Lecture Notes in Computer Science, pages

588–605. Springer, 2006.

[6] Jean-Raymond Abrial and Dominique Cansell. Click’n prove: Interactive proofs

within set theory. In David A. Basin and Burkhart Wolff, editors, TPHOLs,

volume 2758 of Lecture Notes in Computer Science, pages 1–24. Springer, 2003.

[7] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically

proved and incremental development of ieee 1394 tree identify protocol. Formal

Asp. Comput., 14(3):215–227, 2003.

[8] Divyakant Agrawal, Amr El Abbadi, and Robert C. Steinke. Epidemic algorithms

in replicated databases. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, May 12-14, 1997, Tuc-

son, Arizona, pages 161–172. ACM Press, 1997.

[9] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, and Ioana Stanoi. Exploit-

ing atomic broadcast in replicated databases (extended abstract). In Christian

Lengauer, Martin Griebl, and Sergei Gorlatch, editors, Euro-Par, volume 1300 of

Lecture Notes in Computer Science, pages 496–503. Springer, 1997.

[10] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Membership algo-

rithms for multicast communication groups. In Adrian Segall and Shmuel Zaks,

197

BIBLIOGRAPHY 198

editors, WDAG, volume 647 of Lecture Notes in Computer Science, pages 292–312.

Springer, 1992.

[11] Paul Ammann, Sushil Jajodia, and Indrakshi Ray. Using formal methods to rea-

son about semantics-based decompositions of transactions. In Umeshwar Dayal,

Peter M. D. Gray, and Shojiro Nishio, editors, VLDB, pages 218–227. Morgan

Kaufmann, 1995.

[12] Paul Ammann, Sushil Jajodia, and Indrakshi Ray. Applying formal methods to

semantic-based decomposition of transactions. ACM Transactions on Database

System., 22(2):215–254, 1997.

[13] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.

Basic concepts and taxonomy of dependable and secure computing. IEEE Trans.

Dependable Sec. Comput., 1(1):11–33, 2004.

[14] Özalp Babaoglu, Alberto Bartoli, and Gianluca Dini. Replicated file management

in large-scale distributed systems. In Gerard Tel and Paul M. B. Vitányi, editors,

WDAG, volume 857 of Lecture Notes in Computer Science, pages 1–16. Springer,

1994.

[15] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with central-

ized control. Distributed Computing, 3(2):73–87, 1989.

[16] Roberto Baldoni. A positive acknowledgment protocol for causal broadcasting.

IEEE Trans. Computers, 47(12):1341–1350, 1998.

[17] Roberto Baldoni, Stefano Cimmino, and Carlo Marchetti. Total order communi-

cations: A practical analysis. In Mario Dal Cin, Mohamed Kaâniche, and András

Pataricza, editors, EDCC, volume 3463 of Lecture Notes in Computer Science,

pages 38–54. Springer, 2005.

[18] Roberto Baldoni and Michel Raynal. Fundamentals of distributed computing: A

practical tour of vector clock systems. IEEE Distributed Systems Online, 3(2),

2002.

[19] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-

trol and Recovery in Database Systems. Addison-Wesley, 1987.

[20] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the pres-

ence of failures. ACM Trans. Comput. Syst., 5(1):47–76, 1987.

[21] Kenneth P. Birman, André Schiper, and Pat Stephenson. Lightweigt causal and

atomic group multicast. ACM Trans. Comput. Syst., 9(3):272–314, 1991.

[22] Michael Butler. A csp approach to action systems. Ph.D Thesis, Computing

Laboratory, University of Oxford, 1992.

BIBLIOGRAPHY 199

[23] Michael Butler. Stepwise refinement of communicating systems. Science of Com-

puter Programming., 27(2):139–173, 1996.

[24] Michael Butler. An approach to the design of distributed systems with B AMN.

In Jonathan P. Bowen, Michael G. Hinchey, and David Till, editors, ZUM, volume

1212 of Lecture Notes in Computer Science, pages 223–241. Springer, 1997.

[25] Michael Butler. On the use of data refinement in the development of secure com-

munications systems. Formal Aspects of Computing., 14(1):2–34, 2002.

[26] Michael Butler. A system-based approach to the formal development of embedded

controllers for a railway. Design Automation for Embedded Systems., 6(4):355–366,

2002.

[27] Michael Butler and Carla Ferreira. A process compensation language. In Wolf-

gang Grieskamp, Thomas Santen, and Bill Stoddart, editors, IFM, volume 1945

of Lecture Notes in Computer Science, pages 61–76. Springer, 2000.

[28] Michael Butler, Carla Ferreira, and Muan Yong Ng. Precise modelling of compen-

sating business transactions and its application to BPEL. J. Universal Computer

Science, 11(5):712–743, 2005.

[29] Michael Butler, Cliff B. Jones, Alexander Romanovsky, and Elena Troubitsyna, ed-

itors. Rigorous Development of Complex Fault-Tolerant Systems [FP6 IST-511599

RODIN project], volume 4157 of Lecture Notes in Computer Science. Springer,

2006.

[30] Michael Butler, Emil Sekerinski, and Kaisa Sere. An action system approach to

the steam boiler problem. In Formal Methods for Industrial Applications, pages

129–148, volume 1165 of Lecture Notes in Computer Science, Springer,1996.

[31] Michael Butler and Divakar Yadav. An incremental development of the mondex

system in Event-B. Formal Aspects of Computing, 20(1):61–77, 2008.

[32] Stefano Ceri and Giuseppe Pelagatti. Distributed Databases: Principles and Sys-

tems. McGraw-Hill Book Company, 1984.

[33] B Core(UK)Ltd. B-toolkit manuals, 1999.

[34] Flaviu Cristian. Group, majority, and strict agreement in timed asynchronous

distributed systems. In Proceedings of the Twenty-Sixth International Symposium

on Fault-Tolerant Computing, pages 178–189, Washington, 25–27 1996. IEEE.

[35] Flaviu Cristian, Richard de Beijer, and Shivakant Mishra. A performance compari-

son of asynchronous atomic broadcast protocols. Distributed Systems Engineering,

1(4):177–201, 1994.

BIBLIOGRAPHY 200

[36] Flaviu Cristian, Shivakant Mishra, and Guillermo A. Alvarez. High-performance

asynchronous atomic broadcast. Distributed Systems Engineering, 4(2):109–, 1997.

[37] Flaviu Cristian and Shivkant Mishra. The pinwheel asynchronous atomic broad-

cast protocols. In Proceedings of the Second International Symposium on Au-

tonomous Decentralized Systems, Phoenix, AZ, Mar 1995., 1995.

[38] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and mul-

ticast algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421,

2004.

[39] Richard Ekwall and André Schiper. Replication: Understanding the advantage of

atomic broadcast over quorum systems. J. UCS, 11(5):703–711, 2005.

[40] Alan Fekete, David Gupta, Victor Luchangco, Nancy A. Lynch, and Alexan-

der A. Shvartsman. Eventually-serializable data services. Theor. Comput. Sci.,

220(1):113–156, 1999.

[41] Alan Fekete, M. Frans Kaashoek, and Nancy Lynch. Implementing sequen-

tially consistent shared objects using broadcast and point-to-point communication.

Journal of the ACM, 45(1):35–69, 1998.

[42] Alan Fekete, Nancy A. Lynch, and Alexander A. Shvartsman. Specifying and

using a partitionable group communication service. ACM Trans. Comput. Syst.,

19(2):171–216, 2001.

[43] Colin J. Fidge. Logical time in distributed computing systems. IEEE Computer,

24(8):28–33, 1991.

[44] RODIN Rigorous Open Development Environment for Complex Systems(IST

2004-511599) . In http://rodin.cs.ncl.ac.uk/.

[45] H Garcia-Molina, J D Ullman, and J Widem. Database System: A Complete Book.

Pearson Education, 2002.

[46] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD Conference, pages

249–259, 1987.

[47] Stephen Garland and Nancy Lynch. Using I/O Automata for developing dis-

tributed systems. pages 285–312. in Gary T. Leavens and Murali Sitaraman, Eds.,

Foundations of Component-Based Systems(Chapter 13), Cambridge University

Press, 2000.

[48] A Ghazi and R Labban. Transaction management in distributed database systems:

the case of oracle’s two phase commit. Journal of Information Systems Education.,

13(2):95–104, 2002.

BIBLIOGRAPHY 201

[49] Jim Gray. Notes on data base operating systems. In Michael J. Flynn etal, editor,

Advanced Course: Operating Systems, volume 60 of Lecture Notes in Computer

Science, pages 393–481. Springer, 1978.

[50] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, 1993.

[51] Paul Greenfield, Alan Fekete, Julian Jang, and Dean Kuo. Compensation is not

enough. In 7th International Enterprise Distributed Object Computing Conference

(EDOC 2003),IEEE Computer Society, pages 232–239, 2003.

[52] V. Hadzilacos and S.Toueg. A modular approach to fault-tolerant broadcasts and

related problems. Technical Report TR 94 -1425, Cornell University,NY, 1994.

[53] A Helal, A Heddya, and B Bhargava. Replication Techniques in Distributed System.

Kluwener Academic Publishers, 1997.

[54] Michael G. Hinchey, Jonathan P. Bowen, and Robert L. Glass. Formal methods:

Point-counterpoint. Computer, 29(4):18–19, 1996.

[55] JoAnne Holliday. Replicated database recovery using multicast communication.

In IEEE International Symposium on Network Computing and Applications (NCA

2001), October 8-10, 2001, Cambridge, MA, USA, pages 104–107. IEEE Computer

Society, 2001.

[56] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawal, and Amr El Abbadi.

Epidemic algorithms for replicated databases. IEEE Trans. Knowl. Data Eng.,

15(5):1218–1238, 2003.

[57] Martin Jandl, Alexander Szep, Robert Smeikal, and Karl M. Göschka. Increasing

availability by sacrificing data integrity - a problem statement. In 38th Hawaii

International Conference on System Sciences (HICSS-38 2005), 3-6 January 2005,

Big Island, HI, USA.

[58] Cliff B. Jones, Daniel Jackson, and Jeannette Wing. Formal methods light. Com-

puter, 29(4):20–22, 1996.

[59] M. Frans Kaashoek and Andrew S. Tanenbaum. An evaluation of the amoeba

group communication system. In Proceedings of the 16th International Conference

on Distributed Computing Systems (ICDCS96), pages 436–448, IEEE Computer

Society,1996.

[60] P. Kangsabanik, D. Yadav, R. Mall, and A.K. Majumdar. Performance analy-

sis of long-lived cooperative transactions in active DBMS. Data and Knowledge

Engineering, Elsevier, 62(3):547–577, 2007.

[61] B. Kemme. Database replication for clusters of workstations. Dissertation No

ETH 13864,Ph.D Thesis, Department of Computer Science,ETH Zurich, 2000.

BIBLIOGRAPHY 202

[62] Bettina Kemme and Gustavo Alonso. A suite of database replication protocols

based on group communication primitives. In Proc. Intl. Conf. Distributed Com-

puting System, Amsterdam, ICDCS, pages 156–163, 1998.

[63] Bettina Kemme and Gustavo Alonso. A new approach to developing and im-

plementing eager database replication protocols. ACM Trans. Database Syst.,

25(3):333–379, 2000.

[64] Bettina Kemme, Fernando Pedone, Gustavo Alonso, and André Schiper. Process-

ing transactions over optimistic atomic broadcast protocols. In IEEE Computer

Society, ICDCS, pages 424–431, 1999.

[65] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André Schiper, and Matthias

Wiesmann. Using optimistic atomic broadcast in transaction processing systems.

IEEE Trans. Knowl. Data Eng., 15(4):1018–1032, 2003.

[66] E. Kindler. Safety and liveness properties: A survey. Bulletin of the European

Association for Theoretical Computer Science, 53:268–272, 1994.

[67] Henry F. Korth and Gregory D. Speegle. Formal model of correctness without

serializabilty. In SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD interna-

tional conference on Management of data, pages 379–386, New York, NY, USA,

1988. ACM Press.

[68] Henry F. Korth and Gregory D. Speegle. Formal aspects of concurrency control in

long-duration transaction systems using the NT/PV model. ACM Trans. Database

Syst., 19(3):492–535, 1994.

[69] Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: Exploiting the

semantics of distributed services. In Proc. of the Tenth ACM Sysmposium on

Principles of Distributed Computing,PODC, pages 43–57, 1990.

[70] Peter B. Ladkin, Leslie Lamport, Bryan Olivier, and Denis Roegel. Lazy caching

in TLA. Distributed Computing, 12(2-3):151–174, 1999.

[71] Linas Laibinis, Elena Troubitsyna, Alexei Iliasov, and Alexander Romanovsky.

Rigorous development of fault-tolerant agent systems. In Butler et al. [29], pages

241–260.

[72] L. Lamport. Specifying concurrent systems with TLA+. In Calculational System

Design, Amsterdam, 1999. IOS Press.

[73] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans-

actions on Software Eng., 3(2):125–143, 1977.

[74] Leslie Lamport. The implementation of reliable distributed multiprocess systems.

Computer Networks, 2:95–114, 1978.

BIBLIOGRAPHY 203

[75] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, 1978.

[76] Leslie Lamport. On interprocess communication. part i: Basic formalism. Dis-

tributed Computing, 1(2):77–85, 1986.

[77] Leslie Lamport. An introduction to TLA. HP labs Technical Report. SRC Technical

Notes, SRC-TN-1994-001, 1994.

[78] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,

16(3):872–923, 1994.

[79] Leslie Lamport and Stephan Merz. Specifying and verifying fault-tolerant systems.

In Hans Langmaack, Willem P. de Roever, and Jan Vytopil, editors, FTRTFT,

volume 863 of Lecture Notes in Computer Science, pages 41–76. Springer, 1994.

[80] Michael Leuschel and Michael Butler. Prob: A model checker for B. In Keijiro

Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME, volume 2805 of Lecture

Notes in Computer Science, pages 855–874. Springer, 2003.

[81] Eliezer Levy, Henry F. Korth, and Abraham Silberschatz. An optimistic commit

protocol for distributed transaction management. In SIGMOD Conference, pages

88–97, 1991.

[82] X Liu, R Renesse, M Bickford, C Krietz, and R Constable. Protocol switching :

Exploiting meta-properties. In Intl. Workshop on applied reliable group commu-

nication, WARGC 2001,IEEE Computer Science, pages 37–42, 2001.

[83] Nancy Lynch and Mark Turtle. An introduction to I/O automata. CWI Quartely.,

2(3):219–246, 1989.

[84] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for distributed

algorithms. In PODC ’87: Proceedings of the sixth annual ACM Symposium on

Principles of distributed computing, pages 137–151, New York, NY, USA, 1987.

ACM Press.

[85] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[86] Nancy A. Lynch. Input/output automata: Basic, timed, hybrid, probabilistic,

dynamic, ... In Roberto M. Amadio and Denis Lugiez, editors, CONCUR, volume

2761 of Lecture Notes in Computer Science, pages 187–188. Springer, 2003.

[87] Nancy A. Lynch, Michael Merritt, William E. Weihl, and Alan Fekete. Atomic

Transactions. Morgan Kaufmann, 1993.

[88] Abadi Mart́ın, Leslie Lamport, and Stephan Merz. A tla solution to the rpc-

memory specification problem. In Manfred Broy, Stephan Merz, and Katharina

Spies, editors, Formal Systems Specification, volume 1169 of Lecture Notes in Com-

puter Science, pages 21–66. Springer, 1994.

BIBLIOGRAPHY 204

[89] Keith Marzullo. Maintaining the time in Distributed System. Stanford Univer-

sity,Ph.D Thesis, 1984.

[90] F Mattern. Virtual time and global states of distributed systems. In Intl. Workshop

on Parallel and Distributed Algorithms., volume Elsevier Science, North Holland,

1988.

[91] P. M. Melliar-Smith, Louise E. Moser, and Vivek Agrawala. Broadcast protocols

for distributed systems. IEEE Trans. Parallel Distrib. Syst., 1(1):17–25, 1990.

[92] C Metayer, J R Abrial, and L Voison. Event-B language. RODIN deliverables 3.2,

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, 2005.

[93] C. Mohan, Bruce G. Lindsay, and Ron Obermarck. Transaction management in

the R* distributed database management system. ACM Trans. Database Syst.,

11(4):378–396, 1986.

[94] Louise E. Moser, P. M. Melliar-Smith, Deborah A. Agarwal, Ravi K. Budhia,

and Colleen A. Lingley-Papadopoulos. Totem: A fault-tolerant multicast group

communication system. Commun. ACM, 39(4):54–63, 1996.

[95] J. E.B. Moss. Nested transactions: an approach to reliable distributed computing.

Massachusetts Institute of Technology, Cambridge, MA, USA, 1985.

[96] Gil Neiger. A new look at membership services (extended abstract). In PODC ’96:

Proceedings of the fifteenth annual ACM symposium on Principles of distributed

computing, pages 331–340, New York, NY, USA, 1996. ACM Press.

[97] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems,

Second Edition. Prentice-Hall, 1999.

[98] Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo

Alonso. Middle-r: Consistent database replication at the middleware level. ACM

Trans. Comput. Syst., 23(4):375–423, 2005.

[99] Fernando Pedone, Rachid Guerraoui, and André Schiper. Transaction reordering

in replicated databases. In 16th IEEE Symposium on Reliable Distributed Sys-

tems,SRDS97, pages 175–182, 1997.

[100] Fernando Pedone, Rachid Guerraoui, and André Schiper. The database state

machine approach. Distributed and Parallel Databases, 14(1):71–98, 2003.

[101] Fernando Pedone, Rachid Guerraoui, and André Schiper. The database state ma-

chine approach. Distributed and Parallel Databases, Springer, 14(1):71–98, 2003.

[102] Fernando Pedone and André Schiper. Optimistic atomic broadcast. In Shay Kut-

ten, editor, DISC, volume 1499 of Lecture Notes in Computer Science, pages 318–

332. Springer, 1998.

BIBLIOGRAPHY 205

[103] Stefan Poledna. Replica determinism in distributed real-time systems: A brief

survey. Real-Time Systems, 6(3):289–316, 1994.

[104] Roberto De Prisco, Alan Fekete, Nancy Lynch, and Alex Shvartsman. A dynamic

view-oriented group communication service. In PODC ’98: Proceedings of the

seventeenth annual ACM symposium on Principles of distributed computing, pages

227–236, New York, NY, USA, 1998. ACM Press.

[105] Raghu Ramakrishanan and Johannes Gehrke. Database Management Systems,

Second Edition. McGraw Hill, 2000.

[106] Michel Raynal. Consensus-based management of distributed and replicated data.

IEEE Data Eng. Bull., 21(4):30–37, 1998.

[107] Michel Raynal. Fault-tolerant distributed systems : A modular approach to the

non-blocking atomic commitment problem. Technical Report 2973, INRIA, France,

Sepotember, 1996.

[108] Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction

and a simple way to implement it. Information Processing Letters., 39(6):343–350,

1991.

[109] Michel Raynal and Mukesh Singhal. Logical time: Capturing causality in dis-

tributed systems. IEEE Computer, 29(2):49–56, 1996.

[110] Abdolbaghi Rezazadeh and Michael J. Butler. Some guidelines for formal devel-

opment of web-based applications in b-method. In Helen Treharne, Steve King,

Martin C. Henson, and Steve A. Schneider, editors, ZB, volume 3455 of Lecture

Notes in Computer Science, pages 472–492. Springer, 2005.

[111] Lúıs Rodrigues and Michel Raynal. Atomic broadcast in asynchronous crash-

recovery distributed systems. In In Proceedings of 20th IEEE International Con-

ference on Distributed Computing Systems,Houston,ICDCS 2000, pages 288–295,

IEEE Computer Scciety Press,2000.

[112] Hossein Saiedian. An invitation to formal methods. Computer, 29(4):16–17, 1996.

[113] André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement

causal ordering. In Jean-Claude Bermond and Michel Raynal, editors, WDAG,

volume 392 of Lecture Notes in Computer Science, pages 219–232. Springer, 1989.

[114] Andre Schiper and Michel Raynal. From group communication to transactions in

distributed systems. Communication of the ACM, 39(4):84–87, 1996.

[115] Nicolas Schiper, Rodrigo Schmidt, and Fernando Pedone. Optimistic algorithms

for partial database replication. In Alexander A. Shvartsman, editor, OPODIS,

volume 4305 of Lecture Notes in Computer Science, pages 81–93. Springer, 2006.

BIBLIOGRAPHY 206

[116] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: a tutorial. ACM Computing Surveys., 22(4):299–319, December 1990.

[117] S Schneider. The B Method. Palgrave Publication, 2001.

[118] Bujor D. Silaghi, Peter J. Keleher, and Bobby Bhattacharjee. Multi-dimensional

quorum sets for read-few write-many replica control protocols. In CCGRID, pages

355–362, 2004.

[119] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database System Con-

cepts, 4th Edition. McGraw-Hill, 2001.

[120] Mukesh Singhal and Ajay D. Kshemkalyani. An efficient implementation of vector

clocks. Inf. Process. Lett., 43(1):47–52, 1992.

[121] Mukesh Singhal and Niranjan G Shivratri. Advanced Concepts in Operating Sys-

tems. Tata McGraw-Hill Book Company, 2001.

[122] Dale Skeen. Nonblocking commit protocols. In Y. Edmund Lien, editor, Pro-

ceedings of the 1981 ACM SIGMOD International Conference on Management of

Data, Ann Arbor, Michigan, April 29 - May 1, 1981, pages 133–142. ACM Press,

1981.

[123] J M Spivey. The Z notation : A Reference Manual. Prentice Hall, 1992.

[124] Doug Stacey. Replication: Db2, oracle, or sybase? SIGMOD Record, 24(4):95–101,

1995.

[125] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Using broadcast primi-

tives in replicated databases. In Proc. of 18th IEEE Intl. Conf. on Distributed

Computing System,ICDCS, pages 148–155, 1998.

[126] Carlo Marchetti Stefano Cimmino and Roberto Baldoni. A classification of total

order specifications and its application to fixed sequencer-based implementations.

Journal of Parallel and Distributed Computing, 66(1):108–127, January 2006.

[127] Steria. Atelier-B User and Reference Manuals, 1997.

[128] Andrew S. Tanenbaum, M. Frans Kaashoek, Robbert van Renesse, and Henri E.

Bal. The amoeba distributed operating system - a status report. Computer Com-

munications, 14(6):324–335, 1991.

[129] A Tenenbaum and M Van Steen. Distributed Systems ;Principles and Paradigms.

Prentice Hall, 2003.

[130] C. Toinard, Gerard Florin, and C. Carrez. A formal method to prove ordering

properties of multicast systems. ACM Operating Systems Review, 33(4):75–89,

1999.

BIBLIOGRAPHY 207

[131] P. Urban, X. Defago, and A. Schiper. Contentionaware metrics for distributed

algorithms: Comparison of atomic broadcast algorithms. In Proc. 9th IEEE Int’l

Conf. on Computer Communications and Networks (IC3N 2000), Oct. 2000., 2000.

[132] Paulo Veŕıssimo, Antonio Casimiro, and Lúıs Rodrigues. Using atomic broad-

cast to implement a posteriori agreement for clock synchronization. In

Proc. of 12th IEEE International Symposium on Reliable Distributed Sys-

tems,Princeton,SRDS93, pages 115–124, IEEE Computer Society Press,1993.

[133] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The

locus distributed operating system. In SOSP ’83: Proceedings of the ninth ACM

symposium on Operating systems principles, pages 49–70, New York, NY, USA,

1983. ACM Press.

[134] Gerhard Weikum and Gottfried Vossen. Transactional information systems: the-

ory, algorithms, and the practice of concurrency control and recovery. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[135] Jim Woodcock. First steps in the verified software grand challenge. IEEE Com-

puter, 39(10):57–64, 2006.

[136] Jim Woodcock and Jim Davies. Using Z : Specifications, Refinement and Proof.

Prentice Hall, 1996.

[137] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z. Wu. Fault tol-

erance in concurrent object-oriented software through coordinated error recovery.

The Twenty-Fifth International Symposium on Fault-Tolerant Computing(FTCS),

Pasadena, IEEE Computer Society:499–508, June 27-30,1995.

[138] J. Xu, A. Romanovsky, and B. Randell. Concurrent exception handling and

resolution in distributed object systems. IEEE Trans. Parallel Distrib. Syst.,

11(10):1019–1032, 2000.

[139] Divakar Yadav and Michael Butler. Formal development of fault tolarant trans-

actions for a replicated database using ordered broadcasts. In Proc. of Workshop

on Methods, Models and Tools for Fault Tolerance (MeMoT 2007), pages 32–

42,Oxford,United Kingdom, http://eprints.ecs.soton.ac.uk/14273/.

[140] Divakar Yadav and Michael Butler. Application of Event B to global causal order-

ing for fault tolerant transactions. In Proc. of Workshop on Rigorous Engineering

of Fault Tolerant System,REFT05, pages 93–103,Newcastle upon Tyne, 19 July

2005 , http://eprints.ecs.soton.ac.uk/10981/.

[141] Divakar Yadav and Michael Butler. Formal specifications and verification of

message ordering properties in a broadcast system using Event B. In Technical

Report,School of Electronics and Computer Science, University of Southampton,

Southampton,UK, May 2007, http://eprints.ecs.soton.ac.uk/14001/.

BIBLIOGRAPHY 208

[142] Divakar Yadav and Michael Butler. Rigorous design of fault-tolerant transac-

tions for replicated database systems using Event B. In Rigorous Development of

Complex Fault-Tolerant Systems, pages 343–363, volume 4157 of Lecture Notes in

Computer Science, Springer,2006.

