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Abstract

In recent years there has been a great increase in work on epidemiological
modelling, driven partly by the increase in the availability and power of
computers, but also by the desire to improve standards of public and animal
health. Through modelling, understanding of the mechanisms of previous
epidemics can be gained, and the lessons learnt applied to make predictions
about future epidemics, or emerging diseases.

The standard SIR model is in some sense quite a simplistic model, and
can lack realism. One solution to this problem is to increase the complexity of
the model, or to perform full scale simulation—an experiment in silico. This
thesis, however, takes a different approach and makes an in depth analysis
of one small improvement to the model: the replacement of a constant birth
rate with a birth pulse. This more accurately describes the seasonal birth
patterns observed in many animal populations. The combination of the
nonlinearities of the SIR model and the strong seasonal forcing provided
by the birth pulse necessitate the use of numerical methods. The model
shows complex multi annual cycles of epidemics and even chaos for shorter
infectious periods.

The robustness of these results are proven with respect to a wide range
or perturbations: in phase space, in the shape and temporal extent of the
birth pulse and in the underlying model to which the pulsing is applied.

To complement the numerics, analytic methods are used to gain further
understanding of the dynamics in particular areas of the chosen parameter
space where the numerics can be challenging. Three approximations are
presented, one to investigate very small levels of forcing, and two covering
short infectious periods.

xiv



Chapter 1

Introduction

1.1 Motivation

Mathematics has been used to gain insight into the effects of infectious
diseases on populations—both human and animal—since as early as the
18th century. One of the earliest papers in the field is that of Bernoulli
[1766]. He examines smallpox, now extinct in the wild1 [Fenner et al., 1988],
but which was endemic at the time, and analyses the effect of variolation
[Barquet and Domingo, 1997]. Variolation is the act of deliberately infecting
someone with small pox, through either a small cut in the skin, or by blowing
dried smallpox scabs up the nose, inducing a mild case of the disease, with
the intention of providing the individual with immunity. Bernoulli did
not consider the dynamics of the infection, but considered a static model
where the force of infection (the risk of becoming infected) was constant.
His objective was to calculate a life table2 adjusted as if smallpox where
eliminated as a cause of death. This was probably the first example of a
compartmental model. Bernoulli’s work is revisited by Dietz and Heesterbeek
[2000, 2002] One of the amazing things about Bernoulli’s work is that it
had immediate significance for those in the annuities market, because those
who had undergone variolation had a significantly higher life expectancy. So
from the start this field of mathematics has been driven by need, rather than
simply for the intellectual challenge.

More recently epidemiological models have been used to great effect in
1Though some samples still exist in laboratories.
2A life table shows the probability that a person of a given age will die before their

next birthday.
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the prediction and understanding of disease dynamics. Several examples are
now considered.

Childhood diseases have long been studied by epidemiologists. The early
work of Hamer [1906a,b,c] helped lay the foundation of modern epidemio-
logical modelling. Measles, along with other childhood diseases: chickenpox,
mumps, rubella, whooping cough, etc, have possibly seen more work from
epidemiologists than other diseases, even though they do not currently cause
a major threat to public health, as they are well controlled by vaccination
programs [Babad et al., 1995]. The reason for this is simple: there is, for
the United Kingdom amongst other countries, extremely good data about
both the spatial and temporal incidence of measles [Fine and Clarkson, 1982].
Weekly notifications of the numbers of cases of measles are available from
as far back as 1940 until the present. The data from 1950–1968 shows a
consistent biannual pattern of major and minor epidemics before the intro-
duction of a mass vaccination program 1968. This comprehensive data set
provides the ideal testing ground for epidemiological modelling, not only of
the dynamics of disease within a large population, but also of the effects
of vaccination on those dynamics. As such modelling of measles is used as
much as a tool to gain understanding of the dynamics observed and their
mechanisms as to make predictions.

In the early eighties HIV emerged as a major new pathogen, presenting
new problems to epidemiologists. In the early days very little was known
about the disease and even how it was transmitted. Due to the fact that
HIV is sexually transmitted, very limited is available about how frequently
transmission occurs. As such current modelling practice focuses on “black
box” statistical models to predict short terms trends from incidence data
(see for example Brookmeyer and Liao [1990]). More general modelling is
carried out using risk structured models [Anderson et al., 1986], where the
population is partitioned according to their risk of becoming infected. The
usual way to do this is to partition based on the number of sexual partners
a person has. However, the various parameters needed are not well known,
so it can be hard to make accurate predictions.

During the 2001 foot-and-mouth outbreak three different models where
used both to predict the magnitude of the epidemic and to determine the
effectiveness of control measures such as culling. Planning control measures
such as culling is an important problem, kill too many animals and the loss

2



is greater than it would have been if the epidemic was left to run its course,
kill too few and the spread of disease will not be prevented. It turned out
that—due to the robustness of the problem— all three models predicted that
same thing: a large epidemic would result without extra control measures,
and that locally targeted culling would drastically reduce the incidence of
the disease resulting in a much lower overall loss of livestock [Keeling, 2005].

Another important issue addressed by epidemiological modelling is the
possibility of bio-terrorist attacks [Henderson, 1999] and a likely choice of
pathogen would be smallpox. Modelling a scenario, such as an outbreak of
smallpox within a large urban environment poses a challenge for epidemi-
ologists. As time passes the consequences of such an attack become more
severe due to the waning level of immunity with the population. One of the
difficulties in modelling this scenario is the lack of suitable data about the
spread of smallpox, the data that is available is old, from the times when
smallpox was endemic, and does not reflect well the structure of a modern
population. Various strategies have been proposed, depending on the per-
ceived level of risk. Actions include the re-introduction of mass vaccination,
just the vaccination of key health care workers [Bozzette et al., 2003], or the
reliance of contact tracing and targeted vaccination [Kaplan et al., 2003].
Good quantitative predictions are hard, because of the high sensitivity on
initial conditions.

Of a similar nature to the threat of bio-terrorist attack is the prospect of
pandemic influenza, as has been much covered in the media in recent months
(late 2006), possibly emerging from the mutation of the H5N1 strain of avian
influenza. Here the focus is on protection and protection strategies. Some
recent work in this field, such as that of Ferguson et al. [2006], has utilised
large scale individual based models to perform full scale simulations in silico.
Though this strategy yields detailed predictions it can be hard to know how
robust they are.

Other recent examples include SARS, where quarantine was successfully
used to control an emerging disease and BSE/CJD where due to the very
limited data, statistical modelling is used to try and compute parameters.

There are many justifications to use mathematical model in epidemiology.
Roberts and Heesterbeek [1993] cite the main ones as the following.

Insight Models provide insight into, and understanding of, the relationships

3



between the mechanisms operating at the individual level and the
resultant phenomena at the population level.

Precision The precision required in formulating the assumptions under-
lying a mathematical model can shed light on working hypotheses
otherwise undiscovered. Furthermore, the analysis of models can lead
to the formulation of important epidemiological concepts such as R0

(see Section 1.3 on page 9).

Parameters Modelling can clarify which parameters are critical in deter-
mining the disease dynamics. Some parameters that are difficult to
measure may turn out not to be very important, or values may be
found for hitherto unmeasured parameters.

Experiments The ability to perform thought experiments, for example to
evaluate control measures, in cases where real experiments are unethical
or uneconomic.

Roberts and Heesterbeek [1993] also note that models should be used with
care for making quantitative predictions about future trends. This is because
even complex models can be grossly simplified versions of reality. Making
models more complex can actually make the problem worse as this leads to
a proliferation of unmeasurable parameters—although recently large scale
simulations underpinned with accurate, comprehensive data have been used
to make quantitative predictions—see for example recent work by Ferguson
et al. [2006], Keeling et al. [2003]

In recent years there has been a great surge in the amount of published
work on modelling of infectious diseases. This can most probably be at-
tributed to the increased availability and increasing power of computers.
Figure 1.1 shows how dramatic this rise is from a mere handful in the late
sixties to in excess of 250 papers in 2005.

1.2 SIR models

The SIR model, developed in 1927 by Kermack and McKendrick [1927] is
now one of the standard epidemiological models [Anderson and May, 1991].
The model itself is quite simple; The population is partitioned into three
classes:

4
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Figure 1.1: Showing how the number of papers on modelling
of infectious diseases has increased since 1968 to present. Data
from Scopus, the query used was: (epizootic OR epidemic)
AND infect* AND (model* OR simulat*).

Susceptibles have not been exposed to the disease and are able to become
infected.

Infecteds have the disease and can infect members of the susceptible class.
i.e. they are infectious.

Recovereds have recovered from the disease and are unable to become
infected again. Also known as removed, because they play no further
part in the dynamics.

The SIR model assumes that :

• An individual can only have the disease once.

• The birth rate is constant and all newborns are susceptible.

• Susceptible and infected individuals are well mixed so that infection
moves at a rate proportional to both the level of infected and suscepti-
bles.

• Individuals recover at a constant rate.
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• The natural death rate is constant and equal across all three classes.

• The population is conserved. The only flux in and out is from births
and deaths respectively.

S I R

Susceptible Infected Recovered

dS dR

βSI gIB

dI

Figure 1.2: Box diagram for the standard SIR model.

The structure of the model is described graphically in Figure 1.2. The model
can be expressed as three first order nonlinear ODEs:

Ṡ = −βSI + B − dS

İ = +βSI − gI − dI

Ṙ = gI − dR.

(1.1)

Here, the variables are:

S is the density of susceptibles within the population

I is the density of infecteds within the population.

R is the density of recovereds within the population.

And the parameters are:

β is the transmission or contact rate, which can be thought of as the rate
that contacts are made multiplied by the probability of transmission
across a contact.

B is the birth rate.

d is the per capita death rate which is equal to the inverse of the average
life expectancy.

g is the recovery rate. This is the reciprocal of the infectious period.

The dimensionality of the state variables is discussed in Section 1.6 on page 15.
In order to maintain a constant population size the sum

S + I + R

6



must be constant, so
Ṡ + İ + Ṙ = 0,

requiring that B = d. In other words births and deaths are balanced so
that the population stays a constant size. For convenience, the densities are
normalised , so that

S + I + R = 1.

The interactions between susceptibles and infecteds are modelled by the
term βSI. This is historically dubbed mass-action as if being derived from
thinking about a system of randomly moving particles (e.g. a gas). This
assumes that as the level of both classes increases so does the level of interac-
tions thus speeding the spread of infection. This is a realistic assumption for
most animal populations. Another scheme, historically referred to as pseudo
mass-action models the interaction by βSI/N , where N is the total size of
the population. In this case it is the proportion of susceptibles and infecteds
within the population, not the total population size that affects the level of
interactions. This is a better model for human populations where contacts
remains fairly independent of population size and density. The derivation of
these two different transmission terms is discussed in detail in Section 1.6 on
page 15, where a new, more descriptive, terminology is introduced.

Typical behaviour of this model is a large epidemic, followed by a series of
epidemics decreasing in size. Asymptotically the system tends to an endemic
equilibrium.

One special case of the standard SIR model worth considering is when
B, d = 0: the simple SIR model, sometimes also known as the simple
epidemic. Then the dynamics simplify to a single epidemic followed by
disease extinction. Typical dynamics of the simple SIR model are shown
in Figure 1.4 on the following page.

After introducing an ODE model it is normal determine its fixed points
and perform a stability analysis on them. This is done in Section 1.4 on
page 11. However, before doing that it is necessary to introduce an important
concept in epidemiological modelling: the basic reproductive ratio.
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Figure 1.3: Typical dynamics of the standard SIR model.
Here β = 0.3, B = d = 1.9× 10−3 and g = 0.075.
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Figure 1.4: Typical dynamics of the simple SIR model. Here
β = 0.3 and g = 0.075.
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1.3 The basic reproductive ratio

The basic reproductive ratio, denoted by R0, is one of the most important
epidemiological/epizootilogical parameters. For micro-parasites, such as
viruses and parasitic protozoa, the basic reproductive ratio R0 is defined by
Anderson and May [1991] as:

The average number of secondary cases produced by an average
infectious individual in a totally susceptible population.

R0 is a so called threshold parameter. For a given infection in a given
population R0 tells us whether a disease can invade a naive population. If
R0 > 1 then each infectious individual will give rise to more than one new
case and the disease will spread. However, when R0 < 1 less than one new
case occurs and the disease dies out.

R0 is sometimes also referred to as the basic reproductive number [Diek-
mann et al., 1990, Hethcote, 2000] or the basic reproductive rate [Anderson
and May, 1991].

From the above definition the following formula for R0, is derived:

R0 = (infectious period)×
(

average rate at which
secondary cases are produced

)
.

See Keeling and Rohani [2007, chap. 2] or Anderson and May [1991].
Table 1.1 on the following page shows a selection of values for R0 for

different diseases, both in animals and humans. It is clear that R0 shows
great variation from just greater than unity for Feline immunodeficiency
virus to 50–100 for malaria.

For the standard SIR model, as described in Equations 1.1 on page 6,
the basic reproductive ratio is given by

R0 =
(

rate at which secondary
cases are produced

)
× (average infectious period)

= βS × 1
g + d

=
β

g + d
. (1.2)

9



D
is

ea
se

R
0

(a
pp

ro
x)

R
ef

er
en

ce
C

hi
ck

en
po

x
10

–1
2

A
nd

er
so

n
an

d
M

ay
,
19

91
E

bo
la

vi
ru

s
(C

on
go

an
d

U
ga

nd
a)

1.
34

an
d

1.
83

C
ho

w
el

l,
H

en
ga

rt
ne

r,
C

as
ti

llo
-C

ha
ve

z,
Fe

ni
m

or
e,

an
d

H
ym

an
,
20

04
Fe

lin
e

im
m

un
od

efi
ci

en
cy

vi
ru

s
1.

1–
1.

3
C

ou
rc

ha
m

p,
P
on

ti
er

,
L
an

gl
ai

s,
an

d
A

rt
oi

s,
19

95
Fo

ot
an

d
m

ou
th

di
se

as
e

3.
5–

4.
5

Fe
rg

us
on

,
D

on
ne

lly
,
an

d
A

nd
er

so
n,

20
01

H
IV

(m
al

e
ho

m
os

ex
ua

ls
in

E
ng

la
nd

an
d

W
al

es
)

4
A

nd
er

so
n

an
d

M
ay

,
19

91
H

IV
(f

em
al

e
pr

os
ti

tu
te

s
in

K
en

ya
)

11
A

nd
er

so
n

an
d

M
ay

,
19

91
In

flu
en

za
3–

4
M

ur
ra

y,
19

89
M

al
ar

ia
50

–1
00

M
ac

do
na

ld
,
19

57
M

ea
sl

es
16

.8
–1

8.
8

A
nd

er
so

n
an

d
M

ay
,
19

82
,
B

jø
rn

st
ad

,
F
in

ke
ns

tä
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It follows that for the simple SIR model that,

R0 =
β

g
.

1.4 Stability analysis of the standard SIR model

The long term behaviour of the standard SIR model (Equations 1.1 on page 6)
is now briefly derived analytically, for a more detailed exposition see, for
example Hethcote [1976]. First notice that R only appears in the equation
for Ṙ, so it suffices to only consider the Ṡ and İ equations because given S

and I, R can always be calculated using the relationship S + I + R = 1.
The fixed points of the system are given when Ṡ and İ are simultaneously

zero. Considering the I equation:

0 = βS∗I∗ − gI∗ − dI∗

which is satisfied by I∗ = 0, or S∗ = g+d
β = 1/R0. Now the S equation is:

0 = −βSI − dS + d.

Substituting I∗ = 0 implies S∗ = 1 and substituting S∗ = 1/R0 gives:

0 = − β

R0
I∗ − d

R0
+ d

β

R0
I∗ = d− d

R0

I∗ =
dR0

β

(
1− 1

R0

)
I∗ =

d

β
(R0 − 1)

The fixed point (S∗0 , I∗0 ) = (1, 0) is the disease free equilibrium. Which
describes the state where no infection is present in the population. Similarly
(S∗1 , I∗1 ) = (1/R0,

d
β (R0 − 1)) is the endemic equilibrium, where the infection

persists at a fixed level. The eigenvalues of the Jacobian evaluated at these
points will determine their linear stability. Now the Jacobian of the standard
SIR model (only considering the S and I equations) is given by
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J(S, I) =

(
−βI − d −βS

βI βS − (g + d)

)
(1.3)

At the endemic equilibrium this evaluates to

J(S, I) =

(
−dR0 −(g + d))

d(R0 − 1)) 0

)

which has characteristic equation:

λ2 + λdR0 + d(β − (g + d)) = 0.

By the quadratic formula the eigenvalues are

λ± =
−dR0 ±

√
(dR0)2 − 4d(β − (g + d))

2
.

For the fixed point to be stable the real part of both eigenvalues must be
negative. If the discriminant is negative then the eigenvalues will be complex
but will both have negative real part because the part out side the square
root is negative. When the discriminant is positive λ− will always be negative
real, but λ+ is only negative when

−4d(β − (g + d)) < 0

β − (g + d) > 0
β

g + d
> 1

R0 > 1

Hence the endemic equilibrium (S∗1 , I∗1 ) = (1/R0,
d
β (R0 − 1)), is stable if

R0 > 1 and unstable if R0 < 1. When λ± are complex oscillatory dynamics
about the endemic equilibrium will result.

At the disease free equilibrium

J(S, I) =

(
−d −β

0 β − (g + d)

)
(1.4)

which has characteristic equation:

−(d + λ)(β − (g + d)− λ) = 0

12
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Figure 1.5: Bifurcation plot showing the stability of both the
endemic (blue lines) and disease free (red lines) equilibriums
for the standard SIR model (Equations 1.1 on page 6), as R0

varies. Solid lines show the position of stable fixed points,
and dashed lines unstable ones. Here g = 0.075 days−1 and
d = 1.9× 10−3.

and eigenvalues λ1 = −d and λ2 = β − (g + d). Which is stable if R0 < 1
and unstable if R0 > 1.

Figure 1.5 shows the bifurcation structure of these two fixed points.
Notice how the endemic and disease free equilibriums coalesce as R0 → 1. It
is also clear that for R0 < 1 the unstable branch of the endemic equilibrium
has S∗1 > 1 and I∗1 < 0 which are clearly infeasible.

It is also possible to calculate the natural period of oscillation about
the endemic equilibrium in the case where λ± are complex. The period of
oscillation is given by

T =
2π

Im(λ±)

=
4π√

(dR0)2 − 4d(β − (g + d))

The natural value of the natural period is show in Figure 1.6 on the following
page. It is clear that for lower values of both the death rate d and the
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Figure 1.6: Natural period of the standard SIR model
(Equations 1.1 on page 6). Here g = 0.075 days−1.

transmission rate β the natural period is higher.

1.5 Kermack and McKendrick

Returning to the history of epidemiological modelling, it is discussed how
the SIR model can be derived as a special case of a modelling framework
developed by Kermack and McKendrick. In their seminal 1927 paper, ‘A
contribution to the theory of epidemics’, Kermack and McKendrick [1927]
first describe the class of epidemiological models for which they are famous.

The assumptions of Kermack and McKendrick’s models are summarised
by Diekmann et al. [1995] as:

1. a single infection triggers an autonomous process within the host (i.e.
they look at ‘micro-parasites’ and not at ‘macro-parasites’);

2. the disease results in either complete immunity or death;

3. contacts are according to the law of mass action;

4. all individuals are equally susceptible;
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5. the population is closed, i.e. at the time scale of disease transmission
the inflow of new susceptibles into the population is negligible;

6. the population size is large enough to warrant a deterministic descrip-
tion.

This leads to the integral equation:

Ṡ(t) = S(t)
∫ ∞

0
Ā(τ)Ṡ(t− τ)dτ.

Where

Ā(τ) = expected infectivity of an individual that became infected
τ units of time ago.

and S(t) is the number individuals in the population that are susceptible
to the disease.

The simple SIR model,

Ṡ = −βSI

İ = +βSI − gI

Ṙ = gI,

(1.5)

often mistakenly referred to as the Kermack and McKendrick model
[Diekmann et al., 1995], arose from the special case where

Ā(τ) = βe−γτ

By defining

I(t) := − 1
β

∫ ∞

0
Ā(τ)Ṡ(t− τ)dτ

= − 1
β

∫ t

−∞
Ā(t− τ)Ṡ(τ)dτ

and differentiating the familiar equations can be obtained.

1.6 Transmission terms

When using compartmental models the state variables can represent either
the number of individuals in each compartment or the density of individuals
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in that compartment. In the case where the population size is constant
the proportion of the population in each compartment can also be chosen
to be the state variables. Each of these different cases leads to different
dimensions for the transmission parameter β as well as the state variables.
This problem is tackled by Begon et al. [2002]. There is much confusion
about the exact assumptions behind different types of transmission: mass
action, pseudo-mass action, true mass action, density-dependent transmission,
frequency-dependent transmission amongst others. Here the confusing terms
mass action, pseudo-mass action are dropped in favour of the terminology
suggested by Begon et al. [2002]. Their derivation of transmission terms is
outlined below.

First of all let s and i denote the number of susceptible and infected
individuals respectively, and n denote the total number of individuals in the
population. For clarity only the rate of increase of the infected class due to
new infection is considered. This is denoted by di/dt. The rate at which
the number of infected individuals increases is in direct proportion to the
number of susceptibles available multiplied by the per capita rate of infection
commonly referred to as the force of infection. The force of infection is the
product of several factors: the rate at which contacts with other individuals
occur c, the probability p that a contact is actually with an infectious host,
and the probability ν that the contact leads to successful transmission. Thus
the prototype transmission term is given by:

di

dt
= scpν (1.6)

The probability that a transmission event is successful ν is usually as-
sumed to be a function of the host-pathogen combination in question. Now
the probability that the contact is indeed with an infectious host is i/n. Thus
the factor that usually distinguishes different types of transmission term is
the rate of contact c. There are several possibilities for the form of c.

The most frequently used form is c = κn/a, where a is the area occupied
by the population and κ is a constant depending on the particular host-
pathogen combination. Here the contact rate, and thus the per capita
force of infection, increases with the total population density. Combining the
constants κ and ν in to a single term β, usually referred to as the transmission
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coefficient the following transmission term is obtained:

di

dt
= sκ

n

a

i

n
ν

= β
si

a
. (1.7)

Notice how in this case not only does the contact rate increase with the
total population density, but also the per capita force of infection increases
with the density of infecteds. Thus Equation 1.7 is said to describe density
dependent transmission. This transmission term is generally used to describe
the transmission of infection with in animal populations, where the contact
rate increases with the total population density [Hudson et al., 2002]. This
type of transmission has been traditionally referred to as mass action.

A second possibility is to assume a constant contact rate c = η and thus
is independent of the population density. In this case the transmission term
is given by:

di

dt
= sη

i

n
ν

= β′
si

n
. (1.8)

Where β′ = ην is another transmission term with different dimensions to the
previous β. In this case the per capita force of infection increases with the
prevalence of infection within the population i/n, which could feasibly be
described as the “frequency” of infected hosts with in the population. Thus
Equation 1.8 is said to describe frequency dependent transmission. This type
of transmission may be a more suitable for modelling transmission in human
populations Anderson and May [1991], and has traditionally been referred
to as pseudo-mass action.

The two transmission terms described above can be rewritten in terms of
the density of susceptibles and infecteds, denoted as S and I respectively,
by substituting I = i/a and S = s/a. Then under the assumptions that the
area occupied by the population does not vary with time, the transmission
term for density dependent transmission is given by

dI

dt
= βSI
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and equivalently for frequency dependent transmission

dI

dt
= β′

SI

N

In the following chapters the density dependent transmission is assumed
throughout because highly synchronous seasonal breeding patterns, consid-
ered in Chapter 2 on page 24 and modelled by a birth pulse, are predominantly
a feature of wildlife populations. The exception Subsection 3.3.5 on page 117,
which looks specifically at the effects of considering frequency dependent
transmission.

1.7 Seasonality

Within nature many seasonal patterns exist, for example many animals give
birth in the Spring time, birds often migrate to warmer climbs during the
winter and numerous other examples. These seasonal patterns play a part
in driving the annual, and in some cases multi-annual, incidence patterns
observed for many infectious diseases. As such, seasonality can be considered
the driving force of the recurrent epidemics observed in many host pathogen
systems.

Although the standard SIR and simple SIR compartmental models pre-
sented in Section 1.2 on page 4 are useful for understanding a simple epidemic,
their dynamics (as shown in Figure 1.3 on page 8 and Figure 1.4 on page 8)
fail to capture the recurring patters of epidemics exhibited by many host-
pathogen systems.

One of the key uses of seasonality in modelling infectious diseases is
the study of measles. Soper [1929] determined that, at least in the case of
measles, significant seasonal variation in the transmission rate must occur.
The suggested cause was congregation of children during school terms. This
was confirmed around 50 years later by Fine and Clarkson’s [1982] careful
analysis of weekly incidence reports. Other studies have found similar
patterns for other childhood diseases. Seasonality is also key in vector
transmitted diseases such as Malaria [Hoshen and Morse, 2004], Dengue
fever [Watts et al., 1987], tick-borne encephalitis [Randolph et al., 2000] or
West Nile virus [Campbell et al., 2002], where the seasonal variations in
the population of the vector cause seasonal variations in incidence. Grassly
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and Fraser [2006] provides a recent overview of modelling seasonal infectious
diseases in humans.

Seasonality also plays a major role in the dynamics of wildlife diseases
[Altizer et al., 2006, Dowell, 2001, Hudson et al., 2002]. With diseases such
as phocine distemper[Swinton et al., 1998], rabies in skunks [Gremillion-
Smith and Woolf, 1988] and ebola in gorillas [Pinzon et al., 2004] showing
strong seasonal variation in their incidence. Many factors drive the seasonal
variation, such as aggregation or dispersal of hosts during or after the
breeding season. Altizer et al. [2006] provides a good overview of seasonality
in modelling infectious diseases in wildlife populations, including a discussion
on the effect of seasonal birth rate within the host population.

Most models incorporating seasonality focuses on seasonal variation in
the transmission rate. However, this thesis focuses on the effect of adding
seasonal variation in the birth rate. Seasonality in births is dynamically less
destabilising than seasonality in transmission terms [Keeling and Rohani,
2007]. An in depth review of animal populations with highly seasonal birth
rates is carried out in Chapter 2.

1.8 Resonance

It is surprising the phenomenon of resonance has received little study in
relation to epidemiological modelling [Choisy et al., 2006]. Early theoretical
work on considering the dynamical consequences of seasonal forcing in the
transmission rate started with the work of Soper [1929], Bartlett [1956] and
Bailey [1975]. Their aim was establish the required level of variation in the
transmission term to reproduce the large fluctuations in the level of infection.

Bailey [1975] considering the standard SIR model, without deaths but
modified so that the transmission rate β is a function of time. Thus his
model was given by :

Ṡ = −β(t)SI + B

İ = +β(t)SI − gI

Ṙ = gI,

(1.9)

with
β(t) = β0(1 + β1 cos(ωt)),
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Figure 1.7: The predicted amplification of small amounts of
sinusoidal forcing for three childhood diseases. Dashed vertical
lines show the natural period of oscillation 2π/F . Parameters:
B = 0.02 per year throughout, measles: R0 = 17; 1/g = 13
days, chickenpox: R0 = 11; 1/g = 20 days, rubella: R0 = 6;
g = 1/18 days.

where β0 is the average transmission rate, ω is the period of the forcing and
β1 ∈ [0, 1] is the amplitude of the forcing. The basic reproductive ratio, R0 for
this system is β0/g. Bailey [1975] analysed the effects of small perturbations
from the un-forced equilibrium, in the presence of low levels of seasonality,
β1 � 1. He then derived the following formula for the amplitude M , of the
oscillations:

M = β1ωg
(
(Bβ0 − ω)2 + (ωBR0)

2
)− 1

2
.

Figure 1.7 shows how the amplitude magnification factor M/β1 varies with
the period of the forcing, for several childhood diseases. There are clear
peaks that show a reasonable correspondence to the natural frequency of the
system. Which for this system is given by

F 2 = B(g + B)(R0 − 1)−
(

BR0

2

)2

.

This is an example of harmonic resonance. The biological implications
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model with seasonally forced transmission. Parameters: β0 =
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are that if a system is forced at near its natural frequency, then only a small
level of seasonal fluctuation in the transmission rate is necessary to cause a
large fluctuation in the level of infection.

Another phenomenon exhibited by seasonally forced systems is nonlinear
resonance. This can be demonstrated by looking at the standard SIR model
with sinusoidal forced transmission. Hence

Ṡ = −β(t)SI − dS + B

İ = +β(t)SI − gI − dI

Ṙ = gI − dR,

(1.10)

with
β(t) = β0

(
1 + β1 cos

(
2πt

τ

))
,

and B = d, so that births and deaths are matched and the population size
remains constant. The length of the period of forcing is given by τ measured
in days.

This system is studied by Greenman et al. [2004], and some of that work
is reproduced here. Figure 1.8 recreates Greenman et al.’s Figure 4a and
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shows the resonance response curve of the above system, though only stable
branches are show here.

The behaviour is much more complicated that the simple harmonic
resonance shown in Figure 1.7 on page 20. Firstly the curve has breaks at the
tops of the resonant peaks which appear to lean to the right. The breaks are
caused by that particular branch becoming unstable–if the unstable branches
were shown the curve would be continuous apart from the disconnected
period three peak. Also there is hysteresis in the system, so that at some
points on the curve two stable periods exists simultaneously. This curve is
typical of nonlinear resonance.

Resonant effects are not restricted to epidemiological models, for example
Brassil [2006] uses these techniques to look at resonance in predator-prey
models.

1.9 Overview

This chapter has reviewed the field of epidemiological modelling, from its
roots in the work of Bernoulli, to its use in modern public health, planning
for emerging pathogens. The derivation of one of the most common epidemio-
logical models, the SIR model is considered in some detail, introducing some
more universal elements of disease models, such as the basic reproductive
ratio and transmission terms. A brief overview how seasonality in nature can
be included into models, and used to explain patters of seasonal variation
in incidence levels and other phenomena. Finally, the role of resonance is
considered, showing how interactions between times scales can result in large
epidemics.

Chapter 2 on page 24, begins with a review of seasonality in birth rates in
animal populations, illustrating that in many cases births are highly synchro-
nised. To model diseases within populations exhibiting this phenomenon, the
standard pulsed SIR model is introduced. It is noted that there is little work
in the literature where a pulse has been used to model births. After a review
of the available numerical techniques, suitable ones are chosen and refined to
analyse the behaviour of the model. In particular, techniques are reviewed
and developed to calculate the period of attractors, and a predictor-corrector
based continuation method to determine the extent of these attractors in
parameter space.
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These methods are then utilised to catalogue various properties of the
attractors. An analysis of the role of resonance plays in the dynamics is
made, showing that nonlinear resonance plays a significant part in explaining
the complex dynamics. Finally a bifurcation analysis is undertaken, and the
locations of unstable period one limit cycles are tracked.

The next chapter, Chapter 3 on page 89, builds on the results of Chapter 2
on the next page, showing how robust they are to a variety of perturbations.
Firstly Floquet multipliers are used to asses the stability of attractors to
small perturbations in state space. Secondly, the birth pulse function used is
varied to determine how sensitive the results are to the exact choice of this
function. Finally, the structure of the model itself is altered to get a sense of
how pulsed births affect other epidemiological models.

The final chapter, Chapter 4 on page 142, presents progress made analyt-
ically to describe the dynamics of the pulsed SIR models. Approximations
are formulated to describe the dynamics in particular regions of parameter
space where it can be challenging to evaluate the behaviour numerically.
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Chapter 2

Pulsed births

Many simple population and disease models use a constant birth rate [Het-
hcote, 2000] and for certain populations this is a realistic assumption. For
example, humans, in general, only show slight variation throughout the year
[Brewis et al., 1996, Lam et al., 1994, Rojansky et al., 1992] 1. However,
many animal populations show significant seasonal variation to the point
where a model using the mean as a constant birth rate is unrealistic. This
chapter starts to investigate the effect of going to an extreme by modelling
the births within a population as an instantaneous pulse. Ims [1990] suggests
that strong reproductive synchrony such as this is a reproductive strategy
that can lead to greater success.

Pulsed births have been studied in population models [Barlow and Barron,
2005, Tang and Chen, 2003] but very little work has been done on disease
models with pulsed births. Tang and Chen [2003] take a similar approach
to the one taken here. They formulate a population model for a generic
wild animal population with a birth pulse once per time period. Gao and
Chen [2005] implement a single species discrete population model with stage
structure and birth pulses to consider the effect of seasonal harvesting on
fish populations. Both Tang and Chen [2003], and Gao and Chen [2005],
then go on to show that the model exhibits small scale annual cycles, larger
scale multi-annual cycles and, through period doubling, chaos. Similar work
is done by Dong and Chen [2005].

Barlow [1993] utilised birth and dispersal pulses in a model for the spread
1This is, however, not universally true for humans, some communities show great

seasonal variation. See for example Chatterjee and Acharya [2000].
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of bovine TB in the New Zealand possum population. Roberts and Kao
[1998] deals again with TB in possums using an SI model with birth pulses
and analyse its stability. Later Barlow and Barron [2005] take a different
approach. They aim to model stoat populations in New Zealand forests for
the evaluation of control measures. A comparison is made of a series of three
models of increasing complexity, with the second and third having pulsed
births. These two models exhibited more complex dynamics. Reluga [2004]
models “population dynamics with disturbance”, using the effects of wildfire
on shrub populations as the main example. Wildfire is modelled as a variable
annual death pulse. Reluga observes multi-annual dynamics—where the
population grows for several seasons before a collapse—and period doubling
cascade leading to chaos. Later in this chapter similar behaviour is seen from
the standard pulsed SIR model (Equations 2.1 on page 29). Finally density
dependent birth pulses are considered by Gao et al. [2005], again showing
complex dynamics, period doubling and chaos.

Many animal populations show strongly pulsed births. The following
paragraphs illustrate a range of poignant examples. Making it clear that
pulsed births are a widespread phenomenon.

A particularly good example of a population with strongly pulsed births
is Saiga antelopes (Saiga tatarica) [Milner-Gulland, 2001]. Saiga live in the
desert, semi-desert and steppe of Central Asia. Pregnant females gather
together in late spring to form large temporary aggregations. Mass calving
then occurs with most of the females in the aggregation giving birth within
3–8 days (see Figure 2.1 on the following page). By choosing to give birth
in an aggregation females reduce the risk of predation on their calves. The
price they pay for this is the increased likelihood of disease [Milner-Gulland,
2001].

Berger and Cain [1999] observed that within the bison populations of
Yellowstone that 50% of all births occur within a one month period and 95%
occur within 61 days.

The Mongolian gazelle (Procapra gutturosa) is another species documented
as a strongly seasonal breeder. Despite the rutting season lasting from the
middle of November until the first week in February females give birth
between mid June and mid July with about 90% of births occurring within
the same 4-7 day period [Milner-Gulland and Lhagvasuren, 1998].
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Figure 2.1: Field data showing the number of newborn Saiga
Antelope captured and tagged each day in different locations
and years [Milner-Gulland, 2001] during the breeding month
of May. As with all field data it is subject to a certain amount
of interpretation. The issues are explained in the source.
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Figure 2.2: Field data showing the temporal spread of births
of the common brushtail possum in Australia. The number
of births per week in the study area summed over three years.
Data from Clinchy [1999], Clinchy et al. [2004].

Lesser Snow geese (Anser caerulescens caerulescens) migrate each summer
to the Canadian tundra to hatch their young. Due in part to the pressures
of breeding in the short arctic summer, the whole process from the hatching
of the eggs in the first nest to the hatching of the eggs in the last one usually
occurs within a two week period [Cooke et al., 1995]. A more detailed study
of the factors influencing this synchrony can be found in Findlay and Cooke
[1982a,b].

Common brushtail possums (Trichosurus vulpecula) in Australia also
have a distinct seasonal pattern to their births. Field data from Clinchy et al.
[2004] and Clinchy [1999], reproduced in Figure 2.2, shows how the majority
of the births are in a two month period from mid March until mid May.

Even cattle on UK farms show strong seasonal variation in their birth
rate. The general pattern consists of two annual peaks, one in spring of about
13, 000 births per day, followed by a second smaller peak in the autumn and
a trough at around the year’s end of 6, 000 births per day. Figure 2.3 on the
following page shows time-series data from mid 1996 until mid 2005 and the
regularity of this annual pattern is immediately obvious. See Mitchell et al.
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Figure 2.3: Time-series of daily UK cattle births from mid
1996 until mid 2005. The data is smoothed by a 7 day
rolling average. Data provided by DEFRA from the British
cattle movement service’s cattle tracing system via DEFRA’s
RADAR a information management system.

ahttp://www.defra.gov.uk/animalh/diseases/vetsurveillance/radar/project.

htm

[2005], Robinson and Christley [2006] for a more detailed discussion.
Other examples of reproductive synchrony include grey seals where more

than half of the births in a colony can occur within a 7 day period [Boness
et al., 1995]. Also black headed gulls have been observed to breed more
successfully when in reproductive synchrony [Patterson, 1965].

If modelling a known disease in a specific population then the birth
pulse could be fitted from data about when births occur. This could be
a polynomial function fitted from daily birth totals or the births could be
added to the susceptible class on a daily basis. However, the aim here is
not to study a particular disease but to analyse the general effects of pulsed
births on disease dynamics. Thus the simplest possible method was chosen
to model the pulse—every year at a single time-point the births are simply
added to the susceptible class. From a modelling perspective this shares one
of the main advantages of having a constant birth rate: it only utilises a
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single parameter, in this case, the number of births each year. The effect of
other birth functions is analysed in Chapter 3 on page 89.

2.1 The standard SIR model with pulsed births

Replacing the constant birth rate with a birth pulse in the standard SIR
model (Equations 1.1 on page 6) the equations become:

Ṡ = −βSI − dS + B′(t)
İ = +βSI − gI − dI

Ṙ = gI − dR.

(2.1)

Here B′(t) gives the instantaneous birth rate, and the cumulative birth
rate since t = 0 is given by

B(t) =
⌊

t

τ

⌋
x. (2.2)

Here b·c is the floor function, i.e. the largest integer less than the
argument, τ is defined to be 365, the number of days in a year, and x =
1−e−dτ so that annual births and deaths over a year are balanced. Essentially
the model is like the standard SIR model (Equations 1.1 on page 6), except
at the transition from one year to the next where there is a jump of size
x in the susceptible class. This model could equally well be written as the
standard SIR model without births and the following state-reset equation:

S(t+) = S(t−) + x where t = nτ , n ∈ N.

The model uses density dependent transmission as this is more appropriate
for animal populations.

Typical dynamics are displayed in Figure 2.4 on the following page. This
pulsed SIR model behaves much like the simple SIR model during the year.
After an epidemic in the simple in SIR model the disease dies out [Keeling
and Rohani, 2007, chap. 2], but in the pulsed model the addition of more
susceptibles prevents this from happening. If the pulse raises the level of
susceptibles sufficiently then another epidemic is triggered that year.
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Figure 2.4: Typical dynamics for the pulsed SIR model
described in Equations 2.1 on the preceding page. The birth
pulse is clearly seen in the time-series plot as an instantaneous
change in S on each of the annual vertical dashed gird lines.
Similarly in the phase portrait the birth pulses are the four
horizontal lines. Looking at the time-series data it initially
looks biannual, with a large epidemic in the first half of every
other year. However, upon closer inspection it actually has
a period of four years which is clearly evident in the phase
portrait. This phenomenon is investigated in Section 2.4
on page 53. Parameters: g = 0.075, β/g = 4, x = 0.24,
d ≈ 0.274.
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Lemma 2.1 The basic reproductive ratio R0 for the system described in Equa-
tions 2.1 on page 29 is

βx

(g + d)dτ
.

Furthermore R0 = 1 defines a transition point, so that if I is initially small
then İ > 0 initially iff R0 > 1.

Proof:

First note that by setting I = 0 the susceptible dynamics during the year,
between birth pulses, can be described by

Ṡ
∣∣∣
I=0

(t) = −dS,

so

S|I=0 (t) = S0e
−dt

= e−dt as S0 = 1.

The choice of S0 = 1 is not entirely arbitrary as it represents the disease free
equilibrium. Consider the following difference equation for S at the end of
each year in the absence of infection:

S(n+1)τ = Snτe
−dτ + x for n ∈ N

= Snτe
−dτ + 1− e−dτ .

Solving this equation for a steady state S∗ yields

S∗ = S∗e−dτ + 1− e−dτ

S∗ = 1.

Showing that the choice of relationship between x and d is justified. Thus
it suffices to take the average over a single year because the birth pulse resets
S back to the value at the start of the year.
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From Section 1.3 on page 9, R0 is calculated as:

R0 = (infectious period)×
(

average rate over one year at which
secondary cases are produced

)
=

1
g + d

× β

τ

∫ τ

0
S|I=0 dt

=
β

(g + d)τ

(∫ τ

0
e−dtdt

)
=

β

(g + d)τ

(
1
d
− 1

d
e−dτ

)
=

β

(g + d)dτ

(
1− e−dτ

)
.

If it is assumed that I � 1 then S behaves approximately like S = e−dt

Assuming this for 0 < t < τ it is possible to directly integrate the İ equation
so that

I(τ) ≈ I(0) exp
(∫ τ

0
βS − (g + d)dt

)
. (2.3)

Then I is increasing, over a one year period iff∫ τ

0
βSdt > (g + d)τ

β

[
−−e−dt

d

]τ

0

> (g + d)τ

β
(
1− e−dτ

)
> d(g + d)τ

βx

(g + d)dτ
= R0 > 1.

�

In the limit as d → 0 the pulsed SIR model (Equations 2.1 on page 29)
becomes the simple SIR model (Equations 1.5 on page 15). It is now shown
that in the limit as d → 0 the value of R0 for the simple SIR model is
recovered. To demonstrate this it suffices to show that

lim
d→0

1− e−dτ

dτ
= 1.
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Figure 2.5: How R0 for the pulsed SIR model (Lemma 2.1
on page 29) compares to R0 = β/g for the simple SIR model
over parameter space. In this case g = 0.075. The two values
are the same for d = 0, but diverge as d increases.

Noting that limd→0 1− e−dτ = 0 and limd→0 dτ = 0, by l’Hôpital’s rule

lim
d→0

1− e−dτ

dτ
= lim

d→0

d
dd

(
1− e−dτ

)
d
dd (dτ)

= lim
d→0

τe−dτ

τ

= 1.

Whence the R0 equation for the simple SIR model is recovered.
Figure 2.5 illustrates the relationship between R0 for the two models.

For small d R0 ≈ β/g, and as d increases they diverge. This relationship is
exploited in the following work. For simplicity many graphs are plotted as
β/g against d (for example Figure 2.5) as this approximates R0. While in
reality plotting a graph on these axes involves changing β along the x-axis,
it is scaled as β/g in the hope that this is more meaningful to the reader.
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2.2 Periodic orbits

Motivated by the attracting periodic orbits illustrated in Figure 2.4 on
page 30, it is clear that one of the key features of the pulsed SIR model
(Equations 2.1 on page 29) is the annual and multi-annual periodicity inherent
from the forcing. As such it was decided to try and classify the existence and
periodicity of attractors throughout a biologically relevant parameter space.

Due to the nature of this system it is some what cumbersome to treat
analytically, although some progress is made in Chapter 4 on page 142. Thus
the use of numerical methods is necessitated in order to gain a quantita-
tive understanding of the dynamics. This section describes the numerical
techniques developed to quantify and then analyse the periodic nature of
this system. The mainstay of this is the period finding algorithm (discussed
in Box 2.1 on page 40) which calculates how many years it takes for the
system to return to the same state.

Many tools exist to analyse dynamical systems numerically. A review of
the several of the available tools was conducted to determine their suitability
for the study of the pulsed SIR model presented in the previous section.

AUTO [Doedel, 2007] is probably the oldest of the available tools, dating
back to the late ’70s, and it is still in active development, with the recent
release of AUTO-07p. In fact AUTO is used as a back end by several of the
other packages reviewed here. However, it seems that AUTO is unable to
deal with the birth pulse natively. This is illustrated by one of the example
files supplied with AUTO, where a sinusoidally forced system is encoded by
augmenting the system with two extra variables governed by ODEs such
that the two extra variables converge to a limit cycle that is the unit cycle,
so that one can be used to provide the sinusoidal forcing required. It is
immediately obvious that this approach would not be able to adequately
describe a system forced by a pulse.

DSTool [Guckenheimer, 2004] provides an interactive graphical environ-
ment for exploring dynamical systems. It has roots dating back to around
1995, but has seen little development in recent years, and even the authors rec-
ommend other software that make use of more modern algorithms. However,
DSTool is not able to directly represent the birth pulse.

CONTENT [Kuznetsov, 2001] is another interactive tool described as an
‘integrated environment for analysis of dynamical systems’. It too seems
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to have had little development in the last decade. Unfortunately it seems
that it is only able realise continuous systems of ODEs, and as such it is not
possible to express the pulsed SIR model within its framework.

A much newer piece of software, still under active development, is
MATCONT [Govaerts and Kuznetsov, 2007] builds on the ODE solvers built
into MATLABTM [MathWorks, 2007], and it is the limitations of these that
cause this software to be unsuitable. This is because the MATLABTM ODE
solvers are only able to represent a continuous system of ODEs.

Another more modern tool is PyDSTool [Clewley, 2007], in fact it was
not available when this research was started. PyDSTool ‘provides a powerful
suite of computational tools for the development, simulation, and analysis of
dynamical systems’. Although not feature complete yet, it seems to provide
some support for what it calls hybrid systems, which consist of smooth flows
punctured by discrete events. This is a framework into which the standard
pulsed SIR model would fit.

Given that, at the start of this research, no preexisting dynamical system
tools could be found that where able directly deal with the pulsed SIR
model (presented in Section 2.1 on page 29), is was necessary to create a
de-novo implementation. This was done in C++ [Stroustrup, 2000], which
provides the necessary performance, but at a high enough level to ease the
implementation. The C++ objects are then exposed to the Python scripting
language [van Rossum, 2007] via the SWIG interface generator [Beazley, 2007].
This allowed interactive investigation and plotting using the pylab interface
to matplotlib [Hunter, 2007]. pylab, in conjunction with the IPython

shell [Perez, 2007] provides an interactive numerical computing environment
similar to MATLABTM.

One of the advantages of undertaking a de-novo implementation is that it
gives a greater opportunity to gain insight into the behaviour of the system
in question. In the light of this, the next section reviews some of the available
algorithms for determining the existence of periodic orbits to determine a
suitable method to employ in this case.

2.2.1 Numerical integration

Discretisation is an essential part of numerical simulations of ODE models.
It is not possible to simulate directly the dynamics of a system of ODEs on
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a digital computer. Thus the system must be discretised using a numerical
integration scheme. This is a non-trivial problem and much work has been
done in this field, see for example Hairer et al. [2002]. The central issue
is how closely the dynamics of the discrete approximation provided by the
numerical integrations scheme relates to the dynamics of the continuous
system. There are two ways inaccuracies can occur: discretisation errors and
floating point errors.

Discretisation errors occur when the numerical integration scheme ceases
to become a good approximation to the continuous system. This can happen
for a variety of reasons, but one of the most common is too large a time
step. If the time step is too large then the approximation may fail to capture
dynamics that occur between time steps. However, having a very small
time step is computationally costly and can cause rounding or floating point
errors. Truncation errors also fall into this class. They derive from the
approximations implicit in the make up of numerical integration schemes.

Floating point errors arise from the finite precision floating point arith-
metic used in modern computers. Only a subset of the real numbers can
be stored, for example IEEE double precision equates to roughly fifteen
significant figures. To compound this further errors are introduced when
arithmetic is carried out in these floating point numbers.

Many schemes for numerical integration of ODEs exist, varying in their
complexity, robustness, computational expense and accuracy. There is
usually a trade off between these factors. A detailed discussion of the
available methods is given in Hairer et al. [2002]. As a general rule, however,
a forth order Runge-Kutta method is considered a good method to start
with, because although it is not the most computationally efficient, and does
not give the highest orders of accuracy, it is relatively simple and very robust.
For simplicity it was chosen to implement this method with a fixed time
step.

In order to gauge the effects of the discretisation errors described above
an error analysis was performed. Figure 2.6 on the following page shows how,
for a selection of attractors, the relative error decreases as the number of
time steps per day increases. The error is measured relative to a trajectory
calculated using a very large number of time steps per day. Linear regression
reveals that the slope of the lines is approximately 3.9, which is a good fit
for the fourth order Runge-Kutta method in use.
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Figure 2.6: Comparison of maximal relative error around
a selection of attractors for different time step sizes for the
pulsed SIR model (Equations 2.1 on page 29). The error
is calculated relative to the path of the attractor calculated
using 512 steps per day. Solid lines and dashed lines show
the relative error in S and I respectively. Parameters given
as (β/g, x), g = 0.075 throughout. Blue: (20, 0.5) period 1,
green: (2, 0.01) period 1, magenta: (7.5, 0.05) period 3, red:
(4, 0.24) period 4.

Four steps per day was chosen as a compromise between accuracy and
the computational effort required to perform the simulation. The larger
error for the blue line in Figure 2.6 is not an issue as it occurs in an area
of parameter space where only period one dynamics are seen, thus there is
very little scope for errors to occur. Moreover, the relative error is still small
compared to the dynamic range within an orbit.

Thus the forth order Runge-Kutta method with a fixed time step of 0.25
days gives a robust method for numerically calculating trajectories of the
pulsed SIR model.

2.2.2 Period finding algorithms

There are a variety of possible algorithms that could be used to find periodic
solutions of dynamical systems. Two of the most popular are described
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below.
The simplest and most obvious method, to find attracting limit cycles,

is to use forward numerical integration. Starting at a point in the basin of
attraction of a stable limit cycle, then the trajectory converges to the limit
cycle as t →∞. The main advantage of this method is that it is simple, and
if it is the initial point is in the basin of attraction of an attracting limit
cycle, then its success is only dependent on the accuracy of the numerical
integration routine. However, this method does have its drawbacks. Firstly it
can only find stable periodic orbits (although it is possible to some unstable
periodic orbits through reverse time integration), and secondly it can be
computationally expensive, especially if it takes a long time to converge to
the attractor. Also, a stopping criterion has to be defined, to determine when
the trajectory is close enough to the periodic orbit, and what its period is.

Another method, that is capable of finding both stable and unstable
limit cycles involves reformulating the problem as either as a root finding, or
minimisation problem over the state space [Parker and Chua, 1989]. This is
achieved by considering the annual map of the system, which is the case of
the pulsed SIR model is given by

Φτ (S0, I0) =
(

S0 + x

I0

)
+
∫ τ

0

( ˙S(t)
˙I(t)

)
dt.

Then the annual points of a period p limit cycle (that it points on the
trajectory when t = nτ , n ∈ N) will be fixed by the pth composition of Φ
with itself, that is they satisfy

Φp
τ (S0, I0)−

(
S0

I0

)
= 0. (2.4)

Of course there is no closed form for Φ and it must be determined by
numerical integration. Then the above expression can be solved, by for
example a 2D Newton’s method. Alternatively, this can be expressed as a
minimisation problem where

f(S0, I0) =
∥∥∥∥Φp

τ (S0, I0)−
(

S0

I0

)∥∥∥∥
is minimised over the state space. This can then be minimised using a
conjugate gradient, or simplex method [Nocedal and Wright, 1999]. These
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methods have the advantage of being less computationally intensive than
the simple use of forward numerical integration, although each evaluation
of Φp does require integrating the system p years forward in time. Another
advantage is the possibility to check for the existence of an attractor of a
particular period, though this can be a disadvantage as they each have to
be checked individually. The main disadvantage of this technique is that it
there is no guarantee that the minimisation will find a zero of f , it could
for example get stuck at a non zero local minimum. In other words it is less
robust and more sensitive to the choice of starting point (S0, I0). Techniques
similar to this are used by Schwartz and Smith [1983] in the study of an
SEIR model with seasonally forced transmission.

One other advantage of restating the problem is this form is that it allows
the use of preexisting tools that are able to find periodic solutions of discrete
maps. Of the tools reviewed above at least AUTO and PyDSTool would be
suitable for this. However, this approach was not pursued.

Both of these methods have their advantages and disadvantages. The
main advantage of the direct integration method is that it is guaranteed
to find a attractor (even chaotic ones), but that is can be computationally
intensive under certain circumstances, also there is no need to explicitly
check for each period. While the minimisation method is the reverse: it
may not always find an attractor, but can be fast. However, in order for
this method to find every possible attractor it must test every period in
each basin (although of course the number and locations different basins will
not be known). As such it may be optimal to use a hybrid method, where
direct integration is used to get close, followed by minimisation to achieve
the desired level of accuracy.

2.2.3 Chosen algorithm

This subsection describes in detail the implementation and development of the
direct forward integration algorithm described in the previous section. This
method was chosen initially for simplicity, and as described in Subsection 2.2.4
on page 43, it achieves good results, when combined with certain refinements
to the algorithm. The fact that this algorithm is unable to find unstable
limit cycles is not of major concern, because they biologically less important.
The details of the precise algorithm used are discussed in Box 2.1.
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First of all, a parameter space was chosen to represent biologically realistic
ranges for each of the three parameters. β/g(≈ R0) was chosen to run from
0.98—just less than unity to test that the numerics show the infection dying
out—to 20. x was chosen to run from 0.01 to 0.5. This corresponds to a
birth/death rate varying from 2.7535× 10−5 to 1.8990× 10−3 per day or an
average life expectancy of about 100 years to 18 months. Realistic values of
g were considered to be between 0.075 and 0.5, so that the infectious period
ranges from about two weeks to two days. A grid was then placed on this
space and the dynamics considered at discrete points in this space. For β/g

the range was covered by 318 points, including the end points, with a regular
spacing of 0.06. The x range was covered by 301 logarithmically spaced
points including the end points. This grid in β/g-x space will from here on
in be referred to as parameter space. For g however, only 4 values 0.075,
0.100, 0.250 and 0.500 were chosen. This was done for g rather than one of
the other two parameters because in practise it is much easier to measure
g. Out of the three parameters g is, to a greatest extent, a function of the
disease rather than the population—or even a combination of the two. Thus
when trying to fit the model to a real disease this approach makes comparing
epidemics, of the same disease, across different populations possible.

2.1 Calculating the period

Accurately determining the period of an attractor numerically has proved
to be a challenging problem. Firstly, the possibility that a point may not have
converged to a limit cycle and indeed may never do so must be considered!
In some areas of parameter space the convergence can be very slow (of the
order of several thousand years) so determining when to stop and assume
a periodic attractor doesn’t exist can be problematic. How the algorithm
works is now described. All the numerics only consider the state variables S

and I, together denoted here by P. The value of R is not calculated because it
is simply a function of I. A fixed time step fourth order Runge-Kutta scheme
was used for integration [Hairer et al., 2002], as discussed in Subsection 2.2.1
on page 35.

The core of the period finding is the function try_periods():

function period=try_periods(P) :
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Figure 2.7: The period calculation algorithm explained
graphically, showing how try_periods() works. The sys-
tem starts at P_start—denoted by the left most pair of
crosses. Iterating forward in time—moving to the right—
try_periods() checks if the state—denoted by circles—is
close to P_start. After four years the system returns to the
original state P_start—right most pair of crosses.

P_start=P

for period = 0 to MAX_PERIOD :

iterate_forward(ONE_YEAR,P)

if is_close(P,P_start) : return period

return -1

This function simply checks if the the system returns to the same state (up
to a tolerance, see Box 2.2 on page 43) indicating that the system maybe on,
or converging to a limit cycle. If the system doesn’t return the the same state
within MAX_PERIOD years it terminates and returns a period of −1 signifying
failure. This function is illustrated in Figure 2.7.

The above process works well when starting on or close to an attrac-
tor, but will fail if the system has not yet converged. The next func-
tion check_again() deals with this by iterating the system forward for
TRY_AGAIN_YEARS, usually 100, before calling try_periods() again:

function period=check_again(P) :

for k = 1 to MAX_TRIES :
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period = try_periods(P)

if period == -1 :

iterate_forward(TRY_AGAIN_YEARS,P)

else if period == 1 :

if I < 1e-200 : return 0

else :

if period is even : check_half_period(P,period)

return period

return -1

There is a limit of MAX_TRIES (usually 50) calls to try_periods() to
avoid an infinite loop. If this limit is reached −1 is returned.

If the system fails to get back to the same state again within MAX_PERIOD

years one of three things could be happening:

• P is not in the basin of attraction of a periodic attractor and thus will
never converge.

• P has not yet converged to an attractor.

• It is on a periodic orbit with period greater than MAX_PERIOD.

• It is on a chaotic attractor.

In all four cases try_periods() will return −1. When this happens
check_again() will iterate the system forward for TRY_AGAIN_YEARS and
call try_periods() again, assuming MAX_TRIES has not been reached. When
MAX_TRIES is reached the presence of a chaotic attractor is usually presumed.
A possible improvement would be to confirm this by checking the Lyapunov
exponent to confirm if the dynamics are in fact chaotic.

The check_again() function also deals with a couple of special cases. If
try_periods() returns 1, the state is the same after only one year, then it
is quite possible that the state has not changed at all. Some basic analysis
shows that the only time that this can happen is through extinction, thus
a check of whether I is approaching machine precision is carried out in the
period 1 case. In the case that the period returned by try_periods() is
even, the half period check is applied. This is discussed in detail in Box 2.4
on page 50.
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Before finally returning the period the top level function calc_period(),
if it has locked on to an attractor, moves P to the annual point on the
attractor with maximal I:

function period=calc_period(P){

period=check_again(P)

if period > 0 : minimise_I(P)

return period

}

2.2 Closeness

A key method in these numerics is to decide if two points in phase space
are in some sense close. To determine this the following function was chosen.
Given two points P1 = (S1, I1) and P2 = (S2, I2) they are said to be close if

d(P1, P2) =
∣∣∣∣1− S1

S2

∣∣∣∣+ ∣∣∣∣1− I1

I2

∣∣∣∣ < ε

This function was chosen instead of the Euclidean metric because it gives a
more comparable measure of closeness for both large and extremely small
numbers. In essence it ensures that the relative error is small, not just the
absolute error when S, I ≤ 1. This is important because I can range from
order 1 to order 10−15 or smaller. In most calculations, including period
calculations, ε = 10−8.

It is worth noting that d is not a metric on R2. While d satisfies the
non-negativity and identity axioms it is obviously not symmetric. This could
be rectified by defining

D(P1, P2) = d(P1, P2) + d(P2, P1).

This was not done for performance reasons.

2.2.4 Results

Preliminary investigations showed that the system exhibited periodic attrac-
tors at the vast majority of points in the chosen parameter space. Initial
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Figure 2.8: Period of resultant attractors for with S0 = 0.02,
I0 = 0.0005 for g = 0.075.

attempts to classify the period of attractors throughout parameter space
can be seen in Figure 2.8. The majority of parameter space exhibits annual
dynamics. The major feature though is the ‘banana’ shaped region of period
two dynamics. This kind of behaviour has been observed in other systems.

There is also a smaller ‘tongue’ of period four dynamics. The ‘speckling’
around some of the transition areas is interesting. Points close in parameter
space converge to different attractors. This suggests that there may in fact
be two attractors of different periods in that region.

By superimposing R0 contours on the data of Figure 2.8, Figure 2.9 on
the next page shows that the R0 = 1 isoline is clearly a transition from
annual dynamics to extinction showing how well the numerics and analysis
agree.

The algorithm used to classify these attractors is described in Figure 2.7
on page 41, and in Box 2.1 on page 40. The same data was also calculated
for g = 0.100, 0.250 and 0.500, though the figures are not shown as this data
is only preliminary. This will become apparent in the following section where
coexisting attractors are explored.

Several things were learnt in producing the data for Figure 2.8:

• Convergence in some areas of parameter space (specifically small x
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Figure 2.9: Data from Figure 2.8 on the preceding page
superimposed with the R0 contours of Figure 2.5 on page 33.
The R0 = 1 contour closely follows the left hand edge of the
period one region. The period one region should extend right
into the bottom left corner, but in this region of parameter
space convergence is extremely slow and the period finding
algorithm has not given them sufficient time to converge.

and/or β/g) is very slow, of the order of several thousand years.

• It seems that attracting periodic orbits exist throughout parameter
space as expected, with the exception of the region R0 < 1 in which
extinction occurs.

• There is evidence of multiple coexisting attractors in some areas of
parameter space.

The last point is covered in depth in the next section.
Some improvements could be made to this algorithm, for example to

check if an attractor is in fact chaotic the Lyapunov exponents could be
calculated. Also the use of alternative algorithms, such as the minimisation
techniques discussed in Subsection 2.2.2 on page 37, could be investigated,
these would be able to find unstable limit cycles too, but at they are less
robust. Perhaps as discussed in a Subsection 2.2.2 a hybrid approach could
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be most successful, combining the robustness of direct integration, with the
speed of a minimisation method.

2.3 Coexisting attractors

This section attempts to uncover the extent of the coexisting attractors
who’s existence was suggested in the previous section. Finding these attrac-
tors requires the use an other range of numerical algorithms: continuation
methods.

2.3.1 Continuation algorithms

In general continuation methods involve computing approximate solutions
to a system of parameterised, usually nonlinear, equations:

F (y, λ) = 0, F : Rn × Rm → Rn (2.5)

where F is assumed to be smooth so that by the inverse function theorem
a solution exists, parameterised by λ. Take for example the autonomous
system of ODEs

ẏ = F (y, λ),

where λ is scalar. In this case the solutions of Equation 2.5 are the fixed
points of the system of ODEs. A plot of λ against y (or one component of y)
forms the familiar bifurcation diagram.

There are two main algorithms for approximating solutions of Equation 2.5
simplicial continuation, and predictor-corrector continuation. Both assume
an initial point (y0, λ0), with F (y0, λ0) = 0 is known.

Simplicial continuation, also known as piecewise linear continuation,
algorithms [Allgower and Georg, 2000] work on a similar premise to the
bisection method. Consider the example above where the solution is a curve
in R2 and an initial point (y0, λ0) is known, also F is defined so that it is
positive on one side of the solution curve and negative on the other. Then
any line segment AB, such that F (A) > 0 and F (B) < 0 must intersect the
solution curve. Now let a line segment AB containing y0 form the base of a
triangle, ABC, then the solution curve must also pass though either AC or
BC, the location of this intersection can be determined by linear interpolation
or bisection, if a higher accuracy is required. This yields a second known
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Figure 2.10: A graphical representation of simplicial contin-
uation. The left hand side shows how the first step is made
given that (y0, λ0) is known to lie on the solution curve. Given
that the solutions curve enters the triangle ABC though edge
AB, it must leave though either AC or BC, depending on
the sign of F at C, that is which side of the curve C lies on.
The right hand axes show how the algorithm progresses, solid
lines show simplexes that intersect the solutions curve, dotted
lines represent simplexes that don’t.

point on the solutions curve, as illustrated on the left of Figure 2.10. The
process is now repeated with either AC or BC as the base of the triangle.
In this way the solution curve can be followed, as is shown on the right
of Figure 2.10. Different triangulation patters can be used, Figure 2.10
illustrated a square lattice with cells subdivided along the diagonals to form
triangles, however, an isometric grid has also been used [Wheeler, 2006,
Section 3.8.3].

The second class of continuation methods use a two stage predictor-
corrector process to determine an approximation to the next point on the
solution curve [Doedel, 1997]. They work by making an initial guess for a next
point on the solution curve, using the known point(s), or other information,
for example the gradient. This is the predictor part of the process, and
is denoted by the arrows in Figure 2.11 on the next page yielding a first
estimate (ȳ1, λ̄1) for the next point. There are several methods for making the
predictor step, and Figure 2.11 on the following page shows the simplest. The
parameter λ is incremented by a fixed amount and the previous value for y is
used, that is ȳ1 = y0, this could be considered a zeroth order extrapolation.
If, for example there is knowledge of the derivative of F , then an Euler step
could be used, or multiple previous points could be used to extrapolate the
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Figure 2.11: Predictor-corrector continuation, following a
solution curve, F (y, λ) = 0, shown in blue. Given a known
point on the curve (y0, λ0), left hand axes, then an initial guess
(ȳ1, λ̄1) is made–the predictor step–illustrated by an arrow.
Then this guess is refined in the corrector step, using some kind
of iterative method, dashed line yielding an approximation to
a second point on the solution curve (y1, λ1). The right hand
axes show how the algorithm proceeds with multiple steps.

position.
The corrector step, illustrated by dashed lines in Figure 2.11, attempts

to improve on the estimate given, usually by using a iterative approach to
get closer to the solution curve. What iterative algorithm is used will vary
depending on the problem but if the problem is finding stable fixed points
of a map, or system of ODEs then is could involve forward integration or
repeated application of the map. Alternatively minimisation or Newton
methods may be used, depending of the formulation of F .

Predictor-corrector algorithms can be taken one step further by allowing
the increment in the parameter λ to vary with each step. One such adaptive
predictor-corrector algorithm featuring a tangential predictor, and Newton
corrections was utilised by Kuznetsov and Piccardi [1994] to perform a
bifurcation analysis of SIR and SEIR models with a sinusoidally varying
contact rate. The same system is studied by Schaffer and Bronnikova [2007]
and continuations of periodic orbits are this time performed using a secant
predictor and again Newton-Raphson for the corrector stage.

The extension of these techniques into two or more parameter dimensions,
m, can lead to complex algorithms to deal with the potentially more complex
topology of the solution manifolds. These are reviewed in Henderson [2002],
and not discussed here. However, if the problem is on a fixed two dimensional
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grid in parameter space then the simple approach of using the one dimensional
predictor-corrector algorithm to approximate the value at an adjacent grid
point in parameter space can be used. In fact, this is the method that was
chosen, in conjunction with zeroth order extrapolation for the predictor stage,
and direct forward integration for the corrector stage. The details of the
implementation of this algorithm are described in the next subsection.

2.3.2 Chosen algorithm

To explore the extent of coexisting attractors a program was written, imple-
menting some of the continuation techniques discussed above. The process
of finding these new attractors was dubbed pushing out and the details the
precise methods used are described in Box 2.3 and Figure 2.7 on page 41.
In brief they comprise a predictor-corrector algorithm with a zeroth order
extrapolation predictor and direct forward integration corrector.

In order to search for new attractors several assumptions are made.
Firstly, it is assumed that regions of the same period are connected, or at
least connected to a currently known area of the same period. That is to say
there are assumed to be no isolated points, and should any exist they will
not be found. Secondly, there are no areas where multiple distinct attractors
of the same period exist. If this were to happen, no attempt would be made
to distinguish between them.

2.3 Pushing out

Pushing out is the algorithm used to find attractors in new regions of
parameter space. It works on attractors of each period independently. Taking
the regions in parameter space where attractors of the given period are known
to exist, it finds all the points adjoining these regions and stores them in a
list paired with an adjoining point inside the region where the attractor is
know to exist. For each pair it tests if the same attractor still exists at the
adjoining point using a simple predictor corrector algorithm. If it exists the
point is added to the region, if not it is marked as an edge point. When it
has finished all the points in the list it goes back and makes a new list of
adjoining points and tests them. This process continues until all regions are
surrounded by edge points.
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To test if an attractor exists at an adjoining point one could just use the
values of S and I from the point inside the region as initial conditions at the
adjoining point and see if it converges to the same period. There is a risk
here that if the grid is not fine enough then you could be outside the basin
of attraction of the attractor one seeks at the adjoining point. Thus, rather
than move between adjoining grid points in a single step many small steps
are taken to ensure that the system stays within the same basin of attraction.
Typically twenty steps are taken and the model is iterated forward for two
years at each intermediate point.

This algorithm is explained graphically in Figure 2.12 on the next page.

2.4 Half period

It was found that in some places the period calculation algorithm would
sometimes return double the real period. This seems to be because of the
way trajectories converge to a limit cycle. Figure 2.13 on page 52 shows a
typical pattern of convergence. Notice that the annual points oscillate about
the limit point in such a way that they are closer to themselves after two
years than they are after one. Once the biannual separation falls below the
tolerance used by the period calculation algorithm the algorithm will think
it is on a period 2 attractor.

To circumvent this issue, whenever the period finding algorithm returns
an even period 2p, a check is made to see if the distance between points p

years apart is also fairly small. If so it iterates the system forward to see if it
can get the p separation to within its tolerance. The following pseudo code
shows how this is done:

function check_half_period(P,period) :

P_start=P

iterate_forward(period/2,P)

if is_close(P,tolerance=0.05) :

iterate_forward(START_YEARS*5,P)

period=try_periods(P)

The function stores the stating point, P_start, and iterates P forward
half a cycle, that is p years. If it is still reasonably close to the starting
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Figure 2.12: How pushing out works, explained graphically
on a 5 by 5 test grid. (a) Shows the initial data for just the
period being pushed out. The initial data as obtained by
using the same initial conditions at each point on the grid.
The symbol Xmarks grid points where an attractor of this
period exists. Empty boxes are as yet untested as to whether
or not an attractor of this period exists or not. (b) Shows the
first pass. Arrows point from the points where existence is
known to adjoining untested points. At most of the adjoining
points the attractor still exists, marked with X, but at one
point an attractor of the period in question no longer exists,
denoted by a ×. (c) Shows the second pass which repeats the
same process at with the first pass. (d) Shows the final pass,
no more new points can be added because the region where
the attractor of the period in question exists is bounded by
either the edge of the grid or the points where an attractor
of the same period doesn’t exist.
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Figure 2.13: How trajectories converge to an attractor. The
grey line represents a point on the attractor. The circles are
annual points taken from a trajectory. Notice how a point is
closer to the next-but-one point than it is to the next. The
fixed point S∗ ≈ 0.240

point this suggests that the the system not be on a period 2p attractor, but
converging to a period p one. To check this, the code iterates P forward
for 5×START_YEARS. The the idea is that if a period p attractor exists the
system has converged close enough for try_periods() to lock on to it rather
that the period 2p one.

2.3.3 Results

The data sets for all four g values are displayed in Figure 2.14 to Figure 2.17
on pages 54–55. Comparing the data before and after pushing out for
g = 0.075 (Figure 2.8 on page 44 and Figure 2.14 on page 54) two changes
become apparent. Firstly, the speckled area on the upper boundary between
periods one and two has become an overlap. Secondly the period three
speckles have merges to form a contiguous region overlapping both the lower
period one, and period two regions. There is now a substantial proportion of
parameter space—roughly 29% in terms of number of grid points—where
two attractors coexist.
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Now comparing the data for different values of g it is clear that the
complexity increases with g. Although it is important to not e that because
a constant range of β/g (approximately the reproductive ratio) is considered,
increasing g also has the effect of increasing the transmission rate β. Higher
periods appear and there are more overlaps. With g = 0.075 there is a single
‘tongue’ of period four. At g = 0.100 there are tongues of period four eight
and nine that have emerged from the top left. As g increases further to 0.100
the tongues move down and right. At the highest value g = 0.500 most of
the tongues heads have passed out of the parameter space to the bottom
and right leaving only their tails. In their wake is a large chaotic region.

Looking more closely (at for instance g = 0.100) there is clear evidence
of period doubling, period two becomes period four then eight, sixteen.
Similarly for period three though this is harder to pick out.

Another observation from Figure 2.15 on the next page (g = 0.100) is the
existence of two distinct overlapping tongues of period six attractors. Fig-
ure 2.19 on page 56 shows an enlargement of just the two period six tongues.
To distinguish them, they are coloured by the value of I at the fixed point at
which I is minimal. Figure 2.18 on page 56 shows phase plots of two of the
period six attractors at a point in the overlap. The two attractor have clear
structural differences. The blue attractor looks like a period three attractor
that has undergone period doubling. Where was the period three could be a
period two attractor that has undergone a period tripling bifurcation.

2.4 Attractor properties

To further understand the properties of the attractors, several other proper-
ties were computed over the whole parameter space. The hope is that by
calculating some properties of the attractor it will be come clear which are
more likely to manifest them selves in reality. Firstly, the minimal value of I

attained on each attractor across parameter space is calculated. This can
give an indication of how likely the infections is to die out due to stochastic
effects, that any real population is likely to experience. Secondly, the modal
frequency component of the time-series representing one cycle each attractor.
This is compared to the period of the attractor.
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Figure 2.14: Attractors found after pushing out for g =
0.075.
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Figure 2.15: Attractors found after pushing out for g =
0.100.

54



1 5 10 15 20

Approximate reproductive ratio, β/g

0.01

0.02

0.05

0.10

0.20

0.50

D
ea

th
ra

te
,
d

(y
ea

r−
1
)

Chaos

1

2

3

4

5

6

7

8

9+

Period

Figure 2.16: Attractors found after pushing out for g =
0.250.
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Figure 2.17: Attractors found after pushing out for g =
0.500.
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Figure 2.18: Coexisting period 6 attractors for the pulsed
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Parameters: R0 = 3.68, x = 0.143, g = 0.100.
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Figure 2.20: The minimum value of I attained around the
attractor, or attractors, at each point in parameter space. In
this case g = 0.075.

2.4.1 Minimum I

First of all the minimum value of I attained around each attractor was
determined. This is important because it helps in understanding if a disease
will die out. Real populations are discrete, so if I < 1/N—where N is
the size of the population—the disease will certainly die out. In fact it
may only be necessary for I to be close to 1/N as there will inevitably be
stochastic variations in a real system that may lead to extinction. The result
of calculating the minimum of I over the whole of the the chosen parameter
range for g = 0.075 is shown in Figure 2.20. It is clear that the density
of infection does reach very low levels in some regions of parameter space.
Two regions show particularly small values of I, the top of the period two
region and the top left corner, where both d and β/g are large. This is not
surprising. With a high transmission rate an epidemic will quickly take off
and the supply of susceptibles will quickly be exhausted, so the epidemic
will peak early allowing time for most of the infecteds to recover before the
next birth pulse arrives. The high death rate will also aid in diminishing the
level of infecteds in this period.
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Figure 2.21: The modal frequency component on each at-
tractor. In this case g = 0.075.

2.4.2 Modal frequency

When looking at the time-series in Figure 2.4 on page 30 the dynamics appear
to be period two, but on closer inspection it becomes apparent that they are
infect period four and the phase plane plot confirms this. So in a real system
if exhibiting this kind of behaviour, what is important it that it is having a
major epidemic every two years, it is not so important that the size of these
major epidemics alternates slightly.

Here, to try and detect this phenomenon, the modal frequency component
of the time-series representing one orbit around the attractors is calculated
at each point in parameter space. The calculation is performed using a fast
Fourier transform, and taking the largest component.

The result of calculating the modal frequency over the whole parameter
space for g = 0.075 is shown in Figure 2.21. This shows that the only area
where the modal frequency is not equal to the period is the period four region.
This means that when ever period four dynamics occur they will, behave like
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Figure 2.22: Comparison of the natural period of the un-
forced standard SIR model (Equations 1.1 on page 6), and the
period standard pulsed SIR model (Equations 2.1 on page 29).
In this case g = 0.075.

period two dynamics, with a major epidemic every two years.

2.4.3 Interaction of time-scales

Another way to help elucidate the dynamics of the system is to consider
the time-scales present in the system. The pulsed SIR model presented
in this chapter has two inherent time-scales, the natural period of the un-
forced system and the annual time-scale induced by the forcing. It is the
interaction between these two time-scales that causes the complex annual
and multi-annual cycles.

Figure 2.22 shows the actual period of the system, overlaid with the
natural period of the system across parameter space. There is no clear
correspondence between the actual and natural periods. Even in the region
where the natural period is annual, and therefore equal to the period of the
forcing, the two periods do not agree. Of course, it is worth bearing in mind
that the natural period calculation relies on a local linearisation of the system,
and this is only valid locally around the fixed point of the un-forced system.
Thus this simple analysis alone cannot explain the complex multi-annual
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un-forced standard SIR model (Equations 1.1 on page 6) Red
arrows are for the same equations, but without the birth
term, which are the ODEs used in the pulsed SIR model
(Equations 2.1 on page 29). The blue line shows a period four
attractor of the pulsed SIR mode, and the red circle shows the
endemic fixed point of the standard SIR model (with births).
Parameters: β/g = 4, x = 0.24 and g = 0.075.

dynamics. Further understanding of the causes of the multi-annual dynamics
is gained in Section 2.5 on page 62, where they are shown to be an example
of nonlinear resonance.

Figure 2.23 shows the vector fields associated with the un-forced model
(i.e. an SIR model with a constant death rate, but no births), and standard
SIR model (i.e. with constant birth and death rates) overlaid with a period
4 attractor. It is proposed that the time scale of the forcing interacts with
the time-scale of the underlying ODEs. For example a period one attractor
exists where the continuous dynamics over a year (that is up until just before
the birth pulse) map a point such that its image is in exactly the right place
for the pulse to take it back to the initial point. Higher period dynamics
occur when multiple years continuous dynamics and multiple pulses cause
the initial point to be regained.
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g = 0.500.

2.4.4 Chaotic attractors

For values of g ≥ 0.100, the pulsed SIR model presented in this chapter has
been shown to exhibit dynamics, where the period finding algorithm (Box
2.1 on page 40) was unable to determine the period of the dynamics. This
subsection shows that at least some of those dynamics are indeed chaotic.

Figure 2.24 shows the distribution of annual points of a chaotic attractor,
in other words the strange attractor of the annual map associated with the
pulsed SIR model. Together the points form an ‘s’ shaped curve. The insert
shows one area of the curve enlarged, and it can be observed that the curve
consists of two lines. In fact, enlarging again (not shown), those two curves
can be seen themselves to be made of up two curves. The attractor seem to
have structure on many levels. The Floquet multiplier (see Section 3.1 on
page 90) for this attractor was calculated to be about 1.387 which is clearly
greater than unity and hence the attractor shows strong sensitivity to initial
conditions and chaos in the truest sense.

This attractor is similar to that of the Hénon map [Hitzl and Zele, 1985].
It also bear resemblance to chaotic attractor exhibited by SEIR models with
sinusoidally forced transmission rates used to model childhood diseases such
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as measles [Kuznetsov and Piccardi, 1994, Schaffer and Bronnikova, 2007].

2.5 Resonant effects

To investigate if the multi-annual dynamics exhibited by the standard pulsed
SIR model are caused by nonlinear resonance the following analysis was
undertaken, based, in part, on the techniques described by Greenman et al.
[2004]. These techniques are reviewed in Section 1.8 on page 19 in the
context of a sinusoidally forced transmission rate. Ireland et al. [2004] used
these techniques to look at a similar model, where the births where forces
sinusoidally.

The idea is to calculate the resonance response curve for a system with
low levels of forcing birth term (that is using a simple step function that is
low in the first half of the cycle and high in the second), which is expected
to show harmonic resonance, and examine how the resonance response curve
changes as the strength of the forcing increases and its temporal extent
decreases. That is, the forcing function is zero for most of the cycle, and
high for a short period at the end—so that it is essentially a pulse.

This transition is undertaken in two stages. Firstly, for the step function,
the difference between the value in the first and second half of the cycle,
which is initially small, is increased, until the point where it is zero in the
first half of the year. The second part of the transition consists of narrowing
the temporal extent of this function, form being zero in just the first half of
a cycle, to being zero for all but a tiny fraction at the end of the cycle.

Greenman et al. [2004] take the approach of directly rescaling time by
substituting t′ = pt. However this approach causes the parameters to be
rescaled too. Here instead, the period, τ , of the forcing function is varied and
its magnitude adjusted to compensate. This leaves the parameters untouched
avoiding confusion when comparing across different periods of forcing.

For the first part of the transition the birth forcing function is given as a
step function

Bδ(t) =

{
Qδ(1− δ) for t ≤ τ/2 mod 365
Qδ(1 + δ) for t > τ/2 mod 365.

(2.6)

Where Qδ is calculated so that births and deaths are balanced over the
period of forcing τ , so that N(t) is cyclic, with period τ . Furthermore, the
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dynamics are constrained so that N(t) = 1 for t = nτ , n ∈ N. The parameter
δ is varied from 0 to 1 to give the desired transition.

Lemma 2.2 For the standard SIR model, Equations 2.1 on page 29, forced
with the birth function Bδ(t) given by Equation 2.6 on the previous page,
then for N to be cyclic and satisfy the condition that N(t) = 1 for t = nτ

where n ∈ N, Qδ must be given by

Qδ =
(1 + ξ)d

(1 + ξ) + δ(1− ξ)
with ξ = e−dτ/2 . (2.7)

Proof: By using for birth forcing function given in Equation 2.6 on the
preceding page and summing Equations 2.1 on page 29 an equation for the
rate of change of the populations density is obtained:

Ṅ = −dN + Bδ(t)

The proof proceeds by integrating this equation, given the boundary values
of N are known, and solving the resulting expression for Qδ. There are two
cases to consider, 0 < t < τ/2 and τ/2 < t < τ . The value of N(τ/2) is
denoted by N̂ , which is then equated across both cases.

In the case 0 < t < τ/2

Ṅ = −dN + Q(1− δ).

This can be solved by separation of variables, given the constraints N(0) = 1
and N(τ/2) = N̂ . Thus

∫ N̂

1

dN

−dN + Qδ(1− δ)
=
∫ τ

2

0
1dt
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integrating yields

[
−1

d
log (−dN + Qδ(1− δ))

]N̂

1

=
[
t
] τ

2

0

−1
d

log

(
−dN̂ + Qδ(1− δ)
−d + Qδ(1− δ)

)
=

τ

2

−dN̂ + Qδ(1− δ)
−d + Qδ(1− δ)

= e−
dτ
2 .

For brevity e−
dτ
2 is denoted by ξ. So that

−dN̂ + Qδ(1− δ) = −ξd + ξQδ(1− δ)

−dN̂ = −Qδ(1− δ)− ξd + ξQδ(1− δ). (2.8)

Now in the other case τ/2 < t < τ , the same procedure is followed. In
this case

Ṅ = −dN + Qδ(1 + δ).

Again this can be solved by separation of variables, but this time with the
constraints N(τ/2) = N̂ and N(τ) = 1. Thus∫ 1

N̂

dN

−dN + Qδ(1 + δ)
=
∫ τ

τ
2

1dt

again integrating yields

[
−1

d
log (−dN + Qδ(1 + δ))

]1

N̂

=
[
t
]τ

τ
2

−1
d

log

(
−dN̂ + Qδ(1 + δ)
−d + Qδ(1 + δ)

)
=

τ

2

−d + Qδ(1 + δ)
−dN̂ + Qδ(1 + δ)

= e−
dτ
2 .
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Then with ξ as before

−d + Qδ(1 + δ) = −ξdN̂ + ξQδ(1 + δ).

Now using Equation 2.8 on the preceding page to substitute for −dN̂ in the
above, eliminating N̂ , thus making it possible to solve for Qδ. Whence

−d + Qδ(1 + δ) = −ξQδ(1− δ)− ξ2d + ξ2Qδ(1− δ) + ξQδ(1 + δ)

d(ξ2 − 1) = Qδ

[
2δξ + ξ2(1− δ)− (1− δ)

]
= Qδ

[
−δ(ξ2 − 2ξ + 1) + ξ2 − 1

]
d(ξ − 1)(ξ + 1) = Qδ

[
−δ(ξ − 1)2 + (ξ − 1)(ξ + 1)

]
,

finally yielding

Qδ =
d(ξ + 1)

(ξ + 1) + δ(1− ξ)

as required. �

For the second stage of the transition, the forcing is given by:

Bw(t) =

{
0 for t < τ − w mod 365
Qw for t ≥ τ − w mod 365.

(2.9)

Again w is calculated so that the total populations density N is cyclic,
with period τ and N(t) = 1 at the start of every cycle. The parameter w is
varied from τ/2 to ε, where ε is small. Thus for small w the effect is similar
to a pulse.

Lemma 2.3 For the standard SIR model, Equations 2.1 on page 29, forced
with the birth function Bw(t) given by Equation 2.9, then in order for N to
be cyclic, with period τ , and satisfy the condition N(t) = 1 for t = nτ where
n ∈ N, Qw must be given by

Qw =
(1− e−dτ )d
1− e−dw

. (2.10)

Proof: As in the previous lemma the proof proceeds by integrating the
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equation go the rate of change of the total population density

Ṅ = −dN + Bw(t),

over a cycle. This is split into two cases, 0 < t < τ − w, and τ − w < t < τ ,
and the resulting expressions are equated to solve for Qw. Here N̂ denotes
the mid value N(τ − w).

In the first case where 0 < t < τ − w

Ṅ = −dN.

As was done previously this can be solved by separation of variables,

∫ N̂

1

dN

N
=
∫ τ−w

0
−ddt (2.11)[

log(N)
]N̂
1

=
[
−dt

]τ−w

0
(2.12)

N̂ = ed(τ−w). (2.13)

The second case has τ − w < t < τ , and here the equation for growth of
the population is given by

Ṅ = −dN + Qw.

This is solved by separation of variables:[
−1

d
log(−dN + Qw)

]1

N̂

=
[
t
]τ
τ−w

log

(
−dN̂ + Qw

−d + Qw

)
= dw

−dN̂ + Qw = (Qw − d)edw.
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Figure 2.25: Resonance response curve of the standard SIR
model, forced with the birth function Bδ(t) for δ = 0.23.
Parameters: β/g = 4, d = 7.5× 10−4 (equivalent to x = 0.24
when τ = 365), g = 0.075 and τ runs from 71 days to ∼1056
years. Note the scale on the vertical axis differs from the
following figures.

Now substituting for N̂ using Equation 2.13 on the previous page yields

−de−d(τ−w) + Qw = (Qw − d)edw

Qw =
d
(
e−d(τ−w) − edw

)
1− edw

Qw =
d
(
1− e−dτ

)
1− e−dw

.

�

Notice that for δ = 1 and w = τ/2 Bδ(t) = Bw(t) for 0 ≤ t < τ , so that
the two functions coincide at the crossover point.

Snapshots of the transition are shown in Figure 2.25 to Figure 2.29 on
pages 67–69 for δ = 0.23, δ = 0.54, δ = 1 (or equivalently w = τ/2), w = 0.19
and finally pulsed forcing. Note that only stable fixed attractors are shown,
and that there may exist attractors that are not shown. This is because the
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Figure 2.26: Resonance response curve of the standard SIR
model, forced with the birth function Bδ(t) for δ = 0.78.
Other parameters as Figure 2.25
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Figure 2.27: Resonance response curve of the standard SIR
model, forced with the birth function Bδ(t) for δ = 1.0, or
equivalently using the birth function Bw(t) with w = τ/2.
Other parameters as Figure 2.25.
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Figure 2.28: Resonance response curve of the standard SIR
model, forced with the birth function Bw(t) for w = 0.19.
Other parameters as Figure 2.25.
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Figure 2.29: Resonance response curve for the standard
pulsed SIR model pulsed forcing. Other parameters as Fig-
ure 2.25.
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data was produced using two stages. The first where τ increases, and the
previous fixed point is used as an initial condition, and the second where
the process is repeated for τ decreasing. This means that when bifurcations
occur, i.e. waves break and overlap, than more than one branch can be
detected.

Resonance is usually associated with low levels of forcing leading to a
large amplitude oscillations at certain forcing frequencies, and this is the
behaviour shown in Figure 2.25 on page 67. The response is a smooth curve
with the main resonant peak at τ ≈ 550 days, and above that there are
several peaks representing subharmonics of the main peak.

As the level of forcing is increased, the resonance becomes nonlinear
as illustrated in Figure 2.26 on page 68 showing the classic breaking wave
formation. There are several breaks, and further subharmonics can bee seen
building at the right hand side.

At the mid point of the transition, Figure 2.27 on page 68, where the
crossover between Bδ and Bw occurs, the number of breaks has increased.
There is more complexity and some waves now consist entirely of subharmonic
oscillations. There are also large regions of chaotic dynamics.

As temporal extent of the pulse narrows, as shown in Figure 2.28 on the
previous page, the number of breaks reduces. However, the region of chaotic
dynamics is much larger.

Finally, when the pulse is reached at the end of the transition, shown
in Figure 2.29 on the preceding page, the response curve is significantly
simplified. For very short periods of forcing the dynamics are period one,
but as the length of the period of forcing increases the dynamics become
period two, then four and back to period two at the top of the resonant peak
where τ ≈ 2000 days. Beyond the peak some chaotic dynamics exist. To
put these results into context, the standard pulsed SIR model is normally
considered with annual forcing,τ = 365, this places it just on the left edge of
the period four region in Figure 2.29 on the previous page.

Of course this series of results only considers one set of parameters,
β/g = 4, d = 7.5 × 10−4 (equivalent to x = 0.24 when τ = 365) and
g = 0.075. In order to determine if this behaviour is typical is necessary to
look at representative sample of points in parameter space. Figure 2.30 on the
following page shows the resonance response curves of the standard pulsed
SIR model at six extra points in parameter space, points A–F, as well as
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Figure 2.30: Resonance response curves of the standard
pulsed SIR model for several parameter values, and long
with what period attractors exits for those parameters. Here
g = 0.075 and point G shows the location of previous figures.
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what period attractors exist at each point in point. For completeness, point
G shows the parameter values used in Figure 2.29 on page 69. The points
cover all periods, or combinations of periods, exhibited across parameter
space. Points A–E clearly show the classic breaking wave profile, and at
point B,C and E, where multiple attractors coexist, the grey dashed line,
representing τ = 365, clearly intersects multiple waves.

This system clearly shows nonlinear resonance, for all but the smallest
levels of forcing (Figure 2.25 on page 67, δ = 0.23). Although, the forcing is
applied to a different biological process, the results compare well to those of
Greenman et al. [2004] and also those of Ireland et al. [2004]–where these
techniques are applied to SIR models with sinusoidally forced birth rates.
Note though that in this thesis the amplitude of the forcing is much higher.
Choisy et al. [2006] also uses these techniques to look at the dynamics of an
SEIR model with a seasonally forced transmission rate and pulsed vaccination.
This helps to explain the existence of multiple coexisting attractors, which
coincide with a breaking waves that overlap each other.

2.6 Bifurcation structure

In order understand what causes the transitions between periods as parameter
space is traversed this section studies the bifurcation structure of the pulsed
SIR model. The existence of unstable period one limit cycles is observed and
the level of their instability shown to relate to the higher period dynamics in
the same areas of parameter space.

More detailed studies of the bifurcation structure of epidemiological
models have been carried out before. For example Kuznetsov and Piccardi
[1994] perform a similar bifurcation analysis on the SEIR and SIR models,
but with sinusoidally forced transmission rate. Their analysis was performed
over a two dimensional parameter space spanned by the mean transmission
rate and the degree of seasonality in the transmission rate. A similar study
on this model was also conducted by Schaffer and Bronnikova [2007] and
again by Greenman et al. [2004]. However, a review of the literature found
no work to have been done on the pulsed SIR model as presented here.
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2.6.1 Bifurcation plots

In order to analyse the structure of the bifurcations in a meaningful way
rather than look at the whole two dimensional parameter space the analysis
is restricted to a one dimensional path though parameter space, where one
of the parameters is fixed and the other varies. In the two cases considered
the death rate d—and therefore the size of the birth pulse—is fixed and the
transmission rate β is varied. As in previous sections, the axes are scaled so
that β/g—which is approximately the basic reproductive ratio for the pulsed
SIR model is shown as it is gives more meaningful numbers. The bifurcation
plots below show the value of S at each attractors fixed points. The Floquet
multipliers of the attractor are also shown. The calculations of the Floquet
multipliers is explained in Section 3.1 on page 90.

Figure 2.31 on the following page shows a bifurcation plot for g = 0.075,
which equates to an infectious period of about two weeks. The path though
parameter space, illustrated in Figure 2.32 on page 75, is chosen to cross
all the regions of different periods exhibited for g = 0.075. Starting on the
left there is only period one present, this then under goes a period doubling
bifurcation to become period two. Another period doubling bifurcation
follows to give the period four dynamics. Moving further right the second
period doubling is reversed. and the dynamics return to period two. Around
β/g = 5.5 the region where period one and two overlap is reached, which is
unfortunately quite narrow here. It is clear that as the overlap is approached
the Floquet multipliers of the period two attractor become real and then one
quickly goes to zero while the other tends to one so that the attractor becomes
unstable. Approaching the overlap from the right hand distinct period one
attractor goes unstable because the larger of its two real Floquet multipliers
exceeds unity. The period three attractors that exist for β/g ∈ [2, 2.5] seem
to be distinct from the main group of attractors. They cease to exist, on
both the left and the right when the Floquet multipliers become real and
tend to one and zero.

Similarly Figure 2.33 on page 76 shows a bifurcation plot for g = 0.100,
the path of which is illustrated in Figure 2.34 on page 77. The structure
is much more complex in this case, and is not described in as much detail
as for g = 0.075. The series of period doubling bifurcations that caused
the period 1-2-4-1 sequence seen for g = 0.075 has be come much more
complex. A period doubling cascade is seen and chaos results. For clarity
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Figure 2.31: Bifurcation plot of the pulsed SIR model with
g = 0.075, x = 0.385, d = 0.486, β/g ∈ [0.98, 9.98], this path
is illustrated in Figure 2.32 on the next page. The top plot
shows S at the annual fixed points of the attractors. The
lower two plots show the attractors Floquet multipliers.
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Figure 2.32: Path taken though parameter space by Fig-
ure 2.31 on the previous page—shown as a horizontal black
line.

the chaotic points are omitted, as they would obscure the period three
dynamics. Similarly the isolated period three attractor is now split with a
period doubling cascade in between.

In the case g = 0.075 it has been verified that the same kinds of bifurca-
tions as those shown in Figure 2.31 on the preceding page occur all the way
along the given boundaries.

The biological interpretation of this structure comes from considering
a population-pathogen combination with parameters that lie close to a
bifurcation. Then, if some change occurs to the population, say for example
the area occupied by the population is reduced for some reason, then this
would increase the contact rate, and increase β. Equally a change could
occur to the host or the pathogen, it might mutate, for example, or a change
in climatic conditions may make it more easily transmitted. Either way it is
conceivable that this change could vary one of the parameters, so that the
population-pathogen combination resided in a region of parameter space with
a different periodicity. The bifurcation analysis shows what effect this may
have. If the move is across a period doubling bifurcation, where the period
goes from two to four, then little noticeable change may result because the
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Figure 2.33: Bifurcation plot of the pulsed SIR model with
g = 0.100, x = 0.297, d = 0.352, β/g ∈ [0.98, 9.98], this path
is illustrated in Figure 2.34 on the next page. The top plot
shows S at the annual fixed points of the attractors. The
lower two plots show the attractors Floquet multipliers.
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Figure 2.34: Path taken though parameter space by Fig-
ure 2.33 on the previous page—shown as a horizontal black
line.

period four attractor has fixed points that lie close to those of the period two
attractor. Hence the resulting pattern of epidemics will remain very similar
(this is discussed in more detail in Section 2.4 on page 53). However, if the
change in parameters causes the parameters to shift in such away that the
attractor the system was sitting on became unstable the observed disease
dynamics could change greatly.

2.6.2 Basins of attraction

When multiple attractors coexist at a point in parameter space it is not
obvious which, if any, attractor would be most likely manifest itself when the
model is applied to a real biological system. Studying the basin of attraction
at the relevant point in parameter space is one way to try to answer this
question. They can also help to understand how the model may respond to
large perturbations. The modified brute force algorithm used to determine
the basins of attraction is described in Box 2.5 on page 79.

Figure 2.35 on the next page shows the basin of attraction for the
standard pulsed SIR model with R0 = 5, x = 0.1 and g = 0.075. Note that
this is the basin of attraction for t = nτ , n ∈ N. That is, it shows what
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Figure 2.35: The basin of attraction of the pulsed SIR
model for t = nτ , n ∈ N. overlaid with the attractors to
which points converge. The red line shows the period three
attractor, and the blue line the period two. The annual
fixed points of the attractors are marked with black circles.
Parameters R0 = 5, x = 0.1, g = 0.075.

period attractor a point started at t = nτ , n ∈ N will converge to. This is
because of the seasonal forcing. Alternatively it could be thought of as the
basin of attraction of the annual map.

At this point in parameter space two attractors coexist: period two and
period three. It is clear from the figure that most points are in the basin of
the period two attractor. The basin of the period three attractor is much
smaller. Thus it is quite likely that if a trajectory on the period three
attractor were to receive large perturbation then it may get pushed into the
basin of the period two attractor.

This also explains why the un-pushed out data shown in Figure 2.8 on
page 44 shows very little of the period three region.

It is clear that the structure is very complicated, the basins for period
two and three are intertwined in a complex way. Concentrating on a smaller
area, say the bottom left corner of Figure 2.35, and looking using a higher
resolution, shows that same kind of pattern, but on a smaller scale. These
two factors, suggest that the basin may in fact have fractal boundaries [Ott,
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2002]. Using fractal terminology [Mandelbrot, 1977], the basin has detail
on every scale, and is self similar. This opens up the possibility of using
algorithms developed for use with fractals to reduce the computational effort
required to determine basins of attraction such as illustrated in Figure 2.35.

2.5 Calculating basins of attraction

A simple algorithm to calculate the basins of a attraction is a brute
force approach, that is, given a grid over state space, use each point as an
initial condition for the system and calculate the period of the attractor to
which the trajectory converges, using the algorithm described in Box 2.1 on
page 40. This is a very computationally intensive algorithm. A significant
improvement to this algorithm can be made, without significant increase in
complexity, by assuming that the annual points of all possible attractors is
known for the parameter values in question. Given this knowledge, rather
than continuing to integrate each point in the state space grid until it
converges to an attractor, it is only necessary to integrate forward until the
point is close to one of the know attractors. More specifically, with each
year forward the trajectory is integrated it is compared to each of the annual
points of the known attractors, using the method described in Box 2.2 on
page 43. If a trajectory is found to be close to a particular attractor then its
starting point is classified as being in the basin of that attractor. In fact it
is not necessary to have the list of attractors in advance, it can be compiled
as points converge to attractors not on the list.

This technique saves a great deal of computational effort, especially in
regions where trajectories are slow to converge to periodic orbits.

2.6.3 Unstable limit cycles

An examination of the bifurcation diagram for g = 0.075 (Figure 2.31 on
page 74) and in particular the two disjoint regions of period one fixed points
suggests that these may lie on the same curve and that in the gap there may
exist unstable annual fixed points. This subsection calculates the location of
these unstable fixed points and analyses their stability.

Calculations show that unstable period one limit cycles exits in the
whole of the region between the upper and lower regions of period attractors
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Figure 2.36: I values of stable and unstable fixed points of
the Poincaré map for g = 0.075.

(cf. Figure 2.14 on page 54). The algorithm used locate these unstable fixed
points, which is explained in detail in Box 2.6 on page 84, uses a brute force
approach: calculating the position after one year of a grid of fixed initial
conditions and seeing which point was closest to its starting point. If this
point is indeed close to its starting point, then it approximates the stationary
point.

The I values, at the annual fixed point, of the unstable period one limit
cycles are illustrated in Figure 2.36. There is a clear continuous variation in
I across from the stable to unstable and back to the stable again, to the point
that it is practically impossible to distinguish the two regions. Figure 2.37
on the following page shows the same data for g = 0.100, again there is a
smooth transition in I.

Since the locations of the unstable fixed points calculated above are
only an approximation, it is wise to consider how good an approximation
they are to the real fixed points. However, the real fixed point cannot
be calculated directly to compare it with. Instead the distance between a
point and its image after one year is calculated using the distance function
described in Box 2.2 on page 43. It is worth remembering that even the
locations of the stable fixed points are only approximations because they are
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Figure 2.37: I values of stable and unstable fixed points of
the Poincaré map for g = 0.100
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unstable fixed points and their image under the Poincaré map
for g = 0.100. Distance is measured as described in Box 2.2
on page 43.

calculated numerically using Runge-Kutta, which is essentially a discrete
approximations to the system (see Subsection 2.2.1 on page 35), thus the
same calculation is made for the stable fixed points too. Figure 2.38 on the
previous page and Figure 2.39 show the results for g = 0.075 and g = 0.100
respectively. This time there is a clear distinction between the stable and
unstable regions. In the case g = 0.075 the distance is about 10−2–10−3 in
the unstable region and 10−6–10−8 and in the stable region. For g = 0.100,
the distance is larger, 10−2–10−5 in the unstable region and 10−6–10−7 for
the stable region. Both cases share the feature that towards the lower edge
the error increases, especially in the case g = 0.100. It was this region that
required multiple passes when calculating the unstable fixed points.

The brute force method was chosen, as it is despite its inefficiency more
robust. It also avoids the possibility of a minimisation algorithm converging
on a local minimum. However, with hindsight, this would not have been
a problem and trials of a minimisation algorithm (as discussed in Subsec-
tion 2.2.2 on page 37) gave accurate results with minimal computational
effort. This may also alleviate the need for a second pass. This would very
much reduce the computational effort required to calculate the unstable limit
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Figure 2.40: How the Floquet multipliers of the period
one limit cycles, both stable and unstable, are spread over
the regions of parameter space exhibiting different period
attractors, for g = 0.075. The histogram for each period
shows the distribution of the Floquet multipliers of the period
one limit cycles (both stable and unstable) that exist in the
regions of parameter space where stable attractors of that
period exist. Moreover, each histogram is stacked—ordered
by increasing period—to show what other periods overlap
that period.

cycles, as well as potentially offering greater accuracy. Also it would be more
feasible to look for unstable limit cycle of higher periods.

In order to calculate the level of instability of each unstable limit cycle
their Floquet multipliers where calculated along with those for the stable
period one attractors (see Section 3.1 on page 90 for an explanation of Floquet
multipliers, and the algorithm used to calculate them). It is interesting to
note that there is a correlation between the Floquet multipliers of the period
one limit cycles and the period of stable attractors that existing across
parameter space. The general trend is that the higher period dynamics
exist where the Floquet multipliers, of the unstable period one limit cycles,
are largest. This means that the level of instability of the unstable period
one limit cycle in some way predicts the complexity of the stable dynamics
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Figure 2.41: How the Floquet multipliers of the period
one limit cycles, both stable and unstable, are spread over
the regions of parameter space exhibiting different period
attractors, for g = 0.100. The area in the black box has
had the frequency scaled by a factor of ten for clarity. See
the caption of Figure 2.40 on the previous page for a fuller
explanation.

exhibited in that region. More work may be required to fully understand
the implications of this trend, however it is conjectured that the period one
dynamics, both stable and unstable, provide a baseline for the behaviour at
each point in parameter space.

2.6 Finding unstable fixed points

It is obvious that unstable fixed points cannot be found in the same way
as their stable counterparts, that is using forward integration. Instead they
can be approximated as follows. Consider a grid over state space, each point
is iterated forward for p years, where p is the period of unstable limit cycle
being sought, the points that are ‘closest’ to their original position can be
considered good approximations to the stationary points.

It is possible to increase the efficiency of the algorithm by using similar
techniques to that of Box 2.3 on page 49. Knowledge of the position of
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stationary points for nearby parameters allows the use of a finer grid, covering
a smaller range of initial conditions, centred around the nearby point. This of
course assumes that the position of the fixed points, locally at least, depends
continuously on the parameters. To ensure that the fixed point does not lie
just outside the grid a series of shifts are performed, if necessary, to centre
the minimum within the gird. To increase the precision the centre of the
grid is then refined. The process of shifts and refinements in continued until
the desired precision is achieved. However, a stopping criterion is added in
the form of a maximal number of shifts and refinements, so an infinite loop
is not created. In the case this limit is reached the algorithm is considered
to have failed to find an unstable fixed point at that location in parameter
space.

The extent and resolution of the grid had to be tuned, as well as the
maximum number of shifts and refinements to make the most efficient use of
CPU time and to provide the most reliable results.

It was necessary to perform a second pass, pushing out from the new
unstable region back towards the old stable region in order to fill in points
where the first pass failed to find unstable fixed points. The reason for this is
not well understood, but it is conjectured that it is due to a larger instability
in that region of parameter space.

Perhaps these issues could be avoided by the use of a minimisation
algorithm, as discussed in Subsection 2.2.2 on page 37, this would be much
more computationally efficient, and would offer potentially higher accuracy,
though at the cost of being less robust. This come from the fact that a
minimisation algorithm can converge to a local minimum, if not given an
initial condition close to the solution.

2.7 Conclusions

After a review of the literature it was found that little work had been carried
out to address the inaccuracy of the modelling seasonally varying birth rates.
It was noted that many animal populations have highly seasonal birth rates.
Some, such as Saiga antelope, showing such tight reproductive synchrony
that all mothers in a breeding group give birth in a matter of several days.
A simple way to model this kind of behaviour was chosen: an annual birth
pulse.
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The pulsed SIR model was introduced in Section 2.1 on page 29. Although
a relatively simple model, the combination of strong seasonal forcing and a
nonlinear transmission term necessitated the use of numerical methods. The
numerical methods where shown to be robust (Subsection 2.2.1 on page 35)

A biologically reasonable parameter space was chosen and the model was
shown to exhibit periodic attractors in the region where R0 > 1. Numerical
methods where developed to determine the periodicity of these attractors. It
was noted that in some areas of parameter space multiple attractors coexist
and the method of “pushing out” was developed, based on a predictor-
corrector algorithm, to ascertain their extent (Box 2.3 on page 49).

For a long infectious period (g = 0.075), the pulsed birth model exhibited
dynamics of period one, two, three and four (Figure 2.14 on page 54). For
shorter infectious periods the dynamics become more complex with higher
period dynamics and chaos being observed. It is noted that, as the infectious
period is decreased (increasing g), the transmission rate β is also increased,
so that the approximate reproductive ratio β/g is kept constant, so as to
make the results for different values of g more comparable. One chaotic
attractor was studied in more detail in Subsection 2.4.4 on page 61.

Various properties of the attractors where calculated in Section 2.4 on
page 53. The modal frequency was calculated, explaining why some period
four attractors look very much like those of period two. Also the minimal
level of infecteds on each attractor was calculated throughout parameter
space showing that some areas show a high risk of disease extinction due to
very low levels of infection.

The penultimate section investigates coexisting attractors in the context
of resonance. Starting by looking at a modified model with lower levels
of forcing and showing how the resonance response curve varies as the
magnitude of the forcing is increased show a transition from a single peak,
to the classic breaking wave profile of nonlinear resonance. By then looking
at a representative sample of points across parameter space it is shown
that nonlinear resonance occurs throughout parameter space. Moreover the
overlaps in the breaking waves correspond to coexisting attractors. This
provides a much greater level of understanding into the causes of the multi-
annual dynamics, and coexisting attractors observed for this system.

The final section addressed the bifurcation structure present, showing
that chaos ensues after a cascade of period doubling bifurcations. This
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section also looked at the basins of attraction as a tool to predict the most
likely of two coexisting attractors to manifest its self in an application of
the model. The last subsection exposed the existence of unstable period
one limit cycles in the regions of parameter space where R0 > 1 and stable
period one attractors do not exist. Increases in the Floquet multipliers of
these period one attractors, both stable and unstable, were found to broadly
correlate to increases in the periodicity of coexisting stable attractors in that
region.

Further work in the analysis of this model could include a tracking of
more unstable attractors as well a more details bifurcation analysis. One
of the most important issues that needs to be addressed is the ability to
distinguish coexisting attractors of the same period. Also the period finding
algorithm described in Box 2.1 on page 40 does have its shortcomings, for
example the slow convergence in some regions of parameter space and the fact
that this technique only finds stable periodic orbits. These issues could be
addressed by using some of the other algorithms discussed in Subsection 2.2.2
on page 37, for example using a minimisation algorithm to locate periodic
orbits would allow the unstable attractors to be found by the same process
as stable ones. While this approach offers the potential for a great reduction
in the computational effort required, it is perhaps not as robust as the direct
integration method described in Box 2.1 on page 40.

There are also perhaps improvements to be gained by the use of a more
advanced numerical integration routine than the forth order Runge-Kutta
employed. In a similar vein more sophistication could be added to the
predictor-corrector algorithm used in pushing out. That is, investigating the
possibly using a minimisation method for the corrector step, and a higher
order extrapolation for the predictor.

In conclusion the addition of strong seasonal forcing, to a model with
known simple behaviour, leads to very complex behaviour, especially for
short infectious periods (large g). It is worth noting that biologically this
is a very simplistic model, yet despite that it still shows the complex, even
chaotic dynamics. Some of the other results have great biological significance,
for example, the results of the minimum I calculation show there is a real
chance of stochastic effects causing extinctions in real scenarios. Similarly
the modal period results show that the observed frequency of epidemics could

87



be different from the actual period of the dynamics. However, the prediction
of multi-annual cycles matches that observed in the real populations. There
is much potential for the use of pulsed birth SIR models in modelling wildlife
diseases.
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Chapter 3

Robustness

The previous chapter focused on the behaviour of one particular model over
a range of parameters. It is natural to ask how these qualitative results
extend beyond the particular model considered, and to investigate, in a broad
sense, their robustness. In order make these results useful, it is important
to show that these results are robust. All models are, by their very nature,
approximations to real systems thus if this model is to be applied to real
world systems, it is important to show that similar models also display similar
dynamics.

This chapter begins by assessing the stability of the pulsed SIR model with
respect to small perturbations in S-I-space. This is achieved by calculating
the Floquet multipliers of the attractors in order to determine the linear
stability with respect to small perturbations.

The next section in this chapter determines how sensitive the results are
to the function used to model the births. The results from using several
different birth functions are examined and compared to the birth pulse
introduced in Chapter 2.

The standard SIR model is often adapted in many ways to model different
scenarios. The third section of this chapter investigates how robust the results
of the previous chapter are to these changes in the structure and underlying
assumptions of the model.
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3.1 Small perturbations

To look at how stable the attractors found in Section 2.3 on page 46 are with
respect to small perturbations their Floquet multipliers where calculated.
The method is similar to that used in Shulgin et al. [1998]. In order to take
the forcing into account it is necessary to consider the eigenvalues of the
annual map linearised about its fixed point—these are the Floquet multipiers
of the attractor. The annual map is given by

Φτ (S0, I0) =
(

S0 + x

I0

)
+
∫ τ

0

( ˙S(t)
˙I(t)

)
dt

where S(0) = S0 and I(0) = I0. As there is no closed form for this map, the
calculation must be performed numerically. This is achieved by augmenting
the system (Equations 2.1 on page 29) with two extra equations

d
dt

(
e

f

)
= J

(
e

f

)
where J is the Jacobian of the S and I equations:

J =

(
−βI − d −βS

βI βS − d− g

)
.

e and f approximate how small perturbations, in S and I respectively,
evolve around an attractor. This augmented system is now used to evaluate
the fundamental matrix of the system.

Now assume that S and I are on an attractor, at an annual fixed point,
and set e = 1 and f = 0. Then run this four variable system forward
once round the attractor. The resulting values form the first column of the
fundamental matrix. The second column is formed in the same way but
taking e = 0 and f = 1 initially. This matrix is (up to numerical error) the
Jacobian of the annual map Φτ (S0, I0).

The eigenvalue of this matrix with the largest real part then gives a
measure of how stable this attractor is with respect to small perturbations.
The result of calculating this value across all known attractors in parameter
space, for g = 0.075, is displayed in Figure 3.1 on the following page. It is
clear that there is a significant proportion of the parameter space where the
attractors are only “weakly” stable (values close to one). This explains why
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Figure 3.1: How the real part of the largest eigenvalue of
the annual map varies across parameter space. In this case
g = 0.075.

finding the attractor numerically has such a high computational cost, as it can
take many years to converge towards the attractor. Biologically this means
that small changes in S and I may completely change the behaviour of an
epidemic, and it will show greater transient dynamics when perturbed from
the attractor. Consequently, if the system is displaced from the attractor, it
will take much longer to get back and if there are many small displacements
the trajectory may not stay close to the attractor at all. Conversely, in the
areas where the attractors are more strongly attracting the dynamics will be
more predictable as any small perturbations will be quickly be damped and
the dynamics will settle back towards the attractor.

Figure 3.2 on the next page shows typical dynamics for a trajectory
perturbed from a period 1 attractor. As it converges back towards the
attractor, the annual points cycle round the fixed point in a cycle of period
7, so that after 7 years it is very close to where it started. This can confuse
the period finding algorithm, and explains why some of the speckling found
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Figure 3.2: An example of the kind of slow convergence that
the pulsed SIR model exhibits for small d and small R0. The
central point (red circle) is the annual fixed point of a period
one attractor. The blue circles show the annual points of a
trajectory that was perturbed away from the attractor. They
converge towards the fixed point in a period 7 like manner.

in the small d, low R0 region (see for example Figure 2.14 on page 54).

3.2 Change in pulse function

Although a birth pulse is, for certain populations, more true to life than a
constant birth rate, it is still an unrealistic assumption that all the births
within a given animal population arrive on the same day. Even very tightly
grouped births occur on a time scale of about a week (e.g. Saiga Antelope,
Milner-Gulland [2001]). Some births may be spread over several months
[Berger and Cain, 1999, Clinchy, 1999, Clinchy et al., 2004]. This section
explores the robustness of the results of Section 2.3 on page 46 with respect
to the manner in which births are added to the population. The aim is to
discover to what extent those results depend on the nature of the birth pulse.
Several different ways of adding seasonal births are investigated:

• sinusoidally varying birth rate,
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• a top hat function,

• a smoothed top hat function.

The results are compared to the original birth pulse.
The following system was considered:

Ṡ = −βSI − dS + B(t)
İ = +βSI − dI − gI

Ṙ = −dR + gI.

(3.1)

for several different birth pulse functions B.

3.2.1 Sinusoidal forcing

A common choice for a forcing function in mathematics is the sine function
[Dietz, 1976, Smith, 1983], so it seems apt to consider this as a forcing function.
Ireland, Norman, and Greenman [2004], Ireland, Mestel, and Norman [2007]
apply this type of forcing to the SIR model with self regulation, though they
do not study the same parameter space as here. They observed periodic
dynamics, with periods of up to twelve years as well as chaotic dynamics.

The birth function is now given by:

B(t) =
x

τ

(
1 + a sin

(
2πt

τ

))
.

Where a ≤ 1 so B is non-negative. This function is formulated so that the
number of births put in throughout the year is x, so as to be comparable
with the standard pulsed SIR model. Though really for comparability the
magnitude of the forcing should be derived under the constraint that N(t)
is cyclic and that N(nτ) = 1 for n ∈ N. However, for simplicity the above
form is used.

Figure 3.3 on the following page shows an example of a period two
attractor for this model, compared with the period two attractor at the same
point in parameter space for the pulsed SIR model. With the sinusoidal
forcing the attractor is much more rounded as one would expect. The
minimum value of I is also a lot larger than for the pulsed SIR model.
Similarly the range of S is smaller. The peak of the major epidemic is also
later in the year with the sinusoidal forcing.
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Figure 3.3: A period two attractor of the SIR model with
sinusoidal forcing (red line). The period two attractor of the
pulsed SIR model (blue line) at the same point in parameter
space is also shown for comparison. Parameters: g = 0.075,
β/g = 3.5, x = 0.18, d ≈ 0.198, a = 1.
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Figure 3.4: Attractors of the SIR system with sinusoidal
forcing, g = 0.075, a = 1.
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Figure 3.5: Attractors of the SIR system with sinusoidal
forcing, g = 0.5, a = 1.
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Figure 3.4 on the previous page shows the periods of attractors found
after pushing out (cf. Box 2.3 on page 49) for this model. The dynamics
seem much simpler than those of the pulsed SIR model of Section 2.1 on
page 29. Period one dynamics cover the vast majority of parameter space.
There is a thin slice of period two attractors, that has on its upper side a
small overlap with the upper period one region. The existence of period
two dynamics is in line with the results of Dietz [1976]. Figure 3.5 on the
preceding page shows the dynamics for g = 0.500. In this case increasing g

has made the dynamics much more complex with multiple tongues and high
period dynamics becoming apparent.

It seem that for lower values of g, sinusoidal forcing does not provide
sufficient impetus to the system for it to exhibit the complex dynamics seen
with pulsed births. It is suspected that this is due to the ‘smoothness’ of the
sine function when compared to the instantaneous pulse.

3.2.2 Top hat function

Using a sine function for the forcing significantly changes the behaviour of
the system. This subsection considers something much closer to the original
birth pulse: a top hat function. This maintains the strong transitions, but
extends the temporal extent of the birth pulse over a period of time. Hence
B(t) (from Equations 3.1 on page 93) is now given by

B(t) =

{
x/w for t > τ − w mod 365
0 otherwise.

(3.2)

This function provides a fixed birth rate for the last w days of the year.
The following values of w were chosen to study: 1, 7, 30, 60, 90, 120 and
150. The dynamics of the system with this forcing, for these values of w, is
compared to the pulsed SIR model in Figure 3.6 on the following page. It is
clear that, at this point in parameter space at least, the limit cycles persist as
w is increased, even as high as 150 days. Also, the dynamics during the parts
of the year where B(t) = 0 seem to be remarkably similar especially during
the peak of the major epidemics. It is not surprising that the dynamics are
similar, for small w at least, because under discretisation an instantaneous
pulse is the same as this top hat function, but with a width, w, of a single
time step.
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Figure 3.6: Comparison of limit cycles for the standard
Pulsed SIR model, with instantaneous birth pulse, and the
same system forced with a top hat function having widths
of 1, 7, 30, 60, 90, 120 and 150 days. For R0 = 4, x = 0.24
and g = 0.075. It is clear that even with a pulse as long at 90
days the dynamics show a small variation from the standard
pulsed SIR model.

The next step was to see if these observations held over the whole
of parameter space. It was decided to only consider g = 0.075 as the
simpler dynamics in this region would allow an easier comparison. For each
value of w, as usual, a fixed initial condition (S = 0.02 and I = 0.0005)
was taken throughout parameter space, and the period calculated. The
resultant dataset was then pushed out (cf. Box 2.3 on page 49). The data is
displayed in Figure 3.7 on page 99 along with the instantaneous pulse data
for comparison.

It is quite surprising how little effect varying w has. Even at w = 90
the dynamics are little changed, the main difference being in the size of the
overlap between period one and two dynamics. At w = 150 the general
pattern is still similar, although all the period four dynamics are lost from
the parameter regime considered. It is interesting to observe that for w = 150
the dynamics start to look similar to those obtained with sinusoidal forcing
(Figure 3.4 on page 95). This implies that it is not just the ‘smoothness’ of
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the sinusoidal forcing, but also its temporal extent that causes the change in
the dynamics. The comparison can be made by thinking of the sinusoidal
forcing as a smoothed top hat function w = τ/2.

Interpreting this biologically, it means that the same cycle of epidemics is
likely to be seen in populations whether all the births occur on the same day,
or are spread over a couple of months. This means that the pulsed SIR model
could be applied to model disease in a much wider range of populations (see
the introduction to Chapter 2 on page 24 for examples).

3.2.3 Smoothed top hat function

The previous two examples show two extremes, sine is a very smooth function,
where as the top hat function has the sharp transients—like the birth pulse.
This section examines if the ‘smoothness’ of the birth function is the factor
that causes the change in behaviour. Hence a function with similar shape to
that of the top hat function (Equation 3.2 on page 96), but with a parameter
to control the smoothing. The birth function is now given by:

B(t) = x

1 + tanh
(

t+w/2
ρ

)
2

−
1 + tanh

(
t−w/2

ρ

)
2

 (3.3)

where ρ is the smoothing parameter, that controls the shape of the function.
For large values, ρ ≈ 50, B(t) resembles a bell shaped curve, but for small
values, ρ ≤ 5, B(t) looks more like the top hat function of the previous
example, although translated so that the births peak in the middle of the
year. Figure 3.8 on page 100 shows how the shape of the curve changes with
ρ.

A fixed value of w = 90 was chosen for the width of the underlying pulse.
Looking at Figure 3.7 on the next page, this is the highest values of w for
which the dynamics are mostly unchanged. Five values of ρ where considered:
10, 20, 30, 40 and 50. Again a fixed initial condition (S = 0.02 and I = 0.0005)
was taken throughout parameter space, the period calculated and the data
pushed out. Figure 3.8 on page 100 shows the periods of attractors across
parameter space for each value of ρ and includes a plot of the forcing functions
used. The un-smoothed case for the same width (from the previous section)
is also included for comparison.

These results are similar to those for varying the width of the top hat
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w = 120 w = 150

Figure 3.7: Sequence showing how the period changes across
parameter space as the pulse function is varied from an in-
stantaneous pulse to a pulse of width 150 days.
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Figure 3.8: Sequence of plots showing how the period
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function. Small amounts of smoothing (ρ = 10, 20) show little change in the
dynamics compared to the un-smoothed case. With the most smoothing,
ρ = 40, 50, the results look more like those with sinusoidal forcing (Figure 3.4
on page 95), the period four dynamics retreat and the region of period two
thins.

From this it would be fair to conclude that what makes the results for
sinusoidal forcing so different, is a combination of smoothness with the long
temporal extent. In general the results for the top hat and smoothed top had
functions are qualitatively similar to the dynamics of the pulsed SIR model,
only when functions with very slow transients or long temporal extents are
used do the dynamics become similar to those with sinusoidal forcing. In
between the dynamics seem to depend continuously on the forcing function.

A biological interpretation is that for the pulsed SIR model (Equations 2.1
on page 29) to be a good fit the births must be highly seasonal. The birthing
period can extend up to several months, but must drop off sharply at either
end. Conversely, the model may still be applicable with a less sharp drop
off if the birthing period is shorter. Moreover, it is only necessary to have
a good knowledge of the total annual births. The exact distribution is less
important. This observation is important as it may mean fewer observations
are needed when collecting field data.

3.3 Change in model structure

The standard SIR model is in some ways quite a simplistic model. It makes
many assumptions about the nature of the disease and the population. A
poignant question is whether or not pulsed births lead to the same kinds of
dynamics in other related models, where certain assumptions are relaxed or
other features are added to the model.

This section considers such changes. This entails making alterations
to the structure of the model, adding new terms to the equations, or new
equations all together. The following models are considered.

SEIR model This model splits the infected class into two. An exposed
class represents those who are infected, but are not yet themselves
infectious. These individuals then move into the infectious class.

Simple SIR The simple SIR model is essentially the same as the standard
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pulsed SIR model, but without the death terms. This model can be
useful in situations where the time-scales on which deaths occur in the
population are much longer than those on which infection occurs.

Vaccination pulse Rather than adding a pulse of births this model annually
moves a proportion of the population from the susceptible class to the
recovered class to represent a pulsed vaccination strategy.

Childhood disease This model attempts to capture the behaviour of child-
hood diseases within schools. The birth pulse, in this context is new
children entering school, is accompanied by a ‘death’ pulse representing
children leaving school.

Frequency dependent transmission This model assumes frequency de-
pendence to the transmission rather than density dependence, making
it possibly more suitable for infections in human populations.

Density dependent death In this model the death rate is dependent on
the total density of the population, thus taking into account mortality
caused by competitions for resources etc.

Gamma distributed infectious period Two models are considered in
this section, firstly the pulsed SIR model is adapted to have a gamma
distributed infectious period. Secondly, the same is applied infectious
and latent periods of the SEIR model. This distribution, which is more
mean centred than the exponential distribution it replaces, is seen as
more realistic.

Imports The final model considered the effect of adding imports, that is a
small continuous source of infection preventing the disease from dying
out.

3.3.1 SEIR model

R

Recovered

dR

βSIx gI
I

Infected

dI

E

Exposed

dE

αI
S

Susceptible

dS

Figure 3.9: Box diagram for the SEIR model.
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The SEIR model extends the SIR model by adding an exposed class.
Members of this class are infected, but are not infectious and can therefore
not pass on the disease to members of the susceptible class. A new parameter
α is introduced, which is the inverse of the average latent period—the time
where an individual is infected but not infectious. Figure 3.9 on the previous
page shows the model structure.

The equations for the forced SEIR model are

Ṡ = −βSI − dS

Ė = βSI − αE − dE

İ = αE − gI − dI

Ṙ = gI − dR.

(3.4)

In the same way as with the standard pulsed SIR model a birth pulse is
applied to the susceptible class every year:

S(t+) = S(t−) + x where t = nτ , n ∈ N.

For simplicity the latent period is assumed to be equal to the infectious
period, that is to say α = g, and g takes the same values as for the SIR
model. Fixing this relationship has the benefit of not introducing another
parameter, though it is not clear that keeping the infectious rather than the
infected period the same as that of the standard pulsed model SIR is the
correct assumption to make the results comparable. Of course, this is not
always be a biologically realistic assumption depending on the disease in
question. For example rubella has an average latent period of 10.5 days and
an average infectious period of 11.5 days which supports this assumption. On
the other hand, measles has a latent period of 10–12 days and an infectious
periods of 3–4 days [Schwartz and Smith, 1983], clearly not in line with this
assumption.

A period 6 attractor for this system is shown in Figure 3.10 on the
following page. The dynamics are reminiscent of the standard pulsed SIR
model.

Figure 3.11 on the next page shows the results for g = 0.075 after
pushing out (cf. Box 2.3 on page 49). The result are much simpler than for
the standard pulsed SIR model with the same infectious period (as illustrated
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Figure 3.10: A period 6 attractor for the pulsed SEIR model,
in this case β/g = 3.86, x = 0.456, d ≈ 0.610 g = α = 0.150.
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Figure 3.11: Attractors found for the pulsed SEIR model
after pushing out for g = 0.075.
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Infectious Infected

α = g = 0.075 α = g = 0.15

α = g = 0.1 α = g = 0.2

α = g = 0.25 α = g = 0.5

α = g = 0.5 α = g = 1

Figure 3.12: Sequence showing how the period of attractors
changes across parameter space for the pulsed SEIR model
(Equations 3.4 on page 103) as the infected/latent period de-
creases from ≈ 14–2 days (left column) and the total infected
period from ≈ 14–2 days (right column).
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in Figure 2.16 on page 55), showing only periods one and two, with an overlap
between the period two region and the upper period one region. This may
suggest that what really affects the dynamics is not the infectious period,
but the infected period.

Figure 3.12 on the preceding page shows how the period exhibited varies
as the infectious period varied from ≈ 14–2 days in the left hand column
and the infected period varied in the same range in the right hand column.
Neither column matched well the behaviour of the standard pulsed SIR model.
In terms of complexity the results for standard SIR model fit somewhere
in between the two columns. There are other differences too, the tongues
coming down from the top left are wider than for the standard pulsed SIR
model and they seem to bend up more, disappearing to the right hand side
rather than the bottom right corner. Thus simply matching the infectious or
infected period is not quite enough to compare this model to the standard
pulsed SIR model. Having said that the dynamics are still very similar, at
different values of g and α. For example α = g = 0.1 is the most similar
to g = 0.075 standard pulsed SIR model (Figure 2.14 on page 54), and
α = g = 0.15 is similar to g = 0.100 standard pulsed SIR model (Figure 2.15
on page 54). This is surprising given a whole new class has been added to
the model.

3.3.2 Simple SIR

All of the other models in this section are refinements of the standard SIR
model, adding extra terms or equations and a birth pulse to make the model
more realistic. This subsection considers a simplification of the standard SIR
model: the simple SIR model. This model omits the death terms for each
of the classes. This doesn’t necessarily make the model more inaccurate it
merely assumes that the deaths happen on a much longer time scale to the
spread of infection, and thus the change in the numbers of individuals in
each class over the time scale considered is negligible. Alternatively it could
represent a disease in a population where all individuals become infected
before they die, so that death plays no part in the disease dynamics.

The simple SIR (Equations 1.5 on page 15) model is given by:
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Figure 3.13: Box diagram for the pulsed simple SIR model.

Ṡ = −βSI

İ = +βSI − gI

Ṙ = gI.

The birth pulse is applied in the same way as the pulsed SIR model:

S(t+) = S(t−) + x where t = nτ , n ∈ N.

Figure 3.14 on the following page shows typical period one, two and
three dynamics for this system with the attractors for the standard pulsed
SIR system shown for comparison. The period one and two attractors are
similar for both systems. The main difference is that the sides are more
vertical for the pulsed simple SIR model. This is explained by the death
of susceptibles during that phase of the cycle. The difference in the period
three attractors is more pronounced, as for the standard model, the sides
lean in much more clearly.

Figure 3.15 on page 109 and Figure 3.16 on page 109 show the periods
of the attractors obtained throughout parameter space after pushing out for
g = 0.075 and g = 0.500 respectively. For g = 0.075 the results are very
similar to the standard pulsed SIR model (Figure 2.14 on page 54). The
most immediate difference is the disappearance of the period four region
seen the top left corner. The bands of period two and three dynamics are
also shifted to the left near the top left corner and the region in the top left
where extinction occurs has also disappeared. To explain the previous two
observations R0 for this system must be considered.

For the simple SIR model, in the absence of infection, the density of
susceptible individuals will grow unbounded. As such in this scenario the
basic reproductive ratio is not a well defined concept. So instead the basic
reproductive ratio of the un-forced system is considered instead, using caution

107



10−2 10−1 100

Susceptibles, S

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1
In

fe
ct

ed
s,

I

Figure 3.14: Typical dynamics of the pulsed simple SIR
model(Equations 1.5 on page 15) . Dashed lines show the an
attractor of the same period at the same point in parameter
space for the pulsed standard SIR model(Equations 2.1 on
page 29). Parameters are given as (R0, x) and g = 0.075
throughout. Red: (18, 0.131) period 1, green: (15, 0.0488)
period 2, blue: (3, 0.156) period 3.

in what conclusions are drawn.
For the un-forced simple SIR model R0 = β/g, which is measured di-

rectly on the x-axis. Thus the R0 isolines are vertical lines. Compare this
with Figure 2.9 on page 45 for the standard pulsed SIR model where the R0

isolines bend to the right at the top. Thus there is no region where R0 < 1
in the parameter space for the simple SIR model. If the periods for the
standard pulses SIR model were to be plotted on an transformed grid, such
that the R0 isolines were vertical then it would not look so dissimilar to the
picture for the pulsed simple SIR model.

For g = 0.500 the dynamics are very different to the pulsed standard
SIR model. There do not appear to be any tongues, but the period seems
to increase moving towards the bottom left corner. An approximation to
the pulsed simple SIR model that helps explains this observation is studied
in Section 4.3 on page 162.

The pulsed simple SIR model shows that deaths within each class do
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Figure 3.15: Attractors found for the pulsed simple SIR
model (Equations 1.5 on page 15) after pushing out for g =
0.075.
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Figure 3.16: Attractors found for the pulsed simple SIR
model (Equations 1.5 on page 15) after pushing out for g =
0.500.
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play an important role in the dynamics of the system especially for short
infectious periods. For a long infectious period the dynamics are actually
slightly simplified.

3.3.3 Vaccination pulse

This model is somewhat different from the others presented in this section.
Rather than modelling the births with a pulse, they are assumed to be
continuous and pulse is used to model vaccination. Every year a proportion
of susceptibles are moved directly into the recovered class, mimicking a
proportion of the population being vaccinated on a single day. This is not
unrealistic, large numbers of individuals are in fact frequently vaccinated
together. A good example is the mass vaccination of United Kingdom school
children against measles (and rubella) in November 1994 [Ramsay et al.,
1994]. Modelling had predicted a large epidemic would occur in 1995. The
mass pulse vaccination of more than 90% of school children [Shulgin et al.,
1998] successfully prevented the epidemic.

Quite a lot of work has been done in the field of pulsed vaccinations as
part of the study of vaccination strategies in general driven by the need
to make best use of the available resources. In their review Nokes and
Swinton [1997] noted how pulsed vaccination was used in America to great
success in particular against polio. They highlight the mixed success of
pulsed vaccination in other areas of the world and suggest that part of the
problem is due to the time intervals and age ranges for vaccination being
decided based on “intuitive reasoning rather than quantitative epidemiological
understanding”.

A slight generalisation of this model is used by Stone et al. [2000], where
rather than applying the vaccination pulse every year, it is applied every
T years. He examines the model’s “infection free” solution. That is a
solution where I ≡ 0 and S oscillates driven by the pulsing. An explicit
expression for this solution is found. The criteria for the stability of this
“infection free” equilibrium are determined, and the maximum number of
years between pulses for which the stability is sustained is computed. This
gives an estimate for the maximum advisable separation between vaccination
pulses if the strategy is to be effective in eliminating the disease. This work
is continued in D’Onofrio [2002b].

Agur et al. [1993] is the first theoretical treatment of pulsed vaccination.
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Using an age structured SIR model, they evaluate pulsed vaccination as a
strategy for controlling measles in Israel. They show that pulsed vaccination
could be a more effective strategy than the cohort vaccination strategy in
place at the time.

D’Onofrio [2002a] applies the same vaccination pulse to an SEIR model.
He revisits his work [D’Onofrio, 2004] by adding gamma distributed infectious
and latent periods (see Subsection 3.3.7 on page 131) to the basic SEIR
model.

Lu et al. [2002] considers another variant of the SIR model. This time
adding vertical transmission, that is a proportion of those born to infected
parents are themselves infected. Thus births come into both the susceptible
and infected classes. Two different vaccination strategies are considered
in conjunction with this system: a constant rate and pulsed vaccination.
For the pulsed vaccination strategy, the existence of both infection-free and
endemic solutions is observed. A similar analysis is performed on the SIS
model with both constant rate an pulsed vaccination by Zhou and Liu [2003].

Here, in contrast to much of the work above, only the endemic equilibria
are considered so as to be comparable to the results from other systems in
this section.

S I R

Susceptible Infected Recovered

xS

gIB βSI

Figure 3.17: Box diagram for the vaccination pulse model.

This model takes the simple SIR model from the previous subsection,
but with a constant birth rate:

Ṡ = −βSI + B

İ = +βSI − gI

Ṙ = gI.

(3.5)

The system is forced by

S(t+) = S(t−)(1− x)

R(t+) = R(t−) + S(t−)x

}
for t = nτ , n ∈ N

at the start of each year. This simulates the vaccination of a proportion
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x of the susceptibles at the start of every year. For comparability with the
pulsed SIR model the same range of proportions x is used. Hence 0.01 ≤
x ≤ 0.5. For simplicity the birth rate is tied to x so that B = x/τ . Although
the frequency of vaccination pulses is fixed to be annual for comparison with
other models, it is possible to simulate varying the interval between pulses
by rescaling time. This would also rescale the infectious period, hence to
consider the effect of a biannual vaccination pulse the value of g would need
to be doubled.

Figure 3.18 on the next page shows a selection of attractors for the
system. They appear very different from the previous attractors studied.
Most strikingly they appear “upside down”. The pulses of vaccination lead to
a drop in the level of infection, rather than a rise with the birth pulses, this
is of course just what a vaccination pulse should achieve. The second feature
not seen before is the apparent spiralling to a fixed point in the blue and
magenta attractors. It is suspected that this is not seen in the other systems
because the perturbations here are smaller because they are a proportion
of the value of S, rather than a fixed size. This means that the system is
perturbed less from its un-forced fixed point.

The periods of the resulting attractors over the whole of the parameter
space, after pushing out, for g = 0.075 and g = 0.500 are displayed in
Figure 3.19 and Figure 3.20 (on pages 113–115) respectively. The dynamics
for g = 0.075 are very simple. Period one dominates, with only a small
region of period two in the top left. Attractors from both regions are shown
in Figure 3.18 on the following page. However, when g is raised to 0.500
the dynamics become much more complex. As seen before multiple tongues
come down from the top left, although the pattern is subtly different, rather
than overlapping the tongues lie next to each other.

Clearly much more work could be done here, and much has been done.
Nevertheless, this model provides an interesting comparison to the other
models with birth pulses. Showing that similar kinds of complex dynamics
do occur and that they are perhaps a general feature of models with where
seasonality is modelled though pulsing. Much more work would need to be
done to demonstrate this.
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Figure 3.18: A selection of attractors of the vaccination
pulse model (Equations 3.5 on page 111). Parameters are
given as (β/g, x, g). Red: (2.5, 0.48, 0.075) period 2, green:
(1.3, 0.4, 0.075) period 1, blue: (7, 0.42, 0.500) period 2, ma-
genta: (20, 0.5, 0.500) period 1.
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Figure 3.19: Attractors found for the vaccination pulse
model (Equations 3.5 on page 111) after pushing out for
g = 0.075.
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3.3.4 Childhood

Much work has been done in modelling the epidemics of childhood diseases
such as measles. One of the key factors in the spread of childhood diseases
is the aggregation of hosts within schools [Fine and Clarkson, 1982, Keeling
et al., 2001]. The model in this subsection uses pulsing, in an attempt
to represent the annual throughput of hosts in schools or other similar
environments.

In this model x new susceptibles are added each year as before, but a
proportion x, of each class is also removed each year. This can be thought
of as new (susceptible) children entering school and older children (from all
classes) leaving. The model ignores deaths, as they will be negligible due to
the short time period. The model is given by:

Ṡ = −βSI

İ = βSI − gI

Ṙ = gI.

(3.6)

with the mapping:

S(t+) = S(t−)(1− x) + x

I(t+) = I(t−)(1− x)

R(t+) = R(t−)(1− x)

 for t = nτ , n ∈ N.

This mapping balances the losses though removal—children leaving
school—and the influx of susceptibles—new children starting school—keeping
the population size constant.

Figure 3.22 on page 116 shows several attractors for the system in
comparison with attractors of the same period and with the same parameter
values for the standard pulsed SIR model. The pulse section of the attractors
are no longer “horizontal” as both S and I are changed by the pulse. The
period one attractors are very similar and the difference in the period three
is minimal. The period two attractors show the most difference, which is
probably caused by the lower β value allowing the death terms, not present
in Equations 3.6, to take a larger part in the dynamics. Here the slope of
the pulse section is more pronounced, but most noticeable is the fact that
there is only an epidemic every two years rather than alternating small and
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Figure 3.20: Attractors found for the vaccination pulse
model (Equations 3.5 on page 111) after pushing out for
g = 0.500.
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Figure 3.21: Box diagram for the pulsed childhood model.
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Figure 3.22: Typical dynamics of the pulsed childhood SIR
model (Equations 3.6 on page 114). Dashed lines show an
attractor of the same period at the same point in parameter
space for the standard pulsed SIR model (Equations 2.1 on
page 29). The parameters are given as (β/g, x) and g = 0.075
throughout. Red: (10.1, 0.181) period 1, green: (2.3, 0.393)
period 2, blue: (7.5, 0.0488) period 3.

large epidemics with the standard pulsed SIR model.
Figure 3.23 on the next page shows the attractors obtained from a fixed

initial condition (S = 0.02, I = 5× 10−4) at each point in parameter space,
after pushing out, for g = 0.075.

Two things are striking about the results in Figure 3.23 on the following
page. There are only period one, two and three dynamics and the period
two region is substantially smaller than that for the standard pulsed SIR
model (Figure 2.14 on page 54). It is also interesting that the period three
“tongue” does not persist in for higher d values as it does with other models.
There is also some speckling in the bottom left corner, which is caused by the
very slow convergence in that region of the order of 1500 years, some what
longer than the standard pulsed SIR model. This is a very long time-scale
compared to those normally associated with schools, and it is quite likely
that the system would be perturbed before it converges close to the attractor,
thus any disease in a population with parameters in that region (low R0, low
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Figure 3.23: Attractors found for the pulsed childhood SIR
model (Equations 3.6 on page 114) after pushing out for
g = 0.075.

birth rate) is unlikely to show the simple period one dynamics predicted.

3.3.5 Frequency dependent transmission

This common variant of the standard SIR model alters that way transmission
from infected to susceptible individuals occurs. Rather than assuming that
the contact rate is proportional to the total population density, it is assumed
that the contact rate is constant. Thus the force of infection increases with
the prevalence of infection within the population. The differences between
the two types of transmission term are discussed in more detail in Section 1.6
on page 15. The use of frequency dependent transmission make this model
more suitable for looking at diseases in human populations. Of course
human populations are not generally know to exhibit pulsed births, but it is
interesting nevertheless to consider this type of transmission.

This model is given by the following equations:

Ṡ = −βSI/N − dS

İ = +βSI/N − gI − dI

Ṙ = gI − dR.

(3.7)
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Figure 3.24: Box diagram for the SIR model with density
dependent transmission.

The birth pulsing is applied to the susceptible class in the usual way:

S(t+) = S(t−) + x where t = nτ , n ∈ N.

10−2 10−1 100

Susceptibles, S

10−6

10−5

10−4

10−3

10−2

10−1

In
fe

ct
ed

s,
I

Figure 3.25: Typical dynamics of the pulsed childhood SIR
model(Equations 3.6 on page 114) compared with the pulsed
SIR model with density dependent transmission. Dashed lines
show the an attractor of the same period at the same point
in parameter space for the pulsed SIR model with frequency
dependent transmission (Equations 3.7 on the preceding page).
Parameters are given as (β/g, x) and g = 0.075 throughout.
Red: (10.1, 0.181) period 1, green: (2.3, 0.393) period 2, blue:
(7.5, 0.0488).

Figure 3.25 shows a comparison of attractors for the SIR model with
frequency dependent transmission presented in this subsection and attractors
with the same parameters for the childhood SIR model presented in the
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previous subsection. What is striking is that although the trajectories differ
throughout the year, they share the same annual fixed points. Moreover,
when the period of attractors across parameter space was calculated for the
model presented here the results, not shown, were identical to those found
in the previous subsection (Figure 3.23 on page 117). It is now shown that
there is a transformation between the two models.

Theorem 3.1 Under the transformation

S → S/N, I → I/N, R → R/N

the pulsed SIR model with frequency dependent transmission (Equations 3.7
on page 117) becomes the childhood SIR model (Equations 3.6 on page 114).

Proof: Consider the making the substitution

s(t) = S(t)/N(t),

i(t) = I(t)/N(t),

r(t) = R(t)/N(t),

into Equations 3.7 on page 117.
Firstly note that by summing Equations 3.6

Ṅ = −dN,

so that
N = e−dt where t ∈ [0, τ)

Because N0 = 1 by the same argument used in the proof of Lemma 2.1
on page 29. When the birth pulse is taken into account, recalling that
x = 1− e−dτ , N is periodic with period one year.

Now the new susceptible equation is given by
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ṡ =
ṠN − SṄ

N2

=
−βSI − dSN + SdN

N2

= −βsi.

Similarly for the infected equation:

i̇ =
İN − IṄ

N2

=
−βSI − gIN − dIN + IdN

N2

= −βsi− gi.

Finally the recovered equation:

ṙ =
ṘN −RṄ

N2

=
gIN − dRN + RdN

N2

= −βgi.

All three of which are the same equations as the childhood SIR model. It
only remains to show that the forcing functions are the same. Firstly notice
that as N is periodic, N(t+) = N(0) = 1, where = nτ , n ∈ N. The forcing
for the susceptibles is given by the impulse equation:

S(t+) = S(t−) + x where t = nτ , n ∈ N,

substituting for S,

s(t+)N(t+) = s(t−)N(t−) + x

s(t+) = s(t−)(1− x) + x

as N(t−) = 1 − x. In the pulsed SIR model with frequency dependent
transmission the infected equation is not forced, but this can be expressed
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as an impulse equation:

I(t+) = I(t−) where t = nτ , n ∈ N,

and substituting for I yields

i(t+)N(t+) = i(t−)N(t−)

i(t+) = i(t−)(1− x).

The same argument holds for the removed equation. The result follows by
replacing s, i and r by S, I and R respectively. �

The observation that in Figure 3.25 on page 118 the two sets of attractors
share fixed points, but differ through the year can now be explained. At the
annual fixed points (t = nτ , n ∈ N) N = 1 making the transformation the
identity, hence the annual points are the same. Throughout the following
year N then decays exponentially and the paths diverge, until after the next
pulse, when they come back into line again.

3.3.6 Density dependent death

The model presented in this subsection adds density dependence to the death
term. This attempts to incorporate effects such as overcrowding. Assuming
there is a fixed finite area where the population resides, if the population size
increases, and therefore the density, then there is an increase in competition
for resources. Inevitably, this means that some individuals loose out and
suffer mortality increasing the death rate. Conversely, if the population is
small the death rate becomes smaller due to the reduced levels of competition.
The dynamics of wildlife diseases are discussed at length in Hudson et al.
[2002].

Greenhalgh [1990] considers a similar model where the death rate is a
generalised function of the population size. His model has constant births, and
features a term to model mortality due to infection. He derives a threshold
parameter and conducts a stability analysis, and concludes that the endemic
equilibrium is stable with respect to small perturbations. Some numerical
simulations for specific death rate functions are carried out, including the
one used in this section.
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Figure 3.26: Box diagram for the SIR model with density
dependent death.

This extra assumption is added to the model by assuming that the death
rate is directly proportional to the population density:

Ṡ = −βSI − dSN

İ = +βSI − gI − dIN

Ṙ = gI − dRN.

(3.8)

Unlike with most of the other models considered in this section, the
standard birth pulse

S(t+) = S(t−) + x where t = nτ , n ∈ N,

where x = 1− e−dτ , does not preserve the population size from one year to
the next. So a different formula for x is required.

Summing Equations 3.8 obtains the following equation for the rate of
change of the total population density N :

Ṅ = −dN2

as S + I + R = N . This can be solved by separation of variables:∫ N

N0

dN

N2
=

∫ t

0
−ddt[

− 1
N

]N

N0

= [−dt]t0 .

Assuming that N0 = 1

N =
1

1 + dt
. (3.9)
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For the population density to be preserved over a year x must satisfy

x = N(0)−N(τ)

x = 1− 1
1 + dτ

.
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Figure 3.27: Attractors found for the SIR model with den-
sity dependent death (Equations 3.8 on the preceding page)
after pushing out for g = 0.075.

Figure 3.27 shows the results for pulsed SIR model with density dependent
death, using the new formula for x. The periodicity of the dynamics are
almost identical to those from the standard pulsed SIR model (Figure 2.14
on page 54). The only differences being an apparent slight upward stretching,
and the period three region extending to higher β/g so that it overlaps the
period four region slightly.

To try and understand these results the R0 for this system was calculated
(cf. Lemma 2.1 on page 29). With I = 0 the S equation becomes

Ṡ = −dSN

=
−dS

1 + dt
.
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Again this can be solved by separation of variables∫ S

S0

dS

S
=
∫ t

0

−d

1 + dt
dt

[lnS]SS0
= [− ln(1 + dt)]t0

ln
(

S

S0

)
= − ln(1 + dt)

S =
S0

1 + dt
.

and since, by the definition of R0, a wholly susceptible population is being
considered,

S =
1

1 + dt
. (3.10)

Notice that this is the same as the expression for N obtained above. This is
because a wholly susceptible population is being considered.

R0 is now given by (cf. Section 1.3 on page 9)

R0 = (infectious period)×
(

average rate at which
secondary cases are produced

)
=

β

τ

∫ τ

0

1
g + dN

× S|I=0 (t)dt

=
β

τ

∫ τ

0

1
g + dN

1
1 + dt

dt by Equation 3.10

=
β

τ

∫ τ

0

1
g + d + gdt

dt by Equation 3.9 on page 122

=
β

τ

[
ln(g + d + gdt)

gd

]τ

0

=
β

gdτ
ln
(

g + d + gdτ

g + d

)
(3.11)

Figure 3.28 on the next page shows a contour plot of R0 over parameter
space for this model and the standard pulsed SIR model. This shows a shear
to the left relative to R0 for the standard pulsed SIR model, in agreement
with the apparent upward stretching seen in the period plot (Figure 3.27 on
the preceding page). There is also good correlation between the edge of the
period one region and the R0 = 1 contour.

The clear correlation between the shift in the period transitions and R0 is
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Figure 3.28: R0 for the SIR model with density dependent
death described by Equations 3.8 on page 122 (black lines),
compared to that of the standard pulsed SIR model (blue
lines).

a strong indicator that the shift in R0 is the cause of the shift in the period
transitions but it cannot offer a complete explanation of the behaviour. This
is possibly because R0, by definition, only describes behaviour of very low
levels of infection, so utilising it to predict global behaviour is somewhat
flawed. In order to understand the shift in the transitions between periods
it is first necessary to understand what causes these transitions in the first
place. This is not currently well understood, so it is impossible to draw
conclusions directly relating the shift to parameters such as R0.

3.3.7 Distribution of infectious and latent periods

The standard SIR model assumes that the infectious periods of individuals
are distributed exponentially meaning that, for example, the probability of
recovery is independent from the time since infection [D’Onofrio, 2004, Lloyd,
2001b]. The realism of this assumption has been questioned and alternative
distributions tested [Anderson and Watson, 1980, Bailey, 1964]. Statistical
analysis of infected populations has shown that the infectious and latent
periods, for measles and infectious hepatitis at least, have a well defined mean
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and small standard deviation [Bailey and Alff-Steinberger, 1970], in other
words the infectious, or latent periods are likely to be close to their mean,
and unlikely to be shorter or longer. The incorporation of non-exponential
distributions for the infectious and latent periods can lead to models with
complex integro-differential or partial differential equations [Lloyd, 2001b].

However, a simple method exists to incorporate non-exponential distribu-
tions into the compartmental models studied here. The method of stages as
used by Anderson and Watson [1980], Bailey [1964] involves replacing the
single infected (or exposed) class with a series of n classes or stages. Infected
individuals pass though each stage in turn and finally into the recovered class
(or the infected in the case of exposed individuals). The time spent in each
stage is identically exponentially distributed and the total time spent in the
infectious class is then gamma distributed [Lloyd, 2001b]. The individual
stages have no biological meaning [D’Onofrio, 2004]. The probability density
function for this distribution is given by

fgn,n(t) =
(gn)n

Γ(n)
tn−1e−gnt, (3.12)

where Γ(n) is the gamma function. The mean of this distribution is 1/g

and it has standard deviation 1/(gn). Notice that for n = 1 Equation 3.12
becomes

f ′g(t) = ge−gt (3.13)

the exponential distribution. Figure 3.29 on the following page shows the
gamma distribution for various values of n including the special case n = 1.

Pulsed SIR model with gamma distributed infectious period

The pulsed SIR model (Equations 2.1 on page 29) can be made more realistic
by using the method of stages described above so that the infectious period
is gamma distributed. This model is studied by Lloyd [2001a,b].

The SIR model with n infectious stages is given by the following equations:
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Figure 3.29: The probability density function of the gamma
distribution (Equation 3.12 on the preceding page) for n =
1, 2, 5, 10 and g = 0.075. In the special case n = 1 the
exponential distribution. is obtained. The dashed line shows
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Figure 3.30: Box diagram for the SIR model with gamma
distributed infectious period.
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Figure 3.31: Phase plot for the the SIR model with gamma
distributed infectious period, showing how the dynamics vary
as the number of infected classes changes. Parameters: β/g =
20, x = 0.077, g = 0.075 throughout, all attractors are period
2. Red: 1 I class (i.e. the standard pulsed SIR model), green:
2 I classes, blue: 5 I classes, magenta: 10 I classes.

Ṡ = −βSI − dS

İ1 = βSI − gnI1 − dI1

İ2 = gnI1 − gnI2 − dI2

...
İn = gnIn−1 − gnIn − dIn

Ṙ = gnIn − dR.

(3.14)

Where I =
∑n

j=1 Ij . The birth pulse is applied as usual to the susceptibles
class every year:

S(t+) = S(t−) + x where t = nτ , n ∈ N.

Figure 3.31 shows how a typical period two attractor for the pulsed SIR
model with gamma distributed infectious period changes as the number of
infectious classes n increases from 1 (the standard pulsed SIR model with
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a exponentially distributed infectious period) to 10. The increase in the
number of classes seems to mainly change the how low the level of infection
drops between epidemics. For n = 1 the level of infection drops to around
10−10 after a major epidemic, and reaches 10−3 when the second pulse is
applied, triggering the major epidemic. Contrast this with the n = 10 case
there the level of infection drops to 10−23 after a major epidemic and reaches
10−9 at the time the second pulse is applied. Larger n also leads to a slightly
increased maximum level of infection. The lower values of I may mean that
in a real population the infection has a higher chance of becoming extinct
due to stochastic variations.
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Figure 3.32: Attractors found for the SIR model with 2 I
classes (Equations 3.14 on page 126) after pushing out for
g = 0.075.

Figure 3.32 to Figure 3.34 on pages 129–130 show the periods of attractors
found for n = 2, 5 and 10, all with g = 0.075. The main point to notice about
these results is their greater complexity than their exponential counterpart
(Figure 2.14 on page 54). In fact the complexity for n = 2, compares roughly
to the level achieved by increasing g to 0.100 (Figure 2.15 on page 54) in
the exponential case. As n increases so does the complexity and a large
region of chaotic dynamics opens up in the upper left quadrant of parameter
space. The data in all three of these plots is not as clean as for previous
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Figure 3.33: Attractors found for the SIR model with 5 I
classes (Equations 3.14 on page 126) after pushing out for
g = 0.075.
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Figure 3.34: Attractors found for the SIR model with 10
I classes (Equations 3.14 on page 126) after pushing out for
g = 0.075.

130



models. This is because this model is much more computationally intensive
to run. Refining the data, removing speckling would have required too
much computational effort. The results broadly agree with those of Lloyd
[2001b] in that as n increases the dynamics become more complex, with
the appearance of more higher period dynamics and a more complicated
bifurcations structure. Further comparison are hard because Lloyd only
considered a one dimensional parameter space.

Pulsed SEIR model with gamma distributed infectious and latent

periods

Taking this one step further the method of stages is now applied to the
pulsed SEIR model so that both the infectious and latent periods are gamma
distributed. This system was first seen in Anderson and Watson [1980],
though without any forcing. A further generalisation of the un-forced model
is given in Andersson and Britton [2000] where the life expectancy follows a
gamma distribution as well. Also D’Onofrio [2004] uses an SEIR model with
gamma distributed infectious and latent periods combined with a pulsed
vaccination strategy (see Subsection 3.3.3 on page 110 for a more detailed
discussion for pulse vaccination models).

After applying the method of stages with n infectious stages and m latent
stages to the SEIR model the equations become:

Ṡ = −βSI − dS

Ė1 = βSI − αmE1 − dE1

Ė2 = αmE1 − αmE2 − dE2

...
Ėm = αmEm−1 − αmEm − dEm

İ1 = αmEm − gnI1 − dI1

İ2 = gnI1 − gnI2 − dI2

...
İn = gnIn−1 − gnIn − dIn

Ṙ = gnIn − dR.

(3.15)

Here I =
∑n

j=1 Ij and E =
∑m

j=1 Ej . Again a birth pulse is applied to
the susceptibles class in the normal way.

Figure 3.36 on the following page shows typical period two dynamics for
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Figure 3.36: Phase plot for the the SEIR model with gamma
distributed infectious and latent periods, showing how the
dynamics vary as the number of infected and latent classes
increases. Parameters: β/g = 20, x = 0.034, g = 0.075
throughout, all attractors are period 2. Red: 1 E class and
1 I class (i.e. the pulsed SEIR model), green: 2 E and 2 I
classes, blue: 5 E and 5 I classes, magenta: 10 E and 10 I
classes.
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the pulsed SEIR model with gamma distributed infectious and latent periods
as the number of infections and latent classes is increased. The general trend
as m and n are increased from m = n = 1 (representing the pulsed SEIR
model with exponential infectious and latent periods), to m = n = 10, is
that the range of both S and I expands, leading to an increased peak level
of infection as well as a decreased minimum level between epidemics. For
the case n = m = 1, there is a smaller minor epidemic in years between
the major ones, however this is not present in for larger values of m and
n, it appears that it does not have time to build up sufficient infection
before the next pulse is applied. Another feature not seen before is the small
“tail” after pulse following the major epidemic. It appears that the level of
infection and the level of susceptibles continues to fall for a short time even
after the pulse is applied, the effect is more pronounced for larger numbers
of classes. This effect is due to the change in latent period distribution.
In the pulsed SEIR model with exponentially distributed infectious period
the probability of an individual having a zero or very small latent period
is high (see Figure 3.29 on page 127). However, as the number if latent
classes increases this probability decreases rapidly, and individuals are most
likely to have a latent period close to the mean, 1/α. Thus there is a now
a delay, approximately equal to the latent period before any of the newly
born susceptibles become infected. During this time the level of infection
continues to drop as infected individuals recover or die.

Figure 3.37 to Figure 3.39 on pages 134–135 show the periods of attractors
found for m = n = 2, 5 and 10. For the case m = n = 2 the qualitative
structure of tongues is similar to that seen in the standard pulsed model
and the pulsed SEIR model. The main difference in this case is that they
appear wider and there is no upper region of period one dynamics. It is
almost as though smaller parameter space has been considered. For the cases
m = n = 5 and m = n = 10 there is a very large region of chaotic dynamics,
as wall as some higher period dynamics. Again only the lower regions area
of period one dynamics is present.

It has been verified that in the cases m = n = 2 and m = n = 5 the
speckling in the lower left quadrant of parameter space is because the period
finding algorithm (described in Box 2.1 on page 40) has not allowed enough
time for the they system to converge to the period one attractor. The length
of time allowed is a trade off between accuracy and computational effort
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Figure 3.37: Attractors found for the pulsed SEIR model
with 2 I and 2 E classes (Equations 3.15 on page 131) after
pushing out for g = 0.075.
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Figure 3.38: Attractors found for the pulsed SEIR model
with 5 I and 5 E classes (Equations 3.15 on page 131) after
pushing out for g = 0.075.
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Figure 3.39: Attractors found for the pulsed SEIR model
with 10 I and 10 E classes (Equations 3.15 on page 131) after
pushing out for g = 0.075.

expended.

In summary the introduction of gamma distributed infectious and latent
periods introduces much greater complexity. It is conjectured that because
the standard deviation of the gamma is so much smaller than that of the
exponential it replaces, there is much less damping of the birth pulse so
that rapid transitions also occur in the exposed and infected classes. This is
discussed at length in Section 3.4 on page 138.

3.3.8 Imports

This case considers what happens when a small number of infectious imports
ε is added [Bartlett, 1956, 1957]. This can be considered as an external
source of infection, this maybe a reservoir of infection within a population
of a different species. In this case ε is chosen to be constant, but it could
vary to model the size of an external population, or the amount of mixing
between the two populations.
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Figure 3.40: Box diagram for the SIR model with imports.

The model is described by the following equations:

Ṡ = −βS(I + ε)− dS

İ = +βS(I + ε)− gI − dI

Ṙ = gI − dR.

(3.16)

Here ε is the size of the imports. The annual birth pulse is applied to the
susceptible class in the usual way:

S(t+) = S(t−) + x where t = nτ , n ∈ N.

Note that strictly speaking the death rate or pulse size should be adjusted
to balance the imports and ensure comparability with other models. However,
as ε is assumed small, this can be safely omitted for simplicity.

The periods obtained across parameter space are shown in Figure 3.41
on the following page, for ε = 10−5, and Figure 3.42 on the next page, for
ε = 10−10. It is clear that very small levels of imports, ε = 10−10, have little
effect on the dynamics. The only real difference is that extinction does not
occur along the left hand edge where for the standard pulsed SIR model
R0 < 1. This is what is to be expected as the imports are a mechanism to
prevent extinction. It is in fact not possible to calculate R0 for this system
because the imports ensure that a infection free state cannot persist.

Figure 3.44 on page 139 shows the minimal I attained on the attractor,
or attractors, at each point in parameter space for ε = 10−10. Comparing this
to Figure 2.20 on page 57 the only noticeable difference is in the extinction
region, where the minimum is now around 10−10, which is less than the level
of imports in some regions.

For a larger level of imports, ε = 10−5 the dynamics, illustrated in Fig-
ure 3.41 on the following page, differ more dramatically from those of the
standard pulsed SIR model. Firstly, there are no period three and four
dynamics, and secondly, there is no overlap between the upper period one
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Figure 3.41: Period of attractors found for the SIR model
with imports (Equations 3.16 on the previous page) after
pushing out for g = 0.075 and ε = 10−5.
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Figure 3.42: Period of attractors found for the SIR model
with imports (Equations 3.16 on the previous page) after
pushing out for g = 0.075 and ε = 10−10.
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and period two regions. As with ε = 10−10 the is no extinction down the
left edge. Also the minimum I around the attractors (Figure 3.43 on the
next page) has increased, the minimum now being around 10−8 compared to
around 10−11 for ε = 10−10 and the standard pulsed SIR model.

In summary the inclusion of imports into the standard pulsed SIR model
in an effective tool for limiting the minimum values attained by I on the
attractors of the system. This is important when applying these models
to real, discrete populations, where due to stochastic effects, the density
only need approach the inverse of the populations size for extinction to be a
possibility. However, countering this by applying too higher level of imports
significantly changes the behaviour of the system, eliminating higher period
dynamics.

3.4 Conclusions

Broadly speaking the results of the previous chapter have been shown to be
robust to a wide range of perturbations, with only the most extreme causing
significant qualitative differences in the results.

For the majority of parameter space the attractors exhibited in Figure 2.14
on page 54 were shown to be stable to small perturbations in S and I. Only
in the both small d and small β/g region of parameter space showed any
instability. This is illustrated by the slow convergence to the attractors in
that region. However the dynamics still show period one like behaviour while
converging to the attractor as is seen in Figure 3.2 on page 92. Consequently,
the pulsed SIR model is likely to predict the possible periods of a real
biological system accurately, wherever in parameter space it falls.

An instantaneous pulse of births is realistic for some animal populations
(e.g. Saiga antelope), but for others may still be highly seasonal, but have a
larger temporal spread. The second section in this chapter (Section 3.2 on
page 92) shows that the qualitative dynamics of the pulsed SIR model persist
when a different seasonal birth patterns are used. Only those functions that
have very smooth transitions from high to low birth rates, or have a high
birth rate for most of the year, significantly change the periodicity of the
dynamics. Perhaps the most surprising result is that when the births are
modelled by a top hat function (Subsection 3.2.2 on page 96) the periodicity

138



1 5 10 15 20

Approximate reproductive ratio, β/g

0.01

0.02

0.05

0.10

0.20

0.50

D
ea

th
ra

te
,
d

(y
ea

r−
1
)

10−8

10−7

10−6

10−5

10−4

10−3

Figure 3.43: The minimum value of I attained on each at-
tractor, or attractors, in Figure 3.41 on page 137. Parameters:
ε = 10−5, g = 0.075.
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Figure 3.44: The minimum value of I attained on each at-
tractor, or attractors, in Figure 3.42 on page 137. Parameters:
ε = 10−10, g = 0.075.
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of the dynamics remains virtually unchanged, even when the width of the
pulse is 90 days—a quarter of a year!

These results are very important, because it means that the pulsed SIR
model could be applied to a much larger range of populations. It even
suggests that when fitting the seasonal births of a real population, it may not
be necessary to have a detailed knowledge of distribution of births throughout
the year, only a good idea of the total number of births occurring.

Further work on the birth function could include the use of functions
designed to fit with observed birth rates showing different patterns of sea-
sonality, rather than annual peaks already considered. For example, using
a combination of a constant birth rate, and top hat functions to represent
the pattern of biannual peaks above the mean observed in the UK cattle
population (Figure 2.3 on page 28).

The changes to the structure of the model, effectively changing the under-
lying assumptions made in formulating the model, investigated in Section 3.3
on page 101 also seem not to affect the qualitative dynamics of the pulsed
SIR model.

Perhaps the lower levels of complexity for the pulsed SEIR model, when
the infectious period is compared to that of the pulse SIR model can be
explained by thinking of the exposed class as adding damping in between the
susceptible and infectious classes. When the birth pulse increases the number
of susceptibles the transmission can not increase until more individuals
become infectious, and they must pass though the exposed class first. The
exponentially distributed latent period damps the birth pulse, preventing a
sharp rise in infection and reducing the complexity of the dynamics.

The situation is slightly different when the pulsed SIR/SEIR models
with gamma distributed infectious and latent periods are considered. Here,
because the gamma distribution has a much smaller standard deviation, the
exposed class mainly acts to delay, rather than damp, the sudden increase
in the level of susceptibles being transmitted to the exposed and infectious
classes. This served to actually increase the level of complexity for given
infectious period.

Another change in model structure not considered here is adding age
structure to the model by partitioning the S, I, and R classes into separate
classes for different age groups. This technique is used extensively in the
modelling of childhood infectious diseases such as measles (See Agur et al.
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[1993], Bolker and Grenfell [1993], Hethcote [2000]). Also perhaps some
spatial structure could be added by having separate S, I, and R classes for,
for example, neighbouring cities.

Also worth considering is whether the dynamics illustrated here are a
feature just a feature of models with pulsed births, or do they generalise to
models where pulsed forcing is use to model other seasonal influences. The
childhood model (Subsection 3.3.4 on page 114), which shifts the focus slightly
by modelling deaths (departures) by a pulse as well as births (arrivals), shares
many of the qualitative features with the pulsed SIR model. The vaccination
pulse model (Subsection 3.3.3 on page 110) also shares many similarities
with the pulsed SIR.

Another direction this work could be taken would be to introduce stochas-
ticity into the model and see how robust the dynamics are to random pertur-
bations. Randomness could be integrated into the model in several different
ways. Adding some kind of randomness to the transmission terms would
make the model more suitable for modelling smaller populations, or very
low levels of infection. Another possibility would be to introduce a random
element into the size, or timing of the birth pulse. One issue with stochastic
models is how to deal with extinction when it occurs and one possible way to
circumvent this is to use the imports model (Subsection 3.3.8 on page 135)
as a base.

In conclusion the pulsed SIR model shows a great deal of robustness to
several classes of perturbation, most of which leave the qualitative periodic
dynamics unchanged. In general as the infectious period is increases, the
complexity increases too, more higher period dynamics are seen, leading to
substantial areas of parameter space showing chaotic behaviour.
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Chapter 4

Analytical methods

The previous two chapters focused almost exclusively on the use of numerical
methods to understand the dynamics of pulsed SIR models. This chapter
tries to redress the balance, by using analytical techniques to verify some of
the results from previous chapters.

Numerical methods were chosen in the first place because the pulsed SIR
model is hard to treat analytically. The nonlinear transmission terms make
it impossible to directly integrate the ODEs, and the pulsing terms prevent
the use of some of the standard tools for analysing systems of ODEs.

As discussed in Section 2.2 on page 34, within the chosen parameter
space there are regions where the numerics can be more computationally
demanding, and less reliable. There are two such areas, small x; representing
hosts with a long life expectancy, and R0 close to 1; considering pathogens
that can not easily invade their target population. It is, however, possible to
do some analytical work in these areas.

This chapter presents three analytical approximations to the standard
pulsed SIR model and the pulsed simple SIR model. Progress is made by
considering only specific areas of parameter space, sometimes coinciding with
areas of parameter space where the numerics are either inaccurate, or take a
long time to converge.

The first approximation uses multi-scale techniques to approximate the
dynamics of the pulsed SIR model for small x, the limiting case of which is the
un-forced simple epidemic model. The approximation affirms the presence of
annual dynamics in the small x region of parameter space, confirming the
numerical results of Chapter 2 on page 24 (see Figure 4.2 on page 154). An
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error analysis is performed, and the errors are verified to be of the correct
order. It is noted that the same approximation could be performed for R0

close to unity.
By assuming a large infectious period it is possible to split the dynamics

of an attractor of the pulsed simple SIR model into four distinct phases:
growth, epidemic, decay and birth pulse. The second approximation exploits
this giving equations for the S and I in each phase. The epidemic and pulse
phases are assumed to be instantaneous. Determining the time spent in the
growth phase is complex and, has to be done numerically. If the time spent
in the growth phase is determined to be a year or more, then no epidemic
occurs that year. It is noted that the same approximation could be carried
out for the standard pulsed SIR model, but it would inevitably be more
complex.

The final approximation is a simplification of the previous large g ap-
proximations. By assuming that, at the peak of the epidemic, the density of
infecteds is O(1) it is possible to obtain an expression for the time spent in
the growth phase directly. A transformation normalising S with respect to
R0 and considering the logarithm of I leads to a simple discrete model with
only a single parameter. The discrete model still shows complex multi-annual
dynamics, and it is in close agreement with the pulsed simple SIR model.
Finally, the results are related back to the pulsed simple SIR model.

4.1 Multi-scale analysis for small x

One significant difficulty with calculating the dynamics of the pulsed SIR
model is that the numerics can break down (because the magnitude of
the pulsing approaches the numerical error) and convergence times can be
very long when the magnitude of pulsing is small. Fortunately, this limit
is one that can be investigated analytically. A multi-scale analysis of the
system is performed in the small x region of parameter space and the results
are compared to those obtained by numerical integration. The aim of this
analysis is to provide an insight into the possible dynamics of this region of
parameter space.

To ease the analysis, a slightly modified version of the standard pulsed
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SIR model (Equations 2.1 on page 29) system is considered:

Ṡ = −βSI − dS + B′(t)
İ = βSI − aI

(4.1)

Here the new parameter a represents the loss of infection due to both natural
mortality and recovery and can be related to the original parameters as g +d,
noting that d is small. As before, B′(t) gives the instantaneous birth rate,
and the cumulative birth rate since t = 0 is given by

B(t) =
⌊

t

τ

⌋
x. (4.2)

For this analysis the pulse size x is set to be a small parameter. Recall
that

x = 1− e−dτ

= dτ +
d2τ2

2
+O(d3), (4.3)

so that the corresponding natural death rate d is also small. Thus the
multi-scale analysis proceeds by analysing the dynamics at different orders
of d.

The state variables S and I are expressed as Taylor series in d:

S = S0 + dS1 + d2S2 +O(d3) (4.4)

I = I0 + dI1 + d2I2 +O(d3). (4.5)

Similarly, the birth pulse function is expanded as:

B(t) = B′
0(t) + dB′

1(t) + d2B′
2(t) +O(d3). (4.6)

The multi-scale analysis attempts to find closed forms for the coefficients
of the above Taylor series (Equation 4.4 to Equation 4.6 on the current page),
the values of which are given with the following theorem.

Theorem 4.2 Where a periodic orbit exists of the pulsed SIR model (as
defined in Equations 4.1) for small x, and hence small d, then it is well approx-
imated by the second order approximation given in Equation 4.4 and Equa-
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tion 4.5 on the previous page with:

S0(t) =
a

β

S1(t) =
τ

2
− t

S2(t) = An annual function

I0(t) = 0

I1(t) =
1
a
− 1

β

I2(t) =
1
2

(
β

a
− 1
)

(τt− t2) +
(a− β)τ2 − 6τ

12a

for 0 ≤ t < τ . The dynamics are, to order d2, annual.

Notice how the point (S0(t), dI1(t)) = (g+d
β , d

g+d −
d
β ), about which the

trajectories predicted by this approximation oscillate is the endemic fixed
point of the un-forced SIR model with continuous births (see Section 1.4 on
page 11).

Corollary 4.1 The dynamics of an annual periodic orbit where one exists
can be bounded within a ball of O(d).

Proof: The result follows directly from Theorem 4.2 by the fact that S0(t)
and I0(t) are constant, so S and I can only vary by a maximum of O(d). �

The proof of Theorem 4.2 on the previous page is tackled as a series of
lemmas, deriving closed forms for each of the coefficients S0, S1, S2 and I0,
I1, I2 and various other intermediate results. The explicit calculation of S2

is omitted because the algebra is complex and the result uninformative.
Before proceeding with the proof it is informative to make a few observa-

tions. Firstly, the ODEs for coefficients of the Taylor series for S and I are
derived. Substituting into the Ṡ equation of Equations 4.1 on the preceding
page and collecting terms by their order of d yields:

O(d0) : Ṡ0 = −βS0I0 + B′
0(t) (4.7)

O(d1) : Ṡ1 = −β(S0I1 + I0S1)− S0 + B′
1(t) (4.8)

O(d2) : Ṡ2 = −β(I2S0 + I1S1 + I0S2)− S1 + B′
2(t). (4.9)
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Following the same procedure with the İ equation gives:

O(d0) : İ0 = βS0I0 − aI0 (4.10)

O(d1) : İ1 = β(S0I1 + I0S1)− aI1 (4.11)

O(d2) : İ2 = β(I2S0 + I1S1 + I0S2)− aI2. (4.12)

Lemma 4.4 The O(1), O(d) and O(d2) components of the cumulative birth
function B are given by:

B0(t) = 0

B1(t) =
⌊

t

τ

⌋
τ

B2(t) = −
⌊

t

τ

⌋
τ2

2
.

Proof: To expand the cumulative birth function B (Equation 4.2 on page 144)
note that only x depends on d, so the expansion of x, as given in Equation 4.3
on page 144, is substituted into Equation 4.2 yielding

B(t) =
⌊

t

τ

⌋(
dτ − d2τ2

2
+O(d3)

)
.

The result follows by using Equation 4.6 on page 144 to substitute for B(t)
and equating terms of the same order of d. �

Observation 4.1 I0 the O(1) component of I is zero.

Proof: Consider ∫ nτ

0
I as n →∞.

It is clear that the total number of recoveries is less than the total births,
because there are losses due to death, so∫ nτ

0
gI < nx as n →∞

Given that
x = 1− e−dτ ≈ dτ +O(d2),

so x = O(d) and hence I = O(d). Thus I0 = 0.
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Lemma 4.5 The average of S, over one year is a/β, i.e. S̄ = a
β . Moreover,

S0 is constant and S0(t) = a/β.

Proof: The İ equation of Equations 4.1 on page 144 states that

İ = (βS − a)I.

Now integrating this with respect to t

I = I0(0) exp
(∫ t

0
(βS − a)dt

)
(4.13)

= I0(0) exp
(

β

∫ t

0
Sdt− at

)
. (4.14)

A key premise of Theorem 4.2 on page 144 is that the dynamics being
considered lie on a periodic orbit, so it is clear that I is bounded, that is,
there exists ε with 0 < ε ≤ I0 < 1 such that

ε ≤ I(t) < 1 ∀t ∈ R+.

In fact I can be shown to be more generally bounded by some of the results
of Chapter 2 on page 24. By assuming that R0 > 1, the disease can never
die out, so I must be bounded above zero. Equally I is bounded above by 1
since N , the total population density, has a sawtooth behaviour achieving a
maximum of 1.

Returning to the proof, the above inequality becomes

ε ≤ I0(0) exp
(

β

∫ t

0
Sdt− at

)
< 1

ε

I0(0)
≤ exp

(
β

∫ t

0
Sdt− at

)
<

1
I0(0)

.

Now this inequality must hold for all I0(0), so the upper bound can be
replaced with 1. Taking logs:

log
(

ε

I0(0)

)
≤ β

∫ t

0
Sdt− at ≤ 0.
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Rearranging this to isolate the integral gives:

1
β

log
(

ε

I0(0)

)
+

at

β
≤
∫ t

0
Sdt ≤ at

β
.

Now dividing though by t and taking the limit as t →∞ gives:

lim
t→∞

(
1
βt

log
(

ε

I0(0)

)
+

a

β

)
≤ lim

t→∞

(
1
t

∫ t

0
Sdt

)
≤ lim

t→∞

a

β

Both the left and right hand sides evaluate to a/β, and hence

S̄ =
a

β
.

Now as
S̄ = S̄0 + dS̄1 + d2S̄2,

by the linearity of the averaging operator ·̄,1 and as here a/β = O(1) it is
clear that

S̄0 =
a

β
and S̄1, S̄2 = 0.

Finally, by Observation 4.1 on page 146 and Equation 4.7 on page 145

Ṡ0 = 0,

it is possible to conclude that

S0(t) = S0(0) =
a

β
.

�

Lemma 4.6 I1 is constant.

Proof: By Observation 4.1 on page 146 and Lemma 4.5 it is possible to
1This is only guaranteed if the system possesses a periodic attractor that is uniformly

hyperbolic.
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solve Equation 4.11 on page 146 for I1, to find that:

İ1 = βS0I1 − aI1

= aI1 − aI1

= 0.

Hence I1 is constant so
I1(t) = I1(0). (4.15)

The value of I1(0) is derived as part of the proof of the next lemma. �

Lemma 4.7 S1 is annual and given by

S1(t) =
τ

2
− t + B1(t), (4.16)

and therefore has a sawtooth type behaviour.

Proof: Solving Equation 4.8 on page 145 for S1, using Observation 4.1 on
page 146 and Lemma 4.5 on page 147 and Equation 4.15 gives

Ṡ1 = −β
a

β
I1(0)− a

β
+ B′

1(t)

= aI1(0)− a

β
+ B′

1(t).

Integrating this with respect to t it becomes apparent that

S1(t) = S1(0)−
(

aI1(0) +
a

β

)
t + B1(t).

To complete the proof it remains to obtain values for the constants S1(0)
and I1(0). Lemma 4.5 on page 147 states that S̄1 = 0, so by definition

lim
t→∞

1
t

∫ t

0
S1(s)ds = 0.

This implies

lim
n→∞

1
nτ

∫ nτ

0
S1(t)dt = 0.
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Substituting for S1 in the above:

0 = lim
n→∞

1
nτ

∫ nτ

0
S1(0)−

(
aI1(0) +

a

β

)
t + B1(t))dt

= lim
n→∞

1
nτ

[
S1(0)t−

(
aI1(0) +

a

β

)
t2

2

]nτ

t=0

+
1
nτ

n(n− 1)
2

τ2

= lim
n→∞

S1(0)−
(

aI1(0) +
a

β

)
nτ

2
+

n− 1
2

τ

= lim
n→∞

(
S1(0)− τ

2

)
+

nτ

2

(
1−

(
aI1(0) +

a

β

))
.

For the limit to be zero the following must hold

S1(0) =
τ

2
and (4.17)

I1(0) =
1
a
− 1

β
. (4.18)

Substituting these two expressions into Section 4.1 on the preceding page
gives the result. �

Lemma 4.8 I2 is annual and given by

I2(t) = I2(0) + βI1(0)
(

tτ

2
− t2

2

)
for 0 ≤ t < τ .

Proof: To solve Equation 4.12 on page 146 for I2, first substitute values for
I0 from Observation 4.1 on page 146, S0 from Lemma 4.5 on page 147 and
I1 from Equation 4.15 on the preceding page, the equation then simplifies to

İ2 = β

(
I2

a

β
+ I1(0)S1

)
− aI2

= βI1(0)S1

= βI1(0)
(τ

2
− t
)

+ βI1(0)B1(t).

Integrating with respect to t gives

I2(t) = I2(0) + βI1(0)
(

tτ

2
− t2

2

)
+ βI1(0)

∫ t

0
B1(s)ds. (4.19)
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Figure 4.1: Calculating

∫ t+τ
t B1(s)ds = area(A) + area(B).

It is straightforward to show that I2 is annual. Consider

I2(t + τ) = I2(0) + βI1(0)
(

τ(t + τ)
2

− t2 + 2τt + τ2

2

)
+βI1(0)

∫ t+τ

0
B1(s)ds

= I2(0) + βI1(0)
(

tτ

2
− t2

2

)
+ βI1(0)

∫ t

0
B1(s)ds︸ ︷︷ ︸

I2(t)

−βI1(0)tτ + βI1(0)
∫ t+τ

t
B1(s)ds.

To show I2 is annual it suffices to show that∫ t+τ

t
B1(s)ds = tτ.

Looking at Figure 4.1 it is clear that the integral is given by the sum of
area(A) and area(B). Now

area(A) =
⌊

t

τ

⌋
τ × τ (4.20)

and

area(B) =
(

(t + τ)−
⌊

t + τ

τ

⌋
τ

)
× τ (4.21)

= tτ =
⌊

t

τ

⌋
τ2 (4.22)

which proves I2 is annual. Since B1(t) = 0 for 0 ≤ t < τ the the integral

151



in Equation 4.19 on page 150 is zero so that

I2(t) = I2(0) + βI1(0)
(

tτ

2
− t2

2

)
. (4.23)

for 0 ≤ t < τ . As I2 is annual I2 can be expressed for all t as

I2(t) = I2(0) + βI1(0)
(

t̂τ

2
− t̂2

2

)
where

t̂ = t− τ

⌊
t

τ

⌋
,

is the phase of t, that is the remainder when t is divided by τ . The value of
I2(0) is given in Equation 4.24 on the next page, as it is derived in the proof
of the next lemma. �

Lemma 4.9 The integral of the order d2 component of I over a year can be
expressed as ∫ τ

0
I2 =

(
β

a
− 1
)

τ3

12
+ I2(0)τ.

Proof: Taking the expression for I2 from Equation 4.23 in the proof of
Lemma 4.8, which is valid for 0 ≤ t < τ , and integrating with respect to t

gives the result. �

Lemma 4.10 S2 is annual.

Proof: By Observation 4.1 on page 146, Lemma 4.5 on page 147 and Lemma 4.7
on page 149 the Ṡ2 equation (Equation 4.9 on page 145) simplifies to

Ṡ2 = −aI2 + βI1(0)S1 − S1 + B′
2(t)

= −aI2 − S1(1 + βI1(0)) + B′
2(t)

= −aI2 −
β

a

(τ

2
− t + B1(t)

)
+ B′

2(t).

Now integrating this with respect to t gives

S2(t) = −a

∫ t

0
I2(s)ds− βt(τ − t)

2a
− β

a

∫ t

0
B1(s)ds + B2(t).
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Considering the long time behaviour of S2

S2(nτ) = −a

∫ nτ

0
I2(s)ds +

βτ2

2a
n(n− 1)− β

a

∫ nτ

0
B1(s)ds + B2(nτ)

= n

(
(a− β)

τ3

12
− aI2(0)τ

)
by Lemma 4.9 and ∵ I2 is annual

+
βτ2

2a
n(n− 1)− βτ2

2a
n(n− 1)− τ2

2
n

= n

(
−τ2

2
− (β − a)

τ3

12
− aI2(0)τ

)
.

As S2 is bounded (because S is bounded) the parentheses must be zero so

− aI2(0)τ =
τ2

2
+ (β − a)

τ3

12

I2(0) =
(a− β)τ2 − 6τ

12a
. (4.24)

Now S2 is annual because

S2(t + τ) =− a

∫ t+τ

0
I2(s)ds− β(t + τ)(τ − (t + τ))

2a

− β

a

∫ t+τ

0
B1(s)ds + B2(t + τ)

=−a

∫ t

0
I2(s)ds− βt(τ − t)

2a
− β

a

∫ t

0
B1(s)ds + B2(t)︸ ︷︷ ︸

S2(t)

− a

∫ t+τ

t
I2(s)ds− β

a

∫ t+τ

t
B1(s)ds− τ2

2
+

βτt

2a
+

βτt

2a

=S2(t)− a

∫ t

o
I2(s)ds− β

a

∫ t+τ

t
B1(s)ds− τ2

2
+

βτt

a

=S2(t)−
(β − a)τ3

12
− aI2(0)τ − βτt

a
− τ2

2
+

βtτ

a
by Lemma 4.9

=S2(t)− aI2(0)τ − (β − a)τ3

12
− τ2

2
=S2(t) by Equation 4.24.

�

Most of the work is now done and the above results can now be brought
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Figure 4.2: A period one attractor (blue line) for the pulsed
SIR system compared with the trajectory predicted by the
small x approximation (red line). Parameters: g = 0.075,
R0 = 4 and x = 10−4.

together to prove Theorem 4.2 on page 144.
Proof: Firstly, considering the coefficients of the expansion of S, the

result for S0 is given directly by Lemma 4.5 on page 147. Similarly the
equation for S1 follows from Lemma 4.7 on page 149, noting that B1(t) = 0
for 0 ≤ t < τ and by substituting the value of S1(0) from Equation 4.17 on
page 150 calculated in the proof of Lemma 4.7 . The explicit calculation of
S2 is omitted, but Lemma 4.10 on page 152 shows it is an annual function.

Secondly, in the case of I, Observation 4.1 on page 146 shows that I0

is zero. Lemma 4.7 on page 149 shows that I1 is constant and this value is
derived in the proof of Lemma 4.7, specifically in Equation 4.18 on page 150.
In this case it is necessary to explicitly calculate the O(d2) coefficient I2

because the lower order terms where found to be constant. This is done
in Lemma 4.8 on page 150, and by the substituting of values for I1(0),
from Equation 4.18 on page 150 in the proof of Lemma 4.7, and I2(0),
from Equation 4.24 on the previous page in the proof of Lemma 4.10. �

Utilising Theorem 4.2 the approximation is compared to the results from
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Figure 4.3: Results of an error analysis of the small x
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attractor measured between the numerically integrated pulsed
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x approximation (S̃, Ĩ) (Theorem 4.2 on page 144). Where
S̃ = S0 + dS1 and Ĩ = I0 + dI1 + d2I2 Parameters: g = 0.075,
R0 = 4.

numerically integrating the original system. A period one attractor for
x = 10−4 is compared to its approximation in Figure 4.2 on the preceding
page. A very close agreement can be seen between the two, showing that the
approximation is valid for these parameter values.

An error analysis of this approximation is now undertaken and the results
are shown in Figure 4.3. The graph shows the maximal absolute error
between (S, I), the “exact” path calculated by numerical integration and
(S̃, Ĩ), the approximation predicated by the small x approximation presented
here, that is

S̃ = S0 + dS1

Ĩ = I0 + dI1 + d2I2.

The graph can be split into 3 parts: left, centre and right. In the central
region, roughly between d = 10−6 and d = 10−1, the error in I is clearly
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O(d3) (the upper dashed line shows the curve f(d) = d2), and S is clearly
O(d2) (again the lower dashed line shows f(d) = d3). This is exactly what is
expected because the approximation S̃ has been evaluated up to order one in
d and Ĩ up to order two. This shows that the approximation is valid in this
region. In the right hand region where d > 10−1 the error behaviour changes
and the approximation starts to break up because d is too large. Finally, in
the left region, where d < 10−6, the error behaviour changes due to numerical
errors in the integration. Using a smaller time step does decrease the value
of d where breakup occurs, but not significantly.

There may be scope for generalising this result, to show that only period
one attractors can exist for small x. The results for S0, I0 and I1 do not
depend on the dynamics lying on an attractor of period specifically one.
Thus, as the oscillations in S and I are small, O(d) and O(d2) respectively,
it may be possible to show, using a linearity argument similar to that used
by Keeling et al. [2001], that only period one attractors exist.

It is possible to carry out a similar multi-scale analysis for R0 close to
one, by setting R0 = 1 + ε. However, the analysis is much more complex and
not considered here.

4.2 Large g approximations

This section considers an approximation to the pulsed simple SIR model
with a short infectious period (g > 0.5). Having a short infectious period
means that epidemics occur rapidly and also decay rapidly. Diseases with
an infectious period in this range include Norwalk-like viral gastroenteritis,
which has a infectious period of 2–3 days [Kaplan et al., 1982], so that an
epidemic in a closed population, such as on a cruise ship, can take place in as
little as five days [Gunn et al., 1980]. Similarly influenza has a latent period
of only 1–3 days and an infectious period of only 2–3 days, meaning that an
epidemic can sweep though a city in less than six weeks [Hethcote, 2000].

The rapid occurrence and decay of epidemics allows assumptions to
be made about the dynamics, that lead to the formulation of a discrete
approximation to the standard pulsed SIR model in this region of parameter
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space. The system is given by the following set of equations:

Ṡ = −βSI

İ = βSI − gI

Ṙ = gI.

(4.25)

In the same way as with the standard pulsed SIR model, described in Chap-
ter 2 on page 24, a birth pulse is applied to the susceptible class every
year:

S(t+) = S(t−) + x where t = nτ , n ∈ N.

The use of the simple SIR model, without deaths, simplifies the analysis.
Figure 4.4 on the next page shows a typical period one attractor of the

pulsed simple SIR model with a short infectious period, g = 0.500. It is clear
that the trajectory is split into four distinct phases: growth; during which
the level of infection increases but the level of susceptibles remains constant,
epidemic; where level of susceptibles is reduced but the level of infecteds
is constant, decay; as the level of infection decreases after the epidemic,
pulse; where the susceptibles are replenished. Clearly the pulse phase is
instantaneous, and the epidemic phase is extremely short, so most of the
year is spent in the growth and decay phases.

A simplified model of four stages is constructed by assuming, amongst
other things, that the epidemic phase is instantaneous, so that all the time
is split between the growth and decay phases. The time spent in the growth
phase is denoted by t1, so that a time of τ − t1 is spent in the decay phase.
If it is found that t1 ≥ τ , then no epidemic takes place that year and birth
pulse is followed by another growth phase. The equations for each phase are
derived as follows, where initially (S, I) = (S0, I0).

Growth: This phase describes the growth of infection building to an epi-
demic, during which it is assumed S is constant. Using this assumption
it is possible to solve the İ equation to obtain an explicit expression
for I during this phase of the cycle, whence

S = S0

I = I0e
(βS0−g)t

}
for 0 ≤ t < t1.

Note that if βS0 < g then this phase would describe decay, rather than
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growth, in the level of infecteds. This occurs in the case where S was
greatly reduced by a previous large epidemic, and it may take several
birth pulses before the level of infection starts to grow again.

Epidemic: During this phase I remains constant and S jumps to S∞. Here
S∞ is defined as the value S would attain in the un-forced simple
SIR model as t → ∞. This assumption requires a short infections
period causing the epidemic to be sufficiently quick so that this limit
is approached. Hence

S = S∞(S0, I0)
I = I1 = I0e

(βS0−g)t1

}
at t = t1.

Decay: For this phase, similar to the growth phase, S is again constant
and I evolves in the same way as in the growth phase. Here, however,
βS∞ < g so the exponent is negative and I is decreasing during this
phase. The duration of this phase it τ − t1, assuming it is non zero,
that is this phase continues until the next pulse. The equations are

S = = S∞(S0, I0)
I = I1e

(βS∞−g)(t−t1)

}
for t1 < t < τ.

Birth Pulse: This phase is instantaneous and represents the now familiar
birth pulse, introduced in Chapter 2. Hence S is incremented by the
constant value x while I remains constant:

S = S∞ + x

I = I1e
(βS∞−g)(τ−t1)

}
at t = τ.

In the case that t1 ≥ τ the epidemic and decay phases are omitted and the
system proceeds straight to the pulse phase before starting the next cycle
with another growth phase. In order to determine the time spent in the
growth and decay phases, the change in S over the epidemic S0 − S∞, is
assumed to match the total number of infecteds that recover over a year.
This again requires the assumption that the infections period be short and
thus that g is large, so that one year is sufficient time for all the infecteds to
recover. Hence the change in S over the epidemic is given by integrating the
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recovery rate over a year:

S0 − S∞ =
∫ τ

0
gI(t)dt. (4.26)

It is now necessary to derive an expression for S∞.

Lemma 4.11 For the simple SIR model the proportion of susceptibles re-
maining after the epidemic, that is, the limit limt→∞ S(t), is given by

S∞(S0, I0) =
−W (−R0S0e

−R0S0−R0I0)
R0

. (4.27)

Where W is the Lambert W function, the inverse of f(W ) = WeW .

Proof: The proof proceeds by calculating the final size of the epidemic R∞,
then uses the fact that

R∞ = 1− S∞.

Dividing the susceptible equation by the recovered equation (a trick
developed by Kermack and McKendrick [1927]) shows that

dS

dR
= −R0S

Which has the solution

S = S(0)eR(0)R0e−R0R.

Since S + I + R = 1 and I(∞) = 0,

R∞ = 1− S(0)eR(0)R0e−R0R∞ .

Hence
S∞ = S0e

(S∞−S0−I0)R0 .

There is no closed form for S∞, but the form using the Lambert W function
was found using MapleTM. This makes it possible to directly evaluate S∞

numerically. �
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Now all that remains is to determine t1. By Equation 4.26

S0 − S∞(S0, I0) = gI0

∫ t1

0
e(βS0−g)tdt + gI1

∫ τ

t1

e(βS∞−g)tdt

=
I0

βS0 − g

(
e(βS0−g)t1 − 1

)
+

I0e
(βS0−g)t1

βS∞(S0, I0)− g

(
e(βS∞(S0,I0)−g)(τ−t1) − 1

)
Again no closed form for t1 exists, even involving S∞, thus numerical methods
must be used. A simple bisection method is used to find the value of t1 that
solves this equation for the given values of S0 and I0. A library function is
utilised to evaluate the Lambert W function.

The above calculations now give a framework to approximate the tra-
jectory that any initial point (S0, I0) will take during the next year. The
process can be repeated to approximate the multi-annual attractors seen in
Chapter 2. Figure 4.5 shows the trajectories predicted by this approximation
for starting points on attractors of the pulsed simple SIR model as discussed
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in Subsection 3.3.2 on page 106. The approximation shows good correlation
with the numerical results. It slightly over estimates the peak level of infec-
tion, and fails to capture start and end of the epidemic phase very accurately,
but this is to be expected as the epidemic is being modelled as a pulse. The
value of g = 0.5 used is not very big, a larger g would improve the fit at the
start and end epidemic phase. The level of infection at which the birth pulse
occurs is slightly under predicted. This again would improve with a larger g.

This approximation shows how even the complex dynamics of multi-
annual attractors can be well approximated by simple combinations of
exponential growth/decay and pulses representing epidemics as well as births.

The same techniques can be applied to the standard pulsed SIR model,
but lead to a significantly more complex approximation where S, as well
as I varies exponentially during the growth and decay phases. Given the
complexity of the approximation for the simple SIR model, it was felt that
nothing would be gained from the analysis.

4.3 The Q-L large g approximation

Although the first large g approximation presented in the previous section is
a good fit to the dynamics, the approximation itself is quite complicated to
compute. In particular, the calculation of t1 is particularly unintuitive. A
simpler approximation would be a more useful tool to help understand the
dynamics. This sections shows how making one extra assumption greatly
simplifies the previous approximation.

Looking again at the time-series plot of Figure 4.4 on page 158, it is clear
that at the peak of the epidemic I is O(1). If it is assumed that I1 = 1,
the value of t1, here denoted by T , can be calculated directly from the I

equation during the growth phase. Hence, under this assumption

1 = I0e
(βS0−g)T

so,

T =
1

βS0 − g
log
(

1
I0

)
.

Using this approximate the system is transformed into a discrete annual map,
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where St and It denote the values of S and I at the start of the year.
Given T is known, the growth, epidemic, decay and pulse stages of the

previous model can be compressed into one process, obtaining expressions
for St+1 and It+1—the values of S and I at the start of the next year. There
are two possibilities, if 0 < T < τ then an epidemic occurs so

St+1 = S∞(St, It) + x (4.28)

It+1 = Ite
(βSt−g)T e(βSt+1−g)(τ−T ) (4.29)

otherwise no epidemic occurs and

St+1 = St + x (4.30)

It+1 = Ite
(βSt−g)τ . (4.31)

In both cases the birth pulse is applied.
Now consider the transformation

Qt = βSt/g = R0St

Lt =
log(It)

g
.

Under this transformation the time spent in the growth phase is given by

T =
−Lt

Qt − 1
. (4.32)

Next the equations for St+1 and It+1 are transformed into Qt and Lt.
Firstly the case 0 < T < τ when an epidemic occurs is calculated. To obtain
an expression for Qt+1 the expression for S∞ (Equation 4.27 on page 160) is
substituted into Equation 4.28, so that

R0St+1 = −W
(
−R0Ste

−R0St−R0It
)

+ R0x

and by assuming that the It, is small in relation to St, so that the R0It term
can be neglected,

Qt+1 = −W
(
−Qte

−Qt
)

+ R0x,

where, as before, W is the Lambert W function.
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An expression for Lt+1 is gained from Equation 4.29 by substituting
It = egLt and St = Qt/R0, then taking logs, so

gLt+1 = gLt + g(Qt − 1)T + g(Qt+1 − 1)(τ − T ),

by Equation 4.32

Lt+1 = (Qt+1 − 1)(τ − T ).

In the case 0 > T > τ , where no epidemic occurs that year, the equations
are simpler. By Equation 4.30

Qt+1 = Qt + R0x,

then substituting into Equation 4.31, taking logs and dividing though by g

yields

Lt+1 = Lt + (Qt − 1)τ.

Thus the new discrete approximation can be summarised as

Epidemic:
Qt+1 = −W

(
−Qte

−Qt
)

+ R0x

Lt+1 = (Qt+1 − 1)(τ − T )

}
when 0 < T =

−Lt

Qt − 1
< τ

No Epidemic:
Qt+1 = Qt + R0x

Lt+1 = Lt + (Qt − 1)τ

}
otherwise.

Notice how this discrete approximation only has a single parameter. Also
note that in order to evaluate the Qt+1 equation in the epidemic case, a
library function must be used for the Lambert W function.

Figure 4.6 on the following page shows a bifurcation plot for this approx-
imation. Notice how simple period one dynamics as well as complex high
period dynamics are present. The dynamics closely resemble those of the
pulsed simple SIR model (Figure 3.16 on page 109). It is striking how such
a simple approximation can yield such complex dynamics.
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For this approximation the dynamics are controlled by the single pa-
rameter R0x. A poignant question is whether or not this relates back to
the pulse simple SIR model which is being approximated. Figure 4.7 shows
contours of constant R0x overlaid on the periodicity data from Figure 3.16.
It is immediately apparent that the contours run parallel to the boundaries
between regions of different periods. This suggests that the single parameter
R0x does indeed control the behaviour of the pulsed simple SIR model, or at
least their periodicity, and that there exist threshold values of R0x at which
the period of the attractors change. This result greatly simplifies the study
of this model.

4.4 Conclusions

The three approximations presented in this chapter all show excellent agree-
ment with the models they represent. They give insight into causes of the
dynamics of both the standard and simple SIR model.

The multi-scale approach used for the small x region of parameter space,
is useful because it is a region where the numerical solutions can be inaccurate
due to the very slow convergence times experienced in that region. The

166



results also help to explain what happens to the attractors in the limit when
the forcing goes to zero, helping to understand the transition from an annual
attractor to a fixed point.

Further work could include performing the same analysis in the case R0

is close to unity. Though this is more complicated than the small x case
it may lead to some insight into how the dynamics become unstable as R0

approaches 1.

The two large g approximations to the pulsed simple SIR model are a
useful tool. They provide accurate results within their remit and are much
less computationally intensive than numerically integrating the ODE models
which they approximate.

The first large g approximation does involve carrying out the bisection
algorithm on a complex expression in order to determine the time spent in
the growth phase, a calculation that is quite unintuitive.

This problem is solved with the second approximation, in which the time
spent in growth is a simple function of the state variables and parameters.
The number of parameters is also reduced to a single one: R0x, which controls
the dynamics of the system. It is astonishing that the simple discrete model
provided by this approximation so accurately describes the high period
dynamics exhibited by the pulsed simple SIR model. It turns out that for the
pulsed simple SIR model changes in the single parameter R0x also coincide
accurately with changes in its attractors periodicity. This will greatly simplify
the study of this model.

It should be possible to formulate a similar approximation for pulsed SIR
model. This would be more complicated because the level of susceptibles
will vary, due to deaths, during the growth and decay stages. It might
then be possible to come up with an discrete system similar to the Q-L
approximation, though it will have more than a single parameter.

An alternative analytic approach that could be considered would be to
find a system of ODEs that have similar behaviours to the SIR model, but are
integrable. This would open up the door to many other analytical techniques.
For example if an explicit annual map could be written down, the addition of
pulsing becomes trivial. This work could then be used to aid understanding
of the behaviours of the pulsed SIR model and its variants.

The analytical work done in this chapter greatly enhances the understand-
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ing of the at times very complex dynamics of pulsed SIR systems. Much more
work could be done in this field to give further insights into the dynamics of
pulsed SIR models.

168



Chapter 5

Conclusions

There has been little work in investigating the role that seasonal birth rates
play in disease dynamics, whereas there is a very large body of work focusing
on the effects of seasonal transmission rates, in particular measles and other
childhood diseases. This thesis attempts to redress the balance.

After considering the various seasonal birth patterns observed in animal
and human populations it was decided to focus on populations with a highly
seasonal birth rate. Observing that for species such as Saiga antelope
reproduction is synchronised to the extent where all births occur in a period
of 3–8 days, it was concluded that an instantaneous pulse of births applied
to the population would be a simple way to model these phenomena.

Chapter 2 introduced the pulsed SIR modelEquations 2.1 on page 29. An
annual birth pulse was applied to the susceptible class, the size of which was
tied to the death rate so that, on average over a year, the population size
remained constant. A biologically reasonable parameter space was chosen
(which was used throughout the later chapters) and the model was found
to exhibit periodic attractors in all areas of parameter space where R0 > 1.
After reviewing the numerical techniques used in the literature, suitable
methods where chosen and refined to determine periodicity of the dynamics.
This proved to be nontrivial, due to long convergence times and higher
period oscillations about the attractors fixed points. It was discovered that,
in some regions of parameter space multiple attractors coexisted. A method
dubbed “pushing out” was developed to determine their extent (see Box 2.3
on page 49). However, this method only distinguished attractors of different
period. Figure 2.19 on page 56 shows the existence of a region where two
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period six attractors coexist. The figure was produced by manually separating
the two areas and pushing out again. The problem of how to automatically
distinguish coexisting attractors of the same period remains to be tackled.
Perhaps a solution to this is the use of some of the more sophisticated,
yet less robust numerical methods, such as minimisation techniques for the
location of periodic orbits as discussed in Subsection 2.2.2 on page 37. Similar
techniques could be used to improve the predictor-corrector algorithm used
in pushing out. The data sets for the coexisting attractors were calculated
for several different infectious periods. The general trend was that as the
infectious period decreased (g increasing, but also β increasing so that R0

is kept approximately constant) the complexity of the dynamics increases.
More higher period dynamics appeared and even chaos.

Later sections of Chapter 2 considered other properties of the attractors.
Their modal frequency was calculated, and the minimal level of infection in
some areas of parameter space was seen to show a possible risk of extinction,
due to stochastic variations, because of the very low levels reached in between
epidemics. A way to deal with this problem is to use a small level imports of
infection from an external source to keep the levels form dropping to low.
This solution is considered in Subsection 3.3.8 on page 135.

Resonant effects are examined in Section 2.5 on page 62. By considering
the transition from low amplitude forcing to the pulsed births the onset of
nonlinear resonance is observed. This is seen to be typical behaviour across
parameter space. The existence of coexisting attractors is explained by
the overlapping of the breaking waves characteristic of nonlinear resonance.
This further advances the understanding of the multi-annual dynamics and
coexisting attractors observed here.

The bifurcation structure was briefly analysed, and period doubling
bifurcations, leading to chaos where observed. Finally, the presence of
unstable period one attractors was discovered, and the level of their instability,
as measured by their Floquet multipliers, was shown to generally increase
with the periodicity of the stable attractors, with which they coexist.

Chapter 3 aimed to show the robustness of the results of Chapter 2 to
a wide range of perturbations. Broadly speaking this was shown to be the
case.

Small perturbations in phase space were the first to be considered. Using
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the modulus of the largest Floquet multiplier as a measure of linear stability
it was shown that most regions of parameter space were stable with respect
to small perturbations. The main region where the stability was not very
strong was the small d, small β/g region of parameter space. This provided
an explanation for the slow convergence observed in that region.

Although an instantaneous pulse of births is a realistic assumption for
certain animal populations (e.g. Saiga antelope) it may not be so realistic
for some populations that still have highly seasonal births, but show greater
temporal spread. Section 3.2 on page 92 investigated the effects of using other
functions to model seasonal births. An obvious choice was to use sinusoidal
forcing, which has been used successfully to model seasonal variations in
the transmission rate. However, the qualitative dynamics of the pulsed SIR
model did not persist under sinusoidal forcing. A top hat functions was
also considered and dynamics showed good qualitative agreement with the
pulsed SIR model. One surprising fact, shown in Figure 3.7 on page 99 is
that the periodicity of the dynamics remains almost unchanged when the
width of the top hat functions is as large as 90 days, a quarter of a year. A
smoothed top hat function was also considered, and only when large levels
of smoothing were applied did the qualitative dynamics depart from those of
the pulsed SIR model. Thus it was concluded that the results where stable
to changes in the birth pulse, and that only the most smoothed functions,
or those with where the births where present for most of the year caused
qualitative changes in the dynamics.

This is a very important result, because it makes the pulsed SIR model
applicable to many more populations. It even suggests that if fitting seasonal
birth patterns to the model, it may not be necessary to have a detailed
knowledge of the distribution of births throughout the year, only their total
number. One other type of seasonal birth pattern that should possibly be
considered is the combination of a birth pulse with a constant underlying
average birth rate. This is the kind of pattern of births that is observed in
cattle (Figure 2.3 on page 28).

The final test of the robustness of the results of the pulsed SIR model was
to look at changing the structure of the underlying model, effectively changing
the assumptions on which the model was based. Numerous variants of the
SIR model were tested. In general most qualitative features of the dynamics
of the pulsed SIR model were preserved. One of the most significant changes
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made was the addition of an exposed class, to form the well know SEIR
model. This highlights the difference between the infected and infectious
periods. This was followed up by changing the distribution of infected and
latent periods from the exponential assumed by the standard SIR/SEIR
models, to a gamma distribution. This change caused a marked increase in
the complexity of the dynamics. This was explained by the fact that the
gamma distribution has a much smaller standard deviation, thus the latent
and infectious periods are much more tightly grouped. This means that
rather than the strong variations in the level of susceptibles, caused by the
birth pulse, being damped as they travel though the exposed and infectious
classes, they are in fact merely delayed. It is hypothesised that the now much
more rapid changes in these classes causes the increased complexity seen in
the dynamics for the gamma models with gamma distributed infectious and
or latent periods.

Another model studied is the vaccination pulse model (Subsection 3.3.3
on page 110). This differs from all the other models studied in Chapter 3 in
that the births are at a constant rate and a pulse is used to model vaccination.
Much work has been carried out in the examination of vaccination strategies
and pulsed vaccination is a tried and tested strategy [Nokes and Swinton,
1997]. The vaccination pulse model was shown to share many qualitative
features with the pulsed SIR model. Many of the methods developed for the
pulsed SIR model could be applied to the vaccination pulse model and this
is an area for future work.

The similarities between the vaccination pulse model and the pulsed SIR
model raise a poignant question: are the dynamics exhibited by the pulsed
SIR model a general feature of models where strong seasonality is modelled
using pulses? Much more work would need to be done to fully answer this
question. There are many examples in nature where strong seasonality is
present and a pulse could be an appropriate modelling tool.

A major modelling tool not considered in this thesis is stochasticity.
Much further work could be done to test the robustness of the results of the
pulsed SIR model with respect to small random perturbations. This could be
in the transmission of infection, or in the timing and size of the birth pulse.
One issue that would need to be addressed is the problem of extinction. One
answer is the use of imports (Subsection 3.3.8 on page 135).
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Chapter 2 and Chapter 3 focused primarily on the use of numerical
methods. Chapter 4 attempts to redress the balance and focused on analytical
methods. Three approximations to the pulsed models discussed in earlier
chapters are presented. They complement the numerics by focusing on
specific areas in parameter space where the numerics are computationally
costly or inaccurate.

The first approximation looks at the behaviour of the pulsed SIR model for
small birth pulse. A multi-scale analysis yields a second order approximation
and shows that annual dynamics exist in this region. An error analysis shows
good agreement with the numerics. A second multi-scale analysis could be
conducted for the region R0 close to one.

The second two approximations consider what happens for very short
infectious periods, large g, for the pulsed simple SIR model. The second of
these is a simplification of the first, obtained by making further assumptions.
It provides a simple discrete model of single variable that captures all the
behaviour of the pulsed simple SIR model including high period dynamics
and chaos. The results are related back to the original pulsed SIR model
where it is found that the single parameter R0x also controls the periodicity
of the dynamics. A possible avenue for further work would be to try and
repeat this analysis for the standard pulsed SIR model, i.e. with deaths.

The main stumbling block to the use of analytic tools on the pulsed SIR
model is that there is no closed solution to the system of ODEs: they are not
integrable. If an integrable system with similar behaviour to the SIR model
could be found it would be much easier to treat analytically, and perhaps
some of the results gained could be transfered back to the pulse SIR model.

In conclusion adding pulsed births to standard epidemiological models
gives rise to complex dynamics. These are shown to be robust in the broadest
of senses. This makes the pulses SIR model a good choice for modelling the
spread of disease in populations exhibiting highly seasonal birth patterns.
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