
Loughborough University
Institutional Repository

Economic scheduling in Grid
computing using Tender

models

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�lment of the requirements for
the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/3094

Please cite the published version.

https://dspace.lboro.ac.uk/2134/3094

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Economic scheduling in Grid computing

using Tender model

by

Mohammad Bsoul

A Doctoral Thesis

Submitted in partial fulfilment
of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

May 2007

c© Mohammad Bsoul, 2007

This thesis is dedicated to

Abedel Rahman and Najieh, my parents.

i

Acknowledgements

First of all, I must thank my PhD supervisor, Dr. Iain W Phillips, who made this

thesis possible. I would also like to thank my director of research, Chris Hinde,

for his helpful advice. I am also grateful to Department of Computer Science at

Loughborough University for accepting me into the PhD program.

I also have to thank my friends and colleagues: Nacho, Javier, Jose, John,

Lezan, Mark, Matthew, Fadi, Mutaz, Ashraf, Tareq, Ahmad and Hesham, possibly

many more.

Lastly, and most importantly, I would like to thank my parents, Abedel Rah-

man and Najieh. They raised me, supported me, taught me and loved me. For

these reasons, this thesis is dedicated to them, with all my love and respect.

ii

Abstract

Economic scheduling needs to be considered for Grid computing environment, be-

cause it gives an incentive for resource providers to supply their resources. More-

over, it enforces efficient use of resources, because the users have to pay for their

use. Tendering is a suitable model for Grid scheduling because users start the ne-

gotiations for finding suitable resources for executing their jobs. Furthermore, the

users specify their job requirements with their requests and therefore the resources

reply with bids that are based on the cost of taking on the job and the availabil-

ity of their processors. In this thesis, a framework for economic Grid scheduling

using tendering is proposed. The framework entities such as users, brokers and

resources employ tender/contract-net model to negotiate the prices and deadlines.

The brokers’ role is acting on behalf of users. During the negotiations, the entities

aim to maximise their performance which is measured by a number of metrics.

In order to evaluate the entities’ performance under different scenarios, a Java-

based simulator, called MICOSim, supporting event-driven simulation of economic

Grid scheduling is presented. MICOSim can perform a simulation of more than

one hundred entities faster than real time. It is concluded from the evaluation

that users who are interested in increasing the job success rate and paying less for

executing their jobs have to consider received prices to select the most appropriate

iii

bids, while users who are interested in improving the job average satisfaction rate

have to consider either received completion time or both price and completion time

to select the most suitable bids when the submission of jobs is static. The best

broker strategy is the one that doesn’t take into account meeting the job deadlines

in the bids it sends to job owners. Finally, the resource strategy that considers

the price to determine if to reply to a request or not is superior to other resource

strategies. The only exception is employing this strategy with price that is too

low. However, there is a tiny difference between the performances of different user

strategies in dynamic submission. It is also concluded from the evaluation that

broker strategies have the best performance when the revenue they target from the

users is reasonable. Thus, the broker’s aim has to be receiving reasonable revenue

(neither too low nor too high) from acting on behalf of users. It is observed

from the results that the strategy performance is influenced by the behaviour of

other entities such as the submission time of user jobs. Finally, it is observed

that the characteristics of entities have an effect on the performance of strategies.

For example, the two user strategies that consider the received completion time

and both price and completion time to determine if to accept a broker bid have

similar performance, because of the existence of resources with various prices from

cheap to expensive and existence of resources which don’t care about the price

paid for the execution. So, the price threshold doesn’t have a large effect on the

performance.

Keywords: Grid computing, Economic scheduling, Tender/Contract-net

model, Strategy, Framework, Entity, User, Broker, Resource, Simulation.

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 An overview of Grid computing . 1

1.2 Establishing our scenario . 3

1.3 This work . 4

1.4 Thesis structure . 5

2 On scheduling in Grid computing 6

2.1 Grid components . 6

2.2 Application requirements . 7

2.3 Resource scheduling tasks and challenges 9

2.4 Scheduling schemes . 11

2.5 Scheduling performance metrics . 12

2.6 Scheduling categories . 14

2.6.1 Conventional scheduling . 14

2.6.2 Economic scheduling . 27

v

2.6.3 Differences between conventional and economic strategies . . 38

2.7 Market models . 39

2.8 Critique . 42

2.9 Chapter summary . 44

3 An economic scheduling framework using tendering 45

3.1 Introduction . 45

3.2 Framework entities . 46

3.2.1 Resources . 48

3.2.2 Users . 50

3.2.3 Brokers . 51

3.3 Entity strategies . 52

3.3.1 Resource strategies . 52

3.3.2 User strategies . 57

3.3.3 Broker strategies . 67

3.4 Chapter summary . 70

4 MICOSim: A simulator for modelling economic scheduling 72

4.1 Introduction . 72

4.2 Related work . 73

4.3 MICOSim components . 75

4.3.1 TheSystem . 75

4.3.2 Entity . 76

4.3.3 Entitystrategy . 79

4.3.4 Scenario . 81

4.4 MICOSim components’ interaction 82

4.5 Chapter summary . 83

5 Results and discussion 85

5.1 Introduction . 85

5.2 Comparison metrics . 85

5.3 Simulation setup . 87

vi

5.4 Enhancing simulation speed . 99

5.5 Simulation verification . 101

5.5.1 First verification scenario . 102

5.5.2 Second verification scenario 108

5.5.3 Third verification scenario 110

5.5.4 Fourth verification scenario 114

5.6 Results and discussion . 114

5.6.1 Job progression . 114

5.6.2 Static submission of jobs . 118

5.6.3 Dynamic submission of jobs 131

5.7 Chapter summary . 141

6 Conclusions and future work 143

6.1 Summary . 143

6.2 Future work . 146

Bibliography 147

Appendices 158

A Output of first verification scenario 159

B Output of second verification scenario 161

C Output of third verification scenario 163

D Output of fourth verification scenario 165

vii

List of Figures

3.1 Interaction between users, brokers and resources. 48

3.2 Resource. 49

3.3 User. 51

3.4 Broker. 52

4.1 Interaction between MICOSim’s components. 82

4.2 Negotiation between a user and a broker. 83

4.3 Negotiation between a broker and a resource. 83

5.1 The Java code for determining the sent completion time of resource

price strategy . 97

5.2 Assignment of jobs to processors in the first verification scenario. . . 108

5.3 Assignment of jobs to processors in the third verification scenario. . 114

5.4 Job submission, allocation, start and finish times with inter-arrival

times follow negative exponential distribution with mean 15. 116

5.5 Job submission, allocation, start and finish times with inter-arrival

times follow negative exponential distribution with mean 50 116

5.6 Job submission, allocation, start and finish times with inter-arrival

times follow negative exponential distribution with mean 200. . . . 117

viii

5.7 Job submission, allocation, start and finish times with job arrivals

follow negative exponential distribution with mean 500. 117

5.8 Job submission, allocation, start and finish times with dynamic

submission. 118

5.9 User strategy’s job success rate for different initial price determina-

tors with static submission. 123

5.10 User strategy’s average cost per Million Instructions for different

initial price determinators with static submission. 123

5.11 User strategy’s average satisfaction rate per job for different initial

price determinators with static submission. 124

5.12 User strategy’s job success rate for different increment in price de-

terminators with static submission. 124

5.13 User strategy’s average cost per Million Instructions for different

increment in price determinators with static submission. 125

5.14 User strategy’s average satisfaction rate per job for different incre-

ment in price determinators with static submission. 125

5.15 User strategy’s job success rate for different initial deadline deter-

minators with static submission. 126

5.16 User strategy’s average cost per Million Instructions for different

initial deadline determinators with static submission. 126

5.17 User strategy’s average satisfaction rate per job for different initial

deadline determinators with static submission. 127

5.18 User strategy’s job success rate for different increment in deadline

determinators with static submission. 127

5.19 User strategy’s average cost per Million Instructions for different

increment in deadline determinators with static submission. 128

5.20 User strategy’s average satisfaction rate per job for different incre-

ment in deadline determinators with static submission. 128

5.21 Profit generated by two broker strategies for different revenue de-

terminators with static submission. 129

ix

5.22 Number of jobs executed by two resource strategies for different

minimum acceptable prices per Million Instructions with static sub-

mission. 129

5.23 Profit generated by two resource strategies for different minimum

acceptable prices per Million Instructions with static submission. . . 130

5.24 Profit generated by two resource strategies for different minimum

acceptable deadline determinators with static submission. 130

5.25 User strategy’s job success rate for different initial price determina-

tors with dynamic submission. 133

5.26 User strategy’s average cost per Million Instructions for different

initial price determinators with dynamic submission. 133

5.27 User strategy’s average satisfaction rate per job for different initial

price determinators with dynamic submission. 134

5.28 User strategy’s job success rate for different increment in price de-

terminators with dynamic submission. 134

5.29 User strategy’s average cost per Million Instructions for different

increment in price determinators with dynamic submission. 135

5.30 User strategy’s average satisfaction rate per job for different incre-

ment in price determinators with dynamic submission. 135

5.31 User strategy’s job success rate for different initial deadline deter-

minators with dynamic submission. 136

5.32 User strategy’s average cost per Million Instructions for different

initial deadline determinators with dynamic submission. 136

5.33 User strategy’s average satisfaction rate per job for different initial

deadline determinators with dynamic submission. 137

5.34 User strategy’s job success rate for different increment in deadline

determinators with dynamic submission. 137

5.35 User strategy’s average cost per Million Instructions for different

increment in deadline determinators with dynamic submission. . . . 138

x

5.36 User strategy’s average satisfaction rate per job for different incre-

ment in deadline determinators with dynamic submission. 138

5.37 Profit generated by two broker strategies for different revenue de-

terminators with dynamic submission. 139

5.38 Profit generated by two resource strategies for different minimum

acceptable prices per Million Instructions with dynamic submission. 139

5.39 Profit generated by two resource strategies for different minimum

acceptable deadline determinators with dynamic submission. 140

xi

List of Tables

2.1 Data spreading schemes in resource discovery [63] 9

2.2 Advantages of considering economics in selecting resources [55] . . . 28

3.1 Negotiation parameters. 48

3.2 Definitions of pseudocodes’ variables of resource strategies. 58

3.3 Definitions of pseudocodes’ variables of user strategies. 67

3.4 Definitions of pseudocodes’ variables of broker strategies. 69

5.1 Metrics of users, brokers and resources. 86

5.2 Fixed parameter values. 93

5.3 Sets of values the parameters take 93

5.4 Parameters’ values sent through the negotiations of U1. 111

5.5 Parameters’ values sent through the negotiations of U2. 112

5.6 Parameters’ values sent through the negotiations of U3. 113

xii

List of Pseudocodes

1 Resource strategy 1 (Price strategy). 53

2 Resource strategy 2 (Deadline strategy). 55

3 Resource strategy 3 (Price-Deadline strategy). 57

4 User strategy 1 (Price strategy). 60

5 User strategy 2 (Completion time strategy). 63

6 User strategy 3 (Price-Completion time strategy). 66

7 What broker strategy 1 (User-Resource price difference strategy)

does when a user request is received. 69

8 What broker strategy 1 (User-Resource price difference strategy)

does when it is the time to make a decision. 69

9 How to calculate the maximum number of rounds the user wants to

initiate. 96

10 Binary insert. 101

xiii

Chapter 1

Introduction

1.1 An overview of Grid computing

Grid computing is the sharing, selection, and aggregation of a group of resources

such as supercomputers, mainframes, storage systems, data sources, distributed

applications and management systems that behaves as a network of computa-

tion [83, 19, 18, 63, 4].

The aim of Grid computing is bringing computer power to the users [16]. The

enhancement in the speed and reliability of networks, in addition to the use of

distribution protocols are important factors that have led to the use of Grids, to

enable users to utilise resources owned by different providers remotely. A task

which was impossible before [74]. Over the last three decades, the speeds of

computers were doubled every year and a half. Moreover, for the last five years,

the speeds of networks have doubled every eight months. In addition, the cost of

manufacturing hardware is continuously decreasing [57].

Peer2Peer (P2P) computing is the sharing of PCs, which are connected to

the Internet. The objective of this sharing is to provide computing power or

sharing computer data between the connected PCs (Kazaa, Imesh, etc...). On

the other hand, Grid computing is the aggregation of clusters of computers that

1

Chapter 1. Introduction 2

are geographically distributed using suitable protocols and standards [83]. P2P is

lots of independent nodes interconnected to each other in no particular fashion,

and providing a loosely connected, non-centralised system. In contrast to this,

Grid is a well designed system, with system-wide standardied specification and

adherence to policies which P2P lacks. P2P is not targetted towards any specific

application, rather towards the aim of sharing files in a non-centralised manner.

Whereas, Grid was developed for specific purpose such as scientific research.

In Grid computing, the users (customers) can rent the machines residing on

the Grid for executing their computationally intensive applications instead of pur-

chasing their own special expensive resources. This can be sometimes shown as

dividing the cost of the resources participating in the Grid between the users who

use the Grid.

The definition of Grid is taken from the electrical power Grid that provides

pervasive access to power without caring where and how the power was produced.

In the same way, the computational Grid should provide pervasive access to high

end computing resources, without consideration for where and how the jobs were

executed [19, 69, 57].

Grids can be classified into computational Grids which concern computing

power, scavenged Grids which concern utilising unused resources and data Grids

which concern providing access to data [83].

Amongst the main goals for employing Grid computing are:

• Providing a framework for utilising unused computational power as well as

unused storage capacity.

• Simplifying collaboration between different organisations by providing direct

access to computers, software and storages.

• Providing an access to resources which can’t be accessed locally (remote

resources).

• Executing the jobs more quickly due the fact that the job can be executed in

Chapter 1. Introduction 3

parallel on multiple resources (Multi-site computing/Co-allocation). How-

ever, in such cases the job needs to support parallelism.

Other distributed computing technologies can benefit from Grid technologies to

solve some of their existing problems. For example, enterprise distributed com-

puting systems can employ Grid technologies to get over the problems of sharing

resources across institutional boundaries [38].

The most complicated task in Grid is the allocation process; mapping jobs to

various resources. This is a known NP-complete (non-deterministic polynomial

time) problem [62]. For example, the mapping of 50 jobs onto 10 resources pro-

duces 1050 possible mappings. This is because every job can be mapped to any of

the resources. This task becomes more complicated in the case of co-allocation [23]

which means that the job is executed on a number of resources instead of on a sin-

gle resource [34]. Another complexity of resource allocation is the lack of accurate

information about status of resources [43].

Much work was done on finding an optimal allocation. Some of the projects

used conventional strategies that usually concern the overall system performance,

but don’t consider economics (prices) for allocating jobs to resources. On the

other hand, A large number of projects use economics as strategies for allocating

jobs. Economic strategies take into consideration the price of the resources when

it needs to allocate jobs to resources and that price usually reflects the value of

the resource to the user.

This thesis introduces a novel framework for economic scheduling in Grid com-

puting using tender model.

1.2 Establishing our scenario

In our scenario, there are 3 classes of entities: Users, Brokers and Resources.

There are n users U1, U2, · · · , Un , m brokers B1, B2, · · · , Bm and w resources R1,

R2, · · · , Rw . Each user i has xi jobs Ji1, Ji2, · · · , Jixi and each resource j has yj

processors Pj1, Pj2, · · · , Pjyj
.

Chapter 1. Introduction 4

The users have jobs that need to be executed. The users send their jobs to the

brokers which in turn negotiate the job requirements with resources. The brokers

negotiate in a way that maximises their utilities, in addition to satisfying the user

requirements. The resources represent the computing power of the Grid and are

where the users’ jobs get executed. Resource providers make a profit by selling

computing power.

Users are the entities that can only send jobs. Brokers are the entities that

can send and receive jobs. Finally, Resources are the entities that just receive

jobs. Each of these entities competes with other entities from the same class.

Additionally, every entity employs a strategy in order to maximise its utilities (e.g.

reduce the cost, maximise profit). The performance of each entity is measured by

a number of metrics.

1.3 This work

In this thesis, we have designed, implemented and evaluated economy based entity

scheduling strategies for Grid computing. This was achieved by:

• Discovering the related literature to have a good understanding of the topic.

• Developing a new framework for economic scheduling in Grid computing.

• Building a simulator for modelling the framework.

• Using the simulator for evaluating the performance of various entity strate-

gies.

The aim of this thesis is to propose a new framework for decentralised economic

scheduling in Grid computing using tendering. In this framework, all participating

entities such as users, brokers and resources have utilities that need to be max-

imised by their own strategies. Within the framework, the performance of each

strategy is compared to the performance of other strategies employed by entities

of the same class.

Chapter 1. Introduction 5

1.4 Thesis structure

The present dissertation is divided into six chapters:

• The present chapter, Chapter 1 gives an introduction to Grid computing,

and describes our considered scenario.

• Chapter 2 reviews the topics relate to scheduling in Grid computing.

• A framework for economic scheduling in Grid computing using tendering is

introduced in Chapter 3.

• Chapter 4 describes the MICOSim simulator for modelling economic schedul-

ing. The simulator is used to compare the performance of the entity strate-

gies.

• The results of the comparison is discussed in Chapter 5.

• Finally, Chapter 6 concludes the thesis and defines the future lines of re-

search to continue this work.

Chapter 2

On scheduling in Grid computing

This chapter is a review of the topics related to scheduling in Grid computing.

This review covers the following topics:

1. The general components of the Grid.

2. The common application requirements.

3. Resource scheduling tasks and challenges.

4. Scheduling schemes.

5. Scheduling performance metrics.

6. Scheduling categories such as conventional and economic scheduling.

7. Market models.

2.1 Grid components

Grids consist of many components. The general components of the Grids are:

• Applications: Applications are the jobs needed to be executed on the re-

sources of the Grid. The applications can be scientific or commercial appli-

cations. In some cases, jobs consist of subtasks that their execution results

6

Chapter 2. On scheduling in Grid computing 7

are gathered and combined to represent the overall job result [39, 6, 27]. The

split of a task into subtasks is called task profiling [62].

• Resources: The resources represent the working power of the Grid, and they

are where the jobs get executed. The resources could be computational,

storage or communication resources [16]. The Grid resources usually differ

in speed, capacity, architecture, and operating system (heterogeneous). In

economic scheduling, the resources have costs that are paid by users running

their jobs on these resources. Usually, the demand and supply affect the

prices. So, if the demand is higher than the supply, the prices go up, and it

is the opposite if the supply is higher than the demand. The resources can

be combined together to form a service which can be bought by the user.

This is referred to by service aggregation [69].

• Scheduler: The task of scheduler is executing the jobs on the available re-

sources. The scheduler is also responsible for discovery, allocation, and ag-

gregation of resources. It should take into account the user requirements for

the jobs which can also be called Quality of Service (QoS) [18, 98].

• Broker: Its role is searching the Grid to find suitable resources to execute

the jobs submitted to it. It is sometimes responsible for negotiating the

prices between various users and resource providers. The common situation

is having many brokers act on behalf of users to find suitable resources to

execute their jobs. The brokers sometimes also act on behalf of resources.

The brokers can also be considered schedulers because they schedule jobs

on resources. However, schedulers can’t be considered brokers because they

don’t have the ability to negotiate.

2.2 Application requirements

As mentioned before, applications are the jobs needed to be executed on resources

and sometimes they consist of smaller parts called subtasks. However, those ap-

Chapter 2. On scheduling in Grid computing 8

plications have their requirements that need to be considered by the scheduler.

Thus, the scheduler has to select the resources that are capable to meet those

requirements.

Some of the application requirements which need to be handled by the sched-

uler are:

• Deadline [27]: It is the time specified by the user to finish executing its job

on a resource or a collection of resources.

• Budget: It is the amount of money a user can afford for executing its job on

a resource or a group of resources.

• CPU speed: This is an important requirement in computational Grids. It

is the microprocessor speed required for running the application. Speed is

defined as the number of instructions the processor can execute per time

unit. The common used measurements are Million Instruction Per Second

(MIPS) and FLoating-point OPerations per Second (FLOPS).

• Physical memory: The amount of ram needed for running the application

(e.g. 256 or 512 MB).

• File size: The required storage space for running the application. This

storage space is important for storing the program files needed for running

it on a particular resource.

• Bandwidth: This requirement arises, because of the need to move the pro-

gram to the location where it is going to be executed, and transferring the

results of the execution to the user. This movement of a program code and

results requires a network bandwidth, and the user might specify the amount

of bandwidth needed.

• Security: It represents the minimum security level the resource must have

in order to be accepted for executing the job of the user. The security is

needed for a safe execution environment.

Chapter 2. On scheduling in Grid computing 9

2.3 Resource scheduling tasks and challenges

The following is a list of tasks the scheduler is responsible for. These tasks are

important for efficient execution of applications on resources.

• Resource discovery [52, 23, 63, 29]: The rule of the discovery is providing a

list of resources that are available and authorised for a specific user. This

list is usually obtained by searching a database which contains information

about the available resources. An example of this database is Monitoring

and Discovery Service(MDS) in Globus [32]. This step is also important for

handling the situation of resources entering and leaving the Grid.

In general, resource discovery mechanisms use a database (centralised ap-

proach), or a set of databases (Distributed approach) reside at different

places to obtain information about available resources such as their speeds,

current loads, architecture , and operating systems in order to find the re-

sources that can meet the requirements of users. The use of a distributed

discovery approach has the advantage that it is scalable, but suffers from

communication cost when the databases need to be updated.

Three schemes exist to spread the information about the current situation

of resources to other entities. Table 2.1 describes the three schemes.

Universal awareness Spreads the information to all other entities in the net-
work.

Neighbourhood awareness Spreads the information to all entities within a specific
distance.

Distinctive awareness The range of the information spread out is determined by
the importance of the entity.

Table 2.1: Data spreading schemes in resource discovery [63]

• Resource selection: The scheduler selects a number of resources from the list

provided in resource discovery step that meet the user requirements such as

deadline, cost or both.

• Job mapping: The mapping function is moving the submitted jobs to the

Chapter 2. On scheduling in Grid computing 10

appropriate resources to start their execution. The mapping is done based

on the user requirements like time and cost.

• Job monitoring: The jobs may face unpredictable situations which need to be

addressed. For that reason, job monitoring has the rule of checking how the

execution of jobs is going and detecting if there is a failure or unexpected

situation that needs to be addressed by the scheduler. Network Weather

Service (NWS) [49] is an example of job monitoring.

However, due to the nature of Grid environment, the scheduling faces a number

of challenges which make it a complicated issue. The challenges are:

• The resources are geographically distributed across the world. This raises

the need of discovering the available resources on the Grid.

• The resources on the Grid are heterogeneous. They may have different ar-

chitectures, speeds and operating systems. Therefore, this needs to be taken

into consideration and the job has to be sent to the resource which is suitable

for it.

• There are various administrative domains on the Grid, each with its local

access and security policies. For that, different access policies must be sup-

ported, and the security model used in the Grid has to be mapped to the

security models used in those domains [9]. Grid security is considered in

[22, 80, 8].

• Due the fact that there are many entities (eg. users, resources) participating

in the Grid, the security becomes an important thing to ensure the identity

of the entity attempting to use a service (authentication), and if this entity

has the privilege to use the service (authorisation). Securing the Grid is

important to encourage both the resource providers and users to participate

in the Grid, because they will know that their resources and jobs are in a

safe environment, and are protected against attacks. There are two security

hazards in the Grids: programs which include code that infects the resources

Chapter 2. On scheduling in Grid computing 11

that run it and infected resources that crush the programs run on them [51].

Globus GSI (Grid Security Infrastructure) is a project that handles security

issues, and uses public-key for authentication [37]. Resource allocation based

on trust is described in [80].

• The users who submit their jobs for execution don’t have control over their

jobs. As a result, the completion time of their jobs can’t be predicted accu-

rately all the time, and some jobs might miss their deadlines [74].

• Grid resources are dynamic in nature. Thus, the information about resources

should be updated regularly to reflect any change in their status.

2.4 Scheduling schemes

The following are the kinds of scheduling schemes used in Grids:

• Centralised schemes [61, 39, 64, 6]: In such schemes, a centralised scheduler

has information about all the domains and the resources of these domains.

All jobs are submitted to that centralised scheduler which in turn submits

the jobs to the resources that are suitable for them based on the information

it holds about the domains and their resources. None of the domains has

its own scheduler, and the domains just send information regarding their

resources such as resources’ speeds and their availability to the scheduler

to help it in making scheduling decisions. Such schemes are not scalable

due to the large amount of information the centralised scheduler retains.

Furthermore, the jobs that are submitted to the scheduler sometimes suffer

from a long access delay when they access the scheduler, because all jobs

were submitted to the same scheduler [34, 67]. It also suffers from single

point of failure, because there is only one scheduler. Thus, if the scheduler

fails, the interaction between the users and resource providers stops [94]. On

the positive side, such schemes are easy to implement.

• Hierarchical schemes [84, 100]: Here the jobs are submitted to a central

Chapter 2. On scheduling in Grid computing 12

scheduler. Then, the central scheduler forwards the jobs to the domains

which meet the jobs requirements. At this point, the central scheduler has

no control on those jobs. The advantage of such schemes is that each do-

main can employ its own scheduling policy and which can be different from

other domains scheduling policies. However, the job cannot be reallocated

to another resource at another domain even in the case a better resource is

found.

• Distributed schemes [35, 89, 22]: There is no central scheduler in distributed

schemes. Instead, each domain has its own scheduler. Each domain queries

other domains either periodically or in the case an event happened to obtain

information about the resources’ states reside in other domains. When a job

needs to be executed, it is submitted to the local scheduler which resides in

the same domain. The job is then submitted to a suitable local resource or

to a resource in another domain, if it is found more suitable for executing

it. This scheme has many advantages like scalability [82], reliability, easily

implementable, and no single point of failure. But, this scheme leads to

allocation instability in some situations [67].

It is important to have communications between the domains reside on the

Grid. A heuristic scheme to allow communications between the Grid net-

works with bursty background traffic is proposed in [56].

A number of distributed scheduling algorithms that are adaptable to changes

in resource usage are proposed and compared to other algorithms that rely

on centralised, hierarchical, and distributed schemes in [82].

2.5 Scheduling performance metrics

Every scheduling system aims to improve its scheduling performance. For eval-

uation purposes, each scheduling system uses a metric or a number of metrics

for measuring the quality of scheduling, and which might be different from other

metrics used by other scheduling systems.

Chapter 2. On scheduling in Grid computing 13

The common metrics (or combination of them) used in measuring the perfor-

mance are:

• Completion time [43]: It equals to the execution time plus the time needed

to begin the execution of the job. Sometimes, it includes the time needed to

return the results of execution to the user.

• Load balancing [25]: The scheduling quality is specified by the fairness of

division of work load between various resources. Each resource gets a piece

of work load depending on its specifications.

• Speedup: This is the percentage of improvement achieved when using more

than one resource (processor) to execute the job, in contrast to using one

resource only for executing the same job [49, 99].

• Utilisation: It can be the percentage of resources utilised or resource utili-

sation percentage. Percentage of resources utilised is the number of utilised

resources divided by the number of free and utilised resources (all resources)

at a certain time. On the other hand, resource utilisation percentage is the

resource utilisation rate divided by the resource maximum allowed utilisation

at a certain time.

• Broker profit [17]: This metric measures the performance of each broker

based on the profit the broker obtained from acting on behalf of users.

• Resource profit [17]: The performance is measured based on the profit the

resource received from executing user jobs.

• Users consumption [89, 17]: It is about decreasing the budgets paid by the

users (jobs owners).

• Failure rate: It is the percentage of jobs couldn’t be executed. Sometimes,

it is defined as the percentage of jobs that missed their deadlines [89, 27].

• Reliability [17]: Reliability is the percentage of jobs executed successfully.

It can be considered as the opposite of failure rate discussed above.

Chapter 2. On scheduling in Grid computing 14

• Makespan (schedule length): The makespan is defined as the total time

needed to complete the execution of all the jobs in the meta-task (set of

tasks) [48, 61, 42]. This metric is used in [39, 15, 26, 45, 92, 6] to measure

the scheduling performance.

• Average satisfaction rate per job [17]: This metric shows to what extent the

initial deadlines of executed jobs belonging to a user were met. It is equal

to the summation of differences between initial deadlines of those jobs and

their completion times divided by their number.

2.6 Scheduling categories

Scheduling is divided into two main categories: conventional and economic schedul-

ing. These scheduling categories are discussed below.

2.6.1 Conventional scheduling

Conventional (traditional) scheduling considers the overall performance of a sys-

tem as a metric for determining the scheduling quality. For example, the time it

takes to schedule all jobs (makespan). Additionally, it doesn’t take the cost as a

factor for scheduling jobs on resources.

Next, a number of projects that are based on conventional scheduling are

described.

SmartNet SmartNet is a framework responsible for managing resources and

jobs. It executes the user’s jobs on a group of machines as if they are a single

machine only. It considers many constraints when attempting to map a job to

a machine like resource availability, and network speed between the job and the

machine. It supports both tasks with dependency and independency. It concerns

enhancing the performance of users’ jobs more than enhancing the performance

of machines.

Chapter 2. On scheduling in Grid computing 15

SmartNet concerns two utilities in deciding the mapping performance: max-

imising throughput (minimising makespan) and minimising the average expected

run time of each job. SmartNet uses a collection of heuristics to find the best

allocation in the possible maps.

Both machine availability and heterogeneity affect scheduling decisions. Two

types of heterogeneity are considered which are tasks and resources heterogeneity

This work uses a centralised scheduler which has a poor performance if there

is a large number of machines, and which lacks scalability [40, 39].

The AppLeS project This project is based on agents that use application

level scheduling paradigm which means that the system evaluation is based on its

influence on the application.

In AppLeS, each application has an AppLeS agent that makes use of both

static and dynamic information to schedule its application on a suitable resource.

The interaction within the system works as follows: First, the user sends in-

formation to the AppLeS agent. Then, the Coordinator filters possible sched-

ules according to that information. Next, the Resource Selector determines the

collection of resources that the Coordinator must consider. This is followed by

computing a promising schedule for each possible resource structure by the Plan-

ner. Then, Performance Estimator is employed by the Coordinator to assess each

schedule performance based on the performance objectives of the user. Finally,

the Actuator selects the schedule that improves the user’s performance objective.

AppLeS project employs a system called Network Weather Service for observ-

ing the performance of different resources, predicting the performance of resources

in the future and sending the results of prediction to all AppLeS agents concerned

in them [14].

Fully decentralised discovery in Grid environments This system concerns

resource discovery in a large and dynamic collection of resources using a fully

decentralised architecture. In this framework, the users submit their requests to

a node which is often a local node. If this node has the resources that meet the

Chapter 2. On scheduling in Grid computing 16

user needs, then it responds to the user with the matching resource information.

Otherwise, it forwards the requests to another node and this node submits the

requests to another node and so on. This process continues until time to live field

of the request expires or suitable resources are found. In the case a node has

information matching the forwarded request, it sends the information directly to

the node that initiated the forwarding which in turn sends it to its user.

Four request forwarding algorithms are used: Random, Experience-based +

Random, Best neighbour and Experience based + Best neighbour. Random algo-

rithm chooses the node to which a request is forwarded at random. Experience

based + Random algorithm records the requests served by other nodes, so the

request is forwarded to the node that served similar requests previously. If there

is no such node, then the request is forwarded to a random node. Best neighbour

algorithm forwards a request to the node that served the largest number of re-

quests neglecting the type of requests served. Finally, Experience based + Best

neighbour behaves as Experienced based + Random algorithm mentioned before

except in the situation where no node that served similar requests before exists.

In that situation, the request is forwarded to the node that served the largest

number of requests [52].

Performance prediction technology for agent-based resource manage-

ment in Grid environments This work provides a dynamic resource publica-

tion and discovery using agents. In this architecture, an agent represents the local

Grid resource and behaves as a service provider and service requester. The archi-

tecture uses a hierarchy organisation of agents to enable them to provide service

advertisement and discovery. Agents also may work together to discover available

resources. It supports quality of service (QoS) using Performance Analysis and

Characterisation environment (PACE).

The task of PACE is providing quantitative predictive data to evaluate the

performance of complex applications which are allocated to a local Grid resource.

The agent manages its local resource using a combination of scheduling algorithm

Chapter 2. On scheduling in Grid computing 17

and PACE in order to provide predictive capabilities concerning the local Grid

resources and their services.

The system consists of Grid users, Grid resources, agents, and a Performance

Monitor and Advisor (PMA). The Grid’s users are divided into Grid service, tool

developers, applications developers and Grid end users. The system concerns sci-

entific super-computing applications. The Grid’s resources might be Massive Par-

allel Processors (MPP), a cluster of workstations or PCs. The system uses PACE

to create a hardware characterisation template in order to provide a model of each

hardware resource. Agent Capability Tables (ACTs) are used by each agent to

record service information belonging to other agents. They are tuples comprising

an agent ID and corresponding service information. The system uses data pull

(agent requesting other agents service information) and data push (submitting an

agent service information to other agents) for maintaining ACT coherency.

In this system, the architecture of agent comprises three component layers. The

communication layer is the first layer, and its task is performing communication

functions and acting as an interface to external environment. The coordination

layer is the second layer and consists of ACT manager, PACE evaluation engine,

scheduler, and a matchmaker. ACT manager regulates ACT database access from

agents. PACE evaluation engine is responsible for producing performance predic-

tion information. The scheduler searches for the application that has the shortest

execution time on the resource specified by an ACT item. The role of matchmaker

is comparing the requirements of the request with the scheduling results which in

turn affects the agent behaviour. Those components determine the behaviour of

an agent upon receipt of messages from the communication layer. Finally, local

management is responsible for application management, resource allocation, and

resource monitoring.

The scheduling algorithm selects a group of processors to execute the appli-

cation. The selected processors must lead to a minimum completion time for the

application. The minimum completion time equals to the earliest start time in ad-

dition to the expected time to finish executing the application. The earliest start

Chapter 2. On scheduling in Grid computing 18

time is the time when all the required processors for execution are free. How-

ever, the selected processors should meet the application’s requirement which is

the deadline in this case. Overall system efficiency, load balancing, service discov-

ery speed and discovery success rate are the metrics considered to determine the

system’s performance [23].

Condor-G Condor-G uses mechanisms to provide security, resource discovery,

and access to resources across different domains. It also provides management for

computation and use of resources within a single administrative domain as well. It

uses both the inter domain resource management protocols of the Globus Toolkit

and the intra domain resource management functions of condor to permit the user

to use multi-domain resources, so they behave as if they all belong to a single

domain. In this architecture, the user defines the task it wants to execute.

This structure has the role of discovering and acquiring suitable resources,

without any regard to their location. A part of its role is initiating, monitoring,

managing the applications execution on the specified resources, detecting failures

and taking actions against them and informing the user of application termination.

The Grid Resource Allocation and Management (GRAM) protocol is used to

remotely submit the computational request to a remote computational resource

and to monitor and control the computation results.

Condor-G agent uses the Grid protocols to interact with machines in order to

execute user jobs on these machines. It is also responsible for the resubmission of

failed jobs and recording of computation on storage to be able to restart the job

if job failure happens. Its objective is to maximise the resource utilisation.

When a user requests to submit a job, a Grid-manager daemon is created by

the scheduler. Grid-manager is responsible for handling all jobs that belong to a

single user and terminates upon completion of those jobs. Globus Job-manager

daemon resulting from Grid-manager job submission request connects to the Grid-

manager using Globus Toolkit’s Global Access to Secondary Storage (GASS) to

transfer the job’s executable and standard input files to provide real time streaming

Chapter 2. On scheduling in Grid computing 19

of standard output and error. As a next step, the job manager sends the jobs to

the local scheduler of the site which was chosen to execute it.

For resource discovery and scheduling purposes, Condor-G uses a resource

broker that is considered as a part of the Condor-G agent to collect information

about user authorisation, application requirements, and resource status in order

to provide a list of suitable resources [41].

Grid Computing Pool Grid Computing Pool (GCP) concerns large scale com-

puting devices and computing tools that are connected by high speed networks.

The system’s users use the Internet from anywhere to access the computing ser-

vices. GCP makes use of priorities to execute some applications more quickly.

The system may allocate a single computer or cluster to an application, or many

supercomputers or clusters may work together to execute the application if it is

computationally intensive.

The system employs the Client-Server model. The users use a client to submit

their requests to the Grid. That client connects to an active node via GCP server

in order to get access to computing services.

Each user must register first to be able to use Grid computing services. By

doing that, the user can sign in to check the status of its submitted tasks. The

system divides the applications into three layers according to their computational

intensity. The server receives requests from clients and tries to allocate suitable

resources to those applications. The task of server are receiving requests, send-

ing responses to clients, sending tasks to compute engines, receiving outputs from

compute engines, scheduling tasks, keeping log of status of operations and broad-

casting scheduling information to other servers in the Grid.

This system has a number of servers that all have the same functions. However,

only one of those servers can function at a time. The reason of having many servers

is if failure occurs at a server, another server can be used. The system employs

Hyper Text Transfer Protocol (HTTP) for sending and receiving messages between

the client and server.

Chapter 2. On scheduling in Grid computing 20

Each server includes a task scheduler that ensures mapping applications to the

resources that meet their requirements. Compute engines provide the computing

resources for executing different applications. Servers use Grid Computing Engine

Interface to access compute engines and heterogeneous mathematical computing

tools.

GCP uses Grid Software to provide interfaces for communication, resource

scheduling, resource location, authentication and data access. Grid software is

also responsible for building different high layer Grid computing services [96].

Advantages of Grid computing for parallel job scheduling This system is

implemented to demonstrate the advantages of sharing resources belong to various

autonomous domains. The system divides the Grid into autonomous sites, and

each site has its resources and users. Furthermore, each site consists of a single

parallel machine which is made up of nodes. Each node has its specifications

such as processor speed and memory size, and is connected to other nodes via a

fast interconnection network. The machines located at different sites have similar

nodes, but different number of them. This system uses space-sharing allocation

and doesn’t take into consideration that an application can surpass its permitted

time. The system has a centralised scheduler for scheduling various applications.

The system uses backfill scheduling algorithm for scheduling applications on

the parallel machine. The idea of backfilling is if the available resources are not

enough to execute the next application in the list, then it tries to find another

application from the list that can be executed on the available resources without

delaying the execution of the next application.

The system addresses three scenarios that are local job processing, job sharing

and multi-site computing. In local job processing scenario, the resources belonging

to one site can only be utilised by the users of the same site, so sharing between

sites is prohibited. Job sharing scenario allows resources belonging to different

sites to be used by the users of other sites, but doesn’t allow the application to be

executed on resources of multiple sites concurrently. The scheduling in job sharing

Chapter 2. On scheduling in Grid computing 21

consists of two steps machine selection (selecting machines using Best-fit strategy

on which the selected machine for the job must leave the least number of free

resources if started), and scheduling algorithm (Backfilling). Finally, the multi-

site computing scenario allows the resources of different sites to be used by the

users of other sites as well as allowing the application to be executed on multiple

sites concurrently. In multi-site computing scenario, the scheduler searches for a

site that has enough available resources for executing the application. If no such

site exists, the sites are sorted in non-increasing order according to the number of

free resources they have to decrease the number of sites that their free resources

are combined by the scheduler to execute the application. Then, the scheduler

executes the application on a combination of free resources belonging to multiple

sites. In multi-site scenario, the overhead results from bandwidth and delay is

addressed by increasing the required execution time.

Five configurations were simulated. Each of those configurations consists of 512

resources. Those configurations comprise two configurations that have sites with

the same number of resources, two configurations that have sites with different

number of resources and one configuration that has a single site containing all

resources. Four types of workloads were used each having 10000 jobs to ensure

that the results are consistent.

Average Weighted Response Time (AWRT) is used to determine the scheduling

quality and equals to the sum of weighted response time divided by the sum of

resources utilised. A smaller AWRT means better scheduling quality.

The simulation results show that the use of job sharing and multi-site comput-

ing scenarios enhanced the performance of scheduling. Furthermore, the results

show that the performance of configurations that have sites with the same number

of resources is better than the performance of configurations which have sites with

different number of resources [34].

Towards trust-aware resource management in Grid computing systems

In this model, the Grid is divided into Grid Domains (GDs) to facilitate the

Chapter 2. On scheduling in Grid computing 22

handling of scalability, site autonomy and heterogeneity. The GDs are considered

administrative entities, and each GD has a collection of resources and users which

is managed by a single administrative authority. Moreover, each GD is associated

with two virtual domains: resource and client domains. Resource domain (RD)

represents the resources of GD, while Client Domain (CD) represents the users of

the GD. GDs use trust level tables to show the trust levels (5 trust levels) between

various users and resources. Those trust levels are asymmetric which means if a

resource is trustable for a user, then this doesn’t necessarily mean that the user is

trusted by that resource.

Each CD or RD has an agent for monitoring the transactions and updating

trust tables. Those agents also determine the trust between various resources and

users by checking direct (via direct transactions between the user and the resource)

and recommender (resource or user reputation obtained from other entities already

had a transaction with it) channels.

The requests are collected first for a period of time that is set before (batch

mode), and this collection of requests is called meta-request. Then, the scheduler

is called to map meta-requests using a heuristic function called trust aware min-

min. The trust aware min-min maps a job to the machine that provides the earliest

expected execution cost considering security overhead in mapping and calculation

of time needed to complete the execution of that job on that machine.

The trust model was simulated on two classes. The first class represents the

simulation of homogeneous machines, while the other class represents the simu-

lation of heterogeneous machines. Because of the use of a trust aware allocator,

performance of homogeneous machines was improved by 20%, and the perfor-

mance of heterogeneous machines was improved by 13%. It is supposed that the

trust between two entities decreases with time if no direct transaction happened

recently between them [9].

NetSolve This model is based on a client-server model, and its goal is to provide

a remote access to computational resources. The resources either reside on local

Chapter 2. On scheduling in Grid computing 23

or geographic network.

The interaction between entities is as follows: a client sends a request to an-

other agent that might be in the same or different domain asking for a service

that can be running a job on a resource. As a result, the agent chooses a resource

that satisfies the request needs such as the size and the type of the job. NetSolve

considers the load on different resources and works on balancing the load on them.

Furthermore, it checks the estimated execution time of the job on every machine to

decide which machine is to execute the job. The participants can access NetSolve

through various interfaces such as MatLab, C, Fortran and Shell scripts [25].

Adaptive scheduling for Master-Worker applications on the compu-

tational Grid It provides an adaptive scheduling strategy that employs the

master-worker approach as a middle-ware. The adaptive strategy attempts to al-

locate the minimum number of processors, while providing a good speedup. A

good speedup is achieved by trying to keep the processors busy, and preventing

them from staying idle until the work is done.

The runtime information received from the application along with the infor-

mation contained in an empirical table generated by simulation are used to deter-

mine the number of processors to be allocated. Then, the scheduling algorithm

adjusts the number of allocated processors, if it sees that the efficiency of the

master-worker application can be enhanced without important loss in performance

(speedup). Efficiency indicates how good is the utilisation of the n allocated pro-

cessors [49].

A QoS guided scheduling algorithm It is an algorithm that builds on the

conventional min-min algorithm [61], and it concerns both QoS and non-dedicated

computing; where resources have their own tasks too that need to be executed on

them. So, they are not fully dedicated to the Grid. The QoS are embedded into

the algorithm to enhance the utilisation and efficiency of the Grid.

The tasks consist of tasks with or without QoS requirement. Additionally,

the resources are divided into low and high QoS resources. The tasks with no

Chapter 2. On scheduling in Grid computing 24

QoS requirements can run on both kinds of resources, but the tasks with QoS

requirements can run only on high QoS resources. The Grid includes non-dedicated

hosts, where each host has a number of computational resources that might be

homogeneous or heterogeneous.

The QoS guided min-min heuristic calculates the completion time of all the

tasks. Then, it maps the tasks with QoS requirements by finding the task that has

the minimum completion time and maps it to the resource that has the earliest

execution time for it. This continues until all the tasks with QoS requirements are

mapped. Finally, the tasks without QoS requirements are mapped in the same

way the tasks with QoS requirements were mapped.

It is shown that their QoS guided min-min heuristic surpassed the conventional

min-min heuristic in most cases, and tolerates imprecise measures of execution

times. The utility used to determine the performance of various heuristics is

minimising makespan (maximising throughput) [48].

Reinforcement learning (RL) algorithm This work employs multi-agent

learning techniques to solve the resource allocation dilemma. It uses RL to over-

come that dilemma without having global knowledge on the status of resources in

the system such as the load levels, and without any interaction between agents.

The agents that represent users select the resources with minimum queue

length and that can minimise the completion time of the jobs. In the RL al-

gorithm, each agent has a value named Q-value for each resource that reflects the

resource efficiency up to now for this agent. Upon completion of each job, the Q-

value is updated . For new jobs, agents select resources according to the ∈ greedy

rule. So, it selects the resource with the highest Q-value, while with considering

probability ∈, the agent chooses among the other resources randomly.

RL algorithm was compared with two other algorithms. The random selection

is the first algorithm RL algorithm was compared to. In this algorithm, agents

select resources randomly using uniform probability. The second one is least load

algorithm, where agents select the resource, which has minimum load. It is shown

Chapter 2. On scheduling in Grid computing 25

that the RL algorithm outperforms the two algorithms in most cases. However,

random selection surpasses the RL algorithm in the case the job arrival rate is

low.

The agents that enter the Grid must start the learning process, which takes

some time before they can behave sufficiently [43].

Scheduling Co-Reservations with Priorities in Grid Computing Systems

Three algorithms that support co-reservations (incorporate many resources) are

proposed for scheduling jobs on CPUs. The first algorithm is the Co-reservation

scheduler with Priorities and Benefit functions (Co-RSPB) which takes into ac-

count priorities of different requests when scheduling jobs on the available CPUs,

and where each request has a benefit function that specifies the utility obtained by

the user. In Co-RSPB, the requests in meta-request are sorted in non-increasing

due to their priorities. However, if a request consists of sub-request, they are

sorted in non-increasing order according to the minimum CPU requirement. The

Co-reservation scheduler with Best Fit Scheme (Co-RSBF) is the second algo-

rithm, and differs from Co-RSPB in that it sorts requests according to the sum

of CPU requirements of their sub-requests. The last algorithm is Co-reservation

scheduler with Best Fit and Refining that employs Co-RSBF, but differs in that

it attempts to improve the reservation by supplying more benefit to the accepted

requests for reservation.

Two utilities are used to describe the performance of the algorithms: system

benefit and number of requests rejected. The simulation results show that Co-

RSPB surpasses the other algorithms in term of maximising the system benefit,

because it considers requests priorities. On the other hand, Co-RSBF outperforms

the others in term of minimising the requests rejected [65].

Distributed Dynamic Scheduling of Composite Tasks on Grid Comput-

ing Systems In this work, a group of resources is connected by a LAN, and the

LANs are connected by a WAN. The tasks considered here are tasks that have

subtasks which communicate with each other. The subtasks of a task can be ex-

Chapter 2. On scheduling in Grid computing 26

ecuted within a single LAN only. However, the allocated resources must satisfy

the requirements of tasks which are here not exceeding their deadlines.

There are two levels of scheduling. The first level occurs at the WAN that uses

a distributed scheduler (external) to choose a LAN which part or all of its resources

will execute the subtasks of a task. The second level occurs at the LAN and uses

a centralised scheduler (internal) to choose a number of resources that reside on

the LAN to execute the task’s subtasks. The external scheduler is responsible

for receiving transmitted tasks, sending bid requests (sealed-bid auctioning) to

internal schedulers, choosing an internal scheduler according to the received bids,

coordinating the execution of subtasks and collecting results. The external sched-

uler selects the internal scheduler that submitted a bid that offers an estimated

task response time (task completion time minus task transmission time) less than

the estimated task response time in the bids of the other internal schedulers. On

the other hand, the internal scheduler receives tasks from the external scheduler

in order to execute their subtasks on a number of available resources, then sends

the results of subtasks to the external scheduler. The internal scheduler selects

the machines that provide the minimum expected subtask response time (time of

returning the subtask’s results minus the time when the subtask was initiated).

The Grid’s performance in the simulation is measured by two metrics: per-

centage of tasks that satisfied their deadlines and average task response time [27].

RR scheduling algorithm RR [42] is a scheduling algorithm that doesn’t re-

quire any predicted information about the characteristics of available resources

like their speeds. RR allocates one of the free processors to one of the available

tasks until all processors are allocated or there are no tasks to get executed. At

this point, if there is still a number of non-mapped tasks, it waits until one of the

processors becomes free, then it allocates that processor to one of the remaining

tasks and continues this process until all the tasks are mapped. When all tasks

are mapped and a number of processors become free, replicas of one or more tasks

still in execution can be assigned to the processors that became free, because the

Chapter 2. On scheduling in Grid computing 27

execution of the instance may finish before the execution of the original mapped

task. However, when the execution of an instance of the task gets finished, the

algorithm’s role is to delete the other instances of the task.

This work considers that some tasks might have instances that run on a number

of processors at the same time. This is inefficient and considered a waste of

resources. This becomes more inefficient in the case of using an economic approach,

because the task’s owner must pay for executing each of the instances.

K-windows scheduling algorithm A scheduling algorithm which uses heuris-

tics is proposed in [81]. It is called K-windows and aims to search for the best

cluster to execute a job. K is a random value which is selected from a range of

values and it takes a value between 1 and n. n is the number of machines in the

cluster which contains the smallest number of machines in the Grid.

In order to find the most appropriate cluster to execute a job, the algorithm

first gets information about average CPU load, memory usage and task remaining.

Then, it selects a suitable cluster based on the information above. In the process

of selecting a cluster to execute a job, CPU load comes first as a constraint for

this selection, then memory usage, and finally task remaining.

The algorithm was compared with two other simple algorithms (Random and

Round-Robin algorithms). The comparison was done on ThaiGrid system which

is a Grid infrastructure residing in Thailand. In this comparison, there are ten

tasks, each task is a two arrays multiplication of sizes 100*100 and 1000*1000.

The K-windows algorithm surpassed both Random and Round-Robin algorithms.

2.6.2 Economic scheduling

The study of using economics to manage the computing resources returns to 60s

and 70s [87]. In economic scheduling, cost is considered an essential factor for

scheduling jobs. For a scheduling to take place, the parties must positively value

this scheduling [67].

It is believed that the use of commercial private Grid will be first employed

Chapter 2. On scheduling in Grid computing 28

between companies before it starts to be used by the public [78]. The economic

problem results from having different ways for using the available resource, so how

to decide what is the best way to use them [67].

It is mentioned in [47] that the participation in the Grid must be cheaper for

the users than purchasing their own resources, and must satisfy their requirements.

On the other hand, resource providers must know if it is worth to provide their

resources for usage by users.

It is mentioned in [46] that pricing of resources should not be per time unit or

slot (e.g. cost per minute). This is due the big differences in speeds of processors.

So, the price per time unit of a processor might be cheap, but the user might

pay large amount of money, because it is slow. Furthermore, the users have to

know how many time units they need to finish their jobs. Thus, the cost must be

determined based on the tasks the resources perform.

Some of the advantages of using economics (prices) to decide what resource to

select are described in table 2.2.

Flexibility Resources can be used by the users just when they need
them because this use is not for free, and the users are
charged for this use.

Efficiency Resource cost expresses how much a resource is important
to a user, or in other words: it shows the resource value.

Scalability Economics facilitate handling the situation of users and
resources entering and leaving the Grid.

Feedback The costs charged for the use of resources might be used
as a history to enhance the allocation policies in the future

Table 2.2: Advantages of considering economics in selecting resources [55]

The next sections describe the projects that are based on economic scheduling.

Deadline scheduling algorithm In [89], a deadline scheduling algorithm that

supports load correction and fallback mechanisms to improve the algorithm’s per-

formance in an environment that is based on client-server model is proposed. It

submits each job to a resource that can finish it in time less than or equal than

the time specified for completing the job. However, if no such resource is found,

Chapter 2. On scheduling in Grid computing 29

it selects the resource which can finish the job in a time very close to the deadline

of that job but still beyond the deadline. Fallback is a notification from a server

to a client to inform the client to resubmit its job again to the system, because

the server found that it can’t meet the deadline of the client’s job. There is an

upper limit to the number of attempts to submit the job again to the system. On

the other hand, load correction is used to overcome the problem of sending all the

jobs to the fastest resource by considering the number of jobs that were submitted

to resources for execution and have not completed yet.

The project’s objective is to decrease the number of jobs that don’t meet their

deadlines. The resources are priced according to their performance. It uses bricks

simulator which is written in Java after extending it to assess the performance of

the implemented deadline algorithm.

The deadline algorithm is compared to a greedy algorithm, and it is stated

that the greedy algorithm results in higher cost than the deadline algorithm.

They show that fallback mechanism has led to a large improvement in re-

ducing the failure rate, while load correction mechanism has just led to a slight

improvement in reducing the same rate.

Nimrod/G Nimrod/G [19, 18] uses a component based architecture. The sys-

tem architecture consists of five components that are client or user station, para-

metric engine, scheduler, dispatcher and job wrapper.

Client or user station is a user-interface for controlling the application of the

user. Using this interface, the user can change the application requirements such

as execution time, cost and deadline. This change leads to allocating the resources

that fit the user requirements. The second task is monitoring the status of all the

jobs which are under the control of this user. Finally, it is responsible for running

multiple instances of the client on different machines.

Parametric engine is a central manager agent that is responsible for managing

and maintaining the whole application in addition to the creation of jobs, job

maintenance, interacting with users, advising the schedule, parameterisation of

Chapter 2. On scheduling in Grid computing 30

the experiment and dispatching.

Resource discovery, resource selection and job assignment are the roles of the

scheduler. In resource discovery stage, the resource discovery algorithm contacts

with the Grid information service directory to identify a list of authorised machines

and tracking resource status information. The resource selection algorithm has the

task of selecting the resources that can meet the job’s deadline and at the same

time reduce the cost of the computation.

The dispatcher is responsible for starting the execution of an application on

a suitable resource. It also periodically interacts with the parametric engine to

update the status of application execution.

The job wrapper starts the application execution on the resource, then submits

the results back to the parametric engine via dispatcher. It also acts as a medi-

ator between the parametric engine and the resource on which the application is

running.

The most important user requirements parameters in this architecture are the

price the user wants to pay and deadline.

This architecture uses Globus toolkit services. Additionally, it can be extended

to work with any emerging Grid middle-ware service. Nimrod/G employs the

history of execution times and resource costs to schedule the submitted tasks,

while meeting the time and cost requirements of the user.

Nimrod/G includes four scheduling algorithms which are cost, time, conserva-

tive time and cost-time. Cost scheduling algorithm tries to decrease the amount

of money paid for executing the jobs as much as possible while meeting their

deadlines. Time scheduling algorithm attempts to minimise the time required to

complete the jobs while meeting their budget. The conservative time scheduling

algorithm aims to execute the jobs while meeting their budget and deadlines. Ad-

ditionally, it minimises the time needed to execute them, when higher budget is

available. Finally, cost-time scheduling algorithm works as cost scheduling algo-

rithm except that when there are two or more resources with the same price, it

employs time scheduling algorithm while scheduling jobs on them.

Chapter 2. On scheduling in Grid computing 31

Market-based Resource Allocation for Grid Computing This model [44]

acts as a marketplace where computational resources are traded. It consists of

clients (users), servers (resource providers) and electronic marketplace.

This model supports time and space shared allocations. Furthermore, it sup-

ports co-allocation. It is supposed that resources have background load which

changes with time and that has the highest priority for execution, so they are not

fully dedicated to the Grid.

This model uses two kinds of scheduling policies. In the first scheduling policy,

all the resource units of the server are allocated to the arriving task and the number

of allocated resource units varies according to the change in the background load.

In the second scheduling policy, the arrived task shares the resource with the other

tasks already executing on the resource (proportional allocation), and the resource

percentage utilised by the arrived task changes according to the number of other

tasks using the same resource.

The model compares three allocation algorithms: Round-Robin (conventional

strategy), continuous double auctions (economic strategy) and proportional share

(economic strategy). Furthermore, the model considers two categories of tasks:

tasks with the same priority and tasks with different priorities. For tasks with the

same priority, completion time of all tasks (makespan) is the metric considered to

measure the scheduling performance of the three allocation algorithms. On the

other side, the Weighted Completion Time (WCT) is the metric for measuring

the performance of allocation algorithms in the scenario of tasks with different

priorities. WCT is equal to the mean of task weights multiplied by their completion

times.

According to the simulation results, the three allocation protocols have the

same performance when the load on resources is low. But, the gap between the

performance of the three allocation algorithms becomes bigger when the load in-

creases. In this situation, the continuous double auction algorithm has the best

performance followed by proportional share. However, when the resource het-

erogeneity is increased, proportional share will have the best performance, where

Chapter 2. On scheduling in Grid computing 32

Round-Robin will be the worst one.

Computational Communities In this work, a Grid middleware that eases the

mapping of jobs to the available resources, taking into account the requirements

of users that should be satisfied is defined. Resource providers and users use a

computational currency.

The described model consists of organisations which supply their resources to

be used by users to gain money from that use, users who utilise the resources, map-

pers that suggest a set of execution plans that suit job’s requirements and brokers

that are responsible for negotiations between resource providers and users. The

above components communicate with each other via a public resource marketplace.

The resources are maintained through local administrative domain and made

available to users through the domain manager which is responsible for publishing

the information about resources in one or more public marketplaces and maintain-

ing the local access control policy.

In this model, the same resource can be advertised in different marketplaces,

and this is true for users who can send their requests to various marketplaces. The

project considers three types of resources: computational, storage and software.

The resources are advertised as Java objects.

In order to allocate a resource to a job, the application mapper first provides a

collection of suggested execution plans. Secondly, the broker contacts the resource

providers to negotiate the price of various suggested execution plans. Finally, the

brokers send the prices to the user who in turn chooses what satisfies him [68].

Market-based proportional resource sharing for clusters The architec-

ture provides a decentralised economic resource management on clusters. It em-

ploys proportional share schedulers. So, each job gets a percentage of the resource

depending on the number of jobs already executing on the same resource.

In this architecture, the cluster nodes act as sellers and the users act as buyers.

It consists of five layers that are resources, resource managers, economic front end,

access modules and end users. Resources are the computational resources that are

Chapter 2. On scheduling in Grid computing 33

allocated to applications of users. Resource managers are considered the operating

system entities that are responsible for resource allocations. The economic front

end maps value to resource allocations. Access modules are used by users to access

resources to run their applications. End users send their applications to run on

cluster resources [28].

Parallel Virtual Machine (PVM) PVM enables the computational resources

to be used as if they are a single high performance machine. It involves system

level daemons that afford services to local and remote jobs running on resources.

PVM includes a library of interface routines that allow access to the system.

PVM supports both execution on single and multiple resources by splitting the

task into subtasks.

A cost matrix which is specified by a user determines the cost of running each

subtask on each resource. It includes parameters such as expected execution time

and utilisation cost in the currency used in the system. The cost matrix is used

later to select the machines for executing the submitted subtasks. The subtasks

interact by sending parameter values. For every subtask, its parameter values are

received from predecessor subtasks if there are such predecessors [11, 86].

Scheduling under uncertainty This work concerns executing jobs that consist

of multiple services, while satisfying the requirements of them that comprise time,

cost and minimum percentage of surety. The surety means the maximum risk

the user permits in meeting its budget. The jobs are monitored, and surety is

calculated regularly to check that it is still greater than or equal to the minimum

percentage of surety specified by user. If the surety percentage is less than the

percentage specified by user, a recovery action is taken by the scheduler, and

surety is increased to a level that is greater than or equal to the user’s minimum

level. For example, this can be done by replacing services offering the execution of

the critical path (the path with the longest execution time) with faster services.

The scheduler can select slower services and which are cheaper to replace some

of the services not along the critical path to save part of the budget. This saving

Chapter 2. On scheduling in Grid computing 34

can be used later for recovery, if something unexpected happened.

The service providers submit their bids to a user who uses Pareto optimality

to decide which bids to accept. Pareto optimality accepts a bid, when no other

bids with absolute advantage in terms of time, price and surety are found [74].

Economic scheduling in Grid computing This system comprises multiple

domains (Metadomains) and employs the auction model. Each domain has a set of

local resources and local management instances (Metamanagers). Metamanagers

control those metadomains, manage the local resources and respond to requests

from users. Each metamanager includes a local scheduler that behaves as a broker

to other metadomains.

For discovery purposes, the metamanager contacts the directory services (con-

tains information about resources), in addition to exploring the neighbourhood.

Each metamanager retains a list of links to other metamanagers.

It is stated that this structure increases reliability as well as preventing single

point of failure, because a failure at a domain has an effect on that domain only.

The utility function used by a user can be minimising the start time of the

job, minimising the computation cost or both. The metamanager chooses the offer

with the highest utility value. The system supports both automatic selection and

manual selection by the user. The user account is checked to ensure that there is

enough credit to pay for the job to be run.

If no enough local resources are found to run a job, multi-site scheduling is

selected in order to obtain the number of resources required. As a part of multi-

site scheduling, the scheduler attempts to find all free time intervals of the suitable

resources within the requested time and combine them in different ways. This

usually produces a large number of combinations. Thus, the combination with

the highest utility value is selected.

Average Weighted Response Time (AWRT) is used to determine the schedul-

ing quality and equals to the sum of weighted response time divided by the sum of

resources utilised. A smaller AWRT means better scheduling quality. The simula-

Chapter 2. On scheduling in Grid computing 35

tion results show that the economic scheduling surpasses the conventional (FCFS,

backfilling) scheduling for all workloads and resource configurations. It also shows

that the utility function that considers only minimising the job start time has

achieved the best performance in contrast to the other used utility functions [35].

Compute Power Market Compute Power Market is an architecture responsi-

ble for managing Grid resources, and mapping jobs to suitable resources according

to the utility functions used. It comprises buyers, sellers and markets. The inter-

action happens between Market Resource Agent and Market Resource Broker that

acts on behalf of its user. The Market Resource Agent which is downloaded from

Market Resource Agent Download unit provides the market with current status of

the resource, and it is also responsible for accepting and rejecting jobs requesting

execution on its resource. The Market Resource Broker which is downloaded from

the Market Resource Broker Download Unit explores the market in order to find

a suitable resource to execute the job submitted to it.

This market supports commodity, auction and contract-net models. The buy-

ers and sellers use utility functions to describe their interests. For instance, buyers

might want to minimise the cost of executing their jobs, while the sellers want to

maximise their revenue. The market has a database called market entry index to

keep information regarding various users and providers in the market, and it also

contains references to other markets. The information about providers is refreshed

by and update unit, so the information about the providers remains up-to-date.

However, the user can obtain information about the available resources on the

Grid by contacting market information services.

In this architecture, the markets can get a percentage of the resource providers

(sellers) revenue in return for the services they provide [22].

GridWay In GridWay [66], the user submits its jobs to the Grid through a

command-line interface. Each user has a broker called Submission agent that is

responsible for discovering available resources, monitoring user’s jobs and submis-

sion. The Submission agent aims to maximise the optimisation criterion specified

Chapter 2. On scheduling in Grid computing 36

by the user it acts on behalf. The optimisation criterias are Performance, 1/CPU-

Price-per-second and Performance/CPU-Price-per-second that aim to minimise

the execution time, total cost and the performance to cost ratio of the submitted

job, respectively.

The GridWay uses two object classes (MdsEconomicInfo and MdsCpuPrice)

to deal with economic information. For example, the CPU price information

generated by the resource provider measured by Grid currency unit is contained

in an attribute called Mds-Cpu-Price-Per-Second.

An evaluation of communication demand of auction protocols in Grid

environments In [7], a framework that is based on reverse auction (tendering)

is presented. It comprises users (buyers), brokers (auctioneers) and resources (sell-

ers). In this framework, the user first submits jobs to its broker that is responsible

for submitting and monitoring them. Then, the broker starts an auction and sets

its parameters (e.g. auctions’ number of rounds and reserve price). Then, the

broker submits a request for all resources. Next, the resources decide to bid or

not based on the initial price of the job. If there is a bidder, the broker clears

the auction and sends the result of the auction to the participants. Otherwise, it

increases the price and sends new requests to the resources. This continues until

there is a bidder.

Amazon Elastic Compute Cloud Amazon Elastic Compute Cloud (Amazon

EC2) [3] allows users to run their jobs/applications on computing resources. The

users use either a web interface or a command line to control their computing

resources (instances). Each instance supplies what equals to 1.7 GHz Xeon CPU,

1.75 GB of memory, 160 GB of storage and 250 Mb/s of bandwidth. In order to

use Amazon EC2, the user has first to create an Amazon Machine Image (AMI)

which includes applications, libraries, data and configuration settings. However,

the user can also select from a number of AMIs provided by Amazon EC2, if it

doesn’t want to setup its AMI from scratch. Then, the user uploads its image into

Amazon Simple Storage Service (Amazon S3) which is a repository for storing

Chapter 2. On scheduling in Grid computing 37

images. Next, the user has to setup network access and security. Finally, the

user uses Amazon EC2 web service to manage instances of its AMI. The user is

charged for the instances (per hour) it uses, and for the bandwidth (per GB) it

consumes. But, there is no charge for data transferred within Amazon EC2, and

between Amazon EC2 and Amazon S3.

Market economy based resource allocation in Grids In this master the-

sis [73], six auction based user scheduling policies (strategies) for selecting re-

sources were proposed: TimeOptimized, BudgetOptimized, NewTimeOptimized,

NewBudgetOptimized, Combined and History based. TimeOptimized and BudgetOp-

timized improve average turnaround time and average budget per job, respectively.

NewTimeOptimized and NewBudgetOptimized are enhancements for TimeOpti-

mized and BudgetOptimized, respectively and they consider the success rate as

well. The success rate is the number of jobs that met their deadlines. New-

TimeOptimized tradeoffs between average turnaround time and and success rate,

whilst NewBudgetOptimized tradeoffs between average budget per job and success

rate. They both use a parameter named k that takes value between 1 and n. If

k=1, NewTimeOptimized and NewBudgetOptimized are going to be the same as

TimeOptimized and BudgetOptimized, respectively. As k increases, both average

turnaround time and success rate increase for users employ NewTimeOptimized,

while both average budget per job and success rate increase for users employ New-

BudgetOptimized. Combined policy decreases the average turnaround time and

average budget spent per job based on user preference. Finally, History based

policy uses previous success rate for selecting between NewTimeOptimized and

NewBudgetOptimized.

GridIS In [97], a P2P decentralised framework for economic scheduling using

tender model was presented. Additionally, a scheduling algorithm for resource

providers was proposed. In order to reduce the number of jobs that don’t meet

their deadlines, conservative degree (CD) that takes a decimal value between 0

and 1 is used by the algorithm. When CD equals to 0, the algorithm is going to

Chapter 2. On scheduling in Grid computing 38

be aggressive and accepts all jobs and therefore jobs might miss their deadlines.

As CD increases, the algorithm is going to be more conservative which means it

is going to keep the unconfirmed jobs in its job queue for consideration for some

time. The algorithm adds unconfirmed jobs to its job queue at the probability

of its CD. In this work, CD was varied to see its effect on both failure rate and

deadline miss rate. When both system load and CD are low, none of the jobs failed

to execute or to meet their deadlines. However, when the system load is increased,

deadline miss rate is increased too, but failure rate hasn’t been affected. When

CD is high, deadline miss rate is zero. But, failure rate increases when system

load increases.

2.6.3 Differences between conventional and economic strate-

gies

The major differences between conventional and economic scheduling can be sum-

marised in two points:

• Conventional scheduling usually considers the overall system performance to

determine the scheduling quality such as makespan, reliability and utilisation

rate, while economic scheduling concerns improving the value gained by each

entity separately, and which is usually represented by utility functions.

• Conventional scheduling doesn’t take into account the price of resources

when allocating resources to the submitted jobs, whilst cost is considered

important in economic scheduling, and affects resource allocation decisions.

Due to the reason that conventional scheduling doesn’t concern access cost

to resources, each user attempts to submit its job to the best resource on the

Grid leading to overloading the high performance resource, while leaving the

other resources underutilised (load balancing problem). On the other hand,

economic scheduling concerns the costs of resources, so each user submits

its job to the resource that just satisfies his requirements, and not necessary

to be the best resource on the Grid, because the submission of the job to a

Chapter 2. On scheduling in Grid computing 39

high performance resource means higher cost to the user.

2.7 Market models

A Market is defined in [91] as a context where the selling and buying of goods and

services occur. The markets were began to be used in Grids in the 1980s due to

the enhancement and popularity of computer networks [67]. The employment of

markets in Grids leads to some advantages such as simplicity, flexibility, efficiency,

scalability and dynamic adjustability [67]. Employing market models gives an

incentive for resource providers to supply their resources, because they want to

get some profit from sharing their resources [93].

In the computational Grid that employs economic strategies, the resource own-

ers provide their resources to be utilised by users to gain profit from this utilisation.

However, the job owners and resource providers need to deal with the way the re-

source owners specify the price of their resources, and how they charge for the

resource consumption. This is determined by the market model that is used in

the Grid.

In the next sections, six market models are discussed.

Commodity market model In commodity model [18, 54, 20, 95, 94, 22, 84, 4],

the resource owners determine a price for the usage of their resources, and charge

according to the percentage and duration of usage. If the pricing policy used is

fixed, then the resource price will be stable all the time and will not be affected

by supply and demand. Otherwise, the resource price will fluctuate through time

(eg. off-peak and peak times) and will be affected by supply and demand.

In this model, the scheduler/broker usually contacts a price database which

contains the prices of resources to get a list of prices. Sometimes, the resource

owners charge different prices for different users. The commodity (the use of a

resource for a specific time) can be sold for future use [53]. The dilemma in the

commodity model is in giving resources prices that reflect their values accurately.

Chapter 2. On scheduling in Grid computing 40

Bargaining model In this model [4], the users and resource owners negotiate

the price of executing the users jobs on resources. The negotiation process can

lead either to an acceptable price for both owner and user, or to a rejection from

the owner, in the case it hasn’t accepted the final price and the price could not be

negotiated anymore.

Tender/Contract-net model In tender model [22, 17], the scheduler/broker

issues a request for job execution with specific requirements. Then, the various

resource owners send their bids to the scheduler which selects the most appropriate

bid and contacts that resource owner in order to start the execution.

Auction model It can be said that auction model [18, 20, 95, 94, 90, 22, 70]

is the opposite of tender model. In tender model, the resource owners send their

bids for executing a job, while in auction model the job owners send their bids to

the resource owner. Thus, in tendering, the scheduler/broker selects a bid from

a number of resources’ bids, but in auction model each user attempts to put a

higher bid in order to gain that resource, so it can execute its job.

In some projects, the user can bid on a service that consists from a single

resource only, but some projects discuss bidding on a service that consists of more

than one resource and that can be a set of storage, CPU and network resources

[75, 71, 31, 90, 76]. The resource owner can define some requirements for the

auction such as the starting price, expiry time of auction and reserve price [18].

The drawback of this model is that the users spend a lot of time bidding on

services, especially in the case when each service consists of a bundle of resources,

and which is considered a NP (non-deterministic polynomial time) problem in [77].

Another drawback is the overhead resulted from negotiations between the parties

involved in the auction. However, auction model is easy to be understood and

implemented and has well known economic characteristics [94, 30].

There are five types of auctions:

• English (ascending-price) auction: Seller declares low opening bid. Then,

bidding increases continuously until no bidder wants to increase the price,

Chapter 2. On scheduling in Grid computing 41

and the winning bidder pays the highest bid value. English auction is con-

sidered an open auction in which each bidder knows others bids.

• First price sealed bid auction [27]: Each user sends one bid without any

knowledge about others bids. The auction is awarded to the user with the

highest bid.

• Vickery/Second price sealed bid Auction: Similar to the previous type of

auction, bid is awarded to the user with the highest bid, but it pays an

amount of money equals to the second highest bid.

• Dutch (descending-price) auction: The auction starts at a high price and

drops continuously until it reaches a price that is accepted by one of the

bidders. The bidders know the bids of the others as in English auction [5].

• Double Auction [44]: It is a system where buyers enter bids, and sellers

enter offers simultaneously. The task of the auctioneer here is matching be-

tween bids and offers that are suitable for each other. This model is already

deployed in NYSE (New York Stock Exchange) [1] and AMEX (American

Stock Exchange) [2] markets.

A comparison between commodity market and auction models was made in [95,

94]. Two types of resource providers were considered: CPUs and disk storage

providers.

Efficiency is used to determine which of the two markets behaves better. The

resource efficiency is measured by calculating the average percentage of time each

resource stayed utilised. The user efficiency is measured by computing the average

number of jobs completed for each user. It is stated that in general commodity

markets outperform auction markets.

However, some of the assumptions about the behaviour of buyers and sellers

in this work don’t reflect the behaviour of real buyers and sellers (e.g. having

cooperation between service providers).

Chapter 2. On scheduling in Grid computing 42

Proportional resource sharing model In this model [44, 79], the users have

credits that are used to access resources. The percentage of a resource the user

can utilise is equivalent to the number of credits it has in contrast to the number

of credits the others have. For example, If a resource is represented by N credits,

the user who has n credits can utilise n/N of the resource.

Cooperative bartering model In this model, each entity participates in a

sharing environment, so it provides resources to other entities and uses the re-

sources of other entities on the Grid. Thus, each entity behaves as a buyer and

a seller at the same time. Each entity gets a number of credits proportional to

the number and quality of resources it provides. Those credits are used to access

others’ resources [18].

2.8 Critique

Section 2.6 has described conventional and economic scheduling including the

projects that are based on. However, those projects have some limitations that

need to be considered. In conventional scheduling, there is no motivation for re-

source providers to share their resources, because they won’t get profit in return.

Furthermore, employing conventional scheduling results in having utilisation or

load balancing problem, because all users will execute their jobs on the resources

with high performance. As a result, those resources will be highly utilised all the

time, while the other resources will be left free or underutilised. For those reasons,

conventional scheduling is not suitable for Grid scheduling. On the other hand,

economic scheduling gives an incentive for resource suppliers to provide their re-

sources, because they will obtain profit from the users’ usage. Moreover, the job

owners use the resources only when they need them, since they have to pay for

the utilisation.

However, the projects that employ economic scheduling have some gaps. Firstly,

some of them employ centralised scheduler [19] which is known to have serious

drawbacks (see section 2.4). Secondly, they usually consider proposing economic

Chapter 2. On scheduling in Grid computing 43

scheduling strategies for users [19] or resources [97], but not both. Thirdly, the

brokers don’t receive profit from acting on behalf of users, which is unrealistic.

So, there is no incentive for brokers to participate. Finally and which is the most

important, only few projects [22, 7, 97] consider economic scheduling within an

environment that uses tender model, in spite of its suitability for Grid computing.

Tendering is supported in [22], but it is not described how the entities interact

using it. In [7], the brokers don’t receive profit in return of acting on behalf of

users which is unrealistic as mentioned above. Additionally, deadline satisfaction

is not considered in evaluating the scheduling performance. In [97], the brokers

don’t receive profit from acting on behalf of users too, and cost is not considered

in evaluating the users’ performance.

The aim of this thesis is to fill those gaps by proposing a new framework for

decentralised economic scheduling in Grid computing using tendering. In this

framework, all participating entities such as users, brokers and resources have

utilities that need to be maximised by entities’ strategies. Within the framework,

the performance of each strategy is compared to the performance of other strategies

employed by entities of the same class.

For metrics to measure the scheduling performance described in section 2.5,

load balancing is not important in economic scheduling, because each entity be-

haves in a selfish manner and doesn’t care about the others. Since executing a job

on more than one processor in not in the scope of this project, speedup cannot

be used. Utilisation doesn’t reflect the real performance in economic scheduling,

because a resource can have a high utilisation rate, but generate a small profit due

to the execution of cheap jobs. However, another resource might be less utilised,

but generates more profit due to the execution of expensive jobs. Reliability is

the same as job success rate, and failure rate is just an opposite to reliability.

Makespan is appropriate for centralised scheduling. However, the jobs of differ-

ent users might arrive at different times in decentralised scheduling, so makespan

can’t even be used to measure the performance of different users. Thus, average

satisfaction rate per job has to be used instead and it determines to what degree

Chapter 2. On scheduling in Grid computing 44

the user (initial) deadlines were satisfied.

Eventually, the application (job) requirements (see section 2.2) that the user

needs to specify in its request are budget (price), deadline and job class. However,

the user doesn’t have to know the resource specifications required for running

its job such as CPU speed, physical memory and file size, because this is the

role of the resource. After the resource receives a request for executing a job,

it calculates the expected completion time based on its specifications and status,

and then decides if it can fulfil the user’s requirements specified in the request.

Finally, bandwidth and security can be part of the job class, because the job class

determines the resources the job requires when running and which can be physical

or virtual resources.

2.9 Chapter summary

In this chapter, an overview of scheduling in Grid computing has been given. The

overview begins with describing the Grid components. Then, common application

requirements have been mentioned. Next, resource scheduling tasks and challenges

have been explained. This is followed by describing the scheduling schemes. Then,

scheduling performance metrics have been mentioned. Next, scheduling categories

like conventional and economic scheduling have been described including the re-

lated projects. This overview ends by describing the market models. After the

overview, a critique has been presented.

The survey undertaken in this chapter shows that the current projects which

consider scheduling in Grid computing have some limitations. In the next chapter,

a new framework that overcomes the limitations of these projects is introduced.

Chapter 3

An economic scheduling framework

using tendering

3.1 Introduction

In this chapter, a new framework that supports economic scheduling in Grid com-

puting is proposed. The users, brokers and resources employ tender model to

negotiate the prices and deadlines. Through negotiations, users, brokers and re-

sources aim to maximise their utilities.

In Grid computing, resource providers supply their processing resource to the

Grid, and jobs are allocated to these resources for their execution. The aim of

resource providers is to make profit, and the aim of users is to reduce cost. This

situation creates an economic market.

Much work [89, 19, 18, 44, 66, 73, 97] was done on finding an optimal allocation

of resources to users’ jobs. Some of the projects use conventional scheduling that

usually concerns the system performance in general and don’t consider the eco-

nomics (prices) for allocating jobs to resources. On the other hand, a large number

of projects consider economic scheduling for allocating jobs. Economic schedul-

ing takes into consideration the price of the resources when it needs to allocate

jobs to resources and that price usually reflects the value of the resource to the

45

Chapter 3. An economic scheduling framework using tendering 46

user. Furthermore, economic scheduling gives an incentive for resource providers

to supply their resources, and enforce the job owners to make cost-effective use of

the resources.

The competing aims of maximising profit and reducing cost lead to negotiations

of price. This is determined by the economic model in use. Some of the models

that are applicable to Grid environment are auction [18, 20, 95, 94, 90, 22, 70],

commodity [18, 54, 20, 95, 94, 22, 84, 4] and tender/contract-net [22, 17] models.

The tender model is discussed in this chapter’s proposed framework. In this

model, the user issues a request for job execution with specific requirements and

which is submitted to a group of brokers. Then, the various resources respond

with bids to brokers. The user then selects the most appropriate bid based on the

user’s strategy, and contacts that broker. Finally, that broker contacts the selected

resource in order to start the execution. The Tender model is an appropriate

model to employ in the Grid, because users begin the negotiation. Additionally,

the users specify their job requirements with their requests and the resources reply

with bids that are based the the cost of taking on the job and the availability of

their processors.

The rest of this chapter is organised as follows: Section 3.2 introduces the

framework’s entities. The strategies that are employed by those entities are pre-

sented in section 3.3. Finally, Section 3.4 summarises the chapter.

3.2 Framework entities

The framework consists of a number of entities that use tender model. The entities

are classified into resources, brokers and users. A resource sends bids and receives

jobs, a broker sends jobs and bids and receives jobs and bids and a user sends jobs

and receives bids. Figure 3.1 shows the negotiations that take place between the

entities, while Table 3.1 shows the parameters which are sent through the nego-

tiations that occur between them. For each negotiation, the job parameters such

as job characteristics and requirements are sent from the user to brokers. Then,

Chapter 3. An economic scheduling framework using tendering 47

each of these brokers can either negotiate with the user or negotiate a group of

resources. After the broker sends offers to resources, the interested resources send

their bids to this broker. Next, the brokers keep negotiating with the resources

or with the user who in turn accepts one of the sent bids from brokers or keeps

negotiating.

The job parameters are:

• User number: The job owner’s number.

• Job ID: The job’s number.

• Sender number: The number of the entity that submitted the job parameters

for the job whose number is Job ID.

• Receiver number: The number of the entity that receives the job parameters.

• Negotiation number: This shows the negotiation’s number for the submitted

job. A negotiation is a direct communication between two entities (e.g.

communication between a user and a broker).

• Price, job length, deadline and job class that are described in section 3.2.2.

On the other hand, the bid parameters are:

• User number: The job owner’s number.

• Job ID: The job’s number.

• Sender number is the number of the entity that submitted the parameters.

• Receiver number is the number of the entity that receives the bid parameters

for the job whose number is Job ID.

• Negotiation number: It shows for what negotiation’s number this reply (bid)

is for.

• Price: The revenue that is asked for executing the job.

Chapter 3. An economic scheduling framework using tendering 48

• Expected completion time: The date by which the job is expected to com-

plete.

• Expiry date: The date when the bid will expire.

Grid accounting is not in the scope of this project. Grid accounting is considered

in [10, 30].

Broker 2

Broker 1

Broker m

Job Parameters (JP)

Bid Parameters (BP)

JP

JP

JP

JP

JP

JP

BP

BP

BP

BP

User 1

User 2

User n

BP

BP

Resource 1

Resource 2

Resource w

JP

JP

JP

JP

JP

JP

BP

BP

BP

BP

BP

BP

Figure 3.1: Interaction between users, brokers and resources.

Table 3.1: Negotiation parameters.

Job parameters

User number
Job ID

Sender number
Receiver number

Job length
Job class

Negotiation number
Price

Deadline

Bid parameters

User number
Job ID

Sender number
Receiver number

Negotiation number
Price

Expected completion time
Expiry date

3.2.1 Resources

The resources represent the working power of the grid, and they are where the jobs

are executed. Each resource comprises a number of processors that have speeds

Chapter 3. An economic scheduling framework using tendering 49

measured in MIPS (Million Instructions Per Second). MIPS is used because no

better metric was found. In the future, a more appropriate metric to measure the

speed of processors is going to be used. In this work, all the resources (processors)

use space shared scheduling policy, i.e. a processor can execute only one job at a

time.

In the proposed framework, the resource is shown as an entity that sends bids

and receives jobs as appears in figure 3.2. The resource receives jobs (requests)

from brokers. After processing the requests, it sends bids based on the cost of

taking on the jobs and the availability of its processors.

This framework supports the situation where resource prices fluctuate based

on the demand and supply. Thus, when the demand becomes higher, the resource

becomes more expensive and the chance of the broker request to be accepted be-

comes smaller. Otherwise, the resource becomes cheaper and the chance becomes

greater. On the other hand, when the supply (free processors) is higher, the re-

source price decreases and the possibility of the resource to accept a job request

becomes higher. Contrarily, the price increases and the possibility becomes lower,

if the supply is lower. Different models can be implemented to determine how the

resource price is varied and how the demand is measured.

Two kinds of costs are paid by resources: Cost per million instructions (MI)

and cost per time unit. Cost per MI is only paid when a resource is executing a

job, because this results in consuming more power in addition to other expenses

relate to the job executing. On the other hand, cost per time unit is paid all the

time whether the resource is idle or busy and results from the expenses arisen from

maintaining the resource (e.g. security, software).

Entity
Jobs

Bids
Figure 3.2: Resource.

Chapter 3. An economic scheduling framework using tendering 50

3.2.2 Users

The users have jobs that need to be executed on the resources reside on the Grid.

Each job has a price (currency), length (MI), deadline (date) and a class. Price

is the amount of money that will be paid for executing the job. The price that

is submitted to the brokers might be increased during the negotiations with the

brokers until the job owner and a broker agree on a price for executing the job.

The length indicates the number of instructions the job is expected to take. The

model of a job in use is such that the job is progressed through a fixed number

of instructions and then saved. So, if the job took more instructions than is

determined in the request, the resource executes the number of instructions the

user (job owner) paid for and returns the results to the user. Then, the user can

ask for executing the rest of instructions in a new job request. The deadline is the

date by which the job must be completed. The class is a descriptive category of a

job that is based on the computer resources it requires when running.

For every job, there is the submission time which is the time when the negoti-

ation starts for the job (the job is submitted to a group of brokers). If a resource

accepts to execute the job, the job is allocated (submitted) to the resource at

time called the allocation time. Then, the job is assigned to one of the available

processors belong to the resource at time called the start time. Finally, the job

finishes its execution and the results are returned to the job owner at time called

finish time.

The user in this framework is an entity that sends job parameters and receives

bid parameters as appears in figure 3.3. The user sends jobs to brokers, so they

can find suitable resources for executing the user’s jobs. On the other hand, the

brokers send their bids to the user after contacting the resources, so the user can

select one the bids or keeps negotiating with brokers.

Every user maintains historical performance for brokers which is used in se-

lecting the brokers the user wants to contact. So in the next negotiations, the

users just send requests to brokers with good historical performance to reduce the

number of negotiations that happen between them and brokers. The historical

Chapter 3. An economic scheduling framework using tendering 51

performance is updated based on the responses from various brokers. Further-

more, every user sends requests to the brokers with poor historical performance

after a while to see if their performances (e.g. their responses to its requests)

improve.

Entity
Bids

Jobs

Figure 3.3: User.

3.2.3 Brokers

The broker aims to find suitable resources for executing the jobs owned by users

that the broker acts on behalf of them. The existence of brokers is important

for users because they have knowledge about resources reside in the Grid. The

brokers employ various strategies and aim to maximise their own profit. Different

to users and resources, brokers interact with two classes of entities that are users

and resources, while users only interact with brokers and resources only interact

with brokers.

In this framework, the broker is represented as an entity that sends job and bid

parameters and receives job and bid parameters as shown in figure 3.4. It sends

bid and job parameters to users and resources, respectively, and receives bid and

job parameters from resources and users, respectively. Each broker just sends one

bid to user at a time.

Similar to users, brokers sustain historical performance, but for resources. The

brokers employ historical performance to reduce the number of communications

that occur between them and resources. As a result, the brokers only contact a

group of resources.

As resources, brokers pay two kinds of costs: cost per MI and cost per time

unit. However, the costs paid by brokers are usually less than the costs paid by

resources. This is due to the fact that resources have processors that need to be

Chapter 3. An economic scheduling framework using tendering 52

maintained.

Entity
JobsJobs

BidsBids

Figure 3.4: Broker.

3.3 Entity strategies

3.3.1 Resource strategies

This work considers three resource strategies: Price, Deadline and Price-Deadline.

The need of three strategies arises from the fact the parties negotiate the price and

the deadline of the job, so three strategies must exist that concern price, deadline

and both. The strategies are described in the following three sections.

Price strategy

A resource that employes this strategy checks the broker’s price. If the price is less

than its minimum acceptable price (which can be fixed or dynamic) or the class

of the job that was submitted by broker is not accepted by the resource strategy

(equation 3.1), the resource ignores it. Else (equation 3.2), it sends a bid with an

initial price which is greater than or equal to its minimum acceptable price.

Broker price < mnresacpr or Job ′s class /∈ accjobcl (3.1)

Broker price ≥ mnresacpr and Job ′s class ∈ accjobcl (3.2)

Where mnresacpr is the resource minimum acceptable price and accjobcl con-

tains the job classes that are accepted by the resource strategy.

In further negotiations, the resource makes the same check in the previous

paragraph. But, in the case that is represented by equation 3.2, the resource

updates its minimum acceptable price. The current resource bid’s price and com-

pletion time are also updated, and then a new bid is sent to the broker. However,

Chapter 3. An economic scheduling framework using tendering 53

there is a limit on the number of negotiations/rounds to which the resource can

respond.

Pseudocode 1 shows the pseudocode of this strategy. For definitions of variables

used in this pseudocode, refer to table 3.2.

Pseudocode 1: Resource strategy 1 (Price strategy).

Initialise conneg to true;

Initialise mnresacpr , respr , resct ;

Initialise initial price, initial completion time;

if conneg = true then

if recbrpr ≥ mnresacpr and recjcl ∈ accjobcl then

if round# = 1 then

nofrounds = nofrounds − 1;

Send a bid that includes the initial price and completion time in

addition to other parameters to the broker;

else

if nofrounds > 0 then

Update mnresacpr , respr and resct using a method (e.g. fixed

decrements to their current values);

nofrounds = nofrounds − 1;

Send a bid that includes respr and resct in addition to other

parameters to the broker;

else

conneg = false;

end

end

end

end

Deadline strategy

In this strategy, the broker’s deadline is checked. If this deadline is less than the

resource minimum acceptable deadline (which can be fixed or dynamic) or the

class of the job that the broker submitted is not accepted by the resource strategy

(equation 3.3), the resource neglects the request. Otherwise (equation 3.4), it

Chapter 3. An economic scheduling framework using tendering 54

sends a bid with an initial completion time that is greater than or equal to its

minimum acceptable deadline.

Broker deadline < mnresacdl or Job ′s class /∈ accjobcl (3.3)

Broker deadline ≥ mnresacdl and Job ′s class ∈ accjobcl (3.4)

Where mnresacdl is the resource minimum acceptable deadline and accjobcl

contains the job classes that are accepted by the resource.

In further negotiations, the resource makes the same check as previously except

that in the case that is represented by equation 3.4, the resource updates its

minimum acceptable deadline, price and completion time and a new bid is sent to

the broker. The resource has to check if it reached its maximum allowed number

of rounds to determine if it has to continue the negotiation for this job or not.

Pseudocode 2 shows the pseudocode of this strategy. For definitions of variables

used in the pseudocode, refer to table 3.2.

Chapter 3. An economic scheduling framework using tendering 55

Pseudocode 2: Resource strategy 2 (Deadline strategy).

Initialise conneg to true;

Initialise mnresacdl , respr , resct ;

Initialise initial price, initial completion time;

if conneg = true then

if recbrdl ≥ mnresacdl and recjcl ∈ accjobcl then

if round# = 1 then

nofrounds = nofrounds − 1;

Send a bid that includes the initial price and completion time in

addition to other parameters to the broker;

else

if nofrounds > 0 then

Update mnresacdl , respr and resct using a method (e.g. fixed

decrements to their current values);

nofrounds = nofrounds − 1;

Send a bid that includes respr and resct in addition to other

parameters to the broker;

else

conneg = false;

end

end

end

end

Price-Deadline strategy

Both broker’s price and deadline are checked. If the price or deadline is less than

the resource minimum acceptable price or deadline, respectively or the class of the

job that was submitted is not accepted by the resource strategy as in equation 3.5,

the resource neglects the broker’s offer. Else (equation 3.6), it sends a bid with an

initial price and completion time that are greater than or equal to its minimum

acceptable price and deadline, respectively.

Chapter 3. An economic scheduling framework using tendering 56

Broker price < mnresacpr or

Broker deadline < mnresacdl or

Job ′s class /∈ accjobcl (3.5)

Broker price ≥ mnresacpr and

Broker deadline ≥ mnresacdl and

Job ′s class ∈ accjobcl (3.6)

Where mnresacpr is the resource minimum acceptable price, mnresacdl is the

resource minimum acceptable deadline and accjobcl contains the job classes that

are accepted by the resource.

In further negotiations, the resource makes the same checks, however, in the

case that is represented by equation 3.6, the resource updates its minimum accept-

able price and deadline. Moreover, the current resource bid’s price and completion

time are also updated and the resource sends a new bid to the broker. Again as

in previous strategies, the resource has to check if it reached its maximum allowed

number of rounds.

Pseudocode 3 shows the pseudocode of the strategy. For definitions of variables

used in the pseudocode, refer to table 3.2.

Chapter 3. An economic scheduling framework using tendering 57

Pseudocode 3: Resource strategy 3 (Price-Deadline strategy).

Initialise conneg to true;

Initialise mnresacpr , mnresacdl , respr , resct ;

Initialise initial price, initial completion time;

if conneg = true then

if recbrdl ≥ mnresacdl and recbrpr ≥ mnresacpr and recjcl ∈ accjobcl then

if round# = 1 then

nofrounds = nofrounds − 1;

Send a bid that includes the initial price and completion time in

addition to other parameters to the broker;

else

if nofrounds > 0 then

Update mnresacpr , mnresacdl , respr and resct using a method

(e.g. fixed decrements to their current values);

nofrounds = nofrounds − 1;

Send a bid that includes the respr and resct in addition to other

parameters to the broker;

else

conneg = false;

end

end

end

end

3.3.2 User strategies

The users employ three strategies for selecting the best bids for executing their

jobs. As resources, the users require three strategies. Each strategy regards one

the two negotiated requirements (price or completion time) or both. The strategies

are Price, Completion time and Price-Completion time and are described below.

Chapter 3. An economic scheduling framework using tendering 58

Table 3.2: Definitions of pseudocodes’ variables of resource strategies.

Variable Definition

accjobcl The list that contains the job classes that are accepted by the resource
strategy.

respr The current resource price. respr > 0
resct The current resource completion time. resct > Current time

recbrpr The received broker price. recbrpr > 0
recbrdl The received broker deadline. recbrdl > Current time
recjcl The received job’s class. recjcl ∈ N

mnresacpr The current resource minimum acceptable price. mnresacpr > 0
mnresacdl The current resource minimum acceptable deadline. mnresacdl >

Current time
nofrounds The maximum number of rounds to which the resource can respond.

nofrounds ≥ 1
conneg The variable that determines if the negotiation has to continue or not.

conneg = false | true
round# The current round number. round# ≥ 1

Price strategy

In this strategy, the user starts the negotiation with an initial price that is less

than or equal to its maximum acceptable price (which can be fixed or dynamic)

and that is sent with other job parameters to brokers.

Then, a group of brokers replies with bids and some brokers might not reply at

all. For all brokers replied, the user checks each bid price. If the bid price is greater

than the user maximum acceptable price or the bid is expired (equation 3.7), the

user just neglects it. Otherwise (equation 3.8), the user adds the bid to the other

bids it will consider. If all the bid prices are greater than the user maximum

acceptable price, the user updates its maximum acceptable price. The user also

updates its current price and deadline, and then sends new offers to the brokers.

Broker price > mxusacpr or expdate < Current time (3.7)

Broker price ≤ mxusacpr and expdate ≥ Current time (3.8)

Where mxusacpr is the user maximum acceptable price and expdate is the date

Chapter 3. An economic scheduling framework using tendering 59

when the broker bid will expire.

The negotiation continues until the user receives a valid bid with price that

is less than or equal to its maximum acceptable price (negotiation is successful)

or until the user determines it doesn’t want to negotiate anymore (negotiation is

unsuccessful). If two or more bid (broker) prices satisfy equation 3.8, the user

selects the bid with the lowest price. If two or more bids have the same lowest

price, the user selects the one that has minimum completion time. If they also have

the same minimum completion time, the user just selects one of them randomly.

Pseudocode 4 shows the pseudocode of this strategy. For definitions of variables

used in the pseudocode, refer to table 3.3.

Chapter 3. An economic scheduling framework using tendering 60

Pseudocode 4: User strategy 1 (Price strategy).
Initialise conneg to true;

Initialise mxusacpr , uspr , usdl ;

Initialise initial price, initial deadline;

if conneg = true then

if round# = 1 then

nofrounds = nofrounds − 1;

for i = 1 to Whtosels.size do

Send an offer that includes the initial price and deadline in addition to other job

parameters to the broker whose number is in Whtosels.(i);

end

else

if bprls.size > 0 or expdate.size > 0 then

for j = 1 to bprls.size or expdate.size do

if bprls.(j) ≤ mxusacpr and expdate.(j) ≥ Current time then

conlspr .add(bprls.(j));

end

end

if conlspr.size > 0 then

Select the broker that sent the bid price ∈ min{conlspr};

else

if nofrounds > 0 then

Update mxusacpr , uspr and usdl using a method (e.g. fixed increments to their

current values);

nofrounds = nofrounds − 1;

for x = 1 to Whtosels.size do

Send an offer to the broker whose number is in Whtosels.(x);

end

else

conneg = false;

end

end

else

if nofrounds > 0 then

Update mxusacpr , uspr and usdl using a method (e.g. fixed increments to their

current values);

nofrounds = nofrounds − 1;

for x = 1 to Whtosels.size do

Send an offer to the broker whose number is in Whtosels.(x);

end

else

conneg = false;

end

end

end

end

Chapter 3. An economic scheduling framework using tendering 61

Completion time strategy

At the beginning of the negotiation, the user sends an initial deadline that is less

than or equal to its maximum acceptable completion time (which can be fixed or

dynamic) in addition to other job parameters to brokers.

The actions that are taken by user based on broker replies are:

• No action is taken by user if no bid is received from the broker.

• The user neglects the bid that was received from the broker if the bid’s

completion time is greater than its maximum acceptable completion time or

the bid is expired (equation 3.9).

• The user adds the bid to the other bids it will consider if the bid’s completion

time is less than or equal to its maximum acceptable completion time and

the bid is still valid (equation 3.10).

Broker completion time > mxusacct or expdate < Current time (3.9)

Broker completion time ≤ mxusacct and expdate ≥ Current time (3.10)

Where mxusacct is the user maximum acceptable completion time and expdate

is the date when the broker bid will expire.

If none of the bids fulfil the conditions in equation 3.10, the user updates its

maximum acceptable completion time, price and deadline. Then, new offers are

sent to brokers.

The negotiation lasts until the user receives a valid bid with completion time

that is less than or equal to its maximum acceptable completion time (negotia-

tion is successful) or until it wants to discontinue the negotiation (negotiation is

unsuccessful). If two or more bid completion times are less than or equal to the

maximum, the user selects the bid with the minimum completion time. If two or

more bids have the same minimum completion time, the user selects the one with

Chapter 3. An economic scheduling framework using tendering 62

the lowest price. If they also have the same lowest price, the user selects one of

them randomly.

Pseudocode 5 shows the pseudocode of this strategy. For definitions of variables

used in the pseudocode, refer to table 3.3.

Chapter 3. An economic scheduling framework using tendering 63

Pseudocode 5: User strategy 2 (Completion time strategy).
Initialise conneg to true;

Initialise mxusacct , uspr , usdl ;

Initialise initial price, initial deadline;

if conneg = true then

if round# = 1 then

nofrounds = nofrounds − 1;

for i = 1 to Whtosels.size do

Send an offer that includes the initial price and deadline in addition to other job

parameters to the broker whose number is in Whtosels.(i);

end

else

if bctls.size > 0 or expdate.size > 0 then

for j = 1 to bctls.size or expdate.size do

if bctls.(j) ≤ mxusacct and expdate.(j) ≥ Current time then

conlsct .add(bctls.(j));

end

end

if conlsct.size > 0 then

Select the broker that sent

the bid completion time ∈ min{conlsct};

else

if nofrounds > 0 then

Update mxusacct , uspr and usdl using a method (e.g. fixed increments to their

current values);

nofrounds = nofrounds − 1;

for x = 1 to Whtosels.size do

Send an offer to the broker whose number is in Whtosels.(x);

end

else

conneg = false;

end

end

else

if nofrounds > 0 then

Update mxusacct , uspr and usdl using a method (e.g. fixed increments to their

current values);

nofrounds = nofrounds − 1;

for x = 1 to Whtosels.size do

Send an offer to the broker whose number is in Whtosels.(x);

end

else

conneg = false;

end

end

end

end

Chapter 3. An economic scheduling framework using tendering 64

Price-Completion time strategy

This strategy regards both price and completion time to decide which broker bid

to select. At the beginning of the negotiation, the user sends an initial price

and deadline that are less than or equal to its maximum acceptable price and

completion time, respectively, with other job parameters to brokers.

The actions that are taken by user based on broker replies are:

• No action is taken by user if no bid is received from the broker.

• The user neglects the bid that is received from the broker if the bid’s comple-

tion time or price is greater than its maximum acceptable completion time

or price, respectively or the bid is expired as in equation 3.11.

• The user adds the bid to the other bids it will consider if the bid’s completion

time and price are less than or equal to its maximum acceptable completion

time and price, respectively, and the bid is still valid as in equation 3.12.

Broker completion time > mxusacct or

Broker price > mxusacpr or

expdate < Current time (3.11)

Broker completion time ≤ mxusacct and

Broker price ≤ mxusacpr and

expdate ≥ Current time (3.12)

Where mxusacct is the user maximum acceptable completion time, mxusacpr

is the user maximum acceptable price and expdate is the date when the broker bid

will expire.

If none of the bids meet the conditions in equation 3.12, the user updates its

Chapter 3. An economic scheduling framework using tendering 65

maximum acceptable completion time and price, deadline and price. The user

then sends new offers to brokers.

The user that employs this strategy continues the negotiation until it receives a

valid bid with completion time and price that are less than or equal to its maximum

acceptable completion time and price, respectively (negotiation is successful), or

until its maximum allowed number of rounds is reached (negotiation is unsuccess-

ful). If the user received two or more bids that are acceptable to it, the user selects

the bid with minimum value of ((Completion time − Current time) × Price). If

the minimum is achieved by several bids, the user selects one of them randomly.

Pseudocode 6 shows the pseudocode of the strategy. For definitions of variables

used in the pseudocode, refer to table 3.3.

Chapter 3. An economic scheduling framework using tendering 66

Pseudocode 6: User strategy 3 (Price-Completion time strategy).
Initialise conneg to true;

Initialise mxusacpr , mxusacct , uspr , usdl ;

Initialise initial price, initial deadline;

if conneg = true then

if round# = 1 then

nofrounds = nofrounds − 1;

for i = 1 to Whtosels.size do

Send an offer that includes the initial price and deadline in addition to other job

parameters to the broker whose number is in Whtosels.(i);

end

else

if bctls.size > 0 or bprls.size > 0 or expdate.size > 0 then

for j = 1 to bctls.size or bprls.size or expdate.size do

if bctls.(j) ≤ mxusacct and bprls.(j) ≤ mxusacpr and expdate.(j) ≥ Current time

then

conlsct .add(bctls.(j)) and conlspr .add(bprls.(j));

end

end

if conlspr.size > 0 or conlsct.size > 0 then

Select the bid with minimum value of ((Completion time − Current time) × Price);

else

if nofrounds > 0 then

Update mxusacpr , mxusacct , uspr and usdl using a method (e.g. fixed

increments to their current values);

nofrounds = nofrounds − 1;

for x = 1 to Whtosels.size do

Send an offer to the broker whose number is in Whtosels.(x);

end

else

conneg = false;

end

end

else

if nofrounds > 0 then

Update mxusacpr , mxusacct , uspr and usdl using a method (e.g. fixed increments to

their current values);

nofrounds = nofrounds − 1;

for x = 1 to Whtosels.size do

Send an offer to the broker whose number is in Whtosels.(x);

end

else

conneg = false;

end

end

end

end

Chapter 3. An economic scheduling framework using tendering 67

Table 3.3: Definitions of pseudocodes’ variables of user strategies.

Variable Definition

Whtosels The list that contains the broker numbers to which the user wants to send
its job request.

expdate The list that contains the expiry dates of the broker bids.
bprls The list that contains the bid prices that were received from brokers.

Bid price > 0
bctls The list that contains the bid completion times that were received from

brokers. Bid completion time > Current time
conlspr The list that contains the bid prices that the user wants to consider.
conlsct The list that contains the bid completion times that the user wants to

consider.
round# The current round number. round# ≥ 1

uspr The current user price. uspr > 0
usdl The current user deadline. usdl > Current time

mxusacpr The user maximum acceptable price. mxusacpr > 0
mxusacct The user maximum acceptable completion time. mxusacct > Current time

conneg The variable that determines if the negotiation has to continue or not.
conneg = true | false

nofrounds The maximum number of rounds the user wants to initiate. nofrounds ≥ 1

3.3.3 Broker strategies

Like users and resources, brokers have their strategies too and they aim to max-

imise their own utilities. The priority of brokers is to maximise the profit they gen-

erate from negotiating on behalf of users and this what User-Resource price difference

strategy is about. The revenue generated equals to the difference between the user

and resource prices, if the broker bid was successful. Another group of brokers

(which employ User-Resource price difference-Deadline met) don’t consider bids

from resources, before they ensure the bids satisfy the deadlines of their users.

The details of broker strategies are mentioned in the rest two sections.

User-Resource price difference strategy

This strategy accepts every job execution request from users. For each request, it

sends a bid with price that is less than the sent user price as in equation 3.13 in

addition to other parameters to resources.

Chapter 3. An economic scheduling framework using tendering 68

User price > brsentpr (3.13)

Where brsentpr is the price sent from broker to resources.

The actions that are taken by broker based on resources replies are:

• No action is taken by broker if no bid is received from the resource.

• The broker neglects the bid that was received from the resource, if the bid’s

price is greater than brsentpr or the bid is expired (equation 3.14). The

reason is that the user price must be greater than the received resource price

in order for the broker to receive some profit (the difference between user

and resource prices).

• The broker adds the bid to the other bids it will consider if the bid’s price

is less than or equal to brsentpr and the bid is still valid (equation 3.15).

Resource price > brsentpr or expdate < Current time (3.14)

Resource price ≤ brsentpr and expdate ≥ Current time (3.15)

Where brsentpr is the price sent from broker to resources and expdate is the

date when the resource bid will expire.

If none of the resource bids satisfy equation 3.15, the broker doesn’t send a

bid to the user that sent the request. However, if two or more bids satisfy the

equation, the broker selects the bid with the lowest price. If two or more bids have

the same lowest price, the broker selects the one that has minimum completion

time. If they have also the same minimum completion time, the broker selects one

of them randomly.

Pseudocode 7 shows what the strategy does when it receives a request from

a user, while pseudocode 8 shows what it does when it is the time to make a

decision. Table 3.4 shows the definitions of variables used in pseudocodes 7 and 8.

Chapter 3. An economic scheduling framework using tendering 69

Pseudocode 7: What broker strategy 1 (User-Resource price difference

strategy) does when a user request is received.

for i = 1 to Whtosels .size do

Send an offer that includes the price and deadline in addition to other

job parameters to the resource whose number is in Whtosels .(i);

Pseudocode 8: What broker strategy 1 (User-Resource price difference

strategy) does when it is the time to make a decision.

if rprls.size > 0 or expdate.size > 0 then

for j = 1 to rprls.size or expdate.size do

if rprls.(j) ≤ brsentpr and expdate.(j) ≥ Current time then

conls .add(rprls.(j));

if conls.size > 0 then

Select the resource that sent the bid price ∈ min{conls};

Send a bid with price equals the user request price to the user;

Table 3.4: Definitions of pseudocodes’ variables of broker strategies.

Variable Definition

Whtosels The list that contains the resource numbers to which the broker wants to
send its job request.

expdate The list that contains the expiry dates of the resource bids.
rprls The list that contains the bid prices that were received from resources.

Bid price > 0
conls The list that contains the bid prices that the broker wants to consider.

brsentpr The price sent from broker to resources brsentpr > 0

User-Resource price difference-Deadline met strategy

The only difference between this strategy and the previous strategy is that the

sent bid from a resource must also have a completion time that is less than or

equal to the deadline of the submitted job in order for the broker to consider it as

appears in equation 3.16.

Chapter 3. An economic scheduling framework using tendering 70

Completion time ≤ User deadline (3.16)

3.4 Chapter summary

In summary, this work has introduced a Grid computing framework that supports

economic scheduling using tendering. In this framework, three classes of entities

exist: users, brokers and resources.

Users are the buyers and they aim to find resources that meet their require-

ments, while maximising their utilities (e.g. reduce the cost). Users send their

requests to brokers which in turn contact the resources to find suitable ones to

execute the jobs.

Brokers are the auctioneers and they are mediators between buyers (users) and

sellers (resources). Brokers act on behalf of users and their objective is to find

suitable resources for executing user jobs, while maximising their own utilities

(e.g. profit) as well.

The final class of entities is resources that are the sellers and which have

processors that are utilised by user jobs. As other classes of entities, resources’

goal is to maximise their utilities (e.g. profit) using the strategies they employ.

Three user strategies have been described: Price, Completion time and Price-

Completion time strategies. The first strategy concerns price when considering a

bid, while the second strategy concerns completion time for considering a bid. In

the last strategy, both price and completion time are checked to determine if to

consider a bid or not.

On the other hand, three resource strategies have been defined. The first

strategy is Price strategy and it regards price in order to indicate if to send a bid

or not. The second strategy is Deadline strategy and it regards deadline instead of

price to determine if it is worth sending a bid or not. The third strategy is Price-

Deadline strategy and regards both price and deadline to specify if to submit a

bid or not.

Chapter 3. An economic scheduling framework using tendering 71

Finally, two broker strategies have been presented: User-Resource price difference

and User-Resource price difference-Deadline met strategies. Both strategies be-

have the same except that the second strategy ensures the deadline of job owner

was satisfied in the resource bid (by considering a resource bid only if its comple-

tion time is less than or equal to the deadline of the job owner).

Chapter 4

MICOSim: A simulator for modelling

economic scheduling

4.1 Introduction

This chapter is concerned with the design and implementation of MICOSim, an

event-driven simulator written in Java for evaluating the performance of Grid

entities (users, brokers and resources) under different scenarios.

In the previous chapter, a framework for economic scheduling in Grid comput-

ing using tendering was introduced. However, the entities in the framework such

as users, brokers and resources employ strategies that their performance need to

be evaluated under different circumstances. Unfortunetly, it is nearly impossible

to evaluate the performance of different entities in a repeatable and controllable

manner for different scenarios such as changing the number of entities in real

Grid environments. The reason is that the availability of resources and their load

change with time and it is impossible for an individual user to control actions of

other users on the Grid.

Thus, a simulator is needed for evaluating the performance of different entity

strategies under different scenarios. Those scenarios comprise:

72

Chapter 4. MICOSim: A simulator for modelling economic scheduling 73

• Varying the numbers of users, resources and brokers.

• Varying the entities’ specifications such as varying the numbers of jobs that

are owned by different users and jobs’ lengths and classes, and varying the

numbers of processors the resources have and processors’ speeds.

• Varying the strategies that are employed by various users, brokers and re-

sources.

• Varying the strategies’ parameters like the parameters they send to other

entities such as prices, completion times and deadlines.

After this introduction, Section 4.2 discusses related work including some of its lim-

itations. Section 4.3 and 4.4 introduce the implemented simulator’s components

and their interactions, respectively. Finally, section 4.5 concludes this chapter.

4.2 Related work

Simulation is defined as “attempting to predict aspects of the behaviour of some

system by creating an approximate model for it” [72]. Building simulators has a

number of advantages: there is no need for building a real system, conducting more

easily controlled experiments and allowing to run a huge number of experiments. A

number of simulators have been implemented such as Bricks, SimGrid, GangSim,

OptorSim and GridSim.

Bricks [88] is a Java-based simulator developed at the Tokyo Institute of Tech-

nology in Japan and is used for comparing scheduling algorithms and frameworks

in client-server like global computing systems under different circumstances such

as varying the workload. However, it uses centralised scheduling which is known

to have drawbacks such as inscalability and single point of failure.

SimGrid [24] is an event-driven simulator developed in the university of Cali-

fornia and it deals with single-client multi-server scheduling. However, because it

can only be used for simulating a single client, it is hard to simulate a group of

competing users that each employs its own strategy.

Chapter 4. MICOSim: A simulator for modelling economic scheduling 74

SimGrid 2 [60] and 3 [59] are enhanced versions of SimGrid which have new

features involving simulating distributed scheduling agents in dynamic distributed

environments and supporting more network models.

GangSim [33] simulates environments where there is a large number of institu-

tions and users that control a huge number of computers and storage systems. In

GangSim, the allocation of resources is decided from the interaction between vir-

tual organisations(VOs). In MICOSim, the allocation of resources is determined

from the interaction between individual entities.

OptorSim [13] is a Data Grid simulator written in Java for evaluating replica

optimiser algorithms in various grid configurations. Furthermore, it is used for

evaluating an economic model using a Peer to Peer auction protocol [12]. The

economic model is used to choose replicas for running jobs and to determine where

to create replicas dynamically in Grid sites by employing a file revenue prediction

function.

Finally, Gridsim [21] is a Java-based toolkit and is used for modelling and

simulation of entities in Grid environments. It is built on top of SimJava which

is a discrete event simulation engine that runs entities in separate threads. It is

mainly concern is Grid economy where there are users (buyers), resources (sellers)

and brokers for discovering the available resources and allocating them to user

jobs. Threads have a drawback which is platform dependency, so the program

runs differently under various operating systems platforms [50]. GridSim doesn’t

support that the brokers have their own strategies too in order to maximise their

own utilities.

Therefore, a simulator that supports decentralised scheduling in Grid com-

puting has to be implemented. In this simulator, all entities can have their own

utilities and can interact with each other using tender model. In this chapter, an

event-driven simulator, MICOSim, that was implemented in Java and overcomes

the limitations of the above simulators is described. In this simulator, threads were

not used because of their drawback which is platform dependency. Additionally,

this simulator was built from scratch.

Chapter 4. MICOSim: A simulator for modelling economic scheduling 75

4.3 MICOSim components

MICOSim’s basic components are TheSystem, Entity, Entitystrategy and Sce-

nario. TheSystem is the class that is responsible for handling the interaction

(communications) between different entities. Entity is the class that different en-

tities are created from. Also, each entity has an Entitystrategy that is an abstract

class that contains definitions of methods that their bodies are the same for all

strategies. It also contains abstract methods that are missing their bodies and

that are defined in the subclasses inherited from this class such as user, broker

and resource strategies. The definitions of those abstract methods in the sub-

classes rely on the specification of the created strategy. Scenario is the class that

indicates the specifications of the performed simulation.

4.3.1 TheSystem

TheSystem is responsible for the interactions occur between various entities. For

example, it informs the entities’ strategies to take actions according to their order

in its event list. Additionally, it forwards the messages between different entities

like informing the entity that won the award of executing the job. An event list is a

Vector class which contains the events that should happen through the simulation

ordered by the occurrence time. An event is represented by an object which

comprise the event’s occurrence time, the entity’s class and the entity’s number.

At the begining of the simulation, the list contains events that their relevant

actions are initiating negotiations for user jobs. When the simulation starts, the

system removes the first event from the list and executes the relevant action. Any

new events that occur as a result are inserted on the list at the appropriate point.

This continues until the event list becomes empty. If two ore more events have

the same occurrence time, then their relevant actions are executed sequentially.

Chapter 4. MICOSim: A simulator for modelling economic scheduling 76

4.3.2 Entity

Entity is an object that can send and receive both jobs and bids. However, the

sub-classes that are created from Entity class have some of the capabilities the

entity has. For example, users can only send jobs and receive bids, while resources

can do the opposite. On the other hand, brokers can send and receive both jobs

and bids, but can’t execute jobs as resources. Three classes of entities are created

from Entity: users, brokers and resources. All entities have common things such

as name which is unique, number which is used in communications to specify the

recipient of job or bid parameters and strategy which is the course of action to

achieve entity’s goal(s).

The next sections describe the parameters and methods that are specific to

each category of entities.

User

User is the entity that sends jobs and receives bids (see 3.2.2). The parameters

that are specific to a user are:

• Number of jobs: The number of jobs the user has.

• Job IDs: The IDs (numbers) of the jobs belong to the user.

• Job lengths: The length of jobs belong to the user in Million Instructions

(MI).

• Jobs’ classes: The class of each job belongs to the user. The class shows the

computer resources it requires when running.

• Job numbers of negotiations: How many negotiations occurred between the

user and the brokers for every job.

• The number of jobs that were executed.

• Job costs: The cost the user paid for executing each of its jobs.

• The number of brokers the user knows about.

Chapter 4. MICOSim: A simulator for modelling economic scheduling 77

• Historical performance of each broker: Each broker has an integer value

between min (very poor) and max (very good). Initially, each broker is given

a value between min and max. This value is used to determine with which

brokers the user keeps negotiating. This value is decreased or increased by

the strategy that is employed by the user based on the occurrence of specific

conditions.

Each user has also methods for informing the broker that the user accepted its bid,

updating the historical performance of the broker that submitted the job that has

just finished its execution, increasing the number of jobs that were executed when

a job of the user is completed, increasing the number of negotiations occurred

between the user and a broker and creating a new event for a new job if the

submission of jobs is dynamic (e.g. the submission time of each job is determined

based on the completion of the previous job).

Broker

The broker sends and receives jobs and bids (see 3.2.3). Every broker has a

number of parameters and methods that are used during the negotiations. The

broker parameters are:

• The job parameters (jobs which are owned by users who the broker acts on

behalf) mentioned above like IDs, lengths and classes in addition to the IDs

of the users sent them. The broker needs to keep information about the jobs

submitted to it, so it can pass them later to resources which the broker will

interact with.

• Jobs’ numbers of negotiations: How many negotiations occurred between

the broker and users, and between the broker and resources for every job

submitted to the broker.

• Cost per MI: The cost resulted from acting on behalf of a job owner measured

in MI.

Chapter 4. MICOSim: A simulator for modelling economic scheduling 78

• Cost per time unit: A continuous cost that results from maintaining the

broker’s requirements such as maintaining the broker’s software and keeping

the security up to date, and it is measured per time unit.

• Revenue: The entire amount of income before any deductions are made.

• Profit: The excess of income over expenses. The expenses are represented

by cost per MI and cost per time unit.

• The number of resources the broker knows about.

• Historical performance of each resource: The same as historical performance

in users, except it is for a resource and not for a broker.

The broker has four methods. The first method increases the number of nego-

tiations occurred between it and a resource. The second method informs the

resource that the broker accepted its bid. The third method updates the histor-

ical performance of the resource that didn’t meet its sent completion time for a

job. Finally, the fourth method increases the broker’s profit and revenue when its

bid is accepted by a user.

Resource

The resource (see 3.2.1) is an entity that receives jobs in order to execute them.

Moreover, it sends bids to brokers that submitted jobs to it . As users and brokers,

each resource has its parameters and methods. The resource parameters are:

• Number of processors: The number of processors the resource has.

• Number of free processors: The number of processors that are unallocated

to any job.

• Processors’ speeds measured in MIPS (Million Instruction per second).

• Next availabilities: The next availability for a processor is the time when the

processor will be available (free). In other words, it is the time when the job

Chapter 4. MICOSim: A simulator for modelling economic scheduling 79

currently executing on the processor in addition to the jobs that currently

in the execution queue if there are any will be completed.

• Total number of jobs that were executed on the resource.

• Total number of jobs that are waiting in the execution queue or currently

executing on the resource.

• Jobs’ numbers of negotiations: How many negotiations took place between

the resource and brokers for every job submitted to the resource.

• Cost per MI: The cost resulted from executing the job measured in MI.

• Cost per time unit: A continuous cost that results from maintaining the

resource’s requirements like sustaining its machines, software and security

and it is measured per time unit.

• Revenue: The same as revenue in brokers.

• Profit: The same as profit in brokers.

Each resource comprises the following methods that are called when the resource:

• receives a job to update its profit, revenue, number of free processors, the

availability of the processor allocated to the job and the number of jobs

waiting in the execution queue or currently executing. Additionally, an

object that contains information about the submission of the job is created.

For example, it contains information about when the job was submitted and

when it is going to be received by its owner.

• finishes executing a job for updating the number of executed jobs on the

resource and the numbers of jobs that are waiting in the execution queue or

currently executing.

4.3.3 Entitystrategy

As mentioned above, Entitystrategy contains definitions for the methods that

their bodies are the same for all inherited strategies, and misses definitions for the

Chapter 4. MICOSim: A simulator for modelling economic scheduling 80

abstract methods that their contents rely on the characteristics of the inherited

classes. Entitystrategy has two defined methods for copying:

• job parameters from the entity (user or broker) that employs it in order for

TheSystem to send them to a group of entities (broker(s) or resource(s)).

• bid parameters from the entity (broker or resource) that employs it in order

for TheSystem to send them to a group of entities (user(s) or broker(s)).

On the other hand, Entitystrategy has also four abstract methods. The first

method returns an object containing the parameters of the strategy (subclass) for

a particular job. The second method determines how the strategy behaves. The

third method is used for updating the availability of the processor allocated to a

job. Finally, the fourth method is used to calculate the expected time needed to

finish executing the job. The last two methods are only used by resource strategies.

There are three kinds of strategies that are user, broker and resource strategies.

The sections below describe the parameters of each kind of strategy.

User strategy parameters

Each strategy comprises a number of parameters such as current deadlines and

prices of jobs belong to the user who employs the strategy, to when the user wants

to wait for each job before making a decision and other parameters that are specific

to the strategy.

Broker strategy parameters

Each strategy controls a number of parameters that are:

• The broker’s (that employs the strategy) current prices, deadlines, and com-

pletion times for users’ jobs that acts on behalf of them.

• Expiry dates of broker’s sent bids.

• A parameter that specifies if the broker sent a new bid in the last negotiation

or not.

Chapter 4. MICOSim: A simulator for modelling economic scheduling 81

• Waiting time which determines until when the broker wants to wait before

making a decision.

• Other variables that are specific to the strategy.

Resource strategy parameters

The parameters that are included in each resource strategy are:

• The resource’s (that employs the strategy) current prices and completion

times for users’ jobs submitted by brokers to the resource which employs it.

• The job classes that are acceptable.

• A parameter that specifies if the resource sent a new bid in the last negoti-

ation or not.

• Expiry dates of resource’s sent bids.

• Other variables that are specific to the strategy.

4.3.4 Scenario

This class indicates the characteristics of the performed experiment involving:

• The kind of submission (e.g. static, dynamic).

• Number of users and number and lengths of jobs owned by each of them.

• Number of brokers.

• Number of resources and number and speeds of processors belong to each of

them.

• The strategies employed by different entities.

• Costs per MI and costs per time unit of brokers and resources.

• Strategies’ related parameters such as increment in price, initial price and

maximum acceptable price.

Chapter 4. MICOSim: A simulator for modelling economic scheduling 82

4.4 MICOSim components’ interaction

Figure 4.1 shows the interaction occurs between MICOSim’s components. First of

all, Scenario’s parameters are passed to TheSystem. Then, TheSystem checks the

first event in its eventlist to know which entity should start the negotiation first.

Next, that entity employs its strategy to know the course of action to be taken.

Then, the strategy adds a new event to the TheSystem event list that specifies

with what entities it wants to negotiate. Furthermore, the strategy copies the

needed parameters to the appropriate object and that will be used by the entities

that will respond to the negotiation. Then, TheSystem deletes the current event

and checks the next event to see what should happen next. This continues until

the eventlist is empty.

Strategy

Strategy

Strategy

Entity 1

Entity 2

Entity n

TheSystem

Scenario

Figure 4.1: Interaction between MICOSim’s components.

Figure 4.2 shows the negotiation occurs between a user and a broker. First, the

user employs its strategy and then copies the required parameters for negotiation

to a job description. Then, the job description is passed to TheSystem which in

Chapter 4. MICOSim: A simulator for modelling economic scheduling 83

turn forwards it to the appropriate broker when its time to take an action comes.

When the broker employs its strategy, it copies the required parameters to a bid

description which is passed to the TheSystem. Eventually, the TheSystem sends

the bid description to the user when its time to take an action is reached.

User

Job description Job description

Bid description Bid description

BrokerTheSystem

Figure 4.2: Negotiation between a user and a broker.

On the other hand, figure 4.3 shows the negotiation happens between a broker

and a resource. What happens is similar to what mentioned above for figure 4.2

except that the broker passes a job description to the TheSystem, and the resource

passes a bid description to the TheSystem.

Job description Job description

Bid description Bid description

TheSystemBroker Resource

Figure 4.3: Negotiation between a broker and a resource.

4.5 Chapter summary

In this chapter, a simulator called MICOSim, for modelling economic scheduling in

Grid computing using tender model has been described. It has the ability to sim-

ulate Grid entities under different scenarios. The users can have different number

of jobs with different lengths measured by MI, while resources can have different

number of processors with different speeds measured by MIPS. Additionally, the

users can employ various strategies with different parameters such as prices and

deadlines as well as resources that can employ various strategies with different

parameters like prices and completion times. MICOSim also simulates brokers

with different interests for acting on behalf of users.

This chapter has also presented the MICOSim’s components including the

required parameters and methods for each of them. Finally, the interaction occurs

Chapter 4. MICOSim: A simulator for modelling economic scheduling 84

between various components of MICOSim has been introduced.

This object-oriented simulator can be easily extended to support more models

such as commodity and auction models. This can be achieved by modifying some

of the classes which compose the simulator.

Chapter 5

Results and discussion

5.1 Introduction

In chapters 3 and 4, a Grid computing framework was presented and a simulator

that models this framework described. In this chapter, the simulator is used to

evaluate the performance of the entity strategies introduced in chapter 3 with

static and dynamic submission of jobs.

This chapter is structured as follows: Section 5.2 describes the metrics for

measuring the strategies’ performance. Section 5.3 explains how the simulation

is configured. Section 5.4 introduces a binary insert algorithm for improving the

simulation performance. Section 5.5 demonstrates that our simulation is verified

by showing a consistency between the simulation output and hand calculations.

Section 5.6 discusses the simulation results. Finally, a summary is given in sec-

tion 5.7.

5.2 Comparison metrics

In the current work, there are n users U1, U2, · · · , Un , m brokers B1, B2, · · · , Bm

and w resources R1, R2, · · · , Rw . Each user i has xi jobs Ji1, Ji2, · · · , Jixi and

85

Chapter 5. Results and discussion 86

each resource j has yj processors Pj1, Pj2, · · · , Pjyj
.

In order to determine the best performing strategies a suitable set of metrics

need to be defined. These metrics are influenced by the individual targets of each

class of entity. For example, a user needs to have jobs executed within a particular

time and for a particular cost; resources aim to make the most profit; etc.

Table 5.1 shows the metrics used to measure the performance of users, brokers

and resources.

Table 5.1: Metrics of users, brokers and resources.

User metrics

M1 = n
tn

× C1 n = Number of jobs that were executed and owned by the
user, tn = total number of jobs owned by the user and
C1 is a constant.

M2 =
Pn

i=1
Ci

Pn
i=1

Li
× C2 n = number of jobs that were executed and owned by the

user, Ci = Cost of executing jobi , Li = Length of jobi in
MI and C2 is a constant.

M3 =
Pn

i=1
IDi−CTi

n
× C3 n = Number of jobs that were executed and owned by the

user, IDi = Initial deadline of jobi , CTi = Completion
time of jobi and C3 is a constant.

Broker metric

Mb =
∑m

i=1(Di − Cai) − Cmb m = number of jobs that were submitted by the broker
and executed on a resource, Di = Difference between the
prices of jobi owner and the resource that executed the
job, Cai = Cost arisen from acting on behalf of the user
who owns jobi and Cmb is the cost of maintaining the
broker entity during the time passed.

Resource metric

Mr =
∑m

i=1(Pi − Cei) − Cmr m = number of jobs that were executed on the resource,
Pi = Price of executing jobi on the resource, Cei = Cost
of executing jobi on the resource and Cmr is the cost of
maintaining the resource entity during the time passed.

The performance of three classes of entities is compared. For users, we use

three metrics for measuring their performance: the job success rate (M1), the

average cost per MI (Million Instructions) (M2) and average satisfaction rate per

job (M3). The first and the third metrics need to be maximised, while the second

metric needs to be minimised. The first metric indicates the number of jobs

Chapter 5. Results and discussion 87

executed from the overall number of jobs. The second relates to the cost and

therefore profit. The cost per MI is used rather than total cost so as the metric

value is independent of job size. The final relates to whether jobs are executed

within the deadline. Each metric is used separately to identify the best performing

users and their strategies.

For brokers and resources, one metric is used for measuring their performance:

the overall profit generated by a broker (Mb) or a resource (Mr). The need for

this metric arises from the fact that this is an economic scheduling, and money is

the main factor for evaluating the performance.

5.3 Simulation setup

The performance of the entity strategies is evaluated under different scenarios

which result from varying parameter values. Four parameters are varied for user

strategies, one for broker strategies and two for resource strategies.

The user strategy parameters that are varied:

• Initial price determinator (IPD): This determines the initial price, which

depends on the maximum acceptable price. For example, if the parameter

equals 0.6, then the initial price is equal to 0.6 or 60% of the maximum

acceptable price of the same user.

IP = IPD × MAP (5.1)

MAP = MAPPMI × JL (5.2)

Where IP is the initial price,

IPD is the initial price determinator,

MAP is the maximum acceptable price,

MAPPMI is the maximum acceptable price per million instructions (MI)

and it is equal to 0.01 and

JL is the job length in MI.

Chapter 5. Results and discussion 88

The MAPPMI is small (0.01), which restricts the size of MAP . The value of

MAPPMI won’t affect the evaluation of performance, because it is the same

for all users in order to reduce the comparison complexity. However, the users

within the simulation environment have different initial prices and increment

of prices which are computed based on the initial price and increment in price

determinators, respectively.

• Increment in price determinator (IIPD): This parameter determines the

increment to the current price (which equals the initial price in the first

round) in every round of negotiation depending on the maximum acceptable

price. For example, if this parameter equals 0.1, the increment to the current

price equals 0.1 or 10% of the maximum acceptable price of the same user.

IIP = IIPD × MAP (5.3)

Where IIP is the increment to the current price in every round of negotiation,

IIPD is the increment in price determinator and

MAP is the maximum acceptable price.

• Initial deadline determinator (IDD): This determines the initial deadline

depending on the maximum acceptable completion time. For example, if

this parameter equals 0.5, then the difference between the initial deadline

and current time equals 0.5 or 50% of the difference between maximum

acceptable completion time of the same user and current time.

ID − CT = IDD × (MACT − CT) (5.4)

MACT = CT + (MACTD ×
JL

RMIPS
) (5.5)

Where ID is the initial deadline,

CT is the current time,

Chapter 5. Results and discussion 89

IDD is the initial deadline determinator,

MACT is the maximum acceptable completion time,

MACTD is the maximum acceptable completion time determinator and it

equals 2,

JL is the job length and

RMIPS is the average speed of processors in MIPS (Million instructions per

second) and it equals 300.

By setting MACTD to 2, the jobs will have reasonable MACT (neither tight

nor relaxed).

• Increment in deadline determinator (IIDD): This parameter determines the

increment to the current deadline (which equals the initial deadline in the

first round) in every round of negotiation depending on the maximum ac-

ceptable completion time as in equation 5.6.

IID = IIDD × (MACT − CT) + (CT − TPR) (5.6)

Where IID is the increment in deadline,

CT is the current time,

TPR is the time when the MACT was computed in the previous round,

IIDD is the increment in deadline determinator and

MACT is the maximum acceptable completion time.

The MACT (which is computed when time equals CT) in round n + 1 is

going to equal the MACT (which is computed when time equals TPR) in

round n plus the difference between the two times, which is (CT − TPR).

Thus, the time difference (CT − TPR) also needs to be considered when

computing IID .

However, if the strategy doesn’t consider the completion time as a threshold to

determine if to accept a bid or not, the initial deadline and increment in deadline

are computed based on a parameter called maximum deadline to send (MDTS).

Chapter 5. Results and discussion 90

Maximum deadline to send determinator (MDTSD) is used in computing MDTS

instead of maximum acceptable completion time determinator MACTD . MDSTD

and MACTD are equivalent. In this case, initial deadline (ID), increment in

deadline (IID) and maximum deadline to send (MDTS) are computed as in equa-

tions 5.7, 5.8 and 5.9.

ID − CT = IDD × (MDTS − CT) (5.7)

IID = IIDD × (MDTS − CT) + (CT − TPR) (5.8)

MDTS = CT + (MDTSD ×
JL

RMIPS
) (5.9)

On the other hand, if the price is not considered by the strategy as a threshold

to determine if to accept a bid or not, the initial price and increment in price are

computed based on a parameter called maximum price to send (MPTS). Maxi-

mum price to send per MI (MPTSPMI) is used in computing MPTS instead of

MAPPMI . MPTSPMI and MAPPMI are equivalent. In this case, initial price

(IP), increment in price (IIP) and maximum price to send (MPTS) are computed

as in equations 5.10, 5.11 and 5.12.

IP = IPD × MPTS (5.10)

IIP = IIPD × MPTS (5.11)

MPTS = MPTSPMI × JL (5.12)

Revenue determinator (RD) is the parameter that is varied for broker strategies

and it determines how much from the user price the broker wants to get as revenue.

For example, if the parameter equals 0.2 and the user price is 10, the broker sends

Chapter 5. Results and discussion 91

to resources a request with price equals to 8 ((1 - 0.2) × 10). So, if one of the

resources accepts the request, the broker keeps 2 (10 - 8) which is the difference

between the user and resource prices.

BR = RD × UP (5.13)

PSTR = (1 − RD) × UP (5.14)

Where BR is the broker revenue,

RD is the revenue determinator,

UP is the user price and

PSTR is the price sent from broker to resources.

Finally, the two parameters that are varied for resource strategies are:

• Resource minimum acceptable price per MI (RMAPPMI): This must be

less than or equal to user maximum acceptable price per MI. Otherwise, the

negotiations won’t be successful.

RMAPPMI ≤ UMAPPMI (5.15)

RMAP = RMAPPMI × JL (5.16)

Where RMAPPMI is the resource minimum acceptable price per MI,

UMAPPMI is the user maximum acceptable price per MI,

RMAP is the the resource minimum acceptable price and

JL is the job length in MI.

• Minimum acceptable deadline determinator (MADD): The higher this pa-

rameter’s value is the higher minimum acceptable deadline. Minimum ac-

Chapter 5. Results and discussion 92

ceptable deadline is computed as shown in equation 5.17.

MAD = EPCT + MADD × (EPCT − CT) (5.17)

EPCT = TPF +
JL

MIPS
+ TIO + TTRB (5.18)

Where MAD is the minimum acceptable deadline,

EPCT is the earliest possible completion time for the job,

MADD is the minimum acceptable deadline determinator,

CT is the current time,

TPF is the time when the processor with the earliest availability is going to

be free,

JL is the job length,

MIPS is the processor’s speed in MIPS,

TIO is the time needed for input and output and

TTRB is the time needed for the resource bid to reach the broker.

For the strategy that is under consideration, one of the parameters is varied while

the other parameters are kept fixed. Table 5.2 shows the fixed parameters and

the values they take. There is no fixed parameters for broker strategies, because

there is only one varied parameter. Furthermore, every strategy’s performance

is measured in a Grid environment where there is a large number of competing

entities. In the simulated environment, there are 108 users, 10 brokers and 27

resources in addition to the entity running the strategy that is under consideration.

In simulations, the number of jobs should be much larger than the number of

available processors. Moreover, the number of brokers should be relatively small

in order to reduce the number of communications (negotiations). Because of the

existence of 3 user strategies, Every one third of users (36 users) employs the

same strategy. Similiarily, every one third of resources (9 resources) has the same

strategy, and every half of brokers (5 brokers) has the same strategy (3 resource

Chapter 5. Results and discussion 93

strategies and 2 broker strategies). However, entities which employ the same

strategy have different sets of parameters.

Table 5.2: Fixed parameter values.

User strategies’ parameters

Initial price determinator 0.6
Increment in price determinator 0.1
Initial deadline determinator 0.6
Increment in deadline determinator 0.1

Resource strategies’ parameters

Minimum acceptable price per MI 0.007
Minimum acceptable deadline determinator 0.6

In every simulation, the parameters of other entity strategies that are within

the simulated Grid environment are predetermined in such a way that covers the

possible expectations. For example, low, medium and high (e.g. initial price) or

low and high (e.g. increment in price) and which depends on the varied parameter

and the range of values it takes. Table 5.3 shows the sets of values the paramters

take. Each entity strategy takes one of the possible combinations.

Table 5.3: Sets of values the parameters take

User strategies’ parameters

Initial price determinator {0.2, 0.5, 0.8}
Increment in price determinator {0.1, 0.3}
Initial deadline determinator {0.2, 0.5, 0.8}
Increment in deadline determinator {0.1, 0.3}

Broker strategies’ parameters

Revenue determinator {0.1, 0.3, 0.5, 0.7, 0.9}

Resource strategies’ parameters

Minimum acceptable price per MI {0.002, 0.005, 0.008}
Minimum acceptable deadline determinator {0.2, 0.5, 0.8}

In all scenarios, each user has 10 jobs. Two kinds of submission are considered

in this work: static and dynamic. In static submission, the inter-arrival times of

users’ jobs follow negative exponential distribution with mean of 15. The differ-

ences between the inter-arrival times are small to represent the situation where the

Chapter 5. Results and discussion 94

system load is high. Negative exponential distribution is often used for modelling

the inter-arrival times of events [58]. In dynamic submission, the submission time

of each job is determined based on the completion of the previous job. Thus, the

user submits its first job and waits until it receives the results of executing its job

or until it fails to find a suitable resource for executing its job. Then, the next

job is submitted. This continues until all of its jobs are submitted. The dynamic

submission scenario represents the situation where the system load is low, because

the user has to wait until its current job finishes its execution and then submits

the next job. The submission time of the first job of every user is computed in the

same way as in static submission, because no job is submitted before it. On the

other hand, the jobs’ lengths follow Pareto distribution with shape of 5 and scale

of 100000. These values of shape and scale give a reasonable range of job lengths.

The Pareto distribution is appropriate for modelling the lengths of supercomputer

jobs (a few large ones, many small ones) [36]. The sort of jobs that are to be

executed in Grid computing are similar to supercomputer jobs. The selection of

values for shape and scale generates job lengths in range between 100000 MI and

600000 MI, and which seems to be reasonable range of values for job lengths.

Each user maintains a historical performance for each broker that takes an

integer value between 1 and 10 (very poor to very good respectively) and that is:

• increased 1 (if it is less than 10) when a broker replies to the user request

within the waiting time. Waiting time determines until when the user wants

to wait before making a decision.

• increased 1 if 30 time units pass from the last change in historical perfor-

mance of a broker and its historical performance is less than 4.

• decreased 1 (if it is greater than 1) when a broker doesn’t respond to a job

request 3 successive times or if it doesn’t meet the job deadline.

If the historical performance goes below 4, the user won’t send a request again to

that broker until its historical performance reaches 4 again. 4 was selected because

Chapter 5. Results and discussion 95

it seems a reasonable value (around the middle of the range of values the historical

performance can take).

During the negotiations, each user increments its price and deadline (after the

first round of negotiation) based on the increment in price and deadline determi-

nators, respectively. The user keeps negotiating until:

• finding a suitable resource for executing its job.

• reaching the maximum number of rounds it wants to initiate without find-

ing a suitable resource for executing its job. Pseudocode 9 shows how the

maximum number of rounds (MNOR) is computed for different user strate-

gies. For Price and Completion time strategies, the MNOR is indicated by

the number of rounds needed for the IPD (see equation 5.1) and IDD (see

equation 5.4), respectively to reach 1 which are computed by ⌈1−IPD
IIPD

⌉ and

⌈1−IDD
IIDD

⌉. One is added to the previous equations because initial price and

deadline are going to be sent without being incremented in the first round

of negotiation. Ceiling is used because in the last round the current price

or deadline sometimes exceeds its limit after it is fully incremented based

on the increment determinator. The limit is maximum acceptable price for

current price and maximum acceptable completion time for current deadline.

In such a case, the current price or completion time will be partially incre-

mented, so it equals its limit instead of exceeding it. Because of this, the

maximum number of rounds is going to be none integer number if ceiling is

not used. For example, suppose the user employs Price strategy and initial

price is 0.6, increment in price is 0.3 and maximum acceptable price is 10.

In the first round, the price is going to be 6 (0.6 × 10). In the second round,

the current price is going to be 9 ((0.6 + 0.3) × 10). In the last round, the

price is going to be 12 ((0.9 + 0.3) × 10). However, it can be seen that

the price exceeded the maximum acceptable price (12 > 10), so the price is

going to be 10 instead of 12. The MNOR is computed as follows:

MNOR = ⌈1−IPD
IIPD

⌉ + 1 = ⌈1−0.6
0.3

⌉ + 1 = 3

Chapter 5. Results and discussion 96

For Price-Completion time strategy, the MNOR is determined by comput-

ing the number of rounds until both price and deadline reach maximum

acceptable price and completion time, respectively. For instance, if the price

needs 3 rounds to reach maximum acceptable price and deadline needs 4

rounds to reach maximum acceptable completion time, the MNOR is going

to be 4 (max (3, 4)).

Pseudocode 9: How to calculate the maximum number of rounds the user

wants to initiate.

if the user employs Price strategy then

MNOR = ⌈1−IPD
IIPD

⌉ + 1;

end

if the user employs Completion time strategy then

MNOR = ⌈1−IDD
IIDD

⌉ + 1;

end

if the user employs Price-Completion time strategy then

MNOR = max (⌈1−IPD
IIPD

⌉ + 1, ⌈1−IDD
IIDD

⌉ + 1);

end

Where MNOR is the maximum number of rounds the user wants to initiate,

IPD is the initial price determinator, IIPD is the increment in price

determinator, IDD is the initial deadline determinator and IIDD is the

increment in deadline determinator.

In the performed simulations, each processor’s speed is 300 MIPS and each resource

has 5 processors. Additionally, every resource only accepts the sent broker price

and deadline, if it decides to reply. In other words, it doesn’t send price and

completion time different to sent broker’s price and deadline, respectively. This

represents the expected behaviour of resources in the real world. However, since

the first resource strategy doesn’t use the deadline threshold to decide if to reply

or not, it does a check (see figure 5.1) to determine what its bid completion time

is going to be, should it decides to reply.

Where tempstpar.completion_time is the earliest possible completion time for

the job, jd.deadline is the deadline of the requester (broker), TheSystem.simtime

Chapter 5. Results and discussion 97

1 if(jd.deadline < (tempstpar.completion_time +
2 (0.3 * (tempstpar.completion_time - TheSystem.simtime)

)))
3 {
4 tempstpar.negcomp = tempstpar.completion_time +
5 (0.3 * (tempstpar.completion_time - TheSystem.simtime)

);
6 }//if end
7 else
8 {
9 tempstpar.negcomp = jd.deadline;

10 }//else end

Figure 5.1: The Java code for determining the sent completion time of resource
price strategy

is the simulation time and tempstpar.negcomp is the completion time the resource

is going to send to the requester.

The above check is important to overcome the problem of sending a completion

time that is equivalent to the requester’s deadline but can’t be met by the resource.

This is especially true when the resource is congested. So, if the requester deadline

can be met, the resource sends a completion time equivalent to it. Otherwise, the

resource sends a completion time which can be satisfied.

In the performed simulations, resources accept all job classes. The measure-

ment of the performance of different strategies won’t be accurate, if various re-

sources only accept to execute some classes of jobs. The reason is that the per-

formance might partially result from considering requests with specific job classes

and not only because of the employed strategy. Because the resources won’t ne-

gotiate forever for each job request, it is assumed that the maximum number of

rounds to which the resource can respond for every request is five. Finally, the

cost per MI and cost per time unit which are deducted from the resource revenue

are equal to 0.002 and 1.0, respectively. The costs per MI and time unit are small,

which restricts the total costs deducted from the overall revenue received from

executing jobs especially that the jobs executed on the Grid resources are usually

long. Long jobs need large number of MIs and take a long time (large number of

time units) to execute.

When a broker receives a job request from a user, it negotiates as follows: First,

Chapter 5. Results and discussion 98

it sends offers to a group of resources and waits for replies from them. Then, it

processes the replies (bids) and sends a bid to the user based on the received

bids from resources. The employed strategy determines how the broker selects a

resource bid. If there is no reply from any of the resources or none of the replies

is interesting, it doesn’t send a bid.

Since the main concern of brokers is to make profit, they forward the sent user

deadline to resources as it is and just send a new price for executing the job and

which should be less than the sent user price in order to keep some money for

themselves. As resources, the cost per MI and cost per time unit are deducted

from the broker revenue and they equal to 0.0005 and 0.25, respectively. As with

resources, the costs per MI and time unit are small, which restricts the total costs

deducted from the overall revenue received from acting on behalf of users. The

costs for resources are higher than the costs for brokers, because the expenses that

are paid for maintaining resources are higher than the expenses arisen from acting

on behalf of users as in brokering.

As with users, brokers maintain historical performance, but for resources. The

historical performance is updated in the same way as users’ historical performance.

The existence of historical performance arises from the need of reducing the num-

ber of negotiations occur between various entities. By reducing the number of

negotiations, both overhead and bandwidth consumption are also reduced.

Each user or broker makes a decision when the number of received bids equals

to the number of sent requests or when the waiting time is reached. The waiting

time equals the current time plus 10 time units for every user, while it equals the

current time plus 5 time units for every broker. The time needed for a request or

bid to reach another entity is one time unit. The computation of the waiting time

should take into account the time expected until the other entities reply to the

request. It can be seen that more time units are added to the current time when

computing the waiting time for users than the time units added when computing

the waiting time for brokers. This is because when a user sends a request to

a broker, the broker contacts a group of resources before replying to the user

Chapter 5. Results and discussion 99

request. On the other hand, when a broker sends a request to a resource, the

resource can respond directly and therefore it is expected to take shorter time to

reply. At the beginning of the performed simulation, users and brokers send their

requests to all brokers and resources, respectively. Then, the users and brokers

send their requests only to brokers and resources, respectively that have good

historical performance.

If a job is accepted for execution on a resource, it is allocated to the processor

with the earliest availability and the new availability is computed as follows:

NA = TPF +
JL

PS
+ TIO (5.19)

Where NA is the new availability, TPF is the time when the processor with the

earliest availability is going to be free, JL is the job length, PS is the processor’s

speed measured in MIPS and TIO is the time needed for input and output.

5.4 Enhancing simulation speed

In the early version of the event-driven simulator, the events which are ordered by

occurrence time were added to the event list (object of Java class Vector) using

the Java interface Comparator which is:

“A comparison function, which imposes a total ordering on some collection of

objects” [85].

However, the running time of each scenario was so long and it was taking

at least hours to finish. By using the profile option, it was discovered that the

most time consuming method was the method for adding events to the event list.

In order to improve the running speed, a binary insert algorithm is employed to

reduce the time needed to add an event. Binary insert is a modified version of well

known binary search. After the improvement, the running time of each scenario

was reduced to only couple of minutes. Pseudocode 10 shows how the binary

insert works.

The method works as follows: First, it checks if the event list is empty (line

Chapter 5. Results and discussion 100

4). If it is, it just adds the event to the event list (line 5). Otherwise, it starts

searching (using the same technique of binary search) for an event in the list that

has the same occurrence time (lines 7 to 17). If there is such event, it inserts

the new event directly after the found event (middle + 1), and shifts the event

currently at that position and any subsequent events to the right (line 12). If

there is no such event, the event where the binary insert has stopped should have

the closest (or second closest) occurrence time to the occurrence time of the new

event. In this case, the method compares the occurrence time of the new event to

the occurrence time of the event where the method has stopped (lines 19 to 23).

If the occurrence time of the new event is less (line 19), it inserts it at the position

of that event (middle), and shifts the event currently at that position and any

subsequent events to the right (line 20). If the occurrence time of the new event is

higher (line 21), it inserts it directly after that event (middle + 1) and shifts the

event currently at that position and any subsequent events to the right (line 22).

Chapter 5. Results and discussion 101

Pseudocode 10: Binary insert.

low = 1;1

high = eventlist .size();2

added = false;3

if eventlist is empty then4

eventlist .add(1, eventtoadd);5

added = true;6

else7

while low ≤ high and added = false do8

middle = low + high
2

;9

event = eventlist .get(middle);10

if newevent.time = event.time then11

eventlist .add(middle + 1, newevent);12

added = true;13

else if newevent.time < event.time then high = middle − 1;14

else low = middle + 1;15

end16

end17

if added = false then18

if newevent.time < event.time then19

eventlist .add(middle, newevent);20

else if newevent.time > event.time then21

eventlist .add(middle+1, newevent);22

end23

end24

5.5 Simulation verification

In this section, the simulator is verified by showing that the obtained output

which is shown in appendices A to D matches with the results obtained by hand

Chapter 5. Results and discussion 102

calculations. For comparison purposes, each line in the appendix is given a number

for reference. Four scenarios are considered to cover various designed strategies.

5.5.1 First verification scenario

In the simulated scenario (see appendix A for output), there are three users (U1,

U2 and U3) , one broker (B1) and one resource (R1). U1, U2 and U3 employ

Price, Completion time and Price-Completion time strategies, respectively. B1

employs User-Resource price difference strategy, while R1 employs Price strat-

egy. Furthermore, the parameters are set as follows: For users, both initial price

and deadline determinators equal 0.6, while both increment in price and deadline

determinators equal 0.1. Additionally, both maximum acceptable price per MI

and maximum price to send per MI equal 0.01 and both maximum acceptable

completion time and maximum deadline to send determinators equal two. The

revenue determinator equals 0.2 for B1, whilst the minimum acceptable price per

MI equals 0.006 for R1. The cost per MI and cost per time unit which are deducted

from the resource revenue are equal to 0.002 and one, respectively. On the other

hand, the cost per MI and cost per time unit which are deducted from the broker

revenue are equal to 0.0005 and 0.25, respectively.

Each user has two jobs (Ji1 and Ji2) with lengths equal 60000 MI each, while

the resource has three processors (P11, P12 and P13) with speeds equal 300 MIPS

each. The jobs belong to U1 arrive at times 3 and 23. The jobs belong by U2

arrive at times 103 and 123. Finally, jobs of U3 arrive at times 203 and 223.

The waiting time for every user equals the current time plus 10 time units,

while it equals the current time plus 5 time units for every broker. Furthermore,

each entity needs at least one time unit to respond (time for a request or bid to

reach an entity).

In the appendices, the names of the users are User 0, User 1 and User 2

and the names of the jobs belong to each of the users are Job 0 and Job 1.

Furthermore, the name of the broker is Broker 0 and the name of the resource is

Resource 0.

Chapter 5. Results and discussion 103

In order for a user request to be accepted by the resource, the sent broker price

to the resource must be greater than or equal to the resource minimum acceptable

price. This is because the resource employs price strategy. The resource minimum

acceptable price is computed as in equation 5.16:

RMAP = RMAPPMI × JL = 0.006 × 60000 = 360

Since the user maximum acceptable price per MI is set to 0.01, the user max-

imum acceptable price is computed as in equation 5.2:

MAP = MAPPMI × JL = 0.01 × 60000 = 600

The initial price in the first round of negotiation is equal to 360 which is

computed as in equation 5.1:

IP = IPD × MAP = 0.6 × 600 = 360

And the sent price from the broker to the resource is equal to 288 which is

computed as in equation 5.14:

PSTR = (1 − RD) × UP = (1 − 0.2) × 360 = 288 < RMAP

The increment in price is equal to 60 which is computed as in equation 5.3:

IIP = IIPD × MAP = 0.1 × 600 = 60

So, the user price in the second round is equal to 420.

And the sent price from the broker to the resource is equal to 336.

PSTR = 0.8 × 420 = 336 < RMAP

The user price in the third round is equal to 480.

And the sent price from the broker to the resource is equal to 384.

PSTR = 0.8 × 480 = 384 ≥ RMAP

It can be seen in line 4 that the submission time of J11 equals to 27. It can be

seen above that each user needs three rounds in order to make an agreement for

each of its jobs. The user starts the negotiation at time (t) = 3 (start of the first

round). The broker takes an action after 1 time unit (t=4). Then, the resource

takes an action at t=5 and decides not to reply. Next, the broker waits until its

waiting time is reached, because it hasn’t received a bid from the resource (t=9)

and decides not to reply as well. Then, the user waits until the waiting time is

reached too, because of the same reason (t=13) and then takes its action (start

Chapter 5. Results and discussion 104

of the second round). This is followed by an action by the broker at t=14. Then,

the resource takes an action at t=15 and decides not to reply in this round too.

Again, the broker waits until its waiting time is reached (t=19). Next, the user

waits until its waiting time is reached at t = 23 and takes his action (start of the

third round). Then, the broker takes an action at t = 24. Next, the resource

decides to reply at t = 25 because its price threshold is met. The broker takes an

action at t = 26 because it received an interesting bid this time and sends a bid

to the user. The user accepts the broker’s bid at t = 27. So, the time spent in

negotiation equals to 24 (27-3). This occurrence of events is the same for other

jobs except that the starting time is different.

So it can be concluded that the submission time of each job is computed as

follows:

ST = STON + 24

Where ST is the submission time and STON is the start time of the negotia-

tion.

So, the submission times of users’ jobs:

J11 = 3 + 24 = 27

J12 = 23 + 24 = 47

J21 = 103 + 24 = 127

J22 = 123 + 24 = 147

J31 = 203 + 24 = 227

J32 = 223 + 24 = 247

These match the output of simulation in lines 4, 13, 22, 31, 40 and 49.

Please note that for J22 and J32, the resource sends completion times greater

than their deadlines. But, the completion times are less than or equal to the

users’ maximum acceptable completion times. This has no effect in this scenario,

but this has an effect in the scenario in the next section when the broker employs

User-Resource price difference-Deadline met strategy. This is because the broker

won’t send a bid to the user, if the received resource completion time is greater

Chapter 5. Results and discussion 105

than the user’s deadline. So, the user has to increase its deadline and go through

another round of negotiation in order for the resource completion time to be less

than or equal to its deadline.

So, the resource sends a bid after the third round to the broker, and which in

turn sends a bid to the user. Finally, the user accepts the broker’s bid.

After an agreement is made:

• the user is charged 480 as in lines 3, 12, 21, 30, 39 and 48.

• the broker gets 96 as revenue, but the profit after executing the job is equal

to 66.

Profit = BR − (CPMI × JL) = 96 − (0.0005 × 60000) = 66

This matches the output of simulation in line 6. For the next jobs, the profit

is increased by 66 as in lines 15, 24, 33, 42 and 51.

• the resource gets 384 as revenue, but the profit is equal to 264. For the next

jobs, the profit is increased by 264 as in lines 17, 26, 35, 44 and 53.

Profit = RR − (CPMI × JL) = 384 − (0.002 × 60000) = 264

This matches the output of simulation in line 8.

So, the overall profit generated by the broker before cost per time unit (CPTU)

is deducted is computed as follows:

Profit = (PGSJ × NOJSB) = 66 × 6 = 396

Where PGSJ is the profit generated from submitting the job and NOJSB is

the number of jobs submitted by the broker.

This matches the output of simulation in line 51.

While the overall profit generated after cost per time unit (CPTU) is deducted

is computed as follows (see table 5.1):

Profit = (PGSJ × NOJSB) − (CPTU ∗ TAES) = (66 × 6) − (0.25 × 529)

= 263.75

Where TAES is the time at the end of the simulation.

This matches the output of simulation in line 56.

Chapter 5. Results and discussion 106

On the other hand, the overall profit generated by the resource before cost per

time unit (CPTU) is deducted is computed as follows:

Profit = (PGEJ × NOJER) = 284 × 6 = 1584

Where PGEJ is the profit generated from executing the job and NOJER is

the number of jobs executed on the resource.

While the overall profit generated after CPTU is deducted is computed as

follows (see table 5.1):

This matches the output of simulation in line 53.

Profit = (PGEJ ×NOJER)− (CPTU ∗TAES) = (284×6)− (1×529) = 1055

This matches the output of simulation in line 58.

Because each user has 2 jobs, the overall cost paid by each user equals to 960.

This match the output of simulation in lines 72 to 74.

The first user metric (job success rate) is computed as follows (see table 5.1):

JSR = n
tn

× C1 = 2
2
× 10 = 10

Where JSR is the job success rate.

This matches the output of simulation in lines 88 to 90.

The second user metric (average cost per MI) is computed as follows (see

table 5.1):

ACPMI =
Pn

i=1
Ci

Pn
i=1

Li
× C2 = 480+480

60000+60000
× 1000 = 8

Where ACPMI is the average cost per MI.

This matches the output of simulation in lines 92 to 94.

Finally, the average satisfaction rate per job (third user metric) is different for

different users. This is obviously because of the execution of their jobs at different

times. In order to compute this metric, the initial deadlines and real completion

times must be computed first.

In order to compute the initial deadlines, maximum deadlines to send for jobs

belong to U1 and maximum acceptable completion times for other users must be

computed first as in equations 5.9 and 5.5:

Chapter 5. Results and discussion 107

J11 = CT + (MDTSD × JL
RMIPS

) = 3 + (2 × 60000
300

) = 403

J12 = 23 + (2 × 60000
300

) = 423

J21 = CT + (MACTD × JL
RMIPS

) = 103 + (2 × 60000
300

) = 503

J22 = 123 + (2 × 60000
300

) = 523

J31 = 203 + (2 × 60000
300

) = 603

J32 = 223 + (2 × 60000
300

) = 623

The initial deadlines of the jobs belong to U1 are computed as in equation 5.7,

while the initial deadlines of other jobs are computed as in equation 5.4:

J11 = IDD × (MDTS − CT) + CT = 0.6 × (403 − 3) + 3 = 243

J12 = 0.6 × (423 − 23) + 23 = 263

J21 = IDD × (MACT − CT) + CT = 0.6 × (503 − 103) + 103 = 343

J22 = 0.6 × (523 − 123) + 123 = 363

J31 = 0.6 × (603 − 203) + 203 = 443

J32 = 0.6 × (623 − 223) + 223 = 463

The real completion times of the jobs are computed as in equation 5.19:

J11 = TPF + JL
PS

+ TIO = 27 + 60000
300

+ 1 = 228

J12 = 47 + 60000
300

+ 1 = 248

J21 = 127 + 60000
300

+ 1 = 328

J22 = 228 + 60000
300

+ 1 = 429

J31 = 248 + 60000
300

+ 1 = 449

J32 = 328 + 60000
300

+ 1 = 529

Now, the metrics are computed as follows (see table 5.1):

ASRPJ − U1 =
Pn

i=1
IDi−CTi

n
× C3 = (243−228)+(263−248)

2
× 1 = 15

ASRPJ − U2 = (343−328)+(363−429)
2

× 1 = −25.5

ASRPJ − U3 = (443−449)+(463−529)
2

× 1 = −36

Chapter 5. Results and discussion 108

Where ASRPJ is the average satisfaction rate per job.

These match the output of simulation in lines 96 to 98.

Figure 5.2 shows the assignment of jobs to processors in this scenario.

Free

Free

Free

12

J 11 22J

J

21J

31J

32J

13P

12P

11P

Figure 5.2: Assignment of jobs to processors in the first verification scenario.

5.5.2 Second verification scenario

This scenario (see appendix B for output) is the same as the first scenario except

the broker employs User-Resource price difference-Deadline met strategy instead

of User-Resource price difference strategy. The change of broker strategy has an

effect on profits generated by the broker and resource from executing J22 and J32

and therefore the overall profits generated by the broker and the resource. This

has also an effect on the price paid for those two jobs and therefore on average

cost per MI of those users.

For J22, the maximum acceptable completion time in the first round is com-

puted as in equation 5.5:

MACT = CT + (MACTD × JL
RMIPS

) = 123 + (2 × 60000
300

) = 523

The initial deadline is computed as in equation 5.4:

ID = IDD × (MACT − CT) + CT = 0.6 × (523 − 123) + 123 = 363

The maximum acceptable completion time in the second round is computed

as follows:

Chapter 5. Results and discussion 109

MACT = 133 + (2 × 60000
300

) = 533

The increment in deadline is computed as in equation 5.6:

IID = IIDD × (MACT −CT)+(CT −TPR) = 0.1× (533−133)+(133−123)

= 50

Since the time between any two successive rounds is the same (ten time units),

the increment in deadline is the same in all rounds.

Thus, the deadline in the third deadline is computed as follows:

Deadline = ID + (2 × IID) = 363 + (2 × 50) = 463

The earliest possible completion time (EPCT) the resource can afford based

on the availability of its processors is computed as in equation 5.18:

EPCT = TPF + JL
MIPS

+ TIO + TTRB = 228 + 60000
300

+ 1 + 1 = 430

The resource makes the check mentioned in the listing in section 5.3 for resources

that employ Price strategy and observes that:

Deadline < ECT + (0.3 × (ECT − CT)) = 430 + (0.3 × (430 − 145)) = 515.5

Because the deadline is less than 515.5, the resource sends completion time

equals to 515.5.

The broker doesn’t reply to user request because the resource completion time

is greater than the user deadline. So, the user waits until its waiting time is reached

and issues a new request with a new deadline and price (start of the fourth round).

Deadline = 463 + 50 = 513

Price = 480 + 60 = 540

Now

Deadline ≥ ECT + (0.3 × (ECT − CT)) = 430 + (0.3 × (430 − 155)) = 512.5

So, the resource sends a completion time that is equal to the user deadline

and therefore the broker replies to the user request. Then, the user accepts the

broker’s bid and is charged 540 as shown in line 30.

The negotiation of J32 goes through the same steps except the occurrence times

are different and thus the user is charged 540 too (see line 48).

Chapter 5. Results and discussion 110

5.5.3 Third verification scenario

This scenario (see appendix C for output) has the same parameters of the first

scenario except the resource employs Deadline strategy instead of Price strategy.

Minimum acceptable deadline determinator equals 0.6.

In this scenario, the resource replies when the resource minimum acceptable

deadline is less than or equal to the users deadline.

For J11, the maximum deadline to send (MDTS) in the first round is computed

as in equation 5.9:

MDTS = CT + (MDTSD × JL
RMIPS

) = 3 + (2 × 60000
300

) = 403

The initial deadline is computed as in equation 5.7:

ID = IDD × (MDTS − CT) + CT = 0.6 × (403 − 3) + 3 = 243

In order to compute the resource minimum acceptable deadline (MAD), ear-

liest possible completion time for the job (EPCT) must be computed first as in

equation 5.18:

EPCT = TPF + JL
MIPS

+ TIO + TTRB = 5 + 60000
300

+ 1 + 1 = 207

The resource MAD is computed as in equation 5.17:

MAD = EPCT +MADD×(EPCT−CT) = 207+0.6×(207−5) = 328.2 � 243

In the second round, MDTS is computed as follows:

MDTS = 13 + (2 × 60000
300

) = 413

The increment in deadline (IID) is computed as in equation 5.6:

IID = IIDD × (MDTS − CT) + (CT − TPR) = 0.1 × (413 − 13) + (13 − 3)

= 50

Since the time between any two successive rounds is the same (ten time units),

the increment in deadline is the same in all rounds.

So, the user’s deadline equals 293.

Deadline = ID + IID = 243 + 50 = 293

For the resource, EPCT is computed as follows:

EPCT = 15 + 60000
300

+ 1 + 1 = 217

The resource MAD is computed as follows:

MAD = 217 + 0.6 × (217 − 15) = 338.2 � 293

Chapter 5. Results and discussion 111

In the third round, the user’s deadline equals 343.

For the resource, EPCT is computed as follows:

EPCT = 25 + 60000
300

+ 1 + 1 = 227

The resource MAD is computed as follows:

MAD = 227 + 0.6 × (227 − 25) = 348.2 � 343

In the fourth round, the user’s deadline equals 393.

For the resource, MAD = 358.2 ≤ 393. So, the resource replies to the broker

which in turn sends a bid to the user. The user then accepts the bid. From the

first scenario, it can be seen that the user’s initial price is 360 and the increment in

price is 60. So, the user’s price is 540 (360+3×60) after four rounds of negotiation.

This matches the output in line 3.

Tables 5.4, 5.5 and 5.6 shows the parameters’ values sent through the negoti-

ations for jobs belong to U1, U2 and U3, respectively.

Table 5.4: Parameters’ values sent through the negotiations of U1.

J11

Round 1 MDTS = 403, Deadline = 243, Price = 360, EPST = 207 and
MAD = 328.2 � ID

Round 2 MDTS = 413, Deadline = 293, Price = 420, EPST = 217 and
MAD = 338.2 � Deadline

Round 3 MDTS = 423, Deadline = 343, Price = 480, EPST = 227 and
MAD = 348.2 � Deadline

Round 4 MDTS = 433, Deadline = 393, Price = 540, EPST = 237 and
MAD = 358.2 ≤ Deadline

J12

Round 1 MDTS = 423, Deadline = 263, Price = 360, EPST = 227 and
MAD = 348.2 � ID

Round 2 MDTS = 433, Deadline = 313, Price = 420, EPST = 237 and
MAD = 358.2 � Deadline

Round 3 MDTS = 443, Deadline = 363, Price = 480, EPST = 247 and
MAD = 368.2 � Deadline

Round 4 MDTS = 453, Deadline = 413, Price = 540, EPST = 257 and
MAD = 378.2 ≤ Deadline

It can be seen in table 5.5 that in the fifth round the deadline of J22 became

Chapter 5. Results and discussion 112

Table 5.5: Parameters’ values sent through the negotiations of U2.

J21

Round 1 MACT = 503, Deadline = 343, Price = 360, EPST = 307 and
MAD = 428.2 � ID

Round 2 MACT = 513, Deadline = 393, Price = 420, EPST = 317 and
MAD = 438.2 � Deadline

Round 3 MACT = 523, Deadline = 443, Price = 480, EPST = 327 and
MAD = 448.2 � Deadline

Round 4 MACT = 533, Deadline = 493, Price = 540, EPST = 337 and
MAD = 458.2 ≤ Deadline

J22

Round 1 MACT = 523, Deadline = 363, Price = 360, EPST = 327 and
MAD = 448.2 � ID

Round 2 MACT = 533, Deadline = 413, Price = 420, EPST = 337 and
MAD = 458.2 � Deadline

Round 3 MACT = 543, Deadline = 463, Price = 480, EPST = 440 and
MAD = 617 � Deadline

Round 4 MACT = 553, Deadline = 513, Price = 540, EPST = 440 and
MAD = 611 � Deadline

Round 5 MACT = 563, Deadline = 563, Price = 600, EPST = 440 and
MAD = 605 � Deadline

the same as the user MACT without being greater than or equal to the resource

MAD . That is why the job couldn’t be executed.

Figure 5.3 shows the assignment of jobs to processors in this scenario.

Chapter 5. Results and discussion 113

Table 5.6: Parameters’ values sent through the negotiations of U3.

J31

Round 1 MACT = 603, Deadline = 443, Price = 360, EPST = 440 and
MAD = 581 � ID

Round 2 MACT = 613, Deadline = 493, Price = 420, EPST = 440 and
MAD = 575 � Deadline

Round 3 MACT = 623, Deadline = 543, Price = 480, EPST = 440 and
MAD = 569 � Deadline

Round 4 MACT = 633, Deadline = 593, Price = 540, EPST = 440 and
MAD = 563 ≤ Deadline

J32

Round 1 MACT = 623, Deadline = 463, Price = 360, EPST = 440 and
MAD = 569 � ID

Round 2 MACT = 633, Deadline = 513, Price = 420, EPST = 460 and
MAD = 595 � Deadline

Round 3 MACT = 643, Deadline = 563, Price = 480, EPST = 460 and
MAD = 589 � Deadline

Round 4 MACT = 653, Deadline = 613, Price = 540, EPST = 460 and
MAD = 583 ≤ Deadline

Chapter 5. Results and discussion 114

Free

Free

12P

11P

Free21J

12J

11J 31J

32J

13P

Figure 5.3: Assignment of jobs to processors in the third verification scenario.

5.5.4 Fourth verification scenario

Dissimilar to the first and third scenarios, the resource employs Price-Deadline

strategy in this scenario (see appendix D for output). In Price-Deadline strategy,

both user price and deadline must be greater than or equal to resource minimum

acceptable price and deadline, respectively. It appears in the first and third scenar-

ios that a larger number of rounds is needed for the resource minimum acceptable

deadline (five rounds except J22 that fails to execute after the fifth round) to be

met than the number of rounds to meet the resource minimum acceptable price

(four rounds). Thus, both resources with Price-Deadline and Deadline strategies

are going to go through the same number of rounds until they reply and therefore

the output of this scenario is going to be the same as the output of the third

scenario (see appendices C and D).

5.6 Results and discussion

5.6.1 Job progression

Figures 5.4 to 5.7 show the job submission, allocation, start and finish times of

users with inter-arrival times follow negative exponential distribution with differ-

Chapter 5. Results and discussion 115

ent means, while figure 5.8 shows the job submission, allocation, start and finish

times with dynamic submission (see section 3.2.2 for descriptions of these times).

The x-axis shows the job number. For example, Job number 5 means the fifth job

of all users. In this experiment, there are 108 users, 10 brokers and 27 resources.

This simulation follows the configuration in section 5.3 except there is no strategy

under consideration in this experiment. Each user has 10 jobs numbered from 0 to

9. It is observed from figures 5.4 to 5.7 that when the mean is increased the differ-

ences between job submission times get larger and therefore the system load gets

lower. The differences between submission times are large when the submission is

dynamic and thus the system load is low. It is also observed that the differences

between the jobs’ allocation and finish times become smaller when the mean is

increased. The reason is that the job arrival rate becomes lower and therefore

the resources are going to be less utilised. By having less utilised resources, the

time needed to complete the execution of jobs is going to be small. It can be

seen from the figures that the difference between the submission and allocation

times of every job is very small. Thus, it can be concluded that the time spent in

negotiation for every job is small if compared to the difference between start and

finish times (execution time).

Chapter 5. Results and discussion 116

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Submission

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Allocation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Start

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Finish

Figure 5.4: Job submission, allocation, start and finish times with inter-arrival
times follow negative exponential distribution with mean 15.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Submission

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Allocation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Start

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Finish

Figure 5.5: Job submission, allocation, start and finish times with inter-arrival
times follow negative exponential distribution with mean 50

Chapter 5. Results and discussion 117

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Submission

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Allocation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Start

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Finish

Figure 5.6: Job submission, allocation, start and finish times with inter-arrival
times follow negative exponential distribution with mean 200.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Submission

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Allocation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Start

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Finish

Figure 5.7: Job submission, allocation, start and finish times with job arrivals
follow negative exponential distribution with mean 500.

Chapter 5. Results and discussion 118

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Submission

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Allocation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

ec
on

ds
)

Job Number

Start

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9
T

im
e

(s
ec

on
ds

)

Job Number

Finish

Figure 5.8: Job submission, allocation, start and finish times with dynamic sub-
mission.

In the next two sections, the performance of various strategies is measured

with static and dynamic submission of jobs.

5.6.2 Static submission of jobs

In this experiment, we evaluate the performance of various entity strategies with

different values of parameters that are shown in section 5.3. Figures 5.9 to 5.24

show the results when the submission of jobs is static. For the user strategy that is

under consideration, the initial price and deadline determinators are varied from

0.1 to 1.0 in steps of 0.1, whilst increment in price and deadline determinators are

varied from 0.01 to 0.4 (0.01, 0.05, 0.1, 0.2, 0.3 and 0.4). For the broker strat-

egy that is under consideration, the revenue determinator is varied in the same

way as initial price and deadline determinators. Finally, the two parameters that

are varied for the resource strategy that is under consideration are the minimum

acceptable price per MI which is varied between 0.001 and 0.01 in steps of 0.001

and minimum acceptable deadline determinator which is varied as revenue deter-

Chapter 5. Results and discussion 119

minator. Figures 5.9 to 5.20 show the performance of different users strategies

based on 3 metrics: the job success rate, average cost per Million Instructions and

average satisfaction rate per job. It is clearly seen in these figures that Comple-

tion time and Price-Completion time strategies have similar performance. This

is because the simulated environment contains resources with various prices from

cheap to expensive. Furthermore, the environment contains resources which don’t

care about the price paid for the execution. So, the price threshold can be easily

met. However, the deadline threshold is going to have the large effect on accept-

ing the bids, especially when the resources are highly utilised. In both strategies,

both user price and deadline will be incremented in each round of negotiation until

an agreement is made with the resource which its completion time suits the user

deadline threshold.

It can be observed from figures 5.9, 5.12, 5.15 and 5.18 that Price strategy

has the best job success rate, because it doesn’t care when the jobs belong to the

user who employs it will finish their execution. So, it is easy for the user to find

suitable resources for executing its jobs. Moreover, it is observed that varying the

determinators has no influence on the job success rate of Price strategy. This is

due the existence of resources which have different prices from low to high and

resources which are careless about the price paid for them in return of execution.

For instance, if the initial price is low, the user executes (after negotiations) its jobs

on cheap resources or resources that don’t care about the price paid for execution.

Otherwise, the user executes its jobs (or most of them) on expensive resources.

Alternatively, the other two strategies have similar job success rate and which is

worse than the job success rate of Price strategy. The reason is that when the

resources are highly utilised, they start sending completion times that are greater

than the maximum acceptable completion time of the users who employ these

strategies. Therefore, those users neglect the resources’ bids and this ends in not

finding suitable resources for executing some of their jobs.

Four diagrams (figures 5.10, 5.13, 5.16 and 5.19) show that Price strategy has

also the best average cost per MI. Because, this strategy won’t accept bids with

Chapter 5. Results and discussion 120

prices greater than its price threshold. But, its average satisfaction rate per job is

the worst as observed from figures 5.11, 5.14, 5.17 and 5.20. This is due to the fact

that it doesn’t care when the jobs will finish their execution. So, it considers any

bid that meets its price threshold even if the completion time is so long. Although

Price-Completion time strategy uses price threshold to decide if to accept bids

or not, its performance is worse (considering average cost per MI metric) than

the performance of Price strategy. The reason is that it also works on finding a

bid with completion time that meets its deadline threshold too, and therefore this

usually results in paying higher price (but still less than or equal to its maximum

acceptable price).

It is clearly seen in figure 5.11 that increasing the initial price tends to improve

the average satisfaction rate per job of Price strategy. This is due to the ability

of executing the jobs on more expensive and therefore less utilised resources. Less

utilised resources can execute the jobs in less time and thus better satisfaction for

jobs’ deadlines.

Figure 5.9 shows that increasing the initial price also tends to increase the num-

ber of accepted jobs of users who employ Completion time and Price-Completion time

strategies. This is because executing some of their jobs on more expensive re-

sources that is usually less utilised than cheap resources and therefore can meet

the deadline thresholds of the jobs. It is observed from figure 5.15 that increasing

the initial deadline tends to increase the number of accepted jobs of users who

employ the same strategies. The reason is that having relaxed deadlines for jobs

results in having a larger chance to find suitable resources for executing them.

Also, it appears in figures 5.12 and 5.18 that having a larger increment in price

or deadline in each round of negotiation tends to increase the number of accepted

jobs of users that employ Completion time and Price-Completion time strategies.

Because, the possibility of making an agreement with resources (through brokers)

in less number of rounds is going to be higher. This reduction in number of

rounds needed to find a suitable resource is important, because the resources have

limitations (5 in the performed simulations) on the number of rounds they go

Chapter 5. Results and discussion 121

through for each job request.

It is observed from figure 5.13 that increasing the increment in price has nearly

no influence on the average cost per MI of Price strategy, but has a large effect

on the same metric of other user strategies. This is because Price strategy only

uses price threshold to determine if to accept or reject a bid, and which can be

satisfied in most cases from the first round of negotiation due to the existence of

cheap resources or resources that are careless about the price they receive in return

of execution. On the other hand, the users who employ other strategies have to

initiate a number of rounds of negotiation until their deadline thresholds are met.

For these strategies, the final price they reach until an agreement is made is going

to be higher, when the increment in price is larger in each round.

It appears in figure 5.21 that User-Resource price difference strategy has bet-

ter overall performance (generated more profit) than the other broker strategy.

This is because it considers the resource bid even if its completion time is longer

than the deadline of the user. This leaves for the users the decision to accept the

bids with completion times longer than their deadlines. Thus, there is a larger

probability to generate more profit, because some users are going to accept the

bids with completion times longer than their deadlines. For instance, some users

don’t care when their jobs are expected to complete, or they prefer to continue

negotiating until an agreement is made or they decide that they can’t negotiate

anymore. In the case of employing the other strategy, not considering the bid

removes the possibility of negotiating the time needed for finishing the execution

of the job from the first round of negotiation. It can be concluded from the same

figure that the brokers’ aim must not be getting too low revenue nor too high

revenue from acting on behalf of users. If it is too low, more of their bids will be

accepted by users, but they get small revenue. Hence, the profit will be small too

after expenses deductions. On the other hand, if the revenue they aim to get is too

high, the prices they send to resources will be too low (in order to keep the rest

if their offers to resources are accepted) and in most cases the prices won’t satisfy

the resources’ required profit from executing the jobs. This leads to rejecting most

Chapter 5. Results and discussion 122

of their requests to resources. As a result, the broker’s objective has to be getting

reasonable revenue.

Figure 5.23 shows that (resource) Price strategy usually generated more profit

than Price-Deadline strategy except when the Minimum Acceptable Price Per Mil-

lion Instructions (MAPPMI) equals 0.001. This is because Price strategy doesn’t

consider the sent deadline to determine if it has to send a bid or standby. As

a result, it sends more bids and thus larger probability to generate more profit.

When MAPPMI equals 0.001, Price-Deadline strategy has better performance

than the performance of Price strategy, despite the resource which employs it has

executed less number of jobs than the resource which employs Price strategy (see

figure 5.22). This is because of the use of completion time threshold to determine

if to send a bid or wait. This leads to increasing the users’ prices and deadlines

many times, until their deadlines become greater than or equal to the minimum

acceptable deadline of Price-Deadline strategy. So, the price paid for the execu-

tion to the resource with Price-Deadline strategy is going to be higher than the

price paid for the execution to the resource with Price strategy, in spite of having

the same MAPPMI for both strategies. On the other hand, Deadline strategy is

usually found to be inferior (see figure 5.24) when compared to Price-Deadline

strategy and this results from not concerning the request sent price, when it de-

cides to reply or not. Therefore, the resources which employ it is going to be the

preferable choice for users who want only to spend a small amount of money on

executing their jobs. This leads to generating small amount of revenue (profit)

by the resources which employ it, because of the allocation of their processors to

cheap jobs in the majority of cases.

Figure 5.24 also shows that increasing the minimum acceptable deadline deter-

minator tends to decrease the profit generated by the two resources which employ

Deadline and Price-Deadline strategies. Increasing this determinator increases the

completion time threshold value as well. As a result, the possibility of users’ dead-

lines to be greater than or equal to this threshold is going to be less and therefore

less number of jobs will be executed on those resources.

Chapter 5. Results and discussion 123

 0

 2

 4

 6

 8

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jo
b

su
cc

es
s

ra
te

Initial price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.9: User strategy’s job success rate for different initial price determinators
with static submission.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Initial price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.10: User strategy’s average cost per Million Instructions for different
initial price determinators with static submission.

Chapter 5. Results and discussion 124

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Initial price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.11: User strategy’s average satisfaction rate per job for different initial
price determinators with static submission.

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Jo
b

su
cc

es
s

ra
te

Increment in price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.12: User strategy’s job success rate for different increment in price de-
terminators with static submission.

Chapter 5. Results and discussion 125

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Increment in price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.13: User strategy’s average cost per Million Instructions for different
increment in price determinators with static submission.

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Increment in price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.14: User strategy’s average satisfaction rate per job for different increment
in price determinators with static submission.

Chapter 5. Results and discussion 126

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jo
b

su
cc

es
s

ra
te

Initial deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.15: User strategy’s job success rate for different initial deadline determi-
nators with static submission.

 5.5

 6

 6.5

 7

 7.5

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Initial deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.16: User strategy’s average cost per Million Instructions for different
initial deadline determinators with static submission.

Chapter 5. Results and discussion 127

-2000

-1500

-1000

-500

 0

 500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Initial deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.17: User strategy’s average satisfaction rate per job for different initial
deadline determinators with static submission.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Jo
b

su
cc

es
s

ra
te

Increment in deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.18: User strategy’s job success rate for different increment in deadline
determinators with static submission.

Chapter 5. Results and discussion 128

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Increment in deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.19: User strategy’s average cost per Million Instructions for different
increment in deadline determinators with static submission.

-1400

-1200

-1000

-800

-600

-400

-200

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Increment in deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.20: User strategy’s average satisfaction rate per job for different increment
in deadline determinators with static submission.

Chapter 5. Results and discussion 129

-5000

 0

 5000

 10000

 15000

 20000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

fit

Revenue determinator

User-Resource_price_difference strategy
User-Resource_price_difference-Deadline_met strategy

Figure 5.21: Profit generated by two broker strategies for different revenue deter-
minators with static submission.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

N
um

be
rs

 o
f e

xe
cu

te
d

jo
bs

Minimum acceptable price per Million Instructions

Price strategy Price-Deadline strategy

Figure 5.22: Number of jobs executed by two resource strategies for different
minimum acceptable prices per Million Instructions with static submission.

Chapter 5. Results and discussion 130

-25000

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
ro

fit

Minimum acceptable price per Million Instructions

Price strategy Price-Deadline strategy

Figure 5.23: Profit generated by two resource strategies for different minimum
acceptable prices per Million Instructions with static submission.

-10000

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

fit

Minimum acceptable deadline determinator

Deadline strategy Price-Deadline strategy

Figure 5.24: Profit generated by two resource strategies for different minimum
acceptable deadline determinators with static submission.

Chapter 5. Results and discussion 131

5.6.3 Dynamic submission of jobs

In this experiment, the performance of different entity strategies is evaluated with

dynamic submission (figures 5.25 to 5.39). Furthermore, the parameters are varied

in the same way as described for the previous experiment. However, the following

things can be noticed from the obtained results of performing simulations with

dynamic submission:

• The difference between the performances of the user strategies in dynamic

submission (figures 5.25 to 5.36) is usually smaller than the difference be-

tween the performances in static submission. The reason is the low job

arrival rate in dynamic submission due to the long lengths of submitted jobs

and which is the nature of jobs executed on the Grid. So, the time between

the submission of two successive jobs of the same user is going to be long,

since the execution of each job takes long time. As a result, the resources’

processors will have good availability status in this experiment and therefore

resources can satisfy the majority of users’ deadlines.

• Both broker strategies have usually better performance in dynamic submis-

sion, because the overall number of jobs executed in dynamic submission

is larger than the overall number of jobs executed in static submission. In

other words, the failure rate is lower in dynamic submission. The low fail-

ure rate results from the good availability status of resources’ processors as

mentioned above.

• When MAPPMI is varied in dynamic submission (see figure 5.38), the per-

formance of Price strategy tends to be better than the performance of the

same strategy in static submission and which is the opposite to the Price-

Deadline strategy. This is because the resource which employs Price strategy

can execute a large number of jobs without a large effect on the availability

of its processors due to the long times between the submissions of successive

jobs as mentioned before. On the other hand, the degradation of Price-

Deadline strategy results from the competition with resources which employ

Chapter 5. Results and discussion 132

Price and Deadline strategies and which in dynamic submission can execute

more jobs especially the jobs belong to users who concern the time needed

to complete the execution of their jobs. Price or Deadline strategy needs

only one threshold to be met in order to reply, while Price-Deadline strategy

needs two thresholds.

• When minimum acceptable deadline determinator is varied in dynamic sub-

mission (see figure 5.39), the Deadline strategy has usually better perfor-

mance than the performance of the Price-Deadline strategy and which is the

opposite of static submission. In static submission, the bad performance of

Deadline strategy results from the early allocation of the processors to cheap

jobs leaving it later unable to meet the deadlines of most of the jobs which

arrive in short period of time. Nevertheless, the resources which employ this

strategy in this experiment can have enough time for executing the cheap

jobs before the arrival of the new jobs, because of the relaxed inter-arrival

times of jobs in dynamic submission.

Chapter 5. Results and discussion 133

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jo
b

su
cc

es
s

ra
te

Initial price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.25: User strategy’s job success rate for different initial price determinators
with dynamic submission.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Initial price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.26: User strategy’s average cost per Million Instructions for different
initial price determinators with dynamic submission.

Chapter 5. Results and discussion 134

-200

-150

-100

-50

 0

 50

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Initial price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.27: User strategy’s average satisfaction rate per job for different initial
price determinators with dynamic submission.

 9

 9.5

 10

 10.5

 11

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Jo
b

su
cc

es
s

ra
te

Increment in price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.28: User strategy’s job success rate for different increment in price de-
terminators with dynamic submission.

Chapter 5. Results and discussion 135

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Increment in price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.29: User strategy’s average cost per Million Instructions for different
increment in price determinators with dynamic submission.

-120

-100

-80

-60

-40

-20

 0

 20

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Increment in price determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.30: User strategy’s average satisfaction rate per job for different increment
in price determinators with dynamic submission.

Chapter 5. Results and discussion 136

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jo
b

su
cc

es
s

ra
te

Initial deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.31: User strategy’s job success rate for different initial deadline determi-
nators with dynamic submission.

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Initial deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.32: User strategy’s average cost per Million Instructions for different
initial deadline determinators with dynamic submission.

Chapter 5. Results and discussion 137

-600

-500

-400

-300

-200

-100

 0

 100

 200

 300

 400

 500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Initial deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.33: User strategy’s average satisfaction rate per job for different initial
deadline determinators with dynamic submission.

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Jo
b

su
cc

es
s

ra
te

Increment in deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.34: User strategy’s job success rate for different increment in deadline
determinators with dynamic submission.

Chapter 5. Results and discussion 138

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 c
os

t p
er

 M
ill

io
n

In
st

ru
ct

io
ns

Increment in deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.35: User strategy’s average cost per Million Instructions for different
increment in deadline determinators with dynamic submission.

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 s
at

is
fa

ct
io

n
ra

te
 p

er
 jo

b

Increment in deadline determinator

Price strategy
Completion_time strategy

Price-Completion_time strategy

Figure 5.36: User strategy’s average satisfaction rate per job for different increment
in deadline determinators with dynamic submission.

Chapter 5. Results and discussion 139

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

fit

Revenue determinator

User-Resource_price_difference strategy
User-Resource_price_difference-Deadline_met strategy

Figure 5.37: Profit generated by two broker strategies for different revenue deter-
minators with dynamic submission.

-30000

-20000

-10000

 0

 10000

 20000

 30000

 40000

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P
ro

fit

Minimum acceptable price per Million Instructions

Price strategy Price-Deadline strategy

Figure 5.38: Profit generated by two resource strategies for different minimum
acceptable prices per Million Instructions with dynamic submission.

Chapter 5. Results and discussion 140

-10000

-5000

 0

 5000

 10000

 15000

 20000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

fit

Minimum acceptable deadline determinator

Deadline strategy Price-Deadline strategy

Figure 5.39: Profit generated by two resource strategies for different minimum
acceptable deadline determinators with dynamic submission.

Chapter 5. Results and discussion 141

5.7 Chapter summary

In this chapter, we simulated and evaluated the performance of different entity

strategies for a variety of scenarios. Two kinds of submission of jobs have been

considered: static and dynamic submission. The evaluation has been done for:

• Price, Completion time and Price-Completion time strategies for users.

• User-Resource price difference and User-Resource price difference-Deadline met

strategies for brokers.

• Price, Deadline and Price-Deadline strategies for resources.

For users, the Price strategy has been superior in terms of job success rate and

average cost per MI, but inferior in term of average satisfaction rate per job when

the submission of jobs is static. For brokers, User-Resource price difference strat-

egy has got a better performance than the other strategy. For resources, the price

strategy has got the best performance except when the Minimum acceptable price

per MI is too low (0.001). However, in dynamic submission:

• the difference between the performances of different user strategies shrinks.

• the brokers strategies have got better performance, because of low failure

rate.

• the performances of resource Price and Deadline strategies improve, whilst

the performance of resource Price-Deadline strategy deteriorates.

It can be observed from the static submission scenario results that the price

strategy is the best strategy for the user to employ if it:

• concerns the percentage of its jobs that can be executed on Grid resources.

• wants to pay less for executing its jobs.

But, the user has to employ Completion time or Price-Completion time strategy,

if it cares about how long its jobs will take to complete.

Chapter 5. Results and discussion 142

The brokers and resources have to employ User-Resource price difference and

Price strategies, respectively in order to generate more profit. However, resource

Price strategy has a poor performance when the resource minimum acceptable

price is too low. On the other hand, employing any user strategy won’t make

much difference in performance, when the submission is dynamic.

It can also be observed that the characteristics of entities have an influence

on the performance of strategies. For instance, user Completion time and Price-

Completion time strategies have similar performance, because of the existence of

resources with different prices from cheap to expensive and existence of resources

which don’t care about the price paid for the use of their processors. So, the price

threshold won’t have a large effect on the performance. However, these strategies

will not have similar performance, if the Grid only contains expensive resources.

For brokers, it is observed from the obtained results that broker strategies have

the best performance when their revenue determinators are neither too low nor too

high. Thus, it is concluded that the broker’s aim has to be receiving reasonable

revenue from acting on behalf of users.

Chapter 6

Conclusions and future work

6.1 Summary

Conventional (traditional) scheduling considers the overall system performance to

evaluate the scheduling quality such as utilisation and schedule length. Further-

more, conventional scheduling doesn’t consider pricing of resource usage. However,

pricing is important because it gives resource providers an incentive to supply their

resources to the Grid. Moreover, pricing is important because it enforces the users

to utilise the resources just when they need them because they have to pay for

their use. Thus, economic scheduling needs to be considered for Grid computing

environment.

To support this, a framework for economic scheduling in Grid computing using

tender model has been developed. Unlike other work that concerns only the per-

formance of either users and resources and rarely both, all Grid entities including

brokers have their strategies that aim to maximise their utilities.

In this thesis, we have also:

• distinguished between different classes of entities such as users, brokers and

resources based on what they send and receive. Thus,

– The entity is a user if it sends jobs and receives bids.

143

Chapter 6. Conclusions and future work 144

– The entity is a resource if it sends bids and receives jobs.

– The entity is a broker if it sends jobs and bids and receives jobs and

bids.

• designed strategies for different classes of entities such as:

– Price, Completion time and Price-Completion time for users.

– Price, Deadline and Price-Deadline strategies for resources.

– User-Resource price difference and User-Resource price difference-Deadline met

for brokers

• developed a Java-based simulator, called MICOSim, that supports event-

driven simulation of economic scheduling in Grid computing using tendering

to allow performance evaluation under different scenarios. MICOSim can

perform a simulation of a large number of entities (more than one hundred

entities) in a short time due to the employment of binary insert. Binary

insert is an modified version of well known binary search.

• evaluated the performance of the designed strategies through a series of

simulations by varying a number of parameters.

The evaluation shows that the price strategy is the best strategy for the user

to employ if it concerns the percentage of its jobs that can be executed on Grid

resources, when the system load is usually high as in the static submission scenario.

Furthermore, the user has to employ it, if it wants to pay less for executing its

jobs. But, the user has to employ Completion time or Price-Completion time

strategy, if it cares about how long its jobs will take to complete. The brokers

and resources have to employ User-Resource price difference and Price strategies,

respectively in order to generate more profit. However, resource Price strategy

has a poor performance when the resource minimum acceptable price is too low.

On the other hand, employing any user strategy won’t make much difference in

performance, when the system load is low as in the dynamic submission scenario.

Chapter 6. Conclusions and future work 145

Moreover, the broker and resource strategies that are superior when the system

load is high stay superior when the system load is low as well.

The dynamic submission differs from static submission in that the worst re-

source strategy is Price-Deadline strategy in dynamic submission, while it is Dead-

line strategy in static submission. Secondly, the job success rate of users who

employ Completion time and Price-Completion time strategies improves, while

the average satisfaction rate per job of users who employ Price strategy improves

when the submission of jobs is dynamic. Finally, the overall profit generated by

all brokers and resources is higher in dynamic submission. It is observed from

above that the entity strategy’s performance is influenced by the behaviour of

other entities such as the submission time of user’s jobs. For better performance,

a strategy can keep records for the interactions occurred between the entity which

employs it and other entities to have an expectation of their course of actions in

the future. Thus, it can send offers based on its expectations. For example, a

strategy knows from its records that resource x always accepts requests for execu-

tion from its user with a specified price. So, the strategy sends a lower price and

sees if resource x is going to accept the request this time too. If not, the strategy

increases the price and sends a new request. Otherwise, the strategy can keep

decreasing the price until the resource stops accepting its requests. By doing so,

the user saves some money and therefore is going to have better performance. It is

also observed that the characteristics of entities have an effect on the performance

of strategies too. For instance, user Completion time and Price-Completion time

strategies have similar performance, because of the existence of resources with

various prices from cheap to expensive and existence of resources which don’t care

about the price paid for the execution. So, the price threshold won’t have a large

effect on the performance as mentioned in the previous chapter. However, these

strategies will not have similar performance, if the Grid only contains expensive

resources. For brokers, it appears from the results that broker strategies have the

best performance when their revenue determinators are neither too low nor too

high. Thus, it is concluded that the broker’s aim has to be receiving reasonable

Chapter 6. Conclusions and future work 146

revenue (neither too low nor too high) from acting on behalf of users.

6.2 Future work

There are four main areas of consideration: extending the framework to support

data Grids, supporting more market models, supporting accounting and under-

taking further experimental investigations.

The framework that has been proposed can be extended to support storage

use in addition to CPU. In this case, the user can request to execute a job, use

of storage or both. This needs adding or making modifications to the parameters

that the request involves in addition to doing the same thing for the parameters

in the reply. Furthermore, the framework can be generalised to support more

market models including commodity and auction models. Accounting can also be

supported by having methods that deals with accounting. This includes keeping a

track of resource usage, defining charging mechanism for user usage and defining

ways of paying for the usage (e.g. credit card and cheque).

Finally, the evaluation of the entity strategies can be done under more sce-

narios. For example, considering the scenario where users have different numbers

of jobs with different lengths, and resources have different numbers of processors

with different speeds. Additionally, considering the scenario where resources ac-

cept only specific job classes. In this way, it can be seen how much effect the

entities’ characteristics have on the performance of the employed strategies.

Bibliography

[1] The tale of two exchanges: NYSE and Nasdaq. Available at http://www.

taxopedia.com/articles/basics/03/103103.asp.

[2] Trading on the AMEX. Available at http://www.amex.com/?href=

/atamex/aboutAmex/mktStructure/at_mktStructure.html.

[3] Amazon elastic compute cloud (amazon ec2) - limited beta. Available at

http://www.amazon.com/b?ie=UTF8&node=201590011, 2006.

[4] D. Abramson, R. Buyya, and J. Giddy. A computational economy for grid

computing and its implementation in the nimrod-g resource broker. Future

Gener. Comput. Syst., 18(8):1061–1074, 2002.

[5] Agorics Inc. Going, going, gone! A survey of auction types, 1996.

[6] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra. A unified re-

source scheduling framework for heterogeneous computing environments. In

Heterogeneous Computing Workshop, pages 156–165, 1999.

[7] M. Assuncao and R. Buyya. An evaluation of communication demand of

auction protocols in grid environments. Technical report, University of Mel-

bourne, Melbourne, Australia, 2006.

147

Bibliography 148

[8] F. Azzedin and M. Maheswaran. Evolving and managing trust in grid com-

puting systems. In IEEE canadian conference on electrical and computer

engineering, 2002.

[9] F. Azzedin and M. Maheswaran. Towards trust-aware resource manage-

ment in grid computing systems. In First IEEE International Workshop on

Security and Grid Computing, 2002.

[10] A. Barmouta and R. Buyya. Gridbank: A grid accounting services architec-

ture(gasa) for distributed systems sharing and integration. In International

parallel and distributed processing symposium, 2003.

[11] A. Beguelin, J. Dongarra, A. Geist, and V. Sunderam. Visualization and

debugging in a heterogeneous environment. Computer, 26(6):88–95, 1993.

[12] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and

F. Zini. Simulation of dynamic grid replication strategies in optorsim. In

GRID ’02: Proceedings of the Third International Workshop on Grid Com-

puting, pages 46–57, London, UK, 2002. Springer-Verlag.

[13] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and

F. Zini. Optorsim: A Grid simulator for studying dynamic data replication

strategies. IJHPCA, 17(4):403–416, Winter 2003.

[14] F. Berman and R. Wolski. The apples project: A status report. In Proceed-

ings of the 8th NEC Research Symposium,, 1997.

[15] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-

level scheduling on distributed heterogeneous networks. In Supercomput-

ing ’96: Proceedings of the 1996 ACM/IEEE conference on Supercomputing

(CDROM), pages 39–65. ACM Press, 1996.

[16] V. Berstis. Fundamentals of grid computing. Technical report, IBM corpo-

ration, 2002.

Bibliography 149

[17] M. Bsoul, I. Phillips, and C. Hinde. A framework for economic scheduling

in grid computing using tender/contract-net model. In pgnet, 2006.

[18] R. Buyya. Economic-based distributed resource management and scheduling

for grid computing. PhD thesis, Monash university, Melbourne, Australia,

2002.

[19] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture for a

resource management and scheduling system in a global computational grid.

In HPC ASIA’2000, 2000.

[20] R. Buyya, D. Abramson, and J. Giddy. A case for economy grid architecture

for service oriented grid computing. In IPDPS ’01: Proceedings of the 10th

Heterogeneous Computing Workshop HCW 2001 (Workshop 1), pages 83–

97. IEEE Computer Society, 2001.

[21] R. Buyya and M. Murshed. Gridsim: a toolkit for the modeling and simula-

tion of distributed resource management and scheduling for grid computing.

Concurrency and Computation: Practice and Experience, 14(13-15):1175–

1220, 2002.

[22] R. Buyya and S. Vazhkudai. Compute power market: Towards a market-

oriented grid. In CCGRID, pages 574–581, 2001.

[23] J. Cao, S. Jarvis, D. Spooner, J. Turner, D. Kerbyson, and G. Nudd. Perfor-

mance prediction technology for agent-based resource management in grid

environments. In International Parallel and Distributed Processing Sympo-

sium: IPDPS 2002 Workshops, 2002.

[24] H. Casanova. Simgrid: A toolkit for the simulation of application scheduling.

ccgrid, 00:430–437, 2001.

[25] H. Casanova and J. Dongarra. NetSolve: A network-enabled server for

solving computational science problems. The International Journal of Su-

Bibliography 150

percomputer Applications and High Performance Computing, 11(3):212–223,

1997.

[26] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS param-

eter sweep template: user-level middleware for the grid. In Supercomput-

ing ’00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing

(CDROM), pages 60–78. IEEE Computer Society, 2000.

[27] H. Chen and M. Maheswaran. Distributed dynamic scheduling of composite

tasks on grid computing systems. In IPDPS, 2002.

[28] B. N. Chun and D. E. Culler. Market-based proportional resource sharing

for clusters. Technical report, University of California, 2000.

[29] L. Chunlin and L. Layuan. An agent-based approach for grid computing,

2003.

[30] J. Cohen, J. Darlington, and W. Lee. Payment and negotiation for the next

generation grid and web. In Proceedings of the UK e-Science All Hands

Meeting, Nottingham, UK, 2005.

[31] C. Courcoubetis, M. Dramitinos, and G. Stamoulis. An auction mechanism

for bandwidth allocation over paths, 2001.

[32] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information

services for distributed resource sharing, 2001.

[33] C. Dumitrescu and I. T. Foster. Gangsim: a simulator for grid scheduling

studies. In CCGRID, pages 1151–1158, Cardiff, UK, 2005.

[34] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, and

A. Streit. On advantages of grid computing for parallel job scheduling.

In International symposium on cluster computing and the grid, 2002.

[35] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic scheduling in

grid computing. In JSSPP ’02: Revised Papers from the 8th International

Bibliography 151

Workshop on Job Scheduling Strategies for Parallel Processing, pages 128–

152. Springer-Verlag, 2002.

[36] D. G. Feitelson. Metrics for parallel job scheduling and their convergence.

In JSSPP ’01: Revised Papers from the 7th International Workshop on Job

Scheduling Strategies for Parallel Processing, volume 2221, pages 188–206,

London, UK, 2001. Springer-Verlag.

[37] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure

toolkit. The International Journal of Supercomputer Applications and High

Performance Computing, 11(2):115–128, Summer 1997.

[38] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling

scalable virtual organizations. International J. Supercomputer Applications,

15, 2001.

[39] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman,

D. A. Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile,

L. Moore, B. Rust, and H. J. Siegel. Scheduling resources in multi-user,

heterogeneous, computing environments with smartnet. In Heterogeneous

Computing Workshop, pages 184–199, 1998.

[40] R. F. Freund, T. Kidd, D. Hensgen, and L. Moore. Smartnet: A schedul-

ing framework for metacomputing. In Second International Symposium on

Parallel Architectures, Algorithms, and Networks (ISPAN ’96), 1996.

[41] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A

computation management agent for multi-institutional grids. Cluster Com-

puting, 5, 2002.

[42] N. Fujimoto and K. Hagihara. A comparison among grid scheduling algo-

rithms for independent coarse-grained tasks. In SAINT 2004 Workshops,

pages 674–680, 2004.

Bibliography 152

[43] A. Galstyan, K. Czajkowski, and K. Lerman. Resource allocation in the grid

using reinforcement learning. In International Conference on Autonomous

Agents and Multiagent Systems, 2004.

[44] J. Gomoluch and M. Schroeder. Market-based resource allocation for grid

computing: A model and simulation. In Middleware Workshops, pages 211–

218, 2003.

[45] J. Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An enabling framework

for master-worker applications on the computational grid. In HPDC, pages

43–50, 2000.

[46] L. He. Designing economic-based distributed resource and task alloca-

tion mechanisms for self-interested agents in computational grids. Avail-

able at http://gracehopper.org/2004/Proceedings/PDF/phd_He.pdf#

search=%22Linli%20He%20designing%22.

[47] L. He and T. R. Ioerger. Task-oriented computational economic-based dis-

tributed resource allocation mechanisms for computational grids. In IC-AI,

pages 462–468, 2004.

[48] X. He, X. Sun, and G. V. Laszewski. A qos guided scheduling algorithm for

grid scheduling, 2003.

[49] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive scheduling

for master-worker applications on the computational grid. In Proceedings

of the First IEEE/ACM International Workshop on Grid Computing, pages

214–227. Springer-Verlag, 2000.

[50] A. Holub. Programming java threads in the real world, part 1. Available at

http://www.javaworld.com/jw-09-1998/jw-09-threads.html.

[51] M. Humphrey and M. R. Thompson. Security implications of typical grid

computing usage scenarios. Cluster Computing, 5(3):257–264, 2002.

Bibliography 153

[52] A. Iamnitchi and I. Foster. On fully decentralized resource discovery in grid

environments. In International Workshop on Grid Computing, 2001.

[53] C. Kenyon and G. Cheliotis. Forward price dynamics and option prices

for network commodities. Computing in Economics and Finance 2002 372,

Society for Computational Economics, July 2002.

[54] C. Kenyon and G. Cheliotis. Creating services with hard guarantees from

cycle-harvesting systems. In CCGRID ’03: Proceedings of the 3st Interna-

tional Symposium on Cluster Computing and the Grid, pages 224–231. IEEE

Computer Society, 2003.

[55] C. Kenyon and G. Cheliotis. Grid resource commercialization: economic

engineering and delivery scenarios. Kluwer Academic Publishers, pages 465–

478, 2004.

[56] D. D. Kouvatsos and I. Mkwawa. Multicast communication in grid com-

puting networks with background traffic. IEE Proceedings - Software,

150(4):257–264, 2003.

[57] G. Laszewski. Grid computing: Enabling a vision for collaborative research.

In PARA ’02: Proceedings of the 6th International Conference on Applied

Parallel Computing Advanced Scientific Computing, pages 37–52. Springer-

Verlag, 2002.

[58] A.M. Law and M.G. McComas. Secrets of successful simulation studies.

Industrial Engineering, 22, 1990.

[59] A. Legrand. Simgrid 3.0 is out. Available at http://gforge.inria.fr/

forum/forum.php?forum_id=234.

[60] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applica-

tions: the simgrid simulation framework. ccgrid, 00:138–145, 2003.

[61] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic

matching and scheduling of a class of independent tasks onto heterogeneous

Bibliography 154

computing systems. In Proceedings of the Eighth Heterogeneous Computing

Workshop, pages 30–44. IEEE Computer Society, 1999.

[62] M. Maheswaran, T. Braun, and H. Siegel. Heterogeneous distributed com-

puting. In Encyclopedia of Electrical and Electronics Engineering, 1999.

[63] M. Maheswaran and K. Krauter. A parameter-based approach to resource

discovery in grid computing systems. In Proceedings of the First Interna-

tional Workshop in Grid Computing, pages 181–190, 2000.

[64] R. Min and M. Maheswaran. Scheduling advance reservations with priorities

in grid computing systems. In In Proceedings of PDCS01, 2001.

[65] R. Min and M. Maheswaran. Scheduling co-reservations with priorities in

grid computing systems. In Proceedings of the 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid, pages 266–267. IEEE Com-

puter Society, 2002.

[66] R. A. Moreno and A. B. Alonso-Conde. Job scheduling and resource manage-

ment techniques in economic grid environments. In European Across Grids

Conference, pages 25–32, 2003.

[67] J. Nakai. Pricing computing resources: Reading between the lines and be-

yond. Technical report, National Aeronautics and Space Administration,

2002.

[68] S. Newhouse and J. Darlington. Computational communities: A marketplace

for federated resources. In HPCN Europe, pages 667–674, 2001.

[69] S. Newhouse, J. MacLaren, and K. Keahey. Trading Grid services within

the UK e-science Grid. Kluwer Academic Publishers, 2004.

[70] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed com-

putation over the internet - the popcorn project. In ICDCS, pages 592–601,

1998.

Bibliography 155

[71] D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions: Theory and

practice. In Proceedings of the Seventeenth National Conference on Artificial

Intelligence and Twelfth Conference on Innovative Applications of Artificial

Intelligence, pages 74–81. AAAI Press / The MIT Press, 2000.

[72] ProModel Corporation. What is simulation? Available at http://www.

promodel.com/simulation.asp.

[73] S. R. Reddy. Market economy based resource allocation in grids. Master’s

thesis, Indian Institute of Technology, Kharagpur, India, 2006.

[74] N. Sample, P. Keyani, and G. Wiederhold. Scheduling under uncer-

tainty: Planning for the ubiquitous grid. In Proceedings of the 5th Interna-

tional Conference on Coordination Models and Languages, pages 300–316.

Springer-Verlag, 2002.

[75] T. Sandholm. Algorithm for optimal winner determination in combinatorial

auctions. Artif. Intell., 135(1-2):1–54, 2002.

[76] T. Sandholm and S. Suri. Optimal clearing of supply/demand curves. In

13th annual International symposium on algorithms and computation, 2002.

[77] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner determination in

combinatorial auction generalizations. In AAMAS ’02: Proceedings of the

first international joint conference on Autonomous agents and multiagent

systems, pages 69–76. ACM Press, 2002.

[78] J. M. Schopf, J. Nabrzyski, and J. Weglarz. Grid resource management:

State of the art and future trends. Kluwer Academic Publishers, 2004.

[79] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: a compu-

tational economy-based job scheduling system for clusters. Softw. Pract.

Exper., 34(6):573–590, 2004.

[80] S. Song, K. Hwang, and M. Macwan. Fuzzy trust integration for security

enforcement in grid computing. In NPC, pages 9–21, 2004.

Bibliography 156

[81] E. Srisan and P. Uthayopas. Heuristic scheduling with partial knowledge

under grid environment. In Second International Symposium on Communi-

cations and Information Technology, 2002.

[82] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan. Dis-

tributed job scheduling on computational grids using multiple simultane-

ous requests. In Proceedings of the 11 th IEEE International Symposium

on High Performance Distributed Computing HPDC-11 2002 (HPDC’02),

pages 354–361. IEEE Computer Society, 2002.

[83] N. Subramaniam. Grid computing: An overview, 2003.

[84] K. Subramoniam, M. Maheswaran, and M. Toulouse. Towards a micro-

economic model for resource allocation in grid computing systems. In IEEE

canadian conference on electrical and computer engineering, 2002.

[85] Sun Microsystems. Interface comparator. Available at http://java.sun.

com/j2se/1.4.2/docs/api/java/util/Comparator.html.

[86] V. Sunderam. PVM: A framework for parallel distributed computing. Con-

currency, Practice and Experience, 2(4):315–340, 1990.

[87] I. E. Sutherland. A futures market in computer time. Commun. ACM,

11(6):449–451, 1968.

[88] A. Takefusa, S. Matsuoka, K. Aida, H. Nakada, and U. Nagashima. Overview

of a performance evaluation system for global computing scheduling algo-

rithms. In HPDC ’99: Proceedings of the The Eighth IEEE International

Symposium on High Performance Distributed Computing, pages 97–104,

Washington, DC, USA, 1999. IEEE Computer Society.

[89] A. Takefusa, S. Matsuoka, H. Casanova, and F. Berman. A study of dead-

line scheduling for client-server systems on the computational grid. In HPDC

’01: Proceedings of the 10th IEEE International Symposium on High Perfor-

Bibliography 157

mance Distributed Computing (HPDC-10’01), pages 406–415. IEEE Com-

puter Society, 2001.

[90] L. Tesfatsion. Agent-based computational economics: Growing economies

from the bottom up. Staff General Research Papers 5075, Iowa State Uni-

versity, Department of Economics, March 2002.

[91] P. Tucker. Market mechanisms in a programmed system, 2002.

[92] A. Turgeon, Q. Snell, and M. Clement. Application placement using perfor-

mance surfaces. In 9th IEEE International Symposium on High Performance

Distributed Computing (HPDC’00), 2000.

[93] S. Vazhkudai and G. Laszewski. A greedy grid: The grid economic engine

directive. In IPDPS ’01: Proceedings of the 15th International Parallel &

Distributed Processing Symposium, pages 173–182, Washington, DC, USA,

2001. IEEE Computer Society.

[94] R. Wolski, J. Brevik, J. S. Plank, and T. Bryan. Grid resource allocation and

control using computational economies. In F. Berman, G. Fox, and A. Hey,

editors, Grid Computing: Making The Global Infrastructure a Reality. John

Wiley & Sons, 2003.

[95] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. Analyzing market-based re-

source allocation strategies for the computational grid. International Journal

of High Performance Computing Applications, 15(3):258–281, 2001.

[96] Y. Wu, G. Yang, J. Mao, S. Shi, and W. Zheng. Grid computing pool and

its framework. In International conference on parallel processing workshops,

2003.

[97] L. Xiao, Y. Zhu, L. M. Ni, and Z. Xu. Gridis: An incentive-based grid

scheduling. In IPDPS ’05: Proceedings of the 19th IEEE International Par-

allel and Distributed Processing Symposium, Washington, DC, USA, 2005.

IEEE Computer Society.

Bibliography 158

[98] K. Yang, X. Guo, A. Galis, B. Yang, and D. Liu. Network engineering

towards efficient resource on-demand in grid computing, 2003.

[99] D. Yu and T. Robertazzi. Divisible load scheduling for grid computing. In

Proc. of the IASTED International Conference on Paralle and Distributed

Computing and Systems, 2003.

[100] S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan, D. Grushin,

N. Kuzjurin, A. Pospelov, and A. Shokurov. Comparison of scheduling

heuristics for grid resource broker. In ENC ’04: Proceedings of the Fifth

Mexican International Conference in Computer Science (ENC’04), pages

388–392, Washington, DC, USA, 2004. IEEE Computer Society.

Appendix A

Output of first verification scenario

1 Job_0 of User_0 was submitted by Broker_0
2 and was executed on Resource_0
3 The price paid by user was 480.0
4 and the time was 27.0 (cpmi= 0.0080)

6 Broker_0 profit 66.0

8 Resource_0 profit 264.0

10 Job_1 of User_0 was submitted by Broker_0
11 and was executed on Resource_0
12 The price paid by user was 480.0
13 and the time was 47.0 (cpmi= 0.0080)

15 Broker_0 profit 132.0

17 Resource_0 profit 528.0

19 Job_0 of User_1 was submitted by Broker_0
20 and was executed on Resource_0
21 The price paid by user was 480.0
22 and the time was 127.0 (cpmi= 0.0080)

24 Broker_0 profit 198.0

26 Resource_0 profit 792.0

28 Job_1 of User_1 was submitted by Broker_0
29 and was executed on Resource_0
30 The price paid by user was 480.0
31 and the time was 147.0 (cpmi= 0.0080)

33 Broker_0 profit 264.0

35 Resource_0 profit 1056.0

37 Job_0 of User_2 was submitted by Broker_0
38 and was executed on Resource_0
39 The price paid by user was 480.0
40 and the time was 227.0 (cpmi= 0.0080)

42 Broker_0 profit 330.0

159

Appendix A. Output of first verification scenario 160

44 Resource_0 profit 1320.0

46 Job_1 of User_2 was submitted by Broker_0
47 and was executed on Resource_0
48 The price paid by user was 480.0
49 and the time was 247.0 (cpmi= 0.0080)

51 Broker_0 profit 396.0

53 Resource_0 profit 1584.0

56 Broker_0 profit 263.75

58 Resource_0 profit 1055.0

60 number of jobs executed by Resource_0 = 6

62 number of jobs submitted by Broker_0 = 6

64 number of jobs of User_0 executed on Resource_0 = 2
65 number of jobs of User_1 executed on Resource_0 = 2
66 number of jobs of User_2 executed on Resource_0 = 2

68 number of jobs of User_0 submitted by Broker_0 = 2
69 number of jobs of User_1 submitted by Broker_0 = 2
70 number of jobs of User_2 submitted by Broker_0 = 2

72 Amount paid by User_0 = 960.0
73 Amount paid by User_1 = 960.0
74 Amount paid by User_2 = 960.0

76 Total MIPS of User_0 = 120000.0
77 Total MIPS of User_1 = 120000.0
78 Total MIPS of User_2 = 120000.0

80 Total MIPS of successful jobs belong to User_0 = 120000.0
81 Total MIPS of successful jobs belong to User_1 = 120000.0
82 Total MIPS of successful jobs belong to User_2 = 120000.0

84 Total number of successful jobs belong to User_0 = 2.0
85 Total number of successful jobs belong to User_1 = 2.0
86 Total number of successful jobs belong to User_2 = 2.0

88 Metric 1 of User_0 = 10.0
89 Metric 1 of User_1 = 10.0
90 Metric 1 of User_2 = 10.0

92 Metric 2 of User_0 = 8.0
93 Metric 2 of User_1 = 8.0
94 Metric 2 of User_2 = 8.0

96 Metric 3 of User_0 = 15.0
97 Metric 3 of User_1 = -25.5
98 Metric 3 of User_2 = -36.0

100 failed= 0

Appendix B

Output of second verification scenario

1 Job_0 of User_0 was submitted by Broker_0
2 and was executed on Resource_0
3 The price paid by user was 480.0
4 and the time was 27.0 (cpmi= 0.0080)

6 Broker_0 profit 66.0

8 Resource_0 profit 264.0

10 Job_1 of User_0 was submitted by Broker_0
11 and was executed on Resource_0
12 The price paid by user was 480.0
13 and the time was 47.0 (cpmi= 0.0080)

15 Broker_0 profit 132.0

17 Resource_0 profit 528.0

19 Job_0 of User_1 was submitted by Broker_0
20 and was executed on Resource_0
21 The price paid by user was 480.0
22 and the time was 127.0 (cpmi= 0.0080)

24 Broker_0 profit 198.0

26 Resource_0 profit 792.0

28 Job_1 of User_1 was submitted by Broker_0
29 and was executed on Resource_0
30 The price paid by user was 540.0
31 and the time was 157.0 (cpmi= 0.0090)

33 Broker_0 profit 276.0

35 Resource_0 profit 1104.0

37 Job_0 of User_2 was submitted by Broker_0
38 and was executed on Resource_0
39 The price paid by user was 480.0
40 and the time was 227.0 (cpmi= 0.0080)

42 Broker_0 profit 342.0

161

Appendix B. Output of second verification scenario 162

44 Resource_0 profit 1368.0

46 Job_1 of User_2 was submitted by Broker_0
47 and was executed on Resource_0
48 The price paid by user was 540.0
49 and the time was 257.0 (cpmi= 0.0090)

51 Broker_0 profit 420.0

53 Resource_0 profit 1680.0

56 Broker_0 profit 287.75

58 Resource_0 profit 1151.0

60 number of jobs executed by Resource_0 = 6

62 number of jobs submitted by Broker_0 = 6

64 number of jobs of User_0 executed on Resource_0 = 2
65 number of jobs of User_1 executed on Resource_0 = 2
66 number of jobs of User_2 executed on Resource_0 = 2

68 number of jobs of User_0 submitted by Broker_0 = 2
69 number of jobs of User_1 submitted by Broker_0 = 2
70 number of jobs of User_2 submitted by Broker_0 = 2

72 Amount paid by User_0 = 960.0
73 Amount paid by User_1 = 1020.0
74 Amount paid by User_2 = 1020.0

76 Total MIPS of User_0 = 120000.0
77 Total MIPS of User_1 = 120000.0
78 Total MIPS of User_2 = 120000.0

80 Total MIPS of successful jobs belong to User_0 = 120000.0
81 Total MIPS of successful jobs belong to User_1 = 120000.0
82 Total MIPS of successful jobs belong to User_2 = 120000.0

84 Total number of successful jobs belong to User_0 = 2.0
85 Total number of successful jobs belong to User_1 = 2.0
86 Total number of successful jobs belong to User_2 = 2.0

88 Metric 1 of User_0 = 10.0
89 Metric 1 of User_1 = 10.0
90 Metric 1 of User_2 = 10.0

92 Metric 2 of User_0 = 8.0
93 Metric 2 of User_1 = 8.5
94 Metric 2 of User_2 = 8.5

96 Metric 3 of User_0 = 15.0
97 Metric 3 of User_1 = -25.5
98 Metric 3 of User_2 = -36.0

100 failed= 0

Appendix C

Output of third verification scenario

1 Job_0 of User_0 was submitted by Broker_0
2 and was executed on Resource_0
3 The price paid by user was 540.0
4 and the time was 37.0 (cpmi= 0.0090)

6 Broker_0 profit 78.0

8 Resource_0 profit 312.0

10 Job_1 of User_0 was submitted by Broker_0
11 and was executed on Resource_0
12 The price paid by user was 540.0
13 and the time was 57.0 (cpmi= 0.0090)

15 Broker_0 profit 156.0

17 Resource_0 profit 624.0

19 Job_0 of User_1 was submitted by Broker_0
20 and was executed on Resource_0
21 The price paid by user was 540.0
22 and the time was 137.0 (cpmi= 0.0090)

24 Broker_0 profit 234.0

26 Resource_0 profit 936.0

28 Job_0 of User_2 was submitted by Broker_0
29 and was executed on Resource_0
30 The price paid by user was 540.0
31 and the time was 237.0 (cpmi= 0.0090)

33 Broker_0 profit 312.0

35 Resource_0 profit 1248.0

37 Job_1 of User_2 was submitted by Broker_0
38 and was executed on Resource_0
39 The price paid by user was 540.0
40 and the time was 257.0 (cpmi= 0.0090)

42 Broker_0 profit 390.0

163

Appendix C. Output of third verification scenario 164

44 Resource_0 profit 1560.0

47 Broker_0 profit 275.25

49 Resource_0 profit 1101.0

51 number of jobs executed by Resource_0 = 5

53 number of jobs submitted by Broker_0 = 5

55 number of jobs of User_0 executed on Resource_0 = 2
56 number of jobs of User_1 executed on Resource_0 = 1
57 number of jobs of User_2 executed on Resource_0 = 2

59 number of jobs of User_0 submitted by Broker_0 = 2
60 number of jobs of User_1 submitted by Broker_0 = 1
61 number of jobs of User_2 submitted by Broker_0 = 2

63 Amount paid by User_0 = 1080.0
64 Amount paid by User_1 = 540.0
65 Amount paid by User_2 = 1080.0

67 Total MIPS of User_0 = 120000.0
68 Total MIPS of User_1 = 120000.0
69 Total MIPS of User_2 = 120000.0

71 Total MIPS of successful jobs belong to User_0 = 120000.0
72 Total MIPS of successful jobs belong to User_1 = 60000.0
73 Total MIPS of successful jobs belong to User_2 = 120000.0

75 Total number of successful jobs belong to User_0 = 2.0
76 Total number of successful jobs belong to User_1 = 1.0
77 Total number of successful jobs belong to User_2 = 2.0

79 Metric 1 of User_0 = 10.0
80 Metric 1 of User_1 = 5.0
81 Metric 1 of User_2 = 10.0

83 Metric 2 of User_0 = 9.0
84 Metric 2 of User_1 = 9.0
85 Metric 2 of User_2 = 9.0

87 Metric 3 of User_0 = 5.0
88 Metric 3 of User_1 = 5.0
89 Metric 3 of User_2 = 4.0

91 failed= 1

Appendix D

Output of fourth verification scenario

1 Job_0 of User_0 was submitted by Broker_0
2 and was executed on Resource_0
3 The price paid by user was 540.0
4 and the time was 37.0 (cpmi= 0.0090)

6 Broker_0 profit 78.0

8 Resource_0 profit 312.0

10 Job_1 of User_0 was submitted by Broker_0
11 and was executed on Resource_0
12 The price paid by user was 540.0
13 and the time was 57.0 (cpmi= 0.0090)

15 Broker_0 profit 156.0

17 Resource_0 profit 624.0

19 Job_0 of User_1 was submitted by Broker_0
20 and was executed on Resource_0
21 The price paid by user was 540.0
22 and the time was 137.0 (cpmi= 0.0090)

24 Broker_0 profit 234.0

26 Resource_0 profit 936.0

28 Job_0 of User_2 was submitted by Broker_0
29 and was executed on Resource_0
30 The price paid by user was 540.0
31 and the time was 237.0 (cpmi= 0.0090)

33 Broker_0 profit 312.0

35 Resource_0 profit 1248.0

37 Job_1 of User_2 was submitted by Broker_0
38 and was executed on Resource_0
39 The price paid by user was 540.0
40 and the time was 257.0 (cpmi= 0.0090)

42 Broker_0 profit 390.0

165

Appendix D. Output of fourth verification scenario 166

44 Resource_0 profit 1560.0

47 Broker_0 profit 275.25

49 Resource_0 profit 1101.0

51 number of jobs executed by Resource_0 = 5

53 number of jobs submitted by Broker_0 = 5

55 number of jobs of User_0 executed on Resource_0 = 2
56 number of jobs of User_1 executed on Resource_0 = 1
57 number of jobs of User_2 executed on Resource_0 = 2

59 number of jobs of User_0 submitted by Broker_0 = 2
60 number of jobs of User_1 submitted by Broker_0 = 1
61 number of jobs of User_2 submitted by Broker_0 = 2

63 Amount paid by User_0 = 1080.0
64 Amount paid by User_1 = 540.0
65 Amount paid by User_2 = 1080.0

67 Total MIPS of User_0 = 120000.0
68 Total MIPS of User_1 = 120000.0
69 Total MIPS of User_2 = 120000.0

71 Total MIPS of successful jobs belong to User_0 = 120000.0
72 Total MIPS of successful jobs belong to User_1 = 60000.0
73 Total MIPS of successful jobs belong to User_2 = 120000.0

75 Total number of successful jobs belong to User_0 = 2.0
76 Total number of successful jobs belong to User_1 = 1.0
77 Total number of successful jobs belong to User_2 = 2.0

79 Metric 1 of User_0 = 10.0
80 Metric 1 of User_1 = 5.0
81 Metric 1 of User_2 = 10.0

83 Metric 2 of User_0 = 9.0
84 Metric 2 of User_1 = 9.0
85 Metric 2 of User_2 = 9.0

87 Metric 3 of User_0 = 5.0
88 Metric 3 of User_1 = 5.0
89 Metric 3 of User_2 = 4.0

91 failed= 1

