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Abstract

In previous research, scientists were able to use transient facial thermal featuresdefxtnanct
Thermallnfra-RedImages (TIRIs) for making binary distinction between the affective states.
For example, thermal asymmetries localisethtial TIRIS have been used to distinguish
anxiety and deceit. Sincéfective human-computer interaction would require machines to
distinguish between the subtle facial expressions of affective states, computers’ able to make
such binary distinctions would not suffice a roliushan-computer interaction. This work, for

the first time, uses affective-state-specific transient facial thermal features ekfraoieTIRIs

to recognise a much wider range of facighressions under a much wider range of conditions.
Using infrared thermal imaging within the 8-{ith, a database of 324sdrete, time-sequential,
visible-spectrum and thermal facial imageswaquired, representing different facial
expressions from 23 participants in differentaiions. A facial thermal feature extraction and
pattern classification approach was developed, refined aed t@stvarious Gaussian mixture
models constructed using the image database. Attempts were made to classify: neutral and
pretended happy and sad faces; multiple p&sdivd negative facial expressions; six
(pretended) basic facial expressions; partiediyered or occluded faces; and faces with evoked
happiness, sadness, disgust and anger.

The cluster-analytic classification in tigrk began by segmentation and detection of
thermal faces in the acquired TIRIs. The affective-state-specific temperatuiteutstis on the
facial skin surface were realised through the lgixey-level analysis. Examining the affective-
state-specific temperature variations within the selected regions of interest in the TIRIs led to
the discovery of some significaRaicial ThermalFeaturePoints (FTFPs) along the major facial
muscles. Following a multivariate analysis of Theermall ntensityvalues (TIVs) measured at
the FTFPs, the TIRIs were represented alondrthieipal Components (PCs) of a covariance
matrix. The resulting PCs were ranked in the oad¢heir effectiveness in the between-cluster
separation. Only the most effective PCs were retained to construct an optimised eigenspace. A
supervised learning algorithm was invoked for linear subdivision of the optimised eigenspace.
The statistical significance levels of the classification results were estimated for validating the
discriminant functions.

The main contribution of this research has been to show that: the infrared imaging of facial
thermal features within the 8-14n bandwidth may be used to ebge affective-state-specific
thermal variations on the face; the pixel-grey level analysis of TIRIs can help localise FTFPs
along the major facial muscles of the face; cluat@lytic classification of transient thermal
features may help distinguish between the faoiplessions of affective states in an optimized
eigenspace of input thermal feature vectorg Gaussian mixture model with one cluster per
affect worked better for some facial expressions than others. This made the influence of the
Gaussian mixture model structure on the accuracy of the classification results obvious.
However, the linear discrimination and confusion patterns observed in this work were consistent
with the ones reported in several earlier studies.

This investigation also unveiled some important dimensions of the future research on use of
facial thermal features in affective human-computer interaction.
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Chapter 1

INTRODUCTION

1.1 Motivation

Scientific studies confirm that people use aets of auditory and visual cues such as
voice levels, gait information, gesturesdaacial expressions to understand others’
emotions (Bartneck 2001; Brooks 2002; Picard 2000). One important source of visual
information is facial expression (Du and Lin 2003). Using these auditory and visual
cues appears to be a casual, simpid,effortless task for humans (Redford 2000).

What, however, appears to be easy and simple tasks for humans translate into a set of
complex computational activities for computers. Despite growing processing power and
multiplicity of input-output modalities, computers possess limited abilities to recognise,
understand and interpret emotions (Bartneck 2001).

Nevertheless, the potentialredits of computers’ able to express and respond to
emotions inspired researchers to design and implement socially intelligent systems. This
inspiration is evident in the recent scholarly works on automated recognition,
interpretation and expression of emotion (Bartneck 2001; Brooks 2002; Busso et al.
2004; Klein et al. 2002). Many recent systems have demonstrated some limited
capabilities of recognising, interpreting and expressing emotions (Cohen et al. 2003;
Essa and Pentland 1997; Gao et al. 2003j8¥iona 2001). A wide range of potential
applications of these so called socially intelligent computers have been reported in the
literature on human-computer interaction (HCI), robotics, bio-informatics, security and
surveillance, and psychotherapy (Cohen e2@03; Eveland et al. 2003; Socolinsky et
al. 2003; Klein et al. 2002; Lisetti and Schiano 2000; Picard 2000; Reeves and Nass
1996).

A large number of the existing models of socially intelligent systems, as reported in
the literature, relies on the visual cuesdoagnise and classify the facial expressions
and interpret emotions (Abidi et &004). Sophisticated algorithms, hardware

accessories and tools for implementing the vision-based Automated Facial Expression
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Classification (AFEC) systems are being deped, tested and made available. In
particular, efforts are being made to enhance the performance of the vision-based AFEC
capable systems. Some of the recently developed vision-based AFEC systems claimed
over 70 % accuracy in recognising the facial expressions of affective states (Baldwin et
al. 1998; Cohen et al. 2003; Gao et al. 208#)ce the vision-based AFEC systems

have been around for several years now, their strengths and limitations are well
understood. The underlying theories and imp#atation details afalient vision-based

AFEC systems are discussed in (Blaokl ¥acoob 1997; Ekman et al. 1993; Fasel and
Luettin 2003; Huang and Huang 19%3ntic and Rothkrantz 2000).

Despite their claimed success in controlled environments, critics find the vision-
based AFEC systems less effective outside the research laboratories (Baldwin et al.
1998; Ekman et al. 1993; Sugimoto et28l00). A number of technical limitations are
believed to deter the performance of #gon-based AFEC systems in life like
situations. Factors such as the deformability and the transient nature of the facial
features, and the influence of the ambient light intensity while a face is being observed
pose problems in facial feature extraction. Also, dependence of the feature extraction
process on a physically-based structural model of the face in the vision-based AFEC
systems is considered problematic. The works by Fried (1976) and Friedman (1970) on
development of the physically-based strugkunodels of human face provided basis for
modeling the face, defining the anatomical components of the face, and representing the
interaction between the anat@al components of a face. Some recent scientific studies
have raised questions about the theoretical foundations of the works by Fried (1976)
and Friedman (1970) and the suitability ofhgsthe physically-based structural models
in AFEC and AAR systems (Ekman et al. 1993; Morishima 2001). The factors that
supposedly deter the performance of the vision-based AFEC and AAR systems are
discussed in (Baldwin et al. 1998; Ekman et al. 1993; Fasel and Luettin 2003; Pantic
and Rothkrantz 2000; Sugimoto et al. 2000).

Such limitation of the vision-based AFE®@d AAR capable systems inspired
researchers to explore the possibilities of using non-visual cues for AFEC and AAR.
Recent works in the areas of computational intelligence, psychology, physiology,

neuropsychology, pattern recognitionachine learning and HCI demonstrate a
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growing interest in the use of non-visual signals for designing AFEC and AAR capable
systems (Abidi et al. 2004; Ang ak 2004; Mase 1991; Picard 2000).

A number of human bio-physiological signal® considered useful in providing
emotion-specific human information. Onemore of human bio-physiological cues
have been employed in some of the non-vision based AFEC (NVAFEC) and AAR
systems. A direct contact with the human badgeeded to acquire most of the human
bio-physiological signals. Hence, the NVAFEGd AAR capable systems that rely on
bio- physiological cues remain intrusive (Prokoski and ledel 1999). The underlying
theories and implementation of nonieis based AFEC and AAR systems were
discussed in (Boulic and Thalmann 1998; 6treiand Friedman 2004; Critchley et al.
2000; Jones et al. 1988; Kakadiaris 200&akadiaris 2005b; Naemura et al. 1993,
Niemic 2002; Picard 2000; Pollina et al. 208&samentier and Abdi 2003; Prokoski
and ledel 1999; Puri et al. 2005; Schwarz et al. 2002; Yoshitomi et al. 2000).

The major operational difference betweba vision-based AFEC systems and the
existing NVAFEC systems is that the fornsgistems can perform in a non-invasive and
non-contact manner whereas the later systems are primarily intrusiviatrikiee
nature of NVAFEC and AAR systems remains a major obstacle in their acceptability
and application. However, recent advances in digital thermal infrared imaging have
made it possible to acquire a very useful human bio-physiological signal, the body
temperature, through non-intrusive and non-contact means (Phillips P@2jn skin
temperature, considered a function of thermo-muscular, hemodynamic and metabolic
factors (Bales 1989), can be measured through the thermal infrared imaging in a non-
contact, non-invasive and illumination invariant manner (Jones and Plassmann 2002;

Otsuka et al 2002).

Earlier researchers were able to use the facial h&emodynamic variations and thermal
features to classify affects and their expressions (Pollina et al. 2006; Puri et al. 2005;
Yoshitomi et al. 2000Some recent studies have demonstrated that pixel grey-levels in
the thermal infrared images provide a reliable measure of skin surface radiance and
allow measuring the skin temperaturstdbution patterns (Bales 1998; Jones and
Plassmann 2002; Otsuka et al. 2002). Tylpicatandard image processing methods are
invoked to enhance the thermialages and extract the pixel grey-level information for

recognising the facial expressions of afifex states (Bales 1998; Jones and Plassmann
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2002; Otsuka et al. 2002; Pollina et al. 20@6ri et al. 2005; Sugimoto et al. 2000;
Yoshitomi et al. 2000). Investigators were atdl@ecognise the stress levels, deceit and
facial expressions of positive and negativiectfve states using the pixel grey-level
information extracted from the thermal images, notably in a dichotomous discrimination
manner (Pavlidis 2004; Pavlidis and Levine 2002; Pollina et al. 2006; Puri et al. 2005).
Some recent studies confirm that infrared measurement of facial skin temperature can
lead to non-invasive, non-contact recognitior@inmon expressions of affective states
(Dimberg 1990a; Dimberg 1990b; Khan et al. 2004; Khan et al. 2005; Khan et al. 2006;
Pavlidis 2004; Pollina et al. 2006; Puri et al. 2005).

Motivated by the success of previous investigations, this work explores the
possibilities of recognising the facial expressiohaffective states with the help of
facial skin temperature measurements. However, the scope of this work is much broader
than that of the previous investigations in that it attempts to recognise the pretended and
involuntarily evoked expressions of mostmoon affective states using the temporal
facial thermal features. In effect, this lk@ims to distinguish between the facial
thermal features for recognising the expressions of most common affective states. This
broader framework of the thesis would regqudevelopment of an effective temporal
facial thermal feature extraction mechanism and design of an effective facial expression

classifier.

1.2 Research premises
This work is based on the scientific theories suggesting that (a) the human body
metabolism changes with a change in emotive state resulting in emotion-specific bio-
physiological variations in the human body} #ochange in affective state would result
in the blood volume flow variations under the facial skin; (c) the facial expression of
emotion also causes some musculo-thermalies under the facial skin; and (d) any
change in blood volume flow and associataasculo-thermal changes cause variations
in the facial skin temperature.

Based on the scientific evidence avaialnl (Bales 1998; Jones and Plassmann
2002; Pavlidis 2004, Pollina et al. 2006; Puri et al. 2005; Sugimoto et al. 2000;
Yoshitomi et al. 2000), this thesis examines if an appropriate analysis of the pixel grey-

levels within the time sequential thermal images would allow extracting the facial
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thermal features to classify the facial expressions of most common affective states.
Unlike previous investigations, this work does not analyse the observed thermal
symmetries or asymmetries in the infranegges. Instead, this thesis proposes that
temperature measurements in the regionstefest within the time-sequential infrared
images can be subtracted to discover the affective state-specific variations in the facial
thermal features. The thesis further proposes that some principal directions in the
affective state-specific facial thermal variations can be discovered. Hence, the thermal
images can be represented as uncorrelaetbrs along the principal components of a
covariance matrix. The thesis takes the position that an appropriate supervised learning
method such as discriminant analysis can be used for direct estimation of the posterior
probabilities. Thus effective discriminanirictions can be generated to allocate an
unknown thermal face to a particular cluster of facial expression.

A cluster-analytic approach supported by sitatistical classification schema was
preferred for classifying the facial thermal features in this work. The employed
statistical classification approach would allow representing the facial thermal features
for developing a set of optimal discriminant functions by regression. The employed
statistical pattern recognition approach would also result in an implicit estimation of the
class densities. Hence, it was possible to confidently estimap@sieriorprobabilities
of class membership and develop a persidependent classifier. Some popular
competing classification approaches such as the syntactical classifiers and neural
networks were also considered for thisrkvbut were found less relevant to the scope
and objectives of this work.

Syntactical classifiers would employ sopramitives for feature representation and
use a set of grammar rules for developing dlassification functions. Thus they impose
a rigid a feature representation schema. Suapresentation might add complexities in
developing a compact and optimised decision space needed for separating a set of
complex and overlapped classes.

Neural networks learn complex and non-linear input-output relationships using
well-connected sequential training procedwared adapt to the training data. Hence
neural networks provide an excellentssidication schema. However, they generally
employ a non-parametric model as theiderlying learning mechanism focuses on
adaptiveerror correction. The scope of this watkggested development of an explicit
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cost function and needed an appropriataupgtric model. Since a model-free neural
network classifier would not establish the class-conditional probabilities for
classification, it would be less appropriate for this thesis.

This work can be considered a logical progression of the few past attempts to
achieve the NVAFEC and AAR functionalitising the facial thermal features.
However, this thesis is distinct in thatiges the facial thermal features, for the first
time, to (a) classify the complex facial egpsions along the direction of valance; (b)
classify common facial expressions of affective states; (c) classify facial expressions on
occluded or covered faces; (d) recognisenkieluntarily evoked facial expressions of

affective states.

1.3 Research focus

A significant number of sophisticated algonits and advanced egputational methods

for implementing the vision-based AFEC systems is available in the image processing
and pattern recognition literature (Belhewn et al. 1997; Black and Yacoob1997; Cohn
et al. 1999; Dubuisson, et al. 2002; Fasel and Luettin 2003; Huang and Huang 1999;
Pantic and Rothkrantz 2000). However, little work has been done on extracting,
selecting, representing and classifying the bio-physiological signals for AFEC and
AAR. Particularly, automated facial expression classification using the facial skin
temperature measurements has not been fully explored yet.

This work focuses on developing effegigomputational approaches and methods
of non-invasive thermal feature extractiselection and representation, and their
classification for developing a rodUsVAFEC and AAR capable systems.

The work began by investigating an effective mechanism for extracting the facial
thermal features pertaining to the expressions of affective states from the thermal
infrared images. An attempt was made to design a realistic model for discovering the
most influential and relevant facial thernf@htures from the thermal infrared images. It
was envisaged that the discovery of the most effective facial thermal features would
help in direct estimation of the probabilitiekfacial expression group membership of a
thermal image through regression. It was further assumed that estimations of the
probabilities of facial expression group mesrdghip would help develop a set of

efficient discriminant functions for personeiependent classification of expressions of
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affective states. The thesis therefore focuses on developing a robust and non-invasive
“emotion detection through facial expressirecognition” mechanism that might allow

for example, a robot, to gain a highegdee of social intelligence and effectively

interact with people.

1.4 Research Contributions

Considered in a broader context, this work contributes in the areas of affective
computing, human-computer interactitimermal infrared imaging application,

automated affect recognition and appliedcpption. The thesis focuses on extracting

the facial thermal features form the thermal infrared images, selection of the most useful
facial thermal features and their effective representation in a decision space to classify
the facial expressions of affective states. The aforementioned scope set for this
investigation allowed makg following contributions.

First, the emotion-specific human kpdwsiological cues and their respective
effectiveness in developirgnon-invasive AFEC capable system were reviewed. The
viability and effectiveness of using infrareteasurements of facial skin temperature
measurements for automated classification of facial expressions were also explored,
analysed and reported.

Second, the scientific foundations of niowasive, thermal infrared sensing of
emotions and affective states were reviewed, analysed and established. Instead of
exploiting the thermal symmetries or asymmetries in the infrared images for binary
classification of positive and negativdeditive states, a novel mechanism was
developed to extract the facial thermal features from a set of time-sequential thermal
infrared images.

Third, an architectural framework was developed to implement the facial skin
temperature measurements based classiéigvork. An optimal pattern representation
scheme was developed and for the first time, the facial thermal classification patterns
were modeled as stochastigandependent and identicallyistributed clusters. An
appropriate supervised learning approaes developed to construct the optimal
discriminant rules. The stochastically inde@ent clusters of facial expressions were
separated as linear spaces within an optimal decision space allowing person-
independent recognition of the facedpressions of affective states.
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Fourth, using a parametric estimation of the posterior probabilities, the facial
expressions of affective states were first classified along the direction of valence. At a
later stage, a complex decision space was constructed to classify the six common facial
expressions of affective states.

Fifth, the possibilities of recognising facepressions using facial thermal features
extracted from the partially covered or occluded faces were also investigated.

Sixth, the differences in the patterns of thermal representation of pretended and
naturally occurring facial expressions were examined. The differences in a classifier’s
ability to recognise pretended and evoked facial expressions using the facial thermal
features were also studied.

Seventh, an agenda was proposed for future work on the use of bio-physiological
cues in designing the AFEC and AAR capable systems.

Finally, new knowledge waglded to the existing body of relevant knowledge. The
results of this investigation were reportegnestigious and fully refereed publications.

Appendix Il provides a complete list of publications that emanated from this thesis.

1.5 Thesis overview and organisation
This document comprises of 10 chapters, 2 appendices and a list of references.

Chapter 2 first discusses the existing and pdtairapplication of automated facial
expression classification (AFEC) systems. The system design approaches used for
developing the AFEC and AAR systems are then analysed. Strengths and limitations of
existing AFEC systems are also examirtecientific information about the human
physiological information are used for propasthe use of facial skin temperature
measurements in AFEC and AAR.

Chapter 3 begins by reporting the recent studies that suggest an association between
the emotion and bio-physiological signals. Prasicmvestigations carried out to explore
emotion-specific musculo-thermal, physiologjiand autonomic activities are reviewed.
Possibilities of measuring emotion-specliicdy information are investigated and
scientific studies proposing an associatietween the core body temperature and the
emotional states are presented. Importarthous and tools used for measuring the skin

temperature are also discussed.
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Chapter 4 begins by reporting the infrared image acquisition procedure. The ethical
considerations for the experiment desigd &he thermal image processing methods are
reported. Approaches employed to extract the transient thermal features from the
participant faces in the thermal images are also explained. The thermal data were
analysed to examine if the acquired datae suitable for invoking the multivariate
analytical methods and pattern recognition algorithms.

Chapter 5 first introduces the generic architecture of an AFEC capable system and
then examines the possibilities of adapting a typical AFEC system architecture for this
investigation. Some pattern recognition a@gwhes used in the previously developed
AFEC capable systems are reviewed. Based on an analysis of the existing AFEC
systems, the architecture and functional design of a facial skin temperature based AFEC
system is proposed. The computatiomathods, algorithmianplementation and
potential advantages of the proposed apghaare also examined and presented.

Chapter 6 reports an attempt to recogniselalassify the neutral and pretended
happy and sad facial expressions using thalf#itermal data. Classification of the two
positive (happiness and surprise) and the two negative (angry and disgusted) facial
expressions is also reported in this chapter. Detailed analyses of the classification
results conclude this chapter.

Chapter 7 is dedicated for reporting the results of classifying the six basic facial
expressions (happy, sad, disgust, surprise, angry and fear) using the facial skin
temperature measurements. Classification results are analysed and the observed results
are discussed.

Chapter 8 begins by discussing the influencefactors like facial hair, glasses,
lighting conditions, pose and occlusion on teal life performance of an AFEC system.
An argument is then made for bio-physiolmajisignal based classification of affective
states when the face is covered or occludée. facial muscle grouping approach used
for representing the covered and occluded faces is presented. Finally, classifier
implementation details and classificatiresults are presented and analysed.

Chapter 9 realises that in a life like situation, the AFEC is performed on the
naturally occurring, spontaneous and evokerkactive expressions. The investigations
reported in this chapter examine the dffegmess of facial thermal features in
classifying the evoked facial expressionstdile of the evoked facial thermal data
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acquisition approach, data analyses and classification are reported. Observed results are
analysed and the classifier performance is compared with that of the previously
developed classifiers.

Chapter 10 provides a summary of this work. Observed results are discussed and
analysed. The discussion and analyses provide rationale for making several inferences
about the viability of developing the bpiysiological signals based AFEC and AAR
capable systems. An agenda for the future work is proposed using the discussion and
analyses of the employedmputational approach.

Appendix | reports the human protection practices observed during the design of
experiments and ¢ acquisition.

Appendix |l presents a list of accepted, published and submitted publications that
emanated from this work.

References section is appended at the endhi$ document. It provides a list of

cited work.
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Chapter 2

AUTOMATED CLASSIFICATION OF FACIAL EXPRESSIONS

Emotions, their recognition and expressmake people to people communication
comprehensive, effective and meaningfienic 2002). In order to make human-
computer interaction similarly effective, researchers have been investigating the
possibilities of developing affective human-computer interaction models (Picard 2000).
Hence, automated facial expression classification (AFEC) and automated affect
recognition (AAR) have emerged as important research areas during the last three
decades (Allanson and Fairclough 2004).

Using the taxonomy proposed in chapter 1, a survey of existing AFEC and
automated affect recognition approachgzreésented in the following paragraphs. The
system design approaches used for developing the AFEC and AAR capable systems are
also discussed. The strengths and limitations of the widely used AFEC approaches are

also examined in this chapter.

2.1 The need for AFEC and AAR capable systems

Facial expressions are considered a msgairce of information about emotions,

intentions and affective states albeit tlaeg often used together with the non-visual

human information such as voice and body movement (Bartneck 2001; Cacioppo et al.
1990; Ekman 1982). A significantly large nuemnlof studies suggest that facial

expressions provide highly useful visual inf@tion about emotions and affective states
(Busso 2004; White 1999). Scientists assert that facial visual information are used
during any people to people communigca (Morishima 2001), help understand

cognition and behaviour (Sloan et al. 2002} are believed to have a significant role

in the future HCI systems (Lisetthd Nasoz 2004; Hosseini and Krechowec 2004).
Researchers assert that achieving the AFEC functionality in machines may be useful for
several professional communities and user groups (Ekman et al. 1993; Gao et al. 2003).

11
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Studies suggest that psychologists primaely on facial expressions for clinical
investigations (Christie and Friedman 200@)ey analyse the facial expressions to
interpret emotions, understand intentiongleate personality aressess the cognitive
conditions (Collet et al. 1997; Critchley et al. 2000; Dimberg 1990b). AFEC capable
systems are considered potentially usefidnhancing psychologists’ ability to judge an
individual's personality and dgermine his/her personal traits such as shyness and
sociability (Dimberg et al. 2000). Some studies also propose use of facial expressions
for gathering information about psycipathological conditions and nature of
behavioural disorders (Sloan et al. 2002).

Security, intelligence and surveillance communities are believed to be potential
beneficiaries of AFEC capable systems for detecting and discovering concealed
emotions and intentions (Pavlidis and Leva@®2). Automated classification of facial
expressions has been proposed for interpreting intentions and emotions in real life
situations. For example, (Garbey et al. 2004) used the blood flow rate estimation on the
face for facial expression recognition asidssification for developing an AFEC
capable system. In other recent investigations, thermal images were analysed for scoring
polygraph tests in lie-detection. For examlaylidis (2000) analysed thermal images
acquired using an infrared camera to detect the blood flow rate variation on the face.
(Pollina et al. 2006) monitored variationsfatial skin temperature to classify people
who committed crimes into deceptive and non-deceptive categories.

Scientists assert that emotions, feelingd momentary experiences cause, trigger
and influence human facial expressions. @guently, facial expression monitoring has
been proposed for pain measurement, patient monitoring, and patho-physiological
diagnosis and condition monitoring (Rides 1998; Hosseini and Krechowec 2004;
Hussein and Granat 2002; Sloan et al. 2002). Studies propose that automated
recognition of emotions would be usefulnredical diagnosis and allow better patient
monitoring (Diakides 1998). Similar studies inspired researchers to propose monitoring
patients’ health conditions using autonth#gfect recognition (Hosseini and Krechowec
2004). Use of AFEC to interpret affective s&for determining patmits’ well being in
remote and on-line health monitoring &8s has also been proposed (Hosseini and
Krechowec 2004). In an earlier study, the AFEC systems were able to provide a realistic
assessment of pain (Herry and Frize 2002).rffists have also used facial expression

12
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analysis for gathering information about patg intentions (Hussein and Granat 2002).
In a closer field, investigators propogéé non-contact measurement of stress and
emotional conditions through thermal infrared imaging of the face (Puri et al. 2005).

AFEC was also proposed to the computing and engineering communities for
developing smart and adaptive man-machine interaction mechanisms and the HCI
interfaces (Ekman et al. 1993; Kearney Mukenzie 1993; Picard et al. 2001; Reeves
and Nass 1996). Some reportedly successful applications include software and
appliance usability tests, adaptive system design and operationally critical systems’
monitoring (Henderson et al. 1995; Ohnishd&ugi 1996; Ward et al. 2003; Zaatri and
Oussalah 2003). (Ward et al. 2003) confirmed necent investigation that tracking the
facial expressions might assistaanducting software usability tests.

A number of recent studies reported the growing importance of human factors in
engineering. These studies cited a significacrease in the number of manufacturers
who perform user-satisfaction tests $atisfaction assessmteand product quality
audits (Paterno 2005; Wilfong 2006; Zaanid Oussalah 2003). AFEC methods were
reportedly capable of revealing the positivel megative user reaction and thus allowed
better assessment of user satisfaction. As a result, the manufacturing sector was also
anticipated to benefit from the AFEC and AAR functionality (Paterno 2005; Wilfong
2006; Zaatri and Oussalah 2003).

Multidisciplinary studies in applied psychology and HCI also make a strong case for
real time automated recognition of positivelaregative expressions of emotions. For
example, computer anxiety, a major @lote in the professional and personal
development of many indiduals, may be detected through measurement of negative
emotions using an AFEC capable syst(Bozionelos 2001; Brosnan 1998; Wilfong
2004). Meyer and Rakotonirainy (2003) reported that recognition of positive and
negative emotions and their expressioogld enable sensors activate life-support
systems in context-aware homes.

Non-invasive recognition of negative and positive facial expressions was also
desirable for man-machine interaction (Picard 1999). The HCI literature reported that
facial expression analysis could help mutiolal human-computer interaction devices in

controlling critical industrial systems. Inuggators were able to use facial expression
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tracking in sophisticated control systefosadapting and responding to emergencies
and critical conditions (Paterno 2005; Zaatri and Oussalah 2003).

A robust AFEC functionality was also cadered important for building socially
aware systems and sociable intelligent robots (Brooks 2002). Researchers argue that
service robots and rehabilitation machinasst acquire a reliable AFEC and AAR
capability (Arkin et al. 2003; Hara and Kobayashi 1997; Sugimoto et al. 2000).
Scientists foresee that systems capable of interpreting emotions from facialierpress
may soon be able to respond to variousaasiuations and an individual's personal
needs (Brooks 2002).

Theses potential uses of AFEC capable systems seem to have inspired scientific
communities to explore new and advanoegthods of developing more robust and
reliable AFEC and AAR capable systems (Brooks 2002). Significant efforts were made
to design and built machines that wouldaguaise facial expression of affective states
(Cohen et al. 2003; Fasel and Luettin 2003)ese so called socially intelligent
machines try to interpret affective states using some form of visual cues gathered from
the facial expression of emotive states. Some of these machines also employ carefully
selected non-visual signals or a combinatbboth visual and non-visual cues (Ang et
al. 2004; Christie and Friedman 2004; Lisetti and Nasoz 2004; Herry and Frize 2002).

The following sections of this chapter examine the existing AFEC approaches
employed for implementing the AFE@Q&AAR capable systems. High-level
architecture and implementation of the AFEC capable systems and their functional
components are discussed in the follegvchapters. The computational methods

employed for designing the AFEC capabystems are discussed in Chapter 5.

2.2 Existing AFEC enabling approaches

During the last three decades of the last century Paul Ekman and his group carried out
important theoretical and empirical wask human facial expression analysis and
representation. They developed a FacididkcCoding System (FACS) to code facial
expressions using muscles’ movements on the face (Ekman and Friesen 1978). They
also discovered evidence for supporting the universality of facial expressions (Ekman
1992). Another coding system, known as the Maximally Discriminative Affect Coding
System (MAX), was developed around the same time (Izard 1979). MAX also received
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considerable attention and was used in alsmiahber of investigations carried out for
facial expression analgs (Ekman et al. 1993).

The emergence of FACS and MAX inspired automated analysis of facial
expressions using still images and frame sequences such as visible-spectrum video clips
(Cohen et al. 2003; Ekman et al. 1993). Redeas were able to track the facial
features and measure the amount of fac@lement to categorise the universal facial
expressions. The work Ekman and FriesEdv ) carried inspired a significant number
of recent works on vision-based facial expression recognition and classification. They
introduced a method of measuring the fagiavements in terms of facial Action Units
(AUs) for classifying basic facial expssions (Ekman and Friesen 1978). Several
investigators employed FACS for AFEC and AAR (Cohen et al. 2003; Ekman et al.
1993; Fasel and Luettin 2003; Mase 1991; Pantic and Rothkrantz 2000).

Vision-based AFEC capable systems havealestrated little practical use in real
life situations (Baldwin et al. 1998). ited success of vision-based AFEC capable
systems appears to be the major drivingédoehind the attempts of developing the
non-vision-based AFEC (NVAFEC) capable systems. Current literature published in the
areas of bioinformatics, pattern recogmtianage processing, human information
processing and HCI suggested fusion of aisund non-visual cues could enhance the
AFEC and AAR functionality (Christiand Friedman 2004; Lisetti and Nasoz 2004;

Pham et al. 2000; Sebastiani et al. 2088%sion of visual and non-visual cues for

AFEC and AAR was proven technically possiated computationally viable in some of

the reported systems. Several recently developed systems used a combination of visual
and non-visual cues (such as auditory and bio-physiological signals) for achieving the
AFEC functionality (Kim et al. 2004; Sugimoto 2000; Yoshitomi 2000).

The theoretical background, empirical désand technical issues involved in
design and implementation of both visibased and non-vision-based AFEC capable
systems are available in (Black avidcoob 1997; Christie and Friedman 2004;

Christine and Nasoz 2004; Ekman etl®93; Essa and Pentland 1997; Fasel and
Luettin 2003; Kim et al. 2004; Pantic aRdthkrantz 2000; Sugimoto 2000; Yoshitomi
2000).
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The literature cited above groups the AF&Gtems on the basis of the types of
signals used and the architectural implicas of the employed signals. The AFEC and
AAR capable systems can be divided into two broad categories:

1. Vision-based AFEC systems
2. Non-vision based AFEC (NVAFEC) systems

This categorisation is used in this thesis to highlight the significant differences in
the measurement and processing of signals and cues used in the AFEC and AAR
capable systems.

Though capabilities and limitations of these two different types of AFEC systems
differ, they share several common features. For example, the two categories of AFEC
systems appear to have similarities in their top-level generic architecture. Both types of
AFEC systems work in multiple stages. Both visual and non-visual cues are first
measured and then transformed into a paleradesired format of usable signals. Once
the signals are transformed into usable data (features) they are represented in a decision
space using a proper representation approach. Finally, selected facial features are used
to classify the faces using a set of discriminant rules. The two approaches of achieving

the AFEC and AAR functionality are further examined in the following paragraphs.

2.3 Vision-based AFEC systems
Most vision-based AFEC systems rely on estimation of facial muscular movements and
associated physiognomic activities takplgce on a human face. The physiognomic
data and the information gathered from the facial muscular activities are interpreted and
processed using one of the several recognéind classification methods (Ekman et al.
1993). Scientists were ablerelate muscular activitiesith the physiognomic signals
observed on a human face (Ekman et al. 1993). It is believed that these signals,
individually and collectively, participate in visually noticeable facial activities. The
visual signals generated through the faciatoes’ movement are generally classified
into four general categories (Ekman et al. 1993):

1. Static facial signals representing the permanent features of the face;

2. Gradual and slowly changing facial signals representing changes in the

appearance of the face over time;
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3. Artificial signals representing exogenous features of the face such as hair,
jewelry and glasses; and

4. Rapid facial signals representing changes in neuromuscular activities leading
to visually detectable changes in facial appearance, such as opening of mouth
or drop of jaws.

The fourth class of signals is considered more related to the facial muscular activity.
It is therefore considered a major source of input to the facial expression analysis
(Ekman et al. 1993). Scientists have depel the facial action measurement systems
such as MAX and FACS using the measurements of the fourth class of signals (Ekman
et al. 1993; Ekman and Friesen 1978).

FACS, generally accepted as a comprehensive coding system, is a widely used
method of measuringhe facial muscular movements. It attempts to measure contraction
of each individual muscle alone and in combination with other muscles. The
measurements are used to observe any changes in the appearance of a face (Black and
Yacoob 1997; Ekman et al. 1993; Essa anatlved 1997; Fasel and Luettin 2003; Gao
et al. 2003).

MAX is a comparatively less popular codiggstem used for measuring the facial
muscle movement. It is regarded as a theory-based system that measures visible changes
on the face (Lisetti and Schiano 2000). Isveantested for its underlying theoretical
basis suggesting that only specific areba face should be involved in certain
emotions and their (Lisetti and Schia2@00). Since it employs the observation and
measurements of visible changes specific to emotions related appearances for
classifying facial expressions, its impientation is considered complex and
cumbersome (Ekman et al. 1993). MAX uses the units formulated in terms of
appearances relevant to (only) eighecfic emotions (Lisetti and Schiano 2000).

In addition to FACS and MAX, two other methods: optical flow analysis and 3D
wireframe model analysis are used in AFEC.

Optical flow analysis is a populadhniques employed for facial expression
analysis (Gao et al. 2003). The method relies on the measurement of apparent motion of
brightness in an image (DeCarlo and Metaxas 2000). Optical flow analysis allows

measuring facial muscle activity on an individual's face. The facial features are
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represented as patches whose motion image sequence is modeled using several
low-level polynomials. The optical flow estimate is used to recover the motion of
patches. These observed motion parameierdelieved to provide a concise

description of facial feature motion @ik and Yacoob 1997). Optical flow analysis
based AFEC systems reportedly achieved up to 80 % classification accuracy in
controlled test environments (Yacoob and/iDd 996). Several ingtigations extended
optical flow analysis approach for achieving the AFEC functionality. For example, the
optical flow model was employed to deepla physical model of human face using a
recursively refined and improved facrabtion estimation (Essa and Pentland 1997). In
another study, estimates of forces resultrog the facial muscular movements were
used for AFEC (Cabanac and Guillemette 200hg system claimed to achieve up to
98% accurate classification results (@ahc and Guillemette 2001). Black and Yacoob
(1997) proposed another approach thaplegred the local parameterised model of
image motion and holistic spatial analysis. This approach was considered
computationally expensive albeit it provided a plausible method of measuring the facial
muscular movements (Gao et al. 2003).

The 3D wireframe face model provides another noteworthy facial expression
analysis approach. It involves developingeamplicit 3D wireframe face model to track
the geometric facial features defined on a face (Tao and Huang 1999). However,
developing a 3D face model for tracking ttacial musculamovements involves a
complex process. Investigators noted that constructing a representative 3D model of
certain anatomical areas of a human face was computationally demanding (Gong et al.
2000; Gur et al. 2002).

Vision-based AFEC is usually performed using one of the aforementioned methods.
Though each of these methods poses a unique set of problems, they help achieve the
AFEC and AAR functionality (Fasel and &ttin 2003; Lisetti an&chiano 2000; Pantic
and Rothkrantz 2000; Tina et al. 2001).

Vision-based AFEC systems attempt to measure the temporal facial muscular
movement and estimate the resulting energy changes in the facial muscles for AFEC
and AAR (Essa and Pentland 1997). Hence, vision-based AFEC systems typically
employ either static images or a sequence of images to detect faces, extract features and
classify expressions (Fasel and Lue#003; Pantic and Rothkrantz 2000). Facial
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muscular activities are regarded momentary and subtle (Ekman et al. 1993; Essa and
Pentland 1997). Measurement of instantaneousraction of muscles and associated
changes in the appearance of the physiognomy involves observing location, intensity
and dynamics of the facial muscular actigfkman et al. 1993). Vision-based AFEC
systems would therefore (typically) work in three high-level stages. These three stages
are referred to as; facial feature extraction, feature selection and representation, and
expression classification (Fasel and ttme2003; Pantic and Rothkrantz 2000).
Architectural implementation, functional gt&iption of components, and performance
evaluation of most popular AFEC systeats available in (Baldwin et al. 1998;

Bartneck 2001; Brooks 2002; Cohen et al. 199@nato et al. 1999; Ekman et al. 1993;
Essa and Pentland 1997; Fasel and Luettin 2003; Huahglaang 1997; Kearney and
McKenzie 1993; Posamentiand Abdi 2003; Yoshitomi 2000).

2.4 Limitations of the vision-based AFEC systems

Affective computing and pattern recognition literature identifies a number of problems
that restrict the real life application of BE systems. (Picard et al. 2001) argued that a
majority of experiments on these AFEG®ms was conducted ¢ontrolled laboratory
environments using pre-segmented data. Hence, it is argued that the real life
performance and relevance of reportedly successful AFEC systems need further
verification. Participants’ control over intatysof emotions during the experiments was
also perceived arbitrary and unrealisticome studies. Critiques argued that the
underlying relationship between the interre®lings and their external expressions was

not considered during the experiments and performance tests (Baldwin et al. 1998). The
true nature of the association betweenghysiological muscle movements and facial
expressions, it is argued, has not been estedaliget. (Picard et al. 2001) point out that

a universally agreed meaning of the ndustate does not exist and the relationship
between the inter and intra emotional states remain unexplained. It is also argued that
the mapping of several emotions to a few expressions can also make the AFEC results
ambiguous and misleading. (Baldwin et al. 1998), questioning the reliability of vision-
based AFEC systems, argue that a person can simultaneously experience more than one
affective state and the AFEC systems canndiseethat fact. It is also argued that anger
and depression or joy and positive surprise can be experienced together albeit a vision-
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based AFEC system cannot notice that rfability to understand any relationship
between various intensities of expressions and emotions, and the lack of ability to
distinguish between the reactive emotiomsfrpretended ones make relevance of the
vision-based AFEC systems questionablald®in et al. 1998; Ekman et al. 1993;
Klein et al. 2002; Picard et al. 2001).

The multi-disciplinary literature on AFEC and AAR highlights many core problems
that hinder the performance and reliability of the vision-based AFEC systems. For
example it is argued that the issues pertaining to the geometric complexity of the facial
features need to be resolved. Methaas means to systematically acquire, understand
and process facial geometric information hgeeto be further desloped, tested and
validated. The ability to transform geometric variations into useful information (with a
high degree of accuracy) has yet to be achieved. Avoiding any misinformation
embedded into the geometric variationaas possible yet. Issues concerning the
deformability of facial features are also imfaot and need to be addressed. The vision-
based AFEC systems lack the understandirtgefntensity and vafee of deformation
as it pertains to an individual face and a broad category of facial expressions. Issues
concerning the validity of data are also important. Avoiding noise, usually caused by
factors such as variation in the intensity of ambient light, is not possible yet. The
intensity of light influences face detection and resulting feature extraction in an AFEC
system. The measurement of any correfabetween intensity of expressions and
underlying emotional estate is also requii@da better and reliable affect recognition
(Baldwin et al. 1998; Ekman et al. 1993;d3zt al. 2003; Klein et al. 2002; Picard
2001).

In order to achieve a robust and reliable AFEC and AAR functionality, researchers
tend to use the human bio-physiological miation in the NVAFEC capable systems.
Attempts were also made to infuse the auditory signals, the bio-physiological cues, and
the visual cues. An overview of the NVAFEC systems is provided in the following

section.

2.5 The NVAFEC systems
Investigators were able to discover asy relationship between the emotion, human

autonomic response and bio-physiological signals. Some researchers were able to

20



AUTOMATED CLASSIFICATION OF FACIAL EXPRESSIONS

measure the basic emotions using eithéoraamic signals or bio-physiological cues
(Christie and Friedman 2004; ChristinedaNasoz 2004). Details of some successful
NVAFEC and AAR capable systems are repite(Christie and Fireman 2004; Collet
et al 1997; Kim et al. 2004; Stemmler 1989; Yoshitomo 2000). These signals, found
helpful in achieving the AFEC and AAR functionality, are measured using some
purpose-specific measurement devices oraen®f the above human information,
only the skin temperature measuremeoisld be measured through non-invasive
means. Measuring other signals might regai direct contact with the human body.

NVAFEC is a new approach but a growing interest in this approach is evident in
recent publications in the domains of congouyierception, HCI, biometric recognition,
and intelligent systems (Christine and Nasoz 2004). Some existing NVAFEC and AAR
systems reportedly employed auditsignals, electrocardiogram readings,
electrodermal measurements, skin temperature variations, brain activity measured using
the electroencephalograms (EEG), fumeal magnetic remance imaging (fMRI)
readings, and blood oxygervid dependent (BOLD) daiE&hristine and Nasoz 2004;
Niemic 2002). Of these signals, researchers find sound signals, brain signals,
electrodermal measurements, and skin teatpes highly feasible for developing the
AFEC and AAR capable systems (Christiand Nasoz 2004; Ohnishi and Sugie 1996;
Picard 2002; Pollina et al. 2006).

The fusion of auditory signals with the visual and/ or bio-physiological cues for
AFEC and AAR was also tried in some recent investigations. Studies propose that
auditory signals work in all lighting conditions but the ambient noise can easily
influence the sound signals. Such influenaed their associated problems warrant use
of special signal processing tools and moels. Humans can exercise some control on
receiving and transmitting communication sigrsdscontrol over auditory signals is
always possible during people-to-people communication. Inability to exercise similar
control in machines may allow deceptiand may deteriorate the understanding and
measurement of the relation between the voice signals and true emotional estates.

Scientific studies suggest that humadosnot posses the ability to completely
control the autonomic response and bio-pHgsgjical reaction to emotions and their

expression. Fusion of bio-physiological signals with either visual cues or auditory
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signals is therefore believed to resultmore robust and reliable AFEC and AAR
functionality.

The theoretical foundations, methods, toals] architectural details of NVAFEC
capable systems are available in the rewsmks by (Ang et al. 2004; Boulic and
Thalmann 1998; Christie and Friedman 2004i€Eime and Nasoz 2004; Critchley et al.
2000; Niemic 2002; Pizzagalli et al. 1998;sBmentier and Abdi 2003; Prokoski and
ledel 1999; Sarto et al. 2005; Schwarz et al. 2002; Sebastian et al. 2003; Socolinsky et
al. 2003; Stern et al. 2001; Szab@kt2000; Yoshitomi et al. 2000).

A growing interest in using skin temperature measurements for developing the
AFEC and AAR capable systems is evident in the literature. In many recent studies,
skin temperature was measured using Thermal Infrared Imaging (TIRI) equipment.
Successful use of TIRI for developing nawvasive AFEC and AAR capable systems is
reported in (Christine and Nasoz 2004, IRks 2000; Pavlidis 2004; Pavlidis and
Levine 2002; Pollina 2006; Puri et al. 2005). Attempts were also made to use the TIRI
with the visible imagery and voice for AFEC (Sugimoto et al. 2000; Yoshitomi et al.
2000). Previous work suggested that skin temperature measurements through the TIRI
would assist in AFEC and AAR (Bolle 2004akadiaris et al. 2005a; Kakadiaris et al.
2005b; Kong et al. 2005; Kunzmann and Gruhn 2005; Kurse et al. 2001; Matsuzaki and
Mizote 1996; McGimpsey et al. 2000; Ogasawara et al. 2001; Pavlidis 2004; Pollina
2006; Socolinsky et al. 2003; Stemmler 1989; Sugimoto 2000; Wolf et al. 2005;
Yoshitomi et al. 2000). TIRI offers following advantages in the context of AFEC and
AAR.

1. Facial skin temperature can be measured from a distance using the
infrared cameras. Since no body contact is required, the target person may
not notice any thermographic activity though this may result in breach of
personal privacy and may raise some ethical issues. Despite these issues,
surveillance and security communities require non-contact and secret
monitoring of suspects and would benefit from TIRI based AFEC and
AAR;

2. Modern infrared equipment alis non-invasive thermographic

measurements. This may be particularly useful for medical and
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psychological diagnostic applicationader conditions when patients are
either unable or unwilling to cooperate;

3. TIRIlis invariant to light and illumination conditions;

4. TIRI equipment is accessible and is becoming less expensive and
affordable;

5. Modern TIRI equipment is light, aesthetically appealing and is easy to
handle;

6. The latest infrared cameras are highly sensitive to any thermal variations
on the human skin. These cameras are capable of sensing@p3¢C
thermal variations;

7. TIRIs provide both visual and physiological information for the AFEC
and AAR; and

8. TIRI is safe and harmless to both the user of infrared equipment and the

target individual.

However, several questions are raised ab@ipotential problems of using TIRI in
AFEC and AAR applications. For example, can the facial skin temperature
measurements be transformed into useful signals for facial expressions recognition? Is
the association between the measured facial skin temperature variations and expression
of affective states strong enough to help in AFEC and AAR? How effective would TIRI
be in sensing any facial thermal varmeaus? Are appropriate computational methods
available for extracting and representing thermal features for AFEC and AAR? Is there
any historical evidence of using the TIRI in AFEC and AAR?

The literature reviewed for this thesis and reported in the next chapter provides an
insight for answering these and similar questions. The literature reports that factors such
as blood volume flow variation, musculo-thermal activities, and body metabolism react
to emotive states and cause a changedridtial skin temperature (Briese 1995; Collet
et al. 1997; Drummond and Lance 1987; Kis#leal. 1998; Naemura et al. 1993; Sinha
and Parson 1996). Effectiveness of TIRI in measuring the facial skin temperature
variations was also reported in the literat@dones and Plassmann 2002; Khan et al.

2006; Otsuka et al. 2002; Pollina et al. 2006).

23



CHAPTER 2

2.6 Conclusion

The vision-based automated facial expr@ssecognition and classification has been
more successfully under perfect and cdigtbconditions. Several methodological and
functional limitations have been identified as detrimental to the real life performance of
the vision-based automated facial exgsien classification systems. Recently, non-
visual cues and the bio-physiologicajisals were employed for developing the
automated facial expression classification and automated affect recognition systems.
One major problem in employing the bio-ploysgical signals for automated facial
expression classification andtamated affect recognition is the invasive nature of the
signal measurement mechanisms. Thus, unconsdacial expression monitoring is not
possible if the bio-physiological sigisaare employed for AFEC and AAR.

Thermal infrared measurement of skin temperature promises a non-intrusive and
technically apt mechanism for achieving the non-invasive AFEC and AAR
functionality. Previous researchers have regbei@couraging results in the use of facial
skin temperature measurements in the AFEC and AAR. The following chapters
examine the recent approaches for employing the facial skin temperature measurements
in AFEC and AAR capable systems.
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Chapter 3

MEASUREMENT OF EMOTION- SPECIFIC AUTONOMIC AND
PHYSIOLOGICAL INFORMATION

This chapter discusses how humans physiologically response to emotions and presents
mechanisms available to detect the humaparase. Previous studies that discovered an
association between the core body temperandethe affective states are presented.
Methods and tools for measuring the emotion-specific human information in the cited
studies are also discussed. Emotion-specifianges in human body and their detection
through skin temperature measurement ase discussed. Uses of thermal infrared
imaging techniques for non-invasive measuaent of skin temperature are also

reviewed. This chapter finally proposes using infrared measurement of transient facial
skin temperature variations to develon-invasive automated facial expression
classification (AFEC) and automated affect recognition (AAR) systems.

3.1 Emotion-specific autonomic and physiological information
Ancient wisdom, preserved in various fiction forms and literature, believed in an
association between emotion and unintardl observable human responses. Modern
science supports this ancient wisdom and confirms the existence of a relationship
between the emotions and autonomic response (Ang et al. 2004; Allanson and
Fairclough 2004; Busso et al. 2004; Christine and Nasoz 2004; Ekman 1982; Ekman et
al. 1983; Ekman et al. 2000). Scientists were able to discover and measure the
involuntary autonomic and physiological signgénerated in response to the affective
states using some purpose-specific equipnsamsors or devices (Bradley et al. 2003;
Dimberg, U. 1990a; Dimberg, U. 1990b; Palomba et al. 2000; Sinha and Parson 1996;
Wright et al. 2004).

(Sinha and Parson 1996) examined tleedhysiological parameters in normal

conditions, and in response to situationsrgex, fear, joy, and sadness. They examined
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participants’ heart rate, skin conductanceslefinger temperature, blood pressure,
electro-oculogram readings, and facial EMG recordings. They concluded that emotion-
specific physiological response patternsdarfand anger were significantly different

than the ones observed in participants uilde neutral conditions (Sinha and Parson
1996).

(Ekman et al. 1983) noted that evoked autonomic activity would help in
distinguishing between the positive and negagffective states. Using the autonomic
activity measurements, they were also able to discern between the other negative
emotions (Ekman et al. 1983; Zajonc 1985).

(Christie and Friedman 2004) also intigated the autonomic nervous system
response to the experimentally manipulagetbtions. Their study confirmed previous
findings that had discovered existence of emotion-specific autonomic nervous system
activity.

(Collet et al.1997) reported several relevantks that investigated the association
between the basic autonomic activities, emotions and expression of emotions. The six
autonomic nervous system parameters: s&imdactance, skin potential, skin resistance,
skin blood flow, skin temperature and indtreous respiratory frequency were found
to be responsive to thmsic emotiong the studies (Collet et al. 1997) cited. A
prominent scientist Paul Ekman is credited for coining the tbass emotionsnd
basic facial expression&kman 1992). He proposes that the six basic facial expressions
and six basic emotions may be used toasgnt all major emotional experiences. Paul
Ekman suggests that the expressions of anger, disgust, fear, happiness, sadness and
surprise can represent all major emotional experiences. Any reference made to the basic
emotions or six basic facial expressions in this thesis is based on Paul Ekman’s theory
of six basic emotions.

A significant number of studies conducted during the last three decades suggest that
visual and bio-physiological information snarovide useful human information for
clinical and medical investigations, biometrics, security and surveillance, criminal
investigation and HCI. More recently, few attempts were made to use the bio-
physiological signals in AFEC and AAR lg@stie and Friedman 2004; Collet et al.

1997; Naemura et al. 1993).
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Advanced methods of measuring the bio-physiological signals including some
imaging techniques were employed in the reggbmvestigations to acquire the human
physiological information (Allanson and ifFdough 2004; Dimberg 1990a; Dimberg et
al. 2000; Dimberg and Petterson 2000; Hesd.€t992; Iwase et al. 2002; Lundqvist
1995; Root and Stephens 2003; Vrana 1993; Varna and Gross 2004; Veldhuizen 2003;
Winkielman and Cacioppo 2001).

3.2 Emotion-specific musculo-physiological activities on the face

A significant number of investigations haveen carried out to explore the emotion-
specific musculo-physiological activities the human face. Notably, the EMG
(electromyogram) measurements were helpful in ascertaining an association between
the emotion and the musculo-physiologiaetivities. The EMG measurements rely on

the electrical potential measured in the skeletal muscles. The EMG technique is usually
employed as a diagnostic test since it records the electrical response of skeletal muscles
while at rest and during any voluntary or stimulated facial action. The EMG is
considered a robust and reliable technijuase et al. 20002; Vrana and Gross 2004,
Wolf et al. 2005). The major facial muscleattlare considered responsive to emotions

are shown in Figure 3.1.

A recent investigation used EMG measurements to investigate how the two groups
of facial muscles: Orbicularis Oculi, @Mentalis and Depressor Anguli Oris would
contribute to the facial expression of p@irolf et al. 2005). The results concurred with
the previous studies and explained the refetinip between the facial expression of pain
and the two muscle groups (Wolf et al. 2005).

(Vrana and Gross 2004) compared the EMG response in Zygomaticus Major and
Corrugator Supercilii EMG response pertaininghte feelings of joy and anger. They
reported a greater Zygomaticus Major EMG response to the feeling of joy as compare to
that of the Corrugator Supercilii. They also discovered the physiological response to
expression of anger was similar to that obedrin neutral condition (Vrana and Gross
2004).

(Veldhuizen et al. 2003) studied influencenoéntal fatigue on facial EMG activity
during a simulated workday. They were able to identify an association between mental
fatigue and the facial EMG actiies (Veldhuizen et al. 2003).
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(Root and Stephens 2003) investigatezldiganisational patterns of the central
control of facial expression muscles in men. They recorded the surface EMG on the
ipsilateral pairs of facial muscles whilerpaipants intentionally smiled, expressed
sadness and horror. They discovered peaks in the cross-correlograms of the EMG
readings on the Orbicularis Oculi and the Zygomaticus Major during smile, on the
Corrugator and the Depressor Anguli Orislelexpressing sadness and on the Frontalis
and the Mentalis during the horror look (Root and Stephens 2003).

Figure 3.1: Frontal view of the facial muscle map showing all major facial muscles
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(lwase et al. 2002) investigated the nestdistrates of the facial expression of
induced experiences of joy. They obselraestrong correlation between the regional
cerebral blood flow in the bilateral supplemary motor area and the left putamen.
They also observed significant correlatiomvien the regional cerebral blood flow in
the primary motor area and the magnitude of the EMG readings in the bilateral
supplementary motor area of the face (Iwase et al. 2002).

(Winkielman and Cacioppo 2001) observed twde of task (and task processing)
could elicit higher EMG activity over theg®n of the Zygomaticus Major. They
inferred existence of a physiological cgation between ease of task and positive
emotional response (Winkielman and Cacioppo 2001).

Some relevant studies suggest that Zyateas Major is the primary muscle of
smile, Orbicularis Oculi is the major muscle of joy and Orbicularis Oris is the smile
modifier muscle (Kall 1990). Studies alagggest that Zygomaticus Major, Orbicularis
Oculi, Mentalis, Platysma and Orbiculacsllectively represent happiness and joy (Kall
1990). Similarly, Corrugator, Masseter, Triularis, Orbicularis Oculi Palpabraeous,
Procerus Nasi, Labii Inferioris, and Platysma are (jointly) considered involved in the
expression of aggression and rage (Kall 1980a similar way, Frotalis, Palpabraeous
Superior and Inferior, Labii Superior®ybicularis Oculi, Masseter, Triangularis,
Corrugator and Buccinator are believed to @awpajor role expressing fear and sadness
(Kall 1990). Similar musculo-physiological representations of the emotional
experiences were reported in (Dimberg 1990; Dimberg et al. 2000; Dimberg and
Petterson 2000; Hess et al. 1992; Lundqvist 1995; Vrana 1993).

3.3 Emotion-specific thermal variations in the human body

It may be deduced from the cited literaturatthumans involuntarily react to emotions.
The emotion specific musculo-physiologieativities can be measured and recdrde
using measurement techniques such as EMG. Since the musculo-physiological activities
are believed to cause generation of some musculo-thermal cues, one may infer that a
change in affective state would also caasgange in the body temperature. Some
evidence of emotion-specific variations in the body temperature, drawn from the

multidisciplinary literature, is being presented in the following paragraphs.
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Human body temperature is considered a useful physiological signal (Fujimasa
1998). Typical core body temperature of a healthy person, under normal conditions,
ranges between 356 in the morning to 37.C in the evening (Jones 1998). Human
arehomothermsnd are capable of maintaining a constant body temperature (Jones
1998). An increase (or decrease) in the body temperature may cause the body
malfunction and even the failure of bodygans (Jones and Plassmann 2002). The
“naturally” normal core body temperature helps in preserving the homeostasis. The
hypothalamus, a temperature-regulating @€etnin the body has a sensing part that
senses any increase in the blood tempegdawel. The hypothalamus, connected to the
pituitary gland balances the generation and loss of heat inside the body and controls the
core body temperature. Physically, the pituitgland resides at the base of the brain
close to the termination of the brain stem. The hypothalamus acts as a part of the human
nervous system and works as a negawesiback circuit in the body (Jones 1998; Jones
and Plassmann 2002). Neurons in the hyalaimus constantly monitor blood
temperature against a natural thermal value and act as receptors. It is believed that the
internal body temperature setting may chafogellness, fever, shock, trauma and
anxiety. The hypothalamus tries to regelbbdy temperature under all circumstances
and when it fails to do so, the body expades some abnormal conditions (Jones and
Plassmann 2002).

In addition to other factors, contraction of muscles and a change in the body
metabolism help in generating the hieside the human body (Jones and Plassmann
2002). Blood circulation helps transport the heat from within the body core (Jones
1998). When an increased blood temperature is sensed, the hypothalamus signals to
release the body heat. Heat from the hubady is released through vasodilatation,
perspiration, exhalationnd reduction of the metaboliate (Jones and Plassmann
2002). A small area in the posterior of hyjpeiamus detects any blood temperature fall
(Jones 1998). When the blood temperature drops, the rate of heat loss is reduced
through the initiation of vasconostriction (Jerend Plassmann 2002). The rate of heat
transfer between the body core and the surroundings is used to determine the skin
surface temperature (Jones and Plassmann 2002).

Core body serves as the source of heat generation. It remains almost at constant
temperature under normal conditions. The blood flow through the vessels continuously
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transports heat to the skin through conduction of heat between the vessels and the skin
(Jones 1998; Jones and Plassmann 2002). Thheahtinuously gains heat and then

losses it through thermal radiation, thermahduction, exhalatiomatural convection,

forced convection and evaporation (Jones and Plassmann 2002). A change in affective
state may also cause a variation ingkm temperature (Asthana and Mandal 1997;
Christine and Nasoz 2004; Pham 2000; Vrana 1993).

(Briese 1995) conducted a study to determine if the stress induced by an academic
examination would raise the core body temgture and if there was a correlation
between the examination-induced stress and the test scores. Their work suggested
existence of emotional hyperthermialid8 students who participated in the
investigation.

(Kistler et al. 1998) reported several studies suggesting that a change in skin blood
flow would serve as an indicator of symipetic reflex response to the emotion stimuli.
Using the thermal infrared measurements, (Kistler et al. 1998) observed that certain
stimuli triggered the sympathetic nervous system and caused a decrease in the
cutaneous microcirculation, particulaaround the fingertips skin surface.

Relevant literature suggests that emadil experiences may influence the body
metabolism and maypasequently, cause variations in the core body temperature. It
may be deduced that the body temperaiaraddition to the other bio-physiological
signals, varies with a change in affective states.

A significant number of studies suggest that animals, birds and humans may
experience a considerable (though often moarghtore body temperature change as
they confront emotional conditions and situations (Drummond and Lance 1987,
Nakayama et al. 2005; Sarlo et al. 2005nfia and Carrive 2005). Some recent studies
provide convincing evidence of a relationshgtween the affective states and the skin
temperature. These studies suggest that emotions influence body metabolism,
physiological conditions and skin temperat@Arkin et al.2003; DeSilva et al. 1997;

Pham et al. 2000; Plutchik 1980). A numberedearchers have also discovered a direct
relationship between the skin temperaturd the levels of stress, pain and anxiety
(Gavhed et al. 2000). Patterns of observedhthaéfeature variations in the body tissues
are believed to result from and represent the heat transfer to and from the body surface
(Jones 1998; Jones and Plassmann 2002)abihermal thermal patterns observed on
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human body surface are believed to exptome patho-physiological conditions

(Fujimasa 1998; Ogasawara et al. 2001; Prkachin and Mercer 1989). Investigators were
able to discover a relationship betweenréspiratory response and variation in the

facial skin temperature (LeBlanc 1976; Stroud 1991). Some researchers were able to
employ the relationship between emotiond &ody skin temperature in HCI, AFEC

and AAR (Christine and Nasoz 2004; Ekni#83; Nakayam et al. 2005; Pollina et al.
2006; Puri et al. 2005; Sarlo et al. 2005; Sugimoto 2000; Yoshitomi 2000).

Several bio-physiological parameters arkeved to have an influence on the skin
temperature distribution (Fujimasa 1998) but the blood flow rate in the cutaneous
tissues remains a major contributor to the variations in the skin thermogram patterns in
a neutral environment (Fujimasa et2000; Jones 1998). The vasomotor tone acts on
the subcutaneous arterioles and contradalcal blood flow. This makes it possible to
observe the abnormalities awnariations of the nervous system using the skin
thermograms (Fujimasa 1998; Fujimasa eR800). Skin thermal characteristics are
also believed to reflect changes in theabelism (Jones 1998), and blood flow rate and
blood oxygen level (Fujimasa 1998; Fujimasalef000). Scientists believe that
variations associated with the facial muscular movements may cause changes in the
blood flow patterns and result in detectatblermal variation on the face (Fujimasa
1998; Fujimasa et al. 2000; Jones 1998).

3.4 Emotion-specific body heat and temperature flow model

The human skin temperature is determined by the amount of heat dissipated from the
body as a result of the blood flow, metabolic function, subcutaneous tissue structure and
the sympathetic nervous activities (Bal&89; Fujimasa et al. 2000). Earlier

investigators were able to estimate the amount of heat dissipated from the core body and
were successful in estimating the emotion-dpet@mperature variations on the facial

skin. A typical body heat and temperature flow model shown in Figure 3.2 describes the
flow of heat from the core body through the human skin. The heat generated inside the
human body @Qgw) is supposed to set the core body temperailusg) In a typical

human body heat and temperature flow model, the body temperaisgpdnd the core

body temperaturel(ye) are assumed to be equal (Bales 1989; Fujimasa et al. 2000;
Jones and Plassmann 2002). Three body heat-flux factors and three heat production
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factors determine the skin temperaturee Three body heat-flux factors are convection
heat-flux Qcn), radiation heat-flux@rp), and evaporation heat-fluQgy). The body
heat production depends on the heat conduction from the core®qafly{ody
metabolism Qrv) and the amount of heat convection due to blood flQu¢) Equation
3-1 exhibits how the thermal equilibriusiachieved on the skin surface under neutral
conditions (Bales 1989; Fujimasa et al. 2000).

(Qen) + (Qro) + (Qev) = (Qrc) + (Qrv) + (Qec) 3-1

When thermal infrared imaging is employed to detect emotion-specific skin
temperature variations, time-sequential thermal images are analysed to determine the
regional skin temperature variations or their associated transient changes in
physiological functions (Fujimasa et al. 2000). Equation 3-1 allows comparing the
amount of heat produced with the amoundiskipated heat ithe time-sequential
images. An imbalance between the two smlfeSquation 3-1 suggests either heat loss
or heat gain in the skin regions under stigation (Fujimasa et al. 2000). Time-trend
analysis of temperature variations within the regions of interest in the employed
thermograms is also frequently used fardal-flow rate change analysis (Bales 1989;
Fujimasa et al. 2000).

3.4.1 Emotion-specific variations in the facial skin temperature

(Zajonc 1985) investigated emotional exgmiens in humans and observed that facial
muscles acted as ligatures on the faciablvessels and regulated the cerebral blood
flow. (Zajonc 1985) concluded that subjectfeelings influenced regulation of blood
flow in the facial blood facials.

Figure. 3.2: The heat flow and skin temperature equilibrium model.
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(Drummond and Lance 1987) discovered evidence of sweating and flushing on the
forehead and around the cheeks in response to the body heating, embarrassment and
strong gustatory stimulation. They conclddbat the gustatory vasodilatation became
exaggerated under strorgiotional conditions.

(Naemura et al.1993) investigated effectaafd noise on the nasal skin temperature.
They report that stress conditions, similar to mother-infant separation, cause the nasal
skin temperature to drop. They inferred that changes in the skin temperature might have
resulted from the bodily reaction associated with the emotional changes. Using the
infrared measurements of 26 participants’ facial skin temperature variations caused by
the loud noise, (Naemura et al. 1993) conclutiatifacial skin temperature variation
provided promising indices for texting the emotional changes.

Studies suggest that a change in difecstate may cause variation in the blood
volume flow under the facial skin. Furthermoitas argued that the facial expression of
emotion results in musculo-thermal activities on the face. The blood volume flow
variations and the musculo-thermal changesalieved to cause variations in the facial
skin temperature (Bales 1989; Dimbdi@P0a; Dimberg 1990b; Otsuka et al. 2002).
Since the facial expressions change rapidly, the effect of ambient temperature on the
facial skin temperature may be ignored. Hence any imbalance observed between the two
sides of Equation 3-1 may be attributed tofdmal skin temperature gain or loss due to
a change in the facial expression of affect.

AssumingCesyin is the heat capacity of the facial skin, the facial skin temperature
change AT.in) observed over a short time periatl)(is expressed as:

Cskin ATskir=(Qc) + (Qrm) + (Qrc)—[(Qcn) + (Qro) + (Qev)]- 3-2

Equation 3-2 allows calculating the skin temperature changes over a short time
period due to a change in the expression of affective states. Two thermograms, each
recorded with a different facial expression may be subtracted to determine the facial
skin temperature change on regions téiiest in the thermograms (Bales 1989;

Fujimasa et al. 2000).

3.5 Skin temperature measurement methods
Ancient physicians used to assess their ptighysical conditions by measuring the
body temperature, just by touching them with bare hands (Ring 1998). Successful
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quantitative measurement of body temperature was made possible in &azgnigy

(Ring 1998). Several advanced and easy ¢éonisthods and tools of recording the body
temperature are available now. Body tempegaisimeasured using mercury in glass,

sterile thermocouples, radiometers amgild crystal (Ring 1998). These temperature
measurement systems are inexpensive, accurate and easy to use. However, they require
direct contact with the body for temperst measurement (Ring 1998). The only

method of non-contact body temperatoreasurement is the detection and

guantification of the natural radiation. & hadiation measurement technique provides

the basis of modern thermal infrared imaging (Ring 1998).

The human body surface, because of its natural composition and structure, is an
efficient radiator. It is therefore easy to observe and measure any infrared emission from
the skin surface using some well known non-gwvea radiation detection methods (Ring
1998). Sophisticated and inexpensive infrazatheras are widely used to investigate
human physiological conditions through analysis of patterns of skin temperature
variations (Fujimasa 1998).

Infrared imaging is usually performethder a controlled and comfortable
environment, usually referred to as thetnal environment (Fujimasa 1998). A neutral
environment allows human body to maintaistate of thermal equilibrium (Fujimasa
1998). Generally, the body temperature in atrat environment varies between 29-31
°C with light clothing and 25-29 °C without clothing (Fujimasa 1998). Heat production
and losses in a neutral environment are betigede almost equal. Only the blood flow
rate of cutaneous tissues may cause some change in the skin surface temperature in a
neutral environment (Fujimasa 1998; Fujimasa et al. 2000).

Since this work proposes use of infrared measurement of skin temperature for
achieving the AFEC functionality, it may be useful to examine the available TIRI
methods and systems and establish their suitability for AFEC and AAR.

3.6 Thermal Infrared Imaging (TIRI)

TIRI is an old, established and reliablethwal that has a long history of military and
non-military applications (Paul and Lupo 200Phe ever first scientific demonstration
of infrared radiation existence by William Hehel dates back to the year 1800 (Phillips
2002). TIRI was previously limited to militagpplications. Govermental control and
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regulations were major obstacles in thgedepment of the non-military TIRI systems
(Ring 1998). The research and development work in the field of TIRI was focused on
military use and was prohibitively expensive (Paul and Lupo 2002; Sayette et al. 2001).
A window of opportunity first opened in 1950s when the principles of infrared imaging
were declassified and civilian scientists gotess to the technical information. Since

then TIRI is gradually emerging as a novel civilian technology (Ring 1998).

Early success of non-military TIRI systems seemed to have inspired scientists to
explore the possibilities of using TIRI in other disciplines. This new breed of TIRI
systems, referred to as “the third generation TIRI systems,” is used in clinical
investigations, remote sensing, medsaknces, engineering maintenance and non-
destructive testing of materials (Paul angb 2002; Sayette et al. 2001). TIRI is now
considered an affordable technology thatasy to acquire, learn and use. What used to
be the ugly and bulky TIRI equipment is nawailable as trendy, aesthetically pleasing
and lightweight equipment (Phillips 2002). Some latest TIRI cameras resemble the
operation and appearance of the consumer quality digital video cameras.

Thermal radiation, the basis of thermal imaging, is different from the other two
modes of heat transfer; conduction and convection. Thermal radiation propagates
through the vacuum and is similar to light in behaviour. Both light and radiation take
place in the electromagnetic spectrum, both are photonic phenomena and both travel at
the same speed. The energy radiated from a surface is proportional to the 4" power of
its absolute temperature. The radiant thermal energy transfer that takes place between
the two surfaces is proportional to the 3" power of the temperature difference between
the two surfaces. These characteristics of thermal radiation help in distinguishing it
from the other two modes of heat transfer (Cantronic Inc. 2002).

Thermal radiation leaving a surface is called the radiant existence or radiosity. It
includes three components, emission from the surgage reflection off the surface
(W), and transmission from the surfa@ge). The total radiosity, as shown in Figure 3.3,
is the sum of these three components (Wilson and Buffa 1990) and is described as,

Total radiosity =we+W + W 33

Thermal radiation measurements from a target surface are used for non-contact
surface temperature measurement and thermography (Wilson and Buffa 1990). Location

of the infrared measurement region in the electromagnetic spectrum is exhibited in
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Figure 3.4. Two physical laws (tlf8&tephan-Boltzmann law and the Wien’s
displacement law) are used to define and measure the emission of infrared energy from
a surface (Wilson and Buffa 1990).

The Stephan-Boltzmann law explains the atidn of heat from a surface as (Wilson
and Buffa 1990):

W =eoT* 34
wherew is the radiant flux emitted per unit area of the surface in joules per second (or
Watts), ¢ is the Emissivity,o is the Stephan-Boltzmanwomstant with a value of

5.67*10°% watts cnf K, andT is the absolute temperature of the target surfag.in

Figure 3.3: Total radiation and radiosity of a surface

Figure 3.4: Infrared measurement and visible spectrum regions in themlagtretic spectrum

37



CHAPTER 3

The Wien’s displacement law describes the peak wavelength at which a surface

radiates the energy as
w=B4 35

where, 4, denotes the wavelength of maximum radiation in meters (um), B is the

Wien’s displacement constant measured in meters-°K (Wien’s displacement constant

has a value of 2897 umK), and T represents the surface temperatur&in

The real surfaces are categorised into three broad categories, blackbodies,
greybodies and non-greybodies. This classificais based on their power to radiate the
heat (Cantronic Inc. 2001). A blackbody is the imaginary and theoretical surface with a
high emissivity ratio of 1.00. It can be measured at all wavelengths as it absorbs all the
radiant energy impinged upon it. A body whose surface properties are independent of
wavelength is said to be a greybody. Thessivity of a greybody is between 0.00 and
1.00 (Cantronic Inc. 2001). Emissivity, usually denoted: kg defined as the ratio of
the radiant energy emitted from a surface to the energy emitted from a blackbody
surface at the same temperature (Cantronic Inc. 2001; Wilson and Buffa 1990). The
non-grey bodies do not have a fixed emissixgilyo as their emissivity changes with the
wavelength (Wilson and Buffa 1990).

Human skin behaves like a blackbody. It hdmgh emissivity value, close to 1.00
and is therefore regarded as the blackbody (Otsuka et al. 2002). The emissivity of
human skin €s) was independently observed in waus studies and was found to be in
the range of 0.95 to 0.99. In case of a greybody, the emission, reflection and
transmission are constant for all the wiangths within a particular waveband. A
greybody therefore neither absorbs nor refledk radiations impinged upon it (Jones et
al. 1988; Otsuka et al. 2002). In the thermal infrared measurement systems, referring to

Equation 3-3, only emission from the surfges) is related to the temperature of a

target surface. The temperature is calculated by eliminating or compensating the other
two componentsv: and w: (Cantronic Inc. 2001).

Infrared radiation from a target surface needs to pass through some transmission
medium to reach the infrared lenses. When a perfect vacuum is available, no energy is
lost. The available medium is not consetka perfect vacuum as radiations pass
through the atmospheric air in usual ciratamces. If radiation takes place under the

normal conditions, effects of the atmosph@ases are negligible for short distances.
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The energy losses may cause some errors in reading if the distance between the target
surface and the camera is very large. However, the two highly used spectral intervals, 3-
5 uMand 8-14uMare relatively less prone to energy losses caused by the distance

between the camera and the surface (Jones et al. 1988). Almost all infrared cameras
operate within these two spectral intervals. The Cantronic infrared 860 camera used for

this research operates within 8-WM spectral interval and is less prone to errors due to

energy losses (Cantronic Inc. 2001).

3.7 Interpreting skin surface temperature from the infrared thermal images
Human skin is described as a complex stmectn the literature (Jones 1998; Otsuka et
al. 2002). It comprises of the outer epidermis (the outer most layer of skin) and an
approximately 1-2 mm thick ye&r of the epithelial cells under the epidermis that
constitutes the inner layer of the skin. Thendis is a thick layer of dense connective
tissues that contains the blood and lympéseés, hair follicles and glands. Figure 3.5
exhibits a cross-sectional view of the skin segment.

Thermal radiation from the epidermis is easy to monitor since it has a high
absorption coefficient, 2.5 to 3.0 mm™'at wavelengths between 2.2 and 5.0 ym (Jones
1998; Otsuka et al. 2002). Since the human skin radiates peak infrared signals around
10 um of the electromagnetic radiation spectrum, the 8-14 um bandwidth is widely used
in infrared imaging of skin (Bales 1998). This makes infrared imaging an effective
technique for converting the electromagnetic radiations emanating from a skin surface
into a visible image. The temperature distribution patterns on the facial skin may
therefore be observed using methods such as pixel-grey level analysis (Fujimasa et al.
2000, Wolff et al. 2005).

Measuring the light in any part of electromagnetic spectrum is referred to as
radiometry but the term generally refers to the measurement of infrared, visible and
ultraviolet radiations (Ashdown 1994; Otsuka et al. 2002). Infrared imaging works on
the principles of radiometry and photometry. Light is radiant energy, denoted as Q and

measured in Joules.
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Figure 3.5: A Cross-sectional view of the human skin

When absorbed by a physical object, it can be converted into another form of energy.
Spectral radiant energy is the amount of radiant energy per unit wavelength interval at a
wavelengthl. It is measured in joules per nanometeQas dQ/dA. The time rate of
flow of radiant energy, known as the radiant fiaX=dQ/dt)is measured in watts and is
integrated over all instances of waveldrsgas (Ashdown 1994; Otsuka et al. 2002)

b0 = [ Perdh - 3-6

Spectral radiant fluxe, is the power emitted or received as radiation per wavelength

interval at a wavelengthand is measured as
G =0, /d. 3-7

Radiance is the infinitesimal amount of radiant flux contained in a ray of light
arriving at or leaving a point on a surface in any given direction. A ray is conceptually
considered an infinitesimally narrow cone having its apex at a point on a surface. This
cone is assumed to haadifferential solid angldw, measured in sterdiance (Ashdown
1994; Otsuka et al. 2002).

Luminous flux, the photometrically weighted radiant flux, is measured in lumens as
1/683 watts of radiant power at a frequency of 54&km@rtz. It is defined as
(Ashdown 1994; Otsuka et al. 2002).

9, = 683 "6,,V(A)dA. 3-8

The power of radiation to produce visual sensation is represented as luminous
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efficacy. A human observer sees radiatbetween the wavelengths of 380-780
nanometers. The maximum luminous efficacyoy radiation is 683 lumens per watt at
555 nanometers (Ashdown 1994; Otsuka et al. 2002).

Human eyes perceive the luminance, an @adprate measure of the brightness of the
surface being viewed from a particular direction, measured in lumens per square meter
per sterdian. Luminance is equivalent tophetometric measure of radiance, related to
the sensation of brightness (Ashdown 1994; Otsuka et al. 2002).

The infrared thermal cameras measure the radiance for image construction. The
principles of radiometry suggest thastdince between a light source and sink does not
influence the radiance in the absence of scattering and absorption. Hence radiance of a
bundle of rays remains constant when a@ves across an optical space. Therefore, the
radiance of a source remains same as that of an image. Infrared cameras use focal plane
array of detector elements to capturegem(Ashdown 1994; Otsuka et al. 2002; Davis
and Lettington 1988).

Modern thermal infrared cameras are typically equipped with the Germanium lens to
focus thermal radiations onto a focal maarray of microbolometer detectors. A
bolometer is a temperatusensitive electrical resistofrhe microbolometer detectors
employ a monolithic pixel structure. The arsaf microbolometer elements in such
infrared cameras are thermally isolated to prevent thermal losses and reduce the
possibilities of adding noise. An external eleoic circuit measures its temperature rise
caused by the absorption of the incident radiant energy (Ashdown 1994; Bales 1998;
Davis and Lettington 1988; Kurse 2001; Otsuka et al. 2002).

When a face is focused on the microbolometer detectors, each pixel undergoes a
temperature increase and generates a sigaiatlépends on the irradiance falling on it.
Since the irradiance is a product of the radiance of the facial skin and the solid angle
subtended by exit pupil at the image, the bgrey-level depends on the radiant flux
per unit area and the detector quantuncigfficy. The detector quantum efficiency
depends on the detector element area, aegtabsorption coefficient and its conversion
efficiency (Kurse 2001).

When the radiant energy is focused on the microbolometer array, its temperature
increases, causes a change in resistance, and allows detecting the radiant power.
AssumingR is the resistance aMl is the dissipated power, the rate of change in
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resistancelR/dWis proportional to the rate of change in electrical resistdR¢gTwith
the temperaturé@ (Ashdown 1994; Bales 1998; Davis and Lettington 1988; Kurse 2001,
Otsuka et al. 2002).
AssumingR* is the intrinsic detector responsivity arids the bias current, the
thermal impedancg* may be described as
R* = I* (dR/dW) = I*(dR/dT)|Z*| 3-9
The bolometric detector resistance nonlinearly varies with the facial skin temperature.
The skin area focused onto a pixel determines the total radiant flux falling onto the
pixel. The grey-level may therefore be interpreted as the average skin temperature.
During the infrared imaging of human face, the radiation arises from the natural
thermal radiation from the face in the scene. Equation 3-4 transforms into equation 3-10
and provides an estimate of the heat radiited a facial skin surface. It is governed
by the Stephen-Boltzmannweand is denoted as
Pe = €s0Ts. 3-10
Where, ¢ is the radiant flux per unit area of facial skigis the skin emissivity, the
proportional amount of energy emission with respect to a perfect absoibdhe
Stephan-Boltzmanoonstant (=5.673x18) andTs is the absolute temperature of facial
skin in°K (Ashdown 1994; Bales 1998; Davis and Lettington 1988; Kurse 2001; Otsuka
et al. 2002). The Wien's displacement lavsd&es the peak wavelength at which the
facial skin radiates. It is estimated using Equation 3-5.
Am=B/Ts. 3-11
WhereAn is the wavelength of maximum radiationum and B is the Wien’s
displacement constant (=28 °K).
From the infrared radiation point of view, facial skin has a very high emissivity (
much higher than the common surroundings such as glass or concrete and closer to a
perfect blackbody. Studies suggest that the skin emissivity does not vary much with the
wavelength and remains almasinstant (Bales 1998pdes and Plassmann 2002; Sloan
et al. 2002).
The pixel grey-levels in an infrared image therefore provide a measure of the
response of the microbolometer array to the radiant power it absorbs, integrated over all
angles. Changes in the grey-level may reflect, theoretically, the changes in facial skin

temperature. For this reason radiance, an exponential function of the skin temperature is
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considered an indicator of the level of blood perfusion in the skin in (Fujimasa et al.
2000; Otsuka et al. 2002; Pavlidis 2004). Theepgrey-level may provide a measure of
skin surface radiance and is also used to estimate the skin surface temperature. In a
typical thermogram analysis, a grey-level of zero corresponds to the minimum
temperature and the maximum grey-level corresponds to the maximum facial skin
temperature. The infrared signals measimgthe arrays of microbolometer detectors
are sent to a frame grabber for image tmsion, image processing and viewing in a
way that the map of 3-D temperature distribution of a face is converted into a 2-D
image (Ashdown 1994; Bales 1998; Davis and Lettington 1988; Kurse 2001; Otsuka et
al. 2002; Wolff et al. 2005). Figure 3.6 exhibatsypical thermal imaging system. It is
important to note that each infrared system manufacturer reportedly uses its own
proprietary standards (Paul and Lupo 206&)jure 3.6 therefore provides a generic
high-level representation of a typical infrared imaging system.

3.8 Infrared imaging application in automated affect recognition

TIRI was used in some recent investigations for classifying the human emotions and
affective states, typically for a binary classification of affective states. Somgédte

were also made to analyse the facial esgions using TIRI, in combination with other
cues (Kim et al. 2004; Nakayam et al. 20R&ylidis 2004; Pavlidis and Levine 2002;
Pollina et al. 2006; Puri et al. 2005; Sugimoto et al. 2000; Yoshitomi et al. 2000).
Rationale and motivation for these investigations arise from the fact that certain real life
situations and emotional conditions caasghange in blood volume flow under the

facial skin (McGimpsey et al. 200Qgasawara et al. 2001; Phillips 2002).

In a recent investigation, thermal facial screening was employed to detect attempted
deceit using a three-stage system (Pavlidis 2004). During the first stage, thermal images
were acquired using an infrared camera. Acquired thermal images were used to
transform the facial thermal data into a blood flow model in the second stage. The
ha&modynamic model was built upon the premise that significant blood flow
redistribution would be taking place vis-a-vis a change in emotional conditions and
anxiety. During the third stage, the h&modynamic model was used to classify people
into deceptive or non-deceptive categories. The system reportedly achieved results

compatible with the polygraph examination by human experts (Pavlidis 2004).
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Figure. 3.6: Schematic representation of a typical thermal imaging system.

(Sugimoto et al. 2000) used TIRI to detect the transitions of emotional states by
synthesising certain facial expressions. Facial thermal changes caused by the muscular
movements were analysed for the purpose. The system compared a neutral expression
face with the test face, and geometrically reformed them to develop a thermal
differential model. Results suggested itswmssible to dete&cial temperature
changes caused by transition of emotioretiest and their assiated physiological
changes. Results further suggested thagatied facial temperateichanges could help
understand transition of emotional states. fdseilting system successfully detected
facial temperature changes caused by pleasr tiredness (Sugimoto et al. 2000).

(Yoshitomi et al. 2000) employed a combination of visual images, thermal features
and audio signals for recognising affectstates. They examined the possibility of
classifying the neutral, happy, sad, angry and surprised faces through the integration of
visual, thermal and audio signals. Sosighals were employed to train a Hidden
Markov Model (HMM). The visual and thermal features were fused together for
training a neural network. The two output values (coming out of the HMM and the
neural network) were fused togetherécagnise the emotive states. This integrated
signal classifier performed with 85% accuracy (Yoshitomi et al. 2000).

(Kim et al. 2004) developed a physiological signal based emotion recognition
system. The system fused the electrodermal activity data, electrocardiogram readings
and the skin temperature measurements together to determine the emotive states. Like

several other emotion recognition systemis, $ystem also recognised emotions in
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three stages. First, the signals were pre-processed, then features were extracted for
pattern analysis and finally, emotions were classified. The support vector machine
(SVM) based classifier developed in thisrk reportedly achieved more than 78 %
classification accuracy (Kim et al. 2004).

(Puri et al. 2005) reported developmenadystem for non-contact measurement of
computer users’ emotional states throd¢Rl. They reported a correlation between the
users’ stress level and an increased blood flow in the frontal vessels of forehead,
probably caused by the dissipation of cectiwe heat. Their system monitored
dissipation of convective heat though infrared imaging and helped in identifying users’
emotional states. They discovered that thermal infrared measurements were highly
correlated with the real time measurement of energy expenditure (Puri et al. 2005).

Studies reported in this section motivate using thermal variation patterns, measured
on the face, for developing an AFEC and A&&pable system. Getting encouraged by
the previous investigations, this thesis attempts to use facial skin temperature
measurements for achieving the AFEC and AAR functionality.

3.9 Conclusion

Like other muscles of a human body, facialskal muscles contract and perform some
work in order to bring changes in the facial features. Studies suggest that while on
work, the facial muscles are physicallyiae and produce heat for maintaining the

body temperature (Netter and Hansen 200&;r &t al. 2003). Using the facial EMG
readings, scientists were able to discover an association between the muscular
movements, muscle energy expenditure and the facial expressions of affective states
(Allanson and Fairclough 2004; Cacioppo et al. 1990).

The increased blood volume flow under an area of facial skin (as the result of stress)
is termed as reactive hyperemia (Ogasaves al. 2001). Reactive hyperemia includes
situations such as mechanical insult to the skin, chemical reactions causing
vasodilatation of blood capillaries and thermal stress (like cold water immersion).
Infrared imaging is used to diagnosegmitor and quantify hyperemia effects and
guantify the dynamic stress on the skin (McGimpsey et al. 2000; Ogasawara et al. 2001,
Phillips 2002).
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Studies suggest that facial musclesasittontract or expand when the facial
expressions change (Pessa et al. 1998%cular contraction and expansion are
believed to cause some fluctuations in the rate and volume of blood flow under the
facial skin. A change in the emotional expace is also believed to influence the blood
flow rate under the facial skin (Jones 1998nes and Plassmann 2002; Otsuka et al.
2002).

An accurate and representative modetstimating the relationship between the
changes in facial expression, fluctuatiorblood flow rates, contraction and / or
expansion of facial muscles and variation in the facial skin temperature is not available
yet. Such a model, if developed, wathhance our understanding of the relationship
between facial expressions and the faitiarmal and physiological characteristics. In
the absence of such a model, many approaches are employed for detecting, extracting
and interpreting facial expressions. Therm&ared imaging is one such approach
employed for recognition and classification of expressions.

Investigators have been able to succdlgsfliscover and analyse the skin thermal
variations associated with the positive and negative emotive states using thermal
infrared imaging. However, earlier investigators had empladyethcial thermal
features only for a binary classification of facial expression of affective states. The work
in this thesis, for the first time, attemptsdassify the most common facial expressions
of affective states using the facial thel features in a non-dichotomous manner.

The scientific information cited in the preceding sections of this chapter encouraged
examining the possibilities of using the ingdrfacial skin temperature measurements
for achieving the AFEC and AAR functionalitipetails of the algorithmic methods
used for interpreting pixel grey-level information to measure facial skin temperature
using the TIRIs are presented in the following chapters. Facial features extraction,
selection, representation and classifmat@pproaches employed in some previous
investigations are also reported in the following chapters.
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INITIAL EXPLORATION OF THE PROPOSED AFEC APPROACH

The last two chapters provided scientific evidence and rationale for using the facial skin
temperature measurements in AFEC and AAR. This chapter presents the findings from
the first exploration of the capture and analyd thermal facial images. It begins by
describing the instruments used and intraalyithe participants who volunteered for

this investigation. Ethical conduct and hamyprotection practices observed during the
image acquisition process are briefly reportethis chapter and are further explained

in Appendix I. It then introduces the basic image processing needed to remove noise
and locate sensing points in thermal infrared images. Pixel grey-level interpretation of
infrared images performed to extract theiél thermal features from within the

acquired thermal images, led to the discovery of the Facial thermal Feature Points
(FTFPs) along the major facial muscles. Thermal Intensity Values (TIVS) recorded at
these FTFP sites were analysed to examine if the data were suitable for invoking the
multivariate analyses and pattern analyses algorithms.

4.1 Thermal infrared image acquisition

A Cantronic model IR860 thermal infrared imaging camera was used for thermal
imaging. The camera was equipped vatbtorage disk, special-purpose image

recording accessories, and the camera-to-computer data transfer peripherals. The IR 860
camera saves up to 62 thermal images on a type Il PCMCIA (Personal Computer
Memory Card International Association) standard card. It digitises the image
information and facilitates communicating the digital information to a personal
computer. The infrared camera and its accessories are shown in Figure 4.1. Two closer
views of the camera are also shown in Figure 4.2. The camera has a full screen
radiometric capability that allows measig the surface temperature from a target

surface. The camera captures an image array ok 220 pixels using an uncooled

device (temperature sensitive electriesistor, called the microbolometer) for
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measuring the incident radiation. It uses a Focal Plane Array (FPA) detector system that
employs several uncooled microbolomdt®A detectors for thermal imaging. The

detector has a high thermal sensitivity in the light spectrum wavelength range of 7.50-
14.00um. The camera is supplied with the proprietary thermal image analysis software,
CMView Plus.

Figure 4.1: The IR 860 infrared camera with its accessories

Figure 4.2: Two closer views of the IR 860 infrared camera
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The IR 860 camera has a thermal sensitivity of (008t 30°'C with an accuracy
of + 2°C under normal temperature and pressure (Cantronic 2002). It allows adjusting
the radiating surface emissivity to ensure an accurate temperature reading from the
target surface for analysing the thermal images. The CMView Plus image analysis
software that works only under Windows 95 and 98 operating systems was used for
image processing in this work.

A DELL Optiplex GX 110 personal computer, fitted with a 500 MHz processor, 128
MB DRAM, and a 40 GB HDD attached to a DELL Multisync high-resolution monitor,
was used in this work. The system wgsipped with a CD burner and a HP Scanjet
3400C flatbed scanner. Another external3® hard disk was attached with the
computer and was used as additional (external) memory during the thermal image

processing.

4.2 Experiment design
In order to examine the viability of using ttransient facial thermal features in AFEC
and AAR, a database of sample visible-spectrum and infrared images was developed.
Experimental work for this investigatiomvolving development of image-database,
was carried out in the School of Architet and Design building at the American
University of Sharjah, United Arab Erates. The infrared images were acquired under
a normal, controlled and comfortable bunigl environment. The internal room
temperature varied between 19-22 °C during the thermal infrared image acquisition. The
building air conditioning system was equippeith a humidity controller and an air
recycling system. Each participant was given at least 20 minutes to acclimatise with the
environment. Thermal images were captureseweral independent sessions in October
2003, November 2003, April 2004, and September 2004. Images were recorded in the
afternoons between 0100 and 0430 PM. A low emissivity background was used to
ensure better separation of the background from the desired regions of the TIRI during
the image processin@ones and Plassmann 2002; Otsuka et al. 2002). Therefore, a
concrete wall backgrounthving low emissivity € = 0.54) was selected during the
image acquisition process.

The IR 860 thermal infrared camera was set to measure the facial skin temperature
range between 0-40 °C. The skin surface emissigjtwés set between 0.97 and 0.99.
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In order to accurately capture the frontal view of a participant, the central vertical line
on the camera viewfinder was aligned to the center of each participant face. A visible
image camera was placed (on the left side) next to the thermal infrared camera. Two
volunteers independently operated the two caseérhe camera operators used a visual
signal to push the image capture button at the same time. The process was rehearsed to
minimise the delay time between the two image shots. Each facial expression image
was captured at least twice. Three referees, this author and the two staff members who
helped in acquiring the images, selected those pictures from the captured pictures that
best described the facial expressiond were most clear. Thermal infrared images
corresponding to the selected visible imagese used for discovering the temporal
thermal features from within the thermal images. After the neutral faces were captured
each participant pretended and expresseg@ihass, sadness, disgust, surprise, anger

and fear.

4.3 Participants and ethical issues
Initially, 16 adult undergraduateustents, 12 boys and 4 girls, with a mean self-reported
age of 20 years 9 months volunteered ferrssearch experiments. The participants
included Africans, Caucasians, Arabs, Iranjdndians and Pakistanis. All participants
allowed use of their visible-spectrum and infrared images in scholarly publications for
dissemination of the research information.

At the beginning of each image acquisition session, participants were briefed
about the objectives of these experimemtsthods, procedures, patial benefits and
the probable outcome of the experimeBthical experiment design practices and
protocols were also explained to the participants at the beginning of each image
acquisition session and were observed duringxiperiments. Particgnts were given a
choice to leave the experiments at any stage. Ethical principles and guidelines for the
protection of human participants of biomediaatl behavioural research provided in the
Belmont report (Belmont Report 1979; DHEW1979) were observed during the
experiments. The code of ethics fanducting Psychological research, developed by
the Australian Psychological Society wasaoateferred and followed during the design
of experiments (The Austlian Psychological Society 2003). As outlined in the
Belmont report, efforts were made to protect the participants from any physical and/or
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emotional harm and damage. The humpeotection practices observed in this

investigation are reported in Appendix I.

4.4 Thermal patterns of affective states

Figure 4.3 shows a participant’s visible spectrum images, thermal infrared images and
their corresponding thermograms. Eachrimgram shows the temperature frequency
distribution on each pixel in a thermal image. It can be seen in Figure 4.3 that a change
in facial expression causes some changes in the thermal characteristics of the face. The
varying temperature frequency distributions in the acquired thermal images are obvious
in the thermograms shown in Figure 4&2&ch thermogram provides a detailed account

of the observed temperature frequency distribution on the participant face. The
instances of temperature readings (thermal values) are expressed as percentages in the
thermograms. Actual temperagureadings are shown along thaxis. The frequency of

observing a particular temperature reading is shown alongdkis.

4.5 Thermal infrared image processing

Pixel grey-levels extracted from a thermal gagrovide a measure of the response of

the detector element (such as the microbel@marray installed on the IR 860 thermal
camera) to the infrared radiant powesaitbed. The radiant power falling on the

detector element is considered a function of the radiance of the surface and the solid
angle subtended by the exit pupil of the thermal camera. The solid angle, by the virtue
of camera design, remains constant tHiessveng the grey-levels to change with any
changes in the radiance of the object surface (Jones and Plassmann 2002; Otsuka et al.
2002).

Infrared cameras operate in a temperature range of -20 to 500 °C. Depending upon
the bit-depth, between 4096-16384 grey levels of pixels represent the extreme
temperature points in a thermogram. A gleyel of zero corresponds to the lowest
temperature and the highest level of greyresponds to the highest temperature in a
TIRI (Jones and Plassmann 2002). The carteengerature range was set between 0-40
°C during the TIRI acquisition hence the grey-level of 0 corresponded to 0 °C and the
highest grey-level corresponded to the higfeshl skin temperature observed in an
acquired facial TIRI.
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Figure 4.3: Visible-spectrum images, infrared images and the corresponrelimp¢iiams of a participant are
shown in each row. Top row: neutral face and faces with the intentional expressions oé$sppin
Middle row: sadness and disgust; Bottom row: fear.
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The built-in radiance measurement and image digitisation mechanisms in a thermal
camera cause addition of undesired noise in the TIRIs. Sources of noise in the TIRIs
include skin surface states and drifting of detection element temperature (caused by the
fluctuations in the heat exchange).

Many convolution methods are reconmded for noise reduction and edge
detection to minimise the influence of noise factors in the TIRIs (Jones and Plassmann
2002; Otsuka et al. 2002; Pavlidis and Levine 2002).

To avoid any undesired noise in the TIRIs and to have most accurate thermal
measurements, the thermal images are usually enhanced before extraction of the pixel
grey level information. Facial infrared images were therefore processed to reduce the
built-in noise using CMView Plus, a thermal analysis software. The “median smoothing
filter” recognised as one of the bestler-statistic filter (Gonzalez and Woods 2002),
was invoked on the thermal images forrihg and noise reduction. The median
smoothing filter, applies a non-liner solutiapproach for recovering the original image
signals and results in excellent noisduetion with a minimal blurring (Gonzalez and
Woods 2002). The filter replaces value of a pbethe median of the grey levels in the
neighborhood of the pixel as

F(p,q) = median{k(s,0)}
(S1ES 4-1

where,f(l’,q) is the median filter that replaces the value of a pixel (s, t) by the median
of the grey levels within a neighborhood. Median smoothing assumes that a small
number of corrupted image signals in aygpixels image would randomly take on a

value of white or black. Depending on the density of the prevailing noise in a grey-level
thermogram, a median filter computes the removable noise over an appropriate pixel-
neighborhood. The tradeoff is that a larger neighborhood leads to a loss of detail,
whereas a small neighborhood results in a loss of signal quality (Acharya and Ajoy
2005). Since the acquired thermal imagese of good quality, a small neighborhood

filter was considered appropriate for enhancing the thermal images.

In a following image enhancement stepe 8obel operator-based edge detection
algorithm was invoked for extracting the con®uwithin the infrared images. The Sobel
operator is basically a neighborhood-bageatlient operator. Two convolution masks
for the Sobel operator are segly applied on the inpuagial image to yield the two

gradient componentss@nd Gin the horizontal and vertical directions. The
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neighborhood kernels define the convolution masks. For the selected 3x3 neighborhood
the gradient operators were calculated as (Acharya and Ajoy 2005; Gonzalez and
Woods 2002),

G[f(i-1, j-1)+2f(-1, j)+ f (-1, j+1)] - [f(i+1, j-1)+2f(i+1, j)+ f (i+1, j+1)], 4-2
and
G=[f(i-1, j-1)+2f(1, j-1)+ f (i+1, j-1)] - [f(i-1, j+1)+2f(, j+1)+ (i +1, j+1)]. 4-3

The gradient magnitude was computed as

GLf (.0]1=1G] +G; 44

4.6 Thermally significant Facial Thermal Feature Points

(Jones and Plassmann 2002) hswggested a method to analyse a series of TIRIs that
were separated by a small amount of timeo(edferred to as timsequential images in
the literature). They compared the temperature measurements at the points of
registration within a series of images to discover the temporal changes in the
temperature distributions (Jones and Plassn2002). Some investigators have used a
different approach that would discover andmine the left-right symmetric regions of
interest in thermal infrared images to extrthe temporal facial features (Jones and
Plassmann 2002; Otsuka et @02; Pavlidis and Levine 2002).

This phase of the work began with identification of the left-right symmetric regions
within each individual's seven thermal images to examine the temporal thermal
differences in the TIRIs. The CMView Plus software allows automated discovery of the
contra-lateral symmetric regions within the TIRIs. The symmetric regions discovered
within a neutral face TIRI and within the TIRIs showing a positive or negative facial
expression were found to beconsistent for different participants and different
expressions. For some participants, the temperature measurements taken within the
symmetric regions inside the neutral face image and the images with pretended facial
expressions were almost the same. For others, the temperature measurements taken
within the symmetric regions within diffent TIRIs had different values. It was
concluded that the facial thermal symmetries observed in the captured images might not
help in distinguishing between the falcexpressions of affective states.

In a following step, the sequential subtraction of a series of TIRIs was attempted.
Some manually selected, nearly equal symmetric facial regions within the TIRIs were
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used as the registration points. CMView Plus thermal analysis software has a built-in
multi-field temperature measurement option that allows selecting multiple regions of
interests (ROI) in a sequence of thermal images and subtract the temperature readings
measured at the selected ROI. The multi-field temperature measurement option was
invoked to subtract the TIVs at ROI in sequential thermograms. This allowed
comparing the TIVs measured at the selected symmetric regions in a series of images.
The TIV data gathered from the selected symmetric regions were then statistically
analysed. The maximum temperature measurements within the symmetric regions had a
high correlation and the variance test statistic was signifipei®t @1) suggesting that

the TIVs measured at symmetric regidrasl very little between-facial expression
variance. It became obvious from the aniglyisat temperature intensity values

measured at the selected symmetric regions in a series of images would not allow
distinguishing between the facial expressions.

Realising the ineffectiveness of the teemgture measurements taken within the
symmetric regions of the TIRIs, temperature measurements taken at different sets of
registration points within the TIRIs were sefed to discover any temporal changes in
the temperature distributions. Thermal variations at manually selected (multiple)
locations on the forehead, around the egaghe cheeks and chin were repeatedly
analysed. The TIVs were repeatedly measured at different sets of equal points to ensure
a minimum correlation among the data and a maximum “between-facial expression”
variance. The multivariate analysis andt@an recognition algorithms work better on
data that is independent and have little (ideally no) within data correlation and
demonstrates a significant variance (Field 2000; Sharma 1996; Rencher 1995). The
statistical analyses suggested that the ddta measured at these manually selected
locations were highly correlated and violated the assumption of similarity between-
facial expression group variance structyp€((05).

Obviously, a better feature extraction approach was required to discover the
underlying variance in the acquired TIRIs. Earlier researchers have proposed several
methods for acquiring thermo-physiologickita reflecting any thermo-muscular
activities under the body skin. Some studiase suggested that a thermal infrared
image with a “neutral face” having all miess in their natural (and neutral) position
would be (thermally) different than the orthat would exhibit the facial expression of
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an affective state (Garbey et al. 2004; PasIRD00; Sugimoto et al. 2000; Yoshitomi et
al. 2000). It was therefore decided to setbetfacial regions along the major facial
muscles as regions of interest for discavgrihe temporal thermal information within
the TIRIs.

In a following step, 16 square segments (each of 36 pixels) along the facial
muscles in each thermogram were selected. The highest TIVs in each of the 16 square

segments were recorded and analysed for the two objectt@s]afion, ., and

min

Variance,,, ). Observing that the two criteria wanet met, the TIRIs were repeatedly

divided into an increasing number of squsegments along the major facial muscles.

The TIRIs were divided into 32 square segments (each of2Z%pixels) and 64 square
segments (each of 2525 pixels). Figure 4.4 exhibits the 16, 32 and 64 square

segments on a facial thermal map. Each set of resulting TIV data were analysed for
correlation and variance. Some sets of the TIVs recorded in the square segments of the
individual TIRIs showed significant differences in the thermal intensity values than the
others when a change in facial expression occurred.

The process was repeated again and again until significant thermal variations were
discovered at 75 physical sites locateda#r the face along the major facial muscles
within the 64 TIRIs. The TIV data gathered from these 75 facial thermal feature points
(FTFPs - the square segments o115 pixels), also allowed achieving the two
and Variance

objectives;Correlation Please note that the multi-field temperature

measurement option in the CMView Plus thermal analysis software was invoked to
compare the TIRIs and to discover the temporal thermal variations at the 75 FTFPs.
Figure 4.5 shows these 75 FTFPs on a neutral human face, exhibits a muscular map
of a human face, and represents the geometric profile of the facial thermal feature
points. The 75 sites shown in Figure 4.5 showed a consistent and significant variation in
the thermal intensity values recorded with a change in facial expression. These
significant Facial Thermal Feature Points and their muscular alignments are listed in
Table 4.1. It is obvious from Table 4.1 that more than 50 % of these FTFPs are located
on the five major facial muscles. The five major facial muscles, Frontalis (16 FTFPs),
Orbicularis Oculi Pars Orbital (12 FTFPkgvator Labii Superioris (6 FTFPs) and
Risorious (6 FTFPs) seem to hold 53.33% of the FTFPs on a human face. Figure 3.1

exhibits the frontal view of a facial thermal map.
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Figure 4.4: Left to right: The highest thermal intensity values were measuted thi¢ shown 16, 32 and 64
square segments on the face.

A side view of the major facial muscles is also shown in Figure 4.6. A closer
examination of Figures 3.1, 4.5 and 4.6 suggests that the FTFPs are located along the
major facial muscles. Previous studies repbitethe last two chapters also suggested
that these same facial muscles would play a major role in the facial expression of
affective states.

The FTFPs were spread all over the face. Of these FTFPs, 10 were found on the
forehead, 21 were located around the eyes, 18 were spread on the cheek, 17 were
located around mouth, and 9 were locabedthe chin. Table 4.2 shows the physical
location of the FTFPs on the face.

The TIV data recorded at the 75 FTFP sites were used to represent each thermal face
as a 75-dimensional thermal feature vector the subsequent investigation and

analyses.

Figure 4.5: Left to right: Geometric profile of FTFPs, FTFPs on a facial muscle map and FTFPs on a human
face
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TABLE 4.1: FACIAL THERMAL FEATURE POINTS AND THEIRMUSCULARALIGNMENT

Facial Muscle

Facial Thermal Feature Point (FTFP)

Frontalis, pars medialis

1,3,6,8,13,15

Frontalis, inner center edges of pars medialis and pars laterglis 2,7
Frontalis, pars lateralis 4,5,9,10,11,12,16, 17
Procerus/ Levator, labii superioris alaguae nasi 21

Depressor, supercilii

14

Orbicularis Oculi, pars orbital

18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31

Orbicularis Oris

45, 51, 64, 65, 66

Levator, labii superioris alaquae nasi 28, 35, 36
Levator, labii superioris 33, 34, 37, 38, 44, 46
Masseter, superficial 40, 41, 49, 50
Levator, anguli oris 43, 47
Zygomaticus major 32, 39,42,48
Risorious/ Platysma 52,53, 54,59, 60, 61
Depressor anguli oris 55, 58
Buccinator 5657
Platysma 62, 63, 67, 68
Depressor Labii Inferioris 69,70,71,72
Mentalis 73,74,75
TABLE 4.2: FHYSICAL LOCATION OF FTFPS ON THE FACE
Part of the face FTFPs
Forehead 1,2,3,4,5,6,7,8,9,10
Around the eyes 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
Cheeks 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 47, 48, 49, 50, 62, 63
Around mouth 44, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66
Chin 67, 68,69, 70,71,72,73,74,75

Figure 4.6: A side view of the human face showing the major facial muscles
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Figure 4.7: Estimated mean values of the facial skin temperatures for meutisik basic facial expressions.
The curve shows significant thermal variance with a change in the facial expressio

Figure 4.7 exhibits the facial expression specific differences in the mean facial skin
temperature estimated using the TIV data measured at the 75 FTFPs on the participant
faces. It is evident in Figure 4.7 that the TIVs at the FTFPs change with a change in
facial expression. These thermal differences at the FTFPs probably resulted form the
changes in the blood volume flow and tilss@ciated thermo-muscular activities on the
participant faces. The observed thermal differences shown in Figure 4.7 were consistent
with the results reported in (Nakanishi and Imai-Matsumura, 2007)

4.7 Initial analyses of TIV data

The TIV data were first tested for thesamption of normal distribution. Standard
statistical tests suggested that the TIV data within the individual thermal images were
normally distributed. Following the successtfest of normal distribution of thermal

data in the individual TIRIs, infrared images belonging to each particular expression
were grouped together and were testedte normal distribution of the TIV data.
Histograms, Q-Q plots, and the analyseska&wness and kurtosis showed that the TIV
data on more than 92% FTFP sites were ntyyndsstributed. Two other standard tests;
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the Kolmogorov-Smirnov test statistigX0.05 and the Shapiro-Wilk test statistic
(p>0.05 were also non-significant and suggested no departure from the assumption of
normal distribution.

(Coakes and Steed 1999) and (Sharma 198fi)ested that if the data violate the
assumption of sphericity, several undeshees might surface during the multivariate
analysis. Hence the homogeneity of covariantss (@ferred to as the sphericity in the
literature) was tested before invoking theltivariate analysis on the data. The
variances in the TIV data were calculated from the estimatesldhwiiial expression
cluster covariances about the cluster mean® mbn-significant Levene’s test statistics
[F(6,10)=2.92p>0.05)] for the thermal data suggadthe homogeneity of variances in

the data. It was therefore considered safe to assume that
VarianCgneutra= VarianCenappyr VarianCgsadgr VarianCesurprise VarianCangyr Variancgeay
Variancefisqust

The interaction between the independeriables (facial expressions) and the
dependent variables (TIV measurements on the entire face) was significant [F (296,
4440) = 7.32p<0.01) suggesting a significant effect of facial expressions on the
measured TIV data. It was therefore safe to assume that the data might be used for
multivariate analyses and pattern clsation (Chatfield Collins1995; Field 2000;
Turner and Thayer 2001).

The test statistics pertaining to theacifl expressions were encouraging and
suggested that the available thermal dateeva@propriate for invoking the multivariate
analysis. Furthermore, the tests suggettatirelevant pattern recognition algorithms
could be invoked on the acquired TIVtd#Everitt and Dunn 1991; Field 2000;
Kinnear and Gray 2000; McLachlan 2004).

4.8 Conclusion

A set of appropriate noise reduction anlge detection methodsgas identified and
invoked to enhance the quality of acqditbermal images and extract the most
effective facial thermal features from the TIRIs. The TIV data were collected from
equal points on the faces within the TIRIs that were acquired at different times when
participants pretended facial expression of affective states. The data used in this
investigation consisted of the TIRIs of knowrigin hence each facial expression was

considered a separate and ipeledent facial expression grodthe thermal images
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could be clustered together for supervitEtning based upon their respective facial
expression groumemberships. Each thermal image was represented as a feature vector

x having p number of TIV measurements obtained from the grey-level pixel analysis

of the TIRIs.

The parametric multivariate analysis oisttype of data requires accounting for the
statistical parameters such as the overall mean and the overall measure of error in the
data (Rencher 1995). Hence, most appropséatistical tests were identified and
invoked for examining the TIV data. The starditest statistics suggested that the TIV
measurements taken on the FTFP sites gb#nticipant faces had a multivariate normal
distribution withX ~N (u;, %)) and could therefore be treated as Gaussian distribution
(Borowski and Borwein 1991; Webb 2002). Thievant standard st statistics also
suggested the presence of a similar group covariance strucfwe,(....,=C,) in the

TIV data acquired from the available measurement space.
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FACIAL THERMAL FEATURE EXTRACTION, SELECTION AND
CLASSIFICATION

Having measured the emotion-specific facial thermal variations and localised the
thermally significant facial thermal feature points (FTFPs) on the face, thks ivots
next logical phase, required classification arthal features into facial expressions of
affective states.

This chapter begins by providing an oview of the most common pattern analysis
and classification approaches used in the earlier Automated Facial Expression
Classification (AFEC) capable systems. The algorithmic approaches proposed for the
facial thermal feature selection, representation and classification in this investigation ar
then presented. Finally, salient featured advantages of the proposed AFEC approach
are reported.

In a typical classification problem, the three essential tasks: feature extraction, feature
selection, and feature classification need tadreied out in a sequential order (Duda et al.
2001; Fukunaga 1990). These three tasks couldrbed®ut using either a statistical or a
neural classifier. However, selecting onelef two classifiers might require trading off
the space complexity for the time complexity (Bishop 1995; Duda et al. 2001). The neural
network-based classifiers are consideredl&snhers and easy to implement. However,
some space complexity issues detract from their performance. The statisticabcsassif
the other hand, are considered slow bacspparsimonious learners (Blue et al. 1994).
Both types of classifier could be set up to learn from the training data.

Neural networks are generally viewedpasallel computing systems comprising of
large number of processors with sever&riconnections. The neural network models
employ organisational principles such as learning, generalization and adaptability in a
network of weighted directed graphs. The ndddkeses graphs are artificial neurons and
the directed edges, with weights, provatenections between the input and output

62



FACIAL THERMAL FEATURE EXTRACTION, SELECTION AND CLASSIFICATION

neurons. Since the neural networks are able to learn complex non-linear input-output
relationships, employ sequential traininggedures and adapt to data, their use is
common in domains such as bioinformatesl biometric [Abbas and Fahmy 1994; Jain
et al 2000].

The main goal of this investigation was to examine the possibility of classifying the
measured temporal facial thermal features into facial expressions. Hence, the work
required developing some diqit parametric cost furtons using an appropriate
parametric model. The neuradtwork approach was found less suitable for this work as it
would typically produce a non-parametric and model-free classifier.

A parametric statistical classifier could implicitly estimtte class densities and take
the estimate athea priori probabilities of class membership into account. It would allow
representing each facial thermal feature pattern in terpsn&fasurements and viewing it
as a point in @-dimensional measurement space. Thus, it would help choose those
features that allow patter vectors belongimglifferent facial expressions to occupy
compact and disjoint regions in the giveature space. Hence, the statistical pattern
analysis approach would allow establishing Hmbility of using temporal facial thermal
features for classifying the facial express of affective states (Fukunaga 1990; Jolliffe
2002; Webb 2002). A statistical classificatiggpeoach was therefore considered more

appropriate for classifying the facial thermal features in this investigation.

5.1 Pattern classification approaches for implementing AFEC systems

The three higher-level tasks that a statistical classification network performs in a
sequential order are usually referred tda&® model acquisition, feature extraction and
classification in the context of a vision-based AFEC capable system (Fasel and Luettin
2003; Pantic and Rothkrantz 2000). Face astiom ensures availability of a face to
extract the required featurdsacial feature extraction inwas either face localisation
(when the static images are used) or face tracking (when a sequence of facial images is
used). The feature extraction process would typically lead to the development of a
representative model of the face. The egpron classification requires definition and
recognition of the expression categories to detegthe AFEC process (Fasel and Luettin
2003; Pantic and Rothkrantz 2000).
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Figure 5.1 shows the schematic diagram tfpical vision-based AFEC system. The
pattern analysis parts of the system are visible in the grey box in Figure 5.1.

Like their vision-based counterparts, ti¢ AFEC systems are built using a standard
classifier network architecture such agiffgial Neural Network (ANN), Hidden Markov
Model (HMM), K-nearest NeighboK(NN), Logistic Regression (LR), Naive Bayes
Classifier, Support Vector Machines (SVM), Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) (Bartlett et al. 1999; Chen and Huang 2003; Cohn et
al. 1999; DeSilva et al. 1997; Essa and Pentland 1997; Tian et al. 2002).

The classifier design usually depends on facsoich as the type of available features,
sample size, the probability density distribution of the features (given certain conditions),
number of features and the availabilityaopriori information (Duda et al. 2001; Everitt
and Dunn 1991; Fukunaga 1990; Manly 1994; Turner and Thayer 2001).

5.1.1 Frame-based AFEC systems

The measurement space in this investayatiomprises of discrete and static time-
sequential thermal infrared images. Thesslfication problem therefore requires

extracting temporal information form a set of static images. The AFEC systems that
extract temporal features from discrete static images are usually referred to as either
image-based or frame-based classifiers in the literature (Baldwin et al. 1998; Cottrell and
Metacalfe 1991; Donato et al. 1999; Fasel and Luettin 2003; Haussecker and Fleet 2000;
Moriyama et al. 2002; Pantic and Rothkm@mB000; Terzopoulos et al. 2004). Standard
statistical pattern recognition schemegptoyed in the image sequence-based AFEC
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systems include LDA, HMM, ANN and ruleabed classification (Sung and Poggio 1996;
Swets and Weng 1998; Tian et al. 2001, Tian et al. 2002).

Several earlier investigators have propasédlree-stage classification process for
classifying features when little temporal information is available. In the first stage, the
feature space dimensions are reduced to discover the major directions of variance in the
data. During the second stage, the bestidigtating principal components are discovered
using an appropriate criterion function such as minimum error rate or maximum class
separation. It is recommended not to selleetclassifier-training features using a
threshold value for maximizing the inertia. During the third and final stage, the best
discriminating features are projected inampact optimal feature space (Chen and Huang
2003; Cottrell and Metcalfe 1991; Dubuisson et al. 2002; Jolliffe 2002; Kim et al. 2003;
Krishnan et al. 1996; Lyons et al. 1999; Webb 2002).

NVAFEC capable systems employ simifarametric approaches for feature
extraction, selection and classification. Ltkeir vision-based counterparts, these systems
also use the temporal information drawn from a sequence of input sources such as infrared
video or a stream of audio signals (Abidi et al. 2004; Ang et al. 2004).

Selection of the employed recognition and classification approaches in these systems
depends on the nature and format of the extracted features.
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5.2 The proposed AFEC approach
The pattern recognition approach being prepd®r this investigtion was developed
after a careful consideration and analysis of the works reported in (Abidi et al. 2004; Ang
et al. 2004, Calder et al. 2001; Dubwisst al. 2002; Everitt and Dunn 1991,
Gottumukkal and Asari 2004; Huang and Y. Huang 1997; Kim et al. 2003; Kirby and
Sirovich 1990; Krishnan et al. 1996; Nakayatral. 2005; Pavlidis 2004; Pavlidis and
Levine 2002; Pollina et al. 2006; Puri et al. 2005; Sharma 1996; Turk and Pentland 1991;
Turner and Thayer 2001; Sugimoto et al. 2000; Yoshitomi et al. 2000). The proposed
computational approach, indicated in Fig&:2, begins by deriving the principal
components to obtain independent linear cowaiions of the measured TIV data. The
principal components are then examinedtf@ir contribution in the between-cluster
separation and only the most discriminatiagttires are kept to construct an optimal
feature space.

The resulting optimal eigenspace is partitioned using the linear discriminant
hyperplanes. The partitioning itself classifresv samples of TIV data with unsuitable
levels of ambiguity, so a metric-basedssléication procedure assigning new input to the
nearest facial expression cluster using thé@afanobis distance developed. Following

paragraphs present algorithmic details of the proposed AFEC approach.

5.3 Principal component analysis

The pattern recognition literature suggests B2A is a computationally inexpensive and
robust feature extraction method (Berkey 1991; Jolliffe 2002). In particular, PCA is highly
effective in situations when a large numbgfeatures and a small number of samples
raise complexity and data-integrity issues. PCA reduces the computational risks by
extracting such key feature indices that result in a linear combination of the original
features and are capable of retaining th&imam information about a particular class
(Jolliffe 2002). Furthermore, multi-collinearity in the data increases the chances of
compounding computational errors during frarameter estimation (Field 2000). PCA,
through the linear transformation, allofesming a smaller number of uncorrelated
variables that provide maximum informatiabout the features in a low-dimensional

space and yield a stable regression model (Jolliffe 2002; Webb 2002).
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Several advantages of invoking PCA on thepgeral and non-temporal measurements are
reported in (Calder et al. 2001; Dubuis&©2; Everitt and Dunn 1991; Gottumukkal and
Asari 2004; Huang and Huang 1997; Kirby and Sirovich 1990; Sharma 1996; Turk and
Pentland 1991; Turner and Thayer 2001; Well220T he algorithmic details of principal

component derivation are presented in the following section.

5.3.1 Principal component derivation
In order to derive the principal compansg, each thermal image was considered a
dimensional random facial thermal vecxoiThere were such thermal feature vectors,

x;,( =1,2,...,n) havingp TIV measurements in the learning set. Each thermal vector could
be represented ag =[x,-1,x,.2...,x,.p]T. The TIV data were standardised to draw a learning
setG, =[x, Ix, I...Ix,] containing ther number ofp-dimensional facial thermal vectors.

The mean facial thermal vectarof the learning set was obtained as:
X=— E Xi 5'1

The mean facial thermal vect®rwas subtracted from each random facial thermal vector
present in the data set to find its differeggdérom x as

X; = X; —X. 5-2

After off-setting in this way, the learning set was presentedo&s matrix
G=[x1%,1...1%,].
The pxp covariance matrix of the learning set was thus
C=GG". 53
The covariance matri€, being symmetric and positive-definite was reducible to the form
C=H,DH| 54
Where the linear transformation mateix is an orthogonal non-zero eigenvector matrix
of C and is represented as columns of eigenvectors
H =[vlv,l..1v,]. 55
The face recognition and facial expressiorssifécation literature often refers to the
eigenvectorw,[i =1,2....,p] as eigenfaces, and we follow this nomenclature The niatrix
in Equation 5-4 is the corresponding diagonal eigenvalue mateix efich that

D = diag[ Ay, Ay, 2., ] 56
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The diagonal elements of the eigenvalue m&rare arranged in a descending order as

[4 =4, >...= 4,]. Arranging eigenvectors in this order shows the most important and

largest directions of the variance in the data set. By removing the lowest eigenvalues from
D, and the corresponding columns from the transformation matrsulable data-
reduction is achieved, reducing the thermal feature vector-space to a span of only M
eigenfacesNI<<p).

The learning se® in this work was pre-classified so it was easy to group together
the facial thermal feature vectors igmumber of facial expression clusters. Thus, the
data seG could be regarded as a disjoint uniorgdacial expression groups such that

G=G,UG,U...UG,. 57

By arrangement,jisamples of a face with expressjonere included in the group.G

Hence the statistical model of the dataGebuld be assumed to take the form

Xy = Wi +Ty + €5 (1< <p, 1=j =g, Ik <n) >-8
In Equation 5-8y,, is thei™ observation for a face expressing emotive §tated is thek"
such face with this expressiqn,is the mean value of all observations at ppimnf
represents the offset of the centre ofjtheluster fromy; andej is a residual that is
minimised while estimating the other model parameters from the data set. This model can
be generalised to represent the expression of an affective state as multiple clusters if some
variations are bimodal or of higher modality. However, the small sample of facial thermal
images used in this work had no multi-mbdgariations and did not require such a

generalisation.

5.4 Discovering the best discriminating features

Even after data-reduction, the principal compuseould not be trusted to yield the true
discrimination functions for separatingetfeature space (Chatfield and Collins 1995;

Duda et al. 2001; Webb 2002). These cited asthogued that the directions discarded by
the PCA might contain the real directiamseded for discriminating between the groups
under investigation. For this reason, the @l®CA in the classification problems like the
AFEC is generally limited to providing theweuncorrelated components for retaining the
original information (Dubuisson 2002). For developing a classification system, the PCA is
often followed by LDA, since the LDA, not the PCA, seeks the directions which explicitly
separate each group from the other groups (Jolliffe 2002; Webb 2002).
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There is growing evidence, however, that LDA, when directly invoked on the high
eigenvalued principal components, doesproduce the most effective discriminant
functions (Jolliffe 2002; McLachlan 2004; Webb 2002). The literature suggests that
instead of invoking LDA on all principal cggonents remaining after data-reduction, a set
of the most influential principal componerstsould be discovered and used for a compact
yet holistic and effective representation of the available feature space. These ‘optimal’
principal components would usually capture repnéstive features of the original data set
most important for discriminating betweer ttlusters (Webb 2002). Accordingly, based
on the relevant information available(@hatfield and Collins 1995; Dubuisson 2002;

Duda et al. 2001; Jolliffe 2002; McLachlan 2004; Webb 2002), an optimal feature
selections schema was developedurther the investigation.

Having derived thé&1 number of linear principal components from the set of
measurements dp available variables, a subsetkobest discriminating principal
components was needed to optimally partitioedecision space. This could be done by
evaluating a pre-defined optimality criterion on Melerived principal components to
select a subset &f best discriminating principal agponents for which the criterion was
maximised (Jolliffe 2002; Webb 2002).

In order to choose a set of best discriminating features, a measure of the features’ able
to distinguish between thefacial expression groups was needed. It is usually
recommended to estimate the overlap between the distributions from which the data are
drawn and select those features for \wiiwe overlap is minimal. This recommended
procedure maximises the between-cluster separation (Webb 2002). Such an optimal
feature selection approach would eliminate the less effective features and would retain
only the best discriminating features in a resulting optimised space. The Fisher criterion
(F), a general class separability measure, is widely used to measure the contribution of a
feature set in the between-group separation (Dubuisson 2002; Jolliffe 2002; Liu and
Motoda 1998; Webb 2002).

5.4.1 Optimal feature selection algorithm
An optimal facial thermal feature selectiog@iithm was developed for this investigation.

The Fisher’s criterion was adapted in this work for selecting the optimal feature set. It is
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the ratio between the determinaatghe between-class scatter maxand the within-
class scatter matri®y and is generally expressed as

F =S|/ ISw 59

The parameters required to computeRhatio are estimated using relatively standard
matrix algebra. The following notatiomgere used to make this algebra clear.

Eigenvalues and eigenvectorséare denoted, with eigenvalues in decreasing order

of size A,.4,...4, and v,,v,...v, respectively. The p-dimensional column vector of the

components of;, along the eigenvector directions is denoigtl, suffix i being omitted
when referring to the whole column rather than a component. The cluster centroid of

clusterl in this basis is

u<j>=L2quk>. 510
8%

The global centroid in this basisis 12 > g, 5-11
n - 1

J

The within-cluster scatter matrix of the training sample is
S = (g — T (g0 — Dy, 512
=33

J

The between-cluster scatter matrix of the training sample is

Sg =2 -w) @ -u). 513
J

Given a set of d distinct eigenfacgs;,,vx,...v, ythe subspace spanned by the set is
denoted X%(K) and the projector §K) that maps onto this space is the symmetric and
idempotent matrix which projects ont(K) is given by

PiK) =D ) i) 514
In the case wher¥y(K) is the first m eigenfaces carrying say 95% of the variance
eigenvalue total, the associated projectafquens the data-reduction of standard PCA.
More generally, the projectetix dscatter matriceBa(K)Sw Pa(K) " andPy(K)Ss Py(K)"
represent the within- and between-cluster scatter in sub¥pdCe The Fisher ratio for
the subspac¥y(K) is the ratio of determinants

Fa(K) = [Pa(K)Ss Pu(K)" |/ [Pa(K)Sw Pe(K)" |, 5-15
which, using the cyclic invariance of determinants and the idempotence of projectors
reduces to the simpler expressidty(K)Ss |/ |Pa(K)Sw |- With a view to optimising such a
ratio, it is helpful to consider the set
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E={X,(K)ld=12,..,m} 516
of all candidate subspaces after data-reduction on which F-ratios can be defined. Then the

optimization goal is expressible as one of finding

ﬁ=maxX€E{M}. 517
I P(X)Sy |
Such an optimum F-ratio occurs on a subspaga®)specified by

. _ |P(X)S, |

Xd(K)_argmaXXEE{—IP(X)SW I}' 518

In this investigation, the search for such an optimally discriminating subspace is
conducted iteratively. A stepwise forwiaselection algorithm is considered
computationally inexpensive and can select efficiently the sought after optimal features
independent of the criterion function useccdn also avoid any overfitting of the data
(Webb 2002). As a preparatory step, the eigenvalues of the eigenfaces were used to order
them in a descending order.

The start-up is with the highest eigenvalued eigenface, and the iterative step is to
include the next eigenface to step up dimenkiby one unit. In the larger space, if the
new F-ratio exceeds that in the former space, the next eigenface is included in a preferred
set, the expanded space is returned and iteration re-commences. If there is no
improvement in F-ratio, the next eigenface is rejected, the space dimension is stepped
down, and the iteration continues with a new next eigenface. The process terminates when
all M eigenfaces have been incorporated or rejected. A flowchart summarizing this
algorithm is given in Fig 5.3 on the next page.

5.5 Facial expression classification

LDA has been successfully used in seveskdted investigations (Sung and Poggio 1996;
Swets and Weng 1998). It works at three Ilever optimally dividing a Gaussian like
feature space into linear regions of interest. At the first level, it identiifeegariables that
best separate each cluster in a training $amnpm the rest of the sample. On the second
level, LDA uses the identified variablesdefine and compute new functions of input
data. It does so by parsimoniously projecting the between-cluster differences.
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Figure 5.3: Optimal features subset selection algorithm

At the third level, LDA uses the discriminant functions to classify any future
observations (Everitt and Dunn 1991; Gecagd Mallery 1995). In essence, LDA seeks a
linear space to maximise the between-group separation. Since thet¢ aEnmal
features in the optimal learning set, the between-cluster separation mgaswoeld
allow quantifying the discrimination power thfe training features (Everitt and Dunn
1991, Jolliffe 2002; McLachlan 2004).
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LDA essentially seeks a transformation matixthat maximises the ratio of
between-cluster scatt& to within-cluster scatteé®y. The ratio between the determinants
of Ss andSy is a scalar measure of the scatte#|f denotes the optimal projection

matrix, the ratiadk(Wp) estimated using Equation 5-19 measures the hyper-ellipsoidal
scattering volume in the decision space and provides an effective discriminant criterion
function.

JxWp) = arg max{IW]SzW, |/\W) S, W, I} 5-19

In a typical forward selection stepwise LDA, this ratio is maximised by resolving the
equation

S;W, =AS, W, 520
where the matri®, contains the eigenvectors §f S,and Ais a diagonal eigenvalue

matrix. For a typicag-class distribution, the column vector\gf (also referred to as the
p

Fishervectoy provides the basis for thg-()-dimensional optimal space.

5.5.1 Classification algorithm

In order to optimally separat a cluster of the training samples from the rest of the
samples, a hyperplanegsnerally needed. Wit facial expression clusters, the resulting
G hyperplanes partition the observation space ifitegions bounded by the hyperplanes,
of which G contain only one cluster centf&, contain 2 centre§Cs contain 3, and so

on. A new thermal image vector may be &ddied’ by assigning it to one region, using
the transformed features associated Withabove. But if the region contains several

centres, the classification becomes ambiguous.

A distance or similarity criterion is usually used to remove the classification
ambiguity. The distance criterion help assign a new vector to the nearest or most similar
cluster centre in the region. In this work the Mahalanobis distance is used and defined in
terms of the pooled within-cluster variance matny, of a training sample. -g is the
vector joining a new image vectarto the centre of clustey, then the Euclidean
lengthii ¢-¢,)W,." I defines theMahalanobis distance from the input image vegito
clusterg. Thus, the nearest cluster to an unknown facial thermal viectoregion
containing several cluster centres is given by

arg miry { lle-e,)w,;" ii}. 5-21
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Mahalanobis distance is a widely used metric for comparing distances from an
unknown feature vector to training classes. @ilaee the k-nearest neighbour metric that
averages distances from the unknown vector to a small number k of near neighbours in a
training cluster, and mean or median distance metrics that take a statistical ‘average’ of all
distances from unknown to the cluster members.

A major advantage of using the Mahalanobis distance as a measure of similarity is that
the squared Mahalanobis distance ensures maximum separation among all pairs of the
groups. At each step of the forward selecti@pwsise LDA, the variables that provide the
maximum increase in the measure of between-group separation are determined using the
squared Mahalanobis distance. These effectiviabias are then used for further analysis
of the between-group separation (Everitt and Dunn 1991; McLachlan 2004).

5.5.2 Cross-validation

Pattern recognition practitioners respond ®rtultiplicity of choices for feature space

and distance metric by empirical testing to estimate the error rates associated with
different discriminant rules ( e.g.Fukunaga 1990; McLachlan 2004). Ideally, this is done
with a validation sample ches independently from the same population as the training
sample. If samples are costly to obtain and process, this may not be feasible, so ways of
re-using training sample data have beens#l/i- so-called cross-validation procedures. If
the experimental errors in raw data featweswell understood, both blurring errors and
impulsive errors, simulated forms of these can be injected into training data to produce a
reliably-simulated validation sample. But the investigation of experimental errors may
involve prohibitively long visits to a physicalandards laboratory. Accordingly, several

‘fast and dirty’ cross-validation methods hayveen devised and employed for testing the
performance of statistical classifiers. Two such methods, the split-sample cross-validation
(CV) and the leave-one-out (LOO) methualve been widely used in multi-class
classification problems. Split-sample CV, edsaly dividing the sampled data into a

training part and a validation part by randorteston, runs into small-sampling errors,

and if the two parts of the split are allowed to share members, may bias the empirical error
rates towards an over-optimistic view ofsddier accuracy. However, (McLachlan 2004)
asserts that the LOO method avoids such ldasentially, the LOO method extracts one

of then feature vectors from the training samplel estimates the discriminant functions
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using the remaining-1 samples. The extracted feature vector has a known cluster label
and is assigned another label on test. (Fukunaga 1990; McLachlan 2004; Webb 2002).
This training-testing cycle in repeatadimes to test each of timeavailable samples.

Since the L-method is believed to yield an asleid estimate of the classifier performance,
it was preferred for estimating the classifier performance in this work.

The L-method begins by assumixgas ap-dimensional random thermal feature
vector. The training data can be denoted3byX; , i=1, ..., n}such that each realised
samplex; has two parts ;g , i=1,...,p} denoting the measurements amd {=1,...,n}
denoting the corresponding class labels. Thesclabels can be coded as corresponding
vectors(z); =1; x,€G, and(z,); =0; x; & G,. The corresponding categorical class label can
then be represented ag:,). Also, the discriminant rule developed using the training data
can be represented agx; G); where,n is the class to whick is assigned to by the
classifier usings. Using this notation, a loss functi@{w(z), n(x;G)) can be estimated as

0 if w(z)=n(x;G)-correct classification)

Q(w(z), n(x:G)) = { 5-22

1 otherwise

Having the training se&B; with a sample thermal imaggeremoved from it, the cross-

validation error can be estimated as

n

0((z;), n(x;.G)). 523
=1

1
ecy = —
n

j
Since it needs iterations to test each of thesamples in a data set, the computational
complexity of L-method becomes its major limitation. Another one that is peculiar to
classifying humans is that classifier performance is different for participants inside and
outside a training sample. A recogniser will gatlg be more accurate with samples from
the same familiar participants as the training sample. Strangers will not express
themselves to exactly the same patterns as familiars. Thus the LOO method does not
entirely escape bias, unless the material left out is all the data supplied by one participant
(that is all his expressions, so that, on test, the classifier sees a stranger rather than a

familiar).

5.6 Classification significance
Loss functions on test, whether ideal testsimlation tests or cross-validation methods,

may be small and insignificant, but if ongl raw data, or data after reduction and
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transformation is not sufficient for the classification task attempted, errors of statistical
significance may be present. Such errors are of concern in the practical use of automatic
classifiers. Of several computational approaches used for determining the statistical and
practical significance levels of the cldgstion results, the approach (Huberty 1984;
Huberty 1994) suggested was found more bletéor this investigation. Huberty’s
computational approach, described belows wsed to determine the statistical and

practical significance levels of the classification results.

5.6.1 Determining the statistical significance of classification results

Based on Cohen’s approach (Cohen 1977) of analysing the classifier performance and
evaluating the practical significance of thessification results, Huberty developed a test
for assessing the statistical significance of the classification results (Huberty 1984;
Huberty 1994). He considers a valida sample of size n, in whiaby is the number of
correct classifications for group ng is the number of observations in graymis the

total number of correct classifications. TAstatistic for classification of a group is
estimated as

* (0 —-e )'\/n_
75 =T %N s , 524
& /jleg(ng -e,)

where the expected mean value of correct classifications over Poissonian trials with this
sample size is, =, /n. For testing the overall classification results using an expected

- . G - - . .
mean value of correct classifications over all groupsi/» ¥ n; , thez-statistic is given by
g=1

PECEN O 525

1[6 n -e)’

These test statisticzz andZ follow a distribution that is asymptotically standard normal,

and provide an estimate of the extent to which the classification rates are significant.

5.6.2 Determining the practical significance of classification results

The literature suggests using the practical power of a classifier is to be rated by
comparison of its correctness rate with the rate likely to be obtained using random
assignment of validation sample memberglasses (Sharma 1996). A well-tried test for

assessing the practical significance of the classification results was used to assess the
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practical significance of the classifier\{blerty 1984; Huberty 1994). The practical
significance index is given by

[=oln=elng . x100 526
whereo is the number of correct classificatiorss the expected correct number of
classification, and is the total number of observations. The ratio is one of the
improvements on random assignment obsetveder test, to the maximum possible
improvement achievable with an error-freessifier. Equations 5-24 to 5-26 were used
throughout this work for determining thetsdéical and practical significance of the

classification results.

5.7 Advantages of the proposed AFEC approach
The proposed algorithmic approach offers the following major advantages:

1. The employed algorithmic approach is based on the multivariate analysis of the
TIV data. The two-way multivariate model developed for analysis of the TIV data
measured at equal points in the time sequential images helps in separating the
multitude of built-in covariance in the acquired TIV data. The multivariate
analytical approach might also help in estimating the effect of facial expressions
on the facial skin temperature and thus help in minimising the overall error rate

(e/ ). Having several linear spaces in the learning set, each spanned by a

geneal
selected set of principal componentsydts possible to represent the affective
states as distinguished and separatedeskisThe restriction of the diagonalised
matrix D to each linear space encoded varying amounts of within-cluster and
between-cluster variances in each image vector of the data set.

2. The number of samples in this investigation was smaller than the number of
measurements in the available measurement space. Consequently, the inverse of
the within-subject matrix could get ckrsto being singular. Hence it was not
viable to apply the LDA directly on the set of available features for the statistical
independence of the features in the training set could not be established (Duda
2001). The proposed method reduces the dimensionality of the available feature
space through the PCA and produces the transformed features that are the linear
combinations of the original features. Thae,information is lost in effect and the

actual discrimination power of the origilfeature set is retained. During the
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3.

feature selection phase, the most discriminant components could be sorted and
projected in an optimal space to form the discriminant functions.

When PCA is invoked and resulting high valued eigenvectors are used to construct
the discriminant pace, retention of the most discriminant features is not guaranteed.
The proposed classification approach helped in retaining the maximum
discrimination information since it selected the optimal components for a

following LDA. As demonstrated in the following chapters, this approach resulted

in a much less classification error ratg,,, as compared to the higher valued

eigenvectors based LDA approaches. The proposed approach guaranteed the
maximum between-class separation and exhaustively examined the probabilities of
allocating the new and unknown TIRIs tparticular facial expression group.

One common purpose of using the PCA - LDA combination is to further reduce
the dimensions of the feature space by replacing the observationxbégttne

first m (high variance) principal components for deriving the discriminant rules. A
common assumption in such uses of the PCA-LDA approach is that the groups
have a similar covariance structure. Hence, it is assumed that the PCA is being
invoked on an estimate of the commoithim-group covariance matrix. This
procedure often proves to be wrong for two reasons. First, the within-group
covariance matrix might be different for each individual expression group. Second,
there is no guarantee that the between-group separation follows the direction of the
high-variance principal components. Tiret few principal components provide
useful information about the variance when the ‘within-group’ and ‘between-
group’ variations have the same directidhghat is not the case, the low-variance
principal components possess most of the information about the between-group
separation (Jolliffe 2002). In such cases, the low-variance principal components
may also be highly correlated with thepgadent variables. A variation of this
problem occurs in situations when dageores the group structure and calculates

an overall covariance matrix based oe taw data (Jolliffe 2002). When the
between-group variation is much larger than the within-group variation, the first
few principal components define the diien in which there were large between-
group differences (Jolliffe 2002). The eropéd approach takes advantage of the

covariance matrix of the mean-centered raw data to derive the principal
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components and then apply a criterion-laselection rule to find the best
discriminating principal components. dieing so, the ratio between the between-
group and the within-group scatter is usediscover the most effective principal
components. Therefore, the problemaxding any information available in the

actual data is minimised.

5.8 Conclusion

After an extensive review of the statistieald neural classification networks, a robust
algorithmic approach was proposed for classgyhe facial thermal features in this
investigation.

The proposed algorithmic approach, in a sequential manner, extracts feature, selects
the optimal feature, and classifies them for achieving the AFEC functiorialiiiyst
discovers the most effective dimensions of variation in the thermal data and reduces the
complexity of the available feature space. A set of optimal principal components is then
discovered from the linear components of the original measurements. The optimal features
are finally used develop the discriminant functions during the LDA. The minimum
distance measure, calculated using the Mahalanobis distance, is then used to classify new
and unknown thermal faces. The discriminant rules are cross-validated using the leave-
one-out cross validation method. Lastly, the statistical and practical significance levels of

the classification results are determined to further validate the discriminant functions.
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Chapter 6

CLASSIFICATION OF PRETENDED POSITIVE AND NEGATIVE
FACIAL EXPRESSIONS

A significant number of emotion theorists asskdt a small set of discrete and basic
emotions may represent all affective states and emotional experiences. Some scientific
studies negate these assertions and desamlo¢ions in terms of continuous dimensions

of valance and intensity (Ekman aRdesen 1971; Picard 2000; Plutchik 1980;

Tomskin 1984). Scientific evidence reported in the literature supports both theories
hence emotions are described and measured in both ways. Several previous works on
description and measurement of emotions are discussed in (Smith 1999).

As evident in (Ekman et al. 1993; Fasel and Luettin 2003; Mase 1991; Pantic and
Rothkrantz 2000), the affective computinglautomated facial expression recognition
literature generally describes the affective states with the help of six basic facial
expressions using the visual cues. Few reiceestigations havettempted to recognise
deceit and stress levels using either faitiakmal features or facial heemodynamic
measurements.

This chapter reports an attempt to classify the facial expressions of affective states
using the facial thermal features along dimaension of valence. First part of this
chapter reports classification of neutralppy and sad facial expressions. The following
sections of this chapter present classification of the two positive (happiness and
surprise) and two negative (angry and disedisfacial expressions. The classifier
performance and the observed classificationlt®swe analysed before concluding this
phase of investigation.
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Figure 6.1: Contribution of the 75 principal components in the measured TIV data variance

6.1 Classification of neutral, happy and sad facial expressions

The computational approach proposedhapter 5 was employed to classify the
neutral and pretended happy and sad fasipiessions. The TIV data obtained from the
thermal images of 16 participants (reported earlier in chapter 4) were used in the
analysis.

Initial data analyses results were reported earlier in chapter 4. In addition to the tests
reported earlier, the TIV data measuredhia TIRIs having pretended neutral, happy
and sad expressions were also testedgbericity. The test of sphericity was
significant F (1.56, 0.892)= 1.743<0.01] suggesting some differences in the variance
structures of the three facial expression groups. However the two more conservative
estimates of sphericity, the Greenho@sgisser correction and the lower-bound
correction were insignificanp$0.05) suggesting the three facial expression groups had

a similar variance structure (Field 2000; Kinnear and Gray 2000).

6.1.1 Classifier construction

Using the algorithmic approach described in chapter 5, the principal components were
derived to reduce the dimensions of the decision space for classifying the neutral and
pretended happy and sad facial expressidhs first 28 principal components (PCs)
derived from the TIV data accounted for thajority (over 99%) of scatter in the

thermal data. Each of the first 28 PCs accedrior at least one percent of the total
variance. However, only first seven PCs, shown in the scree plot in Figure 6.1,
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accounted for over 90% of the scattethia thermal data. These PCs helped in
understanding the dimensions of variance irthieemal data pertaining to various facial
expressions.

Figure 6.2 shows the positive and negative values of the variable weiglits the
first seven PCs. The white dots in Figure 6.2 represent the poswiakies and black
dots represent the negatiweralues of the variables for each PC. A closer examination
of the first seven PCs reveals the origins and dimensions of the differences between the
thermal data. Some useful relationships between the thermo-muscular activities and the
facial thermal characteristics might also be drawn by examining the first seven PCs
since they accounted for the majority of variance in the data.

The first PC accounted for over 75% variance in the data. As evident in Figure 6.2,
it provided an overall negative (thermal) index of the face.

The second PC provided an account offfegal thermal characteristics by adding
the variable weights on Orbicularis Oculir®®rbital and Levator Labii Superioris
Alaguae Nasi and subtracting the variableglvess measured on all other facial muscles
from the added values of the variable weights.

The third PC added the variable weights on Orbicularis Oculi Pars Orbital and
Masseter Superficial, Levator Labii Superiohlequae Nasi and subtracted the variable
weights on other major muscles. Henceggms to be examining the differences
between the thermal characteristics of these muscles.

The fourth PC appears to be comparing the differences between the variable weights
taken from the muscles on the right and left sides of the face. It seems to be ignoring the
variable weights measured on Depredsabii Inferioris and Mentalis though.

The fifth PC seems to be repeating the same measurements. However, it adds the
variable weights on Depressor Labii Infersoand Mentalis to the discovered thermal
difference between the two sides of the face.

The sixth PC adds the variable weightsFoantalis Pars Medialis, Frontalis Pars
Lateralis, Levator Labii Superioris Alaquae Nasi, Depressor Superior Silii, Risorious,
and Platysma and subtracted the sum from the sum of the variable weights measured at
various FTFPs sites.

The seventh PC adds the variable weigit Frontalis Pars Lateralis, Depressor

Superior Silii, Levator Anguli Oris, Zygoaticus Major, Depressor Anguli Oris,

82



CLASSIFICATION OF PRETENDED POSITIVE AND NEGATIVE FACIAL EXPRESSIONS

Buccinator and Depressor Labii Inferioand subtracts the added values from the

added values of TIVs on other facial musclHsis might help in finding the difference
between the TIVs measured at the major facial muscles to create a thermal profile of the
face.

Furthermore, PCs 2, 3, and 4 appedrdaalculating the thermal gradient between
the FTFP sites on (1) Frontalis, (2) Levatabii Superioris, (3) Depressor Anguli Oris,

(4) Buccinator and (5) Zygomaticus Major. The other PCs apparently compared the
thermal gradient on various facial muscles. It may be noticed that the PC-1 tries to
extract a first-order thermal feature set that was based on the direct thermal
measurements of the face. All other PCsaxtta second-order feature set that is based
on the relative thermal features calculated from the first-order thermal features.

Figure 6.2 suggests that the first three PCs, which account for about 82 % variation
in the data, constantly keep a (negative) variable weight for the lower face FTFPs. It
may also be noted that the valance of the variable weights on the lower part of the face
in the other PCs did not change. On the i@yt the valance of the variable weights on
the FTFPs located on the upper parts of the face exhibited noticeable variations in
almost all major PCs. The visible imageryéd facial expression classification results
suggest that visual features gathered ftbenupper part of a face contribute more in
facial expression of affects than the features around the lower part of the face (Ekman
1982). This pattern appears tothge in Figure 6.2 as well.

Figure 6.3 exhibits the possible separation between the neutral faces and the faces
with intentional facial expression of happss and sadness in a 2-principal component
eigenspace. Though the first principal compur{along the abscissa) contributes more
to the variance, the separation shown in Figure 6.3 seems to be influenced by the second
principal component (along the ordinate).

The eigenvalues of the 75 principal quonents derived from the TIV data on 16
participant faces is given in Table 6.1. Only 47 of 75 principal components in Table 6.1
contribute to the variance in the data. Howetlgere is no evidence to suggest that only
these 47 principal components may contributdéoseparation in the facial expression
groups (Duda et al. 2001; Jolliffe 2002). It was therefore considered necessary to project
the principal components in an optimal subspace for discovering the most

discriminating principal components.
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Figure 6.2: TIV variations-based representation of the first seven pricoipglonents. The white dots represent +ve
weights of the variables. The black dots represent the —ve weights of the variables

The resulting optimal principal components were expected to produce the most
effective discriminant functions for classifying the unknown faces.

During the step 2 of the classifier comgtion, the principal components derived
earlier, were analysed to select a set of optimal features using the stepwise elimination
method. The optimal feature selection alganttescribed in chapter 5 was used to
select the best discriminating featu(pencipal components) for deriving the
discriminating functions. Figure 6.4 shows the recursion involved in the stepwise
selection of the optimal principal comporerit also shows the corresponding increase
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in the value of Fisher ratié = [Ss|/ [Sa|. The line joining recursions 1 and 20 in Figure

6.4 explains the overall (recursive) improvement in the F ratio.

Figure 6.3: Separation between the neutral, happy and sad facial expression in a 2-pomgpaent
eigenspace

Figure 6.4: Recursive stepwise selection of the optimal components andréspoading increase in tire

ratio (=S/Sw)
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The 2d" recursion and the corresponding optimal components in Figure 6.4 resulted in
the highest value of the Fisher statistg. (The principal components that helped in
increasing the F ratio were not the ones that had the largest eigenvalues. Instead, the
stepwise feature selection algorithm rectety discovered a new set comprising of
both high and low eigenvalued principal components.

Since the probability density functioaad the group memberships were knavn
priori for each group, each group could be given an emgpabri during the analyses.
Table 6.2 presents the canonical discrimiffanctions, their releant statistics and
contribution of theawo discriminant functions in the between-group separation of the
three facial expression$he canonical discriminant functions reported in Table 6.2 are
orthogonal to each other and attempt to maximise the differences between the

dependent variables.

TABLE 6.1: THE 75 PRINCIPAL COMPONENTS AND THEIR RESPECTIVE EIGENNVALUES

PC Eigenvalue | Proportion | Cumulative PC Eigenvalue | Proportion | Cumulative

1 437.13 0.763 0.763 39 0.24 0.00 0.998
2 32.37 0.057 0.82 40 0.23 0.00 0.999
3 16.62 0.029 0.849 41 0.19 0.00 0.999
4 13.87 0.024 0.873 42 0.18 0.00 0.999
5 10.12 0.018 0.891 43 0.16 0.00 0.999
6 7.65 0.013 0.904 44 0.12 0.00 1.00
7 6.58 0.011 0.915 45 0.09 0.00 1.00
8 4.63 0.008 0.923 46 0.06 0.00 1.00
9 3.99 0.007 0.93 47 0.05 0.00 1.00
10 3.81 0.007 0.937 48 0.00 0.00 1.00
11 3.55 0.006 0.943 49 0.00 0.00 1.00
12 3.21 0.006 0.949 50 0.00 0.00 1.00
13 2.50 0.004 0.953 51 0.00 0.00 1.00
14 243 0.004 0.957 52 0.00 0.00 1.00
15 2.10 0.004 0.961 53 0.00 0.00 1.00
16 1.86 0.003 0.964 54 0.00 0.00 1.00
17 1.80 0.003 0.968 55 0.00 0.00 1.00
18 1.56 0.003 0.97 56 0.00 0.00 1.00
19 1.52 0.003 0.973 57 0.00 0.00 1.00
20 1.46 0.003 0.975 58 0.00 0.00 1.00
21 1.38 0.002 0.978 59 0.00 0.00 1.00
22 1.24 0.002 0.98 60 0.00 0.00 1.00
23 1.17 0.002 0.982 61 0.00 0.00 1.00
24 1.02 0.002 0.984 62 0.00 0.00 1.00
25 1.00 0.002 0.986 63 0.00 0.00 1.00
26 0.90 0.002 0.987 64 0.00 0.00 1.00
27 0.84 0.001 0.989 65 0.00 0.00 1.00
28 0.77 0.001 0.99 66 0.00 0.00 1.00
29 0.65 0.001 0.991 67 0.00 0.00 1.00
30 0.61 0.001 0.992 68 0.00 0.00 1.00
31 0.52 0.001 0.993 69 0.00 0.00 1.00
32 0.50 0.001 0.994 70 0.00 0.00 1.00
33 0.44 0.001 0.995 71 0.00 0.00 1.00
34 0.43 0.001 0.995 72 0.00 0.00 1.00
35 0.37 0.001 0.996 73 0.00 0.00 1.00
36 0.36 0.001 0.997 74 0.00 0.00 1.00
37 0.31 0.001 0.997 75 0.00 0.00 1.00
38 0.25 0.00 0.998
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TABLE 6.2: SIMMARY OF CANONICAL DISCRIMINANT FUNCTIONS

Function | Eigenvalue | Percentage of Variance Cumulative percentage Canonical Correlation
1 9.024 77.4 774 0.949
2 2.637 22.6 100 0.852

TABLE 6.3: Q.ASSIFICATION SUCCESS RESULTS WITH THE HIGH EIGENVALUED PRINCIPAL COMPONENTS

Classification Group Predicted Group Membership Total
Neutral Happy Sad
Original Neutral 10 4 2 16
case$ Count Happy 7 4 5 16
Sad 4 3 9 16
Neutral 62.5 25.0 12.5 100.0
Percentage Happy 43.8 25.0 31.3 100.0
Sad 25.0 18.8 56.3 100.0
Cross- Neutral 10 4 2 16
Validated Count Happy 7 4 5 16
case$ Sad 4 4 8 16
Neutral 62.5 25.0 12.5 100.0
Percentage Happy 43.8 25.0 31.3 100.0
Sad 25.0 25.0 50.0 100.0
a47.9 % of original group cases correctly classified
b 45.8 % of cross-validated group cases correctly classified

Table 6.3 shows the confusion matrix observed when the high eigenvalued principal
components were used to train the classifier and classify the facial expressions.

Table 6.4 shows the confusion matolxserved when the optimal principal
components were used for discriminatingween the three facial expressions. Figure
6.5 provides a visual comparison of the two classifiers’ performance. The high

eigenvalued components based clasgificeresulted in a higher error rate/(, , =
100-45.8=54.2%). The classifier performance significantly improvgga( = 100-

83.8=16.2%) when the optimal principal components were used for training the
classifier.

Figure 6.6 shows the decision boundaries resulting from the two classifiers. On the
left side of Figure 6.6 is the decisiboundary resulted from the high eigenvalued
principal components. The decision boundary on the right side of Figure 6.6 resulted
when the optimal components were usettam the classifier. The two decision
boundaries are significantly different and the one resulting from the optimal
components appears to beather and better separated.
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TABLE 6.4: Q.ASSIFICATION SUCCESS RESULTS WITH THE OPTIMAL COMPONENTS

Classification Group Predicted Group Membership Total
Neutral Happy Sad

Original Neutral 16 0 0 16
cases Count Happy 0 16 0 16
Sad 0 0 16 16

Neutral 100 0 0 100.0

Percentage Happy 0 100 0 100.0

Sad 0 0 100 100.0
Cross- Neutral 13 1 2 16
Validated Count Happy 0 14 2 16
case$ Sad 1 2 13 16

Neutral 81.3 6.3 12.5 100.0

Percentage Happy 0 87.5 12.5 100.0

Sad 6.3 125 81.3 100.0

a - s
100.0 % of original group cases correctly classified

83.8 % of cross-validated group cases correctly classified

Figure 6.5: Comparison of the two classifiers’ performance

Figure 6.6: (a) The decision boundary with the high-eigenvalued Principal Components and (b) The decision

boundary with the Optimal Principal Components
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6.1.2 Analysis of the classification results

The stepwise feature selection algorithm recursively selected a set of most influential
variables. These most influential variables were used for developing the discriminant
functions and constructing the classifterring the linear discriminant analysis. The
statistical significance of the two functiodeveloped for differentiating between the

three facial expression groups was cltad using the following relationship:

k
x> =[n-1-(p+G)/2) Y In(1+ ;) 61
k=1

Havingn (=48) observationsp (=20 variates)( (=3 facial expression group)
(=2 discriminant functions) and the corresponding eigenvalugsdomputed earlier
and given in column 2 of Table 6.2, thé value for each discriminant function was
calculated using Equation 6-1. For example, th@alue of the first discriminant
function in Table 6.5 was found to be 127.663. It was computed as
%2 = (48-1-((20+3)/2))[In(1 + 9.024) + In(1 + 2.637)].

This relationship in Equation 6-1 was recursively used for computing the
significance level of each discriminant function, reported in column 5 of Table 6.5. The
significance levels of the two discriminant functiops@.05) in Table 6.5 suggest the
possible separation between the facial expression groups along the two discriminant
functions reported in Table 6.5.

Since the derived discriminant scores wiarear combinations of the original
variables, their mathematical structures daglveal the nature of relationship between
the actual variables and the discriminant functions. Table 6.6 presents the structure
matrix resulted from the discriminant analysis. The structure coefficients of the
discriminant functions allow interpreting the contribution of each variable to the
formation of the discriminant functions. In other words, they represent the correlations
between a given independent variable and the discriminant scores associated with a
discriminant function. The coefficients ofa/en discriminator variable are therefore
the coefficients of the correlation between the discriminant scores and the discriminator
variables. Their numeric values range between +1 and -1. These coefficients (given in

Table 6.6) were calculated using the formula

k
C;i=Yrb;, 62
k=1
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where,C; is the coefficient of a variable; is the pooled correlation between the
variables andj; andb;" is the standardised coefficient of the varigble

A closer examination of the structure matrix in Table 6.7 suggests that the first
discriminant function heavily relies on variates 9, 10, 39 and 44. In effect, the first
discriminant function relies on the thermal variations measured on Frontalis Pars
Lateralis (9 and 10), Zygomaticus Majo®f3and Levator Labii Superioris (44).

The second discriminant variable mostly relies on variates 10, 13, 39, 40 and 44.
The second discriminant function therefore ieb@ the thermal variations on Frontalis
Pars Medialis (13), FrontalRars Lateralis (10), Zygamticus Major (39), Masseter
Superficial (40) and Levator Labii Superioris (44).

Zygomaticus Major and Mentalis are coresield the muscles of positive expressions
(Kall 1990). Masseter Superficial and Labiiggrioris are considered the muscles of
sadness and fear (Kall 1990). The separation between the three facial expressions seems
to be based on the transient thermal featoreasured along these major facial muscles.
Figures 3.1 and 4.5 (with Table 4.1) exhibit the physical location of these major

muscles.

Table 6.5: Significance of individual discriminant functions

Test of Functions Wilks’ Lambda Chi-square df Sig.
1 through 2 0.027 127.663 40 0.00
2 0.275 45.837 19 0.001

TABLE 6.6: SSRUCTURE MATRIX REPRESENTING COMPOSITION OF THE TWO DISCRIMINATING FUNCTIONS

Principal component Function 1 Function 2
VARIATE-44 0.116(*) 0.107
VARIATE-09 -0.106(*) -0.022
VARIATE-04 0.088(*) -0.011
VARIATE-14 -0.078(%) -0.072
VARIATE-21 -0.076(*) 0.065
VARIATE-45 -0.061(%) -0.044
VARIATE-29 0.057(*) -0.001
VARIATE-43 -0.055(*) 0.009
VARIATE-30 -0.052(*) 0.021
VARIATE-12 0.075 0.264(*)
VARIATE-19 0.063 0-.249(*)
VARIATE-24 0.055 -0.217(%)
VARIATE-39 0.101 0.167(%)
VARIATE-10 -0.113 0.152(*)
VARIATE-13 -0.01 0.141(%
VARIATE-40 0.037 0.133(%)
VARIATE-07 0.081 -0.091(*)
VARIATE-34 -0.065 -.082(*)
VARIATE-46 0.044 -0.078(*)
VARIATE-08 0.063 -0.072(*%)
* Largest absolute correlation between each variable and

any discriminant function
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6.1.3 Significance of the observed classification results
The classifier performance and the practical significance of the classification results
were determined using the statistical t@stgposed earlier in section 5.5. Equations 5-
24 and 5-25 were used to determine thé@sttcal significance of the classification
results.

Thez-statistic for the neutral, happy, and sad faces and the overall cross-
validation results (reported in Tal®et) were respectively found to be:

Z =1.921 (significant at alpha-level 0.0274);

%

normal

*

happy

Z.., =1.921 (significant at alpha-level 0.0274);

Z, =1.512 (significant at alpha-level 0.0655);

%

Z

overall

=3.096 (significant at alpha-level 0.001).

The overall significance test statistp<(.05) suggested that classification results
were significant. It is therefore safe to assume that the TIV data gathered at the 75 FTFP
sites on the participant faces may help classify the neutral and pretended happy and sad
facial expressions.

The practical significance of a classifier is usually determined to study its viability

for the real-life use. The indeK) for the cross-validation results was calculated using

Equation 5-26. The resulting index was found ta/ bet0/48 - 16/4%_ x100 =

16/48
74.99. The estimated indely uggestsht the employed discrimination method may

help reduce thehances of making computational errors by 74.99%.

6.2 Classification of more negativand positive facial expressions
In a following analysis, an attempt was made to classify the two positive pretended
(happiness and surprise) and the two neg#éimger and disgust) facial expressions

using the facial skin temperature measurements.

6.2.1 Classifier construction

Using the algorithmic approach reported earlier in Chapter 5, the TIV data were first
transformed into uncorrelated principal quonents. The first 50 of the 75 derived
principal components caused at least 1 %hefvariation in the TIV data. However,
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there was no reason to assume that thidge 50 principal components might have
contributed to the between-facial expression group separation.

Figure 6.7 shows the possible separalietween the two pretended positive (happy
and surprise) and the two pretended negatingdiaand disgust) facial expressions in a
2-principal component eigenspace. The fuirstcipal component (along the abscissa)
appears to be contributing more to theat#on in the TIV data. The between-group
separation in Figure 6.7 seems to be wéllenced by the second principal component
(along the ordinate) as well. A strong separation between the facial expressions of
happiness and anger is evident in Figuie Bhe two negative facial expressions
(disgust and anger) are also well separated along the second principal component.
Similarly, the two positive facial expressions, happiness and surprise are also well
separated in a 2-principal component agpace. However, the first two principal
components do not appear to be helpful stidguishing between the facial expressions
of happiness and disgust.

It might help to recall that the facial expression of disgust was also difficult to
recognise in the previous studies reported earlier in chapter 3, section 3.2.

Figure 6.7: Separation of positive and negative facial expressions in a 2- compgeespace

92



CLASSIFICATION OF PRETENDED POSITIVE AND NEGATIVE FACIAL EXPRESSIONS

Earlier investigations haweoncluded that the EMG readings taken on the major
facial muscles (that influenced formatiohthe second Principal component) did not
provide enough information about the facial expression of disgust. However, as reported
later in this section, the two positive and the two negative facial expressions may be
better separated in a high#imensional, optimal eigepace. Probably some other
principal components provided additiortahd required) information for better
separating the negative facial expressions.

The derived principal components were agaiamined to select a set of optimal
principal components using the stepwisedeaselection method. Figure 6.8 shows the
stepwise elimination of less important pripgi components and a recursive selection of
the most influential principal components. The corresponding increase in the F statistics
(F = |S5|/ ISM) is evident in Figure 6.8.

Table 6.7 presents the classification resaiftd the confusion matrix obtained using
the 36 highest eigenvalued principal gmments that accounted for more than 99%
variance in the thermal data. Table 6.8 shithre confusion matrix obtained with the
optimal principal components used for discriminating between the four facial

expressions. In Table 6.7 an error rafe,, (= 62.5) was observed during the cross-

validation tests when the highest eigenvalteadures were used for recognition and
classification. The classifier trained withe optimal principal components performed at
a much lower error rate/ (= 32.8).

geneal

Figure 6.8: Recursive stepwise selection of the optimal components andréesing ratio §Sy
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TABLE 6.7: Q.ASSIFICATION RESULTS FOR FOUR FACIAL EXPRESSIONS USING THE HIGH EIGENVALUED COMPONENT

Classification Group Predicted Group Membership Total
Happy Disgust Surprise Angry
Original Happy | 15 0 1 0 16
cases$ Count Disgust | O 16 0 0 16
Surprise | 0 0 16 0 16
Angry |1 0 0 15 16
Happy | 93.8 0 6.3 0 100.0
Disgust | O 100 0 0 100.0
Percentage | Sirprise | 0 0 100 0 100.0
Angry 6.3 0 0 93.8 100
Cross- Happy | 5 3 5 3 16
Validated Count Disgust | 5 6 1 4 16
cased Surprise | 2 3 8 3 16
Angry 4 6 1 5 16
Happy | 31.3 18.8 31.3 18.8 100.0
Percentage Disgqst 31.3 375 6.3 25.0 100.0
Surprise | 12.5 18.8 50 18.8 100.0
Angry | 25.0 375 6.3 31.3 100.0
a96.6 % of original group cases correctly classified
b 37.5 % of cross-validated group cases correctly classified

TABLE 6.8: Q.ASSIFICATION RESULTS FOR FOUR FACIAL EXPRESSIONS USING THE OPTIMAL COMPONENTS

Classification Group Predicted Group Membership Total
Happy Disgust Surprise Angry
Original Happy | 16 0 0 0 16
case$ Disgust | O 16 0 0 16
Count Surprise | 0 0 16 16 16
Angry 0 0 0 16 16
Happy | 100 0 0 0 100.0
Percentage Disgust | O 100 0 0 100.0
Surprise | 0 0 100 0 100.0
Angry 0 0 0 100 100
Cross- Happy | 10 1 5 0 16
Validated Count Disgust | 1 9 3 3 16
case? Surprise | 1 1 14 0 16
Angry 1 3 2 10 16
Happy | 62.5 6.3 31.3 0 100.0
Disgust | 6.3 56.3 18.8 18.8 100.0
P t -
reentae Sirprise | 6.3 63 87.5 0 100.0
Angry | 6.3 18.8 12.5 62.5 100.0
a
100 % of original group cases correctly classified
67.2 % of cross-validated group cases correctly classified

Figure 6.9 compares the classification results obtained using the two algorithmic
approaches. An equal probability of group membershipriori) was used in the
analysis. The facial expression of disgwass confused with the other positive facial
expressions. As evident in Tables 6.7 ari&] the two negative facial expressions (anger
and disgust) could also be confused with each other. Most probably for the reason that
the TIVs measured at the same muscles (Corrugator, Orbicularis Oculi Superior and
Orbicularis Oculi Inferior) were engagedexpressing these two negative facial

expressions.
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TABLE 6.9: SIMMARY OF CANONICAL DISCRIMINANT FUNCTIONS

Function | Eigenvalue | Percentage of Variance Cumulative Canonical
percentage Correlation

1 7.972 67.8 67.8 0.943

2 2.290 195 87.3 0.834

3 1.490 12.7 1000 0.774

Figure 6.9: Difference between classification success rates for thexip@ssions using the two algorithmic
approaches

TABLE 6.10: SGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS

Test of Functions Wilks’ Lambda Chi-square df Sig.
1 through 2 0.014 206.272 40 0.00
2 through 3 0.122 100.955 19 0.00
3 0.402 43.792 0.008

Table 6.9 reports the canonical discriminfumctions, statisti@l parameters and
contribution of each of the two functions required to discriminate between the four
facial expressions. Table 6.10 reports the significance levels of the resulting

discriminant functions.

6.2.2 Analysis of classification results

The stepwise feature selection algorithm recursively selected a set of 26 most influential
variables (reported in the first column of Table 6.11). These 26 effective variates were
used for training the classifier and developing the discriminant functions. Statistical
significance of the three functions was calculated using the mathematical relationship
given in Equation 6-1. Using (=64, 16 for each of the 4 facial expression groups)
observationsp (=26 in this case) variateS,(=4) facial expression grouds(=3)

discriminant functions and the corresponding eigenvalues computed earligt, the
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value for each discriminant function was calculated using Equation 6-1. The
significance levels of the three discriminant functigmsd(05) in Table 6.10 suggest
the possible separation between the facial expression groups along the three
discriminant functions.

Since the discriminant scores were linear combinations of the original variates, their
mathematical structure provided information about the relationship between the actual
variables and the discriminant functionable 6.11 presents the resulting structure
matrix. The structural coefficients of a discriminant functianused to interpret its
contribution in the between-group separatiThe coefficients of a discriminator
variable represent the correlation between the discriminant scores and the discriminator
variables. These coefficients, given in Table 6.11, are calculated using Equation 6-2.

A closer examination of the structure matrix in Table 6.11 suggests that the first
discriminant function relies on variates 12, 14, 21 and 47. So, it relies on the TIVs
measured on Frontalis Pars Lateralis (D®)pressor Supercilii (14), Procerus/ Levator
Labii Superioris Alaquae Nasi (21) andJagor Anguli Oris (47) for recognising and
classifying the unknown thermal faces. The second discriminant function relies on
variates 19, 26, 29, 31, 34, 35, 58 and 64.

TABLE 6.11: SRUCTURE MATRIX SHOWING COMPOSITION OF THE THREE DISCRIMINATING FUNCTIONS

Principal component Function 1 Function 2 Function 3
VARIATE-21 .107(%) -0.027 0.094
VARIATE-22 -.094(%) 0.025 -0.013
VARIATE-66 .082(%) -0.031 0.075
VARIATE-25 -.081(%) 0.011 0.031
VARIATE-07 -.080(*) -0.052 0.026
VARIATE-30 -.069(*) -0.002 0.003
VARIATE-35 0.001 .287(%) 0.088
VARIATE-19 -0.003 .208(*) -0.198
VARIATE-29 0.034 151(%) -0.117
VARIATE-34 0.046 .150(%) -0.141
VARIATE-26 0.087 127(%) -0.026
VARIATE-58 -0.057 .125(%) -0.037
VARIATE-31 0.053 .118(%) -0.046
VARIATE-64 0.047 .106(*) 0.043
VARIATE-14 0.042 -.087(%) 0.07
VARIATE-38 0.055 -.066(*) 0.061
VARIATE-17 -0.119 0.188 .370(%)
VARIATE-32 0.032 -0.059 .216(%)
VARIATE-20 -0.064 0.151 .201(%)
VARIATE-15 -0.035 -0.067 .192(%)
VARIATE-54 -0.047 0.107 -.156(*)
VARIATE-40 0.035 0.109 .155(%)
VARIATE-37 -0.069 -0.072 -.125(*)
VARIATE-12 0.108 0.085 A11(%)
VARIATE-47 0.102 0.008 A11(%)
VARIATE-10 -0.066 0.038 .100(*)
* Largest absolute correlation between each variable and

any discriminant function
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TABLE 6.12: DSCRIMINANT FUNCTIONS AT GROUP CENTROIDS

Facial Function 1 Function 2 Function 3
Expression
Happy -3.485 0.657 -1.281
Disgust 2.082 -2.120 -0.675
Surprise -1.792 -0.406 1.866
Angry 3.195 1.870 0.0897
Unstandardised canonical discriminant functions evaluated at group means.

Thus, the second discriminant function might be relying on the measurements taken on
Orbicularis Oculi Pars Orbital (19, 26, 2Z8,), Orbicularis Oris (64), Procerus/ Levator
Labii Superioris Alaquae Nasi (35), and@essor Anguli Oris (58) to recognise and
classify the unknown thermal faces.

It could be argued that the third discriminant function relied on thermal variations
on Frontalis Pars Medialis (15) Frontalig$hateralis (10, 12, 17), Orbicularis Oculi
Pars Orbital (19, 20, 29), Zygomaticusjbta(32), Levator Labii Superioris (34),

Masseter Superficial (40), Levator Angulii®©(47) and Platysma (54) for recognising
the unknown thermal faces and allocating thherane of the facial expression groups.

As mentioned earlier, each of the three discriminant functions measured the thermal
variations at one or more of the knomuiscles of positive and negative expressions
For example, the first two discriminant functions rely on Procerus/ Levator Labii
Superioris Alaquae Nasi (a muscle ofvirg. The second discriminant function relies
on Orbicularis Oris (a muscle of excitemgmaind the third discriminant function relies
on thermal variations along Masse(a muscle of anger).

The three discriminant functions, in effect, examine the thermal variations that take
place on the major facial muscles. Interestingly, the first discriminant function uses the
variates coming from the thermal measurements on the muscles of positive experience
(Orbicularis Oris and Zygomaticus) and thescles of negative experience (Corrugator
and Masseter). Other discriminant functions use a combination of the thermal variations
measured on Frontalis Pars Medialis, Frontalis Pars Lateralis, Levator Labii Superioris,
Levator Anguli Oris, Buccinator, Platysma, and Mentalis.

Table 6.12 shows the respective coordinates of the centroid of each facial expression
group in the resulting eigenspace. The underlying span of the first discriminant function
is much wider than that of the second and third discriminant functions in Table 6.12.

! The facial muscles considered responsible for expressing the positive andenfegaail expressions of affective
states are reported in section 3.2 of chapter 3.
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This implies a larger contribution of the first discriminant function in the between-group
separation. The underlying contribution of the second and third discriminant functions
appears to be almost equal. The fourth column of Table 6.9 presents the contribution of
each discriminant function in the between-group separation. Results reported in Table
6.9 graphically concur with thesults reported in Table 6.1gure 6.10 shows the

two positive and the two negative facial expressions at their respective group centroids.

6.2.3 Significance of the classification results

Once again, the practical significance of the classifier performance was calculated using
Equation 5-24. The significance levels for the classification of happy, disgust, surprise
and angry expressions and for the overall classification results were estimated as:

7"

happy

=3.09, significant at alpha-level 0.001,

Z, =3.615, significant at alpha-level 0.001;

disgust

Z =1.0328 not significant at alpha-level 0.05;

surprise

Z.  =3.09 significant at alpha-level 0.001.

angry

Separation of 2 positive and 2 negative
facial expression groups in the optimal Eigenspace

-r

Figure 6.10: The two positive and the two negative facial expression groups at thesitivesgroup centroids
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The overall significance of the classification results was estimated using Equation 5-

25 and was found to b&Z{ ., = 5.59) significant at alpha-level 0.001. The overall

erall

significance test statistip€0.05) suggested that classification results were significant.
Huberty’s test was used for assessing the practical significance of the classification.

Equation 5-26 was used for calculating the index 43/48 - 16/4%_ x100 =

16/48
84.37). The value dfsuggested that the employed discrimination analysis procedure

resulted in 84.37% reduction in the chances of obtaining errors by chance.

It is therefore safe to assume that the TIV data gathered at 75 FTFP sites on the
participant faces may help in classifying the pretended facial expressions of happiness,
surprise, anger and disgust.

6.3 Conclusion
When the high eigenvalued principal composemére used for classifying the neutral
faces and the faces with the pretended expressions of happiness and sadness, only
45.8% of the participant faces could be correctly classified during the cross-validation
tests. Using a set of optimal discriminating features, 83.8% of the 48 thermal faces were
correctly classified during the cross-validetitests. This suggested that the eigenspace
constructed with the optimal featunesght allow a better between-facial group
separation as compare to the eigenspace constructed with higher eigenvalued principal
components. Similarly, when the two positased two negative facial expressions were
classified, the optimised eigenspace lteslin a better between-group separation
(67.20% classification success rate) as compare to the eigenspace constructed using the
high eigenvalued components (37.50¥ssifcation success rate). The improved
classifier performance suggests thatalgenspace optimisation may allow a compact
and effective representation of the thernealtfires and may result in a linear division of
the eigenspace.

The proposed eigenspace optimisation agghn allowed better between-groups
separation albeit some fatiexpressions were h@trecognised than the others. This
suggested that the complexity of a constructed Gaussian space might influence the
classifier performance. Earlier studies showed that a reduction in the classification

space complexity would sometimes result in insufficient degrees of freedom for linear
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discrimination. However, there was no explicit evidence that the linear discrimination in
this analysis had insufficient degrees of freedom.

It is important to note that the LDA algorithm achieved excellent classification
results on the training features (principamponents) but could not generalise to the
new and unknown thermal faces with the sdenel of accuracy. These results were
consistent with the classification resyi@hellappa 1998; Donato et al. 1999) reported
earlier. Previous studies suggested that alaagning set might help correctly classify
the new and unknown faces and improve thestfi@r performance in similar scenarios
(Chellappa 1998; Donato et al. 1999).

The classifier trained using the thermal data obtained from the two positive and the
two negative facial expressions performed at a lower classification success rate. This
increased classification error rate might be indicative of an overlap between the thermal
features and a similarity of the facial threal features measuredring the intentional
expression of multiple positive and negative affective states. Probably, the two positive
and the two negative facial expressiongaged the same facial muscles and hence
experienced similar thermo-muscular changes, resulting in a similar thermal variation
pattern.

The discriminant functions relied (for AFEC) on the thermal variations measured
along those muscles that were previously known to be representative of the positive and
negative facial expressions. In particufaevious EMG studies reported significant
activity at the same facial muscles i flacial expression of positive and negative
expressions.

When the discriminant functions were deged to classify the neutral faces and
the faces with the facial expression of happiness and sadness, the first discriminant
function heavily relied on thermal variatiomeasured on Frontalis Pars Lateralis,
Zygomaticus Major and Levator Labii Sujmeis. The second discriminant variable
mostly relied on the TIV data measured at Frontalis Pars Medialis, Frontalis Pars
Lateralis, Zygomaticus Major, Masseter Sdipgl, and Levator Labii Superioris. As
mentioned in (Kall 1990), Zygomaticus Majand Mentalis are considered the muscles
of positive expressions and Masseter Superfamal Labii Superioris are considered the

muscles of sadness and fear.
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The three discriminant functions deepéd during an attempt to distinguish
between the facial expressions of happingggyrise, anger and disgust exhibited a
similar tendency. The first discriminant function used thermal measurements taken on
the muscles of positive experience (Orbicisl&®ris and Zygomaticus) and the muscles
of negative experience (Corrugator andsktgter). The other principal components
included in the three discriminant functiomsed a combination of some thermal
features measured on Frontalis Pars Medialis, Frontalis Pars Lateralis, Levator Labii
Superioris, Levator Anguli Oris, Buccinator, Platysma, and Mentalis. It was obvious
that the three discriminant functions employed the thermal variations measured on the
“already known” muscles of pitive and negative expressions.

The classification results and analyses reported in the preceding paragraphs make it
obvious that the facial skin temperature aaons may provide useful information about
the positive and negative facial expressions of affective states. It might be concluded
that an appropriate facial thermal feature extraction, selection and representation and
classification approach may allow persodependent classification of the facial
expressions of affective states.
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CLASSIFICATION OF BASIC FACIAL EXPRESSIONS

As mentioned earlier in chapters 2 angt&vious non-vision based automated facial
expression classification (NVAFEC) systems appeared to be more focused on
distinguishing between the positive and negadifective states. This chapter reports an
attempt to classify the neutral and six basic facial expressions using the facial thermal
features. As the classification results suggest, a Gaussian mixture model that had seven
components; the neutral expression and the@nmon facial expressions, resulted in a
complex Gaussian space. Despite that, this part of the investigation exhibits the viability
of using the facial thermal features for classifying the facial expressions in a complex

decision space.

7.1 Initial analysis

In addition to the initial data analyses reedrin chapter 4, Andrews’ curves for the
TIV data were plotted to further examine ttlusters of seven facial expression groups
and explore the underlying variance in the data. [pacdriate observation in the data
set was represented by a function plotted over the rangé <+t such that for theth

observation, the functiofft) was defined as

f(t)=%/§+zzsint+z3cosz+z4sint+zscost+ ...... Z17COSt+Zgsint+... + ... 7-1

where,z1, 2 ...z, represented the observed numerical values of the TIV data. The
Andrews’ curves are shown (asz, ... z,) in Figure 7.1. Excluding the first term in
Equation 7-1, the functiof(t) is a mixture of sine and cosine waves and produces a
(visually) representative wave patterrpdading on the observed values of phe
variables.

An Andrews’ plot is based on the distance between the two functions that are

defined by the expression

[ f,0-f,0] dr. 22
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Thus the similarities in the Andrews’ plots in Figure 7.1 exhibit the similarities
between the underlying functions. The observattbas were actually closer in a high-
dimensional space had a simiNaave pattern in an Andrews’ graph space (Chatfield
and Collins 1995; Everitt and Dunn 1991, Jolliffe 2002).

A problem that frequently arises with this technique is that only a limited number of
observations may be plotted on the sanagm@im. A large number of observations make
the diagram confusing and less useful. Methods of overcoming this problem have been
suggested in the literature (Jolliffe 2002). For example, separate plots, one for each set
or cluster are plotted and compared against the others. Also, selected quantities of the
values of the functiof(t) are plotted along with the curves of the selected individual
observations (Everitt and Dunn 1991). In many earlier studies, Andrews’ curves for
each class were clustered and plotted irparsgée window for further visual analysis
(Jolliffe 2002).

Andrews’ curves for the seven clusteracfal expressions) of the 16-participants’
facial thermal data in Figure 7.1 reveal that the raw TIV data provide little information
about the thermal differences betweem ftcial expression groups. The facial
expression group clusters had a similar viawra. The profiles of Andrews’ curves
being similar do not show any (large) between-group variation. However, the within-
group homogeneity, even on the basis of tae T/ data, was evident in each cluster
of facial expression in Figure 7.1. The wutitgroup curves fall into moderately narrow
bands suggesting an adequates| of similarity in the thermal representation of the
individuals’ facial expressions. The withgroup homogeneity was considered a
positive sign. Its presence encouraged exploring the possibilities of distinguishing
between the seven facial expressions using the facial thermal features (Chatfield and
Collins 1995; Everitt and Dunn 1991; Jolliffe 2002).

Few distant curves identified in the neutral facial expression cluster window in
Figure 7.1 belong to the participants with facial hair. The TIVs measured on the faces of
the three participants (having facial hair)revslightly different than the ones measured
on other participant faces. Facial hair, having a different emissivity extmoight have
resulted in different TIV measurements on those parts of the face that were covered
under the hair. The TIVs measured on these parts of the face were therefore different
than the TIVs measured on the uncovered parts of the face. These three participants
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were kept in the experiments to examine the effect of facial hair on the classifier
performance and the validity of the resulting discriminant rules.

Some notable differences in the clusters of Andrews’ curve profiles are visible
between the range/2 and +#/2 in Figure 7.1. The curves plotted using the raw TIV
data did not provide a practically usefuéasure of the between-group variation and
warrant formation of a set of uncorrelatediahles. Such variables are usually formed
using a technique like PCA to develop the discriminant rules (McLachlan 2004).

7.2 Classifier construction

The algorithmic approach mentioned in chapter 5 was used to develop a facial
expression classifier for distinguishing betm the seven facial expressions. Recorded
TIV data were transformed into uncorrelated linear combinations of the input vectors
using the principal component analysise$é vectors (principal components) are
exhibited as a scree plot in Figure 7.21y82 of the 75 derived principal components
significantly contributed to the variance in the TIV data. Of these, the first 20 principal
components represented over 90% variance in the data albeit there was no reason to
believe that only these 20 principal composembuld contribute to the classification of
the facial expressions. Figure 7.3 exhibits the possible between-group separation in the
first two-principal component eigenspace.

Comparing Figures 7.1 and 7.3 would reveal that transforming the raw TIV data
into the principal components allowadetter between-facial expression group
separation. The negative facial expressi@asiness, disgust and fear) are well
separated within the 2-principal componeigienspace in Figure 7.3. This trend was
consistent with the previous studies thaptayed either FACS or facial EMG readings
to classify the negative facial expressions. Negative facial expressions in previous
investigations could be dpsseparated from each other as compare to the positive
facial expressions (Ekman et al. 1993; Kall 1990).
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Figure 7.1: Andrews’ curve for the seven facial expressions plotted using the ravaf@I\ e function spans
along the abscissa and ranges betwaeame +t. Corresponding values of the TIVs are plotted along
the ordinate. The curve profiles for each particular facial expressiop ghow the within-group
homogeneity. The similarities between the waveforms of various facial expressiggest that the
facial expressions cannot be classified using the raw TIV data.
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Figure 7.2: Contribution of the 75 principal components in the underlying variance of the 7-facial erpressi
TIV data

Figure 7.3: Between-group separation of the seven facial expressions in a 2-principal carejgemspace

The neutral faces and the faces with intentionally expressed happiness and surprise
(positive expression) seem to be comparatidéljcult to separate from the other facial
expressions in a 2-principal component eigacs. This pattern of separation was also
observed in a previous investigation that K&aB89) carried out. As reported in chapter
6, the first principal component was thegative index of a thermal face and hence
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provided an overall thermal measurementhefface. The second principal component
provided an account of the facial thetrobaracteristics as it added the TIVs on
Orbicularis Oculi Pars Orbital and Lewa Labii Superioris Alaguae Nasi and

subtracted the TIVs on all other facial muscles from this added value. One could infer
from Figure 7.3 that the uncorrelated lineanadles provided some useful information
about the variance in the TIV data to classifg facial expressions of affective states.

In the next step, the derived principahgmonents were analysed using the stepwise
elimination and feature selection algorithm described earlier in chapter 5. The iterative
increase in the value of F ratib € |Sg|/ |Sa]) is obvious in Figure 7.4. The optimal
feature selection algorithm resively selected a set of 22 principal components for
training the classifier. These 22 selegbeihcipal components were not the highest
eigenvalued principal components. The feature selection algorithm discovered a new
and different set of most discriminating components. Only few of the high eigenvalued
principal components were included in thsw set of optimal principal components.

The algorithm discovered many low-eigenvalgeishcipal components that were also
able to contribute to the between-group separation.

The TIV data were normally distributedgetfacial expressions groups had a similar
variance structure, and each facial expression group had the same numbers of
participants. Hence, each facial egsion group could be given an ega@riori in the
analysis during the linear discriminant analysis.

Table 7.1 exhibits a summary of the canonical discriminant functions showing the
contribution of each discriminant functiondstinguishing between the intentional
facial expressions.

Table 7.2 shows the chi-square values and the respective significance levels of the

discriminant functions.

TABLE 7.1: SIMMARY OF CANONICAL DISCRIMINANT FUNCTIONS

Function | Eigenvalue | Percentage of Variance | Cumulative Canonical
percentage Correlation

1 1.759 32.0 32.0 0.798

2 1.399 254 574 0.764

3 1.153 20.9 78.3 0.732

4 0.492 8.9 87.3 0.574

5 0.358 6.5 93.8 0.513

6 0.343 6.2 1000 0.505
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TABLE 7.2: SGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS

Test of Functions Wilks’ Lambda Chi-square df Sig.
1 through 6 0.026 352914 132 0.00
2 through 6 0.071 254.979 105 0.00
3 through 6 0.171 170.517 80 0.00
4 through 6 0.368 96.573 57 0.001
5 through 6 0.549 57.942 36 0.012
6 0.745 28.445 17 0.040

Figure 7.4: Recursive stepwise selection of optimal components witlcragmng ratio (=S/Sw). The line

connecting the first and the last iterations exhibits a significant increase in ttie.F-ra

TABLE 7.3: SSRUCTURE MATRIX SHOWING COMPOSITION OF THE TWO DISCRIMINATING FUNCTIONS

Contributing Function | Function | Function | Function | Function | Function

variables 1 2 3 4 5 6
VARIATE-19 0.233(%) 0.065 -0.191 0.017 0.185 0.004
VARIATE-18 -0.020 0.268(*) -0.062 0.088 -0.059 0.183
VARIATE-23 0.153 -0.227(*) | 0.052 -0.022 -0.128 -0.184
VARIATE-07 -0.98 0.152(*) 0.064 0.028 -0.138 -0.151
VARIATE-15 0.102 0.141 0.388(*) | -0.290 0.158 -0.238
VARIATE-26 -0.160 -0.076 -0.271 -0.023 0.160 -0.134
VARIATE-37 0.110 -0.082 0.174(*%) 0.058 -0.051 0.023
VARIATE-21 -0.060 0.044 0.081 0.366(*) -0.212 -0.256
VARIATE-22 0.216 0.022 0.026 0.359(*) 0.117 0.024
VARIATE-20 -0.156 0.156 0.016 0.299(*) 0.038 0.077
VARIATE-27 0.059 0.171 -0.088 -0.249 0.111 0.018
VARIATE-11 -0.108 -0.242 -0.004 -0.245 -0.022 0.153
VARIATE-41 -0.088 -0.067 0.286 -0.008 0.400(*) 0.127
VARIATE-30 0.170 0.092 0.098 -0.274 -0.392(*) | 0.138
VARIATE-14 0.184 0.101 0.093 0.194 0.312(%) -0.018
VARIATE-38 -0.038 0.084 -0.143 -0.214 0.263(*) 0.033
VARIATE-09 -0.026 -0.077 0.091 0.039 0.263 0.420(*)
VARIATE-24 -0.146 0.038 0.058 0.098 -0.096 0.408(*)
VARIATE-31 -0.164 -0.129 0.251 0.037 0.061 0.264(*)
VARIATE-75 -0.030 -0.150 0.069 0.073 -0.214 0.260(*)
VARIATE-13 0.209 0.011 0.173 0.024 -0.151 0.253(%)
* Largest absolute correlation between each variable and any discriminant function
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TABLE 7.4: STANDARDISED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

Contributing variables Function 1 Function 2 Function 3 Function 4 Finction 5 Function 6
VARIATE- 07 -0.254 0.342 0.129 0.039 -0.175 -0.190
VARIATE- 09 -0.065 -0.166 0.177 0.052 0.323 0.510
VARIATE- 11 -0.261 -0.510 -0.007 -0.320 -0.026 0.180
VARIATE- 13 0.505 0.024 0.325 0.031 -0.179 0.279
VARIATE- 14 0.446 0.213 0.176 0.255 0.372 -0.021
VARIATE- 15 0.219 0.262 0.648 -0.335 0.166 -0.247
VARIATE- 18 -0.362 0.638 0.080 -0.176 -0.121 0.014
VARIATE- 19 0.557 0.135 -0.355 0.021 0.218 0.004
VARIATE- 20 -0.384 0.334 0.031 0.397 0.046 0.093
VARIATE- 21 -0.147 0.094 0.156 0.487 -0.257 -0.307
VARIATE- 22 0.518 0.045 0.049 0.465 0.138 0.028
VARIATE- 23 0.371 -0.480 0.099 -0.028 -0.153 -0.217
VARIATE- 24 -0.365 0.082 0.112 0.132 -0.117 0.494
VARIATE- 26 -0.384 -0.157 -0.505 -0.029 0.189 -0.156
VARIATE- 27 0.150 0.377 -0.174 -0.340 0.138 0.023
VARIATE- 28 -0.050 0.573 -0.119 0.118 -0.071 0.219
VARIATE- 30 0.400 0.188 0.180 -0.349 -0.454 0.159
VARIATE- 31 -0.386 -0.264 0.463 0.047 0.071 -0.303
VARIATE- 37 0.283 -0.183 -0.351 0.082 -0.064 0.029
VARIATE- 38 -0.096 0.186 -0.285 -0.295 0.330 0.041
VARIATE- 41 -0.205 -0.137 0.523 -0.010 0.462 0.145
VARIATE- 75 -0.077 -0.333 0.137 0.100 -0.269 0.323

Table 7.3 reports the structure matrix showing the pooled within-group correlation
between the discriminant varias and the canonical functions.

Table 7.4 shows the standardised canonical discriminant function coefficients.
These coefficients were used to calculate the predicted group membership of the
unknown thermal faces. The predicted group membership of an unknown face was
iteratively calculated using these scores thredcoefficients of discriminant functions.

Table 7.5 shows the classification success rate and the confusion matrix that resulted
when the high eigenvalued principal composemere used to train the classifier. A

higher error rate:’

geneal

(= 61.6%) was observed when the highest eigenvalued principal

components were used for recognition and classification.
Table 7.6 shows the classification success results and the confusion matrix observed
when the optimal principal components were usettlain the classifier. As evident in

Table 7.6 the error rate significantly droppediegea, (= 42.9%) when the optimal

features were used.

7.3 Classification error analysis
The linear discriminant algorithm discovered the most influential variates for
developing the discriminant functions nigithe optimal principal components. It

discovered 22 most effective variates for recognising and classifying the
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TABLE 7.5: Q.ASSIFICATION RESULTS WITH THE HIGHEST EIGENVALUED COMPONENTS

Classification Group Predicted Group Membership Total
Neutral | Happy Sad Disgust | Surprise | Angry Fear
Cross- Neutral 5 2 3 1 3 2 0 16
Validated Happy | 1 3 4 3 3 2 0 16
cases Sad 4 1 6 0 2 1 2 16
Count Disgust | O 0 1 8 1 5 1 16
Surprise | 0 2 1 2 6 3 2 16
Angry 2 3 3 1 1 4 2 16
Fear 1 0 0 1 3 0 11 16
Neutral 31.3 12.5 18.8 6.3 18.8 12.5 0 100.0
Happy 6.3 18.8 25.0 18.8 18.8 12.5 0 100.0
Sad 25.0 6.3 375 0 12.5 6.3 12.5 100.0
Percentage | Disgust | O 0 6.3 12.5 37.5 18.8 12.5 100.0
Surprise | 0 12.5 6.3 6.3 6.3 25.0 12.5 100.0
Angry 12.5 18.8 18.8 6.3 6.3 25.0 12.5 100.0
Fear 6.3 0 0 6.3 18.8 0 68.8 100.0
b 38.4 % of cross-validated group cases correctly classified
TABLE 7.6: QLASSIFICATION RESULTS OBSERVED USING THE OPTIMAL FEATURES
Classification Group Predicted Group Membership Total
Neutral | Happy Sad Disgust | Surprise | Angry Fear
Cross- Neutral 5 2 3 2 3 1 0 16
Validated Happy | 2 10 0 0 3 0 T 16
cases Sad 4 00 11 0 0 1 0 16
Count Disgust 2 1 0 10 0 1 2 16
Surprise | 3 0 2 1 7 2 1 16
Angry 3 3 0 0 1 7 2 16
Fear 0 1 0 0 1 0 14 16
Neutral 31.3 12.5 18.8 12.5 18.8 6.3 0 100.0
Happy | 125 62.5 0 0 8.8 0 6.3 100.0
Sad 25.0 0 68.8 0 0 6.3 0 100.0
Percentage | Disgust 12.5 6.3 0 62.5 0 6.3 12.5 100.0
Surprise | 18.8 0 12.5 6.3 43.8 12.5 6.3 100.0
Angry 18.8 18.8 0 0 6.3 43.8 12.5 100.0
Fear 0 6.3 0 0 6.3 0 87.5 100.0
b 57.1 % of cross-validated group cases correctly classified

unknown thermal faces. The mathematical compositions of these variates are listed in
Tables 7.3 and 7.4.

A set of six discriminant functionsas developed by the linear discriminant
algorithm to classify the thermal images into seven facial expressions. The statistical
significance levelsp<0.05) of the discriminant functions, given in Table 7.2, were
calculated using Equation 6-1. Results regbiteTables 7.1, 7.2 and 7.3 suggested
some significant differences between the facial thermal features pertaining to the seven
facial expressions.

The mathematical structure of a distinant function also provides useful
information about the relationship betwebe actual variables and the discriminant
functions. The numerical coefficientstbe discriminant functions, calculated using

Equation 6-2, allowed interpreting the contribution of each variable in the formation of
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discriminant functions. The coefficients of a given discriminator were the coefficients
of correlation between the discriminanbses and the discriminator variables.

A closer examination of the structure matrix in Table 7.3 suggests that the first
discriminant function relies on variategasured on Frontalis (11, 13, 14, 15),

Orbicularis Oculi (19, 22, 23, 26, 30, 31) and Levator Labii Superioris (37). The first
discriminant function therefore measured the thermal features on the upper part of the
face to classify the unknown thermal faces.

The second discriminant function relies on the variates measured on Frontalis (7, 11,
13, 15), Orbicularis Oculi Pars Orbital (18, 20, 23, 27, 31), and Mentalis (75) for
allocating the unknown thermal faces to a facial expression group.

The third discriminant function uses theates measured on Frontalis (13, 15),
Orbicularis Oculi Pars Orbital (18, 19, 20, 28, 27, 31), Levator Labii Superioris (37,
38), and Masseter superficial (41) forogaition and classification of the new and
unknown faces.

The fourth discriminant function employsthariates measured at Frontalis Pars
Lateralis (11), Frontalis Pars Medialis (18)bicularis Oculi Pars Orbital (20, 21, 22,

27, 30) and Levator Labii Superioris (38) for discerning between the facial expressions.

The fifth discriminant function uses the variates measured on Frontalis (7, 9, 13, 14,
15), Orbicularis Oculi Pars Orbital (19, 21, 23, 26, 27,30), Levator Labii Superioris
(38), and Masseter superficial (41) fecognition and classification of the unknown
faces.

Sixth and last discriminant function relies on the variates measured around Frontalis
(7,9, 11, 13, 15), Orbicularis Oculi Pars Orbital (18, 21, 23, 24, 26, 30, 31), Masseter
superficial (41) and Mentalis (75) for classifying the unknown faces.

Interestingly, the major facial musclakng which the variates could be aligned
were physically located around the upper part of the face. It could be assumed that the
six discriminant functions exploited the theal variations that took place on the upper
parts of the face for recognition and classification of the seven facial expressions. It
might be useful to state that the FACSéxd AFEC systems and studies on facial EMG
readings found the muscular movements on the upper parts of the face helpful for

automated facial expression classificationl{H890; Puri et al. 2005). Some successful
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AFEC systems (cited earlier in chapters 2 and 3) also relied on the signals extracted
from the upper parts of the face for facial expression classification.

Figure 7.5 shows the six discriminant funcis at their respective group centroids.
The varying span of the six discriminant functions implies varying influence of each
discriminant function in the betweenegip separation and classification of unknown
thermal images.

The leave-one-out cross validation tesés also invoked at each stage of this
investigation. The validation results show the confusion matrix in Table 7.6
revealed the complexity of the underlyiegenspace. For example, the neutral faces
were (equally) confused with the intentioeabressions of sadness and surprise. In a 2-
principal component eigenspace shown in Fegi3 above, the overlap between neutral
and surprised faces was obvious. The siitigs (and overlap) between the thermal
characteristics of the neutral faces and the facial expressions of sadness and surprise
were also obvious in the eigenspace. The confusion matrix in Table 7.6 also showed
some similarities between the facial expressions of happiness and surprise.

Given the small sample size and a large number of measured thermal features, the
overall error rate (42.9%) observed during ldeeve-one-out cross validation tests could
be considered encouraging. The observed error rate was suggestive of (1) the potential
effectiveness of the thermal features for AFEC, and (2) the aptness of the employed
algorithmic approach.

7.4 Significance of the classification results
The practical significance of the classifier performance was calculated using Equations
5-24 and 5-25. The statistical significance Iever classification results are given in
Table 7.7. The overall significance test statighke(Q.01) suggested that the
classification results were significant.
Equation 5-26 was used to determine the extent to which the classification results

were better than the ones that could be observed by chance. The estimated index

1-64/112-16/112/

(_16/112%100 = 50.0 suggested that the employed discriminant rules

reduced the probability of by chance getting the classification error rate by 50.0%.
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Figure 7.5: The facial expression groups at their respective group centroids in a 6-distrfomction
eigenspace

TABLE 7.7: SGNIFICANCE OF THE CLASSIFICATION RESULTS

Statistic Value Levelof significance
(@)

Z:ormal 5.933 0.001
Z;appy 245 0.0071
Z:ad 2236 0.0132
Z;Sgust 245 0.0071

"
Z surprise 30 0.0013

*
Zangry 3.0 0.0013

=
A ar 1.41 0.0655

"
Zoverall 6.93 0.001

7.5 Conclusion

The classification results presented in Table 7.6 reveal certain similarities between the
thermal characteristics of a neutral face and the six facial expressions. During the cross
validation tests, the neutral faces were often confused with the pretended sad (18.8%)
and surprised (18.8%) expressions. (Coheaal. €003) attempteperson-independent

facial expression classification in a vision-based AFEC system and observed a similar
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classification and confusion pattern. Neuteadds in their investigation were confused
with expressions of sadness and surpAsmther vision-based AFEC capable system
that (Calder et al. 2001) developed did confuse some 23% of neutral faces with the
expression the sad faces and confused around 07% neutral faces with the faces of
surprise. Hence some parallels might bendr between the confusion patterns observed
in this investigation and the ones obseriredome earlier vision-based AFEC systems.
The pretended expressions of happinessigrliestigation were confused with the
neutral faces (12.5%) and with the faces of surprise (18.8%). The system (Calder et al.
2001) developed confused only 02% of tleaitral faces with the faces expressing
happiness. (Huang and Huang 1997) also usedl cues for AFEC and claimed that
their system confused only 02% of neutral faces with the facial expression of happiness.
The pretended expression of anger wasro€onfused with the neutral (18.8%)
faces. The angry faces were equally confused with the happy (18.8%) faces. In a system
that (Cohen et al. 2003) reported, around 2.04% expressions of anger were confused
with neutral faces and 4.76% of angry faces were confused with the happy faces. In
another system (Huang and Huang 1997)gnhesd, only 04% faces with the expression
of anger were confused with the facesmafle. This suggests that the facial expressions
of anger and happiness cause differenseculo-thermal and heemodynamic activities on
the face. Consequently, these two facial expressions result in a different temperature
variation pattern along the major facial muscl€hus, the linear division of eigenspaces
did not allow much overlap and the classifier could well separate the two facial
expressions.
Interestingly, the classification of tipeetended expression of fear was highly
successful and was rarely confused with the other pretended facial expressions.
Though the confusion patterns observed in this study had some resemblance with
the confusion patterns observed in the earlier vision-based AFEC systems, the observed
classification success rates were comparatively lower than the ones reported in (Calder
et al. 2001; Cohen et al. 2003; Huang &tudng 1997). However, our classification
results cannot be directly compared with those of the vision-based AFEC systems.
It could be inferred that the facial expressions of affective states would influence the
facial thermal features. Consequently, the facial skin temperature at the identified
physical locations (FTFPs) changed with araipe in facial expression. The analyses

114



CLASSIFICATION OF BASIC FACIAL EXPRESSIONS

reported in the preceding sections suggest that the non-contact thermal infrared
measurement of facial skin temperaturemigelp in recognising and classifying the
basic facial expressions. Statistical and practical significance of the observed
classification results suggest that the eayiptl algorithmic approach and the developed
discriminant rules were effective in recognggiand classifying the facial expression of
basic affective states.

The classifier, when trained with thegh eigenvalued principal components
performed less effectively than the classifier trained with a set of optimal discriminating
features. It might therefore be inferred that the eigenspace constructed with the optimal
features would allow better between-tayroup separation than the eigenspace
constructed with some higheigenvalued principal components. It might also be
inferred that the proposed algorithmic approach allowed a developing an effective set of

discriminant rules.
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CLASSIFICATION OF COVE RED AND OCCLUDED FACES

Studies reported earlier in chapters 2 arsiggest that the vision based automated

facial expression classification (AFEC) systems perform well when either an entire face
or a complete frontal view of the face is available for feature extraction. Previous
investigations reported that when it was natgplole to extract features from an entire

face for factors such as facial hair, glasdighting conditions, pose and occlusion, the
vision-based AFEC systems could not perform well.

The existing literature did not cite any significant work on investigating the efficacy
and relevance of the non-vision based mnatted facial expression classification
(NVAFEC) systems when an entire face was not available for feature extraction. The
NVAFEC capable systems, therefore, have yet to be tested for their effectiveness in
situations when the faces are covered or occluded. It was therefore considered prudent
to investigate the possibilities of recognigifacial expressions using thermal data
gathered from selected parts of the face assuming that the other parts of the face were
either covered or occluded. This work, to the best of this datkiwowledge and belief,
is the first attempt to investigate the possibilities of classifying facial expressions using
the thermal data gathered from selected parts of the face.

This chapter first reports a facial muscle grouping approach for extracting facial
thermal features from the selected partthefface. Details of the initial analysis and
classifier construction are then presented. Finally the classification results are discussed
and analysed.

8.1 Facial muscles grouping and preliminary data analysis

Human face is considered a complex and information-rich part of the body. Researchers
have employed different approaches for dividing the human face into anatomical and
muscular regions for extracting features of interest from the face. To examine the

potential of classifying the facial expressi@misaffective states using the TIV data
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gathered from the selected parts of the face, division of a thermal face into muscular
regions was vital. Based on the reviewed literature reported in chapters 2 and 3, the
human face was divided into four facial regions. Each facial region had a number of
facial muscles included in it. This divisia a face allowed grouping various facial

muscles together. The division of a face #me facial muscle grouping employed in

this work were similar to the ones (Huaagd Yan 2002) used in their investigation.

They used the facial anatomy and a representation of the facial mesh geometry to model
the face and simulate the facial muscle features. Their work helped in dividing the face
into various regions for grouping the faamliscles in this investigation. The facial

muscle grouping and FTFPs within each of facial region are visible in Figure 8.1.

Figure 8.1: Division of a face into four (muscular) facial regions
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As evident in Figure 8.1, the forehead was labeled as facial region 1 (R1). The areas
around the eyes and the cheeks were (jointysitered facial region 2 (R2). The facial
region 3 (R3) included parts of the facewand the mouth. The facial areas around the
chin were considered facial region 4 (R4).

One major advantage of using this muscle grouping was that each region could be
separately examined to evaluate the effect of facial hair, glasses, pose, lighting
conditions or objects such as microphone on the AFEC functionality. For example, if
parts of the forehead (R1) and the area around eyes and nose (R2) were occluded under
the glasses, the TIV data measured around the mouth (R3) and chin (R4) could be used
for AFEC and AAR. Similarly, if the facial regions R3 and R4 were covered under the
facial hair, the TIV data from the facial regions R1 and R2 could be used for the facial
expression classification.

Table 8.1 presents the major facial muscles and the numbers of FTFPs located
within each facial region. The TIV data in each facial region were analysed for the
assumptions of normal distribution and f#yenmetry of covariance matrices. The 17
TIVs in the facial region R1 (forehead) neeconsidered a unique vector. Having 34
TIVs, the facial region R2 (around eyes aheeks) was represented as another vector.
Similarly, the TIVs in the facial region R3 (around lips) were represented as a vector in
a 5-dimensional space and the TIVs in the facial region R4 (around the chin) were
represented as a 19-dimensional vector.

TABLE 8.1: FACIAL REGIONS, MUSCULAR GROUPING AND THEF TFPSITES WITHIN EACH FACIAL REGION

Facial Muscles in the region FTFPs in the region
region
R1 Frontalis, pars medialis 1,2,3,4,5,6,7,8,9,10, 11, 12, 18,

Frontalis, inner center edges of pars medialis and pars lateralis | 15, 16, 17, 21
Frontalis, pars lateralis
Procerus/ Levator, labii superioris alaguae nasi

R2 Depressosupercilii 14,18, 19, 20, 22, 23, 24, 25, 26, 2,
Orbicularis Oculi, pars orbital 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
Levator, labii superioris alaquae nasi 38, 39, 40, 41, 42, 43, 44, 46, 47, 48,
Levator, labii superioris 49, 50, 56, 57

Levator, anguli oris
Zygomaticus major
Masseter, superficial

Buccinator

R3 Orbicularis Oris 45,51, 64, 65, 66

R4 RisoriousPlatysma 52,53, 54, 55, 58, 59, 60, 61, 62, 68,
Depressor Labii Inferioris 67, 68, 69, 70,71,72,73,74,75
Mentalis
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The significant test resulE[(6,10)=3.842p<0.05] for the TIV data measured on
the entire face suggested homogeneity of théddta. However, theest statistics for
the TIV data from various facial regionsadysed separately, were insignificant. The
test statistics for R1H (6,10)=3.102p>0.05], R2 F (6,10)=1.896p>0.05], R3 F
(6,10)=2.568p>0.05], and R4K (6,10)=1.607p>0.05] did not suggest similarity of
variance. Figure 8.2 shows the estimated mean values for the thermal data within the
selected facial regions. A comparison of the estimated mean temperature values in
Figure 8.2 would reveal the changing patterns of thermal features within the various
facial regions with a change in facial expressions.

8.2 AFEC using TIVs measured on forehed(R1), around eyes and on cheeks (R2)

An attempt was made to classify the facial expressions using the TIV data measured on
the forehead, around eyes and on the ch@dlesfacial expression classifier was
constructed using the algorithmic approackcdi®ed earlier in chapter 5. The TIV data
were first transformed into uncorrelatedelar variables and a set of 51 principal
components was derived using the TIV datasured from within regions 1 and 2.

Figure 8.2: The mean facial skin temperature for the 7 facial expressionatedtinsing the TIV data measured
at the FTFP sites within each facial region
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First 24 of the 51 transformed principal components significantly contributed to the
variance in data. However, there was @ason to believe that these 24 principal
components would significantly contributethe between-facial expression group
separation. Figure 8.3 exhibits a scree phatwing the contribution of each principal
component in the underlying variance of the TIV data collected from the FTFP sites in
facial regions 1 and 2.

In the next step, the derived principal gmments were analysed to discover a set of
optimal principal components. Only 18muipal components were found to be
significantly contributing to the between-group separation. Some of these principal
components did not have a higher eigenvalue.

Figure 8.4 exhibits the Andrews’ curves for the individual clusters of 7 facial
expression groups drawn using the 18 optimal principal components. Thesel8 principal
components were assumed to provide thetraseful information for explaining the
underlying variation in the TIV data measured around the forehead, eyes and cheeks.
The clusters of observations, each shown in a different window, were different. These
obvious visual differences in the clustefghe TIV data were indicative of the

between-facial expression group separation.
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Figure 8.3: Contribution of the 75 principal components in the 7 facial expression group variance. The principa
components were derived using the TIV data gathered from the facial regions R1 and R2
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Figure 8.4: Andrews’ Curves for the 7 facial expressions drawn using the PCA scores deniviitkfidV data
gathered from the facial regions R1 (forehead) and R2 (around eyes and cheeka) pBafiliés of
the curves within each cluster represent the within-group homogeneity. Appamentifferences
in the profiles of the 7 clusters of facial expressions exhibit the between-groapoeari
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Figure 8.5: Mixed plot of Andrews’ Curves for the 7 facial expressions drawn using\teeridasured on the facial
regions R1 (forehead) and R2 (around eyes and the cheeks). The between-group variance is obvious
through the shift in Andrews’ curves along the ordinate. The within-group homogeneity is alsesobvi
from the narrow-band of Andrews’ curves in each facial expression group.

Andrews’ curves for the 7 separate clustd#rthe 16-participant facial expressions,
shown in Figure 8.4 reveal the underlying differences between the facial expression
groups. Each facial expression group had a slightly different profile of the Andrews’
curves along the x-axis. This highlighted the between-group variance (obvious within
the ellipses in Figure 8.5) in the TIV data that could help in classifying the facial
expressions. The profiles ofelAndrews’ curves, being somewhat similar, do not show
an apparently large between-group variatldowever, the curves within each cluster
window in Figures 8.4 and 8.5 fall intooderately narrow bands suggesting an
adequate level of withinkgup homogeneity (Chatfield and Collins 1995; Everitt and
Dunn 1991, Jolliffe 2002).

The three distinct curves, highlighted with arrows in the neutral face cluster in
Figure 8.4 belong to the three participants with facial hair. The TIVs measured on the
faces of these three participants were slightly different than those measured for others,
particularly within the facial regions coverender hair. It seems likely that the facial
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hair, having a different emissivity ratie)(might have resulted in some slightly
different TIV measurements on the parts of the face covered under the facial hair.

Some significant differences in the Andrews’ curve profiles are visible between the
range = and -3t/4 in Figure 8.4. A mixed plot of the 7 expression groups is also shown
in Figure 8.5. The mixed plot effectively exhibits the prevailing “within-group”
similarities and the “between-group” differences in the TIV data.

The discriminant analysis algorithm was invoked on the optimal thermal features
selected from within the principal comporenthe algorithm recursively selected the
most appropriate variates for developthg discriminant functions and constructing a
classifier. The invoked algorithm picked a set of 18 most effective variates for
developing the discriminant functions. As evident in Table 8.2, only 3 of 6 discriminant
functions were significanp&0.05) suggesting a low probability of the between-facial

expression group separation.

TABLE 8.2: SIGNIFICANCE OF THE DISCRIMINANT FUNCTIONS DERIVED USING THETIV DATA FROM THE FACIAL
REGIONSR1 AND R2

Test of Functions Wilks’ Lambda Chi-square df Sig.
1 through 6 0.059 278.920 108 0.00
2 through 6 0.185 166.040 85 0.00
3through 6 0.360 100.586 64 0.002
3through 6 0.570 55.351 45 0.139
3through 6 0.794 22.689 28 0.748
6 0.940 6.121 13 0.942

TABLE 8.3: THE STRUCTURE MATRIX FOR THE SIX DISCRIMINATING FUNCTIONS DERIVED USING THEIV DATA FROM
FACIAL REGIONSR1 AND R2

Variate Function 1 Function 2 Function 3 Function 4 Function 5 Functin 6
Variate-15 | -.481(*) -.279 .020 138 .014 .052
Variate-22 .020 .376(%) .051 .062 167 .014
Variate-32 077 -.023 A47(%) .099 .005 -.029
Variate-17 | .031 -.241 .304(*) .281 -.068 .204
Variate-18 .204 -.179 227(%) 178 -.103 .013
Variate-27 .063 .038 -.015 -462(*) 420 .058
Variate-19 | -.077 .039 .183 -319(%) -.108 195
Variate-20 120 162 -.113 .296(*) -.003 -.132
Variate-13 | -.041 .060 .379 .016 A73(%) .001
Variate-12 077 -.012 -.178 428 428(%) 123
Variate-28 | -.111 .138 174 .057 .332(%) -.123
Variate-25 JA21 .140 .054 -.014 -.214(%) -.088
Variate-21 | -.042 .220 165 .006 -.131 .624(*)
Variate-29 | -.033 .208 234 -.055 -.279 -.390(*%)
Variate-11 | -.032 .292 -.124 .165 -.094 .328(*)
Variate-38 164 -.180 -.090 -.185 139 .327(*)
Variate-4 143 -.053 .048 -.066 -.124 274(%)
Variate-8 175 -.071 .043 -.094 104 -.242(*)

(*) Largest absolute correlation between each variable and any discriminant function
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Figure 8.6: Classification results observed when the TIV data from facial regions REegfbyeimd R2 (eyes

and cheeks) were used to train the classifier

TABLE 8.4: Q.ASSIFICATION RESULTS WHEN OPTIMAL FEATURE$COMPONENT3 USED IN ANALYSIS

Classification Group Predicted Group Membership Total
Neutral Happy Sad Disgust Surprise Angry Fear
Original Neutral 8 0 2 1 1 4 0 16
Cases Happy 1 10 0 1 3 1 0 16
Sad 0 0 14 1 0 1 0 16
Count | Disgust 0 0 0 12 1 3 0 16
Surprise 0 1 1 0 13 1 0 16
Angry 2 0 1 0 1 12 0 16
Fear 1 0 0 0 0 0 15 16
Neutral 50 0 125 | 6.3 6.3 25 0 100.0
Happy 6.3 62.5 0 6.3 18.8 6.3 0 100.0
Sad 0 0 87.5 6.3 0 6.3 0 100.0
% Disgust 4 0 0 0 75 6.3 18.8| 100.0
Surprise 0 6.3 6.3 0 81.3 6.3 0 100.0
Angry 12.5 0 6.3 0 6.3 75 0 100.0
Fear 6.3 0 0 0 0 0 93.8| 100.0
Cross- Neutral 3 3 2 2 2 4 0 16
Vali- Happy 2 5 0 2 5 1 1 16
dated Sad 1 1 9 1 2 2 0 16
Cases Count | Disgust 5 0 1 6 1 3 0 16
Surprise 0 4 2 0 6 3 1 16
Angry 3 0 2 3 2 5 1 16
Fear 0 1 1 0 1 0 13 16
Neutral 18.8 18.8 125 125 125 25 0 100.0
Happy 12.5 31.3 0 125 31.3 6.3 6.3 100.0
Sad 6.3 6.3 56.3 6.3 125 125 0 100.0
% Disgust 31.3 0 6.3 37.5 6.3 18.8 0 100.0
Surprise 0 25 125 |0 37.5 18.8 6.3 100.0
Angry 18.8 0 125 18.8 12.5 31.3 6.3 100.0
Fear 0 6.3 6.3 0 6.3 0 81.3| 100.0

As evident in Table 8.3, the first discriminant function uses the discriminant

variables derived from the TIVs measuredlom left and right sides of the two major

muscles, the Frontalis pars medialisl éime Orbicularis oris. The second function

(Function 2) uses the discriminant variables derived from the TIV data measured on the
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left and side of the Orbicularis oris. Thstlaignificant function (Function 3) uses the
TIVs measured on the Frontalis pars medidrentalis pars latalis, and Zygomaticus
major. Figures 3.1, 4.4 and 4.5 and Tables 4.1, 4.2 and 8.1 exhibit the physical location
and muscular alignment of the FTFP sites on the face.

Figure 8.6 and Table 8.4 present the classification results obtained when the optimal
principal components were used for devehgpihe discriminant rules to distinguish

between the seven facial expressions. As shown in Table 8.4, a high erref, rate

58.0% was observed. Figure 8.7 shows the eigenspace and the profiles of these
discriminant functions around the group centroids. A complex eigenspace obvious in
Figure 8.7 suggests an overlap betweemtwely created smaller linear spaces within
the eigenspace. It further suggests b&ttveen-group separation was not effective
using the available thermal data. One could interpret that the facial thermal features
measured on the upper parts of the face (R1 and R2) did not provide efficient

discriminant functions for developing a robust classifier.

8.2.1 Significance of the classification results

The practical significance of the classifier performance was calculated using Huberty’s
statistical significance test. The statisfiosthe neutral, pretended happy, sad,

disgusted, surprised, angry and fearful faces are given in Table 8.5. The overall
significance test statistip€0.05) suggests that the classification results were
statistically significant.

Huberty’s test was also invoked for assessing the practical significance of
classification results. The resulting index val§e32) suggested that the employed
computational procedure reduced the chantetassification errors by 32.29 %. The
computational methods for estimating thgngicance of classification results were

presented in chapter 5.

8.3 AFEC using the TIVs measured around mouth (R3) and on chin (R4)

In a following analysis, the TIVs recorded on the FTFP sites within the facial regions 3
and 4 (around mouth and chin) were usedrfining the classifier. Once again, the

TIVs data were first transformed into thecorrelated principal components. Only first

8 of 24 derived principal components sigesiintly contributed to the variance in the
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TIV data. Figure 8.8 exhibits a scree plot showing the contribution each principal
component made in the underlying varianc¢éhef TIVs data collected at FTFP sites
within the facial regions 3 and 4.

In the next step of classifier consttioo, the derived principal components were
analysed to discover the optimal principal components. Only 11 of 24 derived principal

components were found helpful in the between-class separation.

Figure 8.7: Approximate location of the 7 group centroids within the eigenspa&cdata from the facial
regions R1 (forehead) and R2 (eyes and cheeks) were used to train the classifier

TABLE 8.5: SGNIFICANCE OF CLASSIFICATION RESULTS

Statistic Value Level of significanced)
*

zZ,. . |833 <0.005
3

Zyppy | 593 <0.005

Zo 4.32 <0.005

Z o | 514 <0.005
3

Zprise | 514 <0.005
&3

Z ery 5.93 <0.005

Zow | 192 0.0274
*

Zoverall 8.06 <0.005
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Figure 8.8: Contribution of the 24 principal components in the data variance for the &Xac&sion measured
using the TIV data from facial regions R3 and R4

These components contributed in increasing~thatio when the optimal principal
components selection algorithm was invok&sl anticipated, some of the 11 most
discriminating components did not have gheigenvalue. Figure 8.9 presents the
Andrews’ curves drawn for the 11 optimal principal components that contributed to the
underlying variation in the TIV data measured around the lips and chin. The Andrews’
curves for the 7 facial expression group clsste Figure 8.9 explain the between-facial
expression group differences. Each facial expression has a distinct profile of curves.
The curves in each cluster window fall into a moderately narrow band suggesting
homogeneity in the variance structure.

As was the case in the previous analysis, the three distinct curves, visible in the
clusters of facial expression groups in Figure 8.9 belong to the three participants with
facial hair. The TIVs measured on the faces of these participants were different than
those measured on other participant faces. Compared to Figure 8.4, these three faces
with facial hair appeared far from the remaining faces within their respective facial
expression group windows in Figure 8.9. Excluding these three participants, the curves
appear to have similar profiles suggesting presence of a reasonable amount of within-

group similarities. The Andrews’ curves between the range - and -37t/8 show major

between-group variation in Figure 8.9.
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Figure 8.9: Andrews’ curves drawn using the TIV data gathered from the fad@misd®3 (mouth) and R4
(chin)

After the discovery of optimal facialéhmal features, the linear discriminant
algorithm was invoked on them for démging the discriminant functions. The
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respective statistical significance levels of the resulting discriminant functions were
calculated using Equation 6-1. Only first two discriminant functions were significant
(p<0.05) suggesting a low probability lnétween-facial expression group separation
within the eigenspace.

Table 8.7 presents the structure matrix resulting from the discriminant analysis. The
numeric coefficients in the structure matrix allow interpreting the contributieadt
variable in the formation of the discriminant functions.

The structure matrix in Table 8.7 suggests that the first discriminant function uses
the discriminant variables derived from th&/$Imeasured on Orbicularis Oris (please
refer to Figure 8.1 and Table 8.1). The second significant function, Function 2 uses the
discriminant variable derived from the TIVs measured on the left hand side of
Orbicularis Oris, on Depressor Anguli Oris and on the Mentalis.

Figure 8.10 and Table 8.8 show the classification success results observed when the
optimal principal components (derived from around mouth and chin) were used as input

vectors to train the classifier. A higher classification error rgte (= 66.1%) was

observed when the optimal features were used for classifying the unknown TIRIS.

TABLE 8.6: SGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS DERIVED USING THETIV DATA MEASURED ON
FACIAL REGIONSR3 AND R4

Test of Functions Wilks’ Lambda Chi-square df Sig.
1 through 6 0.222 153.460 66 0.00
2 through 6 0.386 97.081 50 0.00
3through 6 0.656 42.992 36 0.197
3through 6 0.821 20.159 24 0.688
3through 6 0.914 09.140 14 0.822
6 0.985 1.539 06 0.957

TABLE 8.7: SSRUCTURE MATRIX FOR THE SIX DISCRIMINANT FUNCTIONS DERIVED USING THE IV DATA MEASURED
ON FACIAL REGIONSR3 AND R4

Principal | Function1 | Function2 | Function 3| Function4| Function5| Function6
compone
nt

C-13 0.426 0.137 -0.062 -0.134 -0.316 -0.174
C-08 0.273 0.243 -0.050 0.060 -0.167 -0.160
C-04 -0.219 0.230 0.527 0.219 -0.010 0.042
C-10 -0.258 -0.073 0.044 0.576 -0.214 0.181
C-16 0.355 0.066 0.453 0.496 0.148 -0.305
C-18 0.059 -0.294 0.155 -0.075 0.493 -0.210
C-02 0.121 -0.166 -0.437 0.436 0.469 -0.085
C-14 -0.008 0.283 0.185 -0.275 0.465 -0.017
C-20 0.340 -0.206 0.063 0.129 -0.164 0.569
C-22 0.066 0.478 -0.230 0.140 0.341 0.568
c-07 0.142 -0.250 0.337 -0.231 0.136 0.491
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Figure 8.10: Classification results observed when the TIV data from the facial regiom®&R)(and R4 (chin)
were used to train the classifier

TABLE 8.8: Q.ASSIFICATION RESULTS OBSERVED WHEN OPTIMAL FEATURES WERE USED FOR CLASSIKTION

Classification Group Predicted Group Membership Total
Neutr Happy Sad Disgust Surprise Angry Fear
al
Original Neutral 4 2 1 2 4 1 2 16
Cases Happy [ 1 5 1 3 2 2 2 16
Sad 3 0 10 0 0 1 2 16
Count Disgust 1 2 0 9 1 3 0 16
Surprise 1 1 0 1 13 0 0 16
Angry 3 1 1 4 0 7 0 16
Fear 1 0 1 1 2 0 11 16
Neutral 25 12.5 6.3 125 25.0 6.3 12.5 100.9
Happy 6.3 31.3 6.3 18.8 125 125 12.% 100.¢
Sad 18.8 0 62.5 0 0 6.3 12.5 100.0
% Disgust 6.3 125 0 56.3 6.3 18.8 0 100.0
Surprise 6.3 6.3 0 6.3 81.3 0 0 100.0
Angry 18.8 6.3 6.3 25.0 0 43.8 0 100.0
Fear 6.3 0 6.3 6.3 12.5 0 68.8| 100.0
Cross- Neutral 1 2 1 2 4 2 4 16
vali- Happy |2 1 1 2 5 3 2 16
dated Sad 4 0 8 0 0 2 2 16
Cases | count Disgust | 1 4 1 6 1 3 0 16
Surprise 2 2 1 1 10 0 0 16
Angry 4 3 1 5 0 3 0 16
Fear 2 1 1 1 2 0 9 16
Neutral 6.3 125 6.3 125 25 125 25 100.0
Happy 12.5 6.3 6.3 125 31.3 18.8 12.% 100.¢
Sad 25 0 50 0 0 125 12.5 100.0
% Disgust 6.3 25 6.3 37.5 6.3 18.8 0 100.0
Surprise 125 125 6.3 6.3 62.5 0 0 100.0
Angry 25 18.8 6.3 31.3 0 18.8 0 100.0
Fear 12.5 6.3 6.3 6.3 125 0 56.3 100.0
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Figure 8.11: The 7 facial expression groups at their respective group centroids. The TIV dat@fnodnmouth
(R3) and on chin (R4) were used to train the classifier

TABLE 8.9: SGNIFICANCE OF CLASSIFICATION RESULTS

Statistic Value Level of significanced)
Z:nrmal 15.49 <0.005

Z* 15.49 <0.005

happy

Z:ad 4.0 <0.005
Z;isgust 5.14 <0.005
Z:urprise 2.45 <0.005

Z:ng’y 8.32 <0.005

Z*ear 4.32 <0.005
Z:vem” 8.66 <0.005

Figure 8.11 exhibits the discriminating functions at their group centroids. A
complex discriminating space is evidenfigure 8.11 suggesting an overlap between
the smaller linear spaces within the eigenspace.
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8.3.1 Significance of the classification results
The significance levels for the neutral, preted happy, sad, disgusted, surprised, angry
and fearful faces, and the overall significance level are given in Table 8.9. The test
significance levels reported in Table 8dx(.05 were obtained using Equations 5-24
and 5-25. The resulting statistics suggestatl ¢cfassification results were significant.
Huberty’s test for assessing the practical significance of classification results was
also invoked to determine the extent to vhhilee classification results were better than
those that could be obtashéy chance alone. The indexcalculated using Equation 5-
26, was found to be 21.87 suggesting that the discrimination procedure reduced the

chances of classification errors by 21.87 %.

8.4 Discussion
A previous investigation suggested ttta increased blood volume flow around the
upper parts of the face might result in dissipating more amount of heat from the upper
parts of the face and might allow detection of negative emotional experiences (Puri et
al. 2005). During this investigation, the s$#fier trained using the thermal features
extracted from the upper parts of the face (R1 and R2) performed comparatively better
than the classifier trained using the thermal features extracted from the lower parts of
the face (regions 3 and 4). Figure 8.12 compares the differences between the AFEC
potential of thermal facial features extracted from the upper and lower parts of
participant faces.

The classification results reported in Fig8r&2 were also consistent with some
other previous investigations. For example, (Kobayashi and Tagami 2004) studied the
differences in the biophysical functions atigas physical locations on the facial skin.
Their work focused on examining the poor functional properties of the stratum corneum
epidermis. The termstratum corneurhis used for the outermost layer of the skin (also
called epidermis). The stratum corneum is made up of the dead and usually flat skin
cells.
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Figure 8.12: Performance of the two classifiers compared. The blue baetérttiie performance of the
classifier trained using the TIV data measured from facial regions R1 (forehead) and fankye
cheeks). The red bars indicate the performance of the classifier trained using the TI\éakateemh
from facial regions R3 (mouth) and R4 (chin).

These dead cells shed frequently, geneediiyut after every 14-15 days (Skin Anatomy
and Physiology 2005). It was also discovkre (Kobayashi and Tagami 2004) that the
cheeks had the lowest epidermis temperature as compare to the other anatomical parts
of the face. However, the cheeks anddhegions around the nose had a much higher
blood flow rate as compare to the other anatomical parts of the face (Kobayashi and
Togami 2004). The epidermis temperatureasurements around various anatomical
parts of the face (shown in Figure 8.1) in tinigestigation were vg similar to the ones
(Kobayashi and Togami 2004) observed and reported in their paper. The facial
temperature distribution patterns deriyeain the TIV data concurred with the
epidermis temperature distribution patie (Kobayashi and Togami 2004) observed.

(Kobayashi and Togami 2004) also ohsel a positive correlation between the
blood-flow rate and skin temperature measured on the epidermis (Kobayashi and
Togami 2004). It is argued that an increased blood flow results in the dissipation of
more heat from the epidermis of the face (Puri et al. 2005).

The similarities in emotion-specific blood volume flow variations observed at

various anatomical locations of the fao®d the positive correlation between the blood
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volume flow and the skin temperature measnents might have contributed to the
classification errors and cardion patterns reported earlier in Tables 8.4 and 8.8. As
evident in Table 8.4, a lower classification error rate was attained when TIVs on the
forehead and from around the eyes and clileigk blood volume flow areas) were used
for training the classifier. Classification ermates reported in Tables 8.4 and Table 8.8
show that the classifier trained with the thermal data around mouth and chin (low blood
volume flow areas) was less efficient. A comgan of the confusion matrices in Tables
8.4 and 8.8 suggest that the discriminaigsaeveloped using the thermal data form

the high blood flow areas (forehead, eyes and cheeks) of the face were comparatively
more efficient than the discriminant rules developed using the TIV data measured from
around the lower parts of the face.

(Partala et al. 2006) estimated the teak emotional experiences using the
electromyographic (EMG) activity measured the two major facial muscles:
Zygomaticus Major and the Corrugator Sujdkr&ygomaticus Majors believed to be
active during smile whereas Corrugator Supercilli is believed to be active during
frowning. As evident in Figures 4.5 and 4.6 (in Chapter 4), Zygomaticus Major is
located around the mouth and cheeks whereas the Corrugator Supercilli is physically
located on the upper part of the facar{Bla et al. 2006) estimated negative and
positive facial expression of evoked affective states using the EMG activity measured
on Zygomaticus and Corrugator Supercilli (Partala et al. 2006). The average
Zygomaticus Major and Corrugator Supercilli responses in the study showed a
significant influence of stimulus on these two muscles. However, the Corrugator
Supercilli measurements were found to be more effective than those of the Zygomaticus
Major for estimating the positive and negative facial expressions of affective states
(Partala et al. 2006). These facial expression classification resudalso consistent
with the AFEC results observed in this investigatigrsented earlier in Tables 8.4 and
Table 8.8).

The classification results observed in this work were also consistent with those
realised by (Lien et al. 1998) in a previaigdy. They developed a computer vision
system to differentiate between the subdifferent facial expressions. They employed
three different facial feature extractiontimeds: facial feature point tracking method,
dense flow tracking with PCA, and higjnadient component analysis method for
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developing the facial expression classificatsystem. Only 15 % classification error

rate was observed when the high-gradeamhponent analysis method was used on the
features extracted from the upper part of the face. When the same method was used on
the facial features extracted from the lower part of the face, a higher (19%) error rate
was observed (Lien et al. 1998). Howetbeir classification results were much

different when the facial feate point tracking method was used for extracting the facial
features (Lien et al. 1998). The facial featpoint tracking based classification system
developed using the facial features frtma upper part of the face was a little less

effective than the one that employed facial features extracted from the lower part of the
face. The dense flow tracking with PCA based method (Lien et al. 1998) also resulted in
a 93% classification success rate when thaifeatextracted from the upper parts of the
face were used to train the classifier. It is important to remember that (Lien et al. 1998)
used the visual signals for developing AfEC capable system so their classification
results may not be directly compared with the ones observed in this investigation.

As evident in the Andrews’ curves plot in Figures 8.4, 8.5 and 8.9, the TIV
measurements on the participant faces caveneler the facial hair were significantly
different than the ones measured on the facial skin surface. This difference probably
represents a difference in the emissiviydf the two surfaces. Therefore, it would be
appropriate to develop a persindependent classifier fpeople having facial hair or
wearing glasses.

These AFEC results encourage exploring possibilities of classifying the facial
expressions using a combination of the TIV data measured along the major facial
muscles. For example, lighting and pose conditions sometimes allow extracting the
facial (or thermal) features from only one side of the face. Hence, it might be useful to
measure TIV data along the facial musdépositive and negative expressions on just

one side of the face for classifying the positive and negative facial expressions.

8.5 Conclusion

This part of the investigation aimedeadploring the possibilities of recognising and
classifying facial expressions usingrs®regional thermal features under the
assumption that the other parts of the face were not available for feature extraction.
Thermal images of participant faces were divided into four regions. The forehead was
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considered region 1(R1). The areas around the eyes and cheek were considered region 2
(R2). The area around the mouth was considered region 3 (R3) and the part of the face
around the chin was considered region 4 (R4). The TIVs recorded at the FTFP sites
within regions 1 and 2 were grouped togetir@cial regions 3 and 4 were separately
grouped together. The TIVs measured within each of these two groupings were
separately used to train the classifiers.

When the TIVs around regions 1 and 2 (upper parts of the face) were used for
AFEC, a high error rate (58.0%) was observed during the cross-validation tests. The
classifier performed at an even higher erate (66.1%) when the TIVs around regions
3 and 4 (lower parts of the face) were used to train the classifier. In both cases, a subset
of optimal features was used to train the classifier. These results suggest that variations
in the TIVs data measured on the FTFP sites within the selected regions of a series of
thermal images do not allow dividing thgenspace along the discriminant function
boundaries. Hence, one would assume that the thermal features gathered from the FTFP
sites on the selected parts of the face did not help in classifying the facial expressions of
affective states. Also, it became obvious fribms investigation that the regional facial
thermal data might not allow constructiaget of effective discriminant rules for
achieving the AFEC functionality.

The classification results therefore suggest that the entire frontal views of the faces
would be required to classify the facial expressions of affective states using the facial
thermal features.
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CLASSIFICATION OF EVOKED FACIAL EXPRESSIONS

The investigations and analyses reportechizpters 6 and 7 suggest that the TIV data
gathered from the FTFP sites on an entire face might help in classifying the simulated
facial expressions of affective states. In a life like situation, the AFEC would be
performed on naturally occurring spontans and evoked or reactive expressions of
affective states. Therefore, in this part of the investigation, an attempt was made to
measure and classify the temporal therfeatures on the faces with naturally evoked
facial expressions of affective states.

Earlier research suggests that an ability to distinguish between the subtle and
reactive facial expressions would help afifee systems perform in life like situations
(Dautenhahn and Billard 1999). In some eamkerks, scientists were able to extract
useful human information from the bio-physiological signals for recognising the subtle
and finer expressions of affects (Dautdmhand Billard 1999). However, the viability
of using the temporal facial thermal features in classifying the subtle and evoked facial
expressions of affective sémt has yet to be explored.

Previous attempts of using the human bio-physiological information in AFEC and
AAR have been critically analysed in the literature. For example, in concluding their
recent work on problems and prospects of affective computing, (Ward and Marsden
2004) wrot€e'lf physiological measurement is to be useful in human—computer
interaction, in the ways currently envisaged in the literature, it has to be able to identify
reactions to subtle events, not just major failures of interaction. Similarly, physiological
measurement has to be able to detect thesetions in loosely controlled naturalistic
situations representative of real compubse, rather than tightly controlled laboratory
settings. Psychophysiological data is very noisy, making cause and effect difficult to
demonstrate. Even where there is clear cause and effect, interpretation in terms of

users’ internal mental processes and experiences presents serious further problems.”
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This part of the investigation providaa opportunity to address some of these
concerns. From the affective computing persigecthis part of the thesis, for the first
time, compares the thermal differences between the simulated and naturally occurring
facial expressions of affective statehe Hifferences in a classifier’s ability to recognise
the pretended and evoked facial expressions using the facial skin temperature
measurements are also examined. Differentiating between the evoked and reactive facial
expressions with the help of facial thel features might supplement the existing
approaches for classifying subtly diffetéacial expressions. Since hiding the bio-
physiological responses to emotions is difficult, this investigation might assist
researchers in finding a novel way of discovering the concealed emotions.

Following paragraphs present details of the evoked thermal data acquisition
protocols. The statistical analyses of #weked expression daéad the evoked facial
expression classification results are akgoorted in the following paragraphs. The
observed classification results are discusséldea¢nd of this chapter to conclude this
last phase of investigation.

9.1 Equipment, software and participants

The physical facilities, equipment, hardeasoftware and accessories reported in
chapter 4 were again used during this pledsavestigations. The image acquisition
process reported in chapter 4 was repeated again to acquire the thermal and visible-
spectrum images of 10 undergraduate stud&hts participants, 7 male and 3 female
had a mean self-reported age of 21 years 2 months. Only 3 of the 10 part@ipants
participated in the previous experimentsawtihe intentional facial expressions were
recorded. Participants included Arabs, Iranians and Indians. All participants allowed
using their visible-spectrum and infrared images for publication and dissemination of

information.

9.2 Evoking expressions and acquiring thermal images

The Psychology and Cognitive Studies literattited several methods of prompting
and stimulating emotions and affective statearlier researchers reported that inducing
genuine and authentic emotions was a diffimb and suggested that care should be
taken in making judgments about the obsdremotions and their expression. It was
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suggested that the desired emotive statesvbked in a way that participants would not
simulate the emotion either intentionallywrintentionally (Dror et al. 2005; Hirsch and
Mathews 1997; Murphy and Zajonc 1993; Nieitiah et al. 2000; Wild et al. 2001).

Some widely used methods of evoking ¢immas include affective picture viewing,
emotive text reading and storytelling (Partala et al. 2006; Whiteside 1998). Participants
in (Dror et al. 2005; Toivanen 2004; Wild et al. 2001) were exposed to one or more of
these stimuli for invoking the desired positive and negative emotions. In some
experiments, emotions weegoked by letting the participants read stories or emotive
text. The literature highlighted a need for specialised expertise to select the most
effective text and stories. In a typicattseg, qualified and trained psychologists are
involved in selecting effective stimuli asetbask required special skills (Dror et al.

2005; Partala et al. 2006; Toivanen 2004; Wild et al. 2001).

Some specially collected and well-testiedabases of images and photographs that
are used for evoking emotions are avaitabh the World Wide Web. These databases
have been employed in many recent studies for invoking the affective states. One such
database, International Affective Pictures@m (IAPS), was developed at the Center
for the Study of Emotion and Attention at the University of Florida (Dror et al. 2005;
Toivanen 2004). The IAPS database was usegveral recent investigations for
invoking emotions (Mikels et al. 2005). It comtaia large set of different pictures that
allow evoking emotions along the dimensiafisalance and arousal (Wild et al. 2001).
The IASP site managers were contacted to access the IASP database but they never
acknowledged so the IASP imadatabase could not be acceksks an alternate, the
relevant literature was reviewed for developing an appropriate approach in this
investigation.

A set of still images and &eo clips was selected and used for evoking expressions
of happiness, sadness, disgaustl anger in this investigation. The contents of these
stimuli were similar to the contents of the pre-categorised IASP images available on the
web. The selected stimuli were available at the official web sites of some prestigious
publishers such as BBC, MSNBC, and CNN. Selected images were compared and
matched with the categorised pictures (available online) in the IAPS database.
Extremely violent and disturbing imagesdamages with unethical contents were

avoided. The images and contents of selkoideo clips were no more extreme that
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those shown on mainstream television nawd feature stories. Sources of the

employed image and video clip sources are listed below.

Resources for evoking happiness and its facial expression were taken from:
* ‘Allo ‘Allo (BBC.COM)
* Bread (BBC.COM)
* Porridge (BBC.COM)

Resources for evoking sadness andbitsal expression were taken from:
* Ferry Disaster in Pictures (BBC.COM)

Pictures from the Disaster zone, Galtuer, Austria (BBC.COM)

* Turkey 1999 earthquake pictures (The New York Times)

* Caracas, Venezuela, pictures of 1999 floods and disasters (CNN.COM)
* Oklahoma City Bombing destruction pictures (CNN.COM)

* Pictures of June 2001 Missile fire destruction in Iraq (CNN.COM)

Expression of disgust was evoked using the following resources:
* Shock posters (BBC.COM)
* Shock Ads (BBC.COM)
* Stop Litter pictures (BBC.COM)
* Caracas, Venezuela, pictures of 1999 floods and disasters (CNN.COM)
* Oklahoma City bombing destruction pictures (CNN.COM)
* Pictures of June 2001 Missile fire destruction in Iraq (CNN.COM)

Expression of anger was evoked using the following resources:
* 2002 Riots in Gujarat, India (BBC.COM)
* In pictures: Anger and anguish in Iraq (BBC.COM)
* In pictures: Argentina anger boils over (BBC.COM)
* |raqi prisoner abuse (Washington Post)
* Abu Ghoraib prison pictures (The New Yorker online)

The employed images and video clipsl lheth high-emotion and low-emotion
evoking contents. Participants’ visitdad infrared images we simultaneously

recorded when an evoked emotion was redlig\fter capturing the images with neutral
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faces, each participant was made to exjpexe and express happiness, sadness, disgust
and anger.

Recordings were often repeated for deping a good set of desired images. Of
several recorded images, the ones that best represented the emotive states were selected
and used in the investigation. This ensured using the best practices for prompting the
affective states and recording the realistic facial expression of affects.

A team of three referees was requested to select the best visible pictures that truly
reflected the desired emotions. The referees were requested to use their collective
judgment for selecting the best expreasof affective states. The referees, by
consensus, agreed on the realistic expressions in the pictures and selected the most
natural looking pictures of evoked expressionNgh each selectedsible picture, the
corresponding thermal image was selected and used in the further analysis and
classification. The evoked facial expressioh$wvo participants are shown in Figures
9.1 and 9.2.

Figure 9.1: A female participant with evoked facial

- Figure 9.2: A male participant with evoked facial
expressions

expressions
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As in the previous experiments, participants were briefed about the objectives of
experiments, methods and procedures ang@ihigable outcome of the experiments. All
participants were adults. They were infornadmbut the potential benefits of the research
and related experimentBarticipants were given an oppority to either continue or
quit after the briefing. Efforts were matteprotect participants from any physical

and/or emotional harm and damage.

9.3 Analyses of evokeéxpression thermal data

The thermal data with evoked facial expressiwere first tested for the assumption of
normal distribution. Following the successfudttef normal distribution of the data in
individual TIRIs, participants’ images show a particular facial expression were
grouped together and the data wereetkstgain for the assumption of normal
distribution. Based on the standard test results, The TIVs measured at only 4 of 75
(5.33% FTFP sites violated the assumption of normal distribution.

Similarly, the TIVs measured at 16 of 78L(33%) FTFP sites had kurtosis statistics
that suggested violation of the assumption of normal distribution. The assumption of
normal distribution was further examined through the visual inspection of Histograms
and Q-Q plots. The Kolmogorov-Smirnov aBtapiro-Wilk tests were also invoked on
the data. Based on the initial analyses, it e@ssidered safe to assume that the evoked
expressions data were normatligtributed. Figure 9.3 exhibits a few distributions of
the TIV data measured at various FTFP sites.

The facial expression groups were also tested for the similarity of covariance
structure before invoking the multivariate analyses and pattern recognition algorithms.
The groups of TIRIs with neutral facasd faces with four evoked expression
(happiness, sadness, disgust and anger) eoen@ared. The test of sphericity was
insignificant at p > 0.05) suggesting symmetry of variance structures in the facial

expression groups.
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Figure 9.3: A typical distribution of the TIV data measured on six randomly selected FTFP sites
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Figure 9.4: Contribution of the 75 principal components in the measured evoked TIV data variance

The conservative estimates of sphiyidGreenhouse-Geisser correction, Huynh-
Fieldt correction and lower-bound test atsmgested that the TIV data met the
assumption of compound symmetry andfeém@al expression groups had a similar
structure of variance. The initial data analyseggested that the TIV data were suitable
for multivariate transformations andetpattern recognition techniques might be

invoked on the data.
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9.4 Classifying the evokd facial expressions

The algorithmic approach presented earlier in Chapter 5 was employed for classifying
the neutral faces and the faces with evoked facial expressions. As was done while
classifying the intentional facial expressions, the TIV data were first transformed into
uncorrelated principal components using #ingular value decomposition algorithm.
Figure 9.4 exhibits a scree plot showing flrincipal components and their contribution
in the underlying variance of the TIV dafaable 9.1 provides the eigenanalysis results
for all 75 principal component derived from the 75 TIVs on the 10 participant faces.
Only 24 of 75 principal components in Table 9.1 significantly contributed to the
variance in the TIV data. There was no evidence to believe that these 24 principal

components would significantly contribute to the between-group separation.

TABLE 9.1: THE 75 PRINCIPAL COMPONENTS AND THEIR RESPECTIVE EIGENNVALUES

Principal Principal
Component | Eigenvalue| Proportion| Cumulative| Component | Eigenvalue| Proportion| Cumulative

PC-1 34.903 0.465 0.465 PC- 39 0.095 0.001 0.993
PC-2 7.942 0.106 0.571 PC- 40 0.088 0.001 0.994
PC-3 4.530 0.06 0.632 PC- 41 0.085 0.001 0.995
PC- 4 4.057 0.054 0.686 PC- 42 0.069 0.001 0.996
PC-5 2.689 0.036 0.722 PC- 43 0.065 0.001 0.997
PC- 6 2,511 0.033 0.755 PC- 44 0.063 0.001 0.998
PC-7 1.829 0.024 0.779 PC- 45 0.049 0.001 0.998
PC-8 1.483 0.02 0.799 PC- 46 0.039 0.001 0.999
PC-9 1.438 0.019 0.818 PC- 47 0.032 0 0.999
PC- 10 1.193 0.016 0.834 PC- 48 0.026 0 1
PC-11 1.123 0.015 0.849 PC- 49 0.019 0 1

PC- 12 0.956 0.013 0.862 PC- 50 0 0 1
PC-13 0.831 0.011 0.873 PC-51 0 0 1

PC- 14 0.787 0.01 0.884 PC- 52 0 0 1

PC- 15 0.726 0.01 0.893 PC- 53 0 0 1

PC- 16 0.64 0.009 0.902 PC- 54 0 0 1

PC- 17 0.599 0.008 0.91 PC- 55 0 0 1

PC- 18 0.585 0.008 0.918 PC- 56 0 0 1

PC- 19 0.508 0.007 0.924 PC- 57 0 0 1

PC- 20 0.49 0.007 0.931 PC- 58 0 0 1
PC-21 0.484 0.006 0.937 PC- 59 0 0 1

PC- 22 0.437 0.006 0.943 PC- 60 0 0 1

PC- 23 0.391 0.005 0.948 PC- 61 0 0 1

PC- 24 0.352 0.005 0.953 PC- 62 0 0 1

PC- 25 0.329 0.004 0.958 PC- 63 0 0 1

PC- 26 0.314 0.004 0.962 PC- 64 0 0 1

PC- 27 0.285 0.004 0.965 PC- 65 0 0 1

PC- 28 0.273 0.004 0.969 PC- 66 0 0 1

PC- 29 0.235 0.003 0.972 PC- 67 0 0 1

PC- 30 0.224 0.003 0.975 PC- 68 0 0 1
PC-31 0.196 0.003 0.978 PC- 69 0 0 1

PC- 32 0.181 0.002 0.98 PC- 70 0 0 1

PC- 33 0.175 0.002 0.983 PC-71 0 0 1

PC- 34 0.159 0.002 0.985 PC- 72 0 0 1

PC- 35 0.144 0.002 0.987 PC-73 0 0 1
PC-36 0.134 0.002 0.988 PC- 74 0 0 1

PC- 37 0.127 0.002 0.99 PC- 75 0 0 1

PC- 38 0.109 0.001 0.992
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Figure 9.5 shows the separation betweenniutral and invoked facial expressions
of happiness in a 2-principal component aegpace. The neutral faces could be easily
separated from the happy faces. The underlying between-group separation is obvious in
Figure 9.5.

Figure 9.6 exhibits how the neutral and sad faces were separated in a 2-principal

component eigenspace.

Figure 9.5: Separation of the neutral faces and evoked expression of happiness in a 2-PC eigenspace

Figure 9.6: Separation of neutral faces and evoked expression of sadness in a 2-PC eigenspace
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Figure 9.7: Separation of neutral faces and faces with evoked expression of disgust in a 2-PC eigenspac

Figure 9.8: Separation of the neutral faces and evoked expression of anger in a 2-PC eigenspace

Figure 9.7 shows how the neutral faces tnedfaces with the evoked expression of
disgust were separated in a 2-principal component eigenspace.

Figure 9.8 exhibits the separation between the neutral faces and faces with the
evoked facial expression of anget@ 2-principal component eigenspace.

Figures 9.5, 9.6, 9.7 and 9.8 provide convincing information about the differences in
the thermal profiles of the neutral faces and the faces with evoked facial expressions. It

is obvious in the four figures that a neutral face, with all facial muscles in their natural
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position, is thermally different from a face that expresses an evoked positive or negative
effective state.

In a following analysis, the patterns of thermal differences between the positive and
negative facial expressions were examinguk first 2 principal component scores
computed for the facial expressionshajppiness, sadness,glist and anger were
plotted in a 2-dimensional eigenspace.

As evident in Figure 9.9, facial exgeons of happiness and sadness were found
difficult to distinguish in a more congx 2-principal component eigenspace.

The separation between the evoked negatipression of sadness, disgust and
anger also appeared difficult in a 2-dimensional eigenspace. Figure 9.10 shows a
complete overlap between facial exgs®n of sadness and disgust on 8 of 10
participant faces. It is obvious in Figure 9.10 that the first two principal components
might not provide sufficient information f@ffectively classifying the three facial

expressions.

Figure 9.9: Evoked facial expressions of happiness and sadness in a 2-PC eigenspace
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Figure 9.10: Evoked facial expressions of sadness, disgust and anger in a 2-PC eigenspace

Figure 9.11: Evoked facial expressions of happiness, sadness, disgust and anger in a 2-PC eigenspace

Figure 9.11 exhibits a positive and threeleed negative facial expressions in a 2-
principal component eigenspace. Figure &b demonstrates an overlap between the
facial expressions of the three negatiffecive states. However, the positive facial
expression of happiness appears to be esspggrable from the three negative facial

expressions.
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Figure 9.12: Neutral faces and faces with evoked facial expressions of happiness, sadnsssndisinger in a
2-PC eigenspace

The facial expressions of negative eraon$§; sadness, disgust and anger in Figure
9.12, appear to have similar eigenscores fadimensional eigenspace. However, the
neutral faces and faces with evoked egpi@n of happiness seem to have different
eigenscores and are distinguishable from tlgatnee facial expressions in a 2-principal
component eigenspace.

The thermal profiles of the neutral faces and the faces with evoked facial
expressions of positive and negative experiences appear to be different, even within a 2-
dimensional eigenspace. However, the fnwg principal components might not be
expected to explain all the variance betwtdenneutral and the four evoked facial
expressions.

To further examine the variance structure of the TIV data, the Andrews” plots
explained earlier in Chapter 7, were dramsing the principal component scores
derived from the TIV data. Figure 9.13 stwoprincipal component scores Andrews’
plot for each facial expression in a sepamsindow. The plots for neutral and happy
facial expressions were different than ghdsr the faces with evoked expressions of
sadness, disgust and anger. This diffeeein thermal profiles implied the underlying
differences between the thermal features pertaining to the neutral, positive and negative

facial expressions.
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The individual facial expression groups in each of the 5 windows exhibit a visually
consistent within-group profile of curves. Hence, the within-group variance in the
individual facial expression group clusters in Figure 9.13 seems encouraging. On the
contrary, the graphical appearance of the patterns of between-group variance seems
visually different and suggests that the TIV data might help in developing the
discriminant functions. The distinct curves within the individual facial expression
clusters, representing the within-group variation, might have resulted from the varying
intensities of the facial expressions (arodaator). Natural differences in the facial
skin temperature of the participants or an underlying difference in the facial skin
emissivity €) due to factors such as facial hair and the skin colour could also contribute
to such variations (Jones 1998). Th&dtum corneum epiderniifactor discussed
earlier could also influence the thermal profile of an individual participant’s face
(Kobayashi and Tagami 2004; Skin Anatomy and Physiology 2005).

Examining the actual influence of one or more of these factors on the facial skin
temperature and the TIV measurements is beyond the scope of this investigation.

However, the principal component scores plotted in an eigenspace and the graphical
profiles of the Andrews” curves suggest that the neutral faces and the faces with evoked
facial expressions may be thermally distinguished.

The derived principal components were tested for their contribution to the variance
in the thermal data. The optimal featurkesgon algorithm was invoked for discovering
the optimal facial featureEigure 9.14 shows the recursive discovery of the optimal
principal components and the corresponding increase in the resuliatig. Only 30 of
the derived principal components showrrigure 9.14 were found significantly helpful
in increasing thé& ratio. These most discriminating principal components were used to
train the classifier.

Since the data were normally distributed, the facial expression groups had a similar
variance structures and each facial expression group had the same number of
participants, an equal priori was assumed during the discriminant analysis.
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Figure 9.13: Andrews’ curves drawn using the principal components scores foutte aed evoked facial
expressions of happiness, sadness, disgust and anger

TABLE 9.2: SIMMARY OF CANONICAL DISCRIMINANT FUNCTIONS
Cumulative Canonical
Function | Eigenvalue | Percentage of Variance| percentage Correlation
1 46.767 78.5 78.5 0.989
2 7.115 11.9 90.4 0.936
3 3.770 06.3 96.7 0.889
4 1.943 03.3 100.0 0.813
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Figure 9.14: Stepwise selection of optimal components and corresponding increade riatitne

TABLE 9.3: SGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS

Test of Functions Wilks’ Lambda Chi-square df Sig.
1 through 4 0.000 279.564 112 0.00
2 through 4 0.009 153.908 81 0.00
3through 4 0.071 85.861 52 0.002
4 0.340 35.082 25 0.087

Table 9.2 summarises the canonical discriminant functions and the pertinent

statistics. It also provides an estimatehe underlying contribution of each

discriminant function in between-group separation.

Table 9.3 shows the chi-square statistics and the respective significance of each

discriminant function.

Table 9.4 reports the structure matrix showing the pooled within-groups correlations

between the discriminating variables.

Table 9.5 presents the standardised canonical discriminant function coefficients. The

group membership of an unknown thermal face is determined using these numeric

coefficients during the leave-one-out cross validation.
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TABLE 9.4: SSRUCTURE MATRIX FOR THE FOUR DISCRIMINATING FUNCTIONS

Variate Function 1 Function 2 Function 3 Function 4
VARIATE-55 0.005 -161(*) 0.051 0.029
VARIATE-74 0.053 127(%) 0.071 0.102
VARIATE-42 -0.025 .113(%) 0.044 -0.096
VARIATE-03 -0.002 .082(%) 0.004 -0.067
VARIATE-07 0.017 -0.094 .193(%) -0.132
VARIATE-24 0.018 0.109 .127(%) 0.024
VARIATE-40 0.025 -0.095 -.123(%) -0.051
VARIATE-14 -0.025 -0.076 -.120(%) -0.009
VARIATE-71 0.053 0.006 .118(*%) 0.031
VARIATE-19 0.025 0.013 .098(*) 0.003
VARIATE-41 0.006 -0.048 .086(*) -0.03
VARIATE-46 -0.065 -0.063 -.080(%) 0.046
VARIATE-17 -0.033 0.024 .074(*) -0.03
VARIATE-23 -0.025 -0.024 .048(*) -0.011
VARIATE-62 0.031 0.026 -0.003 -.307(*%)
VARIATE-09 -0.02 -0.021 0.116 .216(*%)
VARIATE-31 -0.019 0.051 0.13 .193(*%)
VARIATE-38 -0.021 0.076 0.136 -.180(*%)
VARIATE-36 0.031 0.066 -0.071 .158(*)
VARIATE-32 0.016 -0.107 0.13 -.134(*%)
VARIATE-08 0.009 -0.048 0.121 A27(%)
VARIATE-22 -0.035 0.101 0.057 -.125(*%)
VARIATE-10 0.045 -0.003 0.06 .125(%)
VARIATE-54 -0.016 -0.08 -0.065 .123(*%)
VARIATE-16 0.078 0.037 -0.034 -.087(*%)
VARIATE-30 0.013 -0.012 0.012 .067(*%)
VARIATE-35 0.016 0.044 -0.019 -.062(*)
VARIATE-47 0.013 0.023 -0.053 .056(*%)

TABLE 9.5: STANDARDISED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

Variates Function 1 Function 2 Function 3 Function 4
VARIATE-03 0.05 0.756 -0.021 -0.069
VARIATE-07 0.716 -0.545 0.68 -0.366
VARIATE-08 0.334 -0.455 0.581 0.362
VARIATE-09 -0.665 -0.161 0.456 0.496
VARIATE-10 2.193 0.061 0.226 0.251
VARIATE-14 -1.259 -0.567 -0.466 0.177
VARIATE-16 3.052 0.235 -0.066 -0.163
VARIATE-17 -1.578 0.104 0.227 -0.048
VARIATE-18 0.763 0.021 0.468 0.093
VARIATE-24 -0.864 0.644 0.262 -0.538
VARIATE- 23 -0.965 -0.336 0.177 0.074
VARIATE-24 0.476 0.515 0.541 0.001
VARIATE-30 0.859 -0.257 0.141 0.061
VARIATE-31 -1.036 0.427 0.34 0.163
VARIATE-32 1.322 -0.567 0.494 -0.138
VARIATE-35 1.381 0.499 -0.102 0.082
VARIATE-36 1.509 0.557 -0.431 0.384
VARIATE-38 -1.578 0.735 0.729 -0.468
VARIATE- 40 2.506 -0.25 -1.055 -0.564
VARIATE-41 0.743 -0.973 0.559 -0.112
VARIATE-42 -1.128 0.771 0.305 -0.263
VARIATE-46 -2.238 0.391 -0.202 0.48
VARIATE-47 0.67 -0.437 -0.12 0.081
VARIATE-54 -1.747 0.208 0.398 -0.069
VARIATE-55 -2.131 -1.344 0.586 0.374
VARIATE-63 -1.02 -0.017 -0.059 -0.965
VARIATE-71 2.806 0.077 0.505 -0.264
VARIATE-74 -1.278 1.223 -0.011 1.105
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Table 9.6 shows the confusion matrix dhd classification success results observed
when the classifier was trained using thigh eigenvalued principal components to
discriminate between the evoked facial esprens. As shown in Table 9.6, a high error

rate (., = 84.0%) was observed when the highegjenvalued principal components

were used for classification of unknown TIRIs.
Table 9.7 presents the classification results and the confusion matrix observed when
the classifier was trained using the optipncipal components. The classification

results in Table 9.7 show a significant reduction in the error #dfe, (= 28.09%) as

compare to the classification results shown in Table 9.6.

9.5 Classification error analysis
The linear discriminant algorithm discovered a set of 28 most effective variates for
classifying the unknown thermal faces during the leave-one-out classification tests.

These influential variates were listed in Tables 9.4 and 9.5.

TABLE 9.6: Q.ASSIFICATION RESULTS WITH HIGHEST EIGENVALUED FEATURE@OMPONENTQ

Classification Group | Predicted Group Membership
Neutral Happy Sad | Disgust | Angry Total
Original Neutral 9 0 0 0 1 10
cases Happy 1 8 1 0 0 10
Count Sad 0 1 9 0 0 10
Disgust | 1 0 0 9 0 10
Angry 1 1 0 0 8 10
Neutral 90.0 0 0 0 10.0 100.0
Happy | 10.0 80.0 10.0{ O 0 100.0
% 1
Sad 0 10.0 90.0] 0 0 100.0
Disgust | 10.0 0 0 90.0 0 100.0
Angry | 10.0 10.0 0 0 80.0 100.0
Cross- Neutral 3 0 2 2 3 10
Validated Happy | 1 2 3 2 2 10
cases Count Sad 3 1 3 2 1 10
Disgust | 2 2 1 0 5 10
Angry 4 3 1 2 0 10
Neutral 30.0 0 20.0| 20.0 30.0 100.0
Happy | 10.0 20.0 30.0{ 20.0 20.0 100.0
% Sad 30.0 10.0 30.0] 20.0 10.0 100.0
Disgust | 20.0 20.0 10.0f O 50.0 100.0
Angry | 40.0 30.0 10.0] 20.0 0 100.0
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TABLE 9.7: Q.ASSIFICATION RESULTS OBSERVED WITH THE OPTIMAL COMPONENTS

Classification Group | Predicted Group Membership
Neutral Happy Sad Disgust Angry Total
Original Neutral 10 0 0 0 0 10
cases Happy 0 10 0 0 0 10
Count Sad 0 0 10 0 0 10
Disgust | O 0 0 10 0 10
Angry 0 0 0 0 10 10
Neutral 100.0 0 0 0 0 100.0
Happy | O 1000 | O 0 0 100.0
% Sad 0 0 100.0 0 0 100.0
Disgust | O 0 0 100.0 0 100.0
Angry 0 0 0 0 100.0 100.0
Cross- Neutral 7 0 0 1 2 10
Validated Happy | O 7 2 1 0 10
cases Count Sad 0 1 9 0 0 10
Disgust | 1 1 0 7 1 10
Angry 2 0 0 2 6 10
Neutral 70.0 0 0 10.0 20.0 100.0
Happy | O 70.0 20.0 10.0 0 100.0
% Sad 0 10.0 90.0 0 0 100.0
Disgust | 10.0 10.0 0 70.0 10.0 100.0
Angry 20.0 0 0 20.0 60.0 100.0

The statistical significance levels of ttoair discriminant functions developed for
differentiating between the neutral andif@voked facial expression groups were
estimated using Equation 6-1. The significan®ge)(05) of the first three discriminant
functions in column 5 of Table 9.3 suggeka possible separation between the facial
expression groups along the first three discriminant functions. However, the fourth
discriminant function was non-significant>0.05) and could not be assumed to have a
significant role in classifying the unknown thermal faces.

Table 9.4 reported the structural coefficients of discriminant functions. These
numeric coefficients were used to interpret the contribution each variable made in
formulating the discriminant functionslethod of computing these coefficients was
presented earlier in chapter 6.

The discriminant function coefficients in the structure matrix (Table 9.4) suggest
that the first discriminant function derived constituent values from the TIVs measured
on Frontalis Pars Medialis and Frontalis Raaterals (3, 7, 9, 14, 16, 17), Orbicularis
Oculi (22, 31) and Levator Labii SuperioAfaquae Nasi (36), Levator Labii Superioris
(46), Depressor Labii Inferioris (71) and Malis (74). The first discriminant function
therefore computed the thermal featuneghe selected sites around the upper and
lower parts of the face for classifying a new and unknown thermal face.

The second discriminant function relied on the variates measured from Frontalis (8,
14, 16), Orbicularis Oculi Pars Orbital (22}, 31), Levator Labii Superioris Alaquae
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Nasi (35, 36), Levator Labii Superioris (38, 46), Zygomaticus Major (42), Risorious/
Platysma (54), Depressor Anguli Oris (%8)d Mentalis (74) for classifying the new
and unknown faces.

The third discriminant function relied on tlhariates measured at several locations
on Frontalis (7, 8, 9, 14, 16, 17) Orbicularis Oculi Pars Orbital (19, 23, 24, 31),
Masseter Superficial (40, 41), Zygomaticus Major (32, 42), Levator Labii Superioris
(38, 46), Depressor Anguli Oris (55), Depredsabii Inferioris (71) and Mentalis (74)
for allocating an unknown thermal face to ari¢he evoked facial expression groups.

The fourth discriminant function relied on the variates measured at several locations
on Frontalis (3, 8, 9, 10, 16), Frontalis Peledialis (7), Orbicularis Oculi Oars Orbital
(22, 30, 31), Levator Labii Superioris (38, 46), Zygomaticus Major (32), Levator Labii
Superioris Alaquae Nasi (35, 36), Levatarguli Oris (47), Risorious/ Platysma (54),
and Platysma (62) for allocating the unkmotliermal faces to one of the facial
expression groups.

Figure 9.15 shows the five facial expressions at their respective group centroids in a
3-discriminant function eigenspace. The varying spans of these discriminant functions
highlight their respective influence in the between-group separation.

The leave-one-out cross validation testutes presented in Table 9.7 exhibit the
confusion patterns and thendarities between the evokeddial expressions in the
underlying eigenspace. Some problems endlassification of unknown thermal faces
are also evident in the confusion matrix in Table 9.7. For example, the evoked
expression of anger was confused with the neutral faces and with the evoked expression
of disgust.

The evoked expressions of happiness and sadness appeared to be overlapping in a 2-
dimensional eigenspace in Figure 9.11. However, the confusion matrix in Table 9.7
suggested they were separated in a high dimensional eigenspace. Therefore, the evoked
expression of happiness appears to be well separated from the other facial expressions
in Table 9.7.

Given a small sample size and a large number of measured features (TIVS), the

overall error ratee(gj = 28.0%) observed during the leave-one-out cross validation

eneal

tests seems encouraging.
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Figure 9.15: The neutral faces and the faces with four evoked facial expressions at tbeiiveegpup
centroids

TABLE 9.8: SGNIFICANCE OF CLASSIFICATION RESULTS

Statistic Value Levelof
significance @)
* 2.070 0.0197
normal
* 2.070 0.0197
Zhappy
* 1.054 0.1496
Zsad
* 2.070 0.0197
Zdisgust
* 2.5819 0.0049
Zungry
* 3.741 0.0011
Zoverall

The observed error rate was suggestivihefpotential effectiveness of the thermal
features for achieving the AFEC and AAR functionality. The observed classification

results also suggested the effectivsmnef the employed algorithmic approach.

9.6 Significance of the classification results

Equations 5-26 and 5-27 were used to determine the practical significance of the
classification results. The significance levels for the facial expressions classification and
the overall significance test statistics in Table 9.8 were significapkat@s).
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The practical significance of the observed classification results was estimated using
Equation 5-28. The resulting indelx<{(36/50-10/50) /(1-10/50)x 100 = 65.0) suggested
a 65.0% reduction in the error rate. It cobelassumed that the TIV data gathered from
the 75 FTFP sites on the participant facasl@ help distinguish between the neutral
and four evoked facial expressions.

9.7 Conclusion

Attempts were made to diisguish between the neutral faces and faces with evoked
facial expressions of happiness, sadnasger and disgust using the facial skin
temperature measurements. The TIV data obtained from the participant faces were
found to be statistically suitable for invokitite relevant multivariate analysis. Results
suggest that the facial thermal features migp in classifying the facial expressions
of naturally evoked affective states.

The classifier trained with the highgeinvalued principal components could not
distinguish between the evoked facigpeessions suggesting that the employed
dimension reduction techniques were ndédb reduce the complexity of the
underlying Gaussian model. However, whesetof optimal features was used to train
the classifier, the overall error rate significantly reduced and the classifier performance
improved. The reduced classification error rate suggested several possibilities.

First possibility arises from a study carried out in early 1960s that sparked several
investigations and lead to important discogsr@bout the nature and processing of data
measured at equal points at different timesaR964). These studies suggested that the
overall covariance matrix represents a mixtireontributions from within-group and
between-group treatments, and variances (Rao 1964, Jolliffe 2002). For the discriminant
analysis, one may prefer to separate the various types of covariances prevailing in the
data. It is argued that even though theveel principal components are uncorrelated
overall, they cannot be assuings completely uncorrelated with respect to the between-
group and within-group variations (Rao 1964dlliffe 2002). This problem is frequently
encountered and warrants careful analysis of the data (Jolliffe 2002; McLachlan 2004).
Instead of relying on the principal componethizt explain major variations in the data,

a set of principal components having a combination of the low and high eigenvalued

components might prove more useful in such situations (Jolliffe 2002). May be, the
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combination of low and high eigenvaluegtimal principal components used for
training the classifier was helpful in improving the classifier performance.

As evident in the reported confusion patterns (Tables 9.6 and 9.7), the optimal
features based classifier performed béttan the one trained using the higher
eigenvalued principal components. The ckessperformance differences may also be
attributed to the set of variables selected through the optimal feature selection
algorithm. The higher eigenvalued principamponents might have preserved all the
variation in the TIVs data but theyglrably could not find the most effective
dimensions of the within-group separation. The optimal features on the other hand,
might not have preserved the maximum witgroup variation but most probably were
able to keep track of the dimensions of within-group variation (Jolliffe 2002;
McLachlan 2004; Rao 1964).

Second, the leave-one-out cross-validation results reported in Table 9.7 demonstrate
that up to 72% unknown TIRIs may be correctly classified using the proposed
computational approach. These results makbvious that the employed algorithmic
approach divided the eigenspace into smaihet linear spaces and there was very little
overlap between the divided linear spaces.

Third, the confusion patterns observed during the AFEC of the evoked facial
expressions are consistent with the previous studies carried out to investigate the
relationship between the emotions and #md musculo-physiological activities. Like
the previous investigations, these clasaifion results and confusion patterns also
suggest some similarities between the thémeasurements of some of the evoked
facial expressions. Interestingly, previaiadies, albeit using the visual cues or
measurements of different bio-physigical signals, discovered similar facial
expression recognition and confus patterns. These initial results suggest that infrared
measurement of facial thermal features may help in classifying the subtly different

evoked or reactive facial expressions.

9.8 A comparison of the intentionabnd evoked expression classifiers

Examining the relative performance of the 4 classifiers constructed in this thesis
(chapters 6, 7, 8 and 9) might help realise the potential of using the facial skin
temperature in AFEC and AAR capable systems. Table 9.9 compares the 4 classifiers,
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highlights their underlying Gaussian mixture models, and presents their respective
classification success rates.

When the Gaussian space was constructed using the TIV data taken from the neutral
and simulated happy and sad faces (row 2 of Table 9.9), 83.3% of the TIRIs were
successfully classified.

When the TIV data measured on the neutral faces and simulated happy, disgusted,
positively surprised and angry faces were used to construct the Gaussian space (row 3
of Table 9.9), the complexity of the Gaussian increased and the classification success
rate reduced to 67.2%.

When the TIV data measured on the neutral faces and faces with (six) basic
intentional expressions wewnsed for constructing the classifier (row 4 of Table 9.9),
only 57.1% new and unknown faces were successfully classified.

When the Gaussian space was constructed using the TIV data measured on the
neutral faces and the faces with four evoked expressions (last row of Table 9.9), the
classifier performed at 72% success rate.

As evident in Table 9.9, the four evoked expression classifier (last row of Table 9.9)
performed better than the four intentiongbeessions classifier (row 3 of Table 9.9).

This difference in the performance of these two classifiers highlights the linear division
patterns of the two eigenspaces. It is likely that the complexity of a Gaussian mixture
model, in addition to the effectiveness o# thptimal features, influences the classifier
performance.

Extending this discussion and comparing tibserved confusion patterns may help
understand the differences between tlegrttal measurements of the evoked and

intentional facial expressions.

Table 9.9: Construction of the Gaussian space, employed training features and the classifier performance

Facial expressions and TIV data used Training features employed Overall classification

for constructing the Gaussian space

success rate observed

Neutral and I ntentionally happy and sad

Optimal features recursively drawn from

83.3%

expressions among the derived principal components
Intentional happy, disgust, Surprise and -do- 67.2%
angry expressions
Neutral and Intentionally happy, sad, -do- 57.1%
disgust, surprise, angry and fear
expressions
Neutral and Evoked happy, sad, disgust, -do- 72.0%

and angry expressions
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When the neutral faces and the faces with intentional expressions of happiness and
sadness were classified using the optimal features (Chapter 6), 12.5 % of neutral faces
were confused with the intentionally sad faces. During an attempt to classify the neutral
faces and the faces with basic intentional expressions (Chapter 7), the neutral faces were
more frequently confused with the intemtal expression of sadness (18.8%). During
the classification of evoked facial expressidhs, neutral faces were not at all confused
with the evoked expressions ledppiness or sadness. Toafusion pattern might be
understood in the light of the discussimm emotion-specific musculo-physiological
activities reported in section 3.2 of chapter 3. As reported in section 3.2, (Wolf et al.
2005) discovered that Orbicularis Ocientalis, and Depressor Anguli Oris
contribute to the expression of negative &ons. Probably, simulating the emotion of
sadness did not allow enough musculo-physiological and heemodynamic activities along
Orbicularis Oculi, Mentalis, and Depresgmguli Oris. So the simulated sadness was
confused with the neutral face. It seems that the facial muscles were more engaged
when the facial expressions were evokednsequently, the quantitative differences in
the TIV data measured on the neutral feened on the faces with evoked sadness were
different and more helpful in distinguishing between the neutral and sad faces.

When the neutral faces and faces with intentional expressions of sadness and
happiness were classified using the optimaluiest (Chapter 6), 6.5% of neutral faces
were confused with intentionally happy facBsiring an attempt to classify the neutral
faces and the faces with six basic intentional expressions (Chapter 7), the neutral faces
were more frequently confused with thegppg faces (12.6 %). The neutral faces were
not confused with the evoked expressions of happiness. Again, the discussion in section
3.2 of Chapter 3 might help understand ttosfusion pattern. A significant number of
previous studies found that Zygomaticus Maforbicularis Oris, Orbicularis Oculi,

Mentalis and Platysma contribute to the expression of positive emotional experiences.
These muscles were probably not fully aated when the expressions were being
simulated. Probably, for this reason, thentionally happy faces were confused with

the neutral faces. However, when emotions were evoked, some significant musculo-
physiological and haemodynamic activitiesk place along these muscles. The evoked

expressions of happiness were therefarteconfused with the neutral faces.
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The intentional expression of sadness wanfused with the expression of
happiness (18.8%) when the neutral facestae faces with intentionally positive and
negative expressions were classified using the optimal features (Chapter 6). During an
attempt to classify the neutral faces and the faces with simulated basic expressions
(Chapter 7), the happy faces were not confused with the sad faces. Around 20% of the
evoked expressions of happssavere confused with the evoked sad expressions in
chapter 9 so a higher confusion rate waeokeil. However, only 10% of (evoked) sad
faces were confused with the (evoked) hafames (Chapter 9). This confusion pattern
might also be examined in the lightehotion-specific musculo-physiological activities
reported earlier in Section 3.2. Studiged in Chapter 3 suggested that musculo-
physiological activities along Zygomaticus jdg Orbicularis Oris, Mentalis and
Platysma represent the facial expression of positive emotional experiences. The facial
expression of negative emotions in the réggbistudies involved Corrugator, Masseter,
Triangularis, Orbicularis Oculi Palpabrases, Platysma, and Bucccinator. The cited
studies reported some musculo-physiological activities around the Orbicularis during
the facial expression of both positivedamegative emotions. The musculo-physical
activities along this particular muscle mighvbaaused the classifiers to confuse the
facial expression of happiness with sadness.

When the intentionally positive and negative facial expressions were classified
using the optimal features, 18.8% of the disgusted faces were confused with the angry
faces (Chapter 6). Similarly, 18.8% of angry faces were confused with the disgusted
faces. During an attempt to classify the neutral and the six basic facial expressions, only
6.3 % faces with disgust were confused with the angry faces but the angry faces were
confused with the faces showing disgusth@apter 7. When evoked expressions were
classified, 10% of the disgusted faces were confused with the angry faces (Chapter 9).
However, more angry faces (20%) were confused with the faces showing disgust. An
examination of the negative emotion-spieanusculo-physiological activities would
explain this confusion pattern. As the studigigorted in Chapter 3 suggest, the facial
expression of aggression aradje may involve CorrugatoMasseter, Triangularis,
Orbicularis Oculi, Palpabraeous, Procerus Nasi, Labii Inferioris and Platysma. The
expressions of sadness and fear reportediyive Frontalis, Palpabraeous Superior and
Inferioris, Labii Superioris Orbicularis OkuMasseter, Triangularis and Bucccinator.
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Since some of these muscles were invoiveithe expression of sadness, rage, anger
and fear, the similarities betweeretimusculo-physiological and haemodynamic
activities around these muscles probablydoiced the observed confusion pattern.
The confusion patterns observed and reportéthiapters 6, 7, 8 and 9 were realised
to be, to a large extent, consistent with the previous studies carried out to investigate the

association between emotion andsculo-physiological activities.
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Chapter 10

DISCUSSIONS, FUTURE RESEARCH DIRECTIONS AND
CONCLUSIONS

This chapter first presents a summary of the investigations and reports the observed
classification results. Some important inferences are then drawn from the results. The
inferences are analysed to propose dimensibhgure work on the use of facial skin

temperature measurements in AFEC and AAR capable systems.

10.1 Summary of investigations

Prior to this work, facial thermal feature®re mainly used for binary detection of

stress levels, deceit and anxiety. Thisihdsuilding upon the previous investigations,
explores the possibilities of using the & akin temperature measurements for
classifying the facial expressions of most common affective states. This work is based
on the scientific findings that suggest tfatial expression of emotions would cause
changes in the blood volume flow, would urghce the musculo-thermal characteristics
of the face, and would consequently cause variations in the facial skin temperature. In
essence, this investigation focuses on bgpreg an efficient facial thermal feature
extraction, selection, represetiba and classification approach.

This work began by capturing 224 visible and thermal infrared images of 16
participant faces with neutral expressand intentional expressions of happiness,
sadness, disgust, surprise, anger and fear wigedly acquired for this investigation.

At a later stage, 100 visible and thermal indchimages of 10 participants with neutral
faces and faces with evoked facial expm@ssiof happiness, sadness, disgust and anger
were separately recorded. Hence, a da&loh 324 discrete, visible-spectrum and
infrared images was developft this investigation.

The acquired TIRIs were first segmentede Huge detection tools available within
the thermal analysis software were applied to detect the faces within the acquired TIRIs.

The affective-state-specific temperature distributions on the facial skin were examined
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through the pixel grey-level analysis. As reported in Chaptetaéiging the
temperature variations within the selected eagiof interest within the TIRIs led to the
discovery of some significant facial tineal feature points (FTFPs) along the major
facial muscles. The TIVs measured on the FTFPs were then tested for normal
distribution and the similarity of the facial expression groups’ variance structure.

A purpose specific algorithmic approach, répdrin Chapter Syas developed and
employed for classifying the facial expressions. The acquired TIRIs were represented
along the principal components (PCs) obaariance matrix using the singular value
decomposition based principal component analysis. The resulting PCs were ranked in
the order of their effectiveness in theveen-cluster separation. Only the most
effective PCs were retained to construcbptimised eigenspace. A supervised learning
algorithm was then invoked for linear subdivision of the optimised eigenspace. The
statistical significance levels of the classification results were estimated for validating
the discriminant functions.

In a series of analyses, several Gaussian mixture models, having a varying number
of components, were constructed. Thedhttiermal variances prevailing in the TIV
data were first used to discern betweenrbutral and pretended happy and sad facial
expressions. As reported earlier in Chapteh®,TIV data in the second analysis were
used for classifying the two positive (hapgoyd surprise) and two negative (disgust and
angry) facial expressions. A third analysis was carried out to classify the six common
pretended facial expressions (reported in Chapter 7). During the fourth analysis,
attempts were made to classify the preten@deial expressions assuming that parts of
the face were covered or occluded (reporte@hapter 8). In the fifth analysis, evoked
facial expressions of happiness, sadnesgudisand anger were classified using the
TIV data gathered from the 10 participant faces (reported in Chapter 9).

10.2 Observations and results

The facial thermal feature extraction, selection, representation and classification
approach employed in this work was helpful in distinguishing between the facial
expressions of affective states. The employed algorithmic approach achieved excellent
classification results on the feature vectors used for training the classifier. However, the
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developed classifiers could not generatz¢he new and unknown thermal faces with
the same level of high accuracy.

The inconsistencies observed in thessifiers’ performance were traced and
reviewed the relevant literature to bett@derstand the observed classification results.
Some earlier studies provided insight and aix@d the rationale for the variations in
the performance of different classifiers developed for this investigation. The literature
suggested that the relevance and aptnesstadcted features, the size and complexity
of a Gaussian mixture model, and the composition of the underlying eigenspace might
influence the classifier performance. These factors varied at each stage of this
investigation and probably caused incotesisies in the classifier performance.

The literature further suggested that the nature of the variates included in a reduced
and optimised eigenspace might also infeesthe classifier performance. A significant
number of earlier studies suggest that a reoiien the feature space dimensions would
occasionally produce insufficient degrees of freedom for a consequent linear division of
the space. The employed algorithmic approach involved a two-level dimension
reduction of the discriminant space. This reduction in the discriminant space dimensions
might have contributed to the vati@ns in the classifier performance.

Despite some variations in the classifperformance, the proposed algorithmic
approach, in general, allowed developinggaof effective discriminant functions at
each stage of this work. The classification results reported in chapters 6, 7, 8 and 9
provide a convincing evidence of thigeetiveness of employed optimal feature
selection, representationdclassification approach.

During the first analysis reported in section 6.1 of chapter 6, the neutral, pretended
happy, and sad facial expressions wersstiged. WWhen the high eigenvalued principal
components were used for classifying the neutral and pretended expressions of
happiness and sadness, only 45.8% faces could be correctly classified during the cross-
validation test. In a continuing analysis, 83.8% of the faces were correctly classified
during the cross-validation test when tgimal principal components were used to
train the classifier. This significant reductimnthe classification error rate suggested
that optimal principal components wouddlp in developing a compact feature

representation scheme that resulted in a better between-group separation.
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Section 6.2 of chapter 6 reported #@empt to distinguish between the two
pretended positive (happy and surprise) armpvetended negative (angry and disgust)
facial expressions. The classifier traineithvthe optimal features proved to be more
effective (67.20% success rate) than thesfeer trained using the high eigenvalued
principal components (37.50% success rdthag discriminant eigenspace constructed
with the optimal feature resulted in 29.70% reduction in the classification error rate.
This variation in the classifier perfoance might have resulted from an overlap
between the thermal features of different expressions represented in the Gaussian
mixture model. Also, some degree ohsarity between the musculo-physiological
activities that took place during the expressof positive and negative affects might
have influenced the classifier performance.

Chapter 7 presented an attempt to classify the neutral faces and the faces with six
pretended basic facial expressions. Witenhigh eigenvalued principal components
were used for classifying the seven facial expressions, only 38.4% faces were
successfully classified during the cross-validation tests. The classifier trainetevith t
optimal principal components could correatlgssify 57.1 % thermal faces. This ever
first attempt of classifying the six badacial expressions using the facial skin
temperature was encouraging. Results suggest that the thermal infrared measurements
of facial skin temperature may help in distinguishing between the six basic facial
expressions, provided an appropriate feaseftection and representation approach is
employed.

The possibilities of classifying faciakpressions under the pose and illumination
conditions and under the assumed occlusiorew&plored and reported in chapter 8.
Each thermal face was divided into four regions: forehead was considered region 1,
areas around eyes and cheek were coresidegion 2, area around the mouth was
considered region 3 and area around the chin was considered region 4. Thermal
intensity values recorded at the FT$ifes within regions 1 and 2 were grouped
together. Thermal intensity values recorded at the FTFP sites within regions 3 and 4
were separately grouped together. The TI\thiw the two groups were separately used
as input vectors to the facial expressiorssigers. When the TIVs in regions 1 and 2
were used for AFEC, a low classification success rate was observed during the cross-
validation results. The classifier performed at an even lower success rate when the TIVs
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in the second grouping were used for training the classifier. Results suggested that the
TIV data measured on some selected FTFP sites of the face might not allow
distinguishing between the facial expressidruus, in order to distinguish between the
facial expressions, the TIV should be measured at all the FTFP sites on the face.

The results of classifying the evokextial expressions, reported in Chapter 9
suggested that the evoked and reactive fasiptession might be recognised using the
facial thermal features. During the cross-validation tests when optimal features were
used to train the classifier, the classifier correctly classified 72% unknown thermal
faces. These results therefore suggested that the evoked facial expressions of happiness,
sadness, disgust and anger could be classiBed) the facial thermal features. Results
also suggest that the optimal thermal features, when projected in an optimised
eigenspace, may reveal the distinguishabteat thermal charactstics. These facial
thermal characteristics were transient andeweade available through changes in the
facial expressions. Though no attempt waslena distinguish between the evoked and
pretended facial expressions on the basiseofahial skin temperature, observed results
suggested that the two conditions might be realised on the basis of facial skin
temperature distributions.

Results of the evoked facial expressiaasslfication suggested that the transient
facial thermal features generated as a result of evoked emotions might maintain some
degree of thermal similarities between thei&l expressions. However, these initial
results suggested that the subtly diffemndked or reactive facial expressions might
result in different and distinguishable facs&in temperature measurements at the FTFP
sites on the face.

Despite the inconsistencies observed in the classifier performance, the observed
classification results, to a large extent, were consistent with the classification results
reported in some previous investigais. For example, the facial expression
classification results reported in (Chellagi@98) and (Donato et al. 1999) were similar

to the classification and confusion patieobserved in this investigation.

10.3 Some possible inferences
The literature cited earlier in chapters 2, 3, and 5 and the reported results of this

investigation suggested that the facial deimperature measurements might contribute
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in achieving the AFEC and AAR functionality. The observations reported in chapters 6,
7, 8 and Suggested that the facial skin temperature variations caused by a change in
affective stateould be measured using a non-contact thermal infrared camera. The
pixel grey level analyses of the acquired thermal images provided further evidence of
previously reported findings that like otH@o-physiological signals, the facial skin
temperature might change with the changing affective states.

Thermal measurements taken around any particular part of the face or along any
particular facial muscle did not providaaigh information for classifying the facial
expressions. The physical locations of the identified discriminator variables suggested
that the AFEC and AAR might require monitoring the thermal changes at multiple
locations on the face along the major facial muscles.

Thermal analysis of the TIV data gathered from the participant faces suggested
presence of some degree of correlation among the TIV data recorded along the major
facial muscles. This variation might have resulted from the contraction and /or
expansion of the muscles during the expression of emotions. Perhaps, the human
metabolic reaction to the changes in the affective states was influential in changing the
rate of heat transfer from the core body to the facial skin surface. Perhaps a change in
core body temperature caused some measuttarimal changes at several locations on
the face.

The observed classification results also reflect upon the computational efficacy of
the proposed algorithmic approach. The statistical classifiers that were trained using the
optimal principal components consistently patformed the classifiers that were
trained using the high eigenvalued pipal components. The linear discriminant
algorithm consistently achieved excellentssification results on the training vectors.
However, the linear discriminant algorithm consistently generalized to new and
unknown thermal faces with a comparativielyser efficiency. Also, some facial
expressions were better classified than the others in each classifier test. These
observations highlight the influence of @anstructed Gaussian mixture model on the
performance of the classifier.

This work, in a broad perspective, suggests the viability of using the facial skin
temperature measurements in securityaungeillance, clinical diagnosis, criminal

investigations and human-computer intéiacapplications. The future AFEC and
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AAR capable systems might possibly be ablemploy and rely upon the non-invasive
facial skin temperature measurements taken within the infrared light spectrum.

The reported observations and the inferences drawn from this work resulted in
realising the following key research directions for the future work.

10.4 Suggestions for future research

For more than three decades, scientists baea investigating the possibilities of using

the bio-physiological cues to recognise tffeaive states and their expressions. This

work, building upon the previous investigations, has demonstrated the viability of using
the temporal facial thermal features for classifying the affective states and their facial
expressions. However, development of a bbdidacial features-based AFEC and AAR
capable system requires further investigatiand validation. The work reported in the
previous chapters of this thesis allowed setting an agenda for the future research on use
of facial skin temperature in AFEC and AAR capable systems. This work led to
identification of the following research dimensions for the future work.

To progress from this point, future work should focus on developing procedures and
methods for finding a finer distinction betwettre expressions of affects. This may
warrant accounting for the individual diffei@@s while classifying the expressions of
affective states. This work also warrants extension of the thermal image database for
further verification of the observed results. An extended database will also warrant
further validation and cross-Ndation of the facial expisions related musculo-thermal
behaviour. Such validation exercises malplierther establish the relevance and
reliability of the employed AFEC and AAR approach. A different direction of future
research may involve construction of the hybrid AFEC-capable systems through fusion
of thermal features with some other visual and non-visual cues.

These proposed key research directanesfurther elaborated in the following

paragraphs.

10.4.1 Finer distinction between the facial expressions
The true nature and extent of associatiomvben the intensity of emotion and level of
musculo-thermal activities are the areas of active investigations. However, their true

relationships have not been discovered amdkerstood yet. Therefore, this important

170



DISCUSSIONS, FUTURE RESEARCH DIRECTIONS AND CONCLUSIONS

relationship could not be takento consideration during the thermal image acquisition.
The issue of finer distinction between the facial expressions is critical in designing a
robust AFEC capable system. The issue sho@etbre be dealt with more carefully in
a future investigation.

The understanding and perception of facigdressions in this work were based on
the understanding of physiognomy and the visygearance of a face. Referees used
their own understanding of the facial exgs®ns and facial display of emotions. The
effect of intensity of emotion on the fatiexpressions may influence the nature of
musculo-thermal activities and may consequently cause some fluctuations in the facial
skin temperature. Also, the observers’ intetation of a facial expression would have
influenced the data acquisition process. Though three referees were requested to
examine and agree on the facial expressions of affective states, the underlying
relationship between the intensities of emotions and their facial expressions could not
be taken into account. A futunevestigation should therefore pay more attention to the
association between the intensity ofations and their facial expressions.

From an application point of view, #FEC system should also be able to
distinguish between the pretied and evoked facial expresss of affective states. An
investigation in this direction may result in a better AFEC and AAR functionality. This
may also provide a better and reliable AFEC tool to the other scientific communities
such as physicians, psychologists, and criminal investigators.

An increased thermal sensitivity of the infrared detectors mounted on the thermal
infrared cameras might help better discover the variances in the acquired thermal
images. Recent developments in sensndsmicro-machine technologies have resulted
in the availability of more sensitive thermal infrared detectors (Phillips 2002). Their
better thermal sensitivity might help in extracting the finer features and selecting the
most effective features. Such a capabiliill also allow effective measurement of
variance in the thermal data. A high-sensitivity thermal camera might also allow
acquiring more precise and accurate thermal facial data. A higher accuracy of
measurement might also help in finefidgion and classification of the facial
expressions of affective states.
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10.4.2 Individual differences

Severakesearchers have highlighted the importance of examining the underlying
differences between the muscular construction of faces of various racial, ethnic, and
geographic groups of people. Different grooppeople were also reported to have
varying muscular and bio-physiological respem$o affective states. Such differences
should be understood and accounted fatasigning the AFEC and AAR capable
systems.

Studies suggest that muscular structfrpeople belonging to different ethnic and
racial backgrounds would differ. Also, certain muscles present in some groups of people
might not be present in the other groups of people (Pessa et al. 1998).

Several studies have also reporteddifierences between the bio-physiological
reactions to emotions in men and womerr. &@mple, during a study that investigated
the gender differences in fingertip response to music, female population’s fingertip
temperature decreased more significantbntthat of the male population (McFarland
and Kadish 1991).

Another dimension of the individual differences arises from the emotion-specific
response differences between various agapgg. Studies suggest that bio-physiological
reaction to emotions varies and decreases with the age. Influence of age on emotional
response, autonomic responses to emotimahbeo-physiological expression of emotions
is not fully understood yet (Kunzmann and Gruhn 2005). Mentally ill people and
psychopaths are also believed to have slad different response to emotion stimuli as
compare to normal people (Pham et al. 20B@nce, the age factor should also be
considered in a future investigation.

Yet another skin related inddual difference arises from the facial skin condition. It
has been established that the skin diseasgee severely and more frequently influence
certain parts of the facial skin. Diseases such as dermatitis, contact urticaria and
seborrheic dermatitis influence the biophysicalction of the facial skin at some
particular parts of theate (Kobayashi and Tagami 2004)so, factors such as stratum
corneum, reported in chapter 8, should be considered in developing and extending the
database of infrared imagfs further investigations.

A second skin health related issue migkbalave implications for the future work.

The issue arises from the fact that when people imagine happy, sad and angry situations,
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varying patterns of facial-muscular activities are observed through the
electromyography (Schawrtz et al. 1976). THeasel expression patterns particularly
differ between depressed and non-depresseteamrful people. This difference in facial
expression patterns ads an additionadeshsion to a future investigation.

10.4.3 Extended database of thermal images
To accommodate for the individual diffess between various population groups, and
to validate the observed classification results, an extended database of sample thermal
images should be developed for a future stigation. Sample thermal images should
include various ethnic, regional, racial and age groups. People of different skin colours
should be sampled separately as wep@sded together to examine the underlying
influence of the facial skin colour oneltomposition of the discriminant rules and the
resulting performance of a classifier.

An extended database will allow addressing the issue of individual differences and
so, will provide more reliable parametric estimates of the thermal data.

10.4.4 Further validation

It would be beneficial to compare the affective states related patterns of facial skin
temperature variations with other humaformation patterns. The patterns of emotion-
specific Energy Expenditure (EE) and the EMG measurement patterns on the face
should be studies and compared with trezrttal variation patterns. A comparison of
the thermal data with other bio-physiologicaasurements might encourage fusion of
multiple physiological signals for AFEC and AAR. Such an investigation might also
reveal the possibilities of using local facial information for classifying the covered or
occluded faces using the bio-physiologisiginals. Such a comparison might also
provide insight into the similarities (or dissimilarities) between the patterns of EMG, EE
and thermal measurements along the major facial muscles.

Another way of validating the classiftoan approach and observed classification
results would be to apply some competagtern recognition methods on the measured
TIV data and compare the resultingsddication and confusion patterns. The
physiological pattern analysis and cléisstion is a comparatively new and less
explored domain. Little work has been damebio-physiological feature extraction and
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selection for classifying the emotions and affective states. Generally, common pattern
recognition techniques are applied on the mhggical signals. These techniques do not
attempt to overcome the issues pertainintpéonature of bio-physiological features and
their measurements. The inherent oveldafween the bio-physiological indicators of
affects and affective states would usualyise some confusion between the new
patterns and a variant of any different pattern. Hence the competing pattern recognition
algorithms should be invoked on facial thermal features to further improve the
classification results and validate the reported results.

10.4.5 Data fusion

The fusion of multiple bio-physiological, visual and auditory signals should also be
explored for developing more robust aetlable AFEC and AAR capable systems.
However, fusion of multiple bio-physiological, visual and auditory cues may require a
different feature extraction, selection, representation and classification approach.
Combining multiple classifiers may also pose some unique implementation related

challenges.

10.5 Conclusions

This investigation suggests that the digidtared imaging of facial thermal features
within the 8-14um bandwidth of electromagnetic ratlons may be used to measure
the affective-state-specific thermal variations on the human face. Furthermore, this
work makes it obvious that the pixel-greyééanalysis of the thermal infrared images
may allow localising the thermally significaRTFPs along the major facial muscles of
the face.

The uncorrelated principal components @ tacial thermal features, when ranked
in the order of their effectiveness irethetween facial expression group separation,
were able to reveal the most effective dimensions of variances in the facial thermal
features. The higher eigenvalued inpettors (principal components) were less
successfully classified into the facial expressions of affective states. However, the
transient thermal feature allowed an effective classification of facial expressions of
affective states in an optimized eigenspacmpiit feature vectors. Consequently, some
effective discriminant functions could lbeveloped for the person-independent
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recognition of the expressions of affective states. The input feature vectors used for
training the classifier were more successfully recognised than the new and unknown
thermal faces. Furthermore, the Gaussian mixture model with one cluster per affect
worked better for some facial expressions th#rers in this investigation. The observed
classification patterns highlighted the infhwe of a Gaussian mixture model structure
on the accuracy of the classification results.

The classification results highlight the e#icy of the novel facial feature extraction,
selection, representation, and classifmatpproach proposed in this thesis for
achieving the AFEC and AAR functionality. &lproposed computational approach, for
the first time, was able to classify the fdhermal features for recognising the facial
expression of the most common affective states.

This work provided new and convincing esttte that the transient facial thermal
features were effective in automated classification of expression of most common
affective states. The observed results in this investigation were consistent with the ones
reported in several earlier studies. Howewerther validation of the observed
classification patterns may help realise their practical significance and relevance.
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HUMAN PROTECTION PRACTICES

Since these experiments were conductedeaftherican University of Sharjah, United
Arab Emirates, an American accredited &t&lincorporated institution, the human
protection practices outlined in the US Government’s Belmont report (Belmont report
1979, DHEW 1979) were followed during thesag of experiments, thermal image
acquisition, and dissemination of the resulting information. Details of the observed
human protection practices are provided in the following paragraphs.

1.1 Selection of participants

Participants were invitethrough written notices that nee posted on the designated
public places (such as student notice boards) within the School of Architecture &
Design, School of Engineering and CollegeArts & Science of the American

University of Sharjah. Participation in this investigation was entirely voluntary. Efforts
were made to select participants withany religious, cultural, ethnic, gender or age
discrimination. The female population of thevansity was particularly encouraged to
participate in the experiments. The partitipa of male and female participants with
diversified cultural, ethnic backgrounds was deemed necessary for having an
appropriate sample of participant faces.

During the first phase of experiments, 16 undergraduate students, 12 boys and 4
girls with a mean reported age of 20 yeamd 9 months volunteered to participate in
the experiments. Participants came from different academic, cultural, racial and ethnic
backgrounds. All participants were dtdundergraduate students. Volunteering
participants included Caucasians, Arabs, Iranians, Indians and Pakistanis.

During the second phase of this workstjggpants were recruited through new
public announcements. Only 3 male studertts warticipated in the previous image
acquisition exercise volunteeradain to have their thaal images takewith evoked

facial expressions. Seven (¥@w participants volunteered to have their thermal images
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recorded. Of these 7 new volunteers, 3 veenetinuing educatiostudents and were not
enrolled in a regular academic program at the American University of Sharjah. Mean
reported age of these 10 participating volunteers (7 boys and 3 girls) was 21 years 2
months. This group of 10 volunteers included Arabs, Iranians and Indians.

1.2 Compensation and costs
No monetary rewards were offered to participants. The participants were offered digital
copies of their recorded infrared and visible spectrum images free of cost.

1.3 Briefing and debriefing
Participants were briefed before the start of each image acquisition session. The purpose
and scope of the study wengpdained and questions weresarered to let participants
understand the benefits and outcome of theperaments. Participants were told that
they were not being put to any shoriamg term physical risk. EQuipment, image
acquisition procedure and post-acquisitiotadenalysis methods were explained.
During the second phase of this work wiesmpressions were invoked, participants
were briefed as before but they were atdormed about the nature and content of
emotion invoking images and video clips. Tivegre given an option to discontinue
their participation if the content and nature of imagery were not acceptable to them.
Sources of imagery were also revealed to the participants. Images and video clips
similar to the ones used for actually invoking the expressions were shown to the

participants before start tfie image acquisition session.

1.4 Procedure for obtaining informed consent

Consent for using each participant’s images and thermal data was obtained either during
the briefing sessions or before the image acquisition session. All participants allowed
publication of numerical and statistical data emanating from their respective thermal
images. All male and female participants except 3 female participants allowed use of
their respective thermal and visible images for dissemination of information through

scholarly journals, periodicals and conference proceedings.
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1.5 Risks to participants
Current literature on thermal infrared imaging and infrared imaging equipment
(including the manuals that accompanied Cantronix IR 860 thermal infrared camera)
suggested no short or long-term physical risk in recording thermal infrared images.
Thermal infrared imaging has been used, without consent, upon members of the public
at airports, for example to screen for passengers with high temperature possibility
caused by contagious respiratory diseases asitlird flu. No physical harm or other
risks of thermal infrared imaging were reported in the literature cited in previous
chapters of this thesis.

Information pertaining to the suitability and safety of thermal imaging techniques in
the context of human protection is available in the cited literature. Chapters 2 and 3 of
this thesis refer to the information on hamrelated application of thermal infrared

imaging.

1.6 Methods and Procedures

This work aimed to examine the possibilities of distinguishing between the facial
expressions using variations in facial skin temperature. Participants’ thermal faces were
acquired when they showed a normal and neutral face (with all facial muscles in their
resting position). During the first phase of this work, participants were asked to
intentionally express Ippiness, sadness, anger, surprise, fear and disgust. Their thermal
(and visible spectrum) images were capdusile they pretended and expressed
emotions. The same procedure was repeated in the second phase of this study when
expressions were evoked.

Infrared images were acquired under a ralrmmontrolled and comfortable building
environment. Internal temperature obms used for conducting experiments varied
between 19-22 °C during the image acquisition. The building air conditioning systems
were equipped with a humidigontroller and an air recycling system. Each participant
was given at least 20 minutes to acclimatize with the environment. Thermal images
were captured in several sessions imoDer 2003, November 2003, April 2004, and
September 2004. Images were recorded between 0100 and 0430 pm on the working

days.
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During image acquisition, visible-spectriuameras were placed about 2.5 to 3.5
meters away from the participants. To avoid any loss of thermal information, the
infrared camera was always placed 1.8 to 2.4 meters away from the participants.

During the first phase of this work when the pretended expressions were recorded,
the participants were trained on acting and intentionally expressing the emotions. They
were shown still images and video clips to get a better understanding of how to facially
express different affective states.

During the second phase of this work when the expressions were evoked,
participants were shown stithages and video clips to invokenotions. All video clips
and still images were kan from established and ethigaesponsible organizations
such as British Broadcasting Corporati@B(C), the American TV channel CNN, and
the print media sources such as New Yorker and Washington Post.

A high quality set of casual and comfortable chairs was offered to participants while
they waited for their turn before their images were recorded. Image acquisition time
varied for various reasons including participants’ ability to express emotions, technical
problems in recording images and participant requested breaks. Image recording time
varied between 45 minutes and 120 minutes. V&igtion in time was, at times, also
caused by the investigators failure to capture acceptable quality images. During the
pretended expression image asgion, when needed, participants were demonstrated
how to express different emotions. Two senevel (final year) undergraduate students
were recruited to help during image acquisition. They were trained for using the digital

and thermal cameras and recognizing facial expressions

1.7 Data processing and storage

The thermal analysis software CMView Plus was used for reading and analyzing the
acquired thermal images. Numerical data obtained from the thermal images were saved
in allowed file formats. The data were further analysed using the statistical analysis
software SPSS and mathematical analysis software Matlab. All data were stored on a

computer hard disk and a backup copy of the data was stored on compact disks.
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1.8 Public release of data

Actual data was kept confidential but statistical analyses and relevant results were
published in scholarly publications emanating from this work. As mentioned eatrlier,
publication of data and results were discussed with the participants and their consents
obtained.

1.9 Description and sources of secondary data

As evident from the reported analytical approaches employed in this investigation and
their respective results, no secondary dattapeng to participants were required in

this work. The mathematical and statistical analyses carried out during the reported
investigations (or any inferences madangghe involved analyses) did not require
secondary data about the fi@pants. Participants’ nameglated personal identifiers

and their respective departments of study were noted and kept confidential.
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