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Abstract 
 
In previous research, scientists were able to use transient facial thermal features extracted from 
Thermal Infra-Red Images (TIRIs) for making binary distinction between the affective states. 
For example, thermal asymmetries localised in facial TIRIs have been used to distinguish 
anxiety and deceit. Since affective human-computer interaction would require machines to 

distinguish between the subtle facial expressions of affective states, computers’ able to make 
such binary distinctions would not suffice a robust human-computer interaction. This work, for 
the first time, uses affective-state-specific transient facial thermal features extracted from TIRIs 
to recognise a much wider range of facial expressions under a much wider range of conditions. 
Using infrared thermal imaging within the 8-14 μm, a database of 324 discrete, time-sequential, 
visible-spectrum and thermal facial images was acquired, representing different facial 
expressions from 23 participants in different situations. A facial thermal feature extraction and 
pattern classification approach was developed, refined and tested on various Gaussian mixture 
models constructed using the image database. Attempts were made to classify: neutral and 
pretended happy and sad faces; multiple positive and negative facial expressions; six 
(pretended) basic facial expressions; partially covered or occluded faces; and faces with evoked 
happiness, sadness, disgust and anger. 
 

The cluster-analytic classification in this work began by segmentation and detection of 
thermal faces in the acquired TIRIs. The affective-state-specific temperature distributions on the 
facial skin surface were realised through the pixel grey-level analysis. Examining the affective-
state-specific temperature variations within the selected regions of interest in the TIRIs led to 
the discovery of some significant Facial Thermal Feature Points (FTFPs) along the major facial 
muscles. Following a multivariate analysis of the Thermal Intensity values (TIVs) measured at 
the FTFPs, the TIRIs were represented along the Principal Components (PCs) of a covariance 
matrix. The resulting PCs were ranked in the order of their effectiveness in the between-cluster 
separation. Only the most effective PCs were retained to construct an optimised eigenspace. A 
supervised learning algorithm was invoked for linear subdivision of the optimised eigenspace. 
The statistical significance levels of the classification results were estimated for validating the 
discriminant functions. 

 

The main contribution of this research has been to show that: the infrared imaging of facial 
thermal features within the 8-14 μm bandwidth may be used to observe affective-state-specific 
thermal variations on the face; the pixel-grey level analysis of TIRIs can help localise FTFPs 
along the major facial muscles of the face; cluster-analytic classification of transient thermal 
features may help distinguish between the facial expressions of affective states in an optimized 
eigenspace of input thermal feature vectors. The Gaussian mixture model with one cluster per 
affect worked better for some facial expressions than others. This made the influence of the 
Gaussian mixture model structure on the accuracy of the classification results obvious. 
However, the linear discrimination and confusion patterns observed in this work were consistent 
with the ones reported in several earlier studies. 

 

This investigation also unveiled some important dimensions of the future research on use of 

facial thermal features in affective human-computer interaction. 
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Chapter 1 
INTRODUCTION 

 

 

 

1.1 Motivation 

Scientific studies confirm that people use a variety of auditory and visual cues such as 

voice levels, gait information, gestures and facial expressions to understand others’ 

emotions (Bartneck 2001; Brooks 2002; Picard 2000). One important source of visual 

information is facial expression (Du and Lin 2003). Using these auditory and visual 

cues appears to be a casual, simple, and effortless task for humans (Redford 2000). 

What, however, appears to be easy and simple tasks for humans translate into a set of 

complex computational activities for computers. Despite growing processing power and 

multiplicity of input-output modalities, computers possess limited abilities to recognise, 

understand and interpret emotions (Bartneck 2001). 

Nevertheless, the potential benefits of computers’ able to express and respond to 

emotions inspired researchers to design and implement socially intelligent systems. This 

inspiration is evident in the recent scholarly works on automated recognition, 

interpretation and expression of emotion (Bartneck 2001; Brooks 2002; Busso et al. 

2004; Klein et al. 2002). Many recent systems have demonstrated some limited 

capabilities of recognising, interpreting and expressing emotions (Cohen et al. 2003; 

Essa and Pentland 1997; Gao et al. 2003; Morishima 2001). A wide range of potential 

applications of these so called socially intelligent computers have been reported in the 

literature on human-computer interaction (HCI), robotics, bio-informatics, security and 

surveillance, and psychotherapy (Cohen et al. 2003; Eveland et al. 2003; Socolinsky et 

al. 2003; Klein et al. 2002; Lisetti and Schiano 2000; Picard 2000; Reeves and Nass 

1996). 

A large number of the existing models of socially intelligent systems, as reported in 

the literature, relies on the visual cues to recognise and classify the facial expressions 

and interpret emotions (Abidi et al. 2004). Sophisticated algorithms, hardware 

accessories and tools for implementing the vision-based Automated Facial Expression 
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Classification (AFEC) systems are being developed, tested and made available. In 

particular, efforts are being made to enhance the performance of the vision-based AFEC 

capable systems. Some of the recently developed vision-based AFEC systems claimed 

over 70 % accuracy in recognising the facial expressions of affective states (Baldwin et 

al. 1998; Cohen et al. 2003; Gao et al. 2003). Since the vision-based AFEC systems 

have been around for several years now, their strengths and limitations are well 

understood. The underlying theories and implementation details of salient vision-based 

AFEC systems are discussed in (Black and Yacoob 1997; Ekman et al. 1993; Fasel and 

Luettin 2003; Huang and Huang 1999; Pantic and Rothkrantz 2000). 

Despite their claimed success in controlled environments, critics find the vision-

based AFEC systems less effective outside the research laboratories (Baldwin et al. 

1998; Ekman et al. 1993; Sugimoto et al. 2000). A number of technical limitations are 

believed to deter the performance of the vision-based AFEC systems in life like 

situations. Factors such as the deformability and the transient nature of the facial 

features, and the influence of the ambient light intensity while a face is being observed 

pose problems in facial feature extraction. Also, dependence of the feature extraction 

process on a physically-based structural model of the face in the vision-based AFEC 

systems is considered problematic. The works by Fried (1976) and Friedman (1970) on 

development of the physically-based structural models of human face provided basis for 

modeling the face, defining the anatomical components of the face, and representing the 

interaction between the anatomical components of a face. Some recent scientific studies 

have raised questions about the theoretical foundations of the works by Fried (1976) 

and Friedman (1970) and the suitability of using the physically-based structural models 

in AFEC and AAR systems (Ekman et al. 1993; Morishima 2001). The factors that 

supposedly deter the performance of the vision-based AFEC and AAR systems are 

discussed in (Baldwin et al. 1998; Ekman et al. 1993; Fasel and Luettin 2003; Pantic 

and Rothkrantz 2000; Sugimoto et al. 2000). 

Such limitation of the vision-based AFEC and AAR capable systems inspired 

researchers to explore the possibilities of using non-visual cues for AFEC and AAR. 

Recent works in the areas of computational intelligence, psychology, physiology, 

neuropsychology, pattern recognition, machine learning and HCI demonstrate a 
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growing interest in the use of non-visual signals for designing AFEC and AAR capable 

systems (Abidi et al. 2004; Ang et al. 2004; Mase 1991; Picard 2000). 

A number of human bio-physiological signals are considered useful in providing 

emotion-specific human information. One or more of human bio-physiological cues 

have been employed in some of the non-vision based AFEC (NVAFEC) and AAR 

systems. A direct contact with the human body is needed to acquire most of the human 

bio-physiological signals. Hence, the NVAFEC and AAR capable systems that rely on 

bio- physiological cues remain intrusive (Prokoski and Iedel 1999). The underlying 

theories and implementation of non-vision based AFEC and AAR systems were 

discussed in (Boulic and Thalmann 1998; Christie and Friedman 2004; Critchley et al. 

2000; Jones et al. 1988; Kakadiaris 2005a; Kakadiaris 2005b; Naemura et al. 1993; 

Niemic 2002; Picard 2000; Pollina et al. 2006; Posamentier and Abdi 2003; Prokoski 

and Iedel 1999; Puri et al. 2005; Schwarz et al. 2002; Yoshitomi et al. 2000). 

The major operational difference between the vision-based AFEC systems and the 

existing NVAFEC systems is that the former systems can perform in a non-invasive and 

non-contact manner whereas the later systems are primarily intrusive. The intrusive 

nature of NVAFEC and AAR systems remains a major obstacle in their acceptability 

and application. However, recent advances in digital thermal infrared imaging have 

made it possible to acquire a very useful human bio-physiological signal, the body 

temperature, through non-intrusive and non-contact means (Phillips 2002). Human skin 

temperature, considered a function of thermo-muscular, hæmodynamic and metabolic 

factors (Bales 1989), can be measured through the thermal infrared imaging in a non-

contact, non-invasive and illumination invariant manner (Jones and Plassmann 2002; 

Otsuka et al 2002). 

Earlier researchers were able to use the facial hæmodynamic variations and thermal 

features to classify affects and their expressions (Pollina et al. 2006; Puri et al. 2005; 

Yoshitomi et al. 2000). Some recent studies have demonstrated that pixel grey-levels in 

the thermal infrared images provide a reliable measure of skin surface radiance and 

allow measuring the skin temperature distribution patterns (Bales 1998; Jones and 

Plassmann 2002; Otsuka et al. 2002). Typically, standard image processing methods are 

invoked to enhance the thermal images and extract the pixel grey-level information for 

recognising the facial expressions of affective states (Bales 1998; Jones and Plassmann 
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2002; Otsuka et al. 2002; Pollina et al. 2006; Puri et al. 2005; Sugimoto et al. 2000; 

Yoshitomi et al. 2000). Investigators were able to recognise the stress levels, deceit and 

facial expressions of positive and negative affective states using the pixel grey-level 

information extracted from the thermal images, notably in a dichotomous discrimination 

manner (Pavlidis 2004; Pavlidis and Levine 2002; Pollina et al. 2006; Puri et al. 2005). 

Some recent studies confirm that infrared measurement of facial skin temperature can 

lead to non-invasive, non-contact recognition of common expressions of affective states 

(Dimberg 1990a; Dimberg 1990b; Khan et al. 2004; Khan et al. 2005; Khan et al. 2006; 

Pavlidis 2004; Pollina et al. 2006; Puri et al. 2005). 

Motivated by the success of previous investigations, this work explores the 

possibilities of recognising the facial expressions of affective states with the help of 

facial skin temperature measurements. However, the scope of this work is much broader 

than that of the previous investigations in that it attempts to recognise the pretended and 

involuntarily evoked expressions of most common affective states using the temporal 

facial thermal features. In effect, this work aims to distinguish between the facial 

thermal features for recognising the expressions of most common affective states. This 

broader framework of the thesis would require development of an effective temporal 

facial thermal feature extraction mechanism and design of an effective facial expression 

classifier. 

 

1.2 Research premises 

This work is based on the scientific theories suggesting that (a) the human body 

metabolism changes with a change in emotive state resulting in emotion-specific bio-

physiological variations in the human body; (b) a change in affective state would result 

in the blood volume flow variations under the facial skin; (c) the facial expression of 

emotion also causes some musculo-thermal activities under the facial skin; and (d) any 

change in blood volume flow and associated musculo-thermal changes cause variations 

in the facial skin temperature. 

Based on the scientific evidence available in (Bales 1998; Jones and Plassmann 

2002; Pavlidis 2004; Pollina et al. 2006; Puri et al. 2005; Sugimoto et al. 2000; 

Yoshitomi et al. 2000), this thesis examines if an appropriate analysis of the pixel grey-

levels within the time sequential thermal images would allow extracting the facial 
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thermal features to classify the facial expressions of most common affective states. 

Unlike previous investigations, this work does not analyse the observed thermal 

symmetries or asymmetries in the infrared images. Instead, this thesis proposes that 

temperature measurements in the regions of interest within the time-sequential infrared 

images can be subtracted to discover the affective state-specific variations in the facial 

thermal features. The thesis further proposes that some principal directions in the 

affective state-specific facial thermal variations can be discovered. Hence, the thermal 

images can be represented as uncorrelated vectors along the principal components of a 

covariance matrix. The thesis takes the position that an appropriate supervised learning 

method such as discriminant analysis can be used for direct estimation of the posterior 

probabilities. Thus effective discriminant functions can be generated to allocate an 

unknown thermal face to a particular cluster of facial expression. 

A cluster-analytic approach supported by the statistical classification schema was 

preferred for classifying the facial thermal features in this work. The employed 

statistical classification approach would allow representing the facial thermal features 

for developing a set of optimal discriminant functions by regression. The employed 

statistical pattern recognition approach would also result in an implicit estimation of the 

class densities. Hence, it was possible to confidently estimate the posterior probabilities 

of class membership and develop a person-independent classifier. Some popular 

competing classification approaches such as the syntactical classifiers and neural 

networks were also considered for this work but were found less relevant to the scope 

and objectives of this work. 

Syntactical classifiers would employ some primitives for feature representation and 

use a set of grammar rules for developing the classification functions. Thus they impose 

a rigid a feature representation schema. Such a representation might add complexities in 

developing a compact and optimised decision space needed for separating a set of 

complex and overlapped classes. 

Neural networks learn complex and non-linear input-output relationships using 

well-connected sequential training procedures and adapt to the training data. Hence 

neural networks provide an excellent classification schema. However, they generally 

employ a non-parametric model as their underlying learning mechanism focuses on 

adaptive error correction. The scope of this work suggested development of an explicit 
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cost function and needed an appropriate parametric model. Since a model-free neural 

network classifier would not establish the class-conditional probabilities for 

classification, it would be less appropriate for this thesis. 

This work can be considered a logical progression of the few past attempts to 

achieve the NVAFEC and AAR functionality using the facial thermal features. 

However, this thesis is distinct in that it uses the facial thermal features, for the first 

time, to (a) classify the complex facial expressions along the direction of valance; (b) 

classify common facial expressions of affective states; (c) classify facial expressions on 

occluded or covered faces; (d) recognise the involuntarily evoked facial expressions of 

affective states. 

 

1.3 Research focus 

A significant number of sophisticated algorithms and advanced computational methods 

for implementing the vision-based AFEC systems is available in the image processing 

and pattern recognition literature (Belhumeur et al. 1997; Black and Yacoob1997; Cohn 

et al. 1999; Dubuisson, et al. 2002; Fasel and Luettin 2003; Huang and Huang 1999; 

Pantic and Rothkrantz 2000). However, little work has been done on extracting, 

selecting, representing and classifying the bio-physiological signals for AFEC and 

AAR. Particularly, automated facial expression classification using the facial skin 

temperature measurements has not been fully explored yet. 

This work focuses on developing effective computational approaches and methods 

of non-invasive thermal feature extraction, selection and representation, and their 

classification for developing a robust NVAFEC and AAR capable systems. 

The work began by investigating an effective mechanism for extracting the facial 

thermal features pertaining to the expressions of affective states from the thermal 

infrared images. An attempt was made to design a realistic model for discovering the 

most influential and relevant facial thermal features from the thermal infrared images. It 

was envisaged that the discovery of the most effective facial thermal features would 

help in direct estimation of the probabilities of facial expression group membership of a 

thermal image through regression. It was further assumed that estimations of the 

probabilities of facial expression group membership would help develop a set of 

efficient discriminant functions for person-independent classification of expressions of 
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affective states. The thesis therefore focuses on developing a robust and non-invasive 

“emotion detection through facial expression recognition” mechanism that might allow 

for example, a robot, to gain a higher degree of social intelligence and effectively 

interact with people. 

 

1.4 Research Contributions 

Considered in a broader context, this work contributes in the areas of affective 

computing, human-computer interaction, thermal infrared imaging application, 

automated affect recognition and applied perception. The thesis focuses on extracting 

the facial thermal features form the thermal infrared images, selection of the most useful 

facial thermal features and their effective representation in a decision space to classify 

the facial expressions of affective states. The aforementioned scope set for this 

investigation allowed making following contributions. 

First, the emotion-specific human bio-physiological cues and their respective 

effectiveness in developing a non-invasive AFEC capable system were reviewed. The 

viability and effectiveness of using infrared measurements of facial skin temperature 

measurements for automated classification of facial expressions were also explored, 

analysed and reported. 

Second, the scientific foundations of non-invasive, thermal infrared sensing of 

emotions and affective states were reviewed, analysed and established. Instead of 

exploiting the thermal symmetries or asymmetries in the infrared images for binary 

classification of positive and negative affective states, a novel mechanism was 

developed to extract the facial thermal features from a set of time-sequential thermal 

infrared images. 

Third, an architectural framework was developed to implement the facial skin 

temperature measurements based classifier network. An optimal pattern representation 

scheme was developed and for the first time, the facial thermal classification patterns 

were modeled as stochastically independent and identically distributed clusters. An 

appropriate supervised learning approach was developed to construct the optimal 

discriminant rules. The stochastically independent clusters of facial expressions were 

separated as linear spaces within an optimal decision space allowing person-

independent recognition of the facial expressions of affective states. 
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Fourth, using a parametric estimation of the posterior probabilities, the facial 

expressions of affective states were first classified along the direction of valence. At a 

later stage, a complex decision space was constructed to classify the six common facial 

expressions of affective states.  

Fifth, the possibilities of recognising facial expressions using facial thermal features 

extracted from the partially covered or occluded faces were also investigated. 

Sixth, the differences in the patterns of thermal representation of pretended and 

naturally occurring facial expressions were examined. The differences in a classifier’s 

ability to recognise pretended and evoked facial expressions using the facial thermal 

features were also studied. 

Seventh, an agenda was proposed for future work on the use of bio-physiological 

cues in designing the AFEC and AAR capable systems. 

Finally, new knowledge was added to the existing body of relevant knowledge. The 

results of this investigation were reported in prestigious and fully refereed publications. 

Appendix II provides a complete list of publications that emanated from this thesis. 

 

1.5 Thesis overview and organisation 

This document comprises of 10 chapters, 2 appendices and a list of references. 

Chapter 2 first discusses the existing and potential application of automated facial 

expression classification (AFEC) systems. The system design approaches used for 

developing the AFEC and AAR systems are then analysed. Strengths and limitations of 

existing AFEC systems are also examined. Scientific information about the human 

physiological information are used for proposing the use of facial skin temperature 

measurements in AFEC and AAR. 

Chapter 3 begins by reporting the recent studies that suggest an association between 

the emotion and bio-physiological signals. Previous investigations carried out to explore 

emotion-specific musculo-thermal, physiological and autonomic activities are reviewed. 

Possibilities of measuring emotion-specific body information are investigated and 

scientific studies proposing an association between the core body temperature and the 

emotional states are presented. Important methods and tools used for measuring the skin 

temperature are also discussed. 
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Chapter 4 begins by reporting the infrared image acquisition procedure. The ethical 

considerations for the experiment design and the thermal image processing methods are 

reported. Approaches employed to extract the transient thermal features from the 

participant faces in the thermal images are also explained. The thermal data were 

analysed to examine if the acquired data were suitable for invoking the multivariate 

analytical methods and pattern recognition algorithms. 

Chapter 5 first introduces the generic architecture of an AFEC capable system and 

then examines the possibilities of adapting a typical AFEC system architecture for this 

investigation. Some pattern recognition approaches used in the previously developed 

AFEC capable systems are reviewed. Based on an analysis of the existing AFEC 

systems, the architecture and functional design of a facial skin temperature based AFEC 

system is proposed. The computational methods, algorithmic implementation and 

potential advantages of the proposed approach are also examined and presented.  

Chapter 6 reports an attempt to recognise and classify the neutral and pretended 

happy and sad facial expressions using the facial thermal data. Classification of the two 

positive (happiness and surprise) and the two negative (angry and disgusted) facial 

expressions is also reported in this chapter. Detailed analyses of the classification 

results conclude this chapter. 

Chapter 7 is dedicated for reporting the results of classifying the six basic facial 

expressions (happy, sad, disgust, surprise, angry and fear) using the facial skin 

temperature measurements. Classification results are analysed and the observed results 

are discussed. 

Chapter 8 begins by discussing the influence of factors like facial hair, glasses, 

lighting conditions, pose and occlusion on the real life performance of an AFEC system. 

An argument is then made for bio-physiological signal based classification of affective 

states when the face is covered or occluded. The facial muscle grouping approach used 

for representing the covered and occluded faces is presented. Finally, classifier 

implementation details and classification results are presented and analysed. 

Chapter 9 realises that in a life like situation, the AFEC is performed on the 

naturally occurring, spontaneous and evoked or reactive expressions. The investigations 

reported in this chapter examine the effectiveness of facial thermal features in 

classifying the evoked facial expressions. Details of the evoked facial thermal data 
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acquisition approach, data analyses and classification are reported. Observed results are 

analysed and the classifier performance is compared with that of the previously 

developed classifiers. 

Chapter 10 provides a summary of this work. Observed results are discussed and 

analysed. The discussion and analyses provide rationale for making several inferences 

about the viability of developing the bio-physiological signals based AFEC and AAR 

capable systems. An agenda for the future work is proposed using the discussion and 

analyses of the employed computational approach. 

Appendix I reports the human protection practices observed during the design of 

experiments and data acquisition. 

Appendix II presents a list of accepted, published and submitted publications that 

emanated from this work. 

References section is appended at the end of this document. It provides a list of 

cited work. 
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Chapter 2 
AUTOMATED CLASSIFICATION OF FACIAL EXPRESSIONS 

 

 

 

Emotions, their recognition and expression make people to people communication 

comprehensive, effective and meaningful (Niemic 2002). In order to make human-

computer interaction similarly effective, researchers have been investigating the 

possibilities of developing affective human-computer interaction models (Picard 2000). 

Hence, automated facial expression classification (AFEC) and automated affect 

recognition (AAR) have emerged as important research areas during the last three 

decades (Allanson and Fairclough 2004). 

Using the taxonomy proposed in chapter 1, a survey of existing AFEC and 

automated affect recognition approaches is presented in the following paragraphs. The 

system design approaches used for developing the AFEC and AAR capable systems are 

also discussed. The strengths and limitations of the widely used AFEC approaches are 

also examined in this chapter. 

 

2.1 The need for AFEC and AAR capable systems 

Facial expressions are considered a major source of information about emotions, 

intentions and affective states albeit they are often used together with the non-visual 

human information such as voice and body movement (Bartneck 2001; Cacioppo et al. 

1990; Ekman 1982). A significantly large number of studies suggest that facial 

expressions provide highly useful visual information about emotions and affective states 

(Busso 2004; White 1999). Scientists assert that facial visual information are used 

during any people to people communication (Morishima 2001), help understand 

cognition and behaviour (Sloan et al. 2002), and are believed to have a significant role 

in the future HCI systems (Lisetti and Nasoz 2004; Hosseini and Krechowec 2004). 

Researchers assert that achieving the AFEC functionality in machines may be useful for 

several professional communities and user groups (Ekman et al. 1993; Gao et al. 2003). 
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Studies suggest that psychologists primarily rely on facial expressions for clinical 

investigations (Christie and Friedman 2004). They analyse the facial expressions to 

interpret emotions, understand intentions, evaluate personality and assess the cognitive 

conditions (Collet et al. 1997; Critchley et al. 2000; Dimberg 1990b). AFEC capable 

systems are considered potentially useful in enhancing psychologists’ ability to judge an 

individual’s personality and determine his/her personal traits such as shyness and 

sociability (Dimberg et al. 2000). Some studies also propose use of facial expressions 

for gathering information about psycho-pathological conditions and nature of 

behavioural disorders (Sloan et al. 2002). 

Security, intelligence and surveillance communities are believed to be potential 

beneficiaries of AFEC capable systems for detecting and discovering concealed 

emotions and intentions (Pavlidis and Levine 2002). Automated classification of facial 

expressions has been proposed for interpreting intentions and emotions in real life 

situations. For example, (Garbey et al. 2004) used the blood flow rate estimation on the 

face for facial expression recognition and classification for developing an AFEC 

capable system. In other recent investigations, thermal images were analysed for scoring 

polygraph tests in lie-detection. For example, Pavlidis (2000) analysed thermal images 

acquired using an infrared camera to detect the blood flow rate variation on the face. 

(Pollina et al. 2006) monitored variations in facial skin temperature to classify people 

who committed crimes into deceptive and non-deceptive categories. 

Scientists assert that emotions, feelings and momentary experiences cause, trigger 

and influence human facial expressions. Consequently, facial expression monitoring has 

been proposed for pain measurement, patient monitoring, and patho-physiological 

diagnosis and condition monitoring (Diakides 1998; Hosseini and Krechowec 2004; 

Hussein and Granat 2002; Sloan et al. 2002). Studies propose that automated 

recognition of emotions would be useful in medical diagnosis and allow better patient 

monitoring (Diakides 1998). Similar studies inspired researchers to propose monitoring 

patients’ health conditions using automated affect recognition (Hosseini and Krechowec 

2004). Use of AFEC to interpret affective states for determining patients’ well being in 

remote and on-line health monitoring systems has also been proposed (Hosseini and 

Krechowec 2004). In an earlier study, the AFEC systems were able to provide a realistic 

assessment of pain (Herry and Frize 2002). Scientists have also used facial expression 
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analysis for gathering information about patients’ intentions (Hussein and Granat 2002). 

In a closer field, investigators proposed the non-contact measurement of stress and 

emotional conditions through thermal infrared imaging of the face (Puri et al. 2005). 

AFEC was also proposed to the computing and engineering communities for 

developing smart and adaptive man-machine interaction mechanisms and the HCI 

interfaces (Ekman et al. 1993; Kearney and Mckenzie 1993; Picard et al. 2001; Reeves 

and Nass 1996). Some reportedly successful applications include software and 

appliance usability tests, adaptive system design and operationally critical systems’ 

monitoring (Henderson et al. 1995; Ohnishi and Sugi 1996; Ward et al. 2003; Zaatri and 

Oussalah 2003). (Ward et al. 2003) confirmed in a recent investigation that tracking the 

facial expressions might assist in conducting software usability tests. 

A number of recent studies reported the growing importance of human factors in 

engineering. These studies cited a significant increase in the number of manufacturers 

who perform user-satisfaction tests for satisfaction assessment and product quality 

audits (Paterno 2005; Wilfong 2006; Zaatri and Oussalah 2003). AFEC methods were 

reportedly capable of revealing the positive and negative user reaction and thus allowed 

better assessment of user satisfaction. As a result, the manufacturing sector was also 

anticipated to benefit from the AFEC and AAR functionality (Paterno 2005; Wilfong 

2006; Zaatri and Oussalah 2003). 

Multidisciplinary studies in applied psychology and HCI also make a strong case for 

real time automated recognition of positive and negative expressions of emotions. For 

example, computer anxiety, a major obstacle in the professional and personal 

development of many individuals, may be detected through measurement of negative 

emotions using an AFEC capable system (Bozionelos 2001; Brosnan 1998; Wilfong 

2004). Meyer and Rakotonirainy (2003) reported that recognition of positive and 

negative emotions and their expressions could enable sensors activate life-support 

systems in context-aware homes. 

Non-invasive recognition of negative and positive facial expressions was also 

desirable for man-machine interaction (Picard 1999). The HCI literature reported that 

facial expression analysis could help multimodal human-computer interaction devices in 

controlling critical industrial systems. Investigators were able to use facial expression 



CHAPTER 2 

14 

tracking in sophisticated control systems for adapting and responding to emergencies 

and critical conditions (Paterno 2005; Zaatri and Oussalah 2003). 

A robust AFEC functionality was also considered important for building socially 

aware systems and sociable intelligent robots (Brooks 2002). Researchers argue that 

service robots and rehabilitation machines must acquire a reliable AFEC and AAR 

capability (Arkin et al. 2003; Hara and Kobayashi 1997; Sugimoto et al. 2000). 

Scientists foresee that systems capable of interpreting emotions from facial expressions 

may soon be able to respond to various social situations and an individual’s personal 

needs (Brooks 2002). 

Theses potential uses of AFEC capable systems seem to have inspired scientific 

communities to explore new and advanced methods of developing more robust and 

reliable AFEC and AAR capable systems (Brooks 2002). Significant efforts were made 

to design and built machines that would recognise facial expression of affective states 

(Cohen et al. 2003; Fasel and Luettin 2003). These so called socially intelligent 

machines try to interpret affective states using some form of visual cues gathered from 

the facial expression of emotive states. Some of these machines also employ carefully 

selected non-visual signals or a combination of both visual and non-visual cues (Ang et 

al. 2004; Christie and Friedman 2004; Lisetti and Nasoz 2004; Herry and Frize 2002). 

The following sections of this chapter examine the existing AFEC approaches 

employed for implementing the AFEC and AAR capable systems. High-level 

architecture and implementation of the AFEC capable systems and their functional 

components are discussed in the following chapters. The computational methods 

employed for designing the AFEC capable systems are discussed in Chapter 5. 

 

2.2 Existing AFEC enabling approaches 

During the last three decades of the last century Paul Ekman and his group carried out 

important theoretical and empirical work on human facial expression analysis and 

representation. They developed a Facial Action Coding System (FACS) to code facial 

expressions using muscles’ movements on the face (Ekman and Friesen 1978). They 

also discovered evidence for supporting the universality of facial expressions (Ekman 

1992). Another coding system, known as the Maximally Discriminative Affect Coding 

System (MAX), was developed around the same time (Izard 1979). MAX also received 
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considerable attention and was used in a small number of investigations carried out for 

facial expression analyses (Ekman et al. 1993). 

The emergence of FACS and MAX inspired automated analysis of facial 

expressions using still images and frame sequences such as visible-spectrum video clips 

(Cohen et al. 2003; Ekman et al. 1993). Researchers were able to track the facial 

features and measure the amount of facial movement to categorise the universal facial 

expressions. The work Ekman and Friesen (1978) carried inspired a significant number 

of recent works on vision-based facial expression recognition and classification. They 

introduced a method of measuring the facial movements in terms of facial Action Units 

(AUs) for classifying basic facial expressions (Ekman and Friesen 1978). Several 

investigators employed FACS for AFEC and AAR (Cohen et al. 2003; Ekman et al. 

1993; Fasel and Luettin 2003; Mase 1991; Pantic and Rothkrantz 2000). 

Vision-based AFEC capable systems have demonstrated little practical use in real 

life situations (Baldwin et al. 1998). Limited success of vision-based AFEC capable 

systems appears to be the major driving force behind the attempts of developing the 

non-vision-based AFEC (NVAFEC) capable systems. Current literature published in the 

areas of bioinformatics, pattern recognition, image processing, human information 

processing and HCI suggested fusion of visual and non-visual cues could enhance the 

AFEC and AAR functionality (Christie and Friedman 2004; Lisetti and Nasoz 2004; 

Pham et al. 2000; Sebastiani et al. 2003). Fusion of visual and non-visual cues for 

AFEC and AAR was proven technically possible and computationally viable in some of 

the reported systems. Several recently developed systems used a combination of visual 

and non-visual cues (such as auditory and bio-physiological signals) for achieving the 

AFEC functionality (Kim et al. 2004; Sugimoto 2000; Yoshitomi 2000). 

The theoretical background, empirical results and technical issues involved in 

design and implementation of both vision-based and non-vision-based AFEC capable 

systems are available in (Black and Yacoob 1997; Christie and Friedman 2004; 

Christine and Nasoz 2004; Ekman et al. 1993; Essa and Pentland 1997; Fasel and 

Luettin 2003; Kim et al. 2004; Pantic and Rothkrantz 2000; Sugimoto 2000; Yoshitomi 

2000). 
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The literature cited above groups the AFEC systems on the basis of the types of 

signals used and the architectural implications of the employed signals. The AFEC and 

AAR capable systems can be divided into two broad categories: 

1. Vision-based AFEC systems 

2. Non-vision based AFEC (NVAFEC) systems 

This categorisation is used in this thesis to highlight the significant differences in 

the measurement and processing of signals and cues used in the AFEC and AAR 

capable systems. 

Though capabilities and limitations of these two different types of AFEC systems 

differ, they share several common features. For example, the two categories of AFEC 

systems appear to have similarities in their top-level generic architecture. Both types of 

AFEC systems work in multiple stages. Both visual and non-visual cues are first 

measured and then transformed into a particular desired format of usable signals. Once 

the signals are transformed into usable data (features) they are represented in a decision 

space using a proper representation approach. Finally, selected facial features are used 

to classify the faces using a set of discriminant rules. The two approaches of achieving 

the AFEC and AAR functionality are further examined in the following paragraphs. 

 

2.3 Vision-based AFEC systems 

Most vision-based AFEC systems rely on estimation of facial muscular movements and 

associated physiognomic activities taking place on a human face. The physiognomic 

data and the information gathered from the facial muscular activities are interpreted and 

processed using one of the several recognition and classification methods (Ekman et al. 

1993). Scientists were able to relate muscular activities with the physiognomic signals 

observed on a human face (Ekman et al. 1993). It is believed that these signals, 

individually and collectively, participate in visually noticeable facial activities. The 

visual signals generated through the facial muscles’ movement are generally classified 

into four general categories (Ekman et al. 1993): 

1. Static facial signals representing the permanent features of the face; 

2. Gradual and slowly changing facial signals representing changes in the 

appearance of the face over time; 
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3. Artificial signals representing exogenous features of the face such as hair, 

jewelry and glasses; and 

4. Rapid facial signals representing changes in neuromuscular activities leading 

to visually detectable changes in facial appearance, such as opening of mouth 

or drop of jaws. 

 

The fourth class of signals is considered more related to the facial muscular activity. 

It is therefore considered a major source of input to the facial expression analysis 

(Ekman et al. 1993). Scientists have developed the facial action measurement systems 

such as MAX and FACS using the measurements of the fourth class of signals (Ekman 

et al. 1993; Ekman and Friesen 1978). 

FACS, generally accepted as a comprehensive coding system, is a widely used 

method of measuring the facial muscular movements. It attempts to measure contraction 

of each individual muscle alone and in combination with other muscles. The 

measurements are used to observe any changes in the appearance of a face (Black and 

Yacoob 1997; Ekman et al. 1993; Essa and Pentland 1997; Fasel and Luettin 2003; Gao 

et al. 2003). 

MAX is a comparatively less popular coding system used for measuring the facial 

muscle movement. It is regarded as a theory-based system that measures visible changes 

on the face (Lisetti and Schiano 2000). It was contested for its underlying theoretical 

basis suggesting that only specific areas of a face should be involved in certain 

emotions and their (Lisetti and Schiano 2000). Since it employs the observation and 

measurements of visible changes specific to emotions related appearances for 

classifying facial expressions, its implementation is considered complex and 

cumbersome (Ekman et al. 1993). MAX uses the units formulated in terms of 

appearances relevant to (only) eight specific emotions (Lisetti and Schiano 2000). 

In addition to FACS and MAX, two other methods: optical flow analysis and 3D 

wireframe model analysis are used in AFEC. 

Optical flow analysis is a popular techniques employed for facial expression 

analysis (Gao et al. 2003). The method relies on the measurement of apparent motion of 

brightness in an image (DeCarlo and Metaxas 2000). Optical flow analysis allows 

measuring facial muscle activity on an individual’s face. The facial features are 
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represented as patches whose motion in an image sequence is modeled using several 

low-level polynomials. The optical flow estimate is used to recover the motion of 

patches. These observed motion parameters are believed to provide a concise 

description of facial feature motion (Black and Yacoob 1997). Optical flow analysis 

based AFEC systems reportedly achieved up to 80 % classification accuracy in 

controlled test environments (Yacoob and Davis 1996). Several investigations extended 

optical flow analysis approach for achieving the AFEC functionality. For example, the 

optical flow model was employed to develop a physical model of human face using a 

recursively refined and improved facial motion estimation (Essa and Pentland 1997). In 

another study, estimates of forces resulting from the facial muscular movements were 

used for AFEC (Cabanac and Guillemette 2001). The system claimed to achieve up to 

98% accurate classification results (Cabanac and Guillemette 2001). Black and Yacoob 

(1997) proposed another approach that employed the local parameterised model of 

image motion and holistic spatial analysis. This approach was considered 

computationally expensive albeit it provided a plausible method of measuring the facial 

muscular movements (Gao et al. 2003). 

The 3D wireframe face model provides another noteworthy facial expression 

analysis approach. It involves developing an explicit 3D wireframe face model to track 

the geometric facial features defined on a face (Tao and Huang 1999). However, 

developing a 3D face model for tracking the facial muscular movements involves a 

complex process. Investigators noted that constructing a representative 3D model of 

certain anatomical areas of a human face was computationally demanding (Gong et al. 

2000; Gur et al. 2002). 

Vision-based AFEC is usually performed using one of the aforementioned methods. 

Though each of these methods poses a unique set of problems, they help achieve the 

AFEC and AAR functionality (Fasel and Luettin 2003; Lisetti and Schiano 2000; Pantic 

and Rothkrantz 2000; Tina et al. 2001). 

Vision-based AFEC systems attempt to measure the temporal facial muscular 

movement and estimate the resulting energy changes in the facial muscles for AFEC 

and AAR (Essa and Pentland 1997). Hence, vision-based AFEC systems typically 

employ either static images or a sequence of images to detect faces, extract features and 

classify expressions (Fasel and Luettin 2003; Pantic and Rothkrantz 2000). Facial 
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muscular activities are regarded momentary and subtle (Ekman et al. 1993; Essa and 

Pentland 1997). Measurement of instantaneous contraction of muscles and associated 

changes in the appearance of the physiognomy involves observing location, intensity 

and dynamics of the facial muscular actions (Ekman et al. 1993). Vision-based AFEC 

systems would therefore (typically) work in three high-level stages. These three stages 

are referred to as; facial feature extraction, feature selection and representation, and 

expression classification (Fasel and Luettin 2003; Pantic and Rothkrantz 2000). 

Architectural implementation, functional description of components, and performance 

evaluation of most popular AFEC systems are available in (Baldwin et al. 1998; 

Bartneck 2001; Brooks 2002; Cohen et al. 1993; Donato et al. 1999; Ekman et al. 1993; 

Essa and Pentland 1997; Fasel and Luettin 2003; Huang and Huang 1997; Kearney and 

McKenzie 1993; Posamentier and Abdi 2003; Yoshitomi 2000). 

 

2.4 Limitations of the vision-based AFEC systems 

Affective computing and pattern recognition literature identifies a number of problems 

that restrict the real life application of AFEC systems. (Picard et al. 2001) argued that a 

majority of experiments on these AFEC systems was conducted in controlled laboratory 

environments using pre-segmented data. Hence, it is argued that the real life 

performance and relevance of reportedly successful AFEC systems need further 

verification. Participants’ control over intensity of emotions during the experiments was 

also perceived arbitrary and unrealistic in some studies. Critiques argued that the 

underlying relationship between the internal feelings and their external expressions was 

not considered during the experiments and performance tests (Baldwin et al. 1998). The 

true nature of the association between the physiological muscle movements and facial 

expressions, it is argued, has not been established yet. (Picard et al. 2001) point out that 

a universally agreed meaning of the neutral state does not exist and the relationship 

between the inter and intra emotional states remain unexplained. It is also argued that 

the mapping of several emotions to a few expressions can also make the AFEC results 

ambiguous and misleading. (Baldwin et al. 1998), questioning the reliability of vision-

based AFEC systems, argue that a person can simultaneously experience more than one 

affective state and the AFEC systems cannot realise that fact. It is also argued that anger 

and depression or joy and positive surprise can be experienced together albeit a vision-
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based AFEC system cannot notice that. The inability to understand any relationship 

between various intensities of expressions and emotions, and the lack of ability to 

distinguish between the reactive emotions from pretended ones make relevance of the 

vision-based AFEC systems questionable (Baldwin et al. 1998; Ekman et al. 1993; 

Klein et al. 2002; Picard et al. 2001). 

The multi-disciplinary literature on AFEC and AAR highlights many core problems 

that hinder the performance and reliability of the vision-based AFEC systems. For 

example it is argued that the issues pertaining to the geometric complexity of the facial 

features need to be resolved. Methods and means to systematically acquire, understand 

and process facial geometric information have yet to be further developed, tested and 

validated. The ability to transform geometric variations into useful information (with a 

high degree of accuracy) has yet to be achieved. Avoiding any misinformation 

embedded into the geometric variations is not possible yet. Issues concerning the 

deformability of facial features are also important and need to be addressed. The vision-

based AFEC systems lack the understanding of the intensity and valance of deformation 

as it pertains to an individual face and a broad category of facial expressions. Issues 

concerning the validity of data are also important. Avoiding noise, usually caused by 

factors such as variation in the intensity of ambient light, is not possible yet. The 

intensity of light influences face detection and resulting feature extraction in an AFEC 

system. The measurement of any correlation between intensity of expressions and 

underlying emotional estate is also required for a better and reliable affect recognition 

(Baldwin et al. 1998; Ekman et al. 1993; Gao et al. 2003; Klein et al. 2002; Picard 

2001). 

In order to achieve a robust and reliable AFEC and AAR functionality, researchers 

tend to use the human bio-physiological information in the NVAFEC capable systems. 

Attempts were also made to infuse the auditory signals, the bio-physiological cues, and 

the visual cues. An overview of the NVAFEC systems is provided in the following 

section. 

 

2.5 The NVAFEC systems 

Investigators were able to discover a strong relationship between the emotion, human 

autonomic response and bio-physiological signals. Some researchers were able to 
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measure the basic emotions using either autonomic signals or bio-physiological cues 

(Christie and Friedman 2004; Christine and Nasoz 2004). Details of some successful 

NVAFEC and AAR capable systems are reported in (Christie and Fireman 2004; Collet 

et al 1997; Kim et al. 2004; Stemmler 1989; Yoshitomo 2000). These signals, found 

helpful in achieving the AFEC and AAR functionality, are measured using some 

purpose-specific measurement devices or sensors. Of the above human information, 

only the skin temperature measurements could be measured through non-invasive 

means. Measuring other signals might require a direct contact with the human body. 

NVAFEC is a new approach but a growing interest in this approach is evident in 

recent publications in the domains of computer perception, HCI, biometric recognition, 

and intelligent systems (Christine and Nasoz 2004). Some existing NVAFEC and AAR 

systems reportedly employed auditory signals, electrocardiogram readings, 

electrodermal measurements, skin temperature variations, brain activity measured using 

the electroencephalograms (EEG), functional magnetic resonance imaging (fMRI) 

readings, and blood oxygen level dependent (BOLD) data (Christine and Nasoz 2004; 

Niemic 2002). Of these signals, researchers find sound signals, brain signals, 

electrodermal measurements, and skin temperature highly feasible for developing the 

AFEC and AAR capable systems (Christine and Nasoz 2004; Ohnishi and Sugie 1996; 

Picard 2002; Pollina et al. 2006). 

The fusion of auditory signals with the visual and/ or bio-physiological cues for 

AFEC and AAR was also tried in some recent investigations. Studies propose that 

auditory signals work in all lighting conditions but the ambient noise can easily 

influence the sound signals. Such influences and their associated problems warrant use 

of special signal processing tools and methods. Humans can exercise some control on 

receiving and transmitting communication signals so control over auditory signals is 

always possible during people-to-people communication. Inability to exercise similar 

control in machines may allow deception and may deteriorate the understanding and 

measurement of the relation between the voice signals and true emotional estates. 

Scientific studies suggest that humans do not posses the ability to completely 

control the autonomic response and bio-physiological reaction to emotions and their 

expression. Fusion of bio-physiological signals with either visual cues or auditory 
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signals is therefore believed to result in more robust and reliable AFEC and AAR 

functionality. 

The theoretical foundations, methods, tools, and architectural details of NVAFEC 

capable systems are available in the recent works by (Ang et al. 2004; Boulic and 

Thalmann 1998; Christie and Friedman 2004; Christine and Nasoz 2004; Critchley et al. 

2000; Niemic 2002; Pizzagalli et al. 1998; Posamentier and Abdi 2003; Prokoski and 

Iedel 1999; Sarto et al. 2005; Schwarz et al. 2002; Sebastian et al. 2003; Socolinsky et 

al. 2003; Stern et al. 2001; Szabo et al. 2000; Yoshitomi et al. 2000). 

A growing interest in using skin temperature measurements for developing the 

AFEC and AAR capable systems is evident in the literature. In many recent studies, 

skin temperature was measured using Thermal Infrared Imaging (TIRI) equipment. 

Successful use of TIRI for developing non-invasive AFEC and AAR capable systems is 

reported in (Christine and Nasoz 2004; Pavlidis 2000; Pavlidis 2004; Pavlidis and 

Levine 2002; Pollina 2006; Puri et al. 2005). Attempts were also made to use the TIRI 

with the visible imagery and voice for AFEC (Sugimoto et al. 2000; Yoshitomi et al. 

2000). Previous work suggested that skin temperature measurements through the TIRI 

would assist in AFEC and AAR (Bolle 2004; Kakadiaris et al. 2005a; Kakadiaris et al. 

2005b; Kong et al. 2005; Kunzmann and Gruhn 2005; Kurse et al. 2001; Matsuzaki and 

Mizote 1996; McGimpsey et al. 2000; Ogasawara et al. 2001; Pavlidis 2004; Pollina 

2006; Socolinsky et al. 2003; Stemmler 1989; Sugimoto 2000; Wolf et al. 2005; 

Yoshitomi et al. 2000). TIRI offers following advantages in the context of AFEC and 

AAR. 

1. Facial skin temperature can be measured from a distance using the 

infrared cameras. Since no body contact is required, the target person may 

not notice any thermographic activity though this may result in breach of 

personal privacy and may raise some ethical issues. Despite these issues, 

surveillance and security communities require non-contact and secret 

monitoring of suspects and would benefit from TIRI based AFEC and 

AAR; 

2. Modern infrared equipment allows non-invasive thermographic 

measurements. This may be particularly useful for medical and 
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psychological diagnostic applications under conditions when patients are 

either unable or unwilling to cooperate; 

3. TIRI is invariant to light and illumination conditions; 

4. TIRI equipment is accessible and is becoming less expensive and 

affordable; 

5. Modern TIRI equipment is light, aesthetically appealing and is easy to 

handle; 

6. The latest infrared cameras are highly sensitive to any thermal variations 

on the human skin. These cameras are capable of sensing up to ±0.05 ºC 

thermal variations; 

7. TIRIs provide both visual and physiological information for the AFEC 

and AAR; and 

8. TIRI is safe and harmless to both the user of infrared equipment and the 

target individual. 

 

However, several questions are raised about the potential problems of using TIRI in 

AFEC and AAR applications. For example, can the facial skin temperature 

measurements be transformed into useful signals for facial expressions recognition? Is 

the association between the measured facial skin temperature variations and expression 

of affective states strong enough to help in AFEC and AAR? How effective would TIRI 

be in sensing any facial thermal variations? Are appropriate computational methods 

available for extracting and representing thermal features for AFEC and AAR? Is there 

any historical evidence of using the TIRI in AFEC and AAR? 

The literature reviewed for this thesis and reported in the next chapter provides an 

insight for answering these and similar questions. The literature reports that factors such 

as blood volume flow variation, musculo-thermal activities, and body metabolism react 

to emotive states and cause a change in the facial skin temperature (Briese 1995; Collet 

et al. 1997; Drummond and Lance 1987; Kistler et al. 1998; Naemura et al. 1993; Sinha 

and Parson 1996). Effectiveness of TIRI in measuring the facial skin temperature 

variations was also reported in the literature (Jones and Plassmann 2002; Khan et al. 

2006; Otsuka et al. 2002; Pollina et al. 2006). 
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2.6 Conclusion 

The vision-based automated facial expression recognition and classification has been 

more successfully under perfect and controlled conditions. Several methodological and 

functional limitations have been identified as detrimental to the real life performance of 

the vision-based automated facial expression classification systems. Recently, non-

visual cues and the bio-physiological signals were employed for developing the 

automated facial expression classification and automated affect recognition systems. 

One major problem in employing the bio-physiological signals for automated facial 

expression classification and automated affect recognition is the invasive nature of the 

signal measurement mechanisms. Thus, unconscious facial expression monitoring is not 

possible if the bio-physiological signals are employed for AFEC and AAR. 

Thermal infrared measurement of skin temperature promises a non-intrusive and 

technically apt mechanism for achieving the non-invasive AFEC and AAR 

functionality. Previous researchers have reported encouraging results in the use of facial 

skin temperature measurements in the AFEC and AAR. The following chapters 

examine the recent approaches for employing the facial skin temperature measurements 

in AFEC and AAR capable systems. 
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Chapter 3 
MEASUREMENT OF EMOTION- SPECIFIC AUTONOMIC AND 

PHYSIOLOGICAL INFORMATION 

 

 

 

This chapter discusses how humans physiologically response to emotions and presents 

mechanisms available to detect the human response. Previous studies that discovered an 

association between the core body temperature and the affective states are presented. 

Methods and tools for measuring the emotion-specific human information in the cited 

studies are also discussed. Emotion-specific changes in human body and their detection 

through skin temperature measurement are also discussed. Uses of thermal infrared 

imaging techniques for non-invasive measurement of skin temperature are also 

reviewed. This chapter finally proposes using infrared measurement of transient facial 

skin temperature variations to develop non-invasive automated facial expression 

classification (AFEC) and automated affect recognition (AAR) systems. 

 

3.1 Emotion-specific autonomic and physiological information 

Ancient wisdom, preserved in various fiction forms and literature, believed in an 

association between emotion and unintentional observable human responses. Modern 

science supports this ancient wisdom and confirms the existence of a relationship 

between the emotions and autonomic response (Ang et al. 2004; Allanson and 

Fairclough 2004; Busso et al. 2004; Christine and Nasoz 2004; Ekman 1982; Ekman et 

al. 1983; Ekman et al. 2000). Scientists were able to discover and measure the 

involuntary autonomic and physiological signals generated in response to the affective 

states using some purpose-specific equipment, sensors or devices (Bradley et al. 2003; 

Dimberg, U. 1990a; Dimberg, U. 1990b; Palomba et al. 2000; Sinha and Parson 1996; 

Wright et al. 2004).  

(Sinha and Parson 1996) examined the bio-physiological parameters in normal 

conditions, and in response to situations of anger, fear, joy, and sadness. They examined 
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participants’ heart rate, skin conductance level, finger temperature, blood pressure, 

electro-oculogram readings, and facial EMG recordings. They concluded that emotion-

specific physiological response patterns to fear and anger were significantly different 

than the ones observed in participants under the neutral conditions (Sinha and Parson 

1996). 

(Ekman et al. 1983) noted that evoked autonomic activity would help in 

distinguishing between the positive and negative affective states. Using the autonomic 

activity measurements, they were also able to discern between the other negative 

emotions (Ekman et al. 1983; Zajonc 1985). 

(Christie and Friedman 2004) also investigated the autonomic nervous system 

response to the experimentally manipulated emotions. Their study confirmed previous 

findings that had discovered existence of emotion-specific autonomic nervous system 

activity. 

(Collet et al.1997) reported several relevant works that investigated the association 

between the basic autonomic activities, emotions and expression of emotions. The six 

autonomic nervous system parameters: skin conductance, skin potential, skin resistance, 

skin blood flow, skin temperature and instantaneous respiratory frequency were found 

to be responsive to the basic emotions in the studies (Collet et al. 1997) cited. A 

prominent scientist Paul Ekman is credited for coining the terms basic emotions and 

basic facial expressions (Ekman 1992). He proposes that the six basic facial expressions 

and six basic emotions may be used to represent all major emotional experiences. Paul 

Ekman suggests that the expressions of anger, disgust, fear, happiness, sadness and 

surprise can represent all major emotional experiences. Any reference made to the basic 

emotions or six basic facial expressions in this thesis is based on Paul Ekman’s theory 

of six basic emotions. 

A significant number of studies conducted during the last three decades suggest that 

visual and bio-physiological information may provide useful human information for 

clinical and medical investigations, biometrics, security and surveillance, criminal 

investigation and HCI. More recently, few attempts were made to use the bio-

physiological signals in AFEC and AAR (Christie and Friedman 2004; Collet et al. 

1997; Naemura et al. 1993). 
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Advanced methods of measuring the bio-physiological signals including some 

imaging techniques were employed in the reported investigations to acquire the human 

physiological information (Allanson and Fairclough 2004; Dimberg 1990a; Dimberg et 

al. 2000; Dimberg and Petterson 2000; Hess et al. 1992; Iwase et al. 2002; Lundqvist 

1995; Root and Stephens 2003; Vrana 1993; Varna and Gross 2004; Veldhuizen 2003; 

Winkielman and Cacioppo 2001). 

 

3.2 Emotion-specific musculo-physiological activities on the face 

A significant number of investigations have been carried out to explore the emotion-

specific musculo-physiological activities on the human face. Notably, the EMG 

(electromyogram) measurements were helpful in ascertaining an association between 

the emotion and the musculo-physiological activities. The EMG measurements rely on 

the electrical potential measured in the skeletal muscles. The EMG technique is usually 

employed as a diagnostic test since it records the electrical response of skeletal muscles 

while at rest and during any voluntary or stimulated facial action. The EMG is 

considered a robust and reliable technique (Iwase et al. 20002; Vrana and Gross 2004; 

Wolf et al. 2005). The major facial muscles that are considered responsive to emotions 

are shown in Figure 3.1. 

A recent investigation used EMG measurements to investigate how the two groups 

of facial muscles: Orbicularis Oculi, and Mentalis and Depressor Anguli Oris would 

contribute to the facial expression of pain (Wolf et al. 2005). The results concurred with 

the previous studies and explained the relationship between the facial expression of pain 

and the two muscle groups (Wolf et al. 2005). 

(Vrana and Gross 2004) compared the EMG response in Zygomaticus Major and 

Corrugator Supercilii EMG response pertaining to the feelings of joy and anger. They 

reported a greater Zygomaticus Major EMG response to the feeling of joy as compare to 

that of the Corrugator Supercilii. They also discovered the physiological response to 

expression of anger was similar to that observed in neutral condition (Vrana and Gross 

2004). 

(Veldhuizen et al. 2003) studied influence of mental fatigue on facial EMG activity 

during a simulated workday. They were able to identify an association between mental 

fatigue and the facial EMG activities (Veldhuizen et al. 2003). 
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(Root and Stephens 2003) investigated the organisational patterns of the central 

control of facial expression muscles in men. They recorded the surface EMG on the 

ipsilateral pairs of facial muscles while participants intentionally smiled, expressed 

sadness and horror. They discovered peaks in the cross-correlograms of the EMG 

readings on the Orbicularis Oculi and the Zygomaticus Major during smile, on the 

Corrugator and the Depressor Anguli Oris while expressing sadness and on the Frontalis 

and the Mentalis during the horror look (Root and Stephens 2003). 

 

Figure 3.1: Frontal view of the facial muscle map showing all major facial muscles 

 



MEASUREMENT OF EMOTION-SPECIFIC AUTONOMIC AND PHYSIOLOGICAL INFORMATION 

29 

(Iwase et al. 2002) investigated the neural substrates of the facial expression of 

induced experiences of joy. They observed a strong correlation between the regional 

cerebral blood flow in the bilateral supplementary motor area and the left putamen. 

They also observed significant correlation between the regional cerebral blood flow in 

the primary motor area and the magnitude of the EMG readings in the bilateral 

supplementary motor area of the face (Iwase et al. 2002). 

(Winkielman and Cacioppo 2001) observed that ease of task (and task processing) 

could elicit higher EMG activity over the region of the Zygomaticus Major. They 

inferred existence of a physiological correlation between ease of task and positive 

emotional response (Winkielman and Cacioppo 2001). 

Some relevant studies suggest that Zygomaticus Major is the primary muscle of 

smile, Orbicularis Oculi is the major muscle of joy and Orbicularis Oris is the smile 

modifier muscle (Kall 1990). Studies also suggest that Zygomaticus Major, Orbicularis 

Oculi, Mentalis, Platysma and Orbicularis collectively represent happiness and joy (Kall 

1990). Similarly, Corrugator, Masseter, Triangularis, Orbicularis Oculi Palpabraeous, 

Procerus Nasi, Labii Inferioris, and Platysma are (jointly) considered involved in the 

expression of aggression and rage (Kall 1990). In a similar way, Frontalis, Palpabraeous 

Superior and Inferior, Labii Superioris, Orbicularis Oculi, Masseter, Triangularis, 

Corrugator and Buccinator are believed to play a major role expressing fear and sadness 

(Kall 1990). Similar musculo-physiological representations of the emotional 

experiences were reported in (Dimberg 1990; Dimberg et al. 2000; Dimberg and 

Petterson 2000; Hess et al. 1992; Lundqvist 1995; Vrana 1993). 

 

3.3 Emotion-specific thermal variations in the human body 

It may be deduced from the cited literature that humans involuntarily react to emotions. 

The emotion specific musculo-physiological activities can be measured and recorded 

using measurement techniques such as EMG. Since the musculo-physiological activities 

are believed to cause generation of some musculo-thermal cues, one may infer that a 

change in affective state would also cause a change in the body temperature. Some 

evidence of emotion-specific variations in the body temperature, drawn from the 

multidisciplinary literature, is being presented in the following paragraphs. 
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Human body temperature is considered a useful physiological signal (Fujimasa 

1998). Typical core body temperature of a healthy person, under normal conditions, 

ranges between 35.5 ºC in the morning to 37.7 ºC in the evening (Jones 1998). Human 

are homotherms and are capable of maintaining a constant body temperature (Jones 

1998). An increase (or decrease) in the body temperature may cause the body 

malfunction and even the failure of body organs (Jones and Plassmann 2002). The 

“naturally” normal core body temperature helps in preserving the homeostasis. The 

hypothalamus, a temperature-regulating element in the body has a sensing part that 

senses any increase in the blood temperature level. The hypothalamus, connected to the 

pituitary gland balances the generation and loss of heat inside the body and controls the 

core body temperature. Physically, the pituitary gland resides at the base of the brain 

close to the termination of the brain stem. The hypothalamus acts as a part of the human 

nervous system and works as a negative feedback circuit in the body (Jones 1998; Jones 

and Plassmann 2002). Neurons in the hypothalamus constantly monitor blood 

temperature against a natural thermal value and act as receptors. It is believed that the 

internal body temperature setting may change for illness, fever, shock, trauma and 

anxiety. The hypothalamus tries to regulate body temperature under all circumstances 

and when it fails to do so, the body experiences some abnormal conditions (Jones and 

Plassmann 2002). 

In addition to other factors, contraction of muscles and a change in the body 

metabolism help in generating the heat inside the human body (Jones and Plassmann 

2002). Blood circulation helps transport the heat from within the body core (Jones 

1998). When an increased blood temperature is sensed, the hypothalamus signals to 

release the body heat. Heat from the human body is released through vasodilatation, 

perspiration, exhalation, and reduction of the metabolic rate (Jones and Plassmann 

2002). A small area in the posterior of hypothalamus detects any blood temperature fall 

(Jones 1998). When the blood temperature drops, the rate of heat loss is reduced 

through the initiation of vasconostriction (Jones and Plassmann 2002). The rate of heat 

transfer between the body core and the surroundings is used to determine the skin 

surface temperature (Jones and Plassmann 2002). 

Core body serves as the source of heat generation. It remains almost at constant 

temperature under normal conditions. The blood flow through the vessels continuously 
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transports heat to the skin through conduction of heat between the vessels and the skin 

(Jones 1998; Jones and Plassmann 2002). The skin continuously gains heat and then 

losses it through thermal radiation, thermal conduction, exhalation, natural convection, 

forced convection and evaporation (Jones and Plassmann 2002). A change in affective 

state may also cause a variation in the skin temperature (Asthana and Mandal 1997; 

Christine and Nasoz 2004; Pham 2000; Vrana 1993).  

(Briese 1995) conducted a study to determine if the stress induced by an academic 

examination would raise the core body temperature and if there was a correlation 

between the examination-induced stress and the test scores. Their work suggested 

existence of emotional hyperthermia in 108 students who participated in the 

investigation. 

(Kistler et al. 1998) reported several studies suggesting that a change in skin blood 

flow would serve as an indicator of sympathetic reflex response to the emotion stimuli. 

Using the thermal infrared measurements, (Kistler et al. 1998) observed that certain 

stimuli triggered the sympathetic nervous system and caused a decrease in the 

cutaneous microcirculation, particularly around the fingertips skin surface. 

Relevant literature suggests that emotional experiences may influence the body 

metabolism and may, consequently, cause variations in the core body temperature. It 

may be deduced that the body temperature, in addition to the other bio-physiological 

signals, varies with a change in affective states. 

A significant number of studies suggest that animals, birds and humans may 

experience a considerable (though often momentary) core body temperature change as 

they confront emotional conditions and situations (Drummond and Lance 1987; 

Nakayama et al. 2005; Sarlo et al. 2005; Vianna and Carrive 2005). Some recent studies 

provide convincing evidence of a relationship between the affective states and the skin 

temperature. These studies suggest that emotions influence body metabolism, 

physiological conditions and skin temperature (Arkin et al.2003; DeSilva et al. 1997; 

Pham et al. 2000; Plutchik 1980). A number of researchers have also discovered a direct 

relationship between the skin temperature and the levels of stress, pain and anxiety 

(Gavhed et al. 2000). Patterns of observed thermal feature variations in the body tissues 

are believed to result from and represent the heat transfer to and from the body surface 

(Jones 1998; Jones and Plassmann 2002). The abnormal thermal patterns observed on 
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human body surface are believed to explain some patho-physiological conditions 

(Fujimasa 1998; Ogasawara et al. 2001; Prkachin and Mercer 1989). Investigators were 

able to discover a relationship between the respiratory response and variation in the 

facial skin temperature (LeBlanc 1976; Stroud 1991). Some researchers were able to 

employ the relationship between emotions and body skin temperature in HCI, AFEC 

and AAR (Christine and Nasoz 2004; Ekman 1983; Nakayam et al. 2005; Pollina et al. 

2006; Puri et al. 2005; Sarlo et al. 2005; Sugimoto 2000; Yoshitomi 2000). 

Several bio-physiological parameters are believed to have an influence on the skin 

temperature distribution (Fujimasa 1998) but the blood flow rate in the cutaneous 

tissues remains a major contributor to the variations in the skin thermogram patterns in 

a neutral environment (Fujimasa et al. 2000; Jones 1998). The vasomotor tone acts on 

the subcutaneous arterioles and controls the local blood flow. This makes it possible to 

observe the abnormalities and variations of the nervous system using the skin 

thermograms (Fujimasa 1998; Fujimasa et al. 2000). Skin thermal characteristics are 

also believed to reflect changes in the metabolism (Jones 1998), and blood flow rate and 

blood oxygen level (Fujimasa 1998; Fujimasa et al. 2000). Scientists believe that 

variations associated with the facial muscular movements may cause changes in the 

blood flow patterns and result in detectable thermal variation on the face (Fujimasa 

1998; Fujimasa et al. 2000; Jones 1998). 

 

3.4 Emotion-specific body heat and temperature flow model 

The human skin temperature is determined by the amount of heat dissipated from the 

body as a result of the blood flow, metabolic function, subcutaneous tissue structure and 

the sympathetic nervous activities (Bales 1989; Fujimasa et al. 2000). Earlier 

investigators were able to estimate the amount of heat dissipated from the core body and 

were successful in estimating the emotion-specific temperature variations on the facial 

skin. A typical body heat and temperature flow model shown in Figure 3.2 describes the 

flow of heat from the core body through the human skin. The heat generated inside the 

human body (QBM) is supposed to set the core body temperature (Tbody). In a typical 

human body heat and temperature flow model, the body temperature (Tbody) and the core 

body temperature (Tcore) are assumed to be equal (Bales 1989; Fujimasa et al. 2000; 

Jones and Plassmann 2002). Three body heat-flux factors and three heat production 



MEASUREMENT OF EMOTION-SPECIFIC AUTONOMIC AND PHYSIOLOGICAL INFORMATION 

33 

factors determine the skin temperature. The three body heat-flux factors are convection 

heat-flux (QCN), radiation heat-flux (QRD), and evaporation heat-flux (QEV). The body 

heat production depends on the heat conduction from the core body (QTC), body 

metabolism (QTM) and the amount of heat convection due to blood flow (QBC). Equation 

3-1 exhibits how the thermal equilibrium is achieved on the skin surface under neutral 

conditions (Bales 1989; Fujimasa et al. 2000). 

 (QCN) + (QRD) + (QEV) = (QTC) + (QTM) + (QBC)     3-1 

When thermal infrared imaging is employed to detect emotion-specific skin 

temperature variations, time-sequential thermal images are analysed to determine the 

regional skin temperature variations or their associated transient changes in 

physiological functions (Fujimasa et al. 2000). Equation 3-1 allows comparing the 

amount of heat produced with the amount of dissipated heat in the time-sequential 

images. An imbalance between the two sides of Equation 3-1 suggests either heat loss 

or heat gain in the skin regions under investigation (Fujimasa et al. 2000). Time-trend 

analysis of temperature variations within the regions of interest in the employed 

thermograms is also frequently used for blood-flow rate change analysis (Bales 1989; 

Fujimasa et al. 2000). 

 

3.4.1 Emotion-specific variations in the facial skin temperature 

(Zajonc 1985) investigated emotional expressions in humans and observed that facial 

muscles acted as ligatures on the facial blood vessels and regulated the cerebral blood 

flow. (Zajonc 1985) concluded that subjective feelings influenced regulation of blood 

flow in the facial blood facials. 

 

Figure. 3.2: The heat flow and skin temperature equilibrium model. 
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(Drummond and Lance 1987) discovered evidence of sweating and flushing on the 

forehead and around the cheeks in response to the body heating, embarrassment and 

strong gustatory stimulation. They concluded that the gustatory vasodilatation became 

exaggerated under strong emotional conditions. 

(Naemura et al.1993) investigated effect of loud noise on the nasal skin temperature. 

They report that stress conditions, similar to mother-infant separation, cause the nasal 

skin temperature to drop. They inferred that changes in the skin temperature might have 

resulted from the bodily reaction associated with the emotional changes. Using the 

infrared measurements of 26 participants’ facial skin temperature variations caused by 

the loud noise, (Naemura et al. 1993) concluded that facial skin temperature variation 

provided promising indices for detecting the emotional changes. 

Studies suggest that a change in affective state may cause variation in the blood 

volume flow under the facial skin. Furthermore, it is argued that the facial expression of 

emotion results in musculo-thermal activities on the face. The blood volume flow 

variations and the musculo-thermal changes are believed to cause variations in the facial 

skin temperature (Bales 1989; Dimberg 1990a; Dimberg 1990b; Otsuka et al. 2002). 

Since the facial expressions change rapidly, the effect of ambient temperature on the 

facial skin temperature may be ignored. Hence any imbalance observed between the two 

sides of Equation 3-1 may be attributed to the facial skin temperature gain or loss due to 

a change in the facial expression of affect. 

Assuming Cskin is the heat capacity of the facial skin, the facial skin temperature 

change ( Tskin) observed over a short time period (t) is expressed as: 

Cskin Tskin=(QTC) + (QTM) + (QBC)–[(QCN) + (QRD) + (QEV)] .   3-2  

Equation 3-2 allows calculating the skin temperature changes over a short time 

period due to a change in the expression of affective states. Two thermograms, each 

recorded with a different facial expression may be subtracted to determine the facial 

skin temperature change on regions of interest in the thermograms (Bales 1989; 

Fujimasa et al. 2000). 

 

3.5 Skin temperature measurement methods 

Ancient physicians used to assess their patients’ physical conditions by measuring the 

body temperature, just by touching them with bare hands (Ring 1998). Successful 
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quantitative measurement of body temperature was made possible in early 18th century 

(Ring 1998). Several advanced and easy to use methods and tools of recording the body 

temperature are available now. Body temperature is measured using mercury in glass, 

sterile thermocouples, radiometers and liquid crystal (Ring 1998). These temperature 

measurement systems are inexpensive, accurate and easy to use. However, they require 

direct contact with the body for temperature measurement (Ring 1998). The only 

method of non-contact body temperature measurement is the detection and 

quantification of the natural radiation. The radiation measurement technique provides 

the basis of modern thermal infrared imaging (Ring 1998). 

The human body surface, because of its natural composition and structure, is an 

efficient radiator. It is therefore easy to observe and measure any infrared emission from 

the skin surface using some well known non-invasive radiation detection methods (Ring 

1998). Sophisticated and inexpensive infrared cameras are widely used to investigate 

human physiological conditions through analysis of patterns of skin temperature 

variations (Fujimasa 1998). 

Infrared imaging is usually performed under a controlled and comfortable 

environment, usually referred to as the neutral environment (Fujimasa 1998). A neutral 

environment allows human body to maintain a state of thermal equilibrium (Fujimasa 

1998). Generally, the body temperature in a neutral environment varies between 29-31 

ºC with light clothing and 25-29 ºC without clothing (Fujimasa 1998). Heat production 

and losses in a neutral environment are believed to be almost equal. Only the blood flow 

rate of cutaneous tissues may cause some change in the skin surface temperature in a 

neutral environment (Fujimasa 1998; Fujimasa et al. 2000). 

Since this work proposes use of infrared measurement of skin temperature for 

achieving the AFEC functionality, it may be useful to examine the available TIRI 

methods and systems and establish their suitability for AFEC and AAR. 

 

3.6 Thermal Infrared Imaging (TIRI) 

TIRI is an old, established and reliable method that has a long history of military and 

non-military applications (Paul and Lupo 2002). The ever first scientific demonstration 

of infrared radiation existence by William Herschel dates back to the year 1800 (Phillips 

2002). TIRI was previously limited to military applications. Governmental control and 
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regulations were major obstacles in the development of the non-military TIRI systems 

(Ring 1998). The research and development work in the field of TIRI was focused on 

military use and was prohibitively expensive (Paul and Lupo 2002; Sayette et al. 2001). 

A window of opportunity first opened in 1950s when the principles of infrared imaging 

were declassified and civilian scientists got access to the technical information. Since 

then TIRI is gradually emerging as a novel civilian technology (Ring 1998). 

Early success of non-military TIRI systems seemed to have inspired scientists to 

explore the possibilities of using TIRI in other disciplines. This new breed of TIRI 

systems, referred to as “the third generation TIRI systems,” is used in clinical 

investigations, remote sensing, medical sciences, engineering maintenance and non-

destructive testing of materials (Paul and Lupo 2002; Sayette et al. 2001). TIRI is now 

considered an affordable technology that is easy to acquire, learn and use. What used to 

be the ugly and bulky TIRI equipment is now available as trendy, aesthetically pleasing 

and lightweight equipment (Phillips 2002). Some latest TIRI cameras resemble the 

operation and appearance of the consumer quality digital video cameras. 

Thermal radiation, the basis of thermal imaging, is different from the other two 

modes of heat transfer; conduction and convection. Thermal radiation propagates 

through the vacuum and is similar to light in behaviour. Both light and radiation take 

place in the electromagnetic spectrum, both are photonic phenomena and both travel at 

the same speed. The energy radiated from a surface is proportional to the 4th power of 

its absolute temperature. The radiant thermal energy transfer that takes place between 

the two surfaces is proportional to the 3rd power of the temperature difference between 

the two surfaces. These characteristics of thermal radiation help in distinguishing it 

from the other two modes of heat transfer (Cantronic Inc. 2002). 

Thermal radiation leaving a surface is called the radiant existence or radiosity. It 

includes three components, emission from the surface )( eW , reflection off the surface 

)( rW , and transmission from the surface )( tW . The total radiosity, as shown in Figure 3.3, 

is the sum of these three components (Wilson and Buffa 1990) and is described as, 

Total radiosity = eW + rW + tW        3-3 

Thermal radiation measurements from a target surface are used for non-contact 

surface temperature measurement and thermography (Wilson and Buffa 1990). Location 

of the infrared measurement region in the electromagnetic spectrum is exhibited in 
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Figure 3.4. Two physical laws (the Stephan-Boltzmann law and the Wien’s 

displacement law) are used to define and measure the emission of infrared energy from 

a surface (Wilson and Buffa 1990). 

The Stephan-Boltzmann law explains the radiation of heat from a surface as (Wilson 

and Buffa 1990): 

4W T=            3-4 

 where W is the radiant flux emitted per unit area of the surface in joules per second (or 

Watts), is the Emissivity,  is the Stephan-Boltzmann constant with a value of 

5.67*10-8 watts cm-2 K-4, and T is the absolute temperature of the target surface in ºK. 

 

Figure 3.3: Total radiation and radiosity of a surface 

 

 

Figure 3.4: Infrared measurement and visible spectrum regions in the electromagnetic spectrum 
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The Wien’s displacement law describes the peak wavelength at which a surface 

radiates the energy as 

m
= B

T
           3-5 

 where, 
m

 denotes the wavelength of maximum radiation in meters ( mμ ), B is the 

Wien’s displacement constant measured in meters-ºK (Wien’s displacement constant 

has a value of 2897 mμ K), and T represents the surface temperature in ºK. 

The real surfaces are categorised into three broad categories, blackbodies, 

greybodies and non-greybodies. This classification is based on their power to radiate the 

heat (Cantronic Inc. 2001). A blackbody is the imaginary and theoretical surface with a 

high emissivity ratio of 1.00. It can be measured at all wavelengths as it absorbs all the 

radiant energy impinged upon it. A body whose surface properties are independent of 

wavelength is said to be a greybody. The emissivity of a greybody is between 0.00 and 

1.00 (Cantronic Inc. 2001). Emissivity, usually denoted by  is defined as the ratio of 

the radiant energy emitted from a surface to the energy emitted from a blackbody 

surface at the same temperature (Cantronic Inc. 2001; Wilson and Buffa 1990). The 

non-grey bodies do not have a fixed emissivity ratio as their emissivity changes with the 

wavelength (Wilson and Buffa 1990). 

Human skin behaves like a blackbody. It has a high emissivity value, close to 1.00 

and is therefore regarded as the blackbody (Otsuka et al. 2002). The emissivity of 

human skin (s) was independently observed in various studies and was found to be in 

the range of 0.95 to 0.99. In case of a greybody, the emission, reflection and 

transmission are constant for all the wavelengths within a particular waveband. A 

greybody therefore neither absorbs nor reflects all radiations impinged upon it (Jones et 

al. 1988; Otsuka et al. 2002). In the thermal infrared measurement systems, referring to 

Equation 3-3, only emission from the surface )( eW is related to the temperature of a 

target surface. The temperature is calculated by eliminating or compensating the other 

two components Wr  and Wt  (Cantronic Inc. 2001). 

Infrared radiation from a target surface needs to pass through some transmission 

medium to reach the infrared lenses. When a perfect vacuum is available, no energy is 

lost. The available medium is not considered a perfect vacuum as radiations pass 

through the atmospheric air in usual circumstances. If radiation takes place under the 

normal conditions, effects of the atmospheric gases are negligible for short distances. 
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The energy losses may cause some errors in reading if the distance between the target 

surface and the camera is very large. However, the two highly used spectral intervals, 3-

5 mμ and 8-14 mμ are relatively less prone to energy losses caused by the distance 

between the camera and the surface (Jones et al. 1988). Almost all infrared cameras 

operate within these two spectral intervals. The Cantronic infrared 860 camera used for 

this research operates within 8-14 mμ spectral interval and is less prone to errors due to 

energy losses (Cantronic Inc. 2001). 

 

3.7 Interpreting skin surface temperature from the infrared thermal images 

Human skin is described as a complex structure in the literature (Jones 1998; Otsuka et 

al. 2002). It comprises of the outer epidermis (the outer most layer of skin) and an 

approximately 1-2 mm thick layer of the epithelial cells under the epidermis that 

constitutes the inner layer of the skin. The dermis is a thick layer of dense connective 

tissues that contains the blood and lymph vessels, hair follicles and glands. Figure 3.5 

exhibits a cross-sectional view of the skin segment. 

Thermal radiation from the epidermis is easy to monitor since it has a high 

absorption coefficient, 2.5 to 3.0 mm-1at wavelengths between 2.2 and 5.0 μm (Jones 

1998; Otsuka et al. 2002). Since the human skin radiates peak infrared signals around 

10 μm of the electromagnetic radiation spectrum, the 8-14 μm bandwidth is widely used 

in infrared imaging of skin (Bales 1998). This makes infrared imaging an effective 

technique for converting the electromagnetic radiations emanating from a skin surface 

into a visible image. The temperature distribution patterns on the facial skin may 

therefore be observed using methods such as pixel-grey level analysis (Fujimasa et al. 

2000, Wolff et al. 2005). 

Measuring the light in any part of electromagnetic spectrum is referred to as 

radiometry but the term generally refers to the measurement of infrared, visible and 

ultraviolet radiations (Ashdown 1994; Otsuka et al. 2002). Infrared imaging works on 

the principles of radiometry and photometry. Light is radiant energy, denoted as Q and 

measured in Joules. 
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Figure 3.5: A Cross-sectional view of the human skin 

 

When absorbed by a physical object, it can be converted into another form of energy. 

Spectral radiant energy is the amount of radiant energy per unit wavelength interval at a 

wavelength . It is measured in joules per nanometer as Q  = dQ/d . The time rate of 

flow of radiant energy, known as the radiant flux e (=dQ/dt) is measured in watts and is 

integrated over all instances of wavelengths as (Ashdown 1994; Otsuka et al. 2002) 

e
=

e
d

0
.     3-6 

Spectral radiant flux e  is the power emitted or received as radiation per wavelength 

interval at a wavelength  and is measured as 

e
=

e
/d .     3-7 

Radiance is the infinitesimal amount of radiant flux contained in a ray of light 

arriving at or leaving a point on a surface in any given direction. A ray is conceptually 

considered an infinitesimally narrow cone having its apex at a point on a surface. This 

cone is assumed to have a differential solid angle d , measured in sterdiance (Ashdown 

1994; Otsuka et al. 2002). 

Luminous flux, the photometrically weighted radiant flux, is measured in lumens as 

1/683 watts of radiant power at a frequency of 540x1012 Hertz.  It is defined as 

(Ashdown 1994; Otsuka et al. 2002). 

v
= 683

e
V ( )d

380

780 .     3-8 

The power of radiation to produce visual sensation is represented as luminous 
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efficacy. A human observer sees radiation between the wavelengths of 380-780 

nanometers. The maximum luminous efficacy of any radiation is 683 lumens per watt at 

555 nanometers (Ashdown 1994; Otsuka et al. 2002). 

Human eyes perceive the luminance, an approximate measure of the brightness of the 

surface being viewed from a particular direction, measured in lumens per square meter 

per sterdian. Luminance is equivalent to the photometric measure of radiance, related to 

the sensation of brightness (Ashdown 1994; Otsuka et al. 2002). 

The infrared thermal cameras measure the radiance for image construction. The 

principles of radiometry suggest that distance between a light source and sink does not 

influence the radiance in the absence of scattering and absorption. Hence radiance of a 

bundle of rays remains constant when it moves across an optical space. Therefore, the 

radiance of a source remains same as that of an image. Infrared cameras use focal plane 

array of detector elements to capture images (Ashdown 1994; Otsuka et al. 2002; Davis 

and Lettington 1988). 

Modern thermal infrared cameras are typically equipped with the Germanium lens to 

focus thermal radiations onto a focal plane array of microbolometer detectors. A 

bolometer is a temperature-sensitive electrical resistor. The microbolometer detectors 

employ a monolithic pixel structure. The arrays of microbolometer elements in such 

infrared cameras are thermally isolated to prevent thermal losses and reduce the 

possibilities of adding noise. An external electronic circuit measures its temperature rise 

caused by the absorption of the incident radiant energy (Ashdown 1994; Bales 1998; 

Davis and Lettington 1988; Kurse 2001; Otsuka et al. 2002). 

When a face is focused on the microbolometer detectors, each pixel undergoes a 

temperature increase and generates a signal that depends on the irradiance falling on it. 

Since the irradiance is a product of the radiance of the facial skin and the solid angle 

subtended by exit pupil at the image, the pixel grey-level depends on the radiant flux 

per unit area and the detector quantum efficiency. The detector quantum efficiency 

depends on the detector element area, detector absorption coefficient and its conversion 

efficiency (Kurse 2001). 

When the radiant energy is focused on the microbolometer array, its temperature 

increases, causes a change in resistance, and allows detecting the radiant power. 

Assuming R is the resistance and W is the dissipated power, the rate of change in 
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resistance dR/dW is proportional to the rate of change in electrical resistance dR/dT with 

the temperature T (Ashdown 1994; Bales 1998; Davis and Lettington 1988; Kurse 2001; 

Otsuka et al. 2002). 

Assuming R* is the intrinsic detector responsivity and I*  is the bias current, the 

thermal impedance Z* may be described as 

R* = I* (dR/dW) = I*(dR/dT)|Z*|.     3-9 

The bolometric detector resistance nonlinearly varies with the facial skin temperature. 

The skin area focused onto a pixel determines the total radiant flux falling onto the 

pixel. The grey-level may therefore be interpreted as the average skin temperature. 

During the infrared imaging of human face, the radiation arises from the natural 

thermal radiation from the face in the scene. Equation 3-4 transforms into equation 3-10 

and provides an estimate of the heat radiated from a facial skin surface. It is governed 

by the Stephen-Boltzmann law and is denoted as 

e = s Ts .     3-10 

Where, e is the radiant flux per unit area of facial skin, s is the skin emissivity, the 

proportional amount of energy emission with respect to a perfect absorber,  is the 

Stephan-Boltzmann constant (=5.673x10-12) and Ts is the absolute temperature of facial 

skin in ºK (Ashdown 1994; Bales 1998; Davis and Lettington 1988; Kurse 2001; Otsuka 

et al. 2002). The Wien’s displacement law describes the peak wavelength at which the 

facial skin radiates. It is estimated using Equation 3-5. 

m = B/ Ts .     3-11 

Where m is the wavelength of maximum radiation in μm and B is the Wien’s 

displacement constant (=2897 μm ºK). 

From the infrared radiation point of view, facial skin has a very high emissivity (s), 

much higher than the common surroundings such as glass or concrete and closer to a 

perfect blackbody. Studies suggest that the skin emissivity does not vary much with the 

wavelength and remains almost constant (Bales 1998; Jones and Plassmann 2002; Sloan 

et al. 2002). 

The pixel grey-levels in an infrared image therefore provide a measure of the 

response of the microbolometer array to the radiant power it absorbs, integrated over all 

angles. Changes in the grey-level may reflect, theoretically, the changes in facial skin 

temperature. For this reason radiance, an exponential function of the skin temperature is 
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considered an indicator of the level of blood perfusion in the skin in (Fujimasa et al. 

2000; Otsuka et al. 2002; Pavlidis 2004). The pixel grey-level may provide a measure of 

skin surface radiance and is also used to estimate the skin surface temperature. In a 

typical thermogram analysis, a grey-level of zero corresponds to the minimum 

temperature and the maximum grey-level corresponds to the maximum facial skin 

temperature. The infrared signals measured by the arrays of microbolometer detectors 

are sent to a frame grabber for image construction, image processing and viewing in a 

way that the map of 3-D temperature distribution of a face is converted into a 2-D 

image (Ashdown 1994; Bales 1998; Davis and Lettington 1988; Kurse 2001; Otsuka et 

al. 2002; Wolff et al. 2005). Figure 3.6 exhibits a typical thermal imaging system. It is 

important to note that each infrared system manufacturer reportedly uses its own 

proprietary standards (Paul and Lupo 2002). Figure 3.6 therefore provides a generic 

high-level representation of a typical infrared imaging system. 

 

3.8 Infrared imaging application in automated affect recognition 

TIRI was used in some recent investigations for classifying the human emotions and 

affective states, typically for a binary classification of affective states. Some attempts 

were also made to analyse the facial expressions using TIRI, in combination with other 

cues (Kim et al. 2004; Nakayam et al. 2005; Pavlidis 2004; Pavlidis and Levine 2002; 

Pollina et al. 2006; Puri et al. 2005; Sugimoto et al. 2000; Yoshitomi et al. 2000). 

Rationale and motivation for these investigations arise from the fact that certain real life 

situations and emotional conditions cause a change in blood volume flow under the 

facial skin (McGimpsey et al. 2000; Ogasawara et al. 2001; Phillips 2002). 

In a recent investigation, thermal facial screening was employed to detect attempted 

deceit using a three-stage system (Pavlidis 2004). During the first stage, thermal images 

were acquired using an infrared camera. Acquired thermal images were used to 

transform the facial thermal data into a blood flow model in the second stage. The 

hæmodynamic model was built upon the premise that significant blood flow 

redistribution would be taking place vis-à-vis a change in emotional conditions and 

anxiety. During the third stage, the hæmodynamic model was used to classify people 

into deceptive or non-deceptive categories. The system reportedly achieved results 

compatible with the polygraph examination by human experts (Pavlidis 2004). 
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Figure. 3.6: Schematic representation of a typical thermal imaging system. 

 

(Sugimoto et al. 2000) used TIRI to detect the transitions of emotional states by 

synthesising certain facial expressions. Facial thermal changes caused by the muscular 

movements were analysed for the purpose. The system compared a neutral expression 

face with the test face, and geometrically reformed them to develop a thermal 

differential model. Results suggested it was possible to detect facial temperature 

changes caused by transition of emotional states and their associated physiological 

changes. Results further suggested that detected facial temperature changes could help 

understand transition of emotional states. The resulting system successfully detected 

facial temperature changes caused by pleasure or tiredness (Sugimoto et al. 2000). 

(Yoshitomi et al. 2000) employed a combination of visual images, thermal features 

and audio signals for recognising affective states. They examined the possibility of 

classifying the neutral, happy, sad, angry and surprised faces through the integration of 

visual, thermal and audio signals. Sound signals were employed to train a Hidden 

Markov Model (HMM). The visual and thermal features were fused together for 

training a neural network. The two output values (coming out of the HMM and the 

neural network) were fused together to recognise the emotive states. This integrated 

signal classifier performed with 85% accuracy (Yoshitomi et al. 2000). 

(Kim et al. 2004) developed a physiological signal based emotion recognition 

system. The system fused the electrodermal activity data, electrocardiogram readings 

and the skin temperature measurements together to determine the emotive states. Like 

several other emotion recognition systems, this system also recognised emotions in 
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three stages. First, the signals were pre-processed, then features were extracted for 

pattern analysis and finally, emotions were classified. The support vector machine 

(SVM) based classifier developed in this work reportedly achieved more than 78 % 

classification accuracy (Kim et al. 2004). 

(Puri et al. 2005) reported development of a system for non-contact measurement of 

computer users’ emotional states through TIRI. They reported a correlation between the 

users’ stress level and an increased blood flow in the frontal vessels of forehead, 

probably caused by the dissipation of convective heat. Their system monitored 

dissipation of convective heat though infrared imaging and helped in identifying users’ 

emotional states. They discovered that thermal infrared measurements were highly 

correlated with the real time measurement of energy expenditure (Puri et al. 2005). 

Studies reported in this section motivate using thermal variation patterns, measured 

on the face, for developing an AFEC and AAR capable system. Getting encouraged by 

the previous investigations, this thesis attempts to use facial skin temperature 

measurements for achieving the AFEC and AAR functionality. 

 

3.9 Conclusion 

Like other muscles of a human body, facial skeletal muscles contract and perform some 

work in order to bring changes in the facial features. Studies suggest that while on 

work, the facial muscles are physically active and produce heat for maintaining the 

body temperature (Netter and Hansen 2002; Starr et al. 2003). Using the facial EMG 

readings, scientists were able to discover an association between the muscular 

movements, muscle energy expenditure and the facial expressions of affective states 

(Allanson and Fairclough 2004; Cacioppo et al. 1990). 

The increased blood volume flow under an area of facial skin (as the result of stress) 

is termed as reactive hyperemia (Ogasawara et al. 2001). Reactive hyperemia includes 

situations such as mechanical insult to the skin, chemical reactions causing 

vasodilatation of blood capillaries and thermal stress (like cold water immersion). 

Infrared imaging is used to diagnose, monitor and quantify hyperemia effects and 

quantify the dynamic stress on the skin (McGimpsey et al. 2000; Ogasawara et al. 2001; 

Phillips 2002). 
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Studies suggest that facial muscles either contract or expand when the facial 

expressions change (Pessa et al. 1998). Muscular contraction and expansion are 

believed to cause some fluctuations in the rate and volume of blood flow under the 

facial skin. A change in the emotional experience is also believed to influence the blood 

flow rate under the facial skin (Jones 1998; Jones and Plassmann 2002; Otsuka et al. 

2002). 

An accurate and representative model of estimating the relationship between the 

changes in facial expression, fluctuation in blood flow rates, contraction and / or 

expansion of facial muscles and variation in the facial skin temperature is not available 

yet. Such a model, if developed, will enhance our understanding of the relationship 

between facial expressions and the facial thermal and physiological characteristics. In 

the absence of such a model, many approaches are employed for detecting, extracting 

and interpreting facial expressions. Thermal infrared imaging is one such approach 

employed for recognition and classification of expressions. 

Investigators have been able to successfully discover and analyse the skin thermal 

variations associated with the positive and negative emotive states using thermal 

infrared imaging. However, earlier investigators had employed the facial thermal 

features only for a binary classification of facial expression of affective states. The work 

in this thesis, for the first time, attempts to classify the most common facial expressions 

of affective states using the facial thermal features in a non-dichotomous manner. 

The scientific information cited in the preceding sections of this chapter encouraged 

examining the possibilities of using the infrared facial skin temperature measurements 

for achieving the AFEC and AAR functionality. Details of the algorithmic methods 

used for interpreting pixel grey-level information to measure facial skin temperature 

using the TIRIs are presented in the following chapters. Facial features extraction, 

selection, representation and classification approaches employed in some previous 

investigations are also reported in the following chapters. 
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Chapter 4 
INITIAL EXPLORATION OF THE PROPOSED AFEC APPROACH 

 

 

  

The last two chapters provided scientific evidence and rationale for using the facial skin 

temperature measurements in AFEC and AAR. This chapter presents the findings from 

the first exploration of the capture and analysis of thermal facial images. It begins by 

describing the instruments used and introducing the participants who volunteered for 

this investigation. Ethical conduct and human protection practices observed during the 

image acquisition process are briefly reported in this chapter and are further explained 

in Appendix I. It then introduces the basic image processing needed to remove noise 

and locate sensing points in thermal infrared images. Pixel grey-level interpretation of 

infrared images performed to extract the facial thermal features from within the 

acquired thermal images, led to the discovery of the Facial thermal Feature Points 

(FTFPs) along the major facial muscles. Thermal Intensity Values (TIVs) recorded at 

these FTFP sites were analysed to examine if the data were suitable for invoking the 

multivariate analyses and pattern analyses algorithms. 

 

4.1 Thermal infrared image acquisition 

A Cantronic model IR860 thermal infrared imaging camera was used for thermal 

imaging. The camera was equipped with a storage disk, special-purpose image 

recording accessories, and the camera-to-computer data transfer peripherals. The IR 860 

camera saves up to 62 thermal images on a type III PCMCIA (Personal Computer 

Memory Card International Association) standard card. It digitises the image 

information and facilitates communicating the digital information to a personal 

computer. The infrared camera and its accessories are shown in Figure 4.1. Two closer 

views of the camera are also shown in Figure 4.2. The camera has a full screen 

radiometric capability that allows measuring the surface temperature from a target 

surface. The camera captures an image array of 320  240 pixels using an uncooled 

device (temperature sensitive electrical resistor, called the microbolometer) for 
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measuring the incident radiation. It uses a Focal Plane Array (FPA) detector system that 

employs several uncooled microbolometer FPA detectors for thermal imaging. The 

detector has a high thermal sensitivity in the light spectrum wavelength range of 7.50-

14.00 μm. The camera is supplied with the proprietary thermal image analysis software, 

CMView Plus. 

 

 

Figure 4.1: The IR 860 infrared camera with its accessories 

 

 

Figure 4.2: Two closer views of the IR 860 infrared camera 
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The IR 860 camera has a thermal sensitivity of 0.08 ºC at 30 ºC with an accuracy 

of ± 2 ºC under normal temperature and pressure (Cantronic 2002). It allows adjusting 

the radiating surface emissivity to ensure an accurate temperature reading from the 

target surface for analysing the thermal images. The CMView Plus image analysis 

software that works only under Windows 95 and 98 operating systems was used for 

image processing in this work. 

A DELL Optiplex GX 110 personal computer, fitted with a 500 MHz processor, 128 

MB DRAM, and a 40 GB HDD attached to a DELL Multisync high-resolution monitor, 

was used in this work. The system was equipped with a CD burner and a HP Scanjet 

3400C flatbed scanner. Another external 40 GB hard disk was attached with the 

computer and was used as additional (external) memory during the thermal image 

processing. 

 

4.2 Experiment design 

In order to examine the viability of using the transient facial thermal features in AFEC 

and AAR, a database of sample visible-spectrum and infrared images was developed. 

Experimental work for this investigation, involving development of image-database, 

was carried out in the School of Architecture and Design building at the American 

University of Sharjah, United Arab Emirates. The infrared images were acquired under 

a normal, controlled and comfortable building environment. The internal room 

temperature varied between 19-22 ºC during the thermal infrared image acquisition. The 

building air conditioning system was equipped with a humidity controller and an air 

recycling system. Each participant was given at least 20 minutes to acclimatise with the 

environment. Thermal images were captured in several independent sessions in October 

2003, November 2003, April 2004, and September 2004. Images were recorded in the 

afternoons between 0100 and 0430 PM. A low emissivity background was used to 

ensure better separation of the background from the desired regions of the TIRI during 

the image processing (Jones and Plassmann 2002; Otsuka et al. 2002). Therefore, a 

concrete wall background having low emissivity (  = 0.54) was selected during the 

image acquisition process.  

The IR 860 thermal infrared camera was set to measure the facial skin temperature 

range between 0-40 ºC. The skin surface emissivity () was set between 0.97 and 0.99. 
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In order to accurately capture the frontal view of a participant, the central vertical line 

on the camera viewfinder was aligned to the center of each participant face. A visible 

image camera was placed (on the left side) next to the thermal infrared camera. Two 

volunteers independently operated the two cameras. The camera operators used a visual 

signal to push the image capture button at the same time. The process was rehearsed to 

minimise the delay time between the two image shots. Each facial expression image 

was captured at least twice. Three referees, this author and the two staff members who 

helped in acquiring the images, selected those pictures from the captured pictures that 

best described the facial expressions and were most clear. Thermal infrared images 

corresponding to the selected visible images were used for discovering the temporal 

thermal features from within the thermal images. After the neutral faces were captured, 

each participant pretended and expressed happiness, sadness, disgust, surprise, anger 

and fear. 

 

4.3 Participants and ethical issues 

Initially, 16 adult undergraduate students, 12 boys and 4 girls, with a mean self-reported 

age of 20 years 9 months volunteered for the research experiments. The participants 

included Africans, Caucasians, Arabs, Iranians, Indians and Pakistanis. All participants 

allowed use of their visible-spectrum and infrared images in scholarly publications for 

dissemination of the research information. 

At the beginning of each image acquisition session, participants were briefed 

about the objectives of these experiments, methods, procedures, potential benefits and 

the probable outcome of the experiments. Ethical experiment design practices and 

protocols were also explained to the participants at the beginning of each image 

acquisition session and were observed during the experiments. Participants were given a 

choice to leave the experiments at any stage. Ethical principles and guidelines for the 

protection of human participants of biomedical and behavioural research provided in the 

Belmont report (Belmont Report 1979; DHEW1979) were observed during the 

experiments. The code of ethics for conducting Psychological research, developed by 

the Australian Psychological Society was also referred and followed during the design 

of experiments (The Australian Psychological Society 2003). As outlined in the 

Belmont report, efforts were made to protect the participants from any physical and/or 
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emotional harm and damage. The human protection practices observed in this 

investigation are reported in Appendix I. 

 

4.4 Thermal patterns of affective states 

Figure 4.3 shows a participant’s visible spectrum images, thermal infrared images and 

their corresponding thermograms. Each thermogram shows the temperature frequency 

distribution on each pixel in a thermal image. It can be seen in Figure 4.3 that a change 

in facial expression causes some changes in the thermal characteristics of the face. The 

varying temperature frequency distributions in the acquired thermal images are obvious 

in the thermograms shown in Figure 4.3. Each thermogram provides a detailed account 

of the observed temperature frequency distribution on the participant face. The 

instances of temperature readings (thermal values) are expressed as percentages in the 

thermograms. Actual temperature readings are shown along the x-axis. The frequency of 

observing a particular temperature reading is shown along the y-axis. 

 

4.5 Thermal infrared image processing 

Pixel grey-levels extracted from a thermal image provide a measure of the response of 

the detector element (such as the microbolometer array installed on the IR 860 thermal 

camera) to the infrared radiant power absorbed. The radiant power falling on the 

detector element is considered a function of the radiance of the surface and the solid 

angle subtended by the exit pupil of the thermal camera. The solid angle, by the virtue 

of camera design, remains constant thus allowing the grey-levels to change with any 

changes in the radiance of the object surface (Jones and Plassmann 2002; Otsuka et al. 

2002). 

Infrared cameras operate in a temperature range of -20 to 500 ºC. Depending upon 

the bit-depth, between 4096-16384 grey levels of pixels represent the extreme 

temperature points in a thermogram. A grey-level of zero corresponds to the lowest 

temperature and the highest level of grey corresponds to the highest temperature in a 

TIRI (Jones and Plassmann 2002). The camera temperature range was set between 0-40 

ºC during the TIRI acquisition hence the grey-level of 0 corresponded to 0 ºC and the 

highest grey-level corresponded to the highest facial skin temperature observed in an 

acquired facial TIRI. 
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Figure 4.3: Visible-spectrum images, infrared images and the corresponding thermograms of a participant are 
shown in each row. Top row: neutral face and faces with the intentional expressions of happiness; 
Middle row: sadness and disgust; Bottom row: fear. 
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The built-in radiance measurement and image digitisation mechanisms in a thermal 

camera cause addition of undesired noise in the TIRIs. Sources of noise in the TIRIs 

include skin surface states and drifting of detection element temperature (caused by the 

fluctuations in the heat exchange). 

Many convolution methods are recommended for noise reduction and edge 

detection to minimise the influence of noise factors in the TIRIs (Jones and Plassmann 

2002; Otsuka et al. 2002; Pavlidis and Levine 2002). 

To avoid any undesired noise in the TIRIs and to have most accurate thermal 

measurements, the thermal images are usually enhanced before extraction of the pixel 

grey level information. Facial infrared images were therefore processed to reduce the 

built-in noise using CMView Plus, a thermal analysis software. The “median smoothing 

filter” recognised as one of the best order-statistic filter (Gonzalez and Woods 2002), 

was invoked on the thermal images for blurring and noise reduction. The median 

smoothing filter, applies a non-liner solution approach for recovering the original image 

signals and results in excellent noise reduction with a minimal blurring (Gonzalez and 

Woods 2002). The filter replaces value of a pixel by the median of the grey levels in the 

neighborhood of the pixel as 

ˆ f (p,q) = median
(s,t ) Spq

{k(s, t)}
         4-1 

where, ˆ f (p,q)  is the median filter that replaces the value of a pixel (s, t) by the median 

of the grey levels within a neighborhood. Median smoothing assumes that a small 

number of corrupted image signals in a grey pixels image would randomly take on a 

value of white or black. Depending on the density of the prevailing noise in a grey-level 

thermogram, a median filter computes the removable noise over an appropriate pixel-

neighborhood. The tradeoff is that a larger neighborhood leads to a loss of detail, 

whereas a small neighborhood results in a loss of signal quality (Acharya and Ajoy 

2005). Since the acquired thermal images were of good quality, a small neighborhood 

filter was considered appropriate for enhancing the thermal images. 

In a following image enhancement step, the Sobel operator-based edge detection 

algorithm was invoked for extracting the contours within the infrared images. The Sobel 

operator is basically a neighborhood-based gradient operator. Two convolution masks 

for the Sobel operator are separately applied on the input facial image to yield the two 

gradient components Gs and Gt in the horizontal and vertical directions. The 
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neighborhood kernels define the convolution masks. For the selected 3x3 neighborhood 

the gradient operators were calculated as (Acharya and Ajoy 2005; Gonzalez and 

Woods 2002), 

Gs=[f(i-1, j-1)+2f(i-1, j)+ f (i-1, j+1)] - [f(i+1, j-1)+2f(i+1, j)+ f (i+1,  j+1)] ,   4-2 

and  

Gt=[f(i-1, j-1)+2f(I, j-1)+ f (i+1, j-1)] - [f(i-1, j+1)+2f(I, j+1)+ f (i +1, j+1)] .  4-3 

The gradient magnitude was computed as 

G[ f (s, t)] = Gs
2
+Gt

2

.          4-4 

 

4.6 Thermally significant Facial Thermal Feature Points 

(Jones and Plassmann 2002) have suggested a method to analyse a series of TIRIs that 

were separated by a small amount of time (also referred to as time-sequential images in 

the literature). They compared the temperature measurements at the points of 

registration within a series of images to discover the temporal changes in the 

temperature distributions (Jones and Plassmann 2002). Some investigators have used a 

different approach that would discover and examine the left-right symmetric regions of 

interest in thermal infrared images to extract the temporal facial features (Jones and 

Plassmann 2002; Otsuka et al. 2002; Pavlidis and Levine 2002). 

This phase of the work began with identification of the left-right symmetric regions 

within each individual’s seven thermal images to examine the temporal thermal 

differences in the TIRIs. The CMView Plus software allows automated discovery of the 

contra-lateral symmetric regions within the TIRIs. The symmetric regions discovered 

within a neutral face TIRI and within the TIRIs showing a positive or negative facial 

expression were found to be inconsistent for different participants and different 

expressions. For some participants, the temperature measurements taken within the 

symmetric regions inside the neutral face image and the images with pretended facial 

expressions were almost the same. For others, the temperature measurements taken 

within the symmetric regions within different TIRIs had different values. It was 

concluded that the facial thermal symmetries observed in the captured images might not 

help in distinguishing between the facial expressions of affective states. 

In a following step, the sequential subtraction of a series of TIRIs was attempted. 

Some manually selected, nearly equal symmetric facial regions within the TIRIs were 
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used as the registration points. CMView Plus thermal analysis software has a built-in 

multi-field temperature measurement option that allows selecting multiple regions of 

interests (ROI) in a sequence of thermal images and subtract the temperature readings 

measured at the selected ROI. The multi-field temperature measurement option was 

invoked to subtract the TIVs at ROI in sequential thermograms. This allowed 

comparing the TIVs measured at the selected symmetric regions in a series of images. 

The TIV data gathered from the selected symmetric regions were then statistically 

analysed. The maximum temperature measurements within the symmetric regions had a 

high correlation and the variance test statistic was significant (p<0.01) suggesting that 

the TIVs measured at symmetric regions had very little between-facial expression 

variance. It became obvious from the analysis that temperature intensity values 

measured at the selected symmetric regions in a series of images would not allow 

distinguishing between the facial expressions. 

Realising the ineffectiveness of the temperature measurements taken within the 

symmetric regions of the TIRIs, temperature measurements taken at different sets of 

registration points within the TIRIs were selected to discover any temporal changes in 

the temperature distributions. Thermal variations at manually selected (multiple) 

locations on the forehead, around the eyes, on the cheeks and chin were repeatedly 

analysed. The TIVs were repeatedly measured at different sets of equal points to ensure 

a minimum correlation among the data and a maximum “between-facial expression” 

variance. The multivariate analysis and pattern recognition algorithms work better on 

data that is independent and have little (ideally no) within data correlation and 

demonstrates a significant variance (Field 2000; Sharma 1996; Rencher 1995). The 

statistical analyses suggested that the TIV data measured at these manually selected 

locations were highly correlated and violated the assumption of similarity between-

facial expression group variance structure (p<0.05). 

Obviously, a better feature extraction approach was required to discover the 

underlying variance in the acquired TIRIs. Earlier researchers have proposed several 

methods for acquiring thermo-physiological data reflecting any thermo-muscular 

activities under the body skin. Some studies have suggested that a thermal infrared 

image with a “neutral face” having all muscles in their natural (and neutral) position 

would be (thermally) different than the ones that would exhibit the facial expression of 
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an affective state (Garbey et al. 2004; Pavlidis 2000; Sugimoto et al. 2000; Yoshitomi et 

al. 2000). It was therefore decided to select the facial regions along the major facial 

muscles as regions of interest for discovering the temporal thermal information within 

the TIRIs. 

In a following step, 16 square segments (each of 36  36 pixels) along the facial 

muscles in each thermogram were selected. The highest TIVs in each of the 16 square 

segments were recorded and analysed for the two objectives; (Correlation
min

 and 

Variance
max

). Observing that the two criteria were not met, the TIRIs were repeatedly 

divided into an increasing number of square segments along the major facial muscles. 

The TIRIs were divided into 32 square segments (each of 25  25 pixels) and 64 square 

segments (each of 25  25 pixels). Figure 4.4 exhibits the 16, 32 and 64 square 

segments on a facial thermal map. Each set of resulting TIV data were analysed for 

correlation and variance. Some sets of the TIVs recorded in the square segments of the 

individual TIRIs showed significant differences in the thermal intensity values than the 

others when a change in facial expression occurred. 

The process was repeated again and again until significant thermal variations were 

discovered at 75 physical sites located all over the face along the major facial muscles 

within the 64 TIRIs. The TIV data gathered from these 75 facial thermal feature points 

(FTFPs - the square segments of 16  16 pixels), also allowed achieving the two 

objectives; Correlation
min

 and Variance
max

. Please note that the multi-field temperature 

measurement option in the CMView Plus thermal analysis software was invoked to 

compare the TIRIs and to discover the temporal thermal variations at the 75 FTFPs. 

Figure 4.5 shows these 75 FTFPs on a neutral human face, exhibits a muscular map 

of a human face, and represents the geometric profile of the facial thermal feature 

points. The 75 sites shown in Figure 4.5 showed a consistent and significant variation in 

the thermal intensity values recorded with a change in facial expression. These 

significant Facial Thermal Feature Points and their muscular alignments are listed in 

Table 4.1. It is obvious from Table 4.1 that more than 50 % of these FTFPs are located 

on the five major facial muscles. The five major facial muscles, Frontalis (16 FTFPs), 

Orbicularis Oculi Pars Orbital (12 FTFPs), Levator Labii Superioris (6 FTFPs) and 

Risorious (6 FTFPs) seem to hold 53.33% of the FTFPs on a human face. Figure 3.1 

exhibits the frontal view of a facial thermal map. 
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Figure 4.4: Left to right: The highest thermal intensity values were measured within the shown 16, 32 and 64 
square segments on the face. 

 

A side view of the major facial muscles is also shown in Figure 4.6. A closer 

examination of Figures 3.1, 4.5 and 4.6 suggests that the FTFPs are located along the 

major facial muscles. Previous studies reported in the last two chapters also suggested 

that these same facial muscles would play a major role in the facial expression of 

affective states. 

The FTFPs were spread all over the face. Of these FTFPs, 10 were found on the 

forehead, 21 were located around the eyes, 18 were spread on the cheek, 17 were 

located around mouth, and 9 were located on the chin. Table 4.2 shows the physical 

location of the FTFPs on the face.  

The TIV data recorded at the 75 FTFP sites were used to represent each thermal face 

as a 75-dimensional thermal feature vector for the subsequent investigation and 

analyses. 

 

Figure 4.5: Left to right: Geometric profile of FTFPs, FTFPs on a facial muscle map and FTFPs on a human 
face 
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TABLE 4.1: FACIAL THERMAL FEATURE POINTS AND THEIR MUSCULAR ALIGNMENT 

Facial Muscle Facial Thermal Feature Point (FTFP) 
Frontalis, pars medialis 1, 3, 6, 8, 13, 15 
Frontalis, inner center edges of pars medialis and pars lateralis 2, 7 
Frontalis, pars lateralis 4, 5, 9, 10, 11, 12, 16, 17 
Procerus/ Levator, labii superioris alaquae nasi 21 
Depressor, supercilii 14 
Orbicularis Oculi, pars orbital 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31 
Orbicularis Oris 45, 51, 64, 65, 66 
Levator, labii superioris alaquae nasi  28, 35, 36 
Levator, labii superioris 33, 34, 37, 38, 44, 46 
Masseter, superficial 40, 41, 49, 50 
Levator, anguli oris 43, 47 
Zygomaticus major 32, 39, 42, 48 
Risorious/ Platysma 52, 53, 54, 59, 60, 61 
Depressor anguli oris 55, 58 
Buccinator 56, 57 
Platysma 62, 63, 67, 68 
Depressor Labii Inferioris 69, 70, 71, 72 
Mentalis 73, 74, 75 

TABLE 4.2: PHYSICAL LOCATION OF FTFPS ON THE FACE 

Part of the face FTFPs 
Forehead 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
Around the eyes 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 
Cheeks 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 47, 48, 49, 50, 62, 63 
Around mouth 44, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 66 
Chin 67, 68, 69, 70, 71, 72, 73, 74, 75 

 

 

Figure 4.6: A side view of the human face showing the major facial muscles 
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Figure 4.7: Estimated mean values of the facial skin temperatures for neutral and six basic facial expressions. 
The curve shows significant thermal variance with a change in the facial expression 

 

Figure 4.7 exhibits the facial expression specific differences in the mean facial skin 

temperature estimated using the TIV data measured at the 75 FTFPs on the participant 

faces. It is evident in Figure 4.7 that the TIVs at the FTFPs change with a change in 

facial expression. These thermal differences at the FTFPs probably resulted form the 

changes in the blood volume flow and the associated thermo-muscular activities on the 

participant faces. The observed thermal differences shown in Figure 4.7 were consistent 

with the results reported in (Nakanishi and Imai-Matsumura, 2007) 

 

4.7 Initial analyses of TIV data 

The TIV data were first tested for the assumption of normal distribution. Standard 

statistical tests suggested that the TIV data within the individual thermal images were 

normally distributed. Following the successful test of normal distribution of thermal 

data in the individual TIRIs, infrared images belonging to each particular expression 

were grouped together and were tested for the normal distribution of the TIV data. 

Histograms, Q-Q plots, and the analyses of skewness and kurtosis showed that the TIV 

data on more than 92% FTFP sites were normally distributed. Two other standard tests; 
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the Kolmogorov-Smirnov test statistic (p>0.05) and the Shapiro-Wilk test statistic 

(p>0.05) were also non-significant and suggested no departure from the assumption of 

normal distribution. 

(Coakes and Steed 1999) and (Sharma 1996) suggested that if the data violate the 

assumption of sphericity, several undesired biases might surface during the multivariate 

analysis. Hence the homogeneity of covariance (also referred to as the sphericity in the 

literature) was tested before invoking the multivariate analysis on the data. The 

variances in the TIV data were calculated from the estimates of within-facial expression 

cluster covariances about the cluster means. The non-significant Levene’s test statistics 

[F(6,10)=2.92, p>0.05)] for the thermal data suggested the homogeneity of variances in 

the data. It was therefore considered safe to assume that 

Variance(neutral)  Variance(happy)  Variance(sad)  Variance(surprise)  Variance(angry)  Variance(fear)  

Variance(disgust) 

The interaction between the independent variables (facial expressions) and the 

dependent variables (TIV measurements on the entire face) was significant [F (296, 

4440) = 7.32, p<0.01) suggesting a significant effect of facial expressions on the 

measured TIV data. It was therefore safe to assume that the data might be used for 

multivariate analyses and pattern classification (Chatfield Collins1995; Field 2000; 

Turner and Thayer 2001). 

The test statistics pertaining to the 7 facial expressions were encouraging and 

suggested that the available thermal data were appropriate for invoking the multivariate 

analysis. Furthermore, the tests suggested that relevant pattern recognition algorithms 

could be invoked on the acquired TIV data (Everitt and Dunn 1991; Field 2000; 

Kinnear and Gray 2000; McLachlan 2004). 

 

4.8 Conclusion 

A set of appropriate noise reduction and edge detection methods was identified and 

invoked to enhance the quality of acquired thermal images and extract the most 

effective facial thermal features from the TIRIs. The TIV data were collected from 

equal points on the faces within the TIRIs that were acquired at different times when 

participants pretended facial expression of affective states. The data used in this 

investigation consisted of the TIRIs of known origin hence each facial expression was 

considered a separate and independent facial expression group. The thermal images 
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could be clustered together for supervised learning based upon their respective facial 

expression group memberships. Each thermal image was represented as a feature vector 

x  having p number of TIV measurements obtained from the grey-level pixel analysis 

of the TIRIs. 

The parametric multivariate analysis of this type of data requires accounting for the 

statistical parameters such as the overall mean and the overall measure of error in the 

data (Rencher 1995). Hence, most appropriate statistical tests were identified and 

invoked for examining the TIV data. The standard test statistics suggested that the TIV 

measurements taken on the FTFP sites of the participant faces had a multivariate normal 

distribution with X ~ N (μi, i) and could therefore be treated as Gaussian distribution 

(Borowski and Borwein 1991; Webb 2002). The relevant standard test statistics also 

suggested the presence of a similar group covariance structure (C1 = C2 =,…,= Cn
) in the 

TIV data acquired from the available measurement space. 
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Chapter 5 
FACIAL THERMAL FEATURE EXTRACTION, SELECTION AND 

CLASSIFICATION 

 

 

 

Having measured the emotion-specific facial thermal variations and localised the 

thermally significant facial thermal feature points (FTFPs) on the face, this work, in its 

next logical phase, required classification of thermal features into facial expressions of 

affective states. 

This chapter begins by providing an overview of the most common pattern analysis 

and classification approaches used in the earlier Automated Facial Expression 

Classification (AFEC) capable systems. The algorithmic approaches proposed for the 

facial thermal feature selection, representation and classification in this investigation are 

then presented. Finally, salient features and advantages of the proposed AFEC approach 

are reported. 

In a typical classification problem, the three essential tasks: feature extraction, feature 

selection, and feature classification need to be carried out in a sequential order (Duda et al. 

2001; Fukunaga 1990). These three tasks could be carried out using either a statistical or a 

neural classifier. However, selecting one of the two classifiers might require trading off 

the space complexity for the time complexity (Bishop 1995; Duda et al. 2001). The neural 

network-based classifiers are considered fast learners and easy to implement. However, 

some space complexity issues detract from their performance. The statistical classifiers, on 

the other hand, are considered slow but space-parsimonious learners (Blue et al. 1994). 

Both types of classifier could be set up to learn from the training data. 

Neural networks are generally viewed as parallel computing systems comprising of 

large number of processors with several interconnections. The neural network models 

employ organisational principles such as learning, generalization and adaptability in a 

network of weighted directed graphs. The nodes in theses graphs are artificial neurons and 

the directed edges, with weights, provide connections between the input and output 
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neurons. Since the neural networks are able to learn complex non-linear input-output 

relationships, employ sequential training procedures and adapt to data, their use is 

common in domains such as bioinformatics and biometric [Abbas and Fahmy 1994; Jain 

et al 2000]. 

The main goal of this investigation was to examine the possibility of classifying the 

measured temporal facial thermal features into facial expressions. Hence, the work 

required developing some explicit parametric cost functions using an appropriate 

parametric model. The neural network approach was found less suitable for this work as it 

would typically produce a non-parametric and model-free classifier. 

A parametric statistical classifier could implicitly estimate the class densities and take 

the estimate of the a priori probabilities of class membership into account. It would allow 

representing each facial thermal feature pattern in terms of p measurements and viewing it 

as a point in a p-dimensional measurement space. Thus, it would help choose those 

features that allow patter vectors belonging to different facial expressions to occupy 

compact and disjoint regions in the given feature space. Hence, the statistical pattern 

analysis approach would allow establishing the viability of using temporal facial thermal 

features for classifying the facial expressions of affective states (Fukunaga 1990; Jolliffe 

2002; Webb 2002). A statistical classification approach was therefore considered more 

appropriate for classifying the facial thermal features in this investigation. 

 

5.1 Pattern classification approaches for implementing AFEC systems 

The three higher-level tasks that a statistical classification network performs in a 

sequential order are usually referred to as face model acquisition, feature extraction and 

classification in the context of a vision-based AFEC capable system (Fasel and Luettin 

2003; Pantic and Rothkrantz 2000). Face acquisition ensures availability of a face to 

extract the required features. Facial feature extraction involves either face localisation 

(when the static images are used) or face tracking (when a sequence of facial images is 

used). The feature extraction process would typically lead to the development of a 

representative model of the face. The expression classification requires definition and 

recognition of the expression categories to complete the AFEC process (Fasel and Luettin 

2003; Pantic and Rothkrantz 2000). 
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Figure 5.1 shows the schematic diagram of a typical vision-based AFEC system. The 

pattern analysis parts of the system are visible in the grey box in Figure 5.1. 

Like their vision-based counterparts, the NVAFEC systems are built using a standard 

classifier network architecture such as Artificial Neural Network (ANN), Hidden Markov 

Model (HMM), K-nearest Neighbor (KNN), Logistic Regression (LR), Naïve Bayes 

Classifier, Support Vector Machines (SVM), Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA) (Bartlett et al. 1999; Chen and Huang 2003; Cohn et 

al. 1999; DeSilva et al. 1997; Essa and Pentland 1997; Tian et al. 2002). 

The classifier design usually depends on factors such as the type of available features, 

sample size, the probability density distribution of the features (given certain conditions), 

number of features and the availability of a priori information (Duda et al. 2001; Everitt 

and Dunn 1991; Fukunaga 1990; Manly 1994; Turner and Thayer 2001). 

 

5.1.1 Frame-based AFEC systems 

The measurement space in this investigation comprises of discrete and static time-

sequential thermal infrared images. The classification problem therefore requires 

extracting temporal information form a set of static images. The AFEC systems that 

extract temporal features from discrete static images are usually referred to as either 

image-based or frame-based classifiers in the literature (Baldwin et al. 1998; Cottrell and 

Metacalfe 1991; Donato et al. 1999; Fasel and Luettin 2003; Haussecker and Fleet 2000; 

Moriyama et al. 2002; Pantic and Rothkrantz 2000; Terzopoulos et al. 2004). Standard 

statistical pattern recognition schemes employed in the image sequence-based AFEC 
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systems include LDA, HMM, ANN and rule-based classification (Sung and Poggio 1996; 

Swets and Weng 1998; Tian et al. 2001; Tian et al. 2002). 

Several earlier investigators have proposed a three-stage classification process for 

classifying features when little temporal information is available. In the first stage, the 

feature space dimensions are reduced to discover the major directions of variance in the 

data. During the second stage, the best discriminating principal components are discovered 

using an appropriate criterion function such as minimum error rate or maximum class 

separation. It is recommended not to select the classifier-training features using a 

threshold value for maximizing the inertia. During the third and final stage, the best 

discriminating features are projected in a compact optimal feature space (Chen and Huang 

2003; Cottrell and Metcalfe 1991; Dubuisson et al. 2002; Jolliffe 2002; Kim et al. 2003; 

Krishnan et al. 1996; Lyons et al. 1999; Webb 2002). 

NVAFEC capable systems employ similar parametric approaches for feature 

extraction, selection and classification. Like their vision-based counterparts, these systems 

also use the temporal information drawn from a sequence of input sources such as infrared 

video or a stream of audio signals (Abidi et al. 2004; Ang et al. 2004). 

Selection of the employed recognition and classification approaches in these systems 

depends on the nature and format of the extracted features. 

 

 

 



CHAPTER 5 

66 

5.2 The proposed AFEC approach 

The pattern recognition approach being proposed for this investigation was developed 

after a careful consideration and analysis of the works reported in (Abidi et al. 2004; Ang 

et al. 2004; Calder et al. 2001; Dubuisson et al. 2002; Everitt and Dunn 1991; 

Gottumukkal and Asari 2004; Huang and Y. Huang 1997; Kim et al. 2003; Kirby and 

Sirovich 1990; Krishnan et al. 1996; Nakayam et al. 2005; Pavlidis 2004; Pavlidis and 

Levine 2002; Pollina et al. 2006; Puri et al. 2005; Sharma 1996; Turk and Pentland 1991; 

Turner and Thayer 2001; Sugimoto et al. 2000; Yoshitomi et al. 2000). The proposed 

computational approach, indicated in Figure 5.2, begins by deriving the principal 

components to obtain independent linear combinations of the measured TIV data. The 

principal components are then examined for their contribution in the between-cluster 

separation and only the most discriminating features are kept to construct an optimal 

feature space. 

The resulting optimal eigenspace is partitioned using the linear discriminant 

hyperplanes. The partitioning itself classifies new samples of TIV data with unsuitable 

levels of ambiguity, so a metric-based classification procedure assigning new input to the 

nearest facial expression cluster using the Mahalanobis distance is developed. Following 

paragraphs present algorithmic details of the proposed AFEC approach. 

 

5.3 Principal component analysis 

The pattern recognition literature suggests that PCA is a computationally inexpensive and 

robust feature extraction method (Berkey 1991; Jolliffe 2002). In particular, PCA is highly 

effective in situations when a large number of features and a small number of samples 

raise complexity and data-integrity issues. PCA reduces the computational risks by 

extracting such key feature indices that result in a linear combination of the original 

features and are capable of retaining the maximum information about a particular class 

(Jolliffe 2002). Furthermore, multi-collinearity in the data increases the chances of 

compounding computational errors during the parameter estimation (Field 2000). PCA, 

through the linear transformation, allows forming a smaller number of uncorrelated 

variables that provide maximum information about the features in a low-dimensional 

space and yield a stable regression model (Jolliffe 2002; Webb 2002). 
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Several advantages of invoking PCA on the temporal and non-temporal measurements are 

reported in (Calder et al. 2001; Dubuisson 2002; Everitt and Dunn 1991; Gottumukkal and 

Asari 2004; Huang and Huang 1997; Kirby and Sirovich 1990; Sharma 1996; Turk and 

Pentland 1991; Turner and Thayer 2001; Webb 2002). The algorithmic details of principal 

component derivation are presented in the following section. 

 

5.3.1 Principal component derivation 

In order to derive the principal components, each thermal image was considered a p-

dimensional random facial thermal vector x. There were n such thermal feature vectors, 

x
i
, (i = 1,2,…,n)  having p TIV measurements in the learning set. Each thermal vector could 

be represented as x i = [ xi1, x i2…, xip ]
T . The TIV data were standardised to draw a learning 

set G0 = [x1 | x2 |… | x
n
] containing the n number of p-dimensional facial thermal vectors. 

The mean facial thermal vector x  of the learning set was obtained as: 

x =
1

n
x

i

n=1

n

         5-1 

The mean facial thermal vector x  was subtracted from each random facial thermal vector 

present in the data set to find its difference ˜ x 
i
 from x  as 

˜ x 
i

= x
i

x .         5-2 

After off-setting in this way, the learning set was presented as a pxn matrix 

G = [ ˜ x 1 | ˜ x 2 |… | ˜ x 
n

] . 

The pxp covariance matrix of the learning set was thus 

C =GG
T .          5-3 

 The covariance matrix C, being symmetric and positive-definite was reducible to the form 

C = H
l
DH

l

T          5-4 

Where the linear transformation matrix H
l
 is an orthogonal non-zero eigenvector matrix 

of C and is represented as columns of eigenvectors 

H l = [ 1 | 2 |… | p ].        5-5 

The face recognition and facial expression classification literature often refers to the 

eigenvectors i[i = 1,2,…, p] as eigenfaces, and we follow this nomenclature The matrix D 

in Equation 5-4 is the corresponding diagonal eigenvalue matrix of H
l
 such that 

D = diag[ 1, 2,…, p ]        5-6 
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The diagonal elements of the eigenvalue matrix D are arranged in a descending order as 

[ 1 2 … p ] . Arranging eigenvectors in this order shows the most important and 

largest directions of the variance in the data set. By removing the lowest eigenvalues from 

D, and the corresponding columns from the transformation matrix Hl, suitable data-

reduction is achieved, reducing the thermal feature vector-space to a span of only M 

eigenfaces (M<<p ). 

The learning set G in this work was pre-classified so it was easy to group together 

the facial thermal feature vectors into g number of facial expression clusters. Thus, the 

data set G could be regarded as a disjoint union of g facial expression groups such that 

G =G
1

G
2

… Gg .        5-7 

By arrangement, nj samples of a face with expression j were included in the group Gj. 

Hence the statistical model of the data set G could be assumed to take the form 

˜ x ijk = μ i + ij + ijk ; (1  j p, 1  j g, 1  k nj)    5-8 

In Equation 5-8,̃ x ijk  is the i th observation for a face expressing emotive state j and is the kth 

such face with this expression, i is the mean value of all observations at point i, ij 

represents the offset of the centre of the j th cluster from i and ijk is a residual that is 

minimised while estimating the other model parameters from the data set. This model can 

be generalised to represent the expression of an affective state as multiple clusters if some 

variations are bimodal or of higher modality. However, the small sample of facial thermal 

images used in this work had no multi-modal variations and did not require such a 

generalisation. 

 

5.4 Discovering the best discriminating features 

Even after data-reduction, the principal components could not be trusted to yield the true 

discrimination functions for separating the feature space (Chatfield and Collins 1995; 

Duda et al. 2001; Webb 2002). These cited authors argued that the directions discarded by 

the PCA might contain the real directions needed for discriminating between the groups 

under investigation. For this reason, the role of PCA in the classification problems like the 

AFEC is generally limited to providing the few uncorrelated components for retaining the 

original information (Dubuisson 2002). For developing a classification system, the PCA is 

often followed by LDA, since the LDA, not the PCA, seeks the directions which explicitly 

separate each group from the other groups (Jolliffe 2002; Webb 2002). 
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There is growing evidence, however, that LDA, when directly invoked on the high 

eigenvalued principal components, does not produce the most effective discriminant 

functions (Jolliffe 2002; McLachlan 2004; Webb 2002). The literature suggests that 

instead of invoking LDA on all principal components remaining after data-reduction, a set 

of the most influential principal components should be discovered and used for a compact 

yet holistic and effective representation of the available feature space. These ‘optimal’ 

principal components would usually capture representative features of the original data set 

most important for discriminating between the clusters (Webb 2002). Accordingly, based 

on the relevant information available in (Chatfield and Collins 1995; Dubuisson 2002; 

Duda et al. 2001; Jolliffe 2002; McLachlan 2004; Webb 2002), an optimal feature 

selections schema was developed to further the investigation.  

Having derived the M number of linear principal components from the set of 

measurements on P available variables, a subset of K best discriminating principal 

components was needed to optimally partition the decision space. This could be done by 

evaluating a pre-defined optimality criterion on the M derived principal components to 

select a subset of K best discriminating principal components for which the criterion was 

maximised (Jolliffe 2002; Webb 2002). 

In order to choose a set of best discriminating features, a measure of the features’ able 

to distinguish between the g facial expression groups was needed. It is usually 

recommended to estimate the overlap between the distributions from which the data are 

drawn and select those features for which the overlap is minimal. This recommended 

procedure maximises the between-cluster separation (Webb 2002). Such an optimal 

feature selection approach would eliminate the less effective features and would retain 

only the best discriminating features in a resulting optimised space. The Fisher criterion 

(F), a general class separability measure, is widely used to measure the contribution of a 

feature set in the between-group separation (Dubuisson 2002; Jolliffe 2002; Liu and 

Motoda 1998; Webb 2002). 

 

5.4.1 Optimal feature selection algorithm 

An optimal facial thermal feature selection algorithm was developed for this investigation. 

The Fisher’s criterion was adapted in this work for selecting the optimal feature set. It is 



CHAPTER 5 

70 

the ratio between the determinants of the between-class scatter matrix SB and the within-

class scatter matrix SW and is generally expressed as 

F = |SB|/ |SW|.          5-9 

The parameters required to compute the F ratio are estimated using relatively standard 

matrix algebra. The following notations were used to make this algebra clear. 

Eigenvalues and eigenvectors of C are denoted, with eigenvalues in decreasing order 

of size 1, 2 ,... p and  1, 2,... p  respectively. The p-dimensional column vector of the 

components of ̃ x ijk along the eigenvector directions is denoted qi
( jk), suffix i being omitted 

when referring to the whole column rather than a component. The cluster centroid of 

cluster l in this basis is 

u
( j )

=
1

g j

q
( jk)

k

.        5-10 

The global centroid in this basis is u =
1

n
j

q
( jk)

k

.    5-11 

The within-cluster scatter matrix of the training sample is 

SW =

j

(q
( jk)

k

u
( j )
)
T
(q
( jk)

u
( j )
) .      5-12 

The between-cluster scatter matrix of the training sample is 

SB = (

j

u
( j )

u)
T
(u
( j )

u) .       5-13 

Given a set of d distinct eigenfaces {
K1, K 2 ,... Kd

} the subspace spanned by the set is 

denoted Xd(K) and the projector Pd(K) that maps onto this space is the symmetric and 

idempotent matrix which projects onto Xd(K) is given by 

P
d
(K) = (

l=1

d

Kl
)
T
(

Kl
) .        5-14 

In the case where Xd(K) is the first m eigenfaces carrying say 95% of the variance 

eigenvalue total, the associated projector performs the data-reduction  of standard PCA. 

More generally, the projected d x d scatter matrices Pd(K)SW Pd(K)T and Pd(K)SB Pd(K)T 

represent the within- and between-cluster scatter in subspace Xd(K). The Fisher ratio for 

the subspace Xd(K) is the ratio of determinants 

Fd(K) = | Pd(K)SB Pd(K)T |/ | Pd(K)SW Pd(K)T |,    5-15 

 which, using the cyclic invariance of determinants and the idempotence of projectors 

reduces to the simpler expression | Pd(K)SB |/ | Pd(K)SW |. With a view to optimising such a 

ratio, it is helpful to consider the set 
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= {X
d
(K) | d = 1,2,...,m}        5-16 

 of all candidate subspaces after data-reduction on which F-ratios can be defined. Then the 

optimization goal is expressible as one of finding  

ˆ 
F = max

X  

| P(X)S
B

|

| P(X)S
W

|

 
 
 

 
 
 
.       5-17 

Such an optimum F-ratio occurs on a subspace ˆ 
X 

d
(K)specified by 

ˆ X 
d

(K) = arg max
X  

| P(X)S
B

|

| P(X)S
W

|

 
 
 

.      5-18 

In this investigation, the search for such an optimally discriminating subspace is 

conducted iteratively. A stepwise forward selection algorithm is considered 

computationally inexpensive and can select efficiently the sought after optimal features 

independent of the criterion function used. It can also avoid any overfitting of the data 

(Webb 2002). As a preparatory step, the eigenvalues of the eigenfaces were used to order 

them in a descending order. 

The start-up is with the highest eigenvalued eigenface, and the iterative step is to 

include the next eigenface to step up dimension k by one unit. In the larger space, if the 

new F-ratio exceeds that in the former space, the next eigenface is included in a preferred 

set, the expanded space is returned and iteration re-commences. If there is no 

improvement in F-ratio, the next eigenface is rejected, the space dimension is stepped 

down, and the iteration continues with a new next eigenface. The process terminates when 

all M eigenfaces have been incorporated or rejected. A flowchart summarizing this 

algorithm is given in Fig 5.3 on the next page. 

 

5.5 Facial expression classification 

LDA has been successfully used in several related investigations (Sung and Poggio 1996; 

Swets and Weng 1998). It works at three levels for optimally dividing a Gaussian like 

feature space into linear regions of interest. At the first level, it identifies the variables that 

best separate each cluster in a training sample from the rest of the sample. On the second 

level, LDA uses the identified variables to define and compute new functions of input 

data. It does so by parsimoniously projecting the between-cluster differences. 
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Figure 5.3: Optimal features subset selection algorithm 

 

At the third level, LDA uses the discriminant functions to classify any future 

observations (Everitt and Dunn 1991; George and Mallery 1995). In essence, LDA seeks a 

linear space to maximise the between-group separation. Since there were K optimal 

features in the optimal learning set, the between-cluster separation measure J
K

 would 

allow quantifying the discrimination power of the training features (Everitt and Dunn 

1991; Jolliffe 2002; McLachlan 2004). 
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LDA essentially seeks a transformation matrix Wp that maximises the ratio of 

between-cluster scatter SB to within-cluster scatter SW. The ratio between the determinants 

of SB and SW is a scalar measure of the scatter. If W p  denotes the optimal projection 

matrix, the ratio JK(WP) estimated using Equation 5-19 measures the hyper-ellipsoidal 

scattering volume in the decision space and provides an effective discriminant criterion 

function. 

JK (Wp)  =   arg max{|W p
T
SBW p | |W p

T
SWW p |}      5-19 

In a typical forward selection stepwise LDA, this ratio is maximised by resolving the 

equation 

SBW p  = SWW p
        5-20 

 where the matrix W p  contains the eigenvectors of S
W

1
S
B
and is a diagonal eigenvalue 

matrix. For a typical g-class distribution, the column vector of 
pW  (also referred to as the 

Fishervector) provides the basis for the (g-1)-dimensional optimal space. 

 

5.5.1 Classification algorithm 

In order to optimally separate a cluster of the training samples from the rest of the 

samples, a hyperplane is generally needed. With G facial expression clusters, the resulting 

G hyperplanes partition the observation space into 2G regions bounded by the hyperplanes, 

of which G contain only one cluster centre, GC2 contain 2 centres, GC3 contain 3, and so 

on. A new thermal image vector may be ‘classified’ by assigning it to one region, using 

the transformed features associated with W pabove. But if the region contains several 

centres, the classification becomes ambiguous. 

A distance or similarity criterion is usually used to remove the classification 

ambiguity. The distance criterion help assign a new vector to the nearest or most similar 

cluster centre in the region. In this work the Mahalanobis distance is used and defined in 

terms of the pooled within-cluster variance matrix, Ww , of a training sample. If e-eg is the 

vector joining a new image vector xi to the centre of cluster g, then the Euclidean 

length|| (e eg )Ww
1
|| defines the Mahalanobis distance from the input image vector xi to 

cluster g. Thus, the nearest cluster to an unknown facial thermal vector in a region 

containing several cluster centres is given by 

arg ming { || (e eg )Ww
1
||}.       5-21 
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Mahalanobis distance is a widely used metric for comparing distances from an 

unknown feature vector to training classes. Others are the k-nearest neighbour metric that 

averages distances from the unknown vector to a small number k of near neighbours in a 

training cluster, and mean or median distance metrics that take a statistical ‘average’ of all 

distances from unknown to the cluster members. 

A major advantage of using the Mahalanobis distance as a measure of similarity is that 

the squared Mahalanobis distance ensures maximum separation among all pairs of the 

groups. At each step of the forward selection stepwise LDA, the variables that provide the 

maximum increase in the measure of between-group separation are determined using the 

squared Mahalanobis distance. These effective variables are then used for further analysis 

of the between-group separation (Everitt and Dunn 1991; McLachlan 2004). 

 

5.5.2 Cross-validation 

Pattern recognition practitioners respond to the multiplicity of choices for feature space 

and distance metric by empirical testing to estimate the error rates associated with 

different discriminant rules ( e.g.Fukunaga 1990; McLachlan 2004). Ideally, this is done 

with a validation sample chosen independently from the same population as the training 

sample. If samples are costly to obtain and process, this may not be feasible, so ways of 

re-using training sample data have been devised – so-called cross-validation procedures. If 

the experimental errors in raw data features are well understood, both blurring errors and 

impulsive errors, simulated forms of these can be injected into training data to produce a 

reliably-simulated validation sample. But the investigation of experimental errors may 

involve prohibitively long visits to a physical standards laboratory. Accordingly, several 

‘fast and dirty’ cross-validation methods have been devised and employed for testing the 

performance of statistical classifiers. Two such methods, the split-sample cross-validation 

(CV) and the leave-one-out (LOO) method have been widely used in multi-class 

classification problems. Split-sample CV, essentially dividing the sampled data into a 

training part and a validation part by random selection, runs into small-sampling errors, 

and if the two parts of the split are allowed to share members, may bias the empirical error 

rates towards an over-optimistic view of classifier accuracy. However, (McLachlan 2004) 

asserts that the LOO method avoids such bias. Essentially, the LOO method extracts one 

of the n feature vectors from the training sample and estimates the discriminant functions 
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using the remaining n-1 samples. The extracted feature vector has a known cluster label 

and is assigned another label on test. (Fukunaga 1990; McLachlan 2004; Webb 2002). 

This training-testing cycle in repeated n times to test each of the n available samples. 

Since the L-method is believed to yield an unbiased estimate of the classifier performance, 

it was preferred for estimating the classifier performance in this work. 

The L-method begins by assuming xi as a p-dimensional random thermal feature 

vector. The training data can be denoted by G={xi , i=1, …, n} such that each realised 

sample xi has two parts ; {pi , i=1,…,p} denoting the measurements and {zi , i=1,…,n} 

denoting the corresponding class labels. The class labels can be coded as corresponding 

vectors (zi) j = 1;  x i Gi  and (zi) j = 0;  x i Gi . The corresponding categorical class label can 

then be represented as (z
i
) . Also, the discriminant rule developed using the training data 

can be represented as  (x; G); where,  is the class to which x is assigned to by the 

classifier using G. Using this notation, a loss function Q( (z), (x;G)) can be estimated as 

Q( (z),  (x;G)) =
0  if  (z) = (x;G) correct  classification)

1  otherwise

 
 
 

  5-22 

Having the training set Gj with a sample thermal image xj removed from it, the cross-

validation error can be estimated as 

eCV =
1

n
Q

j=1

n

( (z j ),  (x j ,G j ) .       5-23 

Since it needs n iterations to test each of the n samples in a data set, the computational 

complexity of L-method becomes its major limitation. Another one that is peculiar to 

classifying humans is that classifier performance is different for participants inside and 

outside a training sample. A recogniser will generally be more accurate with samples from 

the same familiar participants as the training sample. Strangers will not express 

themselves to exactly the same patterns as familiars. Thus the LOO method does not 

entirely escape bias, unless the material left out is all the data supplied by one participant 

(that is all his expressions, so that, on test, the classifier sees a stranger rather than a 

familiar). 

 

5.6 Classification significance 

Loss functions on test, whether ideal tests or simulation tests or cross-validation methods, 

may be small and insignificant, but if original raw data, or data after reduction and 
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transformation is not sufficient for the classification task attempted, errors of statistical 

significance may be present. Such errors are of concern in the practical use of automatic 

classifiers. Of several computational approaches used for determining the statistical and 

practical significance levels of the classification results, the approach (Huberty 1984; 

Huberty 1994) suggested was found more suitable for this investigation. Huberty’s 

computational approach, described below, was used to determine the statistical and 

practical significance levels of the classification results. 

 

5.6.1 Determining the statistical significance of classification results 

Based on Cohen’s approach (Cohen 1977) of analysing the classifier performance and 

evaluating the practical significance of the classification results, Huberty developed a test 

for assessing the statistical significance of the classification results (Huberty 1984; 

Huberty 1994). He considers a validation sample of size n, in which og is the number of 

correct classifications for group g, ng is the number of observations in group g, o is the 

total number of correct classifications. The z-statistic for classification of a group is 

estimated as 

Zg
*

=
(og eg ) ng

eg (ng eg )
,       5-24 

where the expected mean value of correct classifications over Poissonian trials with this 

sample size is eg = ng
2
/n . For testing the overall classification results using an expected 

mean value of correct classifications over all groups e = 1/n ng
2

g=1

G

, the z-statistic is given by 

Z
*

=
(o e ) n

e (n e )
.       5-25 

These test statistics Zg

* and Z* follow a distribution that is asymptotically standard normal, 

and provide an estimate of the extent to which the classification rates are significant. 

 

5.6.2 Determining the practical significance of classification results 

The literature suggests using the practical power of a classifier is to be rated by 

comparison of its correctness rate with the rate likely to be obtained using random 

assignment of validation sample members to classes (Sharma 1996). A well-tried test for 

assessing the practical significance of the classification results was used to assess the 
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practical significance of the classifier (Huberty 1984; Huberty 1994). The practical 

significance index is given by 

I = o /n e /n
1 e /n

100       5-26 

where o is the number of correct classifications, e is the expected correct number of 

classification, and n is the total number of observations. The ratio is one of the 

improvements on random assignment observed under test, to the maximum possible 

improvement achievable with an error-free classifier. Equations 5-24 to 5-26 were used 

throughout this work for determining the statistical and practical significance of the 

classification results. 

 

5.7 Advantages of the proposed AFEC approach 

The proposed algorithmic approach offers the following major advantages: 

1. The employed algorithmic approach is based on the multivariate analysis of the 

TIV data. The two-way multivariate model developed for analysis of the TIV data 

measured at equal points in the time sequential images helps in separating the 

multitude of built-in covariance in the acquired TIV data. The multivariate 

analytical approach might also help in estimating the effect of facial expressions 

on the facial skin temperature and thus help in minimising the overall error rate 

(egeneal
j ). Having several linear spaces in the learning set, each spanned by a 

selected set of principal components, it was possible to represent the affective 

states as distinguished and separated clusters. The restriction of the diagonalised 

matrix D to each linear space encoded varying amounts of within-cluster and 

between-cluster variances in each image vector of the data set. 

2. The number of samples in this investigation was smaller than the number of 

measurements in the available measurement space. Consequently, the inverse of 

the within-subject matrix could get closer to being singular. Hence it was not 

viable to apply the LDA directly on the set of available features for the statistical 

independence of the features in the training set could not be established (Duda 

2001). The proposed method reduces the dimensionality of the available feature 

space through the PCA and produces the transformed features that are the linear 

combinations of the original features. Thus, no information is lost in effect and the 

actual discrimination power of the original feature set is retained. During the 
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feature selection phase, the most discriminant components could be sorted and 

projected in an optimal space to form the discriminant functions. 

3. When PCA is invoked and resulting high valued eigenvectors are used to construct 

the discriminant pace, retention of the most discriminant features is not guaranteed. 

The proposed classification approach helped in retaining the maximum 

discrimination information since it selected the optimal components for a 

following LDA. As demonstrated in the following chapters, this approach resulted 

in a much less classification error rate egeneal
j  as compared to the higher valued 

eigenvectors based LDA approaches. The proposed approach guaranteed the 

maximum between-class separation and exhaustively examined the probabilities of 

allocating the new and unknown TIRIs to a particular facial expression group. 

4. One common purpose of using the PCA - LDA combination is to further reduce 

the dimensions of the feature space by replacing the observation vector x by the 

first m (high variance) principal components for deriving the discriminant rules. A 

common assumption in such uses of the PCA-LDA approach is that the groups 

have a similar covariance structure. Hence, it is assumed that the PCA is being 

invoked on an estimate of the common within-group covariance matrix. This 

procedure often proves to be wrong for two reasons. First, the within-group 

covariance matrix might be different for each individual expression group. Second, 

there is no guarantee that the between-group separation follows the direction of the 

high-variance principal components. The first few principal components provide 

useful information about the variance when the ‘within-group’ and ‘between-

group’ variations have the same directions. If that is not the case, the low-variance 

principal components possess most of the information about the between-group 

separation (Jolliffe 2002). In such cases, the low-variance principal components 

may also be highly correlated with the dependent variables. A variation of this 

problem occurs in situations when one ignores the group structure and calculates 

an overall covariance matrix based on the raw data (Jolliffe 2002). When the 

between-group variation is much larger than the within-group variation, the first 

few principal components define the direction in which there were large between-

group differences (Jolliffe 2002). The employed approach takes advantage of the 

covariance matrix of the mean-centered raw data to derive the principal 
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components and then apply a criterion-based selection rule to find the best 

discriminating principal components. In doing so, the ratio between the between-

group and the within-group scatter is used to discover the most effective principal 

components. Therefore, the problem of loosing any information available in the 

actual data is minimised. 

 

5.8 Conclusion 

After an extensive review of the statistical and neural classification networks, a robust 

algorithmic approach was proposed for classifying the facial thermal features in this 

investigation. 

The proposed algorithmic approach, in a sequential manner, extracts feature, selects 

the optimal feature, and classifies them for achieving the AFEC functionality. It first 

discovers the most effective dimensions of variation in the thermal data and reduces the 

complexity of the available feature space. A set of optimal principal components is then 

discovered from the linear components of the original measurements. The optimal features 

are finally used develop the discriminant functions during the LDA. The minimum 

distance measure, calculated using the Mahalanobis distance, is then used to classify new 

and unknown thermal faces. The discriminant rules are cross-validated using the leave-

one-out cross validation method. Lastly, the statistical and practical significance levels of 

the classification results are determined to further validate the discriminant functions. 
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Chapter 6 
CLASSIFICATION OF PRETENDED POSITIVE AND NEGATIVE 

FACIAL EXPRESSIONS 

 

 

 

A significant number of emotion theorists assert that a small set of discrete and basic 

emotions may represent all affective states and emotional experiences. Some scientific 

studies negate these assertions and describe emotions in terms of continuous dimensions 

of valance and intensity (Ekman and Friesen 1971; Picard 2000; Plutchik 1980; 

Tomskin 1984). Scientific evidence reported in the literature supports both theories 

hence emotions are described and measured in both ways. Several previous works on 

description and measurement of emotions are discussed in (Smith 1999). 

As evident in (Ekman et al. 1993; Fasel and Luettin 2003; Mase 1991; Pantic and 

Rothkrantz 2000), the affective computing and automated facial expression recognition 

literature generally describes the affective states with the help of six basic facial 

expressions using the visual cues. Few recent investigations have attempted to recognise 

deceit and stress levels using either facial thermal features or facial hæmodynamic 

measurements. 

This chapter reports an attempt to classify the facial expressions of affective states 

using the facial thermal features along the dimension of valence. First part of this 

chapter reports classification of neutral, happy and sad facial expressions. The following 

sections of this chapter present classification of the two positive (happiness and 

surprise) and two negative (angry and disgusted) facial expressions. The classifier 

performance and the observed classification results are analysed before concluding this 

phase of investigation. 
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Figure 6.1: Contribution of the 75 principal components in the measured TIV data variance 

 

6.1 Classification of neutral, happy and sad facial expressions 

The computational approach proposed in chapter 5 was employed to classify the 

neutral and pretended happy and sad facial expressions. The TIV data obtained from the 

thermal images of 16 participants (reported earlier in chapter 4) were used in the 

analysis. 

Initial data analyses results were reported earlier in chapter 4. In addition to the tests 

reported earlier, the TIV data measured in the TIRIs having pretended neutral, happy 

and sad expressions were also tested for sphericity. The test of sphericity was 

significant [F (1.56, 0.892)= 1.743, p<0.01] suggesting some differences in the variance 

structures of the three facial expression groups. However the two more conservative 

estimates of sphericity, the Greenhouse-Geisser correction and the lower-bound 

correction were insignificant (p>0.05) suggesting the three facial expression groups had 

a similar variance structure (Field 2000; Kinnear and Gray 2000). 

 

6.1.1 Classifier construction 

Using the algorithmic approach described in chapter 5, the principal components were 

derived to reduce the dimensions of the decision space for classifying the neutral and 

pretended happy and sad facial expressions. The first 28 principal components (PCs) 

derived from the TIV data accounted for the majority (over 99%) of scatter in the 

thermal data. Each of the first 28 PCs accounted for at least one percent of the total 

variance. However, only first seven PCs, shown in the scree plot in Figure 6.1, 
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accounted for over 90% of the scatter in the thermal data. These PCs helped in 

understanding the dimensions of variance in the thermal data pertaining to various facial 

expressions. 

Figure 6.2 shows the positive and negative values of the variable weights )(w  for the 

first seven PCs. The white dots in Figure 6.2 represent the positive w values and black 

dots represent the negative w values of the variables for each PC. A closer examination 

of the first seven PCs reveals the origins and dimensions of the differences between the 

thermal data. Some useful relationships between the thermo-muscular activities and the 

facial thermal characteristics might also be drawn by examining the first seven PCs 

since they accounted for the majority of variance in the data. 

The first PC accounted for over 75% variance in the data. As evident in Figure 6.2, 

it provided an overall negative (thermal) index of the face. 

The second PC provided an account of the facial thermal characteristics by adding 

the variable weights on Orbicularis Oculi Pars Orbital and Levator Labii Superioris 

Alaquae Nasi and subtracting the variable weights measured on all other facial muscles 

from the added values of the variable weights. 

The third PC added the variable weights on Orbicularis Oculi Pars Orbital and 

Masseter Superficial, Levator Labii Superioris Alaquae Nasi and subtracted the variable 

weights on other major muscles. Hence, it seems to be examining the differences 

between the thermal characteristics of these muscles. 

The fourth PC appears to be comparing the differences between the variable weights 

taken from the muscles on the right and left sides of the face. It seems to be ignoring the 

variable weights measured on Depressor Labii Inferioris and Mentalis though. 

The fifth PC seems to be repeating the same measurements. However, it adds the 

variable weights on Depressor Labii Inferioris and Mentalis to the discovered thermal 

difference between the two sides of the face. 

The sixth PC adds the variable weights on Frontalis Pars Medialis, Frontalis Pars 

Lateralis, Levator Labii Superioris Alaquae Nasi, Depressor Superior Silii, Risorious, 

and Platysma and subtracted the sum from the sum of the variable weights measured at 

various FTFPs sites. 

The seventh PC adds the variable weights on Frontalis Pars Lateralis, Depressor 

Superior Silii, Levator Anguli Oris, Zygomaticus Major, Depressor Anguli Oris, 
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Buccinator and Depressor Labii Inferioris and subtracts the added values from the 

added values of TIVs on other facial muscles. This might help in finding the difference 

between the TIVs measured at the major facial muscles to create a thermal profile of the 

face. 

Furthermore, PCs 2, 3, and 4 appear to be calculating the thermal gradient between 

the FTFP sites on (1) Frontalis, (2) Levator Labii Superioris, (3) Depressor Anguli Oris, 

(4) Buccinator and (5) Zygomaticus Major. The other PCs apparently compared the 

thermal gradient on various facial muscles. It may be noticed that the PC-1 tries to 

extract a first-order thermal feature set that was based on the direct thermal 

measurements of the face. All other PCs extract a second-order feature set that is based 

on the relative thermal features calculated from the first-order thermal features. 

Figure 6.2 suggests that the first three PCs, which account for about 82 % variation 

in the data, constantly keep a (negative) variable weight for the lower face FTFPs. It 

may also be noted that the valance of the variable weights on the lower part of the face 

in the other PCs did not change. On the contrary, the valance of the variable weights on 

the FTFPs located on the upper parts of the face exhibited noticeable variations in 

almost all major PCs. The visible imagery based facial expression classification results 

suggest that visual features gathered from the upper part of a face contribute more in 

facial expression of affects than the features around the lower part of the face (Ekman 

1982). This pattern appears to be true in Figure 6.2 as well. 

Figure 6.3 exhibits the possible separation between the neutral faces and the faces 

with intentional facial expression of happiness and sadness in a 2-principal component 

eigenspace. Though the first principal component (along the abscissa) contributes more 

to the variance, the separation shown in Figure 6.3 seems to be influenced by the second 

principal component (along the ordinate). 

The eigenvalues of the 75 principal components derived from the TIV data on 16 

participant faces is given in Table 6.1. Only 47 of 75 principal components in Table 6.1 

contribute to the variance in the data. However, there is no evidence to suggest that only 

these 47 principal components may contribute to the separation in the facial expression 

groups (Duda et al. 2001; Jolliffe 2002). It was therefore considered necessary to project 

the principal components in an optimal subspace for discovering the most 

discriminating principal components. 
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Figure 6.2: TIV variations-based representation of the first seven principal components. The white dots represent +ve 
weights of the variables. The black dots represent the –ve weights of the variables 

 

The resulting optimal principal components were expected to produce the most 

effective discriminant functions for classifying the unknown faces. 

During the step 2 of the classifier construction, the principal components derived 

earlier, were analysed to select a set of optimal features using the stepwise elimination 

method. The optimal feature selection algorithm described in chapter 5 was used to 

select the best discriminating features (principal components) for deriving the 

discriminating functions. Figure 6.4 shows the recursion involved in the stepwise 

selection of the optimal principal components. It also shows the corresponding increase 
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in the value of Fisher ratio F = |SB|/ |SW|. The line joining recursions 1 and 20 in Figure 

6.4 explains the overall (recursive) improvement in the F ratio. 

 

 

Figure 6.3: Separation between the neutral, happy and sad facial expression in a 2-principal component 
eigenspace 

 

 

Figure 6.4: Recursive stepwise selection of the optimal components and the corresponding increase in the F-
ratio (=SB/SW) 
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The 20th recursion and the corresponding optimal components in Figure 6.4 resulted in 

the highest value of the Fisher statistic (F). The principal components that helped in 

increasing the F ratio were not the ones that had the largest eigenvalues. Instead, the 

stepwise feature selection algorithm recursively discovered a new set comprising of 

both high and low eigenvalued principal components. 

Since the probability density functions and the group memberships were known a 

priori for each group, each group could be given an equal a priori during the analyses. 

Table 6.2 presents the canonical discriminant functions, their relevant statistics and 

contribution of the two discriminant functions in the between-group separation of the 

three facial expressions. The canonical discriminant functions reported in Table 6.2 are 

orthogonal to each other and attempt to maximise the differences between the 

dependent variables. 

TABLE 6.1: THE 75 PRINCIPAL COMPONENTS AND THEIR RESPECTIVE EIGENNVALUES 

PC Eigenvalue Proportion Cumulative PC Eigenvalue Proportion Cumulative 
1 437.13 0.763 0.763 39 0.24 0.00 0.998 
2 32.37 0.057 0.82 40 0.23 0.00 0.999 
3 16.62 0.029 0.849 41 0.19 0.00 0.999 
4 13.87 0.024 0.873 42 0.18 0.00 0.999 
5 10.12 0.018 0.891 43 0.16 0.00 0.999 
6 7.65 0.013 0.904 44 0.12 0.00 1.00 
7 6.58 0.011 0.915 45 0.09 0.00 1.00 
8 4.63 0.008 0.923 46 0.06 0.00 1.00 
9 3.99 0.007 0.93 47 0.05 0.00 1.00 
10 3.81 0.007 0.937 48 0.00 0.00 1.00 
11 3.55 0.006 0.943 49 0.00 0.00 1.00 
12 3.21 0.006 0.949 50 0.00 0.00 1.00 
13 2.50 0.004 0.953 51 0.00 0.00 1.00 
14 2.43 0.004 0.957 52 0.00 0.00 1.00 
15 2.10 0.004 0.961 53 0.00 0.00 1.00 
16 1.86 0.003 0.964 54 0.00 0.00 1.00 
17 1.80 0.003 0.968 55 0.00 0.00 1.00 
18 1.56 0.003 0.97 56 0.00 0.00 1.00 
19 1.52 0.003 0.973 57 0.00 0.00 1.00 
20 1.46 0.003 0.975 58 0.00 0.00 1.00 
21 1.38 0.002 0.978 59 0.00 0.00 1.00 
22 1.24 0.002 0.98 60 0.00 0.00 1.00 
23 1.17 0.002 0.982 61 0.00 0.00 1.00 
24 1.02 0.002 0.984 62 0.00 0.00 1.00 
25 1.00 0.002 0.986 63 0.00 0.00 1.00 
26 0.90 0.002 0.987 64 0.00 0.00 1.00 
27 0.84 0.001 0.989 65 0.00 0.00 1.00 
28 0.77 0.001 0.99 66 0.00 0.00 1.00 
29 0.65 0.001 0.991 67 0.00 0.00 1.00 
30 0.61 0.001 0.992 68 0.00 0.00 1.00 
31 0.52 0.001 0.993 69 0.00 0.00 1.00 
32 0.50 0.001 0.994 70 0.00 0.00 1.00 
33 0.44 0.001 0.995 71 0.00 0.00 1.00 
34 0.43 0.001 0.995 72 0.00 0.00 1.00 
35 0.37 0.001 0.996 73 0.00 0.00 1.00 
36 0.36 0.001 0.997 74 0.00 0.00 1.00 
37 0.31 0.001 0.997 75 0.00 0.00 1.00 
38 0.25 0.00 0.998     
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TABLE 6.2: SUMMARY OF CANONICAL DISCRIMINANT FUNCTIONS 

Function Eigenvalue Percentage of Variance Cumulative percentage Canonical Correlation 
1 9.024 77.4 77.4 0.949 
2 2.637 22.6 100 0.852 

 

TABLE 6.3: CLASSIFICATION SUCCESS RESULTS WITH THE HIGH EIGENVALUED PRINCIPAL COMPONENTS 

Predicted Group Membership Classification Group 
Neutral Happy Sad 

Total 

Neutral 10 4 2 16 
Happy 7 4 5 16 Count 

Sad 4 3 9 16 
Neutral 62.5 25.0 12.5 100.0 
Happy 43.8 25.0 31.3 100.0 

Original 
cases a 

Percentage 
Sad 25.0 18.8 56.3 100.0 

Neutral 10 4 2 16 
Happy 7 4 5 16 Count 

Sad 4 4 8 16 
Neutral 62.5 25.0 12.5 100.0 
Happy 43.8 25.0 31.3 100.0 

Cross- 
Validated 
cases b 

Percentage 
Sad 25.o 25.0 50.0 100.0 

a 
47.9 % of original group cases correctly classified

 

b 
45.8 % of cross-validated group cases correctly classified

 

 

Table 6.3 shows the confusion matrix observed when the high eigenvalued principal 

components were used to train the classifier and classify the facial expressions. 

Table 6.4 shows the confusion matrix observed when the optimal principal 

components were used for discriminating between the three facial expressions. Figure 

6.5 provides a visual comparison of the two classifiers’ performance. The high 

eigenvalued components based classification resulted in a higher error rate (egeneal
j  = 

100-45.8=54.2%). The classifier performance significantly improved (egeneal
j  = 100-

83.8=16.2%) when the optimal principal components were used for training the 

classifier. 

Figure 6.6 shows the decision boundaries resulting from the two classifiers. On the 

left side of Figure 6.6 is the decision boundary resulted from the high eigenvalued 

principal components. The decision boundary on the right side of Figure 6.6 resulted 

when the optimal components were used to train the classifier. The two decision 

boundaries are significantly different and the one resulting from the optimal 

components appears to be smoother and better separated. 
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TABLE 6.4: CLASSIFICATION SUCCESS RESULTS WITH THE OPTIMAL COMPONENTS 

Predicted Group Membership Classification Group 
Neutral Happy Sad 

Total 

Neutral 16 0 0 16 
Happy 0 16 0 16 Count 

Sad 0 0 16 16 
Neutral 100 0 0 100.0 
Happy 0 100 0 100.0 

Original 
cases a 

Percentage 
Sad 0 0 100 100.0 

Neutral 13 1 2 16 
Happy 0 14 2 16 Count 

Sad 1 2 13 16 
Neutral 81.3 6.3 12.5 100.0 
Happy 0 87.5 12.5 100.0 

Cross- 
Validated 
cases b 

Percentage 
Sad 6.3 12.5 81.3 100.0 

a 
100.0 % of original group cases correctly classified

 

b 
83.8 % of cross-validated group cases correctly classified

 

 

 

Figure 6.5: Comparison of the two classifiers’ performance 

 

 

Figure 6.6: (a) The decision boundary with the high-eigenvalued Principal Components and (b) The decision 
boundary with the Optimal Principal Components 
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6.1.2 Analysis of the classification results 

The stepwise feature selection algorithm recursively selected a set of most influential 

variables. These most influential variables were used for developing the discriminant 

functions and constructing the classifier during the linear discriminant analysis. The 

statistical significance of the two functions developed for differentiating between the 

three facial expression groups was calculated using the following relationship: 

2
= [n 1 ((p+G) / 2) ln(1+ k )

k=1

k

      6-1 

Having n (=48) observations, p (=20 variates), G (=3 facial expression groups,) k 

(=2 discriminant functions) and the corresponding eigenvalues (
k
) computed earlier 

and given in column 2 of Table 6.2, the 2 value for each discriminant function was 

calculated using Equation 6-1. For example, the 2 value of the first discriminant 

function in Table 6.5 was found to be 127.663. It was computed as 
2
= (48 1 ((20+ 3) /2))[ln(1+ 9.024) + ln(1+ 2.637)]. 

This relationship in Equation 6-1 was recursively used for computing the 

significance level of each discriminant function, reported in column 5 of Table 6.5. The 

significance levels of the two discriminant functions (p<0.05) in Table 6.5 suggest the 

possible separation between the facial expression groups along the two discriminant 

functions reported in Table 6.5. 

Since the derived discriminant scores were linear combinations of the original 

variables, their mathematical structures could reveal the nature of relationship between 

the actual variables and the discriminant functions. Table 6.6 presents the structure 

matrix resulted from the discriminant analysis. The structure coefficients of the 

discriminant functions allow interpreting the contribution of each variable to the 

formation of the discriminant functions. In other words, they represent the correlations 

between a given independent variable and the discriminant scores associated with a 

discriminant function. The coefficients of a given discriminator variable are therefore 

the coefficients of the correlation between the discriminant scores and the discriminator 

variables. Their numeric values range between +1 and -1. These coefficients (given in 

Table 6.6) were calculated using the formula 

Ci = rijb j
*

k=1

k

,         6-2 
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 where, Ci is the coefficient of a variable; r ij is the pooled correlation between the 

variables i and j; and bj
* is the standardised coefficient of the variable j. 

A closer examination of the structure matrix in Table 6.7 suggests that the first 

discriminant function heavily relies on variates 9, 10, 39 and 44. In effect, the first 

discriminant function relies on the thermal variations measured on Frontalis Pars 

Lateralis (9 and 10), Zygomaticus Major (39) and Levator Labii Superioris (44). 

The second discriminant variable mostly relies on variates 10, 13, 39, 40 and 44. 

The second discriminant function therefore relies on the thermal variations on Frontalis 

Pars Medialis (13), Frontalis Pars Lateralis (10), Zygomaticus Major (39), Masseter 

Superficial (40) and Levator Labii Superioris (44). 

Zygomaticus Major and Mentalis are considered the muscles of positive expressions 

(Kall 1990). Masseter Superficial and Labii Superioris are considered the muscles of 

sadness and fear (Kall 1990). The separation between the three facial expressions seems 

to be based on the transient thermal features measured along these major facial muscles. 

Figures 3.1 and 4.5 (with Table 4.1) exhibit the physical location of these major 

muscles. 

 

Table 6.5: Significance of individual discriminant functions 

 Test of Functions Wilks’ Lambda Chi-square  df  Sig. 
1 through 2 0.027 127.663 40 0.00 
2 0.275 45.837 19 0.001 

 

TABLE 6.6: STRUCTURE MATRIX REPRESENTING COMPOSITION OF THE TWO DISCRIMINATING FUNCTIONS 

Principal component Function 1 Function 2 
VARIATE-44 0.116(*) 0.107 
VARIATE-09 -0.106(*) -0.022 
VARIATE-04 0.088(*) -0.011 
VARIATE-14 -0.078(*) -0.072 
VARIATE-21 -0.076(*) 0.065 
VARIATE-45 -0.061(*) -0.044 
VARIATE-29 0.057(*) -0.001 
VARIATE-43 -0.055(*) 0.009 
VARIATE-30 -0.052(*) 0.021 
VARIATE-12 0.075 0.264(*) 
VARIATE-19 0.063 0-.249(*) 
VARIATE-24 0.055 -0.217(*) 
VARIATE-39 0.101 0.167(*) 
VARIATE-10 -0.113 0.152(*) 
VARIATE-13 -0.01 0.141(*) 
VARIATE-40 0.037 0.133(*) 
VARIATE-07 0.081 -0.091(*) 
VARIATE-34 -0.065  -.082(*) 
VARIATE-46 0.044 -0.078(*) 
VARIATE-08 0.063 -0.072(*) 
* Largest absolute correlation between each variable and 
   any discriminant function  
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6.1.3 Significance of the observed classification results 

The classifier performance and the practical significance of the classification results 

were determined using the statistical tests proposed earlier in section 5.5. Equations 5-

24 and 5-25 were used to determine the statistical significance of the classification 

results.  

The z-statistic for the neutral, happy, and sad faces and the overall cross-

validation results (reported in Table 6.4) were respectively found to be: 

Z
normal

*
=1.921 (significant at alpha-level 0.0274); 

Zhappy

*
=1.512 (significant at alpha-level 0.0655); 

Z
sad

*
=1.921 (significant at alpha-level 0.0274); 

Z
overall

*
= 3.096  (significant at alpha-level 0.001). 

The overall significance test statistic (p<0.05) suggested that classification results 

were significant. It is therefore safe to assume that the TIV data gathered at the 75 FTFP 

sites on the participant faces may help classify the neutral and pretended happy and sad 

facial expressions. 

The practical significance of a classifier is usually determined to study its viability 

for the real-life use. The index (I) for the cross-validation results was calculated using 

Equation 5-26. The resulting index was found to be I = 40 /48 16 /48
1 16 /48

100 = 

74.99. The estimated index (I) suggests that the employed discrimination method may 

help reduce the chances of making computational errors by 74.99%. 

 

6.2 Classification of more negative and positive facial expressions 

In a following analysis, an attempt was made to classify the two positive pretended 

(happiness and surprise) and the two negative (anger and disgust) facial expressions 

using the facial skin temperature measurements. 

 

6.2.1 Classifier construction 

Using the algorithmic approach reported earlier in Chapter 5, the TIV data were first 

transformed into uncorrelated principal components. The first 50 of the 75 derived 

principal components caused at least 1 % of the variation in the TIV data. However, 
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there was no reason to assume that only these 50 principal components might have 

contributed to the between-facial expression group separation. 

Figure 6.7 shows the possible separation between the two pretended positive (happy 

and surprise) and the two pretended negative (anger and disgust) facial expressions in a 

2-principal component eigenspace. The first principal component (along the abscissa) 

appears to be contributing more to the variation in the TIV data. The between-group 

separation in Figure 6.7 seems to be well influenced by the second principal component 

(along the ordinate) as well. A strong separation between the facial expressions of 

happiness and anger is evident in Figure 6.7. The two negative facial expressions 

(disgust and anger) are also well separated along the second principal component. 

Similarly, the two positive facial expressions, happiness and surprise are also well 

separated in a 2-principal component eigenspace. However, the first two principal 

components do not appear to be helpful in distinguishing between the facial expressions 

of happiness and disgust. 

It might help to recall that the facial expression of disgust was also difficult to 

recognise in the previous studies reported earlier in chapter 3, section 3.2. 

 

 

Figure 6.7: Separation of positive and negative facial expressions in a 2- component eigenspace 
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Earlier investigations have concluded that the EMG readings taken on the major 

facial muscles (that influenced formation of the second Principal component) did not 

provide enough information about the facial expression of disgust. However, as reported 

later in this section, the two positive and the two negative facial expressions may be 

better separated in a higher-dimensional, optimal eigenspace. Probably some other 

principal components provided additional (and required) information for better 

separating the negative facial expressions. 

The derived principal components were again examined to select a set of optimal 

principal components using the stepwise feature selection method. Figure 6.8 shows the 

stepwise elimination of less important principal components and a recursive selection of 

the most influential principal components. The corresponding increase in the F statistics 

(F = |SB|/ |SW|) is evident in Figure 6.8. 

Table 6.7 presents the classification results and the confusion matrix obtained using 

the 36 highest eigenvalued principal components that accounted for more than 99% 

variance in the thermal data. Table 6.8 shows the confusion matrix obtained with the 

optimal principal components used for discriminating between the four facial 

expressions. In Table 6.7 an error rate egeneal
j  (= 62.5) was observed during the cross-

validation tests when the highest eigenvalued features were used for recognition and 

classification. The classifier trained with the optimal principal components performed at 

a much lower error rate egeneal
j  (= 32.8). 

 

Figure 6.8: Recursive stepwise selection of the optimal components and the increasing ratio SB/SW 
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TABLE 6.7: CLASSIFICATION RESULTS FOR FOUR FACIAL EXPRESSIONS USING THE HIGH EIGENVALUED COMPONENTS 

Predicted Group Membership Classification Group 
Happy Disgust Surprise Angry 

Total 

Happy 15 0 1 0 16 
Disgust 0 16 0 0 16 
Surprise 0 0 16 0 16 

Count 

Angry 1 0 0 15 16 
Happy 93.8 0 6.3 0 100.0 
Disgust 0 100 0 0 100.0 
Surprise 0 0 100 0 100.0 

Original 
cases a 

Percentage 

Angry 6.3 0 0 93.8 100 
Happy 5 3 5 3 16 
Disgust 5 6 1 4 16 
Surprise 2 3 8 3 16 

Count 

Angry 4 6 1 5 16 
Happy 31.3 18.8 31.3 18.8 100.0 
Disgust 31.3 37.5 6.3 25.0 100.0 
Surprise 12.5 18.8 50 18.8 100.0 

Cross- 
Validated 
cases b 

Percentage 

Angry 25.0 37.5 6.3 31.3 100.0 
a 

96.6 % of original group cases correctly classified
 

b 
37.5 % of cross-validated group cases correctly classified

 

 

TABLE 6.8: CLASSIFICATION RESULTS FOR FOUR FACIAL EXPRESSIONS USING THE OPTIMAL COMPONENTS 

Predicted Group Membership Total Classification Group 
Happy Disgust Surprise Angry  

Happy 16 0 0 0 16 
Disgust 0 16 0 0 16 
Surprise 0 0 16 16 16 

Count 

Angry 0 0 0 16 16 
Happy 100 0 0 0 100.0 
Disgust 0 100 0 0 100.0 
Surprise 0 0 100 0 100.0 

Original 
cases a 

Percentage 

Angry 0 0 0 100 100 
Happy 10 1 5 0 16 
Disgust 1 9 3 3 16 
Surprise 1 1 14 0 16 

Count 

Angry 1 3 2 10 16 
Happy 62.5 6.3 31.3 0 100.0 
Disgust 6.3 56.3 18.8 18.8 100.0 
Surprise 6.3 6.3 87.5 0 100.0 

Cross- 
Validated 
cases b 

Percentage 

Angry 6.3 18.8 12.5 62.5 100.0 
a 

100 % of original group cases correctly classified
 

b 
67.2 % of cross-validated group cases correctly classified

 

 
 

Figure 6.9 compares the classification results obtained using the two algorithmic 

approaches. An equal probability of group membership (a priori) was used in the 

analysis. The facial expression of disgust was confused with the other positive facial 

expressions. As evident in Tables 6.7 and 6.8, the two negative facial expressions (anger 

and disgust) could also be confused with each other. Most probably for the reason that 

the TIVs measured at the same muscles (Corrugator, Orbicularis Oculi Superior and 

Orbicularis Oculi Inferior) were engaged in expressing these two negative facial 

expressions. 
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TABLE 6.9: SUMMARY OF CANONICAL DISCRIMINANT FUNCTIONS 

Function 
 

Eigenvalue 
 

Percentage of Variance 
 

Cumulative 
percentage 

Canonical 
Correlation 

1 7.972 67.8 67.8 0.943 
2 2.290 19.5 87.3 0.834 
3 1.490 12.7 1000 0.774 

 

 

Figure 6.9: Difference between classification success rates for the four expressions using the two algorithmic 
approaches 

TABLE 6.10: SIGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS 

Test of Functions Wilks’ Lambda Chi-square  df Sig. 
1 through 2 0.014 206.272 40 0.00 
2 through 3 0.122 100.955 19 0.00 
3 0.402 43.792  0.008 

 

Table 6.9 reports the canonical discriminant functions, statistical parameters and 

contribution of each of the two functions required to discriminate between the four 

facial expressions. Table 6.10 reports the significance levels of the resulting 

discriminant functions. 

 

6.2.2 Analysis of classification results 

The stepwise feature selection algorithm recursively selected a set of 26 most influential 

variables (reported in the first column of Table 6.11). These 26 effective variates were 

used for training the classifier and developing the discriminant functions. Statistical 

significance of the three functions was calculated using the mathematical relationship 

given in Equation 6-1. Using n (=64, 16 for each of the 4 facial expression groups) 

observations, p (=26 in this case) variates, G (=4) facial expression groups, k (=3) 

discriminant functions and the corresponding eigenvalues computed earlier, the 2 
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value for each discriminant function was calculated using Equation 6-1. The 

significance levels of the three discriminant functions (p<0.05) in Table 6.10 suggest 

the possible separation between the facial expression groups along the three 

discriminant functions. 

Since the discriminant scores were linear combinations of the original variates, their 

mathematical structure provided information about the relationship between the actual 

variables and the discriminant functions. Table 6.11 presents the resulting structure 

matrix. The structural coefficients of a discriminant function are used to interpret its 

contribution in the between-group separation. The coefficients of a discriminator 

variable represent the correlation between the discriminant scores and the discriminator 

variables. These coefficients, given in Table 6.11, are calculated using Equation 6-2. 

A closer examination of the structure matrix in Table 6.11 suggests that the first 

discriminant function relies on variates 12, 14, 21 and 47. So, it relies on the TIVs 

measured on Frontalis Pars Lateralis (12), Depressor Supercilii (14), Procerus/ Levator 

Labii Superioris Alaquae Nasi (21) and Levator Anguli Oris (47) for recognising and 

classifying the unknown thermal faces. The second discriminant function relies on 

variates 19, 26, 29, 31, 34, 35, 58 and 64. 

TABLE 6.11: STRUCTURE MATRIX SHOWING COMPOSITION OF THE THREE DISCRIMINATING FUNCTIONS 

Principal component Function 1 Function 2 Function 3 
VARIATE-21  .107(*) -0.027 0.094 
VARIATE-22  -.094(*) 0.025 -0.013 
VARIATE-66  .082(*) -0.031 0.075 
VARIATE-25  -.081(*) 0.011 0.031 
VARIATE-07  -.080(*) -0.052 0.026 
VARIATE-30  -.069(*) -0.002 0.003 
VARIATE-35 0.001  .287(*) 0.088 
VARIATE-19 -0.003  .208(*) -0.198 
VARIATE-29 0.034  .151(*) -0.117 
VARIATE-34 0.046  .150(*) -0.141 
VARIATE-26 0.087  .127(*) -0.026 
VARIATE-58 -0.057  .125(*) -0.037 
VARIATE-31 0.053  .118(*) -0.046 
VARIATE-64 0.047  .106(*) 0.043 
VARIATE-14 0.042  -.087(*) 0.07 
VARIATE-38 0.055  -.066(*) 0.061 
VARIATE-17 -0.119 0.188  .370(*) 
VARIATE-32 0.032 -0.059  .216(*) 
VARIATE-20 -0.064 0.151  .201(*) 
VARIATE-15 -0.035 -0.067  .192(*) 
VARIATE-54 -0.047 0.107  -.156(*) 
VARIATE-40 0.035 0.109  .155(*) 
VARIATE-37 -0.069 -0.072  -.125(*) 
VARIATE-12 0.108 0.085  .111(*) 
VARIATE-47 0.102 0.008  .111(*) 
VARIATE-10 -0.066 0.038  .100(*) 
* Largest absolute correlation between each variable and 
   any discriminant function  
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TABLE 6.12: DISCRIMINANT FUNCTIONS AT GROUP CENTROIDS 

Facial 
Expression 

Function 1 Function 2 Function 3 

Happy -3.485 0.657 -1.281 
Disgust 2.082 -2.120 -0.675 
Surprise -1.792 -0.406 1.866 
Angry 3.195 1.870 0.0897 
Unstandardised canonical discriminant functions evaluated at group means. 

 

Thus, the second discriminant function might be relying on the measurements taken on 

Orbicularis Oculi Pars Orbital (19, 26, 29, 31), Orbicularis Oris (64), Procerus/ Levator 

Labii Superioris Alaquae Nasi (35), and Depressor Anguli Oris (58) to recognise and 

classify the unknown thermal faces. 

It could be argued that the third discriminant function relied on thermal variations 

on Frontalis Pars Medialis (15) Frontalis Pars Lateralis (10, 12, 17), Orbicularis Oculi 

Pars Orbital (19, 20, 29), Zygomaticus Major (32), Levator Labii Superioris (34), 

Masseter Superficial (40), Levator Anguli Oris (47) and Platysma (54) for recognising 

the unknown thermal faces and allocating them to one of the facial expression groups. 

As mentioned earlier, each of the three discriminant functions measured the thermal 

variations at one or more of the known muscles of positive and negative expressions1. 

For example, the first two discriminant functions rely on Procerus/ Levator Labii 

Superioris Alaquae Nasi (a muscle of frown). The second discriminant function relies 

on Orbicularis Oris (a muscle of excitement), and the third discriminant function relies 

on thermal variations along Masseter (a muscle of anger). 

The three discriminant functions, in effect, examine the thermal variations that take 

place on the major facial muscles. Interestingly, the first discriminant function uses the 

variates coming from the thermal measurements on the muscles of positive experience 

(Orbicularis Oris and Zygomaticus) and the muscles of negative experience (Corrugator 

and Masseter). Other discriminant functions use a combination of the thermal variations 

measured on Frontalis Pars Medialis, Frontalis Pars Lateralis, Levator Labii Superioris, 

Levator Anguli Oris, Buccinator, Platysma, and Mentalis. 

Table 6.12 shows the respective coordinates of the centroid of each facial expression 

group in the resulting eigenspace. The underlying span of the first discriminant function 

is much wider than that of the second and third discriminant functions in Table 6.12. 

                                                
1
 The facial muscles considered responsible for expressing the positive and negative facial expressions of affective 

states are reported in section 3.2 of chapter 3. 
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This implies a larger contribution of the first discriminant function in the between-group 

separation. The underlying contribution of the second and third discriminant functions 

appears to be almost equal. The fourth column of Table 6.9 presents the contribution of 

each discriminant function in the between-group separation. Results reported in Table 

6.9 graphically concur with the results reported in Table 6.12. Figure 6.10 shows the 

two positive and the two negative facial expressions at their respective group centroids. 

 

6.2.3 Significance of the classification results 

Once again, the practical significance of the classifier performance was calculated using 

Equation 5-24. The significance levels for the classification of happy, disgust, surprise 

and angry expressions and for the overall classification results were estimated as: 

Zhappy

*
= 3.09 , significant at alpha-level 0.001; 

Zdisgust

*
= 3.615 , significant at alpha-level 0.001; 

Zsurprise

*
=1.0328 not significant at alpha-level 0.05; 

Zangry

*
= 3.09  significant at alpha-level 0.001. 

 

 

Figure 6.10: The two positive and the two negative facial expression groups at their respective group centroids 
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The overall significance of the classification results was estimated using Equation 5-

25 and was found to be (Z
overall

*
= 5.59) significant at alpha-level 0.001. The overall 

significance test statistic (p<0.05) suggested that classification results were significant. 

Huberty’s test was used for assessing the practical significance of the classification. 

Equation 5-26 was used for calculating the index (I = 43/48 16 /48
1 16 /48

100  = 

84.37). The value of I suggested that the employed discrimination analysis procedure 

resulted in 84.37% reduction in the chances of obtaining errors by chance. 

It is therefore safe to assume that the TIV data gathered at 75 FTFP sites on the 

participant faces may help in classifying the pretended facial expressions of happiness, 

surprise, anger and disgust. 

 

6.3 Conclusion 

When the high eigenvalued principal components were used for classifying the neutral 

faces and the faces with the pretended expressions of happiness and sadness, only 

45.8% of the participant faces could be correctly classified during the cross-validation 

tests. Using a set of optimal discriminating features, 83.8% of the 48 thermal faces were 

correctly classified during the cross-validation tests. This suggested that the eigenspace 

constructed with the optimal features might allow a better between-facial group 

separation as compare to the eigenspace constructed with higher eigenvalued principal 

components. Similarly, when the two positive and two negative facial expressions were 

classified, the optimised eigenspace resulted in a better between-group separation 

(67.20% classification success rate) as compare to the eigenspace constructed using the 

high eigenvalued components (37.50% classification success rate). The improved 

classifier performance suggests that the eigenspace optimisation may allow a compact 

and effective representation of the thermal features and may result in a linear division of 

the eigenspace. 

The proposed eigenspace optimisation approach allowed better between-groups 

separation albeit some facial expressions were better recognised than the others. This 

suggested that the complexity of a constructed Gaussian space might influence the 

classifier performance. Earlier studies showed that a reduction in the classification 

space complexity would sometimes result in insufficient degrees of freedom for linear 
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discrimination. However, there was no explicit evidence that the linear discrimination in 

this analysis had insufficient degrees of freedom. 

It is important to note that the LDA algorithm achieved excellent classification 

results on the training features (principal components) but could not generalise to the 

new and unknown thermal faces with the same level of accuracy. These results were 

consistent with the classification results (Chellappa 1998; Donato et al. 1999) reported 

earlier. Previous studies suggested that a large training set might help correctly classify 

the new and unknown faces and improve the classifier performance in similar scenarios 

(Chellappa 1998; Donato et al. 1999). 

The classifier trained using the thermal data obtained from the two positive and the 

two negative facial expressions performed at a lower classification success rate. This 

increased classification error rate might be indicative of an overlap between the thermal 

features and a similarity of the facial thermal features measured during the intentional 

expression of multiple positive and negative affective states. Probably, the two positive 

and the two negative facial expressions engaged the same facial muscles and hence 

experienced similar thermo-muscular changes, resulting in a similar thermal variation 

pattern. 

The discriminant functions relied (for AFEC) on the thermal variations measured 

along those muscles that were previously known to be representative of the positive and 

negative facial expressions. In particular, previous EMG studies reported significant 

activity at the same facial muscles in the facial expression of positive and negative 

expressions. 

When the discriminant functions were developed to classify the neutral faces and 

the faces with the facial expression of happiness and sadness, the first discriminant 

function heavily relied on thermal variations measured on Frontalis Pars Lateralis, 

Zygomaticus Major and Levator Labii Superioris. The second discriminant variable 

mostly relied on the TIV data measured at Frontalis Pars Medialis, Frontalis Pars 

Lateralis, Zygomaticus Major, Masseter Superficial, and Levator Labii Superioris. As 

mentioned in (Kall 1990), Zygomaticus Major and Mentalis are considered the muscles 

of positive expressions and Masseter Superficial and Labii Superioris are considered the 

muscles of sadness and fear. 
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The three discriminant functions developed during an attempt to distinguish 

between the facial expressions of happiness, surprise, anger and disgust exhibited a 

similar tendency. The first discriminant function used thermal measurements taken on 

the muscles of positive experience (Orbicularis Oris and Zygomaticus) and the muscles 

of negative experience (Corrugator and Masseter). The other principal components 

included in the three discriminant functions used a combination of some thermal 

features measured on Frontalis Pars Medialis, Frontalis Pars Lateralis, Levator Labii 

Superioris, Levator Anguli Oris, Buccinator, Platysma, and Mentalis. It was obvious 

that the three discriminant functions employed the thermal variations measured on the 

“already known” muscles of positive and negative expressions. 

The classification results and analyses reported in the preceding paragraphs make it 

obvious that the facial skin temperature variations may provide useful information about 

the positive and negative facial expressions of affective states. It might be concluded 

that an appropriate facial thermal feature extraction, selection and representation and 

classification approach may allow person-independent classification of the facial 

expressions of affective states. 
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Chapter 7 
CLASSIFICATION OF BASIC FACIAL EXPRESSIONS 

 

 

 

As mentioned earlier in chapters 2 and 3, previous non-vision based automated facial 

expression classification (NVAFEC) systems appeared to be more focused on 

distinguishing between the positive and negative affective states. This chapter reports an 

attempt to classify the neutral and six basic facial expressions using the facial thermal 

features. As the classification results suggest, a Gaussian mixture model that had seven 

components; the neutral expression and the six common facial expressions, resulted in a 

complex Gaussian space. Despite that, this part of the investigation exhibits the viability 

of using the facial thermal features for classifying the facial expressions in a complex 

decision space. 

 

7.1 Initial analysis 

In addition to the initial data analyses reported in chapter 4, Andrews’ curves for the 

TIV data were plotted to further examine the clusters of seven facial expression groups 

and explore the underlying variance in the data. Each p-variate observation in the data 

set was represented by a function plotted over the range - < t <+  such that for the nth 

observation, the function f(t) was defined as 

f (t) =
z1

2
+ z2 sin t + z3 cos t + z4 sin t + z5 cos t +……z17 cos t + z18 sin t +… +  …… 7-1 

 where, z1, z2, …… zn represented the observed numerical values of the TIV data. The 

Andrews’ curves are shown (as z1, z2, …… zn) in Figure 7.1. Excluding the first term in 

Equation 7-1, the function f(t) is a mixture of sine and cosine waves and produces a 

(visually) representative wave pattern depending on the observed values of the p 

variables. 

An Andrews’ plot is based on the distance between the two functions that are 

defined by the expression 

f p (t) fq (t)[ ]
2

dt .          7-2 
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Thus the similarities in the Andrews’ plots in Figure 7.1 exhibit the similarities 

between the underlying functions. The observations that were actually closer in a high-

dimensional space had a similar wave pattern in an Andrews’ graph space (Chatfield 

and Collins 1995; Everitt and Dunn 1991; Jolliffe 2002).  

A problem that frequently arises with this technique is that only a limited number of 

observations may be plotted on the same diagram. A large number of observations make 

the diagram confusing and less useful. Methods of overcoming this problem have been 

suggested in the literature (Jolliffe 2002). For example, separate plots, one for each set 

or cluster are plotted and compared against the others. Also, selected quantities of the n 

values of the function f(t) are plotted along with the curves of the selected individual 

observations (Everitt and Dunn 1991). In many earlier studies, Andrews’ curves for 

each class were clustered and plotted in a separate window for further visual analysis 

(Jolliffe 2002). 

Andrews’ curves for the seven clusters (facial expressions) of the 16-participants’ 

facial thermal data in Figure 7.1 reveal that the raw TIV data provide little information 

about the thermal differences between the facial expression groups. The facial 

expression group clusters had a similar waveform. The profiles of Andrews’ curves 

being similar do not show any (large) between-group variation. However, the within-

group homogeneity, even on the basis of the raw TIV data, was evident in each cluster 

of facial expression in Figure 7.1. The within-group curves fall into moderately narrow 

bands suggesting an adequate level of similarity in the thermal representation of the 

individuals’ facial expressions. The within-group homogeneity was considered a 

positive sign. Its presence encouraged exploring the possibilities of distinguishing 

between the seven facial expressions using the facial thermal features (Chatfield and 

Collins 1995; Everitt and Dunn 1991; Jolliffe 2002). 

Few distant curves identified in the neutral facial expression cluster window in 

Figure 7.1 belong to the participants with facial hair. The TIVs measured on the faces of 

the three participants (having facial hair) were slightly different than the ones measured 

on other participant faces. Facial hair, having a different emissivity ratio () might have 

resulted in different TIV measurements on those parts of the face that were covered 

under the hair. The TIVs measured on these parts of the face were therefore different 

than the TIVs measured on the uncovered parts of the face. These three participants 
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were kept in the experiments to examine the effect of facial hair on the classifier 

performance and the validity of the resulting discriminant rules. 

Some notable differences in the clusters of Andrews’ curve profiles are visible 

between the range -/2 and +- /2 in Figure 7.1. The curves plotted using the raw TIV 

data did not provide a practically useful measure of the between-group variation and 

warrant formation of a set of uncorrelated variables. Such variables are usually formed 

using a technique like PCA to develop the discriminant rules (McLachlan 2004). 

 

7.2 Classifier construction 

The algorithmic approach mentioned in chapter 5 was used to develop a facial 

expression classifier for distinguishing between the seven facial expressions. Recorded 

TIV data were transformed into uncorrelated linear combinations of the input vectors 

using the principal component analysis. These vectors (principal components) are 

exhibited as a scree plot in Figure 7.2. Only 32 of the 75 derived principal components 

significantly contributed to the variance in the TIV data. Of these, the first 20 principal 

components represented over 90% variance in the data albeit there was no reason to 

believe that only these 20 principal components would contribute to the classification of 

the facial expressions. Figure 7.3 exhibits the possible between-group separation in the 

first two-principal component eigenspace. 

Comparing Figures 7.1 and 7.3 would reveal that transforming the raw TIV data 

into the principal components allowed a better between-facial expression group 

separation. The negative facial expressions (sadness, disgust and fear) are well 

separated within the 2-principal component eigenspace in Figure 7.3. This trend was 

consistent with the previous studies that employed either FACS or facial EMG readings 

to classify the negative facial expressions. Negative facial expressions in previous 

investigations could be easily separated from each other as compare to the positive 

facial expressions (Ekman et al. 1993; Kall 1990). 
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Figure 7.1: Andrews’ curve for the seven facial expressions plotted using the raw TIV data. The function t spans 

along the abscissa and ranges between - and + . Corresponding values of the TIVs are plotted along 
the ordinate. The curve profiles for each particular facial expression group show the within-group 
homogeneity. The similarities between the waveforms of various facial expressions suggest that the 
facial expressions cannot be classified using the raw TIV data. 
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Figure 7.2: Contribution of the 75 principal components in the underlying variance of the 7-facial expression 
TIV data 

 

 

Figure 7.3: Between-group separation of the seven facial expressions in a 2-principal component eigenspace 

 

The neutral faces and the faces with intentionally expressed happiness and surprise 

(positive expression) seem to be comparatively difficult to separate from the other facial 

expressions in a 2-principal component eigenspace. This pattern of separation was also 

observed in a previous investigation that Kall (1989) carried out. As reported in chapter 

6, the first principal component was the negative index of a thermal face and hence 



CLASSIFICATION OF BASIC FACIAL EXPRESSIONS 

107 

provided an overall thermal measurement of the face. The second principal component 

provided an account of the facial thermal characteristics as it added the TIVs on 

Orbicularis Oculi Pars Orbital and Levator Labii Superioris Alaquae Nasi and 

subtracted the TIVs on all other facial muscles from this added value. One could infer 

from Figure 7.3 that the uncorrelated linear variables provided some useful information 

about the variance in the TIV data to classify the facial expressions of affective states. 

In the next step, the derived principal components were analysed using the stepwise 

elimination and feature selection algorithm described earlier in chapter 5. The iterative 

increase in the value of F ratio (F = |SB|/ |SW|) is obvious in Figure 7.4. The optimal 

feature selection algorithm recursively selected a set of 22 principal components for 

training the classifier. These 22 selected principal components were not the highest 

eigenvalued principal components. The feature selection algorithm discovered a new 

and different set of most discriminating components. Only few of the high eigenvalued 

principal components were included in this new set of optimal principal components. 

The algorithm discovered many low-eigenvalued principal components that were also 

able to contribute to the between-group separation. 

The TIV data were normally distributed, the facial expressions groups had a similar 

variance structure, and each facial expression group had the same numbers of 

participants. Hence, each facial expression group could be given an equal a priori in the 

analysis during the linear discriminant analysis. 

Table 7.1 exhibits a summary of the canonical discriminant functions showing the 

contribution of each discriminant function in distinguishing between the intentional 

facial expressions. 

Table 7.2 shows the chi-square values and the respective significance levels of the 

discriminant functions. 

TABLE 7.1: SUMMARY OF CANONICAL DISCRIMINANT FUNCTIONS 

Function 
 

Eigenvalue 
 

Percentage of Variance 
 

 Cumulative 
percentage 

 Canonical 
Correlation 

1 1.759 32.0 32.0 0.798 

2 1.399 25.4 57.4 0.764 

3 1.153 20.9 78.3 0.732 

4 0.492 8.9 87.3 0.574 

5 0.358 6.5 93.8 0.513 

6 0.343 6.2 1000 0.505 
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TABLE 7.2: SIGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS 

 Test of Functions Wilks’ Lambda Chi-square  df  Sig. 
1 through 6 0.026 352.914 132 0.00 

2 through 6 0.071 254.979 105 0.00 

3 through 6 0.171 170.517 80 0.00 

4 through 6 0.368 96.573 57 0.001 

5 through 6 0.549 57.942 36 0.012 

6 0.745 28.445 17 0.040 

 

 

Figure 7.4: Recursive stepwise selection of optimal components with an increasing F ratio (=SB/SW). The line 
connecting the first and the last iterations exhibits a significant increase in the F-ratio. 

TABLE 7.3: STRUCTURE MATRIX SHOWING COMPOSITION OF THE TWO DISCRIMINATING FUNCTIONS 

Contributing 
variables 

Function 
1 

Function 
2 

Function 
3 

Function 
4 

Function 
5 

Function 
6 

VARIATE-19 0.233(*) 0.065 -0.191 0.017 0.185 0.004 

VARIATE-18 -0.020 0.268(*) -0.062 0.088 -0.059 0.183 

VARIATE-23 0.153 -0.227(*) 0.052 -0.022 -0.128 -0.184 

VARIATE-07 -0.98 0.152(*) 0.064 0.028 -0.138 -0.151 

VARIATE-15 0.102 0.141 0.388(*) -0.290 0.158 -0.238 

VARIATE-26 -0.160 -0.076 -0.271 -0.023 0.160 -0.134 

VARIATE-37 0.110 -0.082 0.174(*) 0.058 -0.051 0.023 

VARIATE-21 -0.060 0.044 0.081 0.366(*) -0.212 -0.256 

VARIATE-22 0.216 0.022 0.026 0.359(*) 0.117 0.024 

VARIATE-20 -0.156 0.156 0.016 0.299(*) 0.038 0.077 

VARIATE-27 0.059 0.171 -0.088 -0.249 0.111 0.018 

VARIATE-11 -0.108 -0.242 -0.004 -0.245 -0.022 0.153 

VARIATE-41 -0.088 -0.067 0.286 -0.008 0.400(*) 0.127 

VARIATE-30 0.170 0.092 0.098 -0.274 -0.392(*) 0.138 

VARIATE-14 0.184 0.101 0.093 0.194 0.312(*) -0.018 

VARIATE-38 -0.038 0.084 -0.143 -0.214 0.263(*) 0.033 

VARIATE-09 -0.026 -0.077 0.091 0.039 0.263 0.420(*) 

VARIATE-24 -0.146 0.038 0.058 0.098 -0.096 0.408(*) 

VARIATE-31 -0.164 -0.129 0.251 0.037 0.061 0.264(*) 

VARIATE-75 -0.030 -0.150 0.069 0.073 -0.214 0.260(*) 

VARIATE-13 0.209 0.011 0.173 0.024 -0.151 0.253(*) 

* Largest absolute correlation between each variable and any discriminant function  
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TABLE 7.4: STANDARDISED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS 

Contributing variables Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 
VARIATE- 07 -0.254 0.342 0.129 0.039 -0.175 -0.190 

VARIATE- 09 -0.065 -0.166 0.177 0.052 0.323 0.510 

VARIATE- 11 -0.261 -0.510 -0.007 -0.320 -0.026 0.180 

VARIATE- 13 0.505 0.024 0.325 0.031 -0.179 0.279 

VARIATE- 14 0.446 0.213 0.176 0.255 0.372 -0.021 

VARIATE- 15 0.219 0.262 0.648 -0.335 0.166 -0.247 

VARIATE- 18 -0.362 0.638 0.080 -0.176 -0.121 0.014 

VARIATE- 19 0.557 0.135 -0.355 0.021 0.218 0.004 

VARIATE- 20 -0.384 0.334 0.031 0.397 0.046 0.093 

VARIATE- 21 -0.147 0.094 0.156 0.487 -0.257 -0.307 

VARIATE- 22 0.518 0.045 0.049 0.465 0.138 0.028 

VARIATE- 23 0.371 -0.480 0.099 -0.028 -0.153 -0.217 

VARIATE- 24 -0.365 0.082 0.112 0.132 -0.117 0.494 

VARIATE- 26 -0.384 -0.157 -0.505 -0.029 0.189 -0.156 

VARIATE- 27 0.150 0.377 -0.174 -0.340 0.138 0.023 

VARIATE- 28 -0.050 0.573 -0.119 0.118 -0.071 0.219 

VARIATE- 30 0.400 0.188 0.180 -0.349 -0.454 0.159 

VARIATE- 31 -0.386 -0.264 0.463 0.047 0.071 -0.303 

VARIATE- 37 0.283 -0.183 -0.351 0.082 -0.064 0.029 

VARIATE- 38 -0.096 0.186 -0.285 -0.295 0.330 0.041 

VARIATE- 41 -0.205 -0.137 0.523 -0.010 0.462 0.145 

VARIATE- 75 -0.077 -0.333 0.137 0.100 -0.269 0.323 

 

Table 7.3 reports the structure matrix showing the pooled within-group correlation 

between the discriminant variables and the canonical functions. 

Table 7.4 shows the standardised canonical discriminant function coefficients. 

These coefficients were used to calculate the predicted group membership of the 

unknown thermal faces. The predicted group membership of an unknown face was 

iteratively calculated using these scores and the coefficients of discriminant functions. 

Table 7.5 shows the classification success rate and the confusion matrix that resulted 

when the high eigenvalued principal components were used to train the classifier. A 

higher error rate egeneal
j  (= 61.6%) was observed when the highest eigenvalued principal 

components were used for recognition and classification. 

Table 7.6 shows the classification success results and the confusion matrix observed 

when the optimal principal components were used to train the classifier. As evident in 

Table 7.6 the error rate significantly dropped to egeneal
j  (= 42.9%) when the optimal 

features were used. 

 

7.3 Classification error analysis 

The linear discriminant algorithm discovered the most influential variates for 

developing the discriminant functions using the optimal principal components. It 

discovered 22 most effective variates for recognising and classifying the 
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TABLE 7.5: CLASSIFICATION RESULTS WITH THE HIGHEST EIGENVALUED COMPONENTS 

Predicted Group Membership Classification Group 
Neutral Happy Sad Disgust Surprise Angry Fear 

Total 

Neutral 5 2 3 1 3 2 0 16 

Happy 1 3 4 3 3 2 0 16 

Sad 4 1 6 0 2 1 2 16 

Disgust 0 0 1 8 1 5 1 16 

Surprise 0 2 1 2 6 3 2 16 

Angry 2 3 3 1 1 4 2 16 

Count 

Fear 1 0 0 1 3 0 11 16 

Neutral 31.3 12.5 18.8 6.3 18.8 12.5 0 100.0 

Happy 6.3 18.8 25.0 18.8 18.8 12.5 0 100.0 

Sad 25.0 6.3 37.5 0 12.5 6.3 12.5 100.0 

Disgust 0 0 6.3 12.5 37.5 18.8 12.5 100.0 

Surprise 0 12.5 6.3 6.3 6.3 25.0 12.5 100.0 

Angry 12.5 18.8 18.8 6.3 6.3 25.0 12.5 100.0 

Cross- 

Validated 

cases 
b
 

Percentage 

Fear 6.3 0 0 6.3 18.8 0 68.8 100.0 

b 
38.4 % of cross-validated group cases correctly classified

 

 

TABLE 7.6: CLASSIFICATION RESULTS OBSERVED USING THE OPTIMAL FEATURES 

Predicted Group Membership Classification Group 
Neutral Happy Sad Disgust Surprise Angry Fear 

Total 

Neutral 5 2 3 2 3 1 0 16 

Happy 2 10 0 0 3 0 1 16 

Sad 4 00 11 0 0 1 0 16 

Disgust 2 1 0 10 0 1 2 16 

Surprise 3 0 2 1 7 2 1 16 

Angry 3 3 0 0 1 7 2 16 

Count 

Fear 0 1 0 0 1 0 14 16 

Neutral 31.3 12.5 18.8 12.5 18.8 6.3 0 100.0 

Happy 12.5 62.5 0 0 18.8 0 6.3 100.0 

Sad 25.0 0 68.8 0 0 6.3 0 100.0 

Disgust 12.5 6.3 0 62.5 0 6.3 12.5 100.0 

Surprise 18.8 0 12.5 6.3 43.8 12.5 6.3 100.0 

Angry 18.8 18.8 0 0 6.3 43.8 12.5 100.0 

Cross- 

Validated 

cases 
b
 

Percentage 

Fear 0 6.3 0 0 6.3 0 87.5 100.0 

b 
57.1 % of cross-validated group cases correctly classified

 

 

unknown thermal faces. The mathematical compositions of these variates are listed in 

Tables 7.3 and 7.4. 

A set of six discriminant functions was developed by the linear discriminant 

algorithm to classify the thermal images into seven facial expressions. The statistical 

significance levels (p<0.05) of the discriminant functions, given in Table 7.2, were 

calculated using Equation 6-1. Results reported in Tables 7.1, 7.2 and 7.3 suggested 

some significant differences between the facial thermal features pertaining to the seven 

facial expressions. 

The mathematical structure of a discriminant function also provides useful 

information about the relationship between the actual variables and the discriminant 

functions. The numerical coefficients of the discriminant functions, calculated using 

Equation 6-2, allowed interpreting the contribution of each variable in the formation of 
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discriminant functions. The coefficients of a given discriminator were the coefficients 

of correlation between the discriminant scores and the discriminator variables. 

A closer examination of the structure matrix in Table 7.3 suggests that the first 

discriminant function relies on variates measured on Frontalis (11, 13, 14, 15), 

Orbicularis Oculi (19, 22, 23, 26, 30, 31) and Levator Labii Superioris (37). The first 

discriminant function therefore measured the thermal features on the upper part of the 

face to classify the unknown thermal faces. 

The second discriminant function relies on the variates measured on Frontalis (7, 11, 

13, 15), Orbicularis Oculi Pars Orbital (18, 20, 23, 27, 31), and Mentalis (75) for 

allocating the unknown thermal faces to a facial expression group. 

The third discriminant function uses the variates measured on Frontalis (13, 15), 

Orbicularis Oculi Pars Orbital (18, 19, 20, 23, 26, 27, 31), Levator Labii Superioris  (37, 

38), and Masseter superficial (41) for recognition and classification of the new and 

unknown faces. 

The fourth discriminant function employs the variates measured at Frontalis Pars 

Lateralis (11), Frontalis Pars Medialis (15), Orbicularis Oculi Pars Orbital (20, 21, 22, 

27, 30) and Levator Labii Superioris (38) for discerning between the facial expressions. 

The fifth discriminant function uses the variates measured on Frontalis (7, 9, 13, 14, 

15), Orbicularis Oculi Pars Orbital (19, 21, 22, 23, 26, 27,30), Levator Labii Superioris  

(38), and Masseter superficial (41) for recognition and classification of the unknown 

faces. 

Sixth and last discriminant function relies on the variates measured around Frontalis 

(7, 9, 11, 13, 15), Orbicularis Oculi Pars Orbital (18, 21, 23, 24, 26, 30, 31), Masseter 

superficial (41) and Mentalis (75) for classifying the unknown faces. 

Interestingly, the major facial muscles along which the variates could be aligned 

were physically located around the upper part of the face. It could be assumed that the 

six discriminant functions exploited the thermal variations that took place on the upper 

parts of the face for recognition and classification of the seven facial expressions. It 

might be useful to state that the FACS based AFEC systems and studies on facial EMG 

readings found the muscular movements on the upper parts of the face helpful for 

automated facial expression classification (Kall 1990; Puri et al. 2005). Some successful 
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AFEC systems (cited earlier in chapters 2 and 3) also relied on the signals extracted 

from the upper parts of the face for facial expression classification. 

Figure 7.5 shows the six discriminant functions at their respective group centroids. 

The varying span of the six discriminant functions implies varying influence of each 

discriminant function in the between-group separation and classification of unknown 

thermal images. 

The leave-one-out cross validation tests was also invoked at each stage of this 

investigation. The validation results shown in the confusion matrix in Table 7.6 

revealed the complexity of the underlying eigenspace. For example, the neutral faces 

were (equally) confused with the intentional expressions of sadness and surprise. In a 2-

principal component eigenspace shown in Figure 7.3 above, the overlap between neutral 

and surprised faces was obvious. The similarities (and overlap) between the thermal 

characteristics of the neutral faces and the facial expressions of sadness and surprise 

were also obvious in the eigenspace. The confusion matrix in Table 7.6 also showed 

some similarities between the facial expressions of happiness and surprise. 

Given the small sample size and a large number of measured thermal features, the 

overall error rate (42.9%) observed during the leave-one-out cross validation tests could 

be considered encouraging. The observed error rate was suggestive of (1) the potential 

effectiveness of the thermal features for AFEC, and (2) the aptness of the employed 

algorithmic approach. 

 

7.4 Significance of the classification results 

The practical significance of the classifier performance was calculated using Equations 

5-24 and 5-25. The statistical significance levels for classification results are given in 

Table 7.7. The overall significance test statistic (p<0.01) suggested that the 

classification results were significant. 

Equation 5-26 was used to determine the extent to which the classification results 

were better than the ones that could be observed by chance. The estimated index 

I = 64 /112 16 /112
1 16 /112

100  = 50.0 suggested that the employed discriminant rules 

reduced the probability of by chance getting the classification error rate by 50.0%. 
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Figure 7.5: The facial expression groups at their respective group centroids in a 6-discriminant function 
eigenspace 

 

TABLE 7.7: SIGNIFICANCE OF THE CLASSIFICATION RESULTS 

Statistic Value Level of significance 
( ) 

Z
normal

*
 5.933  0.001 

Zhappy

*
 2.45  0.0071 

Z
sad

*
 2.236 0.0132 

Zdisgust

*
 2.45 0.0071 

Zsurprise

*
 3.0 0.0013 

Zangry

*
 3.0 0.0013 

Z fear

*
 1.41 0.0655 

Z
overall

*
 6.93 0.001 

 

7.5 Conclusion 

The classification results presented in Table 7.6 reveal certain similarities between the 

thermal characteristics of a neutral face and the six facial expressions. During the cross 

validation tests, the neutral faces were often confused with the pretended sad (18.8%) 

and surprised (18.8%) expressions. (Cohen et al. 2003) attempted person-independent 

facial expression classification in a vision-based AFEC system and observed a similar 
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classification and confusion pattern. Neutral faces in their investigation were confused 

with expressions of sadness and surprise. Another vision-based AFEC capable system 

that (Calder et al. 2001) developed did confuse some 23% of neutral faces with the 

expression the sad faces and confused around 07% neutral faces with the faces of 

surprise. Hence some parallels might be drawn between the confusion patterns observed 

in this investigation and the ones observed in some earlier vision-based AFEC systems. 

The pretended expressions of happiness in this investigation were confused with the 

neutral faces (12.5%) and with the faces of surprise (18.8%). The system (Calder et al. 

2001) developed confused only 02% of the neutral faces with the faces expressing 

happiness. (Huang and Huang 1997) also used visual cues for AFEC and claimed that 

their system confused only 02% of neutral faces with the facial expression of happiness. 

The pretended expression of anger was often confused with the neutral (18.8%) 

faces. The angry faces were equally confused with the happy (18.8%) faces. In a system 

that (Cohen et al. 2003) reported, around 2.04% expressions of anger were confused 

with neutral faces and 4.76% of angry faces were confused with the happy faces. In 

another system (Huang and Huang 1997) designed, only 04% faces with the expression 

of anger were confused with the faces of smile. This suggests that the facial expressions 

of anger and happiness cause different musculo-thermal and hæmodynamic activities on 

the face. Consequently, these two facial expressions result in a different temperature 

variation pattern along the major facial muscles. Thus, the linear division of eigenspaces 

did not allow much overlap and the classifier could well separate the two facial 

expressions. 

Interestingly, the classification of the pretended expression of fear was highly 

successful and was rarely confused with the other pretended facial expressions. 

Though the confusion patterns observed in this study had some resemblance with 

the confusion patterns observed in the earlier vision-based AFEC systems, the observed 

classification success rates were comparatively lower than the ones reported in (Calder 

et al. 2001; Cohen et al. 2003; Huang and Huang 1997). However, our classification 

results cannot be directly compared with those of the vision-based AFEC systems. 

It could be inferred that the facial expressions of affective states would influence the 

facial thermal features. Consequently, the facial skin temperature at the identified 

physical locations (FTFPs) changed with a change in facial expression. The analyses 
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reported in the preceding sections suggest that the non-contact thermal infrared 

measurement of facial skin temperature might help in recognising and classifying the 

basic facial expressions. Statistical and practical significance of the observed 

classification results suggest that the employed algorithmic approach and the developed 

discriminant rules were effective in recognising and classifying the facial expression of 

basic affective states. 

The classifier, when trained with the high eigenvalued principal components 

performed less effectively than the classifier trained with a set of optimal discriminating 

features. It might therefore be inferred that the eigenspace constructed with the optimal 

features would allow better between-facial group separation than the eigenspace 

constructed with some higher eigenvalued principal components. It might also be 

inferred that the proposed algorithmic approach allowed a developing an effective set of 

discriminant rules. 
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Chapter 8 
CLASSIFICATION OF COVE RED AND OCCLUDED FACES 

 

 

 

Studies reported earlier in chapters 2 and 3 suggest that the vision based automated 

facial expression classification (AFEC) systems perform well when either an entire face 

or a complete frontal view of the face is available for feature extraction. Previous 

investigations reported that when it was not possible to extract features from an entire 

face for factors such as facial hair, glasses, lighting conditions, pose and occlusion, the 

vision-based AFEC systems could not perform well. 

The existing literature did not cite any significant work on investigating the efficacy 

and relevance of the non-vision based automated facial expression classification 

(NVAFEC) systems when an entire face was not available for feature extraction. The 

NVAFEC capable systems, therefore, have yet to be tested for their effectiveness in 

situations when the faces are covered or occluded. It was therefore considered prudent 

to investigate the possibilities of recognising facial expressions using thermal data 

gathered from selected parts of the face assuming that the other parts of the face were 

either covered or occluded. This work, to the best of this author’s knowledge and belief, 

is the first attempt to investigate the possibilities of classifying facial expressions using 

the thermal data gathered from selected parts of the face. 

This chapter first reports a facial muscle grouping approach for extracting facial 

thermal features from the selected parts of the face. Details of the initial analysis and 

classifier construction are then presented. Finally the classification results are discussed 

and analysed. 

 

8.1 Facial muscles grouping and preliminary data analysis 

Human face is considered a complex and information-rich part of the body. Researchers 

have employed different approaches for dividing the human face into anatomical and 

muscular regions for extracting features of interest from the face. To examine the 

potential of classifying the facial expressions of affective states using the TIV data 
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gathered from the selected parts of the face, division of a thermal face into muscular 

regions was vital. Based on the reviewed literature reported in chapters 2 and 3, the 

human face was divided into four facial regions. Each facial region had a number of 

facial muscles included in it. This division of a face allowed grouping various facial 

muscles together. The division of a face and the facial muscle grouping employed in 

this work were similar to the ones (Huang and Yan 2002) used in their investigation. 

They used the facial anatomy and a representation of the facial mesh geometry to model 

the face and simulate the facial muscle features. Their work helped in dividing the face 

into various regions for grouping the facial muscles in this investigation. The facial 

muscle grouping and FTFPs within each of facial region are visible in Figure 8.1. 

 

 
Figure 8.1: Division of a face into four (muscular) facial regions 
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As evident in Figure 8.1, the forehead was labeled as facial region 1 (R1). The areas 

around the eyes and the cheeks were (jointly) considered facial region 2 (R2). The facial 

region 3 (R3) included parts of the face around the mouth. The facial areas around the 

chin were considered facial region 4 (R4). 

One major advantage of using this muscle grouping was that each region could be 

separately examined to evaluate the effect of facial hair, glasses, pose, lighting 

conditions or objects such as microphone on the AFEC functionality. For example, if 

parts of the forehead (R1) and the area around eyes and nose (R2) were occluded under 

the glasses, the TIV data measured around the mouth (R3) and chin (R4) could be used 

for AFEC and AAR. Similarly, if the facial regions R3 and R4 were covered under the 

facial hair, the TIV data from the facial regions R1 and R2 could be used for the facial 

expression classification. 

Table 8.1 presents the major facial muscles and the numbers of FTFPs located 

within each facial region. The TIV data in each facial region were analysed for the 

assumptions of normal distribution and the symmetry of covariance matrices. The 17 

TIVs in the facial region R1 (forehead) were considered a unique vector. Having 34 

TIVs, the facial region R2 (around eyes and cheeks) was represented as another vector. 

Similarly, the TIVs in the facial region R3 (around lips) were represented as a vector in 

a 5-dimensional space and the TIVs in the facial region R4 (around the chin) were 

represented as a 19-dimensional vector. 

 

TABLE 8.1: FACIAL REGIONS, MUSCULAR GROUPING AND THE FTFP SITES WITHIN EACH FACIAL REGION 

Facial 
region 

Muscles in the region FTFPs in the region 

R1 Frontalis, pars medialis 
Frontalis, inner center edges of pars medialis and pars lateralis 
Frontalis, pars lateralis 
Procerus/ Levator, labii superioris alaquae nasi 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
15, 16, 17, 21 

R2 Depressor, supercilii 
Orbicularis Oculi, pars orbital 
Levator, labii superioris alaquae nasi 
Levator, labii superioris 
Levator, anguli oris 
Zygomaticus major 
Masseter, superficial 
Buccinator 

14, 18, 19, 20, 22, 23, 24, 25, 26, 27, 
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 
38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 
49, 50, 56, 57 

R3 Orbicularis Oris 45, 51, 64, 65, 66 
R4 Risorious/ Platysma 

Depressor Labii Inferioris 
Mentalis 

52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 
67, 68, 69, 70, 71, 72, 73, 74, 75 
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The significant test result [F (6,10)=3.842, p<0.05] for the TIV data measured on 

the entire face suggested homogeneity of the TIV data. However, the test statistics for 

the TIV data from various facial regions, analysed separately, were insignificant. The 

test statistics for R1 [F (6,10)=3.102, p>0.05], R2 [F (6,10)=1.896, p>0.05], R3 [F 

(6,10)=2.568, p>0.05], and R4 [F (6,10)=1.607, p>0.05] did not suggest similarity of 

variance. Figure 8.2 shows the estimated mean values for the thermal data within the 

selected facial regions. A comparison of the estimated mean temperature values in 

Figure 8.2 would reveal the changing patterns of thermal features within the various 

facial regions with a change in facial expressions. 

 

8.2 AFEC using TIVs measured on forehead (R1), around eyes and on cheeks (R2) 

An attempt was made to classify the facial expressions using the TIV data measured on 

the forehead, around eyes and on the cheeks. The facial expression classifier was 

constructed using the algorithmic approach described earlier in chapter 5. The TIV data 

were first transformed into uncorrelated linear variables and a set of 51 principal 

components was derived using the TIV data measured from within regions 1 and 2. 

 

 

Figure 8.2: The mean facial skin temperature for the 7 facial expressions estimated using the TIV data measured 
at the FTFP sites within each facial region 
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First 24 of the 51 transformed principal components significantly contributed to the 

variance in data. However, there was no reason to believe that these 24 principal 

components would significantly contribute to the between-facial expression group 

separation. Figure 8.3 exhibits a scree plot showing the contribution of each principal 

component in the underlying variance of the TIV data collected from the FTFP sites in 

facial regions 1 and 2. 

In the next step, the derived principal components were analysed to discover a set of 

optimal principal components. Only 18 principal components were found to be 

significantly contributing to the between-group separation. Some of these principal 

components did not have a higher eigenvalue. 

Figure 8.4 exhibits the Andrews’ curves for the individual clusters of 7 facial 

expression groups drawn using the 18 optimal principal components. These18 principal 

components were assumed to provide the most useful information for explaining the 

underlying variation in the TIV data measured around the forehead, eyes and cheeks. 

The clusters of observations, each shown in a different window, were different. These 

obvious visual differences in the clusters of the TIV data were indicative of the 

between-facial expression group separation. 

 

 

Figure 8.3: Contribution of the 75 principal components in the 7 facial expression group variance. The principal 
components were derived using the TIV data gathered from the facial regions R1 and R2 
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Figure 8.4: Andrews’ Curves for the 7 facial expressions drawn using the PCA scores derived from the TIV data 
gathered from the facial regions R1 (forehead) and R2 (around eyes and cheeks). Similar profiles of 
the curves within each cluster represent the within-group homogeneity. Apparent minor differences 
in the profiles of the 7 clusters of facial expressions exhibit the between-group variance. 
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Figure 8.5: Mixed plot of Andrews’ Curves for the 7 facial expressions drawn using the TIVs measured on the facial 
regions R1 (forehead) and R2 (around eyes and the cheeks). The between-group variance is obvious 
through the shift in Andrews’ curves along the ordinate. The within-group homogeneity is also obvious 
from the narrow-band of Andrews’ curves in each facial expression group. 

 

Andrews’ curves for the 7 separate clusters of the 16-participant facial expressions, 

shown in Figure 8.4 reveal the underlying differences between the facial expression 

groups. Each facial expression group had a slightly different profile of the Andrews’ 

curves along the x-axis. This highlighted the between-group variance (obvious within 

the ellipses in Figure 8.5) in the TIV data that could help in classifying the facial 

expressions. The profiles of the Andrews’ curves, being somewhat similar, do not show 

an apparently large between-group variation. However, the curves within each cluster 

window in Figures 8.4 and 8.5 fall into moderately narrow bands suggesting an 

adequate level of within-group homogeneity (Chatfield and Collins 1995; Everitt and 

Dunn 1991; Jolliffe 2002). 

The three distinct curves, highlighted with arrows in the neutral face cluster in 

Figure 8.4 belong to the three participants with facial hair. The TIVs measured on the 

faces of these three participants were slightly different than those measured for others, 

particularly within the facial regions covered under hair. It seems likely that the facial 
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hair, having a different emissivity ratio () might have resulted in some slightly 

different TIV measurements on the parts of the face covered under the facial hair. 

Some significant differences in the Andrews’ curve profiles are visible between the 

range -  and -3 /4 in Figure 8.4. A mixed plot of the 7 expression groups is also shown 

in Figure 8.5. The mixed plot effectively exhibits the prevailing “within-group” 

similarities and the “between-group” differences in the TIV data.  

The discriminant analysis algorithm was invoked on the optimal thermal features 

selected from within the principal components. The algorithm recursively selected the 

most appropriate variates for developing the discriminant functions and constructing a 

classifier. The invoked algorithm picked a set of 18 most effective variates for 

developing the discriminant functions. As evident in Table 8.2, only 3 of 6 discriminant 

functions were significant (p<0.05) suggesting a low probability of the between-facial 

expression group separation. 

 

TABLE 8.2: SIGNIFICANCE OF THE DISCRIMINANT FUNCTIONS DERIVED USING THE TIV DATA FROM THE FACIAL 
REGIONS R1 AND R2 

 Test of Functions Wilks’ Lambda Chi-square  df  Sig. 
1 through 6 0.059 278.920 108 0.00 
2 through 6 0.185 166.040 85 0.00 
3 through 6 0.360 100.586 64 0.002 
3 through 6 0.570 55.351 45 0.139 
3 through 6 0.794 22.689 28 0.748 
6 0.940 6.121 13 0.942 

TABLE 8.3: THE STRUCTURE MATRIX FOR THE SIX DISCRIMINATING FUNCTIONS DERIVED USING THE TIV DATA FROM 
FACIAL REGIONS R1 AND R2 

Variate Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 
Variate-15  -.481(*)  -.279  .020  .138  .014  .052 
Variate-22  .020  .376(*)  .051  .062  .167  .014 
Variate-32  .077  -.023  .447(*)  .099  .005  -.029 
 Variate-17  .031  -.241  .304(*)  .281  -.068  .204 
Variate-18  .204  -.179  .227(*)  .178  -.103  .013 
Variate-27  .063  .038  -.015  -.462(*)  .420  .058 
Variate-19  -.077  .039  .183  -.319(*)  -.108  .195 
Variate-20  .120  .162  -.113  .296(*)  -.003  -.132 
Variate-13  -.041  .060  .379  .016  .473(*)  .001 
Variate-12  .077  -.012  -.178  .428  .428(*)  .123 
Variate-28  -.111  .138  .174  .057  .332(*)  -.123 
Variate-25  .121  .140  .054  -.014  -.214(*)  -.088 
Variate-21  -.042  .220  .165  .006  -.131  .624(*) 
Variate-29  -.033  .208  .234  -.055  -.279  -.390(*) 
Variate-11  -.032  .292  -.124  .165  -.094  .328(*) 
Variate-38  .164  -.180  -.090  -.185  .139  .327(*) 
Variate-4  .143  -.053  .048  -.066  -.124  .274(*) 
Variate-8  .175  -.071  .043  -.094  .104  -.242(*) 

(*)Largest absolute correlation between each variable and any discriminant function 
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Figure 8.6: Classification results observed when the TIV data from facial regions R1 (forehead) and R2 (eyes 
and cheeks) were used to train the classifier 

TABLE 8.4: CLASSIFICATION RESULTS WHEN OPTIMAL FEATURES (COMPONENTS) USED IN ANALYSIS 

Predicted Group Membership Classification Group 
Neutral Happy Sad Disgust Surprise Angry Fear 

Total 

Neutral 8 0 2 1 1 4 0 16 
Happy 1 10 0 1 3 1 0 16 
Sad 0 0 14 1 0 1 0 16 
Disgust 0 0 0 12 1 3 0 16 
Surprise 0 1 1 0 13 1 0 16 
Angry 2 0 1 0 1 12 0 16 

Count 

Fear 1 0 0 0 0 0 15 16 
Neutral 50 0 12.5 6.3 6.3 25 0 100.0 
Happy 6.3 62.5 0 6.3 18.8 6.3 0 100.0 
Sad 0 0 87.5 6.3 0 6.3 0 100.0 
Disgust 4 0 0 0 75 6.3 18.8 100.0 
Surprise 0 6.3 6.3 0 81.3 6.3 0 100.0 
Angry 12.5 0 6.3 0 6.3 75 0 100.0 

Original 
Cases 

% 

Fear 6.3 0 0 0 0 0 93.8 100.0 
Neutral 3 3 2 2 2 4 0 16 
Happy 2 5 0 2 5 1 1 16 
Sad 1 1 9 1 2 2 0 16 
Disgust 5 0 1 6 1 3 0 16 
Surprise 0 4 2 0 6 3 1 16 
Angry 3 0 2 3 2 5 1 16 

Count 

Fear 0 1 1 0 1 0 13 16 
Neutral 18.8 18.8 12.5 12.5 12.5 25 0 100.0 
Happy 12.5 31.3 0 12.5 31.3 6.3 6.3 100.0 
Sad 6.3 6.3 56.3 6.3 12.5 12.5 0 100.0 
Disgust 31.3 0 6.3 37.5 6.3 18.8 0 100.0 
Surprise 0 25 12.5 0 37.5 18.8 6.3 100.0 
Angry 18.8 0 12.5 18.8 12.5 31.3 6.3 100.0 

Cross- 
Vali-
dated 
Cases 

% 

Fear 0 6.3 6.3 0 6.3 0 81.3 100.0 

 

As evident in Table 8.3, the first discriminant function uses the discriminant 

variables derived from the TIVs measured on the left and right sides of the two major 

muscles, the Frontalis pars medialis and the Orbicularis oris. The second function 

(Function 2) uses the discriminant variables derived from the TIV data measured on the 
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left and side of the Orbicularis oris. The last significant function (Function 3) uses the 

TIVs measured on the Frontalis pars medialis, Frontalis pars lateralis, and Zygomaticus 

major. Figures 3.1, 4.4 and 4.5 and Tables 4.1, 4.2 and 8.1 exhibit the physical location 

and muscular alignment of the FTFP sites on the face. 

Figure 8.6 and Table 8.4 present the classification results obtained when the optimal 

principal components were used for developing the discriminant rules to distinguish 

between the seven facial expressions. As shown in Table 8.4, a high error rate (egeneal
j  = 

58.0%) was observed. Figure 8.7 shows the eigenspace and the profiles of these 

discriminant functions around the group centroids. A complex eigenspace obvious in 

Figure 8.7 suggests an overlap between the newly created smaller linear spaces within 

the eigenspace. It further suggests that between-group separation was not effective 

using the available thermal data. One could interpret that the facial thermal features 

measured on the upper parts of the face (R1 and R2) did not provide efficient 

discriminant functions for developing a robust classifier. 

 

8.2.1 Significance of the classification results 

The practical significance of the classifier performance was calculated using Huberty’s 

statistical significance test. The statistics for the neutral, pretended happy, sad, 

disgusted, surprised, angry and fearful faces are given in Table 8.5. The overall 

significance test statistic (p<0.05) suggests that the classification results were 

statistically significant. 

Huberty’s test was also invoked for assessing the practical significance of 

classification results. The resulting index value I (=32) suggested that the employed 

computational procedure reduced the chances of classification errors by 32.29 %. The 

computational methods for estimating the significance of classification results were 

presented in chapter 5. 

 

8.3 AFEC using the TIVs measured around mouth (R3) and on chin (R4) 

In a following analysis, the TIVs recorded on the FTFP sites within the facial regions 3 

and 4 (around mouth and chin) were used for training the classifier. Once again, the 

TIVs data were first transformed into the uncorrelated principal components. Only first 

8 of 24 derived principal components significantly contributed to the variance in the 
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TIV data. Figure 8.8 exhibits a scree plot showing the contribution each principal 

component made in the underlying variance of the TIVs data collected at FTFP sites 

within the facial regions 3 and 4. 

In the next step of classifier construction, the derived principal components were 

analysed to discover the optimal principal components. Only 11 of 24 derived principal 

components were found helpful in the between-class separation. 

 

 

Figure 8.7: Approximate location of the 7 group centroids within the eigenspace. TIV data from the facial 
regions R1 (forehead) and R2 (eyes and cheeks) were used to train the classifier 

TABLE 8.5: SIGNIFICANCE OF CLASSIFICATION RESULTS 

Statistic Value Level of significance ( ) 

Z
normal

*
 8.33 <0.005 

Zhappy

*
 5.93 <0.005 

Z
sad

*
 4.32 <0.005 

Zdisgust

*
 5.14 <0.005 

Zsurprise

*
 5.14 <0.005 

Zangry

*
 5.93 <0.005 

Z fear

*
 1.92 0.0274 

Z
overall

*
 8.06 <0.005 
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Figure 8.8: Contribution of the 24 principal components in the data variance for the 7 facial expression measured 
using the TIV data from facial regions R3 and R4  

 

These components contributed in increasing the F ratio when the optimal principal 

components selection algorithm was invoked. As anticipated, some of the 11 most 

discriminating components did not have a high eigenvalue. Figure 8.9 presents the 

Andrews’ curves drawn for the 11 optimal principal components that contributed to the 

underlying variation in the TIV data measured around the lips and chin. The Andrews’ 

curves for the 7 facial expression group clusters in Figure 8.9 explain the between-facial 

expression group differences. Each facial expression has a distinct profile of curves. 

The curves in each cluster window fall into a moderately narrow band suggesting 

homogeneity in the variance structure. 

As was the case in the previous analysis, the three distinct curves, visible in the 

clusters of facial expression groups in Figure 8.9 belong to the three participants with 

facial hair. The TIVs measured on the faces of these participants were different than 

those measured on other participant faces. Compared to Figure 8.4, these three faces 

with facial hair appeared far from the remaining faces within their respective facial 

expression group windows in Figure 8.9. Excluding these three participants, the curves 

appear to have similar profiles suggesting presence of a reasonable amount of within-

group similarities. The Andrews’ curves between the range -  and -3 /8 show major 

between-group variation in Figure 8.9. 
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Figure 8.9: Andrews’ curves drawn using the TIV data gathered from the facial regions R3 (mouth) and R4 
(chin) 

 

After the discovery of optimal facial thermal features, the linear discriminant 

algorithm was invoked on them for developing the discriminant functions. The 
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respective statistical significance levels of the resulting discriminant functions were 

calculated using Equation 6-1. Only first two discriminant functions were significant 

(p<0.05) suggesting a low probability of between-facial expression group separation 

within the eigenspace. 

Table 8.7 presents the structure matrix resulting from the discriminant analysis. The 

numeric coefficients in the structure matrix allow interpreting the contribution of each 

variable in the formation of the discriminant functions. 

The structure matrix in Table 8.7 suggests that the first discriminant function uses 

the discriminant variables derived from the TIVs measured on Orbicularis Oris (please 

refer to Figure 8.1 and Table 8.1). The second significant function, Function 2 uses the 

discriminant variable derived from the TIVs measured on the left hand side of 

Orbicularis Oris, on Depressor Anguli Oris and on the Mentalis. 

Figure 8.10 and Table 8.8 show the classification success results observed when the 

optimal principal components (derived from around mouth and chin) were used as input 

vectors to train the classifier. A higher classification error rate (egeneal
j = 66.1%) was 

observed when the optimal features were used for classifying the unknown TIRIs.  

 

TABLE 8.6: SIGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS DERIVED USING THE TIV DATA MEASURED ON 
FACIAL REGIONS R3 AND R4 

 Test of Functions Wilks’ Lambda Chi-square  df  Sig. 
1 through 6 0.222 153.460 66 0.00 
2 through 6 0.386 97.081 50 0.00 
3 through 6 0.656 42.992 36 0.197 
3 through 6 0.821 20.159 24 0.688 
3 through 6 0.914 09.140 14 0.822 

6 0.985 1.539 06 0.957 

 

TABLE 8.7: STRUCTURE MATRIX FOR THE SIX DISCRIMINANT FUNCTIONS DERIVED USING THE TIV DATA MEASURED 
ON FACIAL REGIONS R3 AND R4 

Principal 
compone

nt 

Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 

C-13 0.426 0.137 -0.062 -0.134 -0.316 -0.174 
C-08 0.273 0.243 -0.050 0.060 -0.167 -0.160 
C-04 -0.219 0.230 0.527 0.219 -0.010 0.042 
C-10 -0.258 -0.073 0.044 0.576 -0.214 0.181 
C-16 0.355 0.066 0.453 0.496 0.148 -0.305 
C-18 0.059 -0.294 0.155 -0.075 0.493 -0.210 
C-02 0.121 -0.166 -0.437 0.436 0.469 -0.085 
C-14 -0.008 0.283 0.185 -0.275 0.465 -0.017 
C-20 0.340 -0.206 0.063 0.129 -0.164 0.569 
C-22 0.066 0.478 -0.230 0.140 0.341 0.568 
C-07 0.142 -0.250 0.337 -0.231 0.136 0.491 
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Figure 8.10: Classification results observed when the TIV data from the facial regions R3 (mouth) and R4 (chin) 
were used to train the classifier 

TABLE 8.8: CLASSIFICATION RESULTS OBSERVED WHEN OPTIMAL FEATURES WERE USED FOR CLASSIFICATION 

Predicted Group Membership Classification Group 
Neutr

al 
Happy Sad Disgust Surprise Angry Fear 

Total 

Neutral 4 2 1 2 4 1 2 16 
Happy 1 5 1 3 2 2 2 16 

Sad 3 0 10 0 0 1 2 16 
Disgust 1 2 0 9 1 3 0 16 
Surprise 1 1 0 1 13 0 0 16 
Angry 3 1 1 4 0 7 0 16 

Count 

Fear 1 0 1 1 2 0 11 16 
Neutral 25 12.5 6.3 12.5 25.0 6.3 12.5 100.0 
Happy 6.3 31.3 6.3 18.8 12.5 12.5 12.5 100.0 

Sad 18.8 0 62.5 0 0 6.3 12.5 100.0 
Disgust 6.3 12.5 0 56.3 6.3 18.8 0 100.0 
Surprise 6.3 6.3 0 6.3 81.3 0 0 100.0 
Angry 18.8 6.3 6.3 25.0 0 43.8 0 100.0 

Original 
Cases 

% 

Fear 6.3 0 6.3 6.3 12.5 0 68.8 100.0 
Neutral 1 2 1 2 4 2 4 16 
Happy 2 1 1 2 5 3 2 16 

Sad 4 0 8 0 0 2 2 16 
Disgust 1 4 1 6 1 3 0 16 
Surprise 2 2 1 1 10 0 0 16 
Angry 4 3 1 5 0 3 0 16 

Count 

Fear 2 1 1 1 2 0 9 16 
Neutral 6.3 12.5 6.3 12.5 25 12.5 25 100.0 
Happy 12.5 6.3 6.3 12.5 31.3 18.8 12.5 100.0 

Sad 25 0 50 0 0 12.5 12.5 100.0 
Disgust 6.3 25 6.3 37.5 6.3 18.8 0 100.0 
Surprise 12.5 12.5 6.3 6.3 62.5 0 0 100.0 
Angry 25 18.8 6.3 31.3 0 18.8 0 100.0 

Cross- 
Vali-
dated 
Cases 

% 

Fear 12.5 6.3 6.3 6.3 12.5 0 56.3 100.0 
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Figure 8.11: The 7 facial expression groups at their respective group centroids. The TIV data from around mouth 
(R3) and on chin (R4) were used to train the classifier 

TABLE 8.9: SIGNIFICANCE OF CLASSIFICATION RESULTS 

Statistic Value Level of significance ( ) 

Z
normal

*
 

15.49 <0.005 

Zhappy

*
 

15.49 <0.005 

Z
sad

*
 

4.0 <0.005 

Zdisgust

*
 

5.14 <0.005 

Zsurprise

*
 

2.45 <0.005 

Zangry

*
 

8.32 <0.005 

Z fear

*
 

4.32 <0.005 

Z
overall

*
 

8.66 <0.005 

 

Figure 8.11 exhibits the discriminating functions at their group centroids. A 

complex discriminating space is evident in Figure 8.11 suggesting an overlap between 

the smaller linear spaces within the eigenspace. 
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8.3.1 Significance of the classification results 

The significance levels for the neutral, pretended happy, sad, disgusted, surprised, angry 

and fearful faces, and the overall significance level are given in Table 8.9. The test 

significance levels reported in Table 8.9 (p<0.05) were obtained using Equations 5-24 

and 5-25. The resulting statistics suggested that classification results were significant. 

Huberty’s test for assessing the practical significance of classification results was 

also invoked to determine the extent to which the classification results were better than 

those that could be obtained by chance alone. The index I, calculated using Equation 5-

26, was found to be 21.87 suggesting that the discrimination procedure reduced the 

chances of classification errors by 21.87 %. 

 

8.4 Discussion 

A previous investigation suggested that the increased blood volume flow around the 

upper parts of the face might result in dissipating more amount of heat from the upper 

parts of the face and might allow detection of negative emotional experiences (Puri et 

al. 2005). During this investigation, the classifier trained using the thermal features 

extracted from the upper parts of the face (R1 and R2) performed comparatively better 

than the classifier trained using the thermal features extracted from the lower parts of 

the face (regions 3 and 4). Figure 8.12 compares the differences between the AFEC 

potential of thermal facial features extracted from the upper and lower parts of 

participant faces. 

The classification results reported in Figure 8.12 were also consistent with some 

other previous investigations. For example, (Kobayashi and Tagami 2004) studied the 

differences in the biophysical functions at various physical locations on the facial skin. 

Their work focused on examining the poor functional properties of the stratum corneum 

epidermis. The term “stratum corneum” is used for the outermost layer of the skin (also 

called epidermis). The stratum corneum is made up of the dead and usually flat skin 

cells. 
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Figure 8.12: Performance of the two classifiers compared. The blue bars indicate the performance of the 
classifier trained using the TIV data measured from facial regions R1 (forehead) and R2 (eyes and 
cheeks). The red bars indicate the performance of the classifier trained using the TIV data measured 
from facial regions R3 (mouth) and R4 (chin). 

 

These dead cells shed frequently, generally about after every 14-15 days (Skin Anatomy 

and Physiology 2005). It was also discovered in (Kobayashi and Tagami 2004) that the 

cheeks had the lowest epidermis temperature as compare to the other anatomical parts 

of the face. However, the cheeks and facial regions around the nose had a much higher 

blood flow rate as compare to the other anatomical parts of the face (Kobayashi and 

Togami 2004). The epidermis temperature measurements around various anatomical 

parts of the face (shown in Figure 8.1) in this investigation were very similar to the ones 

(Kobayashi and Togami 2004) observed and reported in their paper. The facial 

temperature distribution patterns derived from the TIV data concurred with the 

epidermis temperature distribution patterns (Kobayashi and Togami 2004) observed. 

(Kobayashi and Togami 2004) also observed a positive correlation between the 

blood-flow rate and skin temperature measured on the epidermis (Kobayashi and 

Togami 2004). It is argued that an increased blood flow results in the dissipation of 

more heat from the epidermis of the face (Puri et al. 2005). 

The similarities in emotion-specific blood volume flow variations observed at 

various anatomical locations of the face and the positive correlation between the blood 
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volume flow and the skin temperature measurements might have contributed to the 

classification errors and confusion patterns reported earlier in Tables 8.4 and 8.8. As 

evident in Table 8.4, a lower classification error rate was attained when TIVs on the 

forehead and from around the eyes and cheek (high blood volume flow areas) were used 

for training the classifier. Classification error rates reported in Tables 8.4 and Table 8.8 

show that the classifier trained with the thermal data around mouth and chin (low blood 

volume flow areas) was less efficient. A comparison of the confusion matrices in Tables 

8.4 and 8.8 suggest that the discriminant rules developed using the thermal data form 

the high blood flow areas (forehead, eyes and cheeks) of the face were comparatively 

more efficient than the discriminant rules developed using the TIV data measured from 

around the lower parts of the face. 

(Partala et al. 2006) estimated the real time emotional experiences using the 

electromyographic (EMG) activity measured on the two major facial muscles: 

Zygomaticus Major and the Corrugator Supercilli. Zygomaticus Major is believed to be 

active during smile whereas Corrugator Supercilli is believed to be active during 

frowning. As evident in Figures 4.5 and 4.6 (in Chapter 4), Zygomaticus Major is 

located around the mouth and cheeks whereas the Corrugator Supercilli is physically 

located on the upper part of the face. (Partala et al. 2006) estimated negative and 

positive facial expression of evoked affective states using the EMG activity measured 

on Zygomaticus and Corrugator Supercilli (Partala et al. 2006). The average 

Zygomaticus Major and Corrugator Supercilli responses in the study showed a 

significant influence of stimulus on these two muscles. However, the Corrugator 

Supercilli measurements were found to be more effective than those of the Zygomaticus 

Major for estimating the positive and negative facial expressions of affective states 

(Partala et al. 2006). These facial expression classification results were also consistent 

with the AFEC results observed in this investigation (presented earlier in Tables 8.4 and 

Table 8.8). 

The classification results observed in this work were also consistent with those 

realised by (Lien et al. 1998) in a previous study. They developed a computer vision 

system to differentiate between the subtly different facial expressions. They employed 

three different facial feature extraction methods: facial feature point tracking method, 

dense flow tracking with PCA, and high-gradient component analysis method for 
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developing the facial expression classification system. Only 15 % classification error 

rate was observed when the high-gradient component analysis method was used on the 

features extracted from the upper part of the face. When the same method was used on 

the facial features extracted from the lower part of the face, a higher (19%) error rate 

was observed (Lien et al. 1998). However, their classification results were much 

different when the facial feature point tracking method was used for extracting the facial 

features (Lien et al. 1998). The facial feature point tracking based classification system 

developed using the facial features from the upper part of the face was a little less 

effective than the one that employed facial features extracted from the lower part of the 

face. The dense flow tracking with PCA based method (Lien et al. 1998) also resulted in 

a 93% classification success rate when the features extracted from the upper parts of the 

face were used to train the classifier. It is important to remember that (Lien et al. 1998) 

used the visual signals for developing the AFEC capable system so their classification 

results may not be directly compared with the ones observed in this investigation. 

As evident in the Andrews’ curves plot in Figures 8.4, 8.5 and 8.9, the TIV 

measurements on the participant faces covered under the facial hair were significantly 

different than the ones measured on the facial skin surface. This difference probably 

represents a difference in the emissivity () of the two surfaces. Therefore, it would be 

appropriate to develop a person independent classifier for people having facial hair or 

wearing glasses. 

These AFEC results encourage exploring the possibilities of classifying the facial 

expressions using a combination of the TIV data measured along the major facial 

muscles. For example, lighting and pose conditions sometimes allow extracting the 

facial (or thermal) features from only one side of the face. Hence, it might be useful to 

measure TIV data along the facial muscles of positive and negative expressions on just 

one side of the face for classifying the positive and negative facial expressions. 

 

8.5 Conclusion 

This part of the investigation aimed at exploring the possibilities of recognising and 

classifying facial expressions using some regional thermal features under the 

assumption that the other parts of the face were not available for feature extraction. 

Thermal images of participant faces were divided into four regions. The forehead was 
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considered region 1(R1). The areas around the eyes and cheek were considered region 2 

(R2). The area around the mouth was considered region 3 (R3) and the part of the face 

around the chin was considered region 4 (R4). The TIVs recorded at the FTFP sites 

within regions 1 and 2 were grouped together. Facial regions 3 and 4 were separately 

grouped together. The TIVs measured within each of these two groupings were 

separately used to train the classifiers. 

When the TIVs around regions 1 and 2 (upper parts of the face) were used for 

AFEC, a high error rate (58.0%) was observed during the cross-validation tests. The 

classifier performed at an even higher error rate (66.1%) when the TIVs around regions 

3 and 4 (lower parts of the face) were used to train the classifier. In both cases, a subset 

of optimal features was used to train the classifier. These results suggest that variations 

in the TIVs data measured on the FTFP sites within the selected regions of a series of 

thermal images do not allow dividing the eigenspace along the discriminant function 

boundaries. Hence, one would assume that the thermal features gathered from the FTFP 

sites on the selected parts of the face did not help in classifying the facial expressions of 

affective states. Also, it became obvious from this investigation that the regional facial 

thermal data might not allow constructing a set of effective discriminant rules for 

achieving the AFEC functionality. 

The classification results therefore suggest that the entire frontal views of the faces 

would be required to classify the facial expressions of affective states using the facial 

thermal features. 

 

 



137 

Chapter 9 
CLASSIFICATION OF EVOKED FACIAL EXPRESSIONS 

 

 

 

The investigations and analyses reported in chapters 6 and 7 suggest that the TIV data 

gathered from the FTFP sites on an entire face might help in classifying the simulated 

facial expressions of affective states. In a life like situation, the AFEC would be 

performed on naturally occurring spontaneous and evoked or reactive expressions of 

affective states. Therefore, in this part of the investigation, an attempt was made to 

measure and classify the temporal thermal features on the faces with naturally evoked 

facial expressions of affective states. 

Earlier research suggests that an ability to distinguish between the subtle and 

reactive facial expressions would help affective systems perform in life like situations 

(Dautenhahn and Billard 1999). In some earlier works, scientists were able to extract 

useful human information from the bio-physiological signals for recognising the subtle 

and finer expressions of affects (Dautenhahn and Billard 1999). However, the viability 

of using the temporal facial thermal features in classifying the subtle and evoked facial 

expressions of affective states has yet to be explored. 

Previous attempts of using the human bio-physiological information in AFEC and 

AAR have been critically analysed in the literature. For example, in concluding their 

recent work on problems and prospects of affective computing, (Ward and Marsden 

2004) wrote “If physiological measurement is to be useful in human–computer 

interaction, in the ways currently envisaged in the literature, it has to be able to identify 

reactions to subtle events, not just major failures of interaction. Similarly, physiological 

measurement has to be able to detect these reactions in loosely controlled naturalistic 

situations representative of real computer use, rather than tightly controlled laboratory 

settings. Psychophysiological data is very noisy, making cause and effect difficult to 

demonstrate. Even where there is clear cause and effect, interpretation in terms of 

users’ internal mental processes and experiences presents serious further problems.” 
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This part of the investigation provides an opportunity to address some of these 

concerns. From the affective computing perspective, this part of the thesis, for the first 

time, compares the thermal differences between the simulated and naturally occurring 

facial expressions of affective states. The differences in a classifier’s ability to recognise 

the pretended and evoked facial expressions using the facial skin temperature 

measurements are also examined. Differentiating between the evoked and reactive facial 

expressions with the help of facial thermal features might supplement the existing 

approaches for classifying subtly different facial expressions. Since hiding the bio-

physiological responses to emotions is difficult, this investigation might assist 

researchers in finding a novel way of discovering the concealed emotions. 

Following paragraphs present details of the evoked thermal data acquisition 

protocols. The statistical analyses of the evoked expression data and the evoked facial 

expression classification results are also reported in the following paragraphs. The 

observed classification results are discussed at the end of this chapter to conclude this 

last phase of investigation. 

 

9.1 Equipment, software and participants 

The physical facilities, equipment, hardware, software and accessories reported in 

chapter 4 were again used during this phase of investigations. The image acquisition 

process reported in chapter 4 was repeated again to acquire the thermal and visible-

spectrum images of 10 undergraduate students. The participants, 7 male and 3 female 

had a mean self-reported age of 21 years 2 months. Only 3 of the 10 participants also 

participated in the previous experiments when the intentional facial expressions were 

recorded. Participants included Arabs, Iranians and Indians. All participants allowed 

using their visible-spectrum and infrared images for publication and dissemination of 

information. 

 

9.2 Evoking expressions and acquiring thermal images 

The Psychology and Cognitive Studies literature cited several methods of prompting 

and stimulating emotions and affective states. Earlier researchers reported that inducing 

genuine and authentic emotions was a difficult job and suggested that care should be 

taken in making judgments about the observed emotions and their expression. It was 
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suggested that the desired emotive states be evoked in a way that participants would not 

simulate the emotion either intentionally or unintentionally (Dror et al. 2005; Hirsch and 

Mathews 1997; Murphy and Zajonc 1993; Niedenthal et al. 2000; Wild et al. 2001). 

Some widely used methods of evoking emotions include affective picture viewing, 

emotive text reading and storytelling (Partala et al. 2006; Whiteside 1998). Participants 

in (Dror et al. 2005; Toivanen 2004; Wild et al. 2001) were exposed to one or more of 

these stimuli for invoking the desired positive and negative emotions. In some 

experiments, emotions were evoked by letting the participants read stories or emotive 

text. The literature highlighted a need for specialised expertise to select the most 

effective text and stories. In a typical setting, qualified and trained psychologists are 

involved in selecting effective stimuli as the task required special skills (Dror et al. 

2005; Partala et al. 2006; Toivanen 2004; Wild et al. 2001). 

Some specially collected and well-tested databases of images and photographs that 

are used for evoking emotions are available on the World Wide Web. These databases 

have been employed in many recent studies for invoking the affective states. One such 

database, International Affective Picture System (IAPS), was developed at the Center 

for the Study of Emotion and Attention at the University of Florida (Dror et al. 2005; 

Toivanen 2004). The IAPS database was used in several recent investigations for 

invoking emotions (Mikels et al. 2005). It contains a large set of different pictures that 

allow evoking emotions along the dimensions of valance and arousal (Wild et al. 2001). 

The IASP site managers were contacted to access the IASP database but they never 

acknowledged so the IASP image database could not be accessed. As an alternate, the 

relevant literature was reviewed for developing an appropriate approach in this 

investigation. 

A set of still images and video clips was selected and used for evoking expressions 

of happiness, sadness, disgust and anger in this investigation. The contents of these 

stimuli were similar to the contents of the pre-categorised IASP images available on the 

web. The selected stimuli were available at the official web sites of some prestigious 

publishers such as BBC, MSNBC, and CNN. Selected images were compared and 

matched with the categorised pictures (available online) in the IAPS database. 

Extremely violent and disturbing images and images with unethical contents were 

avoided. The images and contents of selected video clips were no more extreme that 
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those shown on mainstream television news and feature stories. Sources of the 

employed image and video clip sources are listed below. 

 

Resources for evoking happiness and its facial expression were taken from: 

� ‘Allo ‘Allo (BBC.COM) 

� Bread (BBC.COM) 

� Porridge (BBC.COM) 

 

Resources for evoking sadness and its facial expression were taken from: 

� Ferry Disaster in Pictures (BBC.COM) 

� Pictures from the Disaster zone, Galtuer, Austria (BBC.COM) 

� Turkey 1999 earthquake pictures (The New York Times) 

� Caracas, Venezuela, pictures of 1999 floods and disasters (CNN.COM) 

� Oklahoma City Bombing destruction pictures (CNN.COM) 

� Pictures of June 2001 Missile fire destruction in Iraq (CNN.COM) 
 

Expression of disgust was evoked using the following resources: 

� Shock posters (BBC.COM) 

� Shock Ads (BBC.COM) 

� Stop Litter pictures (BBC.COM) 

� Caracas, Venezuela, pictures of 1999 floods and disasters (CNN.COM) 

� Oklahoma City bombing destruction pictures (CNN.COM) 

� Pictures of June 2001 Missile fire destruction in Iraq (CNN.COM) 
 

Expression of anger was evoked using the following resources: 

� 2002 Riots in Gujarat, India (BBC.COM) 

� In pictures: Anger and anguish in Iraq (BBC.COM) 

� In pictures: Argentina anger boils over (BBC.COM) 

� Iraqi prisoner abuse (Washington Post) 

� Abu Ghoraib prison pictures (The New Yorker online) 

 

The employed images and video clips had both high-emotion and low-emotion 

evoking contents. Participants’ visible and infrared images were simultaneously 

recorded when an evoked emotion was realised. After capturing the images with neutral 
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faces, each participant was made to experience and express happiness, sadness, disgust 

and anger. 

Recordings were often repeated for developing a good set of desired images. Of 

several recorded images, the ones that best represented the emotive states were selected 

and used in the investigation. This ensured using the best practices for prompting the 

affective states and recording the realistic facial expression of affects. 

A team of three referees was requested to select the best visible pictures that truly 

reflected the desired emotions. The referees were requested to use their collective 

judgment for selecting the best expression of affective states. The referees, by 

consensus, agreed on the realistic expressions in the pictures and selected the most 

natural looking pictures of evoked expressions. With each selected visible picture, the 

corresponding thermal image was selected and used in the further analysis and 

classification. The evoked facial expressions of two participants are shown in Figures 

9.1 and 9.2. 

  

 
 

Figure 9.1: A female participant with evoked facial 

expressions 
Figure 9.2: A male participant with evoked facial 

expressions 
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As in the previous experiments, participants were briefed about the objectives of 

experiments, methods and procedures and the probable outcome of the experiments. All 

participants were adults. They were informed about the potential benefits of the research 

and related experiments. Participants were given an opportunity to either continue or 

quit after the briefing. Efforts were made to protect participants from any physical 

and/or emotional harm and damage. 

 

9.3 Analyses of evoked expression thermal data 

The thermal data with evoked facial expressions were first tested for the assumption of 

normal distribution. Following the successful test of normal distribution of the data in 

individual TIRIs, participants’ images showing a particular facial expression were 

grouped together and the data were tested again for the assumption of normal 

distribution. Based on the standard test results, The TIVs measured at only 4 of 75 

(5.33%) FTFP sites violated the assumption of normal distribution. 

Similarly, the TIVs measured at 16 of 75 (21.33%) FTFP sites had kurtosis statistics 

that suggested violation of the assumption of normal distribution. The assumption of 

normal distribution was further examined through the visual inspection of Histograms 

and Q-Q plots. The Kolmogorov-Smirnov and Shapiro-Wilk tests were also invoked on 

the data. Based on the initial analyses, it was considered safe to assume that the evoked 

expressions data were normally distributed. Figure 9.3 exhibits a few distributions of 

the TIV data measured at various FTFP sites. 

The facial expression groups were also tested for the similarity of covariance 

structure before invoking the multivariate analyses and pattern recognition algorithms. 

The groups of TIRIs with neutral faces and faces with four evoked expression 

(happiness, sadness, disgust and anger) were compared. The test of sphericity was 

insignificant at (p > 0.05) suggesting symmetry of variance structures in the facial 

expression groups. 
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Figure 9.3: A typical distribution of the TIV data measured on six randomly selected FTFP sites 

 

Figure 9.4: Contribution of the 75 principal components in the measured evoked TIV data variance 

 

The conservative estimates of sphericity: Greenhouse-Geisser correction, Huynh-

Fieldt correction and lower-bound test also suggested that the TIV data met the 

assumption of compound symmetry and the facial expression groups had a similar 

structure of variance. The initial data analyses suggested that the TIV data were suitable 

for multivariate transformations and the pattern recognition techniques might be 

invoked on the data. 
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9.4 Classifying the evoked facial expressions 

The algorithmic approach presented earlier in Chapter 5 was employed for classifying 

the neutral faces and the faces with evoked facial expressions. As was done while 

classifying the intentional facial expressions, the TIV data were first transformed into 

uncorrelated principal components using the singular value decomposition algorithm. 

Figure 9.4 exhibits a scree plot showing the principal components and their contribution 

in the underlying variance of the TIV data. Table 9.1 provides the eigenanalysis results 

for all 75 principal component derived from the 75 TIVs on the 10 participant faces. 

Only 24 of 75 principal components in Table 9.1 significantly contributed to the 

variance in the TIV data. There was no evidence to believe that these 24 principal 

components would significantly contribute to the between-group separation. 

TABLE 9.1: THE 75 PRINCIPAL COMPONENTS AND THEIR RESPECTIVE EIGENNVALUES 

Principal 
Component Eigenvalue Proportion Cumulative 

Principal 
Component Eigenvalue Proportion Cumulative 

PC- 1 34.903 0.465 0.465 PC- 39 0.095 0.001 0.993 
PC- 2 7.942 0.106 0.571 PC- 40 0.088 0.001 0.994 
PC- 3 4.530 0.06 0.632 PC- 41 0.085 0.001 0.995 
PC- 4 4.057 0.054 0.686 PC- 42 0.069 0.001 0.996 
PC- 5 2.689 0.036 0.722 PC- 43 0.065 0.001 0.997 
PC- 6 2.511 0.033 0.755 PC- 44 0.063 0.001 0.998 
PC- 7 1.829 0.024 0.779 PC- 45 0.049 0.001 0.998 
PC- 8 1.483 0.02 0.799 PC- 46 0.039 0.001 0.999 
PC- 9 1.438 0.019 0.818 PC- 47 0.032 0 0.999 

PC- 10 1.193 0.016 0.834 PC- 48 0.026 0 1 
PC- 11 1.123 0.015 0.849 PC- 49 0.019 0 1 
PC- 12 0.956 0.013 0.862 PC- 50 0 0 1 
PC- 13 0.831 0.011 0.873 PC- 51 0 0 1 
PC- 14 0.787 0.01 0.884 PC- 52 0 0 1 
PC- 15 0.726 0.01 0.893 PC- 53 0 0 1 
PC- 16 0.64 0.009 0.902 PC- 54 0 0 1 
PC- 17 0.599 0.008 0.91 PC- 55 0 0 1 
PC- 18 0.585 0.008 0.918 PC- 56 0 0 1 
PC- 19 0.508 0.007 0.924 PC- 57 0 0 1 
PC- 20 0.49 0.007 0.931 PC- 58 0 0 1 
PC- 21 0.484 0.006 0.937 PC- 59 0 0 1 
PC- 22 0.437 0.006 0.943 PC- 60 0 0 1 
PC- 23 0.391 0.005 0.948 PC- 61 0 0 1 
PC- 24 0.352 0.005 0.953 PC- 62 0 0 1 
PC- 25 0.329 0.004 0.958 PC- 63 0 0 1 
PC- 26 0.314 0.004 0.962 PC- 64 0 0 1 
PC- 27 0.285 0.004 0.965 PC- 65 0 0 1 
PC- 28 0.273 0.004 0.969 PC- 66 0 0 1 
PC- 29 0.235 0.003 0.972 PC- 67 0 0 1 
PC- 30 0.224 0.003 0.975 PC- 68 0 0 1 
PC- 31 0.196 0.003 0.978 PC- 69 0 0 1 
PC- 32 0.181 0.002 0.98 PC- 70 0 0 1 
PC- 33 0.175 0.002 0.983 PC- 71 0 0 1 
PC- 34 0.159 0.002 0.985 PC- 72 0 0 1 
PC- 35 0.144 0.002 0.987 PC- 73 0 0 1 
PC-36 0.134 0.002 0.988 PC- 74 0 0 1 
PC- 37 0.127 0.002 0.99 PC- 75 0 0 1 
PC- 38 0.109 0.001 0.992     
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Figure 9.5 shows the separation between the neutral and invoked facial expressions 

of happiness in a 2-principal component eigenspace. The neutral faces could be easily 

separated from the happy faces. The underlying between-group separation is obvious in 

Figure 9.5. 

Figure 9.6 exhibits how the neutral and sad faces were separated in a 2-principal 

component eigenspace. 

 

 

Figure 9.5: Separation of the neutral faces and evoked expression of happiness in a 2-PC eigenspace 

 

 

Figure 9.6: Separation of neutral faces and evoked expression of sadness in a 2-PC eigenspace 
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Figure 9.7: Separation of neutral faces and faces with evoked expression of disgust in a 2-PC eigenspace 

 

 

Figure 9.8: Separation of the neutral faces and evoked expression of anger in a 2-PC eigenspace 

 

Figure 9.7 shows how the neutral faces and the faces with the evoked expression of 

disgust were separated in a 2-principal component eigenspace. 

Figure 9.8 exhibits the separation between the neutral faces and faces with the 

evoked facial expression of anger in the 2-principal component eigenspace. 

Figures 9.5, 9.6, 9.7 and 9.8 provide convincing information about the differences in 

the thermal profiles of the neutral faces and the faces with evoked facial expressions. It 

is obvious in the four figures that a neutral face, with all facial muscles in their natural 
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position, is thermally different from a face that expresses an evoked positive or negative 

effective state. 

In a following analysis, the patterns of thermal differences between the positive and 

negative facial expressions were examined. The first 2 principal component scores 

computed for the facial expressions of happiness, sadness, disgust and anger were 

plotted in a 2-dimensional eigenspace. 

As evident in Figure 9.9, facial expressions of happiness and sadness were found 

difficult to distinguish in a more complex 2-principal component eigenspace. 

The separation between the evoked negative expression of sadness, disgust and 

anger also appeared difficult in a 2-dimensional eigenspace. Figure 9.10 shows a 

complete overlap between facial expression of sadness and disgust on 8 of 10 

participant faces. It is obvious in Figure 9.10 that the first two principal components 

might not provide sufficient information for effectively classifying the three facial 

expressions. 

 

 

Figure 9.9: Evoked facial expressions of happiness and sadness in a 2-PC eigenspace 
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Figure 9.10: Evoked facial expressions of sadness, disgust and anger in a 2-PC eigenspace 

 

 

Figure 9.11: Evoked facial expressions of happiness, sadness, disgust and anger in a 2-PC eigenspace 

 

Figure 9.11 exhibits a positive and three evoked negative facial expressions in a 2-

principal component eigenspace. Figure 9.11 also demonstrates an overlap between the 

facial expressions of the three negative affective states. However, the positive facial 

expression of happiness appears to be easily separable from the three negative facial 

expressions. 
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Figure 9.12: Neutral faces and faces with evoked facial expressions of happiness, sadness, disgust and anger in a 
2-PC eigenspace 

 

The facial expressions of negative emotions; sadness, disgust and anger in Figure 

9.12, appear to have similar eigenscores in a 2-dimensional eigenspace. However, the 

neutral faces and faces with evoked expression of happiness seem to have different 

eigenscores and are distinguishable from the negative facial expressions in a 2-principal 

component eigenspace. 

The thermal profiles of the neutral faces and the faces with evoked facial 

expressions of positive and negative experiences appear to be different, even within a 2-

dimensional eigenspace. However, the first two principal components might not be 

expected to explain all the variance between the neutral and the four evoked facial 

expressions. 

To further examine the variance structure of the TIV data, the Andrews´ plots 

explained earlier in Chapter 7, were drawn using the principal component scores 

derived from the TIV data. Figure 9.13 shows principal component scores Andrews´ 

plot for each facial expression in a separate window. The plots for neutral and happy 

facial expressions were different than those for the faces with evoked expressions of 

sadness, disgust and anger. This difference in thermal profiles implied the underlying 

differences between the thermal features pertaining to the neutral, positive and negative 

facial expressions. 
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The individual facial expression groups in each of the 5 windows exhibit a visually 

consistent within-group profile of curves. Hence, the within-group variance in the 

individual facial expression group clusters in Figure 9.13 seems encouraging. On the 

contrary, the graphical appearance of the patterns of between-group variance seems 

visually different and suggests that the TIV data might help in developing the 

discriminant functions. The distinct curves within the individual facial expression 

clusters, representing the within-group variation, might have resulted from the varying 

intensities of the facial expressions (arousal factor). Natural differences in the facial 

skin temperature of the participants or an underlying difference in the facial skin 

emissivity ( ) due to factors such as facial hair and the skin colour could also contribute 

to such variations (Jones 1998). The “stratum corneum epidermis” factor discussed 

earlier could also influence the thermal profile of an individual participant’s face 

(Kobayashi and Tagami 2004; Skin Anatomy and Physiology 2005). 

Examining the actual influence of one or more of these factors on the facial skin 

temperature and the TIV measurements is beyond the scope of this investigation. 

However, the principal component scores plotted in an eigenspace and the graphical 

profiles of the Andrews´ curves suggest that the neutral faces and the faces with evoked 

facial expressions may be thermally distinguished. 

The derived principal components were tested for their contribution to the variance 

in the thermal data. The optimal feature selection algorithm was invoked for discovering 

the optimal facial features. Figure 9.14 shows the recursive discovery of the optimal 

principal components and the corresponding increase in the resulting F ratio. Only 30 of 

the derived principal components shown in Figure 9.14 were found significantly helpful 

in increasing the F ratio. These most discriminating principal components were used to 

train the classifier. 

Since the data were normally distributed, the facial expression groups had a similar 

variance structures and each facial expression group had the same number of 

participants, an equal a priori was assumed during the discriminant analysis. 
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Figure 9.13: Andrews’ curves drawn using the principal components scores for the neutral and evoked facial 
expressions of happiness, sadness, disgust and anger 

TABLE 9.2: SUMMARY OF CANONICAL DISCRIMINANT FUNCTIONS 

 
Function Eigenvalue Percentage of Variance 

 Cumulative 
percentage 

 Canonical 
Correlation 

1 46.767 78.5 78.5 0.989 
2 7.115 11.9 90.4 0.936 
3 3.770 06.3 96.7 0.889 
4 1.943 03.3 100.0 0.813 
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Figure 9.14: Stepwise selection of optimal components and corresponding increase in the F ratio 

TABLE 9.3: SIGNIFICANCE OF INDIVIDUAL DISCRIMINANT FUNCTIONS 

 Test of Functions Wilks’ Lambda Chi-square  df  Sig. 
1 through 4 0.000 279.564 112 0.00 
2 through 4 0.009 153.908 81 0.00 
3 through 4 0.071 85.861 52 0.002 

4 0.340 35.082 25 0.087 

 

Table 9.2 summarises the canonical discriminant functions and the pertinent 

statistics. It also provides an estimate of the underlying contribution of each 

discriminant function in between-group separation. 

Table 9.3 shows the chi-square statistics and the respective significance of each 

discriminant function. 

Table 9.4 reports the structure matrix showing the pooled within-groups correlations 

between the discriminating variables.  

Table 9.5 presents the standardised canonical discriminant function coefficients. The 

group membership of an unknown thermal face is determined using these numeric 

coefficients during the leave-one-out cross validation. 
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TABLE 9.4: STRUCTURE MATRIX FOR THE FOUR DISCRIMINATING FUNCTIONS 

Variate Function 1 Function 2 Function 3 Function 4 
VARIATE-55 0.005 -.161(*) 0.051 0.029 
VARIATE-74 0.053 .127(*) 0.071 0.102 
VARIATE-42 -0.025 .113(*) 0.044 -0.096 
VARIATE-03 -0.002 .082(*) 0.004 -0.067 
VARIATE-07 0.017 -0.094 .193(*) -0.132 
VARIATE-24 0.018 0.109 .127(*) 0.024 
VARIATE-40 0.025 -0.095 -.123(*) -0.051 
VARIATE-14 -0.025 -0.076 -.120(*) -0.009 
VARIATE-71 0.053 0.006 .118(*) 0.031 
VARIATE-19 0.025 0.013 .098(*) 0.003 
VARIATE-41 0.006 -0.048 .086(*) -0.03 
VARIATE-46 -0.065 -0.063 -.080(*) 0.046 
VARIATE-17 -0.033 0.024 .074(*) -0.03 
VARIATE-23 -0.025 -0.024 .048(*) -0.011 
VARIATE-62 0.031 0.026 -0.003 -.307(*) 
VARIATE-09 -0.02 -0.021 0.116 .216(*) 
VARIATE-31 -0.019 0.051 0.13 .193(*) 
VARIATE-38 -0.021 0.076 0.136 -.180(*) 
VARIATE-36 0.031 0.066 -0.071 .158(*) 
VARIATE-32 0.016 -0.107 0.13 -.134(*) 
VARIATE-08 0.009 -0.048 0.121 .127(*) 
VARIATE-22 -0.035 0.101 0.057 -.125(*) 
VARIATE-10 0.045 -0.003 0.06 .125(*) 
VARIATE-54 -0.016 -0.08 -0.065 .123(*) 
VARIATE-16 0.078 0.037 -0.034 -.087(*) 
VARIATE-30 0.013 -0.012 0.012 .067(*) 
VARIATE-35 0.016 0.044 -0.019 -.062(*) 
VARIATE-47 0.013 0.023 -0.053 .056(*) 

 

TABLE 9.5: STANDARDISED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS 

Variates 
 

Function 1 
 

Function 2 
 

Function 3 Function 4 

VARIATE-03 0.05 0.756 -0.021 -0.069 
VARIATE-07 0.716 -0.545 0.68 -0.366 
VARIATE-08 0.334 -0.455 0.581 0.362 
VARIATE-09 -0.665 -0.161 0.456 0.496 
VARIATE-10 2.193 0.061 0.226 0.251 
VARIATE-14 -1.259 -0.567 -0.466 0.177 
VARIATE-16 3.052 0.235 -0.066 -0.163 
VARIATE-17 -1.578 0.104 0.227 -0.048 
VARIATE-18 0.763 0.021 0.468 0.093 
VARIATE-24 -0.864 0.644 0.262 -0.538 
VARIATE- 23 -0.965 -0.336 0.177 0.074 
VARIATE-24 0.476 0.515 0.541 0.001 
VARIATE-30 0.859 -0.257 0.141 0.061 
VARIATE-31 -1.036 0.427 0.34 0.163 
VARIATE-32 1.322 -0.567 0.494 -0.138 
VARIATE-35 1.381 0.499 -0.102 0.082 
VARIATE-36 1.509 0.557 -0.431 0.384 
VARIATE-38 -1.578 0.735 0.729 -0.468 
VARIATE- 40 2.506 -0.25 -1.055 -0.564 
VARIATE-41 0.743 -0.973 0.559 -0.112 
VARIATE-42 -1.128 0.771 0.305 -0.263 
VARIATE-46 -2.238 0.391 -0.202 0.48 
VARIATE-47 0.67 -0.437 -0.12 0.081 
VARIATE-54 -1.747 0.208 0.398 -0.069 
VARIATE-55 -2.131 -1.344 0.586 0.374 
VARIATE-63 -1.02 -0.017 -0.059 -0.965 
VARIATE-71 2.806 0.077 0.505 -0.264 
VARIATE-74 -1.278 1.223 -0.011 1.105 
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Table 9.6 shows the confusion matrix and the classification success results observed 

when the classifier was trained using the high eigenvalued principal components to 

discriminate between the evoked facial expressions. As shown in Table 9.6, a high error 

rate (egeneal
j  = 84.0%) was observed when the highest eigenvalued principal components 

were used for classification of unknown TIRIs. 

Table 9.7 presents the classification results and the confusion matrix observed when 

the classifier was trained using the optimal principal components. The classification 

results in Table 9.7 show a significant reduction in the error rate (egeneal
j  = 28.0%) as 

compare to the classification results shown in Table 9.6. 

 

9.5 Classification error analysis 

The linear discriminant algorithm discovered a set of 28 most effective variates for 

classifying the unknown thermal faces during the leave-one-out classification tests. 

These influential variates were listed in Tables 9.4 and 9.5. 

TABLE 9.6: CLASSIFICATION RESULTS WITH HIGHEST EIGENVALUED FEATURES (COMPONENTS) 

Predicted Group Membership Classification Group 
Neutral Happy Sad Disgust Angry Total 

Neutral 9 0 0 0 1 10 
Happy 1 8 1 0 0 10 

Sad 0 1 9 0 0 10 
Disgust 1 0 0 9 0 10 

Count 

Angry 1 1 0 0 8 10 
Neutral 90.0 0 0 0 10.0 100.0 
Happy 10.0 80.0 10.0

1 
0 0 100.0 

Sad 0 10.0 90.0 0 0 100.0 
Disgust 10.0 0 0 90.0 0 100.0 

Original 
cases 

% 

Angry 10.0 10.0 0 0 80.0 100.0 
Neutral 3 0 2 2 3 10 
Happy 1 2 3 2 2 10 

Sad 3 1 3 2 1 10 
Disgust 2 2 1 0 5 10 

Count 

Angry 4 3 1 2 0 10 
Neutral 30.0 0 20.0 20.0 30.0 100.0 
Happy 10.0 20.0 30.0 20.0 20.0 100.0 

Sad 30.0 10.0 30.0 20.0 10.0 100.0 
Disgust 20.0 20.0 10.0 0 50.0 100.0 

Cross- 
Validated 
cases 

% 

Angry 40.0 30.0 10.0 20.0 0 100.0 
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TABLE 9.7: CLASSIFICATION RESULTS OBSERVED WITH THE OPTIMAL COMPONENTS 

Predicted Group Membership Classification Group 
Neutral Happy Sad Disgust Angry Total 

Neutral 10 0 0 0 0 10 
Happy 0 10 0 0 0 10 

Sad 0 0 10 0 0 10 
Disgust 0 0 0 10 0 10 

Count 

Angry 0 0 0 0 10 10 
Neutral 100.0 0 0 0 0 100.0 
Happy 0 100.0 0 0 0 100.0 

Sad 0 0 100.0 0 0 100.0 
Disgust 0 0 0 100.0 0 100.0 

Original 
cases 

% 

Angry 0 0 0 0 100.0 100.0 
Neutral 7 0 0 1 2 10 
Happy 0 7 2 1 0 10 

Sad 0 1 9 0 0 10 
Disgust 1 1 0 7 1 10 

Count 

Angry 2 0 0 2 6 10 
Neutral 70.0 0 0 10.0 20.0 100.0 
Happy 0 70.0 20.0 10.0 0 100.0 

Sad 0 10.0 90.0 0 0 100.0 
Disgust 10.0 10.0 0 70.0 10.0 100.0 

Cross- 
Validated 
cases 

% 

Angry 20.0 0 0 20.0 60.0 100.0 

 

The statistical significance levels of the four discriminant functions developed for 

differentiating between the neutral and four evoked facial expression groups were 

estimated using Equation 6-1. The significance (p<0.05) of the first three discriminant 

functions in column 5 of Table 9.3 suggested a possible separation between the facial 

expression groups along the first three discriminant functions. However, the fourth 

discriminant function was non-significant (p>0.05) and could not be assumed to have a 

significant role in classifying the unknown thermal faces. 

Table 9.4 reported the structural coefficients of discriminant functions. These 

numeric coefficients were used to interpret the contribution each variable made in 

formulating the discriminant functions. Method of computing these coefficients was 

presented earlier in chapter 6. 

The discriminant function coefficients in the structure matrix (Table 9.4) suggest 

that the first discriminant function derived constituent values from the TIVs measured 

on Frontalis Pars Medialis and Frontalis Pars Laterals (3, 7, 9, 14, 16, 17), Orbicularis 

Oculi (22, 31) and Levator Labii Superioris Alaquae Nasi (36), Levator Labii Superioris 

(46), Depressor Labii Inferioris (71) and Mentalis (74). The first discriminant function 

therefore computed the thermal features on the selected sites around the upper and 

lower parts of the face for classifying a new and unknown thermal face. 

The second discriminant function relied on the variates measured from Frontalis (8, 

14, 16), Orbicularis Oculi Pars Orbital (22, 24, 31), Levator Labii Superioris Alaquae 
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Nasi (35, 36), Levator Labii Superioris (38, 46), Zygomaticus Major (42), Risorious/ 

Platysma (54), Depressor Anguli Oris (55) and Mentalis (74) for classifying the new 

and unknown faces. 

The third discriminant function relied on the variates measured at several locations 

on Frontalis (7, 8, 9, 14, 16, 17) Orbicularis Oculi Pars Orbital (19, 23, 24, 31), 

Masseter Superficial (40, 41), Zygomaticus Major (32, 42), Levator Labii Superioris 

(38, 46), Depressor Anguli Oris (55), Depressor Labii Inferioris (71) and Mentalis (74) 

for allocating an unknown thermal face to one of the evoked facial expression groups. 

The fourth discriminant function relied on the variates measured at several locations 

on Frontalis (3, 8, 9, 10, 16), Frontalis Pars Medialis (7), Orbicularis Oculi Oars Orbital 

(22, 30, 31), Levator Labii Superioris (38, 46), Zygomaticus Major (32), Levator Labii 

Superioris Alaquae Nasi (35, 36), Levator Anguli Oris (47), Risorious/ Platysma (54), 

and Platysma (62) for allocating the unknown thermal faces to one of the facial 

expression groups. 

Figure 9.15 shows the five facial expressions at their respective group centroids in a 

3-discriminant function eigenspace. The varying spans of these discriminant functions 

highlight their respective influence in the between-group separation. 

The leave-one-out cross validation test results presented in Table 9.7 exhibit the 

confusion patterns and the similarities between the evoked facial expressions in the 

underlying eigenspace. Some problems in the classification of unknown thermal faces 

are also evident in the confusion matrix in Table 9.7. For example, the evoked 

expression of anger was confused with the neutral faces and with the evoked expression 

of disgust. 

The evoked expressions of happiness and sadness appeared to be overlapping in a 2-

dimensional eigenspace in Figure 9.11. However, the confusion matrix in Table 9.7 

suggested they were separated in a high dimensional eigenspace. Therefore, the evoked 

expression of happiness appears to be well separated from the other facial expressions 

in Table 9.7. 

Given a small sample size and a large number of measured features (TIVs), the 

overall error rate (egeneal
j  = 28.0%) observed during the leave-one-out cross validation 

tests seems encouraging. 
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Figure 9.15: The neutral faces and the faces with four evoked facial expressions at their respective group 
centroids 

TABLE 9.8: SIGNIFICANCE OF CLASSIFICATION RESULTS 

Statistic Value Level of 
significance ( ) 

Z
normal

*
 

2.070  0.0197 

Zhappy

*
 

2.070 0.0197 

Z
sad

*
 

1.054 0.1496 

Zdisgust

*
 

2.070 0.0197 

Zangry

*
 

2.5819 0.0049 

Z
overall

*
 

3.741 0.0011 

 

The observed error rate was suggestive of the potential effectiveness of the thermal 

features for achieving the AFEC and AAR functionality. The observed classification 

results also suggested the effectiveness of the employed algorithmic approach. 

 

9.6 Significance of the classification results 

Equations 5-26 and 5-27 were used to determine the practical significance of the 

classification results. The significance levels for the facial expressions classification and 

the overall significance test statistics in Table 9.8 were significant at (p<0.05). 
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The practical significance of the observed classification results was estimated using 

Equation 5-28. The resulting index (I = (36 /50 10 /50) /(1 10 /50) 100  = 65.0) suggested 

a 65.0% reduction in the error rate. It could be assumed that the TIV data gathered from 

the 75 FTFP sites on the participant faces could help distinguish between the neutral 

and four evoked facial expressions. 

 

9.7 Conclusion 

Attempts were made to distinguish between the neutral faces and faces with evoked 

facial expressions of happiness, sadness, anger and disgust using the facial skin 

temperature measurements. The TIV data obtained from the participant faces were 

found to be statistically suitable for invoking the relevant multivariate analysis. Results 

suggest that the facial thermal features might help in classifying the facial expressions 

of naturally evoked affective states. 

The classifier trained with the high eigenvalued principal components could not 

distinguish between the evoked facial expressions suggesting that the employed 

dimension reduction techniques were not able to reduce the complexity of the 

underlying Gaussian model. However, when a set of optimal features was used to train 

the classifier, the overall error rate significantly reduced and the classifier performance 

improved. The reduced classification error rate suggested several possibilities. 

First possibility arises from a study carried out in early 1960s that sparked several 

investigations and lead to important discoveries about the nature and processing of data 

measured at equal points at different times (Rao 1964). These studies suggested that the 

overall covariance matrix represents a mixture of contributions from within-group and 

between-group treatments, and variances (Rao 1964; Jolliffe 2002). For the discriminant 

analysis, one may prefer to separate the various types of covariances prevailing in the 

data. It is argued that even though the derived principal components are uncorrelated 

overall, they cannot be assumed as completely uncorrelated with respect to the between-

group and within-group variations (Rao 1964; Jolliffe 2002). This problem is frequently 

encountered and warrants careful analysis of the data (Jolliffe 2002; McLachlan 2004). 

Instead of relying on the principal components that explain major variations in the data, 

a set of principal components having a combination of the low and high eigenvalued 

components might prove more useful in such situations (Jolliffe 2002). May be, the 



CLASSIFICATION OF EVOKED FACIAL EXPRESSIONS 

159 

combination of low and high eigenvalued optimal principal components used for 

training the classifier was helpful in improving the classifier performance. 

As evident in the reported confusion patterns (Tables 9.6 and 9.7), the optimal 

features based classifier performed better than the one trained using the higher 

eigenvalued principal components. The classifier performance differences may also be 

attributed to the set of variables selected through the optimal feature selection 

algorithm. The higher eigenvalued principal components might have preserved all the 

variation in the TIVs data but they probably could not find the most effective 

dimensions of the within-group separation. The optimal features on the other hand, 

might not have preserved the maximum within-group variation but most probably were 

able to keep track of the dimensions of within-group variation (Jolliffe 2002; 

McLachlan 2004; Rao 1964). 

Second, the leave-one-out cross-validation results reported in Table 9.7 demonstrate 

that up to 72% unknown TIRIs may be correctly classified using the proposed 

computational approach. These results make it obvious that the employed algorithmic 

approach divided the eigenspace into smaller and linear spaces and there was very little 

overlap between the divided linear spaces. 

Third, the confusion patterns observed during the AFEC of the evoked facial 

expressions are consistent with the previous studies carried out to investigate the 

relationship between the emotions and the facial musculo-physiological activities. Like 

the previous investigations, these classification results and confusion patterns also 

suggest some similarities between the thermal measurements of some of the evoked 

facial expressions. Interestingly, previous studies, albeit using the visual cues or 

measurements of different bio-physiological signals, discovered similar facial 

expression recognition and confusion patterns. These initial results suggest that infrared 

measurement of facial thermal features may help in classifying the subtly different 

evoked or reactive facial expressions. 

 

9.8 A comparison of the intentional and evoked expression classifiers 

Examining the relative performance of the 4 classifiers constructed in this thesis 

(chapters 6, 7, 8 and 9) might help realise the potential of using the facial skin 

temperature in AFEC and AAR capable systems. Table 9.9 compares the 4 classifiers, 
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highlights their underlying Gaussian mixture models, and presents their respective 

classification success rates. 

When the Gaussian space was constructed using the TIV data taken from the neutral 

and simulated happy and sad faces (row 2 of Table 9.9), 83.3% of the TIRIs were 

successfully classified. 

When the TIV data measured on the neutral faces and simulated happy, disgusted, 

positively surprised and angry faces were used to construct the Gaussian space (row 3 

of Table 9.9), the complexity of the Gaussian increased and the classification success 

rate reduced to 67.2%. 

When the TIV data measured on the neutral faces and faces with (six) basic 

intentional expressions were used for constructing the classifier (row 4 of Table 9.9), 

only 57.1% new and unknown faces were successfully classified. 

When the Gaussian space was constructed using the TIV data measured on the 

neutral faces and the faces with four evoked expressions (last row of Table 9.9), the 

classifier performed at 72% success rate. 

As evident in Table 9.9, the four evoked expression classifier (last row of Table 9.9) 

performed better than the four intentional expressions classifier (row 3 of Table 9.9). 

This difference in the performance of these two classifiers highlights the linear division 

patterns of the two eigenspaces. It is likely that the complexity of a Gaussian mixture 

model, in addition to the effectiveness of the optimal features, influences the classifier 

performance. 

Extending this discussion and comparing the observed confusion patterns may help 

understand the differences between the thermal measurements of the evoked and 

intentional facial expressions. 

 

Table 9.9: Construction of the Gaussian space, employed training features and the classifier performance 

Facial expressions and TIV data used 
for constructing the Gaussian space 

Training features employed Overall classification 
success rate observed 

Neutral and Intentionally happy and sad 
expressions 

Optimal features recursively drawn from 
among the derived principal components 

83.3 % 

Intentional happy, disgust, Surprise and 
angry expressions 

 

-do- 67.2% 

Neutral and Intentionally happy, sad, 
disgust, surprise, angry and fear 

expressions 

-do- 57.1% 

Neutral and Evoked happy, sad, disgust, 
and angry expressions 

-do- 72.0% 
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When the neutral faces and the faces with intentional expressions of happiness and 

sadness were classified using the optimal features (Chapter 6), 12.5 % of neutral faces 

were confused with the intentionally sad faces. During an attempt to classify the neutral 

faces and the faces with basic intentional expressions (Chapter 7), the neutral faces were 

more frequently confused with the intentional expression of sadness (18.8%). During 

the classification of evoked facial expressions, the neutral faces were not at all confused 

with the evoked expressions of happiness or sadness. This confusion pattern might be 

understood in the light of the discussion on emotion-specific musculo-physiological 

activities reported in section 3.2 of chapter 3. As reported in section 3.2, (Wolf et al. 

2005) discovered that Orbicularis Oculi, Mentalis, and Depressor Anguli Oris 

contribute to the expression of negative emotions. Probably, simulating the emotion of 

sadness did not allow enough musculo-physiological and hæmodynamic activities along 

Orbicularis Oculi, Mentalis, and Depressor Anguli Oris. So the simulated sadness was 

confused with the neutral face. It seems that the facial muscles were more engaged 

when the facial expressions were evoked. Consequently, the quantitative differences in 

the TIV data measured on the neutral faces and on the faces with evoked sadness were 

different and more helpful in distinguishing between the neutral and sad faces.  

When the neutral faces and faces with intentional expressions of sadness and 

happiness were classified using the optimal features (Chapter 6), 6.5% of neutral faces 

were confused with intentionally happy faces. During an attempt to classify the neutral 

faces and the faces with six basic intentional expressions (Chapter 7), the neutral faces 

were more frequently confused with the happy faces (12.6 %). The neutral faces were 

not confused with the evoked expressions of happiness. Again, the discussion in section 

3.2 of Chapter 3 might help understand this confusion pattern. A significant number of 

previous studies found that Zygomaticus Major, Orbicularis Oris, Orbicularis Oculi, 

Mentalis and Platysma contribute to the expression of positive emotional experiences. 

These muscles were probably not fully activated when the expressions were being 

simulated. Probably, for this reason, the intentionally happy faces were confused with 

the neutral faces. However, when emotions were evoked, some significant musculo-

physiological and hæmodynamic activities took place along these muscles. The evoked 

expressions of happiness were therefore not confused with the neutral faces. 
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The intentional expression of sadness was confused with the expression of 

happiness (18.8%) when the neutral faces and the faces with intentionally positive and 

negative expressions were classified using the optimal features (Chapter 6). During an 

attempt to classify the neutral faces and the faces with simulated basic expressions 

(Chapter 7), the happy faces were not confused with the sad faces. Around 20% of the 

evoked expressions of happiness were confused with the evoked sad expressions in 

chapter 9 so a higher confusion rate was observed. However, only 10% of (evoked) sad 

faces were confused with the (evoked) happy faces (Chapter 9). This confusion pattern 

might also be examined in the light of emotion-specific musculo-physiological activities 

reported earlier in Section 3.2. Studies cited in Chapter 3 suggested that musculo-

physiological activities along Zygomaticus Major, Orbicularis Oris, Mentalis and 

Platysma represent the facial expression of positive emotional experiences. The facial 

expression of negative emotions in the reported studies involved Corrugator, Masseter, 

Triangularis, Orbicularis Oculi Palpabraeous, Platysma, and Bucccinator. The cited 

studies reported some musculo-physiological activities around the Orbicularis during 

the facial expression of both positive and negative emotions. The musculo-physical 

activities along this particular muscle might have caused the classifiers to confuse the 

facial expression of happiness with sadness. 

When the intentionally positive and negative facial expressions were classified 

using the optimal features, 18.8% of the disgusted faces were confused with the angry 

faces (Chapter 6). Similarly, 18.8% of angry faces were confused with the disgusted 

faces. During an attempt to classify the neutral and the six basic facial expressions, only 

6.3 % faces with disgust were confused with the angry faces but the angry faces were 

confused with the faces showing disgust in chapter 7. When evoked expressions were 

classified, 10% of the disgusted faces were confused with the angry faces (Chapter 9). 

However, more angry faces (20%) were confused with the faces showing disgust. An 

examination of the negative emotion-specific musculo-physiological activities would 

explain this confusion pattern. As the studies reported in Chapter 3 suggest, the facial 

expression of aggression and rage may involve Corrugator, Masseter, Triangularis, 

Orbicularis Oculi, Palpabraeous, Procerus Nasi, Labii Inferioris and Platysma. The 

expressions of sadness and fear reportedly involve Frontalis, Palpabraeous Superior and 

Inferioris, Labii Superioris Orbicularis Oculi, Masseter, Triangularis and Bucccinator. 
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Since some of these muscles were involved in the expression of sadness, rage, anger 

and fear, the similarities between the musculo-physiological and hæmodynamic 

activities around these muscles probably produced the observed confusion pattern. 

The confusion patterns observed and reported in Chapters 6, 7, 8 and 9 were realised 

to be, to a large extent, consistent with the previous studies carried out to investigate the 

association between emotion and musculo-physiological activities. 
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Chapter 10 
DISCUSSIONS, FUTURE RESEARCH DIRECTIONS AND 

CONCLUSIONS 

 

 

 

This chapter first presents a summary of the investigations and reports the observed 

classification results. Some important inferences are then drawn from the results. The 

inferences are analysed to propose dimensions of future work on the use of facial skin 

temperature measurements in AFEC and AAR capable systems. 

 

10.1 Summary of investigations 

Prior to this work, facial thermal features were mainly used for binary detection of 

stress levels, deceit and anxiety. This thesis, building upon the previous investigations, 

explores the possibilities of using the facial skin temperature measurements for 

classifying the facial expressions of most common affective states. This work is based 

on the scientific findings that suggest that facial expression of emotions would cause 

changes in the blood volume flow, would influence the musculo-thermal characteristics 

of the face, and would consequently cause variations in the facial skin temperature. In 

essence, this investigation focuses on developing an efficient facial thermal feature 

extraction, selection, representation and classification approach. 

This work began by capturing 224 visible and thermal infrared images of 16 

participant faces with neutral expression and intentional expressions of happiness, 

sadness, disgust, surprise, anger and fear were initially acquired for this investigation. 

At a later stage, 100 visible and thermal infrared images of 10 participants with neutral 

faces and faces with evoked facial expressions of happiness, sadness, disgust and anger 

were separately recorded. Hence, a database of 324 discrete, visible-spectrum and 

infrared images was developed for this investigation. 

The acquired TIRIs were first segmented. The edge detection tools available within 

the thermal analysis software were applied to detect the faces within the acquired TIRIs. 

The affective-state-specific temperature distributions on the facial skin were examined 
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through the pixel grey-level analysis. As reported in Chapter 4, examining the 

temperature variations within the selected regions of interest within the TIRIs led to the 

discovery of some significant facial thermal feature points (FTFPs) along the major 

facial muscles. The TIVs measured on the FTFPs were then tested for normal 

distribution and the similarity of the facial expression groups’ variance structure. 

A purpose specific algorithmic approach, reported in Chapter 5, was developed and 

employed for classifying the facial expressions. The acquired TIRIs were represented 

along the principal components (PCs) of a covariance matrix using the singular value 

decomposition based principal component analysis. The resulting PCs were ranked in 

the order of their effectiveness in the between-cluster separation. Only the most 

effective PCs were retained to construct an optimised eigenspace. A supervised learning 

algorithm was then invoked for linear subdivision of the optimised eigenspace. The 

statistical significance levels of the classification results were estimated for validating 

the discriminant functions. 

In a series of analyses, several Gaussian mixture models, having a varying number 

of components, were constructed. The facial thermal variances prevailing in the TIV 

data were first used to discern between the neutral and pretended happy and sad facial 

expressions. As reported earlier in Chapter 6, the TIV data in the second analysis were 

used for classifying the two positive (happy and surprise) and two negative (disgust and 

angry) facial expressions. A third analysis was carried out to classify the six common 

pretended facial expressions (reported in Chapter 7). During the fourth analysis, 

attempts were made to classify the pretended facial expressions assuming that parts of 

the face were covered or occluded (reported in Chapter 8). In the fifth analysis, evoked 

facial expressions of happiness, sadness, disgust, and anger were classified using the 

TIV data gathered from the 10 participant faces (reported in Chapter 9). 

 

10.2 Observations and results 

The facial thermal feature extraction, selection, representation and classification 

approach employed in this work was helpful in distinguishing between the facial 

expressions of affective states. The employed algorithmic approach achieved excellent 

classification results on the feature vectors used for training the classifier. However, the 
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developed classifiers could not generalize to the new and unknown thermal faces with 

the same level of high accuracy. 

The inconsistencies observed in the classifiers’ performance were traced and 

reviewed the relevant literature to better understand the observed classification results. 

Some earlier studies provided insight and explained the rationale for the variations in 

the performance of different classifiers developed for this investigation. The literature 

suggested that the relevance and aptness of extracted features, the size and complexity 

of a Gaussian mixture model, and the composition of the underlying eigenspace might 

influence the classifier performance. These factors varied at each stage of this 

investigation and probably caused inconsistencies in the classifier performance. 

The literature further suggested that the nature of the variates included in a reduced 

and optimised eigenspace might also influence the classifier performance. A significant 

number of earlier studies suggest that a reduction in the feature space dimensions would 

occasionally produce insufficient degrees of freedom for a consequent linear division of 

the space. The employed algorithmic approach involved a two-level dimension 

reduction of the discriminant space. This reduction in the discriminant space dimensions 

might have contributed to the variations in the classifier performance. 

Despite some variations in the classifier performance, the proposed algorithmic 

approach, in general, allowed developing a set of effective discriminant functions at 

each stage of this work. The classification results reported in chapters 6, 7, 8 and 9 

provide a convincing evidence of the effectiveness of employed optimal feature 

selection, representation and classification approach. 

During the first analysis reported in section 6.1 of chapter 6, the neutral, pretended 

happy, and sad facial expressions were classified. When the high eigenvalued principal 

components were used for classifying the neutral and pretended expressions of 

happiness and sadness, only 45.8% faces could be correctly classified during the cross-

validation test. In a continuing analysis, 83.8% of the faces were correctly classified 

during the cross-validation test when the optimal principal components were used to 

train the classifier. This significant reduction in the classification error rate suggested 

that optimal principal components would help in developing a compact feature 

representation scheme that resulted in a better between-group separation. 
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Section 6.2 of chapter 6 reported an attempt to distinguish between the two 

pretended positive (happy and surprise) and two pretended negative (angry and disgust) 

facial expressions. The classifier trained with the optimal features proved to be more 

effective (67.20% success rate) than the classifier trained using the high eigenvalued 

principal components (37.50% success rate). The discriminant eigenspace constructed 

with the optimal feature resulted in 29.70% reduction in the classification error rate. 

This variation in the classifier performance might have resulted from an overlap 

between the thermal features of different expressions represented in the Gaussian 

mixture model. Also, some degree of similarity between the musculo-physiological 

activities that took place during the expression of positive and negative affects might 

have influenced the classifier performance. 

Chapter 7 presented an attempt to classify the neutral faces and the faces with six 

pretended basic facial expressions. When the high eigenvalued principal components 

were used for classifying the seven facial expressions, only 38.4% faces were 

successfully classified during the cross-validation tests. The classifier trained with the 

optimal principal components could correctly classify 57.1 % thermal faces. This ever 

first attempt of classifying the six basic facial expressions using the facial skin 

temperature was encouraging. Results suggest that the thermal infrared measurements 

of facial skin temperature may help in distinguishing between the six basic facial 

expressions, provided an appropriate feature selection and representation approach is 

employed. 

The possibilities of classifying facial expressions under the pose and illumination 

conditions and under the assumed occlusion were explored and reported in chapter 8. 

Each thermal face was divided into four regions: forehead was considered region 1, 

areas around eyes and cheek were considered region 2, area around the mouth was 

considered region 3 and area around the chin was considered region 4. Thermal 

intensity values recorded at the FTFP sites within regions 1 and 2 were grouped 

together. Thermal intensity values recorded at the FTFP sites within regions 3 and 4 

were separately grouped together. The TIVs within the two groups were separately used 

as input vectors to the facial expression classifiers. When the TIVs in regions 1 and 2 

were used for AFEC, a low classification success rate was observed during the cross-

validation results. The classifier performed at an even lower success rate when the TIVs 
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in the second grouping were used for training the classifier. Results suggested that the 

TIV data measured on some selected FTFP sites of the face might not allow 

distinguishing between the facial expressions. Thus, in order to distinguish between the 

facial expressions, the TIV should be measured at all the FTFP sites on the face. 

The results of classifying the evoked facial expressions, reported in Chapter 9 

suggested that the evoked and reactive facial expression might be recognised using the 

facial thermal features. During the cross-validation tests when optimal features were 

used to train the classifier, the classifier correctly classified 72% unknown thermal 

faces. These results therefore suggested that the evoked facial expressions of happiness, 

sadness, disgust and anger could be classified using the facial thermal features. Results 

also suggest that the optimal thermal features, when projected in an optimised 

eigenspace, may reveal the distinguishable facial thermal characteristics. These facial 

thermal characteristics were transient and were made available through changes in the 

facial expressions. Though no attempt was made to distinguish between the evoked and 

pretended facial expressions on the basis of the facial skin temperature, observed results 

suggested that the two conditions might be realised on the basis of facial skin 

temperature distributions. 

Results of the evoked facial expression classification suggested that the transient 

facial thermal features generated as a result of evoked emotions might maintain some 

degree of thermal similarities between the facial expressions. However, these initial 

results suggested that the subtly different evoked or reactive facial expressions might 

result in different and distinguishable facial skin temperature measurements at the FTFP 

sites on the face. 

Despite the inconsistencies observed in the classifier performance, the observed 

classification results, to a large extent, were consistent with the classification results 

reported in some previous investigations. For example, the facial expression 

classification results reported in (Chellappa 1998) and (Donato et al. 1999) were similar 

to the classification and confusion patterns observed in this investigation. 

 

10.3 Some possible inferences 

The literature cited earlier in chapters 2, 3, and 5 and the reported results of this 

investigation suggested that the facial skin temperature measurements might contribute 
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in achieving the AFEC and AAR functionality. The observations reported in chapters 6, 

7, 8 and 9 suggested that the facial skin temperature variations caused by a change in 

affective state could be measured using a non-contact thermal infrared camera. The 

pixel grey level analyses of the acquired thermal images provided further evidence of 

previously reported findings that like other bio-physiological signals, the facial skin 

temperature might change with the changing affective states. 

Thermal measurements taken around any particular part of the face or along any 

particular facial muscle did not provide enough information for classifying the facial 

expressions. The physical locations of the identified discriminator variables suggested 

that the AFEC and AAR might require monitoring the thermal changes at multiple 

locations on the face along the major facial muscles. 

Thermal analysis of the TIV data gathered from the participant faces suggested 

presence of some degree of correlation among the TIV data recorded along the major 

facial muscles. This variation might have resulted from the contraction and /or 

expansion of the muscles during the expression of emotions. Perhaps, the human 

metabolic reaction to the changes in the affective states was influential in changing the 

rate of heat transfer from the core body to the facial skin surface. Perhaps a change in 

core body temperature caused some measurable thermal changes at several locations on 

the face. 

The observed classification results also reflect upon the computational efficacy of 

the proposed algorithmic approach. The statistical classifiers that were trained using the 

optimal principal components consistently out performed the classifiers that were 

trained using the high eigenvalued principal components. The linear discriminant 

algorithm consistently achieved excellent classification results on the training vectors. 

However, the linear discriminant algorithm consistently generalized to new and 

unknown thermal faces with a comparatively lesser efficiency. Also, some facial 

expressions were better classified than the others in each classifier test. These 

observations highlight the influence of a constructed Gaussian mixture model on the 

performance of the classifier. 

This work, in a broad perspective, suggests the viability of using the facial skin 

temperature measurements in security and surveillance, clinical diagnosis, criminal 

investigations and human-computer interaction applications. The future AFEC and 
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AAR capable systems might possibly be able to employ and rely upon the non-invasive 

facial skin temperature measurements taken within the infrared light spectrum. 

The reported observations and the inferences drawn from this work resulted in 

realising the following key research directions for the future work. 

 

10.4 Suggestions for future research 

For more than three decades, scientists have been investigating the possibilities of using 

the bio-physiological cues to recognise the affective states and their expressions. This 

work, building upon the previous investigations, has demonstrated the viability of using 

the temporal facial thermal features for classifying the affective states and their facial 

expressions. However, development of a reliable facial features-based AFEC and AAR 

capable system requires further investigations and validation. The work reported in the 

previous chapters of this thesis allowed setting an agenda for the future research on use 

of facial skin temperature in AFEC and AAR capable systems. This work led to 

identification of the following research dimensions for the future work. 

To progress from this point, future work should focus on developing procedures and 

methods for finding a finer distinction between the expressions of affects. This may 

warrant accounting for the individual differences while classifying the expressions of 

affective states. This work also warrants extension of the thermal image database for 

further verification of the observed results. An extended database will also warrant 

further validation and cross-validation of the facial expressions related musculo-thermal 

behaviour. Such validation exercises may help further establish the relevance and 

reliability of the employed AFEC and AAR approach. A different direction of future 

research may involve construction of the hybrid AFEC-capable systems through fusion 

of thermal features with some other visual and non-visual cues. 

These proposed key research directions are further elaborated in the following 

paragraphs. 

 

10.4.1 Finer distinction between the facial expressions 

The true nature and extent of association between the intensity of emotion and level of 

musculo-thermal activities are the areas of active investigations. However, their true 

relationships have not been discovered and understood yet. Therefore, this important 
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relationship could not be taken into consideration during the thermal image acquisition. 

The issue of finer distinction between the facial expressions is critical in designing a 

robust AFEC capable system. The issue should therefore be dealt with more carefully in 

a future investigation. 

The understanding and perception of facial expressions in this work were based on 

the understanding of physiognomy and the visual appearance of a face. Referees used 

their own understanding of the facial expressions and facial display of emotions. The 

effect of intensity of emotion on the facial expressions may influence the nature of 

musculo-thermal activities and may consequently cause some fluctuations in the facial 

skin temperature. Also, the observers’ interpretation of a facial expression would have 

influenced the data acquisition process. Though three referees were requested to 

examine and agree on the facial expressions of affective states, the underlying 

relationship between the intensities of emotions and their facial expressions could not 

be taken into account. A future investigation should therefore pay more attention to the 

association between the intensity of emotions and their facial expressions. 

From an application point of view, an AFEC system should also be able to 

distinguish between the pretended and evoked facial expressions of affective states. An 

investigation in this direction may result in a better AFEC and AAR functionality. This 

may also provide a better and reliable AFEC tool to the other scientific communities 

such as physicians, psychologists, and criminal investigators. 

An increased thermal sensitivity of the infrared detectors mounted on the thermal 

infrared cameras might help better discover the variances in the acquired thermal 

images. Recent developments in sensors and micro-machine technologies have resulted 

in the availability of more sensitive thermal infrared detectors (Phillips 2002). Their 

better thermal sensitivity might help in extracting the finer features and selecting the 

most effective features. Such a capability will also allow effective measurement of 

variance in the thermal data. A high-sensitivity thermal camera might also allow 

acquiring more precise and accurate thermal facial data. A higher accuracy of 

measurement might also help in finer definition and classification of the facial 

expressions of affective states. 
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10.4.2 Individual differences 

Several researchers have highlighted the importance of examining the underlying 

differences between the muscular construction of faces of various racial, ethnic, and 

geographic groups of people. Different groups of people were also reported to have 

varying muscular and bio-physiological responses to affective states. Such differences 

should be understood and accounted for in designing the AFEC and AAR capable 

systems. 

Studies suggest that muscular structure of people belonging to different ethnic and 

racial backgrounds would differ. Also, certain muscles present in some groups of people 

might not be present in the other groups of people (Pessa et al. 1998). 

Several studies have also reported the differences between the bio-physiological 

reactions to emotions in men and women. For example, during a study that investigated 

the gender differences in fingertip response to music, female population’s fingertip 

temperature decreased more significantly than that of the male population (McFarland 

and Kadish 1991). 

Another dimension of the individual differences arises from the emotion-specific 

response differences between various age groups. Studies suggest that bio-physiological 

reaction to emotions varies and decreases with the age. Influence of age on emotional 

response, autonomic responses to emotion and bio-physiological expression of emotions 

is not fully understood yet (Kunzmann and Gruhn 2005). Mentally ill people and 

psychopaths are also believed to have slow and different response to emotion stimuli as 

compare to normal people (Pham et al. 2000). Hence, the age factor should also be 

considered in a future investigation. 

Yet another skin related individual difference arises from the facial skin condition. It 

has been established that the skin diseases more severely and more frequently influence 

certain parts of the facial skin. Diseases such as dermatitis, contact urticaria and 

seborrheic dermatitis influence the biophysical function of the facial skin at some 

particular parts of the face (Kobayashi and Tagami 2004). Also, factors such as stratum 

corneum, reported in chapter 8, should be considered in developing and extending the 

database of infrared images for further investigations. 

A second skin health related issue might also have implications for the future work. 

The issue arises from the fact that when people imagine happy, sad and angry situations, 
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varying patterns of facial-muscular activities are observed through the 

electromyography (Schawrtz et al. 1976). These facial expression patterns particularly 

differ between depressed and non-depressed or cheerful people. This difference in facial 

expression patterns ads an additional dimension to a future investigation. 

 

10.4.3 Extended database of thermal images 

To accommodate for the individual differences between various population groups, and 

to validate the observed classification results, an extended database of sample thermal 

images should be developed for a future investigation. Sample thermal images should 

include various ethnic, regional, racial and age groups. People of different skin colours 

should be sampled separately as well as pooled together to examine the underlying 

influence of the facial skin colour on the composition of the discriminant rules and the 

resulting performance of a classifier. 

An extended database will allow addressing the issue of individual differences and 

so, will provide more reliable parametric estimates of the thermal data. 

 

10.4.4 Further validation 

It would be beneficial to compare the affective states related patterns of facial skin 

temperature variations with other human information patterns. The patterns of emotion-

specific Energy Expenditure (EE) and the EMG measurement patterns on the face 

should be studies and compared with the thermal variation patterns. A comparison of 

the thermal data with other bio-physiological measurements might encourage fusion of 

multiple physiological signals for AFEC and AAR. Such an investigation might also 

reveal the possibilities of using local facial information for classifying the covered or 

occluded faces using the bio-physiological signals. Such a comparison might also 

provide insight into the similarities (or dissimilarities) between the patterns of EMG, EE 

and thermal measurements along the major facial muscles. 

Another way of validating the classification approach and observed classification 

results would be to apply some competing pattern recognition methods on the measured 

TIV data and compare the resulting classification and confusion patterns. The 

physiological pattern analysis and classification is a comparatively new and less 

explored domain. Little work has been done on bio-physiological feature extraction and 
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selection for classifying the emotions and affective states. Generally, common pattern 

recognition techniques are applied on the physiological signals. These techniques do not 

attempt to overcome the issues pertaining to the nature of bio-physiological features and 

their measurements. The inherent overlap between the bio-physiological indicators of 

affects and affective states would usually cause some confusion between the new 

patterns and a variant of any different pattern. Hence the competing pattern recognition 

algorithms should be invoked on facial thermal features to further improve the 

classification results and validate the reported results. 

 

10.4.5 Data fusion 

The fusion of multiple bio-physiological, visual and auditory signals should also be 

explored for developing more robust and reliable AFEC and AAR capable systems. 

However, fusion of multiple bio-physiological, visual and auditory cues may require a 

different feature extraction, selection, representation and classification approach. 

Combining multiple classifiers may also pose some unique implementation related 

challenges. 

 

10.5 Conclusions 

This investigation suggests that the digital infrared imaging of facial thermal features 

within the 8-14 μm bandwidth of electromagnetic radiations may be used to measure 

the affective-state-specific thermal variations on the human face. Furthermore, this 

work makes it obvious that the pixel-grey level analysis of the thermal infrared images 

may allow localising the thermally significant FTFPs along the major facial muscles of 

the face. 

The uncorrelated principal components of the facial thermal features, when ranked 

in the order of their effectiveness in the between facial expression group separation, 

were able to reveal the most effective dimensions of variances in the facial thermal 

features. The higher eigenvalued input vectors (principal components) were less 

successfully classified into the facial expressions of affective states. However, the 

transient thermal feature allowed an effective classification of facial expressions of 

affective states in an optimized eigenspace of input feature vectors. Consequently, some 

effective discriminant functions could be developed for the person-independent 
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recognition of the expressions of affective states. The input feature vectors used for 

training the classifier were more successfully recognised than the new and unknown 

thermal faces. Furthermore, the Gaussian mixture model with one cluster per affect 

worked better for some facial expressions than others in this investigation. The observed 

classification patterns highlighted the influence of a Gaussian mixture model structure 

on the accuracy of the classification results. 

The classification results highlight the efficacy of the novel facial feature extraction, 

selection, representation, and classification approach proposed in this thesis for 

achieving the AFEC and AAR functionality. The proposed computational approach, for 

the first time, was able to classify the facial thermal features for recognising the facial 

expression of the most common affective states. 

This work provided new and convincing evidence that the transient facial thermal 

features were effective in automated classification of expression of most common 

affective states. The observed results in this investigation were consistent with the ones 

reported in several earlier studies. However, further validation of the observed 

classification patterns may help realise their practical significance and relevance. 
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APPENDIX I 
 HUMAN PROTECTION PRACTICES 

 

 

 

Since these experiments were conducted at the American University of Sharjah, United 

Arab Emirates, an American accredited and US incorporated institution, the human 

protection practices outlined in the US Government’s Belmont report (Belmont report 

1979, DHEW 1979) were followed during the design of experiments, thermal image 

acquisition, and dissemination of the resulting information. Details of the observed 

human protection practices are provided in the following paragraphs. 

 

1.1 Selection of participants 

Participants were invited through written notices that were posted on the designated 

public places (such as student notice boards) within the School of Architecture & 

Design, School of Engineering and College of Arts & Science of the American 

University of Sharjah. Participation in this investigation was entirely voluntary. Efforts 

were made to select participants without any religious, cultural, ethnic, gender or age 

discrimination. The female population of the university was particularly encouraged to 

participate in the experiments. The participation of male and female participants with 

diversified cultural, ethnic backgrounds was deemed necessary for having an 

appropriate sample of participant faces. 

During the first phase of experiments, 16 undergraduate students, 12 boys and 4 

girls with a mean reported age of 20 years and 9 months volunteered to participate in 

the experiments. Participants came from different academic, cultural, racial and ethnic 

backgrounds. All participants were adult undergraduate students. Volunteering 

participants included Caucasians, Arabs, Iranians, Indians and Pakistanis. 

During the second phase of this work, participants were recruited through new 

public announcements. Only 3 male students who participated in the previous image 

acquisition exercise volunteered again to have their thermal images taken with evoked 

facial expressions. Seven (7) new participants volunteered to have their thermal images 
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recorded. Of these 7 new volunteers, 3 were continuing education students and were not 

enrolled in a regular academic program at the American University of Sharjah. Mean 

reported age of these 10 participating volunteers (7 boys and 3 girls) was 21 years 2 

months. This group of 10 volunteers included Arabs, Iranians and Indians. 

 

1.2 Compensation and costs 

No monetary rewards were offered to participants. The participants were offered digital 

copies of their recorded infrared and visible spectrum images free of cost. 

 

1.3 Briefing and debriefing 

Participants were briefed before the start of each image acquisition session. The purpose 

and scope of the study were explained and questions were answered to let participants 

understand the benefits and outcome of these experiments. Participants were told that 

they were not being put to any short or long term physical risk. Equipment, image 

acquisition procedure and post-acquisition data analysis methods were explained. 

During the second phase of this work when expressions were invoked, participants 

were briefed as before but they were also informed about the nature and content of 

emotion invoking images and video clips. They were given an option to discontinue 

their participation if the content and nature of imagery were not acceptable to them. 

Sources of imagery were also revealed to the participants. Images and video clips 

similar to the ones used for actually invoking the expressions were shown to the 

participants before start of the image acquisition session. 

 

1.4 Procedure for obtaining informed consent 

Consent for using each participant’s images and thermal data was obtained either during 

the briefing sessions or before the image acquisition session. All participants allowed 

publication of numerical and statistical data emanating from their respective thermal 

images. All male and female participants except 3 female participants allowed use of 

their respective thermal and visible images for dissemination of information through 

scholarly journals, periodicals and conference proceedings. 
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1.5 Risks to participants 

Current literature on thermal infrared imaging and infrared imaging equipment 

(including the manuals that accompanied Cantronix IR 860 thermal infrared camera) 

suggested no short or long-term physical risk in recording thermal infrared images. 

Thermal infrared imaging has been used, without consent, upon members of the public 

at airports, for example to screen for passengers with high temperature possibility 

caused by contagious respiratory diseases such as bird flu. No physical harm or other 

risks of thermal infrared imaging were reported in the literature cited in previous 

chapters of this thesis. 

Information pertaining to the suitability and safety of thermal imaging techniques in 

the context of human protection is available in the cited literature. Chapters 2 and 3 of 

this thesis refer to the information on human related application of thermal infrared 

imaging. 

 

1.6 Methods and Procedures 

This work aimed to examine the possibilities of distinguishing between the facial 

expressions using variations in facial skin temperature. Participants’ thermal faces were 

acquired when they showed a normal and neutral face (with all facial muscles in their 

resting position). During the first phase of this work, participants were asked to 

intentionally express happiness, sadness, anger, surprise, fear and disgust. Their thermal 

(and visible spectrum) images were captured while they pretended and expressed 

emotions. The same procedure was repeated in the second phase of this study when 

expressions were evoked. 

Infrared images were acquired under a normal, controlled and comfortable building 

environment. Internal temperature of rooms used for conducting experiments varied 

between 19-22 ºC during the image acquisition. The building air conditioning systems 

were equipped with a humidity controller and an air recycling system. Each participant 

was given at least 20 minutes to acclimatize with the environment. Thermal images 

were captured in several sessions in October 2003, November 2003, April 2004, and 

September 2004. Images were recorded between 0100 and 0430 pm on the working 

days. 
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During image acquisition, visible-spectrum cameras were placed about 2.5 to 3.5 

meters away from the participants. To avoid any loss of thermal information, the 

infrared camera was always placed 1.8 to 2.4 meters away from the participants. 

During the first phase of this work when the pretended expressions were recorded, 

the participants were trained on acting and intentionally expressing the emotions. They 

were shown still images and video clips to get a better understanding of how to facially 

express different affective states. 

During the second phase of this work when the expressions were evoked, 

participants were shown still images and video clips to invoke emotions. All video clips 

and still images were taken from established and ethically responsible organizations 

such as British Broadcasting Corporation (BBC), the American TV channel CNN, and 

the print media sources such as New Yorker and Washington Post. 

A high quality set of casual and comfortable chairs was offered to participants while 

they waited for their turn before their images were recorded. Image acquisition time 

varied for various reasons including participants’ ability to express emotions, technical 

problems in recording images and participant requested breaks. Image recording time 

varied between 45 minutes and 120 minutes. This variation in time was, at times, also 

caused by the investigators failure to capture acceptable quality images. During the 

pretended expression image acquisition, when needed, participants were demonstrated 

how to express different emotions. Two senior level (final year) undergraduate students 

were recruited to help during image acquisition. They were trained for using the digital 

and thermal cameras and recognizing facial expressions  

 

1.7 Data processing and storage 

The thermal analysis software CMView Plus was used for reading and analyzing the 

acquired thermal images. Numerical data obtained from the thermal images were saved 

in allowed file formats. The data were further analysed using the statistical analysis 

software SPSS and mathematical analysis software Matlab. All data were stored on a 

computer hard disk and a backup copy of the data was stored on compact disks. 
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1.8 Public release of data 

Actual data was kept confidential but statistical analyses and relevant results were 

published in scholarly publications emanating from this work. As mentioned earlier, 

publication of data and results were discussed with the participants and their consents 

obtained. 

 

1.9 Description and sources of secondary data 

As evident from the reported analytical approaches employed in this investigation and 

their respective results, no secondary data pertaining to participants were required in 

this work. The mathematical and statistical analyses carried out during the reported 

investigations (or any inferences made using the involved analyses) did not require 

secondary data about the participants. Participants’ names, related personal identifiers 

and their respective departments of study were noted and kept confidential. 
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LIST OF PUBLICATIONS EMANATED FROM THIS WORK 

 

 

 

1. Khan, M.M., Ward, R.D., and Ingleby, M. (accepted in 2007- to appear). “Classifying 

pretended and evoked facial expression of positive and negative affective states using 

infrared measurement of skin temperature,” ACM Transactions on Applied Perception, 

ACM Press, NY, ISSN: 1544-3558. 

2. Khan, M.M., Ward, R.D., Ingleby, M. (2007). “Automated Classification of Affective 

States using Facial Thermal Features," in S. Singh and M. Singh (Eds.), Progress in 

Pattern Recognition, IWAPR’07, International Workshop on Advances in Pattern 

Recognition, Advances in Pattern Recognition Series, London: Springer, pp. 138-144, 

ISBN: 978-1-84628-944-6. 

3. Khan, M.M., Ingleby, M., and Ward, R.D. (2006). “Automated facial expression 

classification and affect interpretation using infrared measurement of facial skin 

temperature variation,” ACM Transactions on Autonomous and Adaptive Systems, Vol. 

1, No. 1, pp. 91-113, ISSN: 1556-4665. 

4. Khan, M.M., Ward, R.D., and Ingleby, M. (2006). “Infrared thermal sensing of positive 

and negative facial expressions,” in the proceedings of the IEEE 2006 Conference on 

Robotics, Automation and Mechatronics, Bangkok, Thailand, June 2006, pp. 406-411, 

ISBN: 1-4244-0025-2. 

5. Khan, M.M., Ward, R.D. and Ingleby M. (2005). “Distinguishing facial expressions by 

thermal imaging using facial thermal feature points,” in L. Mackinnon, O. Bertelsen 

and N. Bryan-Kinns (Eds.), The bigger picture, proceedings of HCI 2005, 19th British 

HCI group Annual Conference, September 2005, Edinburgh: British Computer Society, 

vol. 2, pp. 10-14, ISBN 1-902505-69-7. 

6. Khan, M.M., Ward, R.D. and Ingleby M. (2004). “Automated classification and 
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